Measuring maternal and child health in Uganda: a subnational analysis

David Allen Roberts

A thesis
submitted in partial fulfillment of the
requirements for the degree of

Master of Public Health

University of Washington
2015

Committee:
Dr. Emmanuela Gakidou (Chair)
Dr. Stephen S Lim
Laura Dwyer-Lindgren

Program Authorized to Offer Degree:
Global Health
University of Washington

Abstract

Measuring maternal and child health in Uganda: a subnational analysis

David Allen Roberts

Chair of the Supervisory Committee:
Professor Emmanuela Gakidou
Department of Global Health

Background

Globally, countries are increasingly prioritizing the reduction of health inequalities and provision of universal health coverage. While national benchmarking has become more common, such work at subnational levels is rare. The timely and rigorous measurement of local levels and trends in key health interventions and outcomes is vital to identifying areas of progress and detecting early signs of stalled or declining health system performance. Previous studies have yet to provide a comprehensive assessment of Uganda’s maternal and child health (MCH) landscape at the subnational level.

Methods

By triangulating a number of different data sources – population censuses, household surveys, and administrative data – we generated regional estimates of 29 key MCH outcomes, interventions, and socioeconomic indicators from 1990 to 2011. After calculating source-specific estimates of intervention coverage, we used a two-step statistical model involving a mixed-effects linear model as an input to Gaussian process regression to produce regional-level trends. We also generated national-level estimates and constructed an indicator of overall intervention coverage based on the average of 11 high-priority interventions.
Results

National estimates often veiled large differences in coverage levels and trends across Uganda’s regions. Under-5 mortality declined dramatically, from 163 deaths per 1,000 live births in 1990 to 85 deaths per 1,000 live births in 2011, but a large gap between Kampala and the rest of the country persisted. Uganda rapidly scaled up a subset of interventions across regions, including household ownership of insecticide-treated nets, receipt of artemisinin-based combination therapies among children under 5, and pentavalent immunization. Conversely, most regions saw minimal increases, if not actual declines, in the coverage of indicators that required multiple contacts with the health system, such as four or more antenatal care visits, three doses of oral polio vaccine, and two doses of intermittent preventive therapy during pregnancy. Some of the regions with the lowest levels of overall intervention coverage in 1990, such as North and West Nile, saw marked progress by 2011; nonetheless, sizeable disparities remained between Kampala and the rest of the country. Countrywide, overall coverage increased from 40% in 1990 to 64% in 2011, but coverage in 2011 ranged from 57% to 70% across regions.

Conclusions

The child and maternal health landscape in Uganda has, for the most part, improved between 1990 and 2011. Subnational benchmarking quantified the persistence of geographic health inequalities and identified regions in need of additional health systems strengthening. The tracking and analysis of subnational health trends should be conducted regularly to better guide policy decisions and strengthen responsiveness to local health needs.
Acknowledgements

This analysis was performed as part of the Malaria Control Policy Assessment project, which was a collaborative effort between the Institute for Health Metrics and Evaluation at the University of Washington and the Infectious Disease Research Collaboration at Makerere University in Kampala, Uganda. Marie Ng, Gloria Ikilezi, Anne Gasasira, Laura Dwyer-Lindgren, Nancy Fullman, Talemwa Nalugwa, Moses Kamya, and Emmanuela Gakidou contributed analysis and invaluable insight into this project. Additionally, this work was supported by Mary Lakiyo, Annie Haakenstad, Kelsey Pierce, Caterina Guinovart, and Ellie Colson. Finally, I am indebted to all of the staff at IHME for making the last three years a wonderful experience.
Introduction

The measurement of population health outcomes and intervention coverage is a vital component of evaluating health systems performance [1]. The allocation of resources by policymakers should be guided by evidence of gaps in coverage and opportunities to improve health outcomes. While national-level health indicators are commonly used for benchmarking and target setting, subnational coverage can be much more informative, revealing geographic variance and allowing decision-makers to tailor policies to local conditions [2]. However, estimates of subnational levels and trends for health indicators are often unavailable in low-resource settings, largely due to data scarcity and insufficient health information systems [3].

Uganda has made marked progress in reducing under-5 mortality since 1990, which declined from 163 deaths per 1,000 live births in 1990 to 85 deaths per 1,000 live births in 2013 [4]. While Uganda has witnessed a slight increase in maternal mortality since 1990, the country has experienced an annualized rate of decline of 3.2% since its peak maternal mortality ratio (MMR) in 2001 of 475 deaths per 100,000 live births [5]. Despite these national-level trends, it is unknown whether the declines have been realized equally across subnational areas or to what extent geographic inequalities have changed over time. Subnational monitoring is critical for Uganda to maximize impact by targeting high-burden areas.

Over the last two decades, Uganda’s government has prioritized expanding health services across a number of key maternal and child health (MCH) interventions. Since 2002, distribution of insecticide-treated bed nets (ITNs) has substantially expanded [6], indoor residual spraying (IRS) has been implemented in select districts [7], and artemisinin-based combination therapies (ACTs) have been introduced as the first-line treatment for uncomplicated malaria since 2006 [8]. The pentavalent vaccine replaced the original diphtheria-pertussis-tetanus (DPT) formulation in 2002 [9], and Gavi, the Vaccine Alliance, has provided health systems strengthening (HSS) and immunization services support (ISS)
periodically since 2001 [10]. The extent to which these efforts have resulted in improved intervention access and use throughout the country is unknown. Tracking local trends and generating sound subnational estimates of intervention coverage are vital components of evaluating the success of the implementation of policies and programs aiming to improve MCH services.

To date, few studies have benchmarked health systems performance at the subnational level in low-income countries. Several studies have addressed inequalities in intervention coverage but are generally restricted to comparisons by sex, urbanicity, or socioeconomic status [11–13]. Others have applied small-area techniques to estimating intervention coverage, but these studies have generally been limited to a subset of health indicators or to a restricted time range [14–16]. More recently, a study in Zambia assessed subnational health systems performance across a wide swathe of health indicators [17], but similarly comprehensive studies have not been conducted in Uganda. Previous work in Uganda includes the government’s annual district league tables, which rely on administrative records to rank districts [18]. However, reporting through the health management information system (HMIS) is often incomplete and inaccurate, and reliable denominator estimates are difficult to obtain [19]. Other efforts using household surveys have been limited to using a single cross-sectional survey to estimate district-level child mortality in 2006 and underweight and obesity prevalence in 2011 [20, 21].

By systematically collating all available data, this study provides a comprehensive regional assessment of a broad range of MCH indicators and socioeconomic factors in Uganda from 1990 to 2011.

Methods

Data and indicator selection

We identified data sources for maternal and child health indicators via in-country meetings with collaborators and relevant stakeholders. For this analysis, we used 17 household surveys and two
population censuses (Table 1). While we identified administrative data sources including drug
distribution from National Medical Stores (NMS), ITN distribution campaigns, and Health Management
Information System (HMIS) data, we excluded them from our analysis due to concerns about
completeness and lack of reliable denominator information.

We included 22 maternal and child health indicators that have previously been shown to be related to
child survival [22] (Table 1): antenatal care (ANC, 1 and 4 visits); skilled birth attendance (SBA);
immunization with the Bacillus Calmette-Guérin (BCG), DPT, measles, oral polio (three doses, OPV3), and
pentavalent vaccines; exclusive breastfeeding (EBF); the receipt of at least two tetanus shots during
pregnancy (TT2); reported use of oral rehydration salts for diarrhea (ORS); reported seeking of care at a
health facility for children under 5 in response to suspected pneumonia; vitamin A supplementation;
prevalence of childhood underweight and stunting; intermittent preventive therapy for malaria during
pregnancy (IPTp, one and two doses); household ownership of ITNs; ITN use by children under 5; receipt
of IRS; the proportion of households that either owned at least one ITN or received IRS; the proportion
of children under five who either slept under an ITN the night before the survey or lived in a household
that received IRS; reported receipt of ACTs for children under 5 who had a fever in the last two weeks;
and the proportion of antimalarials prescribed for children under 5 with fever that were ACTs.
Additionally, we included seven socioeconomic covariates shown previously to be related to child health
outcomes [23–26]: household size, female headship, electricity availability, improved wall type,
improved sanitation, improved water source, and years of education for women aged 15-44. Due to
data availability, we restricted our analysis to between 1990 and 2011.

Mapping

We report estimates for the ten sub-regions (Central 1, Central 2, Kampala, East Central, Eastern, North,
Karamoja, West Nile, Western, and Southwest) delineated in the 2011 Demographic and Health Survey
We additionally produced national estimates by pooling all microdata.

Data processing

We calculated an annual series of under-5 mortality estimates for each region from surveys and censuses that included birth history modules (Table 1). We applied synthetic life table methods to pooled complete birth history data from sources where complete birth histories were collected (i.e., DHS) to generate direct estimates of under-5 mortality [15]. For sources where summary birth histories only were collected (i.e., AIDS Indicator Survey and both censuses), we applied the combined version of the maternal age cohort and maternal age period methods to generate indirect estimates of under-5 mortality [28].

We calculated regional intervention coverage estimates for each survey-year of available data. Aside from information extracted from Netmark survey reports (Table 1), all estimates were produced using microdata and accounting for each survey’s complex multistage design. For most child-level indicators, we included children aged between 0 and 59 months; however, we excluded children under 12 months of age for immunizations, except for BCG, due to their recommended dosing schedule [29]. Additionally, survey questions pertaining to ANC, SBA, and IPTp were typically included only the respondent’s most recent birth. As this restriction disproportionately excludes older children from high parity mothers, we restricted the age range for those indicators to 0-12 months to avoid bias. Finally, the Uganda National Panel Surveys (UNPS) only ascertained DPT3 and measles immunization status for children aged 0 to 24 months, and weight measurements were taken for children aged 6 to 59 months [30]. In order to maximize data inclusion while keeping age groups consistent across surveys, we used the UNPS age groups for all survey data extraction pertaining to these indicators.
Several interventions were introduced or adopted as formal policy at specific time points between 1990 and 2011. The pentavalent vaccine was introduced in 2002 [31], and ACTs were implemented as first-line treatment for uncomplicated malaria in 2006 [8]. Country-wide implementation of IPTp as part of ANC began in 2000 [32], and ITNs became much more accessible when the government waived taxes and tariffs in 2000 [33]. IRS was implemented in 2006 primarily in selected districts in the North region [34]. As surveys did not include questions about these indicators before their widespread introduction, we assumed 0.01% coverage for these interventions prior to 1997 to guide the estimated time trend.

Estimation process for under-5 mortality

We adapted a previously described modeling and validation framework for modeling regional trends in under-5 mortality in Uganda [15]. Specifically, we apply the following model:

$$\text{logit}(5q_{0,i,t,s}) | \theta_{i,t,s}, \sigma^2 \sim \text{Normal}(\theta_{i,t,s}, \sigma^2)$$

$$\theta_{i,t,s} = \beta_0 + u_i + \beta_1 \cdot t + v_i \cdot t + w_t + \delta_{i,t} + \beta_2 \cdot I_{s \notin \text{DHS}} + \gamma_{i,s}$$

where $5q_{0,i,t,s}$ is under-5 mortality in region (i), year (t), as measured by source (s). The β terms are fixed effects; β_0 and β_1 are the global intercept and slope, respectively, and β_2 is an adjustment coefficient included for non-DHS sources to account for an observed discrepancy between under-5 mortality estimates derived from DHS surveys and those derived from other surveys. All other terms are random effects. Specifically, u_i and v_i are a region-level random intercept and slope, respectively, and are both assigned conditional autoregressive priors [35]; these terms allow for each region to deviate from the global level and linear trend in under-5 mortality. w_t is a year-level random intercept assigned a first-order random walk prior [36]; this term allows for non-linearity in the global time trend. Similarly, $\delta_{i,t}$ is a region-year level random intercept with the prior given by the interaction between a conditional autoregressive prior for spatial trends and a first order random walk prior for temporal trends [37]. This
random effect allows for non-linearity in the region-specific time trends. Finally, \(\gamma_{i,s} \) is a source-year level random effect assigned an independent and identically distributed normal prior and is included to account for autocorrelation in estimates of under-5 mortality derived from the same source in the same region. Weakly informative normal priors were assigned to all fixed effects and weakly informative gamma priors were applied to the log precision of all random effects. To generate predictions from this model, we approximate the posterior distribution of \(\theta_{i,t} \) by setting \(I_{s \notin D_D} \) and \(\gamma_{i,s} \) to 0. The median, 2.5th, and 97.5th percentiles of this distribution are inverse-logit transformed to generate the point estimates and confidence intervals for \(5q0_{i,t} \) in each region and year.

Estimation process for intervention coverage

We used a two-step modeling approach to generate regional trends from 1990 to 2011 for each indicator. In the first stage, we fit the following linear mixed-effects model with random intercepts and slopes for each region.

\[
\log(p_{i,t}) \lor \logit(p_{i,t}) = \beta_0 + \beta_1 h_{1,t} + \beta_2 h_{2,t} + \gamma_{0i} + \gamma_{1i} h_{1,t} + \gamma_{2i} h_{2,t}
\]

Observations are indexed to region \(i \) and year \(t \). We used a one-knot natural cubic spline with two basis functions \((h_1 \lor h_2) \) to act as a smoother. The proportion estimates (e.g., vaccination coverage) are logit transformed to constrain estimation between 0 and 1, while positive variables such as women’s education are log transformed to ensure that the final time series is above zero. The random effects \((\gamma_{0i}, \gamma_{1i}, \text{and } \gamma_{2i}) \) allow the levels and trends to vary between regions.

In the second step, the predicted trend from this linear model acts as the mean prior for Gaussian process regression (GPR), which is implemented with a Matern covariance function [38, 39]. GPR is a nonparametric technique for interpolating non-linear trends that has been used extensively in the estimation of time series data [40–44]. Briefly, it takes into account the model variance as well as the
relative sampling uncertainty of the observed data to estimate a posterior mean function. We generated
trends with uncertainty for each indicator by drawing 1,000 times from the posterior distribution and
back-transforming to the original scale. The point estimate was based on the median of the draws, and
95% confidence intervals (CIs) were obtained by taking the 2.5th and 97.5th percentiles of the samples.

Overall intervention coverage

We created two overall intervention coverage metrics to summarize regional intervention levels. First,
we estimated an overall intervention coverage metric that included eleven indicators spanning the
spectrum of interventions included in this analysis: the proportion of households with IRS, ITN
ownership or both; IPTp2; self-reported ACT usage after fever; EBF; BCG, measles, OPV3, and
pentavalent immunization coverage; ANC4; SBA; and the proportion of children who were not
underweight. For simplicity and ease of interpretation, we used equal weights for each intervention
included in the overall coverage metric, therefore defining overall intervention coverage as the average
of the eleven interventions. We compared the overall intervention coverage trend to under-5 mortality
and socioeconomic variables using Pearson correlation coefficients. We additionally summarized overall
malaria intervention coverage by constructing an indicator that averages of ACT usage after fever, ITN
ownership or IRS, and IPTp2. We compared overall malaria coverage to malaria parasitemia levels as
reported in the Malaria Indicator Survey (MIS) 2009.

Software

All analyses were conducted using Stata 13.1 (StataCorp, College Station, TX) and R version 3.0.1 (R
Foundation for Statistical Computing, Vienna, Austria). The model used for mortality estimation was fit
using the INLA package [45].

Ethical approval
Permission to implement this research project was obtained from the Ministry of Health of Uganda (MOH). Ethical approval for this study was obtained from the institutional review board of the University of Washington, Uganda National Council of Science and Technology (UNCST), and School of Medicine Research Ethics Committee (SOMREC). The study was conducted in compliance with national regulatory and ethics guidelines.

Results

Under-5 mortality

We found large declines in under-5 mortality in all regions since 1990 (Figure 1). The national rate of decline has quickened since 2000, with a 39% decrease between 2000 and 2011 compared to a 14% decrease from 1990 to 2000. However, subnational estimates revealed considerable regional variation. Kampala experienced consistently lower mortality than all other regions between 1990 and 2011, although the gap between Kampala and the rest of the country declined. Karamoja (201 deaths per 1,000 live births [95% CI: 169, 236]), North (191 deaths per 1,000 live births [95% CI: 164, 221]), and West Nile (184 deaths per 1,000 live births [95% CI: 154, 217]) had the highest mortality in 1990. These regions saw steep declines between 1990 and 2011, especially in North (54% decrease). Despite large decreases in under-5 mortality from 1990 to 2007, Karamoja has shown an increase in rates between 2007 and 2010.

Childhood underweight

The prevalence of childhood underweight declined in Uganda, falling from 20% (95% CI: 16%, 26%) in 1990 to 14% (95% CI: 12%, 15%) in 2011 (Figure 2). Since 1990, a number of regions recorded even faster declines in childhood underweight, dropping 14 percentage points in Eastern, 16 percentage points in North, and 19 percentage points in West Nile. By contrast, levels of childhood underweight
largely stagnated in Karamoja and Western regions since 1990. Furthermore, Karamoja’s rates of
crudity underweight, 29% (95% CI: 24%, 34%) in 2011, remained persistently higher than in the rest
of Uganda.

Malaria interventions

Uganda has scaled up coverage of several malaria interventions since 2000. Nationally, ITN ownership
reached 59% (95% CI: 36%, 79%) in 2011, and self-reported receipt of ACTs for febrile children under 5
increased to 49% (95% CI: 34%, 65%) by 2011. Despite these gains, no region met the National Malaria
Control Program (NMCP) target of 85% by 2010 for ITN ownership, under-5 ITN use, or IPTp2 (Figure 3)
[46]. In addition, IPTp2 remained quite low across regions (29% in 2011), a striking finding since IPTp2,
which is prescribed at ANC visits, consistently lagged behind levels of ANC4. Nationally, IPTp2 coverage
was 18 percentage points lower than ANC4, and only one region (Eastern) had IPTp2 levels (35% [95%
CI: 21%, 54%]) that were comparable to ANC4 (35% [95% CI: 24%, 47%]) in 2011.

Notably, higher levels of malaria intervention coverage did not necessarily correspond with regional
indicators of malaria burden (Figure 4). Based on parasitemia measures from the 2009 MIS [27], East
Central and Central 2 had the highest and third-highest levels parasitemia prevalence (65% and 52%,
respectively), but the lowest and second-lowest levels of overall malaria coverage (24% and 34%,
respectively). By contrast, North and West Nile regions had both high parasitemia prevalence (57% and
48%, respectively) and coverage of malaria interventions (58% and 48%, respectively).

Immunizations

BCG and measles vaccine coverage increased in all regions from 1990 to 2011. Nationally, BCG
immunization coverage rose from 78% (95% CI: 62%, 89%) in 1990 to 94% (95% CI: 89%, 97%) in 2011,
and measles vaccination climbed from 63% (95% CI: 39%, 82%) to 85% (95% CI: 75, 91%) during this
time. In contrast, OPV3 coverage remained relatively unchanged across regions, increasing slightly from 1990 to 2000 and then somewhat declining since 2000. Pentavalent immunization coverage (77% [95% CI: 51%, 92%]) reached comparable levels to OPV3 coverage in 2011 (76% [95% CI: 52%, 90%]) demonstrating a rapid scale-up since its introduction in 2002. At the regional level, immunization coverage was more varied. In 2011, OPV3 coverage ranged from 69% (95% CI: 44%, 87%) in Central 1 to 83% (95% CI: 63%, 93%) in Southwest, and pentavalent vaccination coverage spanned from 67% (95% CI: 42%, 86%) in East Central to 86% (95% CI: 69%, 95%) in Southwest. In general, Central 1 had lower levels of immunization coverage than the other regions, whereas Southwest had higher vaccination rates.

Other MCH indicators

Between 1990 and 2011, ANC1 coverage increased across regions, narrowing the gap between the regions with the highest and lowest levels of ANC1 over time (Figure 5). In 1990, ANC1 coverage ranged from 67% (95% CI: 40%, 87%) in West Nile to 88% (95% CI: 70%, 96%) in East Central, a difference of 21 percentage points; twenty-one years later, this coverage gap shrunk to six percentage points, with the ANC1 coverage range spanning 93% (95% CI: 85%, 97%) in Central 1 to 99% (95% CI: 98%, 100%) in Kampala. Similar gains were not observed for ANC4 coverage, with the national average remaining relatively unchanged (49% [95% CI: 30%, 65%] in 1990 and 47% [95% CI: 41%, 54%] in 2011). Regionally, ANC4 trends diverged, with several regions experiencing decreasing ANC4 coverage at the same time as others showed gradual gains in coverage. By contrast, SBA coverage increased substantially for a number of regions since 1990, particularly in North (34 percentage point increase), West Nile (41 percentage point increase), Eastern (32 percentage point increase), and Southwest (32 percentage point increase). SBA coverage still remained quite varied across regions, with Kampala and nearby regions experiencing much higher rates (SBA coverage was 95% [95% CI: 90%, 97%] in Kampala) than Karamoja (27% [95% CI: 16%, 43%]). Nationwide, EBF moderately increased, rising from 54% (95% CI: 36%, 71%) in
1990 to 61% (95% CI: 54%, 67%) in 2011. By 2011, Karamoja had the highest rates of EBF, at 73% (95% CI: 58%, 84%), whereas Kampala recorded the lowest levels (46% [95% CI: 31%, 62%]).

Overall intervention coverage

Uganda experienced a large increase in overall intervention coverage since 2000, which was largely driven by gains in coverage of ITNs or IRS and pentavalent immunization (Figure 6). In 2011, Kampala recorded the highest level of overall intervention coverage at 70% whereas East Central had the lowest at 57%. West Nile and North recorded the largest gains in overall intervention coverage since 1990, at 31 and 30 percentage points, respectively. Overall coverage was strongly correlated with under-5 mortality (ρ = -0.85), but its relationship with measures of education (ρ = 0.57) and other socioeconomic indicators (with ρ ranging from 0.42 to 0.50) was more moderate. The relationship between under-5 mortality and overall intervention coverage was stronger than the correlation between under-5 mortality and education (ρ = -0.77), as well as under-5 mortality and other socioeconomic indicators (with ρ ranging from -0.50 to -0.75).

Discussion

This study represents the first comprehensive regional assessment of levels and trends of MCH indicators and socioeconomic factors in Uganda. All regions have achieved substantial progress in reducing child mortality as well as scaling up coverage of malaria control interventions and pentavalent vaccination. At the same time, coverage of other key MCH interventions, such as OPV3 and ANC4, have generally flattened or declined over time. Analyzing regional trends revealed marked heterogeneity and geographic disparities in both coverage levels and outcomes. Subnational benchmarking of health intervention coverage is a crucial step in identifying areas to which resources should be directed.
Although under-5 mortality decreased throughout Uganda, geographic inequalities persisted, with Kampala consistently recording much lower rates of under-5 death than other regions from 1990 to 2011. Further, Karamoja experienced increased under-5 mortality after 2007, and its prevalence of childhood underweight was the highest in Uganda for 2011, more than 10 percentage points higher than the next-highest region. Although Karamoja achieved high levels of coverage for some interventions, particularly EBF and pentavalent vaccination, its health outcomes lagged behind other regions. Food insecurity due to climactic shocks, disease, and conflict is well-documented in this region [47–53], which is largely populated by pastoralist groups. Heavy flooding in 2007 reportedly devastated crops and isolated many parts of the region from food supplies [54], potentially contributing to the region’s subsequent increase in child mortality. More recent efforts to improve Karamoja’s challenges with nutrition, such as food distribution initiatives led by organizations like the World Food Programme [55], may have resulted in improved child health outcomes. Further investigation into these strategies and tracking more recent trends in nutrition and childhood survival are needed in Karamoja.

Uganda’s trends along the maternal health continuum of care unveiled a number of notable findings. While all regions reached high levels of ANC1 coverage by 2011, trends for ANC4 coverage, which is recommended by Uganda’s national guidelines, were much more variable across regions [56]. This coverage gap aligns with reports of women starting ANC at a later point during their pregnancies [57], making it challenging to complete four ANC visits before delivery. At the population level, ANC coverage and women’s education were not strongly related. By contrast, SBA was strongly correlated to women’s educational attainment, with a wide gap between the highest performer (Kampala, at 95%) and the lowest performer (Karamoja, at 27%). Beyond educational attainment, differences in SBA might be explained by health facility proximity, workforce shortages, or cultural preferences to deliver at home or with traditional birth attendants [58–60].
Uganda has substantially increased coverage of malaria control interventions since 2000, reflecting investments in ITN distribution, subsidizing costs of ITNs and ACTs, and expanding IRS activities [8, 61, 62]. While no region achieved the 2010 target of reaching 85% coverage for ITN ownership, ITN use, and IPTp2, it is likely that a 2013 mass distribution campaign has bolstered ITN ownership and use in more recent years [63]. We found that regional levels of malaria intervention coverage did not necessarily align with regional parasitemia prevalence, suggesting that malaria intervention delivery or uptake in these areas of higher transmission has not been fully actualized. Further investigation as to why these regions have relatively lower levels of malaria intervention coverage is needed, and future malaria control efforts should incorporate measures of malaria burden to prioritize areas for resource allocation.

Most regions had lower levels of IPTp2 coverage than ANC4, which suggests there is a substantial constraint to receiving IPTp at ANC visits as recommended by Uganda’s national guidelines [46]. A nationally-representative survey of health facilities found that over 90% of facilities in Uganda had sulfadoxine/pyrimethamine (SP) in stock in 2012 [64], indicating that stock-outs of SP were an unlikely root cause of low IPTp2. Previous work suggests that prescription practices by health providers, including the misuse of SP to treat clinical malaria, may be the main driver of low rates of IPTp [65, 66]. Further examination is needed to identify and address the factors leading to low IPTp2 coverage throughout Uganda.

Immunization progress has been variable in Uganda. Coverage of BCG and measles vaccination has increased markedly since 1990, while trends in polio and DPT3 coverage were more variable. The Reaching Every District (RED) approach promoted by the World Health Organization (WHO) sets a coverage target of 80% for all districts in low- and middle-income countries in order to help rectify geographic inequities [67]. While this analysis was conducted at the regional level the RED target still provides a useful benchmark. Immunization coverage in 2011 exceeded 80% for BCG and measles in all
regions; however, only five and two regions achieved coverage over 80% for OPV3 and pentavalent, respectively. Previous studies have attributed the rise in measles coverage, which has occurred in all regions, to expanded control efforts from 1999 to 2006 [68–70]. The gains in coverage could explain the nearly four-fold drop in under-5 measles deaths from 1990 to 2013 [41]. At the same time, OPV3 coverage has declined in all regions since 2000. While Uganda was certified as polio-free in 2006, wild poliovirus cases were confirmed in Amuru District (North) in 2009 and Bugiri District (East Central) in 2010 [71]. Notably, North had the third-lowest OPV3 coverage in 2009 (73%) and East Central had the second-lowest coverage in 2010 (72%). Subsequently, large-scale supplementary polio immunization campaigns were conducted in eastern and northern Uganda. In addition, a nationwide polio immunization campaign started in January 2015 [72]. While we were not able to estimate coverage trends beyond 2011, future benchmarking exercises using more recent data may help evaluate the results of these campaigns.

The scale-up of pentavalent vaccination coverage to similar levels as OPV3 in all regions demonstrates the successful implementation of the 2002 Gavi Vaccine Introduction Grant (VIG) [73]. This scale-up is promising for more recent efforts in Uganda to introduce the pneumococcal conjugate vaccine (PCV), rotavirus vaccine, human papillomavirus (HPV) vaccine, and inactivated polio vaccine (IPV). However, pentavalent coverage since 2008 stagnated or declined in most regions. Gavi immunization services support (ISS) from 2006 to 2012 was suspended, which may be related to the drops in coverage. Further research is needed to determine how to improve routine immunization services in Uganda.

This study revealed substantial heterogeneity in health indicators and outcomes across Uganda’s regions. The decentralization of Uganda’s health system has emphasized management by local governance [74], which requires subnational benchmarking to optimally evaluate performance of health service delivery. While this study relied on household surveys and censuses, further efforts to improve
the accuracy and timeliness of HMIS reporting in Uganda will greatly improve local evaluation efforts and guide resource allocation decisions [75].

Limitations

Our findings need to be interpreted within the context of some study limitations. First, a number of relevant interventions could not be analyzed due to limited data availability. For instance, we were unable to obtain reliable data for HIV interventions such as prevention of mother-to-child transmission (PMTCT) of HIV or pediatric HIV treatment. Second, several MCH indicators were limited by question comparability across surveys. Notably, questions concerning EBF only considered feeding in the day prior to the survey instead of in the first six months of life [76], and ACT use was based on self-reported receipt after having a fever rather than confirmed malaria diagnosis. Third, some of the data sources from the early 1990s, including the 1991 census and the 1995 and 2000-2001 DHS surveys, excluded certain districts in the North from the sampling frame due to insecurity. It is possible that the point estimates from these surveys are biased; however, previous analysis using the 2006 DHS found that excluding the districts not sampled in the earlier surveys had little effect on coverage estimates [77]. Last, most estimates from household surveys were derived from respondent recall, which can be imprecise and subject to bias. Nevertheless, we believe that by combining all available data sources, these findings constitute the best available estimates of levels and trends of key MCH interventions in Uganda.

Conclusions

Uganda has experienced substantial declines in under-5 mortality and gains in ITN ownership and use, ACT usage, measles vaccination, ANC1, and SBA. However, progress in coverage of other indicators such as ANC4, IPTp2, and OPV3 has stalled. National levels trends masked marked subnational heterogeneity, and further investigation is necessary to understand the drivers of regional variation. Enhancing the
scope and reliability of health information systems would further enable the regular monitoring of levels and trends. Additional subnational benchmarking analyses, ideally at the district level, should be conducted routinely in order to systematically guide resource allocation and policy decisions.

References

12. Steketee RW, Eisele TP: Is the scale up of malaria intervention coverage also achieving equity? *PloS One* 2009, **4**:e8409.

52. Mubiru D: *Climate Change and Adaption Options in Karamoja*. Kampala, Uganda: Food and Agriculture Organization (FAO); 2010.

coming late for the first antenatal care visit by pregnant women at Mulago hospital, Kampala Uganda. *BMC Pregnancy Childbirth* 2013, **13**:121.

Figures and Tables

Table 1: Definition of indicators

<table>
<thead>
<tr>
<th>Indicator (abbreviation)</th>
<th>Definition</th>
<th>Sources of data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentavalent immunization (Pent)</td>
<td>The proportion of children 12 to 59 months old who have received three doses of the pentavalent vaccine, which includes protection against diphtheria-pertussis-tetanus (DPT), hepatitis B, and Haemophilus influenzae type b.</td>
<td>DHS: 2006, 2011
 UNSDS: 2004, 2008</td>
</tr>
<tr>
<td>Care at health facility after suspected acute respiratory infection (ARI)</td>
<td>Proportion of children under 5 years old with a cough and difficulty breathing or a fever in the past two weeks for whom treatment was sought at a health facility or from a health provider.</td>
<td>DHS: 1995, 2000-2001, 2006, 2011</td>
</tr>
<tr>
<td>Indicator</td>
<td>Description</td>
<td>Sources</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Intermittent preventive therapy for malaria during pregnancy (IPTp1, IPTp2)</td>
<td>The proportion of women 15 to 49 years old who gave birth in the given year and who received at least one/two treatment doses of Fansidar (sulfadoxine/pyrimethamine [SP]) at antenatal care visits during the corresponding pregnancy.</td>
<td>DHS: 2000-2001, 2006, 2011 MIS: 2009-2010</td>
</tr>
<tr>
<td>Indoor residual spraying (IRS)</td>
<td>The proportion of households that were sprayed with an insecticide-based solution in the last 12 months.</td>
<td>DHS: 2006, 2011 MIS: 2009-2010</td>
</tr>
<tr>
<td>ITN ownership or IRS</td>
<td>The proportion of households that either own an insecticide-treated net, or were sprayed with an insecticide-based solution in the last 12 months, or both.</td>
<td>DHS: 2006, 2011 MIS: 2009-2010</td>
</tr>
<tr>
<td>ITN use or IRS</td>
<td>The proportion of children under 5 years who either slept under an insecticide-treated net the night before the survey, or live in a household that was sprayed with an insecticide-based solution in the last 12 months, or both.</td>
<td>DHS: 2006, 2011 MIS: 2009-2010</td>
</tr>
<tr>
<td>ACTs after fever (ACTs)</td>
<td>Proportion of children under 5 years old with fever in the last two weeks who received artemisinin-based combination therapy (ACTs).</td>
<td>DHS: 2006, 2011 MIS: 2009-2010</td>
</tr>
<tr>
<td>Proportion of antimalarials given that were ACTs (%ACTs)</td>
<td>Proportion of malaria treatment given to children under 5 years old with fever in the last two weeks that was ACTs.</td>
<td>DHS: 2006, 2011 MIS: 2009-2010</td>
</tr>
<tr>
<td>Indicator</td>
<td>Description</td>
<td>Sources</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
Figure 1: Regional trends in under-5 mortality, 1990-2011
Figure 2: Prevalence of underweight in children under-5, 1990-2011

Figure 3: Regional malaria intervention coverage, 2011. Dotted line indicates National Malaria Control Programme (NMCP) coverage target of 85% for 2010.
Figure 4: Comparison of regional parasitemia levels and overall malaria intervention coverage.

Parasitemia levels were calculated from the MIS 2009. Overall malaria intervention coverage was calculated as the average of ACT usage after fever, ITN ownership or IRS, and IPTp2 in 2011.
Figure 5: Regional trends in antenatal care (1 and 4 visits) and skilled birth attendance, 1990-2011
Figure 6: Overall intervention coverage in 2011 (A) and change in overall intervention coverage from 1990 to 2011 (B)
Supplementary Figure 1: Demographic and Health Survey (DHS) 2011 region boundaries