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Abstract

Genetic and environmental associations with disease risk and drug response in Alaska
Native people, and a responsive justice approach to reconciling statistical and ethical

research demands.
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Chair of the Supervisory Committee:
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Department of Pharmaceutics

Genetic research with diverse and underserved communities is important for
expanding the benefits of genetic discoveries and their application to personalized
medicine. In partnership with Alaska Native communities, we identified and characterized
novel and known variation in CYP2C9, VKORC1, CYP4FZ, CYP4F11, and GGCX, 5 genes known
to affect warfarin disposition and response, in 350 Yup’ik people and 365 customer-owners
of Southcentral Foundation. Through resequencing and targeted genotyping, we identified
two common novel variants M1L and N218I in CYP2(C9 and high frequencies of the VKOR(C1

haplotype (-1639G>A and 1173C>T) that are expected to result in increased warfarin



sensitivity. We also observed high frequencies of CYP4F2*3, which may increase vitamin K
conservation and necessitate a higher warfarin dose to achieve the desired anticoagulation
effect. Individual patient needs will depend on a complex mixture of genetic traits.

Because of seasonal variation in sunlight exposure, vitamin D deficiency is a concern
for people living in circumpolar regions. We characterized 25(0OH)D3 concentrations in 743
Yup’ik people living in the Yukon Kuskokwim delta of southwestern Alaska and identified
sources of inter-individual variability, including season of sample collection, genetic
variation in CYPZR1 and DHCR?7, age, gender, body mass index, the degree of consumption
of the traditional diet, and inland or coastal geography of the community. Yup'ik
participants on average had adequate concentrations of 25(0OH)D3 (31.1 +/- 0.9 ng/mL),
but a younger age (< 33 years) was significantly associated with lower concentration of
25(0H)Ds3 (24.5 ng/mL compared to 37.5 ng/mL for ages > 33 years), lower levels of a
biomarker of traditional food consumption, and greater fluctuation with changes in
sunlight exposure. Younger Yup’ik participants may be at increased risk for adverse
outcomes associated with vitamin D deficiency, especially during seasons of low sunlight
exposure.

Finally, in genetic epidemiology research, genome-wide markers or pedigree
information is used to adjust for population substructure and prevent confounding of
results. Population substructure and the concerns of communities with respect to the
methods used to adjust for it are described. A responsive justice framework is suggested as
a tool to approach these conflicting demands of research, presenting as an example the
stratification of participants by self-identified ancestral language group to approximate the

statistical adjustments needed for population stratification.
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CHAPTER 1: INTRODUCTION

1.1 Introduction

Genetic technology can increase understanding of variability in medical outcomes
and improve care for populations and individuals. For all people to benefit from medical
advances in personalized medicine resulting from genetic research, however, more people
with diverse ancestries must be included in discovery research and application
development. Historically, European populations have been oversampled in genetic
research. This selection bias means that genetic variation that has been found in European
populations is the focus of further research and that any resulting medical advances are
thus preferentially beneficial for people of European ancestry. Because patterns of genetic
variation differ with ancestry, people of non-European descent may not benefit in the same
way from this research. In fact, many common complex traits and diseases are associated
with genetic variants that occur at different frequencies in different populations, meaning
that biased sampling leads to skewed research and unequal health benefits for people of
non-European ancestries [1].

Small identifiable groups, such as indigenous communities, may be hesitant to
participate in the genetic research that would inform these medical advances because of
distrust resulting from a history of abuses at the hands of the government and researchers
[2] and because of the potential for harms resulting from research. By not participating in
research, community members are protected from potential harms, but also are prevented
from obtaining equitable benefit from medical genetics, thereby widening a gap of health
disparities. Until 2008, only 12 studies in the previous 30 years had included indigenous

people of the Americas in pharmacogenetic research, and none of these populations were



in the United States [1, 3]. As a consequence, working with these communities to expand
genetic research is important for reducing health disparities.

The Northwest-Alaska Pharmacogenomics Research Network (NWA-PGRN) is
expanding genetic research to include historically marginalized populations through
Community-based Participatory Research (CBPR) [2, 4] in partnership with Southcentral
Foundation (SCF) in Anchorage, AK, the Center for Alaska Native Health Research (CANHR)
in Fairbanks, AK, the Yukon Kuskokwim Health Corporation (YKHC) in Bethel, AK, the
American Indian and Alaska Native (AI/AN) people of southcentral Alaska, the Yup’ik
people of the Yukon-Kuskokwim Delta (Y-K Delta), the Confederated Salish and Kootenai
Tribes of western Montana, and the University of Montana. Alaska Native communities
historically have been excluded from medical research, and geographic isolation has led to
substantial portions of AI/AN people in Alaska being medically under-served and having
considerable health disparities compared to other populations [5].

SCF is a tribally owned and operated regional health corporation, providing pre-
paid healthcare services to 58,000 AI/AN patients, who are considered “customer-owners”
of SCF. The Anchorage Service Unit served by SCF is comprised of both urban and rural
areas, including Anchorage, the Matanuska-Susitna Borough, and 60 outlying communities
(most with fewer than 500 residents). It provides primary care services to ~ 55% of the
total AN population at 6 SCF primary care clinics on the Alaska Native Medical Center
(ANMC) campus. Tertiary care is provided at the 150-bed ANMC hospital, which is co-
owned and co-managed by SCF and Alaska Native Tribal Health Consortium (ANTHC).
CANHR is based at the University of Alaska Fairbanks and has ongoing genetic research

partnerships with 11 of the 58 rural communities in the Yukon-Kuskokwim River Delta (Y-



K Delta) that are served by the YKHC. The YKHC provides healthcare to about 23,000 Yup'ik
people. To date, there has been no research conducted with the indigenous populations of
Alaska to characterize variation in genes associated with interindividual differences in drug
response - so called “pharmacogenes”.

Effects of genetic variation in pharmacogenes on drug disposition and response
have been identified and are being applied to clinical care. The most notable drugs are
those with a small therapeutic window between efficacy and toxicity, and whose
metabolism are dominated by enzymes with variable catalytic efficiency resulting from
genetic variation. The enzymes of the Cytochrome P450 superfamily, which dominate the
clearance of many drugs, are highly polymorphic and patterns of variation differ between
global populations [3, 6]. Genetic polymorphisms that alter enzyme function lead to “super-
metabolizers”, “intermediate metabolizers”, and “slow metabolizers” based on the catalytic
efficiency of an enzyme, which can lead to differences in the efficacy and toxicity of the
same drug dose between individuals.

Examples of genetic variation in pharmacogenes already being implemented in
standard medical care include the effects of genetic polymorphisms in thiopurine S-
methyltransferase (TPMT) and cytochrome P450 2C19 (CYP2C19) on the metabolism and
dosing of 6-mercaptopurine (6MP) and clopidogrel, respectively. 6MP is an
immunosuppressive drug used to treat acute lymphocytic leukemia and inflammatory
bowel disease and acts by interfering with DNA replication in cell division. The TPMT
protein methylates 6MP, inactivating the drug, and, as a result, genetic variation in TPMT
can lead to potentially life-threatening toxicities as the drug is cleared more slowly and

circulating concentrations increase [7]. For developing the toxicity of leucopenia with



standard 6MP treatment, heterozygosity for a reduced-function variant is associated with
an odds ratio of 4.29 and homozygosity for a reduced-function variant is associated with an
odds ratio of 20.84 compared to homozygous wildtype [7]. As a result, since 2004 the FDA
has recommended genetic testing prior to initiation of therapy, and it has become routine
medical practice to do so in Europe [8] and at many US cancer treatment centers [9].

Clopidogrel is another example of a drug affected by genetic variation. It is used
during coronary surgeries and to treat acute coronary syndrome [10]. While 6MP is
inactivated by TPMT, clopidogrel is a prodrug, activated by CYP2C19. Variation in CYP2C19
has been associated with altered drug response, leading to the 2010 FDA “Black Box”
warning; individuals with reduced enzyme function at increased risk for adverse
cardiovascular events because their concentration of active drug are below therapeutic
concentrations [11]. The most common reduced-function variant, CYP2C19*2, is found at
high, but variable frequencies across populations, ranging from 15% in Caucasians to 35%
in Asians, and results in a hazard ratio of 1.55 for heterozygotes and 1.76 for homozygotes
for failed treatment and thrombotic events [12]. The CYP2(C19 gene has over 25 variants,
including some leading to increased enzymatic activity (*17). Alternative treatment can be
given to patients with reduced CYP2C19 activity, making genetic testing clinically useful
prior to initiating therapy.

Based on the importance of genetic variation in altering drug response, NWA-PGRN,
SCF, CANHR, and their partnering communities developed pharmacogenetic research
questions to address community health concerns as defined in part by the community
members themselves. In CBPR, communities are involved in all steps of the research

process, as a transformed practice of respect for persons and of developing long term



research partnerships between communities and researchers [2]. At SCF, the questions
developed with the community include genetic variation affecting appropriate dose for
warfarin treatment for prevention of thromboembolic events and for tamoxifen treatment
for breast cancer. At CANHR, these questions include variation in genes affecting cancer
risk and treatment, genetic variation affecting warfarin dose and response, and factors
affecting vitamin D concentrations in the communities.

In Chapter 2, [ present a study of genetic variation affecting warfarin disposition and
response in Alaska Native people. Anecdotal evidence suggests that the average warfarin
dose needed for Alaska Native people to achieve a stable, target anticoagulation effect (eg,
INR = 2-3) is lower than what is needed on average in other populations [13]. Warfarin is
prescribed commonly to prevent thromboembolic events, but too high of a dose can lead to
dangerous bleeds [14-17]. The 5 genes studied were CYP2C9, VKORC1, CYP4F2, CYP4F11,
and GGCX, which have been associated with warfarin activity and the vitamin K-dependent
clotting cascade [18]. Through resequencing, this study identified common and rare
candidate gene variation in Alaska Native populations and then determined frequencies of
the most prevalent variants thought to affect associated enzyme activities and warfarin
anticoagulation response. Better understanding of genetic variation in the Alaska Native
population may inform more appropriate warfarin dosing and reduce the risk of adverse
bleeding and thrombotic events.

In Chapter 3, I present a study characterizing the associations of genetics, diet,
demographics, and seasonal sunlight variation with serum 25-hydroxy vitamin D
[25(OH)D] concentrations in an opportunistic sample of Yup’ik people living in the Y-K

Delta. Vitamin D deficiency is a concern in Alaska because of the seasonal changes in



sunlight exposure [19]. Vitamin D deficiency has been associated with increased risk for
many diseases, including rickets and colon cancer [20-24]. Additionally, vitamin D levels
affect expression of intestinal cytochrome P450 3A4 (CYP3A4) [25, 26], an enzyme
involved in the first-pass metabolism of some drugs, including tacrolimus [27], tamoxifen
[28], midazolam [25] and certain statins [29-33]. In many populations, over 90% of vitamin
D that the body receives is synthesized in the skin from UVB radiation, with smaller
amounts obtained through the diet [34], but it is thought that Yup'ik people historically
maintained sufficient concentrations of 25(0OH)D3 through a diet high in vitamin D3 [35].
Dietary patterns are changing, however, and may expose the population to greater risk of
vitamin D deficiency and related diseases [19, 36], as well as variability in drug disposition
and response. Characterizing 25(0OH)D concentrations and the factors affecting them in the
Yup’ik population (and other AI/AN populations in Alaska) is important for understanding
disease risk associated with vitamin D deficiency and variability in drug response.

In chapter 4, I discuss a challenge to conducting genetic research with relatively
small, historically underserved populations and analyze a possible approach to addressing
these concerns using a responsive justice framework. Population substructure of study
participants can confound research results if genetic and phenotypic patterns differ
between cases and controls [37, 38]. ] present the scientific importance of adjusting for
population substructure in statistical analyses and the ethical challenges of doing so when
working with historically underserved and marginalized populations. | then analyze the
use of ancestral linguistic relationships of subpopulations as a possible tool for reconciling
these conflicting scientific and ethical demands of population genetic research. This type of

approach is an example of how responsive justice can be used when working with



communities in genetic research to maximize scientific validity of results without
compromising the ethical responsibility of researchers. By including communities in
research conversations and decisions up front, more of them may engage in research and
enable the expansion of benefits resulting from genetic research.

In summary, I address genetic research with historically underserved communities
in 3 ways: 1) by presenting an example of how genetic variation could affect warfarin
anticoagulation response in Alaska Native people; 2) by presenting genetic and
environmental associations with 25(0H)D3 concentrations in the Yup'ik people and how
changing dietary patterns could increase the risk of vitamin D deficiency and instability in
this population; and 3) by analyzing ancestral linguistic relationships of subpopulations as
an example in applying responsive justice to expand genetic research to include more

underserved populations.
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CHAPTER 2: VARIATION IN GENES CONTROLLING WARFARIN DISPOSITION AND
RESPONSE IN AMERICAN INDIAN AND ALASKA NATIVE PEOPLE: CYP2C9, VKORC(1,

CYP4F2, CYP4F11, GGCX

This work was published previously as Fohner, et al. Pharmacogenetics and Genomics.
2015.

2.1 Introduction

Genetic variation affects the pharmacokinetics and pharmacodynamics of medical
drugs by altering enzyme and transporter expression and function, resulting in differences
in drug efficacy and safety between individuals [1-5]. The prevalence and frequency of
genetic variation affecting pharmacologic response is diverse across racial and ethnic
populations [6-8]. As a result, populations that are rarely included in medical research,
such as American Indian and Alaska Native (Al/AN) people, are less likely to benefit
from genome-based, personalized, drug therapy [6-8]. Thus, pharmacogenetic research in
these understudied populations is needed to improve both the selection of drugs and their
dosages, and to reduce the number of adverse effects [6-8].

The incidence of stroke is disproportionately high in AN communities, with AN
people more likely to be affected by stroke at an earlier age than other populations [9-11]
and death rates due to stroke being approximately 20% greater than for individuals in
other racial and ethnic groups in the United States [9]. An oral vitamin K antagonist,
warfarin, is used to prevent thromboembolic events, but it has a narrow therapeutic index

and is affected by wide inter-individual and inter-ethnic dose variability (up to 20-fold),
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requiring intensive dose management to prevent adverse bleeding events, which can be
difficult when patients live in remote communities [12-15].

Over the last 7 years, the average stable anticoagulation dose used in long-term care
(> 22 weeks of treatment) for the AI/AN people receiving drug therapy at Southcentral
Foundation (SCF) in Anchorage, AK was found to be lower than the average for other sites
in North America and Europe, using the same DAWN AC Anticoagulation Management
Software (4S Information Systems Ltd., Cumbria, England). For a target INR of 2.5, with a
mean INR of 2.0 to 3.0, the average dose at SCF was 4.5 mg/day, with a percent time within
INR of 69.7%. For all other locations, the average dose was 4.9 mg/day, with a percent time
within INR of 73.0% [16]. These differences in dose may be attributed to inter-individual
and inter-ethnic differences, including differences in dietary vitamin K consumption, drug-
drug interactions, age, body surface area, gender, concurrent health conditions (e.g.,
diabetes), and genetic polymorphisms [17-20].

To explore the sources of this reported lower dose among AI/AN people, we
characterized the variation in 5 genes that have been associated with altered warfarin
response. These include the genes that encode the following enzymes: 1) the
pharmacological target of warfarin (VKORC1), which reduces vitamin K-epoxide to its
active form; 2) the major cytochrome P450 enzyme that clears (S)-warfarin (CYP2C9); 3)
two enzymes that catabolize vitamin K (CYP4FZ and CYP4F11); and 4) the g-carboxylase
that activates vitamin K-dependent clotting factors (e.g., Factors I, VII IX and X) (GGCX). It
is estimated that by combining knowledge of VKORC1, CYP2C9, and CYP4F2 genotypes with

readily accessible clinical factors, including age, gender, and body mass index (BMI), more
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than 60% of the variance in warfarin dosage can be explained in European-American
populations [21].

To assess novel variation in CYP2C9, VKORC1, CYP4F2, CYP4F11, and GGCX, each
gene was resequenced in a sample of AI/AN study participants. Population frequencies
were determined for alleles that had been previously associated with the dose of warfarin
in other populations and for novel non-synonymous alleles that were discovered during
resequencing. We hypothesized that there could be novel, function-disrupting variation or
higher frequencies of known gene variants in this population that could reduce warfarin

dose requirement and impact bleeding/thrombotic risk.

2.2 Methods

Setting. As of 2012, 106,260 AI/AN people live in Alaska, with approximately 1/3 living in
more densely populated areas such as Anchorage, Fairbanks, and Juneau, and 2/3 living
primarily in rural communities with populations of 50 to 1000 people, with many of the
communities accessible only by air or water [22]. Geographic isolation leads to substantial
portions of AI/AN people in Alaska being medically under-served and having considerable
health disparities compared to other populations [22].

Southcentral Foundation (SCF), a tribally owned and operated regional health
corporation, provides pre-paid healthcare services to 58,000 AI/AN patients, who are
considered “customer-owners” of SCF. The Anchorage Service Unit (ASU) served by SCF is
comprised of both urban and rural areas, including Anchorage, the Matanuska-Susitna
Borough, and 60 outlying communities (most with fewer than 500 residents). It provides

primary care services to ~ 55% of the total AN population at 6 SCF primary care clinics on
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the Alaska Native Medical Center (ANMC) campus. Tertiary care is provided at the 150-bed
ANMC hospital, which is co-owned and co-managed by SCF and Alaska Native Tribal Health
Consortium (ANTHC).

The Center for Alaska Native Health Research (CANHR) is based at the University of
Alaska Fairbanks. CANHR has an ongoing genetic research partnership with 11 of the 58
rural communities in the Yukon-Kuskokwim River Delta (Y-K Delta) that are served by the
Yukon-Kuskokwim Health Corporation (YKHC). The YKHC is based in Bethel and provides
healthcare to about 23,000 Yup’ik people. CANHR collaborates with Yup’ik communities in
community-based participatory research focused on understanding, preventing, and

reducing health disparities.

Institutional Review Board (IRB) Approval. The Alaska Area Institutional Review Board
(IRB), and the SCF and ANTHC tribal review boards approved work conducted at SCF on
the ANMC campus. The YKHC Executive Board of Directors and the University of Alaska
Fairbanks IRB approved the work conducted in the Y-K Delta by CANHR. The University of
Washington (UW) IRB approved the overall research project, as UW is the academic home
of the grant funding this research (Pharmacogenetics in Rural and Underserved
Populations) and its principal investigators. The National Institute of General Medical
Sciences and the Indian Health Service granted a Certificate of Confidentiality for
protection of participant information, and the respective Alaska IRBs approved forms for
written consent prior to initiating research. Research questions were developed through

community-based participatory research at SCF and CANHR.
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Study Participants. A convenience sample of study participants (n = 380) was obtained
through recruitment by research staff members at SCF’s primary care clinics. Any AI/AN
person =18 years of age and receiving care at SCF was eligible to participate in the study.
Surveys collected self-reported gender, date of birth, and tribal affiliation. A representative
subset (n=188) was used for resequencing of CYP2C9, VKORC1, CYP4F2, CYP4F11, and GGCX
genes.

A convenience sample of 350 residents of the Y-K Delta, 218 years of age, was
recruited using written and oral advertisement during research-focused community visits
by the CANHR research personnel. All CANHR participants self-identified as Yup’ik. A
subset of 94 individuals was chosen for targeted resequencing of CYP2C9, VKORC1, CYP4F2,
CYP4F11, and GGCX; because all participants were recruited from the same communities,
these 94 individuals were selected from the set of 350 individuals on the basis of being
unrelated according to either pedigree-based kinship coefficients obtained from available
genealogical information [23] as well as empirical kinship coefficients calculated using the
KING (kinship-based inference for GWAS)-robust method [24] for sample individuals with

genome-wide SNP genotyping data available.

Specimen Processing and Storage. Buffy coats were extracted from blood that was
collected into EDTA-coated tubes (BD Vacutainer® CPT™), centrifuged (900 x g, 15 min) at
room temperature, incubated with Puregene RBC Lysis Solution for 10 minutes, and
centrifuged again (1800 x g, 10 min) at room temperature. White blood cells from CANHR
samples were then re-suspended in 10 mL Puregene Cell Lysis Solution until DNA

purification. At CANHR, genomic DNA was isolated using the Gentra Puregene kit (Qiagen,
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Valencia, California, USA) prior to shipment to UW investigators. White blood cells from
SCF samples were washed in phosphate-buffer saline (1X PBS), centrifuged again (800 x g,
6 min) at room temperature, then re-suspended in PBS and frozen (-80°C) until shipped to
UW investigators for DNA isolation. Genomic DNA from the samples of SCF participants
was isolated using a QIAamp DNA Blood Midi/Maxi kit (Qiagen, Valencia, California, USA).
Quality and concentration of DNA were determined using a NanoDrop spectrophotometer

(Thermo Fisher Scientific, Wilmington, Delaware, USA).

Gene Resequencing Methods. Exons, 50-100 base pairs into each adjacent intronic region,
1000-4000 base pairs in the 5’ flanking region, and 150-300 base pairs into 3’ flanking
regions were resequenced using PCR amplicons ~500-600 bp in size, with amplicons
containing overlapping segments of ~150 bp to validate primer binding sites and to
prevent allele-specific amplification [25]. The PCR primers were standardized with a
universal M13-tailed PCR sequence, and used in conventional Sanger sequencing reactions
using BigDye chemistry under standard conditions and separated on an ABI 3730 DNA
analyzer (Life Technologies, Grand Island, NY, USA). Chromatograms were analyzed using
Phrap software (UW, Seattle, Washington, USA) for base calling and quality assignment,
and Consed software (UW) was used for assembly and editing [26]. Single nucleotide
polymorphisms (SNPs) and small insertions/deletions were identified through pairwise
comparison of chromatogram peak heights/intensities using the PolyPhred program
(version 5.0; UW) [27, 28], which produces chromatograms averaging greater than 500 bp
and averaging a Phred quality greater than 40 (corresponding to a 1/10,000 probability of

incorrect base assignment) [29]. Data were verified using second-strand confirmation.



17

Automated scripts were used to map variants onto the intron-exon gene structure. For the
CYP2(C9 and VKORC1 haplotype analysis, sites were based on human reference sequence
AL359672.

Coding variants CYP2C9 M1L, N218I, and P279T (CYP2C9*29) were analyzed for
PolyPhen2 and Grantham scores to predict the phenotypic effect of the amino acid change

on enzyme function [30, 31].

Genotyping Methods. We genotyped DNA samples from all study participants for novel
coding variants identified through resequencing and for those variants, both intronic and
coding, that have published phenotypes. This included 9 SNPs in CYP2(C9, 3 SNPs in
VKORC1, 6 SNPs in CYP4F2, 2 SNPs in CYP4F11, and 3 SNPs in GGCX. DNA samples were pre-
amplified following Fluidigm’s (South San Francisco, CA) Specific Target Amplification
protocol to increase available template DNA. TagMan SNP Genotyping Assays (Applied
Biosystems, Inc.) were run on 96.96 Dynamic Genotyping Arrays (Fluidigm) according to
the BioMark™ 96.96 Genotyping protocol. Dynamic Arrays were primed and loaded on the
Fluidigm HX and thermal cycled on the Fluidigm FC1 controller following pre-set programs
in the instruments. End-point fluorescence was read on a BioMark™ Real-Time PCR System
(Fluidigm) and analyzed using SNP Genotyping Analysis software (Fluidigm). Samples with
overall call rates below 95% were removed from further analysis. Of DNA samples selected
for genotyping, 22 from the SCF cohort were excluded due to call rates below 95%. For
samples from participants included in both sequencing and genotyping, concordance

between calls for the 2 methods was over 99.5%.
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Population Substructure Analysis. Genealogical information for the participants from the
CANHR sample set (Yup’ik residents of the Y-K Delta in southwestern Alaska) were used to
calculate pairwise kinship coefficients between each participant [23]. Using these pedigree
relationships, allele frequencies and confidence intervals in the CANHR dataset were
calculated according to the best linear unbiased estimator (BLUE) of allele frequency [32]
to account for the non-independence of these samples resulting from family structure. This
adjustment appropriately weights correlated genotypes based on kinship coefficients.

For participants from SCF, neither pedigree nor genome-wide marker information
was collected, so this kinship adjustment could not be calculated. To account for population
substructure within the SCF cohort, participants were asked for self-reported tribal
affiliation. Participants were grouped based on geographic and language similarities of
these affiliations, clustered based on linguistic studies by Krauss [33, 34]. These regions are
Northern (Inupiaq), Interior (Athabascan subgroups), Southeastern (Tlingit, Tsimshian,
Haida, Eyak), Southwestern (Aleut/Unangan), and Western (Central Yup'ik, Cup’ik,
Sugpiaq/Alutiiq). Participants also were given the option of choosing affiliation with
multiple groups and affiliation with tribes in the lower 48 states of the US, which resulted
in 7 total subgroups of participants. All subgroups are represented in the SCF cohort, with
each individual subgroup comprising no more than 17% of the total. Between subgroups of
study participants at SCF, Analysis of Variance (ANOVA) was performed at SNPs with

known phenotypic effects, with a significance threshold of 0.05.

Comparisons with Other Populations. Population frequencies were compared to the

1000 Genomes Database, which documents the distribution of common genetic variants in
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geographically and historically diverse populations [35]. The populations used for
comparison were Admixed American (AMR), African (AFR), Asian (ASN), and European
(EUR). Confidence intervals for allele frequencies were calculated based on the number of
individuals included in the 1000 Genomes Database for each SNP, as accessed on

September 17, 2014.

Statistical Analysis. Allele frequencies were compared using RStudio version 0.97.551
(RStudio, Inc., Boston, MA) and Haploview 4.2 software [36]. All SNPs identified were
tested for deviations from Hardy-Weinberg equilibrium using a x?-test. Pairwise linkage
disequilibrium (LD) was calculated using Haploview 4.2 software [36]. The r? values were
used to determine the LD between all non-monomorphic SNPs. The LD display was

generated using Haploview 4.2 software [36].

2.3 Results
Resequencing for SNP Identification. The exons and bordering intronic regions of the 5
genes CYP2(C9, VKORC1, CYP4F2, CYP4F11, and GGCX were resequenced in 94 CANHR
participants and 188 SCF participants to identify any novel population-specific variation.
All SNPs identified in the SCF and CANHR samples are listed in Table 2-1. Novel SNPs not
found in the 1000 genomes database as of November 5, 2014 are labeled rsNA, as they do
not have rs numbers.

For CYP2(9, 33 SNPs were identified in the samples from SCF participants, including
2 novel SNPs. In the samples from CANHR participants, 25 SNPs were identified, including

the same 2 novel SNPs. One novel SNP predicted a non-synonymous change from
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asparagine to isoleucine at amino acid 218 (N218I allele). The other was discovered in the
first codon, resulting in a change from methionine to leucine (M1L allele). The sequencing
chromatograms identifying N218I are found in Figure 2-1 and those for M1L are found in
Figure 2-2. This M1L SNP was found at frequency of 9.7% (+/- 4.3%) of chromosomes in
the 94 CANHR samples subjected to resequencing. M1L was also identified in the samples
from SCF participants, though at a lower frequency of 1.0% (+/- 0.7%). A known SNP,
rs182132442, resulting in a proline to threonine substitution at amino acid 279
(CYP2C9*29) is not well characterized and was found in the CANHR cohort only [37].
PolyPhen and Grantham scores predicted a deleterious effect on protein function for all 3
variants [30, 31, 38]. The M1L variant had a PolyPhen score of 0.904, predicting a severe
effect on protein function based on likely truncation. The N218I variant had a Grantham
score of 149 and the CYP2C9*29 variant had a Grantham score of 38, predicting severe
effects due to chemical dissimilarities of the affected amino acids.

For VKORC1, 10 SNPs were identified in resequencing the samples from SCF
participants. Of these, 3 were novel synonymous changes. Only 2 SNPs were identified in
the CANHR participants, neither of them novel. While the -1639 SNP differentiating the
major VKORC1 haplotypes was assessed, the 1173 base was outside of the sequencing
range, though both sites were assessed in subsequent genotyping.

For CYP4F2, 34 SNPs were identified in the samples from SCF participants, with 4 of
those being novel. One of these novel SNPs changed the splice site of exon 1 (exon+splice
allele). Within the CANHR participants, 22 SNPs were identified, with the only novel SNP

being the exon+splice.
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For CYP4F11, 28 SNPs were identified in the samples from SCF participants,
including 5 novel SNPs. One SNP that was novel at the time of sequencing, but has since
been named rs199657164, predicted a glycine to arginine change at amino acid 12 (G12R
allele). One of these five novel SNPs found in the samples from SCF participants predicted a
coding change from asparagine to aspartic acid at amino acid 285. In the CANHR
participants, 25 SNPs were identified, including 4 novel SNPs, 3 of which were also in with
the samples from SCF participants.

Resequencing of GGCX identified 21 SNPs in the samples from SCF participants.
These SNPs included 3 novel SNPs, including a predicted alanine to glycine change at amino
acid 421 (A421G allele). Of the SNPs identified in the samples from SCF participants, 11 of
those were identified in the samples from CANHR participants, including 1 of the novel
SNPs. No unique SNPs were identified in the CANHR cohort that were not found in the SCF

cohort.

Genotyping for Population Frequencies. A summary of the characteristics of study
participants for whom we recovered DNA producing = 95% genotyping call rates is
presented in Table 2-2. Genotyping at specific SNPs was performed to verify the findings
from resequencing and to establish better estimates of population frequencies (Table 2-3).
The SNPs chosen for genotyping either are SNPs that have a published phenotype, or are
non-synonymous SNPs that were discovered during resequencing. Allele frequencies of the
samples from the CANHR cohort were adjusted for the kinship between study participants

using BLUE [32]. All SNPs were in Hardy-Weinberg equilibrium.
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Of the 9 SNPs genotyped in CYP2C9, 6 were previously known alleles (*2, *3, *8, *11,
*13, *14, and *29) and 2 were the M1L and N218I novel non-synonymous SNPs identified in
resequencing. The frequencies of the *29 allele and both novel variants M1L and N218I
were significantly higher (p < 0.05) in the CANHR cohort, and the frequency of CYP2C9*2
was higher in samples from SCF participants. All other SNPs, with the exception of the
CYP2(C9*3 allele, were found at frequencies below 1% of alleles in both cohorts.

Of the 3 SNPs related to VKORC1 activity, 2 are the SNPs that differentiate the major
haplotype groups and typically are seen in complete linkage disequilibrium [39, 40]. The
other (rs28940302) predicts a substitution of leucine for valine at amino acid 29 (V29L)
and has been associated with warfarin resistance [41]. The V29L variant was found at less
than 1% in both cohorts. Both SNPs designating the major VKORC1 haplotype associated
with lower warfarin dose were found at significantly higher frequencies in the CANHR
cohort than in the SCF cohort (p < 0.05). The VKORC1 and CYP2(C9 diplotypes of the CANHR
and SCF cohorts are reported in Table 2-4 and predict phenotypes for warfarin
metabolism.

At the CYP4F locus, 6 previously identified alleles were assessed, as well as 2 novel
non-synonymous changes. The CYP4F2*3 (V433M rs2108622) allele was found at
significantly lower frequency in the SCF cohort than in the CANHR cohort. However, the
frequency of this variant was high in both populations and the frequency in the CANHR
cohort was one of the highest reported for a population to date - similar to the 53.2%
reported in the Saudi Arabian tribal subgroup of the Kuwaiti population [42]. Samples from
SCF participants had a significantly higher frequency of the CYP4F2*2 allele (W12G

rs3093105) than the samples from CANHR participants. The same was true of the CYP4F2



23

M519L (rs3093200) substitution, the CYP4F2 amino acid 185 change from glycine to valine
(G185Vrs3093153), and the CYP4F11 amino acid 276 change from arginine to cysteine
(R276C rs8104361).

The 2 GGCX SNPs described previously [43-45] were both found at significantly
different frequencies in the SCF and CANHR cohorts (p < 0.05). The SNP rs11676382 was
less common in the samples from CANHR participants, and the missense SNP (rs699664)

was less common in the samples from SCF participants.

Linkage Disequilibrium. Linkage disequilibrium (LD) was calculated between every non-
monomorphic SNP in each gene. For CYP2(C9, LD was low between all SNPs, in both the SCF
and CANHR cohorts. In the VKORC1 gene, the 1173C>T (rs9934438) and -1639G>A
(rs9923231) SNPs, which differentiate the 2 major haplotypes of VKORC1, were in tight LD
in both the samples from SCF participants (r2 = 0.96) and the samples from CANHR
participants (r2 = 0.97).

At the CYP4F locus (Figure 2-3), the samples from both SCF and CANHR participants
show moderate levels of LD between the rs2108622 and rs2189784 SNPs. The samples
from SCF participants show moderate LD between the rs2108622 (*3 allele) and the
rs3093105 (*2 allele). LD was low between all other SNPs.

The SNPs in GGCX were not in LD.

Allele Frequency Comparison Between AN Regional Subgroups. While the samples in the
CANHR cohort all were collected from participants living in the Y-K Delta and self-reporting

Yup'ik ancestry, many of the participants in the SCF cohort self-identify with tribes
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historically distributed throughout Alaska but now live in Anchorage or make visits there
for healthcare. The allele frequencies of the genotyped SNPs were determined for each of
the self-identified regional subgroups of Alaska (Table 2-3). Because subgroup frequencies
could not be adjusted for population substructure, the frequency variance is expected to be
slightly larger than presented here, but the frequency estimate should not be greatly
affected. Based on ANOVA results, SCF subgroups had significantly different allele

frequencies at the VKORC1 -1639, VKORC1 1173, and CYP4F2*3 loci.

Allele Frequency Comparison to Other Populations. Comparisons to the 4 main
continental groups of the 1000 Genomes Database are presented in Table 2-5 [35].
Generally, the frequencies of variant alleles CYP2C9*2 and CYP2C9*3 were low in the
samples from SCF participants by global comparison and even lower in the samples from
CANHR participants. For VKORC]1, the frequency of the lower warfarin dose associated AT
haplotype (A at rs9934438 and T at rs9923231) was high in the SCF cohort (~60%) and
higher in the CANHR cohort (~80%), though both frequencies were higher than in the EUR
and AMR and lower than in the ASN populations. At the CYP4FZ2 locus, the frequency of the
CYP4F2*3 SNP was higher in both the SCF and CANHR cohorts than in any of the 1000
Genomes Database populations. The allele frequency of CYP4F2*2 in the CANHR cohort was
low compared to the 1000 Genomes Database populations, whereas that of the SCF cohort
was similar to the EUR, AMR, and ASN populations. For GGCX, the variant allele frequencies

in the SCF and CANHR cohorts were similar to the 1000 Genomes Database populations.
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2.4 Discussion

The most significant new findings in the AN subpopulations studied were (1) the
presence of two, previously unreported, relatively high frequency coding variants in the
CYP2(C9 gene (M1L and N218I) in most, but not all, regional subgroups; (2) a high frequency
of the low warfarin dose associated non-coding variants in the VKORC1 gene, especially in
the Yup’ik population living in the Y-K Delta; and 3) a relatively high frequency of the
higher warfarin dose associated CYP4F2*3 variant in some, but not all, regional subgroups.
These results are generally consistent with an observed requirement of lower warfarin
doses to achieve target INR values in an AI/AN population receiving healthcare in
Anchorage, in comparison to that for the non-indigenous population of the US [16].

The identification of relatively common, novel, potentially function-disrupting
variants in CYP2(C9 illustrates how pharmacogenetic discoveries made from studies of
“representative” world populations do not always capture variation that could be
important for other, historically geographically isolated populations, such as the AN people.
Population-specific pharmacogenetic studies are necessary to guide anticoagulation
therapy in the AI/AN community if clinical testing becomes standard of care and is to be
implemented effectively. A prime example is the ATG to TTG change in the first codon of
the CYP2(C9 gene (resulting in a predicted methionine to leucine substitution at amino acid
position 1) that would be expected to adversely affect mRNA translation and protein
synthesis. Although we have not yet confirmed the phenotype of this variant, M1L is
predicted to disrupt mRNA translation, by alteration of the first codon. Similar disruption
of codon 1 (M1V or M1L) in other genes is associated with a highly penetrant, loss of

function phenotype [46-49]. Indeed, the extremely rare M1V variant of CYP2C9
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(CYP2C9*36) was recently described in a Chinese population, and its recombinant
expression was found to result in low accumulation of the variant enzyme relative to wild-
type in COS cells [50].

The novel asparagine to isoleucine substitution at amino acid 218 was also
predicted to have a deleterious effect on CYP2C9 enzyme function. N218I is located
between helices F and G in an area of the enzyme known to be important for catalytic
activity [51]. To our knowledge, no protein variant at this position has been prepared and
tested for function, but the neighboring, inter-helical, Q214L variant is CYP2C9*28, which
expressed well in COS-7 cells, but exhibited no detectable S-warfarin 7-hydroxylation
activity [52].

Another known, but little studied variant, a proline to threonine change at position
279 is predicted to reduce the catalytic function of CYP2C9. The CYP2C9 P279T variant
(CYP2C9*29) resides between the H and I helices of CYP2C9 [51], and has been found at low
frequencies in Japanese and Chinese populations [37, 50]. The recombinant enzyme
expressed well in mammalian cells and exhibited a ~30% reduction in tolbutamide
hydroxylation activity relative to wild-type [50]. A more detailed kinetic analysis of S-
warfarin 7-hydroxylation found no difference in Kn compared to wild-type CYP2C9 and a
~50% decrease in Vimax, similar to that found for CYP2C9*2 [52], which is an established
risk factor for warfarin sensitivity.

Combined with the known, functionally important CYP2C9 loss of function coding
variants (*2 and *3 alleles), these novel potentially loss of function variants were found at a
frequency that ranged from 9.5% in the Northern to 14.8% in the Interior AN subgroups.

Importantly, individuals carrying CYP2C9*2 and *3 alleles are at increased risk of major
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bleeding events following the initiation for warfarin therapy [53]. If relying on variants
identified in European populations, the much lower frequencies of *2 and *3 in AN
populations, especially in the Yup’ik population, compared to European populations would
underestimate overall CYP2(C9 coding variation. Novel CYP2C9 variants (M1L and N218I)
first identified in this paper, and a relatively new variant (P279T), may confer a similar risk
in AN subgroups. Thus, while the exact composition of CYP2C9 coding variation differs
between the AN regional subgroups and other populations globally, the overall impact of
these changes on warfarin dose requirement and bleeding risk could be the same.

Variation seen in the VKORC1 gene is also likely to have a significant effect on
warfarin dose requirement in regional AN subgroups. This is especially true for the Yup’ik
people of the Y-K Delta, for whom we observed the highest frequency of the low dose
haplotype. Although the specific mechanism is unknown, these non-coding SNPs are
consistently associated with reduced gene transcription and protein expression, and with
lower warfarin dose requirements in other populations [54, 55].

Although CYP4F2 variation is thought to contribute less to inter-individual
differences in warfarin dose requirement than do variation in CYP2C9 and VKORC1, it may
have a greater generalized impact on warfarin dose requirements in several AN regional
subpopulations because of the observed relatively high frequency of the *3 allele. The
CYP4F2*3 variant is associated with reduced metabolic clearance of vitamin K, increased
vitamin K levels, and increased warfarin dose [56, 57]. It would be expected to counteract
to some degree the effect of the reduced function CYP2C9 and VKORC1 variants on average
dose requirement, although a given individual could fall anywhere along a wide continuum

of warfarin dose sensitivity based on overall genetic constitution. Selective pressure may
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have acted on the CYP4FZ2 gene to conserve vitamin K as a result of inconsistent access to
greens (e.g., traditional tundra greens, beach greens) throughout the year. Alternatively, it
could be the result of a founder effect, with ancestral blocks of DNA preserved over time. Of
particular relevance is the recent report of reduced bleeding risk following variation in
vitamin K consumption in individuals carrying the CYP4F2*3 allele who receive long-term
warfarin therapy [53]. If changes in vitamin K consumption and accumulation in the body
affect the risk of a major bleeding event in individuals receiving warfarin, the relatively
high frequency of the CYP4F2*3 allele may provide some resiliency against that adverse
event.

Variation in GGCX and CYP4F11 is not expected to have implications for warfarin
therapy in the AN subpopulations. While genes were sequenced to look for novel SNPs,
none were discovered at a frequency expected to affect enzyme function at a population
level. Known variation in these genes has not been associated with warfarin dose or
response.

We sought to identify and characterize variation in 5 genes associated with warfarin
dose requirement and drug response in two cohorts of AN people. This study is the first to
partner with a diverse population to systematically sequence these genes to identify
population-specific variation. Furthermore, by genotyping these and other SNPs relevant
for warfarin response in cohorts of AN subgroups, we have established robust population
frequencies that can be used to guide patient care. Although this study does not have
information on drug dose or bleeding events for participants or functional studies on novel
variation, based on known genotype-phenotype relationships, our phenotypic predictions

of these genetic findings are well supported.
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The presence of novel CYP2(C9 gene variants and relatively high frequencies of
variant alleles in the VKORC1 and CYP4FZ2 genes support our hypothesis that
pharmacogenetic research in understudied populations is needed and suggests the
possibility of significant associations with warfarin dose requirement and bleeding risk in
the AN subpopulations. Warfarin is still the drug of choice for chronic therapy in the
prevention of thromboembolic events for at-risk individuals receiving health care at SCF
and YKHC. Although treatment is challenging for all of the reasons that apply to other
populations [12-15], major bleeding risk associated with alternative direct thrombin
inhibitors and the absence of an antidote for those drugs is a deterrent to changing
treatment in patients who often have restricted access to emergency care because of
geographic isolation. Thus, the findings we report may advance the development of genetic
tests for optimizing the initiation of warfarin therapy and for identifying individuals at

increased risk of major bleeding events during chronic therapy.
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2.5 Figures
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Figure 2-1: Electrochromatogram of novel SNP N218I, showing homozygous and
heterozygous samples at that position. The color of florescence at each base indicates
which base is at a sequence location, with the height of a peak indicating intensity of
florescence. Overlapping peaks represent heterozygosity and high peaks of 1 color
represent homozygosity of the corresponding base. Electrochromatograms produced using
Phred/Phrap/Polyphred/Consed system from Sanger sequencing[26]. The top
electrochromatogram shows heterozygosity at the N218I position. The bottom

chromatogram shows homozygosity of the reference base at that position.
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Figure 2-2: Electrochromatogram of Sanger sequencing output at the novel SNP M1L,

showing homozygous and heterozygous samples at that position. Based on relative

intensity of florescence tagged bases, the top chromatogram shows homozygosity for the

allele, the middle chromatogram shows heterozygosity, and the bottom chromatogram

shows homozygosity for the allele at the M1L position. Chromatograms produced with the

Phred/Phrap/ Polyphred/Consed system.
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Figure 2-3: Linkage Disequilibrium (LD) in the CYP4F locus for all non-monomorphic
SNPs in the participants from a) SCF and b) CANHR sample sets, by r2 measure.
Pairwise comparisons illustrate low LD between most SNPs. The rs2189784 and
rs2108622 SNPs are found in tighter LD in the samples from CANHR participants than in
the samples from SCF participants. These patterns illustrate the effects of potential founder
effects and population isolation, resulting in differences in genetic patterns found in
regional subgroups of Alaska. Variant pairs with LD scores closer to 100 were more often
inherited together than not. Scores were calculated with Haploview version 4.2. Haplotype

blocks determined by confidence intervals.



2.6 Tables

Table 2-1. Sequence variation in CYP2C9, CYP4FZ2, VKORC1, and GGCX in Yup'ik people
living in the Y-K Delta. SNPs identified through resequencing of warfarin genes in SCF
(n=188 individuals) and CANHR (n=94) cohorts. “X” indicates that the SNP was found in
that population. A “1” indicates that the SNP was found on only one allele total, in the
population marked.

CYP2C9
Allele rs Number Chromosome 10 SCF CANHR
position

9332092 96696529 X X
9332093 96696555 X X
61604699 96696903 X X
4918758 96697252 X X
4917636 96697344 X X
9332098 96697459 X X
9332100 96697820 X X
9332101 96697955 X X
9332102 96697956 X X

M1L NA 96698440 X X
9332104 96698690 X X
114071557 96701593 X X
9332119 96701601 X X
17847036 96701674 X X
9332120 96701850 X X

*2 R144C 1799853 96702047 X X
114071557 96707696 1

N2181 NA 96708875 X X
9332172 96731788 X X
9332197 96740908 X

*3 13591 1057910 96741053 X X
57811561 96745742 1
9332230 96745984 X X
28371688 96748492 X X
28371689 96748495 X X
1057911 96748737 X X
376114904 96748752 1

*12 P489S 9332239 96748777 1
9332242 96748893 X
9332245 96749181 X
148135940 96749312 X
182792423 96749327 1

*29 P279T 182132442 96731876 X



VKORC1

Allele rs Number Chromosome 16 SCF CANHR
position
7294 31102321 X X
61742233 31105922 1
55894764 31106015 1
NA 31106257 1
201733800 31106927 1
149536015 31106991 1
148249176 31107232 X
NA 31107503 X
9923231 31107689 X X
NA 31108008 1



CYP4F2
Allele

M519L
A483G
G464V
M433V
Exon+1 splice
P409S

G185V

3 G12W
*2

rs Number

1126433
3952538
NA
3093200
3952537
NA
2108622
NA
200492423
2074900
3093160
3093158
3093153
3093114
3093106
3093105
3093103
201641652
3093100
3093098
4646498
3093097
NA
3093092
3093091
3093090
147387603
3093089
146748375
3093088
3093086
117961148
182792423
187396291

Chromosome 19

position

15989405
15989523
15989564
15989589
15989696
15990162
15990431
15990573
15990598
15996820
15996907
16000166
16001215
16006413
16008257
16008388
16008434
16008435
16008469
16008512
16008643
16008691
16008722
16009127
16009133
16009134
16009153
16009292
16009294
16009388
16009607
16009905
16009941
16010095
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CYP4F11
Allele

N446D

N285D
R276C

GIZ2R

rs Number

1060467
1064796
2072269
1060463
12985248
NA

NA
8104361
3746153
3746154
3746156
2219358
2305804
2305803
NA
3765070
NA
4808414
2305801

199657164
148250072

2305800
11879253
12985091
3826950
3810428
3810427
NA

NA

Chromosome 19

position

16024538
16024662
16024739
16025176
16025312
16025541
16034687
16034714
16035474
16035494
16035517
16038334
16038365
16038390
16040230
16040292
16040440
16040473
16045141
16045185
16045186
16045294
16045491
16045749
16045891
16046478
16046650
16047103
16047237
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GGCX
Allele

R498R
A421G
T414T
R406R
P337L
Q325R
G279G

D113D

rs nhumber

11676382
41290033
NA
10179904
2592551
NA
699664
1254896
78185751
6751560
1254898
7568458
NA
78809601

115669754
148690568

75830997

142935757

6707308

145257780

11890182

Chromosome

2 position
85777633
85779050
85780087
85780107
85780131
85780500
85780536
85781318
85782587
85786074
85788140
85788175
85788420
85788476
85788738
85789101
85789135
85789199
85789906
85789963
85790165
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Table 2-2. Demographic characteristics of genotyped study cohorts. SCF participants were
classified by self-reported tribal affiliation, clustered by geographic region and linguistic
similarities. Only participants for whom genotyping reached = 95% call rate for all alleles
tested were included.

Population Subpopulation Males Females Total

SCF 125 234 359
Interior 17 20 37
Northern 30 55 85
Southeastern 16 26 42
Southwestern 23 37 60
Western 8 41 49
Multiple 21 35 56
Lower 48 10 20 30

CANHR 165 185 350
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Table 2-3. Prevalence of CYP2C9, CYP4F2, VKORC1, and GGCX variant alleles in the SCF and CANHR AI/AN cohorts of Alaska,
as determined using the Fluidigm genotyping platform. The SCF sample participants are presented in total (column 6) and
divided into regional subgroups (columns 7-13). Reference allele (Ref) obtained from dbSNP [58]. Reported frequency is of
the variant allele (Var) listed. Frequencies are reported in percentages, with 95% confidence intervals for the true population
allele frequency in parentheses.

CYP2C9
Allele rs number

*13L90P 72558187

*14 72558189
R125H

*2 1799853
R144C

*8 R150L 7900194

*11 28371685
R355W

*31359L 1057910

M1L NA

N2181 NA

*29 182132442
P279T

Var

CANHR SCF Interior Northern South South Western Multiple Lower 48

(n=350) (n=359) (n=37) (n=85) eastern western (n=49) (n=56) (n=30)
(n=42) (n=60)

0.0 0.0 0.0 0.0 1.2 0.0 0.0 0.0 0.0
(0-3.5)

0.0 0.0 0.0 0.0 1.2 0.0 0.0 0.0 0.0
(0-3.5)

0.3 5.2 5.4 4.1 7.1 5.8 6.1 1.8 8.3

(0-0.7) (3.6 - 6.8) (03-105) (1.1-7.1) (1.6-12.6)  (16- (14-10.8) (0-4.3) (13-15.3)

10.0)
0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 1.7
(0-0.3) (0 -5.0)

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2.1 34 4.1 1.2 3.6 5.9 0.0 3.6 8.3

(1.0-3.2) (21-4.7) (0 - 8.6) (0-12.8) (0-17.6) (1.7 - (01-71) (13-15.3)

10.1)

6.3 1.0 1.4 1.8 0.0 0.8 1.0 0.9 0.0

(45-8.1) (03-1.7) (0-4.1) (0-3.8) (0-2.4) (0 -3.0) (0 -2.6)

3.8 1.4 5.4 2.4 0.0 0.8 1.0 0.0 0.0

(2.4-5.3) (0.5-2.3) (03-10.5) (0.1-4.7) (0-2.4) (0 -3.0)

2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(1.0 -3.2)



VKORC1
Allele  rs number
V29L 28940302
1173 9934438
-1639 9923231

Ref

Var

77.5
(74.4 - 80.7)

77.8
(74.6 - 80.9)

SCF Interior
(n=359) (n=37)

0.1 0.0

(0-0.3)

59.7 52.7
(56.1-63.3) (41.3-64.1)
59.7 54.1
(56.1-63.3) (42.7 - 65.5)

Northern South South
(n=85) eastern western
(n=42) (n=60)
0.0 1.2 0.0
(0.0 - 3.6)
64.7 53.6 55.0
(57.5-71.9) (42.9-64.3) (46.1-63.9)
64.1 53.6 54.2
(56.9-71.3) (42.9 - 64.3) (45.3-63.1)

Western

(n=49)

0.0

68.4
(59.2 - 77.6)

68.4
(59.2 - 77.6)

Multiple
(n=56)

0.0

64.3
(55.4 - 73.2)

64.3
(55.4 - 73.2)

40

Lower 48

(n=30)

0.0

50.0
(37.3 - 62.7)

50.0
(37.3 - 62.7)



Allele

4F2

4F2
M519L

4F2*3
V433M

4F2
G185V

4F2%*2
wiza

4F2
spliceCG

4F11
R276C

4F11
G12R

CYP4F
rs number

2189784

3093200

2108622

3093153

3093105

NA

8104361

NA

Var

39.6
(35.9 - 43.2)

0.0

50.9
(47.2 - 54.7)

0.3
(0-0.6)

3.7
(23-5.1)

0.7
(0.1-1.4)

0.3
(0-0.7)

1.7
(0.7 - 2.6)

SCF Interior
(n=359) (n=37)
31.0 29.7
(27.6-34.4) (19.3-40.1)
2.7 2.7
(15-3.9) (0-6.4)
31.5 31.1
(28.1-349) (20.6 - 41.6)
2.2 4.1
(1.1-3.3) (0 - 8.6)
11.0 16.2
(8.7-13.3) (7.8 - 24.6)
1.4 9.7
(0.5-2.3) (3.0 - 16.4)
9.1 6.8
(70-11.2)  (1.1-12.5)
0.8 1.4
(0.2-1.5) (0-4.1)

Northern South South
(n=85) eastern western
(n=42) (n=60)
34.1 32.1 28.0
(27.0-41.2) (22.1-42.1) (20.0 - 36.0)
1.8 2.4 0.8
(0-3.8) (0-5.7) (0-24)
36.5 39.3 22.9
(29.3-43.7) (28.9-49.7) (15.4-30.4)
1.8 0.0 4.2
(0-3.8) (0.6 -7.8)
10.6 22.6 7.5
(6.0 -15.2) (13.7-31.5) (2.8-12.2)
1.2 1.2 0.0
(0-2.8) (0 -3.5)
7.6 8.3 10.8
(3.6-11.6) (24-142) (5.2-164)
0.0 2.4 0.8
(0-5.7) (0-2.4)

41

Western Multiple Lower 48
(n=49) (n=56) (n=30)
34.7 27.7 30.0
(253-44.1) (194-36.0) (18.4-416)
1.1 5.4 6.7

(0-3.2) (1.2-9.6) (0.4 -13.0)
35.7 32.1 16.7
(26.2-45.2) (23.5-40.7) (7.3-26.1)
1.0 1.8 3.3

(0 -3.0) (0 -4.3) (0-7.8)

6.1 8.0 10.0
(14-10.8) (3.0-13.0) (2.4-17.6)
1.0 0.9 0.0

(0 -3.0) (0 -2.6)

7.1 3.6 23.3
(20-122)  (0.1-7.1) (12.6 - 34.0°
1.0 0.9 0.0

(0 -3.0) (0 -2.6)
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GGCX

Allele rs number Ref Var CANHR SCF Interior Northern South South western Western Multiple Lower 48

(n=350) (n=359) (n=37) (n=85) eastern (n=60) (n=49) (n=56) (n=30)
(n=42)
11676382 C G 0.3 3.8 5.4 2.4 2.4 4.2 4.1 2.7 8.3

(0-0.7) (2.4 -5.2) (0.3 -10.5) (0.1-4.7) (0-5.7) (0.6 - 7.8) (1.7 - 8.0) (0-5.7) (1.3 - 15.3)

G421A NA G C 0.0 0.6 0.0 0.0 2.4 0.0 0.0 1.8 0.0

(0-1.2) (0-5.7) (0 - 4.3)
R325Q 699664 G A 49.1 35.9 31.1 38.2 23.8 29.2 49.0 43.8 30.0

(453-529) (324-39.4) (206-41.6) (30.9-455) (147-329) (21.1-373) (39.1-589) (346-53.0) (18.4-416)



Table 2-4: Frequencies of predicted diplotypes known to affect warfarin dose in the CANHR and SCF datasets.

Diplotypes of VKORC1 and CYP2C9 were calculated from observed 1173 and -1639-containing high and low dose VKORC1
haplotypes, and CYP2C9 *1, *2, *3 and the M1L, N218I, and P279T genotypes, assuming no LD between CYP2(9 variants.

CANHR Diplotype Frequencies

43

VKORC1 diplotype CYP2(C9 diplotype

*1/*1 *1/%2 | *1/*3 | *2/%2 | *1/M1L *1/N218I *1/%29 MI1L/M1L *3/M1L Total
Low dose homozygous | 153 1 6 0 25 20 12 2 3 222
(AT/AT)
Low dose heterozygous | 77 0 3 1 13 6 1 1 0 102
(AT/GC)
High dose homozygous | 17 1 2 0 4 1 0 1 0 26
(GC/GQ)
Total 247 2 11 1 42 27 13 4 3 350
SCF Diplotype Frequencies
VKORC1 diplotype CYP2(C9 diplotype

*1/*1 *1/%2 *1/*3 *2/%2 *1/M1L *1/N2181 *2/N2181 *2/*3 *3/*3 Total

Low dose homozygous 101 10 5 4 3 0 1 0 124
(AT/AT)
Low dose heterozygous 145 15 10 1 5 1 0 1 179
(AT/GC)
High dose homozygous 41 7 5 1 1 0 1 0 56
(GC/GQ)
Total 287 32 20 6 9 1 2 1 359
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Table 2-5: Comparison of allele frequencies of SCF and CANHR cohorts to global populations from the 1000 genomes
database[35]. Frequencies are reported as percentage of the variant allele, including 95% confidence interval. The
populations used for comparison were Admixed American (AMR), African (AFR), Asian (ASN), and European (EUR) from the

1000 genomes database.

CYP2C9
Allele rs number Reference Variant SCF CANHR
allele allele
Number of alleles 718 700
*2 R144C 1799853 C T 5.2 0.3
(3.6 -6.8) (0-0.7)
*31359L 1057910 A C 34 2.1
(21-4.7) (1.0-3.2)

12.4
(9.0 - 15.8)

5.8
(3.4-8.2)

492

1.8
(0.6 - 3.0)

0.6
(0-1.3)

572

0.3
(0-0.7)

4.0
(2.4-5.6)

12.3
(10.0 - 14.6)

6.1
(4.4 -17.8)



VKORC1

Allele rsnumber Reference Variant
Allele allele

Number of alleles

1173 9934438 G A

-1639 9923231 C T

SCF

718

59.7
(56.1 - 63.3)
59.7
(56.1 - 63.3)

77.5
(74.4 - 80.7)
77.8
(74.6- 80.9)

AMR
362

439
(38.8 - 49.0)
439

(38.8 - 49.0)

AFR
492

6.5
(4.3 -8.7)
6.5
(4.3 -8.7)

ASN
572

91.8
(89.6 - 94.0)
91.8

(89.6 - 94.0)

758

40.1
(36.6 - 43.6)
40.1

(36.6 - 43.6)

45



CYP4F
Allele

Number of alleles

4F2

4F2*3 V433M

4F2 G185V

4F2*2 W12G

4F11 R276C

rs number Reference Variant
Allele Allele
2189784 G A
2108622 C T
3093153 C A
3093105 A C
8104361 G A

SC

718

31.0
(27.6 - 34.4)
31.5

(28.1 - 34.9)
2.2
(1.1-3.3)
11.0

(8.7 -13.3)
9.1

(7.0 -11.2)

39.6
(35.9 - 43.2)
50.9

(47.2 - 54.7)
0.3

(0-0.6)

3.7
(2.3-5.1)
0.3

(0-0.7)

AMR
362

41.7

(36.6 - 46.8)
28.5
(23.8-33.2)
4.4

(2.3 -6.5)
17.7
(13.8-21.6)
224
(18.1-26.7)

AFR
492

28.7
(24.7 - 32.7)
8.5

(6.0 - 11.0)
2.6

(1.2 - 4.0)
24.0

(20.2 - 27.8)
29.3

(25.3 - 33.3)

ASN
572

26.6
(23.0 - 30.2)
20.6

(17.3 - 23.9)
0

7.2
(5.1-9.3)
7.2

(5.1-9.3)

46

758

43.0

(39.5 - 46.5)
27.3
(24.1-30.5)
7.5

(5.6 -9.4)
15.8

(13.2 - 18.4)
26.5

(23.4 - 30.0)



GGCX
Allele rs number Reference Variant
Allele Allele
Number of alleles
11676382 C G
R325Q 699664 C T

(%)
(@)
-]

718

3.8
(24-52)
35.9
(32.4-39.4)

0.3
(0-0.7)
49.1

(453 - 52.9)

AMR

362

3.3

(1.5 -5.1)
29.3

(24.6 - 34.0)

AFR

492

0.6

(0-1.3)
69.1

(65.0 - 73.2)

329
(29.0 - 36.8)

47

758

8.7

(6.7 - 10.7)
35.9
(32.5-39.3)
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CHAPTER 3: ASSOCIATIONS BETWEEN GENETICS, DIET, AGE, SEASON AND SERUM 25-
HYDROXYLATED VITAMIN D3 CONCENTRATION IN A YUP'IK STUDY POPULATION

FROM SOUTHWESTERN ALASKA.

This work was previously submitted for publication at the Journal of Nutrition:

Fohner, et al.

3.1 Introduction

Vitamin D deficiency is linked to increased risk for multiple illnesses, including bone
demineralization, rickets, multiple sclerosis, cardiovascular disease, colon cancer, some
types of breast and prostate cancers, type 1 and type 2 diabetes, respiratory infections,
influenza, active tuberculosis and depression [1-4]. The concentration of 25-hydroxy
vitamin D [25(0OH)D] in serum or plasma is used as the primary indicator of vitamin D
sufficiency [5, 6]. Although there is some controversy [7], the Institute of Medicine
considers a serum concentration of <12 ng/mL (30 nM) to be deficient, 12-20 ng/mL to be
insufficient, and >20 ng/mL (50 nM) to be sufficient [8]. Sun exposure, diet, age, gender,
body mass index (BMI), disease status, and use of some drugs have been associated with
serum/plasma 25(0OH)D concentration [5, 9]. Heritability of vitamin D concentrations has
been estimated at 29-80%, with known genetic variants explaining 1 - 4% of that variation
[10-14]. Specifically, common noncoding variants in CYPZR1, which encodes the enzyme
that hydroxylates vitamin D into 25(0H)D, and in DHCR7, which encodes the enzyme that
modulates the amount of vitamin D precursor in the skin for synthesis with sunlight, have

been associated with serum 25(0H)D3 concentration [1, 15, 16]. Indeed, a haplotype of
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DHCRY7 that is thought to reduce enzyme function has been found more commonly in
northern latitudes and is suggested to confer an evolutionary advantage [16].

Vitamin D deficiency is increasingly prevalent among Alaska Native infants and
children, with hospitalization due to rickets occurring more frequently than in the general
US and at a rate of 2.23/100,000 children/year [17, 18]. Cancer is the leading cause of
death among AN people [4, 19]. Colon cancer is of particular concern to the Yup'ik people in
the Yukon-Kuskokwim Delta (Y-K Delta), and had an overall incidence in AN people of
102.6 per 100,000 for all years combined between 1999 and 2004 [20], with a relative rate
of incidence of 2.03, compared to an overall incidence of 50.6 per 100,000 for non-hispanic
white people living in the same regions [20]. Thus, vitamin D deficiency is a public health
concern in Alaska.

For the Yup'ik people who live in the Y-K Delta of rural southwestern Alaska,
adequate vitamin D may be obtained from the traditional diet, including fish, marine
mammals, liver, and other organ meats [21]. In a study of Yup’ik communities in the Y-K
Delta conducted between 2003 and 2005, average 25(0OH)D3 concentration was 2x the
threshold for sufficiency and it was estimated that 90% of vitamin D came from traditional
food sources [21]. However, reduced consumption of locally harvested foods may be
leading to increased rates of 25(0OH)D deficiency in these communities [21-23]. To better
understand genetic, environmental, and demographic factors affecting circulating
25(0H)Ds3 concentrations, we conducted a cross-sectional study of the population that
included analysis of variants in CYPZR1 and DHCR7, serum 25(0H)D3 concentrations, and
nitrogen isotope ratio in red blood cells (RBCs), a validated biomarker of the marine-based

diet in the population [24, 25].
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3.2 Methods

Research approval. This study emerged from a partnership between the University of
Washington (UW), Center for Alaska Native Health Research (CANHR), Yukon Kuskokwim
Health Corporation (YKHC), and Yup’ik communities in the Y-K Delta. The research
questions were developed with Y-K communities in partnership with CANHR under
Community-based Participatory Research (CBPR) guidelines [26]. Approval for research
was received from the YKHC Executive Board of Directors and the University of Alaska
Fairbanks IRB, in addition to UW IRB. This study was granted a Certificate of
Confidentiality by the National Institute of General Medical Sciences to protect participant

information.

Study population. The Y-K Delta in southwestern Alaska is home to approximately 23,000
people, 85% of whom are self-identified Alaska Native (AN), who live predominantly in
remote communities and obtain healthcare through the YKHC [27]. A total of 743 male and
female research participants, 2 14 years of age, were recruited for the study between
September 2009 and December 2013 through written and oral advertisement. They

represent convenience sampling from 10 communities in the Y-K Delta.

Sample collection and processing. Fasting venous blood samples were collected from each
participant for isolation of red blood cells (RBCs), plasma, serum, and DNA. Blood was
collected into silica-coated coated K2 EDTA tubes (BD Vacutainer®) and centrifuged (900

x g, 15 min) at room temperature. Buffy coats were incubated with Puregene RBC Lysis
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Solution for 10 minutes, and centrifuged again (1800 x g, 10 min) at room temperature.
White blood cells were then re-suspended in 10 mL Puregene Cell Lysis Solution until DNA
purification using the Gentra Puregene kit (Qiagen, Valencia, California, USA). Serum was
isolated from blood collected in a BD red-top Vacutainer and transferred to amber tubes for
25(0H)Ds3 analysis. All samples collected in the field were stored in aliquots at -15°C in a
portable freezer while on site and then shipped to University of Alaska Fairbanks within 7
days and stored at -80°C. Isolated DNA and serum were subsequently sent to UW for

genetic and vitamin D analysis.

DNA isolation and genetic analysis. The CYP2R1 SNPs genotyped were rs2060793,
rs10741657,rs1993116, and rs11023374. The 4 SNPs informing DHCR7 haplotypes were
rs12785878, rs3794060, rs12800438, and rs4944957. These SNPs were chosen based on
previous association with 25(0OH)D levels [11-14, 16].

For CYPZR1 genotyping, DNA samples were pre-amplified according to Fluidigm’s
(South San Francisco, CA) Specific Target Amplification protocol to increase template DNA
for genotyping. TagMan SNP Genotyping Assays (Applied Biosystems, Inc.) were run on
96.96 Dynamic Genotyping Arrays (Fluidigm) according to the manufacturer’s established
protocol for BioMark™ 96.96 Genotyping. 96.96 Dynamic Arrays were primed and loaded
on the Fluidigm HX and thermal cycled on the Fluidigm FC1 controller according to the
manufacturer’s pre-loaded profiles. End-point fluorescence was read on a BioMark™ Real-
Time PCR System (Fluidigm) and analyzed using SNP Genotyping Analysis software

(Fluidigm).
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For determining DHCR7 haplotypes, DNA samples were genotyped using pre-
designed 5'-nuclease SNP Genotyping Assays (Applied Biosystems /Life Technologies,
Foster City, CA), which employ specific fluorogenic probes. The fluorescent 5'-nuclease
assays were performed and analyzed on an ABI 7900HT Fast Real-Time PCR System
(Applied Biosystems). The specific PCR reaction conditions were based on the general
guidelines provided by the manufacturer and incorporated 10-25ng of genomic DNA
template. Thermocycling parameters consisted of an initial incubation at 95°C for 10
minutes, followed by 40 cycles of 92°C for 15 seconds and 60°C for 1 minute.

Pairwise r? linkage disequilibrium (LD) patterns between the CYPZR1 SNPs and the
DHCR7 SNPs were calculated using Haploview 4.2 software [28]. All SNPs were tested for
deviations from Hardy-Weinberg equilibrium (HWE) using a x?-test, with a significance
level of 0.05. To calculate population frequencies of the SNPs in CYPZR1 and DHCR?,
genealogic information contained in pedigrees were used to create a matrix of pairwise
kinship coefficients between each participant, as described in Bourgain [29]. Estimates of
population frequency and variance with adjustment for relatedness among sample
individuals were obtained using the best linear unbiased estimator (BLUE) for allele
frequency [30]. The statistical analysis for allele frequency estimation was performed using

R statistical computing language [31].

Red blood cell nitrogen isotope ratio analysis. RBC nitrogen isotope ratios were prepared
as described in O’Brien [24] and analyzed at the Alaska Stable Isotope Facility at UAF by
continuous flow isotope ratio mass spectrometry, using a Costech ECS4010 Elemental

Analyzer (Costech Scientific Inc., Valencia, CA) interfaced with a Delta V Plus isotope ratio
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mass spectrometer (Thermo Fisher Scientific, Inc.,, Waltham, MA, USA) via the Conflo IV
Interface (Thermo Fisher Scientific, Inc.,, Waltham, MA, USA). Nitrogen isotope ratios are
represented in delta notation as ‘permil’ abundance of heavy isotope relative to an
international standard: [61°N value = (Rsample - Rstandard) /Rstandard] * 1000%o0, where R is the
ratio of heavy to light isotope, and the standard is atmospheric nitrogen. The RBC §1°N
value is a validated biomarker of RBC w-3 polyunsaturated fatty acid (PUFA) intake,
because both §1°N values and PUFAs are elevated in the fish and marine mammals that are

a staple of the traditional Yup’ik diet [24, 25].

Serum 25(0H)D3 measurement. The total (unbound and bound) concentrations of
25(0OH)Ds3 in serum samples were determined following a validated Liquid-
Chromatography, Tandem Mass Spectrometry (LC-MS/MS) assay, as described in Wang
[32]. Analytical standards were compared to reference 25(0H)D3 National Institute of
Standards and Technology standards [33] and found to be within 15% of the reference

concentration across the standard curve range.

Preliminary analysis and assessment of non-normality of samples. The distributions of
both 25(0H)D3 and 81°N values were assessed for normality. Log transformation of §1°N
values but not 25(0OH)D3 improved the normality of the distribution. Accordingly,
25(0H)D3 concentrations were not transformed and §1°N values were log transformed for
further analysis (Supplemental Figure 1).

Regression of serum 25(0OH)D3 concentration against each genotype at each SNP was

performed to determine which, if any, CYPZR1 or DHCR7 SNPs should be included in



58

association analysis as an additive or recessive variant model. Each SNP was evaluated
separately in a linear regression model and by an ANOVA test with 25(0H)D3
concentration. Genotypes were also tested in each season to assess any seasonal variation
in genetic contribution. Only the genotype at rs11023374 in CYP2R1 was included for
analysis, following a recessive inheritance model of the variant allele. None of the other
SNPs were found to be significantly associated with 25(0OH)D3 concentration overall or by

seasorn.

Kinship adjustment and summary statistics. A kinship correlation matrix based on
pairwise familial relationships was used to adjust for correlated 25(0OH)D3 concentration
values among sample individuals in an association analysis with a linear mixed effects
(LME) model. The pedigree information on the Yup'ik participants was used to create a
kinship correlation matrix with the coxme R package [34], and the kinship matrix was
incorporated in an LME regression analysis that was performed using the Imekin function

from the same package.

Correlations with serum 25(0H)D3 concentration. To determine associations with serum
25(0H)Ds3 concentration, a maximum likelihood mixed effect multiple linear regression
analysis was performed. To avoid spurious associations, the kinship correlation matrix was
included to account for the random effects of the non-independence of samples resulting
from any familial relationships. The fixed effects of the model included cofactors found to
be significantly associated with 25(0H)D3 concentration in previous studies [15, 21, 35].

These included age (continuous), gender (binary), BMI (continuous), yearly quarter of
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sample collection (factored), recessive CYPZR1 rs11023374 genotype (binary), and
log10(81°N value) (continuous). Inland or coastal geography of each community was also
included as a binary variable. The previously mentioned Imekin function in the coxme R
package was used to evaluate the mixed effects model using maximum likelihood analysis
[34]. For this exploratory analysis, covariates were determined as predictors of 25(0OH)Ds3
concentration if the significance of its coefficient surpassed p < 0.05. Samples missing data

were excluded.

Sinusoidal model analysis. A sinusoidal model previously developed to fit the seasonal
pattern of 25(OH)Ds3 concentration [36, 37] was used to model 25(0OH)D3 concentration
over the course of the year. The model was developed in a population of people ages 45-84
years living in 6 communities across the lower 48 states of the USA [36]. The model was fit
to the overall Yup'ik data and adjusted for age. It was also fit to subsets including 1)
younger and older participants split at the median (33 years), 2) male and female, 3)
log10(81°N value) split at the median (0.927), 4) genotype at rs11023374, and 5) coastal or
inland location of community. Sinusoidal model analysis was performed with the

cosinor.Im function of the cosinor R package [38].

Linear regression with subset of unrelated participants. A subset of 526 unrelated
participants was selected by removing individuals from the kinship matrix who were
related to others by the 34 degree or closer. Simple linear regression with only these
participants was performed using R [31] to determine variability in 25(0OH)D3

concentrations attributable to covariates. Regression was also performed on subsets of
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participants, split at the median age. T-tests were used to compare the demographics of the

unrelated subset to the full data set.

3.3 Results

Population demographics and summary statistics. The complete dataset included 743
individuals, whose demographics and summary statistics are described in Table 3-1. The
distributions of 25(0H)D3 concentrations and §1°N values, both untransformed and
transformed, are shown in Figure 3-1. Serum 25(0OH)D3 concentrations ranged from 6.0

ng/mL to 68.7 ng/mL.

Adjusted statistics and analyses. Summary statistics of the sample, adjusted for kinship
coefficients between participants, are presented in Table 3-2. Overall, participants younger
than 33 years old had significantly lower BMI, log10(61°N value), and 25(0OH)Ds3
concentrations than participants age 33 years and older (p < 0.05). The same was true of
males compared to females. Concentration of 25(0H)D3 and log1o(81°N value) by decade of
age are presented in Figure 3-2. Mean concentration of 25(0OH)D3 and logi0(61°N value) by
season are presented in Figure 3-3, showing significant differences in 25(0OH)D3
concentration but no variation in log10(8°N value) by season. The correlation between
log10(81°N value) and 25(0H)D3 concentration is presented in Figure 3-4, illustrating a
correlation of 0.24 between the 2 metrics.

Overall, 22.9% of participants had 25(0OH)D3 concentrations below the 20 ng/mL

threshold for insufficiency, as defined by the Institute of Medicine. Among the younger half
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of participants, 38.1% were insufficient, whereas among the older half of participants, 8.0%

were insufficient.

CYPZ2R1 and DHCR7 population genotyping. The frequencies of minor alleles at each SNP
in this Yup’ik study population are listed in Table 3-3, adjusted for kinship between study
participants. Association of each SNP with 25(0H)D3 concentration is also shown. Only the
SNP rs11023374 in CYPZR1 was significantly associated with 25(OH)D3 concentrations
(p=0.009). All SNPs were in Hardy-Weinberg equilibrium.

Three SNPs in CYP2R1,rs10741657,rs2060793, and rs1993116 were in high LD in
this Yup'ik study population (r2 = 0.97). The same 3 SNPs were in moderate LD with the
fourth SNP, rs11023374 (r2 = 0.35) (Figure 3-5a). A LD block reported for other
populations [16] was also seen with the 4 SNPs informing the DHCR7 haplotypes; r?
between 0.94 and 0.97 for all pairwise comparisons of all 4 SNPs (Figure 3-5b). The
haplotype associated with lower DHCR7 activity was identified at 48.3% in the sample

(Table 3-4).

Modeled annual fluctuation in 25(0H)D3 concentration. Based on a sinusoidal model
describing the seasonal fluctuations in 25(0OH)D3 concentration [36], the average Yup'ik
participant was predicted to have a mean 25(0H)D3 concentration of 30.3 ng/mL (95% CI:
29.5 - 31.2) over the course of the year, with an amplitude of 7.97 ng/mL (95% CI: 6.27 -
9.66). This model predicted an average minimum concentration of 22.4 ng/mL and an
average maximum concentration of 38.3 ng/mL throughout the year. The R? of the fit was

0.11, indicating other significant sources of variation, but consistent with the fit found in
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populations used in development and validation of the model [37]. Including age as a
covariate in the model improved the fit with R2 = 0.45. Twenty-four samples were excluded
from the model due to missing 25(0OH)D3 data.

Older age, as evaluated by splitting the dataset at the median (33 years) (Figure 3-
6), and higher logi0(61°N value), as evaluated by splitting the dataset at the median (0.927),
were both significantly associated with higher 25(0OH)D3 concentration over the course of
the year (p < 0.001 for age split; p < 0.001 for log10(61°N value) split) in a model not
adjusting for the other covariates. The predicted annual mean 25(0OH)D3 concentration for
a younger member of the Yup'ik population was 24.0 ng/mL (95% CI: 23.0 - 25.0), with an
amplitude of 8.19 ng/mL (95% CI: 6.09 - 10.3), whereas the predicted annual mean
25(0H)Ds3 concentration for an older member of the population was 36.8 ng/mL (95% CI:
34.3 -39.3), with an amplitude of 5.74 ng/mL (95% CI: 3.87 - 7.61).

Age and log10(8°N value) were independently associated with the fit of the
sinusoidal model, as both covariates were significant in the regression model that included
both variables (p < 0.001) as predictors. Gender (p = 0.10) was not significantly associated
with 25(0H)Ds3 concentration, but recessive genotype at rs11027334 (p = 0.03) and coastal
versus inland geographic location of the community (p = 0.009) were significantly

associated with lower yearly average 25(OH)D3 concentrations in the sinusoidal model.

Seasonal analysis. Participants were divided into seasonal quartiles, based on the
distribution of 25(0H)D3 concentration over the course of a year. Peak 25(0H)D3
concentration occurred in September and the trough was in March, as determined from a

fit of the sinusoidal model. This result yielded a seasonal breakdown of low 25(0OH)D3
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concentration in February, March, and April; increasing concentration in May, June, and
July; high concentration in August, September, and October; and decreasing concentration
in November, December, and January. These divisions reflect the 20 day half-life of
25(0OH)D, following seasonal patterns of sunlight exposure. On average, 25(0OH)D3
concentrations in older participants would not be expected to drop to insufficiency in the
February-April trough, whereas 25(0OH)D3 concentrations in the average younger

participant would be expected to do so following the nadir in sunlight exposure.

Associations of covariates with serum 25(0H)D3 concentration. Based on the
significance threshold of p < 0.05 in a linear mixed model regression, log1o(81°N value), age,
gender, BMI, community location, homozygosity of the variant allele at CYPZR1
rs11023374, and season of blood draw were all significantly associated with 25(0OH)D3
concentration after accounting for the kinship coefficients between participants (Table 3-
5). Based on proportional variability explained by the kinship matrix, heritability of
25(0OH)Ds3 concentration in these study participants was estimated to be 0.46 after

adjusting for age, diet, BMI, season, and community effects.

Associations with 25(0H)D3 concentration based on maximum unrelated subjects. In
multiple linear regression including only the 526 unrelated participants, age, logi0(61°N
value), season, gender, BMI, community location, and genotype at CYP2ZR1 rs11023374
were found to be significantly associated with 25(0OH)D3 concentration. These unrelated
participants are representative of the entire dataset (Table 3-6). Overall, 45 samples were

excluded due to missing data on 25(0OH)D3 concentration (24 samples) and/or dietary
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marker (42 samples) and/or genetic data (22 samples). All together, the variables included
in the regression explained 52.8% of the variability in 25(0OH)D3 concentration of this
sample set, with season, age, and logi0(61°N value) explaining 45.2% of variability.
Considered individually, season of blood draw accounted for 9.1%, age accounted for
36.5%, and log10(81°N value) accounted for 20.5% of variability (Table 3-7). In a combined
analysis, age and logi0(61°N value) accounted for 38.6% of variability in 25(OH)Ds.

In the younger half of participants, differences in the dietary marker accounted for
1.4% of variability in 25(OH)D3 concentrations and differences in season of sample
collection accounted for 13.0% (Table 3-7). In the older half of participants, differences in
dietary marker accounted for 14.0% of variability in 25(0OH)D3 concentrations and

differences in season of sample collection accounted for 6.4%.

3.4 Discussion

We characterized the serum 25(OH)D3 concentration in a cross-section of Yup'ik
people living in the Y-K Delta to better understand the role of genetics, diet and sun
exposure in determining Vitamin D levels in that population. The average 25(0H)D3
concentration among the Yup’ik study participants (31.0 +/- 0.1 ng/mL) was higher than
the average reported for many populations [39], including healthy individuals living at
lower latitudes (25.1 +/- 0.4 ng/mL) [37], who would arguably have greater opportunity to
synthesize vitamin D from sunlight throughout the year. Greater intake of traditional foods
rich in fats from marine mammals and fish, as measured by log10(61°N value), was
associated with higher 25(0H)D3 concentration in the Yup’ik study population. Not

surprisingly, diet appears to be a more important source of vitamin D than sunlight in the



65

Yup’ik population, with older participants consuming more of the traditional foods rich in
vitamin D [40]. Although the direction of the association varies by region, serum 25(0OH)D3
concentration has been associated with age in other populations and has been linked to
age-related lifestyle differences that affect the amount of time outside and exposed to
sunlight [39]. Because the association with age is found in the Yup’ik study participants
even after adjusting for diet, there are likely age-related differences in lifestyle and
variability in sources of vitamin D that are not being captured in this study.

While SNPs in CYPZR1 have been associated with 25(0OH)D3 concentrations in other
populations, only rs11023374 was associated with 25(OH)D3 concentrations in the Yup’ik
study participants. The SNP rs11023374 was in weaker LD compared to the other SNPs,
suggesting that it may be more closely linked with the causal variant. The strong LD
patterns between the other SNPs are similar to what has been found in other populations
[1, 14]. Even so, genotype at rs11023374 accounted for only 1% of variability in 25(0OH)D3
concentrations. Furthermore, the DHCR7 haplotype associated with increased production
of vitamin D from sunlight was found at a lower frequency in the Yup’ik participants than in
other populations living at northern latitudes [16], and none of the SNPs informing DHCR7
haplotypes was associated with 25(0H)D3 concentration. These results suggest that the
haplotype does not confer a particular advantage for maintaining vitamin D concentrations
in this population and that dietary sources were sufficient historically. Although the
contribution of these 8 genetic variants was found to be minor, the heritability estimate of
0.46 for 25(0OH)D3 concentration suggests that uncharacterized genetic variation should
still be considered for associations with disease risk and vitamin D status. While the

estimate must be interpreted with caution, as it does not account for the shared
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environment of participants, it suggests that CYPZR1, DHCR7, and other candidate genes in
the vitamin D pathway, such as for the vitamin D binding protein [11], should be sequenced
to identify any novel variation or LD patterns in the Yup’ik population.

Consistent with the results of the regression analysis, modeling results indicated
that greater consumption of the traditional diet provides sufficient vitamin D
concentrations over the entire year. While the specific source may vary by season,
traditional marine foods are available year round, either fresh, frozen or dried, as indicated
by the consistency of the dietary marker throughout the year. However, the traditional diet
of fish, marine mammals, birds, land mammals, and berries is being replaced by nutrient-
poor imported foods in many indigenous arctic communities, especially among youth and
young adults, and this transition has been linked with lower vitamin D concentrations [4,
22, 25, 40]. Because of lower consumption of traditional Yup’ik subsistence foods, younger
people are at greater risk of being vitamin D deficient during the winter months (February
— April) and of having more variable 25(0H)D3 concentration with changes in season. This
deviation from the traditional diet among the younger demographic is prompting public
health concern, as it increases the risk for illnesses associated with vitamin D deficiency.
Future studies are needed to understand the health impacts of these dietary patterns and
low vitamin D concentrations in Yup’ik communities.

Vitamin D concentrations differed significantly by gender and community location,
suggesting demographic differences in vitamin D sources. In contrast to findings from
other populations [41], female Yup’ik participants had higher 25(OH)D3 concentrations
compared to males, likely reflecting differences in traditional food intake estimated from

015N values [25]. After adjusting for diet, however, men had higher concentrations of
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25(0H)D3, likely because of spending more time outside. Whereas §1°N values were higher
in coastal communities, suggesting greater intake of traditional marine foods, participants
from inland communities had higher concentrations of 25(OH)Ds. One possible explanation
is that certain foods have higher vitamin D content in relation to §1°N value and are eaten
more frequently in inland communities.

Strengths of this study are that it combined demographic, genetic, seasonal, and
dietary measures to more completely characterize sources of variability in 25(0OH)D3
concentrations and risk of vitamin D deficiency in a population with highly variable serum
25(0H)Ds concentrations and experiencing a transition in dietary patterns. Moreover, it
used an objective measurement of dietary intake of vitamin D and sampled concentrations
throughout the year in a region experiencing drastic changes in sunlight availability. A
limitation of this study is that it did not evaluate sources of vitamin D3, such as
supplementation in market foods, which would contribute to overall vitamin D status and
to the risk of deficiency and insufficiency. Another important limitation of these data is that
they are cross-sectional. A longitudinal study is needed to confirm the seasonal variation in
25(0H)Ds3 concentration within individuals, although this variation would be expected
based on studies in other populations [36, 37]. Furthermore, due to convenience sampling,
the dataset contains an abundance of samples collected in transitional seasons between
maximum and minimum annual vitamin D concentrations (May - June and November -
January), and has under-sampled the low season (February - April), especially. As a result,
the average 25(0OH)D3 concentrations may be skewed high.

In summary, average serum 25(0OH)D3 concentrations were high relative to other

populations and were highly correlated with dietary sources of vitamin D; however, they
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were also highly variable, with a larger portion of younger people insufficient and deficient
for vitamin D concentrations compared to older participants. A public health campaign to
raise awareness about potential health benefits of a traditional diet could possibly raise
average serum 25(0H)D3 concentrations and maintain stability during periods of low
sunlight exposure. Efforts to increase serum 25(0OH)D3 concentrations could also help
reverse recent increases in the incidence of vitamin D deficiency, such as among young
pregnant women in AN communities, which has been associated with an increase in
illnesses associated with vitamin D deficiency [17]. While supplementation and fortification
of foods with vitamin D may reduce the risk for vitamin D deficiency in the Yup’ik
population [4], promotion of a traditional diet could have positive health impacts that go

beyond raising vitamin D concentrations in these communities.



3.5 Figures

25(OH)D3 (ng/mL)

Figure 3-1: Histogram of the distribution of
a) serum 25(0H)D3 concentrations; b)
untransformed & 15N; and c) transformed
log10(8 1°N) in study participants. a) The
vertical line at 20 ng/mL denotes vitamin D
insufficiency according to the Institute of
Medicine; b) Untransformed skewness 1.01
and kurtosis 1.11; c) Transformed skewness
0.61 and kurtosis 0.19.
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Figure 3-2: Concentration of a) 25(0H)D3 and b) log10(8 15N value) by age of study

participants, stratified by decade. As age increases, so does mean 25(0H)D3

concentration and mean log1o(5 1°N value).
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Figure 3-4. Correlation of the concentration of 25(0H)D3 with the log of the Nitrogen

Isotope Ratio. As the Nitrogen Isotope Ratio increases, so does 25(0OH)D3 concentration.
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Figure 3-5: Linkage disequilibrium (LD) pattern of the SNPs genotyped in a) CYPZR1,;

and b) DHCR7, by r? measure. a) The 3 SNPs in CYPZR1, rs10741657, rs2060793, and

rs1993116 are in nearly complete LD by both measures. All 3 are in moderate LD with the

4th SNP, rs11023374; b) The 4 SNPs in DHCR7 are in tight LD, preserving the haplotype

structure seen in other populations.
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Figure 3-6: Sinusoidal model of variation in 25(0OH)D3 concentration in study
participants over the course of the year. Participants are stratified by age into 2 groups
divided at the median age to illustrate higher average 25(0OH)D3 concentration among older
participants. The boxes represent the distribution of 25(OH)D3 concentration during each
month of sample collection, with younger participants represented by dark grey and older
participants represented by light grey boxes. Sinusoidal lines represent the best fit of the
model to the respective data sets, with the younger half of participants depicted by a dotted
line and older participants by a solid line. The dashed horizontal line at 20 ng/mL indicates
the Institute of Medicine threshold for vitamin D insufficiency.
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3.6 Tables

Table 3-1: Participant demographics stratified by quarter of data collection. Study participants all self-identify as Yup'ik.
Standard deviation (sd) is indicated in parentheses.

Time of Number Male Female Mean Age Mean Mean log1o(8 Mean Number Number

Collection (years) (sd) BMI (sd) 15N value) (sd) 25(0H)Ds from Inland  from Coastal
(ng/mL) Communities Communities
(sd)

Aug-Oct 167 79 88 40.9 (20.2) 25.8(5.3) 0.934(0.053) 36.7(12.1) 117 50

Nov-Jan 310 171 139 35.5(17.1) 26.2 (5.8) 0.939 (0.066) 30.9(13.0) 161 149

Feb-April 48 19 29 35.1(20.4) 26.3(6.0) 0.945(0.058) 25.6(12.9) 0 48

May-July 218 121 97 34.7 (16.5) 26.6 (6.2) 0.935(0.057) 27.4(10.6) 63 155

Total 743 390 353 36.4 (18.0) 262 (5.8) 0.937(0.060) 30.8(12.6) 341 402
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Table 3-2: Summary of demographics adjusted for correlation between participants using mixed effect model linear
regression. Z-scores and p-values show significance of differences by each measure, stratified by age groups or gender.

Number Mean Age z- Mean BMI | BMI z- Mean logi10(61°N | Mean 25(0H)D3
Age score and score and log10(6 15N) value) 25(0H)D3 | z-score
(years) p-value p-value z-score and and
p-value p-value

<33 369 20.9 z =45.17 24.3 z=9.25 0.907 z=16.49 24.5 z=18.16

>33 374 51.8 p <0.001 28.0 p <0.001 0.966 p <0.001 37.7 p <0.001

Male 390 34.4 z=-3.18 24.9 z=-6.79 0.919 z=-8.88 30.1 z=-241

Female 353 38.6 p =0.002 27.7 p <0.001 0.957 p <0.001 32.3 p=0.016

Overall 743 36.4 (0.7) 26.2 (0.2) 0.937 31.1 (0.5)

(standard (0.002)

error)




Table 3-3: Minor allele frequencies at each SNP in CYPZR1 and DHCR7, and significance of association with 25(0H)D3

concentration.

SNP Major/Minor Allele Minor Freq (95% CI) ANOVA with
25(0H)Ds3

CYP2R1

rs10741657 A/G 39.10% (36.54 - 41.66%) 0.166

r2060793 A/G 39.02% (36.45 - 41.59%) 0.269

rs11023374 T/C 38.68% (36.12 - 41.23%) 0.009**

rs1993116 A/G 19.25% (17.18 - 21.32%) 0.216

DHCR7

rs12785878 G/T 49.04% (47.13 - 50.95%) 0.311

rs3794060 C/T 48.53% (46.62 - 50.44%) 0.402

rs12800438 G/A 48.81% (46.89 - 50.72%) 0.257

rs4944957 A/G 49.27% (47.34 - 51.20%) 0.333

**: indicates statistical significance, based on a p < 0.05 threshold.



Table 3-4: The frequencies of haplotypes of DHCR7 identified in Yup’ik participants. The order of SNPs is rs12785878,
rs4944957, rs12800438, rs3794060.

Haplotype Frequency

TGAT* 0.483
GAGC 0.494
GGAC 0.005
GAAC 0.005
GAGT 0.005
TGGC 0.004
TAGC 0.002
TAGT 0.002

*Associated with greater vitamin D production
(Kuan V, Martineau AR, Griffiths C], Hypponen E, Walton R. DHCR7 mutation linked to higher vitamin D status allowed early
human migration to Northern latitudes. Evolutionary Biology 2013;13).
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Table 3-5: Linear mixed effects model regression coefficients and significance of the contribution of each variable to
serum 25(0H)D3 concentration. The model included all of the variables in the table. Significance was set as p < 0.05.
Standard error (se) is indicated in parentheses. The reference category (ref) is indicated for all discrete variables.

Characteristic N B coefficient from full P value from full
model (se) model
Fully adjusted model 743
Age 0.268 (0.023) <0.001
Younger than 33 369
Older than 33 374
Season
May-July 305 -3.906 (0.994) <0.001
Aug-Oct 167 ref
Nov - Jan 218 -2.751 (0.886) 0.002
Feb-April 49 -5.219 (1.621) 0.001
Logio(8 1°N value) 85.070 (7.423) <0.001
Gender
Male 390 1.905 (0.687) 0.006
Female 353 ref
Community location
Coastal 402 ref
Inland 341 7.654 (0.794) <0.001
BMI -0.209 (0.0589) <0.001
CYP2R11rs11023374
Homozygous variant 32 -3.900 (1.623) 0.016

At least one reference allele 207

ref
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Table 3-6: Demographics of unrelated subset of study participants compared to full dataset.

Number in Each Season (% total)

Total Male (%  Female 25(0H)D Age BMI Logio(615N)  Aug-Oct  Feb- Nov-Jan May-July
total) (% total) April
Unrelated 526 282 244 31.0 36.1 26.1 0.936 136 33 207 150
subset (53.6%) (46.4%) (259%) (6.3%) (39.3%) (28.5%)
All 743 390 353 30.8 36.4 26.2 0.937 167 48 310 218
(52.5%) (47.5%) (22.5%) (6.5%) (41.7%) (29.3%)
t.test of p=078 p= p = p =0.77
comparison 0.77 0.76

unrelated
subset to all
participants
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Table 3-7: Variability explained in multiple linear regression with the subset of unrelated participants (n = 526), considered
together and stratified by older and younger participants. Regressions included the full model of all variables, each variable alone,
and age and log1o(615N) together. The significance of the association of each variable with 25(0OH)D3 concentration is indicated by the p-
value. The goodness of fit is reflected in the R2 of the regression, on a scale of 0 to 1, and indicated in parentheses. The left side of the table
shows regression with all participants combined. The right side of the table shows regression in the younger half of participants and older
half of participants, split at 33 years.

Characteristic N Significance in full Variability Younger Subset: significance Older subset: significance in
model explained (R?) in full model and (R?) full model and (R?)
Fully adjusted model 526 p<0.001 (0.528) (0.287) (0.417)
Age p <0.001 (0.365) p <0.001 (0.010) p <0.001 (0.161)
Younger than 33 272
Older than 33 254
Season (0.091) (0.130) (0.064)
May-July 150 p<0.001 p <0.001 p =0.089
Aug-Oct 136 reference
Nov - Jan 207 p<0.001 p <0.001 p=0.293
Feb-April 33 p<0.001 p <0.001 p =0.948
Log10(6 15N value) p <0.001 (0.205) p <0.001 (0.014) p <0.001 (0.141)
Gender p =0.007 (0.00) p =0.005 p =0.251
Male 282
Female 244
Community location p <0.001 (0.063) p <0.001 (0.072) p <0.001 (0.070)
Coastal 270
Inland 256
BMI p =0.041 (0.006) p=0.014 p=0.161
CYPZ2R11rs11023374 p =0.016 (0.011) p =0.362 p=0.033
Homozygous variant 23
At least one reference 503
allele
Age and log10(61°N value) (0.386) (0.038) (0.212)
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CHAPTER 4: A RESPONSIVE JUSTICE APPROACH TO RECONCILING THE STATISTICAL
DEMANDS OF POPULATION STRATIFICATION AND THE ETHICAL DEMANDS IN

GENETIC RESEARCH WITH UNDERSERVED COMMUNITIES

4.1 Introduction

When conducting genetic epidemiological research, associations are made between
genetic markers and medical outcome. When assessed correctly, these associations can
inform medical decisions regarding disease risk and medical treatment. By understanding
the effects of these genetic variants, medical providers can adjust their care of individuals
who have the variants, thereby providing better, more personalized treatment.

A genetic variant that is associated with a given medical response or outcome often
is discovered through large population-wide analyses and case-control studies. When the
“risk markers” are discovered within a study population, they inherently include
information from the genetic structure and environment of that population. What this
means is that associations are most valid in the population in which they are developed. As
aresult, associations that are valid in some groups of people are not valid in others. In
trying to extend the benefits of genetic testing to all people and to improve health justice,
all populations must be included in research. However, some groups may be hesitant to
participate in the very research that could improve their care, as genetic research may put
them and their community at risk.

Furthermore, the underlying genetic structure of human populations can complicate
the validity of these medical genetic associations in different groups of people, even in the
groups participating in the research. Statistical adjustments can be made to account for this

complication, but the measures needed to make these adjustments often expose
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participating groups to greater risk of the harms associated with genetic research. Here, |
explore solutions to maximizing scientific validity of genetic research and improving
healthcare for underserved groups, while also minimizing risk to these same people. As
part of this discourse, I present the need for adjusting for population substructure in
genetic studies, the ethical barriers to this scientific standard, and possible solutions to
finding a maximally desirable balance between the two through the lens of responsive

justice.

4.2 Population Substructure

Before we begin, let us establish what we mean by “population.” In defining
populations globally, groups of people may be categorized by any arbitrary measure. One of
these categories is race. While race itself is not the topic of this discussion, it is a concept
often tied up in discussions of population genetics and can lead to misunderstanding. As
Luigi Luca Cavalli-Sforza said of the classifications of race in his work History and
Geography of Human Genes, “the level at which we stop our classification is completely
arbitrary. Explanations are statistical, geographic, and historical. Statistically, genetic
variation within clusters is large compared with that between clusters” [1]. Genetic
boundaries between groups are weak, and there is a long-standing consensus among
population geneticists that there is no biological basis for race [2, 3]. As such, the
populations I discuss are divisions of people on a scale that could be useful in informing
medical care. These populations can be defined geographically, or by medical care sought,
or among nearly every line of division imaginable. In my case, | will discuss populations of

historically marginalized and underserved communities. These are groups of people who
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share a similar history, often geographically isolated from other populations and, as a
result, share genetic patterns that differ from the populations traditionally included in
medical research.

Population structure is the pattern of genetic differences within a given group of
people that reflects family relationships. The question is not whether or not there is
population structure in historically geographically isolated communities, because there
most certainly is. Population substructure is a concern in any sample that is not absolutely
random and in which not every individual has the same relationship to each other and to
the individuals in the population that the sample is representing. Between and within
populations globally, small but statistically significant differences in genetic variation have
been found [4]. Even within apparently homogenous populations, population substructure
exists [5-7]. As Cardon, et al. argue, the challenge is not in showing that population
substructure exists, but in accounting for it [6].

Population stratification arises from human natural history. Different genetic
patterns in human populations across the world exist simply because of differences in
migration patterns, mating practices, changes in population size affecting genetic drift,
cultural practices, and new mutations, in addition to selection, random mutation, and
chance [6]. Large-scale population substructure can be detected as a deviation from Hardy
Weinberg Equilibrium (HWE) at genetic loci, but smaller scale structure may not affect
HWE. As groups separated and ceased interbreeding freely, different genetic patterns
developed differently across the globe, often driven by randomness, revealing a gradient of
allele frequencies and variation. The frequency of genetic variation at a single spot in the

genome can change unpredictably from one population to another, regardless of how
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population boundaries are defined, and as such, there is great genetic variation between all

populations and people.

4.3 The Effect of Population Structure on Genetic Studies

Population substructure can lead to both Type 1 (false positive) and Type 2 (false
negative) errors [8] depending on the selection of participants, and can affect the precision
and accuracy of allele frequency and association studies. Especially in large genome wide
association studies, the worry is that population substructure will lead to type 1 errors and
identify associations that are not causative for the trait of interest, but will then be used to
incorrectly inform medical intervention and risk assessment [9].

Just as failing to account for non-genetic factors can bias results of association
studies, the genetic structure among a sample of research participants can lead to spurious
associations and confounding of results. This confounding from population substructure
happens when individuals in a group have phenotypes and genotypes that are correlated
with each other more than would be expected by chance. When phenotypic differences
vary between subgroups that also have different allele frequencies, an association between
the two is found irrespective of causality. To confound results, 3 conditions must be met: 1)
the frequency of the trait of interest must be different between subpopulations after
adjusting for any cofactors, 2) the frequency of a given genetic marker must be different
between subpopulations, and 3) the allele frequencies and the trait frequencies must follow
the same directionality for reasons other than causality [9].

The most severe effect of population structure on study results is false association of

genetic markers and outcome. For example, in a study of diabetes in the Pima Indian
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population, an HLA variant was associated with increased risk of diabetes, but later found
to be an artifact of differences between the cases and controls in the degree of European
ancestry resulting from population admixture [6].

Besides the confounding of associations themselves, the power in association
studies can be reduced by population structure, with weaker associations more affected,
even in the cases of true association [10] because population substructure is essentially a
case of selection bias [11, 12]. A study of lung function in Mexico found that positive
associations would be masked in failing to account for population substructure, an example
of Type 2 error [13].

In the case of population allele frequency studies, population substructure causes
over-dispersion. In over-dispersion, the predicted variance from the statistical model is
smaller than the actual variance of the population [11].

The impact of population substructure on associations may be greater in groups
with sparse or inaccurate understanding of ancestry or in groups with recent admixture,
and in studies involving alleles or phenotypes that vary greatly between populations [6]. As
aresult, understanding and accounting for the population substructure of a study
population improves the validity of conclusions from medical research, even when
conducting studies within a population defined narrowly.

It seems that the greatest risk for confounding of results occurs in genome wide
association studies, or when otherwise trying to identify new genetic targets. In genome
wide studies, the large number of markers assayed increases the probability that a given
marker will track with the trait of interest by chance and lead to a false positive result.

However, in replicating associations found in other populations or in interrogating a few
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biologically plausible candidate genes, as of 2009 it was unknown whether ancestry
affected the association of a given causal genotype that had been found in another
population [14]. Because genome wide association studies look for an enrichment of a
genetic marker in cases of an illness, for example, they may not detect a causative marker
directly and instead might rely on linkage disequilibrium patterns, which can vary
significantly from one population to another [15]. When studying causal genetic markers,
however, differences in linkage disequilibrium patterns should not affect results.
Therefore, while population substructure exists in all study populations and has the
potential to confound results, its effect on results and conclusions likely depends on study

design.

4.4 How Genetic Analyses Are Best Adjusted for Population Substructure

Adjusting statistical models can minimize this confounding from population
substructure. The standard way to account for population substructure is to use genome-
wide ancestry informative markers (AIMs) to cluster participants by genetic ancestry and
then to adjust for differences using genomic control or Bayesian clustering with likelihood
statistics [10]. Subgroups are clustered into more genetically homogenous clusters using
principal component analysis (PCA) or multidimensional scaling (MDS) [16]. Both PCA and
MDS separate genetic components to maximize the variance between samples. The clusters
created through PCA and MDS can be used as covariates in association studies to reduce
confounding by population substructure.

As few at 30 single nucleotide polymorphisms (SNPs) may be needed for the

independent genome-wide informative markers used for genomic control when accounting
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for population substructure [11]. As would be expected, populations with less
differentiation between them need data from more SNPs to uncover genetic substructure
[16]. To distinguish populations on a global scale, just 1000 SNPs are needed, but to
differentiate populations on a finer scale within Europe, 10,000 SNPs are needed [16]. Even
within Switzerland, PCA could distinguish genetic differences between French, German,
and Italian speakers [17] and population structure also could be detected in Sweden [18].
Without genome wide markers, pedigrees showing the kinship relationships
between participants can be used to adjust both allele frequency estimates and association
studies. The Best Linear Unbiased Estimator (BLUE) adjusts allele frequency estimates by
weighting genotypes by kinship coefficients to account for the non-independence of
samples [19]. Including a kinship coefficient matrix in mixed effects regression models of
association studies also can account for this population structure by weighting individuals
[20]. Without either AIMs or pedigree information, however, these analyses cannot be
adjusted for population substructure, leaving results at risk of confounding and over-

dispersion.

4.5 Hesitation of Underserved Populations to Participate in Genetic Research and to

Collect Genome-Wide Markers of its Members

While becoming more interested and involved in genetic research, some historically
marginalized and identifiable communities are hesitant to participate, especially to the
extent of allowing collection of genome-wide markers. Before discussing alternatives to

collecting either genome-wide markers or pedigrees to account for population
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substructure, I will present some concerns of communities with respect to genetic research
in general, and how collection of genome-wide markers increases these risks.

When the Human Genome Diversity Project (HGDP) began to collect DNA from
indigenous populations worldwide, indigenous leaders called it the “vampire project” [21].
A history of genetic research contributing to racial stereotyping, such as publication of a
“risk-taking”, or “warrior”, gene that is associated with increased alcohol and tobacco use
among Maori people, has formed a basis for hesitation to release genetic information [21].
After a long history of oppression and discrimination, communities are understandably
hesitant to participate in research that could be misused to support stereotypes [22, 23].

While indigenous groups across the globe may recognize the benefits of genetic
research, they may feel that the risks are too severe to participate [21, 24]. Even given the
best intentions of researchers, research relationships can be delicate with identifiable
communities, and can have negative consequences for the culture, community, and
individuals of the people involved. This is especially true for populations vulnerable to
exploitation, such as those with a history of marginalization or of exploitation by the
government. For example, the Tuskegee syphilis experiment, in which the U.S. government
prevented African American men from receiving normal care for syphilis so that the
natural course of the disease could be studied, contributed to the establishment of ethical
review boards and protocols, but has had a lasting negative effect on the willingness of the
African American community to participate in medical research and to receive preventative
health care [25]. In another prominent example, DNA samples donated by members of the

Havasupai tribe in a population study of diabetes were also used to study historical
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migration patterns, inbreeding, and schizophrenia without tribal approval or knowledge,
and led to a lawsuit against Arizona State University [22].

While all research has potential to harm participants, genetic research can be
especially sensitive to research harms, as outcomes inherently apply to an entire
community. These outcomes include those intended from the study as well as any
unintended consequences and harms. Many of these harms can be avoided in research with
less identifiable populations through privacy and confidentiality protections for individual
research participants. However, because genetics is inherently unique and non-
anonymous, privacy is not always possible at a group level when conducting genetic
research [26]. Even if an individual’s identity is protected, the community may still be
identifiable [27].

Harms can be divided into tangible harms, those that have a measurable or physical
outcome, and dignitary harms, those that affect emotion or self-perception [28]. Tangible
harms in genetic research include discrimination, stigmatization, and loss of social
opportunities and standing.

Discrimination and stigmatization can occur if genetic variation associated with
increased occurrence of a disease is more prevalent in a community [29]. For example, the
finding that sickle cell trait was more common among African Americans led to their
discrimination in the 1970’s [30]. In a study in Barrow, Alaska, increased prevalence of
alcoholism was tied to a community of Alaska Native people. While the researchers had
designed the study with the intention of helping the community to address alcoholism and
related issues, presentation of the results became stigmatizing and affected the town’s

bond rating [27, 31]. While not exclusively so, stigmatization is a greater risk when the
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community is small and the trait studied is rare and severe, as smaller communities are
easier to identify and to collectively stereotype [29, 32].

Stigmatization also can take the form of revealing socially disrespected
classifications. For example, genetic research may reveal instances of consanguinity or
inbreeding, which are generally disrespected, and so can have a negative impact on the
status of the individuals studied [29]. The community with which these individuals identify
can also be affected if consanguinity is seen as ubiquitous in the community.

With regard to loss of opportunities, studying genetic markers may show that some
individuals in a tribal community are more “non-Native” than “Native”, and as a result,
tribal standing may be challenged [28, 33, 34]. Tribal standing can be important in
qualifying for resources of the tribe, such as healthcare or stake in tribal-owned operations,
and in running for political office. Changing the tribal standing of someone as a result of
genetic quotas can affect the social opportunities and status of an individual within the
community.

Dignitary harms are those that violate a collective right or show disrespect, causing
feelings of shame or humiliation. For example, challenges to understanding of place,
spirituality, values, history, and autonomy may harm community or individual identity.

For example, in the Human Genome Diversity Project (HGDP) aiming to characterize
human genetic diversity across the globe, indigenous groups “opposed HGDP because they
questioned the goals of the project, e.g.,, mapping human migration, and worried about the
possible outcomes of the project, such as discrimination against their group, stigmatization,
effects on sovereignty, internal harms to the tribe, and the possibility that researchers or

others would profit from the tribes’ biological materials” [24].
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Genetic studies could challenge a community’s claims to a land. Studies of
population history and migration through genetics may challenge territorial integrity,
affecting such things as community claims for repatriation of remains and artifacts found in
regions of historical tribal lands [28, 29, 35]. This became relevant with Kennewick man,
whom researchers argued was not an ancestor of the local tribes who requested
repatriation and who identified religious significance of the remains [36]. Genetic
information could have been used as evidence against (though also for) this tribal
understanding of ancestral place.

Additionally, genetic research can harm community spirituality and identity as a
result of cultural and epistemological differences between researchers and communities.
For example, through the study of historical migration patterns, or through such things as
characterizing spiritual leaders as schizophrenic, such as what happened in research with
the Havasupai Tribe, this lack of recognition can violate a group’s rights to its own culture
[24, 27, 32]. As another example, the western researchers of the HGDP aimed to use
genetic patterns to develop tools for archeology, cultural anthropology, historical
linguistics, and “the evolution of our species” [23]. However, indigenous epistemologies
differ from the western normative, as “communities know where they came from, who they
are, and what their relations to the land are” [23, 24]. These harms of group identity can
have an interesting impact on a community because they don’t harm a particular person
directly, but can diminish the outsider views of the group and the views of members of the
group toward themselves.

These harms to identity and spiritual understanding also can arise in the form of

publication or secondary use of specimens after the intended research is completed, even if
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the original study was executed respectfully [24]. Individuals and communities may lose
control of the samples, any genetic data produced, or oversight over making sure data are
used for acceptable purposes [24, 36]. The US Department of Health and Human Services
Office of Human Research Protections considers de-identified secondary uses of data to be
exempt from human subjects oversight, and secondary research with HGDP samples
indeed has investigated human migration history and effects of human evolution [22]. This
loss of control can be a violation of sovereignty and informed consent [29]. Additionally,
donation of genetic samples raises concerns of data ownership, who controls any research,
and who benefits from the community’s “resources” [24].

As a summary of harms from genetic research, communities may be concerned
about discrimination, stigmatization, loss of opportunities, and challenges to community
identity, which are embodied in attacks on historic territory, spirituality, and epistemology,
and in secondary use of specimens.

With the collection of more genetic markers, such as would be needed for
calculating and adjusting for principal components, the risk for harm is greater. The more
information collected across the genome, especially targeting regions that would be used to
establish ancestry, the greater the ability to conduct the science that would lead to these
perceived risks. Provided these data do not exist, control of them cannot be lost and they

cannot be used beyond their original intention. Once these data are collected, loss of

control opens the opportunity for these harms.
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4.6 An Approach to Dealing with these Issues: Responsive Justice

Given that participation in genetic research is important for expanding benefits to
include all people [37], but that some communities are hesitant to participate in genetic
research, a balance is needed between pursuing the advancement of knowledge and
protecting these groups from harm. In considering core ethical concepts, values and
priorities are analyzed to weigh autonomy, beneficence, and justice in a way that evaluates
whether the risks of research are worth the benefits, both at the level of the individual and
the community. One way to approach this balance is through transformed practice of
responsive justice, which is based on a collaboration of researchers and underserved
communities to develop mutually beneficial research goals and plans [27].

Responsive justice seeks to reduce power disparity between researchers, who
traditionally hold more power, and participating communities, who traditionally hold less
power. This power redistribution transforms communities into partners in research, as
opposed to subjects of research, and includes them consistently and wholly in research
decisions, including what research will be done and how it will be conducted. This process
relies on community based participatory research (CBPR) [38]. The three elements of
responsive justice are recognition, responsibility, and redistribution [27]. By including
communities in research conversations, researchers can understand the views and values
of collaborating communities, thereby establishing a “fundamental awareness of and
respect for the person or communities with whom research is being conducted, and to
whom the clinical benefits of the research will be returned” [27].

The first element of responsive justice is recognition, which reflects the

understanding by researchers of the needs and values of the participating community, as
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defined by the community’s own members [27]. The opposite of recognition,
misrecognition, is inherent in traditional structures of research, including priorities and
research methods, and is not simply a lack of attention or care by researchers. A purposeful
approach by researchers is important to have careful and conscientious discussions with a
community about fears and hesitations surrounding participation in research, and how
best to address these concerns to achieve mutual goals [21]. Recognition requires
consistent and repeated conversations with each community throughout a research
partnership to understand concerns specific to that community, at that time and place. By
fully knowing why a specific community feels the way it does, researchers can respond with
the most appropriate approaches and responses, and can adjust them as the relationship
with the community matures and concerns change.

The second element of responsive justice is responsibility, which reflects a moral
obligation of the researchers to their collaborating participants to act conscientiously in
response to the elements of recognition. As the holders of greater power, the researchers
are responsible for driving the conversation, ensuring that their engagement extends
beyond the boundaries of their personal research goals to address further interests of the
community. Researchers must examine and modify their behavior in response to
conversations with communities, always acting toward justice [27].

The third element is redistribution, which reflects the fair distribution of benefits
and burdens resulting from the research. Fair distribution is different from equal
distribution, as it focuses on distribution and redistribution according to need and
appropriateness, aiming to increase justice overall. The responsibility of researchers is to

provide equal opportunities for access to benefits. Whether or not an individual or
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community chooses to accept those benefits is outside the scope of the researchers’
obligation.

By applying responsive justice, researchers can work with communities to develop
research methods and questions that are mutually beneficial, but which prioritize the
needs and views of the community. Responsive justice requires researchers to
acknowledge and respond to specific concerns of traditionally underserved communities.
Communities may be more willing to participate in genetic and medical research if their
fears and needs are addressed directly and they have ownership over the research process.

In the case of genetic research and collection of genome-wide markers, responsive
justice can be applied in working with communities. Based on conversations of recognition
with the community, research parameters can be established around how genetic samples
are collected, who participates in a study, what genetic data are obtained, how data are
housed and shared, who controls the data, how results will be shared with the community,
and how the community will benefit from any resulting advances. These conversations can
also include specific concerns of the community with respect to each of these topics, and
how researchers will address each in developing a collaborative research plan. One specific
conversation related to genetic research is whether or not to collect data on genome-wide
markers of participants, which allows for adjustment by principal components in genetic
association studies. Through the framework of responsive justice, researchers can
recognize the concerns of the communities, and through responsible practice, engage
communities in exploring the risks and benefits of using complete genetic adjustment,

compared to possible alternatives.
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One of these alternatives to collecting data on genome-wide markers is to cluster
subsets of the community, such as individual tribes, by similarities of ancestral language.
By assigning individuals to one of these clusters based on self-identified affiliation,
membership in a given cluster may be able to be used as a covariate in association analyses,
thereby approximating the first principal component that would emerge from clustering by
genome-wide markers. In this way, researchers may be able to account for population
substructure and improve the accuracy of results. Using these language relationships may
provide an alternative to collecting genome-wide markers, but its usefulness depends on
both the scientific validity and ethical utility of applying these clusters in genetic studies. A
discussion of the scientific validity and ethical utility of stratifying research participants by

linguistic clustering follows.

4.7 Scientific Validity of Using Language Relationships to Account for Population

Substructure

It has been suggested that in the working guidelines of the Human Genome Diversity
Project, researchers were encouraged to seek out groups with unique languages, as
“communities with distinct languages are presumed to have the greatest potential for also
bearing distinctive genetic material” [23]. Languages have been used to group people in
anthropological studies since before the development of genetic technology, and it was
thought that language relationships may approximate genetic relationships [39]. This
connection of language and genetic history is logical, as language relationships say much
about social and cultural connections and about the identity of a person [33]. As such,

categorization of people by the relationship between languages of their ancestral groups
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may serve as an accurate surrogate for principal component analysis in cases of genetic
studies in which colleting AIMs is not preferable.

The correlation between human language and genetic patterns is not new. In On the
Origin of Species, Darwin proposed that the classification patterns would be the same
between the two, essentially creating the same genealogy [1, 40]. At first glance, this
concept seems to be upheld. Studies globally have found positive correlation between
geography, genetics, and linguistics, even at a microgenetic level [1]. The complication is
that the effects of geographic, cultural, and linguistic history must be separated from each
other, and the relationship of each with genetic history is complicated. Genetic and
linguistic patterns can be difficult to decipher, as groups mix and evolve, and transmission
patterns of the two are not the same. Language learned travels horizontally between
people through cultural transmission, while genetics adheres to vertical transmission
between people through biological ancestry. To assess the use of language relationships in
genetic studies, the scientific validity behind the theory that linguistic clustering can be
used to approximate genetic clustering to account for population structure is explored
here.

The strengths of this theory include the parallel evolutionary processes of language
and genetics, and the mutual reinforcement of barriers. The similarities in the evolutionary
process of genes and language are inherent in a population splitting and differentiating,
leading to increased divergence of both language and genetics between groups over time.
Thus, it seems reasonable that languages would diverge in accordance with increasing
genetic divergence. Furthermore, groups that are nearby on the genetic tree often speak

related languages [1].
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In addition to following similar evolutionary paths, genetic and linguistic
development may reinforce barriers between groups, continuously strengthening the
parallels between the two patterns. The same geographic and ecological barriers and
distance that limit genetic pools also limit cultural interactions, including the exchange of
language. Once the cultural barriers develop to a degree that prevents intermixing, such as
through inability to communicate, genetic intermixing also typically declines. The language
an individual speaks is determined by culture, which often is rooted in a family
environment defined by genetic relationships. Similarly, language creates barriers that can
preserve distinct genetic features. As such, it is reasonable to assume that shared social
identity may reflect a shared genetic history [41]. According to some views, linguistic and
genetic relationships seem to reflect the same patterns at national and supranational
language scales, but to be less reliable at smaller scales, where dialects and more subtle
differences in language are found [1]. Other studies suggest the opposite, that genetic
correlations only are upheld at a micro level [42]. This issue of scale is important for
determining the usefulness of language patterns in approximating genetic patterns for use
in medical and genetic research.

While language and genetic relationships broadly follow the same patterns,
language groupings cannot be assumed to reflect genetic groupings on the scale needed for
clinical research. Languages evolve very quickly compared to genetics, which can make
connections between languages difficult to reconstruct accurately. The rate at which genes
and languages diverge is not consistent, and differences between the two can be intensified

by replacement, in the case of language, and substitutions, in the case of genetics [1].
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Replacement and substitutions are products of admixture, in which groups mix after being
separated for a long time.

Admixture weakens the similarities between linguistic and genetic patterns. The
genetic effects of admixture can be assumed to be proportional to the relative contribution
of ancestral groups [1]. However, language behaves as a more complete unit and often
becomes more strongly singular over time. After an admixture event, however, DNA blocks
from both ancestral groups remain across the genome. During mixing of one group into
another or migration of individuals into a neighboring group, a complete linguistic or
cultural transition can happen in less than 3 generations, whereas genetic signatures
remain indefinitely in proportion to the degree of admixture [1, 43].

Also not supporting the comparability of genetic and linguistic genealogy, unlike
genes, languages are not always transferred vertically in a family tree, but can transfer
between unrelated individuals. Due to proximity of groups that may not share language, it
is likely that at least a few mates will be exchanged over time, which will bring the groups
closer genetically, while not greatly affecting language differences [44].

In conducting genetic analysis at specific loci in the genome, it is important to
consider that this proportional genetic distance assumes average over the entire genome,
whereas individual genes may show erratic and inconsistent patterns with respect to
ancestral groups. Therefore, small portions of the genome, including mitochondrial DNA or
Y-chromosomes, cannot be assumed to reveal the same population history as would be
expected in the genome overall in the same population. Thus, there can be major deviations
in the correlation of language and genes, both on the scale of an individual gene and the

whole genome.
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Furthermore, dialects merge into each other, creating a gradient over space that can
correlate with genetic distance, but may make the division of groups by language arbitrary.
For example, there is a gradient of dialects among indigenous languages in the Americas,
spanning from northern Alaska to Greenland, including Alaska Inuit, Canadian Inuit, and
Greenland Inuit [1]. Additionally, the Athabascan language family is comprised of 30
sublanguages stretching from eastern Alaska to California and Arizona, and in the rest of
the Americas the Amerind language family includes almost 600 sublanguages [1].

Looking at studies in populations around the world that specifically address the
question, some linguistic and genetic correlations between groups are found. Studies in
Ethiopia and Peru found linguistic clustering to be correlated with genetic clustering [42,
45]. Genetic diversity in Ethiopia is large, about half of all genetic diversity in Africa, and
the languages corresponded with cultural barriers sharing the same geographic area. The
linguistic distances in Peru were correlated with how far away each population lived
geographically from the others, and the authors caution that determining accurate
language relationships was important for the validity of the genetic association, but also
were difficult to access accurately.

Given the caveats of these studies, it is not surprising that the correlation of
language and genetics is not consistent across populations. A study of linguistic,
geographic, and genetic distance in South Asia, including 46 diverse tribal populations,
found low correlations between geographical and genetic distance between tribal groups,
but found correlations of language and genetics only at the scale of language family [43].
Similarly, studies of European language and genetic distances between groups found no

correlation, but did identify some genetic deviations along cultural and ethnic barriers and
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by geographic distance [46, 47]. As such, cultural barriers may define gene pools more so
than geographic proximity.

Looking specifically at the Americas, even Cavalli-Sforza, a champion for the
correlation of linguistic and genetic relationships between groups, found that Amerindians
seem to be quite genetically variable, with linguistic patterns not correlating well with
genetic relationship patterns [48]. Admixture may be partially responsible for this
deviation. A study by Chakraborty found no relationship between genetic and linguistic
distances in a study of indigenous groups in the Andean highlands of Chile, which were
clustered based on linguistic studies by Joseph Greenberg [44]. This study found a
significant correlation (0.716) between genetic distance and geographic distance in South
America, with geographic differences explaining 50% of variability in genetic differences
[44]. While the correlation between geographic and genetic distance was significantly
positive, the correlations between linguistic distance and genetic distance, and between
linguistic distance and geographic distance were not significant [1, 44]. Other studies,
including one in Central and South America studying 1381 individuals from 17 populations
looking at genetic correlations with 8 different language classification patterns, and
another looking at 3 American Indian tribes in the Pacific Northwest where linguistic
diversity is especially high, found no correlation of genetic patterns with linguistic clusters
[40, 49]. Yet another study of linguistic and genetic correlations among indigenous groups,
this time in Mexico, found no correlation between the two [50]. However, the genetic
signatures were consistent with historical population expansion and diverse genetic drift,

including community isolation and founder effects. European contact in the Americas may
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have affected linguistic and genetic patterns due to admixture combined with the mass
eradication of people, which resulted in severe reduction of the gene pool [1, 40].

Interestingly, many of these studies found no correlation between linguistic and
genetic distance, but did find correlation between geographic and genetic distance. Any
associations that were found between genetic and cultural differences, including language,
may result from confounding by the geographic distance that accompanies cultural
differences [40]. Broken into ranges of 200 miles, genetic distance increases with
geographic distance between each group across the world [1]. On a global scale,
reconstruction of population divergence based on genetic distance reflects the same
relationship structure as reconstruction based on geographic distance [16]. On a smaller
scale within Europe, individuals coded by country of origin were clustered by genetic
distance, which created a 2-dimensional map of the populations that essentially depicted
the geographical layout of the same populations over a map of Europe [17]. Of note, only
individuals with all four grandparents from the same country were included in the study,
thereby reducing the complications of admixture.

Similarly, a study in Mexico found a strong correlation between fine scale
geographic distances and genetic distances among 20 indigenous and 11 mestizo
communities [13]. The degree of variation found in this study was striking, showing some
genetic divergence between these communities on the same scale as divergence between
European and East Asian populations. Importantly, the population structure created from
these geographic clusters was strong enough to affect the results of association studies.
This study found significant association between ancestry and risk for lung disease, and

supports the need for adjusting for genetic relationships in medical studies, even among
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communities that are geographically close together and that may share history [13].
Interestingly, another study in Mexico did not find correlation between geography and
genetics in groups defined linguistically, a finding that the authors thought likely resulted
from the constant migration of ancestral groups [51].

Correlations of linguistic and genetic distances are imperfect, and often attributable
to geographic distribution of language and culture. While clustering by linguistic patterns
can approximate genetic structure to some degree, available evidence suggests that these
patterns are likely not reliable for clustering groups in lieu of genome-wide markers. While
the relationship may be valid in some cases, full genetic analysis would be needed to
confirm the accuracy of each case, which would require the exact data collection that this
approach is trying to avoid. Perhaps a more appropriate approach would be to use
geographic clusters, defined along the lines of dominant cultural separations. The utility of
this tool must be considered for each case individually. Because kinship, social structure,
and culture affect geographic expansion and boundaries just as much as geography affects
the development of culture and the exchange of genetic material, a combination of
geographic and cultural measurements may maximize scientific validity in approximating
genetic relationships [52].

However, while geographic clustering, especially defined by cultural divisions, may
be more appropriate than linguistic clustering alone, it still does not allow for the nuanced
adjustment capable with genome-wide markers, especially in cases of admixture. The
geography of a population is still based on a single location, connected to a relatively recent
point in time and accounting for a single, often self-described ancestry of a person. As such,

it will not match the finer chromosomal adjustment possible through AIMs, but using
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geographic clustering may allow for adjustment by a dominant principal component in

association studies, and in that way be preferable to no adjustment at all.

4.8 Ethical Utility of Using Population Geographic and Linguistic Relationships to

Account for Population Substructure

In this role as an approximation of genetic clustering, geographic and linguistic
clustering of self-identified tribal affiliation can be a useful tool to remedy some, but not all,
of the potential harms presented by genetic research. In fact, geographic clustering is
preferable to linguistic clustering with respect to ethical challenges, as it does not classify
people by measures that are not already obvious. Language development and evolution can
be analyzed using similar theories as those applied to genetics, with older languages
showing richer diversity. Language relationship patterns can reveal, and indeed have been
used to reveal, migration patterns and historical relationships between groups. Geography,
especially considered in present tense, does not reveal these patterns or relationships with
respect to collective community identity of history, time, and place, or understandings of
origins, and so may be preferable to linguistic classifications.

In considering the usefulness of linguistic and geographic classification to
approximate principal components in genetic analysis, the scope here is limited to small,
underserved communities in which genetic research for medical purposes could be
valuable, but for which the genome-wide genetic information used to adjust for population
substructure is unavailable. First, | will present harms that are avoidable through using
geographic and linguistic groupings instead of genetic markers. Then I will discuss harms

that are not avoidable by using geographic and linguistic groupings. Avoidable harms
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include any revelations of consanguinity, use of genetic quotas to affect tribal status of
individuals, some challenges to community identity and history, and some inappropriate
secondary uses of data.

First of all, some data that could lead to stigmatization will not be collected, such as
data revealing inbreeding or consanguinity. The geographic groupings will not reveal
family structure, but only self-identified membership within a larger community. No other
sensitive or surprising relationships between individuals would be uncovered.

Additionally, because geography of a self-identified tribal affiliation is tied to a
single social identity, it does not segregate or dilute with each generation like genetic
signatures do, and it cannot be co-opted to reveal quantity of native genetic ancestry.
Individuals may be incorporated into a community regardless of genetic ancestry, so using
language and geography of self-identified tribal affiliation protects against political and
social disenfranchisement, such as access to tribal benefits or ability to run for tribal office.
Language and geography of self-identified tribal affiliation is known and obvious, and
classification using this measure will not reveal any new identity or understanding of
ancestral history.

Finally, with respect to secondary uses of data for unapproved and sometimes
stigmatizing research, using language and geographic region to group individuals can
remove some risk but not all risk. For example, any secondary research using genetic
markers that would have been used to account for population substructure is now
impossible, as data at those markers have not been collected. This means that secondary
associations with disease or claims about individual ancestry cannot be made. As an

example, if only limited genetic markers were collected in the Havasupai people, the
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markers then used to challenge community history and spirituality may not have been
available.

Although using language and geography of self-identified tribal affiliation to group
individuals offers important benefits, some of the potential harms from collecting genetic
information to adjust for population substructure will not be avoided. These include some
risk of discrimination from research results, some challenges to community
understandings of history and identity, and some secondary uses of data.

Risk of discrimination resulting from research results tied to a particular
community will not be completely avoided. Specific communities or groups of communities
can still be identified through their language and location, so their privacy will not be
preserved. This means that any trait or disease that could have led to discrimination if tied
to a particular community through genetics can still be tied to that community through
language and geographic classification and still can lead to discrimination. This
identification also leaves communities at risk for harmful secondary uses of data and
presentation of data. For example, because of pleiotropy, genetic data can be linked with
traits or outcomes other than the ones specifically intended to be studied. As a result, some
stigmatizing or discriminatory secondary analysis and conclusions may still be possible
and able to be tied to communities. These secondary uses can also be used to cause
dignitary harm if the results cause community members or outsiders to see the community
differently.

The key concept in analyzing the impact on harms associated with genetic research
from grouping individuals by linguistic and geographic clusters instead of genetic markers

is that communities can still be identified, even as it masks relationships at the individual
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level [26]. As a result, any research findings can be attributed to the community, which is a
necessary point of genetic health research. However, any other results can also be
attributed to the community, which can have a negative impact on the identity of a
community, both from the viewpoint of its own members and from those on the outside.

Although it is not always scientifically valid, in some instances, linguistic and
geographic relationships may be a preferable tool to using genetic markers to cluster
research participants. As with many ethical issues, this is not the one right and perfect
answer for genetic research with communities hesitant to participate. The best way to
decide whether this classification system could be a preferable tool for a community is to
include the community in the decision-making process through responsive justice [24, 27,
30]. Community harms and priorities can be difficult to anticipate. Just as research agendas
should be developed in collaboration with communities to foster community buy-in,
benefit, and recognition of potential harms, conversation with each community can be used
to tailor classification systems that align with the interests of the community. Trust is a
major motivator against participation in genetic research, and trust can be built through
engaging a community and through addressing the ethical concerns of its members [30,
36].

While not a perfect tool, using linguistic and geographic relationships to account for
population substructure in genetic analyses can reduce the risks for some of the potential
harms in genetic research with identifiable communities, especially with low levels of
admixture. However, as admixture increases, leading to more complicated population
structure and genomic patterns, the utility of stratifying participants by self-identified

geographic and linguistic affiliation decreases.
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4.9 Conclusion

Expanding the benefits of genetic research to address the health concerns of
underserved populations requires new approaches to engaging communities. In balancing
the impact of population stratification on the validity and utility of results with respect for
the ethical concerns of communities, stratifying participants by cultural and geographic
relationships of self-identified ancestry may be appropriate for populations with low rates
of admixture. However, as admixture increases, the utility of this stratification will
decrease. While studies can be adjusted for AIMs of participants, a responsive justice
approach requires an exploration of alternative approaches to addressing community
concerns. Communities may be hesitant to participate in genetic research, especially the
collection of genome-wide markers, for a variety of reasons. The obligation lies with the
researchers to recognize and address the specific concerns of each group and to include the
group in decisions throughout the entire research process.

One possible concern of a group when participating in genetic research is the
collection of genome-wide markers that are used to adjust for population substructure in
order to reduce confounding in association studies. Collecting these data could leave the
communities at greater risk for harms inherent in genetic analysis. Here, we have explored
using language relationships of ancestral groups to cluster people in order to approximate
population substructure and to avoid collecting genome-wide information, while still
preserving the validity of research results. Although language clustering may be
appropriate in some situations, it is generally not a reliable tool for approximating genetic

relationships.
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For some types of genetic research, however, adjusting for population stratification
may not significantly impact results or change their utility for medical decisions. While not
the most scientifically rigorous approach to population genetic research, not adjusting for
AIMs may be the most ethically responsible choice and may still produce meaningful
results. Most documented cases of confounding due to population stratification are in
association studies that are looking for new SNP targets [5, 53]. For studies looking to
replicate associations of genetic markers that have been found in other populations or that
investigate candidate genes based on biological plausibility, the risk of false positive results
may be minor. This is because confounding requires both the trait of interest and a genetic
marker to occur at different frequencies in the case versus the control groups, and also
requires both the trait and genetic marker to have the same directionality. The probability
of confounding is smaller in candidate and replication studies than in genome wide studies
due to the smaller number of markers assayed and the deliberate choice of gene targets.
Future studies that specifically investigate the impact of adjusting and not adjusting for
population stratification in these subsets of study design could inform the importance of
adjusting for population substructure when working with underserved communities.

Here I have explored a possible approach to addressing a specific concern of some
communities when participating in genetic research. However, the ultimate need is for
researchers to employ responsive justice, involving the community in the collaborative
development of a research proposal and throughout the research process. By including,
acknowledging, and responding to the concerns and unique history of each population in
this way, medical advances, including those resulting from genetic studies, can be

accessible to more people.



115

4.10 References

N

10.

11.

12.

13.

14.

15.

16.

17.

18.

Cavalli-Sforza, L.L., History and Geography of Human Genes.

Gould, S.J., The mismeasure of man. 1996, New York: Norton.

Graves, ].L., The race myth : why we pretend race exists in America. 2004, New York:
Dutton.

Weiss, K.M. and S.M. Fullerton, Racing around, getting nowhere. Evolutionary
Anthropology: Issues, News, and Reviews, 2005. 14(5): p. 165-169.

Berger, M., et al., Hidden population substructures in an apparently homogeneous
population bias association studies. Eur | Hum Genet, 2006. 14(2): p. 236-44.
Cardon, L.R. and L.J. Palmer, Population stratification and spurious allelic association.
The Lancet, 2003. 361(9357): p. 598-604.

Redden, D.T. and D.B. Allison, The effect of assortative mating upon genetic
association studies: spurious associations and population substructure in the absence
of admixture. Behav Genet, 2006. 36(5): p. 678-86.

Hoyos-Giraldo, L.S., et al., The effect of genetic admixture in an association study:
genetic polymorphisms and chromosome aberrations in a Colombian population
exposed to organic solvents. Ann Hum Genet, 2013. 77(4): p. 308-20.

Wacholder, S., N. Rothman, and N. Caporaso, Counterpoint: Bias from Population
Stratification Is Not a Major Threat to the Validity of Conclusions from
Epidemiological Studies of Common Polymorphisms and Cancer. Cancer
Epidemiology, Biomarkers, & Prevention, 2002. 11(513-520).

He, Y., et al., Correlation of population parameters leading to power differences in
association studies with population stratification. Ann Hum Genet, 2008. 72(Pt 6): p.
801-11.

Bacanu, S.-A., B. Devlin, and K. Roeder, Association Studies for Quantitative Traits in
Structured Populations. Genetic Epidemiology, 2002. 22(1): p. 78-93.

Tian, C., P.K. Gregersen, and M.F. Seldin, Accounting for ancestry: population
substructure and genome-wide association studies. Hum Mol Genet, 2008. 17(R2): p.
R143-50.

Moreno-Estrada, A., et al., Human genetics. The genetics of Mexico recapitulates
Native American substructure and affects biomedical traits. Science, 2014.
344(6189): p. 1280-5.

Via, M,, E. Ziv, and E.G. Burchard, Recent advances of genetic ancestry testing in
biomedical research and direct to consumer testing. Clin Genet, 2009. 76(3): p. 225-
35.

Ziv, E. and E.G. Burchard, Human population structure and genetic association studies.
Pharmacogenomics, 2003. 4(4): p. 431.

Wang, C,, S. Zollner, and N.A. Rosenberg, A quantitative comparison of the similarity
between genes and geography in worldwide human populations. PLoS Genet, 2012.
8(8): p-e1002886.

Novembre, |, et al., Genes mirror geography within Europe. Nature, 2008. 456(7218):
p.98-101.

Salmela, E., et al., Swedish population substructure revealed by genome-wide single
nucleotide polymorphism data. PloS One, 2011. 6(2).



19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

116

McPeek, M.S., X. Wy, and C. Ober, Best Linear Unbiased Allele-Frequency Estimation in
Complex Pedigrees. Biometrics, 2004. 60: p. 359-367.

Pan, Z. and D.Y. Lin, Goodness-of-fit methods for generalized linear mixed models.
Biometrics, 2005. 61(4): p. 1000-9.

Kowal, E.E., Genetic research in Indigenous health: significant progress, substantial
challenges. Med | Aust, 2012. 197(1): p. 19-20.

Fullerton, S.M. and S.S. Lee, Secondary uses and the governance of de-identified data:
lessons from the human genome diversity panel. BMC Med Ethics, 2011. 12: p. 16.
Grounds, R.A., The Yuchi Community and the Human Genome Diversity Project:
Historic and Contemporary Ironies. Cultural Survival Quarterly, 1996. 20(2).
McGregor, ].L., Population Genomics and Research Ethics with Socially Identifiable
Groups. Jounral of Law, Medicine, and Ethics, 2007: p. 356-370.

Corbie-Smith, G., The Continuing Legacy of the Tuskegee Syphilis Study: Consideratios
for Clinical Investigation. The American Journal of Medical Sciences, 1999. 317(1): p.
5-8.

Foster, M.W.,, et al.,, The role of community review in evaluating the risks of human
genetic variation research. Am ] Hum Genet, 1999. 64(6): p. 1719-27.

Goering, S., S. Holland, and K. Fryer-Edwards, Transforming Genetic Research
Practices with Marginalized Communities: A case for representative justice. Hastings
Center Report, 2008. 38(2): p. 43-58.

Sharp, R.R. and M.W. Foster, Community Involvement in the Ethical Review of Genetic
Research: Lessons from American Indian and Alaska Native Populations.
Environmental Health Perspectives, 2002. 110: p. 145-148.

Underkuffler, L.S., Human Genetics Studies: The Case for Group Rights. Journal Of Law,
Medicine, and Ethics, 2007: p. 383-395.

Foster, M.W., D. Bernsten, and T.H. Carter, A model agreement for genetic research in
socially identifiable populations. Am | Hum Genet, 1998. 63(3): p. 696-702.

Foulks, E.F., Misalliances in the Barrow Alcohol Study. American Indian and Alaska
native mental health research : journal of the National Center, 1989. 2(3): p. 7-17.
Tsosie, R., Cultural Challenges to Biotechnology: Native American Genetic Resources
and the Concept of Cultural Harm. Jounral of Law, Medicine, and Ethics, 2007. 35(3):
p. 396-411.

Tallbear, K., DNA, Blood, and Racializing the Tribe. Wicaso Sa Review, 2003. 18(1): p.
81-107.

TallBear, K. Native American DNA : tribal belonging and the false promise of genetic
science. 2013; Available from:
http://public.eblib.com/choice/publicfullrecord.aspx?p=1362022.

Tsosie, R., Indigenous People and Epistemic Injustice: Science, Ethics, and Human
Rights. Washington Law Review, 2012. 87: p. 1133-.

Schroeder, K.B., R.S. Malhi, and D.G. Smith, Opinion: Demystifying Native American
genetic opposition to research. Evolutionary Anthropology: Issues, News, and
Reviews, 2006. 15(3): p. 88-92.

Bustamante, C.D., E.G. Burchard, and F.M. De la Vega, Genomics for the world. Nature,
2011.475(7355): p. 163-5.




38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

117

Boyer, B.B., et al,, Building a community-based participatory research center to
investigate obesity and diabetes in Alaska Natives. International Journal of
Circumpolar Health International Journal of Circumpolar Health, 2005. 64(3).
Cavalli-Sforza, L.L., Genes, Peoples, and Languages. 2000, New York, NY: North Point
Press. 228.

Hunley, K.L., et al., A formal test of linguistic and genetic coevolution in native Central
and South America. Am ] Phys Anthropol, 2007. 132(4): p. 622-31.

Foster, M.W. and R.R. Sharp, Race, ethnicity, and genomics: social classifications as
proxies of biological heterogeneity. Genome Res, 2002. 12(6): p. 844-50.

Lewis, C.M,, Jr,, et al., Land, language, and loci: mtDNA in Native Americans and the
genetic history of Peru. Am ] Phys Anthropol, 2005. 127(3): p. 351-60.

Krithika, S., S. Maji, and T.S. Vasulu, A microsatellite study to disentangle the
ambiguity of linguistic, geographic, ethnic and genetic influences on tribes of India to
get a better clarity of the antiquity and peopling of South Asia. Am ] Phys Anthropol,
2009.139(4): p. 533-46.

Chakraborty, R, Cultural, language, and geographical correlates of genetic variability
in Andean highland Indians. Nature, 1976. 264: p. 350-352.

Pagani, L., et al,, Ethiopian genetic diversity reveals linguistic stratification and
complex influences on the Ethiopian gene pool. Am ] Hum Genet, 2012.91(1): p. 83-
96.

Harding, R.M. and R.R. Sokal, Classification of the European language families by
genetic distance. Proc Natl Acad Sci U S A, 1988. 85: p. 9370-9372.

Sims-Williams, P., Genetics, linguistics, and prehistory: thinking big and thinking
straight. Antiquity, 1998. 72(277): p. 505-527.

Cavalli-Sforza, L.L., "Genes, Peoples, and Languages".

Ward, R.H,, et al,, Genetic and Linguistic Differentiation in the Americas. Proceedings
of the National Academny of Sciences of the United States of America, 1993.90(22):
p.-10663-10667.

Sandoval, K,, et al., Linguistic and maternal genetic diversity are not correlated in
Native Mexicans. Hum Genet, 2009. 126(4): p. 521-31.

Quinto-Cortes, C.D., et al,, Genetic characterization of indigenous peoples from
Oaxaca, Mexico, and its relation to linguistic and geographic isolation. Hum Biol,
2010.82(4): p. 409-32.

Jones, D., Kinship and Deep History: Exploring Connections between Culture Areas,
Genes, and Languages. American Anthropologist, 2003. 105(3): p. 501-514.
Knowler, W.C., Diabetes melitus in the pima indians: Incidence, risk factors, and
pathogenesis. 1990.



118

CHAPTER 5: CONCLUSION

5.1 Conclusion

Unique genetic patterns and environmental exposures in Alaska Native
communities affect average warfarin dose requirements and risk of vitamin D deficiency,
illustrating the importance of expanding biomedical research to include more diverse
populations. If historically underserved and marginalized communities are not included in
research, results derived from research with other populations are used to inform medical
decisions for all people, which can lead to sub-optimal care for overlooked groups if the
patterns of genetic variation and environmental exposures are not the same across
populations. This type of generalization can perpetuate health disparities. To include more
communities in research and reverse this trend, however, ethical concerns of communities
must be addressed. Responsive justice may be an appropriate framework to use in
approaching community partnerships and re-evaluating research procedures.

Genetic variation affecting the warfarin dose-response in Alaska Native people is an
example of how including historically underserved populations in research can reveal
clinically important information. Genetic variation can alter critical enzyme functions and
affect the warfarin dose-response relationship. As described in Chapter 2, we resequenced
genes that affect the metabolism of and response to warfarin, and found two significant
novel and common coding variants, M1L and N218I, in CYP2C9, both of which likely reduce
or eliminate enzyme function. This type of variation would reduce warfarin clearance and
necessitate a lower dose for the people carrying either variant, which would affect the
treatment of approximately 10% of Yup’ik people and 3% of SCF customer-owners.

However, known variants in CYP2C9 that reduce enzyme function were found at lower
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frequencies in AI/AN populations compared to some other world populations, such that the
overall fraction of all populations carrying loss of function CYP2(9 alleles is about the same.
Applying sequencing technology to identify the CYP2C9 M1L and N218I variants illustrates
the need for including more populations in genetic research and for looking for variation
beyond what has been identified and analyzed in other populations. If only variation that
has been identified in the populations traditionally included in genetic research is used to
inform warfarin dose requirement decisions, a significant fraction of the population
carrying the potentially function-disrupting M1L and N218I variants would be miss-
classified, and Alaska Native people with those variants would be dosed inappropriately.
Population frequencies of variants provide a useful starting point for estimating
average warfarin dosing requirements, but subgroups and individuals within the
population may respond quite differently from each other. For example, the reduced
function haplotype in VKORC1 was found at high frequency in Alaska Native communities,
especially in Yup’ik communities, compared to other populations and would predict a
lower warfarin dose requirement for carriers of that haplotype. In contrast, the vitamin K
conserving variant CYP4F2*3 was identified at one of the highest frequencies in any
population studied to date and would be predicted to increase the required warfarin dose
for individuals carrying the variant. In addition, any one of the reduced activity CYP2C9
alleles seen in the population would predict a lower warfarin dose to achieve the target INR
response. Personalizing care for an individual would require individual genotyping
information to determine the composition of variation in CYP2C9, VKORC1, and CYP4F2,
which would vary for each person and lead to different requirements for optimal warfarin

therapy.
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While this study identified novel variation with potentially important effects on
enzyme function and drug response, no phenotypes were evaluated in our investigation. An
ongoing study being conducted at the Southcentral Foundation should provide this critical
translational genotype-phenotype information. However, besides genetic variation,
warfarin therapy is affected by diet, especially vitamin K intake, as well as age, BMI, and
gender, among other factors. An algorithm developed by the International Warfarin
Pharmacogenetics Consortium includes race [1], a variable that attempts to capture
uncharacterized population-specific variability that modifies the associations of genetic
and demographic variation with dose. These crude racial categories are “White”, “Black”,
“Asian,” and “Mixed or missing,” and it is unknown how the associations between genetics,
demographics, diet and dose in Alaska Native populations might differ. Future studies that
connect genotype, demographic and environmental factors and clinical dosing data in these
populations are needed to confirm the phenotypic effects of the novel and known variants
on warfarin dosing and bleed risk in Alaska Native people. Finally, in addition to evaluating
the associations of known variation with warfarin dose, the effects of the two novel
variants we discovered must be studied. These associations are important to establish to
improve warfarin dose management in Alaska Native populations. Both in vitro (cell-
based) testing and clinical testing studies in healthy volunteers by the investigative team
are planned.

Although genetic analysis in two cohorts of Alaska Native people revealed new
patterns of variation that have important implications for warfarin dosing and outcomes,
the study of associations with serum 25(0H)D3 concentrations in the Yup'ik people,

presented in Chapter 3, show the importance of unique environmental exposures on
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phenotype and that genotype-phenotype associations found in one population are not
necessarily as significant in other populations. While 25(0OH)D3 concentrations in many
populations vary most significantly with changes in sunlight exposure that affect vitamin
D3 synthesis in the skin, the serum concentrations of 25(0H)D3 in the Yup’ik study
participants were found to vary most significantly with variation in the consumption of the
traditional Yup’ik diet, which is rich in vitamin D3. Additionally, although all 8 SNPs
interrogated in CYP2R1 and DHCR7 have been associated with 25(0H)D3 concentrations in
other populations [2-4], only one of them was found to be associated with 25(0OH)D3
concentrations in the Yup’ik participants. Even then, that one SNP accounted for only 1% of
variation in serum 25(0OH)D3 concentration. Unlike the variation in sunlight exposure and
genetic predictors that may be used to assess risk for vitamin D deficiency in other
populations, the risk factors of concern for Yup’ik people are dietary, linked with deviation
from a traditional diet. As a result, risk for deficiency is a greater concern for children and
young adults because they consume more market-based foods associated with a western
lifestyle, which are poor sources of vitamin D.

Understanding vitamin D concentrations and sources of variation are important for
assessing disease risk and also for improving drug dosing in Yup’ik populations. Vitamin D
deficiency is associated with increased risk for illnesses that are being seen in increasing
prevalence among Alaska Native and Canadian First Nations populations, including rickets
and colon cancer [5-9]. Both of these diseases are also associated with dietary patterns,
including increased consumption of foods high in animal fat and poor in nutrients like
vitamin D [10]. In addition to its role in disease, Vitamin D modulates the expression of

CYP3A4 in the intestine, which affects the first pass metabolism and oral bioavailability of
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some common drugs, including statins used to treat high cholesterol and tamoxifen used to
treat breast cancer [11, 12]. With vitamin D concentrations that fluctuate, the
bioavailability of a drug can vary with changes in CYP3A4 expression, which can change
efficacy and toxicity for a given dose [12]. Close to the arctic, variation in sunlight exposure
affecting vitamin D synthesis can lead to fluctuations in CYP3A4 expression, but consistent
dietary intake of vitamin D, such as in the traditional Yup'ik diet, can stabilize these
concentrations. Indeed, the older Yup'ik participants who consume greater amounts of the
traditional diet show less variability in 25(OH)D3 concentrations by season. By recognizing
the importance of diet in maintaining sufficient 25(0OH)D3 concentrations for people in the
Y-K Delta, interventions highlighting the value of the traditional diet can prevent disease
and stabilize drug response in these communities. Additional studies are needed to confirm
the association of variable 25(0H)D3 concentrations on drug metabolism and disease risk
in this population.

While the association of genotype with 25(0H)D3 concentrations was small in this
study, the results of the warfarin study and the heritability measure of 0.46 for 25(0H)D3
concentration suggest that novel genetic variation or unique linkage disequilibrium
patterns in these two genes, or in others in the vitamin D pathway, may still affect serum
25(0H)Ds3 concentrations in this population. Additionally, the study was not powered to
detect gene-environment interactions, but these effects could be important determinants of
25(0OH)Ds3 concentrations and also could be specific to this population; for example,
interactions between sunlight variation, diet, and genetic variation in relevant enzymes.

This study highlights the need for biomedical and genetic research with individual
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communities, as the underlying causes of and associations with vitamin D deficiency are
different in the Yup’ik population compared to other populations [13].

The studies presented in Chapters 2 and 3 on genetics related to warfarin
metabolism in the Alaska Native population and the variables affecting vitamin D status in
the Yup’ik people of the Y-K Delta illustrate how population-specific genetic variation and
environmental exposures can affect medical care, and show the importance of including
diverse populations in biomedical and genetic research. In order to conduct this type of
population-specific research, however, researchers must use transformed research
practices, which place greater value on the interests and concerns of the communities by
making them partners in research. As an example of applying responsive justice to expand
biomedical research to more communities, in Chapter 4, I explored the problem of
adjusting for population substructure in genetic epidemiologic research with identifiable
communities. While the statistical standard is to account for population substructure to
avoid possible confounding of results, the preferred method increases risks for harms to
the community and may make a community choose not to participate in the research. By
applying responsive justice to acknowledge and address community interests and
concerns, researchers can conduct meaningful research that also aligns with community
values and priorities. While researchers may be able to approximate population
stratification in a way that respects community needs, stratifying by ancestral language
does not seem to be a reliable method. However, future studies on the impact of population
stratification on research conclusions may clarify whether adjustment is needed at all for
meaningful and actionable conclusions. Some types of study design, such as candidate gene

analysis, may not be as susceptible to confounding due to population stratification.
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Historically underserved and identifiable communities have valid reasons to be
hesitant to participate in medical and, especially, genetic research. However, because of
population specific genetic variation and environmental exposure patterns affecting drug
response and disease risk, this research is important for reducing health disparities. Based
on the identification of novel variation and unique genetic patterns, the average Alaska
Native patient may need a lower warfarin dose than what is needed on average in other
populations, and starting Alaska Native patients at a lower dose or genotyping individuals
prior to initiating therapy could reduce the frequency of adverse bleeding events from
warfarin overdose. Additionally, understanding the importance of traditional Yup’ik foods
in maintaining adequate vitamin D levels illuminates an approach to helping members of
the community improve their vitamin D status to prevent the illnesses associated with
vitamin D deficiency and to manage unstable drug dosing from altered CYP3A4 expression
in the intestine. If research partnerships are approached effectively, such as through a
framework of responsive justice, historically underserved and marginalized communities

can benefit from and be actively engaged in population-specific medical research.
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