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In this thesis, I present a new method of producing treebanks using constraint-based gram-

mars. Rather than requiring an explicitly enumerated set of candidate analyses per utter-

ance, my method works from an implicit representation, allowing the annotator to efficiently

select the correct analysis from trillions of possibilities, without requiring the user or the

computer to store or iterate over all of them.

I explain the advantages and disadvantages of this method, and show the details and

motivation for the algorithms that make it possible. Relative to comparable prior art (i.e.

top-N treebanking), my solution enables higher coverage treebanks without a significant re-

duction in annotation speed, and reduces storage and computational resource consumption.
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Chapter 1

INTRODUCTION

This thesis concerns methodology for the task of treebanking with a constraint-based

grammar. I seek to shed light on the advantages and disadvantages of asking a human an-

notator to consider all available analyses, as compared to considering just an automatically

selected subset. This chapter will introduce some of the key terms and concepts, explain the

motivation for large-scale treebanking, and orient the reader with respect to the following

chapters.

1.1 Constraint-based Grammar

A grammar of a natural language, for the purposes of this thesis, is a formal system em-

bodying an effective procedure to determine whether or not a given string of sounds or

letters constitutes a meaningful sentence in that language; moreover, a grammar typically

associates to sentences of the language a proof of grammaticality known as a derivation

or analysis. These analyses can expose linguistically interesting properties of the sentence,

such as constituent structure or predicate–argument relationships, and hence are valuable

artifacts both in the study and exploitation of natural language.

A constraint-based grammar is a grammar in which some portion of each rule is encoded

as a body of intersecting constraints, collectively determining the rule’s applicability in

any given context. Examples include Generalized Phrase Structure Grammar (Gazdar,

1985), Head-driven Phrase Structure Grammar (HPSG; Pollard & Sag, 1994), and Lexical

Functional Grammar (Bresnan, 2001). The present work focuses on HPSG, but most of the

points are applicable to other grammatical formalisms, whether constraint-based or not.
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1.2 Treebanks

One common use of trees in linguistics is to describe the constituent structure of an utter-

ance, together with the syntactic categories of the constituents (e.g. encoding the part of

speech and valency conditions of a phrase’s head with symbols such as V for a verb and

VP for a constituent headed by a verb that has already realized all of its complements). In

formal grammar, the related derivation tree describes constituent structure together with

the identity of the rules that license those constituents; a derivation tree constitutes a proof

of grammaticality.1 Ambiguity inherent to natural language typically causes grammars to

license more than one distinct analysis for some sentences; indeed, broad-coverage grammars

frequently license tens of thousands of analyses for long sentences. This complicates the use

of a grammar as a tool, since frequently it is only the analysis corresponding to the meaning

that was intended by the speaker that is of interest for further study.2 The solution, both

for detailed study by linguists and for enabling automatic exploitation by computer sys-

tems, is to invest some manual effort in recording the intended analysis for each sentence in

some corpus of interest. In the case of automatic systems, machine learning can be used to

automatically select the correct analysis (or at least a reasonably good analysis) for unseen

text on the basis of patterns discovered in a manually annotated treebank.

With the advent of ubiquitous personal computers and growing interest in computer-

assisted analysis of language, the development of large corpora of natural language accom-

panied by syntactic analyses in the form of trees became a practical possibility. Such an

annotated corpus is known as a treebank.

1.3 Motivation

The primary purpose of a treebank is to facilitate the estimation of various statistics about

languages and the grammars that describe them. In general, larger treebanks provide more

accurate statistics. Even a small treebank can help a grammarian gauge the grammar’s

1This work will not discuss dependency trees, although many of the same principles apply.

2I take the notational liberty of presuming that the analysis corresponding to the speaker’s intended
meaning is the intended analysis.
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coverage on some particular genre or domain of text, which in turn can help focus grammar

development effort towards areas where coverage is the most impoverished. Larger treebanks

can be mined for frequency information on syntactic phenomena, for instance shedding

light on the question of whether predicative or attributive usage is more common for some

specific adjective or class of adjectives. The larger the treebank is, the more detailed the

questions become (e.g. investigating rarer phenomena) that can be answered. In addition

to such “hands-on” research applications, treebanks are invaluable for enabling computers

to automatically resolve ambiguity, where the size of the treebank again is a major factor

in determining the effectiveness.

The creation of large-scale treebanks is a labor-intensive task, and much research has

been devoted to developing methods to facilitate the process (e.g. Marcus et al., 1993,

Carter, 1997). In the context of HPSG, the most common procedure is to automatically

select the N most probable analyses (with N = 500 often) according to a statistical model,

and subsequently ask a human expert to rule out swaths of unintended analyses until either

the intended analysis is found or all analyses have been ruled out (Oepen, Flickinger, et al.,

2004). The motivation of the present work is to continue this research trajectory by elimi-

nating the arbitrary (from a linguistic perspective) limit of 500 candidates; I hypothesized

that discarding all but the 500 most probable analyses was leading to reduced coverage

for treebanks created in that manner. I further hypothesized that ambiguity management

techniques from the parsing literature could be adapted to resolve the engineering problems

raised by treebanking with a very large number of candidate analyses.

1.4 Roadmap

Chapter 2 gives an overview of treebanking techniques. In Chapters 3 and 4, I address four

research questions: First, how computationally tractable is it to present all of the analyses

licensed by the grammar even for very complex sentences? Second, how practical is it from

a user interface perspective? Third, what is lost by automatically discarding all but 500

analyses? And fourth, how much manual decision making is required when presenting all

analyses to the human expert, relative to the amount required for top-N treebanking? The

methods I use to approach these questions are engineering-oriented and experimental in
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nature. I answer the first two of these research questions in Chapter 3, by designing and

implementing algorithms and a user interface capable of supporting treebanking with all

analyses available. The resulting system, called the Full Forest Treebanker3, is already in

use by several grammarians. I approach the second two research questions by conducting

numerical experiments on existing treebanks constructed under the top-500 paradigm to

extrapolate estimates for the desired quantities. A more accurate approach would be to

build a large scale treebank using the new platform, paralleling an existing top-500 treebank,

and compare the two, but unfortunately as of yet no such large scale full forest treebank

exists.

The primary conclusions of these investigations are that full forest treebanking is indeed

practical and efficient, that top-500 treebanking likely discards desirable analyses for at

least 2% of sentences, and that full forest treebanking probably does not require in excess

of 15% more human effort than top-500 treebanking. The main practical contributions

of this work are the algorithms that support full forest treebanking and the implemented

platform enabling annotators to actually use the technique. In chapter 5, I summarize the

contributions of the preceding chapters and offer thoughts on future research directions.

3Abbreviated FFTB; the software is open source under the MIT license, and is available from
svn://sweaglesw.org/svn/treebank/trunk/.
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Chapter 2

LITERATURE REVIEW

This chapter paints a summary of the landscape of previous research on treebanking

methodology, with an emphasis on discriminant-based treebanking, in order to give the

reader an idea of the current state of the art, and to situate the present work with respect

to alternative approaches.

2.1 Hand-corrected Treebanking

Recall that a treebank is a corpus of text annotated with syntactic analyses in the form of

trees. While early corpora (e.g. the Brown Corpus of Francis & Kucera, 1982) contained text

annotated with part of speech information, the earliest sizeable published corpus containing

syntactic annotations was the Penn Treebank (Marcus et al., 1993). The PTB consists of

4.5 million words of American English, of which about 3 million words have been annotated

with syntax trees.

Both layers of annotation in the PTB (part of speech and syntax) were accomplished by

first using an automated tool to assign a best-guess analysis, and then manually correcting

the result to produce gold-standard annotations. The tool used to perform the initial

syntactic annotation was Fidditch (Hindle, 1983), a partial parser which outputs a sequence

of tree fragments. Fidditch attaches the fragments together to the degree that it is confident,

and leaves more difficult attachments to the manual annotators. Marcus et al. (1993, p. 320)

describes the process of designing the syntactic annotation scheme as “highly pragmatic

and strongly influenced by the need to create a large body of annotated material given

limited human resources.” In other words, linguistic precision (e.g. the distinction between

arguments and adjuncts) was sometimes sacrificed in favor of annotation speed. Experienced

annotators were able to maintain an output of 750–1000 annotated words per hour (Marcus

et al., 1993).
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The flexibility of analysis afforded by the process of treebanking by hand-correcting

trees is simultaneously an advantage, in that the scope of annotatable text is limited only

by the user’s imagination, and a liability, since the resulting structures are not held for-

mally accountable to any linguistic standard of consistency. In cases where the annotation

guidelines are murky, annotators are apt to make inconsistent decisions (for instance, see

Dickinson, 2008 for some insight into the consistency of the PTB). Furthermore, regardless

of how carefully worded the annotation guidelines are, human beings make mistakes.

One method of alleviating this concern somewhat is the use of a formal grammar to

validate the analyses. Alternately, a parser can be used to enumerate all of the grammatical

analyses for each utterance to be annotated. The annotator’s job is then to select which

of the competing analyses (if any) is correct. This process offers the guarantee that every

analysis in the resulting treebank is well-formed with respect to the accompanying formal

grammar.

2.2 Discriminant-based Treebanking

Since the number of candidate analyses for an utterance can be very large, it is unrealistic

to expect the annotator to quickly and reliably select the correct analysis from a list by

simple inspection. Carter (1997) presents a more practical method of treebanking based on

this paradigm. By presenting the annotator with a list of differences between the analyses

rather than a list of the analyses themselves, his system enables the annotators to much

more quickly comprehend and resolve the choices they are being presented with. Annotator

efficiency is reported as 170 sentences per hour in the ATIS domain (Air Travel Information

System; Hemphill et al., 1990). Since average sentence length in that corpus is about 11

words, we can extrapolate a speed of about 1870 annotated words per hour — roughly

twice the speed reported for the manual annotation of the PTB, with the added benefit of

enforced grammatical consistency.

Carter’s method of discriminant-based treebanking gained popularity and was adopted

by a number of other grammar-based treebanking projects, notably the Redwoods project

(Oepen, Flickinger, et al., 2004) using Head-driven Phrase Structure Grammar (Pollard &

Sag, 1994) and the TREPIL project (Rosén, De Smedt, et al., 2005) using Lexical Functional
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Grammar (Bresnan, 2001).

The Redwoods project adapted discriminant-based treebanking to the LinGO English

Resource Grammar (henceforth ERG; Flickinger, 2000, 2011), a broad-coverage precision

computational grammar of American English formally grounded in HPSG and a frame-

work for meaning representations called Minimal Recursion Semantics (henceforth MRS;

Copestake et al., 2005). Oepen et al. argue that the discriminant-based method allows the

creation of a treebank that is (i) both rich and consistent in its linguistic analyses, and

(ii) dynamic, in the sense that the analyses can be semiautomatically kept up-to-date with

ongoing development of the ERG with relatively little human effort.1 Oepen et al. report

an annotation rate of about 2000 sentences per week for a single annotator, on text with an

average sentence length of 7.5 words. Assuming the annotator worked 40 hours per week,

this translates to 375 words per hour. This is substantially slower than the speed reported

by Carter; however, it is not clear whether the complexity of the analyses and coverage of

the grammar are similar enough for direct comparison to be meaningful.

One of the most compelling properties of discriminant-based treebanking is that, pro-

vided the decisions used to find the desired tree are recorded, they can be replayed with a

slightly different forest (arising, say, from reparsing the same text with an updated gram-

mar) with a good chance of isolating the new desired tree, if one is still available. This

technique has allowed the Redwoods treebanks to be kept up-to-date with the ERG as it

has undergone continued development.

The Redwoods infrastructure was subsequently deployed to produce a number of ad-

ditional treebanks for various languages. The treebank bundled with the ERG as of 2013

consisted of more than 75,000 sentences. Examples in other languages include the Hinoki

treebank of Japanese (Bond et al., 2004, about 25,000 sentences), the Tibidabo treebank

of Spanish (Marimon, 2010, about 15,000 sentences), the CINTIL corpus of Portuguese

(Branco et al., 2012, 1,204 sentences), and the ParDeepBank multilingual treebank of the

Wall Street journal (Flickinger, Kordoni, et al., 2012).

1Oepen et al. also emphasize another benefit, viz. (iii) that the information can be exported into many
different formats, each containing a different view on the rich annotations, but this is less relevant to the
topic at hand.
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The question of annotation speed with discriminant-based HPSG treebanking was first

methodologically addressed by Tanaka et al. (2005), in the process of building the Hinoki

treebank of Japanese dictionary definitions. This work used a statistical part-of-speech

tagger to preselect certain discriminants in cases where the tagger was determined to be

reliable, yielding approximately a 16% speedup over the baseline where none of the discrim-

inants were preselected. Absolute speed in the faster configuration is reported as 70 seconds

per item, with an average item length of 10, yielding an annotation rate of about 500 words

per hour. Again, it is difficult to compare this figure to those reported by Carter and by

Marcus et al., since the languages and domains are very different. Treebanking speed can

also be expected to depend on the level of ambiguity and complexity of the underlying

grammar and its analyses, further confounding comparisons.

The question of speed was later revisited in the process of annotating Wall Street Journal

text with ERG analyses (Zhang & Kordoni, 2010). A model was trained to predict which

discriminants an annotator was most likely to want to make a decision about, and used

to present discriminants to which the model assigned a high score in a more prominent

place than those to which a low score was assigned. In previous Redwoods work, the list

of discriminants was presented to the user in sorted order, with constituent length as the

primary sorting criterion (and left-to-right in-sentence position as a secondary criterion).

Compared to this baseline, the authors report an impressive 50% improvement in annotation

throughput, from 62 sentences per hour to 96 sentences per hour when annotating the PARC

700 (a random sample of 700 sentences from section 23 of the Wall Street Journal portion

of the PTB; King et al., 2003). Since the average sentence length for the PARC 700 is

19.8 words, these results correspond to a throughput of 1900 words per hour, which is very

similar to the speed reported by Carter.

Lexical Functional Grammar (Bresnan, 2001) is another unification-based theory of syn-

tax. LFG posits several separate layers of analysis (called c-structure, f-structure, etc.),

whereas HPSG signs are monostratal. The LFG Parsebanker (Rosén et al., 2009), built as

part of the LFG Pargram research program (a concerted effort to develop computational

grammars for a number of languages; Butt et al., 2002), implements a treebanking environ-

ment similar to Redwoods. Discriminants are based on c-structure and f-structure instead of
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derivation trees and MRS, but the principles involved are similar; c-structure discriminants

allow users to make decisions about constituency, while f-structure discriminants facilitate

disambiguating more abstract structures like predicate–argument relationships. The LFG

Parsebanker enables users to view and apply both types of discriminants at once, whereas

the Redwoods environment requires that the user select which type of discriminants to

use before beginning a treebanking session. Baird and Walker (2010) describe using the

Parsebanker system to annotate over 100,000 sentences from Wikipedia as training data for

the Powerset search engine, a commercial venture that deployed LFG to provide natural

language web search. Unfortunately, annotation speed is not reported.

These efforts have made it clear that discriminant-based treebanking is both practical

and useful for building large-scale annotated corpora. Although the work is labor-intensive,

much research focused on how to optimize the use of human annotators’ time has allowed

tens or hundreds of thousands of sentences to be annotated using the technique, under

a variety of grammatical frameworks and implementations—a much more positive result

than could have been expected if annotators had to select from among competing analyses

without the aid of discriminants. I adopt this well-proven framework for my treebanking

experiments in this thesis.

2.3 Ambiguity Packing

Grammars like the ERG can assign literally trillions of analyses to longer sentences. Nearly

all of these are nonsensical given an ordinary context, and it can generally be presumed

that only one of them was intended by the speaker, but in order to do anything with the

intended meaning (such as recording it into a treebank), processing systems need an efficient

way of overlooking all of the other candidate analyses, which (to the computer) look just

as tempting as the intended one. The literature on the algorithms and data structures

that support large-scale parsing is vast. I content myself to explore just one facet of that

literature which is very relevant to the present work: the efficient handling of the enormous

ambiguity inherent in natural language. In order to get any traction when interpreting

highly ambiguous sentences (and they are not uncommon), it is necessary to avoid at all

costs any operation which must iterate over all of the (trillions of) analyses. At first glance,
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the notion of a system that can sift through exponentially2 many analyses in non-exponential

time seems preposterous, but that is the very idea that underlies the technique of ambiguity

packing.

Oepen and Carroll (2000) show how to apply ambiguity packing to the problem of

parsing with an HPSG, adopting and refining closely related techniques from context-free

chart parsing. The resulting structure is called a packed parse forest, and can represent

all of the exponentially many analyses of a sentence in comparatively little space. Carroll

and Oepen (2005) show how to apply a similar algorithm for the generation direction,

and also how to extract the N top-ranked trees (according to an appropriate probabilistic

parse ranking model) from such a packed parse forest in time that is empirically negligible

compared to the forest construction time, which in turn is frequently empirically negligible

compared to the time required to exhaustively unpack all of the analyses.

Operations on packed parse forests often require nonobvious algorithms. In addition to

the selective unpacking algorithms of Oepen and Carroll, Miyao and Tsujii (2002, 2008)

show how to train such a maximum entropy parse ranking model from such a packed parse

forest without exhaustive unpacking, using a derived structure called a feature forest. Clark

and Curran (2004) deploy the feature forest mechanism to train parse selection models for

Categorial Combinatory Grammar (Steedman, 1987; Steedman & Baldridge, 2011), giving

a novel algorithm showing how to automatically annotate the nodes in a forest to indicate

whether derivations using those nodes are consistent with a set of gold standard depen-

dencies or not (they train a constituency parsing model using gold dependency data rather

than gold constituency data). Geman and Johnson (2002) developed a method for training

the parameters of stochastic unification grammars based on the packed representations of

Maxwell and Kaplan (1991), which are distinct in form but similar in purpose to packed

parse forests.

The literature is surprisingly silent on the use of packed representations for treebank-

ing. In the Redwoods architecture, analyses must be unpacked before treebanking can be

performed; to avoid handling exponentially many analyses for complex sentences, a parse

2The average number of analyses of sentences in open-domain text is typically an exponential function
of sentence length.
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selection model must be used to selectively unpack only the most promising N (typically

500) analyses. The LFG Parsebanker is capable of processing packed representations di-

rectly (Rosén, Meurer, et al., 2005 and personal communication with Paul Meurer in 2013),

but the algorithms used to process the packed structures do not appear to be published.

However, Baird and Walker (2010) report discarding all sentences that receive more than

200 analyses when using the LFG Parsebanker, suggesting that the tool may not be capable

of efficiently processing exponentially many results.

2.4 Summary

Treebanking is an important task that requires nontrivial support software in order to

be practical and efficient. Discriminant-based treebanking allows human annotators to

navigate through a potentially large space of candidate analyses without having to inspect

each tree individually. Ambiguity packing, on the other hand, allows computers to navigate

a large space of candidate analyses without having to explicitly enumerate each tree, again

saving time. Together, these two techniques make the large-scale annotation of linguistically

complex corpora possible within practical resource limits.

Recall that the existing Redwoods system implements discriminant-based treebanking

over an explicitly enumerated subset of the parse forest, typically the best 500 trees as

ranked by a statistical parse selection component. In the next chapter, I will describe the

algorithms required to perform discriminant-based treebanking over the full forest, without

explicitly enumerating any trees.
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Chapter 3

IMPLEMENTING FULL-FOREST TREEBANKING

This chapter will address the challenges involved in supporting a treebanking environ-

ment capable of operating over the complete forest of derivation trees without enumerating

them. The challenges include designing data structures to represent the complete packed

forest, algorithms to efficiently determine what discriminants remain to be resolved, and a

user interface to facilitate navigation of the discriminants and resulting trees.

3.1 Representing a Forest

Before any algorithms can be described, it is necessary to describe the shape of the data

to be manipulated. This section explains how the complete forest can be represented by a

relatively compact parse chart.

A (non-packed) parse chart consists of a set of edges, each of which represents a derivation

tree dominating some particular substring of the sentence to be parsed. An edge will either

represent a single lexeme or the application of a grammar rule to a sequence of one or more

adjacent daughter edges. Since no edge can ever be its own (grand-)daughter, the parse

chart, when viewed as a graph,1 is both directed and acyclic. When a grammar assigns N

readings to a sentence, there are typically far more than N edges in the non-packed parse

chart. For highly ambiguous sentences, time and space constraints on the parser therefore

dictate that a packed parse chart be produced instead (Oepen & Carroll, 2000).

The difference between a non-packed parse chart and a packed parse chart is the addition

of the packing relation, an equivalence relation that partitions the edges into equivalence

classes. An edge representing the application of a rule to a daughter refers to an equivalence

class Ŷ of daughters, rather than to a specific daughter Y . Any edge X referencing an edge

1Note that the edges of the parse chart form the nodes of the graph, and the daughter links form the
edges of the graph.
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Y as the daughter of its rule is understood to also be able to be built from other edges

Y ′ ∈ Ŷ .2 Whereas an edge in an ordinary parse chart represents a single subtree, an

edge X in a packed parse chart implicitly represents a set unpack(X) of derivation trees

dominating some particular substring of the sentence to be parsed. As in the non-packed

parse chart, edges come in two flavors: lexemes and rules. If X represents a lexeme L, then

unpack(X) = {L}. Otherwise, X represents a rule R and:

unpack(X) =







R(D) : D ∈
⊗

d̂∈daughters of X

⋃

d∈d̂

unpack(d)







(3.1)

For a sentence with a very large number N of readings, the number of edges explicitly

represented in the packed parse chart is typically dramatically smaller than N .

In order to represent the complete set of derivation trees licensed by the grammar, it

suffices to have access to the list of edges in the parse chart (together with data about which

edges are daughters of other edges, and the packing relation), and one additional piece of

information: the set R of edges which satisfy the grammar’s root condition.3 Note that

while a parser may produce edges which are not reachable from root edges (by daughter or

packing equivalence links), these are superfluous from the point of view of processing the

set of grammatically licensed analyses, and need not be stored for further processing.4

Figures 3.1 and 3.2 show examples of a non-packed parse chart and a packed parse chart

for the sentence I think three zebras flew zeppelins over Zimbabwe. While the reduction in

chart size from packing is not particularly impressive in this example, the effect becomes

dramatic for longer, more ambiguous sentences. Unfortunately, available space does not

permit the exhibition of larger parse charts.

2In actual parsers, the packing relation is implemented by designating a distinguished representative Y

of each equivalence class Ŷ , and enumerating the other members of the equivalence class on a so-called
packing list linked from Y . Other edges built from members of Ŷ always refer to the distinguished
representative Y .

3The root condition corresponds to what is known as a start symbol in context free grammars. The root
condition is a feature structure F which determines which derivation trees are considered to describe com-
plete utterances and which are not. Specifically, for a derivation tree T to describe a complete utterance,
F must be unifiable with the feature structure found at the top level of T . Root edges are those which
span the entire sentence and are unifiable with F (Pollard & Sag, 1994).

4Indeed, such unreachable edges are not stored by default in the implemented system.
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roo t

sb-hd_mc_c

hdn_bnp-qnt_c hd-cmp_u_c

roo t

sb-hd_mc_c

hd-cmp_u_c

ihd_optcmp_c

v_n3s-bse_ilr

t h ink1

sb-hd_nmc_c

sp-hd_n_c hd-aj_int-unsl_c

sb-hd_nmc_c

hd-cmp_u_c

num_det_c n_pl_olr hd-cmp_u_c

hd-cmp_u_c

t h r e e zeb ra_n1 v_pst_olr hdn_bnp_c

overhdn_bnp-pn_c

fly_v3 n_pl_olr

zeppel in_n1

w_period_plr

n_sg_ilr

z imbabwe_n1

hdn_bnp_c

hdn-aj_redrel_c

Figure 3.1: Non-packed parse chart for I think three zebras flew zeppelins over Zimbabwe.
The attachment ambiguity from the embedded clause percolates up, resulting in multiple
“root” edges. For brevity, edges corresponding to the highest attachment of the PP are
omitted. Note that in this figure, chart edges are rendered as graph nodes, with arcs
corresponding to daughters in rules.
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roo t

sb-hd_mc_c

hdn_bnp-qnt_c hd-cmp_u_c

i hd_optcmp_c

v_n3s-bse_ilr

t h ink1

sb-hd_nmc_c

sb-hd_nmc_c

sp-hd_n_c

hd-cmp_u_c

hd-aj_int-unsl_c

num_det_c n_pl_olr

v_pst_olr

hdn_bnp_c

hd-cmp_u_c

hd-cmp_u_c t h r e e zeb ra_n1hdn_bnp_c

over hdn_bnp-pn_cfly_v3 n_pl_olr

zeppel in_n1 w_period_plr

n_sg_ilr

z imbabwe_n1

hdn-aj_redrel_c

Figure 3.2: Packed parse chart for I think three zebras flew zeppelins over Zimbabwe. Attach-
ment ambiguity from the embedded clause is effectively contained. The two edges shown
in blue are in the same equivalence class. For brevity, edges corresponding to the highest
attachment of the PP are omitted.
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3.2 Counting Readings

One of the most basic tasks involved in implementing a full-forest treebanker is the compu-

tation of how many trees (complete analyses) are represented by a packed parse forest. This

can be employed to give the user an estimate of the difficulty of treebanking an item before

starting, or to provide feedback to the grammarian on the level of ambiguity assigned by

his or her grammar, for example. As we shall see, the ability to produce such a count is

important to other system-internal processes as well.

In certain modes of operation, a packed parse forest may represent derivation trees that

are not globally consistent with respect to the unification constraints in the grammar (Oepen

& Carroll, 2000).5 Furthermore, some grammars stipulate additional non-unification-based

requirements on wellformedness that cannot be straightforwardly represented as constraints

on the packed forest.6 To count readings with the granularity imposed by these considera-

tions, it appears that the only possible solution is to unpack every analysis from the forest,

replay all of the unifications, and check any additional constraints. This is referred to as

exhaustive unpacking. Unfortunately, the running time of such a solution is necessarily at

least linear in the number of readings represented by the forest, making it prohibitive for

highly ambiguous sentences. Although it does not appear to be possible to efficiently com-

pute an exact count of the number of readings represented by a parse chart, it is possible

to quickly compute estimates. Below, I present an efficient technique for approximating the

number of readings.

3.2.1 Computing an Upper Bound Using Dynamic Programming

Let T be the number of “abstract” derivation trees represented by a packed parse forest

(i.e. without consideration to latent unification failures or additional non-unification–based

5Specifically, when packing under subsumption or when a packing restrictor is employed to discard certain
feature paths (in an effort to cause more edges to become equivalent to each other), an edge’s feature
structure may not represent all of the relevant constraints of all of the unpacked subtrees it represents.
When the full set of constraints are evaluated on an unpacked tree, failures may occur.

6For example, the English Resource Grammar incorporates an idiom filter (Copestake, 1994), which is
a wellformedness constraint stated over the complete MRS structure extracted from an analysis in a way
that does not easily factor over the parts of the derivation.
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filters). T is an upper bound on the number N of fully consistent analyses licensed by the

grammar. As it turns out, latent unification failures are relatively rare (depending on the

aggressiveness of the parser’s packing settings), and additional non-unification–based filters

are both rarely deployed and generally very permissive. As a result, T is typically quite

close to N , and can be used as a proxy.

This is good news, because dynamic programming can be used to compute T from a

packed parse forest in time proportional to the number of edges in it, a tractable compu-

tation. The number of trees represented by a packed forest is trivially equal to the sum of

the number of trees represented by each of its root edges r ∈ R:7

T =
∑

r∈R

T (r) (3.2)

The computation proceeds recursively, with memoization. If an edge e represents a single

lexeme, then:

T (e) = 1 (3.3)

Otherwise, e represents the application of a rule, with k daughters {d̂1, . . . , d̂k} which are

equivalence classes (under the packing relation) of other edges. We then have:

T (e) =
∏

d̂ is a daughter of e

∑

d∈d̂

T (d) (3.4)

To compute T , it suffices to compute T (e) for each edge in the packed forest. The acyclicity

of the daughter links between edges ensures that recursion terminates.8

3.2.2 Counting a Subforest

We have seen how to efficiently compute the number T of trees represented by a parse forest.

A related problem is counting the number TC of trees that are consistent with some partic-

ular set of constraints C. This problem arises during discriminant-based treebanking, when

a set of decisions has been made, and the tool needs to present the user with status infor-

mation about the remaining ambiguity. It also is relevant when performing an automated

7I assume R is a full listing of individual root edges, rather than a listing of equivalence classes.

8In fact, my implementation first performs a topological sort on the edges and does not use recursion at
all.
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update of a treebank (i.e. applying stored decisions to a new parse forest, perhaps derived

from an updated grammar with additional or different ambiguities). In such a setting, it is

useful to know whether the stored decisions select a unique tree (TC = 1), select a set of

trees (TC > 1), or rule out all trees (TC = 0).

The exhaustive unpacking approach to counting referred to above can be trivially mod-

ified to count how many trees are consistent with arbitrary constraints C, making it again

the most flexible and precise algorithm. However, even when the constraint set C eliminates

all or nearly all of the trees in the forest, this approach still requires considering each and

every tree, which as before can frequently be prohibitively expensive.

The dynamic programming approach is tempting, but the interaction between the type of

useable constraints and the locality of the available information needs careful consideration.

TC(e) should be the number of analyses represented by e that are consistent with the

constraints C. For this to be well-defined, it must be possible to positively determine

whether analyses extended to include e conflict with C or not purely on the basis of the

information local to the dynamic programming states (i.e. edges). The constraints used in

Redwoods can be broken down into two forms:

1. For some edge with span S, local property X holds.

2. For every edge with span S, local property X holds.

Redwoods constraints are not usually written in a way that makes the correspondence to

these types clear, so a pair of examples will be useful. Two typical constraints that might

be employed when analyzing the sentence Inspect bags at the airport! would be:

1. The rule hd imp c dominates span 0-5.

2. The rule hdn bnp c does not dominate span 1-5.

These can be reformulated as the following equivalent statements:

1. Some edge with span 0-5 is an application of the rule hd imp c.

2. Every edge with the span 1-5 is not an application of the rule hdn bnp c.
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Constraints of type 2 can be evaluated with information that is local to an edge, since if edge

e with span S is part of a complete derivation, it must comply with property X. However,

constraints of type 1 cannot be evaluated on an edge-by-edge basis, since even if an edge e

with span S fails to comply with X, it could still be part of a complete derivation if X is

satisfied by some other edge with the same span, e.g. a unary rule taking e as its daughter.

Since constraints of type 1 are common (much more common, in fact, than constraints of

type 2), a revised approach is needed.

3.2.3 Collapsing Unary Chains

The basic problem with evaluating constraints of type 1 is that a unary rule may satisfy

them somewhere outside of the local context represented in an edge. This difficulty can be

overcome by rewriting the packed parse chart into a new, equivalent, but restructured parse

chart that contains no unary edges. To make this possible, instead of using single rule and

lexeme names as edge labels, chains of names are used. A chain always ends in either a

non-unary rule name or a lexeme name, but contains a prefix of any number of unary rule

names.

In the example from the preceding section, hd imp c is a unary rule dominating the entire

sentence, taking as its input the result of the binary rule hd-aj int-unsl c. Together these

form a chain of length 2. Algorithm 3.1 shows how to compute the list of such unary chains

that can be unpacked starting from a given edge, and Algorithm 3.2 shows how to convert

an ordinary packed parse chart into one where all unary rules have been compacted into

unary chains.

The result of this operation is that the derivation trees represented by the transformed

chart never contain a configuration where, within one tree, there are multiple nodes with

the same span. This makes it possible to evaluate constraints of both type 1 and type 2

using edge-local information. A side-effect is that the number of edges in the transformed

chart may be larger than the number of edges in the original chart, since the local ambiguity

of the unary rules is unpacked. In practice, this has not proven to be a significant problem;

in fact, some charts even shrink slightly (e.g. when several unambiguous unary edges are
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1: function UnaryChains(ê)

2: chainset = ∅

3: for all e ∈ ê do

4: if e is unary then

5: for all chain ∈ UnaryChains(daughter(e)) do

6: chain = [e] + chain

7: chainset = chainset ∪{chain}

8: end for

9: else

10: chainset = chainset ∪{[e]}

11: end if

12: end for

13: return chainset

14: end function

Algorithm 3.1: Computing unary chains

eliminated, as in the example below).9

To see how the transformation helps, consider the packed parse chart for I think three

zebras flew zeppelins over Zimbabwe., shown in Figure 3.2. Suppose one wishes to use the

following constraint10 to resolve the ambiguity:

hdn bnp c dominates the span zeppelins.

In order to give the user feedback on the effect of the constraint, a count is needed of

how many analyses remain, i.e. are consistent with the constraint. The first step is to

inspect the edge n pl olr(zeppelin n1), and determine that there is a set S consisting

of exactly one subtree that can be unpacked from it. That subtree so far has not satisfied

the constraint. For a larger edge, however, there could be a very large number of such

9Charts for short sentences (10 or less words) tend to shrink on the order of 10%, while charts for long
sentences (30+ words) tend to expand on the order of 10%.

10This constraint amounts to saying zeppelins is a complete NP, so that the PP must attach elsewhere.
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1: function CollapseUnaries(old chart)

2: new chart = {roots=∅, edges=∅, eqclasses=∅}

3: for all r ∈ roots(old chart) do

4: roots(new chart) = roots(new chart) ∪ UnaryCollapsedEdge(new chart, r̂)

5: end for

6: return new chart

7: end function

8: function memoized UnaryCollapsedEdge(new chart, old edge)

9: chainset = UnaryChains(old edge)

10: eqclass = ∅

11: for all chain ∈ chainset do

12: edge = UnaryCollapsedEdgeFromChain(new chart, chain)

13: eqclass = eqclass ∪{edge}

14: end foreqclasses(new chart) = eqclasses(new chart) ∪{eqclass}

15: return eqclass

16: end function

17: function memoized UnaryCollapsedEdgeFromChain(new chart, chain)

18: e = {label: chain, daughters: []}

19: for all d̂ ∈ daughters(last(chain)) do

20: new daughter = UnaryCollapsedEdge(new chart, d̂)

21: daughters(e).append({new daughter})

22: end for

23: return e

24: end function

Algorithm 3.2: Eliminating unary edges from the chart
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subtrees, some of which have satisfied the constraint and some of which have not, making

it impractical in general to carry forward detailed information about which elements of

S have satisfied the constraint and which have not. In this simple example it might be

possible to keep track of a simple count of how many subtrees have satisfied the constraint

and how many still need to, but it appears to be nontrivial to extend that idea to the case

of multiple interacting constraints. When it is time to count how many subtrees can be

built with hdn-aj redrel c(zeppelins over Zimbabwe), the window of opportunity for

the constraint to be satisfied has passed, but it is unknown how many of the subtrees have

satisfied it.

roo t

sb-hd_mc_c

hdn_bnp-qnt_c
i

hd-cmp_u_c

hd_optcmp_c
v_n3s-bse_ilr

t h ink1
sb-hd_nmc_c

sb-hd_nmc_c

sp-hd_n_c

hd-cmp_u_c

hd-aj_int-unsl_c

num_det_c
t h r e e

n_pl_olr
zeb ra_n1

v_pst_olr
fly_v3

hdn_bnp_c
hdn-aj_redrel_c

hd-cmp_u_c hd-cmp_u_c

hdn_bnp_c
n_pl_olr

zeppel in_n1
over

hdn_bnp-pn_c
w_period_plr

n_sg_ilr
z imbabwe_n1

n_pl_olr
zeppel in_n1

Figure 3.3: Unary-chain packed parse chart for I think three zebras flew zeppelins over
Zimbabwe.
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The story is different with the unary chain chart. After the unary chain transformation,

the chart is shown in Figure 3.3. Every edge falls into one of two classes:

1. This edge’s local information overtly contradicts the constraint.

2. This edge’s local information does not overtly contradict the constraint.

I claim that a derivation tree consisting solely of edges of the latter type is globally consistent

with the constraint. The proof proceeds by contradiction. Suppose a derivation tree is not

consistent with the constraint. I will demonstrate that some edge in the tree must overtly

contradict the constraint. Recall that the general case of the constraints in question is that

some edge in the tree with span S satisfies a given property P . A tree can be inconsistent

with this constraint in two ways: there can be no edge with span S, or all the edges with span

S can fail to satisfy property P . Since unary edges have been eliminated, there will always

be either zero or one edges with span S, never more than one. If there is one edge with span

S, and that edge fails to satisfy property P , then it overtly contradicts the constraint. The

other case is that no edge with span S exists. Let w be the first word contained inside of span

S.11 Let X be the largest constituent containing w which is completely contained inside S,

and let Y be X’s mother. Then Y is not contained inside of S but X is. Then Y overtly

contradicts the constraint, since Y -local information forces there to be no constituent with

span S (such a constituent would have to be a descendent of Y and an ancestor of X, but

Y is the mother of X). Thus in both cases, our derivation contains an edge that overtly

contradicts the constraint.

Notice that this implies that the consistent subforest can be counted by simply applying

the existing dynamic programming forest counting algorithm to the subchart formed by dis-

carding all edges that overtly contradict the constraint. Edges built on emptied equivalence

classes must also be discarded for the chart to remain well-formed. In practice, the algo-

rithm is slightly modified to simply consider the subtree count of any overtly contradicting

11I assume words are constituents. Multiword lexemes require slightly special treatment, but it is straight-
forward to consider an edge containing a multiword lexeme as overtly contradicting a constraint that starts
or ends inside of it.
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edge to be zero. The zeros filter up through the algorithm giving the same effect as actually

removing those edges from the chart. The formulas used are given in the next section.

3.2.4 Counting a Subforest Revisited

Once unary chains have been collapsed, it is possible to give the algorithm for counting the

number TC of readings consistent with constraints C. The equations used are similar to

those given above, which represent the case when C = ∅. As before, it is necessary to sum

over root edges:

TC =
∑

r∈R

TC(r) (3.5)

If an edge e overtly contradicts C, then TC(e) = 0. This has the effect that any derivations

that contain e are not counted by TC . If, on the other hand, e is consistent with C, then

there are the usual two cases. When e represents a single lexeme, TC(e) = 1. Otherwise, e

represents the application of a rule R, and TC(e) is computed inductively:

TC(e) =
∏

d̂ is a daughter of e

∑

d∈d̂

TC(d) (3.6)

As before, TC can be evaluated recursively with memoization or by performing a topo-

logical sort in advance and simply iterating through the edges. The remaining point to be

clarified is the evaluation of whether C is consistent with an edge or not. An edge in a

(unary-chain transformed) packed chart has a span12 S together with a label of the form

u1, . . . , un where un is either an instance of a non-unary rule or a lexeme. Assume C is

a set {(X1, S1), . . . , (Xm, Sm)} ∪ {(Y1, V1), . . . , (Yd, Vd)} of constraints, where (Xi, Si) is a

constraint of type 1 with property Xi at span Si, and (Yi, Vi) is a constraint of type 2, with

property Yi and span Vi. C is consistent with a unary chain edge u1, . . . , un if and only

if every element of C is consistent with the chain. Assuming the edge has span S and a

constraint has span Si, the following rules apply:

12By “span” I mean a contiguous subset of the input tokens.
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1. If Si ( S, and one of the daughters of the edge has a span S′ ( Si, then a type 1

constraint is inconsistent with the edge.13 Otherwise,

2. If S and Si are disjoint or nested, i.e. (S ∩ Si = ∅) ∨ (S ( Si) ∨ (Si ( S), then the

constraint is consistent with the edge, regardless of which type of constraint it is.

Otherwise,

3. A constraint crossing spans with an edge (i.e. Si 6= S, but not disjoint and not nested)

is inconsistent for type 1 but consistent for type 2.

4. Otherwise S = Si. Type 1 constraints are consistent with the edge if and only if

Xi(uj) for some j. Type 2 constraints are consistent with the edge if and only if

Yi(uj) for all j.

The evaluation of a constraint against an edge is slightly complicated, but not impenetrably

so, and crucially is computable in time proportional to the product of the chain length with

the number of constraints, both of which are typically small.

Note that some other constraint types can be evaluated as well, including constraints

that consider the entirety of a unary chain rather than just individual pieces of it. The

ability to stipulate a complete unary chain rather than just the membership of it allows this

treebanking regime to clear up ambiguities that the previous-generation Redwoods tools

could not resolve, in particular when the grammar licenses multiple unary rules over the

same span with more than one ordering. An example where such flexibility affects meaning

is the relative order of the extracted complement rule and the optional complement rule for

ditransitive verbs: the question What did you pay? could be inquiring about the price or

about the vendor.14

13This can only occur if un is a rule of arity 3 or more.

14Another possible case is the relative ordering of prefix and suffix in derivational morphology.
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3.3 Enumerating Discriminants

During an automatic treebank update operation, the set of constraints C considered in

the last section is provided by the pre-existing gold treebank. However, during manual

annotation, the constraints are selected one at a time by the user. It would be rather

cumbersome for the user to have to invent and write out each such constraint by hand, with

no clues but the edge list. A much more convenient interface (and the one that is always used

in discriminant-based treebanking) is to present the user with a list of candidate constraints

which are guaranteed to reduce the size of the forest without ruling out all trees. These

constraints are called discriminants (Carter, 1997; Oepen, Flickinger, et al., 2004). An

overview of this method of annotation was given in Section 2.2.

This of course presents a new engineering problem: how can the list of discriminants be

efficiently computed? I have gone to considerable lengths to ensure that constraints only

describe properties that are local to an edge in the parse forest. One of the benefits of

that effort is that a list of candidate constraints can be read off directly from the individual

edges. The constraints that are of interest, i.e. the discriminants, are those which hold of

some but not all of the trees represented by the packed forest. Algorithm 3.3 shows how to

compute a set of discriminants, given a count SC(e) of how many complete (i.e. rooted in

a member of R) trees each edge takes part in. Essentially, properties are read off of each

edge, and identical properties from non-identical edges are aggregated, keeping track of the

total number of trees to which each property applies. Properties that apply to all trees are

discarded; those that remain are the discriminants.

The quantity SC(e) can be computed using dynamic programming from the TC(e) figure

described above. TC(e) describes how many unique subtrees are described by the edge e (i.e.

trees rooted at that edge), given a constraint C. By contrast, SC(e) describes how many

fully spanning trees (rooted at an edge that meets the root condition) consistent with C and

containing e somewhere within them are described by the forest. Equation 3.7 computes

SC(e) for an edge e belonging to a packing equivalence class ê, assuming e does not itself



27

meet the root condition.

SC(e) =
TC(e)

∑

e′∈ê TC(e′)

∑

p∈ edges of which ê is a daughter

SC(p) (3.7)

Intuitively, e appears in as many trees as its parents p do, discounted for the fact that

some of the trees that a parent p appears in actually contain a different member of ê in

the position where e would go. In the special case where e meets the root condition, trees

where e has no parent at all must also be counted, as in Equation 3.8:

SC(r) = TC(r) +
TC(r)

∑

e′∈r̂ TC(r′)

∑

p∈ edges of which r̂ is a daughter

SC(p) (3.8)

Note that the direction of dependency is reversed relative to the computation of TC , i.e.

if recursion is not used, the edges must be visited in the opposite order to ensure that

computation results are ready when they are needed.

To see this computation in action, suppose one wants to compute SC(e) for the edge

sp-hd n c(three zebras) in Figure 3.3. The edge does not meet the root condition (it

doesn’t span the whole sentence), so we use Equation 3.7. I will assume no decisions have

been made yet by the user, i.e. C = ∅. By inspection we see TC(e) = 1, i.e. there is only one

way to unpack a subtree rooted at e. No other edges are equivalent to e, so ê = {e}. There

are two parent edges p1, p2 to sum over, both using the rule sb-hd nmc c (these are the two

blue edges in Figure 3.3). Since this is the only instance of packing in the chart and there

is only one root, SC(p1) = SC(p2) = 1, i.e. each parent appears in exactly one solution tree.

Equation 3.7 yields:

SC(e) =
TC(e)

∑

e′∈{e} TC(e′)

∑

p∈{p1,p2}

SC(p) =
1

1
(1 + 1) = 2

That is, there are two complete trees that e appears in. If one were instead computing

SC(p1),
15 there would be only one (grand)parent g, with SC(g) = 2, and the equivalence

class would be p̂1 = {p1, p2}, yielding:

SC(p1) =
TC(p1)

∑

p′∈{p1,p2}
TC(p′)

∑

g′∈{g}

SC(g) =
1

(1 + 1)
(2) = 1

15Indeed, although I claimed SC(p1) = 1 by inspection above, the system must actually compute SC(p1)
and SC(p2) before computing SC(e).
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So, the equations correctly compute that there is only one solution tree containing p1.

Algorithm 3.3 computes constraints in terms of the full unary chain present at a particu-

lar span. These are more informative (in a technical sense) than single-rule or single-lexeme

constraints,16 although they may in some circumstances be less convenient. Computation

of other types of local discriminants (including the traditional Redwoods-style ones) would

follow the same basic procedure.

1: TC = total number of trees

2: constraints= ∅

3: treecounts=[]

4: discriminants= ∅

5: for each edge e with unary chain u1, . . . , uk and span S do

6: c =constraint that span S has unary chain u1, . . . , uk

7: if c 6∈ treecounts then

8: constraints = constraints ∪{c}

9: treecounts[c] = 0

10: end if

11: treecounts[c] = treecounts[c] + SC(e)

12: end for

13: for each constraint c such that treecounts[c] < TC do

14: discriminants = discriminants ∪{c}

15: end for

Algorithm 3.3: Enumerating discriminants

Thus far in this chapter I have described the technical mechanisms and algorithms

making full-forest treebanking possible. In the next section, I will examine ways to enable

a human annotator to interact with the algorithms.

16See the end of section 3.2.4 for an example of how these constraints are more informative than single-rule
constraints.
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3.4 Human-Computer Interaction

The mechanisms introduced above allow the efficient enumeration of a set of discriminants

which a human annotator can use to pare down the parse forest until only one tree remains.

Unfortunately, a list that is efficiently enumerable for a computer is by no means guaranteed

to be efficiently perusable by a human! Especially for long sentences, there can be tens of

thousands of discriminants, or even more. While very small compared to the number of

readings (frequently in the trillions, for long sentences), this number is still too large to be

exhaustively inspected. Some mechanism is needed to enable the annotator to quickly find

easy-to-decide discriminants without having to consider obscure ones.17

3.4.1 Navigating the Discriminants

One simple approach is to allow the user to specify which span of the sentence he or she

wishes to concentrate on. By using the mouse to select part of the sentence, the user

can instantly dismiss the vast majority of the discriminants, and quickly see the relevant

choices. For instance, to disambiguate the forest in Figure 3.3, the user might hilight the

span flew zeppelins. The only discriminant applicable to that span is whether or not the

rule hd-cmp u c applies or not, so the user need waste no further time hunting. In practice

this has proven quite effective, although it is an open question whether there are other more

effective methods of quickly finding easily decidable discriminants (such as the ranking

approach of Zhang and Kordoni (2010), discussed in Chapter 2).

3.4.2 Viewing Partial Results

One drawback to this interface is that a user’s intuition about which part of the sentence

is causing ambiguity may not always be correct, leading to hunting and frustration. It

is frequently the case that the analysis of some substring is unambiguous even when the

decisions made thus far are insufficient to identify a unique analysis of the complete sentence.

17A decision about one discriminant will typically imply decisions about many others, so it is often pos-
sible to completely disambiguate a sentence without explicitly considering the more difficult or confusing
discriminants.
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In such cases, the system can automatically identify such substrings18 and show the user that

no ambiguity resides in those portions of the sentence (in the case of my implementation,

by underlining them and disallowing subportions of those unambiguous substrings to be

highlighted). An additional benefit of showing these disambiguated substrings is that the

system can, at the user’s request, display the unambiguous analysis of the substring.

3.4.3 Latent Unification Failures

As discussed in Section 3.2, it is possible for some of the trees that are represented by

a packed parse chart to contain hidden errors, which were not detectable at parse time.

These errors, known as latent unification failures, are generally not detectable by simple

static analysis of the parse forest, and can only be detected by examining a specific tree

(or subtree). This represents what is perhaps the most significant disadvantage of (packed)

full forest treebanking relative to fully enumerated top-N treebanking: it is possible to use

system-provided discriminants to select a tree that is not fully consistent with the grammar.

While the error can be automatically detected as soon as the tree is produced, a significant

amount of the human annotator’s time has been wasted by the time a full tree has been

selected, and it is difficult at this point to know what incorrect choices were made or how

to fix them.

The problem can be alleviated to a large extent by automatically verifying the con-

sistency of the analysis of each unambiguous substring. As the human annotator makes

decisions, the number of these unambiguous substrings generally grows gradually, and ex-

perience has shown that latent unification failures are usually manifested in unambiguous

substrings fairly quickly after a spurious decision is made. The system allows each indi-

vidual decision to be undone, so usually the amount of wasted effort is minimal. However,

avoiding these inefficiencies altogether would be a profitable area for future research.

18A substring is unambiguous if it is spanned by an edge e where TC(e) = 1 and SC(e) = TC .



31

3.5 Summary

I have explained the technical challenges faced by a treebanking system that can efficiently

support the disambiguation of sentences with more analyses than can practically be enu-

merated. The forest must be stored in a packed format, using an equivalence relation to

show choice points. Mechanisms were introduced to count the number of analyses and to

enumerate the discriminants, and both operations needed to be capable of functioning on

the subset of the forest delineated by a set of constraints. The lack of locality of infor-

mation created by unary rules prompted the introduction of the unary chain forest, where

constraints can always be evaluated locally to a single edge. Finally, I discussed some of

the user interface challenges such a system meets, and proposed partial solutions to them.

In the next chapter, I will present some numerical simulations aimed at investigating

the utility and practicality of full forest treebanking.
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Chapter 4

PRELIMINARY EXPERIMENTS AND RESULTS

Consideration of the difference between utilizing a top-500 list on the one hand and the

full forest on the other leads to a number of interesting questions. In this chapter, I launch

two such inquiries: First, when treebanking, how often is the desired tree present in the

forest but not ranked among the top 500? Second, how much additional effort is required

to select a unique tree from the full forest compared to from the top 500?

4.1 500 Chances

Although the number 500 is quite arbitrary, it has been the de-facto standard for how

many trees to consider in Redwoods-style treebanking for at least the past five or so years

(Flickinger, Kordoni, et al., 2012; Marimon et al., 2014).1 This number is an attempt to

balance two competing desiderata: it needs to be small enough that unpacking and storing

the trees from the forest does not take an especially burdensome amount of time or space,

and large enough that the desired tree will virtually never be discarded accidentally. This

equilibrium does not appear to have been subjected to much scrutiny in the literature.

Empirically, full-forest treebanking using the algorithms described in the preceding chapter

both is somewhat less expensive computationally and requires dramatically less disk storage2

than top-500 treebanking, and of course the desired tree (if present) will never be discarded

accidentally with full-forest treebanking, making full-forest treebanking superior to top-N

treebanking in both of these regards. The reason for the reductions in resource consumption

is that when top-500 treebanking is used, subtrees that are identical between many (or most)

readings are stored (and sometimes reprocessed) redundantly, whereas such a subtree may

1Some work with the Japanese grammar has used 5000 trees (Bond et al., 2004).

2The DeepBank Wall Street Journal treebank, for instance, requires about 200GB of disk space for top-
500 treebanking, but only 15GB for full-forest treebanking. The benefit in computational time is much
less extreme.
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not be explicitly represented even once (in full form) in the packed forest. To consolidate

this apparent technical victory, it remains to quantify the risk involved in discarding all but

the top 500.

A good numerical measurement of the risk is what I will call the top-500 recall, i.e. the

proportion of instances in which the desired tree is within the top-500 window. It is self-

evident that this figure will vary considerably with the quality of the probabilistic model

used to rank the forest. A model trained on a large in-domain corpus may have a relatively

high top-500 recall, while a model trained on a small out-of-domain corpus will likely have

a low top-500 recall.

The obvious way to measure top-500 recall is to parse some text for which gold annotated

trees are available, storing the top-500 analyses according to some particular model, and

measure the proportion of items for which the gold trees are among the top 500. Abstractly

this is a sound idea. Unfortunately, all of the gold-annotated resources that are large enough

for accurate measurements of this figure were built under a top-500 treebanking regime. This

means that items for which the desired tree was not among the top 500 at treebanking time

simply do not receive an annotation in the treebank. If one were to reparse the annotated

text with the same parse selection model that was used to originally annotate it, the top-500

recall would come out to be 100%.3 When the model used to reparse the annotated text is

different (even very subtly), the recall usually comes out at less than 100%, allowing some

information to be recovered, but the measurement is still fundamentally biased. The only

real solution to this problem is to produce new gold annotations using the full forest —

a labor-intensive process. For lack of a better tool, however, I proceed to use the biased

estimate (i.e. evaluating against treebanks built from top-500 lists) of the top-500 recall,

but it must be understood as an over-estimate rather than an accurate figure.

Table 4.1 shows this over-estimate of the top-500 recall rate for three text samples from

(somewhat) differing domains, evaluated using three different parse ranking models. The

WSJ domain consists of newspaper text annotated by the DeepBank project (Flickinger,

Zhang, & Kordoni, 2012), the WeScience domain comprises Wikipedia articles (Ytrestøl et

3This is an instance of a self-selecting sample, a problem that plagues statisticians.
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Test Domain

WSJ WeScience LOGON

Model

wsj.mem 97.71% 88.02% 93.27%

wescience.mem 73.71% 97.04% 90.36%

redwoods.mem 78.65% 92.84% 98.04%

Geometric Mean Ambiguity 16603 2415 743

Random Choice Baseline 3.01% 20.70% 67.29%

Average Sentence Length 20.4 17.6 14.8

Table 4.1: Top-500 recall overestimate. In-domain results are in bold. The redwoods.mem

model was trained on both WeScience and LOGON data, as well as other material.

al., 2009), and the LOGON domain is a collection of text from Norwegian tourism brochures

(Oepen, Dyvik, et al., 2004). The wsj.mem and wescience.mem parse ranking models are

trained exclusively on annotated data in their respective domains. The redwoods.mem

model is trained on data from a variety of domains, of which the annotated WeScience and

LOGON treebanks form a part. The annotations used for evaluating the top-500 recall were

not part of the training data for any of the models. Figure 4.1 shows results from the same

experiment aggregated differently: top-500 recall as a function of sentence length. The red

line shows results for the case where the test text is in the same domain as the training

material (boldface in Table 4.1), while the green line shows the case where the test text is

out of domain with respect to the training material (non-boldface in Table 4.1).

These figures suggest a number of observations. First, when parsing using a parse ranking

model trained exclusively on in-domain data, the top-500 recall rate can be relatively high,

somewhere between 97% and 98%. Even so, 2% or more of inputs with good analyses

somewhere in the forest will appear to have no good analysis when annotated in a top-500

treebanking system. Furthermore, the proportion of inputs whose correct analysis survives

drops considerably with sentence length, sinking below 90% for inputs longer than 30 words.

Keeping in mind that this is an over-estimate of the top-500 recall, it is clear that even under

the best circumstances an appreciable number of sentences that could have been annotated
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Figure 4.1: Top-500 recall overestimate as a function of sentence length, for sentences that
are in-domain and out-of-domain with respect to the parse ranking model.

are lost.

Second, when the parse ranking model is diluted with some out-of-domain data, as is the

case for the redwoods.mem model, top-500 recall can decrease further. The redwoods.mem

model is trained on all of the same data that the wescience.mem model is trained on, with

other data as well,4 but top-500 recall drops from 97.04% to 92.84%. That corresponds

to more than twice as many annotatable sentences lost in top-500 treebanking. Moving

to a fully out-of-domain model, losses are even more dramatic. With a highly ambiguous

target domain such as WSJ, top-500 recall can plummet from nearly 98% to less than

75%—more than a factor of 10 increase in lost annotatable sentences. Recall also falls off

more precipitously with sentence length for the out-of-domain case, dropping below 50%

4The WeScience data constitutes roughly half of the redwoods.mem training data.
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for inputs longer than 30 words. It is clear that top-500 treebanking with an out-of-domain

parse selection model is not a viable strategy when a high-coverage treebank is desired.5

Combined with the computational and storage efficiency gains cited above, the increase

in coverage afforded by full forest treebanking completes the picture of a compelling advan-

tage from a technical point of view. I next examine how efficient full forest treebanking is

from the perspective of human effort.

4.2 How Much Effort?

The manual effort that goes into treebanking can be measured either by the number of

person-hours invested or by the number of discriminants selected. The existing large-scale

Redwoods treebanks nominally include both figures, but the latter are considerably more

reliable than the former.6 Therefore, I base this estimate on the number of discriminant

choices required to disambiguate a sentence.

A top-500–style treebank contains N items with gold analyses together with D manual

decisions (there are D
N

per item) which are sufficient to uniquely select the desired gold

analyses from the top-500 lists used to create the treebank. Since an item’s full forest

frequently contains vastly more than 500 analyses, those same decisions are not always

enough to select a unique analysis from the full forest. If a forest contains T trees, and

TC of them are compatible with the stored decisions, then those decisions represent an

information gain (with respect to the full forest) of log2
T
TC

. This allows the computation

of an average information gain per stored decision:

ῑ =
1

D

∑

all items

log2
T item

T item
C

(4.1)

5To combat this problem, efforts such as the DeepBank project have had to make subsequent passes over
the data once a reasonable amount of training data for an in-domain parse selection model is available.

6The amount of time invested is recorded in the t-start and t-end fields of the tree relation in the test
suite database. Unfortunately, when treebanks are automatically updated for new grammar versions, this
information is overwritten with the amount of time the update took. It might be possible to retrieve the
original timing data through version control history in some cases. The number of discriminants selected is
easily countable (and generally stable across updates) as the number of manual (i.e. not inferred) records
in the decision relation.
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The total entropy of all of the forests in the treebank is:

Htotal =
∑

all items

log2 T
item (4.2)

The expected number of decisions required to completely disambiguate all of the forests

(i.e. starting from scratch, and disambiguating between all T trees rather than just 500) is

therefore:

D̂′ =
Htotal

ῑ
(4.3)

Treebank N D D
N

ῑ Htotal D̂′ D̂′

N
D̂′−D

D

WSJ 37741 267648 7.09 1.71 529097 309413 8.20 15.6%

WeScience 8741 50285 5.75 1.69 98229 58124 6.65 15.6%

LOGON 8135 41184 5.06 1.66 77592 46742 5.75 13.5%

Table 4.2: Decisions required for full-forest treebanking

Table 4.2 shows these statistics for the WeScience, LOGON, and DeepBank (WSJ)

treebanks. In each case, full-forest treebanking requires roughly 15% more effort than top-

500 treebanking, to treebank the same set of items. The additional effort is expended to

explicitly reject the candidates that are outside of the top 500. One way to combat this

would be to notify the user when all but 1 of the top-500 candidates have been rejected,

and offer to allow that single tree to be accepted without making the decisions required to

reject the remainder of the forest.

This calculation does not account for the time spent on sentences that are ultimately

rejected or for the time spent on sentences ultimately accepted in the full-forest system that

would have been rejected in the top-500 system. However, I would expect the figure of 15%

more decisions to hold for these classes as well, assuming the annotator makes decisions

until only 1 tree remains.

As one final speculation on the effort required for full-forest treebanking compared to top-

500 treebanking, it bears considering the effort involved in maintaining treebanks as the un-

derlying grammar undergoes further development. Recall from Chapter 2 that discriminant-
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based treebanks can be semiautomatically updated when the underlying grammar is revised.

In some cases, manual intervention is required during such an update operation: the stored

decisions may be compatible with multiple analyses of the new grammar, or they may be

not be compatible with any. While these incremental updates can be accomplished rela-

tively quickly, when large treebanks are being maintained, the total annotator effort is still

considerable, and can be one of the largest jobs in the release cycle of a precision grammar

(D. Flickinger, personal communication, September 17, 2014).

Of particular interest are items that had no desirable analysis in the stored treebank.

Whenever the revised grammar introduces new candidate analyses for such items (quite

frequent in practice for long sentences, which are the type most likely to be in this class),

the annotator is obligated to consider whether each such new analysis might in fact be the

correct analysis.7 In practice, this is often8 implemented by re-treebanking the item from

scratch, and correspondingly a significant portion of the update process is spent revisiting

rejected items. If the proportion of items that are rejected can be reduced significantly,

the update process can be sped up significantly, leading to greater treebank and grammar

development productivity. The average rejection rates for the treebanks above is 7.5%

(of all items); the above analysis suggests that full-forest treebanking may allow at least an

additional 2% (absolute) of items to be assigned gold analyses, corresponding to a 2
7.5

≈ 27%

reduction in time spent revisiting rejected items during treebank updates.

4.3 Summary

In this chapter, I have produced estimates to help answer two empirical questions. First, I

examined the question of how often the desired analysis is lost by discarding low probability

trees in top-500 treebanking. Although exact numbers are hard to produce without access to

7When operating under the top-500 regime, the annotator may in fact be unaware that new analyses are
available if they do not rank highly enough to be included in the top-500 list. It is unclear to what extent
this phenomenon actually occurs; to the extent that it does occur, it may reduce the amount of time spent
in treebanking updates, but would of course simultaneously spoil the opportunity to add that item to the
coverage of the treebank.

8Numbers are hard to come by; another common practice is to maintain a list of reasons for rejection,
and to decide (possibly without looking at the new trees) whether the reason is still valid (D. Flickinger,
personal communication, September 17, 2014).
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large scale full forest treebanks, conservative estimates suggest that at least 2% of all inputs

considered in top-500 treebanking with an in-domain parse selection model are rejected

when they actually have an acceptable analysis somewhere in the full forest (but outside

of the top-500 list), and with an out-of-domain parse selection model the losses are much

higher.

Second, I estimated the additional work required to disambiguate the full parse forest

relative to the work required to disambiguate from a top-500 list. I predicted that about

15% more decisions need to be made, which may or may not translate to 15% more time

spent by a human annotator. Finally, I speculated that the increased coverage afforded by

full forest treebanking may actually buy back some of the time spent making those 15%

more decisions, in the form of reduced effort in future updates.

These questions will be able to be answered more concretely if a large scale full forest

treebank is built sometime in the future. In the next chapter, I summarize the contributions

of this thesis, and discuss possible future research directions.
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Chapter 5

CONCLUSION

In the preceding chapters, I first reviewed the paradigm of discriminant-based treebank-

ing. This technique allows human annotators to efficiently sift through ambiguity to find

the desired analysis among a large number of undesirable (e.g. contextually inappropriate)

ones. Largely due to resource limitations, prior work on HPSG treebanking focused on

searching for the desired analysis among a subset of the analyses licensed by the grammar

(e.g. the most likely 500 candidates according to a statistical model).

In Chapter 3, I showed how the discriminant-based treebanking paradigm can be ex-

tended to search for the desired analysis among the complete forest of analyses licensed

by the grammar, even when there are so many analyses that enumerating them is pro-

hibitively expensive; I term this full forest treebanking. This settles in the affirmative the

first two research questions of Section 1.4, i.e. whether such full forest treebanking can in

fact be performed within reasonable limits on resources and user-interface complexity; to

my knowledge this question has not been answered in the past (at least for HPSG). In fact,

the computational resources required for full forest treebanking are typically less (especially

in terms of storage) than those required for treebanking with an enumerated top-500 list.

Another advantage, arguably more important than efficiency with computational re-

sources, is that with full forest treebanking the desired analysis is never accidentally dis-

carded in the process of automatically selecting a top-500 list. This leads to increased

coverage and less wasted time in future treebank updates when the full forest treebanking

methodology is applied, as compared to the top-500 method. The experiments in Chapter 4

show that even with a good in-domain statistical model, at least a couple of percent of

sentences appear to have no correct analysis in a top-500 regime when in fact there is an

acceptable analysis available outside of the top 500, answering my third research question

and confirming my hypothesis that top-500 treebanking is injurious to coverage.
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Additional benefits specific to the user interface proposed in this thesis, but not specific

to full forest treebanking as compared to top-N treebanking, include the ability to disam-

biguate cases where a chain of unary rules can appear in multiple orderings, and the ability

to quickly navigate to discriminants relevant to a particular span.

One disadvantage of full forest treebanking is that more human decisions are required

to disambiguate a sentence compared to the top-500 regime. Answering the fourth research

question that I posed in Section 1.4, I estimated the increase in workload at about 15%. It

is unclear whether or not this translates into an actual slowdown when accompanied by the

proposed user interface changes, and it is also unclear how much time is redeemed by the

decrease in update workload concomitant to the increased coverage.

Another disadvantage of full forest treebanking is that the discriminants that can be

employed must be local to individual edges in the packed parse chart. This is not a problem

when employing syntactic discriminants, since the forest can be transformed to eliminate

unary rules, but it makes the use of semantic discriminants (a mode sometimes used with

top-N treebanking) impossible. Finding a way to incorporate semantic discriminants into

the full forest treebanking architecture would be an excellent area for future research.

A final disadvantage of full forest treebanking is the persistent threat of latent unification

failures. Early checking of unambiguous substrings goes a long way towards neutralizing

the lost time that these dead ends consume, and annotation guidelines can also help users

avoid them, but ultimately they do still happen occasionally. A mechanism to detect such

cases earlier would be another profitable area for future research.1

I have shown full forest treebanking to be a viable method for producing detailed syn-

tactic annotations with large-scale grammars. If for some particular project semantic dis-

criminants are required, at present top-N treebanking is the only choice. Note however that

semantic annotations are still fully accessible in a full forest treebank; they simply are not

part of the decision making process when selecting which analyses to record. In any case,

if the highest degree of coverage is required, full forest treebanking is the best option, and

annotation speed will be comparable to what could be expected with top-500 treebanking.

1Indeed, such a mechanism would be of great utility to efficient parsing as well.
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