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Historically, management agencies in the United States have monitored most 

game populations through an ad hoc approach which combines indices, harvest data, 

hunter surveyed data, and occasional demographic evaluation. However, changing 

management priorities and increased scrutiny require more informative and defensible 

means of monitoring harvested populations. Statistical population reconstruction (SPR) is 

a flexible modeling system which simultaneously analyzes age-at-harvest data, hunter 

effort data and any additional demographic data which are available, producing estimates 

of abundance, natural survival and harvest rate, as well as their associated variances. An 

SPR based monitoring framework provides comprehensive analysis of commonly 
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collected data and represents a statistically rigorous and defensible alternative to the 

currently popular approaches. However, applications of SPR have previously been 

limited to small scale, highly monitored populations, primarily due to a lack of formal 

evaluation of data requirements and guidance for management application. In this 

dissertation I provide the guidance necessary for broad scale application of SPR modeling 

to monitor harvested species. I rigorously evaluate the relative utility of auxiliary data 

sources as well as minimum harvest and hunter effort data requirements for SPR models, 

providing necessary guidance for resource managers seeking to apply SPR. I present a 

historic population reconstruction based on SPR parameter estimates as an illustrative 

example of the management application potential of SPR output. I comprehensively 

evaluate models to project reconstructed abundance into the future in order to further 

increase the management utility of statistical population reconstruction. I provide a 

detailed explanation of model structure and assumptions, allowing resource managers to 

critically evaluate SPR models. Finally, I offer guidance on the customization of SPR 

models necessary to adequately model the harvest regimes and data collection 

methodologies which are unique to each harvested population, thus increasing the 

number of populations which can be modeled. This dissertation will facilitate the broad 

scale management application of SPR, thus increasing the rigor and efficiency with 

which harvested game populations are monitored.  
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Chapter 1. INTRODUCTION  

When modern wildlife management began in the United States, the goal was to recover 

depleted populations and end overexploitation (Schmidt 1980). In most areas, for most game 

species, this effort has been a resounding success. Contemporary management now focuses on 

maintaining game populations at consistent harvestable levels that do not cause undue conflict 

with humans (Strickland et al. 1994). In order to successfully manage harvested populations, 

managers must monitor status and trends of the resource. Censusing wildlife populations is 

financially and logistically intractable in almost all game management situations, so managers 

must choose cost-effective, defensible monitoring solutions that are logistically feasible. 

 Today wildlife managers face an increasingly difficult task. Wildlife budgets across the 

country are shrinking as states deal with economic problems (Lueck 2000). The wild land base is 

shrinking, allowing less core habitat and increasing human animal conflict. Managers are under 

increased scrutiny from an ever widening group of stake holders (Jacobson and Decker 2006).  

Where once it was only hunters and land owners, managers now find their stakeholder groups to 

also include non-consumptive users, anti-hunting activists, non-governmental organizations 

(NGO’s) and the general public (Jacobson and Decker 2006). Due to the increased pressures and 

reduced resources, managers need a reliable, rigorous, and efficient monitoring tool to help them 

steward our wildlife resources into perpetuity.   

The least expensive and most widely used method of monitoring is through annual 

assessment of trends in indices. Indices are easily and inexpensively measured population 

metrics whose value is assumed to be proportional to the abundance or rate of change of the 
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population. Common indices include scat or pellet density (Don 1968), catch-per-unit effort 

(CPUE) (Hatter 2001), visual counts  and encounters (Skalski et al. 2005 p. 385, Kishimoto et al. 

2010), car-animal collisions (Hewitt 2011), and demographic structure of the harvest (Caughley 

1974). Unfortunately, the relationship between the observed index value and the state of the 

population is generally unknown and often unexamined, which can result in misinformed 

management (Seber 1982, Anderson 2001;2003). The use of indices can be especially 

troublesome if the functional relationship between the index and population abundance changes 

based on the abundance of the population  (Anderson 2001;2003). Despite well documented 

concerns, most harvested species are monitored primarily through indices (Rupp et al. 2000, 

Mason et al. 2006, Sands and Pope 2010, Collier et al. 2013).  Managers often augment trend 

information from indices with occasional localized intensive monitoring efforts (Vangilder and 

Kurzejeski 1995, Rönnegård et al. 2008). 

Direct monitoring efforts are typically of short duration, limited geographic area, and 

generally targeted at estimating a single demographic parameter of concern, thus limiting their 

inferential capabilities outside of the study site and time. Intensive monitoring efforts often 

include marking animals, either for mark-recapture (Robson and Regier 1964) or radio-telemetry 

(Millspaugh and Marzluff 2001) studies. Mark-recapture and radio-telemetry are widely used, 

have been applied over long periods, and are logistically feasible ways to estimate vital rates of 

the population (Seber 1982). Larger species can be monitored through GPS collars, which 

provide detailed spatial information that can be used to answer a wide range of ecological 

questions (Waller and Servheen 2005, Rauset et al. 2012). Genetic sampling is increasing in 

popularity, especially in the study of elusive species (DeYoung and Honeycutt 2005). Genetic 
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sampling requires genetic material to be collected from the population, usually through hair snare 

or fecal samples (Waits and Paetkau 2005). Genetic samples from the population are then 

analyzed to determine the number of individuals in the sampled area as well as other detailed 

demographic information (DeYoung and Honeycutt 2005, Waits and Paetkau 2005). The scale 

necessary for population wide monitoring, in terms of statistically rigorous sample collection and 

analysis can be logistically difficult and expensive to achieve, with genetic sampling. 

Additionally, genetic identification of individuals is prone to error and traditionally, genetic 

samples are not randomly distributed, making inference to the population as a whole difficult 

(Anderson 2001, Waits and Paetkau 2005).   

In some cases population-wide surveys are conducted to estimate overall abundance. 

Population surveys across large geographic scales are expensive, time consuming and often 

dangerous, usually involving helicopters and planes to fly transects (Unsworth et al. 1990, 

Anderson et al. 1998, Jones et al. 2006). In order to make such surveys logistically and 

financially feasible, they are often conducted infrequently (once a decade) or at small spatial 

scales, limited to areas of greatest concern (Rabe et al. 2002, Whittaker et al. 2003). Often these 

studies save money by not estimating sightability correction factors (the probability of seeing 

animals at varying distances), essentially turning the study into a minimum animal count; a very 

expensive uncalibrated index to abundance (Whittaker et al. 2003). Finally, the infrequent 

surveys make accurate trend information difficult to obtain. 

 Monitoring tools based on harvest data are popular, because they provide a low cost 

annual source of information (Rupp et al. 2000, Skalski et al. 2005, Sands and Pope 2010). Most 

management agencies collect some form of age-at-harvest and hunter effort information 
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(Strickland et al. 1994). Historically, these data have been used in simple accounting methods or 

as indices, or in some cases in slightly more advanced demographic analysis (Skalski et al. 

2005). One such model is the sex-age-kill (SAK) model, which estimates male abundance based 

on harvest information and conditional probabilities of mortality (Millspaugh et al. 2009).  

Unfortunately, the SAK model is data intensive, leading managers to make assumptions 

concerning stable and stationary populations to relax the data requirements. Violations of the 

SAK model assumptions can result in very poor model performance (Millspaugh et al. 2009). 

The Downing model is a special case of the Fry model, which estimates only minimum 

abundance, and is subject to the assumption of constant harvest and survival rates (Fry 1949, 

Downing 1980, Davis et al. 2007). Alternatively, managers will populate population dynamics 

models with parameter estimates from the literature to guide their management decisions 

(Connelly et al. 2005). Using demographic parameters from other populations has obvious 

drawbacks. Directly estimating demographic parameters from the population to be managed is 

preferable (Skalski et al. 2005). Over the last decade, statistical population reconstruction (SPR) 

has emerged as a viable option for managers to use age-at-harvest data to monitor populations 

over broad spatial and temporal scales (Broms et al. 2010, Gast et al. 2013a, Gast et al. 2013k).  

SPR analysis uses age-at-harvest data, hunter effort data, and other available auxiliary 

information to simultaneously estimate age-specific abundance, natural survival and harvest 

probabilities. SPR has several advantages over more traditional monitoring methods.  

Simultaneously analyzing multiple sources of data increases the precision with which individual 

parameters are estimated (Schaub and Abadi 2011). Estimates of age-specific abundance allows 

managers to identify which population segments are driving trends (e.g., recruitment, adult 
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survival, a low abundance cohort etc). Abundance estimates also allow harvest goals to be set 

based on harvest rate and the potential impact of changes to harvest regulations to be modeled. 

SPR does not require the annual input of demographic parameters, estimated from intensive field 

studies, like population dynamics models and the SAK model (Millspaugh et al. 2009, Broms et 

al. 2010, Gast et al. 2013a). Instead SPR uses data that are already commonly collected. SPR 

provides annual estimates of abundance and recruitment as well as their associated standard 

errors; an aspect generally lacking in many of the deterministic or ad hoc methods detailed above 

(Seber 1982, Skalski et al. 2005). Variance estimates of parameters allow practitioners to 

objectively assess the quality of the information upon which they base management decisions. 

This information can then be used to guide future monitoring efforts to improve the precision of 

parameters of greatest management concern. Additionally, SPR models can be augmented to 

accommodate complex harvest regimes, account for interannual variability in demographic 

parameters and incorporate a wide range of auxiliary information. Making SPR suitable to model 

a wide range of harvested populations. 

SPR models typically consist of at least three likelihood components; the age-at-harvest 

likelihood, aging likelihood, and auxiliary likelihood. The age-at-harvest likelihood is a 

multinomial likelihood which models the cohort structure of the population; relating observed 

harvest numbers to survival and harvest probabilities. The auxiliary likelihood uses data 

independent of age-at-harvest data to estimate at least one of the demographic parameters from 

the age-at-harvest likelihood. The aging likelihood accounts for incomplete aging or reporting of 

harvest. Other data sources and likelihoods can be included based on data availability, season 

structure or other considerations. Gove et al. (2002) first used age-at-harvest data in conjunction 
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with hunter effort data in a joint-likelihood framework. Since then the method has been applied, 

tested and refined. Skalski et al. (2007) tested indices for use as auxiliary information in SPR. 

Conn et al. (2008) used SPR in a Bayesian context to model black bears (Ursus americana) in 

Pennsylvania. Fieberg et al. (2010) used SPR with a chi-square objective function, instead of the 

standard maximum likelihood approach, to model black bears in Minnesota. Broms et al. (2010) 

used SPR to model greater sage-grouse (Centrocercus urophasianus) with radio-telemetry 

auxiliary information. Skalski et al. (2011) applied SPR to a furbearer population in Michigan. 

Skalski et al. (2012b) used SPR with limited age class information (0, 1, 2+). Most recently Gast 

(2012) made significant improvements to the general SPR model structure by, estimating 

abundance with a Horvitz-Thompson type estimator, removing the catch-effort likelihood 

traditionally included in SPR models and adding random effect parameters to demographic 

processes. These improvements by Gast (2012) reduce bias, provide more accurate variance 

estimates, increase reliability and account for natural variability in demographic processes.  

Despite the advantages of using SPR, there are also some drawbacks to the method. The 

largest initial hurdle to SPR is the mathematical complexity of the approach, which can be 

difficult to communicate to stakeholders and consequently may reduce buy in or confidence in 

the resulting estimates. Another major hurdle to implementation is that there is a steep learning 

curve associated with the statistical theory and software necessary to analyze SPR data (i.e., 

Automatic Differentiation Model Builder (ADMB)). Generally, auxiliary data are required, 

making SPR more costly than uncalibrated indices alone; however, SPR provides substantially 

more information.  Finally, SPR requires several consecutive years of representative age-at-

harvest data. If management agencies are not currently collecting the correct data, it may be 
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several years before they can successfully implement SPR. With proper planning, collaboration, 

and execution, the majority of challenges associated with SPR can be overcome to produce an 

efficient adaptive management tool.  

Despite being an efficient, flexible, and powerful tool for monitoring harvested species, 

SPR has not been widely applied in management contexts. One of the principal reasons for the 

lack of adoption of new statistical methods is the lack of an instructional bridge to cross the 

chasm between model development and management application. Too often models are 

developed and posited for use with no guide for application, leaving practitioners to sink or swim 

on their own. Model development is only half of the battle, confronting models with the actual 

data from resource agencies presents a unique set of challenges (Hilborn and Mangel 1997). The 

application of complex models can require detailed knowledge of model structure and 

assumptions, which many mangers lack. This provides an obvious need for a thorough, practical, 

guide for managers, in order to apply advanced statistical models to a wide range of scenarios. 

The majority of the previous work done concerning SPR has focused on the construction, 

selection, and evaluation of SPR models. This dissertation is meant to provide the necessary 

tools and guidance for managers to apply statistical population reconstruction to monitor 

harvested populations. It will answer the most pressing questions about data needs, model 

modifications and application of output for SPR models and provide guidance through 

illustrative examples. The broad scale management application of SPR models, facilitated by this 

dissertation, has the potential to increase the efficiency and rigor with which harvested wildlife 

are monitored.  
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Chapter 2, which has been previously published, will assess the utility of abundance 

auxiliary data relative to radio-telemetry harvest probability auxiliary data SPR (Clawson et al. 

2013). Chapter 3, which has also been previously published, will illustrate the use of SPR 

analysis to historically reconstruct 50 years of wild turkey population dynamics and hunter 

response to this reintroduced small game species of Missouri (Clawson et al. 2015). Chapter 4 

will evaluate methods to project next year game abundance based on simple demographic 

models and output from statistical population reconstruction. Finally, chapter 5 will provide 

detailed guidance on data requirements, sampling considerations, spatial scaling, model 

modifications and multi sex modeling. Chapter 5 will also offer further assessments of potential 

SPR auxiliary and methods for the inclusion of covariate data into SPR modeling frameworks. 

Together, these five chapters will provide a blueprint for managers wishing to apply statistical 

population reconstruction to monitor harvested species.   
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Chapter 2. THE UTILITY OF AUXILIARY DATA IN STATISTICAL 

POPULATION RECONSTRUCTION  

In recent years, statistical population reconstruction (SPR) has emerged as a feasible 

method for estimating the demographics of harvested wildlife over large geographic areas using 

age-at-harvest data which are commonly collected by wildlife agencies (Gove et al. 2002, 

Skalski et al. 2007, Skalski et al. 2011, Broms et al. 2010).  Its origin can be found in the vast 

history of quantitative stock assessment in fisheries (Quinn & Deriso 1999).  In wildlife science, 

where methods such as the Downing (1980) method and sex-age-kill (Millspaugh et al. 2009) are 

still the norm, there are advantages in using SPR which offers flexibility and robustness not 

available in traditional techniques.  Further, SPR allows for the simultaneous estimation of 

survival, abundance, recruitment, and harvest mortality whereas traditional reconstruction 

techniques estimate only total abundance.   

Age-at-harvest data provide the primary source of information in SPR models; however 

age-at-harvest data alone are insufficient to reconstruct population demographics using SPR.  In 

addition to age-at-harvest data, one or more sets of auxiliary data are needed to estimate one or 

more of the parameters from the age-at-harvest likelihood, either survival rates, harvest rates, 

recruitment, or abundance.  The joint likelihood structure of SPR models is flexible enough to 

incorporate almost any form of auxiliary data. In the past, it has been common to include catch-

effort data as auxiliary information for SPR models.  Skalski et al. (2007) calibrated a black-

tailed deer (Odocoileus hemionus) SPR model using catch-effort data.  That was possible 

because hunter effort was deliberately manipulated to produce a strong contrast in harvest rates 
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with alternative levels of effort.  Similarly, Skalski et al. (2011) used a five-fold change in 

trapping effort over time to construct a catch-effort relationship and reconstruct the abundance of 

American martens (Martes americana) in the upper peninsula of Michigan.  In other populations 

where hunter or trap effort may be relatively constant over time, catch-effort data will likely be 

an insufficient form of auxiliary information.  Thus, although catch-effort data has been a staple 

in SPR analyses, other types of auxiliary data may be more useful. 

           Several other types of auxiliary data have been used in previous SPR analyses including 

radiotelemetry information on harvest rates and independent estimates of abundance.  Broms et 

al. (2010) used radiotelemetry to help reconstruct greater sage-grouse (Centrocercus 

urophasianus) abundance in Oregon.  Radiotelemetry data were used to estimate vulnerability 

coefficients associated with harvest mortality of greater sage-grouse in Oregon.  Fieberg et al. 

(2010) also used radiotelemetry to estimate harvest rates and reconstruct the abundance of a 

Minnesota black bear (Ursus americanus) population.  Other researchers have used independent 

estimates of total abundance as auxiliary data.  For example, Gast et al. (2013a) used 

independent mark-recapture estimates of total abundance to help calibrate an SPR model of elk 

(Cervus elaphus) in the upper peninsula of Michigan.  Alternatively, Fieberg et al. (2010) chose 

not to use independent DNA mark-recapture estimates of abundance when reconstructing the 

Michigan black bear population.  Instead, they elected to use that information as an independent 

source of confirmatory information.  In contrast, Skalski et al. (2007) found an independent 

browse damage index of deer abundance had little or no benefit in reconstructing a black-tailed 

deer herd.  Such index data can help characterize the trend of a population but not its absolute 

abundance.  These examples illustrate the flexibility of SPR, but also raise questions about the 
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potential utility of various types and quality of auxiliary data. Uncertainty remains as to the 

effect of auxiliary data on model stability and how much auxiliary data are needed. Also, it is 

unclear how the precision of the auxiliary data (i.e., CV) changes the precision of the 

reconstructed abundance estimates. Additionally it is unclear if the timing of auxiliary studies 

changes their effectiveness.  

 The purpose of this paper is to provide game managers with guidance on how best to 

incorporate auxiliary studies in SPR.  We evaluate whether precision of the auxiliary study is the 

sole consideration, or whether the types of parameters being estimated is also important.  To this 

end, we compare the performance of SPR where independent estimates of abundance or harvest 

mortality are available.  We also consider the timing of the auxiliary studies in relationship to the 

duration of an SPR and the relative benefit of more than one auxiliary study in the precision of 

SPR. 

2.1 METHODS 

2.1.1 Overview of statistical population reconstruction 

Statistical population reconstruction is based on age-at-harvest data collected over time by game 

management agencies.  The observed counts  1, , ; 0, ,ijh i Y j A   are modeled as a function 

of the initial abundance of a cohort and the subsequent natural survival and harvest over time and 

perhaps probabilities of reporting and age determination.  Skalski et al. (2007) modeled the 

diagonals of this age-at-harvest matrix as independent multinomial distributions (Lij) where the 

joint likelihood can be written as 
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and where Li are binomial sampling models for the fractions of animals harvest in year i  being 

reported and/or aged.  This likelihood can be omitted if there is 100% reporting and aging of all 

harvested animals.   

 Together, these two likelihoods are incapable of estimating the demographic parameters 

of annual abundance, recruitment, natural survival, and harvest mortality of interest.  Gove et al. 

(2002) proved that at least one demographic parameter must be estimated independent of the 

age-at-harvest data for statistical population reconstruction to be possible.  Sometimes there may 

be, say, k independent auxiliary studies contributing to the reconstruction; hence, the joint 

likelihood model may be written as 
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Skalski et al. (2007) suggested using a catch-effort likelihood as an auxiliary where the annual 
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and where   p f  is the probability of harvest modeled as a function of effort.  A common 

parameterization for the probability of harvest is 

 1 icf

ip e


    

where c is the vulnerability coefficient (Quinn & Deriso 1999:40, Seber 1982:296).  Unless 

hunter effort has varied dramatically over time, this catch-effort auxiliary may not be adequate to 

support statistical population reconstruction. 

2.1.2 Auxiliary likelihoods 

We considered two alternative forms of auxiliary likelihoods in our evaluation.  In one case, an 

unbiased annual abundance estimate  ˆ
iN  was assumed to be available with estimated standard 

error ˆ
i .  The auxiliary likelihood then assumed the estimate was asymptotically normally 

distributed with the likelihood 
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We took this approach to allow the auxiliary likelihood to be independent of the form of the 

abundance survey and simply reflect survey precision (i.e., CV = i iN ).  The second auxiliary 

approach was based on a hypothetical radio-telemetry study to estimate harvest mortality during 

the hunting season.  A binomial of the form 
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where Ti = number of animals tagged and at risk of harvest, and di = number of tagged animals 

harvested, and where harvest mortality was reparameterized in terms of a vulnerability 

coefficient (c) and annual year-specific hunter effort [Equation (1)].  Precision in the case of the 

radio-telemetry study was expressed in terms of 

 

 1

CV=

i i

i

i

p p

T
p



. 

2.1.3 Monte Carlo simulations 

A Monte Carlo simulation study was used to determine the precision of population 

reconstruction estimates based on the amount, type, and timing of auxiliary studies.  A stochastic 

Leslie matrix model was used to generate age-at-harvest data for populations with different 

levels of natural survival rates, and harvest rates.  Recruitment levels were adjusted to produce 

populations with stationary abundance of approximately 6000 animals in expectation.  

Recruitment was generated using a Poisson process, and natural survival and harvest were 

modeled as binomial processes. 

In each simulation, 20 years of data were generated to establish demographic trends with 

years 21–44 used in the population reconstruction analysis.  The full age-class data were 

generated and used in standard population reconstruction models.  The same data were also 

reanalyzed after pooling the adult age-at-harvest data (i.e., 2.5+ year olds) using the pooled adult 

reconstruction of Skalski et al. (2012).    

 Demographic scenarios were performed to represent a range of scenarios expected for 

harvested large mammal populations.  Natural survival probabilities were simulated at 0.75 or 
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0.90 and harvest rates at 0.10 or 0.25.  To minimize the number of scenarios investigated, 

survival and harvest rates were assumed constant across all age classes.  Auxiliary data were 

simulated to estimate either annual abundance  ˆ
iN  or a harvest probability  ˆ

iP  with 

coefficients of variation (CV) equal to 0.05, 0.125, 0.25, or 0.50.  The CVs of 0.05, 0.125, and 

0.25 correspond to precision levels described by Robson and Regier (1964) as appropriate for 

accurate research, accurate management, and rough management.  A fourth CV, of 0.50, was 

simulated to represent a minimum information scenario.  At this level of precision, a parameter is 

estimated within ±100% of the true value, 95% of the time.  The effect of timing of the auxiliary 

data was tested for each parameter combination by staging the auxiliary study at either the 

beginning, middle, near end (i.e., year 23 of the reconstruction), or end (i.e., year 24) of the 

reconstruction.   

 Average measurement error of the reconstructed abundance estimates was estimated from 

the variance component expression 
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.  This approach provides a model-



16 

 

independent estimate of measurement error.  Across the 24 years of reconstruction, reported 

precision was calculated in terms of median CV of measurement error. 

2.1.4 Black-tailed deer sensitivity analysis 

The previous Monte Carlo simulation studies looked at the relationship between the 

precision of abundance estimates from population reconstruction and the use of auxiliary data.  

This section examines the effect of auxiliary data on the stability of reconstructed population 

trends for one particular realized dataset.  The black-tailed deer reconstruction of Skalski et al. 

(2007) was selected for illustration because no auxiliary likelihood was incorporated in the 

original population reconstruction.  Over a 24-year period, the abundance ranged between 1500 

and 3500 does.  Only catch-effort data were used to calibrate the model.  The example is 

therefore convenient for illustrating the relative merits of population reconstruction without and 

with auxiliary data of varying degrees. 

 Skalski et al. (2012) recommended using point-deletion techniques to determine the 

stability of population reconstruction to varying amounts of historical information.  For a 

reconstruction to be reliable, the estimated abundance trends should be relatively insensitive to 

the amount of historical data used in the demographic analysis.  They recommended determining 

how stable the reconstruction abundance estimates were when 0, 1, 2, … years of the historical 

data were sequentially eliminated for the analysis.  Following the advice of Skalski et al. (2012), 

simulated survey data to estimate abundance  ˆ
iN  and harvest probability  ˆ

iP   were added to 

the original population reconstruction with coefficients of variation of CV = 0.05, 0.125, 0.25, or 

0.50.  One such survey was assumed to have occurred either at the middle (i.e. 1991) or at the 
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end (2002) of the 24-year population reconstruction (1979–2002).  Stability was measured by the 

relative absolute deviation (RAD) in abundance defined as 
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RAD   100%
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where Ni =  abundance estimate in year i from original population reconstruction using all years 

of data, Nik = abundance estimate in year i from a reconstruction with k historical years of age-at-

harvest data deleted, and y = number of years in the truncated reconstruction.  The number of 

years deleted ranged from k = 0, 2, 4, 6, 8, 10, and 12 of the original 24 years of reconstruction. 

2.2 RESULTS 

2.2.1 Monte Carlo simulations 

As the precision of the auxiliary studies increased, precision of the reconstructed 

abundance estimates increased roughly proportional.  With minimal information from an 

auxiliary study with a CV of 50%, the median CVs of the abundance estimates were intolerably 

large, usually greater than 100% (Table 1).  As the CV of an auxiliary study used in estimating 

abundance went from 0.25 to 0.05, the median CV of the reconstructed abundance estimates was 

reduced by more than half and ranged from 0.354–0.798 to 0.082–0.354, respectively.  The use 

of auxiliary data in conjunction with pooled age-class data (i.e., age classes 0.5, 1.5, and 2.5+) 

had the same pattern of improvement in precision as occurred for full age-class reconstruction 

(Table 2.1).  The only difference was a slight additional reduction in the anticipated CVs. 

 Auxiliary abundance studies had a greater influence on the precision of reconstructed 

abundance estimates than auxiliary harvest probability studies for equal precision (Table 2.1).  



18 

 

For example, when the auxiliary abundance study had a CV of 12.5% (i.e., with ±25% of the true 

value 95% of the time), the resulting median CVs for the reconstructed abundance estimates 

ranged from 19.8% to 58.3% (Table 2.1).  For a similar level of precision in an auxiliary harvest 

mortality study, the population reconstruction estimates had CVs in the range 57.4% to 92.8%.  

In general, reducing the CV of an auxiliary study produced a commensurate reduction in the CVs 

of the reconstructed abundance estimates.   

 Timing of the auxiliary studies was generally not important.  The same improvement in 

the precision of the population reconstruction estimates occurred regardless of whether the 

auxiliary study was conducted at the beginning, middle, or near the end of the investigation.  The 

only exception was when the auxiliary study was performed in the last (i.e., current) year of 

reconstruction.  Under this circumstance, precision of the population reconstruction will not be 

measurably improved until a year thereafter.   

 Incorporating multiple auxiliary studies, 1/3 and 2/3 of the way through the 

reconstruction period, increased precision of the resulting abundance estimates (Table 2.1).  The 

effect is most substantial with auxiliary studies of minimal precision (Table 2.1).  However, a 

single auxiliary study with a CV of 0.125 results in better precision than two auxiliary studies 

with a CV of 0.250 each (Table 2.1).   
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Table 2.1 Median coefficient of variation (CV) of measurement error in simulated population 

reconstruction models when including either abundance or harvest probability auxiliary studies 

at varying levels of precision in the middle of the reconstruction.  Further, we considered one 

(single abundance auxiliary) and two abundance auxiliary studies (double abundance auxiliary).  

Populations were simulated at high and low levels of harvest and natural survival probabilities.  

Survival 

probability 

Harvest 

probability 

Auxiliary 

CV 

 ˆCV N   

Full model 
 Pooled 

model 

Single 

abundance 

auxiliary 

Double 

abundance 

auxiliary 

Single 

harvest 

probability 

auxiliary 

 
Single 

abundance 

auxiliary 

0.75 0.1 0.05 0.082 0.044 0.25  0.119 

0.75 0.1 0.125 0.198 0.124 0.574  0.188 

0.75 0.1 0.25 0.369 0.280 0.88  0.317 

0.75 0.1 0.5 0.953 0.474 2.038  0.895 

0.75 0.25 0.05 0.344 0.231 0.573  0.248 

0.75 0.25 0.125 0.583 0.467 0.928  0.372 

0.75 0.25 0.25 0.798 0.672 1.333  0.538 

0.75 0.25 0.5 1.877 0.876 2.441  1.758 

0.9 0.1 0.05 0.09 0.068 0.229  0.120 

0.9 0.1 0.125 0.221 0.151 0.536  0.191 

0.9 0.1 0.25 0.354 0.239 0.795  0.318 

0.9 0.1 0.5 0.79 0.404 1.741  0.954 

0.9 0.25 0.05 0.325 0.232 0.563  0.218 

0.9 0.25 0.125 0.55 0.467 0.883  0.415 

0.9 0.25 0.25 0.719 0.642 1.467  0.578 

0.9 0.25 0.5 0.894 0.813 2.708  0.861 

 

2.2.2 Black-tailed deer example 

Augmenting the original black-tailed deer data with an auxiliary abundance survey or a 

telemetry study, to estimate the vulnerability coefficient, greatly improved the stability of the 

population reconstruction when the amount of historical data was reduced.  Without any 

auxiliary data, the black-tailed deer reconstruction was very sensitive when 4 or more years of 

harvest data were omitted from the analysis (Table 2.2, Figure 2.1).  With 6 of 24 years of 
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historical data removed, the RAD exceeded 150%.  With even more years of data deleted, the 

reconstruction virtually disintegrated (Table 2.2).  However, the presence of rough auxiliary 

studies with a CV = 25% (i.e., 50% of the true value, 95% of the time) resulted in reasonable 

stability of the reconstructed population trends.  When the auxiliary data estimated the harvest 

probability  ˆ
iP  with a CV ≤ 0.25, the RAD ≤ 7.48% with as many as 12 years of historical data 

eliminated (Table 2.2, Figure 2.2).  When the auxiliary data provided an abundance estimate 

within a CV = 0.25, the RAD ≤ 22.25% with as many as 12 years of data deleted (Table 2.2, 

Figure 2.3).  By the time the auxiliary studies had a precise level suitable for accurate 

management purposes (Robson & Regier 1964, CV = 0.125), the RADs   6.32% with 12 years 

of data deleted (i.e., 50%) when auxiliary telemetry data were available.    

 Smaller RADs were obtained using radio-telemetry auxiliary data to estimate harvest 

probabilities rather than auxiliary abundance surveys for equal levels of precision (Table 2.2, 

2.3).  Stability of the population reconstruction was not affected by whether the auxiliary study 

was conducted in the middle or near the end of the time series (Table 2.3).   
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Table 2.2.  Relative absolute deviation  RAD  in annual abundance estimates from point-deletion sensitivity analyses performed on a 

statistical population reconstruction of female black-tailed deer (Skalski et al. 2007).  Models had either no auxiliary data or auxiliary 

data that estimated abundance or the vulnerability coefficient.  Auxiliary studies have a coefficient of variation (CV) of 0.05, 0.125, 

0.25, or 0.50 and were simulated in the final year of study. 

Years 

removed 

No 

auxiliary data 

Abundance auxiliary data  Vulnerability coefficient auxiliary data 

CV = 0.05 CV = 0.125 CV = 0.25 CV = 0.50  CV = 0.05 CV = 0.125 CV = 0.25 CV = 0.50 

  2 7.50% 3.18% 3.40% 4.39% 6.12%  0.93% 0.96% 1.49% 3.65% 

  4 24.94% 3.35% 1.76% 3.07% 9.71%  1.80% 1.55% 1.74% 5.82% 

  6 152.35% 0.34% 2.77% 10.81% 27.10%  1.25% 0.95% 2.71% 14.21% 

  8 23943.66% 1.52% 4.33% 22.25% 69.35%  2.89% 1.75% 7.48% 35.81% 

10 14386.01% 2.77% 5.52% 15.83% 40.43%  1.79% 2.33% 1.79% 17.91% 

12 66998.46% 2.12% 6.32% 21.97% 69.13%  2.16% 1.88% 4.44% 31.29% 

Mean 13513.50% 2.17% 3.75% 11.70% 32.57%  3.05% 1.48% 1.71% 16.04% 
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Table 2.3 Relative absolute deviation  RAD  of abundance estimates from a point-deletion 

sensitivity analysis of female black-tailed deer comparing auxiliary studies simulated at the end 

(i.e., 2002) or the center of the reconstruction (i.e., 1991).   

 

CV 

Abundance auxiliary data 

 Vulnerability coefficient 

auxiliary data 

 

 2002 1991  2002 1991  

 0.05   2.17%   1.76%  1.71% 1.75%  

 0.125   3.75%   3.76%  1.48% 1.52%  

 0.25 11.70% 11.77%  3.05% 3.36%  

 

 

 

Figure 2.1  Alternative population reconstructions of the black-tailed deer population with 0, 2, 

4, or 6 years of historical data removed in the absence of any auxiliary data.   
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Figure 2.2.  Annual abundance trends from a point-deletion sensitivity analysis, with historic data 

removed, on a statistical population reconstruction of female black-tailed deer, with a simulated 

auxiliary study to estimate harvest probability in 2002 with a CV of (a) 0.05, (b) 0.125, and (c) 0.250. 

a. CV = 0.05 

b. CV = 0.25 

c. CV = 0.125 
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a. CV = 0.05 
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Figure 2.3 Annual abundance trends from a point-deletion sensitivity analysis, with historic data 

removed, on a statistical population reconstruction of female black-tailed deer, with a simulated 

auxiliary study to estimate abundance in 2002 with a CV of (a) 0.05, (b) 0.125, and (c) 0.250.   
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2.3 DISCUSSION 

Our simulation and sensitivity analyses illustrate several important trade-offs in the 

quality and type of auxiliary studies used in SPR modeling.  First, the value of even rather 

imprecise auxiliary data (e.g., CVs = 25%) on the precision and stability of population 

reconstruction were evident.  This finding demonstrates the general utility of auxiliary 

information in SPR and can be used by managers as a guide on the required quality of future 

auxiliary studies.  Second, different types of auxiliary data have different benefits to SPR 

estimates and the choice of auxiliary data components ultimately depends on the goal of the 

resource manager.  If the primary concern is precision of the abundance estimates, auxiliary 

abundance studies are more beneficial than auxiliary radio-telemetry studies for comparable 

levels of precision.  However, managers might be more interested in the inter-annual stability of 

abundance estimates when designing harvest regulations.  If so, auxiliary radio-telemetry studies 

are more beneficial than abundance auxiliary studies for comparable levels of precision.  

 Another important question in SPR modeling relates to the timing of auxiliary data 

collection and our findings suggested improvements in precision are expected when auxiliary 

data is collected at any point during the reconstruction except the last year.  This finding is 

important for wildlife managers who might have historical age-at-harvest data and are 

considering conducting a contemporary auxiliary study.  These results suggest the continued 

value of collecting auxiliary data after the collection of age-at-harvest data has begun.  In other 

words, age-at-harvest and auxiliary data do not need to be collected simultaneously from the start 

of the study.  Further, because auxiliary data can be collected at nearly any point during the 

reconstruction, a manager can be less concerned if data collection during an auxiliary study 
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proves unsuccessful.  For example, if radio-collars malfunction, a manager can attempt a 

telemetry study at a later date or alter plans and collect another type of auxiliary data without 

losing the ability to use SPR.   

 Our analyses also indicate that multiple auxiliary studies can further enhance the 

precision of population reconstruction estimates.  In an adaptive management framework where 

decisions are updated as more and more information becomes available through time, this 

finding is relevant.  SPR is not only flexible enough to handle multiple auxiliary data types, but 

we can expect precision of the resulting estimates to improve.  However, if a manager is 

considering whether to complete one or two auxiliary studies that estimate abundance, it is 

important to consider that one study with high precision will improve precision of SPR estimates 

compared with two auxiliary studies with low precision.  Although precision of demographic 

estimates is generally not considered in traditional models of population reconstruction 

(Millspaugh et al. 2009), we encourage managers to carefully consider the quality of auxiliary 

data and how it ultimately affects the results of SPR.   

 Our assessment, however, is void of any cost-precision comparison for radio-telemetry 

versus auxiliary abundance surveys.  The feasibility for each type of survey will vary by species, 

geographic factors and labor cost.  Given that precision of population reconstruction estimates 

improve roughly proportional to the improvement in precision (i.e. reduction in CV) of auxiliary 

studies, it should be fairly straightforward to perform a cost benefit analysis.  Field investigators 

should consider their end goals and perform a cost-benefit analysis when planning auxiliary 

studies to augment SPR models.  Such an approach is likely to produce the most useful 
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population estimates and gain support from administrators and stakeholders holding managers 

accountable for costs and reliability of modeling results. 
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Chapter 3. TRENDS IN MALE WILD TURKEY ABUNDANCE AND 

HARVEST FOLLOWING RESTORATION EFFORTS IN THE 

SOUTHEAST REGION OF MISSOURI, 1960–2010 

Current wild turkey (Meleagris gallopavo) populations in Missouri, USA, are the result 

of extensive reintroduction efforts combined with >50 years of harvest management (Lewis 

2001).  In 2010, >100,000 hunters participated in Missouri’s spring wild turkey season, 

harvesting >40,000 wild turkeys (Isabelle 2010). Wild turkeys have not always been so plentiful 

in Missouri; in 1952 there were as few as 2,500 statewide (Dickneite 1973). Extensive 

restoration efforts began in 1954 with the initiation of a trap-and-transfer program that used birds 

from remnant populations in Missouri to repopulate other areas of the state. In order to generate 

interest in wild turkey management and further restocking efforts, the Missouri Department of 

Conservation (MDC) established the first modern spring turkey season in 1960 (Lewis 2001). 

Other than a few scattered releases, the wild turkey restoration program in Missouri was 

completed in 1979 (Lewis 2001). Although there were reintroductions, restocking, and recovery 

projects of many wildlife species across the country from 1930–1980, there has been little 

historical assessment of these recovering populations and hunter response to emerging game 

populations (Kallman 1987).  

 A historical population assessment can be useful in informing future management 

actions. Rates of population increase can be used to estimate recovery times, and exploitation 

rates used to assess how hunting may affect population recovery. Hunter response to harvest 

opportunities may also affect the rate of population growth depending upon species and harvest 
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rate. A delayed response by hunters may allow a population to grow more quickly. In Missouri 

and elsewhere, hunters are often used as a primary means of harvest data collection, which can 

be used to assess wildlife population dynamics. An understanding of hunter motivation and 

behavior can impact harvest management decisions. Generally, managers assume hunter 

satisfaction is linked to high success rates (Diefenbach et al. 2012); however, aesthetic and social 

values may have a greater impact (Kennedy 1974, Ringelman 1997). Outside of factors affecting 

hunter satisfaction, little is known about hunter behavior, despite harvest being the primary 

management tool of game species (Stedman et al. 2004). Hunter distribution and density, in 

response to an emerging population, can provide information about hunter behavior and 

motivation. If hunters are primarily driven by high success rates, one might expect the 

distribution of hunter densities to be related to game densities.  

 In addition to providing information useful in assessing hunter behavior, historical 

reconstructions can be helpful in identifying potential drivers of wildlife abundance trends. 

Long-term series of demographic parameters can elucidate trends not seen in short-term studies 

(Miller et al. 1998). For ground-nesting, short-lived, highly fecund species, weather and 

recruitment are often highly influential factors in population dynamics (Bridges et al. 2001). 

Cold and wet spring weather has been shown to negatively affect eastern wild turkey nest 

success and poult survival (Vangilder and Kurzejeski 1995; Roberts and Porter 1998a, b; 

Lowrey et al. 2001). Given that previous wild turkey studies have linked weather and 

reproductive metrics, it is likely that weather is a driving factor in annual wild turkey abundance 

fluctuations (Porter et al. 1990). In contrast to the potential effects of weather on wild turkey 

abundance, moderate levels of spring male wild turkey harvest (<30%) are thought to have 
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minimal effects on wild turkey abundance, but may affect the juvenile:adult male ratio 

(Kurzejeski and Vangilder 1992, Vangilder 1992, Vangilder and Kurzejeski 1995, Healy and 

Powell 2000, Kimmel 2000). Autumn either-sex harvests, however, can impact wild turkey 

abundance, where removing >10% of the population is likely to result in population decline 

(Suchy et al. 1983, Little et al. 1990, Vangilder and Kurzejeski 1995, Alpizar-Jara et al. 2001, 

McGhee et al. 2008).  

 The objectives of this study were 1) estimate abundance of the male turkey population in 

the Ozarks East turkey productivity region from 1960 to 2010 at both the regional and county 

spatial scales; 2) use the resulting abundance distribution at the county level to assess hunter 

responses to an emerging population; and 3) use the regional abundance estimates to assess 

possible drivers of population dynamics, specifically weather and autumn harvest pressure. 

Using the fitted catch-effort relationship from a contemporary (2006–2010) statistical population 

reconstruction (SPR) of the male wild turkey population in the East Ozarks by Gast et al. 

(2013k), we reconstructed male wild turkey abundance within the region back in time from 1960 

to 2010. Using this 50-year trend in reconstructed abundance, we fit a population growth model 

and assessed factors that might influence abundance fluctuations. We also examined hunter 

response to the emerging population as additional harvest opportunities became available. The 

result is a half-century of spatial–temporal trends in male wild turkey abundance and hunter 

response to restoration efforts and harvest management in southeastern Missouri.  

3.1 STUDY AREA 

In Missouri, wild turkeys are managed within areas of similar habitat known as turkey 

productivity regions (TPR; Figure 3.1). We reconstructed the male wild turkey population in the 
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Ozarks East TPR in southeastern Missouri. The Missouri Ozarks have a rugged terrain, and are 

90% covered by fairly homogeneous oak (Quercus spp.) forests and areas of mixed oak and 

shortleaf pine (Pinus echinata; Vangilder 1996). There were 13 counties in the Ozarks East TPR. 

 Prior to restoration efforts, wild turkeys existed at low population levels throughout the 

Ozarks East TPR (Lewis 1957). In an effort to increase wild turkey abundance, a statewide trap-

and-transfer program involving wild-captured birds was initiated in 1954 by the MDC. The first 

documented releases occurred in the Ozarks East TPR in 1960. Within the region, 198 wild 

turkeys were translocated during 14 releases in 7 counties over a 14-year time span from 1960 to 

1974. Releases of 21, 36, and 39 birds occurred in Butler, Ripley, and Oregon counties, 

respectively, 2–3 years prior to these counties establishing hunting seasons (Figure 3.1). Wild 

turkeys were also released in Carter, Dent, Wayne, and Reynolds counties, concurrent with 

harvest (Figure 3.1).  

 Today, wild turkeys are harvested in Missouri during 2 seasons; a predominantly male 

harvest in spring, followed by an autumn harvest of both males and females. In the Ozarks East 

TPR, a spring firearms harvest season was opened in 10 counties in 1960 and in all 13 counties 

by 1972. An autumn firearms harvest season was initiated in 1978. Until 2005, landowners could 

harvest wild turkeys without a permit during the spring and autumn hunting seasons. Aging and 

sexing of harvested animals in Missouri historically occurred at hunter check stations, but more 

recently, animals have been sexed and aged by hunters as part of a call-in registration program 

(Hansen et al. 2006). In autumn, it can be difficult for hunters to distinguish female turkeys from 

juvenile males, calling into question the reliability of some autumn age and sex data. Because of 

these limitations, the contemporary SPR model by Gast et al. (2013k) and the reconstruction 
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presented here include only male wild turkeys. 

 

Figure 3.1 A map of turkey productivity regions (TPR) in Missouri, USA, with the Ozarks East 

TPR in the southeastern corner of the state.   
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3.2 METHODS 

3.2.1 Historical reconstruction 

The MDC began collecting wild turkey harvest records in the Ozarks East TPR in 1960. 

Annual harvest data consist of total harvest, permittee harvest (harvest by permitted hunters, 

because landowners did not need permits), and the proportion of yearlings in the harvest (1960–

2010; Appendix A). Hunter-effort data include permits sold statewide (1960–2010 annually), the 

number of hunters in the Ozarks East TPR (1963–1982 annually, 1984–1996 semiannually, 

1998–2010 annually), and the number of hunting trips taken in the Ozarks East TPR (1984–1996 

semiannually, 1998–2010 annually; Table 3.1). In addition to harvest and hunter-effort data, an 

archer index beginning in 1983 was available, which provides the number of wild turkeys seen 

per 1,000 archer-hours (Appendix A).  

 To address data gaps and in order to take full advantage of the 50-year harvest and 

hunter-effort data set, we estimated missing values using time series and regression techniques. 

We lacked data for 12 years on the number of hunters in the Ozarks East TPR. We used data 

from the remaining 38 years that had both state-wide permit numbers and number of hunters in 

the Ozarks East TPR to establish a functional relationship between statewide permits sold and 

the number of hunters who hunted in the Ozarks East TPR. Based on an examination of the data, 

we chose to model the relationship between state-wide permit sales and hunters in the Ozarks 

East TPR as 

Permits
Hunters

1 β Permits

a


 
. (5)
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Table 3.1. Statewide and Ozarks East turkey productivity region (TPR) hunter effort in Missouri, 

USA, 1960–2010, with missing values indicated. 

Year Statewide 

permits 

Hunters in 

Ozarks 

East TPR 

Hunter trips 

in Ozarks 

East TPR 

 Year Statewide 

permits 

Hunters in 

Ozarks 

East TPR 

Hunter trips 

in Ozarks 

East TPR 

1960 698    1986 77,972 15,454 75,496 

1961 1,001    1987 85,723   

1962 1,400    1988 94,301 17,204 82,616 

1963 1,778 998   1989 92,901   

1964 2,958 1,404   1990 92,094 14,347 72,864 

1965 3,099 1,392   1991 89,025   

1966 4,873 1,884   1992 89,720 12,831 64,756 

1967 6,702 2,712   1993 89,899   

1968 8,102 3,436   1994 90,703  68,220 

1969 7,577 3,067   1995 99,412   

1970 10,072 4,492   1996 99,879 14,991 69,298 

1971 12,306 5,365   1997 99,933   

1972 20,077 8,937   1998 105,518 12,220 65,854 

1973 29,633 11,912   1999 120,215 13,309 71,273 

1974 26,363 11,671   2000 124,533 13,461 62,601 

1975 28,621 10,252   2001 125,157 14,683 76,457 

1976 35,932 12,460   2002 130,021 15,346 74,921 

1977 36,596 11,289   2003 110,939 15,232 69,350 

1978 42,244 11,485   2004 114,529 15,713 81,414 

1979 46,008 13,515   2005 115,190 16,483 82,299 

1980 56,133 13,084   2006 115,897 14,304 67,334 

1981 63,914 13,729   2007 117,736 15,096 80,017 

1982 67,150 15,436   2008 115,049 13,368 60,511 

1983 73,347    2009 112,303 13,505 67,649 

1984 76,053 17,600 84,394  2010 104,955 12,682 62,808 

1985 69,945    2010 104,955 12,682 62,808 

 

This relationship was fit using non-linear regression, assuming a normal error structure. It 

is reasonable to assume some degree of regional hunter fidelity and, therefore, a relationship 

between statewide permit and Ozarks East hunter numbers based on hunter preference, 

8 
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familiarity, and regional proximity. We then used the fitted relationship to predict the number of 

hunters in the Ozarks East TPR based on the number of permits sold statewide, for the 12 years 

that lacked regional hunter data.  

 In addition to estimating hunter numbers in the Ozarks East TPR for years with missing 

data values, we also estimated permittee harvest in the 2 years in which data were missing. In 

1966 and 1970, permittee harvest was not recorded; however, total harvest data were recorded. 

Therefore, we estimated permittee harvest in these years based on the proportional change of 

total harvest, applied to permittee harvest in the previous and subsequent years, and averaged 

according to the formula 

1 1

1 1ˆ
2

i i
i i

i i
i

Y Y
X X

Y Y
X

 

 

  

 , (6) 

assuming Xi is the permittee harvest in year i and Yi is the total harvest in year i. 

 In order to reconstruct abundance at both the regional and county spatial scale, we needed 

both hunter-effort and harvest data at each spatial scale. The MDC collected hunter-effort and 

harvest data at the county-level; therefore, data could be aggregated to the regional scale. We 

estimated missing hunter-effort data (1983–1997 semiannually) at the regional scale (Eq. 1) and 

scaled to the county level using an averaged proportional change method, 

1 1

1 1ˆ
2

i i
i i

i i
i

R R
C C

R R
C

 

 

 

 ,  (7) 

where Ci is the estimated number of hunters in the county in year i and Ri is the estimated 
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number of hunters in the region in year i. These data imputation measures allowed us to 

complete the data set and subsequently estimate abundance from 1960 to 2010 at both the 

regional and county spatial scales.  

 Gast et al. (2013b) used a statistical population reconstruction model to estimate spring 

male wild turkey abundance, harvest vulnerability, and natural survival in the Ozarks East TPR 

from 1996 to 2010. We used the estimated vulnerability coefficient (c) from this analysis to 

reconstruct abundance back to 1960. We estimated age-specific (yearling and adult) abundance 

of males just prior to the spring harvest season using a Horvitz–Thompson (Horvitz Thompson 

1952) -type estimator of the form: 

,

,

,

ˆ
ˆ

j i

j i

j i

H
N

P
 , (8) 

where Hj,i is the permittee harvest of age class j (i.e., yearlings and adults) in year i (Appendix 

A), ,
ˆ

j iN  is the estimated male abundance for age class j in year i and ,
ˆ

j iP  is the estimated 

harvest probability for age class j in year i. Probability of harvest is parameterized as  

,

ˆˆ 1 j ic

i

f

j eP


  , (5) 

where ĉj is the harvest vulnerability coefficient estimated by Gast et al. (2013b) for age class j, 

using statistical population reconstruction from this same population (1996–2010) and fi is the 

hunter density in the Ozarks East TPR in year i. 

 In 1960, only 10 of the 13 counties within the Ozarks East TPR were open for harvest 

(Appendix A), with the entire region not open for harvest until 1972. We scaled effort 
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measurements and harvest vulnerability parameters to account for the changes in huntable area; 

consequently, all effort metrics used in the models are densities (hunters per square mile). In 

order to reconstruct pre-1996 harvest probabilities, we assumed that the catch–effort relationship 

estimated in the SPR remained constant from 1960 to 2010. We assessed the assumption of 

constant hunter behavior, as an index of harvest vulnerability, comparing hunter trips to 

estimated hunter numbers (Table 3.1). We found a strong relationships between hunter numbers 

in the Ozarks East TPR and statewide hunter permits (Figure 3.2; Pearson r = 0.822), and 

between hunter numbers and hunter trips (Figure 3.3; Pearson r = 0.845), which permitted 

estimation of missing hunter statistics (Table 3.1) and the subsequent historical population 

reconstruction. 

 

Figure 3.2. Number of permitted spring hunters in the Ozarks East turkey productivity region 

(TPR), Missouri, USA (1960–2010), versus statewide turkey spring hunting permits and fitted 

regression model (Eq. 1).  
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Figure 3.3. Number of spring turkey hunter trips taken in the Ozarks East (OE) turkey 

productivity region (TPR), Missouri, USA (1984-2010), versus number of turkey hunters in the 

Ozarks East TPR (horizontal axis). Model fitted was a straight-line regression through the origin. 

Data include both the 14-day (diamonds, n = 6) and 21-day (triangles, n = 13) harvest seasons. 

 

3.2.2 Hunter response 

We assessed the growth of the number of hunters relative to the number of male wild 

turkeys available for harvest at the regional level with visual assessments and regression 

analysis. To quantify hunter motivation, we developed 2 hypotheses:  

1) Hunter distribution is driven primarily by high turkey densities. 

2) Hunter distribution is driven primarily by convenience. 
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We assessed support for each of the hypotheses using data on hunter density in each county, 

distance of the county from the nearest major metropolitan area (St. Louis, MO) and estimated 

turkey density in the county, from 1960 to 2010. Using multiple regression, we fit the model: 

, 0, 1 2 ,HunterDensity   α β Decade  β Distance β TurkeyDensityi k d i k i k         (6) 

where, 

 HunterDensityi,k is the hunter density in year i and county k, 

 Decadei is a factor variable indicating which decade the observations from year i arose, 

 Distancek is the distance of county k from St. Louis, Missouri, 

 TurkeyDensityi,k is the estimated male wild turkey density in year i and county k. 

Decade was included to control for the magnitude of changes in turkey abundance over time. 

Each variable was evaluated based on its coefficient of partial determination (Kutner et al. 2004: 

268), which describes the amount of variation in hunter density that is explained by a certain 

parameter, given all other parameters are in the model. Turkey density explaining the highest 

proportion of variation in hunter density would provide support for hypothesis 1; distance 

explaining the highest proportion of variation in hunter density would provide support for 

hypothesis 2. A decadal snapshot of the county-level distribution of hunter density and turkey 

abundance are provided in Figures 3.4 and 3.5. 
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Figure 3.4. Decadal snapshots of male wild turkey abundance by county in the Ozarks East 

turkey productivity region, Missouri, USA (1960–2010). Dot sizes are proportional to abundance 

levels  1–200 wild turkeys,  1,000–1,200 wild turkeys, 2,000–2,200 wild turkeys, 

3,000–3,200 wild turkeys. 
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Figure 3.5.  Decadal snapshots of spring turkey hunters per square mile by county in the Ozarks 

East turkey productivity region of Missouri, USA, (1960–2010). Dots are proportional to hunter 

density:  0.001–0.150 hunters per square mile,  0.90–1.05 hunters per square mile,  1.50–

1.65 hunters per square mile,  2.10–2.25 hunters per square mile. 
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3.2.3 Drivers of population dynamics 

Once we estimated male wild turkey abundance in the Ozarks East TPR, we wanted to 

assess the causes of variation in male abundance, the most obvious of which was the growth of 

the newly expanded population. Therefore, we fit a logistic population growth curve of the form 

 
0

0 0

t rt

K N
N

N K N e




  
, (7) 

to male wild turkey abundance estimates from the historical reconstruction using a non-linear 

least-squares approach (Kutner et al. 2004:512). Using the logistic growth model as a baseline, 

we were able to assess causes of variation in abundance attributable to more than simple 

population growth. We used relative deviance from the fitted logistic population growth model 

(DEV), calculated  

Historic Logistic

t t

t Historic

t

N N
DEV

N


  (8) 

as our response variable, rather than using the raw abundance estimates, in order to assess inter-

annual variation in abundance not described by the underlying growth. Yearling recruitment was 

used as an additional population metric, because recruitment has been shown to be a primary 

driver of turkey populations (Lobdell et al. 1972). In our model, yearlings are recruited into the 

population the spring after they are born, making them approximately 1 year old, depending on 

the timing of hatching and harvest season. We chose to use the natural log of the yearling:adult 

ratio (YAR) as the recruitment metric. The YAR of males was calculated based on the 

abundance of yearling males and the abundance of adult males estimated from Eq. 4. The natural 

log transformation was used to help achieve normality of the ratio estimate. Spring YAR is a 
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metric of realized recruitment over an entire year encompassing the effects of nest success, 

clutch size, poult survival, autumn juvenile harvest, and juvenile overwinter survival. 

 There are 2 competing hypotheses as to what is primarily driving fluctuations of 

abundance in this population: 1) autumn harvest rates, or 2) other external forces, primarily 

weather. In order to quantify the influence of autumn harvest on the population, we used linear 

regression to relate autumn hunter effort (as an index to harvest rate) in year i to the relative 

deviance of spring male abundance from the fitted logistic growth model (DEV) and spring YAR 

of males (YAR) in year i + 1 (Porter et al. 1990). Data for autumn harvest effort are only 

available from 1996 to 2010. In order to quantify weather in the study region, monthly regional 

weather metrics were chosen to approximate stages of the breeding season, including pre-

breeding (Mar), nesting (Apr and May), and early brood-rearing (May and Jun). Wild turkey 

nesting chronology can be variable (Vangilder and Kurzejeski 1995), especially over multiple 

decades, so monthly metrics were used as an approximation to these stages of the breeding 

season. Many factors affect turkey reproductive success, including the timing of breeding and 

nesting, breeding hen survival, nest success, poult survival, and juvenile survival, and juvenile 

autumn harvest; some of which have been found to be correlated with weather metrics. Cold 

temperatures in March and April may delay breeding and nest initiation (Rolley et al. 1998). 

Vangilder and Kurzejeski (1995) found warmer March temperatures to be correlated with 

increased nest success. Additionally, dry weather during incubation (Apr and May) has been 

correlated with increased nest success (Roberts et al. 1995, Roberts and Porter 1998b, Lehman et 

al. 2008). Cold and wet weather within 2 weeks of hatch (late May and early Jun) has been 

correlated with poult mortality (Healy and Nenno 1985, Roberts et al. 1995). We obtained 
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climatological data (min. daily temp, max. daily temp, and total daily precipitation) from the 

National Oceanic and Atmospheric Administration for each county within the Ozarks East TPR 

(National Climatic Data Center 1960–2010). We used these data to calculate 6 weather metrics 

relevant to wild turkey reproduction (Table 3.2). We calculated each weather metric for each 

month in the breeding season (Mar, Apr, May, and Jun), resulting in 24 individual metrics. We 

then averaged county metrics to form regional metrics (Miller et al. 1998). Furthermore, we 

assumed extrinsic factors would have the greatest influence on turkey abundance after the 

exponential growth phase of the population, so these analyses were limited to the years 1980–

2010 when the population had reached carrying capacity. Multiple regression was performed 

using forward stepwise selection to select the most parsimonious model of weather variables to 

explain the variation in the population metrics of interest (DEV or YAR; Kutner et al. 2004:214). 

We tested each weather metric, the variable with the smallest significant (α = 0.10) P-value was 

included in the model. This process was repeated until all significant covariates were included in 

the model (Table 3.3). 
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Table 3.2.  Weather variables included in an examination of the relationship between weather and wild turkey reproduction and male 

abundance in the Ozarks East turkey productivity region of Missouri, USA, from 1960 to 2010. 

Variable Definition Explanation Citation 
Cold days (CD) The no. of days the min. temp is in the lower 

one-third quantile of daily min. temps 

Cold temps during the nesting season may 

affect the timing and success of nests. 

Rolley et al. (1998), 

Latham (1958) 

Heating degree 

days (HDD) 

The sum of heating degree days, Heating 

degree  day = (65° F − AVGTEMP if 

AVGTEMP <65° F); [AVGTEMP = (MIN + 

MAX)/2]. 

An alternate way to measure cold temps. 

See above explanation. 

Roberts and Porter 

(1998a, b) 

Zero degree days 

(ZDD) 

The no. of days the min. temp dropped below 

zero degrees (C) 

An alternate way to measure cold temps. 

See above explanation. 

Vangilder and Kurzejeski 

(1995) 

Rainy days (RD) The no. of days that max. recorded 

precipitation is >0 mm 

Wet weather during the nesting season 

may increase predation, lower nest 

success, and affect poult mortality. 

Lowrey et al. (2001), 

Palmer et al. (1993), 

Roberts et al. (1995), 

Vangilder and Kurzejeski 

(1995) 

Total precipitation 

(TP) 

The sum of precipitation for all days in the 

period (mm) 

An alternate way to measure wet weather. 

See above explanation. 

Lowrey et al. (2001) 

Bad weather days 

(BWD) 

The no. of days the min. temp is in the lower 

one-third quantile of daily min. temps and the 

precipitation is in the upper one-third quantile 

of daily precipitation values 

A combination of cold and wet weather 

has been shown to be detrimental to 

poults. Additionally, cold and wet 

weather may have an interactive effect on 

nest success. 

Healy and Nenno (1985), 

Lehman et al. (2008) 
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Table 3.3.  Multiple regression of weather parameters used in an examination of the relationship 

between weather and wild turkey reproduction and male abundance in the Ozarks East turkey 

productivity region of Missouri, USA, from 1960 to 2010. June total precipitation (JTP) and 

April cold days (ACD) were included in the best fit model for the yearling:adult ratio (YAR). 

June total precipitation (JTP) and April bad weather days (ABWD) were included in the best fit 

model for the deviance from the fitted logistic model (DEV). March total precipitation (RTP) 

and May bad weather days (MBWD) were found to be non-significant (α = 0.10) for the YAR 

and DEV models respectively. 

Model 
Last parameter P-

value 

r2 

0.419 0.0007JTP

1YAR i

i e
 

   0.001 0.335 

0.94 0.08913ACD

1YAR i

i e


   0.002 0.268 

0.353 0.0007JTP 0.096ACD

1YAR i i

i e
 

   <0.001 0.630 

0.353 0.0007JTP 0.096ACD 0.001783RTP

1YAR i i i

i e
  

   0.117 0.662 

1DEV 0.1371 0.1223ABWDi i    0.003 0.251 

1DEV 0.1763 0.00015JTPi i     0.150 0.066 

1DEV 0.0004 0.1256ABWD 0.00016JTPi i i     0.074 0.330 

1DEV 0.0781 0.1227ABWD 0.00017JTP 0.0486MBWDi i i      0.179 0.373 

 

3.3 RESULTS 

3.3.1 Historical reconstruction 

The SPR in the Ozarks East TPR from 1996 to 2010 by Gast et al. (2013b) adjoins well 

with the historical reconstruction from 1960 to 1996 we performed using the catch–effort 
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relationship of Gast et al. (2013b) and the Horvitz–Thompson abundance estimator (Eq. 4; 

Figure 3.6). The 2 approaches independently estimate the 1996 regional male wild turkey 

abundance within 16% of each other, or within one standard error of the original estimate.  

 

Figure 3.6. Spring male wild turkey abundance (black line) and associated 95% confidence 

interval (dashed lines) estimated based on historical reconstruction (1960–1996), and statistical 

population reconstruction (1996–2010) for the Ozarks East turkey productivity region, Missouri, 

USA. Separation of modeling methods is indicated by the vertical black line.  

 In 1960, only 6 of the 10 counties open to spring wild turkey hunting in the Ozarks East 

TPR reported any harvest; we estimated male total wild turkey abundance at 2,923 (SE


 = 

843.5;Figure 3.6). The initial abundance estimate agrees reasonably well with crude population 

surveys conducted in 1952 and 1957, which estimate approximately 2,500 wild turkeys (male 

and female; Dickneite 1973). Male wild turkey abundance grew steadily following restoration, 

with regional abundance reaching 5,835 ( SE


 = 1,021.0) in 1970. By 1980, the male wild turkey 



48 

 

abundance reached 15,763 (SE


 =2,159.7). The estimated male wild turkey abundance in the 

Ozarks East TPR increased to a peak of 21,652 (SE


 = 3,911.7) in 1987, and subsequently 

returned to 11,361 ( SE


 = 1,410.3) in 1996. Since 1980, spring male abundance has varied 

annually about a constant mean or carrying capacity (K), with a range between 9,000 and 22,000 

regionally.  

 Regional abundance estimates from the historical population reconstruction fit a logistic 

growth curve (Figure 3.7). The logistic growth model (Eq. 5) estimates an initial regional 

population size of 1,997 male wild turkeys ( SE


 = 1,356.6), an instantaneous rate of growth, r


, 

of 0.207 (i.e., λ


 = 1.230  SE


 = 0.067), and a carrying capacity, K


, of 15,260 (SE


 = 624.0) 

male wild turkeys.  

 The logistic model estimated realized annual population growth rates of 18.8% in 1960, 

slowing to 9.3% by 1970 and 1.3% by 1980. The total male wild turkey abundance estimated by 

the regional reconstruction agrees with the sum of the county-level population reconstructions 

(Figure 3.8). The archer index of wild turkey abundance (1983–2010) also correlates reasonably 

well with our estimates of regional male wild turkey abundance (Pearson r = 0.49). These 

regression and separate reconstruction analyses lend support to the veracity of our overall 

historical reconstruction.  



49 

 

 

Figure 3.7. A continuous logistic population growth model (line) fitted to abundance estimates 

(dots) of male wild turkeys in the Ozarks East turkey productivity region of Missouri, USA, 

1960–2010.  
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Figure 3.8. Spring male wild turkey abundance (1960–2010) in the Ozarks East turkey 

productivity region, Missouri, USA, based on a region-wide reconstruction (black line) and the 

aggregate of corresponding county reconstructions (grey line). 

 By 1980, a pattern emerged of higher abundances in the west and southwest counties 

within the region, with the eastern and northeastern counties having comparatively lower male 

wild turkey numbers (Figure 3.4). The number of male wild turkeys varied widely among 

counties, ranging from 60 to 805 in 1960 and from 600 to 3,063 in 2010 (Figure 3.4). Despite 

county-level variations in abundance, individual county abundances showed similar trends as the 

Ozarks East TPR overall, suggesting similar controlling factors regionally (Figure 3.9). 
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Figure 3.9. Male wild turkey abundance by county in the Ozarks East turkey productivity region, 

Missouri, USA (1960–2010). Estimates based on historical Horvitz–Thompson reconstruction.  

 

3.3.2 Hunter response 

Overall number of hunters in the Ozarks East TPR grew commensurate with the increase 

in regional turkey abundance (Pearson r = 0.738; Figure 3.10). The number of hunters regionally 

peaked in 1984 and remained relatively stable from 1980 to 2010 (Figure 3.10). At the county-

wide level, the distance from St. Louis, Missouri, explained 19.9% of the variation in hunter 

density, while turkey density explained only 1.1% of the variation in hunter effort (Eq. 6). 

Hunter density tends to be higher in the northeastern corner of the region, while turkey density is 

highest in the west and southwest portions of the Ozarks East TPR (Figure 3.4 and Figure 3.5).  
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Figure 3.10. Spring male wild turkey abundance based on a region-wide historical reconstruction 

(dots), and number of hunters (line) in the Ozarks East turkey productivity region, Missouri, 

USA (1960–2010). 

3.3.3 Drivers of population dynamics 

 The number of hunter trips in year i explained only 3.1% of the variation in annual 

abundance about the fitted logistic growth model in year i + 1, 19802010. Of the 24 climatic 

variables examined, only the number of bad weather days in April and total June precipitation in 

year i were significantly related to annual population fluctuations in year i + 1. A bivariate model 

with these 2 covariates explained 33.0% (P = 0.003) of the annual variation about the fitted 

logistic growth model during the period 19802010 (Table 3.3). 

 The total number of autumn hunter trips taken in year i explained only 4.1% of the 

variation in spring YARs in year i + 1. On the other hand, a bivariate model composed of total 

June precipitation and number of cold days in April in year i explained 63% (P < 0.001) of the 
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annual variation in YAR in year i+1 (Table 3.3). None of the other climatic variables were found 

to be correlated with YARs.  

3.4 DISCUSSION 

In this 50-year reconstruction of male wild turkey abundance, we observed a logistic 

growth trend followed by high inter-annual abundance fluctuation around a stable carrying 

capacity ( K


 = 15,260), which was not discernible with the shorter duration (1996–2010) 

reconstruction performed by Gast et al. (2013b). Our historical reconstruction illustrates the 

exponential growth phase commonly found in emergent populations, followed by oscillation 

about an equilibrium (K), characteristic of logistic population growth (Morrison 2009). The 

observed abundance fluctuations are consistent with Mosby (1967), who suggested that high 

inter-annual variation, up to ±50% of the stable mean, is common in wild turkey populations. 

This evidence of a stable population with high inter-annual variation in abundance lends support 

for consistent hunting regulations rather than altering regulations annually to accommodate 

short-term fluctuations in abundance. Furthermore, a 50-year time series of abundance estimates 

is a rare and powerful tool when conveying management strategies to stakeholders.  

 Expected hunter response can be an important consideration in managing the 

reintroduction of harvestable animals. Our analysis yielded 2 interesting insights into aspects of 

hunter behavior. First, hunters may not exert full harvest pressure in the first few years after 

reintroduction. Hunters in the Ozarks East TPR of Missouri did not exert their full hunting 

pressure on the newly reestablished turkey population until decades after reintroduction (Figure 

3.10). This time lag in autumn hunter participation may have contributed to the healthy growth 

of the turkey population. This information may be useful for managers planning future 
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introductions or reintroductions of harvestable species.  

 Second, game abundance is not the only consideration in a hunter choice of where to 

hunt. Our analysis of hunter densities by county from 1960 to 2010 lends support for the 

hypothesis that hunters' choices were driven more by convenience than high turkey densities. 

This has important implications in setting game management goals. Maximizing hunter 

opportunity may be more important than high game densities to the hunting public.  

 There has been much concern about the impact of autumn hunting seasons on wild 

turkeys (Suchy et al. 1983, Little et al. 1990, Vangilder and Kurzejeski 1995, Alpizar-Jara et al. 

2001, McGhee et al. 2008). However, fluctuations in the male wild turkey population in the 

Ozarks East TPR seem to be controlled primarily by weather rather than autumn harvest. That 

autumn hunter effort was completely unrelated to deviance from the logistic growth model and 

YAR supports the idea that observed levels of autumn harvest have not noticeably impacted the 

population. The combined weather model explained a moderate portion of the variation in 

deviations from the logistic model. On the other hand, weather covariates explained a substantial 

portion of the inter-annual variation in the YAR; especially considering this realized recruitment 

metric includes an entire year of natural mortality and autumn harvest not modeled here. The 

much higher correlation with the recruitment metric rather than the abundance metric suggests 

that weather primarily affects recruitment, which in turn affects overall abundance. Based on this 

historical analysis, spring weather is at least a partial driver of inter-annual variation in wild 

turkey recruitment and, subsequently, in abundance fluctuations.  

The negative effect of cold days in April on recruitment we observed is consistent with 

the available literature that suggests cold temperatures during the nesting season negatively 
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impacts recruitment (Vangilder and Kurzejeski 1995; Roberts and Porter 1998a,b). Our finding 

that the total precipitation in June is positively correlated with our recruitment index seems in 

direct opposition to much of the available literature, which says that cold and wet weather can 

cause poult mortality. Poult survival is usually only studied in a 1–4 weeks post-hatch, which 

generally occurs at the end of May and beginning of June. Healy and Nenno (1985), in a 2-year 

study of 21 hens, found that temperatures below 11° C in conjunction with rainfall are correlated 

with poult mortality in West Virginia, USA. Similarly, Lehman et al. (2008), in a study of 57 

hens over 3 years, found that poult survival was negatively correlated with cold and wet weather 

in June in South Dakota, USA. Roberts and Porter (1998a,b), in a study of 26 hens over 3 years, 

found precipitation in May and early June to be negatively correlated with survival of wild 

turkey nests and poults in New York, USA. In Missouri, in a study of 69 hens over 7 years, the 

number of days of heavy precipitation in June were shown to be detrimental to poult survival, 

which the authors attributed, at least partially, to localized flooding (Vangilder and Kurzejeski 

1995). Total June precipitation has not previously been shown to be detrimental to wild turkey 

populations; however, successful wild turkey nests were associated with fewer rainfall events in 

Mississippi, USA, from March to June (Lowrey et al. 2001). Conversely, drought conditions 

have been shown to negatively impact highly fecund, ground-nesting species (Bridges et al. 

2001). It is possible that high levels of June precipitation may produce favorable foraging 

conditions over the summer and into the autumn (Beasom and Pattee 1980). Considering that 

water availability can adversely affect invertebrates (Huberty and Denno 2004) and acorn 

production (Sork et al. 1993), which are important wild turkey food sources (Korschgen 1967, 

Healy 1985), increased precipitation may increase food availability and positively impact 

survival.  
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 Previous research has mainly focused on specific mechanisms, such as directly estimating 

poult survival, with short-duration, low-sample-size studies. These previous studies have been 

unable to evaluate the realized effect on the number of animals recruited into the harvestable 

population. Our 30-year data set allowed us to view long-term realized population metrics, 

offering a broader view of the driving factors of a population. Our results suggest that weather 

effects may extend beyond simply nest success and poult mortality in some systems. Results of 

this study and others highlight the variability in both the number and magnitude of factors 

potentially affecting wild turkey recruitment.  

 Our reconstruction study of wild turkeys is not without its limitations. Male animals, 

which we modeled here, are not typically the driving force of populations with a polygamous 

mating system (Vangilder 1992). However, extreme sexual disparities can cause depression in 

reproduction, thus affecting population dynamics (McGhee et al. 2008). Future studies of this 

population may benefit from focusing on the female portion of this population, specifically 

autumn female harvest rates, which we were unable to reconstruct because of data limitations.  

 Our analysis offers an initial assessment of the relationship between the dynamics of this 

wild turkey population and weather. Future research should include targeted long-term studies to 

determine the ecological mechanisms that relate spring weather to realized recruitment, into the 

harvestable population, in Missouri wild turkey populations. It may also be prudent to assess 

weather impacts at multiple spatial scales. Further studies should also consider predation and oak 

masting, 2 factors that have previously been shown to impact wild turkey populations which 

were not assessed here (Sork et al. 1993, Miller et al. 1998, Norman et al. 2001, Ryan et al. 2004, 

Fuller et al. 2013).  
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3.5 MANAGEMENT IMPLICATIONS 

Following exponential growth for 20 years post-restoration, the current male wild turkey 

population in the Ozarks East TPR seems to be oscillating ( N̂ of 9,000–22,000) about a stable 

equilibrium of approximately 15,000 since 1980. Annual recruitment appears to be at least 

partially controlled by weather factors including the total amount of June precipitation and the 

number of cold days in April. Appropriately, harvest regulations for the Ozarks East TPR wild 

turkey population have remained unchanged in response to short-term population fluctuations. 

The result has been relatively static harvest regulations that the hunting population can rely upon 

as the turkey population fluctuates in response to short-term environmental perturbations. 

Although our results indicate that current levels of autumn and spring harvest had little effect on 

wild turkey abundance, managers should monitor harvest rates to ensure that they do not exceed 

thresholds that may negatively impact population growth and abundance. 
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Chapter 4. EVALUATION OF MODELS TO PROJECT THE 

ABUNDANCE OF HARVESTED SPECIES.  

 Accurate estimates of abundance are necessary for the effective management of harvested 

wildlife (Roseberry 1979, Rabe et al. 2002, Connelly et al. 2005, Hewitt 2011, Alisauskas et al. 

2014). There are several established methods to estimate the abundance of a wildlife population 

including mark-recapture, mark-harvest, line transect, distance methods and cohort 

reconstructions (Seber 1982, Skalski et al. 2005). Integrated population models which 

reconstruct abundance based on age-at-harvest information, such as statistical population 

reconstruction (SPR), are among the most cost efficient ways to produce annual abundance 

estimates over large spatial scales and long time periods (Gove et al. 2002, Conn et al. 2008, 

Skalski et al. 2012b, Gast et al. 2013a, Gast et al. 2013k). All methods for estimating abundance 

are retrospective, estimating abundance in the past or current year. The primary concern of game 

managers is how many animals will be available for harvest in the subsequent year(s) (Eberhardt 

1987). 

 There are several benefits to obtaining accurate estimates of future abundance. Most 

game populations are managed conservatively due to uncertainty about the abundance state of 

the population (Connelly et al. 2005). Increased certainty about the population state allows for 

increased recreational opportunity and economic gain (Connelly et al. 2005, Hewitt 2011). More 

importantly, a clear idea of past, present and future abundance will decrease the probability of 

management mistakes and make it easier for managers to convey management objectives to 

stakeholders (Freddy et al. 2004, Lukacs et al. 2011). Clear communication and consistent 
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quality management decisions will increase trust and cooperation with the growing list of 

stakeholder groups with which wildlife managers are faced (Murphy and Noon 1991, Rabe et al. 

2002, Hewitt 2011, Clawson et al. 2015).  

 Accurately projecting the future abundance of a harvested wildlife population, even a 

single year into the future, is difficult (Eberhardt 1987, Fewster et al. 2000, Krebs 2002). Future 

abundance depends primarily on three main demographic factors: current abundance, realized 

recruitment (including both fecundity and survival to a harvestable age), and adult mortality 

(both natural and harvest). Both fisheries (Gallucci et al. 1996, Quinn and Deriso 1999, Hilborn 

2012) and waterfowl managers (Byron and Johnson 1995, Williams and Johnson 1995, Johnson 

and Williams 1999 ) spend large amounts of money collecting data on these three aspects of their 

managed populations annually, in order to produce reliable future abundance estimates. Fisheries 

stock assessment models include data from catch-effort surveys, harvest data, and possible trawl 

and hydroacoustic surveys, as well as long studied stock-recruitment relationships (Gallucci et al. 

1996, Quinn and Deriso 1999, Francis et al. 2005, Hilborn 2012). Waterfowl managers collect 

breeding pond surveys, nest count data, as well as harvest and survival rate estimates from large 

scale banding programs (Hawkins et al. 1984, Williams and Johnson 1995, Johnson et al. 2002). 

Even with several annual data sources, waterfowl managers project abundance only a single year 

into the future, reevaluating model structure annually (Johnson et al. 2002). In contrast, most 

non-migratory game populations do not support a commercial harvest and are not federally 

managed according to international treaties, so resources to collect detailed demographic data 

annually are often limited. 

 The amount of demographic data collected on traditional game populations varies greatly 



60 

 

depending on the state and species managed (Rupp et al. 2000, Rabe et al. 2002, Freddy et al. 

2004, Lukacs et al. 2011). Harvest data are usually collected, including estimates of total harvest 

and age composition, but are rarely used to estimate abundance (Rupp et al. 2000, Beston and 

Mace 2012). More often, traditional game populations are monitored based on indices to 

abundance such as partial counts, catch per-unit-effort and other harvest based indices, as well as 

browse indices or pellet counts. Theses indices to abundance are generally used to infer 

population trend. Additionally, some management agencies simply manage to indices, balancing 

hunter and land owner satisfaction or reducing animal vehicle collisions (Hewitt 2011). This 

index-based management strategy is generally augmented with occasional field studies to 

estimate population parameters of concern (White and Lubow 2002, Bender et al. 2004). The 

occasional demographic inquiries are used to collect information on survival, harvest rate, 

abundance or some aspect of recruitment (e.g., nest success, pregnancy rates or neonate survival) 

(Kurzejeski et al. 1987, Diefenbach et al. 2000, Gilbert and Raedeke 2004, Delgiudice et al. 

2006, Fuller et al. 2013). Alternatively, managers who use SPR have estimates of annual 

abundance, survival, harvest rate and annual realized recruitment in addition to age composition 

and hunter effort data (Gove et al. 2002, Skalski et al. 2011, Skalski et al. 2012b). However, 

recruitment from SPR is not associated with the previous breeding abundance so it is not as 

useful for projection as the stock-recruit models used by fisheries managers or the annual nest 

counts collected by waterfowl managers.  

The purpose of this paper is to evaluate simple methods of projecting the abundance of 

wild populations, from year t to year t+1, in ways consistent with current levels of demographic 

data. We will also examine whether additional demographic data on survival, recruitment and 
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harvest improve the accuracy of annual population projections. Specifically, whether information 

from SPR can be used to improve annual abundance projections. 

4.1 METHODS 

4.1.1 Projecting abundance without additional demographic data 

 Data sets of annual abundance were obtained from the Global Population Dynamics 

Database (GPDD) (NERC 2010). This database includes more than 4500 time series of 

abundance and indices to abundance from more than 1800 animal species (Inchausti and Halley 

2001). Using data from the GPDD allowed us to evaluate alternative projection models on a 

large number of populations. We established several criteria for inclusion of datasets in this 

effort. Only data from harvestable birds and mammals were included. The demographic data sets 

had to consist of actual abundance estimates or direct abundance counts, indices to abundance 

such as tracks, scat or pelt counts were not included in this analysis. The data sets had to include 

a minimum of 11 years of consecutive abundance estimates because some of the projection 

models evaluated required a minimum of ten years of data. Populations that exhibited a clear 

logistic growth pattern were not included. These types of demographic patterns have been 

previously well studied (Alpizar-Jara et al. 2001, Eberhardt 2002, Krebs 2002, Eberhardt and 

Breiwick 2012). Based on our criteria the GPDD yielded 71 populations appropriate for our 

analysis. We then divided these 71 populations into four classes based on two categories, taxa 

(bird vs mammal) and trend (clear trend vs no clear trend) (Table 4.1, Figure 4.1-4). The 

distinction between taxa differentiated, to a large degree, intrinsically (Hewitt 2011) and 

extrinsically (Fleming and Porter 2007) controlled populations. The distinction in trend was 

made because we expected projection models to perform differently when applied to populations 
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with and without a clear temporal trend. Furthermore, trend and taxa classifications were not 

independent of one another (Pearson chi sq, P <0.001), indicating they should be evaluated 

separately.   

Table 4.1. Median of the absolute deviance relative to the observed abundance of projections 

made with models to project abundance without additional demographic data, averaged across 

populations within taxa and trend class (Mammal, Bird, Trend, No Trend). Projected populations 

come from the Global Population Dynamics Database. Models are ranked based on overall 

performance without regard for trend or taxa (Overall).  

 

Model 

Absolute relative deviation 
Overall 

Rank 
Mammal, 

Trend 
Bird, 

Trend 
Mammal, 
No Trend 

Bird, No 
Trend 

Overall 

𝑀0 0.112 0.168 0.183 0.343 0.221 1 

𝑀𝜆−𝑌  0.100 0.144 0.203 0.371 0.232 2 

𝑀𝜆 𝑁𝐿−𝑌  0.117 0.156 0.193 0.370 0.235 3 

𝑀𝜆 𝑁𝐿−5 0.108 0.191 0.222 0.381 0.245 4 

𝑀𝜆−5 0.106 0.182 0.229 0.396 0.252 5 

𝑀𝐴−3 0.140 0.223 0.209 0.410 0.264 6 

𝑀𝜆−3 0.117 0.189 0.221 0.445 0.272 7 

𝑀𝜆 𝑁𝐿−3 0.122 0.195 0.222 0.451 0.276 8 

𝑀𝑅𝐸𝐺−𝑌 0.149 0.228 0.282 0.445 0.300 9 

𝑀𝑅𝐸𝐺−5 0.128 0.215 0.238 0.503 0.303 10 

𝑀𝐴−5 0.169 0.282 0.246 0.467 0.306 11 

𝑀𝑅𝐸𝐺−3 0.133 0.312 0.233 0.539 0.320 12 

𝑀𝜆−2 0.153 0.227 0.255 0.544 0.331 13 

𝑀𝐴−𝑌 0.330 0.469 0.258 0.457 0.361 14 

Projections 406 41 370 491 1308   

Populations 27 5 17 22 71   
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Figure 4.1. Mammal populations from the Global Population Dynamics Database that exhibit a 

clear trend, used to project abundance with no additional demographic data. Species are 

indicated by letter as follows a) Spotted dolphin (Stenella attenuata), b) Spotted dolphin, c) 

Bobcat (Lynx rufus), d) Harbour seal (Phoca vitulina),e) Harbour seal, f) Harbour seal, g) Grey wolf 

(Canis lupus), h) Grey wolf, i) Mule deer (Odocoileus hemionus), j) Cape buffalo (Syncerus 

caffer), k) Blue Wildebeest (Connochaetes taurinus), l) Harbour seal, m) Sea otter (Enhydra lutris), 

n) Grey wolf, o) Eurasian lynx (Lynx lynx), p) Eurasian lynx, q) Lion (Panthera leo), r) Arctic fox 

(Alopex lagopus), s) Sea otter, t) Muskox (Ovibos moschatus), u) Grizzly Bear (Ursus arctos), v) 

Florida manatee (Trichechus manatus), w) Northern elephant seal (Mirounga angustirostris), x) 

White rhino (Ceratotherium simum), y) Amur tiger (Panthera tigris), z) Mountain goat 

(Oreamnos americanus), aa) Père David's deer (Elaphurus davidianus).   
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Figure 4.2. Bird populations from the Global Population Dynamics Database that exhibit a clear 

trend, used to project abundance with no additional demographic data. Species are indicated by 

letter as follows a) Blue grouse (Dendragapus obscurus), b) Blue grouse, c) Wood grouse 

(Tetrao urogallus), d) Black grouse (Tetrao tetrix), e) Grey partridge (Perdix perdix). 
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Figure 4.3. Mammal populations from the Global Population Dynamics Database that exhibit no 

clear trend, used to project abundance with no additional demographic data. Species are 

indicated by letter as follows a) San Joaquin kit fox (Vulpes macrotis), b) Canadian lynx (Lynx 

canadensis), c) Canadian lynx, d) Chamois (Rupicapra rupicapra), e) Greater kudu 

(Tragelaphus strepsiceros), f) Greater kudu, g) Lion, h) Grey wolf, i) African wild dog (Lycaon 

pictus), j) American marten (Martes Americana), k) Fox (Vulpes spp.), Wolverine (Gulo gulo), 

m) Wolverine , n) Dall Sheep (Ovis dalli), o) Chamois , p) Brown bear , q) Black rhinoceros 

(Diceros bicornis).   
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Figure 4.4. Bird populations from the Global Population Dynamics Database that exhibit no clear 

trend, used to project abundance with no additional demographic data. Species are indicated by 

letter as follows a) Willow grouse (Lagopus lagopus), b) Rock ptarmigan(Lagopus mutus), c) 

Rock ptarmigan, d) Rock ptarmigan, e) Rock ptarmigan, f) Rock ptarmigan, g) Rock ptarmigan, 

h) Ruffed grouse (Bonasa umbellus), i) Hazel grouse (Bonasa bonasia), j) Bobwhite (Colinus 

virginianus), k) Grey partridge, l) California quail (Callipepla californica), m) Willow grouse, n) 

Red-legged partridge, o) Black grouse, p) Northern bobwhite, q) Rock ptarmigan, r) Wood 

grouse, s) Red grouse (Lagopus lagopus), t) Red grouse, u) Hazel grouse, v) Wood grouse.  
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 The simplest projection model assumed abundance (N) in year t+1 equals the abundance 

observed in the current year (t) i.e., 

 𝑀0: 𝑁𝑡+1 = 𝑁𝑡 .  

Thus no change in abundance is projected from the final year of observed data to the projected 

year. This was considered the base model(𝑀0), to which all population models were compared. 

The next set of projection models examined moving averages(𝑀𝐴). Moving averages were taken 

across the most recent 3, 5 or all years of available data, constituting models  

 𝑀𝐴−3 ∶ 𝑁𝑡+1 =
𝑁𝑡+𝑁𝑡−1+𝑁𝑡−2

3
 , 

𝑀𝐴−5 ∶ 𝑁𝑡+1 =
𝑁𝑡+𝑁𝑡−1+𝑁𝑡−2+𝑁𝑡−3+𝑁𝑡−4

5
 , 

𝑀𝐴−𝑌 ∶ 𝑁𝑡+1 =
∑ 𝑁𝑖

𝑖=𝑡
𝑖=1

𝑡
 .  

Note the base model (𝑀0) is a moving average with a window of one year. The next three 

projection models are based on the regression (𝑀𝑅𝐸𝐺) of abundance versus time (i), using the 

linear model 

𝑁𝑖 = 𝛼 + 𝛽 ∗ 𝑖 

using the most current 3, 5, or all available years of data. Population projections were then 

 𝑀𝑅𝐸𝐺−3 ∶ 𝑁𝑡+1 = 𝛼̂ + 𝛽̂ ∗ (𝑡 + 1), (𝛼̂, 𝛽̂ → 𝑡, … 𝑡 − 2),  

 𝑀𝑅𝐸𝐺−5 ∶ 𝑁𝑡+1 = 𝛼̂ + 𝛽̂ ∗ (𝑡 + 1), (𝛼̂, 𝛽̂ → 𝑡, … 𝑡 − 4), 
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 𝑀𝑅𝐸𝐺−𝑌 ∶ 𝑁𝑡+1 = 𝛼̂ + 𝛽̂ ∗ (𝑡 + 1), (𝛼̂, 𝛽̂ → 𝑡, … 1). 

These first seven projection models ignore the fact that the time series of abundance arises from 

the biological processes of birth and death.  

 Our simplest demographic models condense the birth and death process into a single 

parameter (λ), the finite population growth rate. Seven projection models were examined based 

on estimates of the finite rate of population growth (λ). The simplest model estimated the 

population growth rate (λ) based on the previous two years of abundance such that,  

𝑀𝜆−2:      𝑁𝑡+1 = 𝑁𝑡 ∗ (
𝑁𝑡

𝑁𝑡−1
) = 𝑁𝑡 ∗ 𝜆̂ .  

Alternatively, λ was estimated by regressing the abundance in year i+1 against the abundance in 

year i using the linear model  

𝑁𝑖+1 = 𝜆 ∗ 𝑁𝑖 , 

for varying numbers of years 3, 5, or all available years. Population projections were then 

𝑀𝜆−3:𝑁𝑡+1 = 𝑁𝑡 ∗ 𝜆̂, (𝜆̂ → 𝑡, … 𝑡 − 2) ,   

𝑀𝜆−5:𝑁𝑡+1 = 𝑁𝑡 ∗ 𝜆̂, (𝜆̂ → 𝑡, … 𝑡 − 4),  

𝑀𝜆−𝑌:𝑁𝑡+1 = 𝑁𝑡 ∗ 𝜆̂, (𝜆̂ → 𝑡, … 1). 

 

The potential drawback of this model is that if the observed abundances (𝑁𝑖) are measured with 

error, then the slope term (λ) would be negatively biased. To address this potential bias, the 

population growth rate (λ) was also estimated via non-linear regression of the form 
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𝑁𝑖

𝑁𝐼
= 𝜆(𝑖−𝐼), 

using the most current 3, 5, and all years of data. The resulting projection models w  

 𝑀𝜆 𝑁𝐿−3: 𝑁𝑡+1 = 𝑁𝑡 ∗ 𝜆̂, (𝜆̂ → 𝑡, … 𝑡 − 2), 

 𝑀𝜆 𝑁𝐿−5: 𝑁𝑡+1 = 𝑁𝑡 ∗ 𝜆̂, (𝜆̂ → 𝑡, … 𝑡 − 4),   

 𝑀𝜆 𝑁𝐿−𝑌: 𝑁𝑡+1 = 𝑁𝑡 ∗ 𝜆̂, (𝜆̂ → 𝑡, … 1) . 

The final model considered was an auto regressive integrated moving average (ARIMA) model, 

which selects a random walk model with appropriate degrees of autocorrelation and drift, that 

best fit the data (𝑀𝐴𝑅𝐼𝑀𝐴) (Box and Jenkins 1970). The ARIMA model was evaluated with a 

minimum of 10 years of historical data. The ARIMA model was fit using the auto.arima function 

in the R package forecast, with predictions made using the forecast function from the same R 

package (www.r-project.org) 

 All abundance projections were a single year in advance. Projections were made for years 

with direct observations only.  In order to draw direct comparisons between projection models 

requiring different levels of historical abundance, the years of projected abundance were 

consistent across all models.  Initially, all models began projections starting with the 11th year of 

abundance, due to the 10-year data requirement for the ARIMA model. After the ARIMA model 

was determined to be ineffective, the model evaluation was repeated, leaving out the ARIMA 

model and using a minimum of 6 years of historical data. (i.e., the next highest data requirement 

was 5 years for models 𝑀𝐴−5, 𝑀𝑅𝐸𝐺−5, 𝑀𝜆−5, 𝑀𝜆 𝑁𝐿−5) 
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For each projection, the absolute value of the relative deviance (RD) between the 

observed and projected abundance was recorded: 

𝑅𝐷 =
|𝑁𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 − 𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑|

𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
 

I used absolute RD in characterizing model performance because interest was in the percent error 

in the projections regardless of the positive or negative aspect of the error.  I chose median RD 

for each model per population was chosen as the measure of precision because of the skewed 

distribution of RDs within each population.  For each demographic class (Table 4.1, Figure 4.1-

4), the alternative projection models were ranked based on the weighted average of median RD 

from each biological population within the class; with weights based on the number of 

projections made for each population.  

4.1.2 Projecting abundance with demographic data 

 Output from statistical population reconstruction was also used to project abundance one 

year in advance. Nine statistical population reconstructions were available for examination; 

including 6 published and 3 unpublished population reconstructions (Table 4.2). With only 9 

total data sets available, it was impractical to divide them into taxa and trend classes (Figure 4.5).  
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Table 4.2. Descriptions of the nine statistical population reconstruction data sets used to project 

time series of abundance with additional demographic data. 

Taxa 
Years of 

Abundance 
Years of 

Projection 
Sex  

Number of 
Survival 

Parameters 
Citation 

Mule Deer, WA 24 19 Female 1 Skalski et al. (2007) 

Mule Deer, CA 24 19 both 3 Unpublished 

Cougar, OR 21 16 both 2 Unpublished 

Elk, MI 18 13 both 1 Gast et al. (2013a) 

Elk, ID 6 1 Female 1 Gove et al. (2002) 

Marten, MI  12 7 both 9 Skalski et al. (2011) 

Fisher, MI 8 3 both 10 Unpublished 

Turkey, MO 15 10 Male 1 Gast et al. (2013k) 

Greater sage-
grouse, OR 

14 9 Both 
2 

Broms et al. (2010) 

 

 

 

Figure 4.5. Time series of abundance from statistical population reconstructions of both birds 

and mammals, used to project abundance with additional demographic data. Species are 

indicated by letter as follows a) Mule Deer (Odocoileus hemionus), b) Mule Deer, c) Cougar 

(Puma concolor), d) Elk (Cervus elaphus), e) Elk, f) Fisher (Martes pannanti), g) Marten 

(Martes americana), h) Greater Sage-Grouse (Centrocerus urophasians), i) Eastern Wild Turkey 

(Meleagris gallapovo). 
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 I evaluated 11 models which project future abundance using varying degrees of 

demographic and harvest data. The first model incorporates only harvest data, accounting for the 

annual known removals from the pre-harvest abundance estimates of the first year. The 

population growth rate (λ) was estimated using the following linear regression equation 

𝑁𝑖+1 = 𝜆 ∗ (𝑁𝑖 − 𝐻𝑖), 

Projections were then of the form 

𝑀𝐷𝑟𝑒𝑔−𝐻: 𝑁𝑡+1 = 𝜆̂ ∗ (𝑁𝑡 − 𝐻𝑡)(𝜆̂ → 𝑡,… 1) 

 In the remaining projection models, population growth rate (λ) is reparameterized into its 

two primary components, realized recruitment (R) and survival (S) (Skalski et al. 2005). The 

survival parameter was fixed at the estimate(s) from the associated statistical population 

reconstruction (𝑆̇). Five of the nine statistical population reconstructions used for this analysis 

had some degree of age-specific survival, in these cases 𝑆̇ was fixed at the average of the age-

specific survival estimates for non-age-specific projection. Given the re-parameterization and the 

independent estimates of survival, the remaining models estimate only the realized recruitment 

rate parameter (R). Realized recruitment rate (R) is a parameter that combines the per-capita 

fecundity rate (f), with the probability those neonates survive (𝑆0) to be recruited into the 

harvestable population (Skalski et al. 2005). 

 Non-age-specific projections for the models that estimated realized recruitment rate (R) 

were made using the equation 𝑁𝑡+1 = 𝑁𝑡 ∗ 𝑅̂ + 𝑁𝑡 ∗ 𝑆̇. Additionally, in order to take advantage 

of the age-specific survival and abundance estimates provided by SPR, models described in this 
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section were also projected using a Leslie matrix; assuming recruitment rate to be constant across 

age classes (Leslie 1945), where  

𝑁𝑡+1 = 1′𝑴𝑹𝑵𝒕
⃑⃑ ⃑⃑ , 

 

 

 

 

 

 

The Leslie matrix method for age-specific projection is analogous to the non-age-specific 

projection method for populations without age-specific survival. 

 The first eight models to estimate the realized recruitment rate (R) do so based on initial 

age class abundance estimates from SPR (𝑁𝑟). The first six of which (𝑀𝐷𝑅) estimated the 

realized recruitment rate (R) as the ratio of the sum of the annual recruitment abundance (𝑁𝑡
𝑟) to 

the sum of the corresponding previous year’s abundance(s) (𝑁𝑡−1), with 2, 3 or all years of data 

  𝑅̂𝑀𝐷𝑅−2
=

𝑁𝑡
𝑟

𝑁𝑡−1
. 

 𝑅̂𝑀𝐷𝑅−3
=

𝑁𝑡
𝑟+𝑁𝑡−1

𝑟 +𝑁𝑡−2
𝑟

𝑁𝑡−1+𝑁𝑡−2+𝑁𝑡−3
. 

  R R R … R  

  𝑺𝟎 0 0  0  

𝑴𝑹 =   𝑺𝟏 0  0  

        

  0 0 0 … 𝑺𝑨  

  𝑵𝒕
𝟏 − 𝑯𝒕

𝟏  

  𝑵𝒕
𝟐 − 𝑯𝒕

𝟐  

𝑵𝒕
⃑⃑ ⃑⃑ =  𝑵𝒕

𝟑 − 𝑯𝒕
𝟑  

  …
 

 

  𝑵𝒕
𝑨 − 𝑯𝒕

𝑨  
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 𝑅̂𝑀𝐷𝑅−𝑌
=

∑ 𝑁𝑖
𝑟𝑡

𝑖=2

∑ 𝑁𝑖−1
𝑡
𝑖=2

. 

Projections were then of the form 

 𝑀𝐷𝑅−2: 𝑁𝑡+1 = 𝑁𝑡 ∗ 𝑅̂𝑀𝐷𝑅−2
+ (𝑁𝑡 − 𝐻𝑡) ∗ 𝑆̇ 

 𝑀𝐷𝑅−3: 𝑁𝑡+1 = 𝑁𝑡 ∗ 𝑅̂𝑀𝐷𝑅−3
+ (𝑁𝑡 − 𝐻𝑡) ∗ 𝑆̇ 

 𝑀𝐷𝑅−𝑦: 𝑁𝑡+1 = 𝑁𝑡 ∗ 𝑅̂𝑀𝐷𝑅−𝑌
+ (𝑁𝑡 − 𝐻𝑡) ∗ 𝑆̇ 

for non-age-specific projection and  

 𝑀𝐷𝑅−2𝐿𝑒𝑠:𝑁𝑡+1 = 1′𝑴𝑅̂𝑀𝐷𝑅−2
𝑵𝒕
⃑⃑ ⃑⃑  

 𝑀𝐷𝑅−3𝐿𝑒𝑠:𝑁𝑡+1 = 1′𝑴𝑅̂𝑀𝐷𝑅−3
𝑵𝒕
⃑⃑ ⃑⃑  

 𝑀𝐷𝑅−𝑦𝐿𝑒𝑠: 𝑁𝑡+1 = 1′𝑴𝑅̂𝑀𝐷𝑅−𝑌
𝑵𝒕
⃑⃑ ⃑⃑  

for projections with age-specific parameterizations. In age-specific projections, each entry in the 

first row of the projection matrix M, is equal to the estimated realized recruitment rate for each 

model respectively. Model 𝑀𝐷𝑟𝑒𝑔 estimated the average realized recruitment rate across all 

available years using the linear regression equation 

 𝑁𝑖+1
𝑟 = 𝑁𝑖 ∗ 𝑅𝑀𝐷𝑅𝐸𝐺−𝑅−𝑌

, 

where 𝑁𝑖+1
𝑟  is the initial age class abundance estimated from SPR in year i+1 and 𝑁𝑖 is the total 

abundance estimated from SPR in year i. Projections were then of the form 

 𝑀𝐷𝑅𝐸𝐺−𝑅−𝑌: 𝑁𝑡+1 = 𝑁𝑡 ∗ 𝑅̂𝑀𝐷𝑅𝐸𝐺−𝑅−𝑌
+ (𝑁𝑡 − 𝐻𝑡) ∗ 𝑆̇ 
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for non-age-specific projection and  

 𝑀𝐷𝑅𝐸𝐺−𝑅−𝑌𝐿𝑒𝑠: 𝑁𝑡+1 = 1′𝑴𝑅̂𝑀𝐷𝑅𝐸𝐺−𝑅−𝑌
𝑵𝒕
⃑⃑ ⃑⃑  

for projections with age-specific parameterizations. In age-specific projections each entry in the 

first row of the projection matrix M, is equal to the estimated realized recruitment rate for each 

model respectively. The final model (𝑀𝐷𝑅𝐸𝐺𝑆) does not include recruitment class abundance 

data, instead the realized recruitment rate parameter was estimated using the following 

regression equation 

  𝑁𝑖+1 = 𝑁𝑖 ∗ 𝑅𝑀𝐷𝑅𝐸𝐺𝑆−𝑅−𝐻−𝑌
+ (𝑁𝑖 − 𝐻𝑖) ∗ 𝑆̇. 

Projections were then of the form 

 𝑀𝐷𝑅𝐸𝐺𝑆−𝑅−𝐻−𝑌: 𝑁𝑡+1 = 𝑁𝑡 ∗ 𝑅̂𝑀𝐷𝑅𝐸𝐺𝑆−𝑅−𝐻−𝑌
+ (𝑁𝑡 − 𝐻𝑡) ∗ 𝑆̇ 

for non-age-specific projection and  

 𝑀𝐷𝑅𝐸𝐺𝑆−𝑅−𝐻−𝑌𝐿𝑒𝑠:𝑁𝑡+1 = 1′𝑴𝑅̂𝑀𝐷𝑅𝐸𝐺𝑆−𝑅−𝐻−𝑌
𝑵𝒕
⃑⃑ ⃑⃑  

for projections with age-specific parameterizations. In age-specific projections each entry in the 

first row of the projection matrix M, is equal to the estimated realized recruitment rate for this 

model. These eleven projections which include additional demographic and harvest information 

were then compared to the top 5 most accurate models for projecting time series of abundance 

without demographic data based on the RD metric described previously. A minimum of 6 years 

(5 years available to the model and one to compare to the projection made by the model) of data 
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were used to evaluate the top 5 previous projection models and 11 new methods based on 

demographic output from SPR. 

 

4.2 RESULTS 

4.2.1 Projecting abundance with only annual trend data 

A minimum of 10 years of historical data was recommended with the use of annual 

ARIMA models (MARIMA) (Brockwell and Davis 1991).  The MARIMA model did not outperform 

the base model (M0) and was ranked 6th overall.  Consequently, the ARIMA model was 

eliminated from consideration, and all remaining models were refit using a minimum of 5 years 

of historical data.  The reanalysis increased the total number of annual projections by 37.3% (i.e., 

355 additional projections).   

When the only demographic data that exist are annual abundance values, the simple base  

model (M0) that projects abundance next year equal to abundance in the previous year performed 

best overall (Table 4.1).  Populations which exhibited a clear trend in abundance were projected 

more accurately than those with no clear trend (Table 4.3).  Model 𝑀𝜆−𝑌 produced the lowest 

relative error for both mammal and bird populations with a clear trend (RDmammal−trend = 0.100; 

RDbird−trend = 0.144) (Table 4.3).  The base model (M0) was only slightly less accurate than 

model 𝑀𝜆−𝑌 when population trends existed (Table 4.3).  The top model to project population 

abundance when no clear tend existed for either bird or mammal populations was the base model 

(M0) (RDmammal−trend = 0.184; RDbird−trend = 0.343) (Table 4.3).  Projections which incorporated 
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estimates of 𝜆 were the second and third ranked models when annual trends did not exist (Table 

4.3).     

4.2.2 Projecting abundance when supplemental demographic data exists  

In the situation where supplemental information on harvest, recruitment, and survival 

exist, the base model (M0) ranked fifth across the nine populations analyzed (Figure 4.5, Table 

4.4).  The most accurate projections were made using a simple demographic model that took into 

account known harvest and a localized estimate of recruitment (i.e., three-year average), model 

𝑀𝐷𝑅−3.  The second and third ranked models were based on age-structured Leslie matrix models 

(i.e., 𝑀𝐷𝑅−3𝐿 and 𝑀𝐷𝑅−2𝐿).  The average size of the relative error was approximately 10% (i.e., 

9.6%–10.6%), with the mule deer population in California being the exception (i.e., 16.3%–

21.7%) (Table 4.4).  Here again, however, the accuracy of the base model (M0), on average, was 

not appreciably lower than the more data-demanding models that adjusted for harvest and 

accounted for recruitment and/or survival (i.e., RD = 11.1%).  It should be noted, however, that 

the nine populations examined with complete demographic data (Figure 4.5) resembled more 

closely trended vs. non-trended populations.  Our initial analyses of 71 populations indicated 

trended populations are more accurately projected than non-trended populations (Table 4.1). 
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Table 4.3. Median of the absolute deviance relative to the observed abundance of projections 

made with models to project abundance without additional demographic data, averaged across 

populations within taxa and trend class (Mammal, Bird, Trend, No Trend). Projected populations 

come from the Global Population Dynamics Database. Top 5 models within each taxa and trend 

class (Mammal Trend, Bird Trend, Mammal No Trend, Bird No Trend) are shown. 

 

Rank Mammal, Trend Bird, Trend Mammal, No Trend Bird, No Trend 

1 𝑀𝜆−𝑌  0.100 𝑀𝜆−𝑌  0.144 𝑀0 0.183 𝑀0 0.343 

2 𝑀𝜆−5 0.106 𝑀𝜆 𝑁𝐿−𝑌  0.156 𝑀𝜆 𝑁𝐿−𝑌  0.193 𝑀𝜆 𝑁𝐿−𝑌  0.370 

3 𝑀𝜆 𝑁𝐿−5 0.108 𝑀0 0.168 𝑀𝜆−𝑌  0.203 𝑀𝜆−𝑌  0.371 

4 𝑀0 0.112 𝑀𝜆−5 0.182 𝑀𝐴−3 0.209 𝑀𝜆 𝑁𝐿−5 0.381 

5 𝑀𝜆−3 0.117 𝑀𝜆−3 0.189 𝑀𝜆−3 0.221 𝑀𝜆−5 0.396 
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Table 4.4. Median of the absolute deviance relative to the observed abundance of projections made with models to project abundance 

with additional demographic data. Projected populations come from available statistical population reconstructions. Models are ranked 

based on overall performance averaged across all populations (Overall). 𝐿𝑒𝑠 indicates the model was projected using a Leslie matrix. 

Model 

Mule 

Deer, 

WA 

Mule 

Deer, 

CA 

Cougar, 

OR 

Elk, 

MI 

Elk, 

ID 

Marten, 

MI  

Fisher, 

MI 

Turkey, 

MO 

Greater 

Sage-Grouse, 

OR 

Overall Rank 

𝑀𝐷𝑅−3 0.071 0.217 0.036 0.046 0.087 0.071 0.106 0.100 0.091 0.096 1 

𝑀𝐷𝑅−3𝐿es 0.076 0.177 0.076 0.046 0.083 0.089 0.130 0.100 0.084 0.098 2 

𝑀𝐷𝑅−2𝐿es 0.068 0.163 0.069 0.112 0.027 0.117 0.027 0.124 0.133 0.106 3 

𝑀𝐷𝑅−𝑌 0.134 0.228 0.039 0.060 0.090 0.070 0.076 0.088 0.091 0.111 4 

𝑀0 0.070 0.267 0.067 0.074 0.035 0.094 0.008 0.086 0.089 0.111 5 

𝑀𝜆−3 0.079 0.234 0.054 0.077 0.066 0.120 0.112 0.098 0.096 0.112 6 

𝑀𝐷𝑅−2 0.067 0.215 0.043 0.112 0.031 0.106 0.052 0.124 0.144 0.113 7 

𝑀𝐷𝑅𝐸𝐺−𝑅−𝑌 0.143 0.236 0.040 0.063 0.088 0.065 0.080 0.097 0.095 0.116 8 

𝑀𝐷𝑅𝐸𝐺𝑆−𝑅−𝐻−𝑌 0.138 0.254 0.045 0.066 0.057 0.047 0.111 0.090 0.079 0.117 9 

𝑀𝜆−5 0.092 0.273 0.056 0.103 0.063 0.064 0.074 0.089 0.073 0.118 10 

𝑀𝜆 𝑁𝐿−𝑌  0.123 0.245 0.077 0.088 0.067 0.040 0.058 0.096 0.076 0.119 11 

𝑀𝜆−𝑌 0.123 0.260 0.071 0.100 0.063 0.041 0.074 0.086 0.079 0.122 12 

𝑀𝐷𝑅𝐸𝐺𝑆−𝑅−𝐻−𝑌𝐿𝑒𝑠 0.145 0.251 0.096 0.066 0.054 0.038 0.132 0.090 0.074 0.126 13 

𝑀𝐷𝑅−𝑌𝐿𝑒𝑠 0.132 0.303 0.092 0.060 0.086 0.088 0.109 0.088 0.086 0.136 14 

𝑀𝐷𝑅𝐸𝐺−𝑅−𝑌𝐿𝑒𝑠 0.144 0.286 0.092 0.063 0.084 0.085 0.105 0.097 0.091 0.136 15 

𝑀𝐷𝑟𝑒𝑔−𝐻 0.141 0.179 0.114 0.188 0.005 0.291 0.187 0.233 0.104 0.167 16 

projections 19 19 16 13 1 7 3 10 9 97   
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4.3 DISCUSSION 

There has been very little formal evaluation of population projection methods which can 

be used with the data commonly available to game managers (Eberhardt 1987).  The most 

common types of information available are population indices, assumed to have a constant 

proportional relationship to adult abundance.  However, indices can be of limited value if the 

management goal is an abundance target or harvest quotas change over time (Anderson 2001).  

Justification of harvest policies or changes in harvest quotas is best accomplished with annual 

abundance estimates. 

Our results suggest projections of annual game abundance can be accomplished with 

simple demographic models.  The simplest of the projection models (M0), i.e., 𝑁𝑡+1 = 𝑁𝑡, 

proved to be among the best approaches when only abundance data were available. Meaning that 

current estimates of abundance are often the most accurate estimate of next year’s abundance. 

Time series of abundance alone do not provide a substantial amount of information as to the 

cause of changes in abundance, thus this analysis favors the model that includes no additional 

information (i.e., model M0). Additionally, the maximum relative deviance of model M0 was 

constrained by the realized change in the populations from year to the next. Most of the observed 

populations on did not change drastically in abundance in a single year. Therefore, by not 

projecting any sort of trend, projections from model M0 had a reduced probability of being highly 

inaccurate.  

Projections of populations with no clear demographic trend using model M0 had average 

relative errors of 18.3%–34.3% (Table 4.1).  Trended populations had an average relative error 

using model M0 between 11.2%–16.8% (Table 4.1). Robson and Regier (1964) suggested for 



81 

 

rough management, an accuracy of ±50%; for accurate management, ±25%; and for careful 

research into population dynamics, ±10%.  Most of the projections from the abundance-based 

models fell within the range of accurate management, and some approached the careful research 

level (Table 4.1 and 4.3).  In the datasets analyzed, reported abundance values were in reality 

abundance estimates with unspecified levels of measurement error.  No projection model can 

have accuracy greater than the stochastic error in estimation.  As such, the actual accuracy of the 

population projections would have likely been better than reported if actual abundance levels 

were known, not measured. 

It should be noted that models which include density-dependent effects on survival or 

recruitment were not considered in this analysis.  The time series of abundance data available to 

us were not well suited to fitting such relationships (Krebs 2002, Clark et al. 2010).  In addition, 

we intentionally omitted populations with logistic growth most suited to such techniques (Figure 

4.1-4). 

It seems intuitive that increasing model complexity and, hence, realism would also 

increase the accuracy of model projections.  In the small sample of nine populations we had at 

our disposal, incorporating harvest numbers, recruitment, and survival marginally improved 

population projections on average (Table 4.4).  Adding age-structure information was only 

marginally better than models using a common growth rate (Table 4.2).  Simpler models are 

often more robust to assumption violations (Eberhardt 1987), as well as less costly to implement 

and maintain. However, in order to use any of the models assessed here, annual estimates of 

abundance are still necessary. SPR provides both a framework for annual abundance estimation 
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and demographic parameter estimates needed to produce the most accurate abundance 

projections available.  

Additional accuracy in population projections of terrestrial game populations may come 

from better data rather than better process models.  Recruitment and mortality of game species 

can be heavily influenced by extrinsic factors such as weather, habitat loss, and forage 

availability (Connelly et al. 2005, Hewitt 2011).  However, this review did not have the ability to 

examine the wide-scale value of using environmental covariates to help model survival or 

recruitment processes.  It might be expected the performance of projection models that 

incorporate environmental covariate relationships would behave as well if not better than what 

was observed in these analyses.  Collection of covariate data may be necessary to better 

understand and project population trends. Extrinsic factors will effect demographic processes 

differently across species and populations. Therefore, the best model for projecting abundance 

may be population specific.  Adaptive harvest management proceeds under the assumption that 

there is one best model for each population and a pool of potential models is evaluated iteratively 

over many years to identify the best models (Smith et al. 2008).  The models presented here 

represent a strong pool of candidate models with varying levels of simplicity for evaluation 

within an adaptive management framework.  The best options will likely involve approaches that 

incorporate all available information, including abundance, demographics, environmental 

covariates, and index data.   

4.4 MANAGEMENT IMPLICATIONS 

 The increase in referendums concerning harvest regulations from non-traditional 

stakeholders (Jacobson and Decker 2006) suggests harvest regulations should be set through 
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defensible and easily understood methods. Accurately projecting the future abundance of game 

populations will allow managers to set harvest regulations in a clear and defensible manner, 

which has the potential to decrease conflicts with stakeholders. Harvest managers with current 

abundance estimates would be well served to set next year’s harvest regulations based on current 

abundance estimates, particularly in extrinsically controlled populations. However, it is both 

difficult and costly to directly estimate state or region wide abundance annually, using direct 

sampling methods (i.e, distance or sightability models). Alternatively, the use of statistical 

population reconstruction provides both a cost effective estimate of annual abundance at scales 

relevant to management and the most accurate projection models of those evaluated here. 

Additional improvements in projecting abundance should be explored that incorporate covariate 

relationships into the survival and recruitment processes. These efficient methods for projecting 

future abundance of game populations will allow for a fundamental paradigm shift, mangers can 

now set harvest regulations based on abundance and harvest rate goals rather than uncalibrated 

indices and hunter opinion surveys. Attaining accurate annual population projections has the 

potential to reduce management mistakes and increase public confidence in management 

agencies.    
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Chapter 5. RECOMMENDATIONS AND GUIDANCE FOR THE 

IMPLEMENTATION OF STATISTICAL POPULATION 

RECONSTRUCTION IN GAME MANAGEMENT 

5.1 INTRODUCTION 

Statistical population reconstruction has recently increased in popularity due to its 

efficient and robust estimation of abundance and other demographic parameters. Since 2007 

there have been eight published SPR-type reconstructions that modeled seven species including 

large ungulates (Skalski et al. 2007, Gast et al. 2013a), game birds (Broms et al. 2010, Gast et al. 

2013k), furbearers (Skalski et al. 2011) and carnivores (Conn et al. 2008, Clawson 2010, Fieberg 

et al. 2010). Accompanying the applications of SPR have been model evaluations and statistical 

advances, including the use of pooled age-class data in SPR (Skalski et al. 2012b), Bayesian 

analysis of SPR models (Conn et al. 2008), the use of random effect models in a maximum 

likelihood framework (Gast et al. 2013a) and models which offer more realistic variance 

estimates (Gast 2012). The previous chapters in this dissertation increased the utility of SPR and 

provide guidance on auxiliary data collection. Abundance and harvest auxiliary data sources 

were rigorously evaluated in Chapter 2 (Clawson et al. 2013). The ability of SPR output to 

augment existing long term data in order to perform meaningful analysis was highlighted in 

Chapter 3 (Clawson et al. 2015). Finally, methods to project future abundance of harvested 

populations were rigorously evaluated in Chapter 4. The result is a robust and flexible modeling 

platform that produces accurate parameter estimates and associated variance estimates. Despite 
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all of the evaluations and detailed examples which exist, guidance on using SPR for broad scale 

management is still sparse.  

There are several reasons SPR has yet to be adopted for state wide monitoring programs. 

The primary reason is the lack of guidance for implementation at the state or game management 

region level. Previous applications have focused on model development and evaluation. Existing 

examples have modeled small scale, tightly monitored populations with simple harvest 

regulations. These examples served to illustrate many of the desirable qualities of SPR, however 

they fall short of providing a blue print which game managers can follow to apply these models 

on a broader geographic scale. Monitoring of species harvested over large geographic areas 

creates unique challenges, including how to representatively sample harvest, age composition 

and hunter effort data over large spatial scales and how to collect representative auxiliary data. 

Lack of guidance is not the only barrier to application. The broad adoption of new statistical 

methods is usually accompanied by the production of user-friendly software (Buckland et al. 

2000). Unfortunately software to facilitate the application of basic SPR models is still under 

development (http://www.cbr.washington.edu/analysis/apps/PopRecon) or too cumbersome for 

general use (i.e., AD Model Builder, www.admb-project.org). Additionally, institutional inertia 

plays a role in delaying the adoption of new methodologies in harvest management. Wildlife 

management agencies are steeped in tradition and slow to change (Jacobson and Decker 2006). 

However, due to the undeniable efficiency and potential SPR models hold, there is substantial 

interest in management application of SPR models.  

Several state and federal resource agencies have expressed interest in adopting SPR into 

their monitoring frameworks. The Missouri Department of Conservation is currently preparing to 
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use SPR as a primary component to monitor both their wild turkey (Meleagris gallopovo) and 

white-tailed deer (Odocoileus virginianus) populations. The applications of SPR in Missouri 

were made possible through my close collaboration, and initiated many of the topics covered in 

this dissertation. The Midwest Fish and Wildlife Association has invested in the development of 

user-friendly software to aid in the application of basic SPR models 

(http://www.cbr.washington.edu/analysis/apps/PopRecon). The Idaho Department of Fish and 

Game is currently collecting data with plans to construct SPR models to model Elk (Cervus 

elaphus) in north Idaho in the near future. There is also international interest in modeling big 

horn sheep (Ovis Canadensis) and polar bears (Ursus maritimus) in Canada, and Chamois 

(Rupicapra rupicapra) in Sweden. This strong interest from management agencies in SPR has 

created an urgent need for guidance and recommendations for the management application of 

SPR. This chapter will provide the much needed guidance for game managers. 

The guidance provided in the chapter fulfills three primary objectives. The first objective 

is to increase understanding of model assumptions and data requirements. This will allow 

managers to critically evaluate model assumptions and existing data sources, leading to more 

effective collaboration with biometricians. The second objective is to answer the two primary 

remaining questions that are fundamental to planning new SPR modeling efforts (i.e., minimum 

harvest data requirements and relative utility of auxiliary data sources). The third objective is to 

increase the management utility and potential applications of statistical population 

reconstruction.   
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5.2 TYPES OF DATA REQUIRED FOR SPR ANALYSIS 

There are three primary forms of data which are necessary for SPR; age-at-harvest, 

hunter effort and auxiliary data.  

5.2.1 Age-at-harvest data 

Quality age-at-harvest data are paramount to the successful application of statistical 

population reconstruction. Total harvest and age composition data are the primary forms of data 

that are sampled directly from the population and are used in the age-at-harvest likelihoods, 

which form the primary structure of the SPR analysis. The best age composition data arise from 

ageing all harvested animals. In practice completely censused age-at-harvest data often come 

from populations which are harvested in low numbers and which have tightly monitored harvest 

such as cougars (Puma concolor) in Oregon or elk (Cervus elaphus) in Michigan (Clawson 2010, 

Gast et al. 2013a). Conversely, age composition of the harvest may be cost prohibitive to census 

for species such as white-tailed deer (Odocoileus virginianus), which are harvested in large 

numbers and must be professionally aged. 

 In the event that the age composition of the harvest cannot be enumerated it can be 

subsampled. A representative sample of harvested animals can be aged and used to estimate the 

age composition of the total harvest. Inherent in characterizing the age composition of harvest 

data is the assumption that the sample of aged animals is representative of the overall harvest. 

The precision of age composition estimates will be related to the proportion of the harvest that is 

aged, unless the number of animals harvested is very large. If the number of animals harvested is 

very large, aging additional animals beyond a certain threshold will result in little additional 

precision (Cochran et al. 1965 p. 25). Age composition must be estimable within each harvest 
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region that will be modeled. Additionally, animals do not need to be aged to every individual age 

class; categorization into biologically important age-classes is sufficient (Skalski et al. 2012b). 

Older age classes can be pooled if they have the same harvest vulnerability and natural survival 

(Skalski et al. 2012b). Sampling of the age composition of the harvest and pooling mature age 

classes are common practice among management agencies for species with high harvest numbers 

(Rabe et al. 2002).  

Aging a random sample of harvested animals is the most statistically sound method for 

sampling age composition. However, without mandatory check stations or a system to mail in a 

portion of the animal which can be used to age the animal (i.e., jawbone, tooth or wing), random 

sampling may be difficult to achieve. Opportunistic sampling via meat locker checks or 

voluntary reporting are common practices. However, such non-random sampling techniques 

present the potential problem that animals sampled for age composition may not be 

representative of the overall harvest, leading to unknown bias. Hunters who use meat lockers 

may have differential harvest selectivity from those who process their own game (Hansen et al. 

2006). Smaller animals that can be easily processed and stored at home may be underrepresented 

in meat locker checks (Hansen et al. 2006). If opportunistic sampling cannot be avoided, 

potential biases should be evaluated based on a simultaneous short-term random sample of the 

harvest.  

If widespread professional ageing is not possible, hunter collected measurements paired 

with length frequency analysis is a potential strategy for augmenting limited age composition 

data. Additionally, if morphological measurement data can be collected from a large proportion 

of harvested animals, length frequency analysis may be able to correct the potential biases of 
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opportunistic sampling. However, size data are inherently less valuable then properly sampled 

age data and augmentation of SPR with length frequency analysis is currently untested.  

Finally, regardless of the type of age-at-harvest data collected, the data must be available 

at the regional scale at which modeling occurs (see section on model scaling). State wide total 

harvest and age composition are not enough to produce regional SPR models. Both total harvest 

and age composition estimates must be available at the regional scale at which modeling occurs. 

Therefore hunters must report in which region each animal is harvested.  

5.2.2 Hunter effort data 

In SPR models, hunter effort is used to estimate harvest probabilities. A harvest 

vulnerability coefficient (c) is estimated that converts annual estimates of hunter effort (𝑓𝑖) to 

harvest probability (𝑝𝑖) (Seber 1982). The relationship can include random effect parameters 

(𝛾𝑖) allowing for interannual variation in the relationship between hunter effort and harvest 

probability where 

𝑝𝑖 = 1 − 𝑒−(𝑐+𝛾𝑖)𝑓𝑖 . 

This parameterization of harvest probabilities can be sex and age-specific if supported by model 

selection, assuming hunter effort and harvest data are detailed enough to accommodate such 

parameterizations. Estimates of harvest probability and in turn hunter effort data are critical 

components of the age-at-harvest likelihood, therefore it is crucial that hunter effort data be 

representatively sampled. 

 Hunter effort can be recorded in many forms, from the number of permits sold to the 

number of hours hunted. The most appropriate form of hunter effort depends on the specifics of 
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the harvest system. The number of permits sold would be a useful form of effort if participation 

rates are at or near 100% and the harvest season has limited duration and limited take, (e.g. 9-

days in Wisconsin for white-tailed deer). In short duration harvest systems with high 

participation rates, it could be assumed that all permitted hunters put forth the same average 

amount of effort, making collection of more detailed forms of effort unnecessary. In order to use 

permits sold as a measure of hunter effort, the permits would have to be region specific or the 

number of hunters in each region would need to be estimated. In contrast, long duration harvests 

with variable hunter participation rates and variable take require more detailed forms of hunter 

effort to be collected. In systems where tags are inexpensive and easily obtained, hunters may 

purchase tags and never actually hunt. Participation rate of licensed hunters is therefore an 

important factor in choosing which form of hunter effort to use in SPR models. In long duration 

harvest systems with variable participation rates, individual hunters can have great variability in 

the amount of effort they put forth. This is particularly true in small game harvests with the 

opportunity for multiple take. The issue is less important in single take harvests common to big 

game species. In order to determine the proper level of detail for hunter effort data to be 

collected by management region, initially the most detailed effort possible should be collected in 

order to test assumptions and decide if a less refined measure of effort will suffice. In harvest 

systems, time hunted in days or hours is the most detailed from of effort. Trap-nights, (i.e. the 

number of traps set multiplied times the number of days each trap was set) is the most detailed 

form of effort in trapping systems. Coarser forms of hunter or trapper effort can be used but the 

assumption of additive effect may be violated i.e., 1 − 𝑒−𝑐∗𝑓𝑖 ≈ 𝑐𝑓 for p<10%. 
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Collecting hunter effort will require post-season hunter surveys. Surveys must include 

data on both successful and unsuccessful hunters, therefore a random sample of hunters via 

telephone, mail or internet survey rather than check station surveying is necessary. Surveys 

should be brief and to the point, in order to collect all necessary data and minimize non-response 

bias (Scott 1961). Most state agencies currently survey their hunter population (Roseberry and 

Woolf 1991). Existing hunter surveys can be adjusted to collect appropriate data with minimal 

additional cost. However the structure of state wide surveys is not always adequate to provide 

regional effort data. If managers can determine which region hunters visited before the survey is 

administered, a stratified random sampling design can better estimate hunter effort in each region 

and reduce the overall survey sample size. This opportunity exists in some states where big game 

permits are assigned by management region. Otherwise, a larger random sample of all state wide 

hunters must be taken and more detailed effort data collected.  

 Hunters must report in which game management region harvest occurred as well as all 

regions they hunted and the time spent in each region. Appropriate scaling of hunter effort by 

region is critical to SPR modeling efforts (see scaling section). The method of harvest (e.g. bow, 

muzzle loader, rifle) and type of tag used (male only, antlerless only etc.) must be reported along 

with effort and harvest success; these data are needed to model multi-season harvest regimes. 

Different forms of hunting will require different vulnerability harvest coefficients (c). For 

example, bow hunters are likely to harvest animals at different rates than rifle hunters. 

Additionally, tag specific data are used to apply the hunter effort data to the proper section of the 

population. For example, hunters with antlered only tags should not be included in hunter effort 

when modeling the female section of a deer population.  
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5.2.3 Auxiliary data 

 Age-at-harvest data are insufficient to reconstruct populations on their own, so additional 

data are necessary in order to fit SPR models (Gove et al. 2002). The auxiliary data can be any 

data, independent of age-at-harvest and hunter-effort data, which can be used to estimate 

abundance, harvest rate, or the probability of natural survival. Auxiliary data must be 

representative of the population being modeled. This means auxiliary data must be collected at 

the regional scale at which modeling occurs. The flexible nature of SPR allows multiple forms of 

auxiliary data to be included in a single model structure. Sampling considerations and the 

structure of the likelihood model will be unique to the type of auxiliary study (Brownie et al. 

1978, Seber 1982, Millspaugh and Marzluff 2001, Skalski et al. 2005). 

 Auxiliary abundance data can be collected using any sort of large-scale abundance 

estimation strategy that provides an associated variance estimate; methods include mark-

recapture (Seber 1982 p. 59), line transect (Seber 1982 p. 28), change-in-ratio (Skalski et al. 

2005 p. 259), index removal (Skalski et al. 2005 p. 269) and DNA mark-recapture (DeYoung 

and Honeycutt 2005). Gast et al. (2013a) used independent abundance estimates from sightability 

corrected aerial surveys to aid in the reconstruction of an elk population in Michigan. For equal 

levels of precision of the auxiliary study, SPR models with abundance auxiliary data produce 

more precise and less biased parameter estimates than SPR models with harvest probability 

auxiliary data (Clawson et al. 2013).  However, large-scale abundance studies can be expensive, 

labor intensive, and can pose untenable risks to management staff (Unsworth et al. 1990, 

Anderson et al. 1998, Sasse 2003, Jones et al. 2006).  Due to cost and sampling considerations, 
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estimates of large-scale game population abundance are uncommon in practice and therefore 

infrequently used in SPR.  

Harvest probabilities are commonly estimated via radio-telemetry (Millspaugh and 

Marzluff 2001) and band-recovery (Brownie et al. 1978) data . Radio-telemetry harvest 

probability auxiliary data better increase the stability of SPR models compared to abundance 

auxiliary data (Clawson et al. 2013). Band-recovery data are only useful as SPR auxiliary if 

reporting rates and harvest probabilities can be differentiated, either through mandatory reporting 

of all harvest or the use of an independent reporting rate study. The utility of band-recovery data 

auxiliary relative to radio-telemetry and abundance data in SPR models has yet to be evaluated.  

Natural survival is generally estimated by radio tracking (VHF or GPS) a representative 

sample of the population (Millspaugh and Marzluff 2001).  If total survival is estimated, it must 

be partitioned into natural and harvest components (i.e., St = Sn * Sh). In order to differentiate 

natural mortality from harvest mortality, radio-tagged animals must be checked for mortality 

before and after the harvest season, and cause specific mortality must be available during the 

harvest season.  Estimating natural survival from radio-tagged animals can avoid problems of 

differential harvest of marked animals (Jacques et al. 2011). It can be expensive to obtain 

adequate sample sizes of radio-tagged animals to estimate natural survival within each modeling 

region of a state, especially if natural survival parameter estimates are necessary for different sex 

and age classes (Garton et al. 2001).  However, the cost of large radio-telemetry studies can be 

justified if they serve multiple purposes, such as providing both natural survival and harvest 

probability auxiliary information for SPR models or non-SPR related purposes such as home 

range investigation (Dunn and Gipson 1977) or habitat utilization (Millspaugh et al. 2006). 
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The additional likelihoods that need to be added to the overall likelihood structure in 

order to estimate harvest and survival probability from radio-telemetry data depend on whether 

survival and harvest rate are modeled as concurrent or conditionally independent processes. If 

harvest and survival are modeled as conditionally independent processes, survival and harvest 

probability are estimated with two separate binomial likelihoods where the likelihood to estimate 

harvest probability is 

(
𝑇𝑖

ℎ𝑖
) (𝑃𝑖)

ℎ𝑖(1 − 𝑃𝑖)
𝑇𝑖−ℎ𝑖 

where 𝑇𝑖 is the number of animals radio-tagged just prior to the harvest period in year i and ℎ𝑖 is 

the number of radio-tagged animals harvested in year i. The likelihood to estimate natural 

survival is then 

(
𝑇𝑖 − ℎ𝑖

𝐴𝑖+1
) (𝑆)𝐴𝑖+1(1 − 𝑆)𝑇𝑖−ℎ𝑖−𝐴𝑖+1 

where 𝑇𝑖 − ℎ𝑖 is the number of radio-tagged animals still alive at the end of the harvest period in 

year i, and 𝐴𝑖+1 is the number of animals alive at the beginning of the harvest period in the 

following year (i+1). If harvest and survival are modeled as concurrent processes, both natural 

survival and harvest probability are estimated in a single multinomial likelihood of the form  

(
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where 𝑇𝑖 is the number of animals radio-tagged just prior to the harvest period in year i, ℎ𝑖  is the 

number of radio-tagged animals harvested in year i, 𝑑𝑖
ℎis the number of radio-tagged animals 

which died of non-harvest mortality during the harvest period in year i, 𝑑𝑖
𝑜 is the number of 

radio-tagged animals which died between harvest periods of years i and i+1, 𝐴𝑖+1 is the number 

of radio-tagged animals alive at the beginning of the harvest season in year i+1. Additionally, 𝑡ℎ 

is the length of the harvest period and 𝑡𝑜is the length of time between annual harvest periods. 

Indices of abundance are commonly collected and used in wildlife management, making 

them an attractive form of auxiliary data.  Indices are typically a partial census or an indirect 

measure of animal abundance such as browse availability, scat, or nest counts making them 

inexpensive because they often do not involve direct counts of animals (Anderson 2003).  

Unfortunately, index data have been shown to be the least useful of all auxiliary data in SPR 

analysis (Skalski et al. 2007, Skalski et al. 2012a).  The limited utility of indices is because the 

catch-effort data present in age-at-harvest analysis already provides information on population 

trends, which is the same role indices play. However, indices may be a cost effective form of 

data, which can be used to confirm the population trends estimated by SPR models (Skalski et al. 

2007, Skalski et al. 2012a). 

5.3 EVALUATION OF SURVIVAL AND HARVEST PROBABILITY 

AUXILIARY DATA IN SPR MODELS.  

 Reliable auxiliary data are extremely important to successfully implement SPR modeling 

(Gove et al. 2002, Clawson et al. 2013). Increasing the precision with which the auxiliary data 

estimate the individual parameter will increase the precision of the abundance parameters 

estimated within the SPR model (Clawson et al. 2013).  However, the relationship between the 
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precision of auxiliary parameter estimates and abundance estimates from SPR is not direct and 

depends on the type of auxiliary data and the amount of harvest data available. While abundance 

auxiliary data have previously been shown to increase precision of SPR output better than 

harvest probability auxiliary of equal precision, it is difficult and expensive to collect at the scale 

necessary for SPR modeling.  Harvest and survival auxiliary data are therefore of primary 

interest in SPR modeling efforts.   

In order to assess the utility of various forms of auxiliary data for potential use in future 

SPR models, Monte Carlo simulations based on a stochastic Leslie matrix model (Caswell 1989) 

were performed.  Harvest, hunter effort and auxiliary data were simulated and SPR models were 

fit using AD Model Builder (www.ADMB-project.org).  The measurement error associated with 

population reconstruction was estimated from the empirical variance among replicate 

simulations.  This simulation approach provides a model-independent means of estimating 

measurement error.   

In order to assess the relative utility of harvest auxiliary and natural survival auxiliary 

data in SPR models, 8 sets of simulations were run. The simulations compared SPR output using 

4 different levels of precision for harvest probability and 4 levels of precision for natural survival 

probability using sample sizes of 20, 40, 60, and 80 radio-tagged animals. Each sample size and 

auxiliary type combination was tested with 6 years of harvest data and 13 age classes (Table 5.1).  

All auxiliary data were simulated as being collected in a single year, starting in the first year of 

the population reconstruction.  Each set of simulations was run 7,000 times using full age-class 

SPR models. Survival auxiliary data outperformed harvest probability auxiliary data for equal 

sample size (Table 5.1).  SPR models with survival auxiliary data produced more precise 
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estimates of abundance, natural survival, and even harvest rate than models with harvest 

auxiliary data, for equal sample sizes of auxiliary data Table 5.1, Figure 5.1-3. Bias was less than 

2% for all parameters in all scenarios tested (Table 5.1). Therefore radio-telemetry studies to 

augment SPR models should be designed to estimate natural survival rather than harvest 

probability if the sole purpose is to maximize the precision of SPR output. However it is often 

necessary to plan auxiliary studies with the greatest overall utility, bearing in mind budget 

constraints and multiple management objectives. Either auxiliary type will provide quality data 

for SPR modeling.  
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Table 5.1.  Table of simulations performed to assess the relative utility of harvest probability and 

natural survival auxiliary studies in SPR, at varying sample sizes with 6 years of age-at-harvest 

and hunter effort data with 13 age classes. 

Auxiliary 

Type 

Auxiliary 

Sample 

Size 

CV of 

Abundance 

CV of 

Harvest 

Probability 

CV of 

Survival 

Bias of 

Abundance  

Bias of 

Harvest 

Probability 

Bias of 

Survival 

Harvest 20 0.497 0.290 0.099 0.013 -0.014 -0.004 

Harvest 40 0.385 0.245 0.084 0.013 -0.012 -0.004 

Harvest 60 0.309 0.213 0.074 0.010 -0.009 -0.003 

Harvest 80 0.262 0.192 0.066 0.006 -0.007 -0.002 

Survival 20 0.460 0.247 0.083 -0.007 0.007 0.002 

Survival 40 0.355 0.193 0.063 -0.004 0.004 0.001 

Survival 60 0.288 0.163 0.054 -0.002 0.002 0.000 

Survival 80 0.238 0.143 0.047 -0.002 0.001 0.000 

 

 

Figure 5.1 Precision (coefficient of variation, CV) of abundance estimates from an SPR model 

(horizontal axis), with survival (black) or harvest (grey) auxiliary data, by auxiliary sample sizes 

(vertical axis).  The SPR model used in this analysis has 13 age classes with 6 years of harvest 

and hunter effort data. 
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Figure 5.2.  Precision (coefficient of variation, CV) of harvest probability estimates from an SPR 

model (horizontal axis), with survival (black) or harvest (grey) auxiliary data, by auxiliary 

sample sizes (vertical axis).  The SPR model used in this analysis has13 age classes with 6 years 

of harvest and hunter effort data. 

 

Figure 5.3.  Precision (coefficient of variation, CV) of survival probability estimates from an 

SPR model (horizontal axis), with survival (black) or harvest (grey) auxiliary data, by auxiliary 

sample sizes (vertical axis).  The SPR model used in this analysis has 13 age classes with 6 years 

of harvest and hunter effort data. 

   

5.4 BAND-RECOVERY AUXILIARY DATA 

Although radio-telemetry data are commonly collected by management agencies, they are 

not the only way to estimate harvest rates and survival of harvested species. Another common 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

20

40

60

80

CV of Harvest probability

A
u

xi
lia

ry
 S

am
p

le
 S

iz
e

0 0.02 0.04 0.06 0.08 0.1 0.12

20

40

60

80

CV of Survival

A
u

xi
lia

ry
 S

am
p

le
 S

iz
e



100 

 

method to estimate harvest rate and survival is through band-recovery methods, commonly 

known as Brownie models (Brownie et al. 1978, Nichols et al. 1991, Otis 2006, Conn et al. 

2008). Band-recovery models represent a lower cost alternative to radio-tag studies because 

marked animals do not have to be monitored after release. In band-recovery studies, animals are 

marked and released with individually identifiable tags over multiple years. Bands are recovered 

from harvested animals over subsequent years and the recovery histories are modeled based on 

the probability of survival, harvest and reporting (Brownie et al. 1978). Models can range in 

complexity from estimating a single total survival parameter, and single recovery rate for all 

animals and years (Model 3 in Brownie et al. 1978), to year specific total survival and recovery 

parameters (Model 1 in Brownie et al. 1978).  

Including band-recovery data as auxiliary in SPR is not as straight forward as including 

radio-telemetry data. The parameters estimated in band-recovery models (Brownie et al. 1978) 

are martingales of SPR parameters. The survival parameter (S) estimated in the Brownie model 

is the total annual probability of surviving both natural and harvest mortality. In SPR models, the 

Brownie survival parameter is parameterized as 𝑆𝐵𝑟𝑜𝑤𝑛𝑖𝑒 = 𝑆(1 − 𝑝). Similarly the recovery 

rate (f) estimated in the Brownie model is the combined probability of being harvested (p) and 

reported (R), which in an SPR model is parameterized as 𝑓𝐵𝑟𝑜𝑤𝑛𝑖𝑒 = 𝑅 ∗ 𝑝, where R is the 

probability a band is reported given it is harvested. These two confounded parameterizations 

severely limit the utility of banding-recovery studies as auxiliary data for SPR. 

The utility of band-recovery studies as auxiliary data for SPR based on Model 1 from 

Brownie et al. (1978) were evaluated using Monte Carlo simulations analogous to Gast (2012). 

Simulations were parameterized to reflect the harvest of a banded turkey population. Simulations 
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were done with 10,000 banded animals annually. Even with the astronomical sample size of 

banded birds simulated, SPR models were not able to converge to meaningful abundance 

estimates with either the Model 0 or Model 1 of Brownie et al. (1978). The lack of identifiability 

of SPR parameters in the Brownie model simply does not allow band-recovery models without 

separately estimated reporting rates to be used as useful SPR auxiliary data. 

There are two primary methods to address this problem of identifiability between harvest 

rate and reporting rate in band recovery models. Mandatory reporting of all harvested animals is 

the first method, the reporting rate is then assumed to be 100% (for both marked and unmarked 

animals). Conn et al. (2008) successfully used band-recovery auxiliary data in a population 

reconstruction of black bears (Ursus americana) in Pennsylvania where 100% reporting was 

assumed. However, Conn et al. (2008) used the band-recovery data in a Bayesian context so it 

remains to be evaluated in the context of unconstrained SPR models. The second option is to 

include reward bands in the banded population. The return rate of reward bands is typically 

assumed to be 100%. Nichols et al. (1991) reported 100% return rates when bands earned a $100 

reward, for Mallards (Anas platyrhynchos) in the central North America. The use of rewards then 

allows the non-reward band reporting rate to be estimated independent of the harvest rate. 

Reward band-recovery data have not yet been evaluated as an auxiliary data source for SPR but 

are a good candidate for future evaluation of potential SPR auxiliary sources.  
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5.5 MINIMUM HARVEST DATA REQUIREMENTS FOR 

STATISTICAL POPULATION RECONSTRUCTION 

In order to assess the minimum harvest and hunter effort data requirements for SPR 

models,  Monte Carlo simulations based on a stochastic Leslie matrix model (Caswell 1989 p. 8) 

were performed.  Populations were simulated with 13 age classes and 10, 8, 6, or 4 years of 

harvest data. The simulations included auxiliary radio-telemetry data simulated as being 

collected in a single year to estimate natural survival using either, 40 or 80 radio-tagged animals.  

Each scenario was simulated 7,000 times using the full age-class SPR model.  

Based on these simulations, statistical population reconstruction can be performed with as little 

as 4 years of harvest and hunter effort data with very low bias (<1% in all cases), although such 

reconstructions generally have relatively poor precision ( Figure 5.4 and Figure 5.5). 

Reconstructions that used 10 years of age-at-harvest and hunter effort data had CV’s of 

abundance that were 7-10% lower than population reconstructions with 4 years of data. The 

impact of additional harvest and effort data was most pronounced in low quality auxiliary 

scenarios (Figure 5.4). The precision of abundance estimates from SPR, in the first ten years of 

data collection, depend more on the quality of auxiliary data used than on the number of years of 

harvest data available (Figure 5.4).  

These simulations give a general sense of the expected relationship between precision and bias of 

abundance estimates relative to the amount of harvest data available. However, there are 

additional factors that may affect the precision of abundance estimates resulting from SPR. 

These simulations assume total harvest and hunter effort are known and that the age composition 

of the harvest is enumerated. This level of detail in harvest and hunter effort data is generally 
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achieved in highly monitored small scale harvest regimes. Many states estimate hunter effort, 

age composition of the harvest and even total harvest for species like deer and turkey, to save 

cost and effort.  It would be expected that the added uncertainty of the harvest and effort input 

would degrade the precision of reconstructed abundance estimates. 

 

Figure 5.4. Coefficient of variation of abundance estimates resulting from simulations of 

statistical population reconstruction models with varying levels of harvest data and two levels of 

auxiliary, 40 radio-tagged animals (black bars) or 80 radio-tagged animals (grey bars) to estimate 

natural survival.  
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Figure 5.5. Relative bias of abundance estimates resulting from simulations of statistical 

population reconstruction models with varying levels of harvest data and two levels of auxiliary, 

40 radio-tagged animals (black bars) or 80 radio-tagged animals (grey bars) to estimate natural 

survival. 

5.6 SPATIAL SCALING FOR STATISTICAL POPULATION 

RECONSTRUCTION MODELS.  

One of the first considerations when building an SPR based monitoring framework is the spatial 

extent of the population being reconstructed. SPR modeling regions must be appropriately scaled 

to support model assumptions, provide adequate data and achieve management objectives. 

Statistical population reconstruction models assume that within an age and sex class, animals 

have homogeneous natural (non-harvest) survival probability. Therefore, regions for SPR 

modeling must be chosen which support this assumption. Large ungulate populations generally 

have consistently high adult survival (Hewitt 2011), which is mainly dependent on the habitat 

quality, predator assemblages and large scale environmental conditions (Hewitt 2011, Brodie et 

al. 2013) which may allow for larger regions to be modeled. In contrast, small game species, 

such as upland game birds, have high fecundity and comparatively low natural survival which is 
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highly variable and can depend on localized weather and habitat (Vangilder 1996). The 

susceptibility of game populations to local environmental and habitat conditions may require 

smaller regions to be modeled in order to satisfy the assumption of homogeneous survival 

probability.  

 Harvest vulnerability within an age and sex class is also assumed to be homogeneous in 

statistical population reconstruction models. Harvest vulnerability is affected by land access, 

dominant cover type, terrain, road density, proximity to urban centers, and most notably harvest 

regulations. In Montana it was shown that elk use private farm land closed to hunting as refuge 

(Burcham et al. 1999). In Pennsylvania, deer hunters were found to hunt in easily accessible 

areas (Stedman et al. 2004). In Missouri, turkey hunters exerted more harvest pressure on 

populations in close proximity to urban centers (Clawson et al. 2015). Therefore, the distribution 

of public and private lands and hunter access are considerations when defining SPR modeling 

regions with regard to harvest vulnerability. Most importantly, harvest regulations must be the 

same across an entire SPR modeling region in order for the assumption of homogeneous harvest 

vulnerability to be valid. Harvest regulations include bag limits, timing of the hunt, regulations 

pertaining to form of take as well as regulations pertaining to which age and sex of animal can be 

harvested (e.g., antler point restrictions).  

Finally SPR assumes that immigration and emigration are negligible in the region being 

reconstructed. The relative effects of immigration and emigration on SPR modeling decrease 

with the size of the area being modeled. An SPR modeling region should therefore be scaled by 

the biology of the game species and its hunting regulations. If animals are migratory they must 

exhibit a high degree of interannual site fidelity during the harvest. In large enough regions this 
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may hold true for many species. In the case the assumption of closure to immigration and 

emigration is violated, data must be collected to estimate immigration and emigration rates 

between adjacent SPR modeling regions.  

 A separate SPR model will be constructed for each modeling region defined. Harvest, 

hunter effort and auxiliary data will need to be collected in each region. The size of the region 

being modeled should be inversely related to total harvest numbers. Low harvest mortality 

requires larger regions to ensure animals are harvested from each age and sex class being 

modeled. This requirement is usually only a concern in populations with low abundance and/or 

harvest rates. Total number of animals aged within a region is another important data 

consideration. For most game species, not all harvested animals are aged (Rabe et al. 2002, 

Hansen et al. 2006). In cases when harvest is not entirely aged, the total number of animals aged 

within a given region will determine the precision of the estimates of age composition of the 

harvest. Without increasing the total number of animals aged in a state, larger regions will result 

in more precise estimates of regional age composition of the harvest. Conversely smaller regions 

will require more animals to be aged to maintain the precision of age composition estimates.  

Auxiliary studies need to be conducted in each region where SPR is to be performed. 

Larger regions will result in fewer overall regions within a state, therefore the total number of 

animals tagged in auxiliary studies and thus cost of auxiliary data will be lower. Thus, larger 

modeling regions reduce overall cost of SPR modeling. However, representative sampling of the 

game population for auxiliary studies becomes more difficult at large spatial scales.  

In summary, scaling of SPR modeling regions must balance assumptions of demographic 

homogeneity, harvest regulation consistency and data needs. Regions should be as large as 
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possible without violating the assumptions of demographic homogeneity.  Larger modeled 

regions provide larger harvest numbers and the probability for more age-at-harvest data leading 

to improved model precision. Too many modeling regions within a state will result in onerous 

and possibly cost-prohibitive sampling requirements for multiple age-at-harvest and auxiliary 

data sources.  Too few regions will result in unacceptable violations of assumptions and 

difficulty attaining representative auxiliary data.  A balance must therefore be found between 

upholding the validity of assumptions and resources available for monitoring.  

5.7 POOLED AGE CLASS STATISTICAL POPULATION 

RECONSTRUCTION 

Categorizing animals into biologically relevant age classes is common practice in game 

bird and ungulate management. The age classes of game birds are generally indistinguishable 

past 2 years of age (Giles 1971). Accuracy in ageing ungulates based on tooth eruption and wear 

can be as low as 16% for elk (Cervus elaphus)older than five years old (Hamlin et al. 2000). 

More accurate ageing methods, such as counting cementum annuli can be cost prohibitive to 

apply to large numbers of animals annually. The common collection of pooled age class data has 

prompted the development of pooled age class SPR models, where older adult age class data are 

pooled (Skalski et al. 2012b). Within the pooled adult age classes animals are assumed to have 

homogeneous natural survival and harvest parameters (Skalski et al. 2012b). 

Pooled age class SPR was first used to model a greater sage-grouse (Centrocercus 

urophasianus) population in Idaho where animals were aged as young-of-the-year and adults 

(Broms et al. 2010). A formal evaluation of pooled age class SPR models with three age classes 

based on data from a Columbian black-tailed deer (Odocoileus hemionus columbianus) 
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population in Washington and Monte Carlo simulations found parameters from pooled age class 

SPR models had no reduction in precision or increase in bias compared to full age class SPR 

models (Skalski et al. 2012b). Gast et al. (2013k) found no loss of precision or increase in bias 

between parameters from pooled age class SPR models relative to those resulting from full age 

class SPR models, when random effects were included in the catch-effort relationship. Clawson 

et al. (2013) illustrated that auxiliary data had the same effects on pooled and full age class SPR 

models. 

In order to perform SPR with pooled age-at-harvest data among adult age classes, the 

pooled age classes must have the same vulnerability to harvest. Harvest vulnerability as it relates 

to pooling age classes is primarily governed by animal behavior and hunter selectivity. 

Therefore, equal hunter selectivity is a necessary condition of pooling age classes. For most 

game birds, animals 2 years old and older are likely indistinguishable to hunters pre-harvest 

(Giles 1971). Female ungulates may be differentially selected up to age 2.5 years based on body 

size (Hewitt 2011). If hunters heavily select for antler size in male ungulate populations, animals 

may need to be aged to 3.5 years old or older. Differential harvest vulnerability is also due to 

animal behavior, in addition to hunter selectivity (Noyce and Garshelis 1997). Subsequently, 

animals of pooled age classes must also exhibit similar movement rates and wariness of hunters, 

during the hunting season. Gast et al. (2013a) found the first 5 age classes of both male and 

female elk to have differential harvest vulnerability, which was likely due to a combination of 

animal behavior and hunter selectivity. 

In order to pool age classes for SPR analysis, animals must also have homogeneous 

natural survival. The age at which survival becomes homogeneous can be determined based on 
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direct observations and life table analysis (Skalski et al. 2005 p. 150). Senescence is rarely a 

problem in an SPR context. Most deer in the United States are harvested before the age of 6 

(Hewitt 2011) and small game populations have generally low survival and high harvest rates 

which rarely allow for animals to reach an age of senescence (Alpizar-Jara et al. 2001). 

Additionally, modeling efforts to account for senescence were not shown to improve parameter 

estimates from SPR (Clawson 2010). Moreover, if senescence does occur in a harvested 

population, it is likely to affect so few individuals as to have a negligible effect on abundance 

estimation (Clawson 2010).  

If the assumptions of homogeneous harvest vulnerability and natural survival rate are met, 

pooled age class SPR is recommended over full age class SPR. Pooled population reconstruction 

can save costs without any loss of precision. Pooling adult age classes prevents zero counts from 

showing up in the age-at-harvest matrix. Abundance is estimated as the observed harvest 

escalated by the estimated harvest rate, and as such, no observed harvest in a particular year and 

age class results in an estimate of zero abundance in that age class. Additionally, pooled age 

class SPR results in no loss of precision or increase in bias (Skalski et al. 2012b, Clawson et al. 

2013, Gast et al. 2013k). Further, cost savings associated with collecting pooled age-at-harvest 

data could be reinvested in the collection of quality auxiliary data, which would have a 

substantial impact on the precision of SPR (Clawson et al. 2013).  

5.8 USE OF MORPHOLOGICAL DATA AS A SURROGATE FOR 

AGING 

Age composition of the harvest must be accurately estimated in order to apply SPR. 

Fortunately, age composition only needs to be obtained for biologically relevant age classes 
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(Skalski et al. 2012b). Game birds, such as grouse, pheasant and turkey can be accurately aged 

by hunters based on plumage characteristics (Giles 1971), thus allowing hunters to directly report 

age-at-harvest data (Hansen et al. 2006). Carnivore and furbearer species must be aged based on 

cementum annuli. Many furbearer and carnivore harvest systems have mandatory reporting, 

therefore a random sample of teeth for ageing is readily attainable. Widely harvested ungulates, 

such as white-tailed deer, present a unique challenge in terms of representatively sampling age-

at-harvest data, because they often do not have mandatory reporting and are difficult for hunters 

to age. Harvested ungulates traditionally require trained professionals to handle each animal that 

is to be aged. Even labor efficient methods of aging, such as tooth eruption and wear become 

costly when thousands of animals must be aged annually across a state, even if a random sample 

can be obtained (Rupp et al. 2000). Therefore managers may seek less expensive ways to age 

widely harvested ungulate populations if states are unwilling or unable to invest resources into 

collecting large amounts of age data directly. 

Hunter reported information is the least costly form of data that can be collected by 

management agencies. However, they can also be the least reliable form of data as well. If 

trained professionals cannot reliably age deer based on visual assessment alone, it can be 

assumed the general hunting public cannot as well (Gee et al. 2014). Alternatively, determining 

morphological measurements that can be used to age harvested ungulates, would allow for hunter 

reported age-at-harvest data. If morphological measurements can be used to accurately age 

animals, the measurement data collected by hunters could be directly used to estimate the age 

composition of the harvest. If distributions of morphological measurements overlap between age 

classes, length frequency analysis can be used to incorporate the associated ageing error into the 
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likelihood structure. For morphological measurement data to be useful in SPR, a means of 

evaluating the data is necessary and a way to incorporate the data into SPR must be developed..  

5.8.1 Evaluating morphological measurements  

In order for a method to effectively evaluate morphological measurement data it must 

objectively classify harvested animals into age classes and evaluate the classification error. 

Evaluations of morphological data, which can be reported by hunters, in order to age harvested 

animals are scarce (Hellickson et al. 2008, McDonald 2009). Hellickson et al. (2008) used a 

regression model to evaluate antler characteristics of male white-tailed deer (Odocoileus 

virginianus) in Texas, finding a combination of antler characteristics to be highly correlated with 

age. McDonald (2009) performed a graphical analysis of morphological measurements from both 

male and female white-tailed deer harvested in Illinois. McDonald (2009) suggest a combination 

of eye to nose measurements and antler characteristics to differentiate 1.5 year old male deer 

from 2.5+ year old male deer. Neither analysis provides an objective procedure to classify 

animals into age classes based on morphological measurements or how to evaluate the error 

associated with such a method. Alternatively, discriminant analysis offers both an objective 

method of classification and the potential to evaluate model performance.  

Using the morphological measurement and age data for male white-tailed reported by 

McDonald (2009), discriminant analysis was applied to create a model for ageing male deer 

based on physical characteristics. Discriminant analysis uses characteristics of a sampled 

population to categorize individual samples into one or more classes (Press and Wilson 1978).  

There are several options as to the structure of the discriminant function; two widely used 

options are linear discriminant analysis and logistic regression with maximum likelihood 
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estimators (Press and Wilson 1978).  Here, a logistic regression model with maximum likelihood 

estimators was used to estimate a discriminant function for classifying male deer into one of two 

age classes (i.e., 1.5 or 2.5+) based on sampled physical characteristics.  The best discriminant 

function was chosen based on likelihood-ratio test (Kutner et al. 2004).  Once a discriminant 

model was chosen, a cutoff rule was selected that minimized misspecification of the two age 

classes (i.e., 1.5 and 2.5+).  In order to both fit and test the discriminant model, two independent 

data sets were necessary, one to fit the discriminant model and another to evaluate model 

performance.  The complete data set (n = 3025) was randomly split into two data sets using the 

sample function in R (www.R-project.org).  One data set was used to fit the model (n = 2025); 

the other, smaller, data set was used to evaluate the model (n = 1000). Data were collected in a 

chronic wasting disease management area in Illinois from 2005-2007 by the Illinois Department 

of Natural Resources.  For each deer harvested, distance from eye to nose, antler beam 

circumference, and number of antler points were collected.  Data were collected for both male 

and female deer; however, only data for males are available in this analysis.   

The best discriminant model to differentiate 1.5-year-old male deer from 2.5+ year-old 

male deer included antler beam circumference and number of antler points (Figure 5.6).  Eye-to-

nose measurements did not reliably differentiate 1.5-year-old male deer from 2.5+ year-old male 

deer (Figure 5.7).  The antler beam circumference and antler point model successfully 

differentiated 89.1 % of 1.5-year-old male deer and 89.3% of 2.5+year-old male deer for the data 

set used in model fitting.  When the same model was used to age the independent data, 88.0% of 

1.5-year-olds and 88.5% of 2.5+ year-old-male deer were correctly aged.  
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Figure 5.6. Harvested adult (orange) and yearling (green) male white tailed deer from Illinois 

plotted by antler point count (vertical axis) and antler beam circumference (horizontal axis).  
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Figure 5.7. The distribution of eye-to-nose distances (horizontal axis) of harvested adult (orange) 

and yearling (green) male white-tailed deer from Illinois.  

 The discriminant analysis of antler beam circumference is consistent with the graphical 

analysis done by McDonald (2009) on this same data set.  In contrast, McDonald also 

recommends using eye-to-nose measurements in conjunction with antler beam circumference to 

differentiate adult and yearling male deer, despite eye-to-nose measurements only having 55.3% 

and 57.7% success rates for adult and yearling deer, respectively.  

In the case of female white-tailed deer, McDonald (2009) was able to differentiate female 

fawns from older female deer with a 90% success rate for both age classes, based on a graphical 

evaluation of eye to nose measurements. The ability to differentiate yearling females from adult 

females using eye-to-nose measurements was greatly reduced, with success rates of 65.57% and 

63.49%, respectively (McDonald 2009). Unfortunately, raw data were not available for 

additional analysis of female morphological measurements.   
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This discriminant analysis offers a starting point for further research into morphological 

metrics suitable for differentiating age classes of white-tailed deer.  However, animal condition, 

including antler characteristics is related to local resource availability as well as age (Hewitt 

2011). Determining which, if any, measurements will be generally appropriate for aging deer 

will require site specific data. Discriminant analysis that uses one data set to fit the model and 

another to test the fitted model is recommended for future evaluations of potential morphological 

measurements to age harvested ungulates, rather than the use of correlation metrics or graphical 

analysis previously used in the literature (Hellickson et al. 2008, McDonald 2009). 

5.8.2 Length frequency analysis 

 Despite the high probability of success in predicting male deer age based on 

number of antler points and antler beam circumference, classification is imperfect, and there is 

overlap in the distributions of the age classes for both measurements. When aging criteria based 

on morphological measurements are imperfect, length frequency analysis should be directly 

incorporated into SPR. The use of length frequency distributions allows for the propagation of 

the additional variance associated with imperfect aging into the variance estimate of population 

abundance.  

SPR uses a maximum likelihood framework to simultaneously estimate vital rates and 

abundances of a harvested population.  If both size-at-harvest and age-at-harvest data are 

collected, length frequency analysis can be incorporated into SPR models. A representative 

sample of the population must be both aged and measured, while size data must be collected 

from a much larger portion of the population. Adding length frequency analysis to SPR requires 

two additional likelihood components be added to the joint likelihood model. First, a likelihood 
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component relating the observed age and size data is needed to estimate size-age distributions 

(Equation 1).  Assuming size-at-age is distributed normally, the likelihood would take the form  

 
2

, , ,

, 2
,

'1

2

Age-Size
2

1 1
,

1

2

a k i a i

a i
a i

l
hY

i a k
a i

L e







 
 
  
 

 

  

where 

,a ih = number of individuals aged and measured for size at age a, in year i, 

'

, ,a k il = the observed size measurement for individual k, of age a, in year i, 

,a i = average size at age a, in year i, and 

2

,a i = variance of size measurements at age a, in year i. 

The second likelihood that must be added is the multinomial frequency likelihood (Equation 2) 

(Quinn and Deriso 1999). The frequency likelihood estimates the probability a harvested animal 

is in size class l  lQ  and is of the form 

'

Frequency ' ' '
11 2

Likelihood
...

l

J
L

l

lJ

L
Q

L L L 

 
  
 

  

where 

L  = number of individuals measured for size only, 

(1) 

(2) 
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J  = the number of size intervals,  

'

lL  = observed frequency in size class l, and 

lQ  = proportion in size class l (𝑙 = 1,… , 𝐽). 

lQ  is parameterized as the probability of being in a certain size class, given an animal is of a 

certain age  ,l a , multiplied times the probability of being in that age class  a , and summed 

over all possible age classes: 

,l l a a

a

Q    

where 

,l a  is the probability that an animal is in size class l, given it is an age class a, and 

a  is the probability that an animal is in age class a.  

,l a  can then be approximated based on the parameters estimated from the age-size likelihood 

(1), with a discrete probability mass function of the form 

 
2

2

1

2

,
2

1

2

a

a

l

l a

a

e







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 
 
 

 

(3) 
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where l  is the midpoint of the size category; if the size categories are necessarily small in 

relation to
2

a  (Hasselblad 1966). Equation 3 approximates the continuous probability density 

function of the age-size relationship with a discrete probability mass function.  Narrow 

categories of size range assure the discrete distribution is an adequate approximation of the 

continuous distribution (Hasselblad 1966).  The probability that an animal is in age class a can be 

parameterized in terms of expected age-specific (𝐻𝑎) and total (H) harvest as 

( )

( )

a a a
a

a a

a

E h N P

E H N P


  

  

where, the abundance (N) and harvest probability (P) parameters are estimates from the 

remainder of the SPR modeling framework, providing the primary link between the length 

frequency analysis and the rest of the SPR model.  With the above parameterization of length 

frequency analysis, age-specific annual mean and variances of the measured size characteristic of 

the harvested animals are the only additional parameters estimated  , ,,a i a i  .  Parameters are 

then estimated through the maximization of the joint likelihood  

Obj Age-at-harvest Aux Aging Age-Size FrequencyL L L L L L     . 

 The proposed model structure detailed above was evaluated using Monte Carlo 

simulations analogous to Gast et al. (2013a) representing a deer population with 2 age (1.5, 2.5+) 

classes and 20 years of data, including data on juvenile and adult antler beam circumference. 

Age-and-size and age-only SPR models both estimated all of the demographic and size 

parameters accurately. This evaluation confirms that in principle, SPR models can be augmented 
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with morphological data. What has yet to be studied is the extent to which morphological data 

improve SPR model output, over the use of limited age data alone. If the addition of 

morphological data is shown to improve model performance, future evaluations should then 

explore maximizing precision for fixed cost by optimizing the proportion of animals which are 

aged versus measured in the annual harvest. 

 Morphological data will only be applicable under a limited set of conditions.  First, there 

must be a size-age relationship estimable with known age data. Second, size-at-harvest data 

generally represent a loss in information from age-at-harvest data, therefore, the collection of 

large amounts of age data must be cost prohibitive.  The amount of information loss will depend 

on how well the discriminant function performs. Third, the collection of large amounts of 

accurate, randomly sampled, size data must be feasible and inexpensive. Finally, morphological 

data in full-age-class SPR models may be of limited usefulness, as size-age relationships 

generally break down in mature age classes. If age classes are to be pooled, they must have 

homogeneous survival and harvest probability. Therefore, if morphological measurements 

cannot differentiate age classes with different harvest vulnerability and natural survival rates, 

additional age data will be necessary. More analysis of LFA is needed before full 

implementation. 

5.9 THE IMPACTS OF ANTLER POINT RESTRICTIONS ON 

STATISTICAL POPULATION RECONSTRUCTION 

 Antler point restrictions are commonly used in the management of ungulate species as a 

means to control the age and sex composition of harvest (Hewitt 2014).  Antler point restrictions 

can increase the recruitment of young males and produce older males for harvest, reduce overall 
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harvest pressure, and/or shift harvest pressure from antlered to antlerless animals depending on 

the severity of the restrictions and the harvest system to which they are applied (Hewitt 2011). 

The protected age classes are usually 1.5-2.5 year old males depending on the regulation and 

species. In order to apply SPR to a harvested population with antler point restrictions, the 

restrictions need to be consistent across the entire region to be modeled (see spatial scaling 

section).  

There are two options for SPR modeling of male ungulate populations where harvest is 

subject to antler point restrictions. One option is for the proportion of each age class that is 

exempt from harvest due to antler point restrictions can be estimated based on independent data, 

which allows modeling of all harvested age classes. Alternatively, an SPR model can be used to 

model only age classes that are completely vulnerable to harvest. Such a model would begin at 

the lowest age class in which all animals are fully vulnerable to harvest for the remainder of their 

life (i.e., 2.5+ or 3.5+).  Harvest of partially vulnerable age classes and age classes younger than 

the partially vulnerable classes would not be modeled.  Female only SPR models and the female 

portion of 2-sex models are unaffected by antler point restrictions.  

5.9.1 Estimating antler point-age relationship  

 A regionally representative sample of the antler point-age relationship is necessary in 

order to estimate the proportion of males in each age class that are eligible for harvest under 

antler point restrictions. An antler point-age relationship derived from harvest data may not be 

representative of the live population, therefore an evaluation of live animals is necessary. Antler 

point-age relationships must be evaluated at the regional scale at which model occurs because 

antler growth rates are often site specific (Hewitt 2011).  
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In order to estimate the probability that an animal of a given age is legal for harvest based 

on data from an antler point-age study, a binomial likelihood for each age class is added to the 

overall SPR joint likelihood model. In traditional SPR models abundance (N) is estimated as  

𝑁 =
ℎ

𝑝̂
 

where h is the observed harvest, and 𝑝̂ is the estimated harvest probability (Gast 2012). An SPR 

model augmented with data from an antler point-age study would estimate abundance in a 

partially closed age classes as  

𝑁 =
ℎ

𝑝̂ × 𝑣
 

where 𝑣 is the estimated probability a male in the age class is eligible for legal harvest.   

The effect of the partial closure of age classes on SPR models has yet to be evaluated. 

Before a full antler point-age study is undertaken, a small scale preliminary study is advisable. A 

preliminary study of the site specific antler point-age relationship would allow the variability in 

the antler point-age relationship to be estimated. Also, data from a preliminary study would be 

helpful in assessing the effect partially closed age classes may have on SPR model performance. 

A full study could then be designed with appropriate sample size and study design to ensure 

adequate precision of the partial closure parameter(s).  

5.9.2 Modeling only the portion of the population vulnerable to harvest 

 The alternative to estimating the proportion of each age class that is vulnerable to harvest, 

is to only model age classes that are completely vulnerable to harvest. The youngest age class 

that is fully vulnerable to harvest would need to be determined. If harvest probability is constant 
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across fully vulnerable age classes a catch-curve analysis can be used to determine the youngest 

fully vulnerable age class (Robson and Chapman 1961). Otherwise, the youngest fully vulnerable 

age class must be determined based on a representative sample of live animals from the 

population being modeled. Alternatively, the minimum fully vulnerable age class could be 

assumed, however this untested assumption could bias model estimates. The structure of the 

model would be analogous to standard SPR models, however only age-at-harvest data for 

animals greater than or equal to the youngest age that is completely vulnerable to harvest would 

be used in the model. Many management agencies age harvested ungulates to only the first few 

age classes based on tooth eruption and wear (Hamlin et al. 2000). This is done because aging 

based on tooth eruption and wear is inaccurate for mature age classes, and alternatives, such as 

counting cementum annuli are expensive (Hamlin et al. 2000). A pooled age class SPR model of 

a population subject to antler point restrictions would require animals to be aged to at least 2 age 

classes, starting with the first fully vulnerable age class. This would require using aging 

procedures more advanced than tooth eruption and wear, thus increasing the cost of aging data. 

Additionally, “recruitment” would be into the youngest fully vulnerable age class. No 

information would be provided on younger age classes, which are generally the focus of many 

management questions.  

5.9.3 Conclusion 

Both analysis options for SPR modeling of populations subject to antler point restrictions 

require an investment in data not traditionally collected by management agencies. If aging data 

are currently available for mature age classes and the youngest fully vulnerable age class can be 

easily identified, modeling only fully vulnerable age classes is an appealing modeling option. 
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However, if detailed age-at-harvest data are unavailable for mature age classes, the additional 

resources required to improve ageing data may be better spent acquiring data necessary to 

estimate the antler point-age relationship of the population in order to model all harvested age 

classes (i,e, section 5.11.1). In addition to allowing more complete modeling, data on the antler-

point age relationship of a harvested ungulate population could be used to refine antler point 

restrictions to ensure they have the desired effect. Also, data from tagged animals in an antler 

point-age study could potentially be used to directly estimate harvest rate, abundance or survival, 

providing a source of auxiliary data for SPR models. 

5.10 SEASON STRUCTURE  

In statistical population reconstruction, harvest is the primary sampling process. In order 

to draw statistical inference from the harvest data, SPR models must accurately model the 

harvest process. Thus, complex harvest regimes often require equally complex SPR models. In 

basic statistical population reconstruction, a single harvest season with a single form of take and 

short duration is modeled (Gove et al. 2002, Broms et al. 2010, Skalski et al. 2011). Breaking the 

harvest into multiple events, harvesting animals with multiple forms of take (hunting and 

trapping or archery rifle and muzzle loader seasons) and long duration harvest periods all 

complicate the modeling process.  

If the hunting season is relatively short, natural mortality can be assumed negligible 

during the hunting season. In which case, harvest mortality and natural mortality can be modeled 

as conditionally independent processes (Clawson 2010). If harvest mortality (p) and natural 

survival (S) are conditionally independent, the probability an animal survives both mortality 

sources can be modeled as (1 − 𝑝)𝑆. However, if the harvest period encompasses a biologically 
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significant period of natural mortality, harvest mortality and natural mortality should be modeled 

as concurrent processes. When both harvest and natural mortality are modeled concurrently the 

probability an animal dies due to harvest can be modeled as  

(
𝑐𝑓

𝑐𝑓 + 𝜇𝑡
) (1 − 𝑒−(𝑐𝑓+𝜇𝑡)) 

where c is the harvest vulnerability coefficient, f is hunter effort, t is the duration of the harvest 

season and µ is the instantaneous natural mortality rate (Clawson 2010).  The probability an 

animal dies from natural causes during the harvest season is then  

(
𝜇𝑡

𝑐𝑓 + 𝜇𝑡
) (1 − 𝑒−(𝑐𝑓+𝜇𝑡)). 

The probability an animal survives both sources of mortality for an entire year is then 𝑒−(𝑐𝑓+𝜇𝑇), 

where T is the entire annual time period (i.e, 365 days, 12months etc). This change in the 

survival and harvest probability modeling allows for both mortality processes to occur at the 

same time, thus accommodating long term harvest regimes. 

 If harvest is broken into multiple short non-sequential events, harvest and survival can be 

modeled as conditionally independent processes. However an additional survival parameter is 

necessary to account for natural mortality between harvests. For example, with a spring and fall 

harvest system, the probability an animal is harvested in spring is parameterized  𝑝𝑠𝑝𝑟𝑖𝑛𝑔. The 

probability an animal is alive at the beginning of the fall harvest period is (1 − 𝑝𝑠𝑝𝑟𝑖𝑛𝑔) ∗ 𝑆1 

where 𝑆1 is the probability an animal survives the natural mortality period between harvests. The 

probability an animal is harvested in fall is parameterized 𝑝𝑓𝑎𝑙𝑙, and finally the probability an 
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animal survives an entire year is (1 − 𝑝𝑠𝑝𝑟𝑖𝑛𝑔) ∗ 𝑆1 ∗ (1 − 𝑝𝑓𝑎𝑙𝑙) ∗ 𝑆2 , where 𝑆2 is the 

probability an animal survives the natural mortality period after fall harvest. SPR can therefore 

be modified to accommodate multiple short harvest events that are broken up by discrete periods 

of natural mortality. 

Alternatively animals are often harvested in a single, reasonably short period, which is 

broken up into discrete sequential sections by form of take. An example of such a harvest regime 

would be deer in most states that are subject to early archery harvest, muzzle loader harvest and 

then rifle harvest. If this is the case, the probability of harvest in each season section can be 

modeled as conditionally independent processes, analogous to the turkey example without the 

interim survival parameter. The probability of an animal alive at the beginning of the harvest 

season being harvested in any of the three season sections would be  

𝑝𝑎𝑟𝑐ℎ𝑒𝑟𝑦 + (1 − 𝑝𝑎𝑟𝑐ℎ𝑒𝑟𝑦) ∗ 𝑝𝑙𝑜𝑎𝑑𝑒𝑟 + (1 − 𝑝𝑎𝑟𝑐ℎ𝑒𝑟𝑦)(1 − 𝑝𝑙𝑜𝑎𝑑𝑒𝑟)𝑝𝑟𝑖𝑓𝑙𝑒 

It is necessary to model sequential forms of harvest as conditionally independent discrete 

sections if they can be reasonably assumed to have differential harvest vulnerability.  

If animals are simultaneously vulnerable to harvest from multiple forms of take with 

differential harvest vulnerability, the multiple forms of take must be modeled concurrently. The 

overall probability of harvest in the season would then be parameterized 

𝑝 = (1 − 𝑒−(𝑐1𝑓1+𝑐2𝑓2+𝑐3𝑓3)) 

where 𝑐𝑘 is the harvest vulnerability coefficient for a form of take and 𝑓𝑘 is the corresponding 

measure of hunter effort for that form of take. Wolf harvest in Montana is an example of a 



126 

 

harvest system which could be modeled this way. In Montana, archer, rifle and trapping harvest 

seasons for wolves all overlap, but each form of take would need to be modeled with a different 

harvest vulnerability coefficient.  

Availability of effort and harvest data may constrain how the harvest processes can be 

modeled. In order to model the harvest probability of a specific form of take, total harvest, age 

composition of the harvest and hunter effort data must be take specific. When data are 

unavailable to model minor forms of take, it is advisable at a minimum to accurately model the 

most substantial forms of take first. Misspecifications of harvest vulnerability will contribute 

bias to the model commensurate with the proportion of harvest for which they account. If only 

5% of the harvest comes from a certain from of take, misspecification of its associated harvest 

vulnerability coefficient will have little impact on the resulting parameter estimates. The priority 

of resource agencies should be to provide quality data to model all substantial forms of take. If 

only harvest data, but not hunter effort data, are available for minor forms of harvest, these minor 

forms of take should be incorporated as known removals in the SPR model structure. Gast et al. 

(2013k) modeled a wild turkey population in Missouri using landowner harvest as a known 

source of take because no effort information was available. Known removals are incorporated 

either before or after the probabilistic harvest takes place. If the known removals happen in a 

discrete period before or after the probabilistic harvest, the impact of known removal modeling 

will be minimal. However, if the known removals happen concurrent with a probabilistic source 

of harvest the process will be improperly modeled and thus caution should be exercised. Failure 

to model significant forms of mortality may have substantial consequences in terms of the bias 
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and precision associated with parameter estimates of SPR, the magnitude of which has not been 

evaluated.  

5.11 TWO SEX SPR MODELING 

Most harvested species are polygynous and therefore harvest focuses on the male portion 

of the population. In polygynous mating systems, females are the primary drivers of population 

demographics (Morris & Doak 2002), therefore most management concerns center around 

demographics of females and young animals (Lukacs et al. 2009). If only one sex is harvested, a 

single sex SPR analysis can be paired with annual sex ratio data in order to provide estimates of 

total abundance. Additionally, many harvested populations have at least limited harvest of 

females, providing the opportunity for two sex SPR modeling. Two sex SPR models exist on a 

continuum between a single SPR model with pooled sex data, if all parameters are shared, to two 

separate SPR models if no parameters are shared. Pooling sex data is possible when there is no 

sex specific selection in harvest, such as in some upland game bird species, or for some species 

which are harvested via trapping. Conversely, when survival or harvest vulnerability are not 

homogeneous between sexes a sex-specific SPR model is necessary. A sex-specific SPR model 

may be appropriate in species like elk, deer, and turkey where there is sex specific selection in 

the harvest. Differential harvest vulnerability between the sexes can arise because of animal 

behavior, hunter preference, regulatory restrictions or some combination thereof.  

Sex-specific SPR modeling begins with two separate SPR models, one for each sex. Total 

harvest and harvest age composition data are necessary for each sex separately. If both sexes are 

eligible for harvest at the same time by all hunters, hunter effort data are not sex specific, 

otherwise hunter surveys must indicate sex specific effort. The male and female models can 
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share natural survival parameter(s), or if harvest is not sex selective, males and females can share 

harvest vulnerability parameters. Model selection procedures are used to determine which 

parameters can be shared between the two models (Gast et al. 2013a). Models are written and 

optimized together to allow for this sharing of parameters. Gast et al. (2013a) modeled male and 

female elk in Michigan with a 2 sex SPR model where each of the first 5 age classes had sex and 

age-specific harvest vulnerability coefficients, but males and females shared the same natural 

survival rate.  

There are three options for auxiliary data to augment 2-sex SPR modeling. Each sex can 

have its own separate auxiliary to estimate sex specific abundance, natural survival or harvest 

vulnerability. Alternatively, a single auxiliary can be used which estimates a shared parameter, 

either survival or harvest vulnerability.  Finally, total abundance (male and female combined) 

with no demarcation of sex, can be used as auxiliary data for a sex-specific SPR model. Total 

abundance is likely the least helpful form of auxiliary for sex-specific SPR models because total 

abundance is a convolution of male and female abundance (i.e., 𝑁𝑡 = 𝑁𝑚 + 𝑁𝑓). However, no 

formal evaluation of auxiliary data for 2 sex SPR models has yet been done.  

5.12 DEMOGRAPHIC SPECIFICITY AND ROBUSTNESS OF SPR 

MODELS 

In statistical population reconstruction models, abundance in a particular year and age 

class (𝑁𝑎+1,𝑡+1) is linked to the abundance in the previous year and age class (𝑁𝑎,𝑡)  through 

natural survival (𝑆𝑎) and harvest parameters (𝑝𝑎,𝑡) 

𝑁𝑎+1,𝑡+1 = 𝑁𝑎,𝑡(1 − 𝑝𝑎,𝑡)𝑆𝑎. 
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Initial age class abundance in a year (recruitment) is generally estimated independent from any 

of the previous year’s abundance estimates. Previous attempts to model the relationship between 

recruitment and the previous year’s abundance in SPR models produced accurate estimates of the 

stock-recruit relationship, but the resulting annual abundance estimates were biased (Gast 2012). 

The lack of specificity in the recruitment process of SPR models allows for robust and accurate 

estimation of age-specific abundance as well as natural survival and harvest rate parameters. 

These models are applicable to a myriad of species with substantially different reproductive 

biology, including greater sage-grouse (Centrocercus urophasianus), marten (Martes 

americana), black bear (Ursus americana), elk (Cervus elaphus) and deer (Odocoileus spp.) 

(Gove et al. 2002, Skalski et al. 2007, Conn et al. 2008, Broms et al. 2010, Skalski et al. 2011). 

Unfortunately, the lack of demographic specificity also means that little information is provided 

on the processes governing the recruitment process.  

SPR models provide no information on animals that are not eligible for harvest. For many 

species the pre-harvest age period encompasses the first year of life, from birth to one year of 

age. The first year of life is a time period that has traditionally been a primary focus of 

monitoring efforts for harvested populations (Healy and Nenno 1985, Vangilder and Kurzejeski 

1995, Miller et al. 1998, Ricca et al. 2002, Gilbert and Raedeke 2004, Robinson et al. 2014). The 

frequent estimation of detailed metrics of the recruitment process has traditionally been driven 

by a lack of abundance estimates. Without being able to monitor the state of the population 

abundance, managers have been forced to focus on studying demographic parameters that can be 

more readily measured.  
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Detailed metrics of juvenile recruitment are often studied with the assumption that 

changes in the recruitment process translate to commensurate changes in the number of animals 

recruited into the harvestable populaiton. For example, turkey poult survival and nest success are 

the focus of many studies of wild turkey demographics (Norman et al. 2001, Lehman et al. 2008, 

Fuller et al. 2013). Managers often assume that low nest success or high poult mortality will 

subsequently result in declines in the number of juvenile turkeys available for harvest in the 

following year. However, turkey poults are generally only monitored for the first 4 weeks of life, 

because after that time hens form brood flocks and poult mortality is difficult to monitor 

(Vangilder and Kurzejeski 1995). The assumption of a correlational relationship between early 

recruitment metrics and realized recruitment may often hold, however it is rarely tested in 

practice. SPR estimates of realized recruitment offer the opportunity to test the relationship 

between commonly collected recruitment metrics and realized recruitment (Clawson et al 2015). 

In this way, the broad viewpoint of SPR allows data to drive the prioritization of future field 

projects rather than relying on traditional assumptions. Additionally, the robust demographic 

structure of SPR provides a better understanding of the demographic process and allows for 

accurate future abundance estimates.  

5.13 COVARIATES IN SPR ANALYSIS 

The demographic processes of almost all animals depend to some degree on 

environmental conditions. Avian game populations have been shown to be highly vulnerable to 

spring weather conditions (Vangilder and Kurzejeski 1995, Roberts and Porter 1998a;b, Lowrey 

et al. 2001). Ungulate populations are generally less vulnerable to environmental perturbations, 

but have been shown to be affected by extreme weather conditions and habitat quality (Gilbert 
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and Raedeke 2004, Brodie et al. 2013). Gilbert and Raedeke (2004) found high rainfall paired 

with cold temperatures reduced fall recruitment of Columbian black-tailed deer (Odocoileus 

hemionus columbianus) in Washington. Brodie et al. (2013) found deep snow can negatively 

affect elk (Cervus elaphus) survival in systems where wolves (Canis lupus) are present. 

Additionally, environmental covariates can influence animals through food availability, which in 

turn can affect game abundance (Noyce and Garshelis 1997). In addition, high food availability 

can reduce animal movements and have negative effects on harvest rates (Ryan et al. 2004).  

Given environmental covariates can affect the survival, harvest and recruitment of game 

species, their inclusion in population dynamics and harvest models, such as SPR, may be 

advantageous. Fieberg et al. (2010) modeled harvest probability as a function of both hunter 

effort and food availability within an SPR type model of black bears. Gast (2012) attempted to 

model elk harvest vulnerability as a function of extreme weather covariates thought to effect 

hunter efficiency. The specific environmental covariates included by Gast (2012) were found to 

be non-significant during the model selection process, however his work provides a framework 

for using environmental covariates in SPR. 

The primary consideration, when including environmental covariates to estimate 

interannual variation in SPR parameters, is knowing which parameters they effect based on prior 

biological knowledge. If covariates are thought to effect harvest vulnerability they could be 

modeled in the form 

𝑝𝑖 = (1 − 𝑒−(𝑐+𝛾𝑖+𝛽𝑋,)𝑓𝑖) 
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where 𝑋 , is a matrix of environmental covariates and 𝛽 is a vector of estimated regression 

coefficients modeling harvest vulnerability (c).  

Analogously, if covariates are thought to effect natural survival (𝑆𝑖), survival can be 

parameterized 

𝑆𝑖 =
1

(1 + 𝑒(𝛽0+𝛽𝑦,+𝜖𝑖))
 

Where 𝛽0 is the estimated base survival rate, 𝑦 , is a matrix of environmental covariates and 𝛽 is a 

vector of estimated regression coefficients modeling natural survival.  

Traditional SPR model structure purposefully does not model a relationship between 

recruitment and previous abundance in order to increase the robustness of the model. However, if 

recruitment is highly dependent on an environmental covariate, it may be appropriate to add 

additional structure to the recruitment process being modeled. A stock-recruit relationship with 

environmental covariates could be modeled as 

𝑁𝑖,1 = (𝑒𝜌+𝛽𝑋 ,+𝜖𝑖)∑𝑁𝑖−1,𝑗

𝐴

𝑗=𝑏

 

 

where 𝜌 is a base recruitment rate, 𝑋 , is a matrix of environmental covariates 𝛽 is a vector of 

estimated regression coefficients modeling recruitment, and ∑ 𝑁𝑖−1,𝑗
𝐴
𝑗=𝑏  is the total breeding 

abundance in year in the previous year..  
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By their very nature, environmental covariates model interannual variation in the 

demographic process to which they are applied. Modeling multiple sources of interannual 

variability simultaneously can cause instability in the numerical optimization process due to a 

lack of identifiability between sources of variation. Therefore, environmental covariates should 

be included within only a single demographic process, to avoid difficulty in numerical 

optimization and over-fitting the model (Gast 2012).  Likelihood-ratio tests (Kutner et al. 2004) 

and AIC (Burnham and Anderson 2004) can be used to test the significance of regression 

coefficients and assess model support for the inclusion of environmental covariates.  

Covariate modeling in SPR is not limited to environmental covariates. Skalski et al. 

(2011) modeled survival of Martens in Michigan as a function of the age where 

𝑆𝑖 =
1

(1 + 𝑒(𝛽0+𝛽1𝑎𝑔𝑒+𝛽2𝑎𝑔𝑒2))
 

Similarly annual survival (𝑆𝑖) could be modeled as a function of abundance (∑ 𝑁𝑖,𝑗
𝐴
𝑗=𝑎 ) to 

account for density dependent effects on survival 

 

𝑆𝑖 =
1

(1 + 𝑒(𝛽0+𝛽1 ∑ 𝑁𝑖,𝑗
𝐴
𝑗=𝑎 ))

 

where 𝛽0 is the estimated base survival rate and 𝛽1 is the estimated coefficient relating 

abundance to natural survival.  

Modeling SPR parameters as functions of covariates has had limited application to date 

(Fieberg et al. 2010, Skalski et al. 2011). Further testing of the effects of including covariates on 
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SPR model outcomes is needed. Including environmental covariates may have little discernable 

effect on the precision or point estimates of parameters, however they may contribute 

substantially to the understanding of the biological processes driving the variation in model 

parameters. The covariate’s relationship may also be helpful in projecting future abundance 

based on observed demographic and environmental conditions.  

5.14 MODEL FITTING, SELECTION AND EVALUATION IN 

STATISTICAL POPULATION RECONSTRUCTION 

Since the initiation of statistical population reconstruction (SPR) modeling (Gove et al. 

2002), models have been repeatedly evaluated, modified and improved (Ryding et al. 2007, 

Broms et al. 2010, Skalski et al. 2011, Skalski et al. 2012b). The models proposed by Gast 

(2012) significantly change the previous SPR model structure, deriving abundance estimates 

based on a Horvitz-Thompson type estimator  

𝑁̂𝑖,𝑗 =
ℎ𝑖,𝑗

𝑃̂𝑖,𝑗

 

where 𝑁̂𝑖,𝑗 is the abundance estimate, 𝑃̂𝑖,𝑗 is the harvest probability estimate and ℎ𝑖,𝑗 is the 

observed harvest count all in year i age class j, rather than estimating abundance of the age 

classes present in the first year, and the initial age class in each subsequent year directly (Gove et 

al. 2002). This change in model structure reduces parametrization, increases stability of 

numerical optimization and produces more accurate variance estimates. Gast (2012) also 

provided guidance for the inclusion of random effects into the SPR model structure, allowing 

demographic processes (i.e., harvest and survival) to be modeled with interannual variation. 
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Based on these substantial improvements in variance estimation and model realism the models 

offered by Gast (2012) are preferable for future application of SPR.  

Regardless of the SPR model structure used, model selection and evaluation are closely related 

endeavors that are fundamental to the successful application of SPR. A model which best fits the 

data but produces unreasonable parameter estimates is not useful, and equally as problematic is a 

model which produces reasonable parameter estimates but is not supported by the data. 

Therefore, while model selection and evaluation are different processes they are inherently 

dependent on one another. Model selection and evaluation must then be used in concert in order 

to choose the “best” modeling option from both perspectives simultaneously.    

5.14.1 Model selection and evaluation 

Model selection should begin with a strong pool of candidate models based on 

preliminary data evaluation as well as detailed knowledge of the harvest system and biology of 

the population being modeled. For fixed-effects SPR models, likelihood ratio tests (Hogg and 

Craig 1978 p. 413-422) can then be used to select between nested candidate models. 

Information-theoretic approaches such as AIC offer a method of selecting between non-nested 

fixed-effects models (Burnham and Anderson 2004). Model selection for mixed-effects SPR 

model, and non-linear mixed-effects models in general, is both complex and without a widely 

accepted methodology (Gast 2012). The selection of mixed-effects models is complicated by the 

choice of whether to first select for which fixed effects are to be included and then select random 

effects  or vice versa. Additionally, modelers must choose whether to evaluate models based on 

marginal or conditional likelihood values and how to determine the “effective” number of 

parameters (Bolker et al. 2009). The details of these choices are beyond the scope of this chapter 
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and are well summarized be Gast (2012). The best guidance for mixed-effects SPR model 

selection is as follows: 

1. Fit the most complex model which is biologically plausible with only fixed effects parameters. 

2. Select random effects for inclusion using sequential modified likelihood-ratio tests (Self and 

Liang 1987), based on the conditional likelihood values. 

3. Use marginal AIC to sequentially remove fixed effects parameters which do not significantly 

improve the fit of the model. 

By initially including all plausible fixed effects parameters in the model, potential random effects 

are not constrained. Modified likelihood-ratio tests are used because selection for random effects 

violates the boundary assumption of traditional likelihood-ratio tests (Self and Liang 1987). 

While these procedures do not represent an iron clad method of model selection, because one 

does not exist, they do represent the best available knowledge. The area of model selection for 

nonlinear mixed-effects models is an important area of future research. 

 The model selection procedures detailed above should be used in conjunction with model 

evaluation procedures to choose the best overall model. The primary model evaluation strategy 

for SPR models is to evaluate parameter estimates for biological realism and compare them to 

independent data sources (Clawson et al. 2013). For instance, natural survival estimates above 1 

may be an indication of model misspecification depending on the magnitude of the point 

estimate and its associated variance. Estimates of natural survival very near 1 with confidence 

intervals which span 1 and encompass probable values may arise due to sampling error. 

However, estimates drastically larger than 1 with no possible values contained in the associated 

confidence interval may indicate serious model misspecification. Therefore I do not recommend 
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reparametrizing natural survival so that it is bounded between 0 and 1 (i.e., logistic 

transformation) as it will hide potential model misspecification. Comparisons for biological 

realism can be based on estimates from the literature from similar population or more preferably 

from independent data from the population being modeled. Indices are a good candidate for this 

type of confirmatory data because they are not useful as auxiliary data in SPR models and are 

inexpensive to collect. Skalski et al. (2007) compared trends in mule deer abundance resulting 

from an SPR model to an index of browse damage, finding the very similar trends in both. If 

trusted indices do not compare favorably with trends estimated from SPR models, additional 

evaluation of both the model structure and indices are necessary. 

 Point deletion methods offer an additional form of model evaluation for SPR models and 

should be used in conjunction with checks for model realism (Clawson et al. 2013). In point 

deletion evaluations successive years of data are removed from the front or back of the time 

series of data, new SPR models are then fit to the truncated data sets. High sensitivity of 

parameter estimates to minor degrees of point deletion is cause for concern and may indicate 

data are insufficient for SPR modeling (Clawson et al. 2013). 

 Finally, SPR models using the original parameterization (Gove et al. 2002) should also be 

evaluated using Anscombe residuals (Anscombe 1953) of observed vs expected harvest counts 

plotted against both age and year (Clawson et al. 2013). Trends in residuals across ages or years 

as well as large numbers of residual points outside of +/-2 indicate a lack of model fit. SPR 

models which use the Horvitz-Thompson type estimator of abundance (Gast 2012) cannot be 

evaluated using residuals because the observed and expected harvest counts are the same.  
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5.14.2 Model fitting 

Due to the complexity of the SPR likelihood structure, calculation of closed form 

parameter estimates are intractable. Numerical optimization is therefore required to derive 

maximum likelihood estimates of parameters. Numerical optimization is a complex process, 

often referred to as more of an art than a science. Diligence is therefore required to assure any 

optimization routine converges to a global maximum. Users should use multiple different sets of 

starting parameter values and if available, different optimizers with varying step size and 

convergence criteria to assure the global maximum is found. Quality initial parameter values and 

properly scaled data inputs can greatly aid in the optimization process. Specifically for SPR 

models, hunter effort should be scaled to be on the order of 1 or 0.1 in order to aid in stable 

optimization.  The program chosen for analysis will determine the optimizers which are 

available. The Solver function in Microsoft excel is inadequate to reliably fit SPR models. R 

(www.r-project.org ) and USER (http://www.cbr.washington.edu/analysis/apps/user) offer 

traditional newton-rhapson and simplex optimizers, that with diligence can be used to fit SPR 

models. Automatic differentiation based optimization routines (i.e., AD Model builder 

(www.ADMB-project.org) and PopRecon 

(http://www.cbr.washington.edu/analysis/apps/PopRecon)) offer a more stable alternative to 

traditional optimization routines (i.e, SIMPLEX and Netwon-Rhapson) when fitting SPR 

models.  
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5.15  CONCLUSION 

The complexity of harvest systems and equal flexibility of SPR offer a seemingly infinite 

number of possible model structures, each with its own opportunities and challenges. This 

dissertation offers guidance to game managers seeking to use SPR as part of their management 

strategy. Given the almost unlimited scenarios that are possible, each application of SPR will 

need to be tailored to the specific biology, geography and harvest policies of the game population 

being modeled. 

Throughout this chapter the need for representative data, collected at appropriate spatial 

scales, is highlighted repeatedly. Managers need to collect data through statistically rigorous 

sampling methods, avoiding convenience sampling, if at all possible (Anderson 2001). 

Additionally, it is important to realize that population reconstruction models must be constructed 

to accurately reflect the harvest process. Harvest and hunter effort data need to be collected at the 

geographic and regulatory scale at which SPR will occur. Successful implementation of SPR will 

require close coordination between game managers, field biologists, and biometricians to 

produce realistic and accurate reconstructions of population abundance and trends. Armed with 

information on abundance, recruitment, natural survival and harvest rate, game managers should 

be better equipped to manager wild populations into the 21st century.   
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Chapter 6. MANAGEMENT IMPLICATIONS OF THIS RESEARCH 

Currently, most state management agencies use uncalibrated indices to monitor harvested 

populations (Rupp et al. 2000, Sands and Pope 2010, Collier et al. 2013). This was an acceptable 

method of management during a period when the main goal was to increase game abundance and 

recover depleted game populations (Schmidt 1980). However, today’s changing priorities of 

management agencies and increased scrutiny from non-consumptive stakeholders (Jacobson and 

Decker 2006) is causing management agencies to reevaluate how game populations should be 

monitored  (Mason et al. 2006). Statistical population reconstruction offers a cost effective 

alternative to the use of indices or conducting annual abundance estimates as a primary 

monitoring tool. 

 Statistical population reconstruction (SPR) has the potential to be a powerful monitoring 

tool for game management agencies. Prior to the work done in this dissertation there were two 

primary barriers to wide spread management application of SPR. First, there was no information 

on the relative utility of using auxiliary data sources in SPR. In Chapters 2 and 5 of this 

dissertation, the relative utility of abundance, survival, and harvest rate auxiliary data were 

comprehensively evaluated. Estimating natural survival was shown to have the highest utility in 

improving the precision of SPR abundance estimates. In addition, Chapters 2 and 5 also provide 

general sample size requirements for auxiliary studies. Based on this research managers can now 

efficiently implement SPR by identifying existing data sources that can be used as auxiliary data. 

More importantly, managers can now design effective SPR auxiliary field studies, balancing 

their utility to SPR models with other management objectives.  
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The second barrier to SPR implementation I addressed in this dissertation was the lack of 

information available on minimum harvest and hunter effort data requirements. Rigorous 

evaluation via simulation showed that, with quality auxiliary data, statistical population 

reconstruction can be applied with as little as 4 years of age-at-harvest and hunter effort data. 

Further evaluation revealed that the precision of SPR parameter estimates was more dependent 

on the precision of auxiliary data, than the number of years of harvest and hunter effort data, 

over the period examined (e.g., 10 years). Based on this information, managers do not need to 

wait for decades to start implementing SPR. This means more populations can being SPR 

analysis sooner with less cost. The guidance on planning horizons and sample size 

recommendations is important when proposing major changes in harvest data collection and 

auxiliary field studies to support SPR.  

The parameter estimates provided by statistical population reconstruction models can be 

used for more than simply supplanting indices for trend monitoring. Chapter 3 illustrates the use 

of output from SPR to model an extensive historical data set, which otherwise was almost 

completely ignored. The result was a spatially explicit view of 50 years of population growth and 

hunter response to an emerging game population. The slow response of hunters to an emerging 

game population, observed in this study, can serve as a point of reference for future game bird 

reintroduction planning. Furthermore, empirical evidence that hunters historically value 

convenience at the expense of higher game abundance may affect how agencies choose to 

allocate management efforts. Finally, the 50 year time series of realized recruitment estimates, 

provided a unique opportunity to test some of the long held beliefs regarding turkey recruitment 

and weather, reinforcing some and challenging others. The utility of SPR model output clearly 
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goes well beyond simply monitoring the trends of harvested populations and setting next year’s 

harvest regulations. Further, this approach offers managers a unique ability to answer questions 

which were previously intractable. 

 Another important management implication is the projection of future abundance in order 

to set harvest regulations in a proactive manner. Chapter 4 provides a rigorous evaluation of 

methods to project the simple time series of abundance and reconstructed populations into the 

future. 𝑁𝑡+1 = 𝑁𝑡 was a surprisingly adequate projection model for many populations. 

Expectedly, models which included survival and recruitment data from SPR models were shown 

to produce the most accurate projections of future abundance. From these results game managers 

have quantitative guidance on projecting next year’s abundance, allowing them to set purposeful 

harvest policies and reduce potential conflicts with a variety of stakeholders.  

This dissertation provides the information and guidance necessary to increase the 

potential management applications of SPR. Detailed guidance on model scaling and data 

sampling considerations will help managers critically evaluate model assumptions and allow for 

effective collaboration with biometricians when designing SPR modeling frameworks. 

Additionally, managers understanding the fundamental assumptions which underlie the modeling 

process will increase their confidence in the method, leading to broader acceptance of SPR in the 

resource management community. Further, solutions for modeling populations, with two-sex 

harvest, pooled age class data and those subject to antler point restrictions, increase the potential 

management applications of SPR. This dissertation also explored the use of morphological 

measurements in order to supplant or augment age composition data for widely harvested 

ungulate species. Incorporating morphological data in SPR has the potential of expanding its use 
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to more populations which need rigorous management and at the same time reduce costs when 

state budgets for game agencies are being reduced.  

Statistical population reconstruction is a flexible, powerful and efficient monitoring 

framework that takes advantage of commonly collected data to estimate age-specific abundance, 

natural survival and harvest rates. Management application of SPR has the potential to improve 

inference from and/or reduce the cost of annual monitoring of game populations, thus providing 

management agencies additional resources and data to accommodate the additional scrutiny and 

mandates associated with increasingly diverse stakeholder groups. The information contained in 

this dissertation will facilitate the broad scale management application of SPR, a process which 

has the potential to fundamentally change how harvested wildlife are monitored in the United 

States. 

  



144 

 

LITERATURE CITED 

Alisauskas, R. T., T. W. Arnold, J. O. Leafloor, D. L. Otis, and J. S. Sedinger. 2014. Lincoln estimates of mallard 

(Anas platyrhynchos) abundance in North America. Ecology and Evolution 4:132-143. 

Alpizar-Jara, R., E. N. Brooks, K. H. Pollock, D. E. Steffen, J. C. Pack, and G. W. Norman. 2001. An Eastern Wild 

Turkey Population Dynamics Model for Virginia and West Virginia. The Journal of Wildlife Management 

65:415-424. 

Anderson, C. R., Jr., D. S. Moody, B. L. Smith, F. G. Lindzey, and R. P. Lanka. 1998. Development and Evaluation 

of Sightability Models for Summer Elk Surveys. The Journal of Wildlife Management 62:1055-1066. 

Anderson, D. R. 2001. The Need to Get the Basics Right in Wildlife Field Studies. Wildlife Society Bulletin 

29:1294-1297. 

_____. 2003. Response to Engeman: Index Values Rarely Constitute Reliable Information. Wildlife Society Bulletin 

31:288-291. 

Anscombe, F. J. 1953. Contribution to th discussion of H. Hotelling's paper. Journal of RoyL Statistical Society 

Serise B 15:165-173. 

Bender, L. C., G. A. Schirato, R. D. Spencer, K. R. McAllister, and B. L. Murphie. 2004. Surival, cause-specific 

mortality, and harvesting of male black-tailed deer in washington. The Journal of Wildlife Management 

68:870-878. 

Beston, J. A., and R. D. Mace. 2012. What can harvest data tell us about Montana's black bears? Ursus 23:30-41. 

Bolker, B. M., M. E. Brooks, C. J. Clark, S. W. Geange, J. R. Poulsen, M. H. Stevens, and J. S. White. 2009. 

Generalized linear mixed models: a practical guide for ecology and evolution. Trends in ecology & 

evolution 24:127-135. 

Box, G. E. P., and G. M. Jenkins. 1970. Time series analysis; forecasting and control. Holden-Day, San Francisco. 

Brockwell, P. J., and R. A. Davis. 1991. Time series : theory and methods. Springer-Verlag, New York. 

Brodie, J., H. Johnson, M. Mitchell, P. Zager, K. Proffitt, M. Hebblewhite, M. Kauffman, B. Johnson, J. Bissonette, 

C. Bishop, J. Gude, J. Herbert, K. Hersey, M. Hurley, P. M. Lukacs, S. McCorquodale, E. McIntire, J. 

Nowak, H. Sawyer, and D. Smith. 2013. Relative influence of human harvest, carnivores, and weather on 

adult female elk survival across western North America. Journal of Applied Ecology 50:295-305. 

Broms, K., J. R. Skalski, J. J. Millspaugh, C. A. Hagen, and J. H. Schulz. 2010. Using Statistical Population 

Reconstruction to Estimate Demographic Trends in Small Game Populations. Journal of Wildlife 

Management 74:310-317. 

Brownie, C., D. R. Anderson, K. P. Burnham, and D. S. Robson. 1978. Statistical inference from band recovery 

data--A handbook.  Resource Publication, U.S. Fish and Wildlife Service, Washington D.C. . 

Buckland, S. T., I. B. J. Goudie, and D. L. Borchers. 2000. Wildlife Population Assessment: Past Developments and 

Future Directions. Biometrics 56:1-12. 

Burcham, M., W. D. Edge, and C. L. Marcum. 1999. Elk use of private land refuges. Wildlife Society Bulletin 

27:833-839. 

Burnham, K. P., and D. R. Anderson. 2004. Multimodel Inference Understanding AIC and BIC in Model Selection. 

Sociological Methods & Research 33. 

Byron, K. W., and F. A. Johnson. 1995. Adaptive Management and the Regulation of Waterfowl Harvests. Wildlife 

Society Bulletin 23:430-436. 

Caswell, H. 1989. Matrix population models : construction, analysis, and interpretation. Sinauer Associates, 

Sunderland, Mass. 

Caughley, G. 1974. Interpretation of Age Ratios. The Journal of Wildlife Management 38:557-562. 

Clawson, M. V. 2010. Use of age-at-harvest information to inform wildlife management. University of Washington, 

Seattle, Washington, USA. 

Clawson, M. V., J. R. Skalski, J. L. Isabelle, and J. J. Millspaugh. 2015. Trends in male wild turkey abundance and 

harvest following restoration efforts in the southeast region of Missouri, 1960–2010. Wildlife Society 

Bulletin 39:116-128. 

Clawson, M. V., J. R. Skalski, and J. J. Millspaugh. 2013. The utility of auxiliary data in statistical population 

reconstruction. Wildlife Biology 19:147-155. 



145 

 

Cochran, W. W., D. W. Warner, J. R. Tester, and V. B. Kuechle. 1965. Automatic Radio-Tracking System for 

Monitoring Animal Movements. BioScience 15:98-100. 

Collier, B. A., S. S. Ditchkoff, C. R. Ruth, and J. B. Raglin. 2013. Spotlight surveys for white-tailed deer: 

Monitoring panacea or exercise in futility? The Journal of Wildlife Management 77:165-171. 

Conn, P. B., D. R. Diefenbach, J. L. Laake, M. A. Ternent, and G. C. White. 2008. Bayesian Analysis of Wildlife 

Age-at-Harvest Data. Biometrics 64:1170-1177. 

Connelly, J. W., J. H. Gammonley, and J. M. Peek. 2005. Harvest Management. Pages 658-690 in C. E. Braun, 

editor. Techniques for Wildlife Investigations and Management. The Wildlife Society, Bethesda, MD. 

Davis, M. L., J. I. M. Berkson, D. Steffen, and M. K. Tilton. 2007. Evaluation of Accuracy and Precision of 

Downing Population Reconstruction. Journal of Wildlife Management 71:2297-2303. 

Delgiudice, G. D., J. Fieberg, M. R. Riggs, M. C. Powell, and W. E. I. Pan. 2006. A Long-Term Age-Specific 

Survival Analysis of Female White-Tailed Deer. The Journal of Wildlife Management 70:1556-1568. 

DeYoung, R. W., and R. L. Honeycutt. 2005. The molecular toolbox: genetic techniques in wildlife ecology and 

management. The Journal of Wildlife Management 69:1362-1384. 

Diefenbach, D. R., C. F. Riegner, and T. S. Hardisky. 2000. Harvest and Reporting Rates of Game-Farm Ring-

Necked Pheasants. Wildlife Society Bulletin 28:1050-1059. 

Don, J. N. 1968. The Pellet-Group Count Technique for Big Game Trend, Census, and Distribution: A Review. The 

Journal of Wildlife Management 32:597-614. 

Downing, R. L. 1980. Vital statistics of animal populations. Pages 247–267 in S. D. Schemnitz, editor. Wildlife 

techniques manual. The Wildlife Society, Washington, D.C., USA. 

Dunn, J. E., and P. S. Gipson. 1977. Analysis of Radio Telemetry Data in Studies of Home Range. Biometrics 

33:85-101. 

Eberhardt, L. L. 1987. Population Projections from Simple Models. Journal of Applied Ecology 24:103-118. 

_____. 2002. A paradigm for population analysis of long-lived vertebrates. Ecology 83:2841-2854. 

Eberhardt, L. L., and J. M. Breiwick. 2012. Models for Population Growth Curves. ISRN Ecology 2012:7. 

Fewster, R. M., S. T. Buckland, G. M. Siriwardena, S. R. Baillie, and J. D. Wilson. 2000. Analysis of population 

trends for farmland birds using generalized additive models. Ecology 81:1970-1984. 

Fieberg, J. R., K. W. Shertzer, P. B. Conn, K. V. Noyce, and D. L. Garshelis. 2010. Integrated Population Modeling 

of Black Bears in Minnesota: Implications for Monitoring and Management. PLoS ONE 5:e12114. 

Fleming, K. K., and W. F. Porter. 2007. Synchrony in a wild turkey population and its relationship to spring 

weather. Journal of Wildlife Management 71:1192-1196. 

Francis, R., S. J. Harley, S. E. Campana, and P. Doering-Arjes. 2005. Use of otolith weight in length-mediated 

estimation of proportions at age. Marine and Freshwater Research 56:735-743. 

Freddy, D. J., G. C. White, M. C. Kneeland, R. H. Kahn, J. W. Unsworth, W. J. deVergie, V. K. Graham, J. H. 

Ellenberger, and C. H. Wagner. 2004. How Many Mule Deer Are There? Challenges of Credibility in 

Colorado. Wildlife Society Bulletin 32:916-927. 

Fry, F. E. 1949. Statistics of a lake trout fishery. Biometrics 5:27–67. 

Fuller, A. K., S. M. Spohr, D. J. Harrison, and F. A. Servello. 2013. Nest survival of wild turkeys Meleagris 

gallopavo silvestris in a mixed-use landscape: influences at nest-site and patch scales. Wildlife Biology 

19:138-146. 

Gallucci, V. F., B. S. Saila, D. J. Gustafson, and B. J. Rothschild. 1996. Stock assessment : quantitative methods and 

applications for small-scale fisheries. Boca Raton : CRC/Lewis Publishers, Boca Raton. 

Gast, C., J. R. Skalski, and D. E. Beyer. 2013a. Evaluation of fixed- and random-effects models and multistage 

estimation procedures in statistical population reconstruction. The Journal of Wildlife Management 

77:1258-1270. 

Gast, C. M. 2012. Fixed and Random Effects Models and Multistage Estimation Procedures for Statistical 

Population Reconstructions. University of Washington, Seattle, Washington, USA. 

Gast, C. M., J. R. Skalski, J. L. Isabelle, and M. V. Clawson. 2013k. Random Effects Models and Multistage 

Estimation Procedures for Statistical Population Reconstruction of Small Game Populations. PLoS ONE 8. 

Gee, K. L., S. L. Webb, and J. H. Holman. 2014. Accuracy and implications of visually estimating age of male 

white-tailed deer using physical characteristics from photographs. Wildlife Society Bulletin 38:96-102. 

Gilbert, B. A., and K. J. Raedeke. 2004. Recruitment dynamics of Black-tailed Deer in the western Cascades. The 

Journal of Wildlife Management 68:120-128. 

Giles, R. H. 1971. Wildlife management techniques. Wildlife Society, Washington, D.C. 



146 

 

Gove, N. E., J. R. Skalski, P. Zager, and R. L. Townsend. 2002. Statistical Models for Population Reconstruction 

Using Age-at-Harvest Data. The Journal of Wildlife Management 66:310-320. 

Hamlin, K. L., D. F. Pac, C. A. Sime, R. M. DeSimone, and G. L. Dusek. 2000. Evaluating the Accuracy of Ages 

Obtained by Two Methods for Montana Ungulates. The Journal of Wildlife Management 64:441-449. 

Hansen, L. P., M. Wallendorf, and J. Beringer. 2006. A Comparison of Deer and Turkey Harvest Data Collection 

Methods in Missouri. Wildlife Society Bulletin 34:1356-1361. 

Hatter, I. W. 2001. An assessment of catch per unit effort to estimate rate of change in deer and moose populations. 

ALCES 37:71-78. 

Hawkins, A. S., U. S. Fish, and S. Wildlife. 1984. Flyways : pioneering waterfowl management in North America. 

U.S. Dept. of the Interior, Fish and Wildlife Service : For sale by the Supt. of Docs., U.S. G.P.O., 

[Washington, D.C.]. 

Healy, W. H., and E. S. Nenno. 1985. Effect of Weather on wild turkey poult survival. Proceedings of the National 

Wild Turkey Symposium 5:91-101. 

Hellickson, M. W., K. V. Miller, C. A. DeYoung, R. L. Marchinton, S. W. Stedman, and R. E. Hall. 2008. Physical 

characteristics for age estimation of male white-tailed deer in southern Texas. . Proceedings of the 

Southeastern Association of Fish and Wildlife Agencies 62:40-45. 

Hewitt, D. G. 2011. Biology and management of white-tailed deer. CRC Press, Boca Raton, FL. 

Hilborn, R. 2012. The evolution of quantitative marine fisheries management 1986-2010. Natural Resource 

Modeling 25:122-144. 

Hilborn, R., and M. Mangel. 1997. The ecological detective : confronting models with data. Princeton University 

Press, Princeton, NJ. 

Hogg, R. V., and A. T. Craig. 1978. Introduction to mathematical statistics. Macmillan, New York. 

Inchausti, P., and J. Halley. 2001. Investigating Long-Term Ecological Variability Using the Global Population 

Dynamics Database. Science 293:655-657. 

Jacobson, C. A., and D. J. Decker. 2006. Ensuring the Future of State Wildlife Management: Understanding 

Challenges for Institutional Change. Wildlife Society Bulletin 34:531-536. 

Jacques, C. N., T. R. van Deelen, W. H. Hall, K. J. Martin, and K. C. Vercauteren. 2011. Evaluating how hunters see 

and react to telemetry collars on white-tailed deer. The Journal of Wildlife Management 75:221-231. 

Johnson, F., and K. Williams. 1999 Protocol and Practice in the Adaptive Management of Waterfowl Harvests. 

Conservation Ecology 3:8. 

Johnson, F. A., W. L. Kendall, and J. A. Dubovsky. 2002. Conditions and Limitations on Learning in the Adaptive 

Management of Mallard Harvests. Wildlife Society Bulletin 30:176-185. 

Jones, G. P. I. V., L. G. Pearlstine, and H. F. Percival. 2006. An Assessment of Small Unmanned Aerial Vehicles for 

Wildlife Research. Wildlife Society Bulletin 34:750-758. 

Kishimoto, Y., D. Fujiki, and H. Sakata. 2010. Management approach using simple indices of deer density and 

status of understory vegetation for conserving deciduous hardwood forests on a regional scale. Journal of 

Forest Research 15:265-273. 

Krebs, C. J. 2002. Two Complementary Paradigms for Analysing Population Dynamics. Philosophical Transactions: 

Biological Sciences 357:1211-1219. 

Kurzejeski, E. W., L. D. Vangilder, and J. B. Lewis. 1987. Survival of Wild Turkey Hens in North Missouri. The 

Journal of Wildlife Management 51:188-193. 

Kutner, M. H., C. Nachtsheim, and J. Neter. 2004. Applied linear regression models. McGraw-Hill/Irwin, Boston; 

New York. 

Lehman, C. P., M. A. Rumble, L. D. Flake, and D. J. Thompson. 2008. Merriam's Turkey Nest Survival and Factors 

Affecting Nest Predation by Mammals. Journal of Wildlife Management 72:1765-1774. 

Leslie, P. H. 1945. On the Use of Matrices in Certain Population Mathematics. Biometrika 33:183-212. 

Lowrey, K. D., G. A. Hurst, S. R. Priest, and B. S. Weemy. 2001. Influences of selected weather variables on 

predation of wild turkey females and nest success. Proceedings of the National Wild Turkey Symposium 

8:173-178. 

Lueck, D. 2000. An Economic Guide to State Wildlife Management. Political Economy Research Center. 

Lukacs, P. M., J. A. Gude, R. E. Russell, and B. B. Ackerman. 2011. Evaluating cost-efficiency and accuracy of 

hunter harvest survey designs. Wildlife Society Bulletin 35:430-437. 

Mason, R., L. H. Carpenter, M. Cox, J. C. Devos, J. Fairchild, D. J. Freddy, J. R. Heffelfinger, R. H. Kahn, S. M. 

McCorquodale, D. F. Pac, D. Summers, G. C. White, and B. K. Williams. 2006. A Case for Standardized 



147 

 

Ungulate Surveys and Data Management in the Western United States. Wildlife Society Bulletin 34:1238-

1242. 

McDonald, P. T. 2009. Evaluation and Recommendations of White-Tailed Deer Age Class Separation Criteria. 

Miller, D. A., B. D. Leopold, and G. A. Hurst. 1998. Reproductive characteristics of a wild turkey population in 

central Mississippi. Journal of Wildlife Management 62:903-910. 

Millspaugh, J. J., and J. M. Marzluff. 2001. Radio tracking and animal populations. San Diego : Academic Press, 

San Diego. 

Millspaugh, J. J., R. M. Nielson, L. McDonald, J. M. Marzluff, R. A. Gitzen, C. D. Rittenhouse, M. W. Hubbard, 

and S. L. Sheriff. 2006. Analysis of Resource Selection Using Utilization Distributions. The Journal of 

Wildlife Management 70:384-395. 

Millspaugh, J. J., J. R. Skalski, R. L. Townsend, D. R. Diefenbach, M. S. Boyce, L. P. Hansen, and K. 

Kammermeyer. 2009. An Evaluation of Sex-Age-Kill (SAK) Model Performance. The Journal of Wildlife 

Management 73:442-451. 

Murphy, D. D., and B. D. Noon. 1991. Coping with Uncertainty in Wildlife Biology. The Journal of Wildlife 

Management 55:773-782. 

Nichols, J. D., R. J. Blohm, R. E. Reynolds, R. E. Trost, J. E. Hines, and J. P. Bladen. 1991. Band Reporting Rates 

for Mallards with Reward Bands of Different Dollar Values. The Journal of Wildlife Management 55:119-

126. 

Norman, G. W., J. C. Pack, C. I. Taylor, D. E. Steffen, and K. H. Pollock. 2001. Reproduction of eastern wild 

turkeys in Virginia and West Virginia. Journal of Wildlife Management 65:1-9. 

Noyce, K. V., and D. L. Garshelis. 1997. Influence of natural food abundance on black bear harvests in Minnesota. 

Journal of Wildlife Management 61:1067-1074. 

Otis, D. L. 2006. Mourning Dove Hunting Regulation Strategy Based on Annual Harvest Statistics and Banding 

Data. The Journal of Wildlife Management 70:1302-1307. 

Quinn, T. J., and R. B. Deriso. 1999. Quantitative fish dynamics. Oxford Press, Oxford, United Kingsom. 

Rabe, M. J., S. S. Rosenstock, and J. C. deVos, Jr. 2002. Review of Big-Game Survey Methods Used by Wildlife 

Agencies of the Western United States. Wildlife Society Bulletin 30:46-52. 

Rauset, G. R., J. Kindberg, and J. E. Swenson. 2012. Modeling female brown bear kill rates on moose calves using 

global positioning satellite data. The Journal of Wildlife Management 76:1597-1606. 

Ricca, M. A., R. G. Anthony, D. H. Jackson, and S. A. Wolfe. 2002. Survival of Columbian White-Tailed Deer in 

Western Oregon. The Journal of Wildlife Management 66:1255-1266. 

Roberts, S. D., and W. F. Porter. 1998a. Influence of Temperature and Precipitation on Survival of Wild Turkey 

Poults. Journal of Wildlife Management 62:1499-1505. 

_____. 1998b. Relation between Weather and Survival of Wild Turkey Nests. Journal of Wildlife Management 

62:1492-1498. 

Robinson, K. F., D. R. Diefenbach, A. K. Fuller, J. E. Hurst, and C. S. Rosenberry. 2014. Can Managers 

Compensate for Coyote Predation of White-Tailed Deer? Journal of Wildlife Management 78:571-579. 

Robson, D. S., and D. G. Chapman. 1961. Catch Curves and Mortality Rates. Transactions of the American 

Fisheries Society Transactions of the American Fisheries Society 90:181-189. 

Robson, D. S., and H. A. Regier. 1964. Sample size in Petersen mark-recapture experiments. Transactions of the 

American Fisheries Society 93:215-226. 

Rönnegård, L., H. Sand, H. Andrén, J. Månsson, and Å. Pehrson. 2008. Evaluation of four methods used to estimate 

population density of moose Alces alces. Wildlife Biology 14:358-371. 

Roseberry, J. L. 1979. Bobwhite Population Responses to Exploitation: Real and Simulated. The Journal of Wildlife 

Management 43:285-305. 

Roseberry, J. L., and A. Woolf. 1991. A Comparative Evaluation of Techniques for Analyzing White-Tailed Deer 

Harvest Data. Wildlife Monographs:3-59. 

Rupp, S. P., W. B. Ballard, and M. C. Wallace. 2000. A Nationwide Evaluation of Deer Hunter Harvest Survey 

Techniques. Wildlife Society Bulletin 28:570-578. 

Ryan, C. W., J. C. Pack, W. K. Igo, J. C. Rieffenberger, and A. B. Billings. 2004. Relationship of mast production to 

big-game harvests in West Virginia. Wildlife Society Bulletin 32:786-794. 

Ryding, K. E., J. J. Millspaugh, and J. R. Skalski. 2007. Using Time Series to Estimate Rates of Population Change 

from Abundance Data. The Journal of Wildlife Management 71:202-207. 



148 

 

Sands, J. P., and M. D. Pope. 2010. A survey of galliform monitoring programs and methods in the United States 

and Canada. wbio Wildlife Biology 16:342-356. 

Schaub, M., and F. Abadi. 2011. Integrated population models: a novel analysis framework for deeper insights into 

population dynamics. Journal of Ornithology 152:227-237. 

Schmidt, J. L. 1980. Early management: intentional or otherwise. Pages 257-270 in J. L. Schmidt, andD. L. Gilbert, 

editors. Big game of North America, ecology and management. Stackpole Books, Harrisburg, Philadelphia, 

USA. 

Scott, C. 1961. Research on Mail Surveys. Journal of the Royal Statistical Society. Series A (General) 124:143-205. 

Seber, G. A. F. 1982. The estimation of animal abundance and related parameters. C. Griffin & Co., Ltd., London. 

Self, S. G., and K.-Y. Liang. 1987. Asymptotic Properties of Maximum Likelihood Estimators and Likelihood Ratio 

Tests under Nonstandard Conditions. Journal of the American Statistical Association Journal of the 

American Statistical Association 82:605-610. 

Skalski, J. R., M. V. Clawson, and J. J. Millspaugh. 2012a. Model evaluation in statistical population reconstruction. 

Wildlife Biology 18:225-234. 

Skalski, J. R., J. J. Millspaugh, and M. V. Clawson. 2012b. Comparison of Statistical Population Reconstruction 

Using Full and Pooled Adult Age-Class Data. PLoS ONE 7:1-7. 

Skalski, J. R., J. J. Millspaugh, M. V. Clawson, J. L. Belant, D. R. Etter, B. J. Frawley, and P. D. Friedrich. 2011. 

Abundance trends of American martens in Michigan based on statistical population reconstruction. The 

Journal of Wildlife Management 75:1767-1773. 

Skalski, J. R., K. E. Ryding, and J. J. Millspaugh. 2005. Wildlife demography : analysis of sex, age, and count data. 

Elsevier Academic Press, Amsterdam; Boston. 

Skalski, J. R., R. L. Townsend, and B. A. Gilbert. 2007. Calibrating Statistical Population Reconstruction Models 

Using Catch-Effort and Index Data. Journal of Wildlife Management 71:1309-1316. 

Stedman, R., D. R. Diefenbach, C. B. Swope, J. C. Finley, A. E. Luloff, H. C. Zinn, G. J. San Julian, and G. A. 

Wang. 2004. Integrating Wildlife and Human-dimensions Research Methods to Study Hunters. Journal of 

Wildlife Management 68:762-773. 

Strickland, M. D., H. J. Harju, K. R. McCaffery, H. W. Miller, L. M. Smith, and R. J. Stoll. 1994. Harvest 

Management. Pages 445-473 in T. A. Bookhout, editor. Research and management techniques for wildlife 

and habitats. The Wildlife Society, Bethesda, Maryland, USA. 

Unsworth, J. W., L. Kuck, and E. O. Garton. 1990. Elk Sightability Model Validation at the National Bison Range, 

Montana. Wildlife Society Bulletin 18:113-115. 

Vangilder, L. D. 1996. Survival and cause-specific mortality of wild turkeys in the Missouri Ozarks. Proceedings of 

the National Wild Turkey Symposium 7:21-31. 

Vangilder, L. D., and E. W. Kurzejeski. 1995. Population Ecology of the Eastern Wild Turkey in Northern Missouri. 

Wildlife Monographs:3-50. 

Waits, L. P., and D. Paetkau. 2005. Non-invasive genetic sampling tools for wildlife biologists: a review of 

applications and recommendations for accurate data collection. The Journal of Wildlife Management 

69:1419-1433. 

Waller, J. S., and C. Servheen. 2005. Effects of Transportation Infrastructure on Grizzly Bears in Northwestern 

Montana. The Journal of Wildlife Management 69:985-1000. 

White, G. C., and B. C. Lubow. 2002. Fitting Population Models to Multiple Sources of Observed Data. The Journal 

of Wildlife Management 66:300-309. 

Whittaker, D. G., W. A. V. Dyke, and S. L. Love. 2003. Evaluation of Aerial Line Transect for Estimating 

Pronghorn Antelope Abundance in Low-Density Populations. Wildlife Society Bulletin 31:443-453. 

Williams, B., K. , and F. A. Johnson. 1995. Adaptive Management and the Regulation of Waterfowl Harvests. 

Wildlife Society Bulletin 23:430-436. 

 

 


