
i 
 

 
 

 
 
 

© Copyright 2015 
 

Sean Jeronimo 
  



ii 
 

 
 

LiDAR Individual Tree Detection for Assessing Structurally Diverse Forest 
Landscapes 

 
 
 

Sean Jeronimo 
 
 
 
 

A thesis 
 

submitted in partial fulfillment of the 
 

requirements for the degree of 
 
 
 

Master of Science 
 
 
 

University of Washington 
 

2015 
 
 

 
Committee: 

 
Jerry F. Franklin, Chair 

 
Gregory J. Ettl 

 
Robert J. McGaughey 

 
Van R. Kane 

 
 
 
 

Program Authorized to Offer Degree: 
 

School of Environmental and Forest Sciences 



iii 
 

 
 

 

University of Washington 
 
 
 

Abstract 
 
 
 
 

LiDAR Individual Tree Detection for Assessing Structurally Diverse Forest Landscapes 
 
 
 

Sean Jeronimo 
 
 
 

Chair of the Supervisory Committee: 
Professor Jerry F. Franklin 

School of Environmental and Forest Sciences 

 

 

Contemporary forest management on public land incorporates a focus on restoration and 

maintenance of ecological functions through silvicultural manipulation of forest structure on a 

landscape scale. Incorporating reference conditions into restoration treatment planning and 

monitoring can improve treatment efficacy, but the typical ground-based methods of quantifying 

reference condition data – and comparing it to pre- and post-treatment stands – are expensive, 

time-consuming, and limited in scale. Airborne LiDAR may be part of the solution to this 

problem, since LiDAR acquisitions have both broad coverage and high resolution. I evaluated 

the ability of LiDAR Individual Tree Detection (ITD) to describe forest structure across a 

structurally variable landscape in support of large-scale forest restoration. I installed nineteen 
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0.25 ha stem map plots across a range of structural conditions in potential reference areas 

(Yosemite National Park) and potential restoration treatment areas (Sierra National Forest) in the 

Sierra Nevada of California. I used the plots to evaluate a common ITD algorithm, the watershed 

transform, compare it to past uses of ITD, and determine which aspects of forest structure 

contributed to errors in ITD. I found that ITD across this structurally diverse landscape was 

generally less accurate than across the smaller and less diverse areas over which it has previously 

been studied. However, the pattern of tree recognition is consistent: regardless of forest structure, 

canopy dominants are almost always detected and relatively shorter trees are almost never 

detected. Correspondingly, metrics dominated by large trees, such as biomass, basal area, and 

spatial heterogeneity, can be measured using ITD, while metrics dominated by smaller trees, 

such as stand density, cannot. Bearing these limitations in mind, ITD can be a powerful tool for 

describing forest structure across heterogeneous landscape restoration project areas.



i 
 

 
 

Table of Contents  
List of Tables ................................................................................................................................. iii 

List of Figures ................................................................................................................................ iv 

Introduction ..................................................................................................................................... 1 

Methods........................................................................................................................................... 6 

Study areas .................................................................................................................................. 6 

LiDAR data ................................................................................................................................. 8 

Site selection ............................................................................................................................... 8 

Field data ................................................................................................................................... 10 

LiDAR processing .................................................................................................................... 12 

Assessing the accuracy of individual tree detection ................................................................. 14 

The influence of structure on tree detection ............................................................................. 15 

Comparing results to existing studies ....................................................................................... 16 

Results ........................................................................................................................................... 17 

Field data ................................................................................................................................... 17 

Assessing the accuracy of individual tree detection ................................................................. 18 

The influence of structure on tree detection ............................................................................. 18 

Comparing results to existing studies ....................................................................................... 19 

Discussion ..................................................................................................................................... 19 

Individual tree detection accuracy in comparison to existing studies ....................................... 19 

The influence of structure on tree detection ............................................................................. 22 

Strengths and limitations of individual tree detection .............................................................. 25 

Conclusions ................................................................................................................................... 26 

References ..................................................................................................................................... 28 

Appendix A Regression models for total height, height to live crown, and crown spread ..... 48 

Appendix B Choice of CSM creation and preprocessing parameters ..................................... 50 



ii 
 

 
 

Appendix C Review of individual tree segmentation methods ............................................... 61 

 

  



iii 
 

 
 

List of Tables 

Table 1 Attributes of LiDAR acquisitions used in this study .................................................. 35 

Table 2 Stand structural metrics tested to explain variation in individual tree segmentation 

accuracy..... ................................................................................................................................... 36 

Table 3 Environmental, physical, and biological conditions at sample plots .......................... 37 

Table 4 Results for individual tree detection ........................................................................... 38 

 

  



iv 
 

 
 

List of Figures 

Figure 1 Framework for silvicultural restoration ...................................................................... 39 

Figure 2 Yosemite and Dinkey study areas .............................................................................. 40 

Figure 3 Overview of structure class characteristics ................................................................ 41 

Figure 4 Overview of the watershed segmentation algorithm .................................................. 42 

Figure 5 Method for associating identified segment maxima with plotted trees ...................... 43 

Figure 6 Results of sample stratification across structure classes by forest type ..................... 44 

Figure 7 First two principal components of ordinated plot-level structural metrics overlaid 

with fitted vectors of individual tree detection evaluation metrics ............................................... 45 

Figure 8 Individual tree detection accuracy metrics for this study compared to the same 

metrics for a review of 58 published studies ................................................................................ 46 

Figure 9 Detection rate by relative tree height .......................................................................... 47 

 

  



v 
 

 
 

Acknowledgements 
First and foremost, I would like to thank – in chronological order – my parents, the late Peter 

McDonald, and Jerry Franklin for kindling my love of and interest in the natural world, forestry, 

and forest science. Without the encouragement of James Freund and Jim Lutz I would never 

have made good on this interest, and I thank them for encouraging me to make the leap from the 

world of 1s and 0s to the world of DBH and for providing me with foundational field experience. 

Since making the leap, Derek Churchill has provided constant support in terms of learning and 

work opportunities, and I value the partnership and friendship that we have built very much. I 

would not be doing the work that I do today without Derek. My committee members – Jerry 

Franklin, Greg Ettl, Bob McGaughey, and especially Van Kane – have done the indispensable 

work of reining me in when my research started to wander, and in doing so have taught me many 

important lessons about how to carry out a research project. I would also like to thank my field 

crew, Luke Dow and Caileigh Shoot, for their uncomplaining hard work and ready willingness to 

carry lots of heavy gear. Lastly, I thank my partner Melissa Pingree for her love and support, 

which I could not do without. 

This work was supported by the USDA Forest Service Pacific Southwest Research Station 

through grants 14-JV-11272139-014, “Using LiDAR to Guide Restoration in Sierra Nevada 

Forests”, and 13-CS-11052007-055, “Using Light Detection and Ranging (LiDAR) to Guide 

Burned Landscape Recovery and Restoration in Sierra Nevada Forests.”



1 
 

 
 

Introduction 

Objectives for management of forest ecosystems on public land are often defined in terms of 

desired ecosystem functions, such as disturbance resistance and resilience, habitat provision, and 

hydraulic regulation (e.g., North et al. 2009; USDA 2013). Much scientific and management 

effort is currently focused on restoring desired functions over landscapes degraded by active and 

passive anthropogenic alteration (Hessburg et al. 2005; Peterson et al. 2005). Practically, 

restoration of function is achieved through silvicultural manipulation of forest structure and 

composition (Franklin et al. 2013). 

To enhance the effectiveness of restoration, many forest managers are developing treatment 

prescriptions with a basis in reference datasets, which describe ranges of conditions in 

functionally intact forests (Covington & Moore 1994; Churchill et al. 2013; Underhill et al. 

2014; Tuten et al. 2015). The condition of restoration units is evaluated before and after 

treatment in context of the reference condition envelope, providing managers with a realistic 

frame of reference for planning and monitoring silvicultural activities (Moore et al. 1999; 

Churchill et al. 2013). There are several points in this process at which forest structure must be 

quantified: definition of reference conditions, assessment of current conditions, development of 

the silvicultural prescription, and monitoring of the eventual treated stand (Figure 1). 

Quantification of structure in support of restoration is typically achieved by installing plots to 

measure composition, density, the spatial pattern of trees, and characteristics of open space in 

reference areas and treatment units (Franklin et al. 2013; Lydersen et al. 2013; Fry et al. 2014). 

In order to capture attributes of spatial pattern and open space, these plots are often stem 

mapped, that is, every tree within the plot is accurately mapped in 2- or 3-dimensional space. 
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Reference conditions defined from stem map plots are currently being used to inform restoration 

on 1000s of hectares of federal and state land in Oregon and Washington (e.g., USDA 2013). 

Cost – in terms of both time and money – is a major impediment to the collection of stem map 

data. Typical stem maps for characterization of reference conditions are done on plots between 1 

and 4 ha in size (North et al. 2009; Larson & Churchill 2012), and plot replication is usually 

necessary to capture the range of conditions in a project area. Installing many large plots requires 

a considerable amount of field time by trained personnel. Efficient and accurate stem map data 

collection also requires precision surveying equipment, which itself can be a financial burden. 

Together, these costs can easily overwhelm restoration budgets, which usually rely on marginal 

receipts from stewardship contracts (Schulz et al. 2012). Because of these impediments, many 

forest managers who would like to base restoration treatments on reference conditions do not 

have access to the requisite data.  

Another important limitation of stem maps is the practical constraint of scale. Even without 

considering budget limitations, it would be impractical to install enough stem map plots over a 

large enough area to allow for spatially explicit landscape evaluation. But restoration of 

ecosystem functions requires an understanding of ecological processes operating at multiple 

scales (Franklin et al. 2007; Hessburg et al. 2015), and must include large-scale measures of 

pattern such as patch size, shape, connectivity, and hierarchy (Kotliar & Wiens 1990; Wu 1999). 

Clearly, ground-based methods cannot efficiently satisfy the data demands of such involved 

landscape analyses. 

An appealing solution to the problems of cost and scale is the use of airborne LiDAR systems to 

directly measure forest canopies over large areas of land. Hummel et al. (2011) determined that 
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the cost of LiDAR inventory is comparable to installing traditional fixed- or variable-radius 

inventory plots. When stem map data are required the cost of field work is increased 

substantially while the cost of LiDAR is maintained; accordingly, my informal analyses show 

that the cost of acquiring LiDAR data can be 2-3 orders of magnitude less than the cost of 

installing ground-based stem maps. The savings become even more favorable as acquisition area 

increases, since a portion of the LiDAR expense is due to area-independent mobilization costs 

(Laes et al. 2008). In many cases, costs of LiDAR acquisition can be shared between several 

beneficiaries, since, in addition to vegetation inventory, the data can be used for geomorphologic 

and hydraulic mapping (French 2003), landslide risk assessment (Jaboyedoff et al. 2012), 

management of archæological amenities (Bewley et al. 2005), and many other applications. The 

greatest savings, however, are had when LiDAR data are already available, which is increasingly 

common on public land: many Forest Service districts and National Parks have already invested 

in the acquisition of LiDAR data over large (10,000s of ha) areas. These data, often originally 

collected for unrelated purposes, could potentially be used to quantify spatial patterns at little 

additional cost. 

Along with cost savings, LiDAR offers the unique advantage of high resolution data combined 

with complete coverage over large areas. These attributes make it particularly well-suited for 

landscape restoration. For one, LiDAR is sure to capture all structural conditions across the 

acquisition area, even rare conditions that may not be sampled in a randomized plot design. Also, 

LiDAR allows for analysis at any scale from the individual tree to the entire acquisition, 

presenting the possibility of truly multi-scale planning and monitoring activities. 
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In this study, I investigate the application of LiDAR to measuring forest structure in support of 

silvicultural landscape restoration. In particular, I focus on one family of LiDAR methods: 

individual tree detection. 

Individual tree detection (ITD) refers to partitioning the LiDAR point cloud into segments 

representing individual trees based on the geometry of the point data (Breidenbach et al. 2010). 

Typically, the resultant segments are measured (for height, crown diameter, and metrics derived 

from these) and compiled into a list that is used in much the same way as a field-collected tree 

list. For instance, ITD data has been used to: estimate standard forest inventory metrics such as 

density, basal area, or merchantable volume (Bortolot & Wynne 2005; Edson & Wing 2011; Yu 

et al. 2011); predict ecologically relevant parameters of forest structure such as canopy cover, 

aboveground biomass, and the spatial pattern of trees (Huang et al. 2009; Tao et al. 2014; 

Packalen et al. 2013); and assess variables of interest for management such as fire risk (Morsdorf 

et al. 2004). 

Though many studies have sought to perfect ITD algorithms (see Kaartinen et al. 2012 and 

Vauhkonen et al. 2012 for algorithm reviews), virtually all have come across the same major 

limitation: the only trees that can be detected reliably are “immediately dominant” trees, that is, 

those with direct visibility from the air. Richardson & Moskal (2011) suggested that airborne 

LiDAR is simply incapable of systematically sampling subdominant structures and urge 

practitioners to be conscious of this limitation when performing analyses. Falkowski et al. (2008) 

additionally indicate that the potential accuracy of ITD decreases as canopy cover increases, in 

other words, there may be an upper limit to forest density for practical use of ITD. 
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Along with these inherent limitations, past studies using ITD commonly have several 

characteristics that make application to broad, landscape-level analyses difficult. First, many of 

the studies are performed in structurally simple forests, where assumptions of even tree spacing, 

single-layered canopies, or model-conforming crowns are satisfied (Heurich et al. 2004; Bortolot 

2006; Barilotti et al. 2009; Stumberg et al. 2014). However, accurate quantification of reference 

conditions may require operating in more structurally complex forests, where the majority of 

trees may not be visible to LiDAR sensors and individual trees can have very complex crowns. 

Second, segmentation algorithms can have different behavior depending on the structural 

characteristics of the forest under consideration (Kaartinen et al. 2012; Vauhkonen et al. 2012). 

Effective landscape restoration, however, must deal consistently with a range of structural 

conditions. Finally, many ITD methods require a manual tuning step, where parameters are 

chosen by hand to suit the structure of the area of interest (Bortolot & Wynne 2005; Hyyppa et 

al. 2005; Li et al. 2012). This step is impractical to carry out for the whole range of structural 

conditions over a large restoration planning area. These difficulties must be considered before 

applying ITD across heterogeneous landscapes. 

My overarching goal is to determine whether and when ITD is an appropriate tool for assessing 

vertical and horizontal elements of forest structure across landscape restoration project areas. 

Specifically, I seek to answer these questions: 

1. What forest structural characteristics affect the accuracy of ITD when applied across a 

diverse landscape? 

2. Can ITD be effective across the wide range of structural conditions (including complex 

forests) necessary for silvicultural restoration? 
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To meet these objectives, I installed nineteen 0.25-ha stem map plots capturing a diversity of 

forest structure and representing the range of conditions across an actual landscape restoration 

project and a potential reference area. Using LiDAR data acquired over these locations, I 

assessed the accuracy of a simple ITD method at my stem map plots, compared my results to 

those of existing ITD studies, assessed which trees were and were not successfully identified, 

and investigated the ability of various forest structural characteristics to explain ITD accuracy. 

Methods 

Study areas 

My sample sites for this study are located in two areas on the western slope of the Sierra Nevada 

of California, USA (Figure 2): Yosemite National Park (Yosemite) and the Dinkey Landscape 

Restoration Project area in and around the Dinkey Creek watershed of the Sierra National Forest 

and adjacent private forestlands (Dinkey). I selected these areas with the goal of capturing the 

elements of an actual restoration project. The areas include a wide range of forest structural 

conditions that are representative of the mid-montane Sierra Nevada as a whole, and incorporate 

potential reference areas that have been managed as wilderness as well as an active restoration 

project area that has a long history of commercial and recreational use. 

Yosemite is one of the oldest (est. 1890) and largest (3027 km2) parks in the United States 

National Park system. The vast majority of the park has never been subject to commercial timber 

harvest, and 94% of park land is retained as designated wilderness. Wildfire was suppressed in 

Yosemite from 1891 until 1972, when the park began to allow wildfires to burn if permitted by 

safety and air quality standards. In addition to these “wildland use fires,” the park began an 

active prescribed burning program in 1970 (van Wagtendonk and Lutz 2007). The limited degree 
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of active management and the rich fire history combine to offer a complex mosaic of forest 

structural conditions. 

Dinkey is a 623 km2 area managed under the Collaborative Forest Landscape Restoration 

Program (Dinkey Project Planning Forum 2010). The area saw light use by prospectors mining 

gold and tungsten in the late 19th century and heavy use by shepherds and cattlemen from the 

1860s until 1905, when the formation of the Forest Service led to better enforcement of land use 

regulations. Development of the area by the Civilian Conservation Corps in the 1930s led to 

viable commercial logging operations, which peaked in the 1950s and were mostly defunct by 

the 1980s (Sierra National Forest 1997). Logging practices generally focused on selective 

harvest of only the most valuable trees; on federal land most trees under 60 cm diameter at breast 

height (DBH) were retained and many seed and cull trees were left standing (Laudenslayer & 

Darr 1990). Contemporarily, Dinkey is a popular recreation destination, and federal forest lands 

are generally interspersed with private timber and residential properties (Dinkey Project Planning 

Forum 2010). Fire has been excluded from the area since at least the late 19th century, and 

although the Sierra National Forest began a prescribed burning program in 1994, most of Dinkey 

has not yet seen the reintroduction of fire (Dinkey Collaborative Group 2010; CALFIRE 2015). 

I located my sample sites within sugar pine-white fir (Pinus lambertiana-Abies concolor) and red 

fir (A. magnifica) forest types, since these are abundant throughout the Sierra Nevada and 

because many prospective restoration projects will be occurring in these types (Ansley & Battles 

1998; North et al. 2012). Sites range in altitude from 1570 to 2600 m. Climate at the sites is 

Mediterranean, with less than 3% of precipitation falling during the summer months and most of 

the precipitation falling as snow. For the period from 1981-2010, annual precipitation ranged 

from 900 to 1200 mm, minimum January temperature ranged from -6.7 to 1.3 °C, and maximum 
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July temperature ranged from 19.5 to 26.5 °C (ClimateWNA 2015). Sites in Yosemite had not 

experienced active forest management, while most sites in Dinkey had been thinned or selection 

logged. Sites in Yosemite had highly variable fire histories including low, moderate, and high 

severity fires dating from 1988 to 2013, along with 3 sites that had not burned since at least 

1930. Sites in Dinkey had not experienced fire since the onset of fire suppression in the late 19th 

century. 

LiDAR data  

Three LiDAR acquisitions were used in this study: Dinkey 2010 and 2012, and Yosemite 2013 

(Table 1; Figure 2). Dinkey 2010 and 2012 were collected by Watershed Sciences, Inc. of 

Corvallis, OR, and Yosemite 2013 was collected by the National Center for Airborne Laser 

Mapping. Average pulse density ranged from 8.8 to 12.2 pulses m-2 across the three acquisitions. 

The vendors used TerraScan and TerraModeler (Terrasolid Oy, Helsinki, Finland) software to 

create 1 m resolution digital terrain models (DTMs) from the LiDAR, which were delivered 

along with the point clouds. DTM values were subtracted from point cloud elevations to create 

ground-normalized point clouds. 

Site selection 

Sites were selected with the goal of capturing the range of structural diversity across the sampled 

forest types. To achieve this, I stratified my sampling using LiDAR-derived structure classes, 

which has been shown to improve model performance and broaden model applicability 

compared to simple random sampling or stratification by habitat type (Hawbaker et al. 2009; 

Maltamo et al. 2010). To create the classes, I used methods similar to Kane et al. (2010b, 2013). 

The classes are meant to differentiate structure based on ecologically relevant characteristics 

such as tree height, canopy cover, canopy complexity, and the vertical distribution of foliage. 
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Structure classes were created for the spatial union of all areas with LiDAR coverage; the most 

recent data were used for each area. LiDAR metrics were calculated from the ground-normalized 

point cloud on a 30 m grid using the Fusion LiDAR Toolkit (version 3.4, 

http://forsys.cfr.washington.edu/fusion.html). Metrics calculated were 25th and 95th percentile 

heights (corresponding to the approximate base and top of the canopy; Kane et al. 2013), rumple 

(an index of canopy roughness), total canopy cover >2 m, and stratified canopy cover with break 

points at 2, 8, 16, and 32 m (providing a coarse canopy profile). The remaining processing was 

carried out in the R environment (R Development Core Team 2015). The structure classes were 

derived using a hierarchical classification with Euclidean distances and Ward’s linkage method 

on the LiDAR metrics at a random sample of 15,000 grid cells across the acquisitions. I chose to 

cut the hierarchical classification tree at 8 classes based on interpretation of the cluster 

dendrogram and scree plot. Structure classes were then imputed to the whole project area using 

the Random Forest algorithm (Breiman 2001) in the package yaImpute (Crookston & Finley 

2008). The subsampling and imputation was necessary due to high processing demands for 

hierarchical classification. The resultant structure classes (Figure 3) should represent most of the 

range of structural diversity present across the LiDAR acquisitions. 

Sites were restricted to the chosen forest types (sugar pine-white fir and red fir) using published 

vegetation maps for Yosemite (Keeler-Wolf et al. 2012) and Dinkey (USDA 2014). Sampling 

effort per structure class was assigned in proportion with class abundance by forest type. Sites 

were additionally constrained to be in areas of contiguous structural classification to diminish the 

edge effects of pixel-based classification: pixels were considered as candidates for plots only if 

classified the same as all 8 neighbors, that is, plots were only placed within a contiguous patch of 

at least 0.81 ha in size. 
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Forty potential plot locations were randomly selected from all areas meeting these criteria. Each 

location was randomly assigned a priority, and plots were visited in the field accordingly. No 

plots were located in structure class 1 since that class existed almost exclusively in Pinus 

ponderosa forest types and was outside of the scope of this study. 

Field data 

Of the 40 identified potential plot locations, 14 were installed in Yosemite in July 2014 and 5 

were installed in Dinkey in September 2014. Some plots were rejected upon visitation. Reasons 

for rejection included that the plots were located in sensitive or high-traffic areas (e.g., the 

Merced Grove of Sequoiadendron giganteum), were on private property, or because the actual 

vegetation composition did not correspond to the published vegetation maps used in site 

selection. 

Plots were navigated to using a handheld Garmin GPS. When the GPS indicated close proximity 

to the plot location, a control corner was placed 5 paces away in a random direction. By default, 

the control corner was the SW corner of the plot. If this default configuration would have been 

problematic (e.g., a road, cliff, or major rock outcrop would have become a dominant feature 

within the plot), the plot was rotated clockwise around the control corner in 90° increments until 

deemed suitable. Each plot was installed as a 0.25 ha square oriented N-S. Plot boundaries were 

laid out from the control corner using a hand compass and a laser rangefinder. 

Control corners were georeferenced using a Trimble GeoXH 2005 Series GPS (Trimble 

Navigation, Ltd., Sunnyvale, CA). The GPS unit was placed at 2 m height in an area of open 

canopy near the control corner. The offset of the unit relative to the control corner was recorded 

using a staff compass and laser rangefinder. GPS points were recorded at 1-second intervals with 
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5-15 minute residence times. GPS positions were differentially corrected using GPS Pathfinder 

Office version 5.30 (Trimble Navigation Ltd.). The measured offset was applied to the corrected 

positions to obtain a final point for the control corner. 

All live trees greater than 10 cm diameter at breast height (1.37 m; DBH) and all snags greater 

than 25 cm DBH were mapped and measured. Mapping was carried out using an electronic 

compass or angle encoder and a laser rangefinder mounted on a surveying tripod. Plots were 

surveyed in a single, closed-loop traverse of between 1 and 6 survey stations. Effort was made to 

minimize the number of long shots (>30 m slope distance) and shots through dense foliage. All 

plot corners were included in the survey traverse. Locations of trees and the remaining plot 

corners were then georeferenced with respect to the GPS-derived location of the control corner. 

For each tree measured I recorded DBH (to the nearest 0.25 cm) and lean condition (angle from 

vertical in 5° increments and azimuth of lean to the nearest 1°). For a random subset of 10% of 

the live trees on each plot, I measured height using a laser hypsometer, and average crown spread 

by using a clinometer to sight plumb and stretching a steel tape to the bole face at breast height. 

One half of the measured DBH was added to crown spread measurements to arrive at the crown 

radius from pith. 

I modeled height and crown spread for all trees using linear regression models that I developed 

from the measured subset (Appendix A). I corrected the mapped coordinates of each tree using 

the height and lean data so that the coordinates represented the treetop, rather than the breast 

height location. 
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LiDAR processing 

To delineate individual trees from LiDAR I used the watershed transform (Figure 4). I chose the 

watershed transform method over the numerous other published ITD methods in part because it 

is based purely on morphology of the canopy surface. Since it does not require assumptions or 

prior knowledge about crown widths, tree allometry, forest density, etc., I expect that it is well-

suited to consistent performance across a wide range of forest structural conditions. Additionally, 

the watershed transform is frequently used and freely available (Chen et al. 2006, Edson & Wing 

2011, Kaartinen et al. 2012), making it a good standard choice. 

I also performed all analyses using a variable window local maxima method, which, like the 

watershed transform, is commonly used and freely available (Edson & Wing 2011, Vauhkonen 

et al. 2012, Swetnam & Falk 2014). Methods and results for the local maxima analysis were not 

appreciably different from the watershed transform method, and so I will hereafter focus only on 

the watershed transform. The local maxima work is reported in Appendix B. 

The watershed transform algorithm operates based on one input: the canopy surface model 

(CSM), which is created by overlaying a grid on a ground-normalized LiDAR point cloud and 

assigning each grid cell the value of the highest point within that cell. The characteristics of the 

segmentation result can be modified to some extent by altering the characteristics of the CSM. In 

particular, the CSM can be (1) constructed at varying resolutions – finer resolutions retain more 

detail but have more noise, while coarser resolutions are cleaner but contain less information – 

and (2) smoothed with different sizes of filter – smaller smoothing windows maintain more 

fidelity while larger smoothing windows can remove undesirable artifacts. Determining the 

optimal choice of resolution and smoothing parameters, which should balance retention of detail 

with removal of noise, comprises the “algorithm tuning” process. 
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Many ITD studies incorporate a manual or semi-manual tuning step where parameters are 

optimized based on ground truth plots or visual assessment before being applied to the larger 

study area. However, this is not practical when analyzing a large area with diverse structure, 

since the manual tuning would have to be repeated many times to accommodate different 

conditions. 

I carried out a small sub-study investigating the tuning of parameters, documented fully in 

Appendix B. In short, I determined that selecting CSM resolution and smoothing based on 

canopy cover provided accuracy comparable to manual tuning using ground truth plots. Since 

canopy cover can be accurately measured by LiDAR (Korhonen et al. 2011), it is practical to use 

over large areas. The CSM resolution and smoothing choices used in the remainder of this study 

were derived from the analysis in Appendix B, and should be applicable to montane Sierra 

Nevada forests in general. 

I created a CSM for each plot, buffering the plot quadrangle by 50 m to eliminate edge effects. 

Canopy cover was calculated as the proportion of all LiDAR returns within the plot with a height 

greater than or equal to 2 m. For plots with canopy cover < 30%, CSM resolution was 1 m and 

no smoothing filter was applied. For plots with canopy cover ≥30% but ≤70%, CSM resolution 

was 0.5 m and a 3×3 pixel window mean filter was applied. For plots with canopy cover >70%, 

CSM resolution was 0.25 m and a 5×5 pixel window mean filter was applied (Appendix B). 

 Finally, I carried out the segmentation using TreeSeg, a prototype tool under development for 

the Fusion LiDAR Toolkit (http://forsys.cfr.washington.edu/fusion.html). TreeSeg is an 

implementation of the watershed transform (Vincent & Soille 1991). 
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Assessing the accuracy of individual tree detection 

The key step in credible evaluation of ITD results is associating objects segmented from LiDAR 

data with actual trees measured in the field. Without this step there is no way of ensuring that 

counts of segmented objects are in one-to-one correspondence with field counts of trees. I will 

hereafter refer to objects segmented from the LiDAR as candidate trees, and trees measured in 

the field will be field trees. I assessed the quality of association between candidate trees and field 

trees on my plots using methods similar to Vauhkonen et al. (2012). I selected this method 

because it was the most stringent evaluation method encountered in a review of ITD literature 

(Appendix C). 

The Vauhkonen et al. (2012) method associates candidate trees with field trees by comparing 

xyz-coordinates of candidate tree maxima to those of field treetops. First, the 3-dimensional 

position of the maximum point of each candidate tree is extracted from the CSM.  Any maxima 

within the 2-dimensional crown spread of a field tree are accepted as candidates for association 

with that field tree. Then, the best candidate for each field tree is selected by taking the candidate 

tree maximum with the smallest 3-dimensional distance from that field tree’s apex (Figure 5). 

Lastly, after all possible associations are made, any pairs farther apart than 5 m in 3-dimensional 

space are taken to be spurious associations, and are considered as no match found. 

After matching candidate trees with field trees, I calculated the following evaluation metrics: 

1. Error rate of omission, that is, field trees that could not be associated with any candidate 

tree, 

2. Error rate of commission, that is, candidate trees that could not be associated with any 

field tree, and 
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3. The F-score, a summary statistic that evenly balances omission rates with commission 

rates (Li et al. 2012). 

To calculate the F-score, two ratios are first calculated: 

 𝑟 = 𝑇𝑇
𝑇𝑇+𝐹𝐹

, and  (1) 

 𝑝 = 𝑇𝑇
𝑇𝑇+𝐹𝐹

, (2) 

where TP is the number of true positives (successful matches), FN is the number of false 

negatives (omitted trees), and FP is the number of false positives (committed segments). The F-

score is then calculated as follows: 

 𝐹 = 2 × 𝑟×𝑝
𝑟+𝑝

. (3) 

The F-score integrates errors of omission and commission into one statistic. Values range from 0 

when no trees are successfully matched to 1 when all trees are detected and no erroneous 

segments are created. 

The influence of structure on tree detection 

According to my question (1), I wanted to investigate how different forest structural 

characteristics affect ITD accuracy. I selected a variety of common structural metrics derived 

from plot and LiDAR data that I suspected may influence ITD results (Table 2). Because of the 

high degree of multicollinearity among these variables, I performed a principal components 

analysis (PCA) to reduce the metrics to a smaller set of orthogonal dimensions (McCune & 

Grace 2002). The PCA was carried out in the R environment (R Core Team 2015) using the 

vegan package’s rda() function (Oksanen et al. 2015). I scaled all input metrics to equal 

variance in order to remove the effect of different measures in different units. 
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To analyze the relationship between the structural metrics (i.e., the principal component [PC] 

axes) and ITD accuracy, I used the vegan package’s envfit() function (Oksanen et al. 2015) to 

fit the ITD evaluation metrics (omission rate, commission rate, and F-score) onto the PCA. 

Pseudo-significance was evaluated for these fits using a permutation test (McCune & Grace 

2002; Oksanen et al. 2015) with 999 permutations of each fitted variable. The goodness of fit 

statistic, r2, was calculated as 1 minus the ratio of within-group sum of squares to total sum of 

squares (Oksanen et al. 2015). 

Comparing results to existing studies 

According to my question (2), I wanted to determine whether ITD can be used effectively across 

a wide variety of structural conditions. I met this goal by comparing my ITD accuracy results to 

results from existing literature, so that effectiveness across a variable landscape can be put into 

perspective against accuracy evaluated under more ideal circumstances. 

I reviewed 73 ITD methods from 34 studies (Appendix C) and selected the 58 which reported at 

least one of omission, commission, and detection rates.  I performed graphic comparisons of my 

omission, commission, and detection rates versus the same metrics from reviewed studies. 

In my review, I identified a major theme in segmentation accuracy: detection rates are much 

higher for more dominant trees, while understory trees are rarely detected. To determine whether 

this pattern held across my sample sites, I looked at tree detection rates as a function of relative 

tree height. I performed this analysis for each structure class separately as well as for all classes 

pooled together. 



17 
 

 
 

Results 

Field data 

Nineteen plots were installed, 14 in Yosemite and 5 in Dinkey. Plot locations were 

geographically distributed throughout the LiDAR acquisition areas (Figure 2), ranging from 

1500-2600 m in elevation. The physical setting captured by the sample plots was varied (Table 

3). Landforms sampled included ridgetops, sideslopes, and flats. Slope grade ranged from 

completely flat to very steep, greater than 60%. 

Stand conditions were also variable. Density ranged from as low as 82 trees per hectare (TPH) in 

severely burned plots to as high as 1330 TPH in areas without recent fire, while canopy cover 

ranged from 15-78%. Regardless of density, most plots had a substantial large tree component. 

Quadratic mean diameter (QMD) ranged from 22-77 cm, 53% of plots had a QMD ≥50 cm, and 

16% of plots had a QMD ≥70 cm. Structure varied somewhat by forest type: white fir-mixed 

conifer plots were generally denser with smaller trees than red fir plots. Median basal area for 

both forest types was 60 m2 ha-1, although red fir had much more variability, representing the 

sites with both lowest (7 m2 ha-1) and highest (121 m2 ha-1) stocking (Table 3). 

In terms of structure, the plots captured the range of conditions present in the acquisition areas 

reasonably well given the small number of plots (Figure 6). Since the plots cover a wide range of 

physical conditions, fire and management histories, and stand conditions, I am comfortable 

taking it to be an adequate characterization of landscape-level variability. 
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Assessing the accuracy of individual tree detection 

The ITD evaluation metrics varied considerably among plots. Omission rates ranged from 36-

78%, while commission rates ranged from 6-343% (Table 4). The F-score, which integrates 

measures of omission and commission, had a mean of 0.45 and standard deviation of 0.13. 

A large portion of the commission error was attributed to 3 plots: Y05, Y06, and Y08. These 

plots had very high rates of commission (343%, 111%, and 191%, respectively) due to 

oversegmentation. Disregarding these plots, the range of commission rates was 6-71%. 

The influence of structure on tree detection 

The principal components analysis (PCA) revealed relationships between error rates and plot 

structural characteristics (Figure 7). The first principal component (PC) explained 54% of the 

variance in the structural data and was strongly associated with dominant tree height. The second 

PC explained an additional 30% of the variance and was strongly associated with tree density. 

The remaining PCs explained negligible amounts of variation and did not show interpretable 

trends; thus, I did not include them in this analysis. 

Error rates of omission increased with density (r2 = 0.16, p < 0.10), while commission rates 

decreased along the same gradient (r2 = 0.32, p < 0.01). However, both omission and 

commission rates increased with dominant tree height (r2 = 0.10, p = 0.19 and r2 = 0.19, p < 0.10, 

respectively). Omission errors were most strongly associated with high basal area and canopy 

cover, while commission errors were most strongly associated with higher QMD and mean tree 

height. 
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The F-score, representing overall accuracy, did not show a strong response to density (r2 = 0.02, 

p = 0.55), but was strongly related to maximum tree height (r2 = 0.48, p < 0.01). The F-score 

increased (i.e., tree detection accuracy increased) with decreasing maximum tree height. 

Comparing results to existing studies 

Among the 58 reviewed ITD studies, the median omission rate was 45%, while the median 

commission rate was 15%. Correspondingly, the median omission rate on my plots was 53% and 

the median commission rate was 43%. With the removal of the 3 oversegmented plots the 

median commission rate was reduced to 38% (Figure 8). 

As found in the review, taller trees at a given site were much more likely to be detected than 

shorter trees (Figure 9). This result was consistent across all 7 sampled structure classes, as well 

as when pooled across structure classes. For the pooled data the trend was nearly linear, with a 

linear regression predicting an individual tree detection likelihood increase of 10.2 percentage 

points for each 10 percentage point increase in tree height (r2 = 0.92, p < 0.001), and with 

average detection rates ranging from 4.8% for the shortest trees to 98% for the tallest trees. 

Discussion 

Individual tree detection accuracy in comparison to existing studies 

I found that individual tree segmentation on my sample plots did not perform as well as most 

published tree segmentation results: my median error rate of omission was slightly higher than 

the median for reviewed studies, while my median commission rate was much higher (Figure 8). 

This discrepancy can probably be explained by three factors: (1) different segmentation methods, 

(2) different evaluation methods, and (3) substantive differences in forest structure. 
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The effect of different segmentation methods on accuracy of results is unclear. Kaartinen et al. 

(2012) and Vauhkonen et al. (2012) performed studies similar to one another, in which several 

different ITD algorithms were run on the same datasets and results were compared. While both 

studies produced a set of front-runners, neither could unequivocally identify the “best” 

technique. Furthermore, algorithms were generally found to perform better in the forest types for 

which they were originally developed, indicating that there is probably not any one method that 

is best for all circumstances. 

In this study, I selected the watershed transform algorithm because of its simple, morphological 

basis, its ubiquity in free software packages, and its ease of implementation. I achieved similar 

results using the local maxima method (Appendix B), which is also free and easy to use. Because 

the question of which segmentation methods consistently offer the best results across diverse 

forest types is still open, I suggest that simplicity and availability are adequate criteria for 

algorithm selection. 

The effect of different evaluation methods is similarly obscure. ITD evaluation methodology is 

not consistent across the literature: studies vary in (1) how the “truth” data are obtained, (2) 

whether understory trees are considered in accuracy calculations, and (3) how LiDAR-identified 

objects are matched to trees from the truth dataset.  

For this study, I used the most rigorous evaluation criteria I found in the literature, which was not 

done by the majority of published work. To evaluate ITD at my sites, I used (1) an accurately 

field mapped and georeferenced ground truth dataset, (2) included all mapped trees 10 cm DBH 

or larger in my accuracy calculations, and (3) used a rigorous method of associating LiDAR 

objects with mapped trees (Vauhkonen et al. 2012), in which ground and LiDAR treetops are 
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required to have close proximity in 3-dimensional space. I was unable to find any literature 

quantifying how different choices might have affected apparent ITD accuracy. However, 

experience suggests that using more lenient methods – for example, (1) generating a truth dataset 

by manual extraction of trees from orthophotos or from the LiDAR point cloud (e.g., Koukoulas 

& Blackburn 2005, Rahman & Gorte 2009), (2) ignoring subdominant/understory trees in 

accuracy calculations (e.g., Schardt et al. 2002), or (3) using a less rigorous association method 

(e.g., Persson et al. 2002, Leckie et al. 2003) – could result in inflated measures of accuracy. 

Clearly, making direct comparisons across different studies can be tenuous. Nevertheless, I have 

the goal of determining whether ITD is an appropriate tool across heterogeneous landscapes, and 

to do this does require making direct comparisons to other studies. Recognizing this difficulty, I 

have chosen what I view as a conservative approach: employ the most rigorous standards in 

evaluating my own work and compare my work to other studies as if they all had performed 

equally rigorous evaluations. In this way, I can be sure that the comparison at least provides an 

upper bound on the discrepancy between my study and others. 

Structure of evaluated forests is likely the most significant variable determining success of tree 

segmentation, since forest structure determines what is and is not sensed by LiDAR, i.e., the raw 

material of ITD. More complex canopy structure (e.g., large trees, high stocking, and a high 

degree of variability in the vertical distribution of canopy) contributes to an increase in error 

rates (Figure 7). This is probably the primary reason for my high error rates compared to past 

work: while my sample plots were generally located in forests with some component of old trees 

and, accordingly, variability in the vertical distribution of canopy, the majority of studies I 

compared to took place in simple, young plantation forests. I discuss the relationship between 

forest structure and ITD error in more detail in the following section. 



22 
 

 
 

The influence of structure on tree detection 

At the tree level, the likelihood of being detected was directly related to relative height, that is, a 

tree’s height compared to other trees on the site (Figure 9). Assuming that almost all immediately 

dominant trees are successfully detected, this is equivalent to the assertion that as a tree becomes 

shorter relative to its neighbors its chances of being immediately dominant are reduced. This 

result is corroborated quantitatively by Jakubowski et al. (2013), who found that tree detection 

rates decreased nearly linearly with lower canopy positions, and is reported qualitatively in 

nearly every tree segmentation study. Furthermore, the trend was consistent across all 7 of the 

sampled structure classes, indicating that it holds equally across a wide range of conditions, 

irrespective of other elements of structure. 

At the plot level, my three ITD evaluation metrics – omission error rates, commission error rates, 

and the F-score – all exhibited different responses to changes in forest structure. I defined 

structure by two principal dimensions: dominant tree height and density (Figure 7). Within the 

space defined by these principal component axes, I also looked at trends in several other 

structural attributes (Table 2). 

Error rates of omission increased with dominant tree height. This is in line with my finding that 

shorter trees on a site are less likely to be detected. When the dominant tree height increases, the 

dominant canopy stratum is occupied by fewer, larger trees (Franklin et al. 2002). This means 

that a greater proportion of trees are in non-dominant canopy strata, and are obscured from 

LiDAR. 

Omission rates also increased with increasing density. This is not surprising: the same result was 

reported by Vauhkonen et al. (2012), and Swetnam & Falk (2014) and Tao et al. (2014) proposed 
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crown overlap – which is related to density – as a factor influencing omission rates. Increased 

density necessarily means a decrease in space between trees, and therefore a loss of crown 

differentiation. 

Of the structural attributes tested, omission error was most closely related to basal area and 

canopy cover. These metrics are both especially responsive to the presence of large trees on a 

site, indicating once again that the physical barrier created by large canopies is likely the primary 

impediment to tree detection. 

Error rates of commission, like omission rates, increased with dominant tree height; however, 

commission rates decreased with increasing density. Commission error was most closely 

associated with increasing quadratic mean diameter and mean tree height, both measures of the 

average tree size. Taken together, these relationships present a consistent story: error rates of 

commission seem to increase with increasing complexity of individual tree crowns. As trees 

become larger (and older), their crowns deviate from model conformance and begin to develop 

complexity and individuality (Ishii et al. 2004; Van Pelt & Sillett 2008). Since ITD algorithms 

essentially require model-conforming crown morphology, they do not behave well for trees with 

complex crowns. In particular, large orthotropic limbs can be mistaken for treetops and crown 

reiterations can be erroneously counted as additional trees, since both present local maxima that 

are difficult to distinguish from individual trees. 

The negative relationship between commission rates and density is consistent with this narrative. 

Lower density sites have more growing space per tree, so each individual tree is able to support 

more crown volume. Trees under more open conditions are under less pressure to grow 

vertically, and allocate more resources to horizontal crown spread. Conversely, higher density 
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sites have less growing space per tree, which induces crown simplifying responses such as self-

pruning and model-conforming vertical growth (Jack & Long 1991; Purves et al. 2007). 

The F-score, which integrates omission and commission rates, increased (improved) with 

decreasing dominant tree height, but did not respond to density, due apparently to the cancelling 

of the opposing effects of density on omission and commission error rates. Overall improvement 

of the F-score with decreasing dominant height may be driven in part by the direct relationship 

between dominant height and vertical variability in the canopy: shorter canopies are correlated 

with less vertical complexity, which should improve ITD results. However, the relationship 

between the F-score and maximum height (r2 = 0.64, p < 0.001) is stronger than the relationship 

between the F-score and variance (r2 = 0.54, p < 0.001), standard deviation (r2 = 0.58, p < 

0.001), or coefficient of variation of height (r2 = 0.14, p = 0.12), indicating that there is probably 

something about height per se that drives ITD success more directly than variability in height 

does. One possibility is that dominant height acts as a proxy for age, and forest aging generally 

results in increased complexity at multiple scales (Kane et al. 2011). 

In summary, the reliability of ITD at a given site is best predicted by the height of the tallest 

trees, because taller trees have larger crowns and obscure the lower canopy strata. In denser 

stands, most of the errors in ITD are errors of omission, since individual crowns become less 

differentiated as stocking increases. In less dense stands, most of the errors are errors of 

commission, because trees that have more growing space have larger and more complex crowns 

that are more likely to present multiple local maxima points for a single tree. But density is not a 

good predictor of ITD accuracy, since its opposing effects on omission and commission error 

rates approximately cancel out. 
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Strengths and limitations of individual tree detection 

My overarching goal was to determine whether and when ITD is an appropriate tool for 

assessing forest structure across landscape restoration project areas. I have found that, while 

performing ITD over heterogeneous landscapes is less accurate than more homogeneous 

landscapes, the fundamental structural units that are being detected are the same: dominant trees. 

No other class of trees could be reliably segmented. This means that ITD can be used effectively 

to estimate parameters and processes driven by the largest, most dominant trees, but is probably 

very poor at predicting attributes driven by the smaller trees. 

Luckily, the largest trees do dominate several important aspects of ecosystem function. For one, 

a small percentage of the large trees make up the vast majority of the biomass for many forest 

stands (Lutz et al. 2012; Bastin et al. 2015). This has many ramifications, since biomass is 

directly related to aboveground carbon storage, merchantable wood volume, and stocking levels, 

and can sometimes be used to predict compositional diversity in terms of species richness 

(Chisholm et al. 2013). The largest trees are also the sites of the most rapid carbon accumulation, 

since larger trees have higher relative growth rates than smaller trees (Sillett et al. 2010, 

Stephenson et al. 2014); this can be used to estimate potential strength of a stand as a carbon 

sink. Furthermore, large trees tend to dominate the spatial heterogeneity within a stand, acting as 

key drivers in the horizontal arrangement of structure (Lutz et al. 2013); the particular xy-

locations of dominant trees detected from LiDAR could potentially be used to infer some 

elements of spatial pattern. Lastly, large trees provide unique structures that are keystone 

elements of many vertebrate species’ habitat requirements (Tews et al. 2004). 

On the other hand, several aspects of structure and function are driven by small trees. For 

example, the smaller trees dominate stand density (Lutz et al. 2012) and crown fire risk (i.e., 
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ladder fuels; Agee & Skinner 2005), and contribute greatly to hiding cover for wildlife species 

(Millspaugh et al. 1998; Zielinski et al. 2004). Sometimes, such as in the case of fire risk, this is 

not an issue: continuity between the ground and upper canopy can be quantified from the LiDAR 

point cloud without any idea of what points are associated to particular trees (Erdody & Moskal 

2010). However, at other times the lack of distinction between small trees becomes problematic. 

For instance, ITD is probably unable to distinguish a single dominant shade-tolerant tree with a 

deep canopy from a top-loaded shade-intolerant with a smaller tree growing up underneath it, 

which could be a shortcoming when planning silvicultural restoration. 

Conclusions 

LiDAR individual tree detection across a structurally diverse landscape restoration project area is 

less accurate than across the smaller and less diverse areas over which it has previously been 

studied. However, the trees that are detected are similar in both cases: regardless of forest 

structure, canopy dominants are very likely to be detected and relatively shorter trees are very 

unlikely to be detected. 

ITD is not very effective as a direct replacement for traditional inventory in structurally complex 

forests, since shorter trees – which are the majority by numbers – are likely to be missed. 

Correspondingly, metrics dominated by shorter trees, such as stand density, are not likely to be 

predicted well. However, canopy dominants can be detected reliably, and metrics that are driven 

by large trees, such as biomass, basal area, and spatial heterogeneity, can probably be predicted 

well. 

In the context of landscape restoration in the Sierra Nevada, ITD can be an appropriate tool for 

describing reference areas and treatment units, since it behaves consistently across the breadth of 
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structural conditions present. However, the strengths and limitations identified in this study must 

be duly considered. When used correctly, ITD has the potential to accurately describe 

characteristics of dominant tree structure at a fine scale over large and diverse landscapes. 
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Table 1 Attributes of LiDAR acquisitions used in this study. Contractor abbreviations: WSI = Watershed Sciences, Inc. of Corvallis, 
OR; NCALM = National Center for Airborne Laser Mapping. 

 

Acquisition Dates Acquired Contractor Instrument Max. returns 
per pulse 

Average 
pulse density 
(pulses m-2) 

Laser pulse 
frequency 
(kHz) 

Field of 
view (°) 

Survey 
altitude 
(m agl) 

Accuracy 
(RMSE, cm) 

Dinkey 2010 October 12-19 
2010 WSI Dual Leica 

ALS50 Phase II 4 12.0 >83 28 1100 & 
1500 ≤15 

Dinkey 2012 November 21-27 
2012 WSI Leica ALS60 4 8.8 >96 28 900 ≤15 

Yosemite 2013 November 6-24 
2013 NCALM Optech ALTM 

Gemini 4 12.2 125 28 600 ≤11 
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Table 2 Stand structural metrics tested to explain variation in individual tree segmentation 
accuracy. TPH, BAH, QMD, MeanHt, and MaxHt are derived from ground-based 
measurements. The remaining metrics are derived from LiDAR.

Abbreviation Description 
TPH Tree density (number ha-1) 
BAH Basal area (m2ha-1) 
QMD Quadratic mean diameter (cm) 
CC LiDAR-measured canopy cover (%) 
MeanHt Mean tree height (m) 
MaxHt Maximum tree height (m) 
SD Standard deviation of all LiDAR return heights 
Var Variance of LiDAR return heights 
CV Coefficient of variation of LiDAR return heights 
Skew Skewness of LiDAR return heights 
Kurt Kurtosis of LiDAR return heights 
P25 25th percentile of LiDAR return heights (m) 
P95 95th percentile of LiDAR return heights (m) 
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Table 3 Environmental, physical, and biological conditions at sample plots. For structure class characteristics, see Figure 3. Forest 
type codes: ABCO = Abies concolor-mixed conifer, ABMA = Abies magnifica. Slope classes: Flat slopes are <5%, Moderate slopes 
are 5-25%, and Steep slopes are >25% grade. Fire severity and fire year refer to the most recent fire on record. Fire severity classes: 
None = no fire since federal forest management, Low = fire with 0-30% overstory mortality, Moderate = fire with 30-70% overstory 
mortality, High = fire with >70% overstory mortality. CC = canopy cover, TPH = trees per hectare, BAH = basal area per hectare, and 
QMD = quadratic mean diameter. 
 

Plot Structure 
Class 

Elevation 
(m) 

Forest type Slope Fire 
severity 

Fire year CC (%) TPH BAH 
(m2 ha-1) 

QMD 
(cm) 

Mean height 
(m) 

Max. height 
(m) 

Y07 2 1990 ABMA Flat Low 1988 15 173 7 23 10 24 
D04 3 1940 ABCO Flat None - 45 641 38 27 13 33 
Y11 4 2090 ABMA Flat Mod. 2013 36 113 29 57 21 44 
Y13 4 2330 ABMA Mod. None - 27 85 18 52 20 37 
D01 4 2130 ABCO Mod. None - 38 191 32 46 18 32 
Y01 5 1900 ABCO Flat Low 2010 75 843 90 36 14 41 
Y02 5 1840 ABCO Steep Low 2013 78 587 68 38 17 44 
Y03 5 1910 ABCO Flat Mod. 2013 67 382 63 45 18 39 
Y09 5 2370 ABMA Flat None - 77 1330 121 34 12 51 
Y12 6 2200 ABMA Mod. Low 2006 48 237 60 57 23 44 
Y14 6 2380 ABCO Flat Mod. 2010 30 127 38 61 27 48 
D02 6 2190 ABCO Steep None - 63 632 55 33 15 33 
Y04 7 1640 ABCO Mod. Mod. 2013 66 343 73 52 21 50 
Y05 7 1570 ABCO Steep High 2013 49 82 38 77 29 61 
Y10 7 2390 ABMA Mod. None - 68 539 114 51 17 62 
D03 7 2160 ABCO Steep None - 69 311 98 63 22 51 
D05 7 2600 ABMA Flat None - 57 547 107 49 19 44 
Y06 8 1840 ABMA Steep Mod. 2009 52 142 58 72 27 57 
Y08 8 2020 ABMA Mod. Low 2013 52 130 52 71 25 55 
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Table 4 Results for individual tree detection. 
 

Plot Structure 
Class 

Omission 
(%) 

Commission 
(%) 

F-score 

Y07 2 38 28 0.65 
D04 3 59 6 0.56 
Y11 4 47 50 0.52 
Y13 4 57 71 0.40 
D01 4 36 12 0.73 
Y01 5 54 43 0.48 
Y02 5 41 46 0.58 
Y03 5 41 56 0.55 
Y09 5 77 25 0.31 
Y12 6 49 56 0.49 
Y14 6 53 53 0.47 
D02 6 63 6 0.52 
Y04 7 75 39 0.31 
Y05 7 52 343 0.19 
Y10 7 78 29 0.29 
D03 7 56 37 0.49 
D05 7 70 24 0.39 
Y06 8 39 111 0.45 
Y08 8 42 191 0.33 
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Figure 1 Framework for silvicultural restoration. The structure of a functionally intact reference 
stand is characterized, resulting in a quantitative reference condition dataset. The reference 
conditions are used to evaluate the current conditions of a restoration unit, informing 
development of the treatment prescription. After implementation, the treatment is monitored; this 
includes another round of comparison against reference conditions to evaluate progress toward 
structural goals. Characterization of reference conditions, evaluation of current conditions, and 
monitoring of the treated stand all require some ability to accurate quantify and compare forest 
structure.  

Characterize 

Reference stand 

Restoration unit Prescription Treated unit 

Monitor Evaluate 
Reference conditions 
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Figure 2 Yosemite and Dinkey study areas within the state of California, showing locations of 
LiDAR acquisition boundaries, forest types, and stem map plots. 
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Figure 3 Overview of structure class characteristics. Boxplots show ranges of values within each 
structure class, while images are an overhead view of exemplar locations for each class. The 
dashed vertical line denotes the separation between the left-hand and right-hand scales: boxes 
left of the line correspond to the left axis (meters height), while boxes to the right of the line 
correspond to the right axis (percent). Classes are arranged in order of increasing 95th percentile 
height.  
Boxplot codes: p25 = 25th percentile of LiDAR return heights; p95 = 95th percentile of LiDAR 
return heights; rumple = ratio of canopy surface area to ground area (rugosity); cvr.gt2 = total 
canopy cover above 2 m; cvr.2to8 = canopy cover in the stratum layer between 2 and 8 meters 
above the ground; cvr.8to16 = canopy cover 8 to 16 m; cvr.16to32 = canopy cover 16 to 32 m; 
cvr.gt32 = canopy cover above 32 m.
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Figure 4 Overview of the watershed segmentation algorithm, presented here as a 2D concept, but 
actually performed in 3D. (1) The canopy surface model is draped over the LiDAR point cloud. 
(2) The canopy surface model is inverted. (3-5) The surface is imagined to be made of a 
permeable material, and is slowly lowered into water. Any time two separate pools come into 
contact (green points), a dam (white dashed lines) is formed. (6) The canopy surface model is 
righted. The dams are taken to be region boundaries, and high points within each region so 
defined are taken to be the treetops (red points).  
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Figure 5 Method for associating identified segment maxima with plotted trees, from Vauhkonen 
et al. (2012). The tree of interest (bold grey circle) is buffered by its estimated canopy radius 
(blue circle). Any canopy maxima falling in this buffer are considered candidates (blue ×s). The 
3D coordinates of each of the maxima are compared to that of the estimated treetop, and the 
nearest one is considered a match (thin blue line). 
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Figure 6 Results of sample stratification across structure classes by forest type. Actual 
abundance refers to the total abundance of classes across Yosemite and Dinkey LiDAR 
acquisitions. The sample n of 19 plots effectively covers the range of structural conditions across 
the study area. 
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Figure 7 First two principal components (PCs) of ordinated plot-level structural metrics overlaid 
with fitted vectors of individual tree detection evaluation metrics. Grey dots are individual plots 
in PC-space. Dark grey text represents the variables that were ordinated on; location of the text 
in relation to the origin represents the highest gradient of change for that variable. Dark blue text 
and arrows follow the same concept, but for fitted evaluation metrics. Abbreviations: OM% = 
error rate of omission, COM% = error rate of commission, F = F-score. For definitions of 
structural metric abbreviations see 0.
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Figure 8 Individual tree detection accuracy metrics for this study compared to the same metrics 
for a review of 58 published studies. Error rates for this study are probably higher due to the 
greater complexity of individual tree and stand structure in the forests I assessed compared to 
many reviewed studies. In addition, it should be noted that this comparison is not direct, since 
different studies have employed evaluation criteria with varying levels of rigor. 
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Figure 9 Detection rate by relative tree height aggregated over my 19 sample plots (first panel) 
and split out by the 7 sampled structure classes (remaining panels). To normalize between 
different plots, heights are expressed as percentages of the maximum tree height at each plot. 
Values on the y-axis are calculated on the basis of 10% bins. Detection rate increases quite 
linearly with relative tree height, a result that is consistent with many past studies (e.g., 
Vaukonen et al. 2012; Jakubowski et al. 2013). 
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Appendix A Regression models for total height, height to live crown, and crown 

spread 

For each tree measured I recorded the following data: species, DBH (to the nearest 0.25 cm), 
vigor (classified as vigorous, declining, nearly dead, or snag), estimated age class (young, <100 
years old; mature, 100-150; old, 150-250; or very old, >250), canopy stratum (emergent, 
dominant, co-dominant, intermediate, or understory), presence of various crown conditions 
(broken top, dead top, crown fork, bole fork, or reiterated top), and lean condition (angle from 
vertical in 5° increments and azimuth of lean to the nearest 1°). I also took more detailed 
measurements on a subset of trees: for a random 10% of the live trees in each plot, with a 
minimum of 5 trees, I additionally recorded total tree height (height), height to live crown 
(HLC), and average radial crown spread (crown spread). 
 
I tested DBH, vigor, age class, canopy stratum, and crown conditions as predictor variables and 
settled on the following models: 

log(𝐻𝐻𝐻𝐻ℎ𝑡) =�− 0.34 + 0.84 ∗ log(𝐷𝐷𝐷) + c𝑠𝑠𝑠1, (A1) 
𝐻𝐻𝐻 =� 4.68 + 0.08 ∗ 𝐷𝐷𝐷 + 𝑐𝑠𝑠𝑠2 + 𝑐𝑐𝑐𝑐𝑐𝑐, and (A2) 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =� 0.98 + 0.04 ∗ 𝐷𝐷𝐷 + 𝑐𝑠𝑠𝑠3. (A3) 

where: 

 𝑐𝑠𝑠𝑠1 =

⎩
⎪
⎨

⎪
⎧

0.19, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = ABCO
0.17, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = ABMA
0.00, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = CADE
0.15, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = PICO
0.18, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = PILA

−0.06, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = PIJE or PIPO

 , 

 𝑐𝑠𝑠𝑠2 =

⎩
⎪
⎨

⎪
⎧

0.63, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = ABCO
1.90, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = ABMA
0.00, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = CADE
−1.50, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = PICO
4.84, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = PILA

−0.65, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = PIJE or PIPO

 , 

 𝑐𝑐𝑐𝑐𝑐𝑐 =

⎩
⎪
⎨

⎪
⎧

2.86,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = E
0.68,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = D
0.00,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = C
−1.08,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = I
−3.75,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = U

 , and 

 𝑐𝑠𝑠𝑠3 =

⎩
⎪
⎨

⎪
⎧

0.12, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = ABCO
−0.19, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = ABMA

0.00, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = CADE
0.16, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = PICO
1.30, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = PILA

−0.58, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = PIJE or PIPO

 . 

Species codes are as follows: ABCO = Abies concolor, ABMA = Abies magnifica, CADE = 
Calocedrus decurrens, PICO = Pinus contorta, PILA = Pinus lambertiana, PIJE = Pinus jeffreyi, 
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PIPO = Pinus ponderosa. Crown class codes are as follows: E = emergent, D = dominant, C = 
codominant, I = intermediate, U = understory. 
 
For the height regression, r2 = 0.86, p < 0.001. For the HLC regression, r2 = 0.56, p < 0.001. For 
the crown spread regression, r2 = 0.73, p < 0.001. 
 
I did not have enough measurements of hardwoods to include them in my models. Instead, I used 
the following published regression models (Larsen & Hann 1987 for Quercus kelloggii; 
Staudhammer & LeMay 2000 for Alnus rubra, as a surrogate for Alnus rhombifolia). 
For Quercus kelloggii: 

𝐻𝐻𝐻𝐻ℎ𝑡 ≅ 4.5+exp�𝑏1+𝑏2∗𝐷𝐷𝐷𝑏3+𝑏4∗𝐵𝐵�
3.2808

, (A4) 
where 𝑏1 = 4.63362, 𝑏2 = −3.17216, 𝑏3 = −0.411021, 𝑏4 = 0.00198936, and 𝐵𝐵 =
𝐷𝐷𝐷2 ∗ 0.0008454. 
 
For Alnus rhombifolia: 

𝐻𝐻𝐻𝐻ℎ𝑡 ≅ 1.3 + 𝐸1 ∗ [1 − exp(𝐸2 ∗ 𝐷𝐷𝐷𝐸3)], (A5) 
where 𝐸1 = 26.5495, 𝐸2 = −0.03079, and 𝐸3 = 1.20438. 
 

In all cases, the units of height, HLC, and crown spread are m, while the units of DBH are cm. 
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Appendix B Choice of CSM creation and preprocessing parameters 

Introduction 
 Most LiDAR individual tree detection (ITD) methods require tuning to achieve optimal 
results. Tuning is comprised of (1) creating the LiDAR data source(s), (2) preprocessing the 
LiDAR data sources, (3) choosing values for mechanistic parameters, and (4) choosing values 
for heuristic parameters. Any of these steps may be omitted for a particular ITD approach, and it 
is rare that all four are necessary for any given approach. 

All ITD methods work from some fine-scale LiDAR data product. In the vast majority of 
cases, this is either a canopy surface model (CSM) or the LiDAR point cloud itself, although 
other products (e.g., Delanauy triangulation of the first-return points; Alexander 2009) are 
occasionally used. These data can be created and preprocessed in different ways, which can have 
various effects on ITD performance. For example, CSMs can be created at varying resolutions, 
while point clouds can be created from only first returns versus all returns. Either of these data 
sources can then be filtered in some way to remove noise and enhance features. 
 Mechanistic parameters are those which represent a physical measure that can be 
determined on the ground and has a known mode of influencing the ITD algorithm. For example, 
local maxima (LM) methods require a crown width parameter which can be held constant or 
estimated based on an allometric relationship with tree height (Pitkanen et al. 2004; Popescu & 
Wynne 2004), while object-matching methods require knowledge of crown shape (e.g., 
paraboloid, conoid, ellipsoid) (Persson et al. 2002; Tittman et al. 2011). 
 In contrast, heuristic parameters do not necessarily represent or correspond with any 
ground-based measurements, and their influence on performance of the ITD algorithm is not 
usually well-known, although it may follow a predictable pattern. For example, some ITD 
techniques rely on an α value (Tittman et al. 2011), which does not represent a particular 
measureable dimension of a tree or forest. Because heuristic parameters cannot be estimated 
based on measured data, they must be arrived at through trial and error. 
 Tuning ITD algorithms requires some data that are not contained within the LiDAR 
acquisition. In particular, selecting values for mechanistic parameters requires some individual 
tree measurements or forest inventory data, while choosing methods to create and preprocess the 
LiDAR data source and selecting values for heuristic parameters requires some “truth” dataset to 
test against for trial and error analyses. Usually, this means that plots must be installed on the 
ground to provide the truth data. 
 The tuning process becomes problematic when working with large and heterogeneous 
landscapes. As forest conditions vary over space, so do the optimal choices for ITD tuning. To 
adequately tune across variable landscapes requires having truth data for the variety of 
conditions that occur. The time and expense required to gather these data can be prohibitive. 
 In this report, I use the 19 plots described in the main study to develop a basis for tuning 
two ITD methods based on metrics that can be calculated from LiDAR data. As a result of this 
work, future users of LiDAR data in the Sierra Nevada should be able to tune these ITD methods 
without the need to install plots themselves. 
 
Methods 

I carried out my analysis using two ITD methods: the watershed transform (Vincent & 
Soille 1991) and the local maxima (LM) method (Hyyppa et al. 2001). Both of these methods are 
commonly used and freely available. The watershed transform does not have any parameters per 
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se, while the LM method has one mechanistic parameter: the allometric relationship between tree 
height and crown spread. Both methods operate from the CSM and are strongly influenced by 
CSM creation and preprocessing methods. 

I satisfied the mechanistic parameter of the LM method using measured heights and 
crown spreads from my plots, manifest in the following equation: 
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 1.5546 + 0.1949 ∗ 𝐻𝐻𝐻𝐻ℎ𝑡 (B1) 
I tuned the CSM creation and preprocessing parameters using a brute force approach: I selected 
several values across the reasonable range of each parameter, then tried every reasonable 
combination of these. The parameters I varied were CSM resolution, smoothing type, and 
smoothing window size (Figure B1). All CSMs had a lower threshold of 2 m to remove 
understory vegetation (Figure B2). I tested a total of 74 combinations, which are given in Table 
B1. 

For each of the 74 combinations on each plot, I performed both ITD methods. To perform 
the watershed transform, I used TreeSeg, a prototype tool being developed for the Fusion LiDAR 
Toolkit (http://forsys.cfr.washington.edu/fusion.html). For the LM method, I used 
CanopyMaxima, which is currently available in the Fusion LiDAR Toolkit. 

I evaluated my results using the same methods presented in the main study, namely, by 
associating mapped trees to LiDAR-identified trees using methods from Vauhkonen et al. (2012) 
and then calculating the F-score. The F-score integrates errors of omission and commission, 
ranging from 0 (poor) to 1 (perfect). 

To explore patterns in parameters versus accuracy, I mapped the F-score as a function of 
CSM parameters. In my preliminary analyses, I observed that sites with higher density had 
different response characteristics than sites with lower density. But density cannot be measured 
by LiDAR, and so is not useful for developing LiDAR-based tuning recommendations. Instead, I 
used canopy cover (CC), which is related to density but can be measured by LiDAR, as a basis 
for grouping sites. I split my sites into three CC groups using standard break points: low (<30%), 
medium (30-70%), and high (>70%). For each group, I constructed a 3-dimensional surface with 
the x-axis representing CSM resolution, the y-axis representing smoothing window size, and the 
z-axis representing the mean F-score. I chose not to separate out data by smooth type, since 
doing so made visualization more difficult and did not provide additional insight. I visualized 
each surface by plotting the level set of the z-axis on the xy-plane. 
 
Results and Discussion 
 In terms of overall accuracy, the watershed method outperformed the LM method (Figure 
B3; Table B2), with median F-scores of 0.48 and 0.31, respectively. However, the patterns of 
error were quite different between the two methods: the watershed method had a lower rate of 
omission errors (0.53 compared to 0.77), while the LM method had a lower commission error 
rate (0.05 compared to 0.43). This is probably because the LM method features an exclusionary 
zone around each identified maximum point. The procedure identifies the tallest trees first, and 
then works downward, guaranteeing that the dominant trees have no neighbors within their 
estimated crown radius. However, it is not necessarily the case that the crown spread of one tree 
excludes all other trees; on the contrary, clumping of trees is to be expected (Larson & Churchill 
2008). The LM method only detects the dominant tree within a given area – even when more 
than one of the trees clumped in the area has a well-differentiated apex – resulting in elevated 
omission rates and diminished commission rates. On the balance it appears that this phenomenon 
is a detriment, since the F-scores for the LM method are significantly lower (p < 0.001, paired 
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Student’s t-test) than for the watershed method. Because the watershed method seems to be 
better suited for my purposes, I did not complete the tuning analysis with the LM method. 

Segmentation accuracy followed a relatively predictable pattern in relation to CSM 
resolution and smoothing window size. Optimal choices of CSM resolution and smoothing 
window tended toward large pixel sizes and small smoothing windows for plots with lower CC, 
and small pixel sizes with medium smoothing windows under higher CC (Figure B4). Large 
smoothing windows (9 pixels and greater) never yielded optimal results, and unsmoothed CSMs 
were only preferable in combination with larger pixels (2 m or greater) at low CC. The middle 
range of parameters – CSM resolution of 0.5-1 m and smoothing window of 3-5 pixels – 
performed reasonably well across all densities. 

As a guide for implementation, I provide the following recommendations. For low CC 
sites (<30%), I suggest creating CSMs of 1-2 m resolution and no smoothing. For sites with 
moderate canopy cover (30-70%), I suggest CSMs of 0.5-1 m resolution with a 5×5 or 3×3 
smoothing window. For sites above 70% CC, I recommend using either a 0.5 m CSM with a 3×3 
smoothing window or a 0.25 m CSM with a 5×5 smoothing window. In any event, it is prudent 
to tend to larger pixel sizes/smaller smoothing windows when CC is lower, and smaller pixel 
sizes/larger smoothing windows when CC is higher. 

As a compromise, a 0.75 m CSM with a 3×3 smoothing window should provide adequate 
results for all but the highest and lowest density sites, where results will be under- and 
oversegmented, respectively. If the distribution of CC across the area in question is platykurtic 
(i.e., both very high and very low CC are not rare), it may be better to tend toward a larger pixel 
size/smaller smoothing window solution than in the average case, so that more of the errors are 
errors of omission rather than errors of commission. This is preferable because errors of 
omission are more readily dealt with than errors of commission. In particular, it is simpler to 
draw inferences from connected blocks of canopy that may represent more than one individual 
tree (undersegmentation) than from small slices of canopy that represent fractional trees 
(oversegmentation). 

I did not find any patterns between relative successes of different smooth types, except 
that the difference between not smoothing and smoothing is substantial. Using some sort of 
smoothing proved beneficial for all but the densest sites. I recommend using a mean smooth in 
most instances, since it is typically the quickest and easiest filter to apply. 

Among different plots, there was little consistency in terms of which CSMs yielded the 
highest F-scores (Table B2). However, applying the CC-based tuning criteria yielded results in 
the upper quartile of plot-wise F-score distributions in all but one case (Figure B5). In fact, using 
a single “compromise” CSM for all plots yielded similar results, with only two sites below the 
75th percentile F-score. This indicates that one or a few choices of CSM can provide good 
enough ITD performance across a variety of structural conditions on the landscape level. To the 
extent that my sample sites represent mid-elevation Sierra Nevada forests, my CSM construction 
recommendations can be applied across large areas in this region without additional tuning. 
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Table B1 Tested combinations of canopy surface model resolution and smooth window. Very 
large smooth windows were not tested on the larger cell sizes. For each of these 23 
combinations, I tested mean, median, and Gaussian smooth types. Additionally, I tested an 
unsmoothed version for each CSM resolution, for a total of 74 unique parameterizations. 
 

CSM Resolutions (m) 

Smooth 
Windows 

(pixels) 

 0.25 0.5 1.0 2.0 3.0 
3 × × × × × 
5 × × × × × 
7 

  × × × 
9 × ×    

13 × ×    
17 × ×    
21 × ×    
25 × ×    
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Table B2 Results for watershed and local maxima individual tree detection methods. Resolution, smooth type, and smooth window 
columns give the highest-ranked (according to the F-score) CSM preprocessing parameters for each plot. Omission rate, Commission 
rate, and F-score columns give the associated evaluation metrics. 

 Watershed Local maxima 
Plot Res. (m) Smooth 

type 
Smooth 
win. (px) 

Om. rate Com. 
rate 

F-score Res. (m) Smooth 
type 

Smooth 
win. (px) 

Om. rate Com. 
rate 

F-score 

D01 0.25 gaussian 9 0.24 0.20 0.78 0.25 mean 3 0.42 0.06 0.71 
D02 0.25 mean 5 0.35 0.52 0.60 0.25 median 13 0.60 0.31 0.47 
D03 0.25 median 9 0.51 0.25 0.56 0.25 none - 0.62 0.29 0.46 
D04 0.5 none - 0.22 0.38 0.72 0.25 median 9 0.61 0.11 0.52 
D05 0.5 none - 0.44 0.56 0.53 0.25 median 9 0.63 0.45 0.40 
Y01 0.5 none - 0.28 0.84 0.56 0.25 median 13 0.73 0.07 0.40 
Y02 0.5 gaussian 3 0.38 0.49 0.59 0.25 median 9 0.63 0.17 0.48 
Y03 1 none - 0.51 0.17 0.59 0.25 median 5 0.47 0.29 0.59 
Y04 0.25 median 5 0.58 0.61 0.42 0.25 mean 9 0.78 0.16 0.32 
Y05 1 mean 3 0.67 0.76 0.32 0.25 gaussian 17 0.43 0.57 0.53 
Y06 1 mean 5 0.61 0.24 0.48 0.25 gaussian 3 0.47 0.50 0.52 
Y07 1 none - 0.38 0.28 0.65 0.25 none - 0.92 0.04 0.14 
Y08 1 median 3 0.67 0.15 0.45 0.25 mean 9 0.55 0.42 0.48 
Y09 0.25 gaussian 5 0.48 0.72 0.46 0.25 median 3 0.76 0.19 0.33 
Y10 0.5 none - 0.62 0.27 0.46 0.25 mean 5 0.80 0.06 0.31 
Y11 0.5 mean 3 0.47 0.50 0.52 0.25 gaussian 3 0.57 0.25 0.51 
Y12 0.25 median 9 0.43 0.36 0.59 0.25 gaussian 5 0.48 0.13 0.63 
Y13 0.5 mean 9 0.52 0.14 0.59 0.25 mean 13 0.52 0.05 0.63 
Y14 1 gaussian 3 0.53 0.38 0.51 0.25 gaussian 17 0.59 0.13 0.53 
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Figure B1 Examples of canopy surface models (CSMs) preprocessed using different parameters. 
For the CSM resolutions, the same point cloud is sampled at different pixel resolutions. For the 
Smooth types, each unsmoothed CSM is processed using three different types of smoothing. For 
the Smooth windows, the same smooth type is performed with many different focal windows. 
These examples are provided to illustrate the results of different preprocessing methods; a list of 
all factorial combinations of these methods can be found in Table B1.
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Figure B2 Demonstration of the method for thresholding canopy surface models (CSMs). First, 
the raw, unsmoothed CSM (a) is thresholded at 2 m height to create a binary canopy/no canopy 
mask layer (b). Then, this mask is applied to all smoothed CSMs (c), resulting in the final 
smoothed and thresholded version (d). This preserves the higher fidelity canopy presence data, 
which would be lost if the thresholding were applied to (c) directly. 
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Figure B3 Comparison between watershed and local maxima (LM) ITD method accuracy on 19 
plots.  
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Figure B4 Level set of 3-dimensional surface showing response of ITD accuracy to CSM 
creation and preprocessing parameters. Panels are stratified by canopy cover (CC). Higher F-
scores indicate more accurate segmentation. In more open plots, larger pixel sizes and smaller 
smoothing windows produce the best results. For more closed plots, the best parameters have 
smaller pixel sizes with moderate smoothing windows. These results can be used to select CSM 
creation methods for any forests within the range of variation of this study area. 
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Figure B5 Results of tuning compared to range of segmentation results for each plot. Box and 
whisker plots give the ranges and quartiles of F-scores for all 74 CSM permutations, and are 
colored according to the plots’ canopy cover classes. The high end of the whiskers represents the 
“best” results achieved by any of the tested CSMs. Small colored boxes represent the results as 
tuned by canopy cover classes (red) or by flat tuning as a compromise for all plots (blue). 

CC-tune parameters: CC < 30%: 1 m CSM resolution, no smoothing; CC 30-70%: 0.5 m CSM 
resolution, 3×3 mean smooth; CC >70%: 0.25 m CSM resolution, 5×5 mean smooth.  No-tune 
parameters: 0.5 m CSM resolution, 3×3 mean smooth.
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Appendix C Review of individual tree segmentation methods 

Methods included were those which reported at least one of detection, commission, or omission rates. 

* = watershed segmentation method 
† = local maxima method 
Study Method name 

(if multiple) 
Locale Forest type Detection Commission Omission 

Alexander 2009  Finland Pine-spruce-birch 0.63 0.04 0.41 
Barilotti et al. 2009  Italy Spruce-fir-beech 0.925   

Breidenbach et al. 2010  Norway Spruce-pine-birch 0.55 0.2 0.06 
Chen et al. 2006*†  California Oak savanna 0.65   

Edson & Wing 2011*†  Oregon Douglas-fir - grand fir 0.59   

Falkowski et al. 2008†  Idaho Douglas-fir - grand fir - western red-
cedar - western larch 

 0.06 0.43 

Heurich et al. 2004  Germany Spruce-fir-birch 0.442 0.054  
Holmgren & Persson 2004  Sweden Spruce-pine-birch 0.71   

Huang et al. 2009*†  China Oak-pine   0.65 
Kaartinen et al. 2012† Definiens Finland Pine-spruce-birch 0.3 0.006 0.68 
Kaartinen et al. 2012* FGI-LOCM Finland Pine-spruce-birch 0.75 0.181 0.4 
Kaartinen et al. 2012* FGI-MCV Finland Pine-spruce-birch 1.05 0.388 0.35 
Kaartinen et al. 2012* FGI-MLOG Finland Pine-spruce-birch 0.7 0.149 0.42 
Kaartinen et al. 2012† FGI-VWS Finland Pine-spruce-birch 0.6 0.061 0.45 
Kaartinen et al. 2012 FOI Finland Pine-spruce-birch 0.55 0.05 0.5 
Kaartinen et al. 2012* Hannover Finland Pine-spruce-birch 0.25 0 0.71 
Kaartinen et al. 2012* Metla Finland Pine-spruce-birch 0.65 0.061 0.45 
Kaartinen et al. 2012 Norwegian Finland Pine-spruce-birch 0.85 0.233 0.45 
Kaartinen et al. 2012† Texas Finland Pine-spruce-birch 0.35 0.003 0.6 
Kaartinen et al. 2012 Udine Finland Pine-spruce-birch 0.9 0.265 0.4 
Koukoulas & Blackburn 
2005 

 England Deciduous 0.6   
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Li et al. 2012  California Sierra Nevada mixed conifer 0.86 0.04  
Persson et al. 2002  Sweden Spruce-pine-birch 0.71 0.002 0.29 
Reitberger et al. 2007*  Germany Spruce-beech 0.74 0.05  
Schardt et al. 2002*  Austria Spruce-pine-oak 0.5 0.05 0.45 
Stumberg et al. 2014  Norway Spruce-pine-birch tundra 0.45   

Tao et al. 2014  California Sierra Nevada mixed conifer 0.91   

Tompalski et al. 2014  Germany Spruce 0.901 0.029 0.068 
Vauhkonen et al. 2012† 1 Germany Oak-beech-birch 0.52 0.233 0.601 
Vauhkonen et al. 2012† 1 Germany Scots pine 0.926 0.282 0.334 
Vauhkonen et al. 2012† 1 Sweden Pine-spruce-birch 0.776 0.296 0.453 
Vauhkonen et al. 2012† 1 Norway Pine-spruce-birch 0.494 0.23 0.619 
Vauhkonen et al. 2012 2 Germany Oak-beech-birch 0.876 0.473 0.538 
Vauhkonen et al. 2012 2 Germany Scots pine 0.789 0.343 0.482 
Vauhkonen et al. 2012 2 Sweden Pine-spruce-birch 0.651 0.228 0.497 
Vauhkonen et al. 2012 2 Norway Pine-spruce-birch 0.513 0.3 0.641 
Vauhkonen et al. 2012* 3 Germany Oak-beech-birch 0.46 0.121 0.596 
Vauhkonen et al. 2012* 3 Germany Scots pine 0.532 0.094 0.518 
Vauhkonen et al. 2012* 3 Sweden Pine-spruce-birch 0.689 0.144 0.41 
Vauhkonen et al. 2012* 3 Norway Pine-spruce-birch 0.528 0.166 0.559 
Vauhkonen et al. 2012 4 Brazil Eucalyptus plantation 0.639   

Vauhkonen et al. 2012 4 Germany Oak-beech-birch 0.927 0.395 0.439 
Vauhkonen et al. 2012 4 Germany Scots pine 1.114 0.393 0.324 
Vauhkonen et al. 2012 4 Sweden Pine-spruce-birch 0.716 0.103 0.357 
Vauhkonen et al. 2012 4 Norway Pine-spruce-birch 0.568 0.204 0.548 
Vauhkonen et al. 2012 5 Brazil Eucalyptus plantation 0.932   

Vauhkonen et al. 2012 5 Germany Oak-beech-birch 0.816 0.297 0.427 
Vauhkonen et al. 2012 5 Germany Scots pine 0.783 0.167 0.348 
Vauhkonen et al. 2012 5 Sweden Pine-spruce-birch 0.858 0.191 0.306 
Vauhkonen et al. 2012 5 Norway Pine-spruce-birch 0.681 0.254 0.492 
Vauhkonen et al. 2012 6 Brazil Eucalyptus plantation 0.9   
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Vauhkonen et al. 2012 6 Germany Oak-beech-birch 0.654 0.185 0.467 
Vauhkonen et al. 2012 6 Germany Scots pine 0.652 0.097 0.411 
Vauhkonen et al. 2012 6 Sweden Pine-spruce-birch 0.685 0.069 0.362 
Vauhkonen et al. 2012 6 Norway Pine-spruce-birch 0.452 0.139 0.611 
Yao et al. 2012  Germany Spruce-beech 0.6 0.09  
Yu et al. 2011*  Finland Pine-spruce 0.69   

Zhao et al. 2014*  China Spruce-pine-juniper 0.39   
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