
Inferring Biological Networks from
Time-Course Observations Using a
Non-linear Vector Autoregressive

Model

Afshin Mashadi-Hossein

A thesis
submitted in partial fulfillment

of the requirements for the degree of

Master of Science

Department of Biostatistics
University of Washington

2015

Reading Committee:
Dr. Ali Shojaie, Chair

Dr. Noah Simon



Contents

1 Seeing Biology through Networks 2
1.1 Collecting Data on Biological Networks . . . . . . . . . . . . . . . . . 3
1.2 Inferring the Topology of Biological Networks . . . . . . . . . . . . . 4

2 A Non-linear VAR model for Network Inference from Time-Course
Data 15
2.1 Vector Autoregressive Model of a Network . . . . . . . . . . . . . . . 15
2.2 Thresholded LASSO . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Non-linear VAR Model of Network . . . . . . . . . . . . . . . . . . . 18
2.4 Tuning the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Modeling Network Perturbations . . . . . . . . . . . . . . . . . . . . 21
2.6 Non-linear VAR Model of a Network: The Algorithm . . . . . . . . . 21
2.7 Non-linear VAR Model of a Network: Variations and Extensions . . . 22

3 Inferring Directed Networks Using The non-linear VAR model 26
3.1 Empirical verification of the estimation . . . . . . . . . . . . . . . . . 26
3.2 Non-linear VAR model on Linear Data . . . . . . . . . . . . . . . . . 28
3.3 Non-linear VAR model on Data from in silico E. coli Gene Regulatory

Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Inferring EGFR Signaling Network from Temporal Observations on

KD Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Acknowledgements 39

Appendices 40

A 40
A.1 Verification of gglasso . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1



Chapter 1

Seeing Biology through Networks

With the advances in our ability to collect molecular information at a cellular level,
biomedical research is increasingly focused on defining diseases and tailoring treat-
ments based on patients’ molecular profile. Central to this effort is the understanding
of the molecular interactions that regulate cellular activities. Early research viewed
these molecular interactions to occur in a serial fashion, where biological signals were
believed to sequentially travel from one molecular component to the next [39]. How-
ever, cellular functions are increasingly viewed to be regulated through networks of
molecules working in parallel [65]. This network-based perspective on cellular reg-
ulations has important ramifications for how diseases are characterized and treated
at the molecular level. For example, a disease could be defined as the abnormalities
in interactions of a molecular network, even when no single molecular culprit to the
disease can be identified [62]. The network view of diseases can also help guide the
development of more effective treatments based on network structures as opposed
to individual biomarkers [86].

Transitioning to a network-based approach in diagnosis and treatment of dis-
eases, however, requires advances in our capabilities to observe (the components
of) networks and to characterize their dynamics. To this end, new experimental
and computational tools need to be developed. Experimentally, the tools of molec-
ular biology are rapidly growing in capacity. Multiomic platforms, currently in
development [54], are expected to reduce the complexities involved in observing the
components of biological networks. Meanwhile, collaborative initiatives such as The
Cancer Genome Atlas (TCGA) [35] and the Encode project [9] have substantially
increased our collective capacity to study and record diseases at the molecular level.

Computationally, while the tools for studying networks have been rapidly ad-
vancing, it is generally observed that the rate of data generation has outpaced the
computational capabilities to interpret them [39]. This adds urgency to the need
for new computational methods that help bridge the gap between the growing body
of ‘omics’data and the much needed information on the role of networks in human
diseases. This need motivated the work presented in the next two chapters.

This chapter is focused on providing a broad overview of how biological networks
are observed experimentally and recovered computationally. The remainder of the
chapter is organized as follows: In Section 1.1 a brief review of some of the experi-
mental approaches used in the study of biological networks is provided. Section 1.2
will discuss methods developed for inferring the topology of networks. Specifically,
Section 1.2 discusses the early methods developed for understanding patterns of
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co-regulations in biological networks, as well as the more recent developments in
application of Bayesian networks and regularized estimators for inferring networks
of conditional independence. The section concludes with a brief review of some of
the approaches employed for establishing causality in inferred networks.

1.1 Collecting Data on Biological Networks

Understanding the capabilities and the limitations of the experimental methods for
collecting data on biological networks can help establish a context in which to eval-
uate computational methods used in network inference. Experimentally, collecting
data that could inform reliable reconstruction of a molecular network is complex and
costly. The interactions within biological networks span a diverse range of molecule
types (e.g. protein-protein, protein-DNA, and protein-RNA interactions as well as
interaction of each of these molecule types with various metabolites [20]). As no
single method in molecular biology can quantify all these interaction types, collect-
ing data on a network can require application of a diverse range of experimental
methods. These complexities in observing molecular interactions combined with the
large number of possible interactions highlight the need for efficient computational
methods suitable for use in high-dimensional 1 settings.

Furthermore, to establish causal dependencies, experiments need to go beyond
collecting passive observations of network components. This might be done by
altering the state of network components and observing the propagation of the
perturbation effects through the network. In studying biological networks, these
perturbations can be in the form of eliminating a gene (knock out), reducing the
expression of a gene (knock down) or use of chemicals that stimulate the network
or alter interactions of network components. Alternatively, genetic variations across
populations can be used as a naturally occurring perturbation to the population
expression levels [63].

A knock out (KO) perturbation permanently alters the organism by effectively
eliminating a gene from its genome [27]. Generating a KO organism ensures that the
targeted gene is completely excluded from the network. However, KO organisms are
costly to produce, and for viability of the organism, only non-essential genes can be
targeted. In contrast, a knock down (KD) perturbation uses small interfering RNAs
(siRNA), which, as the names implies, interfere with the expression of their targeted
gene often drastically reducing their expression levels [51]. This method is efficient,
and as it does not completely eliminate the expression of a targeted gene, can be
used to directly perturb even the essential genes. Both knock out and knock down
perturbations are common in studying biological networks. To efficiently capture
inter-dependencies of the network components, often networks are observed under
multiple perturbations applied simultaneously according to multifactorial experi-
mental designs.

Collecting time point observations following perturbations can help character-
ize the network dynamics. Such experiments are considerably more challenging to
conduct, but when such complexities are justified/manageable, time-course obser-
vations can provide inference methods with data based on which temporal relations

1High dimensionality is due to the small number of observations, compared to the large number
of possible interactions.
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can be inferred. Temporal relations, although do not prove causality, can provide
supporting evidence for causal relations. In contrast, when time-independent inter-
dependencies of network components are of primary interest, experiments might be
designed to capture the steady state of the network ignoring any transient variability
in the network.

1.2 Inferring the Topology of Biological Networks

The topology of a network formally defines the ‘relation’ among the elements that
comprise the network. For example, the topology of a gene regulatory network
(GRN) defines the relation between a set of genes, proteins, and metabolites involved
in regulating the transcription of a gene. In this context, the exact definition of
‘relation’ specified by a given network topology could vary based on the method used
for inferring the topology. For example, association, direct association and causal
dependence can each be used as the ‘relation’ specified by a network topology. As
we will discuss in the remainder of this chapter, depending on the type of relation
defined by a network, the task of inferring a network topology (hereafter referred to
as network inference) could vary substantially in complexity. To better understand
this task, it is helpful to formalize the representation of a network topology.

Graphs are often used to represent a network topology, where each element of a
network is referred to as a node (or vertex) and the relationship between nodes are
represented by edges. When edges are directional, they typically represent causal 2

dependence between two nodes. In contrast, undirected edges suggest conditional
dependence (or in some contexts only pairwise associations) between the elements
of the network.

Equivalently, the structure of a network can be represented by an adjacency
matrix. For a causal network with p elements, the corresponding adjacency matrix
is a p × p matrix of zeros and ones 3, where the ith row and jth column being 1(0)
represents the jth node being causally dependent on (independent from) the ith node.
Figure 1.1 shows a directed graph, as well as the adjacency matrix representation
of the structure of a network with 4 elements.

v1

v2v3

v4

⇐⇒ A =


0 1 1 0
0 0 1 0
0 0 0 0
0 0 1 0



Figure 1.1: A simple directed graph with 4 nodes and 4 edges and the corresponding
adjacency matrix A

This formal representation of networks helps us define network inference as es-
timation of the elements of an adjacency matrix from observations made on the

2In some contexts, directional edges could represent temporal relations.
3In some settings, instead of the binary matrix, the elements of an adjacency matrix could be

real values quantifying the nature of interactions, time lags, etc.
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state of the network components. This immediately reveals one of the characteristic
challenges facing any network inference method: As the number of parameters to
be estimated grows quadratically relative to the size of the network and given the
experimental costs discussed in Section 1.1, network inference problems are often
underdetermined.

1.2.1 Establishing Patterns of Co-regulations

Not to be hampered by the problem of being underdetermined, some of the early
work in this area restricted their aim to evaluation of pairwise similarities in the
profile of network components. For example, Langfelder et al. used exponentiated
absolute value of Spearman correlation to build a network of co-expressions [43].
Likewise, Balasubramaniyan et al. used Spearman rank correlation as a measure of
similarity between the expression of two genes observed over time [2]. Given that
their data contained time-lag information, they then hypothesized causal effect links
between genes with similar expression profiles.

Besides correlations, other similarity metrics have been used to capture pair-wise
associations between network components. In developing RELNET (RELevance
NETworks), Butte and Kohane used mutual information (MI) between probability
distribution of discretized expression values for pairs of genes. Given the discrete
expression vectors X and Y, MI could be computed as in Eq. (1.1)

MI(X;Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log

(
p(x, y)

p(x)p(y)

)
(1.1)

Here, p(x, y) is the joint (discrete) probability of X and Y while p(x) and p(y) are
the corresponding marginal (discrete) probabilities. Following computation of MI
for all pairs, the authors used a permutation test to set the threshold for values of
MIs considered significant. They “hypothesize[d] that the higher mutual information
is between two genes, the more likely it is they have biological relationship” [6].

Other methods have expanded on RELNET algorithm. One such method is
ARACNE (algorithm for reconstruction of accurate cellular network) [47]. Relative
to RELNET, ARACNE uses Data Processing Inequality (DPI) to avoid similarities
between the profiles of two network components being inferred as a direct association
when that association can be explained by an intermediate component. Following
the computation of MI for all pairs, ARACNE evaluates all triplet nodes X, Y and
Z and excludes any edge between X and Z if I(X,Z) ≤ min (I(X, Y ), I(Y, Z)). In
addition to RELNET and ARACNE, a number of other algorithms such as CLR
(Context Likelihood of Relatedness) [21] use MI and/or correlation scores to infer
network topology.

Methods using pairwise similarity scores for network inference are intuitive and
computationally inexpensive. Additionally, despite their simplicity, some have shown
to perform fairly well relative to some of the more sophisticated approaches. In a re-
cent review article by Maetschke et al. [46], the aforementioned methods as well as a
number of other more sophisticated methods were evaluated on simulated datasets.
Among the unsupervised methods, null mutant Z-score [61] which also operates
based on a simple pairwise scoring scheme, succeeded to outperform all other meth-
ods. In the same analysis, correlation based methods performed surprisingly well.
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1.2.2 Establishing Conditional Independence

Despite their advantages, network inference based on pairwise scoring schemes are
inadequate for identifying conditional independence among elements of a network.
Employing strategies such as the DPI filter in ARACNE is aimed at mitigating
this shortcoming. However, generally the networks inferred form pairwise scoring
schemes are interpreted as showing patterns of co-regulations among the elements
of the true network [49].

Relative to the patterns of co-regulations, it is much more informative for an
inferred network to elucidate direct dependencies between the elements of the true
(unknown) network. This however would require simultaneous (as opposed to pair-
wise) estimation of all inter-dependencies such that any dependency between two
elements is estimated after adjustment for all other effects which could explain the
variations in the state of those elements. Formally, this would amount to estab-
lishing conditional independence between the elements of the network. Specifically,
given the set of all nodes V, we would like the connection between nodes X and Y
to imply [49]

X 6⊥⊥ Y |Z ∀Z ⊆ V \ {X, Y } (1.2)

Many methods have been developed for inferring networks that encode con-
ditional independence relationships. A considerable proportion of these methods
follow the framework Bayesian networks (BN). Regularized graphical models con-
stitute another growing family of methods for inferring networks of conditional in-
dependence.

Bayesian Networks

“Directed graphs [· · · ] used to represent causal or temporal relationships [· · · ] [have
come] to be known as Bayesian networks” [59, p. 14]. Probabilistically, the structure
of a Bayesian network defines a unique set of conditional probability distributions
(CPD). In network inference, where this structure is unknown, data can be used to
infer CPDs which can in turn be used to define the graphs 4 that are compatible
with the inferred CPDs.

Bayesian network inference methods can be broadly categorized into constraint-
based or score-based algorithms [68]. Constraint-based algorithms infer network
structure through an elimination process. Starting from a fully connected graph,
these methods eliminate edges connecting nodes that are deemed (conditionally)
independent based on some hypothesis test of independence. In contrast, score based
methods search the space of candidate graphs, score each candidate and select the
graph(s) with the highest score.

Compared with the score-based algorithms, constraint based methods, such as
the PC algorithm [73], generally offer better computational efficiency. However, the
performance of the constraint-based methods are often too sensitive to the failure
of hypothesis tests in determining true conditional independence. For this reason,
score-based algorithms have come to be favored in computational biology [49] and
other applied fields [44].

4It is noteworthy that while a BN specifies unique CPDs, a set of CPDs can be compatible
with more than one BN. Therefore, inferring BNs from observational data often leads to a group
of equivalent graphs rather than a single graph.
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Learning the structure of BNs using a score-based algorithm can be generally
broken down into two sub-tasks: 1) applying a scoring scheme that allows compar-
ison of candidate graphs, and 2) searching the space of possible graphs for good
graph candidates to score. To understand how the first task (scoring graphs) is ap-
proached, it is helpful to view edges of a graph as pathways for flow of information
(or influence) between the nodes. This intuitive view can then be used to identify
conditional (in)dependencies among the elements of the graph. Knowing conditional
dependencies, in turn enables decomposition of the graph score to an aggregate of
its sub-component scores, thereby making graph scoring manageable. But to define
how the notion of information flow relates to conditional (in)dependencies we need
to review the concept of d-separation.

Z

X Y

(a) Chain

Z

X Y

(b) Outflow

Z

X Y

(c) Collider

Figure 1.2: d-separation: in 1.2a and 1.2b Z is in the active path of information
whereas in 1.2c information flow is blocked in Z and therefore Z does not d-separate
X and Y in 1.2c

The concept of d-separation due to Pearl [82] may be understood by the sim-
ple graphs in Figure 1.2. First, we define a path to be ‘active’ when there is no
‘collision’ of information flow in any of the elements of that path. In Figure 1.2c,
information flow collides in Z. Therefore, the path through Z is not in an active
path and Z does not d-separate X and Y. The utility of recognizing d-separation is
in its relation to conditional independence. For sets of nodes, X, Y and Z, when Z
d-separates X and Y, X and Y are independent conditional on Z. When it does not,
X and Y may (or may not) be dependent conditional on Z. For example, in Figures
1.2a and 1.2b X ⊥⊥ Y |Z whereas for 1.2c that may or may not be true. Using d-
separation and the conditional dependency it establishes, for Figure 1.2a we can ex-
press the joint probability (score) of X,Y and Z as p(X, Y, Z) = p(Y |Z)p(Z|X)p(X)
which is entirely composed of marginal and conditional distributions (as opposed
to joint distributions). Similarly for Figure 1.2b, p(X, Y, Z) = p(X, Y |Z)p(Z) =
p(Y |Z)p(X|Z)p(Z). Lastly, for Figure 1.2c the joint probability can be expressed as
p(X, Y, Z) = p(Z|X, Y )p(X, Y ) = p(Z|X, Y )p(X)p(Y ). This type of factorization
allows BNs to define conditional probability relations which facilitate scoring each
candidate graph in a manageable recursive fashion based on the observed data.

One natural option for scoring a candidate graph is the maximum likelihood of
the graph. To allow for such scoring scheme, one could make parametric assump-
tions about the probability distribution of the data. Following such assumptions,
the task of network scoring is converted into finding the maximum likelihood es-
timate (MLE) of the parameters of the assumed distribution given the observed
data and subsequently using MLE to estimate the maximum likelihood (ML) score.
When nodes are measured as continuous random variables, Gaussian distribution is
a common choice for modeling the data. In the case of discrete data, Multinomial
model of likelihood is often used [23].
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While intuitive, reliance on ML scores for network inference results in overfitting
(i.e. edges are inferred between nodes that are in reality conditionally independent).
This behavior is not unexpected when considering the relationship between likeli-
hood scores and the mutual-information-based techniques discussed earlier. This re-
lationship can be shown using the following simple but illustrative example from [42].
Imagine we have observed data on two boolean nodes (i.e. nodes that can take val-
ues in {0, 1}) X and Y. Consider the two structures in Figures 1.3a and 1.3b as
the two candidate graphs being compared.

X

Y

(a) G0

X

Y

(b) G1

Figure 1.3: Given to nodes X and Y, graph 1.3b almost always has a higher MI
score than graph 1.3a

When the difference in ML scores is used to decide between graphs G0 and G1, the
connected graph, G1, almost always has a higher score. This is because, as shown in
Eq. (1.3), the difference in scores amounts to n×MI(X, Y ), where n is the number
of observations. While, theoretically 0 ≤ MI, in practice MI is almost always strictly
positive, which leads to the connected nodes being always favored over the disjoint
nodes regardless of the data. This is the reason why MI-based methods discussed
earlier had to rely on permutation-based null.

Score(G1|Data)− Score(G0|Data)

=
n∑
i=1

log θ̂X=xi + log θ̂Y=yi|X=xi −
n∑
i=1

log θ̂X=xi + log θ̂Y=yi

= n

 ∑
(x,y)∈Data

p̂(x, y) log p̂(y|x)−
∑

y∈Data

p̂(y) log p̂(y)


= n

 ∑
(x,y)∈Data

p̂(x, y) log p̂(y|x)−
∑

(x,y)∈Data

p̂(x, y) log p̂(y)


= n

 ∑
(x,y)∈Data

p̂(x, y) log
p̂(y, x)

p̂(x)p̂(y)


= n × MI(X, Y ) (1.3)

where θ̂Z=zi ≡ pMLE(Z = zi) =
∑n
i=1 1[Z=zi]

n
≡ p̂(Z = zi)

In the context of BNs, proper use of likelihood-based scores requires controlling
the complexity of graphs. A possible mitigation is to enforce low complexity by
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placing scientifically sensible restrictions on implausible edges. A less restrictive
approach is using Schwarz’s Bayesian Information Criteria (SBIC) score [67] given
in Eq. (1.4) for scoring candidate graphs. This latter approach seeks to balance
maximizing the likelihood with maintaining a low model complexity.

SBIC(Gg|D) = log L(θ̂g|D,Gg)−
‖θ̂g‖0

2
log n (1.4)

Here, n is the observation number, θg is the vector of model parameters, θ̂g is the

maximum likelihood estimate of θg for the data, and L(θ̂g|D,Gg) is the maximum
likelihood of the data, D, under model Gg.

In SBIC, model complexity is represented by ‖θg‖0, the number of non-zero
parameters (edges). Therefore, for any edge to be added, the resultant gain in the
likelihood score should outweigh the cost of addition of a new parameter. In this
way, graph selection based on SBIC scores imposes a penalty on inferring edges to
mitigate overfitting.

It is well-known that SBIC is asymptotically consistent. However, in practice
(due to limited observations as well deviations from distributional assumptions) it is
at best an approximation to the log likelihood of the data. A more rigorous approach
to scoring candidate networks is to compute the probability of a candidate graph
G given the data D: p(G|D). This approach employs the Bayesian scheme in Eq.
(1.5) to estimate the mentioned probability score.

p(G|D) =
p(G) p(D|G)

p(D)
∝ p(G)

∫
Θ

p(D|G,θ)p(θ|G)dΘ (1.5)

where Θ is the support for all parameter estimates θ.

An uninformative (i.e. uniform) prior can be chosen for p(G) when no prior in-
formation on the graph is desired to influence the inference [10]. Alternatively one
might design a prior that penalizes the number of edges if overfitting is a concern.
Evaluating the integral corresponding to p(D|G) is the most involved step for this
scoring scheme. An assumption that simplifies this task is to use conjugate pairs
of distributions for the conditional likelihood of the data, p(D|G,θ), and the con-
ditional prior on the network parameters, p(θ|G). For discrete data a Multinomial
model with a Dirichlet prior on the parameters is commonly used [33]. When data
is continuous, a Normal distribution and a Normal-Wishart prior for the parameters
are common [26]. When conjugate pairs are assumed, computing the score of a graph
benefits form closed form solutions for p(D|G). When such assumption however is
not justified, approximation techniques (e.g. sampling or Laplace integration [40])
are the only options.

Once a scoring scheme is selected, the second task in network inference in the
framework of BNs is finding candidate graphs for scoring. This is of course trivial
when there are only a handful of elements in a network, as in that case, the method
can score all the possible graphs and pick the graph(s) with the highest score. This
however can not be done for larger networks as the number of possible graphs grow
super-exponentially. Therefore, the main concern for the second task is how to most
efficiently search the network space. This encompasses addressing how to perform
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the search as well as how to reduce the computational cost of scoring each candidate
graph (i.e. avoiding redundant computations).

For searching among candidate graphs many different heuristic search algorithms
have been used [7, 10, 33, 79]. These methods are relatively simple and often fast.
However, they can only identify locally optimal points and could be easily trapped
in local plateau. Mitigations such as repeated search with different initializations,
or maintaining a ‘tabu’ list of recently surveyed regions of the space [79] are often
needed to achieve an acceptable performance. Other methods have used Markov
Chain Monte Carlo (MCMC) sampling schemes [17, 45] for searching the graph
space. MCMC samplers are also susceptible to being trapped by local optima.
Additionally the ‘step size’ needs to be tuned to allow for the chain to traverse at
an appropriate ‘pace’ to find and converge to the high-scoring graphs.

In the recent years, BNs have made significant contributions in establishing a
framework for network inference in biological settings [36,64]. BNs are intuitive and
when inferred through the Bayesian approach, they readily facilitate integration of
existing biological knowledge into new models. Additional developments in this
area such as Dynamic Bayesian Networks (DBNs) have shown promise in helping
unravel the temporal dynamic of molecular interactions within biological networks.
[34,86,95].

Despite these advances, many challenges remain with using BNs for network
inference. From selecting appropriate priors to setting the proper search parameters,
there are many factors that affect the performance of the BN methods. For example,
setting the Markov chain to have low variability, not only slows the convergence rate,
but also results in higher correlation between samples. Set the variability too high
and it might never converge.

Even with ideal tuning parameters, the computational costs of inferring BNs can
be prohibitively expensive. Dynamic programming has been proposed to reduce this
time [41] at a substantial cost increase to memory usage. Despite that, estimation
of large networks (i.e. networks with > 100 nodes) with BNs remains impractical
[17,58].

While advances in computing and statistics are expected to continue to expand
the capabilities of BNs, research in network inference can greatly benefit form com-
plimentary approaches. In a recent meta-analysis for network inference methods,
Vignes and colleagues found regularized regression approaches to network inference
to be complementary to those of BNs [84]. The regularized inference methods have
been the subject of extensive studies in recent years and network inference is posi-
tioned to benefit from the growing body of knowledge in this area.

Regularized Graphical Models

Regularized estimators have been extensively used to solve high-dimensional prob-
lems that are believed to have sparse solutions. By penalizing the complexity (i.e.
the number of parameters) of the model, these estimators find unique spares so-
lutions for otherwise underdetermined systems. L1-regularization (LASSO) [80] is
commonly applied to estimate sparse solutions to underdetermined linear regression
problems. Similarly, regularized graphical models have been proposed for network
inference [22,53,88].

Regularized graphical models were first studied in the context of Gaussian Graph-
ical Models (GGM) [53]. For these models, the task of establishing conditional de-
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pendence relationships between the nodes amounts to estimation of the precision
(or concentration) matrix of the joint distribution of the network elements. In the
context of a GGM with a precision matrix K = Σ−1, node a1 and node a2 are
conditionally independent if and only if Ka1a2 = Ka2a1 = 0.

To see this, we need to evaluate the joint distribution of pair of nodes a1 and
a2 conditional on all the other nodes. To do so, it is more convenient to represent
the multivariate normal distribution in its ‘information’ form,N (h,K), defined in
Eq.(1.6). Consider Xi. ∈ Rp to be the ith observation made on a p-node network.
Additionally, assume that Xi. ∼ N(µ,Σ). We can represent this distribution as in
Eq. (1.6)

Xi. ∼ (2π)−p/2|Σ|−1/2e−
1
2

(Xi.−µ)′Σ−1(Xi.−µ)

= (2π)−p/2|Σ|−1/2e−
1
2
X′i.Σ

−1Xi.+X
′
i.Σ
−1µ− 1

2
µ′Σ−1µ

= C ∗ e−
1
2
X′i.KXi.+X

′h ≡ N (h,K) (1.6)

where K = Σ−1, h = Σ−1µ and C is a constant

Given the information form of the joint distribution, we can easily derive the
joint distribution of any pair of nodes a1, and a2 conditional on all the other nodes.
To do so, we partition the nodes in Xi. into Xi,A and Xi,B, where Xi,A = [Xi,a1Xi,a2 ]

′

and Xi,B contains the observation on all the other nodes. Treating Xi,B as constant,
the conditional distribution can be represented as follows:

p(Xi,A|Xi,B) ∝ p(Xi,A, Xi,B)

∝ exp
(
− 1

2
[X ′i,AX

′
i,B]

[
KAA KAB

KBA KBB

] [
XA

XB

]
+ [X ′i,AX

′
i,B]

[
hA
hB

])
∝ exp

(
− 1

2
X ′i,AKAAXi,A −X ′i,AKABXi,B +X ′i,AhA

)
∝ exp

(
− 1

2
X ′i,AKAAXi,A +X ′i,A(hA −KABXi,B)

)
which has the formN (h−KABXiB,KAA) (1.7)

Given that (Xi,A|Xi,B) ∼ N (h−KABXiB,KAA), we have

cov(Xi,a1Xi,a2 |Xi,B) =

[
Ka1a1 Ka1a2

Ka2a1 Ka2a2

]−1

∴ (Xi,a1 ⊥⊥ Xi,a2)|Xi,B ⇔ Ka1a2 = Ka2a1 = 0 (1.8)

The inverse of the sample covariance matrix, S−1 = (XX ′/n)−1, might naturally
be considered as an estimator of the inverse covariance matrix. However, given the
often high dimensional nature of the problem, S is typically rank-deficient and there-
fore not invertable. Furthermore, in cases where S is invertible, its inverse might
not have the sparsity expected of the sparse networks typically seen in biology. For
these two reasons, regularized estimators have been proposed for direct estimation
of the inverse covariance matrix, K̂.

Meinshausen and Bühlmann [53] proposed estimation of K by regressing each
node on all the other nodes iteratively using an L1-regularized regression. In this
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method, using the coefficients estimated by the mentioned regression, they defined
a ‘neighborhood’ set of nodes for each node such that conditional on its neighbor-
hood set, each node is independent of other nodes. Specifically, they defined the
neighborhood set for any node a, as the set of nodes corresponding to the non-zero
coefficients from regressing Xa on X\a. As K̂.a is proportional to the coefficient

β̂.a, the defined neighborhood for node a corresponds to the non-zero elements of K̂
which are used to define the edge-sets between node a and the other nodes. There-
fore, through regularized linear regression, Meinshausen and Bühlmann’s method
allows identification of zero elements of K̂ matrix as a direct estimation of K would.

Later, a number of authors including Yuan and Lin [92] and Friedman et al. [22]
proposed direct estimation of the inverse covariance matrix, K, via a LASSO-type
regularization of the K matrix. In this approach, which is known as graphical
LASSO, penalized likelihood of the GGM is used as the objective function to be op-
timized over K. Specifically, for a mean-centered dataset, the optimization problem
in Eq. (1.9) is solved.

arg max
K

L(K)− λ‖K‖1 (1.9)

where L(K) ≡ log detK − trace(SK) and S ≡ XX ′/n

using coordinate descent, Friedman et al. showed that graphical LASSO, Eq.
(1.9), can perform network inference for GGMs with hundreds of nodes in seconds.
Witten et al. [88] and Mazumder and Hastie [50] further improved the computational
efficiency of this approach. They noted that when (the features can be ordered
such that) the sparse estimate of K matrix is block diagonal, the optimization
for each block can be performed separately thereby gaining substantial reduction in
processing time. The authors also showed that the sample covariance matrix, S, and
the optimization penalty, λ, can be used to identify the sub-networks corresponding
to each block. This algorithm is particularly relevant to biological settings where
biological molecules are often more strongly inter-dependent within their immediate
sub-networks while (conditional on the members of their sub-network) they might
have weak inter-dependencies to other outside of their sub-network molecules.

In recent years, regularized GGMs have attracted great interest in statistics,
computer science and computational biology leading to many additional extensions
to the mentioned methods. For example, Guo et al. suggested joint estimation of
different networks that share common structures [32]. Similarly, Danaher et al. [12]
jointly estimated precision matrices across similar but different classes of networks
(e.g. healthy vs cancer-affected network) by imposing a fused LASSO penalty (in
addition to the sparsity inducing penalty) which encouraged similarity across classes.
Compared to separate estimation across classes, these methods more efficiently use
all the data available to estimate common structures across networks, while also
allow for differences across the classes to be inferred. As another example, Voorman
et al. [85] extended the neighborhood selection of Meinshausen and Bühlmann [53]
to accommodate non-linearity in data that might not be best fit using (penalized)
linear regression. They showed that their method outperforms graphical LASSO (in
positive predictive value) when relationships between nodes are non-linear while in
the case of linearly dependent nodes, the method performs on-par with graphical
LASSO. These are but a small sampling of the recent developments in regularized
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graphical models, which are collectively expected to narrow the gap between the
computational capabilities of these methods and their utility in answering medical
and biological questions.

1.2.3 Establishing Causal Dependence

As discussed earlier, a graphical model capable of establishing conditional depen-
dencies is far more informative than one that only shows patterns of co-regulations.
Similarly, establishing causal dependence between the nodes provides a much clearer
scientific picture of the underlying interactions than the knowledge of conditional
dependence relationships. In the context of networks, causal dependencies can be
naturally thought of as the direction in the flow of information (or influence) and is
symbolized by directional edges (arrows) in graphical models.

To establish causal dependencies however one needs more information than what
is contained within the data from a passive observation of the state a network
(e.g. concentration levels of the nodes). Specifically, establishing causal dependence
requires the data to contain information on the direction of the flow of influence
through the network. This information can be acquired by perturbing the network
as described in Section 1.1 and recording the propagation of the perturbation effect
through the network.

For BNs, an approach proposed by Cooper and Yoo [11] can be used to infer
causality from a mixture of observational and experimental data. Similarly for
regularized graphical models, Fu and Zhou [25] described an approach which allows
for using perturbation information to infer the directed graphs from experimental
data. Both these methods rely on the fact that the observed value of a perturbed
node could mostly (if not entirely) reflect the experimental intervention rather than
the influence of its parent nodes. Based on that, when estimating the edges between
any node c and its parents, these two methods simply exclude any observations
in which the value of node c was directly altered (e.g. set to zero by KO) by a
perturbation.

Order of events, although not sufficient for establishing causal relationships,
might be used as an evidence in support of the hypothesis of causality. There-
fore in the absence of perturbation data, incorporation of temporal information into
the network inference task can aid the discovery of causal relationships.

Dynamic Bayesian networks (DBN) are among the methods that can incorporate
temporal information into network inference [17]. DBNs are essentially BNs where
each node observed at a given time point is represented by a unique node and edges
are only allowed from earlier to later time points. As DBNs are computationally
indistinguishable from BNs, they are inferred similar to any other BN. However
given that each node is represented once for each time point observed, they are
often computationally too expensive for use in all but those networks with relatively
few nodes observed over a small number of time points.

Regularized graphical models can also be used to infer networks based on time-
course observations. For example, similar to DBN, the graphical model can be
expanded such that each observed node at a given time is represented by a unique
node. Then, an approach akin to that of Meinshausen and Bühlmann [53] can be
employed but with edges only allowed (on this expanded network) from nodes at
earlier time points to those on the latest time point. The resultant approach follows
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closely the framework of Granger causality [28] and is studied in the context of
graphical models by a number authors [1, 19,71].

Data are most informative about the dynamics of networks when they capture
temporal changes following experimental perturbations to the network. As a result,
methods that can effectively integrate both temporal and interventional information
into network inference (when such data are available) are more likely to be able to
establish an accurate picture of causal dependencies. Using the approach by Cooper
and Yoo [11], Eaton and Murphy implemented a DBN for network inference based
on a mixture of observational and experimental data [17]. Also noteworthy in this
area is the extension of ‘nested effect models’ (NEM) [48] method to temporal data
by Fröhlich et al. [24], which they called dynamic nested effect model (dynoNEM).

DynoNEM closely follows the framework of DBNs with two main differences.
First, it follows the NEM paradigm, in which networks are assumed to be comprised
of nodes that are directly perturbed (but not observed) and observed nodes that are
each affected by one (and only one) perturbed gene (and are not directly perturbed).
Second, DynoNEM relaxes the first order Markov assumption. Specifically, time-
lagged effects (i.e. effects across multiple time slices) are allowed in DynoNEM.
Despite these differences, DynoNEM closely resembles DBNs and are subject to
some of the same limitations of BNs discussed earlier. In the next chapter, an
alternative approach to network inference based on time course data on perturbed
networks is discussed, which follows the paradigm of regularized graphical models
and can model larger networks than DBNs generally can.
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Chapter 2

A Non-linear VAR model for
Network Inference from
Time-Course Data

As discussed in the previous chapter, time-course measurements on perturbed net-
works provide rich data for inferring the dynamic relations between the elements of
a network. The method proposed here was inspired by one such dataset. Specifi-
cally, this method seeks to infer a static (as opposed to time varying) network from a
mixture of interventional and observational time course data collected on a network.
This method draws upon the work by Shojaie et al. [71]. Similar to that work, the
method employs a penalized vector autoregressive (VAR) framework for modeling
the time course data. Following the estimation of the VAR model, a thresholding
approach is taken to further eliminate the edges that capture weak interactions and
are likely to be spurious. This work extends the earlier work by Shojaie et al. by
generalizing the regression to better capture non-linear relationships between the
elements of the network. It furthermore accommodates both observational and in-
terventional data following the approach by Fu and Zhou [25]. Lastly, the method
allows for incorporation of prior knowledge to restrict the set of edges from which
the network structure is to be constructed. This chapter provides a background on
the methods employed in this work.

2.1 Vector Autoregressive Model of a Network

Vector autroregressive (VAR) models have been extensively used for studying the
evolution of multiple inter-related components over time [76]. In the context of
network inference, a VAR model seeks to explain the latest observed state of the
network based on its observed states over the previous d time points. Formally, for
a network observed over T time points, a VAR model with Gaussian noise can be
written as:

XT = XT−1A1 + ...+XT−dAd + εT , εT ∼MN (0n×p, σ
2In, σ

2Ip) (2.1)

where X t ∈ Rn×p is a matrix of n observations of the p nodes of the network at
time t and Id ∈ Rd×d signifies a d× d identity matrix. MN (µ,Σn,Σp) is the n× p
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matrix normal distribution [13]. The matrix normal distribution here specifies a
noise matrix εT ∈ Rn×p with all rows distributed iid as εTi. ∼ N(0, σ2Ip) and all
columns distributed iid as εT.j ∼ N(0, σ2In) the two covariance matrices in this no-
tation specify respectively the rows and columns covariance structure of the random
matrix(for additional information see [13]).

Here Atij captures the conditional dependence of nodej at time T on nodei at
time t. In other words, At can be thought of as an estimated adjacency matrix
capturing the conditional dependence of the p nodes of the network at time T on
the p nodes of the network at time t. Therefore, by estimating At matrices we
can attempt to capture inter-relation of the nodes of a network over time. Note
that since the captured relations are directional (i.e. always from the earlier time
points to the latest one), it conveys sequence of events and the resultant inference
is a directed graph (in a temporal sense). Solving for the A matrices of Eq. (2.1)
amounts to regressing each column of XT on X .

XT = XA+ εT , εT ∼MN (0n×p, σ
2In, σ

2Ip) (2.2)

where X = [XT−1, ..., XT−d] ∈ Rn×q, A = [(A1)′, ..., (Ad)′]′ ∈ Rq×p, q = d× p and A′

is the transpose of matrix A.
In other words, the model described thus far involves regressing the state of each

node at the last observed time point, T , on all d previously observed states of all p
nodes.

2.2 Thresholded LASSO

Let’s define nodej(t) to represent the state of the jth node at time t. Considering
A = {At : t ∈ {1, · · · , T}} as the set of adjacency matrices of a network, we could
define the parent set of nodej(T ) as πj ≡ {nodei(t) : Atij 6= 0, fori ∈ {1, ..., p}, t < T}.
Given this parents set, our network of conditional independence allows us to define:

(nodej(T )|πj) ⊥⊥ nodek(t), ∀ nodek(t) 6∈ πj and ∀t < T (2.3)

Assuming sparsity of bio-molecular networks, πj is often a very small sub-
set of the node-set V = {nodem(t) : m ∈ {1, · · · , p}, t < T}. In other words,
|πj|≪ |V | ∀ j ∈ {1, ...p}. In this setting, when we regress XT

.j (i.e. the jth column
of XT corresponding to nodej(T )) on X , only the small subset of columns of X
corresponding to πj reflect true conditional dependencies, while in truth XT

.j is con-
ditionally independent of the great majority of the columns of X . Given the large
number of predictors in this regression that the response variable is conditionally
independent of, least square solutions are prone to reflect spurious correlations that
exist between the response variable and the conditionally independent predictors.

penalized regression approaches like LASSO [80] have been used effectively to
reduce the effect of spurious correlations on regression. This benefit however comes
at the cost of biasing the estimated coefficients. As the task of inferring the struc-
ture of a network aims to distinguish true conditional dependencies from spurious
associations, quantifying the exact strength of correlations are not as critical, which
makes penalized regression appealing for network structure learning.
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Additionally, given the the experimental constraints, the system of equations for
solving Eq. (2.2) can be often underdetermined (n � q). Regressing XT on X in
this setting does not lead to a unique least square solution. This further makes the
case for use of penalized regression to capture the important inter-relations that
comprise the structure of the underlying network.

Shojaie et al. [71] estimated A in Eq. (2.2) via a three-step procedure that
involved two tuning parameters, λn and τ and can be summarized as follows:

1. Using LASSO, fit Eq. (2.2) and find the estimated adjacency matrices, Āt, for
t ∈ {1, · · · , T − 1}. This is equivalent to solving the optimization problem
(2.4) for ∀ j ∈ {1, · · · , p}. As the true order of VAR is unknown, here d = T-1
(i.e. regression is performed over all but the last observed time point).

arg min
α0∈R1,A.j∈Rq

n−1‖XT
.j − α0 −XA.j‖2

2 + λ‖A.j‖1 (2.4)

2. Acquire the thresholded estimate of the adjacency matrices in Eq. (2.1), Ât,
by thresholding every element of Āt for ∀ t ∈ {1, ..., T − 1} as follows:

Âtij = Ātij1{‖Āt‖0< p2β
T−1

and |Ātij |<τ}
(2.5)

where β is the desired rate of type II error (e.g. 0.1) for detecting an edge
between two nodes.

3. Estimate the order of the VAR model, d̂, as follows:

d̂ = max
t
{t : ‖Ât‖0 <

p2β

T − 1
} (2.6)

For the two tuning parameters, λ and τ , they suggested the following:

λn = c1σλ0

τn = c2σλ0 (2.7)

where following Zhou et.al [93] λ0 =
√

2 log((T − 1)p)/n. The constant values c1

and c2 were set based on empirical evaluations. They further suggested the following
relation c2 = 4c1 to simplify tuning. Alternatively, they suggested using general
tuning procedures such as cross validation (CV) for finding the optimal values of λ
and τ .
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2.3 Non-linear VAR Model of Network

As discussed in Section 2.2, the task of inferring the structure of a network can
be broadly thought of as distinguishing (rather than quantifying) true conditional
dependencies between nodes from the spurious associations due to noise. In this
context, the ability to detect non-linear relations between nodes is expected to en-
hance our ability to detect conditional dependencies when the inter-relations might
not necessarily be linear [85].

The approach to network inference outlined in Section 2.1 can be easily modified
to better accommodate any non-linearity in relations between nodes. Specifically,
Eq. (2.1) is a especial case of additive models (AMs) [5]. Considering the VAR model
in the context AMs, we can expand the observations using a smoother (e.g. B-spline)
to better capture higher order relationships between the network components. This
expanded model can be represented as:

XT = Y T−1B1 + · · ·+ Y T−dBd + εT , εT ∼MN (0n×p, σ
2In, σ

2Ip) (2.8)

Here, Y t = [f(X t
.1), · · · , f(X t

.p)] ∈ Rn×u where X t
.i is the ith column of X t and

u = p× k. f(.) is the smoother of choice mapping any n-vector to an n× k matrix.
k is the order of the smoother, for example, k = 3 when f(.) is a cubic B-spline. In
this transformation, Bt ∈ Ru×p are the estimated coefficients relating the expanded
observations at time T − t to the state of the p nodes at time T . Bt could be related
to a generalized 1 concept of adjacency matrix, Ăt, defined by the following identity:

Ătij ≡ ‖Bt
Gij
‖2 for i, j ∈ {1, ..., p} (2.9)

where Bt
Gij
∈ Rk are the k coefficient relating the expanded X t

.i to the XT
.j .

We could express Eq. (2.8) in a more compact form:

XT = YB + εT , εT ∼MN (0n×p, σ
2In, σ

2Ip) (2.10)

where Y = [f(X.1), · · · , f(X.q)] ∈ Rn×s, B = [(B1)′, ..., (Bd)′]′ ∈ Rs×p, and s = q× k.
Transforming the problem from Eq. (2.2) to Eq. (2.10) increases the number of

parameters to be estimated by k folds, thereby exasperating the challenges relating
to the (typically) high-dimensional nature of the task at hand (see sec 2.2). How-
ever, given that each edge in the network corresponds to groups of size k within
B, penalizing these groups together is a natural approach that also alleviates the
mentioned challenge of high-dimentionality. Specifically, the three steps procedure
of Shojaie et al. outlined in Section 2.2 can be generalized as follows:

1. Using group LASSO [91], fit Eq. (2.10) and find the estimated adjacency ma-
trices Ăt (using the identity (2.9)) for t ∈ {1, ..., T − 1}. This is equivalent to
solving the following optimization problem for ∀ j ∈ {1, ..., p}

arg min
β0∈R,B.j∈Rs

1

2n
‖XT

.j − β0 − YB.j‖2
2 + λ

p∑
i=1

√
k‖Bgij‖1 (2.11)

1This generalized adjacency matrix encodes higher order interactions.
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Here Bgij is the group of k coefficients corresponding to the expanded X.〉.
Using the definition of B and the identity (2.9), Ăt for t ∈ {1, ..., T − 1} is
acquired.

2. Acquire the thresholded estimate of the adjacency matrices in Eq. (2.1), Ãt,
by thresholding every element of Ăt for ∀ t ∈ {1, ..., T − 1} as follows:

Ãtij = Ătij1{‖Ăt‖0< p2β
T−1

and |Ătij |<τ}
(2.12)

where β is the desired rate of type II error for detecting an edge between two
nodes.

3. Estimate the order of the VAR model, d̂ as follows:

d̂ = max
t
{t : ‖Ãt‖0 <

p2β

T − 1
} (2.13)

2.4 Tuning the Model

As outlined in Section 2.2 (and its generalized version of Section 2.3) the three-step
procedure involves two tuning parameters: λ and τ . For setting these parameters one
could use the Eq. (2.7). However, this would require estimation of σ and also setting
c1 based on empirical observations. Cross validation (CV) is another approach for
tuning. However, CV, being based on predictive error, is known to select a regression
penalty, λ, that tends to under-shrink the coefficient estimates [69]. An attractive
alternative to CV is tuning based on Schwarz Bayesian Information Criteria (SBIC).
Schwarz introduced SBIC as a criterion for “selecting one of a number of models of
different dimensions” [67]. Schwarz showed that when data, x, is generated from
an exponential family of distributions and assuming that different levels of model
complexity (i.e. different number of parameters) are all equally likely, SBIC is
asymptotically related to marginal probability of the data for a candidate model,
Mi according to Eq. (2.14).

logP (x|Mi) ≈ SBIC = log L(θ̂i|x)− |θi|
2

log n (2.14)

where θi is the vector of model parameters, θ̂i is the MLE of θi given the data and
L(θ̂i|x) is the maximum likelihood of the data under model Mi. This criterion is
also referred to as BIC and is often (scaled by -2 and) represented as

BIC = −2 log L(θ̂i|x) + DOF log n (2.15)

where DOF is the degrees of freedom which for simple linear regression is equivalent
to |θi|.

In the context of linear regression, when stochastic variations in the data are as-
sumed to be normally distributed, Eq. (2.14) is simplified (up to an added constant)
into
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BIC = n log
RSS

n
+ DOF log n (2.16)

where RSS is the residual sum of squares from the regression.
Degrees of freedom in ordinary linear regression is well defined as the number of

random variables that can vary independently within the constraint imposed by the
value of estimated parameters. However, penalized regressions are often applied in
high-dimensional settings with sparse solutions where a large number of variables
included in the model are believed to be ‘irrelevant’. In such settings (where the
number of observations is far smaller than the number of variables) we clearly cannot
rely on the intuitive concept of DOF defined for simple linear regression, but rather
as the number of parameters of the model itself is an estimate, the true value of
DOF can only be estimated. In the case of LASSO Zou et al. [94] showed that the
number of non-zero coefficients is an unbiased estimator for DOF of the regression
problem. This estimate however is not valid for group LASSO. In their original work
on group LASSO, Yuan and Lin [91] proposed the following estimate for DOF:

D̂OF
(ortho)

grplasso =
∑
g

1{‖β̂g‖2>0} + (pg − 1)
∑
g

‖β̂g‖2

‖β̂LSg ‖2

(2.17)

where pg was the size of group g, β̂g is the vector of estimated coefficients for group

g estimated via group LASSO and β̂LSg is its ordinary least square counterpart.
Yuan and Lin’s estimator, generalizes the DOF for LASSO derived by Zou et al.

as when pg = 1 it reduces to the estimate by Zou et al. for LASSO. However, this
estimated DOF relies on an orthonomral design matrix (i.e. X ′X = I). Further-
more, Yuan and Lin’s estimator does not extend to underdetermined design matrices
(for which β̂LSg can’t be computed). Vaiter et.al further generalized the estimator
of DOF for group LASSO to remove the orthogonality constraint. Their estimator
additionally extends to high dimensional settings [81]:

D̂OFgrplasso = Trace[Xa(X
′
aXa + λN (β̂a)� (I − Pβ̂a))

−1X ′a] (2.18)

Here, β̂a (‘a’ stands for active) is the vector of all non-zero coefficients estimated
by group LASSO and Xa is comprised of only those columns of X corresponding to
β̂a. I is the identity matrix. λ is the penalty in Eq. (2.11).Pβ̂a is a block diagonal

matrix, with the gth block corresponding to the matrix that projects onto the vector
of estimated coefficients of the gth group. Specifically,

gth block of Pβ̂a =
β̂gβ̂g

′

β̂g
′
β̂g

(2.19)

N (β̂a) is a matrix operator that through element-wise multiplication (designated
�) normalizes the gth block of (I − Pβ̂a) by L2-norm of β̂g.

Using the D̂OFgrplasso and assuming normal stochastic variations, we could use
Eq. (2.16) to estimate BIC for each of the p group LASSO regressions of Eq. (2.11)
on the first of the three steps procedure of Section 2.3.
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However, as Chen and Chen have argued, in the high-dimensional settings “[t]he
ordinary Bayesian information criterion is too liberal for model selection” [8]. They
point out that in derivation of BIC (see [3]) all candidate models are assumed to
be equally likely. This assumption effectively assigns to each k-parametered model
group a probability proportional to the number of the models in that group. They
use the following example to illustrate the problem with this assumption in the high
dimensional settings: when the number of candidate parameters are 1000 (i.e. p =
1000), there are 1000 models with one parameter while there are 1000 * 999/2 models
with two parameters. When all models are equally likely, the two-parametered
models are effectively assigned a probability 999/2 times that of their one-parameter
counterpart.

To correct this tendency of BIC for selection of more complex models in the
high dimensional settings, Chen and Chen proposed an extension to BIC, which in
the context of linear regression problems with Gaussian noise can be expressed as
follows:

EBIC = n log
RSS

n
+ DOF log n+ 2DOFγ log p, where 0 ≤ γ (2.20)

At γ = 0, EBIC is reduces to BIC which works well in model selection when
n < p. As the number of candidate predictors grow, γ can be increased to counter
the tendency of BIC in selecting models with higher number of predictors. Chen
and Chen suggested setting γ > 1 − 1

2k
where k is defined through the equality,

p = O(nk).

2.5 Modeling Network Perturbations

Data collected from a perturbed network differs from those of a passively observed
network mainly in the information the data contain about the relation of the per-
turbed node and its parents. Consider the case where nodei in a network is exper-
imentally suppressed to zero. For molecular networks this would be equivalent to
a KO experiment. As the influence of this perturbation can ‘flow’ to all the chil-
dren of nodei, the data can be used towards inference of all edges downstream of
nodei. Similarly, as the information flow among the nodes upstream or independent
of nodei is not affected by the perturbation, the data can also be used when inferring
those edges as well. The only edges that are rendered ineffective as a result of the
perturbation are those connecting the parents of nodei to nodei. This observation
is the principle behind Fu and Zhou’s approach to inferring a causal GGM from
interventional data [25]. In the context of the penalized regression scheme outlined
in Section 2.3, their approach amounts to regressing each XT

.i column of Eq. (2.10)
only on those rows of Y in which nodei was not perturbed.

2.6 Non-linear VAR Model of a Network: The

Algorithm

Based on the approaches discussed so far, a non-linear VAR model of a network can
be constructed from time-course data that is observed passively, or following network
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perturbations or any mixture thereof. As discussed in Section 2.3, in this approach
sparsity is induced by both regularized regression and by thresholding. Therefore,
the model has two main tuning parameters: the regression penalty designated by
λn in Eq. (2.11) and the thresholding constant designated by τ in Eq. (2.12).
The model tuning will then involve evaluating the fit over the grid (λ ∈ L , τ ∈ T ),
where the tunning parameter ranges, L and T , are found empirically.

Specifically, when we have no perturbation of the network the algorithm can be
summarized as follows:

Algorithm 1 non-linear VAR for observational data

1: Scale: XT ← Scaled observations at t = T
2: Expand: Y ← fsmooth(X )
3: for each λ ∈ L do
4: Regress: B̂ ← ∀ i ∈ {1, · · · , p} solve grplasso(XT

i ∼ Y , λ)
5: Convert to Adj.: Ă← format(B̂)
6: for each τ ∈ T do
7: Threshold: Ã← threshold(Ă, τ)
8: Convert to Coef.: B̂(th) ← reformat(Ã)

9: Define Active: active = {i : B̂(th)
i 6= 0}

10: Refit: B̂(refit) ← grplasso(XT ∼ Y.active, λ)

11: Evaluate: score(λ, τ)← EBIC(RSS(B̂(refit)), D̂OFgrplasso(B̂(refit)))
12: end for
13: end for
14: Get Tuned Param.: (λ∗, τ ∗)← arg min

λ∈L ,τ∈T
score(λ, τ)

15: Regress: B̂∗ ← ∀ i ∈ {1, · · · , p} solve grplasso(XT
i ∼ Y , λ∗)

16: Convert to Adj.: Ă∗ ← format(B̂∗)
17: Threshold: Ã∗ ← threshold(Ă∗, τ ∗)
18: Get Est. Graph: Ĝij, where

Ĝij =

{
1 if ∃t : the element of Ã∗corresponding to (nodei(t), nodej(T )) 6= 0
0 otherwise

Here, Ĝ ∈ {0, 1}pxp is the adjacency matrix for a directional graph of the estimated
network.

When we have a mixture of observational and interventional data, Algorithm
(1) needs to be adjusted such that in all the ‘Regress’ steps, XT

i is regressed only
on the subset of rows of Y in which nodei was not perturbed.

2.7 Non-linear VAR Model of a Network: Varia-

tions and Extensions

Three simple extensions/variations to the method outlined in Section 2.6 are dis-
cussed in this section: model averaging, standardizatoin of group LASSO and im-
posing restriction on the structure e.g. by pre-filtering the list of possible edges.
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2.7.1 Model Averaging

Consider an experiment in which a network is observed over 10 time points follow-
ing a perturbation. Further suppose the perturbation influence ‘flows’ completely
through the network by the 5th time point and thereafter the network reverts to
the pre-perturbation (steady) state. In this case, the first few time points in the
data contain all the information on the dynamic relation of the the network compo-
nents as revealed by the perturbation. This information will be completely missed
when performing network inference as outlined in Section 2.6 as the steady state is
independent of the early fluctuations.

Based on the example discussed, we could expect that the power to detect any
given conditional dependency between a pair of nodes varies as a function of T (the
furthest time point used in estimation relative to the perturbation time). Further-
more, for different pairs of nodes the maximal power to detect conditional depen-
dencies might occur at different time points. However, a priori we might not (and
probably do not) know how to choose T or there might not be a single best choice
of T . In this setting, an averaging scheme over our uncertainty regarding T could
be beneficial.

Specifically, we could perform the inference method outlined in Section 2.6
T − 1 times, each time, considering the the last time point to be in {2, · · · , T}. The
resultant T−1 adjacency matrices can then be averaged and subsequently converted
to a binary matrix by setting cut-off (e.g. values above 0.8 can be set to 1 and below
to 0) on the average value that might indicate a true edge.

The averaging scheme discussed, naively assigns equal weight to all adjacency
matrices. One could argue (using similar argument as in the example discussed
earlier) that such averaging ignores the difference in the ‘goodness’ of the T − 1
models. In this case, a possible mitigation would be to perform a weighted average
of the adjacency matrices. A likelihood score might be a good candidate for weight.
The BIC 2 score, which is already computed for each model, can be used as an
approximation to log likelihood score. This type of averaging, which might be
referred to as Bayesian Model Averaging (BMA), assigns a weight Wi to the inference
from the ith model, Mi. As BICi ≈ −2 log(P (data|Mi)), we could define the Wi as
in Eq. (2.21).

Wi =
exp(−1

2
BICi)∑T−1

j=1 exp(−1
2
BICj)

(2.21)

Building on the method outlined in Section 2.6, this extension (BMA) could
improve our ability to detect edges form the time course data, when the influence
of the perturbations are expected to be transient and present only over a subset of
the observations.

2.7.2 Standardized Group LASSO

When features of the data are correlated, Simon and Tibshirani suggested the use
of ‘Standard’ group LASSO for group-regularized problems [72]. In the context of

2BIC is used generically to refer to BIC or EBIC. In practice EBIC was used in the implemented
method.
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network inference, the features (nodes) can be highly correlated. Fortunately, it is
not difficult to standardize a ‘regular’ group LASSO problem. The standardized
version of the group LASSO optimization problem of Eq. (2.11) can be expressed
as follows:

arg min
β0∈R,B.j∈Rs

1

2n
‖XT

.j − β0 − YB.j‖2
2 + λ

p∑
i=1

√
k‖Y.giBgij‖1 (2.22)

Using QR decomposition, we could decompose each column group in the design
matrix Y.gi ∈ Rn×k into QiRi, where Qi ∈ Rn×k is orthonormal and Ri ∈ Rk×k is
upper triangular. We could then re-write Eq. (2.22) as follows:

arg min
β0∈R,B.j∈Rs

1

2n
‖XT

.j − β0 −
p∑
i=1

Y.giBgij‖2
2 + λ

p∑
i=1

√
k‖Y.giBgij‖1

= arg min
β0∈R,B.j∈Rs

1

2n
‖XT

.j − β0 −
p∑
i=1

QiRiBgij‖2
2 + λ

p∑
i=1

√
k(QiRiBgij)′(QiRiBgij)

= arg min
β0∈R,B.j∈Rs

1

2n
‖XT

.j − β0 −
p∑
i=1

QiCgij‖2
2 + λ

p∑
i=1

√
k(RiBgij)′Q′iQi(RiBgij)

= arg min
β0∈R,B.j∈Rs

1

2n
‖XT

.j − β0 −QCgij‖2
2 + λ

p∑
i=1

√
k‖Cgij‖1 (2.23)

where Cgij ≡ RiBgij and Q ≡ [Q1, · · · , Qp]

The last expression in Eq. (2.23) shows that solving the standardized group
LASSO problem of Eq. (2.22) is equivalent to performing ‘regular’ group LASSO
regression of XT

.j on Q. Then, B can be recovered using the relation: Bgij = R−1
i Cgij.

An estimate of DOF for standardized group LASSO was derived by Petersen et al.
[60], which can be used in computation of EBIC. With these two small modifications,
the method (2.6) can use the standardized group LASSO penalty.

2.7.3 Imposing Restriction on the Graph

As discussed in the previous chapter, network estimation problems are often high-
dimensional. In such settings, the estimation task could benefit from excluding
features (edges) that are known or thought to be irrelevant. In a Bayesian frame-
work, this could be done by setting the network priors to incorporate scientific
knowledge about the structure of the network. This would be equivalent to differen-
tially penalizing edges in the context of regularized graphical models. An extreme
case of differential penalization would be to exclude edges from consideration on
data-driven or scientific grounds.

When scientific knowledge is present, a weighted group LASSO could help incor-
porate this prior information into the inference. In the absence of such knowledge,
one might still be able to use simple pairwise comparison techniques and perturba-
tion information to exclude edges that are highly unlikely. As an example, consider
a case where certain cell receptors are treated with their ligands and the sub-cellular
signal transduction network is observed over time passively (control) as well as under
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certain perturbation. If perturbation of a nodei clearly did not alter the temporal
profile of nodej relative to the control profile of nodej, we could choose to exclude
nodej from the list of potential children of nodei. In this context of pre-filtering,
as the cost of excluding a true edge by mistake is higher than not excluding a false
edge, we can tolerate large type I error rates (e.g. 0.3) to exclude only edges that
are highly unlikely to be present. A simple implementation of this idea could in-
volve comparing the area under the curve (AUC) of temporal profiles for treated vs
control observations via a simple t-test and exclude edges with large (e.g. > 0.3)
multiplicity-corrected p-values. It needs to be emphasized that one must be care-
ful and consider scientific knowledge and reasoning when applying such filtering
schemes. However, when applied properly the resultant reduction in the dimension
of the problem could benefit the inference task.
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Chapter 3

Inferring Directed Networks Using
The non-linear VAR model

The method summarized by Algorithm 1 along with the extensions discussed in
Section 2.7 were implemented in R. This chapter details evaluation of the method
using both simulated as well as knock down experimental data. This chapter is
organized as follows: first, the accuracy of estimation of the group LASSO solution
and its corresponding DOF is reported. Next, linear and non-linear fit solutions
are compared when the data generating mechanism is truly linear. The comparison
of the linear and non-linear fit is repeated on observations from in silico E. coli
networks generated using GeneNetWeaver [66]. Lastly, the method is applied to
temporal observations made on receptor tyrosine kinase (RTK) signaling network
following the perturbation of the network.

3.1 Empirical verification of the estimation

As discussed in Chapter 2, the method implemented relies on accurate estimation of
the solution to the group LASSO problem and its corresponding degrees of freedom.
For solving the group LASSO problem, there are a number of implementations avail-
able in R (e.g. grplasso, gglasso, grprep). gglasso by Yang and Zou [90] offers
both flexibility and speed and was chosen here for solving the group LASSO problem
(and its standardized version). The accuracy of gglasso was independently verified
using the generic MATLAB convex optimization solver cvx [29,30] (see appendix A.1).
With the exact group LASSO optimization statement verified, the performance of
the DOF estimators for group LASSO and standardized group LASSO were verified
through simulation.

Similar to the approach taken by Zou et al. [94] in evaluation of DOF estimator
for LASSO, empirical evaluation of DOF estimators relied on general definition of
DOF as proposed by Efron [18]. Specifically, for n observation of data y ∼ (µ, σ2I)
and its generic mean estimate µ̂ = f(y) (where f(.) is any function estimating the
mean µ), Efron proposed the following estimate of DOF for the estimator µ̂:

DOF =
n∑
i=1

cov(µ̂iyi)

σ2
(3.1)

1000 independent data-sets each with observation number, n = 45 and feature
size (pre-expansion), p = 20 were generated as outlined in Algorithm 2. The
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response variable Y was regressed on X (using group LASSO or its standardized
version) and the corresponding DOF was evaluated in each case and subsequently
averaged over the simulations. Likewise the empirical covariance for each simulated
data-set, ĉovs(Ŷs, Ys), was computed, scaled and averaged to acquire an estimate of
eq. (3.1).

Algorithm 2 Simulation steps

1: for s = 1 to S do
2: Generate D ∈ Rn×p where Dij ∼ Uni(−2.5, 2.5)
3: Expand: X ← bspline(D, degrees = 3)

4: Generate a by-group-sparse ~β
5: Ȳs ← Xβ
6: Ys ← Ȳs + εs where εs ∼ N(0, σ2)

7: for ` = 1 to length(~λ) do
8: Ŷs(λ`)← f(X)

9: D̂OFs(λ`)← Estimate DOF
10: end for
11: end for

12: DOF(λ)← 1
S×σ2

S∑
s=1

n∑
i=1

(Ŷis(λ)− Ȳis)× (εis)

For group LASSO, Figure 3.1 shows the concordance between the estimated
DOF, which is computed using Eq. (2.18), and the expected DOF from Eq. (3.1).
Based on these 1000 simulated data-sets. The estimate and its expected value show
a great degree of agreement.
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Figure 3.1: Estimated vs Expected DOF for group LASSO problem
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Similarly, for standardized group LASSO, Figure 3.2 shows that the DOF es-
timator by Petersen et al. [60] is in good agreement with the expected value of
DOF.
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Figure 3.2: Estimated vs Expected DOF for standardized group LASSO problem

The inference method proposed in Chapter 2, relies on EBIC not only for model
selection over the grid of tuning parameters but also if Bayesian model averaging
is performed. The empirically verified accuracy of of the DOF estimates provides
confidence that (assuming appropriateness of the Gaussian assumption which was
used in deriving EBIC) the model selection (and averaging) will be unbiased.

3.2 Non-linear VAR model on Linear Data

The use of a smoother in Algorithm 1 aims at improving the power to detect edges
when the inter-node relationships are not (necessarily) linear. The linear case can
be viewed as a especial case of this generalized approach, and as such, the approach
is expected to perform well when the node-to-node relationships are strictly linear.

To verify this, 100 data-sets were generated mimicking observations collected over
4 time points on a single 15-nodes network with 50 edges. Specifically, an adjacency
matrix A ∈ R45×15 was sampled from {0, 1} representing the 15-nodes network
(rolled out over the first 3 time points). Then, for each data-set, Di, experimental
matrix X ∈ R100×45 was sampled from standard normal and use to simulate data
according to Di = [X ,XA+ ε] where ε ∼MN (0100×15, σ

2I100, σ
2I15).

Here the the inference simply aimed at finding the non-zero coefficients of A.
This task was repeated for each data-set over a C×L grid of tuning parameters (i.e.
a grid of C thresholding constants and L regularization penalties) and using three
modeling approaches: linear fit with LASSO, cubic B-spline fit with group LASSO
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and cubic B-spline fit with standardized group LASSO. After completion of each
inference, evaluation metrics were computed for the result. These metrics included
the EBIC as well as the call accuracy rates. The latter consisted of estimating the
true positive (TP), true negative (TN), false positive (FP), and false negative (FN)
rates.

Following the analyses of all 100 data-sets, the evaluation metrics were averaged
over the data-sets for each of the three modeling schemes. Positive predictive profile
which shows the relationship between TP rates and all positive (AP = TP+FP) call
rates was chosen as the primary metric for evaluation of the overall performance of
each modeling scheme. A model performs better, the faster TP rate grows with the
growth of AP rate (with maximum rate of TP/AP being 1). Figure 3.3, shows the
positive predictive profiles for each of the three modeling approaches. The values
plotted for each modeling approach, correspond to TP and AP rates when setting
the thresholding constant to EBIC choice (i.e. the thresholding constant of the best
overall fit) while varying the regularization penalties.
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Figure 3.3: Positive predictive profiles of the linear and non-linear models

As expected, when network relations are strictly linear in nature, a linear model
is the best choice (i.e. relative to other choices, the slope of the profile remains
closest to 1 throughout). Group LASSO with a cubic B-spline, while not as good as
the linear fit, shows a performance that is quite comparable to the linear fit. Stan-
dardized group LASSO meanwhile shows more deviation from the best performance
line (i.e. line with slope 1). In general, there are no scientific reason to believe net-
work relations are strictly linear. However, given the demonstrated performance of
group LASSO, it is expected that Algorithm 1 can accommodate the higher order
of interactions without a substantial reduction in the power to detect edges when
relations are characterized primarily by lower orders of interactions.
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In addition to the comparison of the three modeling schemes, the simulation
results allow us to evaluate the performance of the EBIC as the model selection
criteria. Within each profile, the EBIC choice (i.e. red circle) falls within the
general area where the rate of positive predictive value (i.e. the slope of the profiles)
experiences the most pronounced drop. In doing so, the EBIC choice seems to offer
a good compromise between high TP and low FP rates.

Furthermore, Figures 3.4, and 3.5 show that thresholding improves performance
for the linear fit and the group LASSO fit. However, this improvement is not
seen for the standardized group LASSO fit in Figure 3.6. Standardized group
LASSO differs from LASSO and group LASSO in that the fitted values rather than
the coefficients are penalized. However, it is not immediately evident how that
might render coefficients thresholding unable to improve the performance of the
network estimation. While the behavior of the group LASSO fit may warrant further
exploration, based on these results, thresholded group LASSO seems to provide the
best choice for real data (where the node-to-node relationships are unlikely to be
strictly linear).
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Figure 3.5: Positive predictive profiles for group LASSO cubic B-spline fit. The
profiles for EBIC choice along with that of unthresholded case
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3.3 Non-linear VAR model on Data from in silico

E. coli Gene Regulatory Network

Data from E coli gene regulatory network were simulated using the freeware
GeneNetWeaver (GNW) [66]. In Brief, using GNW one can extract gene modules
1 and their (known) associated interaction dynamics. Given these interaction dy-
namics, the software constructs a system of stochastic differential equations (SDE)
that relate the temporal variations in concentration of each molecule to its rate of
production and degradation. Solving these SDEs, the software can simulate obser-
vations made on temporal variations in the concentration of the elements of the
extracted network. GNW offers a host of other features to model observation noise,
as well as to allow in silico perturbation experiments. GNW was used to simulate
data for DREAM challenges 3, 4 and 5 [4], and the software allows generation of
similar data-sets.

The in silico E. coli GRN data used in evaluation of the method discussed in
Section 2.6 came from a 15-nodes network extracted in GNW as described above
Figure 3.7. 1000 time-course observations were made from this network, each
starting with a random multifactorial perturbation 2. Each observation consisted of
11 time points observed over the course of 1000 simulated seconds.

True Data Generating Network
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Figure 3.7: The 15-nodes E. coli network with 12 edges used by GNW to generate
simulated data

Using the simulated 1000 time-course observations, 100 subsets of 90 observations
were sampled and used to perform 100 rounds of network inference. Similar to the

1A group of genes known to be inter-connected at a rate higher than random
2multifactorial perturbation amounts to introducing a random shift to the concentration of

multiple nodes at time 0.
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evaluation of the method using linear data, the inference was completed over a grid
of tuning parameters. Following each network inference, evaluation metrics (i.e.
the EBIC score and the call accuracy rates) were computed and recorded. After
completion of the 100 simulations, the evaluation metrics were averaged over the
100 simulations, and the positive predictive profiles were acquired (as were done in
the case of the linear data).
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Figure 3.8: Positive predictive profiles of 3 modeling approaches on a 15-nodes in
silico E. coli network with 12 edges

Relative to the simulated linear data, GNW data is expected to resemble real
biological data much more closely. The positive predictive profiles based on GNW
data are therefore considered to be a closer representation of the performance of the
method with real biological data. Here, both group LASSO and standardized group
LASSO fit which seek to accommodate higher order of interactions than linear fit
outperformed a linear fit with LASSO. Similar to linear data, the EBIC choice fell in
an area where the PPV experienced the most pronounced drop. A closer comparison
of the performance of the three modeling approaches is provided in table 3.1.

Linear fit with
LASSO

cubic B-spline fit
with group LASSO

cubic B-spline fit with
st. group LASSO

FP 29.97 28.94 29.71
TP 6.23 9.32 9.17

PPV 0.21 0.32 0.31

Table 3.1: The evaluation metrics at EBIC choice comparing linear fit using LASSO
to the cubic B-spline with group LASSO or st. group LASSO
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3.4 Inferring EGFR Signaling Network from Tem-

poral Observations on KD Cells

Epidermal growth factor receptor (EGFR) is a trans-membrane protein belonging to
the receptor tyrosine kinases (RTKs) family of receptors. The cytoplasmic domain
of an RTK contains multiple tyrosine residues which upon activation of the RTK
can each serve to activate different ‘relay’3 molecules. In this manner RTK signaling
allows complex regulations to be encoded by simple extra-cellular biochemical cues
[87]. This also makes the potential harm of abnormal RTK activities particularly
high. Abnormalities in RTK activation have been implicated in a many cancer
types [75, 78,89]

Given its role in oncogensis, RTK signaling pathways have been a target of
cancer therapies (e.g. herceptin, gefitinib and imatinib [14, 31, 57] to name a few).
However, it has become apparent that the overall success of this class of drugs is
limited by innate or acquired resistance of tumors to the treatment. In a recent
article, Wagner et al. employed a network-based analysis of six RTK signaling
pathways to study the mechanism of developing resistance to RTK inhibitors. [86].
Studying the commonalities between network structures across the six RTK types,
they classified these RTKs into three distinct classes. Using network estimates,
the authors explained how the benefits of a treatment that inhibits an RTK could
wane over time as other RTKs of the same class, which share similar signaling
network structures, increasingly compensate for the inhibited RTK. Based on this,
they observed that treating RTKs as classes (as opposed to individual targets) has
the potential to mitigate acquired resistance of tumors to therapies.

To infer RTK networks, knockdown (KD) perturbations targeting different molecules
of the RTK signaling pathways were performed on each of the 6 groups. The KD
cells were then stimulated (each with its own specific ligand) and observed over time
for variations in the concentration of activated network components. Using DBN,
the authors inferred the signaling networks. They subsequently were able to classify
the RTKs based on their structural similarities (see Wagner et al. [86] for additional
details).

The network inference method described in Section 2.6 was inspired by a similar
dataset as discussed by Wagner et al. [86], which was generously provided by the co-
authors of the mentioned article4. The data came from 24 perturbation experiments
conducted on an isogenic cell-line expressing only EGFR receptors. In each exper-
iment, a KD cell group was stimulated with EGF and subsequently observed over
12 time points at 4 replicates per condition. Each observation at a given time-point
consisted of measurements on the abundance of 16 activated (i.e. phosphorylated)
EGFR network components.

Similar data pre-processing (i.e. data cleaning and normalization) as described
by Wagner et al. [86] were performed on the raw data. Exploratory evaluation of
the data revealed that as the signal propagates through the network, some related
network components exhibit their maximal co-variations early in the observation
window, while other components exhibit co-variations later. This observation moti-
vated the use of Bayesian model averaging (BMA) described in Section 2.7.1.

3A generic term referring to any of the molecules relaying the message from the receptor to the
targeted downstream processes

4Drs. Sevecka, Wagner and Wolf-Yadlin
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Figure 3.9: Each Figure shows the change in concentration of an activated par-
ent (black) and its activated child (red) observed at 4 replicates. The signal from
stimulation peaks early in 3.9a and by the 12th time point, the signals revert to
the pre-stimulation background levels, whereas for 3.9b the signal from stimulation
peaks late. In both cases, considering covariations across all time points is far more
informative about the structure than considering how the value of the child on the
12th time point relates to all the earlier observed values for its parent.

Intuitively BMA seeks to score features of a network according to how promi-
nently they explain the data over the period the network was observed (see Section
2.7.1 for details). The resultant adjacency matrix has elements with weights between
0 and 1. One can then explore the results by thresholding the adjacency matrix at
various levels (between 0 and 1) and evaluate the outcome in the context of the
scientific knowledge of the true network. To this end, following BMA, the edges
with scores higher than 0.75 were binned into two edge-sets: the edge-set consisting
of edges with scores greater than 0.95 and those with scores between 0.75 and 0.95.
The two edge-sets are shown in Figure 3.10.

Considering the highest scoring 13 edges in Figure 3.10a, p-Erk 5 → p-p90RSK
reflects the known phosphorylation of p90RSK by ERK (also known as MAPK)
[16]. Also p-S6-I → p-S6-II and p-Akt1-2-3 II → p-Akt1-2-3 I reflect the transition
between single and double phosphorylation of S6 and Akt molecules and are true
dependencies. Furthermore, p-ErbB1-I → p-Stat3 [56], p-MEK1-2 → p-Erk1-2 [37,
38], p-Akt1-2-3 I → p-Akt1-2-3 II, p-RSK36 → p-S6-I and p-RSK3 → p-GSK-3a-
3b [83] all agree with the literature.

In contrast, p-Akt1-2-3 → p-p90RSK does not agree with any known signaling
interaction and is likely to be spurious. Likewise, the two edges from p-glycogen-
synthase to p-Akt1-2-3 I and p-Akt1-2-3 II are not expected to have biological
support. Likewise, p-RSK3→ p-glycogen-synthase and p-Akt1-2-3 II→ p-glycogen-

5p-X denotes phosphorylated state of protein X.
6RSK3 is also known as ribosomal protein S6 kinase.
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Figure 3.10: The top 35 edges scored by BMA approach are binned into 2 categories.
(a) corresponds to the scores > .95 and (b) corresponds to edges with scores between
.75 and .95

synthase do not match the known order of signal transduction.
For the second edge-set shown in Figure 3.10b, p-p90RSK →p-BAD [77], and

p-90RSK → p-GSK-3a-3b [83] match known interactions. Likewise, interactions p-
Stat3 → p-Stat1, p-90RSK → p-RSK3, p-ErbB1-I → p-Stat1 [56] and p-Akt1-2-3
II → p-BAD [70] can be found in the literature.

The interactions p-glycogen-synthase → p-GSK-3a-3b → p-PKC are interesting
as these molecules represent a chain of signal transduction. However, the inferred
direction is the reverse of the expected direction [55]. Similarly, the interaction
between p-GSK 3a-3b and p-Akt1-2-3-II is reported in the literature with the reverse
direction. Other edges that are inferred between the correct pair of molecules but
represent incorrect direction of signal flow are p-BAD → p-PKC [15], p-p-S6 I →
p-Akt1-2-3 I [74], and p-S6 I → p-Akt1-2-3 II [74].

In addition to the incorrect direction, there are inferred edges between pairs
of molecules that are not supported by biological understanding of this network.
Examples of such false edges include p-MEK1-2 → p-p90RSK, p-S6 I → p-Erk1-2,
p-glycogen synthase → p-PKC, p-BAD → p-p70S6K and p-Stat1 → p-S6 II. These
edges are considered as spurious interactions.

Overall in the 35 edges in Figure 3.10 close to half (16/35) are edges that cor-
rectly reflect biological flow of information. With 9/13 of the edges in Figure 3.10a
having biological support, for the top edge-set, the estimated positive predictive rate
is about 0.7, whereas for the 22 edges with lower scores given in Figure 3.10b only
7/22 = 0.32 could be supported by biological knowledge.

The known activation directions reflect the directions of phosphorylation 7. Cap-
turing this direction relies on observing a temporal lag between phosphorylation of

7Phosphorylation is the addition of a phosphate group to a substrate.
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a kinase and the subsequent phosphorylation of a substrate by the activated kinase.
When this lag is small relative to observation noise, discerning the direction could
suffer. This consideration of the time lag relative to the observation noise needs
to be factored in both experimental design as well as in the interpretation of the
inferred networks.

The work presented here builds on the earlier work by Shojaie et al. for net-
work estimation from time-course data [71]. The primary goal of this effort was to
improve the earlier work by enabling it to better accommodate non-linear relations
between the elements of a network. Evaluation of the method based on simulated
data suggests that it succeeds in achieving this goal. Specifically, as was shown in
Section 3.2 when the relations between the elements of a network are strictly lin-
ear, the method presented in this work shows similar performance to a method that
assumes linear relationship between the elements of the network. However, when
the data more closely resemble biological data, the presented method is expected to
outperform its linear counterpart as seen in Section 3.3.

The model selection proposed using the EBIC metric was shown to generally
select penalization levels in the ideal range (i.e. where the estimated TP is maximal
and the rate of drop in PPV is highest). In the numerical evaluations performed, it
was observed that EBIC performed well in selecting thresholding constants when the
data was strictly linear and the network was not too sparse. With the in silico E. coli
data, we observed that the EBIC choice generally tended toward over-thresholding
the model. Although our investigations showed that thresholding could reduce se-
lection of false variables beyond what can be achieved with penalization alone, this
added benefit was not seen when performing the network inference on in silico E.
coli data. In our empirical evaluation on why in silico E. coli did not benefit from
thresholding, we observed that for this data, no significant difference exists between
the distribution of estimated TP and FP coefficients. As thresholding relies on
values FP coefficients to be typically smaller than those of TP coefficients, our ob-
servation explains the reason for why thresholding benfits were lacking for in silico
E. coli data. While this needs further investigation, a practical approach would be
to empirically restrict thresholding levels and then choose EBIC to tune the regres-
sion penalty. This approach was taken in the results presented for the experimental
as well as for the in silico E. coli data.

Beyond its primary goal of improving network estimation performance through
capturing non-linear relations in the data, the method described offers features that
can assist investigators in applied network studies. As discussed in the previous
chapter, the method can accommodate data comprised of both passive observations
as well as observations collected following network perturbations. The method also
allows the estimation task to be informed by prior knowledge of the network struc-
ture. Furthermore, the BMA functionality implemented allows for exploration of the
features of a network by how prominently they explain the observed data through-
out the observation window. In doing so, BMA seeks to increase the efficacy of
estimating a static network from time course observations.

There are a number of areas where potential improvements can be made to
the described algorithm. Currently, the method allows the user to restrict the set of
edges from which a network can be constructed. Future versions can easily extended
this feature to a more general case where edges can be differentially penalized to
provide a finer control over incorporation of prior knowledge into the inference task.
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Additional improvements to the method could include modification of Algorithm 1
to reduce computational costs. For example, it is more efficient to perform all group
LASSO regressions at different penalization levels at once, store the results and
subsequently threshold the sets of coefficients corresponding to each penalization
level. Storage of the results also obviates the need for steps 15-17 of the algorithm.
Lastly, the conditions in which thresholding is beneficial could be further investi-
gated. Currently, the method does allow for the user to specify no thresholding,
but that does not completely eliminate the computational cost of thresholding. If in
practice thresholding provides little or no benefit, by eliminating the thresholding
requirement, the algorithm can be further streamlined to allow for faster processing.
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Appendix A

A.1 Verification of gglasso

There are variations in literature on how group LASSO optimization problem is
defined [52, 72, 90]. For example, a constant multiplier could be absorbed in the
tuning parameter. Given that the DOF estimator for group LASSO (see Eq. (2.18))
relies on the value of λ, it is important to know the exact optimization statement
being solved. The goal in verifying gglasso was to both ensure the accuracy of its
estimates as well as to confirm the exact optimization statement it solves.

X ∈ R100×12 was sampled from standard normal. Using X as the design matrix,
data, Y , were generated according to

Y = Xβ + ε

where β = [2, 2, 2,−2,−2,−2, 0, 0, 0, 0, 0, 0]′ and ε ∼ N(0, I)

With the corresponding groups defined by G = [1, 1, 1, 2, 2, 2, 3, 3, 3, , 4, 4, 4]′

First, Y was regressed onX using gglasso over 100 values of the tuning parameter λ.
Using the same tuning parameters, the corresponding optimization (see Eq. (2.11))
problem was solved using the generic MATLAB convex optimization solver cvx [29,30].
As shown in Figure A.1, the solution from gglasso matches that of cvx almost
perfectly.
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