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Understanding the genetic basis of an individual’s response to therapeutic drugs 

(pharmacogenetics) is a unique area of research with significant translational impact for 

medicine. Known genetic variants with effects on important clinical phenotypes, including 

clopidogrel efficacy and warfarin maintenance dose, highlight the potential translational utility of 

pharmacogenetic analysis. Current strategies for clinical pharmacogenetic testing are primarily 

limited to genotyping of known, common variants. The emergence of next-generation 

sequencing offers a promising new tool to explore the links between drug response and genetic 

variation, both common and rare. 

The focus of my dissertation has been the application of next-generation sequencing technology 

to pharmacogenetic research and implementation. First, using exome sequence data from 

thousands of individuals, I demonstrate that novel, deleterious variation is common in key drug 

metabolizing enzymes among individuals of European and African descent, despite each variant 



 

 

being individually quite rare. I then use this same dataset to explore the inability of current 

pharmacogenetic nomenclature systems to accurately translate and represent results derived from 

exome sequencing. Finally, I present the development and testing of PGRNseq, a custom-capture 

platform designed for rapid, accurate detection of genetic variation within key pharmacogenes. 
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Chapter 1: Introduction 

During their lifetime, the average American will use medication to treat most ailments 

they encounter. These medications, both prescribed and over-the-counter, come with 

recommended doses based on clinical trials. Despite these recommendations, Adverse Drug 

Reactions (ADRs), including overdoses and harmful drug interactions, are a leading cause of 

hospitalization and death in the US1. Although there are many factors that contribute to ADRs, 

genetic variability in drug targets, drug transporters, and drug metabolizing enzymes is thought 

to be responsible for up to 30% of all reported ADRs2. Clinical pharmacogenetics (PGx) research 

aims to describe the set of genetic variants that underlie the inter-individual variation observed in 

drug efficacy and toxicity, with a distinct focus on those variants that can guide clinical decision 

making to reduce ADRs and improve patient outcomes broadly for commonly prescribed 

pharmaceuticals. 

 

1.1 Genetics of drug response and toxicity 

 Although the term ‘pharmacogenetics’ was first coined by Friedrich Vogel in 19593 

genetic variation was first proposed as a contributing factor in adverse drug reactions by Arno 

Motulsky in 1957.  In reviewing data from clinical trials on the efficacy of succinylcholine, a 

muscle relaxant, Motulsky speculated that “drug reactions…may be considered pertinent models 

for demonstrating the interaction of heredity and environment in the pathogenesis of disease.4” In 

the over 50 years that have passed since this initial hypothesis, studies aiming to describe the 

genetic underpinnings of variation in drug response have uncovered associations with genes 

throughout entire pharmacological pathways, including drug metabolism genes, drug 

transporters, and the drug targets themselves5. 
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Pharmacogenetics of drug-metabolizing enzymes 

 Most pharmaceuticals are ingested in an inactive form, and only become active upon the 

addition of reactive and polar groups. This reaction, known as Phase I metabolism, is often 

catalyzed by a family of enzymes known as Cytochrome P450s (CYPs), responsible for 

oxidizing a variety of endogenous and xenobiotic compounds6. Although the human genome 

contains 57 different CYPs, over three-quarters of all known Phase I metabolism reactions are 

catalyzed by only 13 critical CYPs5. Accordingly, genetic variation in these 13 CYPs has been 

linked to response to a variety of their substrates: variation in CYP2C9 is associated with both 

phenytoin7 and warfarin response8, variation in CYP2D6 is associated with response to codeine9 

and tricyclic antidepressants10. Phase II reactions, or ‘conjugations,’ couple these active 

metabolites to charged species for the purpose of excretion. As the rate at which these reactions 

occur is directly related to the concentration of the active metabolite, genes responsible for 

catalyzing Phase II reactions, commonly transferases, have been associated with response to a 

variety of their substrates, including TPMT and thiopurines11 as well as UGT1A1 and 

irinotecan12. 

 

Pharmacogenetics of drug transport genes 

 Although some drugs cross cellular membranes via passive diffusion, proteins involved 

in the active transport of drugs play a critical role in the absorption, distribution, and elimination 

of many common pharmaceuticals. This includes proteins in the ABC family of efflux pumps, 

which enable the active transport of pharmaceuticals across GI membranes13, and organic anion 

transporters in the SLC family, which are largely involved in intracellular hepatic transport of a 
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number of different pharmaceuticals14. Accordingly, variation in these genes that even subtly 

alters their ability to perform these functions can have profound effects on overall drug response 

and toxicity.  

For example, SLCO1B1 is responsible for mediating hepatic clearance of over 30 

different endogenous and exogenous compounds, including simvastatin, the third most 

commonly prescribed drug in the U.S.15.  Although there are many common statin-related side 

effects, skeletal muscle toxicity is the most common statin-related ADR, and statin-related 

myalgias are reported in an estimated 5% of all statin users16. As this toxicity is directly related 

to increased plasma concentrations of the drug, variation affecting SLCO1B1’s transport 

efficiency are likely to alter both risk of this ADR and the overall therapeutic index of statins 

generally. Indeed, variation in SLCO1B1, both common and rare, has been associated with 

decreased transport function in vitro17 and decreased drug clearance in vivo18; additional GWAS 

have confirmed the association between common variation and statin-induced myopathy, 

including one particular allele found to explain 60% of myopathy cases studied19.  

 

Pharmacogenetics of drug target genes 

 Just as variation in genes responsible for metabolizing and transporting drugs can affect 

response and toxicity, so too can variation within the genes encoding the drug targets themselves. 

Indeed, variation in over 25 different targets has been associated with variation in response to 

their respective drug20. Notable gene-drug pairs that fall into this category include ACE and 

response to ACE inhibitors21, ADRB2 and response to beta blockers22, and VKORC1 and 

warfarin maintenance dose23. Although the associations behind these drug-target gene pairs 

remain robust genome-wide, they also emphasize the need to include contributions from genetic 
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variation across the entire ADME pathway when modeling drug response within individuals. For 

example, while variants in both CYP2C9 (a drug metabolizer) and VKORC1 (a drug target) are 

independently associated with warfarin maintenance dose, combined analysis of both loci 

together reveal differential contributions to the overall warfarin dose variation: VKORC1 

polymorphisms explain approximately 25% of the population variance in stabilized warfarin 

dose, compared to the approximately 10% explained by variation in CYP2C9 24. This disparity 

illustrates the utility of genome-wide approaches in pharmacogenetic research and 

implementation that are able to interrogate the full complement of variation within PGx loci 

using a single assay.   

 

1.2 Pharmacogenetics in clinical practice 

Clinical guidelines for ‘actionable’ genes 

 Although the past 5 decades of PGx research have uncovered dozens of associations 

between genetic variation and drug response phenotypes, only a subset are both robustly 

replicated and capable of altering clinical decision making regarding drug choice or dosing. As 

the evidence base behind these associations is constantly evolving, The Clinical 

Pharmacogenetics Implementation Consortium (CPIC) was formed to  identify this critical 

subset, and to provide published, evidence-based, updated guidelines to aid in the 

implementation of PGx findings in clinical care 25. To date, over 10 such guidelines have been 

published, with more in preparation as the evidence for clinical utility of additional gene/drug 

pairs continues to grow. Gene/drug pairs with an accompanying CPIC guide – the set of 

‘actionable’ PGx loci—represent the minimum set that should be assessed for comprehensive, 

preemptive pharmacogenetic testing.  
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Current methods for assaying clinical PGx variation 

Despite CPIC’s standardization of the set of actionable loci, a variety of competing 

methods are being adopted to assay these loci, or a subset of them, by different clinical entities 

nationwide; this fragmentation in methodology hinders the harmonization of PGx-guided clinical 

decision support. For example, while both St. Jude Children’s Research Hospital and Vanderbilt 

University Medical Center currently assay TPMT to help guide thiopurine dosing, they each 

employ entirely different platforms to generate these results, potentially leading to inconsistent 

interpretation of results between centers26. While these assays are generally centered around 

array-based genotyping, the exact targets differ substantially between platforms, and often the 

exact probe sequences are not disclosed. Additionally, these platforms are often supplemented 

with CNV-typing methods including qPCR and LR-PCR which may differ substantially between 

institutions.  

These institutional differences can lead to significant consequences in the interpretation 

of PGx results. For example, a test result may indicate a patient carries only the reference 

haplotype for a key pharmacogene (e.g. CYP2C9*1/*1) is dependent on the suite of variants that 

were assessed: a *1/*1 result from an assay of only 3 common CYP2C9 variants cannot be 

interpreted in the same context as a *1/*1 result from an assay which genotypes all known 

CYP2C9 alleles. As clinical PGx reports often do not indicate exactly which loci tested (and, 

similarly, which were not assayed), there is a need for new standard methods capable of rapid, 

comprehensive interrogation of many PGx loci, common and rare.  
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1.3 Next-generation sequencing 

 Next-generation sequencing (NGS) is becoming increasingly popular in clinical practice 

due to its declining cost and ability to both genotype known variants and discover novel variation 

across a large number of genomic loci. Briefly, NGS involves the preparation of a complex 

library of sample DNA which is subsequently amplified and densely arrayed onto a solid surface. 

This array is then subjected to several rounds of complementary base incorporation, which is 

monitored in parallel for all clusters on the array using fluorescent byproducts of base 

incorporation27. As whole-genome sequencing using this method remains relatively costly, 

capture-based methods for rapid interrogation of genomic loci are becoming widely adopted for 

clinical NGS; this includes both large target spaces such as the entire exome and smaller, 

custom-target assays that capture only a subset of genes or other genomic features. NGS methods 

are a promising avenue for clinical implementation of PGx due to their ability to accurately assay 

known variants and identify rarer, novel variants within known PGx targets that may play a role 

in overall drug response. As recent sequencing-based studies of individual genes or suites of 

genes continue to uncover substantial rare, deleterious variation within key PGx loci, platforms 

that genotype only known, common variants are becoming increasingly obsolete28. Although this 

technology can be a significant step forward for pharmacogenetics, there are substantial 

challenges facing  clinical implementation of NGS inherent in the use of short reads, including 

erroneous variants derived from paralogous loci and difficulty detecting and genotyping Copy 

Number Variation (CNV) and other structural variants29. 
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1.4 Dissertation aims 

 The general theme of this dissertation is to explore the advantages and pitfalls of using 

next-generation sequencing for clinical pharmacogenetics. Chapter 2 describes the extent of rare, 

deleterious variation across a set of key drug metabolizing enzymes using exome sequencing 

data from thousands of individuals. Chapter 3 explores how this exome data can be harmonized 

with existing pharmacogenetic nomenclature, with an eye towards identifying and quantifying 

misclassifications with potential clinical impact. Chapter 4 presents PGRNseq, a new custom 

capture, NGS-based tool for pharmacogenetic research and implementation, which retains high-

throughput nature of exome sequencing without sacrificing the ability to assess known PGx 

alleles that lie outside coding regions. The final chapter summarizes this work and presents a 

vision for the future of NGS-based, preemptive PGx testing.  
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Chapter 2: Quantifying rare, deleterious variation in 12 human Cytochrome P450 drug-

metabolism genes using large-scale exome data 

 

This chapter was previously published as: 

 

Gordon, A.S.; Tabor, H.K.; Johnson, A.D.; Snively, B.M.; Assimes, T.L.; Auer, P.L.; Ioannidis, 

J.P.; Peters, U.; Robinson, J.G.; Sucheston, L.E.; et al. Quantifying rare, deleterious variation in 

12 human cytochrome p450 drug-metabolism genes in a large-scale exome dataset. Hum. Mol. 

Gen. 2014, 23, 1957–1963, doi:10.1093/hmg/ddt588. 

 

2.1 Abstract  

Although the study of genetic influences on drug response and efficacy 

(‘Pharmacogenetics’) has existed for over 50 years, we still lack a complete picture of how 

genetic variation, both common and rare, affects each individual’s responses to medications. 

Previous studies of such variation using Genome Wide Association and resequencing approaches 

have had limited success, in part due to their incomplete characterization of coding variation that 

may have significant consequences on drug response. Exome sequencing is a promising 

alternative method for pharmacogenetic discovery as it provides information on both common 

and rare variation in large numbers of individuals. Using exome data from 2203 African-

American and 4300 Caucasian individuals through the NHLBI Exome Sequencing Project, we 

conducted a survey of coding variation within twelve Cytochrome P450 (CYP) genes that are 

collectively responsible for catalyzing nearly 75% of all known Phase I drug oxidation reactions. 

In addition to identifying many polymorphisms with known pharmacogenetic effects, we 

discovered novel nonsynonymous variants in each of the target CYP genes. We constructed a list 

of putative functional variants that may play a role in overall drug metabolism using Genomic 

Evolutionary Rate Profiling (GERP), Grantham score, and literature review to assess 
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evolutionary, biochemical, and structural significance. This list includes variants with diverse 

functional effects such as premature stop codons, aberrant splice sites, and mutations at 

conserved active site residues. While these candidate variants are individually rare, 7.6-11.7% of 

individuals interrogated in the study carry at least one newly described potentially deleterious 

mutation in a major drug-metabolizing CYP.  

 

 

2.2 Background 

Genetic influences on drug action (‘pharmacogenetics’) have been studied directly for several 

decades, yet we still lack a comprehensive understanding of how genetic variation, both common 

and rare, affects an individual’s responses to medications30. Exome sequencing provides a 

promising new approach for accelerating pharmacogenetic discovery because it assesses both 

common (i.e., minor allele frequency (MAF) >5%) and rare (MAF< 1%) variation in virtually all 

genes in an individual at relatively low cost. To this end, exome sequencing can simultaneously 

capture variation across many genes with diverse roles in pharmacological pathways; these 

include the ‘pharmacokinetic’ proteins that catalyze drug metabolism reactions, the proteins that 

influence drug absorption and excretion, and the ‘pharmacodynamic’ proteins that are the targets 

for drug action. 

The cytochrome P450 (CYP) genes are of particular interest because they catalyze 

oxidation reactions on a wide variety of drugs.  While the human genome contains 57 CYP 

genes6, a subset of just 12 (CYP-12) of them are collectively responsible for ~75% of all known 

drug oxidation reactions5.  Several reported CYP variants influence clinically-important 

phenotypes such as the efficacy of clopidogrel and the maintenance dosing of warfarin31,32. For 

example, CYP2C9 encodes the enzyme that catalyzes the oxidation of warfarin.  Two CYP2C9 
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missense variants impair protein function such that individuals heterozygous for either variant 

require a lower dose of warfarin to achieve the same steady-state concentrations33.  

 

2.3 Results 

Using large-scale exome sequencing data generated by the NHLBI Exome Sequencing 

Project (ESP), we identified and characterized variation within the CYP-12 to define the full 

spectrum of variation (i.e., rare and common variants) that potentially shapes inter-individual 

differences in drug response.  Specifically, we analyzed exome sequence data from 6503 

individuals of African-American (AA; n = 2203) and European-American (EA; n = 4300) 

ancestry34. Variants were identified and genotyped using the UMAKE pipeline 

(http://genome.sph.umich.edu/wiki/UMAKE) and subjected to an SVM-based filter based on 

quality, depth, and allele balance metrics to remove false positive calls due to sequencing errors 

and mismapped paralogous reads35. Small in/del variants were analyzed using 

the GATK variation discovery pipeline following the guidelines in the GATK best practices v4 

(http://gatkforums.broadinstitute.org/discussion/1186/best-practice-variant-detection-with-the-

gatk-v4-for-release-2-0). Variants passing these filters were subjected to additional filters for 

missingness (all sites with calls in <10% of samples were removed) and kinship (closely related 

individuals are removed).  The final data set was then annotated with functional information 

using the SeattleSeq pipeline (http://snp.gs.washington.edu/SeattleSeqAnnotation134/) and is 

available through the ESP Exome Variant Server (http://evs.gs.washington.edu/EVS/). A sample 

of 145 novel, singleton variants and 323 novel, non-singleton variants from across the exome 

were selected for validation via Sanger sequencing; 143/145 (99%) of the singleton variants and 

316/323 (98%) of the non-singleton variants were validated36. 
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Across the CYP-12, 98.1% of coding sequence was covered with an average depth of 

30X or greater. We discovered a total of 1006 unique variants in the CYP-12.  This included 275 

known and 731 novel variants compared to dbSNP (build 132, 

http://www.ncbi.nlm.nih.gov/projects/SNP/) of which 486 were missense variants and 42 were 

nonsense/splice site variants or frameshifting in/dels (Figure 2.1).  

 

 

 

Figure 2.1 Distribution of exonic variation across 12 CYP genes separated by variant 

consequence. Variant types (missense, nonsense, synonymous, splicesite, frameshift) were 

determined using SeattleSeq annotation. For genes that produce more than one known transcript 

(CYP2D6, CYP2C8, CYP3A4), annotation was based on the primary transcript.  
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We estimated the minor allele frequency of each CYP variant in EA and AA separately 

and the site frequency spectrum of known and novel CYP alleles (Figure 2.2).  Overall, the 

majority of variation in drug-metabolizing CYPs is exceedingly rare in both AA and EA.  Indeed, 

474 (64.8%) of novel variants (177 in AA and 297 in EA) were found on only a single 

chromosome and only one novel variant had a MAF > 2%.  

 

 

Figure 2.2 Minor allele frequency (MAF) for novel and known variants across the CYP-12 

in European Americans and African Americans. 
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In addition to this novel variation, we identified many known functional exonic variants 

across the CYP-12, including clinically-relevant alleles such as CYP2C9*2, CYP2B6*6, and 

CYP2D6*4. Table 2.1 provides accurate allele frequencies in both EA and AA for these and 

other functional variants, many of which have not been genotyped in a cohort as large as the ESP 

to date. However, while virtually all of the common exonic variants in the CYP-12 in AA and 

EA have been identified, exome sequencing revealed that most of the variants that are predicted 

to be functional are rare and yet to be discovered (Figure 2.3). 

 

 

Table 2.1 CYP variants with a known effect on drug response found among ESP individuals 
Minor Allele Frequencies (MAF) are for individuals of either European-American (EA,n = 4300) 

or African-American (AA, n = 2203) ancestry.   Variants were gathered from PharmGKB 

annotations of the 12 drug-metabolizing CYP genes.  

 
Chrom

osome 

Position rsID Allele Gene Star 

Allele 

Amino Acid 

change 

ESP AA MAF ESP EA 

MAF 

10 96522463 rs28399504 G CYP2C19 *4 M/V 0.000920 0.00518 

10 96702047 rs1799853 T CYP2C9 *2 R/C 0.0588 0.264 

10 96741053 rs1057910 C CYP2C9 *3 I/L 0.0276 0.129 

10 96798749 rs10509681 C CYP2C8 *3 K/R 0.0515 0.248 

10 96818106 rs11572103 A CYP2C8 *2 I/F 0.312 0.00370 

10 96827030 rs11572080 T CYP2C8 *3 R/K 0.0515 0.247 

19 41512841 rs3745274 T CYP2B6 *6 Q/H 0.259 0.491 

19 41518221 rs28399499 C CYP2B6 *16 I/T 0.119 0.00148 

19 41522715 rs3211371 T CYP2B6 *5 R/C 0.0599 0.228 

22 42523610 rs59421388 T CYP2D6 *29 V/M 0.183 0 

22 42523943 rs16947 G CYP2D6 *2 C/R 0.494 0.136 

22 42526694 rs1065852 A CYP2D6 *10 P/S 0.236 0.441 

22 42524947 rs3892097 T CYP2D6 *4 Splice-3’ 0.072854 .190723 
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Figure 2.3 Minor allele frequency (MAF) for all CYP-12 variants as well as for only 

nonsynonymous variants (missense, nonsense, splice spite, in/dels). 

 

 

Identifying putatively functional variation using prediction algorithms is challenging and 

each approach has its own strengths and weaknesses.  In the CYP-12, PolyPhen2 and SIFT 

predict that most of the novel variants we found were functional.  Yet, these algorithms also fail 

to accurately predict the effects of some CYP-12 variants recognized experimentally to be 

functional (Figure 2.4).  Accordingly, to make functional predictions about the novel variants 

discovered in the CYP-12 we used a combination of orthogonal approaches that consider 

information on evolutionary, biochemical, and structural constraint.  
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Figure 2.4: CYP variant effect prediction using common algorithms. We calculated 

PolyPhen2 and SIFT scores for candidate, non-candidate, and known functional CYP variants 

using ENSEMBL’s VEP tool (http://uswest.ensembl.org/info/docs/variation/vep/index.html). 

The set of known functional CYP variants was gathered from PharmGKB and OMIM 

annotations of the 12 drug-metabolizing CYP genes. 

 

To estimate the evolutionary constraint of each missense variant, Genomic Evolutionary 

Rate Profiling (GERP) scores 37 were calculated for each variant.  SNVs with GERP scores > 3 

are predicted to more likely affect protein function and thus be enriched for alleles with 

phenotypic effect 38. We also calculated a Grantham score39 for each missense variant. The 

Grantham score assesses the “severity” of a substitution by comparing biochemical properties of 

each amino acid residue; missense variants with a Grantham score > 100 are predicted to result 

in “damaging” substitutions39. Last, we used published crystallographic and mutagenic studies to 

manually annotate residues that have a critical role in overall enzyme structure and function. 

Missense variants with GERP scores > 3 or Grantham scores > 100 were considered putatively 

functional. Because of their highly predictable effect on protein structure, all nonsense and 

splice-site variants as well as frameshifting in/dels were considered putatively functional.  Using 

these criteria, we identified 219 novel, rare, putatively functional variants including 180 
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missense variants, 21 nonsense/splice-site variants, and 18 frameshifting in/dels. Accordingly, 

we estimated that approximately 30% (219/731) of the novel variants we found in the CYP-12 

are predicted to be functional. 

The extent to which these rare, novel predicted function variants in the CYP-12 contribute 

to overall drug metabolism phenotypes remains unclear. However, since each of these CYP 

genes participates in the metabolism of diverse pharmaceuticals, a functional variant in any one 

of these genes could affect a broad range of drug responses. To this end, we counted the number 

of individuals who harbored one or more putatively functional novel variants in the CYP-12 

(Table 2.2).  We found that 11.7% of AA and 7.6% of EA carry a predicted functional novel 

variant in at least one major drug-metabolizing CYP gene, and while most individuals have only 

a single putatively functional variant, 42 individuals carried two or more predicted functional 

variants.  

Table 2.2 Amount of putative novel functional variation per CYP gene. Columns 3 & 4 show 

the number of individuals that carry at least one allele of a candidate variant in the given gene. 

 

Gene 

Total number of 

putative functional 

variants 

Number of individuals with putative 

functional variants 

African-Americans 

(n=2203) 

European-

Americans 

(n=4300) 

CYP1A1 36 24 89 

CYP1A2 21 19 18 

CYP2A6 7 7 8 

CYP2B6 14 11 26 

CYP2C19 28 67 27 

CYP2C8 22 32 41 

CYP2C9 13 13 10 

CYP2D6 21 40 39 

CYP2E1 13 4 14 

CYP3A4 19 9 17 

CYP3A5 16 21 32 

CYP3A7 9 11 5 

Total 219 258 326 
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Moreover, if both novel predicted functional variants and known exonic functional 

variants are considered (Level 1 or 2 evidence for function in PharmGKB), 21.8% of AA and 

14.1% of EA carried at least one putatively functional variant and 92 individuals (1.4%) had two 

or more predicted functional variants in major drug metabolizing CYP genes (Table 2.3). 

Because the data analyzed here are drawn from exome sequencing, this study does not examine 

rare or common noncoding variation which may contribute to overall drug response. However, 

as there are several noncoding CYP-12 variants that are known to affect drug response40, our 

results are likely underestimates of the true individual burden. 

 

 

Table 2.3 Burden of predicted functional CYP-12 variation per individual across the ESP 

data. Table shows the number of individuals with 1, 2, 3, 4, or no predicted functional CYP-12 

variants. ‘Novel’ refers to potential functional alleles discovered in ESP; ‘Known & Novel’ 

includes both the new ESP variants and exonic CYP-12 variants with level 1 or 2 evidence for 

function. 

 

 

 

 

Number of individuals with X predicted functional 

CYP-12 variants 

Novel (ESP) only 
Known (PharmGKB) 

& Novel (ESP) 

EA AA EA AA 

4 variants 1 2 2 3 

3 variants 5 4 7 4 

2 variants 18  13 42 34 

1 variant 291 172 572 423 

none 3985 2012 3677 1739 
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2.4 Discussion 

To fully understand the effect of rare CYP variation on human drug metabolism and its 

clinical relevance, direct functional assessment and studies of genotype-phenotype relationships 

of each variant will be required.  Our studies provide investigators with nearly two hundred new 

high priority candidate variants to test.  Furthermore, some of the variants we identified have 

perhaps an even higher prior likelihood of being of clinical utility.  For example, we identified 

thirteen variants in CYP2C9 that putatively affect its function and may, therefore, alter warfarin 

metabolism.  These include variants predicted to disrupt known substrate binding residues 

(Arg97Thr)41, alter protein translation (Met1Val), and result in damaging substitutions at 

conserved sites (Pro363Leu; GERP = 3.51, Grantham = 98)42.  Only a small fraction of 

phenotypic variance in warfarin maintenance dose is explained by known variants, VKORC1, 

(25% of the variance), and CYP2C9 (10% of the variance)43.  Accordingly, rare variants in 

CYP2C9, such as those identified herein, likely account for part of the variance that remains 

unexplained.  

In summary, we discovered a large number of novel variants, nearly a third of which are 

predicted to be functional, in twelve CYP genes that affect the metabolism of approximately 75% 

of pharmaceuticals.  Collectively 9% of individuals carry at least one of the novel predicted 

functional variant we found herein and together with known variants, 16.7% of individuals are 

predicted to carry a functional variant.  If our findings are indicative of patterns of rare variation 

in other genes involved in drug metabolism and response, we hypothesize that virtually every 

individual is likely to contain at least one predicted / known functional variant of 

pharmacogenetic relevance.  Understanding the phenotypic consequences of such rare variation 

could be a major next step forward in explaining the inter-individual variation in drug responses 
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that have been observed since antiquity and provide better guidance for developing more 

personalized therapeutics. 

 

2.5 Materials and Methods 

Study Sample 

The NHLBI Exome Sequencing Project (ESP) is a multi-center study to deeply sequence 

the exomes of individuals segregating a variety of heart, lung, and blood disorders. The 6,503 

individuals used in the analysis were generated from samples ascertained from 20 different 

cohorts (detailed information of cohorts can be found in 36). Although these individuals are not a 

random sample, they were ascertained on a variety of distinct phenotypes such that cohort 

specific effects are not expected to bias patterns of SNVs. Indeed, detailed analyses of a large 

subset (n=2,440) of these 6,503 individuals found no systematic biases in patterns and 

characteristics of SNVs attributable to cohort or technical sources of variation1. All study 

participants in each of the component studies provided written informed consent for the use of 

their DNA in studies aimed at identifying genetic risk variants for disease and for broad data 

sharing. Institutional certification was obtained for each sample to allow deposition of phenotype 

and genotype data in dbGaP and BAM files in the short-read archive. 

 

Exome resequencing, variant calling, and filtering 

The processes of library construction, exome capture, sequencing, and mapping were 

performed as previously described36. SNVs were called using the UMAKE pipeline at University 

of Michigan, which allowed all samples to be analyzed simultaneously, both for variant calling 

and filtering. Briefly, we used BAM files summarizing BWA alignments generated at the 
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University of Washington and the Broad Institute as input. These BAM files summarized 

alignments generated by BWA, refined by duplicate removal, recalibration, and indel re-

alignment. We excluded all reads that were not confidently mapped (Phred-scaled mapping 

quality < 20) from further analysis. To avoid PCR artifacts, we clipped overlapping ends in 

paired reads. We then computed genotype likelihoods for exome targeted regions and 50 

flanking bases, accounting for per base alignment quality (BAQ) using samtools. Variable sites 

and their allele frequencies were identified using a maximum-likelihood model, implemented in 

glfMultiples. These analyses assumed a uniform prior probability of polymorphism at each site. 

We used a support vector machine (SVM) classifier, which is a machine-learning algorithm, to 

separate likely true positive and false-positive variant sites. SVM filtering started by collecting a 

series of features related to quality of each SNV, including overall depth, fraction of samples 

with coverage, fraction of reference bases in heterozygous individuals (allele balance), 

correlation of alternative alleles with strand and read position (strand and cycle bias), and 

inbreeding coefficient for each variant. SNVs that deviated significantly from expected values in 

three or more categories were flagged as likely false positives when training the SVM filter. 

SNVs at HapMap polymorphic sites and Omni 2.5 array polymorphic sites in the 1000 Genomes 

project data were flagged as likely true positives. After examining this training set, the SVM 

classifier was used to identify all likely false positive sites, which were excluded from 

downstream analyses. A total of 1,908,614 SNVs passed the SVM filter, with an overall 

transversion to transition ratio (Ts/Tv) of 2.84. 

After the initial SNV calls were generated, we re-examined the VCF files and applied 

filters considering total read depth, the number of individuals with coverage at the site, the 

fraction of variant reads in each heterozygote, the ratio of forward and reverse strand reads for 
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reads carrying reference and variant alleles, and the average position of variant alleles along a 

read. Next, the SNV call set included variants that were called with posterior probability >99% 

(glfMultiples SNP quality >20), were at least 5bp away from an indel detected in the 1000 

Genomes Pilot Project, were targeted in at least 99% individuals, and had a total depth across 

samples between 6823 to 6823000 (~1-1000 reads per sample at average). Sites where the read 

depth of the variant allele was >65% in heterozygotes or where the absolute squared correlation 

between allele (variant or reference) and strand (forward or reverse) was >0.15 were excluded. In 

order to obtain genotypes with high accuracy suitable for population genetics analyses, we 

further set individual genotype to missing data if it had quality (GQ) less than 30 and/or filtered 

depth (DP) less than 10. After such filtering, variants with more than 10% of missing genotypes 

across individuals were excluded from further analysis. 

 

Identification of related individuals and assignment of ancestry 

In total, 6,823 exomes were obtained from individuals who self-identified as European American 

(EA, n=4,419), African American (AA, n=2,343) and others (including Asian, Hispanic and 

Native American). To remove related individuals, we performed a KING analysis on the filtered 

data. Specifically, we performed LD pruning using PLINK to the variants with minor allele 

frequency (MAF) >5%. This resulted in 34,945 SNVs for the analysis. KING identifies kinship 

by pairwise comparisons across all individuals, and is robust to population structure. Using the 

authors’ guidelines for a 3rd degree relationship (i.e., first cousins), we used a kinship coefficient 

threshold of 0.04419. From this, we were able to form clusters of related individuals, with the 

majority of clusters consisting of two individuals. When all individuals were related to all other 

individuals in a cluster, we preferentially removed those with the greatest overall missingness. 
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When these clusters had partial relationships (i.e., A is related to B and C but B and C are not 

related) then we preferentially removed those who would leave the largest number of samples. 

This resulted in the removal of 242 individuals. After removing these individuals, we repeated 

the KING analysis and found no kinships in the remaining data set. Using the same filtered data 

set from the KING analysis, we performed a principal component analysis (PCA) to infer genetic 

ancestry. Asian, Hispanic, and Native American samples were removed from the analysis.  
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Chapter 3: Evaluating the Use of Star Allele Nomenclature with High-Throughput 

Sequence Data 

 

3.1 Introduction 

Pharmacogenetic (PGx) testing is becoming progressively more common in clinical care 

as the number of available tests increases while sequencing costs continue to decline. Much of 

the decision support for these tests assigns a diplotype, often expressed as a pair of “star alleles”, 

to each test result, translates these alleles into a predicted phenotype, and recommends a course 

of action to the provider. Therefore, the robust representation of test results is essential for 

deriving accurate clinical interpretations and recommendations. Although many of the current 

commercial testing platforms are based on genotyping approaches, next-generation sequencing 

(NGS) based methods are being quickly adopted for the detection of actionable PGx alleles. As 

NGS becomes the standard in clinical care, inconsistencies in the interpretation and reporting of 

PGx alleles could have severe impacts at the patient level. Indeed, nearly every individual is 

predicted to carry at least one PGx diplotype designated as “high-risk” by the Clinical 

Pharmacogenetic Implementation Consortium (CPIC)26. Recent studies of large-scale exome 

datasets have supported this prediction, revealing a significant burden of actionable PGx alleles 

in both European-American (EA, mean = 11.1 alleles) and African-American (AA, mean = 12.3 

alleles) individuals44. Although striking, these findings are still likely underestimates of the true 

individual PGx burden due to the presence of rare, deleterious variants not accounted for by the 

current nomenclature system. Indeed, analysis of exome data reveals that 7-10% of individuals 

carry at least one undescribed, potentially deleterious rare allele in a major drug-metabolizing 

enzyme (See Chapter 2).  
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As the star allele nomenclature system was designed largely in the context of genotyping 

data, its ability to represent next-generation sequencing (NGS) results has not been 

systematically evaluated.  In particular, applying the star nomenclature system to NGS data can 

lead to significant structural and semantic issues in the interpretation of results. Structurally, the 

current star system does not have the ability to name newly described alleles within a clinically-

relevant timeframe, and the naming rules regarding synonymous variation is inconsistent or 

unclear. Additionally, star nomenclature fails to capture the type of variation described (i.e. 

single variant, multi-variant haplotype, or full gene deletion), and the star allele definition used 

in clinical testing to translate genetic into a specific diplotype is often undocumented or unclear. 

Perhaps most critical for NGS, however, is that a star allele designation often implies genotypes 

at sites that were non-interrogated. For example, CYP2C9*3 is defined by a single missense 

variant (rs1057910); a clinical test report indicating a patient’s diplotype is *3/*3 implies that 

that individual carries no other variation in this gene, even if only the one missense variant is 

typed. As NGS continues to uncover rare, deleterious variation not currently represented by the 

star system, these issues could lead to patient misclassification with significant potential clinical 

impact. Here we describe our efforts to quantify and categorize these naming errors across 5 key 

pharmacogenetic targets (TPMT, CYP2C9, SLCO1B1, CYP3A5, CYP2C19) using a large-scale, 

phased exome data set. 
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3.2 Methods  

Exome data 

 We extracted genotype information for the coding regions of our 5 genes of interest from 

the NHLBI-Exome Sequencing Project (ESP) dataset, which consists of 4300 European-

American and 2203 African-American individuals drawn from a variety of longitudal cohorts. 

Sample selection, sequencing pipeline, genotyping, and QC details have been previously 

described34. Sequence data was then phased for each gene individually using Beagle 4.0 with 

default parameters and no reference panel45, resulting in 5 gene-specific, phased multisample 

VCFs representing our final dataset. 

  

Allele definition tables and test data 

 In order to ensure accurate translation between NGS data and star allele names, we hand 

curated the allele definition table hosted on PharmGKB46 for each gene of interest. For all 5 

genes, we added missing hg19 coordinates to every site, and added rsIDs for all variants in the 

tables also present in dbSNP. We also encountered several redundancies and ambiguitites that 

have been fixed in our final, revised definition tables. These included, for example, inconsistent 

strand orientations, identical allele definitions with different names, and poorly represented tri-

allelic sites. Where inconsistencies arose, we relied on the original publication describing each 

allele as listed on PharmGKB or the CYP Allele Nomenclature Database 

(http://www.cypalleles.ki.se). In order to test whether our definition tables could be used to 

accurately translate NGS data, we constructed a test VCF for each gene with simulated 

individual data representing each named star allele. These VCFs served as a ‘positive control’ in 
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our analysis to ensure that all defined alleles are represented properly in both the allele definition 

tables and the phased exome data itself.  

 

Naming algorithm 

 In order to quantify naming errors, we developed an algorithm that attempts to match 

phased exome data with a defined star allele. The algorithm utilizes a global interpretation of 

allele definitions; that is, all sites not specified in the allele definition table, but present in the 

VCF, are assumed to match the hg19 reference base at that position for all named alleles. As our 

dataset is derived from exome sequencing, variants in the definition tables that fall outside of 

coding exons could not be assessed. In these cases, we collapsed ambiguous alleles into 

categories defined only by coding variants. For example, CYP2C19*1B and CYP2C19*17 share 

coding variants, but are distinguished by noncoding variants lying outside the sequenced region; 

our algorithm reports any haplotype matching the shared coding variants as “*1B or *17.” We 

tested our algorithm independently for each gene using our test VCFs described above to ensure 

all named alleles could be accurately detected.  After reading in a gene-specific, phased 

multisample VCF, the algorithm reports the star allele designations for each haplotype, or reports 

all variants on any haplotype that does not match a named star allele. As phasing of very low 

frequency variants can be error-prone, the algorithm performs a secondary analysis on the data 

after flipping the phase of any variant observed in 2 or fewer individuals; this ensures that 

observed trends in the data are not driven largely by constitutive phasing errors. 
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3.3 Results 

TPMT 

 TPMT is responsible for catalyzing the S-methylation of thiopurine drugs in addition to a 

variety of other aromatic compounds47. In the almost 30 years since variation in TPMT was first 

associated with mercaptopurine response48 over 25 different TPMT alleles have been identified 

and assigned a star allele. Several of these alleles have been designated as actionable by CPIC 

due to their influence on thioguanine, azathiopurine, and mercaptopurine response11. Our 

expanded allele definition table for TPMT includes 60 variants: 42 from the original definition 

table and 18 variants present in the ESP data but absent from the original table. Of the 42 

variants from the original definition table, 15 were observed in ESP, 23 were not observed, and 4 

fell outside the sequenced region. At the haplotype level, we observed 13 of 42 haplotypes 

representing named alleles (31%) as well as 33 additional haplotypes that did not match a named 

allele; 2/3 of these haplotypes were unnamed due to the presence of additional variation not 

captured by the original definition table (Figure 3.1).  

 

 

Figure 3.1 TPMT haplotypes observed in ESP. 
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Despite the presence of these unnamed haplotypes, at the sample level we find that TPMT 

variation is well captured by the star system, as only 1.6% of individuals in our dataset carry a 

TPMT allele that could not be named (Table 3.1, 3.2). Accordingly, all unnamed TPMT alleles 

observed in our dataset were quite rare, with frequencies <1% in all cases (Figure 3.2). Overall, 

our results indicate that TPMT variation in our dataset is generally well-captured by the star 

allele system 

 

Table 3.1 Frequency of named TPMT haplotypes within ESP individuals 

Allele Calls % AA % EA Overall 

Named (*) 98.0% 98.5% 98.4% 

Unnamed (?) 2.0% 1.5% 1.6% 

 

Table 3.2 Distribution of named and unnamed TPMT haplotypes at the individual level 

Diplotypes % AA % EA Overall 

* /* 96.1% 97.1% 96.8% 

*/? 3.9% 2.9% 3.2% 

?/? 0% 0% 0% 

 

 

Figure 3.2 Frequency spectrum of named and unnamed TPMT haplotypes within ESP.  
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CYP2C9 

 A member of the Cytochrome P450 family, CYP2C9 is responsible for the oxidation of 

many endogenous and xenobiotic compounds, including roughly 20% of all Phase I metabolized 

drugs49. Accordingly, studies of this gene have uncovered many associations between variation 

within CYP2C9 and response to a variety of pharmaceuticals; of these, CPIC has determined that 

there are actionable associations between CYP2C9 alleles and response to two common 

medications, phenytoin7 and warfarin8. The original allele definition table for CYP2C9 contains 

54 variants, only 14 of which were present in ESP individuals; this translates to 58 named 

CYP2C9 star alleles, of which only 13 (22%) were present in ESP. However, we also observed 

an additional 59 variants in our dataset that were not included in the original table, leading to 85 

unique haplotypes that could not be assigned a star allele; the majority of these unnamed 

haplotypes are distinguished by rare variation not present in the definition table (Figure 3.3).  

 

 

Figure 3.3 CYP2C9 haplotypes observed in ESP. 
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At the individual level, we find that 9.5% of haplotypes overall could not be assigned a star 

allele. This value varies strikingly by ethnicity—13.4% of haplotypes from AA individuals could 

not be named, as opposed to 7.5% in EA (Table 3.3). This trend persists at the individual level, 

as 25.3% of AA carry at least one unnamed allele compared to only 14.5% of EA (Table 3.4). 

This disparity, coupled with the observation that unnamed haplotypes are driven by novel, rare 

variation, indicates that the original definition table does not accurately capture CYP2C9 

variation in undersequenced populations, particularly in individuals of African-American 

descent.  

 

Table 3.3 Frequency of named CYP2C9 haplotypes within ESP individuals 

Allele Calls % AA % EA Overall 

Named (*) 86.6% 92.5% 90.5% 

Unnamed (?) 13.4% 7.5% 9.5% 

 

 

 

Table 3.4 Distribution of named and unnamed CYP2C9 haplotypes at the individual level 

Diplotypes % AA % EA Overall 

* /* 74.7% 85.4% 81.8% 

*/? 23.8% 14.1% 17.4% 

?/? 1.5% 0.4% 0.8% 
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In order to assess the potential clinical impact of these observations, we reprocessed our CYP2C9 

data after masking all genotypes not currently recommended for clinical testing 

(warfarindosing.org). This new dataset not only mimics the scope of what a clinical lab might 

test, but allows us to directly quantify misclassification errors by comparing the results of the 

masked and unmasked data. Across EA and AA, 100% of haplotypes assigned *3 in the masked 

data did not in fact match the canonical *3 definition in the unmasked data, indicating that the 

clinical population receiving a test result including a *3 haplotype is likely much more 

genetically heterogeneous than previously thought. Even more striking, however, is the disparity 

between EA and AA for alleles labeled *1 (i.e. the reference haplotype) in the masked data. In 

EA, only 3.4% of *1/*1 diplotypes in the masked data did not in fact match *1/*1 in the 

unmasked data. In AA, however, we find that 47.7% of *1/*1 diplotypes in the masked data are 

not in fact true *1/*1 when the data is unmasked (Table 3.5, Table 3.6). This observation is 

largely driven by many low-frequency AA variants not present in the definition table that, 

although individually rare, are collectively common. 
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Table 3.5 and Table 3.6 Misclassifications in CYP2C9 when considering only clinically 

typed alleles. Reclassified haplotypes are those that did not match the strict allele definition 

when the full sequence data was unmasked. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Correct Re-classified % Re-classified 

*1/*1 1038 945 47.7% 

*1/*2 82 26 24.1% 

*1/*3 0 59 100.0% 

*1/*5 24 21 46.7% 

*2/*2 4 0 0.0% 

*2/*3 0 1 100.0% 

*2/*5 1 0 0.0% 

*3/*3 0 1 100.0% 

*3/*5 0 1 100.0% 

 

1149 1054 47.8% 

 

Correct Re-classified % Re-classified 

*1/*1 2692 96 3.4% 

*1/*2 863 21 2.4% 

*1/*3 0 447 100.0% 

*1/*5 1 0 0.0% 

*2/*2 74 1 1.3% 

*2/*3 0 90 100.0% 

*2/*5 0 0 - 

*3/*3 0 15 100.0% 

*3/*5 0 0 - 

 

3630 670 15.6% 

AA 

EA 
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SLCO1B1 

SLCO1B1 is membrane-bound anion transport protein involved in active transport of 

many diverse xenobiotic compounds, notably the statin family of pharmaceuticals14. As 

SLCO1B1-dependant transport is a key component of drug clearance in the liver, variation in 

SLCO1B1 that may alter this function can affect drug response and toxicity; CPIC has designated 

that variation in SLCO1B1 has an actionable association with simvastatin response50. The 

original allele definition table for SLCO1B1 contains 31 unique variants that comprise 38 named 

star alleles. In our dataset, we observed 75 additional variants not present in the definition table, 

translating into 144 unique haplotypes that could not be assigned a star name. Unlike TPMT and 

CYP2C9, this allelic diversity is driven by recombination of known alleles as well as novel 

variation, often on the same haplotype (Figure 3.4).  

 

 

 

Figure 3.4 SLCO1B1 haplotypes observed in ESP. 
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The large quantity of unnamed haplotypes we identified at this locus is further reflected 

at the individual level, as 83.9% of all ESP individuals possess at least one SLCO1B1 allele that 

could not be named (Table 3.7, Table 3.8). Unlike TPMT, several of these unnamed alleles are 

found at intermediate frequency (1% < MAF < 5%) in EA or AA, highlighting the necessity of a 

more comprehensive nomenclature system for this gene that can accurately represent both new 

recombination of known haplotypes and novel variation (Figure 3.5).  

 

Table 3.7 Frequency of named SLCO1B1 haplotypes within ESP individuals 

Allele Calls % AA % EA Overall 

Named (*) 61.2% 21.8% 35.2% 

Unnamed (?) 38.8% 78.2% 64.8% 

 

Table 3.8 Distribution of named and unnamed SLCO1B1 haplotypes at the individual level 

Diplotypes % AA % EA Overall 

* /* 38.4% 4.7% 16.1% 

*/? 45.8% 34.1% 38.1% 

?/? 15.9% 61.1% 45.8% 

 

 

Figure 3.5 Frequency spectrum of named and unnamed SLCO1B1 haplotypes within ESP 
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CYP3A5 

 CYP3A5, another key metabolizer of pharmaceuticals, is the most abundant Cytochrome 

P450 enzyme expressed in human liver and involved in the elimination of 37% of the 200 most 

commonly prescribed drugs in the U.S.51. Although a number of drug response phenotypes have 

been associated with genetic variation in CYP3A5, response to tacrolimus is considered currently 

to be the most clinically actionable association, and preemptive genetic testing for this gene-drug 

pair is becoming increasingly common26. The original allele definition table for this gene 

contains 22 variants that make up 25 unique named star alleles. In our dataset, we observed 6 of 

these 22 variants (27%) in addition to 52 other variants not present in the table; collectively these 

variants are arranged into 74 different haplotypes, only 6 of which (8%) could be assigned a star 

allele. Despite this diversity, these 6 haplotypes are very common among ESP individuals, 

representing 95.9% of all observed haplotypes (Table 3.9). However, like CYP2C9, there is a 

notable disparity between ethnicities in the accuracy of the star system at the individual level: 

19.4% of African-Americans carry at least one allele that could not be named, compared to only 

2% of European Americans (Table 3.10).  

 

Table 3.9 Frequency of named CYP3A5 haplotypes within ESP individuals 

Allele Calls % AA % EA Overall 

Named (*) 90.0% 99.0% 95.9% 

Unnamed (?) 10.0% 1.0% 4.1% 

 

Table 3.10 Distribution of named and unnamed CYP3A5 haplotypes at the individual level 

Diplotypes % AA % EA Overall 

* /* 80.6% 97.9% 92.0% 

*/? 18.8% 2.0% 7.7% 

?/? 0.6% 0.0% 0.2% 
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Although this disparity is striking, CYP3A5 also highlights some inherent limitations in 

using exome data for clinical PGx testing. CYP3A5*3 is defined by rs776746, an intronic variant 

with a robust, well-known association with tacrolimus response due to the creation of a cryptic 

splice site that effectively inactivates the gene52. This variant lies outside the sequenced region of 

most currently available exome capture reagents, and cannot be typed by this method. Thus, 

exome data is unable to distinguish between 10 common subtypes of *1 and *3; the resulting 

ambiguous allele designation collectively represents 88% of all ESP haplotypes that could be 

named. The ambiguity inherent in using exome data for this target highlights the need for 

accurate clinical reporting of the method used to generate any PGx result; not only which regions 

were included, but also any critical allele that could not be tested.   

 

CYP2C19 

 Also a member of the Cytochrome P450 family, CYP2C19 oxidizes 10% of the 200 most 

commonly prescribed drugs in the U.S.51, and variation within CYP2C19 has been determined by 

CPIC to be actionably associated with both tricyclic antidepressants10 and clopidogrel53. The 

original allele definition table for CYP2C19 contains 63 named star alleles comprised of 64 

unique variants. At the individual level, CYP2C19 resembles CYP2C9: although only 3.3% of 

haplotypes overall could not be named, 11.8% of African-Americans carried at least one 

unnamed allele as opposed to only 3.6% of European-Americans (Table 3.11, Table 3.12).  Like 

CYP3A5, exome data is inherently limited for this gene as it cannot differentiate between *1B 

and *17. Defined by two noncoding variants, CYP2C19*17 is a gain-of-function allele leading to 

ultrarapid metabolism of CYP2C19 substrates in homozygotes54. Thus, clinical reports of 
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CYP2C19 diplotype derived from exome sequence data should indicate that *17 was not 

assessed by the platform.  

 

Table 3.11 Frequency of named CYP2C19 haplotypes within ESP individuals 

Allele Calls % AA % EA Overall 

Named (*) 94.0% 98.1% 96.7% 

Unnamed (?) 6.0% 1.9% 3.3% 

 

Table 3.12 Distribution of named and unnamed CYP2C19 haplotypes at the individual level 

Diplotypes % AA % EA Overall 

* /* 88.2% 96.4% 93.6% 

*/? 11.6% 3.5% 6.3% 

?/? 0.2% 0.1% 0.2% 

 

 

3.4 Discussion 

 As the cost of next-generation sequencing continues to decline, exome, genome, and 

custom-target sequencing will quickly become the standard for clinical pharmacogenetic testing. 

Despite the rapid shift in the underlying technology used to generate these results, the classical 

star allele nomenclature system continues to be the standard for clinical reporting. The results 

presented here summarize the first attempt, to our knowledge, to evaluate the performance of the 

star allele nomenclature system as applied to NGS data. On a broad scale, our results indicate 

that the current star nomenclature system fails to capture a large extent of the variation present in 

the 5 critical pharmacogenes considered here. Our results are likely an underestimate of the true 

extent of misclassification due to the presence of intronic and noncoding variation inaccessible 

by exome sequencing. Therefore, whole-genome sequencing will almost certainly compound the 

issues presented here, especially for large genes primarily comprised of intronic space such as 
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SLCO1B1: 98% of SLCO1B1’s 108,603 bases are noncoding. Even considering only exonic 

variation, we observed a significant disparity between European-Americans and African-

Americans in the star allele system’s ability to classify haplotypes. Although many of the 

variants underlying these unnamed haplotypes are seen only in a handful of individuals, 

collectively these variants are quite common, especially in under-sequenced populations where 

much of the lower frequency variation remains yet to be discovered. As NGS-based testing 

expands into these populations, the star allele system, in which new alleles are often designated 

only by committee, will become increasingly inadequate for reporting PGx results within a 

clinically relevant timeframe. As clinical labs transition to NGS-based platforms, our findings 

argue that the currently adopted nomenclature system should transition as well. 
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Chapter 4: PGRNseq, a targeted capture sequencing panel for pharmacogenetic research 

and implementation  

 

4.1 Abstract 

 While the costs associated with whole-genome and whole-exome next-generation 

sequencing continue to decline, they remain prohibitively expensive for large-scale studies of 

genetic variation. As an alternative, custom-target sequencing has become a common 

methodology based on its favorable balance between cost, throughput, and deep coverage. We 

have developed PGRNseq, a custom-capture panel of 84 genes with associations to 

pharmacogenetic phenotypes, as a tool to explore the relationship between drug response and 

genetic variation, both common and rare. We utilized a set of 32 diverse HapMap trios and 2 

clinical cohorts to assess platform performance, accuracy, and ability to discover novel variation. 

We find that PGRNseq generates ultra-deep coverage data (mean = 496x) that is over 99.8% 

concordant with orthogonal datasets. Additionally, in our testing sets, PGRNseq identified many 

novel, rare variants of interest, underscoring its utility in both research and clinical settings.  
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4.2 Introduction 

As next-generation sequencing costs continue to decrease, and rare variant analysis 

becomes an imperative, sequencing-based association analysis is developing as widely applied 

tool in human genetic analysis through whole exome and whole genome sequencing as well as 

the application of targeted sequencing panels. Indeed, these approaches have been successful in 

identifying novel associations between genetic variation and a range of traits including 

cardiovascular, psychiatric, and pharmacogenetic phenotypes55-57. However, sequencing full 

genomes or even full exomes of the tens of thousands of individuals needed for adequately 

powered association studies remains costly and time-consuming. Targeted high-throughput 

sequencing panels, which capture and sequence a small set of genomic targets to high depth, 

represent a middle-ground that maximizes throughput while maintaining the deep coverage 

characteristic of high-quality next generation sequencing (NGS) data. To date, targeted 

sequencing panels have been successfully deployed in both clinical research and diagnostics with 

applications as diverse as the mutational analysis of individuals with Lynch or polyposis 

syndrome58, the detection of somatic mutation in lung cancer59, and the molecular diagnosis of 

retinitis pigmentosa60. In this article we will discuss the process of creating and validating such a 

panel, focusing on 84 genes of pharmacogenetic importance, including many genes identified as 

actionable by the Clinical Pharmacogenetics Implementation Consortium (CPIC)61.   

Since its inception, pharmacogenetic research has identified many genes that play a role 

in drug response, and has shown that many variants within these genes contribute to overall 

variation in drug phenotypes5. These gene-phenotype pairs include drug-metabolizing enzymes 

(such as CYP2C19 and clopidogrel response53), drug transporters (such as UGT1A1 and 

irinotecan62) and specific drug targets (such as VKORC1 and warfarin8). Many of these drug-
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gene pairs are clinically actionable, and the number of clinical entities performing 

pharmacogenetic testing is increasing steadily. Despite this increasing popularity, most of the 

known variation within these pharmacogenes is common (i.e. MAF > 1%). Indeed, many 

existing platforms are currently used to genotype these targets in a high-throughput manner, such 

as the Affymetrix DMET+ array and the Illumina ADME assay which focus largely on common 

variation. However, initial large-scale, NGS-based studies have revealed that rare (i.e. MAF < 

1%) deleterious variation is in fact collectively common across drug metabolizing enzyme and 

drug targets; though each individual variant can be vanishingly rare. In fact, 7-10% of 

individuals harbor such a variant (See Chapter 2). Additionally, rare variation in pharmacogenes 

has been directly linked to variation in drug response and to rare adverse events in the several 

cases that have been studied extensively to date63,64. Thus, it’s clear that this category of 

variation is of importance as pharmacogenetic testing expands clinically. This necessitates 

collaborative efforts on the analysis of rare variation in pharmacogenes.  

The Pharmacogenomics Research Network (PGRN) is a collaborative network formed in 

order to coordinate pharmacogenetic research and to collectively provide recommendations as to 

the clinical relevance of pharmacogenetic variation. Seeing an opportunity to facilitate large-

scale sequencing studies of pharmacogenetic targets to assess both rare and common variation, as 

well as an opportunity to explore the clinical utility of NGS, the PGRN called on the network’s 3 

Deep Sequencing Resources (DSRs: Department of Genome Sciences, University of Washington 

(UW); The Genome Institute at Washington University (WashU); and the Human Genome 

Sequencing Center at Baylor College of Medicine (BCM-HGSC)) to develop a custom-capture 

panel centered on pharmacogenes of known interest. Here we present an overview of the design, 
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testing, and quality control of PGRNseq; the resulting panel is currently available for use by 

members of the pharmacogenetics community. 

 

4.3 Results 

General Platform Performance  

Using a 24-plex capture strategy leads to an average coverage of 496X across the target 

space, demonstrating that PGRNseq can consistently generate ultra-deep sequencing data while 

maintaining the high throughput necessary for studies of large sample size (Table 4.1).  

 

Table 4.1: Overall PGRNseq performance (HapMap96).  PGRNseq summary statistics drawn 

from the BCM HapMap96 data. 

 

Plex 

Level 

Avg. 

# 

Reads 

(M) 

Avg. 

Unique 

Aligned 

Gb 

Avg. 

Mean 

Quality 

Score 

Avg. 

% 

Q30 

Bases 

Avg. % 

Targets 

Hit 

Avg. 

Coverage 

Mean 

% 

target 

at > 20x 

Mean  

% 

targets 

at > 40x 

24 16.7 1.37 36.7 92.1 94.7 496x 94.8 93.4 

 

 

At the single gene level, PGRNseq generates deep coverage data for the complete coding 

region for nearly every captured gene (Table 4.2). The major exceptions are the two MHC genes 

on the platform, HLA-B and HLA-DQB3 despite the inclusion of all 8 alternative reference 

haplotypes in the design phase. As these genes are highly structurally polymorphic, they present 

a considerable challenge to assemble using short reads65. Therefore, SNV calls in this region 

were not considered further. Other areas of low coverage consist largely of noncoding regions 

distant from the coding regions, and in most cases these low coverage regions were also related 

to the presence of repetitive elements within the 2kb/1kb upstream/downstream design window. 
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Table 4.2: 84 Pharmacogenes of interest captured by PGRNseq and their overall 

performance. These genes were nominated and voted on by the PGRN community for inclusion 

in the final target. “Coding Plus” length indicates the number of base pairs that make up the 

gene’s exons as well as 2kb upstream and 1kb downstream of the coding region. Function/Role 

annotations derived from PharmGKB. Per-gene coverage drawn from UW data. 

 

 
Gene 

Symbol 

 
 

Chromosome 

Coding 
Plus 

length 
(bp) 

 
Gene  

Function/Role 

 
Mean 

HapMap96 
coverage 

Mean 
HapMap96 
coverage 
(coding 

only) 

 
% Coding 

bases 
>30X 

ABCA1 9 9982 Target 350.24 487.28 100 

ABCB1 7 7480 Absorption 286.73 397.34 100 
ABCB11 2 7074 Absorption 335.36 415.32 100 
ABCC2 10 7766 Absorption 355.52 457.97 100 
ABCG1 21 5265 Absorption 392.68 566.58 98 
ABCG2 4 5028 Absorption 250.18 372.38 100 

ACE 17 7224 Target 378.92 521.51 96 
ADRB1 10 4438 Target 252.14 275.46 79 
ADRB2 5 4246 Target 356.08 538.5 100 

AHR 7 5591 Metabolism 248.22 328.84 100 
ALOX5 10 5081 Target 326.2 495.21 100 
APOA1 11 3816 Target 370.24 417.82 100 

ARID5B 10 6607 Disease 321.12 419.56 100 
BDNF 11 3804 Target 311.84 460.9 100 

CACNA1C 12 9936 Target 380.02 564.67 100 
CACNA1S 1 8622 Target 439.26 686.3 100 
CACNB2 10 5349 Target 271.8 384.62 100 

CES1 16 4763 Metabolism 350.84 490.24 77 
CES2 16 4920 Metabolism 346.27 567.4 100 

COMT 22 3939 Metabolism 361 604.82 100 
CRHR1 17 4300 Target 302.18 596.33 100 
CYP1A2 15 4575 Metabolism 286.58 690.18 100 
CYP2A6 19 6052 Metabolism 339.84 529.18 100 

CYP2B6 19 4512 Metabolism 331.18 482.97 100 
CYP2C19 10 5648 Metabolism 332.72 475.06 100 
CYP2C9 10 4509 Metabolism 315.8 450.6 100 
CYP2D6 22 4530 Metabolism 327.6 440.5 97 
CYP2R1 11 4524 Metabolism 320.54 305.6 100 
CYP3A4 7 4564 Metabolism 361.7 427.83 100 
CYP3A5 7 4561 Metabolism 310.1 421.32 100 

DBH 9 4854 Target 429.54 564.72 100 
DPYD 1 6170 Excretion 292.67 350.6 100 
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DRD1 5 4345 Target 304.08 504.8 100 
DRD2 11 4360 Target 390.34 618.09 100 
EGFR 7 7009 Target 356.74 500.2 98 
ESR1 6 5065 Target 318.08 415.87 99 

FKBP5 6 4414 Target 315.66 431.94 100 
G6PD X 4690 Drug-induced Disease 269.4 415.12 96 

GLCCI1 7 4676 Drug-induced Disease 289.12 285.14 76 
GRK4 4 4801 Target 340.84 435.02 100 
GRK5 10 4837 Target 337.76 578.7 100 
HLA-B 6 3000 Toxicity 98.64 101.3 13 

HLA-DQB3 6 3000 Toxicity 123.6 131.7 22 

HMGCR 5 5743 Target 295.04 367.56 100 
HSD11B2 16 4238 Metabolism 358.96 365.08 78 

HTR1A 5 4273 Target 284.2 350.8 100 

HTR2A 13 4428 Drug-induced Disease 333.02 430.06 100 
KCNH2 7 6921 Drug-induced Disease 306.64 399.5 87 
LDLR 19 5655 Target 318.74 596.7 100 

MAOA X 4644 Target 239.4 296.2 100 
NAT2 8 3877 Metabolism/Excretion 286 333.16 100 
NPPB 1 3417 Drug-induced Disease 348.22 443.64 100 
NPR1 1 6186 Target 336.04 502.86 98 

NR3C1 5 5421 Target 301.53 377.88 100 

NR3C2 4 5955 Target 294.06 408.14 100 
NTRK2 9 5664 Target 330.66 453.94 100 
PEAR1 1 6202 Target 337.84 515.1 100 

POR 7 5103 Drug-induced Disease 343.6 514.3 100 
PTGIS 20 4543 Target 381.64 575.76 97 
PTGS1 9 4844 Target 393.76 603.78 100 
RYR1 19 18541 Drug-induced Disease 392.65 522.32 97 
RYR2 1 18324 Drug-induced Disease 320.3 383.2 100 

SCN5A 3 9255 Drug-induced Disease 400.44 579.4 100 
SLC15A2 3 5278 Excretion 297.8 408.44 100 
SLC22A1 6 4709 Excretion 337.75 551.72 100 
SLC22A2 6 4712 Excretion 351.12 434.84 100 

SLC22A3 6 4715 Excretion 304.1 331.77 88 
SLC22A6 11 4732 Absorption 332.01 554.4 100 
SLC47A1 17 4781 Absorption 334.68 538.28 100 
SLC47A2 17 4877 Absorption 402.04 513.26 100 
SLC6A3 5 4919 Target 371.69 665.48 100 
SLC6A4 17 4945 Disease 313.64 566.32 100 

SLCO1A2 12 5476 Absorption 265.88 299.14 100 
SLCO1B1 12 5132 Absorption 260.12 290.98 100 
SLCO1B3 12 5165 Absorption 249.76 286.68 100 
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SLCO2B1 11 5186 Absorption 359.58 586.51 100 
TBXAS1 7 4657 Metabolism 351.4 470.22 100 
TCL1A 14 3357 Disease 379.86 463.1 100 
TPMT 6 3770 Metabolism 251.13 335.64 100 

UGT1A1 2 4622 Excretion 322.58 289.92 98 
UGT1A4 2 6806 Excretion 352.58 501.66 100 

VDR 12 4316 Absorption 391.52 611.44 100 
VKORC1 16 3504 Target 308.46 580.16 100 
ZNF423 16 6887 Target 405.36 626.15 100 

 

 

 

 

Quality and accuracy of PGRNseq variants 

 Although PGRNseq generates high-coverage data many targeted genes could be prone to 

erroneous variant calls due to sequence homology with other gene family members and the 

associated inappropriate capture and/or sequence read mismapping, or due to the presence of 

structural variants (SVs). Therefore, we assessed accuracy of PGRNseq genotype calling using 

orthogonal datasets as well as consistency with Mendelian inheritance. Across the HapMap96, 

we observed an average of 1325 total variants called per individual. See Table 4.3 for counts of 

variants per gene separated by variant type. Analysis of Mendelian inconsistencies within the 32 

trios revealed that the majority of genes (63/82, 77%) did not contain any such errors (Table 4.3). 

Of the 19 genes that did, 17 contained 3 or fewer Mendelian errors, all of which were in 

noncoding regions at the edges of the target space. However, two genes, CYP2A6 and CYP2D6, 

contained 10 or more Mendelian inconsistencies. These results were not unexpected as both 

genes have one or more neighboring pseudogenes with high homology, and both are known to 

harbor structural variants of functional consequence66,67. Indeed, many of these inconsistencies 

were found across multiple trios and located in regions of low unique mappability (Figure 4.1). 
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Table 4.3 Single Nucleotide Variants observed in PGRNseq genes across HapMap96 

individuals. Annotations derived from SeattleSeq. 
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ABCA1 9 0 76 70 6 1 0 2 2 0 1 8 0 20 14 5 23 

ABCB1 7 0 52 47 5 0 0 0 0 1 4 7 0 4 8 16 12 

ABCB11 2 0 70 65 5 0 0 0 1 0 4 5 0 10 4 21 25 

ABCC2 10 0 41 40 1 0 0 0 1 0 0 12 0 8 4 5 11 

ABCG1 21 0 70 68 2 0 0 0 0 1 1 0 0 4 8 28 28 

ABCG2 4 0 32 31 1 1 0 0 0 0 0 3 0 2 3 1 22 

ACE 17 0 67 57 10 1 0 2 2 0 5 9 0 13 4 3 28 

ADRB1 10 0 24 21 3 0 0 0 1 0 2 3 0 2 3 13 0 

ADRB2 5 0 28 27 1 0 0 0 0 0 1 2 0 5 4 0 16 

AHR 7 0 32 25 7 0 0 0 4 1 2 3 0 1 9 2 10 

ALOX5 10 0 34 31 3 0 0 0 1 0 2 1 0 5 6 8 11 

APOA1 11 0 23 20 3 0 0 0 0 0 3 0 0 1 0 1 18 

ARID5B 10 1 31 26 5 1 0 0 2 0 2 2 0 3 9 0 12 

BDNF 11 1 31 30 1 0 0 0 1 0 0 1 0 1 13 11 4 

CACNA1

C 

12 1 68 59 9 2 0 4 3 0 0 4 0 12 18 22 3 

CACNA1S 1 0 50 46 4 2 0 0 1 1 0 9 0 18 1 2 16 

CACNB2 10 2 58 46 12 0 0 0 5 4 3 2 0 5 9 11 19 

CES1 16 3 42 40 2 0 0 0 0 1 1 11 1 5 4 2 17 

CES2 16 0 16 16 0 0 0 0 0 0 0 0 0 2 4 7 3 

COMT 22 0 50 48 2 1 0 0 0 0 1 2 0 6 8 12 20 

CRHR1 17 1 42 34 8 0 0 1 2 0 5 1 0 4 14 4 11 

CYP1A2 15 0 20 16 4 1 0 1 2 0 0 4 0 1 2 4 5 

CYP2A6 19 10 48 44 4 1 0 0 1 0 2 5 0 11 6 8 14 

CYP2B6 19 3 55 52 3 0 0 0 2 0 1 8 1 5 16 7 15 

CYP2C19 10 0 48 40 8 0 0 1 0 0 7 4 1 4 0 6 25 

CYP2C9 10 0 47 38 9 3 0 0 0 2 4 5 0 3 4 7 19 

CYP2D6 22 36 50 42 8 0 0 0 0 4 4 7 1 7 0 15 12 

CYP2R1 11 0 15 9 6 0 0 0 0 2 4 0 0 2 0 3 4 

CYP3A4 7 0 24 21 3 1 0 0 0 1 1 1 0 1 6 5 8 

CYP3A5 7 0 44 40 4 0 0 0 0 3 1 2 0 2 3 17 16 
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DBH 9 0 48 43 5 0 0 0 1 0 4 8 0 7 5 0 23 

DPYD 1 0 41 35 6 2 0 0 0 3 1 7 0 3 5 11 9 

DRD1 5 0 27 21 6 0 0 0 2 0 4 0 0 2 8 0 11 

DRD2 11 0 39 35 4 0 0 0 0 1 3 2 0 8 8 3 14 

EGFR 7 0 83 77 6 0 0 1 1 1 3 2 0 11 3 18 43 

ESR1 6 0 84 77 7 1 0 0 1 2 3 0 0 5 21 15 36 

FKBP5 6 0 53 48 5 0 0 0 1 3 1 0 0 2 8 27 11 

G6PD X 0 23 18 5 0 0 2 1 0 2 2 0 3 1 3 9 

GLCCI1 7 0 54 42 12 0 0 0 8 1 3 0 0 2 6 8 26 

GRK4 4 0 40 32 8 0 0 0 1 7 0 7 0 4 4 12 5 

GRK5 10 0 33 29 4 0 0 0 0 1 3 5 0 1 1 7 15 

HMGCR 5 1 42 38 4 0 0 0 2 0 2 0 0 2 10 9 17 

HSD11B2 16 0 24 22 2 0 0 0 1 0 1 1 0 4 6 0 11 

HTR1A 5 0 18 14 4 0 0 0 0 0 4 2 0 1 0 0 11 

HTR2A 13 0 54 46 8 1 0 0 2 0 5 3 0 3 12 0 28 

KCNH2 7 0 44 37 7 0 0 0 0 2 5 2 0 5 2 9 19 

LDLR 19 0 50 46 4 0 0 0 3 0 1 2 0 11 19 0 14 

MAOA X 0 15 10 5 0 0 0 1 0 4 0 0 3 2 1 4 

NAT2 8 0 28 25 3 0 0 0 0 0 3 6 0 3 0 0 16 

NPPB 1 0 38 29 9 0 0 2 3 0 4 1 0 2 0 0 26 

NPR1 1 0 21 19 2 0 0 0 2 0 0 5 0 3 1 0 10 

NR3C1 5 0 43 39 4 0 0 1 1 1 1 3 0 7 10 5 14 

NR3C2 4 0 40 31 9 1 0 0 4 0 4 2 0 5 10 2 12 

NTRK2 9 0 98 87 11 0 0 0 2 8 1 2 0 2 8 54 21 

PEAR1 1 2 62 55 7 2 0 0 0 2 3 10 0 10 9 3 23 

POR 7 1 60 48 12 3 0 1 1 3 4 3 0 6 7 22 10 

PTGIS 20 0 30 29 1 0 0 0 1 0 0 1 0 8 11 0 9 

PTGS1 9 0 63 59 4 0 0 0 2 0 2 6 0 5 18 4 26 

RYR1 19 0 80 72 8 3 1 1 0 0 3 12 0 49 1 0 10 

RYR2 1 0 65 54 11 3 0 3 1 1 3 7 0 19 5 11 12 

SCN5A 3 0 75 72 3 0 0 0 0 0 3 9 0 14 17 12 20 

SLC15A2 3 0 48 42 6 0 0 1 1 1 3 3 0 2 14 6 17 

SLC22A1 6 0 34 30 4 1 0 0 1 0 2 9 0 5 0 6 10 

SLC22A2 6 0 77 69 8 0 0 1 0 0 7 3 0 2 8 9 47 

SLC22A3 6 0 47 38 9 0 0 0 6 0 3 1 0 4 18 0 15 

SLC22A6 11 0 17 14 3 0 0 0 1 0 2 1 0 3 4 0 6 

SLC47A1 17 0 28 23 5 1 0 0 2 0 2 2 0 4 5 3 9 

SLC47A2 17 0 69 58 11 3 0 0 1 1 6 1 0 4 1 10 42 

SLC6A3 5 1 49 43 6 0 0 1 2 0 3 0 0 6 19 1 17 
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SLC6A4 17 0 42 36 6 0 0 1 2 0 3 2 0 2 10 0 22 

SLCO1A2 12 0 101 85 16 0 0 0 7 4 5 4 0 5 45 23 8 

SLCO1B1 12 1 36 35 1 1 0 0 0 0 0 8 0 7 6 0 14 

SLCO1B3 12 2 49 43 6 0 0 1 1 1 3 5 0 5 0 5 28 

SLCO2B1 11 0 71 55 16 0 0 0 1 9 6 4 0 6 8 32 5 

TBXAS1 7 0 54 47 7 0 0 1 2 2 2 10 0 4 3 23 7 

TCL1A 14 0 43 38 5 0 0 1 1 0 3 2 0 0 5 5 26 

TPMT 6 1 36 28 8 0 0 0 3 0 5 3 0 1 7 1 16 

UGT1A1/

4 

2 1 120 111 9 0 0 0 0 9 0 2 0 0 8 85 16 

VDR 12 1 58 53 5 1 0 0 1 0 3 1 0 3 20 5 24 

VKORC1 16 0 26 25 1 0 0 1 0 0 0 1 0 0 1 9 14 

ZNF423 16 1 34 26 8 0 0 3 4 0 1 4 0 11 0 1 10 

TOTALS  70 380

2 

333

7 

46

5 

38 1 33 10

9 

84 20

0 

29

7 

4 45

1 

58

4 

70

6 

129

5 
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Figure 4.1 Mendelian inconsistency deriving from mis-mapped reads. A child with a T/T 

genotype is not consistent with a C/T father and a C/C mother. Reads containing a ‘C’ at this site 

likely derive from the pseudogenic CYP2D7, which, when aligned to CYP2D6, has a C at this 

site and the site 2bp downstream.  
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In addition to the quality checks inherent in the use of trio data, we chose a panel of 

HapMap samples in order to compare our results to those from other large sequencing or 

genotyping efforts, e.g. 1000 Genomes. To evaluate accuracy, we calculated the mean per-

individual genotype concordance at various coverage cutoffs using 3 different datasets: HapMap 

3.3 (n=96)68, 1000 Genomes deeply sequenced trios (n=6)69, and high-coverage exome data 

generated at UW through the NIEHS Environmental Genome Project (n=54)70. Generally, mean 

per-individual concordance was greater than 99% (Table 4.4). We noticed that the mean of 

99.4% concordance with HapMap 3.3 was consistent across different depth cutoffs; and on 

closer analysis, we found that 2 noncoding sites were solely responsible for these discrepancies. 

We believe these sites may be difficult to type using chip-based genotyping, as genotypes from 

the three different sequencing datasets agree with the PGRNseq genotype at this site. In fact, the 

two sequencing-based comparison datasets (1000 Genomes deep trios and EGP exomes) showed 

mean per-individual concordance greater than 99.8%, indicating that the vast majority of 

PGRNseq-derived genotypes are accurate.  

 

Table 4.4: PGRNseq per-individual concordance vs. orthogonal datasets. Sample sizes 

indicate number of overlapping samples between datasets. Concordance calculated for variant 

sites only with coverage at or above the thresholds listed in the column headers. Table values in 

parentheses indicate mean number of overlapping variants per individual from which the final 

percentage was derived.  

 

Dataset 

Concordance,  

coverage  ≥10x  

(mean # overlap) 

Concordance, 

coverage  ≥20x 

 (mean # overlap) 

Concordance, 

coverage  ≥30x  

(mean # overlap) 

Concordance, 

coverage  ≥50x 

 (mean # overlap) 

YRI Deep Trio 

(n=3) 
99.9% (650) 99.9% (547) 100% (354) 100% (182) 

CEU Deep Trio 

(n=3) 
99.8% (554) 100% (497) 100% (337) 100% (137) 

HapMap 3.3 

(n=96) 
99.4% (296) 99.4% (296) 99.4% (296) 99.4% (296) 

EGP exomes 

(n=54) 
100% (147) 100% (138) 100% (127) 100% (107) 
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 We observed a similarly high accuracy when PGRNseq genotypes were compared to 

those derived from the Pharmacogenetics-specific genotyping platforms, Affy DMET+ and 

Illumina ADME. Specifically, the average per-individual concordance was 99.7% between 

PGRNseq genotypes and Affy DMET+ data (Table 4.5). When comparing the Illumina ADME 

data, 87 of the HapMap96 were 100% concordant across all overlapping sites. The remaining 9 

individuals were all discordant for a single shared variant; upon closer examination, this variant 

(rs9282861) appears to be poorly genotyped by the Illumina ADME platform due to inaccurate 

cluster calling (Figure 4.2), and PGRNseq genotypes at this site are concordant with genotypes 

for these same individuals derived from HapMap 3.3 and from the other sequencing-based 

comparison sets. Based on these data, sequencing-based PGRNseq genotypes are exceedingly 

accurate. 

 

Table 4.5 Per-individual concordance between PGRNseq and Affy DMET+ genotypes 

within the antiplatelet clinical testing cohort. Affy DMET+ data and PGRNseq data generated 

at BCM (N=96). 

 

sample DMET+ 
genotyes 

count 
shared 

number 
concordant 

number 
discordant 

concordance 

P0011 1837 1804 1803 1 99.94457 

P0012 1839 1808 1803 5 99.72345 

P0020 1832 1800 1795 5 99.72222 

P0024 1831 1800 1797 3 99.83333 

P0030 1845 1810 1805 5 99.72376 

P0033 1842 1810 1802 8 99.55801 

P0035 1848 1818 1814 4 99.77998 

P0036 1819 1790 1784 6 99.6648 

P0037 1833 1801 1797 4 99.7779 

P0038 1814 1782 1778 4 99.77553 

P0041 1840 1809 1804 5 99.7236 

P0043 1832 1803 1802 1 99.94454 

P0074 1822 1793 1786 7 99.60959 

P0075 1845 1815 1810 5 99.72452 

P0079 1841 1810 1805 5 99.72376 
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P0080 1838 1803 1800 3 99.83361 

P0081 1846 1813 1808 5 99.72421 

P0096 1831 1799 1794 5 99.72207 

P0111 1846 1815 1813 2 99.88981 

P0126 1819 1790 1783 7 99.60894 

P0127 1845 1814 1811 3 99.83462 

P0132 1839 1809 1805 4 99.77888 

P0133 1843 1813 1808 5 99.72421 

P0134 1844 1813 1806 7 99.6139 

P0138 1840 1809 1806 3 99.83416 

P0144 1836 1805 1801 4 99.77839 

P0147 1840 1809 1801 8 99.55777 

P0148 1835 1805 1801 4 99.77839 

P0149 1840 1809 1802 7 99.61305 

P0150 1835 1802 1796 6 99.66704 

P0174 1836 1803 1797 6 99.66722 

P0179 1848 1818 1809 9 99.50495 

P0180 1841 1812 1806 6 99.66887 

P0181 1847 1817 1812 5 99.72482 

P0183 1847 1817 1812 5 99.72482 

P0193 1846 1813 1806 7 99.6139 

P0198 1816 1786 1779 7 99.60806 

P0200 1838 1808 1801 7 99.61283 

P0201 1837 1808 1803 5 99.72345 

P0204 1846 1817 1813 4 99.77986 

P0205 1842 1811 1807 4 99.77913 

P0209 1843 1809 1803 6 99.66833 

P0213 1844 1814 1804 10 99.44873 

P0221 1822 1794 1791 3 99.83278 

P0273 1821 1791 1784 7 99.60916 

P0279 1824 1795 1789 6 99.66574 

P0288 1836 1805 1800 5 99.72299 

P0289 1845 1814 1809 5 99.72437 

P0294 1845 1814 1807 7 99.61411 

P0295 1847 1817 1809 8 99.55971 

P0302 1846 1816 1810 6 99.6696 

P0305 1832 1799 1794 5 99.72207 

P0308 1815 1783 1778 5 99.71957 

P0315 1825 1796 1792 4 99.77728 

P0340 1846 1813 1809 4 99.77937 

P0341 1837 1806 1800 6 99.66777 
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P0373 1820 1790 1785 5 99.72067 

P0374 1848 1817 1809 8 99.55971 

P0375 1835 1804 1799 5 99.72284 

P0378 1844 1815 1804 11 99.39394 

P0379 1842 1812 1809 3 99.83444 

P0385 1845 1815 1809 6 99.66942 

P0386 1839 1806 1803 3 99.83389 

P0387 1839 1807 1801 6 99.66796 

P0388 1849 1819 1813 6 99.67015 

P0389 1846 1815 1808 7 99.61433 

P0390 1844 1814 1813 1 99.94487 

P0426 1843 1811 1806 5 99.72391 

P0434 1843 1810 1803 7 99.61326 

P0441 1835 1803 1798 5 99.72268 

P0442 1839 1810 1804 6 99.66851 

P0482 1840 1807 1803 4 99.77864 

P0494 1848 1818 1814 4 99.77998 

P0495 1846 1814 1808 6 99.66924 

P0509 1845 1810 1808 2 99.8895 

P0513 1846 1811 1807 4 99.77913 

P0514 1843 1812 1807 5 99.72406 

P0540 1843 1811 1806 5 99.72391 

P0541 1836 1805 1799 6 99.66759 

P0570 1842 1811 1806 5 99.72391 

P0571 1843 1810 1806 4 99.77901 

P0581 1846 1815 1810 5 99.72452 

P0582 1839 1808 1803 5 99.72345 

P0584 1842 1810 1804 6 99.66851 

P0619 1846 1815 1811 4 99.77961 

P0622 1850 1819 1815 4 99.7801 

P0641 1837 1806 1799 7 99.6124 

P0670 1838 1806 1803 3 99.83389 

P0674 1830 1801 1796 5 99.72238 

X0027 1842 1811 1805 6 99.66869 

X0534 1833 1800 1795 5 99.72222 

X0585 1833 1799 1792 7 99.61089 

X0638 1823 1790 1787 3 99.8324 

X0651 1819 1792 1787 5 99.72098 

X0722 1840 1808 1804 4 99.77876 

mean 1838.211 1807.095 1801.926 5.168421 99.71403 
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Figure 4.2 Genotyping error in Illumina ADME data due to incorrect cluster definitions. 

SULT1A1*2 is correctly genotyped by PGRNseq as homozygous non-reference in this trio, but 

all 3 are called as heterozygotes by Illumina ADME. Inset shows the raw Illumina ADME 

clustering data for this site, trio circled in green. Clustering data reveals that the incorrect 

genotypes derive from poor cluster boundary placement. 

 

 

Novel variation in the HapMap96 and clinical cohorts 

Across 82 genes on the panel (excluding the MHC genes), we identified an average of 45 

variants per HapMap96 individual that were not present in dbSNP build 137. This value is 

similar to data from the liver cohort (mean = 35 novel variants per ind) and the antiplatelet 

cohort (mean = 55 novel variants per ind), which consisted largely of Caucasian individuals, and 

were less diverse than the trios in the HapMap96. Though the majority of novel variants were in 

noncoding regions, we identified several novel, potentially deleterious nonsense and missense 

variants (See Table 4.3) across both the HapMap96 and clinical cohorts. Examples include 
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clearly deleterious variants such as a novel nonsense allele in RYR1, a gene linked to dominant 

Malignant Hyperthermia71, and potentially deleterious novel missense alleles scattered across 

genes of clinical importance such as CYP2C9, SLCO1B1, and SLC22A1. As the sample sizes of 

the testing cohorts are relatively small, we conclude that PGRNseq can identify many more 

novel alleles of interest when applied to large studies that are well-powered to detect rare 

variation associated with variation in drug response.   

 

4.4 Discussion 

 As adverse drug reaction events are a significant cause of morbidity in the US, a platform 

that can accurately detect and genotype variants, both common and rare, that affect drug 

response has the potential to both deepen our understanding of these events as well as reduce 

their incidence. Recent large scale sequencing efforts have revealed that very rare, potentially 

deleterious variants are carried by nearly 1 in 10 individuals. Therefore, platforms like PGRNseq 

that can accurately detect such variation, as well as genotype common variants of known effect, 

are particularly well-suited for pharmacogenetic research and clinical implementation. To this 

end, we have developed a novel custom-target panel designed to capture 84 genes with known 

roles in drug metabolism and response phenotypes. Aimed at larger pharmacogenomics studies, 

PGRNseq strikes a favorable balance between low cost, the high throughput associated with 

chip-based genotyping and the ultra-deep coverage associated with NGS; additionally, the deep 

coverage inherent to quality NGS data enables the discovery of rare variation of potential clinical 

impact. Testing PGRNseq across multiple sample sets revealed the high accuracy of genotypes 

obtained from this platform. Finally, the quantity and types of novel variation discovered in our 

small testing sets demonstrates that PGRNseq is ideal for larger sequencing studies aimed at 
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assessing rare variation within pharmacogenomics targets. Indeed, several current studies are 

making use of the PGRNseq platform. These studies range from investigations into a specific 

drug response phenotypes, such as irinotecan response in cancer patients, to large, multi-

institution sequencing efforts such as eMERGE-PGx, which is deploying PGRNseq 

prospectively across 9000 patients with linked medical records in order to discover rare 

pharmacogenetic alleles of interest and to explore the utility of clinical NGS implementation72. 

Overall, we believe PGRNseq will continue to be a valuable resource for any investigator 

interested in examining rare variation in targets of known pharmacogenomic importance. 

 Although PGRNseq is currently being deployed in studies such as those described above, 

we are also in the process of designing and testing a ‘version 2.0’ platform to expand our abilities 

to target variation within the complex regions on the platform: CYP2D6, CYP2A6, and HLA-B. 

For CYP2D6 and CYP2A6, we intend to extend the probe design to include the full gene (introns 

included) as well as the neighboring pseudogenes in order to aid in the assembly of this complex 

region, particularly with longer read lengths. We have also identified for inclusion several 

variants that are well known to tag the two “actionable” HLA-B alleles (*57:01 and *15:02) and 

that can be accurately typed by NGS73. Finally, we also plan to fine-tune our coverage of non-

coding space by focusing on regions of putative regulatory function and removing low-coverage, 

repetitive regions that happened to fall within the boundaries of the original design scheme.  

 In PGRNseq v2, we will also continue to explore the utility of using this technology for 

the discovery and genotyping of Copy Number Variation (CNV) present within the targeted gene 

set. Several of these genes, such as CYP2D6, CYP2A6, and GSTM1 are known to harbor 

common CNVs of functional relevance66,67,74. As a proof of concept, we applied a read-depth-

based CNV-finding algorithm75 to PGRNseq HapMap96 data, and checked for calls consistent 
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with Mendelian inheritance. Though there were many calls, likely false positives, not consistent 

with Mendelian inheritance, we did observe known, common CNVs that were transmitted from 

parent to child (Figure 4.3). We aim to explore these methods further during development of the 

next version, as the redesigned complex regions will likely improve call quality.  

 

 

 

Figure 4.3 CNV Typing with PGRNseq ExomeDepth75 detects common GSTM1 deletion 

associated with drug toxicity. Calls consistent with both Mendelian inheritance and orthogonal 

Illumina ADME data 
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In addition to PGRNseq development, we feel the design and testing strategy utilized 

here is broadly applicable to the development of any custom-capture panel focusing on specific 

subsets of genomic targets. The use of the HapMap96 was essential in assessing optimum 

platform conditions, overall performance, and genotype accuracy due to the abundance of 

orthogonal data on these samples as well as the Mendelian inheritance analysis enabled by the 

use of trios, specifically. Though initially intended as a research tool, our experiences in the 

design and testing of this specific platform has led to an interest in pursuing the use of PGRNseq 

as a clinical test, and efforts to clinically validate this platform for certain actionable alleles are 

currently underway. As custom target platforms such as PGRNseq continue to demonstrate their 

efficacy as a research tool for the study of genetic variation, both rare and common, we believe 

that these very same platforms will become the standard for clinical sequencing, carving a 

translational niche for NGS in medicine ahead of clinical whole-genome sequence 

implementation.  
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4.5 Methods 

PGRNseq Design 

PGRN network members nominated genes for consideration in the design of the NGS 

platform. As one of the design criteria was to produce a panel that could be cost competitive with 

genotyping arrays, not all nominations could be included in the final list. Through multiple 

rounds of balloting and discussion, the group collectively decided on a final consensus list of 84 

pharmacogenes for inclusion in the panel (Table 4.2). These pharmacogenes are functionally 

diverse and include drug-metabolizing enzymes, drug transporters, and drug targets. Although all 

84 genes have some prior association with a pharmacogenetic trait, they range from those 

deemed clinically actionable by CPIC61 at the time of voting to those about which little is known 

aside from strong preliminary association data. For the design of each of the 84 genes, we 

included all exons (based on all transcript models) as well as 2kb upstream and 1kb downstream 

of their untranslated regions (UTRs) in order to discover and assess nearby potential regulatory 

variation, which is already known to affect drug response in genes such as VKORC176. In 

addition, the design also included probes to capture every site present on the Affy DMET+ array 

and the Illumina ADME assay, so that the sequencing platform would be backwards compatible 

with existing datasets, and as orthogonal platforms for PGRNseq quality control via genotype 

concordance. After submitting the final list of genomic coordinates to Nimblegen, we worked 

closely with their developmental team to generate a set of probes to capture these regions; the 

resulting set of SeqCap probes, known as PGRNseq, covers 968kb of the genome, which is 

highly scalable for large studies while maintaining high coverage.  
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PGRNseq Testing 

 In order to test different multiplexing strategies and assess the accuracy of the platform, 

the DSRs assembled a set of 96 HapMap samples of diverse ancestry (HapMap96). Since all 

samples have HapMap genotypes available, and some have 1000  Genomes sequencing data 

available, they represent a robust set to assess overall platform performance and concordance. 

Furthermore, these 96 samples consist of 32 trios, so analysis of Mendelian inheritance can 

reveal sites prone to false-positive calls due to mapping errors deriving from repetitive elements 

or from regions of high sequence homology; several genes on the platform are members of large 

gene families that can be prone to these errors. In addition to these samples, we also wanted to 

test PGRNseq performance on cohorts of actual patients with orthogonal data. We obtained two 

different clinical cohorts: 1) a set of 96 liver-derived patient samples77, and 2) a separate set of 

96 clinical samples collected for research into antiplatelet response for testing.  

All sequencing was performed on the Illumina HiSeq 2000 instrument using paired-end, 

100bp reads. Initially, all three DSR groups tested the HapMap96 using a variety of capture 

probe and sequencing lane multiplexing strategies (8-plex, 12-plex, 24-plex) to identify the 

maximum batch size that preserves the sequence read depth needed for high quality variant calls 

across the target set; with these criteria in mind the group settled on a 24-plex batch size. To 

compare performance, Illumina ADME genotypes and Affy DMET+ genotypes were generated 

for the HapMap96 at UW and BCM-HGSC, respectively. Clinical cohorts were sequenced at 

UW (liver samples) and BCM-HGSC (antiplatelet samples) using the same protocol as was used 

for the HapMap96 assays. At each site, raw sequencing reads were mapped to the hg19 reference 

genome using BWA, and variants called and filtered using GATK78 and ATLAS79. 
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Chapter 5: The Future of Pharmacogenetics in Clinical Practice 

 

5.1 Research Summary 

 As next-generation sequencing continues to become the standard in patient care, clinical 

decision-making guided by results from NGS assays will become common practice. Although  

the field is rapidly transitioning from traditional genotyping-based methods to these newer 

technologies, their ability to detect and accurately represent all manner of pharmacogenetic 

variation has yet to be assessed. The work described here seeks to quantify this variation, assess 

its clinical representation with an eye towards broad-scale, preemptive pharmacogenetic testing. 

Chapter two uses large-scale exome data to describe the extent and qualities of rare, deleterious 

variation within key pharmacogenes that escapes detection by traditional genotyping assays. 

Chapter three places this variation in the context of known, actionable alleles by attempting to 

apply canonical pharmacogenetic nomenclature to genotypes derived from this exome dataset. 

With these issues in mind, chapter four introduces a new sequencing panel that marries the low 

cost and high throughput associated with genotyping assays with the accuracy and discovery 

ability inherent in whole-genome sequencing.  

 Although the work presented here is a step towards broad-scale implementation of 

clinical sequencing, there are still many challenges to overcome as this type of clinical test 

becomes increasingly common. Though the results presented in this dissertation are diverse in 

their scope, from nomenclature standardization issues to sequencing platform development, this 

work highlights three significant areas for future development as clinical sequencing for PGx 

expands: the need for larger, diverse cohorts; the need for high-throughput functional analysis of 

genomic variation; and the need for new methods to collect, interpret, and report 
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pharmacogenomics results focused on using Electronic Health Records to engage providers and 

the patients themselves. 

 

 5.2 Large-scale, multi-ethnic cohorts for pharmacogenomic discovery 

 Although considerable progress has been made regarding the discovery and 

implementation of clinically actionable pharmacogenetic variation, the majority of these variants 

are common, and many of the drug phenotype associations underlying this designation were 

identified in cohorts of Caucasian individuals.  For example, PharmGKB lists 7 studies 

underlying the association between SLCO1B1*5 (p.Val174Ala) and simvastatin response, an 

association ranked Level 1A by PharmGKB, denoting that this association not only has the 

highest level of evidence supporting it, but also that is currently implemented for testing at a 

PGRN site46. Though on the surface it seems there is little more to say regarding this association, 

5 out of the 7 cited studies on PharmGKB consisted of exclusively Caucasian cohorts. Of the two 

remaining studies, one does not describe the 32 subjects’ ancestries whatsoever80 and the other is 

based on a cohort of 289 Caucasians, merely 22 African-Americans, and 43 individuals with 

ethnicity labeled simply as ‘other’81. Despite the considerable effort to study this association in 

Caucasian individuals, these studies do little to address serious ethnic disparities in drug response 

phenotypes; minority individuals on statins hospitalized for coronary heart disease not only have 

significantly increased 1-year odds of rehospitalization or death, but they are also least likely to 

have health insurance to pay for the significant costs associated with any additional care82. 

 The analyses presented here reveal that considerable variation in genes known to 

influence drug response traits has yet to be discovered, especially in under-studied and minority 

populations. Among ESP individuals, for example, 11.7% of African-American individuals carry 
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a rare, novel, potentially deleterious CYP variant, as opposed to only 7.6% of European-

Americans; studies of other minority populations would likely reveal a similarly high burden of 

such variants. As exome sequencing data continues to aggregate rapidly, this prediction 

continues to hold true. The recently released ExAC database draws on exome sequencing data 

from 60,706 individuals of European, East Asian, South Asian, Latino, and African ancestry, 

none of whom were also part of ESP83; preliminary analysis of this dataset supports the need for 

larger cohorts of diverse ancestry. For example, rs374201833 (CYP2C9 Arg97Thr), originally 

identified in a single ESP individual of European descent, affects a residue critical for substrate 

binding, and is predicted to alter enzyme activity41,42. Although no European individual in ExAC 

carried this variant, 13 individuals of South Asian descent and 1 Latino individual did. Further, a 

single South Asian individual carried a third allele at this same position, leading to a Lysine 

substitution at this residue that was previously unobserved, yet potentially equally as deleterious.  

 

5.3 High throughput functional analysis of pharmacogenetic variation 

Despite the utility in quantifying the extent and types of PGx variation in large, diverse 

cohorts, these studies can only suggest potential phenotypic consequences of the variation they 

seek to describe. As clinical PGx sequencing expands to millions of individuals of a variety of 

ethnicities, traditional techniques for assaying the effects of genetic variation on protein function 

are increasingly incapable of describing the functional consequences of such variation on a 

clinically-relevant timescale. Further, the algorithms designed to provide clinical decision 

support, those that interpret and report PGx test results, must be able to support reporting for all 

potential variants, even those that have yet to be observed. Despite the daunting nature of this 
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undertaking, recent advances in protein science and methodology will enable the high-

throughput functional analysis necessary for the development of such reporting systems.  

One method, Deep Mutational Scanning (DMS), is particularly ideal for rapid analysis of 

missense variation. Through the coupling of rounds of selection on a diverse library of protein 

variants with next-generation sequencing of input library DNA, this method can generate an 

activity landscape for nearly all possible single-amino-acid substitutions for a single enzyme84. 

Data generated via this method for a drug-metabolism enzyme such as CYP2C9 could lead to 

pre-existing clinical decision support for all possible substitutions; as the contributions of many 

common CYP2C9 missense alleles to warfarin dose variation is known, DMS data for those 

alleles could be used to construct a model able to predict the effect of any allele, even before it is 

ever observed. In addition to this clinical utility, DMS can provide a deeper understanding of the 

precise biochemical effects underlying known associations, such as the catalytically impaired 

CYP2C9*3, defined by a seemingly benign substitution (p.Ile359Leu)85. As our understanding of 

the biology behind these common, actionable variants deepens, our ability to predict the 

functional consequences of similar variation in paralogous yet less well-studied genes expands in 

parallel, as much of the variability in warfarin dose has yet to be explained86. Although DMS-

based approaches will significantly aid our ability to predict the enzymatic consequences of 

genetic variation, actual drug response phenotypes are complex traits not easily predicted by the 

effects of a single variant alone. Moving forward, this complexity necessitates a shift not only in 

how we ascertain sequence and genotype, but also how drug response phenotypes themselves are 

gathered and reported. 
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5.4 New approaches to collecting, interpreting, and reporting pharmacogenomic data 

Novel methods such as next-generation sequencing provide unprecedented access to 

accurate genotype data drawn from many individuals. However, in order to truly understand the 

genetic architecture of drug response, new methods for the ascertainment and analysis of 

phenotype data are equally as important. As many PGx phenotypes are only observed after 

exposure to a certain pharmaceutical, separating true cases from true controls is essential. 

Electronic health records linked to genomic data are a rich source of phenotype information that 

will significantly improve on our ability detect pharmacogenetic associations. A central 

repository for health information throughout life, the EHR captures longitudinal data that is often 

inaccessible in traditional association studies, data that is often coded in standardized terms 

allowing for meta-analysis across many large cohorts87. Large multi-center cohorts with linked 

genomic data are a particularly promising avenue for pharmacogenetic research as they can 

retrospectively replicate previously described gene-drug associations as well as identify new 

associations inaccessible to smaller, single institution studies88. In addition to discovery, these 

cohorts provide the opportunity to implement preliminary clinical decision support systems to 

gauge their overall effectiveness in terms of cost, provider use, and patient outcome26. 

Although these large cohorts will be essential in unraveling the contributions of genetic 

variation to known drug response phenotypes, many adverse drug events are difficult to 

diagnose, not coded using a standardized nomenclature, and will require creative new approaches 

detect and understand. Despite these challenges, a new wave of crowd-based initiatives engaging 

directly with research participants are transforming the way adverse events are identified and 

reported. In the era when broadband internet is a public utility, many individuals turn to a search 
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engine for immediate access to medical information and symptomology. By applying natural 

language processing methods to de-identified search logs from 80 million users, one group was 

able not only to detect known adverse drug reactions at a rate comparable to the current FDA 

reporting system but also to discover novel drug reactions for future follow-up in clinical 

cohorts89. Though this method shows promise, search logs can only reveal an incomplete 

snapshot of an individual’s symptomology, and lacks the ability to track these symptoms 

longitudinally. The increasing public interest in personal genomics and biometrics presents an 

incredible opportunity to directly engage with research participants to form an unprecedented 

cohort of millions of individuals, linking health records to genomic data to longitudinal biometric 

phenotypes. Indeed, the recently announced Precision Medicine Initiative is poised to make 

significant progress towards this ultimate goal by linking together existing biobanks into a 

million-patient consortium, the largest ever assembled90. In addition to top-down approaches 

such as this initiative, the coming years will see major advances in analysis of data collected 

from the bottom-up, data collected by research participants themselves. According to a recent 

survey, 69% of Americans track at least one health indicator, and 21% of these do so via some 

form of technology. Similarly, one in five smartphone owners owns at least one app related to 

health tracking, skewed heavily towards individuals 18-2991. To unify these efforts, Apple 

recently announced ResearchKit, a suite of developer tools designed specifically for the 

collection and reporting of biometric data using smartphones92. By empowering individuals in 

research studies to actively participate in data collection, we can discover new adverse events 

that are difficult to detect by standard methods and gain a clearer picture of how an individual’s 

drug response varies over time on a much finer scale.  
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5.5 Pharmacogenomics and the future of precision medicine 

 Clinical implementation of next-generation sequencing for pharmacogenetics is poised to 

deliver on the promise of the human genome project: to use the information stored within our 

personal genomes to optimize treatment for all individuals. Although this goal is closer than ever 

before, the work presented in this dissertation highlights significant challenges that will need to 

be overcome before this potential is truly realized. Specifically, large cohorts of diverse ancestry 

are necessary to understand the true global spectrum of pharmacogenetic variation. However, the 

analysis of the massive amounts of data resulting from such an effort, and the reporting of results 

back to participants and patients, must be accompanied by new nomenclature and reporting 

systems, as current practices are insufficient to describe the complexity of pharmacogenetic 

variation at the exome or genome level. Until clinical genome sequencing becomes the standard 

of care, custom target panels such as PGRNseq are a valuable tool to make progress on these 

challenges. Predicting drug response variation and preventing adverse drug events is only one 

aspect of precision medicine, which generally seeks to use personal genomic, environmental, and 

lifestyle data to guide disease prevention and treatment. Thus, pharmacogenomics serves a test 

system for issues that will be faced across many aspects of precision medicine; as early 

pharmacogenomic implementation efforts continue adapt to the challenges outlined in this thesis 

presented by next-generation sequencing, the lessons learned in overcoming these barriers will 

serve as a valuable roadmap as precision medicine expands into all aspects of preventive and 

diagnostic care. 
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