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Over the past three to four decades, esophageal adenocarcinoma (EAC) incidence has in-

creased dramatically in the Western world due to causes that are not well understood. Cur-

rent screening strategies for early detection aim to identify individuals with Barrett’s esoph-

agus (BE), an intestinal metaplasia that develops in the lower esophagus as an important

first step in the progression to EAC. However, current approaches for prevention of EAC

by screening and surveillance programs have achieved minimal success in reducing mortality

and paradoxically yield underdiagnosis and overdiagnosis.

In order to better understand these issues, we consider the influences of critical processes

at multiple spatial scales in an effort to bridge molecular, cellular and tissular knowledge

to population-level data related to BE and the progression of BE to EAC. Specifically,

the mathematical framework presented here cohesively models biological mechanisms that

include epigenetic drift, cellular dynamics, clonal growth, crypt structured organization in

BE, spatial propagation of premalignant and malignant lesions, surveillance through biopsy

and imaging, and clinical interventions. With the multiscale modeling approach, we can

better understand the role and impact that different levels of data have on clinical outcomes.

Our modeling aim is to ultimately improve the efficacy of screening and surveillance to reduce

EAC mortality.
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on Fred Hutchinson café napkins. Additionally, I would like to acknowledge Ken Wang at

Mayo Clinic for his openness to help an inquisitive mathematician.

During my PhD, I have been fortunate to be a part of the Cancer Intervention and

Surveillance Modeling Network (CISNET) consortium within the National Cancer Institute.

I have greatly benefited from the meetings and conference calls, and enjoyed the social

engagements with the CISNET Esophagus group. I am very grateful to have had the unique

ability to share my thoughts, misgivings, questions, and opinions with a group of such

influential cancer modelers, physicians, and policy-makers. Thank you for listening to and

incorporating the mathematical side of our efforts these past years. Here I will also thank the

National Science Foundation for their generous support in a Graduate Research Fellowship,

grant no. DGE-0718124, during my graduate career at the University of Washington.

vii



Further, I am very grateful for my wonderful experience in the Department of Applied

Mathematics at the University of Washington. Thank you to the inspiring faculty for your

prestigious instruction and humor. Thank you also to the Applied Math graduate students

for their constant motivation and help in my research. We are all in this together. Specifically,

I would like to thank my officemate, Natalie, for being the friend I needed and respected in

the high and low times during graduate school.

To my family, Mom, Dad, Mike, Eileen, and Tim, thank you for your constant love and

open minds when I have seemed to be working in a foreign, mathematical universe. My mom

Mary has been my spiritual hero since I first learned how to count. As an intelligent, strong

woman, you believed in me through any times of my own self-doubt and I admire you. I also

thank my dear friends here in Seattle, California, and beyond who encouraged me to be the

best version of myself in every respect.

Finally, I would like to express my dearest appreciation for my fiancé Ben. Thank you
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Chapter 1

Introduction

1.1 The Problem of Esophageal Adenocarcinoma

Esophageal cancer is currently the fastest growing cancer in the Western world [1,2]. Among

US males, it is also the seventh leading cause of cancer death [3]. The two major types of

esophageal cancers are esophageal squamous cell carcinoma (ESCC), which typically occurs

in the mid-portion of the tube-like esophagus, and esophageal adenocarcinoma (EAC), which

occurs at the distal end of the esophagus near the junction to the stomach. While the

incidence of most cancers including ESCC have been declining in the US, the incidence rate

of EAC has increased 5-6 fold over the past four decades (see Fig. 1.1) [4,5]. Although lifestyle

factors (eg., abdominal obesity, smoking, alcohol use) have been implicated as contributors

to this trend, the observed increase of this magnitude remains largely unexplained [6].
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Figure 1.1: Age-specific EAC incidence rates in the US. For all stages of EAC cancers

combined, age-specific incidence rates per 100K persons are plotted for males (left panel)

and females (right panel) in the US, Caucasian race. The incidence curves are stratified

into 5-year calendar periods to depict the dramatic 5-6 fold increase in incidence rates for

both genders since 1975. Data available from Surveillance, Epidemiology, and End Results

(SEER) Program [7].

EAC arises primarily (if not exclusively) in Barrett’s esophagus (BE), a metaplastic

tissue alteration in the esophageal lining. In BE, a layer of columnar cells replace an area

of normal, stratified squamous epithelium and form crypts that are similar to intestinal

crypts (Fig. 1.2). BE is frequently associated with chronic symptoms of gastroesophageal

reflux disease (GERD), which exposes the distal esophagus to bile salts and stomach acid.

Adenocarcinomas develop within BE in a multistage process involving morphologic changes

in the tissue. BE progresses from nondysplastic (ND) columnar epithelium, through low

grade and then high grade dysplasia (a precancerous and pre-invasive cell type detected under

the microscope), and finally form small malignant cell populations that progress to invasive
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Figure 1.2: Normal lower esophagus and Barrett’s esophagus. In BE patients, a

certain length of normal squamous epithelium in the lower esophagus (left inset) is replaced

by the salmon-colored, intestinal metaplasia (right inset) at the distal end of the esophagus

before the gastroesophageal junction (GEJ). Modified image from [8].

cancer. Because BE is asymptomatic, the majority of BE patients remain undiagnosed and

thus most EAC cases are diagnosed at an advanced stage. This is an unfortunate reality

because mortality associated with EAC is very high (about one half of diagnosed patients

die within a year of diagnosis [9]). Overall, underdiagnosis is a major concern because more

than 90% of EAC cases arise in patients who are not periodically screened or in surveillance

programs [10,11].

The main concept of screening is that early detection of a disease offers the opportunity

to change its prognosis; compared with incidental cancers, the prognosis is greatly improved

for BE patients with high grade dysplasia (HGD) and/or cancer that is detected at an

early stage. Therefore, gastroenterologists focus on identifying BE patients on screening

endoscopy and advising these patients to undergo long-term, periodic endoscopic surveillance
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with multiple biopsies of the BE to detect advanced dysplasia or early cancer. However, on

average only 0.2-0.5% of people with BE develop EAC each year [12]. Thus, the majority

of BE patients who undergo regular surveillance will not develop EAC in their lifetimes,

indicative of overscreening.

Herein lies the balancing act performed during risk stratification - identify who is most ‘at

risk’ of progressing to EAC and suggest effective surveillance and treatment strategies for the

high risk groups. With this motivation, the overall public health goal of the mathematical

modeling presented in this thesis is to help improve the efficacy of screening and surveillance

for BE and EAC. Although clinical endpoints like cancer incidence and prevalence of HGD

are reported on a population level, many important biological processes on smaller physi-

cal and temporal scales occur with significant inter-individual heterogeneity during disease

progression from normal tissue to incident cancer. Due to the biological and clinical nature

of screening patients at various times during their lives, such details at tissular and cellu-

lar levels provide vital information to determine screening outcomes obtained by different

modalities and protocols. In order to model these aspects accurately, we develop a multiscale

framework for modeling events on population, individual, tissue, cell, and molecule levels at

appropriate time scales (see Fig. 1.3).

In Chapter 2, we introduce the theory of multistage carcinogenesis and then develop the

mathematical tools used to analyze a general multistage clonal expansion (MSCE) model.

With the MSCE model, we show that cancer incidence curves harbor information about hid-

den processes of tumor initiation, premalignant clonal expansion, malignant transformation,

and even some limited information on tumor growth before clinical detection (see [13] for

full publication). Through calibration of the mathematically derived hazard functions to

incidence data, our analyses of the incidences of three digestive tract cancers show that the

age-specific incidence curves- upon adjustments for secular trends- are well approximated by

a model that explicitly incorporates the stochastic growth kinetics of premalignant clones,

the appearance of a first viable malignant clone, and a constant time delay corresponding to

the mean sojourn time of a malignant clone.
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Figure 1.3: Multiscale modeling of EAC. Levels of size, from molecules to populations,

undergo dynamics at different time scales and each influence the public health concerns

surrounding fast-rising EAC incidence rates and associated high mortality.
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With the methodology introduced in Chapter 2, we further extend the MSCE model

in Chapter 3 to apply to the more specific problem of EAC. Here we develop the MSCE-

EAC cell module, composed of three components - incorporation of gastroesophageal reflux

into the BE conversion process, derivation of the MSCE-EAC hazard function, and likelihood

estimation of model parameters. To address the question of predicted future incidence trends

in the US, we calibrate the MSCE-EAC model to clinical and epidemiologic data including

EAC incidence from the Surveillance, Epidemiology, and End Results (SEER) registry from

1975 to 2010. We then project EAC incidence and mortality to year 2030 (see [6] for full

publication). This analysis was performed in parallel with two independent modeling groups

as part of the Base Case I comparative modeling project within the Cancer, Intervention, and

Surveillance Modeling Network (CISNET) Consortium (see next section for more details).

Overall, the future projected increases in cumulative EAC deaths and incidence give rise to

significant concerns about the burden to society.

Because current biopsy-based endoscopic screening involves the removal of multiple esophageal

tissue samples for histological analysis, the multiscale framework requires details about the

BE tissue structure and specified screening protocols. Chapter 4 develops two additional

modules that, together with the cell module, constitute the multistage clonal expansion for

EAC (MSCE-EAC) screening model. The MSCE-EAC screening model is used for screen-

ing BE patients in silico to evaluate the effects of biopsy sampling, diagnostic sensitivity,

and treatment on disease burden. Our framework seamlessly integrates relevant cell-level

processes during EAC development from Chapters 2-3 with a spatial screening process to

provide a clinically relevant model for detecting dysplastic and malignant clones within the

crypt-structured BE tissue. With this computational approach, we retain spatio-temporal

information about small, unobserved tissue lesions in BE that may remain undetected dur-

ing biopsy-based screening but could be detected with high-resolution imaging. This allows

evaluation of the efficacy and sensitivity of current and future screening protocols to de-

tect neoplasia (defined as dysplasia and early preclinical EAC) in the esophageal lining. We

demonstrate the clinical utility of this model by predicting three important clinical outcomes:
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(1) the probability that small cancers are missed during biopsy-based screening, (2) the po-

tential gains in neoplasia detection probabilities if screening occurred via high-resolution

tomographic imaging, and (3) the efficacy of endoscopic eradicative treatments that result

in the curative depletion of metaplastic and neoplastic cell populations in BE in terms of the

long-term impact on reducing EAC incidence (see [14] for full publication).

To further explore this final point on treatment for premalignant lesions, we utilize the

MSCE-EAC screening model in Chapter 5 to predict the long-term impact of successive

eradicative treatments and recurrent disease on EAC incidence and mortality reduction. Al-

though endoscopic eradication of BE is effective in reducing EAC incidence and mortality in

BE patients, we find that the resources needed to achieve these results increase substantially

as patients with lower severity of disease are selected for treatment. Diminished efficiency

and the large number of persons needed to treat to avert one death (NNT/death) suggest

that overall cost is likely to be prohibitive for treatment of BE patients other than those

with HGD. This analysis was performed as the second part, Base Case II, of the comparative

modeling project within the CISNET esophagus group (see [15]).

Rather than focusing on fixed treatment strategies, Chapter 6 introduces a methodology

for optimal screen design based on achieving maximal diagnostic yields during a screen.

Our aim was to calculate optimal screening age recommendations that would avoid fruitless

over screening throughout patient lifetimes. For the MSCE-EAC model structure, we derive

optimality criteria for both single screen scenarios and adaptive screen scenarios, i.e., those

that are conditional on the outcome of the previous screen for optimization of a next screening

time. Chapter 6 presents a few example results in context of the MSCE-EAC model. This

methodology provides a tool for quantifying the potential for the greatest screen yield during

BE surveillance, with explicit incorporation of disease risk and patient-specific outcomes at

a given screening time.

Although such screens may reveal that a patient has BE, the duration of time a patient

has lived with this precursor (BE dwell time) is generally not known when the patient is

first diagnosed because BE is asymptomatic. This is particularly unfortunate because BE
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dwell time is expected to be a strong predictor for EAC. Our mathematical modeling of

EAC suggests that the life-time risk of developing EAC could vary widely depending on how

long a patient has lived with BE. Thus, biomarkers that drift differentially with age between

normal esophageal tissue and BE have the potential to greatly improve EAC risk estimation.

In Chapter 7, we evaluate over 450,000 CpG dinucleotides, genome-wide, in tissue samples of

40 BE patients to identify a robust subset of CpGs that undergo age-related methylomic drift

allowing us to estimate a patient’s BE dwell time. To do so, we use a unique combination of

longitudinal and cross-sectional tissue samples to generate data that allow us to construct

a BE-specific molecular clock. We identify 70 CpGs that are hypomethylated in normal

squamous (NS) tissue but show significant differential increases in methylation in BE (vs.

NS) with age, consistent with the drift observed in the longitudinal samples (10 BE patients).

Using a Bayesian model that incorporates longitudinal methylomic drift rates, patient age,

and the observed paired BE methylation levels, we estimate patient-specific BE onset times

using Markov Chain Monte Carlo (MCMC). Independent application of this method to a

cohort of 22 familial BE (FBE) patients as well as a group of 10 BE patients with neoplasia,

specifically HGD and/or EAC, will reveal potential differences in the 3 data sets’ estimated

onset times. As part of current work, our analyses are testing the conjecture that methylomic

drift occurs in BE compared to NS tissue and hence allows for an estimation of how long a

BE patient has lived with BE. Thus, we are testing if methylomic drift may be used as a

quantitative biomarker candidate for HGD/EAC risk in BE patients (see [16]).

In summary, we develop a mathematical, multiscale framework that captures overall

EAC incidence while addressing questions regarding the efficacy of screening protocols, the

potential improvements possible with new screening techniques, the optimality of screening

times, and the potential of a new risk predictor to stratify high risk patients for EAC based

on patient-specific epigenetic data.
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1.2 Cancer Intervention and Surveillance Modeling Net-

work (CISNET) Consortium

Generally, mathematical modeling of clinical outcomes can be used to make projections by

systematically integrating available data. Despite its potential, one common criticism of

modeling is that independent modeling efforts often yield disparate results. These differ-

ences can primarily be attributed to differing model inputs and model structures, and often

a lack of transparency in model assumptions, all impeding wider acceptance of simulation

modeling results. The Cancer Intervention and Surveillance Modeling Network (CISNET)

is a National Cancer Institute (NCI) funded consortium of mathematical and computational

modelers who work closely together to address many of these limitations using a compara-

tive modeling approach. Comparative modeling aims to improve each of the participating

models by providing an environment where experts in modeling methodology, cancer control,

and clinical management can easily and openly communicate intricate modeling details and

results with independent groups. This context allows for an iterative process where some

common calibration targets are shared but other aspects of the individual models are free to

differ. After each model is calibrated and applied independently, the predictions are shared

and analyzed cooperatively in biyearly meetings, providing a transparent setting for itera-

tive improvement of the models, and enhancing our understanding of the natural history of a

particular type of cancer. After model development and refinement, CISNET researchers can

then use their models to evaluate the impact of potential interventions on trends in cancer

incidence and mortality, helping to optimize cancer control strategies. CISNET models have

been utilized by the U.S. Preventive Services Task Force for breast [17] and colorectal can-

cer (CRC) screening guidelines [18], in formulating draft recommendations for lung cancer

screening [19], and by the Centers for Medicare and Medicaid Services (CMS) to compare

the effectiveness of CRC screening strategies [20, 21].

The CISNET consortium focuses on 5 cancer sites: breast, colorectal, lung, prostate,

and esophagus. The esophagus group is composed of 4 academic institutions that have
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developed 3 independent models of EAC. In Chapters 3 and 5, we present our multiscale

modeling results from Base Case I and Base Case II analyses, respectively. We compared

our results (referred to as the FHCRC model results in those publications) to the two other

mathematical models that were developed independently by participants in the CISNET

esophagus group: the Esophageal AdenoCarcinoma Model (EACMo) from the Massachusetts

General Hospital (Boston, MA) - MGH model, and University of Washington (Seattle,

WA) and the Microsimulation Screening Analysis model from Erasmus University Medical

Center (Rotterdam, The Netherlands) - UW-MISCAN model. Full descriptions of the MGH

model and the UW-MISCAN model can be found on the Esophagus section of the CISNET

website [22] and in the Appendix of [6], but will be not be discussed in detail here. Briefly,

while we employ a multiscale framework for modeling multiple levels of detail, the MGH and

UW-MISCAN models are empirically-based microsimulations of natural histories.



Chapter 2

The Multistage Clonal Expansion

Model with Applications

2.1 Modeling Motivation: The Multistage Nature of

Cancer

Carcinogenesis, the transformation of normal cells into cancer cells, has been shown to be

a multistage process in which stem cells accumulate a series of rate-limiting, (epi)genetic

changes. Although it is difficult to know the exact steps of the process, experimental evidence

suggests that most malignancies can be analyzed under an initiation-promotion-progression

paradigm [23]. Initiation is characterized by genetic (or epigenetic) alterations that produce

heritable changes in a cell’s phenotype. Initiated cells with such alterations are prone to

clonal expansion. The next phase, promotion, is reversible and refers to the outgrowth of

initiated cells into premalignant lesions. Progression refers to the conversion and development

of malignant cells, their growth into tumors, and finally the onset of the clinical disease.

Multistage models of carcinogenesis provide a quantitative description of these salient

phases (possibly consisting of many steps within each) and have majorly contributed to the

advancement of cancer research [24–26]. Multistage models are able to both elucidate the
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actual biological processes taking place during carcinogenesis and allow the investigation

of the effects of carcinogens, risk factors, and other covariates on the stochastic processes

involved in cancer initiation, promotion and progression. Thus, multistage models provide a

natural framework to evaluate the potential benefits of prevention and intervention strate-

gies designed to reduce cancer risk, like screening for premalignant lesions and eradicative

treatment of small malignancies. For a thorough biological rationale and modeling history,

we refer the reader to more comprehensive reviews on multistage models [24–27].

2.1.1 Hazard or age-specific incidence function

The standard statistical concept in survival analysis that captures the instantaneous rate

of detecting cancers (of a specific type) among individuals who have not been previously

diagnosed with that cancer is the hazard function. Let T
C

be the random variable for age at

cancer detection. Then the hazard function is defined mathematically at time (age) t as

h(t) =
1

∆t
lim

∆t→0
Pr[t < T

C
< t+ ∆t|T

C
≥ t] (2.1)

Thus, the hazard is a theoretical representation of the observed age-specific incidence, as

shown for EAC in Fig. 1.1.

The hazard can also be formulated in terms of the survival function, or the probability

that cancer has not been detected by time t : S(t) ≡ Pr[T
C
> t],

h(t) =
1

∆t
lim

∆t→0
Pr[T

C
< t]− Pr[T

C
> t+ ∆] =

−Ṡ(t)

S(t)
(2.2)

We will be referring to such hazard and survival functions for cancer throughout the following

chapters.

2.1.2 Brief notes on the history of multistage cancer models

To give some context to the modeling developed in this thesis, we provide a brief summary

of the key points in multistage modeling history. Beginning in the 1950s, the multistage
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theory was originally suggested independently by Muller [28] and Nordling [29]. Nordling

noted that the log-log linearity nature of some cancer mortality curves (i.e., log mortality is

linearly related to log age) suggested that several mutations were needed for malignant trans-

formation. This prompted Armitage and Doll [30] to incorporate this idea into a stochastic

model of carcinogenesis in which a single stem cell develops into a cancer cell by suffering

a series of irreversible, heritable, mutation-like (also referred to as “rate-limiting”) events.

By deriving the hazard (incidence) rate, they showed that the power of age observed in

cancer mortality may be related to the number of transformations required to produce a

malignancy. Although the Armitage-Doll model is broadly consistent with the epidemiology

of several cancers, it predicts a higher number of mutations (stages) required for malignant

transformation than experimental evidence has shown [26]. To remedy this, Armitage and

Doll proposed a two-stage model that incorporated cell growth dynamics and assumed that

intermediate-stage cells grew exponentially [31]. After Armitage and Doll’s first modeling

efforts, more multistage models by Fisher, Kendall, and others were studied, most of which

included cellular proliferation, a critical process in carcinogenesis [32, 33]. For more early

history, we refer the reader to a 1978 review by Whittemore and Keller of the mathematical

models of carcinogenesis developed since the theory began [26].

In 1971, Knudson proposed a two-stage statistical model to explain the incidence of

retinoblastoma in children [34]. Knudson derived the “two-hit” hypothesis from his model,

a concept that states that the two alleles of a single gene have to be inactivated to produce

a tumor in the retina. As one of the most important contributions of mathematical and

statistical modeling to cancer research, Knudson’s work led to the concept of tumor suppres-

sor genes, which was confirmed in laboratory experiments soon after [35]. Moolgavkar and

Venzon incorporated the ideas of Knudson into a mathematical two-stage model, which is

consistent with the incidence of most cancers in both children and adults [36]. Similarly to

Kendall and others, Moolgavkar and Venzon modeled the clonal expansion of premalignant

cells as a stochastic birth-death process. To obtain analytical expressions for the hazard and

survival curves of their model, Moolgavkar and Venzon used the theory of filtered Poisson
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processes, a methodology we will employ throughout the chapters and projects presented

here. As shown in Moolgavkar and Knudson [37], the now called two-stage clonal expansion

(TSCE) model was the first carcinogenesis model to be consistent with the epidemiology

of several specific cancers (lung, breast, colon) and also with the data from carcinogen ex-

periments and has since been widely used for the analysis of epidemiological [38–45] and

experimental [46–48] data. In addition, mathematical extensions of the Armitage-Doll and

TSCE models have been proposed to accommodate features of different cancers (eg., esopha-

gus). In the following sections, we introduce a general formulation of this type of multistage

model.

2.2 The Generalized Moolgavkar-Venzon-Knudson (MVK)

Model

In the past 60 years, variants of multistage carcinogenesis models have been analyzed that

each formulate the stepwise progression to cancer mathematically as a stochastic, multi-type

branching process. Here we will focus on the methods and applications of single pathway

multistage models but other variants such as multiple pathway and mixed models have also

been explored (see text by Tan [25] for additional mathematical and biological background).

To encompass a large set of examples, Little [49] described generalizations of the two-

stage model of Moolgavkar, Venzon, and Knudson, as he terms the MVK model, and of the

Armitage-Doll multistage model to allow for an arbitrary number of mutational stages. Along

with possible mutations occurring at rate µi(t), the cells of type i compete with processes of

symmetric division and differentiation/death at stage-specific rates αi(t), βi(t), respectively.

This biological process, referred to as “clonal expansion”, is formulated mathematically as a

stochastic birth-death-mutation (b-d-m) process and all rates have units of per cell per year.

The difference between these two generalized models factors into the cell counts of each

type after a mutational event occurs with rate µi(t), i = 1, ..k − 1. Within the generalized
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multistage framework, a cell in mutational stage Ii acquires mutations through an “Armitage-

Doll” (AD) type of asymmetric cell division (one daughter cell acquires mutation i + 1 and

enters stage Ii+1, the other daughter cell dies or differentiates). Within the generalized MVK

framework, a cell in mutational stage Ii acquires mutation through an asymmetric Poisson-

process (PP) division (one daughter cell acquires mutation i + 1 and becomes type Ii+1,

the other daughter cell remains in mutational stage Ii). For the analyses provided in this

chapter, we focus on the MVK type models, illustrated in Fig. 2.1.

The two-mutation model of Moolgavkar, Venzon, and Knudson, i.e., the two-stage clonal

expansion (TSCE) model, corresponds to the case of k = 2. To note, Moolgavkar and Venzon

first formulated this two-stage model with stochastic clonal expansion of both normal and

intermediate cells [36]. Historically, we refer to intermediate stem cells that enter a stage that

may undergo clonal expansion as “initiated” cells. However, the authors also introduced the

mathematical techniques to analyze a two-stage model with deterministic growth of normal

cells and stochastic growth of intermediate cells, which Moolgavkar and Knudson applied

to data from epidemiological studies [37]. Here we will focus on the deterministic case that

considers the number of normal cells N(t) to be non-random.

The generalized MVK model also includes common extensions of the TSCE model with

several “pre-initiation” stages that do not undergo clonal expansion. These models with

multiple pre-initiation stages before a single clonal expansion stage correspond to the gener-

alized MVK model in which the intermediate cell division and differentiation/death rates for

stages 1, .., k−2 equal zero before a single clonal expansion at stage k−1. When considering

colorectal cancer incidence, Luebeck and Moolgavkar [41] show that a k-stage model with

k = 4, including two rare and one fast event before initiation, was most consistent with the

data among a class of models with several pre-initiation stages and a single clonal expansion.

Similar biologically-motivated multistage models that require more than one pre-initiation

stage with aymmetric divisions to accrue mutations have been studied previously [49–57]

and are now generally termed as multistage clonal expansion (MSCE) models.

In the following section, we will present a generalized MVK model-driven investigation
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Figure 2.1: The generalized MVK model. The generalized MVK model for cancer

assumes that at age t there are N(t) susceptible stem cells, each subject to irreversible

mutation to a type of cell in stage I1 at a rate µ0(t). The cells with one mutation divide

into two such cells at a rate α1(t), die or differentiate at a rate of β1(t), or symmetrically

divide at a rate µ1(t) into an equivalent daughter cell in stage I1 and another cell with

a second irreversible mutation now in stage I2. The cells in stage I2 are independently

subjected to competing events of division, death/differentiation, and mutation with rates

α2(t), β2(t), µ2(t), respectively, and so on until at the (k − 1)th stage the cells that have

accumulated (k − 1) mutations proceed at a rate µk−1(t) to acquire another mutation and

enter final stage of cancer Ik. All mutations for the MVK framework are modeled as Poisson

process mutations (PP divisions). In contrast, a generalized multistage model would model

mutations as Armitage-Doll mutations (AD divisions) and transitions would not include the

dotted arrows that retain the cell count in state Ii after undergoing division at rate µi(t).
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of cancer incidence in which we analyze SEER-9 [7] incidence data (1975-2008) for three

gastrointestinal malignancies: colorectal cancer (CRC), gastric cancer (GaC), and pancreatic

cancer (PaC). For the full publication, see [13].

2.3 Impact of Tumor Progression on Cancer Incidence

Curves

In theory, any number of extensions and permutations can be formulated within the frame-

work of the generalized MVK model, whether in number of pre-initiated stages and/or num-

ber of clonally expanding stages, but it is not fully clear how this choice influences the

age-specific incidence curve. Here, we ask the basic question, how do the rate-limiting steps

involved in tumor initiation, malignant transformation, and ensuing clonal expansions in-

fluence the shape of the cancer incidence curve? Conversely, what can we possibly learn

from observed incidence curves about these hidden processes? Previous studies [41, 50–52]

identified two characteristic features, or phases, in the incidence curves for colorectal and

pancreatic cancers using data from the Surveillance Epidemiology and End Results (SEER)

registries [7] when using a 3-stage (k = 3) MSCE model with a single clonal expansion for

premalignant cells. After adjusting the incidence for secular trends related to birth-cohort

and calendar-year (period), the authors were able to identify an exponential phase in the

incidence curve beginning in early adult life and extending to approximately the age of 60

and a linearly-increasing trend for later-onset cancers extending beyond the age of 60. In this

study we ask the question whether the impact of malignant growth and fitness (defined as

clone survival) on observed incidence patterns is actually discernible from incidence data. To

address this question, we use a 4-stage generalized MVK model which explicitly incorporates

distinct (but overlapping) clonal expansions for premalignant and malignant cells giving rise

to a distribution of malignant tumors in a tissue and clinical observation of cancer via a

stochastic detection event occurring in a preclinical tumor. In contrast, earlier versions of
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the MSCE model assumed that the first malignant cell in a tissue necessarily leads to clinical

detection after a possibly random lag-time [41,50–52] (the 3-stage model by Jeon et al. [50]

for EAC will be discussed in more detail in Chapter 3). Malignant transformations, how-

ever, are likely to occur in altered cells whose initial survival fitness may be compromised

by genomic instability [58] and therefore may be prone to stochastic extinction in spite of

higher cell proliferation. This is supported by comparative measurements of cell division

rates and net cell proliferation (using DNA labeling and radio-graphic imaging of tumors,

respectively) in a variety of carcinomas, showing large differences in the two rates which can

only be explained by the frequent death or shedding of tumor cells [59].

We begin by adjusting for period and birth cohort effects, using rigorous likelihood based

methods to estimate model parameters for the extended MSCE model, including malignant

clonal expansion rates for each cancer type. We then estimate three characteristic times: (1)

the mean sojourn times for premalignant clones until occurrence of the first malignant cell

regardless of its fate, (2) the analogous mean sojourn time to appearance of the first surviving

(persistent) malignant clone; and (3) the mean sojourn time of persistent preclinical cancers

from first malignant cell to time of cancer diagnosis.

Combined with a mathematical exploration of the model hazard function (i.e., the model-

derived function that predicts the age-specific cancer incidence) our numerical findings sup-

port the hypothesis that the initiation of a benign (non-invasive) tumor, its malignant trans-

formation, and persistence constitute major bottlenecks in the progression of a premalignant

tumor to cancer. This is consistent with results from evolutionary models which find neo-

plastic progression to be driven mainly by mutations that confer only slight improvements

in fitness [60], while the transition from a non-invasive to an invasive tumor, which expands

with a significantly higher growth rate, constitutes a critical, rate-limiting event.
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2.3.1 The MSCE model

For ease of notation, we shall hereafter refer to this particular 4-stage generalized MVK model

as the multistage clonal expansion (MSCE) model. The MSCE model is a continuous time

Markov chain that tracks random stem cell counts of five different types at any continuous

time (age) t: normal N(t), pre-initiated P ∗(t), initiated (premalignant) P (t), preclinical

malignant M(t), and clinical cancer C(t). See Fig. 2.2a for the conceptual framework of the

full MSCE model, which can be viewed as a multi-type branching process, along with an

illustrated realization of this stochastic process.

Tumor initiation

A hallmark of all previous MSCE models is that tumor initiation requires a number of rate-

limiting mutational events before a stem cell can undergo a clonal expansion that results in

a premalignant lesion (see Fig. 2.2). For colon and pancreatic cancer, Meza et al. inferred

that it takes two rare hits to transform a normal tissue stem cell into an initiated tumor

cell that is no longer under homeostatic control and undergoes a (first) clonal expansion

[51]. The two significant initial hits may represent biallelic inactivation of tumor suppressor

genes, such as TP53 or p16 that occur frequently in many cancers, or the APC gene in

CRC [61]. Inactivation of TP53 is seen during early development of many digestive tract

cancers, including gastric cancer [62], and pancreatic cancer [63,64].

A mathematical consequence of the two-hit hypothesis for (premalignant) tumor initiation

is that the hazard function of the model has a linearly increasing trend for older ages [51].

The presence of such a linear phase in the incidence curves for colorectal and pancreatic

cancer could indeed be demonstrated by likelihood-based comparisons of models with two

(or more hits) for initiation. Models with single-hit tumor initiations such as the TSCE

model do not give rise to a linear phase in the hazard function [41,51].
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Figure 2.2: The multistage clonal expansion (MSCE) model. (Continued on the

following page.)
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Figure 2.2: The multistage clonal expansion (MSCE) model. a) The MSCE model

for cancer with two stochastic birth-death-mutation processes for premalignant and malig-

nant cells. The model assumes a ‘two-hit’ tumor initiation process with Poisson initiation

rates µ0, µ1 which leads to the stochastic appearance of premalignant progenitor cells in

the tissue. In the lower sample MSCE realization, premalignant cells undergo a first clonal

expansion described by a birth-death-migration process with cell division rate α
P

, cell death-

or-differentiation rate β
P

, and malignant transformation rate µ2. Malignant cells, in turn,

undergo a second clonal expansion with cell division and death rates α
M

and β
M

, respec-

tively. Clinical detection occurs through a size-based detection process with parameter ρ.

The sample sojourn time t1 represents the time from the initiation of a premalignant clone

until first malignant transformation. The sample sojourn time t
eff

1 represents the time from

the initiation of a premalignant clone to the first malignant cell in that clone which results

in a persistent tumor which escapes extinction. Lastly, the sample sojourn time t2 represents

the time for a persistent tumor to develop from a single malignant cell to detected, clinical

cancer. The MSCE model is well approximated by (b) the MSCE-1 Approximation which

includes an effective malignant transformation rate µ
eff

2 and a constant lag-time for tumor

progression.

Tumor promotion

Prior to the transition into the initiation-associated linear phase, the MSCE hazard function

with constant parameters increases exponentially with a rate that is approximately given by

the net cell proliferation rate of premalignant P cells [51]. The transition from the exponential

phase to the linear phase occurs around the age of 60 for colorectal and pancreatic cancer.

Clonal expansion of P cells is represented by a stochastic birth-death-mutation (b-d-m)

process with cell division rate α
P

, death-or-differentiation rate β
P

, and mutation rate µ2.

The net cell proliferation rate of P cells is given by α
P
− β

P
− µ2 and the asymptotic

probability of extinction of P cells by the ratio β
P
/α

P
[65], which is the probability that a
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premalignant cell, together with its progeny, will ultimately become extinct. Premalignant

P cells may suffer further mutations with rate µ2 which transform them into malignant

(M) cancer stem cells. Although the premalignant cell population is likely to undergo a

complex evolutionary process involving multiple mutations in critical regulatory pathways

before acquiring a malignant phenotype [58], only two initial rate-limiting mutations prior

to clonal expansion appear necessary to adequately describe the main shape of the incidence

curve for the three digestive tract cancers studied here.

Tumor progression and cancer detection

Development of a preclinical tumor in the MSCE model begins with a single (malignant) cell

that undergoes clonal expansion and eventually, if the clone survives extinction, progresses

to clinically detectable cancer. In contrast to natural history models in which the preclinical

state of a tumor is typically assumed to be screen-detectable, the preclinical tumor devel-

opment in the MSCE model starts off with a single malignant cell that undergoes a clonal

expansion and eventually, if the clone survives extinction, is detected as cancer. Mathemat-

ically, the growth of the malignant tumor is described by a stochastic birth-death process

with cell division rate α
M

and cell death rate β
M

. For technical reasons, we will refer to all

malignant clones, prior to their detection, as “preclinical” clones, even if they are too small

to be detected by screening. Screen-detection of premalignancies and/or small malignancies

at a certain age will be discussed in Chapter 4 for the case of EAC. Clinical detection of

the tumor is treated as a stochastic event with rate ρ per cell per year. This implies that a

tumor of size n cells has probability nρ∆t to be detected in a time interval ∆t short enough

for the tumor to be constant in size. This clinical observation process is a generalization

of a birth-death-mutation (b-d-m) process. Note, all analyses reported for this particular

exploration are obtained using a fixed value of ρ = 10−7. The rationale for this particular

value of ρ is that a typical tumor contains about 109 cells upon (symptomatic) detection and

that only about 1% of the tumor volume is occupied by actively dividing tumor cells [66].

Parameters, such as premalignant and malignant cell proliferation, were estimated with other
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values assumed for ρ (in the range of 10−6 − 10−8) and our conclusions did not change (see

Appendix A).

2.3.2 From cells to populations: MSCE hazard function

As mentioned previously for cancer multistage model predecessors, the MSCE cell-level de-

scription is linked to the population scale by means of the model hazard function, defined

as the instantaneous rate of detecting cancers among individuals who have not been previ-

ously diagnosed with cancer. In this section we will show that this quantity may be derived

from the backward Kolmogorov equations for the stochastic multistage process and solved

numerically via a system of coupled ordinary differential equations (ODEs) [13]. For the

mathematical development of the MSCE cell model depicted in Fig. 2.2, we first formally

introduce the notation for the following random variables of the multi-type branching process

N(t) = number of renewing normal stem cells in a tissue at time t

P ∗(t) = number of pre-initiated cells at time t

P (t) = number of premalignant (initiated) cells at time t

M(t) = number of malignant (preclinical) cells (prior to detection) at time t

C(t) = number of cancer cells (after detection) at time t

For clinical detection, we will employ the following indicator function, D(t) ,

D(t) =

0 if no cancer detected clinically by time t

1 otherwise i.e., C(τ) > 0 for some τ ≤ t

Beginning with a single pre-initiated (P ∗), premalignant (P ), or malignant (M) cell at
time τ , the probability distributions for number of specific cell type at time t ≥ τ , can be
derived from the coefficients of each cell type’s probability generating function (PGF) Φ

P∗ ,
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Φ
P

, or Φ
M

, respectively. These generating functions are defined as

ΦM (y3, z; τ, t) = E[y
M(t)
3 zD(t)|M(τ) = 1, D(τ) = 0] (2.3)

=
∑
k,l

yk3 z
l Pr[M(t) = k,D(t) = l|M(τ) = 1, D(τ) = 0]

ΦP (y2, y3, z; τ, t) = E[y
P (t)
2 y

M(t)
3 zD(t)|P (τ) = 1,M(τ) = 0, D(τ) = 0] (2.4)

=
∑
j,k,l

yj2y
k
3 z

l Pr[P (t) = j,M(t) = k,D(t) = l|P (τ) = 1,M(τ) = 0, D(τ) = 0]

Φ
P∗ (y1, y2, y3, z; τ, t) = E[y

P∗(t)
1 y

P (t)
2 y

M(t)
3 zD(t)|P ∗(τ) = 1, P (τ) = 0,M(τ) = 0, D(τ) = 0] (2.5)

=
∑

i,j,k,l

yi1y
j
2y

k
3 z

l Pr[P ∗(t) = i, P (t) = j,M(t) = k,D(t) = l|P ∗(τ) = 1, P (τ) = 0,M(τ) = 0, D(τ) = 0]

And the PGF for the entire process Ψ starting from normal cells is the following

Ψ(y1, y2, y3, z; τ, t) = E[y
P ∗(t)
1 y

P (t)
2 y

M(t)
3 zD(t)|P ∗(τ) = 0, P (τ) = 0,M(τ) = 0, D(τ) = 0] (2.6)

=
∑
i,j,k,l

yi1y
j
2y
k
3z

lP (i, j, k, l; τ, t) (2.7)

where l = {0, 1} and

P (i, j, k, l; τ, t) = Pr[P ∗(t) = i, P (t) = j,M(t) = k,D(t) = l|P ∗(τ) = 0, P (τ) = 0,M(τ) = 0, D(τ) = 0].

Backward Kolmogorov equations

The generating functions satisfy the following Kolmogorov backward equations (here the

cellular kinetic rates may be age-dependent)

∂Φ
M

(y3, z; τ, t)

∂τ
= −α

M
Φ2

M
(y3, z; τ, t)− βM

(2.8)

− zρΦ
M

(y3, z; τ, t) + [α
M

+ β
M

+ ρ]Φ
M

(y3, z; τ, t)

∂Φ
P

(y2, y3, z; τ, t)

∂τ
= −α

P
Φ2

P
(y2, y3, z; τ, t)− βP

(2.9)

+ [α
P

+ β
P

+ µ2]Φ
P

(y2, y3, z; τ, t)− µ2Φ
P

(y2, y3, z; τ, t)ΦM
(y3, z; τ, t)

∂Φ
P∗ (y1, y2, y3, z; τ, t)

∂τ
= −µ1Φ

P∗ (y1, y2, y3, z; τ, t)[ΦP
(y2, y3, z; τ, t)− 1] (2.10)

∂Ψ(y1, y2, y3, z; τ, t)

∂τ
= −µ0N(t)Ψ(y1, y2, y3, z; τ, t)[ΦP∗ (y1, y2, y3, z; τ, t)− 1] (2.11)
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Numerical solutions

To obtain the hazard function, we first solve for the overall survival function (from cancer

detection), starting at time 0, which in our notation is

S
MSCE

(t) = 1− P
MSCE

(t) = Pr[D(t) = 0|P ∗(0) = 0, P (0) = 0,M(0) = 0, D(0) = 0] (2.12)

= Ψ(1, 1, 1, 0; 0, t), (2.13)

where P
MSCE

(t) is the probability of a cancer detection at time t,

P
MSCE

(t) = Pr[D(t) = 1|P ∗(0) = 0, P (0) = 0,M(0) = 0, D(0) = 0].

We will here denote Φ
M

(1, 0; τ, t) ≡ Φ
M

(τ, t), Φ
P

(1, 1, 0; τ, t) ≡ Φ
P

(τ, t), Φ
P∗ (1, 1, 1, 0; τ, t) ≡

Φ
P∗ (τ, t), and Ψ(1, 1, 1, 0; τ, t) ≡ Ψ(τ, t). A dot designates a first derivative with respect to

t. The hazard function, i.e., the rate at which cancer is detected in individuals who have not

been diagnosed before, is given by

h
MSCE

(t) = − ṠMSCE
(t)

S
MSCE

(t)
= −Ψ̇(0, t)

Ψ(0, t)
= − d

dt
ln[Ψ(0, t)] (2.14)

For fixed t, the boundary value system of coupled PDEs provided in Eqs. (2.8-2.11) can

be converted into an initial value problem (IVP) with the change of variables u = t − τ ,

where u is the “running” time. This redefinition and equations hereafter follow the method

used by Crump et al. [67]. Define the following variables for the new IVP: Y1(u, t) =

Φ
M

(τ, t), Y2(u, t) = Φ̇
M

(τ, t), Y3(u, t) = Φ
P

(τ, t), Y4(u, t) = Φ̇
P

(τ, t), Y5(u, t) = Φ
P∗ (τ, t),

Y6(u, t) = Φ̇
P∗ (τ, t), Y7(u, t) = Ψ(τ, t), Y8(u, t) = −Ψ̇(τ, t)/Ψ(τ, t) with corresponding ini-

tial conditions (ICs) Y1(0, t) = Y3(0, t) = Y5(0, t) = Y7(0, t) = 1,
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Y4(0, t) = Y6(0, t) = Y8(0, t) = 0, and Y2(0, t) = −ρ,

dY1(u, t)

du
= β

M
− (α

M
+ β

M
+ ρ)Y1(u, t) + α

M
Y 2

1 (u, t) (2.15)

dY2(u, t)

du
= 2α

M
Y1(u, t)Y2(u, t)− (α

M
+ β

M
+ ρ)Y2(u, t) (2.16)

dY3(u, t)

du
= β

P
+ µ2Y1(u, t)Y3(u, t)− (α

P
+ β

P
+ µ2)Y3(u, t) + α

P
Y 2

3 (u, t) (2.17)

dY4(u, t)

du
= 2α

P
Y3(u, t)Y4(u, t) + µ2(Y4(u, t)Y1(u, t) + Y3(u, t)Y2(u, t))

− (α
P

+ β
P

+ µ2)Y4(u, t)

(2.18)

dY5(u, t)

du
= µ1Y5(u, t)(Y3(u, t)− 1) (2.19)

dY6(u, t)

du
= µ1(Y6(u, t)Y3(u, t)− Y6(u, t) + Y5(u, t)Y4(u, t)) (2.20)

dY7(u, t)

du
= µ0N(t)Y7(u, t)(Y5(u, t)− 1) (2.21)

dY8(u, t)

du
= µ0N(t)(Y8(u, t)Y5(u, t)− Y8(u, t) + Y7(u, t)Y6(u, t)) (2.22)

These 8 coupled ODEs can be solved numerically to obtain the MSCE hazard and survival

functions

h
MSCE

(t) = −Y8(t, t)/Y7(t, t) (2.23)

S
MSCE

(t) = Y7(t, t) (2.24)

As we will show here (see Results), the MSCE model contains an approximation (referred

to as MSCE-1) which differs from the original MSCE model in two important aspects: (1)

the rate at which P cells suffer a transformation event that gives rise to a detectable cancer is

approximated by an ‘effective’ transformation rate, µ
eff

2 , and (2) the approximation requires

a lag-time to allow for the time from first malignant cell that forms a persistent cancer clone

to the time of diagnosis. Furthermore, not all of the MSCE model parameters are identifiable

from incidence data - some parameters must be fixed initially in order to achieve parameter

identifiability, as discussed in the Results and [13].

While multistage generalizations of the models shown in Fig. 2.2 have also been explored

by others [49, 54–57], the general impact of malignant tumor progression on the hazard
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function (and the age-specific incidences of the cancers modeled here) has not been fully

characterized [41, 50–52], especially in regard to the time scales of premalignant and malig-

nant clonal expansion.

Data

We used data from the Surveillance Epidemiology and End Results (SEER) database by the

National Cancer Institute. Incidence data were for all races by single-years of age between 10

and 84 and calendar-year between 1975 and 2008 for males and females in the original nine

registries (SEER-9) [7]. Incident cancers were defined using the International Classification

of Diseases for Oncology, Third Edition (ICD-O-3) as follows: colorectal cancer (C18-C20);

gastric cancer (C16); and pancreatic cancer (C25). Population data were also downloaded

for the 9 SEER catchment areas by gender and single-years of age and calendar year. A

standard method for adjusting the incidence for secular trends (period and cohort effects)

are described in Appendix A.

2.3.3 Results

We find that modeling of cancer incidence data provides new insights into the importance of

clonal extinction and clonal growth rates (or doubling times) of premalignant and malignant

clones in relation to three underlying time scales in carcinogenesis: the mean sojourn time

for premalignant clones until occurrence of the first malignant cell (T1), the mean sojourn

time for premalignant clones until the first surviving malignant clone (T
eff

1 ), and the mean

sojourn time of persistent preclinical cancers from first malignant cell to time of diagnosis

(T2). In the following we demonstrate how these time scales contribute to, and are estimable

from, the age-specific incidence curves of three digestive tract cancers.
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Mathematical properties of MSCE-1 approximation

Impact of malignant clonal expansion: To gain insights into how tumor progression

is impacting cancer incidence we begin with a mathematical dissection of the hazard func-

tion generated by the MSCE model depicted in Fig. 2.2. For constant rate parameters, this

demonstrates that the MSCE model (with a distinct clonal expansion for malignant cells)

can be closely approximated by a reduced model (MSCE-1) that adjusts the rate of malig-

nant transformation, µ2, for non-extinction and further models the outgrowth of persistent

malignant clones as a constant time-lag (tlag), which in turn is approximated by the mean

sojourn time of a surviving malignant clone, from its inception to detection of cancer, T2. To

better understand the relationship between tlag and the mean sojourn time T2 in the MSCE

model we first show that the hazard function of a model with two consecutive clonal ex-

pansions for premalignant and malignant cells is mathematically equivalent to a model with

a single clonal expansion of premalignant cells with a time-dependent mutation rate, i.e.,

replacing µ2 ↔ µ2(1−S
M

(u)), where 1−S
M

(u) is the unnormalized probability of detection

of a malignant clone at a time u after the malignant clone is seeded.

We first rewrite Eq. (2.9) from the backward Kolmogorov equations for the 4-stage MSCE

model as follows

∂Φ
P

(τ, t)

∂τ
= −α

P
Φ2

P
(τ, t)− β

P
+ [α

P
+ β

P
+ µ2]Φ

P
(τ, t)− µ2Φ

P
(τ, t)Φ

M
(τ, t)

⇒ ∂Φ
P

(τ, t)

∂τ
= −α

P
Φ2

P
(τ, t)− β

P
+ [α

P
+ β

P
+ µ2(1− Φ

M
(τ, t))]Φ

P
(τ, t) (2.25)

This has the same form as the backward equation for the 3-stage (k = 3) MSCE model

that has one clonal expansion stage [41, 50–52] with the mutation rate µ2 assuming a time-

dependent form, i.e,

µ2 → µ2(1− Φ
M

(τ, t)) = µ2(1− S
M

(u)) (2.26)

where u = t − τ and S
M

(u) is the “survival function” for cancer detection of a preclinical

cancer clone a time u since the clone was born (ie. τ is the time that the progenitor cell of
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the malignant clone was born). This is defined as (full derivation using Kolmogorov forward

equations can be found in [41])

S
M

(u) = 1 +
1

αM

p
M
q
M
e−pM u − q

M
p
M
e−qM u

q
M
e−pM u − p

M
e−qM u , (2.27)

p
M

=
1

2
(−(α

M
− β

M
− ρ)−

√
(α

M
− β

M
− ρ)2 + 4α

M
ρ) (2.28)

q
M

=
1

2
(−(α

M
− β

M
− ρ) +

√
(α

M
− β

M
− ρ)2 + 4α

M
ρ). (2.29)

Let p∞ be the probability that a single preclinical clone initiated at time τ eventually becomes

detected:

lim
u→∞

(1− S
M

(u)) = 1− α
M

+ p
M

α
M

≈ 1− β
M

α
M

≡ p∞,

i.e., as u→∞, S
M

(u) approaches approximately β
M
/α

M
, which is the probability of extinc-

tion of the preclinical clone, when ρ� 1. Hence, the u dependent mutation rate µ2(1−S
M

(u))

is bounded between 0 and approximately µ2(1 − β
M
/α

M
) = µ2p∞ ≡ µ

eff

2 , which takes into

account the non-extinction of small preclinical clones before they are detected.

Thus, for fixed t, the PDE from Eq. (2.25) that we wish to integrate over [0, t] can be written

as

∂Φ
P

(τ, t)

∂τ
= −α

P
Φ2

P
(τ, t)− β

P
+

[
α

P
+ β

P
+ µ

eff

2

(
1− S

M
(u)

p∞

)]
Φ

P
(τ, t) (2.30)

with the initial condition Φ
P

(t, t) = 1.

The main effect of a preclinical tumor progression (the second clonal expansion in the

MSCE model) on cancer incidence is a delay (or lag) of time for a cancer clone to grow

from a single malignant cell into a detectable tumor, conditional that it does not become

extinct. Analytically, this lag time is caused by a steep jump that occurs in the function
1−S

M
(u)

p∞
(the time-dependent coefficient in Eq. (2.30)). When (α

M
− β

M
) � (α

P
− β

P
), the

function
1−S

M
(u)

p∞
has a steep ascent from near lower bound of 0 to upper bound of 1, with

an inflection point u∗ at
1−S

M
(u∗)

p∞
= 1

2
+ O(ρ). With a series expansion around ρ = 0, we

may easily compute u∗ and a useful approximation.

d2S
M

(u)

du2

∣∣∣∣
u=u∗

= 0 ⇒ u∗ = − ln(−p
M
/q

M
)

p
M
− q

M

=
ln(−q

M
/p

M
)

p
M

+O(ρ). (2.31)
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This time u∗ is the inflection point for the nearly discontinuous function that corresponds

mathematically as the appropriate lag time tlag. We now prove that this time is approxi-

mately the mean sojourn time of a surviving preclinical tumor, T2.

Theorem 1. T2 = tlag +O(ρ)

Proof. Let T be the random sojourn time from transformation of a single malignant cell to

tumor detection. The cumulative distribution function for T is given by

Pr[T ≤ u] =
1− S

M
(u)

p∞

Since T only takes non-negative values, we can use the following fact

E[T ] =

∫ ∞
0

Pr[T ≥ u] du =

∫ ∞
0

1− 1− S
M

(u)

p∞
du.

Then this mean sojourn time of a surviving tumor is defined as

T2 ≡ E[T ] =

∫ ∞
0

(
1− 1− S

M
(u)

p∞

)
du = −

ln
(

q
M
/(−p

M
)

1+q
M
/(−p

M
)

)
(−p

M
)

=
ln(−q

M
/p

M
)

p
M

+O(ρ).

(2.32)

[comparing to Eq. (2.31)]⇒ T2 = tlag +O(ρ)

Thus, the time point of inflection u∗ of the function
1−S

M
(u)

p∞
equals approximately T2 when

ρ is very small (see Chapter 3 for some example consequences of this approximation when ap-

plied to EAC). When the difference in magnitudes between the malignant and premalignant

proliferation rates becomes more severe, the function
1−S

M
(u)

p∞
limits to a discontinuous step

function at u∗. We will continue by approximating
(

1−S
M

(u)

p∞

)
in Eq. (2.30) by a piecewise

constant function on [0, t] such that

1− S
M

(u)

p∞
≈

0 if u ∈ [0, tlag)

1 if u ∈ [tlag, t]

(2.33)
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where tlag < t will be set equal to T2. First, we rewrite our ODE for fixed t as before in

terms of u = t− τ and solve on the first interval [0, tlag] with initial condition Φ
P

(0, t) = 1:

dΦ
P

(u, t)

du
= −α

P
Φ2

P
(u, t)− β

P
+
[
α

P
+ β

P
+ µ

eff

2 · 0
]

Φ
P

(u, t)

⇒ dΦ
P

(u, t)

du
= −α

P
Φ2

P
(u, t)− β

P
+ [α

P
+ β

P
] Φ

P
(u, t)

⇒ Φ
P

(u, t) = 1 for all u ∈ [0, tlag)

Next, on [tlag, t], we are solving for a shifted 2-stage survival function with initial condition

Φ
P

(tlag, t) = Φ
P

(0, t− tlag) = 1. (See solution details in [41])

dΦ
P

(u, t)

du
= −α

P
Φ2

P
(u, t)− β

P
+
[
α

P
+ β

P
+ µ

eff

2

]
Φ

P
(u, t)

⇒ Φ
P

(u, t) =

(
q
eff

P
− peff

P

qeff
P
e−p

eff

P
(u−tlag) − peff

P
e−q

eff

P
(u−tlag)

)µ1/αP

for u ∈ [tlag, t]

with

p
eff

P
=

1

2
(−(α

P
− β

P
− µeff

2 )−
√

(α
P
− β

P
− µeff

2 )2 + 4α
P
µ
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2 ), (2.34)

q
eff

P
=

1

2
(−(α

P
− β

P
− µeff

2 ) +

√
(α

P
− β

P
− µeff

2 )2 + 4α
P
µ

eff

2 ). (2.35)

Using the 3-stage MSCE model hazard form (See [50] for derivation), the mathematical

approximation for the MSCE model takes the following form

h
MSCE

(t) ≈ h
MSCE−1

(t) = µ0N

1−

(
q
eff

P
− peff

P

qeff
P
e−p

eff

P
(t−tlag) − peff

P
e−q

eff

P
(t−tlag)

)µ1/αP

 , (2.36)

where µ
eff

2 ≡ µ2(1 − β
M
/α

M
), tlag ≡ T2, and N is assumed to be a large number of normal

tissue stem cells under homeostatic control and thus constant in size.

Therefore, we can compute an analytical approximation to the MSCE model hazard

function for incidence by using the form of the hazard of the MSCE-1 model, h
MSCE−1

(t), and

replacing µ2 with µ
eff

2 ≡ µ2(1− β
M
/α

M
) and time t with t− tlag ≡ t− T2. This equivalency
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can be seen from the derivation above containing the solution of Φ
P

(u, t) on [tlag, t] with

guaranteed survival from [0, tlag]. This approximation implicitly assumes that, conditional

on non-extinction, the first surviving malignancy in the tissue is eventually the first to be

observed. Alongside this altered, effective mutation rate, the time shift by the mean sojourn

time of the first surviving tumor, T2 will push the MSCE-1 type hazard function to the right

to coincide with the actual MSCE hazard curve. Fig. 2.3 depicts comparisons of the MSCE-1

analytical approximation and the exact, numerical MSCE hazard solution from Eq. (2.23)

in the case of CRC and gastric cancer, fitted separately.

The time-dependence of the conditional mutation rate µ2(1−S
M

(u)) has two main effects:

1) it reduces the effective rate of malignant transformation, and 2) it creates a time delay

for a malignant clone to grow, conditional on its non-extinction, into a detectable tumor.

The latter effect is mainly due to a sharp transition of the conditional mutation rate from

zero to its asymptotic value after a time that equals approximately T2, the mean sojourn

time of the malignant clone to detection of cancer (see Theorem 1). Because asymptotically

S
M

(u) → β
M
/α

M
as u → ∞, we define µ

eff

2 ≡ µ2(1 − β
M
/α

M
) as the effective malignant

transformation rate for the reduced (MSCE-1) model. Therefore, the approximation amounts

to

µ2 ← µ
eff

2

tlag ← T2. (2.37)

(MSCE−1) (MSCE)

Time scales of premalignant clonal expansion: Analogous to the derivation for this

mean sojourn time of a malignant clone conditioned on survival, we can also compute sojourn

times for premalignant clones, as presented in Table 2.1. The first, T1, refers to the mean

time from the initiation of a premalignant cell to the appearance of the first malignant cell

from this premalignant cell’s progeny. The survival function for this process S
P

(u) is defined
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Figure 2.3: Deconstruction of the MSCE hazard function. Malignant clone extinction

and tumor growth influence the incidence curves (on a logarithmic scale) for a) CRC, and

b) gastric cancer. (Plots for pancreatic cancer are similar, but not shown). The SEER data

(adjusted for calendar-year and birth-cohort trends) are shown as circles and the overall fit

using the MSCE model by the thin solid line. The dotted line on the left shows the underlying

hazard for the first malignant cell, regardless of its fate. In contrast, the dash-dotted line

shows the hazard for the first ancestor of a persistent (i.e., surviving) malignant clone and

the dashed line represents the hazard for the first persistent malignant clone shifted to the

right by the mean sojourn time of the malignant clone to cancer detection, T2.
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analogously to Eq. (2.27) with premalignant parameters and with malignant transformation

rate µ2. Next, T
eff

1 refers to the mean time from the initiation of a premalignant cell until,

after it clonally expands, the first transformation of a malignant, preclinical cell conditional

that this malignant cell will produce a clone that will survive. The survival function for this

process S
eff

P (u) is equal to S
P

(u) except with malignant transformation rate µ
eff

2 = µ2p∞

replacing µ2, which as discussed above, guarantees the non-extinction of small preclinical

clones before they are detected. Repeating the method used to compute T2 in Eq. (2.32), we

compute these two mean sojourn times as follows

T1 =

∫ ∞
0

(
1− 1− S

P
(u)

p∞

)
du =

ln(−q
P
/p

P
)

p
P

+O(µ2) (2.38)

T
eff

1 =

∫ ∞
0

(
1−

1− Seff

P
(u)

p∞

)
du =

ln(−qeff
P
/p

eff

P
)

peff

P

+O(µ
eff

2 ) (2.39)

where SP and S
eff

P are survival functions defined analogously to S
M

, given by

S
eff

P
(u) = 1 +

1

αP

p
eff

P
q
eff

P
e−p

eff

P
u − qeff

P
p
eff

P
e−q

eff

P
u

qeff
P
e−p

eff

P
u − peff

P
e−q
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P
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(2.40)

S
P

(u) = 1 +
1

αP

p
P
q
P
e−pP u − q

P
p
P
e−qP u

q
P
e−pP u − p

P
e−qP u

(2.41)

with

p
P

=
1

2
(−(α

P
− β

P
− µ2)−

√
(α

P
− β

P
− µ2)2 + 4α

P
µ2), (2.42)

q
P

=
1

2
(−(α

P
− β

P
− µ2) +

√
(α

P
− β

P
− µ2)2 + 4α

P
µ2). (2.43)

and the analogous equations for p
eff

P
, q

eff

P
with µ

eff

2 replacing µ2, as provided perviously.

Parameter identifiability and sensitivity

Not all of the MSCE model parameters are identifiable from incidence data - some parameters

must be fixed initially in order to achieve parameter identifiability (see Heidenreich et al. [68]).

Furthermore, for estimability, the exponential-then-linear character of the multistage hazard

function (see Eq. (2.36)) suggests a parametrization that involves the slope of the linear phase
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λ ≡ µ0Nµ1p∞ and the growth parameter of the exponential phase g
P
≡ α

P
− β

P
− µ2 [51].

Note, the rates µ0 and µ1 cannot be estimated separately because the slope λ depends on their

product. Analogous to premalignant growth, we introduce the malignant growth parameter

g
M
≡ α

M
− β

M
− ρ. In order to identify µ2 and ρ we find it necessary to fix the cell division

rates α
P

and α
M

. Although the product α
M
ρ is mathematically identifiable, we were not able

to obtain stable estimates and therefore also fixed the (per cell) cancer detection parameter

ρ (see Materials and Methods). Otherwise, the biological model parameters were estimated

using a Markov Chain Monte Carlo (MCMC) method (see Supplemental Information of [13]).

To explore the dependence of our parameter estimates on the fixed parameters α
P

, α
M

,

and the cancer detection rate ρ we have also conducted a systematic sensitivity analysis. The

results of this analysis (specifically, the ranges of the obtained maximum likelihood estimates

for the parameters λ, gP , gM , and µeff2 , assuming constant birth cohort and calendar year

effects) for each fixed parameter are given in Table A.1. This analysis (although limited to

CRC) shows that the estimates of g
M

, and therefore the mean sojourn time T2, vary only

slightly when α
P

and α
M

are perturbed, but may vary up to 20% as the detection rate ρ

changes an order of magnitude. Therefore, the dependence of the preclinical cancer sojourn

time on ρ is modest.

Low fitness of malignant cells

We use the above results to gain insight into the importance of clonal extinction. Figure

2.3 shows fits obtained with the MSCE model (solid line) to SEER incidence data for a)

colorectal cancer, and b) gastric cancers. These fits include adjustments of the model-

generated hazard function for secular trends (for details see Appendix A). It is instructive to

mathematically ‘dissect’ the MSCE hazard function to examine the underlying behavior of

the incidence curves for the different malignant ancestors. The combined effects of extinction

and time for (malignant) tumor growth on incidence can be seen by substituting the ‘full’

rate µ2 into the MSCE-1 approximation and ignoring the lag-time, i.e., tlag = 0 (dotted line

in Fig. 2.3). The higher predicted incidence sans malignant cell extinction or tumor growth
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shows that these processes greatly reduce and delay cancer incidence and change the shape

of the incidence curve. In comparison, re-introducing the effects of extinction by replacing

µ2 with µ
eff

2 (without a lag-time) restores the general shape of the incidence curve (dot-dash

line) except for cancers occurring too early. Finally, re-introducing the time-lag associated

with malignant tumor growth (T2) in the MSCE-1 approximation accounts for both processes

(dashed line) and provides an excellent approximation to the exact incidence curve generated

by the full MSCE model (solid line).

Time scales of tumor progression

The MSCE model explicitly models malignant transformations in premalignant tissues of an

organ. These tissues may not be uncommon as they may arise independently from a large

number of normal ancestor cells. However, our results suggest that most malignant cells and

nascent malignancies undergo extinction. The time difference between the appearance of

the first malignant cell in a premalignant clone, regardless of its fate, and the first ancestor

cell that leads to a stable malignant clone that is bound to turn into symptomatic cancer

(unless a patient dies before this happens or an intervention occurs) may be as long as 30-

40 years for gastric cancer (see Table 2.1), as long as 20 years for CRC, or as short as 3

years, or less, in the case for pancreatic cancer. It is not clear whether these differences

reflect transformation-specific differences in cell survival, exogenous factors, cell senescence,

or differences in the degree of genomic instability. Whatever the origin, with the exception

of pancreatic cancer, our findings suggest a generally low viability of cancer cells in spite of

their aggressive and invasive behavior.

In contrast, the estimated mean sojourn times T2 of persistent malignant clones vary

from 5 to 7 years for CRC, down to less than 1 year for pancreatic cancer (Table 2.1).

The latter is consistent with the observation that most pancreatic carcinoma are diagnosed

at an advanced metastatic stage. Note, however, that T
eff

1 , the estimated mean time to

the appearance of the first persistent cancer clone (measured from the time the ancestral

premalignant cell is born) is somewhat longer for pancreas than colon (52.3 vs. 50.6 years
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males T1 (95% CI) T1
eff (95% CI) T2 (95% CI) Tlag (95% CI) 

CRC 32.6 (30.4 - 36.8) 50.6 (49.7 - 52.1)   5.2 ( 3.6 -  6.2)   5.4 (3.1 - 7.0) 
GaC 17.9 (13.6 - 22.3) 45.8 (43.8 - 47.9) 12.2 (9.8 - 14.7)   9.5 (7.7 -12.0) 
PaC 49.1 (40.4 - 52.6) 52.3 (50.9 - 52.9)   0.7 ( 0.4 -  2.2)   3.0 (0.2 -  6.8) 
EAC 15.0 (  7.2 - 24.7) 39.2 (34.2 - 44.0) 12.0 (6.3 - 16.8) 12.7 (3.1 -16.5) 

females T1 (95% CI) T1
eff (95% CI) T2 (95% CI) Tlag (95% CI) 

CRC 27.5 (25.1 - 30.5) 48.7 (47.6 - 49.9)   6.5 ( 5.2  -  7.6) 6.5 (5.1 - 8.2) 
GaC 20.1 (16.8 - 23.4) 58.6 (56.8 - 60.5) 11.7 (10.1 - 13.2) 10.6 (9.1 -11.7) 
PaC 53.2 (44.7 - 56.7) 56.3 (55.2 - 57.1)   0.6 ( 0.4  -  1.8) 1.7 (0.1 - 4.9) 
EAC 15.8 (13.8 - 18.4) 37.9 (31.8 - 45.1) 10.6 ( 7.8 - 13.8) 10.2 (7.2 -13.2) 

Table 2.1: MCMC-based estimates of various tumor promotion and progression

time scales. See text for definitions. Estimates represent medians and 95% credibility

intervals of the marginal posterior distribution for each quantity listed. All units are in

years.

for males, 56.3 vs. 48.7 in females). This suggests that premalignant precursor lesions in

pancreas, such as pancreatic intra-epithelial neoplasia (PanIN), may be present for many

years before a stable malignant transformation occurs.

Tumor growth rates

We find highly stable estimates for the net cell proliferation rate g
P

of premalignant cells,

based on the posterior distributions of the identifiable MSCE model parameters given the

observed cancer incidences in SEER (see Supplemental Information of [13]). The reason

for this stability appears to lie in the prominence of the exponential phase of the incidence

curve and the resulting linear behavior of the log-incidence (see Figs. A.1-A.6). Surprisingly,

with the exception of gastric cancers in females, the estimated net cell proliferation rates

for premalignant lesions are similar and stay within a range of 0.14 to 0.18 per year, while

estimates for the net cell proliferation rate g
M

of the malignant lesions are much more variable
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and range from 1 per year in gastric cancer to rates as high as 30 per year for pancreatic

cancer (see Table 2.2). These values correspond to tumor volume doubling times of 250 days

and 8 days, respectively for this group of cancers. While the former is consistent with clinical

observations for early gastric carcinoma, which are generally slow growing [69], the latter

appears too fast, but not inconsistent with tumor marker doubling times. For example,

using the pancreatic tumor marker CA19-9, Nishida et al. [70] estimated doubling times

from measurements in patients with inoperable pancreatic cancer in the range of 6 to 313

days. For CRC, the estimated malignant tumor volume doubling times are about 93 days for

males and 119 days for females. They too appear at the lower end of the clinical spectrum,

but are consistent with the determination by Bolin et al. [71] who followed 27 carcinomas

radiographically in the colon and rectum, measuring a median of 130 days with a range of 53

to 1570 days. In spite of considerable uncertainty and variability of the clinical observations,

the general agreement of the MSCE model predictions with sparse measurements of tumor

doubling times lends support to the claim that carefully collected incidence data harbor

quantitative information about the natural history of a tumor, from initiation to promotion

to malignant tumor progression.

2.3.4 Discussion

Early models of carcinogenesis recognized the importance of rate-limiting mutations but

provided only crude fits to cancer incidence and mortality [72]. Subsequent incorporation

of cell proliferation made it possible to account for effects, such as the initiation/promotion

effects seen in chemical carcinogenesis [46, 73] or the inverse dose-rate effect for high-linear

energy transfer radiation [74], that were more difficult to explain with models that did not

include clonal expansion. More recently, multistage extensions of the original two-stage

clonal expansion model by Moolgavkar, Venzon and Knudson [36,37] have emerged as useful

instruments to explore cancer incidence curves and isolate important secular trends that

segregate with birth cohort and/or calendar year (period) from age effects driven by common
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males λ (95% CI) x 10-4 gP (95% CI) gM (95% CI) µ2
eff

 (95% CI) x 10-6 

CRC 2.13 (2.10 - 2.15) 0.162 (0.160 - 0.164) 2.71 (2.22 - 4.15) 0.73 (0.55 - 0.86) 
GaC 0.51 (0.49 - 0.53) 0.140 (0.135 - 0.145) 1.00 (0.80 - 1.30) 3.21 (2.16 - 4.65) 
PaC 0.35 (0.34 - 0.36) 0.181 (0.177 - 0.186) 27.7 (7.44 - 49.1) 0.25 (0.21 - 0.32) 
EAC 52.9 (34.8 - 99.3) 0.163 (0.133 - 0.190) 1.02 (0.68 - 2.19) 4.65 (1.65 - 10.8) 

females λ (95% CI) x 10-4 gP (95% CI) gM (95% CI) µ2
eff

 (95% CI) x 10-6 

CRC 1.57 (1.55 - 1.59) 0.149 (0.147 - 0.151) 2.12 (1.75 - 2.75) 1.56 (1.26 - 1.87) 
GaC 0.40 (0.36 - 0.44) 0.100 (0.096 - 0.105) 1.06 (0.91 - 1.25) 2.83 (2.36 - 3.39) 
PaC 0.34 (0.33 - 0.35) 0.161 (0.157 - 0.165) 30.0 (9.10 - 50.0) 0.30 (0.26 - 0.36) 
EAC   9.1 (  2.4 - 30.9) 0.170 (0.132 - 0.218) 1.18 (0.86 - 1.71) 4.65 (fixed) 

Table 2.2: MCMC-based estimates of MSCE model parameters. These identifiable

parameters are defined as: λ = µ0 · N · µ1 · p∞, g
P

= α
P
− β

P
− µ2, g

M
= α

M
− β

M
− ρ,

µ
eff

2 = µ2 · p∞. Here, we define p∞ = 1 − β
M
/α

M
. Estimates represent medians and 95%

credibility intervals of the marginal posterior distribution for each quantity listed. All rate

units are in per cell per years.
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underlying biological processes [50, 52, 75]. While secular trends are of great interest to

epidemiologists and cancer control researchers in understanding the impact of screening,

potential exposures to carcinogens (e.g. tobacco smoking), infections, diet, and life-style

factors on cancer incidence, in this study we focus on non-specific effects that have their

origin in common cell-level processes that drive the age-effect, in particular the impact of

malignant tumor progression on the age-specific incidence curve.

Incidence curves are consistent with two types of clonal expansions, slow and

fast: Our MSCE model fits to the incidences of three gastrointestinal cancers (CRC, gastric

cancer, and pancreatic cancer) yield parameter estimates suggesting that malignant tumor

progression is preceded by a prolonged period of premalignant tumor growth characterized by

a low rate of net cell proliferation (Tables 2.1 and 2.2). In contrast, malignant tumor growth is

estimated to be many-fold faster than premalignant growth. The model distinguishes features

of the incidence curves that relate to slow growth of premalignant lesions and fast growth of

malignant lesions, and allows estimation of the time period in which tumors sojourn as slowly

growing masses before becoming invasive. The effective sojourn time T
eff

1 , i.e., the time to

appearance of the first persistent malignant clone that started with a single premalignant cell,

appears to be much longer than estimated from clinical data. For colon, clinical estimates

range from 20-25 years [76]. However, this usually refers to the time starting with a small

adenoma which must have been already present for some time. It is not known how long

adenomas sojourn before they can be observed. A clue can be found in the average time

to cancer among patients with familial adenomatous polyposis (FAP), which can be viewed

as a lower estimate for the mean sojourn time of an adenoma, as adenomas are likely to

form early in life in FAP patients even though the diagnosis of polyposis may not occur until

later. From the age distribution of cancer with polyposis in FAP patients (see [76]), which

peaks around the age of 40, we conclude that the mean sojourn of an adenoma which has

the potential to progress to cancer is likely longer than 40 years since this time generally

represents the time to first diagnosis of the cancer – a first passage time in statistical parlance
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– and not an average time across all adenomas with neoplastic potential including some that

will not turn cancerous in a person’s lifetime. Our estimates of 50-55 years for the mean

duration of an adenoma developing into a detectable carcinoma are therefore not inconsistent

with what can be inferred from the incidence of CRC in FAP.

Identifiability of a malignant progression parameter: Our mathematical analysis

shows the approximate equivalency of the hazard functions generated by the MSCE model

and a model with a single clonal expansion (MSCE-1) that is adjusted for clonal extinction

and delayed by a lag-time representing the mean sojourn time T2 of the surviving malig-

nancy (see Fig. 2.2). Thus, in practice, only the time-scale associated with malignant tumor

progression can be estimated from cancer incidence data but not the full malignant cell ki-

netics given by the rates of malignant cell division α
M

, cell death β
M

, and (per cell per year)

detection ρ. However, assuming plausible values for the cell division rates (α
M

) and a (per

cell per year) cancer detection rate ρ (see sensitivity analysis), we do obtain estimates for the

net cell proliferation rate g
M

in malignant tumors that yield tumor volume doubling times

that are consistent with clinical observations from radiographic imaging of carcinoma (see

Results).

For pancreatic cancer, the estimated sojourn times T2 for male and female preclinical

malignancies are very short, suggesting that the model only captures the short metastatic

phase of the development but cannot identify the sojourn of the primary tumor. It is con-

ceivable that non-invasive precursors, such as the PanINs, interact with stromal components

such as myofibroblasts that facilitate invasion and metastatic colonization [77]. The resulting

colonies may initially grow slowly, perhaps similar to their parental premalignant precursors,

but may acquire an aggressive and expansive phenotype at a later time.

Carcinogenesis may well require more than 2 types of clonal expansions. However, as

shown by Meza et al. [51] for CRC and pancreatic cancer, the main features of the age-specific

incidence curve can almost entirely be explained by the initiation and growth characteristics

of premalignant tumors. Here, we posed the follow-up question: what impact does a second
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clonal expansion (say, representing malignant tumor growth) have on incidence curves. Our

mathematical analysis shows that the impact amounts to a time-translation of the incidence

curve which appears to be identifiable in the SEER incidences studied here. This is consistent

with the common view that premalignant tumors and malignant tumors result from rather

distinct clonal expansions, with markedly different cell kinetics.

Comparison with DNA sequencing studies: For CRC, Jones et al. [78] determined

the time required from the founder cell of an advanced carcinoma to the appearance of the

metastatic founder cell through comparative lesion sequencing in a small number of subjects.

They concluded that it takes on average 2 years for the metastatic founder cell to arise in

a carcinoma and an additional 3 years for the metastatic lesion to expand, thus a total of

5 years to the detection of the (metastatic) cancer after the carcinoma forms. Our model-

derived estimates for T2, the mean sojourn time for preclinical CRC (5-7 years), are therefore

in good agreement with the estimates for CRC using a molecular clock based on mutational

data and evolutionary analysis [78].

Limitations: We previously conducted comparative analyses of incidence data with a vari-

ety of models: simple Markov process models without clonal expansion (e.g., the Armitage

and Doll model [38, 79]), the two-stage clonal expansion (TSCE) model [40, 45], and with

biologically-motivated extensions of the TSCE model [41, 50–52]. Although the latter usu-

ally provide superior fits to cancer incidence data compared to the former [41,51,52], MSCE

models are by no means complete descriptions of the cancer process, but should be consid-

ered biologically-motivated schemata that help to identify critical processes and time scales

in carcinogenesis. The models lack many clinical and biological features that may or may

not be relevant to our understanding of incidence curves. For example, secular trends may

also be viewed as acting quite specifically on biological parameters, while in this study we

employ a statistical approach (the age-period-cohort model [50, 52, 75]) to effectively adjust

cancer incidence for secular trends. Alternatively, in Chapter 3, we perform model selection

allowing such secular trends to act on biological parameters in the case of EAC. Moreover,
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our analyses assume that all clonal expansions give rise to (mean) exponential growth even

though clinical evidence suggests that tumors may slow their growth in a Gompertzian man-

ner due to limited nutrient/oxygen supplies as the tumor develops vasculature [80]. We also

did not model effects of tumor dormancy or potential increases in tumor growth rates due to

subtle selection effects in the somatic evolution of the tumor [81]. The inferred cell kinetics

does represent an average rate which may comprise passenger mutations that confer weak

or no selection and possibly driver mutations that are not rate-limiting (or not requisite)

but are likely to speed up the growth process, as well as spatial (niche) effects and clonal

interference (as suggested by Martens et al. [82]) that have the potential to slow the tumor

growth process. While modeling these processes may well improve our fits and alter certain

parameter estimates, it is unlikely that such fine-tuning will alter the parameters associated

with the basic two (exponential-then-linear) phases of the incidence curves in a significant

way. It is remarkable that in its present form the MSCE model identifies mean sojourn times

for tumors that are broadly consistent with clinical estimates in spite of the considerable

uncertainties of our estimates and ambiguities in clinical observations.

One way to improve the MSCE model and test model assumptions is to incorporate data

from screening and imaging of premalignant as well as malignant tumors. Screening for CRC

provides information on the number and sizes of adenomatous polyps and screen detected

carcinoma. In the case of EAC, screening may include assessment of the presence or absence

of dysplasia and/or chromosomal abnormalities in endoscopic biopsies and surveillance for

early cancer. In Chapters 3-5, we will expand the MSCE model for the case of EAC and

include tissue and screening modules in order to make such improvements and to utilize

screening data. Mechanistic models such as the MSCE model may utilize these different out-

comes to enhance our understanding of tumor initiation, growth, persistence and preclinical

sojourn.

In this study, we demonstrate that the preclinical phase of malignant tumor progression

subtly influences the shape of the age-specific incidence curve, leaving a “footprint” that may

be identified through likelihood based analyses of incidence data after adjusting for secular
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trends. We identify and estimate three characteristic times scales of carcinogenesis: the mean

sojourn time from premalignant cell to first malignant cell, T1; the mean sojourn time from

premalignant cell to first malignant ancestor that generates a persistent clone, T
eff

1 ; and the

mean sojourn time it takes for persistent tumors to develop from a single malignant cell to

clinical cancer, T2. We conclude that malignant clone extinction and tumor sojourn times

play important roles in reducing and delaying cancer incidence and influencing the shape of

incidence curves for colorectal, gastric, and pancreatic cancers.



Chapter 3

Stochastic Modeling of EAC

Progression & Incidence

In the previous chapter, we developed the multistage clonal expansion (MSCE) model as a

general framework to capture the salient features of cancer development. The mathematical

analyses of various incidence patterns showed that the age-specific incidence curves - upon

adjustments for secular trends - are well approximated by a model that explicitly incorporates

the stochastic growth kinetics of premalignant clones, the sporadic appearance of malignant

cells within these clones, and a constant time delay corresponding to the mean sojourn

time of a malignant clone. In all future chapters, we will focus on the EAC-specific version

of the MSCE model, which we will refer to as the multistage clonal expansion for EAC

(MSCE-EAC) model. Here, we expand on the natural history of EAC and explicitly derive

the extended set of equations that are necessary to solve in order to connect the cell-level

processes occurring during EAC progression to population-level data as we did for the general

MSCE model in Chapter 2. Then we will apply this set of mathematical tools, which we

refer to as the MSCE-EAC Cell Module, to EAC incidence and mortality data to explore

recent trends and model projections as part of a comparative modeling project within the

Cancer Intervention and Surveillance Modeling Network (CISNET) of the National Cancer

Institute (NCI).
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3.1 MSCE-EAC Cell Module

The multistage clonal expansion for EAC (MSCE-EAC) model assumes that the stepwise

progression to cancer, formulated mathematically as a continuous-time Markov process, in-

volves tissue alteration whereby part of the distal normal esophageal squamous epithelium

(with variable extent) undergoes metaplastic transformation resulting in a columnar-lined

epithelium called Barrett’s esophagus (BE). This tissue alteration provides a natural starting

point for the cell-level description of the neoplastic progression to EAC, captured by the gen-

eral MSCE model of Chapter 2. A preliminary multistage model for EAC progression from

BE was first described by Jeon et al. [50] and here we extended this model to include the

preclinical, stochastic clonal expansion of malignant cells. Once a tissue conversion occurs

resulting in BE of size X(t) stem cells at random age T
BE

, drawn from an onset time dis-

tribution with density f
BE

, the model continues as the MSCE multi-type branching process

within a BE tissue comprised of X(t) number of stem cells. The MSCE-EAC model is a

continuous time Markov chain that tracks random stem cell counts of five different types at

any continuous time (age) t: Barrett’s metaplasia X(t), pre-initiated P ∗(t), initiated (pre-

malignant) P (t), preclinical malignant M(t), and clinical cancer C(t). Figure 3.1 depicts the

MSCE-EAC model dynamics with analogous cell kinetic rates to the general MSCE model

illustrated in Fig. 2.2a and the additional transition rate ν(t) from normal squamous tis-

sue to BE. Here we will describe the three main modeling components that constitute the

MSCE-EAC cell module: symptomatic gastroesophageal reflux disease (sGERD) component,

hazard component, and temporal trends component.

Component 1. Incorporation of GERD symptoms in BE tissue

conversion

The model assumes the random onset of BE to be exponentially distributed with rate ν(t)

based on data that suggested the cumulative incidence of BE increases approximately lin-

early with age [50, 83]. For a previous 3-stage BE/MSCE model with one clonal expansion
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Figure 3.1: The multistage clonal expansion model for EAC (MSCE-EAC) cell

module. Normal squamous epithelium may transform to BE cells X at a random onset

time with rate ν(t), followed by a ‘two-hit’ tumor initiation process with Poisson initiation

rates µ0 (creating P ∗ progeny), and µ1, which leads to the stochastic appearance of prema-

lignant progenitor P cells in the tissue. Premalignant cells (which we posit to be high grade

dysplasia) undergo a first clonal expansion described by a birth-death-migration process with

cell division rate α
P

, cell death-or-differentiation rate β
P

, and malignant transformation rate

µ2. Malignant cells M , in turn, undergo a second clonal expansion by a birth-death-detection

process with cell division and death rates α
M

and β
M

, respectively. Clinical detection of C

cells occurs through a size-based detection process with parameter ρ. TSG, tumor suppressor

gene.
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stage, Jeon et al. assumed that the rate of BE onset was constant, ν(t) = νBE [50]. However,

recent studies and gastroenterology literature support the opinion that symptoms of gastroe-

sophageal reflux disease (GERD) impact the susceptibility of an individual to develop BE

metaplasia as a protective response of the tissue to cope with the acidic environment [84–86].

Thus, because GERD increases the risk of BE, we assume that the rate of conversion of nor-

mal esophageal tissue to BE metaplasia is GERD-dependent. Here we define symptomatic

GERD (sGERD) patients as those with GERD symptoms occurring weekly or more fre-

quently. With this extension, we model the exponential BE rate, ν(t), as a function of the

prevalence of symptomatic GERD in the population, i.e.,

ν(t) = ν0 ((1− p
sGERD

(t)) +RR · p
sGERD

(t)) , (3.1)

where p
sGERD

(t) is the age-specific prevalence of GERD symptoms, RR is the relative risk of

GERD for BE, and ν0 is a baseline BE rate parameter. Thus, ν(t) is the rate of BE conversion

in a mixed population of people with and without GERD symptoms and includes a baseline

rate ν0 for individuals without GERD and a faster rate for individuals with GERD modeled as

ν0 ·RR. (Calibration of the model of GERD prevalence is discussed below). When assuming

an exponential distribution for BE onset times, the time-dependent density function f
BE

(t)

is given by

f
BE

(t) = ν(t)e−
∫ t
0 ν(s) ds (3.2)

and corresponding cumulative distribution for BE prevalence F
BE

,

F
BE

(t) = Pr[T
BE
≤ t] = 1− e−

∫ t
0 ν(s) ds. (3.3)

Modeling GERD prevalence

We modeled p
sGERD

(t) based on data from one study by Ruigomez, et al. [87] for incidence (by

2-year age intervals) of GERD symptoms among children (n=1700), and another study by

Ruigomez, et al. [88] on incidence of weekly GERD symptoms among adults (n=1996) with

data provided in 10 year intervals. GERD was defined as heartburn and/or regurgitation
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experienced at least weekly in these studies. We found that we could achieve excellent fits

to these data by using simplified, gender-specific models with three parameters, r1, r2, r3,

representing a (slower) transition rate among children, a transition age, and an adult rate

for acquiring weekly GERD symptoms, respectively. See Fig. 3.2 for data fits using this

simple parametric model. Specifically, the green points in Fig. 3.2 correspond to the three-

parameter function p
sGERD

(t) fit to sGERD data, defined as

p
sGERD

(t) = 1− exp(−r1 min(r2, t)− r3 min(0, t− r2)). (3.4)

These gender-specific functions for p
sGERD

(t) are then utilized in the function for the BE rate

ν(t) from Eq. (3.1) along with fixing a value for relative risk RR (we will later set RR = 5

based on data from meta-analyses for BE segments greater than 3 cm in length [84]). The

parameter ν0 will then be the one parameter estimated for BE transition density f
BE

(t) via

the MSCE-EAC hazard function, derived in the next section.

Component 2. MSCE-EAC Hazard Function

The MSCE-EAC cell-level description is linked to the population scale by means of the model

hazard function, defined as the instantaneous rate of detecting cancers among individuals

who have not been previously diagnosed with EAC. This derivation follows the same steps

for solving the hazard function as was provided in Chapter 2 for the general MSCE model

but represents an extension specific for the case of EAC that includes equations for an

‘Armitage-Doll’ type initial, one-time transition (AD transition in Fig. 2.1) from normal

squamous tissue to BE tissue. Thus we mode a multistage step to signify the onset of BE

and then use the generalized MVK model for the following cellular events occurring within

BE. We first introduce the notation for the following random variables of the MSCE-EAC
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Figure 3.2: GERD symptom prevalences for males and females. Gender-specific

modeling results for fitted 3-parameter prevalence function (green points), and the sGERD

prevalence computed from incidence data (blue points) for (left panel) males, and (right

panel) females, all races combined.

multi-type branching process

BE(t) = Bernoulli random variable for BE conversion by time t

X(t) = number of BE stem cells in a tissue at time t

P ∗(t) = number of pre-initiated cells at time t

P (t) = number of premalignant (initiated) cells at time t

M(t) = number of malignant (preclinical) cells (prior to detection) at time t

C(t) = number of cancer cells (after detection) at time t

D(t) = Bernoulli random variable for clinical detection by time t

Let us consider the probability generating function (PGF) Ψ for the entire process starting

at τ = 0, ie. when an individual is born

Ψ(y
BE
, y1, y2, y3, z; t) =

∑
i,j,k,l,n

yi
BE
yj1y

k
2y

l
3z

nP (i, j, k, l, n; t),
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where i, n = {0, 1} and

P (i, j, k, l, n; t)

= Pr[BE(t) = i, P ∗(t) = j, P (t) = k,M(t) = l,D(t) = n|BE(0) = 0, P ∗(0) = 0, P (0) = 0,M(0) = 0, D(0) = 0].

Variables BE(t), D(t) are defined as the following indicator functions corresponding to BE

conversion and EAC clinical detection, respectively

BE(t) =

0 if no BE has not developed by time t

1 if BE conversion has taken place by time t

D(t) =

0 if no cancer detected clinically by time t

1 if a malignant cell is detected by time t. i.e., C(τ) > 0 for some τ ≤ t

The Chapman-Kolmogorov equations governing the transition probabilities for this multi-

stage process include contributions from the initial Armitage-Doll type transition to BE,

the two Poisson transitions to initiation, and the two birth-death-migration processes, all of

which have been derived previously [41,49,89]. The forward Kolmogorov differential equation

for the entire process Ψ(y
BE
, y1, y2, y3, z; τ = 0, t) is given by

∂Ψ(y
BE
, y1, y2, y3, z; t)

∂t
= ν(t)y

BE
− ν(t)Ψ− µ0X(t)(1− y1)y

BE

∂Ψ

∂y
BE

− µ1(1− y2)y1
∂Ψ

∂y1

+ [β
P

+ α
P
y2

2 − {βP
+ α

P
+ µ2(1− y3)}y2]

∂Ψ

∂y2

+ [β
M

+ α
M
y2

3 − {βM
+ α

M
+ ρ(1− z)}y3]

∂Ψ

∂y3

,

(3.5)

where we have suppressed the dependence on (y
BE
, y1, y2, y3, z; t) in Ψ for convenience. This

six-dimensional PDE may be solved by the method of characteristics but poses numerical

issues. Here we will show a more amenable method for solving the generating function using

the Kolmogorov backward equations.

Backward Kolmogorov equations

Beginning with an active BE segment (BE), a single pre-initiated (P∗), premalignant (P ),
or malignant (M) cell at time τ only, we define the following generating functions Φ

BE
,Φ

P∗ ,
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Φ
P

, or Φ
M

, respectively,

ΦM (y3, z; τ, t) = E[y
M(t)
3 zD(t)|M(τ) = 1, D(τ) = 0] (3.6)

=
∑
k,l

yk3 z
l Pr[M(t) = k,D(t) = l|M(τ) = 1, D(τ) = 0]

ΦP (y2, y3, z; τ, t) = E[y
P (t)
2 y

M(t)
3 zD(t)|P (τ) = 1,M(τ) = 0, D(τ) = 0] (3.7)

=
∑
j,k,l

yj2y
k
3 z

l Pr[P (t) = j,M(t) = k,D(t) = l|P (τ) = 1,M(τ) = 0, D(τ) = 0]

Φ
P∗ (y1, y2, y3, z; τ, t) = E[y

P∗(t)
1 y

P (t)
2 y

M(t)
3 zD(t)|P ∗(τ) = 1, P (τ) = 0,M(τ) = 0, D(τ) = 0] (3.8)

=
∑

i,j,k,l

yi1y
j
2y

k
3 z

l Pr[P ∗(t) = i, P (t) = j,M(t) = k,D(t) = l|P ∗(τ) = 1, P (τ) = 0,M(τ) = 0, D(τ) = 0]

ΦBE (yBE , y1, y2, y3, z; τ, t) = E[y
BE(t)

BE
y
P∗(t)
1 y

P (t)
2 y

M(t)
3 zD(t)|BE(τ) = 1, P ∗(τ) = 0, P (τ) = 0,M(τ) = 0, D(τ) = 0] (3.9)

=
∑

i,j,k,l,n

yi
BE

yj1y
j
2y

l
3z

n Pr[BE(t) = i, P ∗(t) = j, P (t) = k,M(t) = l, D(t) = n|BE(τ) = 1, P ∗(τ) = 0, P (τ) = 0,M(τ) = 0, D(τ) = 0]

The generating functions satisfy the following Kolmogorov backward equations

∂Φ
M

(y3, z; τ, t)

∂τ
= −α

M
Φ2

M
(y3, z; τ, t)− βM

(3.10)

− zρΦ
M

(y3, z; τ, t) + [α
M

+ β
M

+ ρ]Φ
M

(y3, z; τ, t)

∂Φ
P

(y2, y3, z; τ, t)

∂τ
= −α

P
Φ2

P
(y2, y3, z; τ, t)− βP

+ [α
P

+ β
P

+ µ2]Φ
P

(y2, y3, z; τ, t)

− µ2Φ
P

(y2, y3, z; τ, t)ΦM
(y3, z; τ, t)

(3.11)

∂Φ
P∗ (y1, y2, y3, z; τ, t)

∂τ
= −µ1Φ

P∗ (y1, y2, y3, z; τ, t)[ΦP
(y2, y3, z; τ, t)− 1] (3.12)

∂Φ
BE

(y
BE
, y1, y2, y3, z; τ, t)

∂τ
= −µ0X(t)Φ

BE
(y

BE
, y1, y2, y3, z; τ, t)[ΦP∗ (y1, y2, y3, z; τ, t)− 1]

(3.13)

∂Ψ(y
BE
, y1, y2, y3, z; τ, t)

∂τ
= ν(τ)[Ψ(y

BE
, y1, y2, y3, z; τ, t)− Φ

BE
(y

BE
, y1, y2, y3, z; τ, t)]

(3.14)

To obtain the hazard function, we first solve for the overall survival function (for EAC cancer

detection), starting at time 0, which in our EAC-specific notation for the MSCE model is

given by

S
EAC

(t) = 1− P
EAC

(t) = Pr[D(t) = 0|BE(0) = 0, P ∗(0) = 0, P (0) = 0,M(0) = 0, D(0) = 0]

= Ψ(1, 1, 1, 1, 0; 0, t)
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where P
EAC

(t) is the probability of a EAC cancer detection at time t,

P
EAC

(t) = Pr[D(t) = 1|BE(0) = 0, P ∗(0) = 0, P (0) = 0,M(0) = 0, D(0) = 0]

We will here denote Φ
M

(1, 0; τ, t) ≡ Φ
M

(τ, t), Φ
P

(1, 1, 0; τ, t) ≡ Φ
P

(τ, t), Φ
P∗ (1, 1, 1, 0; τ, t) ≡

Φ
P∗ (τ, t), Φ

BE
(1, 1, 1, 1, 0; τ, t) ≡ Φ

BE
(τ, t), and Ψ(1, 1, 1, 1, 0; τ, t) ≡ Ψ(τ, t). A dot desig-

nates a first derivative with respect to t. The hazard function, i.e., the rate at which EAC

is detected in individuals who have not been diagnosed before, is given by

h
EAC

(t) = − ṠEAC
(t)

S
EAC

(t)
= −Ψ̇(0, t)

Ψ(0, t)
= − d

dt
ln[Ψ(0, t)]

Numerical solutions

For fixed t, this boundary value system of coupled PDEs in Eqs. (3.10-3.14) can be converted

into an initial value problem (IVP) with the change of variables u = t−τ , where u is the “run-

ning” time. As utilized in Chapter 2, we can use this redefinition and the following method to

solve for the hazard function numerically [67]. Define the following variables for the new IVP:

Y1(u, t) = Φ
M

(τ, t), Y2(u, t) = Φ̇
M

(τ, t), Y3(u, t) = Φ
P

(τ, t), Y4(u, t) = Φ̇
P

(τ, t), Y5(u, t) =

Φ
P∗ (τ, t), Y6(u, t) = Φ̇

P∗ (τ, t), Y7(u, t) = Φ
BE

(τ, t), Y8(u, t) = Φ̇
BE

(τ, t), Y9(u, t) = Ψ(τ, t),

Y10(u, t) = Ψ̇(τ, t) with corresponding initial conditions Y1(0, t) = Y3(0, t) = Y5(0, t) =

Y7(0, t) = Y9(0, t) = 1, Y4(0, t) = Y6(0, t) = Y8(0, t) = Y10(0, t) = 0, and Y2(0, t) = −ρ. Then
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the equations to solve for our IVP are the following

dY1(u, t)

du
= β

M
− (α

M
+ β

M
+ ρ)Y1(u, t) + α

M
Y 2

1 (u, t) (3.15)

dY2(u, t)

du
= 2α

M
Y1(u, t)Y2(u, t)− (α

M
+ β

M
+ ρ)Y2(u, t) (3.16)

dY3(u, t)

du
= β

P
+ µ2Y1(u, t)Y3(u, t)− (α

P
+ β

P
+ µ2)Y3(u, t) + α

P
Y 2

3 (u, t) (3.17)

dY4(u, t)

du
= 2α

P
Y3(u, t)Y4(u, t) + µ2(Y4(u, t)Y1(u, t) + Y3(u, t)Y2(u, t))

− (α
P

+ β
P

+ µ2)Y4(u, t)

(3.18)

dY5(u, t)

du
= µ1Y5(u, t)(Y3(u, t)− 1) (3.19)

dY6(u, t)

du
= µ1(Y6(u, t)Y3(u, t)− Y6(u, t) + Y5(u, t)Y4(u, t)) (3.20)

dY7(u, t)

du
= µ0XY7(u, t)(Y5(u, t)− 1) (3.21)

dY8(u, t)

du
= µ0X(t)(Y8(u, t)Y5(u, t)− Y8(u, t) + Y7(u, t)Y6(u, t)) (3.22)

dY9(u, t)

du
= ν(u)(Y7(u, t)− Y9(u, t)) (3.23)

dY10(u, t)

du
= ν(u)(Y10(u, t)− Y8(u, t)) (3.24)

Note that first 8 equations, Eqs. (3.15-3.22), are the same as the entire set of Eqs. (2.15-

2.22) for the general MSCE model of Chapter 2. With the two new ODEs accounting for the

Armitage-Doll transition to BE with non-constant rate ν(t), we may solve these 10 coupled

ODEs numerically to obtain the EAC hazard and survival functions,

h
EAC

(t) = −Y10(t, t)/Y9(t, t) (3.25)

S
EAC

(t) = Y9(t, t). (3.26)

MSCE-EAC convolution formula

For EAC, we follow the derivation of a preliminary BE/MSCE model [50] to alternatively

construct the hazard function of the MSCE-EAC model as the combination of two stochastic

processes: the random occurrence of BE and the multistage carcinogenesis process arising
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in BE. Mathematically, the MSCE-EAC probability density function may be written as a

convolution of the BE conversion density f
BE

(which we will assume to be exponential,

defined in Eq. (3.2), in Chapters 3-5) and the MSCE model density after BE onset, f
MSCE

:

f
EAC

(t) =

∫ ∞
0

f
BE

(u)f
MSCE

(t− u) du (3.27)

=

∫ t

0

f
BE

(u)f
MSCE

(t− u) du, if u > t, then f
MSCE

= 0 (3.28)

First, we can compute the hazard as follows

h
EAC

(t) = − ṠEAC
(t)

S
EAC

(t)
=
f
EAC

(t)

S
EAC

(t)
(3.29)

=

∫ t
0
f
BE

(u) · f
MSCE

(t− u) du

1−
∫ t

0

∫ s
0
f
BE

(u)f
MSCE

(s− u)) du ds
(3.30)

=

∫ t
0
f
BE

(u) · f
MSCE

(t− u) du

1−
∫ t

0
f
BE

(u) · (1− S
MSCE

(t− u)) du
(3.31)

where S
MSCE

= Y7(t, t) and f
MSCE

= −Y8(t, t) are the numerical solutions to Eqs. (3.21-3.22),

which were previously defined in Chapter 2. As with the numerical solution for h
MSCE

(t)

provided in Eq. (3.25), Eq. (3.31) does not require the biological rates of the model to be

constant.

Analytical Approximation with MSCE-1

With this convolution formula for the EAC hazard function, we will apply the results from

Chapter 2 to derive an analytical hazard function for the MSCE-EAC model approximation.

With the assumption of constant parameters except for age-dependent ν(t), we can avoid

numerical solvers by using the MSCE-1 approximation from Chapter 2 for the set of ODEs

in Eqs. (3.15-3.24). Thus, for t such that t
lag
≤ t,
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Figure 3.3: The MSCE-1 approximation for MSCE-EAC. The MSCE-EAC model

is well approximated by the MSCE-1 approximation that includes an effective malignant

transformation rate µ
eff

2 (see Chapter 2) and a constant lag-time for tumor progression. This

approximate model does not include a random variable M(t) for the number of malignant

cells at time t.

h
EAC

(t) ≈
∫ t−t

lag

0 f
BE

(u) · f
MSCE−1

(t− u)du

1−
∫ t−t

lag

0 f
BE

(u) · (1− S
MSCE−1

(t− u)) du
(3.32)

=

∫ t−t
lag

0 f
BE

(u) · h
MSCE−1

(t− u) · S
MSCE−1

(t− u) du

1−
∫ t−t

lag

0 f
BE

(u) · (1− S
MSCE−1

(t− u)) du
(3.33)

=

∫ t−t
lag

0 f
BE

(u) · h
MSCE−1

(t− u) ·
(
e
−

∫ t−u
0 h

MSCE−1
(s)ds

)
du

1−
∫ t−t

lag

0 f
BE

(u) ·
(

1− e−
∫ t−u
0 h

MSCE−1
(s)ds
)

du
. (3.34)

where we note that f
MSCE−1

(t − u) = 0 for u > t − t
lag

. Again, the 3-stage MSCE-1 model

hazard approximates the MSCE hazard (proof in Chapter 2) and was previously defined in

Eq. (2.36) as

h
MSCE−1

(t) = µ0X

1−

(
q
eff

P
− peff

P

qeff
P
e−p

eff

P
(t−tlag) − peff

P
e−q

eff

P
(t−tlag)

)µ1/αP
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where

t
lag

= T2 (see Eq. (2.32))

p
eff

P
=

1

2

(
−(α

P
− β

P
− ρ)−

√
(α

P
− β

P
− µeff

2 )2 + 4α
P
µ

eff

2

)
q
eff

P
=

1

2

(
−(α

P
− β

P
− ρ) +

√
(α

P
− β

P
− µeff

2 )2 + 4α
P
µ

eff

2

)
See Fig. 3.4 for a comparison of the three hazard functions fitted to SEER incidence that

we derived for the MSCE-EAC model: the full numerical hazard (Eq. (3.25)), the convolution

hazard (Eq. (3.31)), and the analytical MSCE-1 approximate hazard for EAC (Eq. (3.34)).

In the next component, we will describe how the MSCE-EAC model hazard is employed to

fit biological model parameters to EAC incidence data.

Component 3. MSCE-EAC likelihood and trends

EAC incidence has increased approximately six-fold in the US since 1975, as reflected in the

SEER data [7]. To explore the mechanism of such a dramatic increase, we systematically

applied parametric period and cohort trends to the biological parameters of the MSCE-EAC

model, and used likelihood methods for model comparison and selection of the best model fit

to SEER incidence. Both linear (two parameter) and sigmoidal (three parameter) trends by

cohort and/or period were applied to one or more of the five biological processes represented

by the MSCE-EAC model: 1) the transition from normal to BE tissue (ν(t)), 2) the rate of

two rate-limiting mutations transforming BE stem cells to premalignant cells (assumed to

be equal for identifiability, µ0, µ1), 3) clonal expansion of premalignant cells (g
P

and α
P

),

4) malignant transformation (µ2), and 5) clonal growth of malignant tissue (g
M

and α
M

).

This analysis identified a highly significant sigmoidal birth cohort effect when modifying the

growth rates of premalignant and malignant cells, with rates for malignant growth estimated

to be significantly larger than those for premalignant growth (see [90] for more details about

model selection). In this section we will provide the sigmoidal parameterization of the

birth cohort effect and then the MSCE-EAC likelihood function used to calibrate the model



58 CHAPTER 3

30 40 50 60 70 80

0
10

20
30

40

Age

A
ge

-s
pe

ci
fic

 In
ci

de
nc

e/
10

0K
numerical hazard

convolution formula

MSCE-1 approximation

1.25

.75

.50

.25

Figure 3.4: Comparison of three methods to compute the hazard h
EAC

(t). Black

solid lines are solutions of 10 coupled ODEs, given in Eq. (3.25), blue dashed lines are

solutions to the convolution formula, given by Eq. (3.31) involving numerical solutions to

S
MSCE

= Y7(t, t) and f
MSCE

= −Y8(t, t), and red dotted lines are MSCE-1 approximation

hazard, given by Eq. (3.34), which includes effective mutation rate µ
eff

2 and analytical mean

sojourn time of malignant tumor T2. When the MSCE model parameters are constant, the

third solution is analytical and requires no numerical solution of ODEs. Curves with circles

correspond to actual model fit with biological parameters fit to SEER incidence data for US

males of all races, born in 1950. Other four curves examine accuracy of approximation by

changing malignant cell proliferation, gM , by factor indicated. As was derived in Chapter 2,

the approximation weakens as gM approaches gP .
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parameters. The outcomes of such fitted parameters for EAC will be discussed more in the

application presented in the following section.

Let bk represent the birth year for birth cohort, indexed by k. For a person born in birth

cohort k, the sigmoidal shape for premalignant (P stem cells) growth rate g
P,k

, cell division

rate α
P,k

, and cell death rate β
P,k

are given by

g
P,k

= g
P,0

(
g1 +

2

1 + e(−g2 (b
k
−g3 ))

)
(3.35)

α
P,k

= α
P,0

(
g1 +

2

1 + e(−g2 (b
k
−g3 ))

)
(3.36)

β
P,k

= α
P
− µ2 − gP,k

(3.37)

Similarly, for a person born in birth cohort k, the sigmoidal shape for malignant (M stem

cells) growth rate g
M,k

, cell division rate α
M,k

, and cell death rate β
M,k

are given by

g
M,k

= g
M,0

(
g1 +

2

1 + e(−g2 (b
k
−g3 ))

)
(3.38)

α
M,k

= α
M,0

(
g1 +

2

1 + e(−g2 (b
k
−g3 ))

)
(3.39)

β
M,k

= α
M
− ρ− g

M,k
(3.40)

The model estimates values for g
P,0
, g1 , g2 , g3 (reference year), for each b

k
. Assumptions must

be made for values of the background cell division rates, α
M,0

and α
P,0

, and the background

malignant proliferation rate g
M,0

. This will be discussed more in the next section.

We use maximum likelihood methods to fit to EAC incidence from SEER for ages 1 to 84

and calendar years 1975-2010 with this “Age-Cohort (AC) model.” Explicitly, the expected

number of EAC cancers at age ai, period (calendar year) pj, and birth cohort bk = cj − ai is

Λ
i,j

= PY
i,j
h

EAC
(ai, bk), (3.41)

where PY
i,j

is the number of person years of age ai and period pj (also provided for specified

‘at risk’ US population by SEER [7]), and the birth cohort specific hazard is

h
EAC

(ai, bk) = h
EAC

(t|t = ai, bk) (3.42)
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The likelihood is then given by

L =
∏
i,j

Λ
i,j

exp−Λ
i,j

Oi,j!
, (3.43)

where Oi,j is the number of observed EAC cases for age ai and period pj (from SEER).

As mentioned previously, the analytical, approximate form of h
EAC

(t) from Eq. (3.34) can

be used in this likelihood function to obtain MLE estimates when biological parameters are

constant (excluding ν(t), which may be age-dependent in the convolution during estimation).

For the best-fitting model with a sigmoidal birth cohort effect on premalignant and malig-

nant cell proliferation rates, this method of estimation may be used for each birth cohort

individually (see Fig. 3.4 for approximation accuracy).

These three components complete our description of the MSCE-EAC cell module that

mathematically formulates the multistage clonal expansion process for EAC on the cellular

scale and connects this process to the population scale via the MSCE-EAC hazard function,

which is amenable to maximum likelihood calibration. In the next section, we will present

motivation, methods, and results obtained from fitting the MSCE-EAC cell module to SEER

incidence data used to predict future EAC trends.

3.2 CISNET Base Case I: Model Calibration to EAC

Incidence

Recent analyses of historical trends in EAC incidence and mortality in the U.S. suggest

that EAC incidence continues to rise, although the EAC incidence rate may be beginning

to plateau in recent years [5, 91]. Projections of future EAC incidence and mortality would

provide important data for health policy makers as they track cancer trends and plan ap-

propriate cancer control policy. In this analysis, we collaborated with two other modeling

groups in the Cancer Intervention and Surveillance Modeling Network (CISNET) Esophagus

group, as introduced in Chapter 1, in a comparative modeling exercise to make future EAC
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incidence and mortality projections (for the complete publication, see [6]). We termed this

analysis “Base Case I .” Three independent models (including the MSCE-EAC model) were

calibrated to historic EAC incidence and mortality rates between the years 1975-2010 for all

males and all females from the SEER 9 database [7]. The models were used to generate inde-

pendent projections of EAC incidence and mortality to the year 2030. We also outputted the

BE prevalence, cancer progression rates in patients with BE, and the average EAC sojourn

time (time interval between preclinical EAC and clinically detected EAC); all are impor-

tant underlying factors that may be subject to secular trends related to period and/or birth

cohort. In modeling these trends we developed a better understanding of the observed in-

creases in EAC incidence and mortality. In this section, we will focus on the methodology

(continuing from the previous section) and calibration results produced by the MSCE-EAC

cell module. However, we will also include a few results that compare the MSCE-EAC out-

comes produced by the two other mathematical models (see full publication [6] for inclusion

of all results).

3.2.1 Materials and methods

Common calibration targets

All three CISNET models were calibrated to EAC incidence rates from the SEER9 program

data for men and women of all races aged 20-84 years in the United States from 1975-2010.

The cancer incidence rates are comprised of cancers defined/identified by the International

Classification of Diseases for Oncology, third edition (ICD-O-3) histology codes 8140- 8141,

8143- 8145, 8190- 8231, 8260-8263, 8310, 8401, 8480-8490, 8550-8551, 8570-8574, and 8576.

Standard mortality statistics are not available for EAC because death certificates do not

include the histology of the cancer (esophageal squamous cell cancer (ESCC) vs. EAC).

However, incidence-based (IB) mortality data in SEER utilize cancer registry information

to link characteristics of the incident cancer (e.g. stage, histology) to individual death

certificates [92]. Here we use the survival rates given for the EAC cases compiled in SEER
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stratified by gender and age groups, as model inputs to calculate the mortality rates. All

three models also use U.S. census data and projections for past (from 1975 onwards) and

future (up to 2030) population size [93].

Model outputs

The primary endpoints or model outputs for this study were the projections of overall EAC

incidence and mortality rates up to calendar year 2030. For the MSCE-EAC model, SEER

incidence rates for years 1975 to 2010 were organized by birth cohorts, based on model

selection described in the previous section [90], and used as input in the likelihood function

(see Eq. (3.43)) to estimate the biological model parameters. Other predictions included

the average time between developing preclinical cancer and cancer diagnosis (EAC mean

sojourn time given by T2 in Eq. (2.32)) and the annual rate of patients diagnosed with BE

(without dysplasia) progressing to clinically diagnosed EAC, to be compared with rates in

the literature. These progression rates were calculated for age-at-diagnosis with BE at age 60

and with five years of follow-up time. The cancer progression rate measures the percentage

of BE patients who advance to EAC annually. Additional intermediate outputs included

the prevalences of GERD (see Eq. (3.4)) and BE (see Eq. (3.3)) adjusted to the 2000 U.S.

population.

3.2.2 Results

Parameter identifiability and estimates

All cellular kinetic model parameters were estimated using a maximum likelihood method

to obtain optimal fits to SEER incidence data. We obtained 95% credible intervals for these

estimates using Markov Chain Monte Carlo (MCMC) to sample the posterior distribution

of the mddl parameters. All MCMC runs were started with the parameters set at (or near)

their respective maximum likelihood estimates (MLEs) and appeared to converge rapidly

after a short 1000 cycle burn-in period. The maximum likelihood values were estimated
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using the Davidon-Fletcher-Powell gradient search method, available in the R software Bhat

package online [94].

During estimation, we compared multiple models by fixing g
M,0

and detection rate ρ to

different values in order to achieve reasonable mean sojourn times and tumor doubling times

that are in line with clinical data. We estimated the EAC clinical detection rate ρ = 10−9 per

cell/year, and malignant cell proliferation rate g
M,0

= 0.75 per cell/year. We fixed α
P,0

= 10

per cell/year, and α
M,0

= 150 per cell/year, and also set the number of stem cells in an

average 5 cm BE segment X = 106. With these assumptions, we obtain the parameter

estimates provided in Table 3.1. We will continue to use these parameter estimates for the

illustrations and examples presented in the following chapters.

Table 3.1: MSCE-EAC model biological parameters.

Value (95% CI) Males Females

ν0 3.65 (3.19− 4.13)× 10−4 7.48 (4.87− 10.29)× 10−5

µ0(µ1) 7.99 (6.38− 9.83)× 10−4 7.05 (6.13− 12.25)× 10−4

µ2 4.54 (3.65− 6.47)× 10−5 6.89 (3.16− 14.28)× 10−5

g
P,0

∗ 9.91 (9.28− 10.99)× 10−2 1.23 (1.06− 1.35)× 10−1

g1
∗ 5.09 (2.75− 5.90)× 10−1 6.40 (2.16− 8.44)× 10−1

g2
∗ 5.38 (4.83− 5.72)× 10−2 2.98 (2.47− 3.44)× 10−2

g3
∗ 1912.5 (1909.1 - 1914.1) 1945.3 (1923.9 - 1954.4)

All parameter estimates fit to SEER incidence data and have the units of per cell per year.

Markov Chain Monte Carlo 95% credible intervals provided beside the maximum likelihood

estimates.

∗Parameter elements of sigmoidal functions for clonal proliferation provided in

Eqs. (3.35-3.40).
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EAC incidence and projections

After estimating the MSCE-EAC model parameters, it is straightforward to calculate the

predicted EAC incidence for each birth cohort k into the future by computing the hazard

function with the estimates as input for any t > b
k
. See Fig. 3.5 for the age-specific male

(upper panel) and female (lower panel) incidence rates until year 2030 for each birth cohort

separately, with model predictions produced by the MSCE-EAC cell module. All three

CISNET models projected that the male EAC incidence will continue to increase. For later

male birth cohorts, incidence results show that the incremental differences between birth

cohorts has decreased, indicating a deceleration of the birth cohort effect. For females, the

projected incidence rates from all models also showed increasing incidence rates by advancing

birth cohorts. However, the slowing trend in the incremental differences between birth

cohorts was not as clear, likely due to the relatively low incidence rates for females with

greater statistical variance of the estimated parameters resulting in model predictions with

greater uncertainty. After aggregating the projections for all cohorts, the total EAC incidence

rate for males (upper panel) and females (lower panel) between ages 20-84 (age-adjusted to

the 2000 U.S. population) were calculated with the MSCE-EAC cell module and are shown

in Fig. 3.6, along with results from the other two models for comparison (mortality rates not

shown, see [6]). Despite the differences in approach and mathematical formalism between

the three models, all three models yielded small variations in their model fits to SEER and

projections to 2030 for total EAC incidence rate. The three models all projected an increase

in EAC incidence until 2030. The ranges of incidence rate for all males in 2030 predicted

by three models was 8.4-10.1 cases per 100,000 person years. This translates to a 7-10 fold

increase in the EAC incidence rate, from 1975 to 2030. For all females, the future incidence

rate in 2030 was estimated to be 1.3-1.8 cases per 100,000 person years. From 1975 to 2030,

the incidence rate for females was estimated to increase by 8-9 fold.
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Figure 3.5: MSCE-EAC calibration to EAC incidence with projections by birth

cohort. Age-specific male (upper panel) and female (lower panel) incidence rates by 10 year

birth cohorts, all races combined. Available SEER data shown by dotted lines, MSCE-EAC

model fits shown by solid lines, with projections until year 2030. The cohort born in 1959

would be 71 years old in calendar year 2030.

EAC progression rate from BE

The annual rate of BE patients progressing to clinical EAC predicted by the MSCE-EAC

model are shown in Fig. 3.7 for males (left panel) and females (right panel), along with re-
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Figure 3.6: MSCE-EAC incidence projections compared to other models. Age-

specific male (upper panel) and female (lower panel) incidence rates, all races combined.

Available SEER data shown by black line, model fits shown by colored solid lines, with

projections until year 2030. MSCE-EAC model results denoted by “FHCRC,” orange lines.
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sults from the other two CISNET models for comparison. The results are shown for patients

born between year 1915 to 1970 (these patients will be at age 60 between year 1975 and

2030) who were diagnosed with non-dysplastic BE at age 60 with five years of follow-up

time. Again, we consider the premalignant clones (P clones) of the MSCE-EAC cell module

to be representative of dysplastic lesions within BE tissue. In order for the MSCE-EAC

model to compute this output, the cell module must be supplemented by two other modules,

the MSCE-EAC tissue and screening modules because the progression rate depends on the

physical size of the neoplastic (dysplastic and early cancer) clones for detectability during

endoscopy (see Chapter 4 for full description). Briefly, the tissue module simulates individ-

uals with BE using the cell module parameters for a large sample size (100K for less than

.001 standard error on expected values), records their life trajectories and branching process

cell counts as defined in the MSCE-EAC cell module until an index screen is performed at

age 60, and simulates the spatial position of the clones on a BE segment. Then the screening

module takes this realized BE segment, performs a biopsy protocol in silico that determines if

dysplasia is present, and computes the number of non-dysplastic patients that develop EAC

in the first five years of follow-up. The MSCE-EAC tissue and screening modules will be

described in detail in Chapter 4, but we will include the results for MSCE-EAC progression

rates here for completeness because they were an output for Base Case I . All three models

suggested a strong birth cohort effect on the BE-to-EAC progression rates with increasing

rates in younger birth cohorts until the cohorts born in 1940, followed by a leveling off in

the cohorts born after 1940. For males born after 1940, the ranges of progression rates are

0.10-0.20% per person year. However, the three models predict that in contrast to males,

progression rates for females have not yet leveled off.

EAC sojourn time

As described in Chapter 2, the EAC sojourn time T2 (see Eq. (2.32)) is a useful concept to un-

derstand the nature of disease progression and detection. Again, in the MSCE-EAC model,

T2 is the mean time of a surviving malignant tumor, from time of the first malignantly
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Figure 3.7: MSCE-EAC progression rate from BE to EAC compared to other

models. Non-dysplastic BE to EAC annual progression rates shown for males (left panel)

and females (right panel) by birth year. Progression rates were calculated for age-at-diagnosis

with BE at age 60 with 5 years of follow-up time. MSCE-EAC model results denoted by

“FHCRC,” orange lines.

transformed cell to clinical diagnosis of EAC (ρ event). The capacity of the MSCE-EAC

model to predict this important time scale analytically is a strength and will help us to

examine the impact of screening and specific interventions in the next two chapters. How-

ever, it is difficult to measure in clinical settings since it depends on unobservable events in

the disease process, specifically the appearance and progression of preclinical cancer when

malignant clones originate from a single progenitor cell and begin growing stochastically at

small, undetectable sizes.

The capacity of the models to predict this important time scale is important but the

estimates show considerable differences in spite of model calibrations based on the same

SEER 9 data (see Fig. 3.8). The other two CISNET models do not similarly model preclinical
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cancer beginning with a single malignant cell (see [6] for more details about the other two

CISNET models’ assumptions and structures). The differences between predictions for EAC

sojourn times from the three groups can thus be attributed to fundamental differences in

model structure and model-specific constraints. Unlike the other two CISNET models, the

MSCE-EAC model predicted that the EAC sojourn time decreases with birth year. We

expected this result as consequence of modeling malignant growth with an increasing sigmoid

function defined by birth cohort (see Eqs. (3.38-3.40)). Furthermore, this analytical result

of the MSCE-EAC model structure explains why the progression rate to EAC was predicted

to increase with birth cohort, as seen in Fig. 3.7, due to the decreasing sojourn times of

malignancies to become clinical EAC. The average sojourn times predicted by the MSCE-

EAC model were 10.2 years for males and 13.3 years for females.

3.2.3 Discussion

To summarize the Base Case I analysis, three independent mathematical models were cali-

brated to U.S. SEER 9 data, specifically the EAC incidence and mortality rates from 1975

to 2010. In this chapter, we developed all methodology and assumptions needed for the

three components that constitute the MSCE-EAC cell module. We used likelihood methods

to calibrate the MSCE-EAC hazard function to the SEER 9 data and obtained biological

parameter estimates provided in Table 3.1. The MGH and UW-MISCAN groups performed

this calibration independently also, based on their model constructions. All three models

were then used to generate incidence projections until the year 2030. Although the models

differ considerably in structure and design, from biologically-based modeling at the cellular

level to empirically-based microsimulations of natural histories, the models’ projections (ex-

cluding sojourn time estimates) are consistent with one another. As mentioned in Results,

the longer MSCE-EAC estimates for malignant clone sojourn times are likely a consequence

of defining preclinical cancers as clonal lesions of any size, including smaller and earlier ma-

lignancies such as intramucosal carcinoma that may be difficult to detect endoscopically.
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Figure 3.8: MSCE-EAC mean sojourn times compared to other CISNET models.

Mean EAC tumor sojourn times for males (left) and females (right) of all races, plotted

as a function birth cohort for all three CISNET models. The MSCE-EAC model (FHCRC)

predicts that diminishing EAC sojourn times by birth cohort causes the increased progression

rates for later birth cohorts in Fig. 3.7.

Although results for three outcomes -projected incidence, predicted EAC sojourn times, and

progression rates - are provided in this chapter, Kong et. al provides additional comparative

modeling results for GERD and BE prevalences, projected mortality rates, and predicted

future number of EAC deaths [6].

All three models identify the cancer progression rate (modeled as a birth cohort effect) as

an important driver of the observed temporal trends for EAC incidence (Fig. 3.7). Several

studies have reported the progression rates of patients with non-dysplastic BE to EAC.

Hvid-Jensen et al. reported one of the lower rates of progression, 0.12% per person year to

EAC among patients with non-dysplastic BE and LGD [95]. A meta-analysis by Desai et

al. reported a progression rate of 0.33% per person year from BE to EAC when only higher
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quality, more recent studies were included [96]. A frequently cited progression rate of 0.5%

per person year was reported from a meta-analysis that attempted to adjust, using a funnel

plot, for publication bias [97]. These reported progression rates range between 0.1% and

0.5% per person year and are consistent with our model estimates for younger cohorts.

Our study has several limitations. First, there are other known risk factors associated

with EAC besides those modeled here. For the MSCE-EAC model results, we opted to

model the trend in EAC incidence and mortality by varying the biological parameters using

a generalization of the age-period-cohort (APC) formalism (the other two CISNET models

used similar formulations for risk factors). Thus, varying the transition rates as a proxy for

changing risk factor trends did not allow us to investigate the etiology of EAC or to develop

a cancer prevention and control policy to reduce the risk of developing EAC. However,

the identification of cancer progression as an important driver of EAC trends may provide a

focus for future investigation and possible interventions. We have developed a computational

framework which allows us to update the analysis as additional clinical evidence on the key

risk factor(s) and their impact on EAC emerges. Second, all of our models depict the

biological progression following a specific sequence: healthy, absence or presence of GERD

symptoms, BE without dysplasia, BE with dysplasia, preclinical cancer, and detected cancer.

Although this is the commonly accepted paradigm for EAC carcinogenesis, all EACs may

not follow this prescribed sequence or alternative pathways may exist within this paradigm

adding heterogeneity which the models do not capture [98,99].

Despite the limitations, our study has several strengths. We present incidence and mor-

tality projections to 2030 using comparative modeling to investigate EAC trends in multiple

birth cohorts. By modeling multiple cohorts separately, our models comprehensively cap-

ture incidence and mortality rates with changing age structures as different birth cohorts

age. Our comparative modeling approach compares and contrasts the results from indepen-

dently developed simulation and likelihood-based models using common calibration targets.

The approach to resolve differences in model outputs is one of the benefits of comparative

modeling, which has been used in other CISNET comparative modeling analyses. When
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differences are found, it provides the opportunity to pinpoint the source, which could be

a result of error(s) in the model(s), or a consequence of fundamental lapses in knowledge

surrounding the natural history of the disease. This approach provides a check for model

validity but also the opportunity to identify and discuss gaps in knowledge. This iterative

and in many aspects integrative process is perhaps the major strength of comparative mod-

eling and the CISNET consortium, where preliminary model results can be discussed in an

open and non-threatening environment conducive to model enhancements that improve risk

predictions and therefore credibility.

A statistical analysis on EAC incidence between years 1973-2006 reported that the overall

incidence may be plateauing in recent years [91]. A subsequent analysis which included

three additional years of incidence data found that the EAC incidence rate continues to

increase, although at a decelerating rate [5]. Our projections using three comprehensive

computational cancer models also suggest that the incidence and mortality rates of EAC

will continue to increase; however, the rate of increase appears to be slowing down for the

younger male cohorts. The specific causes of the historical increase in EAC incidence and

mortality remain unclear. However, our modeling of potential drivers behind the increasing

incidence and mortality trends implicates an enhanced BE-to-EAC progression as significant

factor. The future projected increases in cumulative EAC deaths and incidence reflect a

significant concern and burden to society. Our findings highlight the importance of public

health and cancer control planning with potential interventions to curtail projected EAC

morbidity and mortality. The next two chapters will focus on this motive. In Chapter 4, we

develop the methodology for the MSCE-EAC screening model with some applications and

then we present further CISNET comparative modeling results in Chapter 5 with the “Base

Case II” analysis focused on the efficacy of surveillance and impact of endoscopic eradication

of BE.



Chapter 4

Screening for Neoplasia in Barrett’s

Esophagus

In the previous chapter, we focused on modeling the cellular events that occur during

esophageal adenocarcinoma (EAC) progression and connected the multistage clonal expan-

sion for EAC (MSCE-EAC) model to the population level in order to capture and project

EAC incidence in the US population. In this chapter, we present an extension of this method

that includes BE patient screening (before symptomatic, incident cancer occurs) that requires

another level of detail on the tissue scale due to the specific spatial nature of current en-

doscopic screening methods (see [14] for the full publication). Screening is targeted toward

identifying BE patients who are at the highest risk of developing neoplasia (dysplasia and

cancer). Although the risk of BE progressing to EAC is estimated to be low (around 0.2-0.5%

per year [12], see Fig. 3.7), clinical evidence suggests that the risk of neoplastic progression

in BE varies significantly between individuals depending on age, gender, race/ethnicity, gas-

troesophageal reflux disease (GERD) and whether or not dysplasia is present in BE.

High grade dysplasia (HGD) occurring in Barrett’s esophagus (BE) is generally non-

invasive but carries a high risk of progression to esophageal adenocarcinoma (EAC). Low

grade dysplasia (LGD) also occurs, but its clinical relevance is less certain. Most patients

diagnosed with HGD undergo endoscopic mucosal resection (EMR) or treatment with ra-
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diofrequency ablation (RFA) to remove HGD tissue and, in the case of RFA, to reduce the

amount of underlying metaplastic BE tissue. Genetic and genomic studies, including longi-

tudinal studies with multiple BE tissue samples from individual patients in the Seattle BE

cohort [100], also implicate specific genomic alterations in the neoplastic progression process.

Frequently observed alterations in BE include epigenetic silencing or loss of heterozygosity

(LOH) of the P16INK4A and/or TP53 tumor suppressor genes [101–104]. Whether these

alterations necessarily lead to the clinical presentation of dysplasia and other cellular and

architectural changes associated with this diagnosis is presently unknown. However, our

working hypothesis with the MSCE-EAC model is that fields of HGD are comprised of

clonal populations of premalignant P cells that originate from distinct progenitors in the BE

tissue (see Fig. 3.1).

Because dysplasia (in particular HGD) continues to be a widely used clinical predictor

for progression to EAC, most BE patients are recommended to undergo periodic endoscopic

surveillance with biopsies taken at specified spatial locations in BE to detect neoplastic

changes (dysplasia and/or cancer). However, due to the expected large number of adults with

BE in the general population (∼ 1− 3% [83,105]), excessive or ineffective BE screening and

surveillance that do not significantly reduce EAC incidence and mortality are a considerable

public health concern.

To examine these issues, we propose a computational method called the multistage clonal

expansion for EAC (MSCE-EAC) screening model that is used for screening BE patients in

silico to evaluate the effects of biopsy sampling, diagnostic sensitivity, and treatment on dis-

ease burden. We developed this mathematical and computational framework to concurrently

model the BE-to-EAC progression and endoscopic screening for dysplasia and preclinical can-

cer prior to asymptomatic diagnosis of EAC. We will present the screening model as three

cohesive modules. First, we include the MSCE-EAC cell module described in the previ-

ous chapter, which captures key events of the random, GERD-dependent onset of BE, the

initiation and stochastic growth of premalignant clones, malignant transformations in pre-

malignant clones, and stochastic growth of malignant clones prior to (symptomatic) cancer
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detection. Again, this framework provides a bridge between the cell and population scales

and is described in Chapter 3.

The second module is an explicit computational method to efficiently simulate the entire

cell model in an individual BE patient until the time of a hypothetical screen. This requires

computation of the joint size distribution of premalignant and malignant clones in the BE

tissue prior to development of an incident, symptomatic cancer. The method we describe

next captures the clonal progression of an idealized, 2D in silico tissue composed of intestinal

crypts and can generate a variety of spatial patterns (from circular to very diffuse shapes)

of both premalignant and malignant clones within the BE segment of a patient.

The third module simulates an endoscopic screen of a patient’s BE segment. For a

biopsy-based screen, the model mimics the Seattle standard protocol for screening patients

with BE, probing the tissue every 1-2 cm with 4 quadrant biopsies for the presence of

dysplasia and signs of invasive cancer. We show that the efficacy of this protocol is highly

variable and dependent on the sensitivity of detecting neoplastic abnormalities within a

biopsy. This sensitivity also affects the number of dysplastic patients predicted to harbor

undetected malignancy at the time of screening. The outcomes of the biopsy-based screens

are then compared with the model’s prediction for screening outcomes when using high-

resolution optical coherence tomography (OCT), a new screening technology not yet widely

in use. With information about the expected amount of small neoplasms that go undetected

during biopsy-based screening, the model explores the potential advantages that image-based

screening might offer. Finally, this module simulates ablative treatment of BE patients with

detected dysplasia during screening. By explicitly modeling the curative effects of ablative

treatment, we gain insights into the critical factors that may limit treatment success.

4.1 Methods

Here we describe the modular design of the multistage clonal expansion for EAC (MSCE-

EAC) screening model. The first module is the MSCE-EAC cell module described in depth
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in the previous chapter and will not be presented again here. The second module explicitly

simulates the cell model outcomes and spatial organization of premalignant and malignant

lesions in a Barrett’s esophagus (BE) segment. Lastly, the third module simulates an en-

doscopic screen, whether biopsy-based or image-based, at the tissue level to evaluate the

number of BE patients who are positive for neoplasia. These latter tissue level modules

require two new spatial parameters that can be calibrated to reproduce published screening

prevalences of high grade dysplasia (HGD), and then used to predict other outcomes at the

tissue and population levels. Figure 4.1 depicts each level of detail in our multiscale model

for screening an individual BE patient: cell, tissue, and organ.

4.1.1 MSCE-EAC Tissue Module

Our previous work with the stochastic, cell-level MSCE-EAC model did not address the

expected number and sizes of independent focal lesions of each type in a patient’s BE segment

at any given age in his/her lifetime, as depicted in Fig. 3.1. However, this knowledge is

clinically relevant for effectively monitoring progression to EAC in a BE patient. In this

module, we first describe the computational tool developed to obtain stochastic realizations

of the number and sizes of premalignant and malignant lesions in a BE patient at any given

age. Next, we use these model-derived outcomes of stem cell populations to simulate their

spatial configuration as clonal lesions in the BE tissue, which is important given the spatial

nature of the biopsy screening protocols.

Because the mathematical complexity of this multistage model makes it difficult to derive

tractable analytic size distributions for all cell types through time we resort to direct simu-

lations to track clone number and sizes through an individual’s lifetime. Recent advances in

stochastic simulation allow further efficiency in computation of cell counts, enabling rapid

model testing and examination of many possible scenarios. See Appendix B for the full

algorithm and implementation of the MSCE-EAC hybrid simulation of the number of clones

and their sizes for all cell types present at time ts during a hypothetical screening. We call
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Figure 4.1: The multiscale nature of BE screening. Biopsy screening for BE scales

from stem cells in the crypt (left) to the BE cylindrical segment of the esophagus depicted

(right) with rectangles representing biopsy samples taken during endoscopy via the Seattle

biopsy protocol. The BE segment may have dysplasia and/or malignant tissue patches that

remain untouched after biopsying. During histological preparation, portions of each biopsy

are sliced by microtome and placed on slides for pathologic assessment. Diagnosis is made

by microscopic interpretation of crypt and cellular architecture, reflecting the most severe

tissue grade found on the slides.
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this a ‘hybrid’ simulation because it employs stochastic simulation when necessary but also

makes use of samples from analytical distributions when possible. For the simulation of

premalignant (dysplastic) clones, we employ two methods. The first is an exact method, the

stochastic simulation algorithm (SSA), first described by Gillespie [106], that simulates every

jump in cell count and exponential waiting times between events. The second is a highly

efficient approximation to SSA called τ -leaping. Appendix B explains these two methods and

describes how the MSCE-EAC simulation uses them cooperatively in a highly efficient ap-

proach. The accuracy of both the size distributions generated by the SSA and the τ -leaping

method are shown in Fig. B.1 as Q-Q plots for the size distributions of non-extinct premalig-

nant clones compared to the analytical distribution for an independent birth-death-mutation

(b-d-m) process.

With cell module parameters as input, the MSCE-EAC hybrid algorithm simulates the

multi-type branching process for an individual’s cellular progression from birth until time

(age) ts, which can be repeated to generate (synthetic) data for a sample population. In

summary, for those individuals who are found to have BE when screened, each patient has a

specific number of BE stem cells (X), number of pre-initiated cells (P ∗), a number of non-

extinct premalignant (P ) clones with respective sizes, a number of non-extinct malignant

(M) clones with respective sizes and information about the parental P clones from which

the M clones originated, and lastly whether the patient is a prevalent, clinical EAC case

by time ts. Note, the stochastic model allows the possibility that the ancestor premalignant

clone may go extinct while the malignant clone is still growing at the time of screening ts.

Figure 4.2A shows the random trajectories for a simulated BE patient’s clones obtained via

this algorithm for the five years of life prior to initial screening at age ts = 60.

Crypt-structured spatial modeling of neoplasia

Thus far, the MSCE-EAC tissue module has employed the cell-level rate parameters, de-

scribed and fitted to population data in the MSCE-EAC cell module (Chapter 2), to obtain

realizations of the multi-type branching process for a BE patient until time of screening. In
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this section, we translate the size, in terms of the number of stem cells, in each neoplastic

lesion simulated by the hybrid algorithm to the actual 3D size of the neoplasm within the

BE segment, which is important for predicting what is detected during an endoscopic screen.

This translation requires us to consider the known spatial characteristics of BE tissue bi-

ology. The metaplasia that defines BE is made up of a monolayer of epithelial cells that

form crypt-like depressions in the underlying connective tissue of the lamina propria that are

considered the basic functional unit of BE tissue [107]. These units (or crypts) are renewed

through asymmetric stem cell divisions that produce differentiated cells, which eventually die

or are sloughed off the surface epithelium. Putative stem cells found at or near the crypt base

appear to escape this flow. Thus, under homeostatic conditions, the stem cell populations

are assumed to remain immortal in the tissue before initiation of dysplasia. However, once

a stem cell is initiated (which requires two-rate limiting events in the present form of the

MSCE-EAC model), it may undergo stochastic clonal expansion through symmetric divisions

that produce two identical initiated stem cells or two cells committed to differentiation, or

it may undergo cell death (apoptosis).

Although the mechanisms regulating neoplastic growth across crypt structured tissues

are not well understood [108], it is generally assumed that initiated stem cells either spill

over and invade neighboring crypts (“top-down” hypothesis) or that bifurcation of crypts

may occur in a process called crypt fission that leads to clonal expansion at the crypt level

(“bottom-up” hypothesis) [108]. Recent studies favor clonal expansion by crypt fission as the

dominant mode of generating mutated crypts in the human colon that form adenomas [108].

Our computational model includes the assumption that crypt fission drives the spatial growth

of neoplastic lesions in BE.

Due to this spatial structure of crypt openings at the epithelial surface, we can represent

the neoplastic clones on a 2D plane even though the crypts in BE constitute a 3D tissue as

depicted in Fig. 4.1. We introduce a single adjustable parameter for stem cell area density, σ,

which equals the number of stem cells per mm2. In relation to the cryptal organization of the

BE segment, this area density can be defined as σ = cσ · k, where cσ is the number of crypts
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per mm2 and k is the number of BE stem cells maintaining each crypt. Although σ is the

parameter we will vary in our model, we introduce this representation because experimental

estimates are reported in terms of crypts and stem cells in each crypt. Estimates for the crypt

density cσ in BE epithelium appear to show large inter-individual variation. For example,

a recent study following a cohort of BE patients found cσ to range from 3 to 100 (10,000

- 400,000 crypts per ∼ 38cm2) [109]. The cause and significance of this variation remains

unclear.

Similarly, the stem cell population size k maintaining the crypt’s stem cell niche is also

highly uncertain according to estimates provided in the literature on epithelial crypts. For

colonic crypts, Nicolas and colleagues estimated there are between 8 and 20 stem cells per

crypt [110], yet earlier methylation studies reported ∼ 64 per crypt [111]. There is also

evidence that stem cell numbers may be significantly higher in dysplastic crypts in the

colon [112]. Combined, these estimates of cσ and k provide us with an estimated range of

σ ∈ [24, 6400]. Because of the high experimental uncertainty for the parameter σ, we allow

this to be a variable parameter in our model (see Results for our calibration of σ).

To generate the spatial representation of the clones, each premalignant clone is randomly

placed on a hexagonal grid representing the crypt-structured BE tissue. While the overall

area occupied by a clone is controlled by the number of stem cells it contains and the stem cell

density σ, the spatial appearance of the clones is independently controlled by a diffusivity

parameter γ. Briefly, clones are compact when γ > 0, becoming nearly circular when γ

approaches 1. Alternatively, clones are made increasingly more diffuse and branching when

γ < 0. Like σ, the spatial irregularity of neoplasm growth in BE tissue is not well known.

Thus, like σ, we will consider γ as a second spatial parameter in our model.

More specifically, we model the probability that crypt j will be the next premalignant

occupied area on a grid during crypt fission as a clone grows to the predetermined size
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produced by the MSCE-EAC simulation, beginning with a single progenitor P cell, to be

p
j
(t+ 1) = Pr[crypt j will be occupied as new daughter neoplastic crypt at time t+ 1]

=

(∑6
i=1Nj

(t)

6

)γ

, (4.1)

where N
j
(t) is a list that contains the states (vacant = 0, occupied= 1) of all the neighboring

crypts for crypt j at time t. With a total of 6 neighbors on a hexagonal grid, the quantity∑m
i=1Nj (t)

6
equals the mean neighborhood occupation. The simulation generates clones that

are compact and nearly circular when γ > 0 because neighbor probabilities for the poten-

tial occupant are exponentiated by a positive number γ; neoplastic crypts with the lowest

number of neoplastic neighbors will be selected preferentially to undergo crypt fission in the

simulation. When γ < 0, the clones will grow in an increasingly more diffusive manner since

there is a high relative probability, with a maximum proportional to
(

1
6

)γ
, that a neoplastic

crypt with few neighbors, say, on a “branch” of a clone, is chosen to undergo crypt fission.

Under our model, any premalignant ancestor cell may generate a neoplastic clone in-

cluding a simulated number of premalignant cells and possibly an embedded population of

independently expanding malignant cells that originate from malignant transformation(s)

with rate µ2. To accommodate malignant tumor growth, we assume that malignant crypts

simply displace the pre-existing premalignant crypts, a circumstance that is often seen in

esophagectomy specimens [113].

In summary, for each BE patient, the MSCE-EAC tissue module first obtains the number

and sizes of both premalignant and malignant clones (at time ts) randomly generated by the

MSCE-EAC hybrid simulation and then translates these numbers to a spatial configuration

of neoplasms within a patient’s BE segment. To illustrate this, we use the simulated patient’s

cellular information provided from the MSCE-EAC simulation shown in Fig. 4.2A, and show

in Fig. 4.2B the corresponding ‘rolled out’ BE cylindrical segment generated with the spatial

representation of the clones as described above, using the choices of σ = 3300 stem cells/mm2

and γ = −2. Simulated premalignant and malignant lesions are depicted in dark pink and

red, respectively. The black, dotted line rectangles represent the location of biopsies taken
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from the tissue under a certain screening protocol that we will explain in the following section.

Figure 4.2: MSCE-EAC tissue module. (Continued on the following page.)
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Figure 4.2: MSCE-EAC tissue module. A) Premalignant (dysplastic) stochastic growth

trajectories are depicted for a sample male BE patient from the 1930 birth cohort, beginning

five years before time of initial screen at age 60. Most dysplastic cell progenies from a single

initiated cell went extinct before examination by endoscopy (trajectories depicted by gray

lines and an ‘x’ at time of extinction). The dysplastic clone trajectories that did not go

extinct before index screen are shown in dark pink with final sizes intersecting the vertical

dotted line at age 60. The dots on the trajectory lines correspond to times of asymmetric

division of a dysplastic cell to produce one dysplastic cell and one malignant cell. Malignant

transformations produce both clones that quickly went extinct before age 60 (black dots) and

non-extinct malignancies (red dot). B) BE segment at time of screening. Same simulated

male patient from (A) with BE of length 5.1 cm. Dysplastic clones (dark pink), malignant

clone (red), and biopsies (black dashed rectangles) are pictured at time of biopsy-based

screening, age 60. Clone diffusivity parameter is γ = −2, stem cell density parameter is

σ = 3300 stem cells/mm2.

4.1.2 MSCE-EAC Screening Module

The MSCE-EAC tissue module computes the number of stem cells in each neoplastic clone

and generates the shapes of these clones within a BE segment at any given age of a patient.

The MSCE-EAC screening module takes this information and performs an endoscopic screen

on this simulated BE segment. Here we outline the methodology for generating model pre-

dictions related to three specific screening outcomes: (1) the probability that small cancers

are missed in HGD patients during biopsy-based screening, (2) the potential gains in neo-

plasia detection probabilities if screening occurred via high-resolution tomographic imaging,

and (3) the efficacy of ablative treatments that result in the curative depletion of metaplastic

and neoplastic cell populations in BE in terms of the long-term impact on reducing EAC

incidence. These model predictions are described in Results.
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Biopsy screens and diagnostic sensitivity

In 1998 the American College of Gastroenterology (ACG) recommended the use of a sys-

tematic sampling method known as the Seattle biopsy protocol rather than random biopsy

sampling of BE tissue during endoscopic screening. This systematic biopsy protocol speci-

fies 4 jumbo quadrant biopsies (∼ 15mm2 of tissue each) every 1-2 cm of the BE length to

achieve increased sensitivity for detection of dysplasia [114–116]. However, a multi-center

study from 34 US states on BE surveillance found that adherence to guidelines was only

seen in 51.2% of cases [117]. The authors also found that longer segment BE, which is more

time-consuming to biopsy, was significantly associated with reduced adherence even though

risk of EAC is considered proportional to the length of the BE segment. In the examples de-

scribed here, we model endoscopic screening conforming with the Seattle protocol, although

the methods may be applied to any protocol of biopsy placement and/or biopsy size during

upper endoscopy. Therefore, the model may be utilized for comparing simulated efficacies

of different screening protocols. As we will see in the scenarios that follow, for an average

esophageal circumference of 75 mm, even the rigorous Seattle biopsy protocol results in large

sampling errors due to the fact that biopsies only sample 4 − 6% of the total BE mucosal

surface for pathologic assessment.

Nearly half of BE surveillance endoscopies in the US are not performed in adherence to

the Seattle biopsy protocol [117] because less tissue is actually sampled than prescribed due

to use of smaller forceps or fewer biopsies taken. Specimens for histology are typically fixed

in formalin, embedded in paraffin, and tissue profiles are cut at 4-5 µm and stained with

haematoxylin and eosin (H&E) [113], but only few histological slides are actually examined

for neoplastic changes per biopsy and the precise method of examining specimens is usually

not described in publications. All of the aforementioned factors may account for the large

range of estimates found for prevalences of dysplasia and/or intramucosal cancer [97, 113,

118–121].

To account for different biopsy protocols, incompletely described histological methods,
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and interobserver variation of neoplasia grade, we present results from the computational

model for different levels of diagnostic sensitivity based on the minimum number of neoplastic

(premalignant/malignant) crypts within a simulated biopsy specimen required for pathologic

diagnosis of dysplasia/malignancy among BE patients without prior diagnosis of EAC. As

depicted in the simulated BE segment of Fig. 4.2B, some biopsy specimens taken via the

Seattle protocol contain varying numbers of neoplastic crypts while missing sizable neoplastic

areas or even entire neoplastic clones. Since the pathologist usually assesses less than 1/10

of the actual specimen after histologic sectioning, there is high probability that, even if

neoplastic crypts exist in a biopsy specimen, no neoplastic crypts are contained on a histologic

slide after sectioning. As a way to capture this sensitivity, we estimated prevalences of

neoplastic tissue for a range of biopsy thresholds, i.e., the minimal proportion of neoplastic

stem cells in a single biopsy needed for the neoplasm to be detectable at time ts. Let nf

be the fraction of neoplastic stem cells present out of the total number of BE cells within a

single biopsy that are required for a positive diagnosis of neoplasia. Recall that the spatial

parameter σ defines the relationship between numbers of cells in each clone and geometric

clone size. As an example, if nf = 1/2, then a simulated patient must have at least one

biopsy (among all of the biopsies obtained via the Seattle protocol) that contains at least

15
2
σ neoplastic cells (50% of stem cells in a single 15mm2 biopsy) for a positive diagnosis

of neoplasia. Therefore, the biopsy sensitivity of a screen simulated by the MSCE-EAC

screening model is interpreted as (1− nf ) · 100%.

For simulations following the Seattle biopsy protocol, the BE segment from the MSCE-

EAC tissue module can be visualized as being partitioned into identical rectangular sections,

which we will call “biopsy quadrants” with a single biopsy in the center of each quadrant.

For example, an average BE segment of length 5 cm and 7.5 cm circumference will have 12

biopsy quadrants, 3 levels of length 5/3 cm with 4 quadrant biopsies each. Furthermore, we

assume periodic boundary conditions when placing clones in a random quadrant, as depicted

in Fig. 4.3, to simulate how many neoplastic crypts will be located within a biopsy sample.

The Results section shows how the spatial characteristics (size and shape) of the clones can
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influence the observed prevalence of a neoplasm in a screened population for a range of biopsy

sensitivities.

High-resolution imaging screens

Beyond different biopsy-based protocols, the screening module within the MSCE-EAC screen-

ing model allows the user to also choose to simulate any screen using high-resolution imag-

ing within the esophagus. The model can perform an optical coherence tomography (OCT)

screen in which a positive detection of HGD and/or malignancy occurs if the geometric size

of a clone on image is greater than a resolution area threshold, a
OCT

. Thus, we no longer

need to consider neoplastic proportion thresholds as introduced previously for biopsy-based

screening, but rather consider a fixed area or caliber threshold of any imaged clone. The

results of an imaged-based screen will again depend on parameter σ to determine if the

geometric size of a clone is above or below an imaging resolution.

Ablative treatment and impact on EAC incidence

After a simulated screen of BE patients for detection of dysplasia and preclinical EAC at

age ts, the MSCE-EAC screening module can be used to further simulate an intervention

such as an ablative treatment using radio frequency. To replicate current practice with

radiofrequency ablation (RFA), we simulate RFA treatment on positively screened, non-

EAC patients with dysplasia. The MSCE-EAC screening module then projects the EAC

incidence, which depends on the stochastic number of stem cells of different types in a BE

patient at the time of screening, into the future after an ablative treatment. Ablation is

assumed to curatively reduce all clonal populations and the number of BE crypts by certain

percentages. As a simple example, we consider the model’s EAC incidence predictions after

a single ablative treatment when indicated by the presence of high grade dysplasia on future

EAC incidence.
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Figure 4.3: Spatially diffuse clone growth on the BE segment. Six examples of

diffusive clone growth are depicted on a light pink single BE biopsy quadrant for a patient

with 5.1 cm BE length. Black dashed rectangles are the jumbo biopsy outlines, dark pink

areas are premalignant (dysplastic) clones and red areas are malignant clones. The sample

premalignant clone that contains a malignancy is from the realization in Fig. 4.2, containing

62,771 dysplastic stem cells and 5,176 malignant stem cells. Together, this mass of crypts

is randomly placed on one of 12 identical biopsy quadrants on this BE segment under the

Seattle biopsy protocol with assumption of σ = 3300 stem cells/mm2. Values for γ diffusivity

parameter of clone growth are shown in top left of each quadrant.
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For all times t > 0, we can compute the cumulative hazard Λ
EAC

(t),

Λ
EAC

(t) = − ln(S
EAC

(t)) = − ln

(
1−

∫ t

0

f
EAC

(s) ds

)
(4.2)

For the initial scenario of screening all individuals at time ts, we derived the MSCE-EAC

cumulative hazard function that includes contributions from the subpopulation of individuals

found to have BE at time ts who, immediately following HGD diagnosis, receive treatment

at time ts; and the subpopulation without BE. For any time t > ts and BE cumulative

distribution F
BE

given in Eq. (3.3), we compute f
EAC

(s) as follows

f
EAC

(s) = f
EAC

(s|T
BE
≤ ts) · Pr[T

BE
≤ ts] + f

EAC
(s|T

BE
> ts) · Pr[T

BE
> ts]. (4.3)

For the screened BE population we follow the method of Jeon et al. [122] to simulate

the four possible types of cells present in a patient at screening time t−s (where the minus

superscript denotes cell populations present prior to any intervention): X = number of BE

stem cells in the BE segment, P ∗(t−s ) = number of preinitiated P ∗ cells, P (t−s ) = number of

initiated, dysplastic P cells (all clones combined), M(t−s ) = number of malignant, preclinical

cancer cells (all clones combined). The MSCE-EAC tissue module simulates realizations of

these random variables for each patient up to the instance of screening t−s , before intervention

occurs. After simulating n independent and identically distributed realizations of individuals

(by gender) and performing the Seattle biopsy screening protocol in silico on those with BE as

described earlier, the screening module provides the vector Ai = {Xi, P
∗
i (t−s ), Pi(t

−
s ),Mi(t

−
s )}

for each patient i with BE, i = 1, .., n.

Next, RFA intervention may be simulated for patients diagnosed with dysplasia by intro-

ducing the following post-ablation proportion vector, ω = {ω
X
, ω

P∗ , ωP
, ω

M
}, that describes

the cell-type specific depletion of BE tissue. For example, to simulate a perfect ablation

of all lesions in BE and of BE metaplasia itself, we set ω = {0, 0, 0, 0}. For those patients

who have a positive screen (showing HGD), we simulate an RFA treatment by adjusting

the patient’s (simulated) cell count vector Ai through component-wise multiplication by ω.

Thus, the post-RFA numbers of cells in each stage of the MSCE process immediately after
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screening and treatment (denoted by time t+s ) are given by the adjusted cell type vector Âi

Âi ≡ ω ◦ Ai = {ω
X
·Xi, ωP∗ · P

∗
i (t−s ), ω

P
· Pi(t−s ), ω

M
·Mi(t

−
s )} (4.4)

= {Xi(t
+
s ), P ∗i (t+s ), Pi(t

+
s ),Mi(t

+
s )}. (4.5)

BE patients with a negative screen for neoplasia sustain the same (before and after) Ai ≡ Âi

vector as was computed at time t−s since no RFA treatment is performed on these patients.

Due to the Markovian renewal property of branching processes, the survival and hazard

functions for each screened patient i = 1, .., n for some time t > ts are computed using the

adjusted numbers for each cell type post screen. These survival and hazard functions for the

4-stage MVK model after BE onset are easily computed using the Kolmogorov backward

equations for the stochastic multistage process. See Appendix B for the full derivation of all

individual contributions to Λ
EAC

(t) defined by Eq. (4.2).

4.1.3 Open source code

The methods outlined in this section are implemented by the comprehensive MSCE-EAC

screening model consisting of three modules: cell, tissue, and screening. All necessary tools

to employ this method, including examples of user inputs used in the upcoming Results, are

available in documented R code at https://github.com/yosoykit/MSCE_EAC_Screening_

Model.

4.2 Results

Clinical studies that assess the efficacy of screening Barrett’s esophagus (BE) patients are

naturally limited by the amount of BE tissue that can be sampled for histopathological

analysis. To gain insights into how this limitation affects screening efficacy we used the

described EAC multiscale method to compute the unobserved proportion of precursor lesions

and early cancers, quantities of clinical relevance for early cancer detection. As shown here,

the multistage clonal expansion for EAC (MSCE-EAC) screening model predicts all lesions in

https://github.com/yosoykit/MSCE_EAC_Screening_Model
https://github.com/yosoykit/MSCE_EAC_Screening_Model
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BE during a patient’s lifetime, including their numbers and sizes. The explicit calculation of

the numbers of stem cells in these lesions is functionally dependent on the model parameters

that, with the exception of the spatial parameters introduced the Methods section, were

previously estimated through model calibrations to EAC incidence data in the US [6]. For

each simulated BE patient, we performed a pre-specified screening protocol to ascertain a

patient’s clinical diagnosis, while also retaining concurrent information on any undiagnosed,

potentially detectable lesions.

In the following results, we first calibrated the two unknown spatial parameters (neo-

plastic lesion shape diffusivity parameter γ and stem cell density parameter σ) to achieve

consistency with current literature findings on the prevalence of the most important neoplas-

tic precursor, high grade dysplasia (HGD), in BE patients, without changing the parameters

that determine the fits to EAC incidence data reported in [6]. Thus fully calibrated, we

then applied the MSCE-EAC screening model to predict three important clinical outcomes,

including biopsy and imaging diagnostic sensitivities and the impact of ablative treatment

on the risk of developing EAC.

4.2.1 Calibration to HGD prevalence data

In the current epidemiological literature, studies beginning with a biopsy-based index screen

of BE patients (i.e., the screen when a patient is first diagnosed with BE) provide widely

variable estimates of the prevalence of HGD, ranging from ∼ 2.75− 8.25% [97,113,118–121].

To compare this with model-derived predictions, we simulated an index endoscopic screen

on a sample population of patients with BE and computed the prevalences of both pre-

malignancy (HGD) and screen-detected (non symptomatic) malignancy. For an illustrative

example of the MSCE-EAC screening model outputs, we simulated an index endoscopy for

all males and females at screening time (age) ts = 60 in the year 1990 (indicative of index

screens from prospective studies that estimate the BE to EAC progression rate). With the

BE prevalence given in Eq. (3.3), these results focus on expected screening outcomes in the
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subpopulation of individuals found with BE (see Methods). Figures B.2-B.3 depict functions

p
sGERD

(t) and BE prevalence, F
BE

(t), for simulated males and females, respectively.

Because the detection of a neoplastic lesion may involve both premalignant and malignant

cells transformed within the lesion, we first consider the (random) sum of the two cell types to

determine the efficacy of the biopsy protocol to detect a neoplastic lesion in BE. The biopsy

sensitivity was varied from 10% to 95%, as seen in Figs. 4.4-4.5, to allow for systematic

exploration of sensitivity effects (see Methods). If a neoplasm is detected on a biopsy, we

doubled the biopsy sensitivity for malignant content because the biopsy is likely under closer

inspection by the pathologist.

Parameter estimation and sensitivity

To compute the prevalence of HGD without concurrent malignancy, we adjusted the BE

population denominator to not include those with screen-detected cancer on index endoscopy.

We then computed the probability of detecting HGD for a range of values for σ and γ. We

found that when σ is assumed to be in the range of 2000 to 5000 stem cells per mm2, the

model produces HGD prevalence estimates that are broadly consistent with the range of

published estimates for the span of biopsy sensitivities (see Fig. 4.4) [97, 113, 118–121]. In

particular, the model estimated an expected range of 2.1%−8.7% for HGD prevalence among

men and an expected range of .85%− 6.1% for HGD prevalence among women when using a

density of σ = 3300 stem cells/mm2. For each choice of σ, the results were mostly insensitive

to the choice of diffusivity parameter γ (see right panel of Fig. 4.4). We present forthcoming

results using the cell-level parameters found in Table 3.1, σ = 3300 (σ ∈ [2000, 5000] shown

for sensitivity illustration), and γ = 1. The model parameters thus reproduce population-

level EAC incidence data (obtained through symptomatic detection [6]) and HGD prevalence

data (obtained from biopsying BE tissue at specific locations using a standard protocol).

By estimating the same breadth of HGD prevalences as studies have reported [97, 113,

118–121], Fig. 4.4 illustrates our prediction that the predicted HGD detection probability is

strongly dependent on nf , the minimum neoplastic tissue fraction for detection in a single
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Figure 4.4: High grade dysplasia prevalences in BE estimated with the MSCE-

EAC screening model. (Left panel) Probability of high grade dysplasia detection among

BE patients simulated by the MSCE-EAC screening model for males (red, solid) and fe-

males (blue, dash-dotted) at initial screen at age 60 for biopsy sensitivities ranging from

10% − 95% and assumed density of σ = 3300 stem cells/mm2 (shaded regions represent

sensitivity of results for σ ∈ [2000, 5000]). Since the sensitivity of each study is unknown,

some representative literature values for the corresponding probability of HGD detection

are depicted as horizontal grey dashed lines at a single percentage level [97, 113, 118–121].

Expected prevalences produced by 100K simulation size of BE patients, shown for males

and females. Simulation standard error is less than .001 for all Results. (Right panel) Male

HGD prevalences produced by diffusive clone growth on hexagonal BE grid, for diffusivity

parameter γ ranging from 1 to −8, versus isotropic, circular clone assumption (red, solid).

Solid red curve is the same as that shown for males in left panel. Probabilities of finding

HGD for spatially simulated diffusive clone growth are shown for σ = 3300 stem cells/mm2

and identical biopsy sensitivities as shown in left panel.
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biopsy (see Methods). Specifically, by increasing biopsy sensitivity from 10% to 95%, our

model predicted that the prevalence of HGD increases 4-fold. Further, even though most

clones remain undetected, the mean number of non-extinct premalignant clones of any size

in this cohort was 6.6 per BE patient (See Figs. B.4-B.7). This modeling result highlights

the prediction that even with rigorous adherence to the Seattle protocol, the majority of BE

patients with concurrent HGD will not be detected nor considered prevalent HGD cases.

4.2.2 Example 1: Missed EAC malignancies in HGD patients

Along with difficulties in first detecting dyplasia present in BE during endoscopic screening,

several studies suggest that many BE patients who are diagnosed with HGD without malig-

nancy actually have an undetected cancer that was missed during biopsy screening [123,124].

The MSCE-EAC screening model estimates the probability that a positive HGD patient ac-

tually harbors a synchronous, occult malignant clone that is not screen-detected either be-

cause it was completely missed in a biopsy sample (e.g. see the small malignancy depicted in

Fig. 4.2B) or because it was undetected in a biopsy for a particular biopsy sensitivity, perhaps

due to insufficient histologic sectioning. This is an interesting, clinically relevant feature of

our modeling. The model predicted the expected fraction of undetected EAC in BE patients

diagnosed with HGD to be between 3.2%− 14.2% for men and 4.3%− 19.3% for women (see

Fig. 4.5). We conclude that the higher probability of missed malignancy in women is due

to the lower probability of finding any neoplasia (due to smaller clone sizes, Figs. B.4-B.7)

in women during index endoscopy (see Fig. 4.4). These predicted ranges are compared with

studies of HGD patients found with concurrent adenocarcinoma, which remained undetected

even by rigorous biopsy protocols but are later discovered during resection of the esopha-

gus [125–129]. However, from these esophagectomy studies conducted over the past two

decades, the reported prevalence of synchronous malignancy among HGD patients widely

varies from 0 − 75%. With strict adherence to the Seattle protocol, our model generated a

lower estimate of concurrent EAC risk in HGD patients than most published studies, yet it
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Figure 4.5: Predicted probability of missed malignancy in positive high grade

dysplasia population at index screen. Percentages of patients diagnosed with HGD

during index endoscopy (denominator is population plotted in Fig. 4.4) who concurrently

harbored missed, malignant clone(s) present on their BE segments that were not detected on

biopsy screen. Since the sensitivity of each study is unknown, literature values for the corre-

sponding probability of missed malignancy are depicted as horizontal grey dashed lines at a

single percentage level [125–129]. One publication included percentage of occult malignancy

after HGD was diagnosed with either standard or jumbo forcep sizes, as indicated [126]. Ex-

pected proportions produced with 100K BE patient simulations each for males (red, solid)

and females (blue, dash-dotted) with assumed density of σ = 3300 stem cells/mm2 (shaded

regions represent sensitivity of results for σ ∈ [2000, 5000]).
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is consistent with the most recent study by Konda et al. when biopsy sensitivity is low [128].

It is also possible that the studies with high estimates of concurrent malignancy were biased

because cancer was suspected in these patients indicating esophagectomy.

4.2.3 Example 2: Predicted HGD prevalence with image-based

screening

High-resolution imaging of BE (a technology still in infancy and not yet widely utilized) may

provide a benefit through the early detection and endoscopic resection of small premalignant

and malignant lesions. The MSCE-EAC screening model can explore the potential quanti-

tative improvements of screening for neoplasia when diagnosed via optical endomicroscopy

compared with a less sensitive biopsy protocol.

To this end, we simulated the results from an optical coherence tomography (OCT) screen

in which a positive detection of HGD and/or malignancy occurs if the geometric size of a

clone on image is greater than a resolution area threshold, a
OCT

(see Methods). Assuming

a
OCT

= 1mm2 and the same assumption for stem cell density σ that was used in previous

results, the HGD prevalence (excluding incident EAC cases) rose to an expected 27.89% for

the BE cohort used in the previous examples (1930 birth year, ts = 60). Therefore, for

the range of probabilities of HGD detection shown in Fig. 4.4, the MSCE-EAC screening

model estimated an expected 68.7% to 92.8% increase in HGD detection probability using a

sensitive imaging technology for screening rather than biopsy-based screening. This modeling

exercise reinforces the conclusion that many neoplastic clones of detectable size are being

missed with current biopsy protocol screening endoscopies.

4.2.4 Example 3: Predicted EAC incidence after treatment

As a third example demonstrating the utility of the MSCE-EAC screening model, we com-

puted the projected cumulative hazard Λ
EAC

(t) in Eq. (4.2) after a single index screen of

BE patients at time ts = 60, removal of screen-detected EAC patients, and subsequent RFA
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treatment of HGD positive patients. We explored RFA efficacy under various assumptions

about the impact of ablation on cell counts, as specified by the ablation proportion vector ω

(see Methods). When comparing to the background incidence (in which no screening occurs),

we predicted the effect on EAC cumulative incidence based on a range of RFA effectiveness

assumptions (See Fig. 4.6). If patients that were positively detected with HGD at index

screen (6% with 60% biopsy sensitivity) receive RFA, the MSCE-EAC screening model pre-

dicted that by year 2030, expected EAC cumulative hazard will be reduced by 17.1% if 50%

of all BE cell types are effectively removed (ω = {.5, .5, .5, .5}) and be reduced by 32.1%

if 99% of all BE cell types are effectively removed (ω = {.01, .01, .01, .01}). To explore

the future influence of missed malignancies, the model predicted that if RFA removed all

malignancies (ω = {1, 1, 1, 0}) but left behind the HGD tissue, then treatment would only

moderately reduce future EAC cumulative hazard by an expected 15.7% before 2030. How-

ever, removing the HGD tissue as well as preclinical malignancies (ω = {1, 1, 0, 0}) during

treatment would create a more significant average reduction in EAC cumulative hazard of

an expected 38.7%. The model’s predictions of the possible RFA effects on cell populations

seem to support the hypothesis that the effectiveness of RFA is determined by its ability to

ablate premalignant (dysplastic) tissue.

Interestingly, even the biopsy procedure on all BE patients offers a slight therapeutic effect

(EAC cumulative hazard will not return to background) by the mere chance of endoscopically

removing, at times, significant amounts of neoplastic tissue in a biopsy specimen, assuming

no adverse effects from wounding associated with tissue removal. These results are clearly

a simplification of a highly variable and complex clinical procedure, representing only a

basic example, but the model is poised to incorporate realistic RFA touch-ups throughout

surveillance, as it occurs in current practice, to give increasingly realistic projections. Beyond

this example of a one-time treatment, we will apply this treatment methodology in the next

chapter to a more complex scenario involving multiple treatments combined with surveillance

biopsies to predict the durability of such eradication therapy and its impact on EAC incidence

and mortality.
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Figure 4.6: Predicted EAC cumulative age-specific incidence by the MSCE-EAC

screening model after RFA treatment of HGD patients at index screen. EAC

cumulative hazard for four different ablation efficiencies of detected HGD patients at screen-

ing of 60 year old males in year 2010. Survival for the four cell types following ablation

modeled are represented by ablation proportion vector ω, with ω = {1, 1, 1, 1} (no treat-

ment, blue line), ω = {.5, .5, .5, .5} (red, circles), ω = {.01, .01, .01, .01} (purple, diamonds),

ω = {1, 1, 1, 0} (light blue, triangles), ω = {1, 1, 0, 0} (green, squares). Scenarios plotted

for σ = 3300 stem cells/mm2 and 60% biopsy sensitivity, resulting in 6% HGD cases, with-

out detected malignancy, in the non EAC population at screening time (100K BE patient

simulation size).



98 CHAPTER 4

4.3 Discussion

Although few Barrett’s esophagus (BE) patients progress to EAC in their lifetime, the cancer

burden is considerable due to generally poor treatment outcomes and survival. EAC con-

tributes approximately 4% to all male cancer deaths in the US [3] with a flattening but still

increasing trend in mortality according to recent projections based on Surveillance, Epidemi-

ology, and End Results (SEER) data [6]. Because BE is an actionable EAC precursor with a

considerable prevalence of 1-3% in the general population [83, 105] (translating into a large

number of individuals) and an annual risk of progressing to EAC of approximately 0.2-0.5%

per year [12], optimal surveillance for neoplastic alterations in BE and effective treatment

strategies are a major challenge to clinicians given the current lack of evidence-based decision

tools. Thus we have developed a detailed multiscale model of EAC to better understand the

natural history and impact of screening, intervention, and prevention of EAC.

The mathematical framework of our multistage clonal expansion for EAC (MSCE-EAC)

screening model describes the step-wise progression and transformation from normal squa-

mous esophageal tissue to a columnar crypt-structured metaplastic tissue in which clonal

expansions of dysplastic and malignant cells can occur. Because the description is fully

stochastic, it affords predictions of important clinical endpoints that reflect the intrinsic

(inter-individual) heterogeneity in the disease process that explains, at least in part, why

some individuals progress to cancer in their life-time while others do not.

In contrast to earlier formulations of the multistage clonal expansion models for EAC [13,

50], which analyzed patterns of EAC incidence in the general population, the present model

includes two novel modules for exploration of clinical endpoints before symptomatic detection

of EAC. The tissue module explicitly computes the number and sizes of neoplastic clones

in a BE patient and quantifies their spatial structure within an idealized crypt-structured

BE segment at time of screening. With this patient-specific information, we then employ

a screening module to perform a screen in silico at a specified screening age. As our BE

screening examples demonstrate, this model extension makes it possible to explicitly explore
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current BE screening efficacy while controlling the operational characteristics of the screening

protocol. We show that the detection of high grade dysplasia (HGD) or cancer using the

standard (Seattle) biopsy protocol is strongly dependent on the minimum neoplastic tissue

fraction needed to be detectable in a biopsy. This sensitivity would be further affected

by altering the spacing between biopsy levels and size of the biopsy forceps according to

different protocols. Additionally, our MSCE-EAC screening model predicts that over 10%

of BE patients screened who receive a diagnosis of HGD with biopsy-based screening also

harbor a missed preclinical malignancy with mid-range biopsy sensitivity. We find that the

overall efficacy of the biopsy protocol is highly uncertain due to variability in tissue sampling

between practitioners and due to considerable uncertainties in the histological assessment of

the biopsied tissues.

Our results also suggest that even the best current biopsy protocols may miss between

70% − 90% of small HGD lesions that are detectable when using high-resolution optical

coherence tomography (OCT) imaging at 1mm resolution. While not yet widely available,

high-resolution OCT allows a more complete (wide-field) examination of the BE segment.

Our results suggest that OCT could surpass the biopsy-based protocols in efficacy to detect

neoplastic lesions. However, because quantitative data with OCT are still lacking, the results

remain somewhat speculative, but serve to demonstrate the potential gains of OCT screening

over the standard biopsy protocol.

Finally, the present framework also allows for the modeling of treatment, such as radiofre-

quency ablation (RFA). Ablation attempts to remove the intestinal metaplasia together with

all neoplastic cells. Assuming that ablation simply decimates the number of BE, dysplastic,

and malignant crypts by specific fractions, we computed the residual cancer risk of EAC

after RFA (see Fig. 4.6). This ‘decimation by fraction’ approach also lends itself to modeling

the curative effect of multiple RFA ‘touch-ups’ delivered over a span of time to improve RFA

efficacy. From the results derived from simulating an ablative treatment on a population of

BE patients found to be positive for HGD during screening, we found that it was crucial to

ablate dysplastic and not only preclinical malignant tissue to achieve the most significant
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impact on future EAC incidence. Although the example given in this study is somewhat

simplistic and does not include the random spatial characteristics of the ablation process,

the model framework can accommodate more complex assumptions regarding the biological

effects of RFA, including random spatial effects of the ablation ‘burn’ and localized presence

of intestinal metaplasia hidden beneath the neosquamous tissue after RFA treatment.

In summary, the MSCE-EAC screening model introduced in this chapter offers a compre-

hensive multiscale method to model the neoplastic processes unfolding in BE together with a

mechano-spatial modeling of the screening process and treatment. Our results demonstrate

the limitations of the standard biopsy-based protocol for the detection of HGD and early

cancer due to a highly heterogeneous distribution of dysplastic precursors and malignant

foci that can arise in dysplasia. We further demonstrate that these limitations could be

overcome by high-resolution OCT imaging which may provide additional biological details

and insights into the cancer process, including the growth dynamics of neoplastic clones (in

particular their numbers and sizes over time), information that can easily be incorporated

into the multiscale description of EAC development and screening presented here.



Chapter 5

Modeling Surveillance and Endoscopic

Eradication Therapy

In the previous chapter on screening patients with Barrett’s esophagus (BE), we intro-

duced the multistage clonal expansion for EAC (MSCE-EAC) screening model that can be

used to evaluate the effects of biopsy sampling, diagnostic sensitivity, and treatment on dis-

ease burden. This computational framework allows evaluation of the efficacy and sensitivity

of current screening protocols to detect neoplasia (dysplasia and early preclinical EAC) in

the esophageal lining. Beyond the results about the role of biopsy and imaging sensitivity

involved in a single endoscopic screen, we also examined the potential efficacy of a one-time

eradicative treatment performed on a population of BE patients in terms of the long-term

impact on reducing EAC incidence. For those patients diagnosed with high grade dyspla-

sia (HGD) at the index screen, we simulated the depletion of metaplastic and neoplastic

cell populations in their BE by a prespecified amount. BE patients who are not detected

with HGD during endoscopic screen do not receive treatment and retain all cell types (even

with possible HGD clones missed during biopsy screening). Then we projected the EAC

cumulative hazard for the entire US male population born in 1950, taking into account the

progression of cell types of three subpopulations of individuals: 1) those BE patients di-

agnosed with HGD (contributions of reduced number of BE cell types after treatment), 2)
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those BE patients with a negative screen for dysplasia (contributions of all BE cell types),

and 3) those individuals who did not develop BE before the index screen (contributions of

lifetime risk of EAC from normal squamous).

After examining these basic treatment scenarios, we use the MSCE-EAC screening model

in this chapter for a more complex, realistic scenario that examines the impact of endoscopic

eradication on EAC incidence and mortality predicted for various long-term surveillance

strategies of BE patients based on presence of certain premalignancy or lack thereof. Ex-

tending the results of a one-time treatment, we will examine model predictions on the dura-

bility of treatment that will involve modeling multiple “touch-ups” during follow-up when

recurrences occur. This project was part of a second comparative modeling analysis with the

National Cancer Institute’s (NCI) Cancer Intervention and Surveillance Modeling Network

(CISNET) Esophagus group, termed “Base Case II,” and we will include the MSCE-EAC

screening model results along with some comparative results in this chapter, all of which are

included in [15].

5.1 CISNET Base Case II: Impact of Endoscopic Erad-

ication Therapy on EAC

Most societal guidelines recommend BE patients undergo endoscopic surveillance with tissue

biopsy to grade the severity of precursor lesions and detect curable neoplasia [130,131]. While

BE with no dysplasia progresses to EAC at a rate of less than 0.5% per year [12,132], BE with

high grade dysplasia (HGD) progresses at a rate of 6%-19% per year [133]. In efforts to abate

this problem, new techniques for endoscopic eradication of BE such as endoscopic mucosal

resection (EMR) and radiofrequency ablation (RFA) have become more widely utilized with

the aim of preventing progression to EAC. Current American Gastroenterological Association

(AGA) guidelines unequivocally recommend such treatment, termed endoscopic eradicative

therapy (EET), only for patients with HGD [134]. The incremental benefit for this therapy
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on low grade dysplasia (LGD) and particularly non-dysplastic (ND) BE patients remains

uncertain. Recent reports suggesting that RFA decreases cancer incidence among subjects

with BE and LGD might prompt increased utilization of eradicative therapy in this lower-

risk population [135]. Further, there is a growing evidence base regarding the efficacy and

durability of RFA treatment [136–142]. The increasing availability of long-term data affords

us the opportunity to analyze the impact of eradicative treatment on EAC incidence and

overall mortality reduction using comprehensive and robust simulation models.

As described in Chapter 3 on Base Case I, the CISNET Esophagus group includes three

modeling groups who independently developed population-based models for the natural his-

tory of BE and EAC that share common calibration targets (Surveillance, Epidemiology,

and End Results (SEER) cancer incidence and mortality data) and were previously cross-

validated through comparative modeling exercises [6].

The aim of our Base Case II study was to analyze the impact of endoscopic eradication

therapy on EAC mortality in a BE population. Specifically, we sought to describe the impact

of multiple different strategies utilizing eradication therapy on EAC incidence and mortality

and to estimate the number of surveillance endoscopies and treatments required to produce

potential clinical benefits.

5.1.1 Methods

In this analysis, we used the MSCE-EAC screening model (also termed the FHCRC model

in comparative results) to quantitatively estimate the effectiveness and efficiency of endo-

scopic ablative therapies and compared our results with those from the other two CISNET

models who estimated the same outcomes. As introduced in Chapters 1 and 3, the other

two models are the Esophageal AdenoCarcinoma Model (EACMo) from the Massachusetts

General Hospital (Boston, MA) (MGH model), and the Microsimulation Screening Analysis

model from Erasmus University Medical Center (Rotterdam, The Netherlands) and Univer-

sity of Washington (Seattle, WA) (UW/MISCAN model). The CISNET-EAC models differ
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by modeling approach and structure, but all use a common set of calibration data on EAC

incidence by age, stage, and calendar year from SEER (1975-2009) (see Chapter 1). From

the results of the Base Case I analysis presented in Chapter 3, all three models have been

refined through comparative modeling using common population targets from SEER so that

all models reproduce EAC incidence and mortality [6]. In this chapter, we apply the models

to predict outcomes about surveillance and treatment strategies for BE patients that affect

the natural disease progression to clinical cancer. In the case of the MSCE-EAC screening

model, this amounts to using the calibrated biological parameters provided in Table 3.1 and

the spatial parameters calibrated in Chapter 4 to simulate BE patient lifetime trajectories

for each strategy.

All three models assume a step-wise progression from non-dysplastic (ND) BE towards

dysplasia and EAC. To name one particular modeling difference, the MGH and UW/MISCAN

models include two grades of dysplasia: LGD and HGD, whereas the MSCE-EAC screening

model includes a singular grade of dysplasia, HGD. We chose not to model LGD as a sepa-

rate, previous stage to the premalignant P clone population for several reasons. First, there

is no evidence that a distinct clonal population of stem cells maintains LGD that undergoes

expansion. Secondly, there is a high level of known intraobserver and interobserver variabil-

ity with regard to the pathological categorization of epithelial lesions that show borderline

features between tissue regeneration, sometimes due to GERD, and LGD [143–146]. Because

HGD is distinguished from LGD by a pathologist based primarily on the basis of the degree

of architectural and cytological aberrations [143], LGD is more often down-graded to “indef-

inite” for dysplasia at subsequent exams due to a lack of definite pathologic characteristics.

In contrast, the detection of clinically relevant HGD lesions and carcinomas shows a much

higher level of consistency in interpretation among pathologists [143]. Thus we focus on

modeling HGD, the premalignant, expanding population of cells that are known to procure

higher risk for developing EAC.

For this analysis, all three groups modified their original models from Base Case I to

include additional modules containing the clinical details of RFA ablation and subsequent
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surveillance and management. This section will focus on the methods employed in this

analysis for the MSCE-EAC screening model but detailed technical profiles of the other two

CISNET models are available online [22].

Simulated population

Hypothetical cohorts for male and female patients, age 50, 60 and 70 when diagnosed with

BE, were followed for EAC incidence and mortality until death or age 100. Endoscopic

surveillance and eradication therapy were discontinued at age 80. For the MSCE-EAC

screening model, the cohorts analyzed were stratified by initial dysplasia status - high grade

dysplasia (HGD) or BE with no dysplasia (ND). Cancer risk was dependent on calendar year,

birth cohort, age, and sex. Again, each model was calibrated in Base Case I to reproduce

the EAC incidence in the SEER registry [6].

Simulated strategies

We modeled and analyzed four strategies described in Table 5.1. In the “Natural History”

(NH) strategy, there was no endoscopic screening or surveillance; patients came to medical at-

tention only when a clinical cancer was diagnosed, at which point they would receive standard

treatment. When a cancer was diagnosed, survival was modeled according to SEER survival

data or survival of esophagectomy, which we will describe further in this section forthcoming.

The “Surveillance” (S) strategy refers to scheduled endoscopies previously recommended by

numerous societal guidelines prior to the widespread availability of endoscopic eradication

therapy. The majority of societal guidelines base the interval of surveillance endoscopy solely

on the histological grade of biopsy samples [134]. The two endoscopic eradication treatment

(EET) strategies varied by the diagnosed histological stage of patients at which endoscopic

eradication is first performed. In the “HGD” strategy, patients with BE underwent endo-

scopic surveillance until HGD was detected on endoscopic biopsy, at which point the patient

underwent treatment (see Fig. 5.1). The other two CISNET models also simulated a third

“LGD” strategy in which patients underwent treatment when any dysplasia (HGD or LGD)
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was detected on biopsy. The MSCE-EAC screening model does not include results for the

strategy “LGD” that considers LGD patients as separate from NDBE patients. Finally,

in the “BE” strategy, all BE patients underwent treatment at the start of the simulation

regardless of degree of dysplasia (see Fig. 5.2).

To obtain screening outcomes during surveillance (i.e., diagnoses of BE patients at each

screen) as was explained in the Methods section of Chapter 4, the MSCE-EAC tissue mod-

ule explicitly simulates the growth of non-dysplastic BE crypts, HGD crypts, and malignant

crypts as a BE patient ages, and thus generates the joint distribution of premalignant and

malignant clones sizes at any age before symptomatic cancer is detected in a BE patient.

With this information, the MSCE-EAC screening module then simulates a biopsy proce-

dure (image-based screens are also possible with our model) at every surveillance screen

to determine a possibly different diagnosis based on the highest grade (non-dysplastic BE,

dysplastia, or cancer) of tissue found on biopsy. With this screening simulation, we are able

to predict the potential presence (or absence) of malignant cells in biopsies that harbor a

sufficiently large number of dysplastic crypts to be subjected to closer examination for the

presence of malignant cancer. The clinical results presented here are based on use of the

standard (Seattle) biopsy protocol which requires quadrant biopsies every 1-2 cm along the

BE segment. Factors contributing to the sensitivity for detection of HGD or cancer lesions

include the minimum neoplastic tissue fraction in the biopsy necessary for diagnosis, the

spacing between biopsy samples, and the size of biopsy forceps. We found that the general

efficacy of biopsy sampling remains uncertain due to considerable uncertainties in the histo-

logical assessment of the biopsied tissues [14]. For the Results of Base Case II, we employed

a mid-range biopsy detection sensitivity of 40% that reproduces an average prevalence of

HGD on index endoscopy as reported in current clinical studies (see [14] and Chapter 4

for details on the definition of diagnostic sensitivity, Fig. 4.4). For the 60 year old males

with BE simulated here, this assumption yields a prevalence of 2.8% initial screen-detected

cancers and 4.7% initial HGD cases. We also employed a neoplastic clone diffusivity spatial

parameter of γ = 1 (nearly circular clones) because we found that the screening diagnoses
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Strategy NDBE patients HGD patients

Natural History (NH) No intervention No intervention

Surveillance (S)
Surveillance endoscopy with

biopsies every 3 years

Surveillance endoscopy with

biopsies every 3 months

BE surveillance and

HGD treatment (HGD)

Surveillance endoscopy with

biopsies every 3 years

Endoscopic eradication therapy

followed by surveillance*

BE treatment (BE)
Endoscopic eradication therapy

followed by surveillance*

Endoscopic eradication therapy

followed by surveillance*

Table 5.1: Simulated intervention strategies on BE patient cohort. BE: Barrett’s

esophagus, ND: No dysplasia, HGD: high grade dysplasia. *All post-treatment surveillance

intervals can be found in Table C.1.

were mostly insensitive to choice of γ (determining the degree of compactness vs. branching

for neoplastic areas, see Chapter 4 Results).

Modeling endoscopic eradication therapy

After a simulated screen of a BE patient for detection of HGD and preclinical EAC at a

specified screening age, the MSCE-EAC screening model simulates an ablative treatment,

such as radiofrequency ablation (RFA), as required by the specified strategy given the BE

patient’s disease state. Treatment with such endoscopic eradicative therapy (EET) attempts

to remove the intestinal metaplasia together with all neoplastic cells at risk to become cancer.

As described in the Methods section of Chapter 4, the current MSCE-EAC screening model

assumes that treatment decimates the number of BE, dysplastic, and malignant crypts by

specific fractions controlled by ablative proportion vector ω, such that we modify the size

of a patient’s BE segment along with any concurrent HGD and/or malignant lesions during
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Figure 5.1: HGD strategy for treatment and surveillance of BE patients. In the

HGD strategy, those detected with HGD at index screen or found to have HGD (de novo from

NDBE or recurrent HGD) on any surveillance screen are treated (see Table C.1 for details on

surveillance after treatment). The MSCE-EAC screening model does not include a separate

diagnosis (nor a separate surveillance protocol) of LGD from NDBE. NDBE patients undergo

surveillance as described in Table 5.1.
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Figure 5.2: BE strategy for treatment and surveillance of BE patients. In the

BE strategy, all those detected with BE at index screen or recurrent BE on any surveillance

screen are treated (see Table C.1 for details on surveillance after treatment). Contrary to the

HGD strategy shown in Fig. 5.1, this strategy treats all BE patients regardless if dysplasia

is detected. The MSCE-EAC screening model does not include a separate diagnosis (nor a

separate surveillance protocol) of LGD from NDBE.
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treatment. After treatment, the MSCE-EAC tissue module continues the simulation of the

BE cell types that remain until the time of next screen, clinical cancer detection, or death.

The efficacies associated with endoscopic eradication therapy (EET) for BE were based

on recently published data [147,148] and expert opinion (see Table 5.2). In the Results here,

we assumed an efficacy of 70% removal of all cell types equally (ω = {ω
X
, ω

P∗ , ωP
, ω

M
} =

{0.3, 0.3, 0.3, 0.3}) during an eradicative treatment or touch-up. We calibrated this treat-

ment proportion to published estimate of a 0.15 recurrence rate of HGD after three years

of follow-up surveillance for initially diagnosed HGD patients [147, 149, 150]. Initial RFA

treatment took place over a two-year period, and was preceded by endoscopic mucosal re-

section (EMR) in 55% of the patients. Possible outcomes at the end of this period were

complete eradication of intestinal metaplasia (CE-IM), complete eradication of dysplasia

(CE-D), or treatment failure (persistence of IM and/or D). After treatment failure, patients

received endoscopic surveillance at pre-treatment intervals and were not given additional

treatments. After treatment success (CE-IM or CE-D), patients were subject to a modified

surveillance regimen that included additional endoscopies in the years immediately after the

initial treatment period, with later endoscopies following at less frequent but regular inter-

vals. Full details of the post-treatment surveillance strategy for each treatment outcome

and pre-treatment state are shown in Appendix C, Table C.1. Following successful treat-

ment, patients could recur to BE, based on the rates in Table 5.2, and those who recurred

were also given an additional diagnosis of BE without dysplasia, BE with HGD, or BE with

screen-detected EAC after a biopsy procedure simulated by the MSCE-EAC screening mod-

ule. The probability of recurrence to BE was assumed to be constant over time. Unlike the

other two CISNET Markov disease state models, our interpretation is that BE cell types

may still exist after treatment, which will drive possible recurrences or first appearances of

neoplasia; a BE patient does not re-enter a normal health state (i.e., cured) unless all cells

are possibly eradicated with multiple treatments. Patients with recurrences detected during

post-treatment surveillance received “touch-up” RFA treatment (defined as circumferential

or focal endoscopic RFA performed after the initial treatment period) and were monitored for
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Parameter/Definition Value Source

Success of therapy in pre-treatment HGD patients [147]

CE-IM and CE-D 88.89%

Non CE-IM, CE-D 3.70%

Non CE-IM and Non CE-D 7.41%

Success of therapy in pre-treatment NDBE patients [148]

CE-IM 96.77%

Non CE-IM 3.23%

Recurrence rates by baseline histologic grade and grade of recurrence [151,152]

Annual recurrence rates to BE after CE-IM

Pre-treatment NDBE 7%

Pre- treatment HGD 10%

Table 5.2: Common input parameters for effectiveness of EET. BE: Barrett’s esopha-

gus, ND: No dysplasia, HGD: high grade dysplasia , CE: complete eradication, IM: intestinal

metaplasia (BE), D: dysplasia, RFA: radiofrequency ablation, EAC: esophageal adenocar-

cinoma *Expert consensus: panel of experts N Shaheen; S Spechler; J Inadomi; C Hur; J

Rubenstein.

further recurrences according to the post-treatment schedule described above. Patients were

limited to a maximum of three touch-ups. Again, graphical representations of the simulated

treatment strategies can be found in Figs. 5.1-5.2.

Modeling patient survival

Once a malignant lesion is screen-detected, a BE patient may undergo surgery based on

his/her surgical candidacy, whether endoscopic mucosal resection or esophagectomy. The
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immediate mortality risk of esophagectomy was set to 5%. We utilized data from the SEER

registry to model cause specific EAC survival and cure rate trends by stage and age category

(ages 50-59, 60-60, 70-84), using the CANSURV program to fit a lognormal survival model

to the data while estimating temporal trends on the shape and cure parameters [153]. The

all-stage EAC survival curves for each age category were adjusted to account for ablation

or surgical resection by fitting the cure model parameters based on a study of 430 patients

undergoing ablation and 1586 patients undergoing esophagectomy that were identified in

SEER between 1998-2009 [154]. Separate models were developed for EAC cause specific

survival by age group, with or without ablation or surgical resection, while accounting for

censoring and other cause death by matching cure rates at 2003.5 (midpoint of the 1998-2009

SEER follow-up data from [154]) at age 63.4 (mean patient age for surgical resection), or

age 70.5 for ablation. Competing other cause death times were drawn for each patient from

US life tables that were downloaded from the Centers for Disease Control website [155] to

calculate age-adjusted rates for all race males and females

Outcomes

The main outcomes were presented for a 60 year old male cohort (additional outcomes for

female and various ages are shown in Appendix C, see Tables C.3 and C.4). For the MSCE-

EAC screening model, expected numbers of outcomes were produced by 100K simulation size

of BE patients, for males and females separately. The primary outcomes were EAC incidence

and mortality reduction; total numbers of surveillance endoscopies and endoscopic eradicative

treatments; numbers of treatments needed to avert one EAC death (NNT/death); life years

gained; and complications of endoscopy and treatment. The NNT/death was calculated as

the total number of ablative treatments divided by the number EAC deaths averted by a

given strategy. We incorporated the total number of treatments needed to prevent one death

because multiple treatments were needed per patient. Presenting the results as the number

of patients needed to treat would underestimate the overall resources needed. Treatments

included the number of sessions of (possibly) joint EMR and RFA treatments. Incremental
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results compared the NNT/death for a given strategy to the next-least aggressive strategy

by dividing the number of additional treatments by the additional EAC mortality reduction

in the more aggressive strategy (Table 5.3).

Sensitivity analysis

We repeated our four simulated strategies with half and twice the base-case assumptions

for the durability of successful treatment and for the efficacy of the initial treatment. In

addition, we analyzed the effect of halting surveillance after a period of 5 and 10 years

of observed good health (no BE recurrence) post-treatment (see Table C.2 for sensitivity

analysis parameters).

5.1.2 Results: FHCRC model

EAC incidence and mortality

Without surveillance, 134 EAC cases and 84 EAC deaths were expected to occur in 1,000

60 year old male BE patients (see Table 5.3 for these MSCE-EAC screening model results).

Surveillance (S) led to down-staging and an EAC mortality reduction of 20%; however, there

was a 36% increase in cancer detection due to overdiagnosis (surveillance-detected EAC that

would not have become clinically observed due to death from non-EAC causes). Compared

to the surveillance only strategy, the HGD treatment strategy resulted in a decrease in EAC

diagnosis of 46% and EAC mortality reduction of 41%. Treating all BE patients at age 60

decreased the number of EAC cases by 81% and the EAC mortality by 74%. The relative

impact of the different treatment strategies was consistent across models (See Fig. 5.3 for

comparative bar graphs with other two CISNET models).

Resources required

For the MSCE-EAC screening model, 926 total number of treatments (including EMR, ab-

lative treatments and touch-ups) were performed in the HGD strategy (see Table 5.3). Ex-
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Results per

1000 BE patients
NH S

Incremental

results

vs. NH

HGD

Incremental

results

vs. S

BE

Incremental

results

vs. HGD

Number of surveillance

endoscopies
0 5799 +5799 8984 +3185 5806 -3178

Number treatments 0 0 +0 926 +926 4902 +3977

Number of EAC cases 134 182 +36% 98 -46% 34 -65%

Number of EAC deaths 84 67 -20% 40 -41% 17 -56%

Life expectancy

after diagnosis (years)
19.3 19.4 +0.0 19.7 +0.3 19.8 +0.2

Table 5.3: Main and incremental results per strategy. Strategies: NH: Natural History

strategy; S: Surveillance strategy,HGD: Endoscopic ablative therapy for HGD diagnosed

patients strategy; BE: Endoscopic ablative therapy for all BE diagnosed patients
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Figure 5.3: EAC incidence and mortality reductions by strategy (Upper panel) Pre-

dicted EAC incidence per 1000 BE patients per model and strategy. (Lower panel) Predicted

EAC deaths per 1000 BE patients. The EAC incidence and mortality reduction percentages

are shown for the endoscopic eradicative treatment strategies compared to the strategy in-

cluding only surveillance and no EET. Stategies NH (gray), S (orange), HGD (blue), BE

(tan) shown for all models. MGH and UW/MISCAN results shown for comparison, includ-

ing a strategy for LGD patients (green).
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tending treatment to all BE patients further increased required treatments to 4,902. The

number of treatments differed across models, but showed similar patterns for each treatment

strategy (see [15] for full description of model result comparisons).

Efficiency of treatment

The significant increase in treatments diminished the efficiency per treatment for the more

inclusive strategies. The NNT/death for HGD treatment strategy was 34 (see Fig. 5.4). In

this strategy, relatively few treatments were required, resulting in a high mortality reduction

(41%). In contrast, the incremental NNT/death for BE treatment strategy compared to

HGD treatment strategy was 180 in the MSCE-EAC screening model (see Table C.3 for

analogous results for females). We also provide tabular results for incremental NNT/death

for males with BE, all races, ages 50 and 70 at index endoscopy (see Table C.4).

Sensitivity analysis

For the HGD treatment strategy, the results of our models were robust to sensitivity anal-

ysis. Comparing incremental NNT/death for the BE strategy with the HGD strategy, the

results were most sensitive to the durability of successful treatment and for halting surveil-

lance after a period recurrence-free post-treatment surveillance. However, halting post-

treatment surveillance after a recurrence-free period of 5-10 years had negligible influence on

NNT/death in the HGD strategy (see Appendix C, Fig. C.1).

5.1.3 Discussion

Our study shows that endoscopic eradication of HGD, specifically RFA, could result in sub-

stantial reductions in EAC incidence and mortality. However, extending treatment eligibility

to patients with lower grades of dysplasia substantially increases the use of eradication ther-

apy while diminishing the incremental effectiveness. A strategy treating all patients with BE

(including HGD, LGD and NDBE) results in an unfavorable number needed to treat to pre-
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Figure 5.4: Mortality reduction compared to the total number of treatments per

model and strategy. Results for MGH and UW/MISCAN models shown for comparison,

including the LGD strategy.

vent one EAC death. The finding that EET may reduce EAC incidence and mortality is not

surprising as the efficacy of the treatment is reported to be high and associated complication

rates are relatively low. The more relevant issues to applying this therapy on a population

basis are related to healthcare resource utilization, over-screening and over-treatment. Eval-

uation of the NNT to achieve additional mortality reduction for each strategy demonstrates

eradicative therapy for patients with no dysplasia results in diminishing returns. It appears



118 CHAPTER 5

that the diminishing impact of treatment expansion is due to the likelihood that ND and

LGD patients will eventually receive treatment if they develop HGD.

The model results were most sensitive for the duration of successful treatment. Further-

more, all models support the decision to stop offering surveillance to HGD patients five years

after successful RFA. All sensitive analyses had a relatively larger impact on the treatment

strategies for low grade and absent dysplasia, due to the fact that more patients are be-

ing treated with increasingly variable results. Previously published cost-effectiveness studies

agree that endoscopic eradication therapy is cost-effective when offered to HGD BE pa-

tients [149,156,157]. One previous study evaluated the cost-effectiveness of RFA on varying

dysplastic grades of BE, concluding that endoscopic ablative therapy was only cost-effective

when offered to dysplastic BE patients [149]. Our study similarly showed eradicative treat-

ment is effective for all patients, and that treating patients with less severe or no dysplasia

demands a major amount of resources. Prior studies used a single Markov model informed

by clinical data available at the time of publication, but were not calibrated to US SEER

incidence and mortality data. This study used three simulation models that were indepen-

dently calibrated to SEER data, which better equips them to assess cancer control strategies

and patient guidelines. With the comparative modeling approach using common inputs and

outputs, this analysis showed considerable consistency between the models on the relative

effectiveness and the NNT/death, demonstrating the robustness of our findings even though

there are considerable differences between our models when considering absolute malignant

development and mortality among BE patients.

In conclusion, our comparative modeling analyses indicate that EET is an effective means

of reducing EAC incidence and mortality. Benefit is predicted to be achieved across all pa-

tients with BE; however, the efficiency of eradication is substantially reduced if patients with

no dysplasia are treated, and substantially more healthcare resources are required to avert

a cancer death in these settings. These findings were consistent across all three esophageal

CISNET models and were robust to sensitivity analyses of RFA efficacy and durability. Our

results add further evidence to support RFA therapy to patients with HGD, and suggest that
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strategies targeting less severe disease will require close scrutiny for cost-effectiveness. Cur-

rent and future work on this collaborative project includes a full cost-effectiveness analysis

for each treatment strategy versus surveillance only. Efficiency of care would be greatly en-

hanced through improved methods to stratify risk of cancer in lesser forms of dysplasia and,

therefore, to better identify individuals who would benefit most from endoscopic therapy.
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Optimal, Adaptive Screen Design

The previous chapter presented expected health outcomes and EAC mortality reductions

under fixed surveillance and treatment schedules in current practice. Specifically, we used the

MSCE-EAC screening model to quantify the mortality reduction predicted for BE patients

who undergo endoscopic eradication therapy. Further, in a cost-benefit analysis with cost

defined as the number of treatments required, we compared the relative effectiveness of

current treatment strategies for BE patients with high grade dysplastia (HGD) versus the

potential benefits of treating all BE patients, with and without dysplasia. In the next two

chapters, rather than focusing on “who” is currently benefiting most from treatment during a

set surveillance screen schedule, we ask questions regarding “when” should these BE patients

be screened. Implicitly, this goal relies on determining when BE patients develop detectable

precursor lesions and how long they dwell in a certain detectable disease state. For all

cancer screening recommendations, optimal timing of the examinations of susceptible ‘at

risk’ patients for the presence of pre-cancerous or cancerous lesions is important. In the

case of EAC, we showed in the last chapter that over-surveillance of BE patients with no

evidence of HGD (but possibly indefinite or low grade diagnoses) poses a costly problem

as many individuals with BE return to a clinic for upper endoscopies up to every 3 years

by current guidelines but never progress to HGD (Table 5.1). To address this problem we

propose to derive and to optimize the timing of clinical screens so that the probability is
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maximal that an individual is screened within a certain “window” when a premalignancy

prior to cancer development may be observed.

The problem of optimal design for screening times via biomathematical modeling has

been studied previously. Dewanji et al. defined two optimality criteria for a simple illness-

death model as more intuitive alternatives to standard likelihood-based criteria [158]. For

a more complicated example, Hanin et al. found optimal screening schedules for preventing

metastatic cancer by maximizing an efficiency functional for diagnosing existing metastases

through screening versus without screening [159]. In the case of the earlier MSCE model

with one clonal expansion stage, Jeon et al. explored solutions for the optimal age to screen

and treat patients in order to minimize the lifetime probability of developing colorectal

cancer [122]. By imposing a size threshold for adenomas to decide when a screen can detect

an adenoma, the authors also optimized a two screen schedule by simulating cell dynamics in

patient populations. With this approach, they predicted that undergoing colonoscopies every

10 years starting at age 50, as recommended by the current guidelines, does not significantly

reduce cancer risk in comparison to two optimally scheduled colonoscopies before age 80.

Unlike the scheduling results of Hanin et al. [159], this chapter’s methodology includes

the optimization of screening times before a malignant tumor forms so that appropriate risk

stratification, patient-specific screening schedules, and treatment decisions during premalig-

nancy may be achieved. Here we develop a generalized version of the optimality criteria

first presented by Dewanji et al. [158] for screening and derive analytical probabilities that

allow estimation of optimal screening times for the detection of premalignant lesions and

ones that do not require numerical simulations of patient populations [122]. With the model

parameters previously inferred for our fully stochastic MSCE-EAC screening model [6, 14],

we provide a few example applications for BE patients. The derived probabilities for opti-

mized screening are flexible so that weighing risk of an undesirable disease state (such as

development of clinical EAC) before a screening time may be specified in every case. We

first derive formulas for the case of a one-time screen and then provide a framework for

optimizing adaptive screens, i.e. optimizing time of subsequent screening conditional on the
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specific diagnosis of a prior screen.

6.1 Random Variables for Screening and Risk

We aim to derive the time (age) of a screen such that a patient is most probable to be in

a certain disease state of interest. One example is, for an individual who has never been

screened, we would like to screen him/her in a window that he/she has already developed

BE but will not developed HGD. If we “caught” this patient in such a window, there is a

possibility that low-level treatment could be administered and protect this patient from de-

veloping a more severe diagnosis (this scenario is defined in Strategy 2 in upcoming sections).

As we see in the multistage process illustrated in Fig. 3.1, there are various such windows of

time that patients are in a particular disease state with certain probability and we seek to

maximize the yield of a screen by varying screening time to avoid fruitless overscreening.

First, we define the random variables of interest that represent four clinical points of the

multistage process: BE (T
BE

), premalignancy (T d
P

), which we posit to be HGD, malignancy

(T d
M

), and symptomatic cancer (T
C

).

T
BE

= time of BE onset

T d
P

(t) =

0 if no detectable premalignant clone exists in BE at time t

1 if there exists at least one detectable premalignant clone in BE at time t

T d
M

(t) =

0 if no detectable malignant clone exists in BE at time t

1 if there exists at least one detectable malignant clone in BE at time t

T
C

= time of cancer (EAC) spontaneous (symptomatic) detection

To incorporate patient-specific information, one could also differentiate T
BE

to refer to either

T+
BE

or T−
BE

for symptomatic GERD BE onset time versus a non-GERD population BE

onset time. As in previous chapters, we will derive the forthcoming formulas using a general

BE onset distribution f
BE

(t), but example results will be obtained when we assume the
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exponential distribution for BE onset time defined by age-dependent rate ν(t) characterized

by GERD prevalence (first provided in Eq. (3.2)), given by

f
BE

(t) = ν(t)e−
∫ t
0 ν(u) du. (6.1)

Unlike the one-time occurrence, continuous random variables for T
BE

and T
C

, the bi-

nary random variables for detectability of premalignancy (T d
P

(t)) and malignancy (T d
M

(t))

require specific definitions for detectability. If we designate these times to be the time of

initiation or malignant transformation of a cell regardless of its fate (i.e., if it will be the

ancestor to a clonal progeny that eventually goes extinct or that survives), we may derive

analytical probabilities with first-passage time, continuous random variables T
P

and T
M

,

respectively, in a straightforward way using the Kolmogorov forward equations introduced

in Chapter 3. However, it is more clinically relevant to define these random variables as

binary outcomes for detectable lesions at the time of screening ts. In the derivations of

our screening windows, all detectability criteria will depend on the probability of detec-

tion at time ts of a premalignant lesion that began with a single ancestor P cell initiated

at time s, p2(s, ts) = Pr[T d
P

(ts)|P (s) = 1], and analogously the probability of detection at

time ts of a malignant lesion that began with a single ancestor M cell initiated at time s,

p1(s, ts) = Pr[T d
M

(ts)|M(s) = 1]. For example, Jeon et al. defined this detectable screen-

ing outcome variable for premalignant, adenomatous polyps in the colon as being at least

a certain threshold size, i.e., p2(s, ts) = Pr[P (ts) ≥ Pt|P (s) = 1] where threshold size Pt

was set equal to 103, 104, or 105 polyp stem cells to incorporate the instrumental sensitivity

of a colonoscopy. In the case of EAC, this definition of size threshold was applied when

evaluating the possible improvement in screening sensitivity for HGD and malignant lesions

when using optical coherence tomography (OCT) imaging techniques with resolution a
OCT

in

Chapter 4. Alternatively, these variables could be used in conjunction with biopsy screening

and we could use the MSCE-EAC screening model to compute (via simulation) these two

probabilities given times s and ts.

We could also define these binary detection variables to be equal to 1 if a clone born at
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time s is non-extinct at time ts (size of clone is ≥ 1) and 0 otherwise. In the case of EAC,

this “perfect sensitivity” definition may be useful as progressively better high-resolution

imaging technologies or other sensitive screening methods come into clinical practice. For

detectability based on this non-extinction criteria at time of screening, we define the prob-

ability of detection with a binary outcome variable for malignant clones with the following

(see derivation in Appendix B for unconditional birth-death-mutation size distribution),

p1(s, ts) = 1− β
M
ζ
M

(s, ts) (6.2)

where

ζ
M

(s, ts) =
e(α

M
−β

M
)(ts−s) − 1

α
M
e(α

M
−β

M
)(ts−s) − β

M

.

As discussed in Chapters 2 and 3, the asymptotic version of this probability was derived

as p∞ ≡ p1(s, ts) = 1 − β
M
/α

M
. We obtain the analogous definition for p2(s, ts) with P

parameters for the detection probability of premalignant clones,

p2(s, ts) = 1− β
P
ζ
P

(s, ts) (6.3)

where

ζ
P

(s, ts) =
e(α

P
−β

P
)(ts−s) − 1

α
P
e(α

P
−β

P
)(ts−s) − β

P

.

The asymptotic version of this probability is p2(s, ts) = 1− β
P
/α

P
.

Second, we present the two survival functions, derived in previous sections, that will

appear throughout the mathematical derivations:

Pr[T
C
≥ ts|TBE

= τ ] = S
MSCE

(ts − τ) (6.4)

Pr[T
C
≥ ts] = S

EAC
(ts) (6.5)

Where S
MSCE

(t) is the survival function for the 4-stage MSCE model after BE onset (see

Eq. (2.24)) and S
EAC

(t) is the survival function for the full MSCE-EAC model (see Eq. (3.26)).
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6.1.1 Differentiating importance of events

For some event A (e.g., BE onset) and event B (eg., symptomatic EAC detection), max-

imizing the probability that a patient is between ages T
A

and T
B

at time of screening ts

is equivalent to maximizing Pr[T
A
≤ ts] to ensure that event A has already occured while

simultaneously minimizing Pr[T
B
≤ ts, TA

≤ ts] to ensure that event B has not yet occurred

by ts. This statement is defined mathematically in the relationship

Pr[T
A
≤ ts ≤ T

B
] = Pr[T

A
≤ ts]− Pr[T

B
≤ ts, TA

≤ ts]. (6.6)

If event B implies event A, the second term on the right hand side of this equation simplifies

to Pr[T
B
≤ ts, TA

≤ ts] = Pr[T
B
≤ ts], the absolute risk of event B by time ts. We will

discuss the calculation of risk in the following section.

It may not be a justifiable public health goal to equally weigh the optimizations that

event A has occurred and event B has not occurred, as is the case for maximizing the left

hand side probability in Eq. (6.6). In general, we may define a positive weight w for event

B, and instead maximize the following :

Pr[T
A
≤ ts]− w · Pr[T

B
≤ ts, TA

≤ ts] (6.7)

For the case of weighing both events equally during optimization of a screen time occurring

within specific disease state window, we may set w = 1 as in Eq. (6.6). As an alternative

to equal weighting, criterion C2 from Dewanji et al. [158] aimed to maximize time ts in the

window between events A and B (where event B implies event A) with an extra penalty

term for event B. In the notation introduced above, this criterion can be written as

Pr[T
A
≤ ts ≤ T

B
]− Pr[T

B
≤ ts] = Pr[T

A
≤ ts]− Pr[T

B
≤ ts]− Pr[T

B
≤ ts] (6.8)

= Pr[T
A
≤ ts]− 2 Pr[T

B
≤ ts] (6.9)

This is the case of w = 2 in our generalized methodology introduced here. If w > 1,

maximization of Eq. (6.7) will yield earlier optimal screening times t∗s because there will be

greater weight to avoid that event B occurs before screening, and vice versa for w < 1. As
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we will elaborate on in the next section, cancer screening policy makers face a necessary

question as to how much weight should be placed on each possible scenario - how heavily to

guard against events B, such as EAC cancer development, balanced against the prospect of

futile screens when a patient has not yet undergone event A, such as BE onset.

6.1.2 Quantifying risk

We may also quantify a certain penalty for certain screening times by introducing an equation

for the risk that some later event B has already occurred given some optimal screening time

t∗s:

Risk
B

(t∗s) ≡ R
B

(t∗s) = Pr[T
B
≤ t∗s] (6.10)

We may wish to assign the risk probability of the unfavorable event B occurring before

optimal time ts to simply be the right term of the difference in Eq. (6.6) as we did in the

previous section. In this scenario, we would increase the weight w in Eq. (6.7) and find

optimal time t∗s such that R
B

(t∗s) < ε, where ε is a threshold parameter for the allowable

amount of risk of event B. Alternatively, if the risk of possibly missing an undesirable event

B before optimal time t∗s is too small to be of worry, one may decide to reduce the weight

w assigned to event B so as to relax the requirement that ts happens early enough to avoid

many B events. This will lead to later optimal t∗s times and thus raise the risk of event B to

some appropriate, or tolerable, level.

We may also be interested in performing a constrained optimization problem with addi-

tional risk equations. For example, we will introduce adaptive screen design in this chapter

(and will continue to focus on this in Chapter 7) that aims to schedule the following screen

for a patient after he/she has developed HGD if we knew when exactly he/she first developed

BE at time τ , and that there was no positive diagnosis of HGD at present screening time

ts1 , whereτ < ts1 . This would then allow for proper treatment such as radiofrequency abla-

tion (RFA) to be performed on the BE segment without many costly screens while the BE

segment was still free of HGD. However, we may also want to ensure that such a screening
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time is associated with a tolerable level of possible risk of cancer developing before time ts2

with the constraint

R
C

(ts2) = Pr[T
C
≤ ts2|TBE

= τ, T d
P

(ts1) = 0] < ε (6.11)

The incorporation of risk assessment is thus another facet of this optimal screening design

methodology.

6.1.3 Incorporating realistic time constraints

The methodology thus far has not incorporated cutoff times due to life expectancy, i.e., the

model is such that all persons would develop premalignacy through EAC in a long enough

time frame. In this section we introduce realistic time frames for a human lifespan into the

aforementioned probabilities so that we do not optimize screening ages that are unrealistically

old, i.e., when the patient is more probable to have already died than to have developed the

disease. We include US life table estimates for all cause mortality survival probabilities in

the US [155] as an independent random variable T
D

in order to calculate Pr[T
D
≥ ts]. We

can then compute our criteria quantities of interest for events A and B as before, with an

extra variable for time of other-cause death T
D

that is assumed to be independent of events

A and B. Thus, this method allows for random truncation due to death from other causes.

Beginning with the criteria for w = 1,

Pr[T
A
≤ ts ≤ T

B
, T

D
≥ ts] = Pr[T

D
≥ ts] · Pr[T

A
≤ ts ≤ T

B
] (6.12)

= Pr[T
D
≥ ts] · (Pr[T

A
≤ ts]− Pr[T

B
≤ ts, TA

≤ ts]) . (6.13)

For the general weighting criteria, we have the expression

Pr[T
D
≥ ts] · (Pr[T

A
≤ ts]− w · Pr[T

B
≤ ts, TA

≤ ts]) , (6.14)

for some specified w > 0. We will denote optimal times derived from maximizing Eq. (6.14)

as having satisfied the optimality criterion for a given value of weighting factor w.
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The optimal screen design methodology presented thus far is general to branching process

disease models. In the following sections, we derive the probabilities for the optimality criteria

defined in Eq. (6.14) for the MSCE-EAC model. We also provide examples for EAC given

the MSCE-EAC screening model parameters derived in previous chapters, most importantly

the cellular parameters provided in Table 3.1.

6.2 Optimizing Single Screen Times

In this section, we derive three example probabilities, or strategies, for the optimization of a

single screen in an individual’s lifetime within a certain disease state window.

6.2.1 Strategy 1

This strategy for a single screen aims to optimize the probability of an individual having

developed BE before the time of screening but has not yet developed clinical EAC, for

specified weight parameter w.

Pr[T
BE
≤ ts ≤ T

C
, T

D
≥ ts] (6.15)

optimality criterion: Pr[T
D
≥ ts] · (Pr[T

BE
≤ ts]− w · Pr[T

C
≤ ts]) (6.16)

= Pr[T
D
≥ ts] · (Pr[T

BE
≤ ts]− w · (1− SEAC

(ts))) (6.17)

Figure 6.1 depicts the contour plot of this optimality criterion for males of all races that are

born in 1950. We tested these results for males of birth cohorts between 1930 and 1990 and

similar results were found, with optimal screening times t∗s within 1 year between cohorts.

Thus, for the strategies that follow, we will present results for the 1950 birth cohort.

6.2.2 Strategy 2

This strategy for a single screen aims to optimize the probability of an individual having

developed BE before the time of screening but has not yet developed detectable HGD, for



6.2. OPTIMIZING SINGLE SCREEN TIMES 129

Screening time (age)

20
40

60
80

100
 w

 (w
ei

gh
t p

ar
am

et
er

)

0

5

10

15

20

 O
ptim

ality criteria

-0.04

-0.02

0.00

0.02

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

Figure 6.1: Contour plot of optimality criteria for single screen Strategy 1. The

optimality criteria are plotted for given screening age ts between ages 10 and 110 and weight-

ing parameters w ∈ [0, 20]. The red line on the 2D contour plot depicts the optimal screen

times for males of all races, born in 1950. The range of optimal screening times was [48, 68],

with mean time 53 years old. For w = 1, the optimal screening time was t∗s = 64 years old.

specified weight parameter w.

Pr[T
BE
≤ ts, T

d
P

(ts) = 0, T
D
≥ ts] (6.18)

optimality criterion: Pr[T
D
≥ ts] · (Pr[T

BE
≤ ts]− w · Pr

[
T d

P
(ts) = 1

]
) (6.19)

= Pr[T
D
≥ ts] ·

(
Pr[T

BE
≤ ts]− w ·

∫ ts

0

Pr
[
T d

P
(ts) = 1|T

BE
= τ
]
f
BE

(τ) dτ

)
(6.20)

We will utilize the filtered Poisson process (FPP) approach to analytically solve for
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Pr
[
T d

P
(ts) = 1|T

BE
= τ
]
. Let N(σ, ts) = # of initiated P cells from a P ∗ cell born at time σ

that result in a detectable HGD clone at time ts

N(σ, ts) =
∑
l

Nl(σ, sl, ts), (6.21)

where Nl(σ, ts, sl) = 1 if initiation at time sl produces a detectable clone at time ts, and

sl ≤ ts, with probability p2(sl, ts) = Pr[T d
P

(ts) = 1|P (sl) = 1].

Then N(σ, ts) is a FPP such that

N(σ, ts) ∼ Poisson

(∫ ts

σ

µ1p2(s, ts) ds

)
, (6.22)

where p2(sl, ts) is defined in Eq. (6.3). Next let M(τ, ts) = # of preinitiated cells after BE

onset at time τ that result in a detectable P clone at time ts. Then we have that

M(τ, ts) =
∑
i

Mi(τ, σi, ts) = 1 ⇐⇒ N(σi, ts) ≥ 1 (6.23)

with probability p3(σi, ts2) = 1− exp
[
−
∫ ts
σi
µ1p2(s, ts)ds

]
Then M(τ, ts) is a FPP such that

M(τ, ts) ∼ Poisson

(∫ ts

τ

µ0Xp3(σ, ts) dσ

)
(6.24)

Thus

Pr[T d
P

(ts) = 1|T
BE

= τ ] = 1− Pr[T d
P

(ts) = 0|T
BE

= τ ] (6.25)

= 1− exp

[
−
∫ ts

τ

µ0X

(
1− exp

[
−
∫ ts

σ

µ1p2(s, ts) ds

])
dσ

]
(6.26)

With this derivation, we have analytically computed all components of the optimality crite-

rion for Strategy 2, given in Eq. (6.20). Figure 6.2 depicts optimal time results for an all race

male cohort born in 1950 where the detectability probability of a HGD lesion given initiation

time sl, p2(sl, ts), is defined as a non-extinct progeny of such a clone defined in Eq. (6.3),

i.e., the screen has the capability for perfect sensitivity for detecting HGD cells at time of

screening.
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Figure 6.2: Contour plot of optimality criteria for single screen Strategy 2. The

optimality criteria are plotted for given screening age ts between ages 10 and 110 and weight-

ing parameters w ∈ [0, 1]. The risk of detecting HGD is closer to that of developing BE than

EAC risk is to the risk of BE as in Strategy 1, thus weighting factors w > 1 will cause the

optimal time chosen to be as early as possible. Therefore we show results for 0 ≤ w ≤ 1.

The red line on the 2D contour plot depicts the optimal screen times for males of all races,

born in 1950. The range of optimal screening times was [59, 68], mean time 67 years old for

these values of w ≤ 1. For w = 1, the optimal screening time was t∗s = 59 years old.

6.2.3 Strategy 3

As a final example of optimizing a single screen to occur in a specified disease state window,

Strategy 3 aims to optimize the probability of an individual having developed detectable

HGD before the time of screening but has not yet developed screen-detectable malignancy,

for specified weight parameter w. These optimal ages will reflect the most probable age range
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of patients who have developed both BE and detectable HGD but not yet any surviving

malignant cells (that could possibly become clinical cancer). This probability and associated

optimality criterion are given by

Pr[T d
P

(ts) = 1, T d
M

(ts) = 0, T
D
≥ ts] (6.27)

optimality criterion: Pr[T
D
≥ ts] · (Pr[T d

P
(ts) = 1]− w · Pr[T d

P
(ts) = 1, T d

M
(ts) = 1])

= Pr[T
D
≥ ts] ·

(∫ ts

0

Pr[T d
P

(ts) = 1|T
BE

= τ ] · fBE(τ) dτ

−w ·
∫ ts

0

Pr[T d
P

(ts) = 1, T d
M

(ts) = 1|T
BE

= τ ] · fBE(τ) dτ

) (6.28)

The first integral in this difference was solved for in Strategy 2 (see Eq. (6.26)). Here we

solve for the probability in the integrand of the second integral when we assume “perfect

sensitivity” for detectability of a malignant lesion and a HGD lesion, given by Eq. (6.2) and

Eq. (6.3) for malignant clones and HGD clones, respectively.

Pr[T d
P

(ts) = 1, T d
M

(ts) = 1|T
BE

= τ ] (6.29)

To derive this probability, we must define C1, C2, C3, mutually exclusive scenarios of

counts of initiations of different types. Scenario C1 corresponds to the scenario that the P

clone that is non-extinct at time ts is the ancestor of the non-extinct M clone at time ts.

This is most commonly the case in the stochastic realizations since the bigger P clones that

remain non-extinct at time of screening have the highest probability to have had µ2 events

(malignant transformation) occur since their initiation. Scenario C2 accounts for a non-

extinct P clone at time ts that, if it created any malignant progeny before time of screening,

those malignancies went extinct. Scenario C3 accounts for a non-extinct M clone at time

ts whose ancestral P clone went extinct before time ts. Thus the probability we aim to

derive accounts for either event C1 or C2 and C3 together. For each of the three scenarios,

we will use filtered Poisson processes techniques and abuse notation slightly by redefining

FPP random variables N1 and N2 differently but analogously for each scenario, to avoid

verboseness. We start with deriving the probability that event C1 occurs (at least once) with
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u > s,

C1 : Let N1(u, ts, s) = 1 if T d
P

(ts, s) = 1, T d
M

(u, ts, s) = 1|P (s) = 1,M(u) = 1 (6.30)

with probability pd2(s, ts) · pd1(u, ts) = (1− β
P
ζ
P

(s, ts)) · (1− βM
ζ
M

(u, ts)). Then we have that

N1(ts, s, σ) =
∑
u

N1(u, ts, s, σ) ∼ Poisson

(
pd2(s, ts) ·

∫ ts

s

µ2p
d
1(u, ts) du

)
(6.31)

and

N2(σ, ts) =
∑
l

N1(ts, sl, σ) (6.32)

so that N2(σ, ts) is a FPP and the probability generating function (PGF) of N2(σ, ts) is

Ψ(x;σ, ts) = exp

[∫ ts

σ

µ1 · {Ψ(x; s, ts)− 1} ds

]
(6.33)

where Ψ(x; s, ts) is the PGF of N1(ts, s, σ) = e−λ(1−x), where λ = pd2(s, ts) ·
∫ ts
s
µ2p

d
1(u, ts) du.

Therefore

Pr[C1 ≥ 1] = Pr[N2(σ, ts) ≥ 1] = 1− Pr[N2(σ, ts) = 0] = 1−Ψ(x = 0, ts) (6.34)

= 1− exp

[∫ ts

σ

µ1 ·
{
e−λ − 1

}
ds

]
(6.35)

Similarly,

C2 : Let N1(u, ts, s) = 1 if T d
P

(ts, s) = 1, T d
M

(u, ts, s) = 0|P (s) = 1,M(u) = 1 (6.36)

with probability pd2(s, ts) · (1− pd1(u, ts)) = (1− β
P
ζ
P

(s, ts)) · βM
ζ
M

(u, ts). Then we have that

N1(ts, s, σ) =
∑
u

N2(u, ts, s, σ) ∼ Poisson

(
pd2(s, ts) ·

∫ ts

s

µ2(1− pd1(u, ts)) du

)
(6.37)

and

N2(σ, ts) =
∑
l

N1(ts, sl, σ) (6.38)

so that N2(σ, ts) is a FPP and the PGF of N2(σ, ts) is

Ψ2(x;σ, ts) = exp

[∫ ts

σ

µ1 · {Ψ2(x; s, ts)− 1} ds

]
(6.39)
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where Ψ2(x; s, ts) is the PGF of N1(ts, s, σ) = e−λ2(1−x), where λ2 = pd2(s, ts) ·
∫ ts
s
µ2(1 −

pd1(u, ts)) du. Therefore

Pr[C2 ≥ 1] = Pr[N2(σ, ts2) ≥ 1] = 1− Pr[N2(σ, ts2) = 0] = 1−Ψ2(x = 0, ts2) (6.40)

= 1− exp

[∫ ts

σ

µ1 ·
{
e−λ2 − 1

}
ds

]
(6.41)

Lastly, we define

C3 : Let N1(u, ts, s) = 1 if T d
P

(ts, s) = 0, T d
M

(u, ts, s) = 1|P (s) = 1,M(u) = 1 (6.42)

with probability pd2(s, u)·(1−pd2(u, ts))·pd1(u, ts) = (1−β
P
ζ
P

(s, u))·β
P
ζ
P

(u, ts)·(1−βM
ζ
M

(u, ts))

Then we have that

N1(ts, s, σ) =
∑
u

N1(u, ts, s, σ) ∼ Poisson

(∫ ts

s

µ2 · p2(s, u) · (1− pd2(u, ts)) · pd1(u, ts) du

)
(6.43)

and

N2(σ, ts) =
∑
l

N1(ts, sl, σ) (6.44)

so that N2(σ, ts) is a FPP and the PGF of N2(σ, ts) is

Ψ3(x;σ, ts) = exp

[∫ ts

σ

µ1 · {Ψ3(x; s, ts)− 1} ds

]
(6.45)

where Ψ3(x; s, ts) is the PGF of N1(ts, s, σ) = e−λ3(1−x), where λ3 =
∫ ts
s
µ2 · p2(s, u) · (1 −

pd2(u, ts)) · pd1(u, ts) du. Therefore

Pr[C3 ≥ 1] = Pr[N2(σ, ts) ≥ 1] = 1− Pr[N2(σ, ts) = 0] = Ψ3(x = 0, ts) (6.46)

= 1− exp

[∫ ts

σ

µ1 ·
{
e−λ3 − 1

}
ds

]
(6.47)

Next, let M(τ, ts) =# of preinitiated cells after BE onset at time τ that result in C1∪(C2∩C3)

M(τ, ts) =
∑
i

Mi(τ, σi, ts) (6.48)
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where Mi(τ, σi, ts) = 1 ⇐⇒ C1 ≥ 1 ∪ (C2 ≥ 1, C3 ≥ 1). Due to the mutual exclusivity of

these events, we have that Mi(τ, σi, ts) = 1 with probability

p3(σi, ts) = Pr[C1 ≥ 1 ∪ (C2 ≥ 1 ∩ C3 ≥ 1])] (6.49)

= Pr[C1 ≥ 1] + Pr[C2 ≥ 1] · Pr[C3 ≥ 1]− Pr[C1 ≥ 1] · Pr[C2 ≥ 1] · Pr[C3 ≥ 1]

(6.50)

Then M(τ, ts) is a FPP such that

M(τ, ts) ∼ Poisson

(∫ ts

τ

µ2 · p3(σ, ts) dσ

)
(6.51)

Finally, we solve for our integrand of interest from Eq. (6.29)

Pr[T d
M

(ts) = 1, T d
P

(ts) = 1|T
BE

= τ ] (6.52)

= 1− exp

[
−
∫ ts

τ

µ0X · p3(σ, ts) dσ

]
(6.53)

With this, we have analytically solved for all components of the optimality criterion for

Strategy 3 from Eq. (6.28).

6.3 Optimizing Adaptive Screen Times

Rather than finding the optimal time to screen an individual once in his/her lifetime, we

may also apply these techniques to derive optimal times to perform a following screen at

age ts2 , given the diagnosis at a prior or present screening time ts1 . This adaptive approach

allows for patient-specific screening outcome-based risk assessment. In this section, we will

provide examples that introduce this methodology, which requires an assessment of the

information/diagnosis obtained at the prior screen.

6.3.1 Outcome 1: Strategy 1

For a first outcome, suppose a patient is screened for BE (perhaps he/she has a familial

history or GERD symptoms to prompt this decision) and the screen at time ts1 returns
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negative for BE. We refer to this scenario as Outcome 1. Analogously to Strategy 1, we

aim to screen this individual again at a later age ts2 when he/she is most probable to have

developed BE by this time but not yet clinical cancer. For Outcome 1: Strategy 2, we derive

the following optimality criterion

Pr[T
BE
≤ ts2 < T

C
, T

D
≥ ts2|TBE

> ts1 , TD
> ts1 ] (6.54)

optimality criterion: Pr[T
D
≥ ts2|TD

> ts1 ] · (Pr[T
BE
≤ ts2 |TBE

> ts1 ]

− w · Pr[T
C
≤ ts2|TBE

> ts1 ])
(6.55)

= Pr[T
D
≥ ts2|TD

> ts1 ] ·
(

Pr[T
BE
≤ ts2|TBE

> ts1 ]

−w · 1

Pr[T
BE

> ts1 ]

∫ ts2

ts1

Pr [T
C
≤ ts2 |TBE

= τ ] f
BE

(τ) dτ

)

= Pr[T
D
≥ ts2|TD

> ts1 ] ·
(

Pr[T
BE
≤ ts2|TBE

> ts1 ]

−w · 1

Pr[T
BE

> ts1 ]

∫ ts2

ts1

(1− S
MSCE

(ts2 − τ))f
BE

(τ) dτ

) (6.56)

Given a range of prior screening times ts1 ∈ [10, 30, 50, 60], Fig. 6.3 shows these Outcome

1: Strategy 1 probabilities for associated next screening times ts2 , where ts1 < ts2 ≤ 120.

The green diamonds depict the optimal screen times t∗s2 for this example cohort (males of all

races, born in 1950). For our choices of ts1 , we found that t∗s2 ranges from [67, 76].

6.3.2 Outcome 1: Strategy 2

This next strategy and derivation is analogous to Strategy 3 from the single screen opti-

mizations. For an individual found without BE at time ts1 , we optimize the probability of

an individual having developed detectable HGD before the time of screening but has not

yet developed screen-detectable malignancy, for specified weight parameter w. Again, these

derivations assume that the binary random variables for neoplastic detection, T d
M

(ts) and

T d
P

(ts) at some screening time ts, correspond to a screen with perfect sensitivity that can
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Figure 6.3: Optimality criteria for Outcome 1: Strategy 1. The optimality criteria are

plotted for each choice of next screening time ts2 , given prior screening age ts1 ∈ [10, 30, 50, 60]

(denoted by color) and weighting parameter w = 1, which calculates the true probability of

disease state window provided in Eq. (6.54). The optimal screen times t∗s2 for this example

cohort males of all races, born in 1950, are plotted by green diamonds and range from [67,

76] for our example choices of ts1 .

detect any non-extinct clone size (see Eqs. (6.2-6.3)).

Pr[T d
M

(ts2) = 0, T d
P

(ts2) = 1, T
D
≥ ts2|TBE

> ts1 , TD
> ts1 ] (6.57)

optimality criterion: Pr[T
D
≥ ts2|TD

> ts1 ] ·
(

Pr[T d
P

(ts2) = 1|T
BE

> ts1 ]

− w · Pr[T d
P

(ts2) = 1, T d
M

(ts2) = 1|T
BE

> ts1 ]
) (6.58)
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= Pr[T
D
≥ ts2 |TD

> ts1 ] ·
(

1

Pr[T
BE

> ts1 ]

∫ ts2

ts1

Pr[T d
P

(ts2) = 1|T
BE

= τ ] · f
BE

(τ) dτ

− w 1

Pr[T
BE

> ts1 ]
·
∫ ts2

ts1

Pr[T d
P

(ts2) = 1, T d
M

(ts2) = 1|T
BE

= τ ] · fBE(τ) dτ

) (6.59)

The first integral in this difference was solved for in Strategy 2, and solution is given in

Eq. (6.26). As for the probability in the integrand of the second integral, namely,

Pr[T d
P

(ts2) = 1, T d
M

(ts2) = 1|T
BE

= τ ], (6.60)

this was also derived previously in Strategy 3 and an expression for it is given in Eq. (6.53)

when setting ts = ts2 throughout the derivation.

6.3.3 Outcome 2

As a second possible outcome, a patient is found to have BE but no neoplasia (HGD/malignancy)

at screening time ts1 .

Associated EAC Risk

All choices of a next screening time will have an associated risk of having developed clinical

EAC by that time. As introduced in earlier sections, we may also derive the risk of some

later disease stage, such as clinical EAC, for the next screening times ts2 that are under

consideration for a BE patient to be in a certain earlier disease window. For Outcome 2 at

screening time ts1 , this risk for cancer up to the next screening at time ts2 would be defined

as

Pr[T
C
≤ ts2|TBE

< ts1 , T
d
P

(ts1) = 0, T d
M

(ts1) = 0]. (6.61)

In general, a doctor will not know how long a patient has harbored undetected BE before

some initial screen that first diagnoses him/her, i.e., a doctor will only know T
BE

< ts1 . This

is unfortunate because the longer a patient has had BE in his/her esophagus, the higher the

associated lifetime risk of EAC will be for this patient. We will explore this problem in the

following chapter and propose a model that uses epigenetic data obtained at screening time
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ts1 to estimate the patient-specific BE onset age τ , where τ ≤ ts1 . If we obtained this BE

onset time τ for a patient with Outcome 2 at time ts1 , then his/her associated EAC risk for

next screening age ts2 would be more specific than the general risk given in Eq. (6.61) and

would be defined as

Pr[T
C
≤ ts2 |TBE

= τ, T d
P

(ts1) = 0, T d
M

(ts1) = 0]. (6.62)

Here we will derive this probability as general lifetime risk without other cause mortality

for optimization. Once again, for the scenario with a perfectly sensitive screen that can detect

single cells, we may derive this probability using a filtered Poisson approach analogous to

the approach used in Strategy 2 for a single screen. Let N(σ, ts2) = # of initiated P cells

from a P ∗ cell born at time σ that result in a clinically detected EAC clone at time ts2

N(σ, ts2) =
∑
l

Nl(σ, sl, ts2), (6.63)

where Nl(σ, ts2 , sl) = 1 if initiation at time sl produces EAC at time ts2 , and ts1 < sl < ts2 ,

with probability p
C

(sl, ts2) = Pr[T
C
< ts2 |P (sl) = 1].

Then N(σ, ts2) is a FPP such that

N(σ, ts2) ∼ Poisson

(∫ ts2

max(σ,ts1 )

µ1pC
(s, ts2) ds

)
. (6.64)

Clinical EAC cumulative distribution, p
C

(sl, ts2), can be solved via the Kolmogorov equations

of the MSCE-EAC branching process, as has been done in previous chapters, from the PDE

in Eq. (3.11). Specifically we have that

p
C

(s, ts2) = Pr[T
C
< ts2|P (s) = 1] = 1− Pr[T

C
≥ ts2|P (s) = 1] (6.65)

= 1− Φ
P

(1, 1, 0; s, ts2) = 1− Y3(s, ts2) (6.66)

where Φ
P

(1, 1, 0; s, ts2) is the EAC survival from a single P cell (see Eq. (3.7)), Y3(u, ts2) is

the associated ODE to solve in the method given in Chapter 3 (see Eq. (3.17)) and u = ts2−s.

Next let M(τ, ts2) = # of preinitiated cells after BE onset at time τ that result in a detectable



140 CHAPTER 6

P clone at time ts2 . Then we have that

M(τ, ts2) =
∑
i

Mi(τ, σi, ts2) = 1 ⇐⇒ N(σi, ts2) ≥ 1 (6.67)

with probability p3(σi, ts2) = 1− exp
[
−
∫ ts2

max(σi,ts1 ) µ1pC
(s, ts2)ds

]
Then M(τ, ts2) is a FPP such that

M(τ, ts2) ∼ Poisson

(∫ ts2

τ

µ0Xp3(σ, ts2) dσ

)
(6.68)

Thus

Pr[T
C
≤ ts2|TBE

= τ, T d
P

(ts1) = 0, T d
M

(ts1) = 0] (6.69)

= 1− Pr[T
C
> ts2|TBE

= τ, T d
P

(ts1) = 0, T d
M

(ts1) = 0] (6.70)

= 1− exp

[
−
∫ ts2

τ

µ0X

(
1− exp

[
−
∫ ts2

max(σ,ts1 )

µ1pC
(s, ts2) ds

])
dσ

]
(6.71)

For example prior screening times ts1 ∈ [10, 30, 50, 60], Figure 6.4 depicts solutions of

Eq. (6.62) for EAC risk for an all race male cohort born in 1950. To note, with these

example assumptions on detectability of non-extinct HGD clones, there are other methods

besides the filtered Poisson approach that may be used to solve for Eq. (6.71), such as for-

mulating a first-passage time problem. We derive the probability using the filtered Poisson

approach for a cohesive methodology. As discussed and shown in Fig. 6.4, the model predicts

that associated EAC risk for those that developed BE earlier in life is significantly greater

than the risk for those BE patients who developed BE later in life. For the example that a

screen is performed at ts1 = 40 (purple lines), the male BE patient who developed BE at age

10 (solid line) has a predicted EAC risk by age 85 that was 6.6 times greater than the risk

of the BE patient who developed BE at age 40 (dash-dotted line). We will explore using BE

onset, T
BE

, as a candidate marker for progression in the next chapter.

Outcome 2: Strategy 1

Next, we aim to find the optimal time at which to screen the BE patient next so that he/she is

most probable to have detectable dysplasia but not yet detectable malignancy. At this time,
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Figure 6.4: Associated EAC Risk for Outcome 2. The EAC risk in Eq. (6.62) is

plotted for each choice of next screening time ts2 until age 85, given prior screening age

ts1 ∈ [40, 50, 60] (denoted by color) and a BE onset age τ ∈ [10, 20, 30, 40] (denoted by line

type). The EAC risk varies greatly based on both screening time ts1 for a patient with

Outcome 2 and on estimated time of BE onset τ .

the patient can be treated with RFA and/or EMR and greatly reduce his/her cancer risk

(see Chapters 4-5 and [14] for modeling examples of treatment impact). To emphasize again,

knowing the maximal probability of when the patient will have detectable dysplasia based on

a specific screening outcome allows for quantitative assessment of current screening protocols

(as introduced in Chapter 5) and addresses the overscreening issue for BE patients. Assuming

we have an estimate τ of a patient’s BE onset time (possibly derived from epigenetic data),
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this problem reduces to optimizing the following probability to determine t∗s2 ,

Pr[T d
M

(ts2) = 0, T d
P

(ts2) = 1|T
BE

= τ, T d
P

(ts1) = 0, T d
M

(ts1) = 0] (6.72)

optimality criterion: Pr[T d
P

(ts2) = 1|T
BE

= τ, T d
P

(ts1) = 0, T d
M

(ts1) = 0]

−w · Pr[T d
M

(ts2) = 1, T d
P

(ts2) = 1|T
BE

= τ, T d
P

(ts1) = 0, T d
M

(ts1) = 0]

(6.73)

Where w is a weighting variable that equals 1 when Eq. (6.72) is optimized. Again, we

can increase or decrease w depending on how much constraint we want to place on keeping

the risk of developing malignancy under a certain value, say ε. For ease of notation in this

strategy, we do not include the other cause mortality term Pr[T
D
≥ ts2|TD

> ts1 ] that can be

multiplied to the entire expression of optimality criterion provided in Eq. (6.73) as we have

done in previous strategies.

Let us first derive a formula for the first term of this difference based on the MSCE-EAC

model construction using again a filtered Poisson process approach,

Pr[T d
P

(ts2) = 1|T
BE

= τ, T d
P

(ts1) = 0, T d
M

(ts1) = 0] (6.74)

Let N(σ, ts1 , ts2) = # of initiated cells from a P ∗ cell born at time σ result in a detectable

clone at time ts2 , not born before ts1

N(σ, ts1 , ts2) =
∑
l

Nl(σ, ts1 , ts2 , sl) (6.75)

where Nl(σ, ts1 , ts2 , sl) = 1 if initiation at time sl produces a detectable clone at time ts2 ,

sl > ts1 with probability p2(sl, ts2) = Pr[T d
P

(ts2) = 1, T d
P

(ts1) = 0|P (sl) = 1] > 0 if and only

if sl > ts1 .

Then N(σ, ts1 , ts2) is a FPP such that

N(σ, ts1 , ts2) ∼ Poisson

(∫ ts2

max(σ,ts1 )

µ1p2(s, ts2) ds

)
. (6.76)

Assuming detectability of P cells based on non-extinction at time of screening, we have the

following probability (see Eq. (6.3)),

p2(s, ts2) = 1− βP ζP (s, ts2), ts1 < s < ts2 (6.77)
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where

ζ
P

(s, ts2) =
e(α

P
−β

P
)(ts2−s) − 1

α
P
e(α

P
−β

P
)(ts2−s) − β

P

(6.78)

The asymptotic version of this probability would be p2(s, ts2) = 1− β
P
/α

P
. We will assume

the same for malignant clones, with detection probability provided in Eq. (6.2).

Next let M(τ, ts2) = # of preinitiated cells after BE onset at time τ that result in a

detectable P clone at time ts2 . Then we have that

M(τ, ts2) =
∑
i

Mi(τ, σi, ts2) = 1 ⇐⇒ N(σi, ts2) ≥ 1 (6.79)

with probability p3(σi, ts2) = 1− exp
[
−
∫ ts2

max(σi,ts1 ) p2(s, ts2)ds
]

Then M(τ, ts2) is a FPP such that

M(τ, ts2) ∼ Poisson

(∫ ts2

τ

µ0Xp3(σ, ts2) dσ

)
(6.80)

Thus

Pr[T d
P

(ts2) = 1|T
BE

= τ, T d
P

(ts1) = 0, T d
M

(ts1) = 0] (6.81)

= 1− exp

[
−
∫ ts2

τ

µ0X

(
1− exp

[
−
∫ ts2

max(σ,ts1 )

µ1p2(s, ts2) ds

])
dσ

]
(6.82)

For the second term in Eq. (6.73), we will now derive

Pr[T d
M

(ts2) = 1, T d
P

(ts2) = 1|T
BE

= τ, T d
P

(ts1) = 0, T d
M

(ts1) = 0] (6.83)

We define similar C1, C2, C3 mutually exclusive scenarios of counts of initiations of different

types as was utilized in single screen Strategy 3. For each of the three scenarios, we will

use filtered Poisson processes techniques and abuse notation slightly by redefining FPP

random variables N1 and N2 variables differently but analogously for each scenario, to avoid

verboseness. We start with deriving the probability that event C1 occurs (at least once),

C1 : Let N1(u, ts2 , s) = 1 if T d
P

(ts2 , s) = 1, T d
M

(u, ts2 , s) = 1|P (s) = 1,M(u) = 1 (6.84)
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with probability pd2(s, ts2) · pd1(u, ts2) = (1− β
P
ζ
P

(s, ts2)) · (1− βM
ζ
M

(u, ts2)). Then we have

that

N1(ts2 , s, σ) =
∑
u

N1(u, ts2 , s, σ) ∼ Poisson

(
pd2(s, ts2) ·

∫ ts2

s

µ2p
d
1(u, ts2) du

)
(6.85)

and

N2(σ, ts2) =
∑
l

N1(ts2 , sl, σ) (6.86)

so that N2(σ, ts2) is a FPP and the PGF of N2(σ, ts2) is

Ψ(x;σ, ts1 , ts2) = exp

[∫ ts2

max(σ,ts1 )

µ1 · {Ψ(x; s, ts2)− 1} ds

]
(6.87)

where Ψ(x; s, ts2) is the PGF ofN1(ts2 , s, σ) = e−λ(1−x) where λ = pd2(s, ts2)·
∫ ts2
s

µ2p
d
1(u, ts2) du.

Therefore

Pr[C1 ≥ 1] = Pr[N2(σ, ts2) ≥ 1] = 1− Pr[N2(σ, ts2) = 0] = 1−Ψ(x = 0, ts2) (6.88)

= 1− exp

[∫ ts2

max(σ,ts1 )

µ1 ·
{
e−λ − 1

}
ds

]
(6.89)

Similarly,

C2 : Let N1(u, ts2 , s) = 1 if T d
P

(ts2 , s) = 1, T d
M

(u, ts2 , s) = 0|P (s) = 1,M(u) = 1 (6.90)

with probability pd2(s, ts2) · (1− pd1(u, ts2)) = (1− β
P
ζ
P

(s, ts2)) · βM
ζ
M

(u, ts2). Then we have

that

N1(ts2 , s, σ) =
∑
u

N2(u, ts2 , s, σ) ∼ Poisson

(
pd2(s, ts2) ·

∫ ts2

s

µ2(1− pd1(u, ts2)) du

)
(6.91)

and

N2(σ, ts2) =
∑
l

N1(ts2 , sl, σ) (6.92)

so that N2(σ, ts2) is a FPP and the PGF of N2(σ, ts2) is

Ψ2(x;σ, ts1 , ts2) = exp

[∫ ts2

max(σ,ts1 )

µ1 · {Ψ2(x; s, ts2)− 1} ds

]
(6.93)
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where Ψ2(x; s, ts2) is the PGF of N1(ts2 , s, σ) = e−λ2(1−x) where λ2 = pd2(s, ts2) ·
∫ ts2
s

µ2(1 −

pd1(u, ts2)) du. Therefore

Pr[C2 ≥ 1] = Pr[N2(σ, ts2) ≥ 1] = 1− Pr[N2(σ, ts2) = 0] = 1−Ψ2(x = 0, ts2) (6.94)

= 1− exp

[∫ ts2

max(σ,ts1 )

µ1 ·
{
e−λ2 − 1

}
ds

]
(6.95)

Lastly, we define

C3 : Let N1(u, ts2 , s) = 1 if T d
P

(ts2 , s) = 0, T d
M

(u, ts2 , s) = 1|P (s) = 1,M(u) = 1 (6.96)

with probability pd2(s, u) · (1 − pd2(u, ts2)) · pd1(u, ts2) = (1 − β
P
ζ
P

(s, u)) · β
P
ζ
P

(u, ts2) · (1 −

β
M
ζ
M

(u, ts2)). Then we have that

N1(ts2 , s, σ) =
∑
u

N1(u, ts2 , s, σ) ∼ Poisson

(∫ ts2

s

µ2 · p2(s, u) · (1− pd2(u, ts2)) · pd1(u, ts2) du

)
(6.97)

and

N2(σ, ts2) =
∑
l

N1(ts2 , sl, σ) (6.98)

so that N2(σ, ts2) is a FPP and the PGF of N2(σ, ts2) is

Ψ3(x;σ, ts1 , ts2) = exp

[∫ ts2

max(σ,ts1 )

µ1 · {Ψ3(x; s, ts2)− 1} ds

]
(6.99)

where Ψ3(x; s, ts2) is the PGF of N1(ts2 , s, σ) = e−λ3(1−x) where λ3 =
∫ ts2
s

µ2 · p2(s, u) · (1 −

pd2(u, ts2)) · pd1(u, ts2) du. Therefore

Pr[C3 ≥ 1] = Pr[N2(σ, ts2) ≥ 1] = 1− Pr[N2(σ, ts2) = 0] = Ψ3(x = 0, ts2) (6.100)

= 1− exp

[∫ ts2

max(σ,ts1 )

µ1 ·
{
e−λ3 − 1

}
ds

]
(6.101)

Next, let M(τ, ts2) =# of preinitiated cells after BE onset at time τ that result in C1∪ (C2∩

C3)

M(τ, ts2) =
∑
i

Mi(τ, σi, ts2) (6.102)
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where Mi(τ, σi, ts2) = 1 ⇐⇒ C1 ≥ 1 ∪ C2 ≥ 1, C3 ≥ 1. Due to the mutual exclusivity of

these events, we have that Mi(τ, σi, ts2) = 1 with probability

p3(σi, ts2) = Pr[C1 ≥ 1 ∪ (C2 ≥ 1 ∩ C3 ≥ 1])] (6.103)

= Pr[C1 ≥ 1] + Pr[C2 ≥ 1] · Pr[C3 ≥ 1]− Pr[C1 ≥ 1] · Pr[C2 ≥ 1] · Pr[C3 ≥ 1]

(6.104)

Then M(τ, ts2) is a FPP such that

M(τ, ts2) ∼ Poisson

(∫ ts2

τ

µ2 · p3(σ, ts2) dσ

)
(6.105)

With these, we have analytically solved for our expression of interest from Eq. (6.83),

Pr[T d
M

(ts2) = 1, T d
P

(ts2) = 1|T
BE

= τ, T d
P

(ts1) = 0, T d
M

(ts1) = 0] (6.106)

= 1− exp

[
−
∫ ts2

τ

µ0X · p3(σ, ts2) dσ

]
, (6.107)

and thus have both components to compute the optimality criterion for Outcome 2: Strategy

1 from Eq. (6.73). This is the final example of outcomes and strategies for adaptive screening

provided in this chapter although more variations for other outcomes may be computed in a

similar fashion.

6.4 Concluding Remarks

In this chapter, we derived probabilities for some example scenarios using the MSCE-EAC

model framework in order to introduce the methodology for optimal screen design for maxi-

mal screen yield, and included a few results using calibrated model parameters. This frame-

work for optimal design is a generalized method of weighting cost (in terms of occurrence of

an unfavorable event) and risk when optimizing a single screen or an adaptive screen based

on the outcome of a previous screen. Previously Dewanji et al. considered a single screen

scenario. Here we developed a generalization of the optimality criterion introduced by De-

wanji et al. and expanded the method to include the adaptive screen design component and
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a flexibility in weighting the risk of undesirable events [158]. With these expressions, we may

use the MSCE-EAC model to predict the inefficiencies of current surveillance scheduling.

The decisions of which clinical windows are most important to perform screens within and

the associated permissible risks are left to physician and health economist discretion.



Chapter 7

Barrett’s Esophagus: “How long has

that been there?”

There has been intense interest in using biomarkers based on genetic and epigenetic alter-

ations in Barrett’s esophagus (BE) to more accurately determine the risk of BE progressing

to esophageal adenocarcinoma (EAC). Both DNA hypo- and hypermethylation in the pro-

moters of various genes have been implicated during early stages of EAC progression leading

to significant changes in transcriptional activity of important tumor suppressor genes and

oncogenic pathways [160–164]. At other genomic locations methylation levels appear to grad-

ually drift with age [165]. Recently identified clock CpGs provide a novel characterization

of a tissue in terms of its biological age, and these markers were used to show accelerated

tissue aging in a variety of tissues and tumors [166, 167]. The main goal of this study is to

determine whether CpGs that drift differentially between BE and a normal reference tissue

can be used to more precisely determine the biological age of a patient’s BE tissue to more

reliably determine the patient’s risk to progress to dysplasia or cancer.

As emphasized throughout previous chapters, the risk of progressing from BE to EAC

appears to be relatively low, on average. It is estimated that only 0.2-0.5% of patients with

BE develop EAC each year [12], yet the cancer-specific mortality is high with the 5-year

survival mark below 15% for invasive EAC [168]. Thus, there is a pressing need to develop



6.4. CONCLUDING REMARKS 149

accurate markers that can identify BE that is more likely to progress to EAC in a person’s

lifetime and BE that is indolent or has low neoplastic potential. The assumption of a constant

BE-to-EAC progression rate implies that a BE patient who has had BE for n-times as long

as another BE patient of the same age is expected to have an n-fold higher cumulative risk of

developing EAC. However, the annual BE-to-EAC progression rate is unlikely constant, but

is expected to increase with age of the tissue (dwell time) due to the step-wise accumulation

of genetic and epigenetic alterations that drive premalignant and malignant progression in

BE over time [164, 169, 170]. Therefore, a longer dwell time for BE is likely to increase the

risk for neoplasia and cancer in an exponential manner. Many-fold higher risks result from

the participation of clonal expansion processes of neoplastic precursors and malignant tumors

as reflected by the exponential increases in the age-specific incidence of EAC in the general

population [6].

High-throughput methylation arrays and quantitative sequencing assays have recently

become available to quantitatively assess CpG-methylation patterns genome-wide [171–174].

Although, at the molecular level, CpG-methylation is essentially a binary variable (a CpG

site is either methylated or unmethylated), degree of methylation is typically reported on

the array as a fraction (β-value) of methylated probes relative to the sum of methylated and

unmethylated probes (β = M/(M+U)), representing a population average across individual

epigenomes in a tissue sample. Moreover, it has been demonstrated that the methylation

state at a specific CpG site can vary considerably from one cell generation to the next due

to the processive, error prone nature of the DNA methylation maintenance system during

DNA replication [175–177]. To identify CpGs that undergo methylomic drift that can be

correlated with BE tissue age, we generated data from formalin fixed paraffin embedded

(FFPE) tissue samples from two groups of BE patients: one group of 10 patients each

with 2 or more tissue samples at least 5 years apart (data set D1) provides longitudinal

information at the individual level, while the second group of 30 patients (data set D2)

provides cross-sectional information as well as differential drift information between normal

squamous (NS) and BE tissue. The combined statistical analyses of these two data sets, as
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described in Materials and Methods, suggests that at least ∼70 hypomethylated CpG sites

undergo significant differential methylomic drift in BE vs NS. The observed drift appears

relatively uniform across the set of identified CpGs, giving rise to high correlations in the

methylation differentials (BE vs NS) between CpGs. Thus, a hallmark of methylomic drift

CpGs is that they are highly correlated (as all clocks are that keep chronological time) even

if the markers belong to independent functional genomic or metabolomic pathways.

To infer the patient-specific BE onset times from bivariate BE methylation levels of these

drift CpGs, we use a Bayesian model which accounts for (CpG-specific) random effects in

drift rates and for inter-individual heterogeneity in the onset times. To gain insights into

how the age of BE onset influences EAC risk we also use a recently developed mathematical

model for EAC incidence to compute standardized life-time risks for the individuals in data

set D2 given their predicted BE onset times [6,14]. Additionally, we apply the methodology

developed here to methylation array data from familial BE (FBE) patients (data set D3) as

well as to patients who developed high grade dysplasia (HGD) and/or cancer (data set D4).

The quantitative comparison of both BE onset times and inferred EAC risks for BE patients

without neoplasia (D2) versus familial BE (D3) and BE patients with neoplasia (D4) will

suggest if BE onset is a powerful event-marker of cancer risk or not. In the following we

describe the data and methodology used in this current study.

7.1 Materials and Methods

All CpG-methylation data for this study were generated with the Illumina Infinium Hu-

manMethylation450 beadchip [178, 179] which includes over 485,000 CpG-methylation sites

throughout the genome (covering 99% of Reference Sequence (RefSeq) genes (National Cen-

ter for Biotechnology Information (NCBI), Bethesda, MD, USA)). Data normalization was

performed using the Bioconductor minfi package, which includes Illumina background level

correction, color adjustment and Subset-quantile Within Array Normalization (SWAN) nor-

malization. For linear regressions of the probe-specific methylation fractions on patient age
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we used M-values rather than β-values to better account for epigenetic drift that occurs at

very low (< 1%) and high levels of methylation. M-values are logit-transformed β-values

(where β = M/(M + U)) allowing for non-linear saturation effects of methylation fractions

with age at both ends of the methylation spectrum.

7.1.1 Patient data

We examined levels of DNA methylation at over 450,000 CpG sites in tissue samples from

four groups of BE patients (see Tables D.1-D.3 for detailed patient information). The first

data set (D1) is unique and consists of longitudinal samples from 10 BE patients ages 33-70

years at index biopsy (mean age = 53.8) with 2 or more tissue biopsies that were collected

at least 5 years apart comprising a total of 30 samples. An example of patient data for two

particular CpGs that show longitudinal drift for each of these 10 patients’ serial sample sets

is shown in Fig. 7.1.

The second, cross-sectional data set (D2) includes matched BE and normal squamous

(NS) tissue samples from 30 BE patients ages 21-88 years (mean age = 63.4) comprising

a total of 60 tissue samples. While the longitudinal patients in D1 provide information on

individual BE tissue methylation drift, the aggregated cross-sectional BE methylation values

at various ages provide information on a population scale of drift with age. This apparent

drift could be caused by various factors and we will focus on the potential influence of varying

BE onset ages, i.e., the time at which differential drift in BE first began, as one such factor.

Fig. 7.2 denotes two example D2 patients’ ages at time of biopsy (a1 = 21, a2 = 80), and

the theoretical consequence their ages will have on the statistical inference of their BE onset

ages. The inter-individual heterogeneity of such conditional distributions for BE onset times

will thus affect the methylation level data around a population mean drift. An illustration

for a single CpG site for the BE samples from D2 is shown in the insert of Fig. 7.2. Note,

for the cross-sectional group (D2), the matched BE and NS samples originate from biopsies

collected during the same endoscopy.
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Figure 7.1: Longitudinal drift from set D1. Examples of one CpG (cg21093043) that

significantly drifts up (left panel, becomes increasingly hypermethylated) and one CpG

(cg23616241) that significantly drifts down (right panel, becomes increasingly hypomethy-

lated) among longitudinal data points. Each individual from data set D1 provides serial

samples denoted by color.

The third data set (D3) includes BE tissue samples from 22 familial BE (FBE) patients

ages with one sample per patient, and the fourth set (D4) includes BE tissues from 10

BE patients with neoplasia (HGD and/or EAC). Familial Barrett’s esophagus (FBE) was

defined as having a first- or second-degree relative with long-segment BE, adenocarcinoma

of the esophagus, or adenocarcinoma of the gastroesophageal junction whose diagnosis was

confirmed by review of endoscopy and histology reports [180]. The data also includes gender

and age of each patient when the tissue biopsies were collected (see Tables D.1-D.3).
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Figure 7.2: Population drift from set D2. The heterogeneity with age around the

population mean drift slope may be caused by the inter-individual heterogeneity of BE

onset times. Illustrational of cross-sectional BE data for a certain CpGj shown in upper

right inset. Assuming uniform distributions for BE onset times (conditional on age), two

example patients from data set D2, who had biopsies taken at index endoscopy ages a1 = 21

and a2 = 80, would have hypothetical mean BE onset times at ages s̄1 = 10.5 and s̄2 = 40,

respectively.

7.1.2 Identification of markers of differential epigenetic drift

Two concepts have fairly recently emerged that relate alterations in DNA-methylation to

biological tissue age. The first is based on discovery of sets of clock-CpGs that may undergo

complex age-dependent changes in methylation that correlate strongly with chronological age
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and neoplastic progression [166, 167, 181]. The second concept relates to subtle changes in

methylation levels due to epigenetic drift as a result of a semi-conserved replication process

of DNA-methylation patterns [182–185]. Significantly, some CpG-islands that show very low

(hypo-)methylation levels early in life are known to undergo gradual methylation over time,

presumably as a result of sporadic de novo methylation events during DNA replication, a

process commonly understood as epigenetic or methylomic drift [182, 186–190]. Therefore,

to identify potential CpG candidates that may serve as markers for differential tissue aging

in the emerging metaplastic tissue of BE patients relative to their normal squamous (NS)

tissue, we used linear regression to identify CpGs in BE tissue samples that show significant

longitudinal drift in study D1 as well as consistent cross-sectional drift among patients in

D2. From this first selection of age-related drift markers, we retained CpGs that are either

hypomethylated (βNS < 0.25) or hypermethylated (βNS > 0.75) in NS tissue and show

significant differential positive or negative drift between NS and BE tissues, respectively, for

the markers in these two categories. The following steps summarize our discovery pipeline

in more detail.

Step 1: Identify BE drift-CpGs using longitudinal data

To identify CpGs that show consistent drift across all patients in D1, we examined the

relationship between incremental changes in methylation levels (M-value) and time since

first biopsy for all D1 patients as shown in Fig. 7.1. To this end, we first translated each

patient’s age by the age of his/her first biopsy and subsequently adjusted all M-values by

the patient’s predicted M-value at the time of the first biopsy using linear regression. If a

patient had only 2 biopsies, we used a connecting line through the two data points. Next, we

performed linear regressions on the normalized D1 data in aggregate to identify candidate

CpGs that undergo concordant drift between individuals and to determine marker-specific

drift rates, bj, j = 1, ..,M from the regression slopes of M markers. To ensure that CpGs

that appear to drift incrementally (with time-since-first-biopsy) also drift cross-sectionally

with age, we simultaneously tested each CpG for concomitant cross-sectional drift across
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all samples in D1 using a nominal p-value = 0.01 while a false discovery rate (FDR) of

q = 0.20 was applied for the incremental drift analysis. This testing identifies 2,944 CpGs

out of a total of 456,385 CpGs that drift upward and 1,774 CpGs that drift downward

across the 10 D1 patients. We deliberately kept a permissive FDR of 0.2 to avoid excessive

pruning of informative markers due to the relative small number of observations in D1. Note,

this selection procedure ignores the inter-individual variability in the estimated drift rates,

bj, j = 1, ..,M for M number of CpGs, but generates an approximate “standard clock” rate

for each drift CpG so that individual-level methylomic drift can be translated into biological

age information. This information will be used for generating patient-specific drift rates,

details forthcoming.

Step 2: Identify NS vs BE differential drift in cross-sectional data

Next, we examined which of the candidate CpGs identified in Step 1 show significant dif-

ferential drift between the matched NS and BE tissues of data set D2. We used Analysis

of Covariance (ANCOVA) regression modeling to test whether the methylomic drift rates

(i.e., M-value regression slopes) differed between NS and BE tissues among the 30 patients

in set D2. We further subdivide the CpGs into two subgroups: those that are essentially

hypomethylated in NS tissue with βNS < 0.25 (475 CpGs), and those that can be considered

hypermethylated in NS tissue, i.e., βNS > 0.75 (335 CpGs) for all NS samples in D2. As

we will show, this categorization distinguishes positive and negative methylomic drift in BE

tissue, respectively for hypo- and hypermethylated CpGs in the reference NS tissue. This

particular choice is less confounded by heterozygous methylation where drift could, at least

in principle, occur in opposite directions (e.g., when the paternal allele is unmethylated, but

the maternal allele is methylated). Using ANCOVA, we find 83/475 CpGs to differentially

drift between BE and NS in the first group (nominal p-values < 0.05), while only 21/335

CpGs appear to differentially drift between the two tissues in the second group. As expected,

the majority (70) of the 83 differential, upward drifting CpGs have estimated BE drift rates

that are in fact larger than their corresponding NS drift rates, while only 8 out of 21 differ-
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ential downward drifting CpGs appear to have estimated BE drift rates that are lower than

their corresponding NS drift rates. Thus, we will continue our analysis and selection using

the larger subset of 83 positively drifting CpGs.

A principal component analysis (PCA) of residuals from the BE methylation age regres-

sion (which are hypothesized to reflect BE tissue age differences) for the selected 83 differen-

tial drift CpGs confirms the clustering of these CpGs into a clustered group (70 CpGs) with

cross-sectional BE drift rates that are estimated to be higher than those estimated for NS

tissue which tend to be flat. Only a few outliers (13 CpGs) show the opposite behavior and

likely represent false positives from the initial candidate selection in step 1 (see Fig. 7.3).

Additionally, all but one of the 70 CpGs drift positively (mean population drift slope =.033),

and all 70 are strongly correlated (mean r = 0.64) in their linear regression residuals. The

only technically down drifting CpG on the population level of this set is nearly flat (slope

= -0.0001), over 150 times larger than the universally negative slopes of the 13 CpGs in

the left cluster (black dots in Fig. 7.3). The PCA seemed to cluster the positively drifting

CpGs from Step 1 into two groups: one that drift similarly on a population level in D2 (70

green points in Fig. 7.3), and those few that show the opposite behavior (13 black points

in Fig. 7.3). Thus, we consider these 70 differential drift CpGs as an admissible subset of

CpGs that provide differential tissue age information for a quantitative estimation of BE

onset times. Additional information on each of the 70 CpGs is provided in Tables D.4-D.5.

In the following we will refer to this specific subset as BE clock CpGs.

Fig. 7.4 shows data (M-values) from patient data sets D1 and D2 for several representative

BE clock CpGs. We next show how the individual BE onset times can be estimated from

the methylomic drift observed in these clock CpGs using a Bayesian model that allows for

measurement error and variability in marker-specific BE drift rates.
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Figure 7.3: Principal component analysis of methylation residuals for positive drift

CpGs. PCA analysis of mBE ∼ age BE regression residuals for a total of 83 differential

drift CpGs identified from data set D2 with matched hypomethylated NS tissues.

7.1.3 Bayesian BE clock model for estimating onset times and

drift

Our goal is to employ information about the CpG locus-specific aging rates for both BE

tissue and normal squamous tissue obtained from the data to predict when a patient first

developed BE as a one-time occurrence. Given a patient’s current methylation data from

tissue samples, a set of intersecting lines representing the patient-specific, linear drift in

methylation levels of BE tissue and normal squamous tissue will provide an estimate of the

onset time of BE, i.e., when the BE tissue manifested itself by aging at a different rate

than the normal squamous esophageal tissue. Here we are assuming methylomic drift is

essentially linear (at the logit scale), although there is also evidence that age-associated

variation in methylation levels may be better modeled by a function of logarithmic age for
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Figure 7.4: BE clock CpGs. Coss-sectional patient data D2 for 4 representative BE clock

CpGs plotted for SQ M-values (black points) and BE M-values (red points). These four

CpGs have the highest p-values for significant individual BE drift from the longitudinal data

set D1. BE data for the longitudinal patients in data set D1 are shown with + symbols

and different colors distinguishing each patient’s samples, as in Fig. 7.1. Corresponding

regression lines for cross-sectional data D2 are also plotted.
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younger individuals [181].

Here we describe a Markov Chain Monte Carlo (MCMC) method to estimate the trans-

formation times of BE, i.e., the Bayesian BE clock model for methylomic aging and the

corresponding MCMC likelihood contributions.

For the BE clock CpGs applied to a patient group of size N , the data consists of mea-

surements for M = 70 CpG sites for each patient i, i = 1, .., N observed at time (age) ti = ai.

These M measurements are each an observation yBEij(ti), j = 1, ..,M, representing CpGj

M-value (logit(β) values) taken from BE cells in patient i. Since the measurements from

BE cells over time have differential, increased drift compared to those for squamous cells

after the onset of BE, we consider the following linear model for the conditional expected

measurements, variable YBEij(ti), taken from patient i at time ti for each CpG, given the

onset of BE at time si ≤ ti,

E[YBEij(ti)] = α
SQj

+ b
SQj
si + bij(ti − si). (7.1)

for j = 1, ..,M. Thus, given the following parameters - the onset of BE at time T
BE

= si,

the slope (b
SQj

) and intercept (α
SQj

) of the SQ population regression lines obtained from

individuals with matched samples in data set D2, and the patient-specific, CpG-specific

BE drift rate bij - we observe M independent observations for N independent individuals.

Allowing for patient-specific drift rates for the BE clock CpGs, we explicitly model the

inter-individual differences in BE drift rates between ‘slow’ and ‘fast’ aging BE tissues.

Again, the observation from a single patient i, for i = 1, . . . , N , observed at time ti, is of

the form

{yBEij, j = 1, . . . ,M}. (7.2)

The likelihood contribution from a single patient observed at time ti is then

M∏
j=1

f(yBEij)

=
M∏
j=1

f
N

(yBEij;µBEij
= α

SQj
+ b

SQj
si + bij(ti − si), σBEi

) (7.3)



160 CHAPTER 7

where f
N

is the normal density function. In order to apply the MCMC technique, we assume

uniform priors p(si) for BE onset times si (due to the fact that the distribution of BE

onset times in the general population is unknown), uniform priors p(σ
BEi

) for the standard

deviation σ
BEi

on the BE M-value observations, and prior distribution p(bij) for slopes bij, j =

1..M , which will be derived from the longitudinal data as a gamma distribution with empirical

mean and shape parameters.

In terms of simulating the BE onset times s1, . . . , sN from the corresponding posterior

distribution, let us define the vector Ψi = (si, bi1, . . . , biM , σBEi
). Samples of Ψi under its

posterior distribution for patient i will be obtained using MCMC. Note that the posterior

distribution of Ψi given the observation y∼ comprised of patient-specific data of the form in

Eq. (7.2), for i = 1, . . . , N , is

π(Ψi|y∼) ∝ likelihood · prior (7.4)

=
M∏
j=1

f
N

(yBEij;µBEij
, σ

BEi
) · p(si) · p(bij) · p(σBEi

) (7.5)

This Bayesian BE clock model implements MCMC using the R package Bhat available

from the CRAN website [94]. To summarize the MCMC output, the posterior parameter

means, medians, and other quantiles over the MCMC will give Bayes estimates of the BE

onset time si for individual i, i = 1, . . . , N , the patient-specific, CpG-specific drift slopes

bij, j = 1, . . . ,M , and patient-specific standard deviation parameter, σ
BEi

.

We obtain MCMC posterior estimates for all Bayesian BE clock model parameters using

chains of length 500K cycles, all of which converged rapidly.

7.1.4 Testing significance of BE dwell time differences

To formally assess differences between different patient groups (say BE with dysplasia versus

BE without dysplasia), we will use Bayes factors to statistically test if the BE onset ages

estimated for one patient group si, i = 1, .., Nk, lead to BE dwell times that are significantly

different from those of another group with estimated BE onset ages s′i, i = 1, .., Nl for
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k, l ∈ {2, 3, 4}. For two specified data sets Dk, Dl, we will compare the average percentage

of life until age at biopsy (ai) during which the patient harbored BE. This quantity is given

for two data sets by the following variables,

γk =
1

Nk

Nk∑
i=1

ai − si
ai

, γl =
1

Nl

Nl∑
i=1

a′i − s′i
a′i

(7.6)

Thus, we are interested in testing hypotheses H0 : γk > γl versus H1 : γk ≤ γl. For this

test, we consider data y∼ = {yk,yl} comprised of patient-specific observations of the form

in Eq. (7.2) and compute the Bayes factor

B01 =
Pr[y∼|H0]

Pr[y∼|H1]
=

Pr[H0|y∼]/Pr[H0]

Pr[H1|y∼]/Pr[H1]
=

Pr[H0|y∼]/Pr[H0]

(1− Pr[H0|y∼])/(1− Pr[H0])
(7.7)

to quantify the evidence in favor of the null hypothesis H0 and against the alternative

H1 [191]. To compute Pr[H0|y∼], we apply the ergodic theorem and approximate the pos-

terior probability by the fraction of MCMC samples satisfying γk > γl. The prior Pr[H0]

is computed similarly except we sample onset times si for the two groups of patients being

compared directly from the uniform prior distributions si ∼ Uniform(0, ai).

7.2 Results

7.2.1 Bayesian BE clock model estimates for BE patients in D2

First, we will use the Bayesian BE clock model to obtain posterior estimates of parameters

for data set D2 (size N2 = 30 patients) with the BE clock CpG set (size M = 70). See

Materials and Methods for modeling details and CpG selection. Preliminary results show a

wide inter-individual variability predicted for median BE onset ages among the 30 patients

in D2.

7.2.2 BE onset predictions for familial BE cases in D3

Assuming that familial Barrett’s esophagus (FBE) is mainly an inherited phenomenon, Chak

et al. performed a study that shows that a certain putative inherited susceptibility gene(s)
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influence the development of BE and its associated cancers in at least 7% of patients with

these conditions [180]. We will estimate the Bayesian BE clock model parameters for the

independent data set D3 (size N3 = 22 patients) with FBE, with age range 39-84 at time of

biopsy (mean age = 62.8).

Because a younger age of disease incidence is often considered a surrogate marker for a

genetic predisposition, we will test the hypothesis that the FBE patients of data set D3 had

been living with their BE for longer than the general BE patients of data set D2, which in

our notation translates to H0 : γ3 > γ2 (see Materials and Methods for details).

7.2.3 BE onset predictions for HGD/cancer cases in D4

Next, we will use the Bayesian BE clock model to estimate parameters for data set D4

consisting of 10 patients with diagnosis of neoplasia, defined as either high grade dysplasia

(HGD), EAC, or both (see Table D.3 for patient details). We will similarly obtain parameter

estimates from the Bayesian BE clock model and then use Bayes factor testing to see if the

data suggests that the BE dwell time in neoplastic patients is longer than the dwell times for

the general BE data set D2 and also the FBE dwell times obtained from data set D3, which

in our notation translates to H0 : γ4 > γ2 and H0 : γ4 > γ3, respectively (see Materials and

Methods for details).

7.2.4 Predicted EAC risks for BE patients

With the BE onset time predictions provided in the previous results, we may also associate a

particular risk of developing EAC before a certain age. We standardize the risk of developing

EAC to represent lifetime risk at age 85 (with oldest patient of the 3 data sets being 88 years

old at time of biopsy/diagnosis of BE). We employ the multistage clonal expansion for EAC

(MSCE-EAC) model that was previously calibrated to EAC incidence data by birth cohort,

to obtain hypothetical EAC risk estimates for each patient [6, 14]. The risk we seek to

quantify is the probability of developing EAC at random time T
EAC

by age 85 conditional
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on the onset age of BE, T
BE

. For each BE patient, with BE onset time estimated to be age

s from his/her methylation profile, we can compute the following risk

Pr[T
EAC

< 85|T
BE

= s] = 1− S
MSCE

(85− s), (7.8)

where S
MSCE

is the survival probability for the multistage clonal expansion (MSCE) model

from Chapter 2 (see Eq. (2.24)) [6, 13,14].

7.3 Discussion

A fundamental problem in predicting the risk of esophageal adenocarcinoma (EAC) in pa-

tients with BE continues to be the difficulty in assessing the neoplastic potential of the

premalignant field in which malignancies arise. Several lines of evidence support the notion

that both BE segment length and the duration BE has been present in a patient (i.e., BE

dwell time) are important determinants of EAC risk in addition to environmental and pos-

sibly genetic risk factors. While endoscopic surveillance with systematic biopsy sampling

is the standard clinical care to screen BE patients for neoplastic changes and early cancer,

most BE patients never develop esophageal cancer in their lifetime. Priority has therefore

been given to novel approaches to assessing the molecular signatures of EAC progression and

biomarkers that more precisely define EAC risk at the individual level. In parallel, because

chronological age is recognized as one of the strongest predictors of cancer risk, renewed at-

tention has been given to exploring the roles of biological tissue-age and cellular senescence

in carcinogenesis.

Mutliple age-related changes in DNA methylation have recently been observed and in-

terpreted to measure biological tissue age with accelerated tissue aging in neoplastic tis-

sues [166, 167]. We therefore asked the question whether individuals who progress to EAC

may simply have had BE for a longer period of time compared with individuals who do

not, allowing more time for somatic clonal evolution and transformation to run their course.

Alternatively, accelerated cancer progression could also be due to faster tissue aging in BE
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possibly as a result of increased stem cell turnover. To determine when exactly a patient

developed BE we examined methylation array data for differential epigenetic drift in BE

versus normal squamous tissue (NS) in 30 patients with matched tissue samples. Addition-

ally, we used methylation data from 10 patients with serial biopsies taken at least 5 years

apart comprising a total of 29 separate BE tissue samples. These latter data are unique

as they allow an estimation of CpG-specific drift rates which can not be gleaned from the

cross-sectional data. Thus, to identify CpGs that drift significantly and differentially be-

tween BE and NS tissue, we began our search for CpG dinucleotides that undergo positive

or negative longitudinal drift in BE tissue using the data generated from the serial biop-

sies. We deliberately cast a wide net when adjusting the regression p-values for multiple

comparisons (q-value < 0.2) to identify candidate CpGs that drift significantly with age in

BE (see Materials and Methods). This rather permissive preselection was then subjected

to an Analysis of Covariance (ANCOVA) with two categorical groups (BE and NS), and

subsequent Principal Component Analysis (PCA) as described in the Material and Methods

to isolate CpGs that drift differentially in BE vs NS tissue and show high correlations in

their M-value∼age regression residuals between markers.

This bioinformatic approach allowed us to identify two subgroups of BE-specific drift-

CpGs based on biological considerations of the DNA methylation maintenance process. For

the first group (undergoing positive drift) we consider sporadic de novo methylation as the un-

derlying process that leads to gradual gains in CpG methylation, while the second group (un-

dergoing negative drift) can be considered to arise due to sporadic losses of 5-methylcytosines

as a result of active CpG demethylation via DNA glycosylases and/or local suppression of

DNA methylation maintenance during DNA synthesis [192,193]. These processes are known

to involve distinct sets of enzymes, including DNA methyltransferases (Dnmt’s) that are

associated with the DNA replication machinery [194]. Epigenetic drift, we hypothesize, is

therefore also a reflection of stem cell turnover, tissue repair and mitotic activity in a tissue.

Furthermore, in BE these processes may also be modulated by life-style factors, history of

gastroesophageal reflux, PPI use and NSAID use [90]. Interestingly, we found little evidence
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for differential BE vs NS drift among CpGs that were hypermethylated (β > 0.75) in normal

tissue but showed negative methylation drift in BE (second group).

Although the differential epigenetic drift we observe is likely to occur in genomic regions

with no relevance to cancer progression (neutral drift) we hypothesize that at least some

markers start to differ from normal tissue levels possibly as a result of tissue transdiffer-

entiation or stem-cell reprogramming in BE [195, 196]. Of note, our set of 70 differential

drift CpGs appears enriched for CpGs located on islands (76% vs 49% based on the num-

ber of annotated CpGs designated to this category by Illumina, see Tables D.4-D.5) [197].

The absence of hitherto identified CpG markers (or their loci) of neoplastic progression in

BE among the 70 drift CpGs we identified in this study suggests that these CpGs undergo

neutral drift.

Because BE is mainly asymptomatic (over 90% of EAC cases do not even present with a

prior history of BE [198] although BE is found pre-operatively in most EAC cases [199]), a

direct validation of when a patient first develops BE is presently not feasible. For this reason

we are currently attempting to validate our predictions indirectly through two lines of evi-

dence. There have been previous efforts to identify tissue-based indicators that accurately

reflect the biological age of a tissue using regularized regression techniques by directly re-

gressing age on the methylation levels of a large number of CpGs to identify subsets of CpGs

that are predictors of chronological age [166,167]. Although we cannot use these techniques

in the context of BE because the BE onset times are unknown, we will see if our predictions

are at least broadly consistent with the straightforward application of these clock models to

estimate absolute tissue-age differences between BE and NS tissue. Specifically, using the

published elastic net coefficients by Horvath [167] and by Hannum et al. [166] we will com-

pute the predicted biological age of the BE tissue and subtracted the predicted biological age

of the normal squamous (NS) esophageal tissue to arrive at estimates of the BE dwell time

for the 30 patients in D2. By subtracting these estimates from chronological age we may

obtain corresponding BE onset times that will be tested against with our mean estimates

for correlations. Interestingly, our clock uses a distinct set of markers from those of Horvath
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and Hannum et al.

Once a patient’s BE onset distribution has been estimated from his/her methylomic

drift profile, his/her risk of developing EAC can be estimated more precisely. We will use

the previously validated MSCE-EAC model that explicitly considers the uncertainty of the

timing of the BE onset in the general population and describes, conditional on when BE

develops, the stochastic process of neoplastic progression from metaplastic to dysplastic

tissue to cancer [6, 14]. Our results will test the theoretical predictions that show a strong

dependence of EAC risk on the BE dwell time. Note, however, these EAC risk predictions

do not consider the effects of interventions and therefore may be higher than empirical risk

estimates. Our current work aims to see if BE onset, as determined by methylomic drift,

should be considered a potential biomarker for EAC risk, although further validation via

properly powered prospective studies or case-control studies in BE patients will be needed to

confirm this. Such studies may provide the requisite data to further test how well BE tissue-

age performs in identifying individuals that likely progress to HGD or EAC in their lifetime

so that endoscopic surveillance and available interventions can be utilized more effectively.



Appendix A

Impact of Tumor Progression on

Cancer Incidence Curves

A.1 Parameter estimates and uncertainty for the MSCE

model

A.1.1 Fits to SEER incidence data

In the following we describe the fits of SEER-9 incidence data of CRC, GaC, and PaC using

both the MSCE model and its approximation (referred to as MSCE-1) [7]. A comparison

shows that the estimated lag-time parameters for the MSCE-1 approximation are in gen-

erally good agreement with corresponding estimates for T2 in the MSCE model assuming

biologically plausible values for the cell division rates of premalignant cells (α
P
∈ [2, 50] per

year) and malignant cells (α
M
∈ [25, 100] per year [200]) and for the observation event rate

ρ ∈ [10−6, 10−8] per cell per year. See Table A.1 for the results of the sensitivity analysis of

λ, g
P
, g

M
, µ

eff

2 on choices for α
P
, αM , ρ.

In general, the exact solution of the MSCE hazard function with two consecutive clonal

expansions may be difficult to distinguish from a model with a single clonal expansion plus

a time lag. This also means that the parameters of the model in Fig. 2.2, in particular
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CRC males λ x 10-4 gP gM μ2
ef

 x 10-6

αP [2, 50] [2.13, 2.13] [0.162, 0.162] [2.58, 2.59] [0.15, 3.76]

αM [25,100] [2.13, 2.13] [0.162, 0.162] [2.52, 2.67] [0.73, 0.77]

ρ   [10-6,10-8] [2.13, 2.13] [0.162, 0.162] [2.08, 3.07] [0.75, 0.76]

CRC females λ x 10-4 gP gM μ2
ef

 x 10-6

αP [2, 50] [1.57, 1.57] [0.149, 0.149] [2.04, 2.05] [0.32, 8.09]

αM [25,100] [1.57, 1.57] [0.149, 0.149] [1.92, 2.17] [1.61, 1.62]

ρ   [10-6,10-8] [1.57, 1.57] [0.149, 0.149] [1.61, 2.46] [1.61, 1.63]

Table A.1: Sensitivity analysis on MSCE model parameters. Sensitivity analysis to

test the effect of uncertainty in the cell division rates α
P

and αM , and in the detection rate

ρ on the estimated MSCE model parameters.

the parameters that pertain to preclinical cancer progression, may be difficult to estimate

from cancer incidence data alone. Additional assumptions such as equality of the mutation

rates µ0, µ1 and µ2, replacing some of the parameters with measured values, or inclusion of

screening data on the number and sizes of preclinical tumors, are required to estimate all

relevant model parameters (see [13] for more information on parameter identifiability).

A.1.2 Birth cohort and calendar year trends

We used a modified age-period-cohort (APC) approach to adjust the incidences for secular

trends. While the period and cohort effects are modeled non-parametrically, the age effect

follows the hazard function of the MSCE model and is therefore parametrically constrained.

This finesses a non-trivial identifiably problem of the APC approach and allows us to separate

cleanly age, period and cohort effects (see [41, 51, 52]). Briefly, the APC ansatz assumes an

incidence function [52]

Ibc(t) = Θb Θc hMSCE
(t) (A.1)
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where Θb and Θc are coefficients that modify the MSCE hazard h
MSCE

(t). See Main Text

and Supplemental Information of [13] for more information on estimated birth cohort and

calendar year coefficients.

Figures A.1-A.6 show age-specific incidences of CRC, GaC, and PaC in SEER-9 from

1975-2008 by gender and 5 year calendar periods. The left panels show the raw (unadjusted)

incidences whereas the right panels show period and cohort adjusted incidence curves as well

as the MSCE model prediction. For CRC, GaC, and PaC both the exponential and the

linear behavior of the adjusted curves stand out.
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Figure A.1: (Left panel) Unadjusted CRC incidences among males from SEER-9 by 5 year

calendar periods. (Right panel) Adjusted incidences using the estimated calendar-year and

birth-cohort coefficients, and the MSCE model fit (thick black line).
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Figure A.2: (Left panel) Unadjusted CRC incidences among females from SEER-9 by 5 year

calendar periods. (Right panel) Adjusted incidences using the estimated calendar-year and

birth-cohort coefficients, and the MSCE model fit (thick black line).
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Figure A.3: (Left panel) Unadjusted GaC incidences among males from SEER-9 by 5 year

calendar periods. (Right panel) Adjusted incidences using the estimated calendar-year and

birth-cohort coefficients, and the MSCE model fit (thick black line).
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Figure A.4: (Left panel) Unadjusted GaC incidences among females from SEER-9 by 5 year

calendar periods. (Right panel) Adjusted incidences using the estimated calendar-year and

birth-cohort coefficients, and the MSCE model fit (thick black line).
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Figure A.5: (Left panel) Unadjusted PaC incidences among males from SEER-9 by 5 year

calendar periods. (Right panel) Adjusted incidences using the estimated calendar-year and

birth-cohort coefficients, and the MSCE model fit (thick black line).
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Figure A.6: (Left panel) Unadjusted PaC incidences among females from SEER-9 by 5 year

calendar periods. (Right panel) Adjusted incidences using the estimated calendar-year and

birth-cohort coefficients, and the MSCE model fit (thick black line).
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The MSCE-EAC Screening Model

B.1 MSCE-EAC tissue module: hybrid simulation al-

gorithm

The following steps describe the MSCE-EAC tissue module simulation for a single individ-

ual’s MSCE-EAC multi-type branching process realization from birth until time of screening

ts

Step 1: Simulate BE onset time

For each individual, generate an age of BE onset, T
BE

using the inverse cumulative distribu-

tion technique with Eq. (3.3). Because the incidence rate of BE in the general population

is very small, most random realizations of this onset time will be longer than the human

lifespan. The simulation continues only for those individuals who have a T
BE

onset time

within the age range of interest (possibly before a set screening age ts).

Step 2: Generate BE segment length

Generate the size of a patient’s BE segment (measured clinically as the length from gas-

troesophageal junction (GEJ) to the top of the longest “tongue” of metaplastic tissue) as a

random deviate from a length distribution based on clinical studies [97, 113, 118–121]. This

length will be translated into a number of BE stem cells, X, which depends on a spatial model
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parameter σ for the density of stem cells per mm2. The MSCE-EAC model assumes that BE

stem cells are under tight homeostatic control with zero net growth of the non-dysplastic BE

stem cell population (i.e., X remains constant). Mutations and clonal populations occurring

during the simulation grow within this fixed BE segment.

Step 3: Generate pre-initiated stem cells P ∗

Any of the BE stem cells, total of X, may undergo a Poisson rate-limiting mutation with rate

µ0 during an asymmetric division to produce a BE daughter stem cell and a pre-initiated P ∗

cell. A P ∗ cell may arise through inactivation of a single tumor suppressor allele. To model

this process up until time of screening ts, generate a number N
P∗ of P ∗ pre-initiation events

from a Poisson distribution with mean µ0 ·X · (ts − TBE
), each of which occur at a uniform

time τ between T
BE

and ts, and save in vector ~τ1 .

Step 4: Generate initiated stem cells P and premalignant clones

Similarly, each P ∗ cell may undergo a second Poisson rate-limiting mutation with rate µ1

during an asymmetric division to produce one P ∗ daughter stem cell and one initiated P cell.

A P cell may be a cell with a tumor suppressor gene that has both alleles inactivated, which

will allow it to undergo clonal expansion as an independent birth-death-mutation process.

Again, for each P ∗ cell born at time τ
1i
, i = 1, .., N

P∗ , generate the number N
P

of initiated

P progenitor cells from a Poisson distribution with mean µ1 · (ts− τ1i), each of which occurs

at a uniformly distributed time between τ
1i

and ts, and save in vector ~τ2 .

For each P cell initiation, begin a simulation of the ensuing birth-death-mutation (b-d-m)

process to follow the number and times of symmetric divisions, death or differentiation, and

malignant transformations that occur in each premalignant clone.

Step 5: Generate preclinical cancer cells M , malignant clones, and clinical EAC

During simulation of premalignant clones, malignant transformations may occur within a

particular clone, modeled as asymmetric divisions of a P cell with rate µ2. For each malig-

nant progenitor M cell born at time τ3 , begin an independent birth-death-detection process

that is represented by an analytical solution to the corresponding Kolmogorov equation for

the generating function as derived in Eq. (3.5) of Jeon et al. [122]. Thus, the hybrid simula-
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tion makes use of previous theoretical results for an analytical distribution to avoid further

simulation. We are first interested in knowing whether a malignant clone born at time τ3

leads to a clinical EAC by time ts. To generate this potential outcome, we use the 1-stage

survival function S
M

,

S
M

(u) ≡ Pr[D(ts) = 0|M(τ3) = 1] (B.1)

where u = ts−τ3 , D(ts) is the random variable for clinical detection by time ts, and M(τ3) is

the random number of malignant (preclinical) cells at time τ3 in a malignant clone. Letting

p = 1 − S
M

(ts − τ3) represent the probability of cancer detection of a particular malignant

clone born at time τ3 , draw a Bernoulli random variable with probability p to decide if this

clone will be detected as a clinical EAC by time ts. Draw Bernoulli deviates from detection

probability p for each malignant clone generated in a patient, and repeat for every patient

in the simulated population to obtain the EAC detection prevalence by time ts.

For patients in whom a malignant clone born at time τ3 does not result in clinical EAC

by time ts, use an analytical distribution to generate the size of the malignant clone present

at time ts, conditional on no EAC detection. Jeon et al. [122] derived this conditional size

distribution for a birth-death-detection process, which is a shifted geometric distribution,

described in more detail forthcoming.

This step completes the MSCE-EAC hybrid simulation of an individual from birth until

time (age) ts which can be repeated to generate (synthetic) data for a sample population. In

summary, for those individuals who are found to have BE by time of screening, each patient

has a specific X number of BE stem cells, P ∗ number of pre-initiated cells, a number of

non-extinct P clones with respective sizes, a number of non-extinct M clones with respective

sizes and information about the parental P clones from which the M clones originated, and

lastly whether the patient is a prevalent, clinical EAC case by time ts.
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B.1.1 Implementation of SSA and τ-leap method for P clones

As mentioned in Step 3 of the MSCE-EAC algorithm above, initiated premalignant clones

undergo independent birth-death-mutation (b-d-m) processes that we simulate to track cell

count and times of malignant transformations. The stochastic simulation algorithm (SSA)

is a mathematically exact method to follow each event that occurs during a realization of

the continuous time Markov chain beginning with a single cell. Considering an individual

premalignant clone of size Xt at time t, we define the intensity function vector r(Xt) =

(β
P
Xt, µ2Xt, αP

Xt) for death/differentiation, malignant transformation, and birth of new P

stem cell, where, over a short period of time s, we expect rj(Xt)s + o(s) events of type j

to occur. Due to the Markovian property of the process, we wait an exponential length

of time until the next event occurs with intensity r0(Xt) =
∑3

j=1 rj(Xt) = Xt(βP
+ µ2 +

α
P

). Once an exponential time to next event is chosen, we jump to the neighboring state

Xt + vj with probability rj(Xt)/r0(Xt), where vj is the jth component of the state change

vector v = (−1, 0, 1) for the b-d-m process. Fortunately, in the case of the P clone process

with constant rates, the probabilities rj(Xt)/r0(Xt) are constant with respect to the current

state Xt so we may generate a number K of events of the three types with probabilities(
β
P

β
P

+µ2+α
P
, µ2
β
P

+µ2+α
P
,

α
P

β
P

+µ2+α
P

)
and cumulatively sum each Xt + vj step for the K chosen

events to create a state vector N. Then we generate the K exponential waiting times of the

process at once from an exponential with mean λt = N (β
P

+µ2 +α
P

) and cumulatively sum

these to arrive at a new later time t2 > t.

The SSA works very well when cell count of the P clone is small and the event intensities

r(Xt) are fluctuating quickly. In particular, our simulation benefits to use the SSA for the

beginning of a P clone’s growth from a single cell, when the probability of extinction is

high (because β
P

is only slightly smaller than α
P

) and most clones are eliminated after a

small number K of initial events. However, the SSA can become excruciatingly slow when

a P clone becomes very large, i.e. contains a large number of stem cells. Therefore, rather

than simulating every event choice and time, we can employ an accelerated but approximate
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procedure called the τ -leap method, first introduced by Gillespie and others [201–203]. The

goal of this procedure is to advance the cell count by a preselected time increment τ in

contrast to the exponential time increments generated in the SSA. To control the loss of

accuracy with this approximation, the choice of leap-size τ must satisfy the historically

referenced “leap condition” which is large enough that many events occur in that time,

but nevertheless small enough that the intensity function value r is likely to change only

“infinitesimally” as a consequence of those events. To the extent that this condition is

satisfied, the mathematical rationale in replacing Markovian kinetics with Poisson kinetics

[204] states that the number of times each independent event j will occur in the set time

length τ can be approximated by a Poisson random variable with mean ω(t, t + τ) on the

interval (t, t+τ). For the ordinary τ -leap scheme, we assign ω(t, t+τ) = rj(Xt)τ . Thus, we set

the intensity of event j equal to the constant rj = rj(Xt) and we update the cell count vector

Xt+τ = Xt +
∑3

j=1 njvj, where nj are independent Poisson variates with means rjτ . Beyond

ordinary τ -leaping, advancements have been made in improving accuracy when anticipating

changes in the various components of the intensity vector by expanding rj(Xt+τ ) in a Taylor

series around time t with base value rj(Xt) to derive linear and quadratic approximations

[205].

Selection of τ increments

As mentioned previously, we first set a number K (e.g., K = 1000) SSA steps to per-

form very quickly at the initiation of the P clone (first initiated cell asymmetrically divides

from pre-initiated cell) in order to exactly simulate the small clones and capture the early

extinction stochastic event correctly. Then, if a P clone is still growing, we switch to a

τ -leaping algorithm to speed up the simulation of the larger clones without loss of much ac-

curacy. In search of a balance between computational efficiency and accuracy for our hybrid

SSA/τ -leap algorithm, we would like to take advantage of the leap condition by employing

τ -leaping when the P clones are large, which will take a very large number of reaction events

to change the intensity function “significantly”, and the exact SSA when τ is required to be

small so that only a few reactions would be leaped over regardless. Recent work by Sehl et
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al. [205, 206] and others derived and applied methods to anticipate the largest τ such that

the leap condition will be satisfied and accuracy will not be undesirably diminished. This

will require us to introduce a small positive constant ε, which must be chosen empirically,

to denote the acceptable relative change in the intensity function vector r. Adhering to the

results of Cao et al. [207], we then chose our increment to be the largest τ such that∣∣∣∣ ddtrj(Xt)

∣∣∣∣ τ ≤ εrj(Xt) ⇒ τ ≤ ε

α
P
− β

P

(B.2)

holds for all j. Further, Cao et al. [202] explore the problem of negative population sizes

which may occur with some probability within the τ -leaping method. In the setup described,

this happens extremely rarely since τ -leaping usually only begins for clones with a substantial

number of cells, thus they have a low probability of extinction because they are entering the

exponential mean growth phase (described in more detail in the following section). Thus, we

can reject this choice of τ that produced a negative size and reduce τ , by 1/2 for example,

until no negative populations are produced since this is a rare event and will not impede our

computational runtime [202].

To obtain better accuracy without compromising speed in simulation time, a recent step

anticipation leap (SAL) method has been developed that generalizes the ordinary τ -leaping

method by projecting linear and quadratic changes in reaction propensities [205]. However,

due to the nature of the birth-death-mutation processes modeled for premalignant P clones

in the MSCE-EAC hybrid simulation, the leap condition for all these methods produces a

restraint on τ that does not depend on the current size of the clone, as seen in Eq. (B.2). The

linear and quadratic extrapolations of the propensity functions do not yield major improve-

ments in accuracy when τ does not depend on the clone size at time t. Therefore, we employ

the ordinary τ -leaping scheme in which we set time length τ = ε
α
P
−β

P
, choose ε empirically

to obtain desirable accuracy with our choice of cellular kinetic parameters, and approximate

the number of times each independent event j (either birth, death/differentiation, or mu-

tation) will occur by a Poisson random variable with mean ω(t, t + τ) = rj(Xt)τ on the

interval (t, t + τ). We may apply the result of the following section that an independent
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b-d-m process produces a shifted geometric size distribution for non-extinct clones, given

by Eq. (B.10) but with P clone parameters, and enjoys mean exponential growth with rate

α
P
− β

P
. See Q-Q plot comparison in Fig. B.1 of both SSA and τ -leap algorithms against

the true theoretical shifted geometric distribution for the b-d-m process. In practice with

the estimated parameters given in Table 3.1, the hybrid SSA/τ -leap algorithm utilizes small

values of τ < .004 years, which allows even more accuracy yet still benefits from far less

computational time than if we were to use solely SSA type steps.

B.1.2 Malignant size distribution

Expanding on Step 5 of the MSCE-EAC algorithm above, when a malignant progenitor M

cell is born at time τ3 , an independent birth-death-detection process begins and we have the

analytical solution to the corresponding Kolmogorov equation for the generating function

Φ
M

(y3, z; τ, t) (from Eq. (3.6)) as derived in Eq. (3.5) of Jeon et al. [122]. Thus, we can make

use of previous theoretical results here allowing us to avoid further simulation. We are first

interested in knowing whether this malignant clone born at time τ3 leads to a clinical EAC

by time ts. To generate this potential outcome, we use the 1-stage survival function, where

u = ts − τ3

S
M

(u) ≡ Pr[D(ts) = 0|M(τ3) = 1] = Φ
M

(1, 0; τ3 , ts) = 1 +
1

αM

p
M
q
M
e−pM u − q

M
p
M
e−qM u

q
M
e−pM u − p

M
e−qM u

(B.3)

with

p
M

=
1

2
(−(α

M
− β

M
− ρ)−

√
(α

M
− β

M
− ρ)2 + 4α

M
ρ) (B.4)

q
M

=
1

2
(−(α

M
− β

M
− ρ) +

√
(α

M
− β

M
− ρ)2 + 4α

M
ρ) (B.5)

Letting p = 1− S
M

(ts − τ3) be the probability of cancer detection of a particular malignant

clone born at time τ3 , we first draw a Bernoulli random variable with probability p to decide

if this clone will be detected as a clinical EAC by time ts. The algorithm draws Bernoulli
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Figure B.1: Comparison of neoplastic clone growth simulation accuracies using

stochastic simulation algorithm (SSA) and τ-leaping. Quantile-quantile plots of sim-

ulated non-extinct birth-death-mutation processes with ε = .0005, stopped at time t = 30

years after first P cell initiated. (Left panel) SSA sizes vs. geometric distribution sizes.

(Right panel) τ -leap sizes vs. geometric distribution sizes. Black triangles denote 10th,

50th, and 90th percentiles. Results shown for 100K simulations for each of the three types.

Both SSA and τ -leap reproduce the theoretical geometric distribution very well.

deviates from this 1-stage survival for each malignant clone in a BE patient and provides an

EAC detection prevalence by time ts.

For a patient in whom a malignant clone born at time τ3 does not result in clinical

EAC by time ts, we would now like to use an analytical distribution to generate the size of

the malignant clone present at time ts, conditional that it did not undergo EAC detection.
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Jeon et al. [122] derived this conditional size distribution for a birth-death-detection process,

which turns out in fact to be a shifted geometric distribution. Following Eqs. (3.9-3.16) in

that paper, we have the size distribution of a malignant clone, given that no clinical cancer

develops by time ts for n = 0,

P0 ≡ Pr[M(τ3 , ts) = 0|D(τ3 , ts) = 0,M(τ3 , τ3) = 1] (B.6)

=
ζ
M

(α
M

+ p
M

)(α
M

+ q
M

)(q
M
e−pM u − p

M
e−qM u)

q
M

(α
M

+ p
M

)e−pM u − p
M

(α
M

+ q
M

)e−qM u , (B.7)

and for n ≥ 1,

Pn ≡ Pr[M(τ3 , ts) = n|D(τ3 , ts) = 0,M(τ3 , τ3) = 1] (B.8)

=
1

n!

∂nΦ
M

(y3 , 0; τ3 , ts)

∂yn
3

∣∣∣∣
y3=0

1

Φ
M

(1, 0; τ3 , ts)
(B.9)

= (1− P0)(1− α
M
ζ
M

)(α
M
ζ
M

)n−1 (B.10)

where

ζ
M

=
e−pM u − e−qM u

(q
M

+ α
M

)e−pM u − (p
M

+ α
M

)e−qM u

Thus, conditional on a malignant clone remaining undetected by time ts, we again construct

an inverse cumulative function and begin with a uniform random deviate u ∈ [0, 1]. If P0 ≥ u,

this particular malignant clone in question goes extinct before time ts. If u > P0, we derive

the inverse cumulative function as follows

Pr[M(u) > n] =
∞∑

k=n+1

Pr ∗[M(u) = k] =
∞∑

k=n+1

(1− P0)(1− α
M
ζ
M

)(α
M
ζ
M

)k−1

= (1− P0)(1− α
M
ζ
M

)(α
M
ζ
M

)n
∞∑

k=n+1

(α
M
ζ
M

)k−(n+1)

⇒Pr[M(u) ≤ n] = 1− (1− P0)(α
M
ζ
M

)n

Thus, we may generate a size n from this distribution,

n =

ln

(
1− u
1− P0

)
ln(α

M
ζ
M

)
, with u > P0.
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B.2 MSCE-EAC screening module: EAC incidence pro-

jections

Here we derive all components of the general cumulative hazard Λ
EAC

(t), given by Eq. (4.2),

in Chapter 4. For the initial scenario of screening all individuals at time ts, we derived the

MSCE-EAC cumulative hazard function that includes contributions from the subpopulation

of those individuals found to have BE at time ts that, immediately following HGD diagnosis,

may receive treatment at time ts; and the subpopulation without BE. For any time t > ts

and BE cumulative density function F
BE

given in Eq. (3.3), we compute the MSCE-EAC

density function f
EAC

(s) for the general population explicitly as follows

f
EAC

(s) = f
EAC

(s|T
BE
≤ ts) · Pr[T

BE
≤ ts] + f

EAC
(s|T

BE
> ts) · Pr[T

BE
> ts]. (B.11)

The convolution formula for the unscreened population contributing to the MSCE-EAC

density is given by

f
EAC

(t|T
BE

> ts) =
1

Pr[T
BE

> ts]

∫ t

ts

f
BE

(u)f
MSCE

(t− u) du (B.12)

= e
∫ ts
0 ν(s) ds ·

∫ t

ts

ν(u)e−
∫ u
0 ν(s) ds · f

MSCE
(t− u) du, (B.13)

where f
MSCE

(t − u) = −Y8(t − u, t − u) (see Eq. (3.22)) is the numerical solution for the

4-stage multistage model after BE onset.

For the screened BE population, we follow the method of Jeon et al. [122] and consider

the 4 possible types of cells present in a patient at screening time t−s (where the minus super-

script denotes cell populations present prior to any intervention) X = number of BE stem

cells in BE segment, P ∗(t−s ) = number of pre-initiated P ∗ cells, P (t−s ) = number of initiated,

dysplastic P cells (all clones combined), M(t−s ) = number of malignant, preclinical cells (all

clones combined). The MSCE-EAC hybrid simulation records these random variables for

each BE patient at the instance of screening t−s , before any intervention occurs. After simu-

lating n independent and identically distributed (by gender) individuals and performing the
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Seattle biopsy screening protocol in silico as described in Chapter 4 Methods, the simulation

obtains the vector Ai = {Xi, P
∗
i (t−s ), Pi(t

−
s ),Mi(t

−
s )} for each patient with BE, i = 1, .., n.

As described in Chapter 4, we explore the simulated intervention of radiofrequency ab-

lation (RFA) of dysplasia patients by introducing the following ablation proportion vector,

ω = {ω
X
, ω

P∗ , ωP
, ω

M
}, to deplete the existing cell types and leave a specified fraction (based

on desired effectiveness of RFA treatment) in the esophagus given by ω. We adjust each

dysplastic patient’s cell count vector Ai through component-wise multiplication by ω. Thus,

the post-RFA numbers of cells in each stage of the MSCE process, in simulated patient i,

immediately after screening and treatment (denoted by time t+s ) are given by an adjusted

cell type vector Âi as follows

Âi ≡ ω ◦ Ai = {ω
X
·Xi, ωP∗ · P

∗
i (t−s ), ω

P
· Pi(t−s ), ω

M
·Mi(t

−
s )} (B.14)

= {Xi(t
+
s ), P ∗i (t+s ), Pi(t

+
s ),Mi(t

+
s )} (B.15)

≡ {X̂i, P̂
∗
i , P̂i, M̂i}. (B.16)

BE patients with a negative screen for dysplasia sustain the same (before and after) Ai ≡ Âi

vector as was computed at time t−s since no RFA treatment is performed on these patients.

Due to Markovian renewal of the branching process, we may then compute the survival and

hazard functions, as in [122], for each screened individual i = 1, .., n for some time t > ts

with contributions from each cell type post screen,

S
EAC

(t− ts|Âi) = S4(t− ts)X̂iS3(t− ts)P̂
∗
i S2(t− ts)P̂iS1(t− ts)M̂i (B.17)

h
EAC

(t− ts|Âi) = X̂ih4(t− ts) + P̂ ∗i h3(t− ts) + P̂ih2(t− ts) + M̂ih1(t− ts) (B.18)

⇒ f
EAC

(t|T
BE
≤ ts) ≈

1

n

n∑
j=1

h(t− ts|Âj) · S(t− ts|Âj). (B.19)

These survival and hazard functions for the 4-stage MSCE model after BE onset may be

easily computed from the Kolmogorov backward equations. The 8 ODEs from Eqns. (3.15-

3.22) in Chapter 3 can be solved numerically to obtain the survival and hazard functions we

require

h4(t− ts) = −Y8(t− ts)
Y7(t− ts)

and S4(t) = Y7(t− ts),
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h3(t− ts) = −Y6(t− ts)
Y5(t− ts)

and S3(t) = Y5(t− ts),

h2(t− ts) = −Y4(t− ts)
Y3(t− ts)

and S2(t) = Y3(t− ts),

h1(t− ts) = −Y2(t− ts)
Y1(t− ts)

and S1(t) = Y1(t− ts).

We have now derived all necessary components of Λ
EAC

(t) of Eq. (4.2) after a single screen

of all individuals at time ts. See the Results section for an illustrative figure.

B.3 Example simulation details

For the Results presented in Chapter 4, we simulated an index endoscopy for all males and

females age ts = 60 in the year 1990 (indicative of index screens from prospective studies

that estimate the BE to EAC progression rate). With BE prevalence F
BE

given in Eq. (3.3),

the Results focus on output regarding the subpopulation of individuals found with BE, for

whom the MSCE-EAC screening model obtains screening results (see Chapter 4, Methods).

See Figs. B.2-B.3 for values p
sGERD

(t) and F
BE

(t) used for males and females, respectively.

We generated a BE segment length for each patient from a beta distribution with shape

parameters 16/11 and 4, restricted to the range of 1-16 cm for both males and females. BE

segments of the simulated patients have an average length of 4.9 cm. Short segment BE (less

than 3 cm) comprises 22% of the density and long segment BE (greater than 3 cm) comprises

78%. This BE distribution recreates the proportions of long and short segments recorded

for the study patient population in [118]. Figures B.4-B.7 depict the number distributions

and long-tailed, Luria-Delbruck type size distributions for the non-extinct premalignant and

malignant clones, respectively, present at time ts = 60 for the cohorts of males and females

separately. Based on 100K simulation, the mean number of premalignant clones per BE

patient, without symptomatic cancer, in this cohort is 6.6, while only about 1% of these

dysplastic clones harbor a non-extinct malignancy.
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Figure B.2: Male symptomatic GERD and BE prevalences in the MSCE-EAC

screening model. (Left panel) GERD symptom prevalence p
sGERD

(t). (Right panel) BE

prevalence F
BE

(t) for males, assuming RR = 5 relative risk for symptomatic GERD patients.
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Figure B.3: Female symptomatic GERD and BE prevalences in the MSCE-EAC

screening model. (Left panel) GERD symptom prevalence p
sGERD

(t). (Right panel) BE

prevalence F
BE

(t) for females, assuming RR = 5 relative risk for symptomatic GERD pa-

tients.
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Figure B.4: Simulated distributions of number and sizes of non-extinct premalig-

nant clones, males. (Left panel) Histogram of number of non-extinct premalignant clones

in BE segment at time of screening. (Right panel) Histogram of number of premalignant stem

cells in each of the independent premalignant clones accounted for in left panel. Example

shown for 100K males with BE, age 60 from the 1930 birth cohort. Median and mean values

are depicted by dashed and dotted lines, respectively. Assuming σ = 3300 stem cells/mm2,

the dashed-dotted line on the right graph gives the number of cells in a 1mm2 surface area

of tissue.
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Figure B.5: Simulated distributions of number and sizes of non-extinct malignant

clones, males. (Left panel) Histogram of number of non-extinct malignant clones in BE

segment at time of screening, each originating from unique premalignant ancestor clone.

(Right panel) Histogram of number of malignant stem cells in each of the independent

malignant clones accounted for in left panel. Example shown for 100K males with BE, age

60 from the 1930 birth cohort. Median and mean values are depicted by dashed and dotted

lines, respectively. Assuming σ = 3300 stem cells/mm2, the dashed-dotted line on the right

graph gives the number of cells in a 1mm2 surface area of tissue.
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Figure B.6: Simulated distributions of number and sizes of non-extinct prema-

lignant clones, females. (Left panel) Histogram of number of non-extinct premalignant

clones in BE segment at time of screening. (Right panel) Histogram of number of premalig-

nant stem cells in each of the independent premalignant clones accounted for in left panel.

Example shown for 100K females with BE, age 60 from the 1930 birth cohort. Median and

mean values are depicted by dashed and dotted lines, respectively. Assuming σ = 3300 stem

cells/mm2, the dashed-dotted line on the right graph gives the number of cells in a 1mm2

surface area of tissue.
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Figure B.7: Simulated distributions of number and sizes of non-extinct malignant

clones, females. (Left panel) Histogram of number of non-extinct malignant clones in BE

segment at time of screening, each originating from unique premalignant ancestor clone.

(Right panel) Histogram of number of malignant stem cells in each of the independent

malignant clones accounted for in left panel. Example shown for 100K females with BE, age

60 from the 1930 birth cohort. Median and mean values are depicted by dashed and dotted

lines, respectively. Assuming σ = 3300 stem cells/mm2, the dashed-dotted line on the right

graph gives the number of cells in a 1mm2 surface area of tissue.



Appendix C

Base Case II: Impact of Endoscopic

Eradication on EAC

The following are supplemental tables and figures for Chapter 5.
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Patient characteristic Surveillance interval Source

Surveillance endoscopy

interval after CE-IM

of HGD patient

3 months for one year

then 6 months for one year

then annual

[208]

Surveillance endoscopy

interval after CE-IM

of NDBE patient

every three years Expert consensus*

Surveillance endoscopy

interval after CE-D, non CE-IM

of HGD patient

3 months for one year

then 6 months for one year

then annual

Expert consensus*

Surveillance endoscopy

interval after non CE-D, non CE-IM

of HGD patient

Every three months Expert consensus*

Surveillance endoscopy

interval after non CE-IM

of ND patient

Every three years Expert consensus*

Table C.1: Post-treatment surveillance strategies. *Expert consensus: panel of experts

N Shaheen; S Spechler; J Inadomi; C Hur; J Rubenstein.
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Base values Lower value Upper value

Durability of successful treatment

Pre-treatment histology

NDBE HGD NDBE HGD NDBE HGD

Annual Probability

of BE recurrence
7.0% 10.0% 3.5% 5.0% 14.0% 20.0%

Efficacy of the initial treatment

Success of therapy in pre-treatment HGD patients

CE-IM, CE-D 0.89 0.78 0.94

non CE-IM, CE-D 0.04 0.07 0.02

non CE-IM, non CE-D 0.07 0.15 0.04

Success of therapy in pre-treatment in NDBE patients

CE-IM 0.97 0.94 0.98

non CE-IM 0.03 0.06 0.02

Halting surveillance after a period of observed good health post-treatment

Until death or age 80

(follow patients

up to age 100)

STOP surveillance when

at 5 year remains CE-IM,

after CE-IM at initial

endoscopic therapy

STOP surveillance when

at 10 year remains CE-IM,

after CE-IM at initial

endoscopic therapy

Table C.2: Base Case II input & sensitivity parameters.
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Figure C.1: Impact of sensitivity analysis on NNT/Death. — The incremental number

needed to treat to prevent 1 EAC death (NNT/Death) for the various sensitivity analyses.

The incremental outcomes of two strategies are shown: the additional treatments needed

to prevent 1 EAC death in case of HGD treatment compared to the strategy where only

surveillance is applied (grey dots). Next to this, the incremental NNT/death when applying

treatment to all BE patients compared to treatment for only HGD patients is presented

(black dots). Dotted vertical lines represent the base case value. MGH and UW/MISCAN

model sensitivity results (including LGD strategy) and are shown for comparison.
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Incremental NNT/Death MSCE-EAC (FHCRC)

Strategy Reference strategy

S HGD

HGD 31

BE 101 177

Table C.3: Incremental numbers needed to treat to prevent one EAC death per

strategy, females. Results for MSCE-EAC screening model, females, all races, age 60 at

index endoscopy.
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Age 50-100

Reference strategy

Strategy: S HGD

HGD 31

BE 71 110

Age 60-100

Reference strategy

Strategy: S HGD

HGD 34

BE 99 180

Age 70-100

Reference strategy

Strategy: S HGD

HGD 37

BE 170 412

Table C.4: Incremental numbers needed to treat to prevent one EAC death per

strategy. MSCE-EAC screening model results for males, all races, surveillance start ages

50, 60 and 70.



Appendix D

Barrett’s Esophagus: “How long has

that been there?”

The following are supplemental tables referred to in Chapter 7.
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Patient.No. Dataset type Age at Biopsy Sex matched SQ

31 D1: serial 39.00 M no

32 D1: serial 50.00 M no

33 D1: serial 44.00 M no

34 D1: serial 70.00 M no

35 D1: serial 56.00 M no

36 D1: serial 55.00 M no

37 D1: serial 55.00 F no

38 D1: serial 33.00 M no

39 D1: serial 35.00 M no

40 D1: serial 57.00 M no

Table D.1: BE patient information for data set D1.
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Patient.No. Dataset type Age at Biopsy Sex matched SQ

1 D2: cross-sectional 21.00 M yes

2 D2: cross-sectional 41.00 M yes

3 D2: cross-sectional 48.00 M yes

4 D2: cross-sectional 47.00 M yes

5 D2: cross-sectional 51.00 F yes

6 D2: cross-sectional 50.00 M yes

7 D2: cross-sectional 55.00 F yes

8 D2: cross-sectional 55.00 M yes

9 D2: cross-sectional 55.00 M yes

10 D2: cross-sectional 59.00 M yes

11 D2: cross-sectional 63.00 M yes

12 D2: cross-sectional 66.00 M yes

13 D2: cross-sectional 66.00 M yes

14 D2: cross-sectional 68.00 M yes

15 D2: cross-sectional 70.00 M yes

16 D2: cross-sectional 67.00 M yes

17 D2: cross-sectional 78.00 M yes

18 D2: cross-sectional 80.00 M yes

19 D2: cross-sectional 77.00 M yes

20 D2: cross-sectional 83.00 F yes

21 D2: cross-sectional 84.00 M yes

22 D2: cross-sectional 86.00 F yes

23 D2: cross-sectional 88.00 M yes

24 D2: cross-sectional 53.00 F yes

25 D2: cross-sectional 65.00 M yes

26 D2: cross-sectional 67.00 M yes

27 D2: cross-sectional 71.00 M yes

28 D2: cross-sectional 84.00 M yes

29 D2: cross-sectional 50.00 F yes

30 D2: cross-sectional 54.00 M yes

Table D.2: BE patient information for data set D2.
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Patient.No. Dataset type Age at Biopsy Sex matched SQ HGD EAC

41 D3: familial BE 57.00 M no

42 D3: familial BE 71.00 M no

43 D3: familial BE 39.00 M no

44 D3: familial BE 57.00 M no

45 D3: familial BE 70.00 M no

46 D3: familial BE 72.00 M no

47 D3: familial BE 52.00 M no

48 D3: familial BE 84.00 M no

49 D3: familial BE 68.00 M no

50 D3: familial BE 60.00 F no

51 D3: familial BE 56.00 M no

52 D3: familial BE 80.00 M no

53 D3: familial BE 50.00 M no

54 D3: familial BE 66.00 M no

55 D3: familial BE 71.00 M no

56 D3: familial BE 47.00 M no

57 D3: familial BE 44.00 M no

58 D3: familial BE 70.00 M no

59 D3: familial BE 73.00 M no

60 D3: familial BE 72.00 M no

61 D3: familial BE 70.00 M no

62 D3: familial BE 52.00 M no

63 D4: HGD / EAC 49.00 F yes

64 D4: HGD / EAC 82.00 M yes

65 D4: HGD / EAC 79.00 M yes

66 D4: HGD / EAC 64.00 M yes

67 D4: HGD / EAC 83.00 M yes yes

68 D4: HGD / EAC 53.00 F yes yes

69 D4: HGD / EAC 71.00 M yes yes yes

70 D4: HGD / EAC 63.00 M yes

71 D4: HGD / EAC 77.00 M yes yes yes

72 D4: HGD / EAC 35.00 M yes yes

Table D.3: BE patient information for data sets D3 and D4.
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CpG Name Gene Symbol ChrX Island Promoter pop. rate longit. rate p.value

1 cg03142956 CNTN2 1 NA TRUE 0.02 0.03 0.00

2 cg02547025 LBH 2 Island TRUE 0.04 0.04 0.07

3 cg03222971 IGFBP5 2 N Shore FALSE 0.03 0.04 0.04

4 cg26988215 GALNT14 2 Island TRUE 0.04 0.06 0.02

5 cg13501181 EGFEM1P 3 Island FALSE 0.03 0.03 0.10

6 cg00394358 NRG2 5 Island FALSE 0.05 0.07 0.01

7 cg11613229 PRR16 5 N Shore TRUE 0.03 0.04 0.09

8 cg21986718 SOGA3 6 Island FALSE 0.02 0.02 0.06

9 cg02215070 AKR1B1 7 Island TRUE 0.04 0.06 0.05

10 cg14592474 MAGI2 7 N Shore TRUE 0.04 0.06 0.05

11 cg19924540 FBXL18 7 Island FALSE -0.00 0.03 0.08

12 cg23149470 NA NA S Shore TRUE 0.01 0.02 0.05

13 cg26473651 CHAT 10 Island TRUE 0.06 0.06 0.02

14 cg21067341 NA NA Island FALSE 0.05 0.08 0.01

15 cg27319192 NA NA Island FALSE 0.05 0.05 0.03

16 cg05719720 ATP12A 13 Island FALSE 0.04 0.03 0.02

17 cg08226111 INSM2 14 Island TRUE 0.06 0.08 0.03

18 cg20312821 IGDCC3 15 Island FALSE 0.04 0.05 0.07

19 cg02755525 NETO2 16 Island FALSE 0.07 0.12 0.00

20 cg06755373 NA NA Island FALSE 0.03 0.03 0.09

21 cg07869548 NETO2 16 Island TRUE 0.04 0.05 0.01

22 cg18671949 LOC728392 17 Island TRUE 0.03 0.04 0.07

23 cg02724271 TTC9B 19 Island TRUE 0.06 0.02 0.09

24 cg04572161 ZNF559 19 Island TRUE 0.04 0.05 0.08

25 cg08375754 TTC9B 19 Island TRUE 0.02 0.02 0.08

26 cg27388983 ZNF256 19 S Shore TRUE 0.05 0.05 0.09

27 cg00992385 HCK 20 Island TRUE 0.03 0.08 0.01

28 cg24606935 HCK 20 Island TRUE 0.05 0.07 0.03

29 cg01363596 CACNA1E 1 Island FALSE 0.03 0.03 0.07

30 cg11882432 GPR88 1 Island FALSE 0.04 0.03 0.10

31 cg17142105 NA NA S Shore FALSE 0.02 0.03 0.02

32 cg20785136 PTGER3 1 Island TRUE 0.02 0.04 0.10

33 cg25582303 NA NA Island FALSE 0.02 0.02 0.07

34 cg26936593 ALPL 1 N Shore TRUE 0.00 0.04 0.01

35 cg10279685 NPHP1 2 Island FALSE 0.03 0.04 0.02

Table D.4: (Epi)genetic information for BE clock CpG set. Information for CpGs

1-35 of 70 BE clock set. Reported p-values refer to the longitudinal drift slopes obtained

from data set D1.
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CpG Name Gene Symbol ChrX Island Promoter pop. rate longit. rate p.value

36 cg08514735 WNT5A 3 Island TRUE 0.04 0.04 0.10

37 cg12268888 FAM198A 3 Island TRUE 0.03 0.02 0.07

38 cg23162001 CACNA2D2 3 S Shore TRUE 0.00 0.04 0.05

39 cg15106296 NA NA S Shore FALSE 0.01 0.04 0.01

40 cg22830947 NA NA S Shore FALSE 0.01 0.02 0.10

41 cg00005040 RSPO3 6 N Shore TRUE 0.02 0.03 0.04

42 cg05443922 NA NA Island FALSE 0.03 0.03 0.07

43 cg26280666 MSC 8 N Shore FALSE 0.03 0.03 0.08

44 cg05090725 RAB39A 11 Island TRUE 0.03 0.04 0.07

45 cg25603277 PAX6 11 Island TRUE 0.02 0.02 0.06

46 cg03165343 NA NA N Shore FALSE 0.04 0.03 0.07

47 cg03272292 C12orf68 12 Island TRUE 0.01 0.05 0.01

48 cg15441864 NA NA Island FALSE 0.00 0.02 0.04

49 cg18722247 NA NA N Shore FALSE 0.04 0.04 0.09

50 cg04812484 FAM194B 13 NA TRUE 0.02 0.03 0.05

51 cg13241077 FAM194B 13 NA TRUE 0.02 0.03 0.10

52 cg01423820 VASH1 14 Island TRUE 0.05 0.06 0.00

53 cg07850604 INSM2 14 Island TRUE 0.04 0.04 0.07

54 cg18489434 VASH1 14 Island TRUE 0.04 0.05 0.04

55 cg20881054 VASH1 14 Island TRUE 0.04 0.06 0.00

56 cg24038454 INSM2 14 Island TRUE 0.04 0.07 0.02

57 cg26140961 NA NA NA FALSE 0.05 0.03 0.11

58 cg21110939 SV2B 15 Island TRUE 0.04 0.11 0.04

59 cg25475171 SV2B 15 Island TRUE 0.04 0.08 0.06

60 cg06475764 NETO2 16 Island FALSE 0.05 0.05 0.03

61 cg16733756 MYH11 16 S Shore TRUE 0.02 0.04 0.01

62 cg14355911 NA NA Island FALSE 0.03 0.02 0.09

63 cg21911143 NA NA Island FALSE 0.02 0.03 0.01

64 cg25836567 WNT9B 17 Island FALSE 0.04 0.04 0.03

65 cg13462028 RAB31 18 Island TRUE 0.01 0.03 0.03

66 cg00288050 MAST1 19 Island FALSE 0.04 0.04 0.06

67 cg05119514 ZNF256 19 Island TRUE 0.05 0.06 0.04

68 cg11409275 NA NA Island FALSE 0.04 0.05 0.02

69 cg13157315 ZNF114 19 N Shore TRUE 0.02 0.03 0.10

70 cg22977016 NA NA Island FALSE 0.04 0.08 0.02

Table D.5: (Epi)genetic information for BE clock CpG set (cont.). Information for

CpGs 36-70 of 70 BE clock set. Reported p-values refer to the longitudinal drift slopes

obtained from data set D1.
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