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Informative Data and Uncertainty
in Fisheries Stock Assessment

Arni Magnusson

Chair of the Supervisory Committee:

Professor Ray Hilborn

School of Aquatic and Fishery Sciences

Uncertainty is an integral part of fisheries stock assessment. Successful resource management

requires scientific analysis to evaluate the uncertainty about the status of each stock and

related quantities of interest. A failure to incorporate uncertainty into management advice

increases the risk of suboptimal yields and can lead to a fishery collapse. In practice, it is not

always clear which features of stock assessment data make them informative or uninformative,

and it is also unclear how well different statistical methods are likely to perform when

evaluating uncertainty.

This study uses simulation analysis to measure the performance of alternative methods,

based on a large number of simulated datasets where the underlying true values are known.

The methods are then applied to data from an actual fishery, and the overall inference takes

into account the performance of the methods in the simulations.

The results show that the historical levels of stock size and harvest rate greatly affect

how informative the data are about the current stock status. The key parameters natural

mortality M and stock-recruitment steepness h pose challenges when it comes to statistical

estimation, and long-term management advice is likely to depend strongly on the estimated

or assumed values of M and h. The most informative fishing history is one where the data

include years of high and low stock size, which is informative about h, as well as high and



low harvest rates, which is informative about M . The results also indicate that confidence

intervals describing the uncertainty about the stock status and other quantities of interest

are likely to be too narrow in general. Benchmark analysis indicates that the delta method,

Markov chain Monte Carlo (MCMC), and profile likelihood approaches are likely to perform

better than the bootstrap for quantifying uncertainty. A bias correction algorithm for the

bootstrap improved its performance, but not enough to match the performance of the other

methods. Additional approaches to evaluate the estimation uncertainty include retrospective

analysis and bivariate confidence regions for the current stock status. The use of harvest

control rules to incorporate uncertainty into management advice is also discussed.

The main value of this study is to present a comprehensive overview and evaluation of

methods to analyze uncertainty. The study concludes with a checklist of recommendations

for confronting uncertainty in stock assessment.
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INTRODUCTION

Fisheries management relies on stock assessment models to provide estimates of population

abundance, and to shed light on the underlying dynamics of the resources being managed.

It is necessary to quantify and understand the uncertainty about model parameters and

reference points to evaluate the consequences of alternative management actions.

The uncertainty about estimated quantities reflects the information contained in the

available data, but also depends on model choice and implicit assumptions that are made

when the assessment is conducted. Informative data in fisheries stock assessment are those

that lead to accurate estimates of abundance and reference points. In practice, the esti-

mation accuracy is unknown and it is often unclear which features of the data make them

informative or uninformative. Despite theoretical and practical advances in the field of stock

assessment, our ability to answer some key questions remains limited. Chapter 1 of this

dissertation focuses on one such question: What kinds of data are particularly informative

in stock assessments, and how is this influenced by model assumptions? This simulation

study compares four fishing histories, which represent different contrast in the stock size and

harvest rates, and the effect of the fishing history on the estimation of three key parame-

ters: natural mortality rate, stock-recruitment steepness, and asymptotic vs. dome-shaped

selectivity.

A common approach to quantify uncertainty is to calculate confidence intervals, and a

variety of statistical methods exist for this purpose. However, different methods give different

intervals, and fisheries scientists are likely to choose the statistical method they are most

familiar with, or one that has become traditional for a particular stock. It is not obvious which

method to recommend in stock assessment, where model complexity and non-linearity are

likely to degrade the performance of standard methods. Ideally, the method should generate
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intervals that are neither too narrow nor too wide, in order to cover the true value of estimated

quantities with a probability matching the claimed confidence level. Chapter 2 presents a

benchmark analysis that compares the performance of the delta method, bootstrap, and

Markov chain Monte Carlo (MCMC) to evaluate the uncertainty about stock status and

reference points from simulated datasets.

The objective of Chapter 3 is to provide a broader and more complete overview and

demonstration of techniques to confront uncertainty in stock assessment. Using Icelandic

saithe data as a case study, it revisits the approaches and findings from the first two chapters

to examine four main issues: (1) the overall fishing history and whether it is likely to be

informative about the stock status and key parameters, (2) the effects of different assumptions

about the natural mortality rate, stock-recruitment steepness, and the shape of the selectivity

curve for the oldest fish, (3) the amount of information contained in the survey data about

the stock status, and (4) whether the delta method, profile likelihood, bootstrap, and MCMC

lead to similar conclusions. Additional methods used to evaluate the estimation uncertainty

in this chapter include retrospective analysis and bivariate confidence regions for the current

stock status. This chapter also highlights the use of harvest control rules to incorporate

uncertainty into management advice.

Finally, Chapter 4 presents a brief overview of statistical software that was developed for

the analysis in previous chapters.
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Chapter 1

WHAT MAKES FISHERIES DATA INFORMATIVE?

Abstract

Informative data in fisheries stock assessment are those that lead to accurate estimates of

abundance and reference points. In practice, the accuracy of estimated abundance is unknown

and it is often unclear which features of the data make them informative or uninformative.

Neither is it obvious which model assumptions will improve estimation performance, given

a particular data set. In this simulation study, 10 hypotheses are addressed using multiple

scenarios, estimation models, and reference points. The simulated data scenarios all share

the same biological and fleet characteristics, but vary in terms of the fishing history. The

estimation models are based on a common statistical catch-at-age framework, but estimate

different parameters and have different parts of the data available to them. Among the find-

ings is that a ‘one-way trip’ scenario, where harvest rate gradually increases while abundance

decreases, proved no less informative than a contrasted catch history. Models that excluded

either abundance index or catch at age performed surprisingly well, compared to models

that included both data types. Natural mortality rate, M , was estimated with some relia-

bility when age-composition data were available from before major catches were removed.

Stock-recruitment steepness, h, was estimated with some reliability when abundance-index

or age-composition data were available from years of very low abundance. Understanding

what makes fisheries data informative or uninformative enables scientists to identify fisheries

for which stock assessment models are likely to be biased or imprecise. Managers can also

benefit from guidelines on how to distribute funding and manpower among different data

collection programmes to gather the most information.
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1.1 Introduction

1.1.1 Stock assessment and informative data

Fisheries management relies on stock assessment models to provide estimates of population

abundance, and to shed light on the underlying dynamics of the resources being managed. It is

necessary to quantify and understand the uncertainty about model parameters and reference

points to evaluate the consequences of alternative management actions. The uncertainty

about estimated quantities reflects the information contained in the available data, but also

depends on the choice of model and implicit assumptions that are made when the assessment

is conducted. Despite theoretical and practical advances in the field of stock assessment,

our ability to answer some key questions remains limited. This study focuses on one such

question: What kinds of data are particularly informative in stock assessments, and how is

this influenced by model assumptions?

Understanding what makes fisheries data informative or uninformative has obvious value

for fisheries management, enabling us to identify fisheries for which stock assessment models

are likely to be biased or imprecise. Managers can also benefit from guidelines on how to

distribute funding and manpower among different data collection programmes to gather the

most information. Moreover, adaptive management decisions can be taken today to make

future data as informative as possible (Ludwig and Hilborn 1983, Walters 1986, Walters

2007).

Shepherd (1984) ranked types of fisheries data in terms of potential information provided

by each type of data in isolation. Annual landings and age-specific abundance indices were

ranked the highest, for example, while age-composition data alone was assigned a low score.

Such statements are of course highly generalized, but nevertheless provide useful guidelines

for planning data collection programmes. Shepherd (1984) also points out how different

data types complement each other: landings provide information about the absolute scale

of the fishery, age-composition data about the relative cohort size, and abundance-index

data about the relative changes in abundance over time. Changes in growth or maturity
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can provide some information about changes in population density, confounded with other

ecological and evolutionary factors (Rose et al. 2001). Less commonly used data types that

provide information about stock status include tag recoveries and egg/larval surveys. In a

Bayesian context, any prior information about estimated or derived parameters can also be

seen as a type of data source (Gelman et al. 2004), where information from previous studies

is expressed in the form of a probability distribution for estimated or derived parameters.

Many non-Bayesian estimation methods assume that specific parameters are known without

error; the effect of such assumptions is similar to that of a highly informative Bayesian prior.

The general rule in statistical inference is that more data leads to less uncertainty. But

other features of the data also play a role, e.g. the range of observed values and temporal

patterns in time-series data. This is easy to show analytically for simple stock assessment

techniques, such as depletion models and catch-curve analysis, as outlined below. When more

complex models are used, it becomes less concrete what is meant when stock assessment

modellers discuss the ‘informative’ data in a particular assessment, or perhaps more often,

‘uninformative’ data.

Before taking a closer look at what kinds of data are informative for a given model, it is

helpful to begin with an overview of some commonly used models.

1.1.2 Models and assumptions in stock assessment

A variety of stock assessment models have been developed, as reviewed by Megrey (1989),

Hilborn and Walters (1992), Quinn and Deriso (1999), Quinn (2003) and Smith and Addison

(2003). This variety of models reflects the diversity of fisheries to which stock assessment

techniques need to be applied, the data available for assessment purposes, and what is known

or assumed about the fishery dynamics and stocks. There has been a move away from sim-

ple and restrictive assumptions (Schaefer 1954, Chapman and Robson 1960, Gulland 1965)

towards more flexible models that incorporate all of the available data in a likelihood-based

statistical framework.

A depletion model (Leslie and Davis 1939) can be used to estimate absolute abundance
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from a time series of landings and an index of relative abundance when a stock is fished

down. Assuming a closed population where the impact of fishing mortality is much greater

than those of recruitment, growth, and natural mortality, the biomass at the start of time

step t+ 1 equals the biomass at the start of time step t less the catch during time step

t, that is Bt+1 = Bt−Yt, and the abundance index is proportional to the stock biomass,

It = qBt. The catchability coefficient, q, is assumed to be constant, although empirical

data suggest that may not always be a justifiable assumption (Ricker 1958). The Schaefer

(1954) biomass-dynamic model adds two parameters representing the maximum growth rate

and carrying capacity, Bt+1 = Bt + rBt(1−Bt/k)−Yt. When r= 0, it is identical to the

depletion model. A slightly different approach is taken in the Kimura and Tagart (1982) stock-

reduction model, where two parameters represent the natural mortality rate and recruitment,

Bt+1 = Bte
−(Ft+M) +R. The fishing mortality rate Ft is evaluated from the landings, Yt =

Bt(1−e−Ft−M)Ft/(Ft+M). As the above models do not distinguish between age groups, they

can be formulated either in terms of numbers or biomass.

In catch-curve analysis (Chapman and Robson 1960), the total mortality rate of fully

recruited fish in a given year can be estimated using the catch-at-age composition, assuming

that recruitment variability is inconsequential. Catch curves can also be applied to individual

cohorts (Hilborn and Walters 1992), relaxing the assumption that recruitment is the same

across cohorts, Nt+1,a+1 = Nt,ae
−(Ft+M). In practice, M is often assumed to be known, and

F can in turn be used to estimate absolute abundance if the annual landings are known.

Related models include virtual population analysis (Gulland 1965), cohort analysis (Pope

1972), adaptive framework (Gavaris 1988) and extended survivors analysis (Shepherd 1999).

The assumption of a known constant M is frequently challenged (Cotter et al. 2004), but

restrictive assumptions about M and recruitment are often necessary to evaluate the con-

sequences of alternative catch levels (Punt and Hilborn 1997). Even in fisheries where large

quantities of data have been collected for decades, an age-structured assessment model can

fit the data equally well when M is fixed at a very low value or a high value (Gavaris and

Ianelli 2002).
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The forward-projecting statistical catch-at-age model (Fournier and Archibald 1982, De-

riso et al. 1985, Methot 1989) can be described conceptually as a stock-reduction model

with variable recruitment, combined with catch-curve analysis of multiple cohorts. The basic

framework can be tailored fairly easily to the specifics of the fishery to be modelled. The

data types most commonly included in statistical catch-at-age analysis are: annual landed

catch, catch at age and an index of relative abundance. The landed catch is often assumed

to be measured without error, and model parameters are estimated by minimizing the dif-

ference between model predictions and the observed catch at age and abundance index. A

statistical catch-at-age model can be fitted without any age data (Hilborn 1990) or without

an index of abundance. However, Deriso et al. (1985) concluded that all three data types are

required to estimate abundance and reference points reliably. Hilborn et al. (2003) describe

how statistical catch-at-age models can incorporate sex-specific data from multiple fisheries

with ageing error, catch-at-length data, and allow certain parameters to vary over time.

Parameters that are almost always estimated when fitting a statistical catch-at-age model

include the age-structure of the population in the first year considered in the model, the

selectivity curve for each fishery, the catchability coefficient for each abundance index and

the annual recruitment. There remain, however, many decisions to fully specify a statistical

catch-at-age model. For example, whether to estimate or fix the natural mortality rate M ,

how to model the relationship between spawning stock size and recruitment, whether to

parametrize selectivity using an asymptotic or dome-shaped curve, and how to choose which

parameters vary over time (Patterson et al. 2001, Gavaris and Ianelli 2002). M can be

accurately estimated if the data include the catch age composition from a nearly unfished

population, or if fishing effort is kept very low for some years (Beverton and Holt 1957),

while the shape of the stock-recruitment curve can be estimated only if there is considerable

contrast in stock size (Ricker 1958). Analyzing a model that estimates M and right-hand

selectivity, i.e. a shape parameter determining the selectivity of older age classes, Thompson

(1994) noted that those parameters were confounded and recommended fixing either M or

the selectivity shape parameter at an assumed value.
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The simpler models (depletion, catch curves) can be emulated fairly adequately using

statistical catch-at-age models, by fixing parameters, selecting specific functional forms for

biological relationships, or excluding likelihood components from the objective function.

The main difference between the depletion, biomass-dynamic, stock-reduction and delay-

difference models is how recruitment, somatic growth and natural mortalities are handled.

Schnute (1985) showed how the Schaefer (1954) biomass-dynamic model, the Deriso (1980)

delay-difference model and Kimura and Tagart (1982) stock-reduction model are special

cases of a generalized catch-effort model. Xiao (2000) showed further that the above models,

along with the Leslie and Davis (1939) depletion model, Gulland’s (1965) virtual population

analysis and Fournier and Archibald’s (1982) statistical catch-at-age models are all special

cases of a generalized age-structured model. In light of their flexibility, superior performance

(NRC 1998, Punt et al. 2002), and increasing usage, statistical catch-at-age models are used

in this study to address the questions of interest.

1.1.3 Simulation studies and informative data scenarios

The term data scenario is used here to denote temporal patterns found in the data, regardless

of the amount and types of data. These temporal patterns are impacted by how the fishery

has been conducted historically, e.g. whether fishing effort and landings have been increasing

or decreasing, held relatively steady, or perhaps the stock might be rebuilding after heavy

depletion. One of the questions confronted in this study is which data scenarios are more

informative than others.

A data scenario is informative when it enables a given model to estimate the status of

a fishery with greater accuracy than most other data scenarios would. In the real world, a

data scenario can be said to be informative if it resembles a scenario that has been shown to

be informative, either analytically or in a simulation study. Analytical demonstration is only

viable for the simplest of models, such as linear regression, but for more complex models,

simulations are used to evaluate estimation accuracy. Simulation studies use an ‘operating’

model to generate artificial data similar to those used in stock assessment, except the true
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population parameters are known.

The depletion model can be expressed as a linear regression with the abundance index

as the response variable and accumulated catch as the predictor, Ît = qBinit − q
∑

i≤t Yi.

As with any simple linear regression model, the uncertainty about the slope and intercept

depends on (i) how closely the data points are aligned in a straight line, as residuals will be

smaller when model assumptions are not violated substantially and when measurements are

reasonably accurate, (ii) the range of values on the x-axis and (iii) the number of data points.

The biomass before catches were removed, Binit, corresponds to the x-intercept. This intercept

can be predicted more accurately when the y-values, relative abundance, are observed both

at high and quite low values. Ricker (1958) noted that intense fishing effort that reduces the

abundance considerably leads to informative data for the depletion model, and Pope (1972)

found the same to be true for cohort analysis. Many fisheries have undergone a period of

rapid removals and can therefore be expected to yield informative data, if scientific data were

being collected at the time.

Hilborn (1979) demonstrated why and how certain data scenarios are informative, using

a simplified Schaefer biomass-dynamic model that has a closed-form solution. He concluded

that contrast is needed in both abundance and harvest rate to obtain unbiased and precise

parameter estimates. Specifically, Hilborn (1979) identified the most informative data sce-

nario as one that includes a period of quite heavy exploitation, followed by a period where

the stock is allowed to rebuild to an intermediate level, after which the exploitation rate

increases again.

The parameter of main interest in catch-curve analysis is the fishing mortality rate in each

year, Ft, frequently used in fisheries management. This parameter is confounded with the

natural mortality rate, as cohorts decline at an exponential rate Zt = Ft +M . If little or no

fishing has taken place in previous years, Z corresponds to the rate of natural mortality M ,

which is otherwise a very difficult parameter to estimate. More generally, catch-at-age data

that contain years with high and low fishing effort are informative to bound possible values

of M , and therefore Ft (Beverton and Holt 1957). Variation in fishing effort has also been
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found to be informative for more complex age-structured models to separate natural and

fishing mortalities (Hilborn and Walters 1992). Of course, uncertainty about the estimated

parameters will also decrease if large numbers of fish are sampled at random and measured

with negligible ageing error, and if M varies only slightly between years, without a consistent

increasing or decreasing trend (Beverton and Holt 1957).

Several simulation studies have explored the behaviour of statistical catch-at-age models.

Bence et al. (1993) found that current abundance is estimated more reliably when harvest rate

has been high, and when the true survey selectivity curve is asymptotic rather than dome-

shaped. The study of Sampson and Yin (1998), later updated by Yin and Sampson (2004),

showed how low natural mortality M , high recruitment variability and small changes in the

harvest rate all lead to unreliable estimates. They also concluded that for the U.S. West Coast

groundfish fishery, it would be more cost-effective to gain information by increasing sampling

for age composition than by improving the precision of the survey on which abundance indices

are based, at least from a single-species perspective. Ianelli (2002) found that reference

points are overestimated when the true steepness h of the stock-recruitment curve is low,

and underestimated when the true value of h is high. In their simulation study, Punt et

al. (2002) showed how depletion level, defined as current abundance compared with average

virgin abundance, was estimated more reliably than other reference points. They also found

that the statistical catch-at-age model performed substantially worse when age-composition

data were not available.

1.1.4 This study

The goal of this study is to improve our understanding of how uncertainty about the status of

a fishery resource depends on data, models and assumptions. An ‘informative’ data scenario

is one that enables a given model to estimate the status of a fishery with greater accuracy

than most other data scenarios would. The hypotheses that will be addressed are:
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H1 Fisheries data are most informative when they span a period where the population was

fished down to a low level.

H2 Fisheries data are most informative when they span a period where the population was

fished down to a low level and then allowed to rebuild for some time.

H3 The level of stock depletion is estimated more reliably than other reference points.

H4 A data set that includes both an index of relative abundance and catch-at-age data is

much more informative than a data set that includes only one of these two types of

data.

H5 Not knowing M , h and right-hand selectivity leads to inaccurate estimates of stock

abundance and reference points.

H6 Models estimating M perform about as well as models estimating h.

H7 M can be estimated reliably if age-composition data are available from when the pop-

ulation was unfished.

H8 M can be estimated reliably from the rate of population increase if the stock is allowed

to rebuild from a low level.

H9 h can be estimated reliably from catch-at-age data and an index of relative abundance

when the data cover a period in which abundance varies substantially.

H10 Right-hand selectivity can only be estimated reliably when M is known.

1.2 Methods

First, we define four fishing history scenarios and generate stochastic data sets using an

‘operating model,’ based on an age-structured population dynamics model. The performance

of a suite of estimation models is then evaluated, with respect to how well they estimate the

values of six reference points. The simulation procedure, outlined in Figure 1.1, is repeated for
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each scenario, random seed and estimation model. A scenario consists of chosen parameter

values and a harvest rate schedule, described in more detail below. The operating model

first applies stochastic recruitment and outputs the resulting reference point values. It then

applies random observation noise and outputs the assessment data that are used as input for

the estimation models. Finally, the estimated reference points are derived from the parameter

estimates, and compared with the ‘true’ reference points that were not subject to observation

noise.

1.2.1 Scenarios

Four fishing history scenarios are simulated in the analysis: (A) one-way trip where harvest

rate is gradually increased while the abundance decreases, (B) no change where abundance

is steady at a constant and somewhat low harvest rate, (C) good contrast where the stock is

fished down to less than half its initial size and then allowed to rebuild and (D) rebuild only

where the stock begins at a very low abundance and is allowed to rebuild under low fishing

pressure. The fishing history scenarios are designed specifically to address hypotheses 1–2

and 7–9, in terms of harvest rate and the expected value of the abundance index (Figure

1.2). Time trajectories offer a more traditional view of the same data (Figure 1.3).

1.2.2 Operating model

The biological component

The operating model is a statistical catch-at-age model (Fournier and Archibald 1982) with

biological characteristics (Table 1.1) and parameter values (Table 1.2) based on Atlantic cod

(Gadus morhua, Gadidae). It follows the parametrization of the Coleraine statistical catch-

at-age software (Hilborn et al. 2003), which is used to implement the estimation models.

The population dynamics are governed by the equation

Nt+1,a+1 = Nt,ae
−M(1− CSaut) (1.1)
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where Nt,a is population size at time t and age a, M is the rate of natural mortality, CS is

the selectivity of the commercial fishery and u is harvest rate. The oldest age group, age A,

is treated as a plus group:

Nt+1,A = Nt,A−1 e
−M(1−CSA−1ut) + Nt,A e

−M(1−CSAut) (1.2)

Selectivity is an asymmetric normal curve determined by three shape parameters,

Sa =


exp

(
−(a− Sfull)

2

exp(Sleft)

)
, a ≤Sfull

exp

(
−(a− Sfull)

2

exp(Sright)

)
, a >Sfull

(1.3)

where Sfull is the age at full selectivity, Sleft describes the left-hand slope and Sright the

right hand slope of the curve. The survey selectivity curve has a high SSright = 15 (Table

1.2) so the oldest fish are fully selected, but the commercial selectivity has an intermediate

CSright = 6, resulting in a slightly dome-shaped curve (Figure 1.4). Harvest rate is defined

as the fraction removed from the vulnerable biomass in the middle of the fishing year, ut =

Yt /
∑

a(CSaNt,awa)e
−M/2, where Y is catch and w is body weight.

The population size at the start of the first year is

N1,1 = R0Rinit × exp(Rε1,1− σ2
R/2)

N1,a = R0Rinit e
−(a−1)M

a−1∏
i=1

(1−CSiuinit)× exp(Rε1,a− σ2
R/2)

N1,A = R0Rinit e
−(A−1)M

A−1∏
i=1

(1−CSiuinit) / [1−e−M(1−CSAuinit)]×Rplus (1.4)

for 1-year-olds, intermediate ages, and the plus group. R0 is average virgin recruitment,

Rinit scales the initial population size across all ages, and uinit is the initial harvest rate.
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The Rε elements are random recruitment deviates generated from the normal distribution,

Rε∼N(0, σ2
R), where σR is recruitment variability. The Rplus term scales the initial plus group

and is not drawn from the same distribution as the Rε recruitment deviates for the younger

ages. Instead, a large number of initial ages are generated, up to 100 years old, and ages 10

and over are aggregated in a plus group.

Recruitment is stochastic around a Beverton-Holt stock-recruitment function, reparame-

trized according to Francis (1992),

Nt+1,1 =
4hR0(Bt/B0)

1−h+(5h−1)(Bt/B0)
× exp(Rεt+1,1−σ2

R/2) (1.5)

where Bt =
∑

aNt,aΦawa is spawning biomass,

B0 =
A−1∑
a=1

R0e
−(a−1)MΦawa + R0 e

−(A−1)MΦAwA/(1−e−M) (1.6)

is average virgin spawning biomass, h is steepness of the stock-recruitment curve, and Φ is

proportion mature.

Generating the simulated data sets

One hundred data sets are generated for each fishing history scenario. These data sets vary

in terms of landings, survey abundance index and commercial catch-at-age. The harvest

rate is always the same in each scenario, but the resulting landings change as population

size changes with stochastic recruitment. There are 10 age classes and 20 years of data,

nominally referred to as 1985–2004. The landings are assumed to be known exactly, but the

catch at age and abundance index are subject to random observation error. When stochastic

recruitment and observation noise is added to the original templates from Figure 1.2, the

observed abundance index shows random fluctuations, but the overall fishing history is still

recognizable (Figure 1.5).

Even though the harvest rates in Table 1.2 are followed precisely, the resulting landings
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vary among the data sets because of stochastic recruitment. The level of recruitment vari-

ability (σR =0.6), observation noise for the abundance index (σI =0.2) and observation noise

for the commercial catch at age (n= 50) are similar to those used in recent assessments of

the Icelandic cod stock (ICES 2003).

The survey abundance index is proportional to the biomass vulnerable to the survey in

the middle of the fishing year,

It = q
∑
a

SSaNt,awa e
−M/2 × exp(Iεt) (1.7)

where I is the observed abundance index, q is the catchability coefficient, SS is survey

selectivity, and Iεt∼N(0, σ2
I ) is random observation noise. The commercial catch-at-age data

are provided to the assessment model in the form of proportions at age. These proportions

are generated assuming that the sampling is multinomial,

Pt,a ∼ Multinom

(
n,

CSaNt,a∑
a CSaNt,a

)/
n (1.8)

where P is the observed catch at age and n is the sample size used to generate observation

noise.

Survey catch-at-age data are not used in this study, to keep the analysis and interpretation

as simple as possible. The survey abundance index and the commercial catch at age are

independent sources of information, one about changes in relative abundance, the other

about relative cohort sizes and mortality rates. Data are assumed to be available for each

year and the landings are output without observation error.

1.2.3 Estimation models

Thirteen estimation models are fitted to the simulated data. They have the same parametriza-

tion as the operating model (Equations 1.1–1.8) and are implemented with the Coleraine

statistical catch-at-age software (Hilborn et al. 2003). The models differ in terms of which
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data types are included in the objective function and which parameters are estimated (Table

1.3). The models are designed specifically to address hypotheses 4–10.

The 13 models consist of three ‘families,’ indicated by the first digit of the abbreviation

used to identify the model: family 1 uses only landings and abundance index, family 2 uses

only landings and catch at age, family 3 uses all three data types. Thus, models from family

1 are akin to biomass-dynamic models (with R0 scaling the absolute size of the population

instead of K, and h and M determining the intrinsic growth rate instead of r), models from

family 2 resemble catch-curve analysis based on multiple cohorts, and those from family 3

are several variants of statistical catch-at-age analysis.

Although it is possible to examine the implications of estimating every combination of

parameters, the focus of this study is on three key parameters: the steepness of the stock-

recruitment relationship (h), the natural mortality rate (M) and the right-hand selectivity

shape parameter (CSright) for the commercial fishery. Models that estimate these parameters

have ‘h,’ ‘M’ or ‘r’ in their abbreviations. When parameters are not estimated, they are fixed

at the true value, as is done for the survey selectivity parameters.

The Coleraine software requires that all estimated parameters be bounded. Wide bounds

(Table 1.4) are assigned to all parameters so as not to impose any major constraints on the

values for the parameters.

The objective function for the estimation models is the sum of three components. The

first two relate to data included in the analysis and the last is a penalty on recruitment

deviations from the stock-recruitment relationship:

f = − logLI − logLC + Pen (1.9)

The abundance-index likelihood component is lognormal,

− logLI =
∑
t

(log It − log Ît)
2

2σ2
I

(1.10)

where I and Î are the observed and model-predicted abundance indices. The robust normal
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likelihood for proportions (Fournier et al. 1990) is assumed for the catch-at-age data,

− logLC = −
∑
t

∑
a

log

[
exp

(
−(Pt,a−P̂t,a)2

2
[
Pt,a(1−Pt,a) + 0.1/A

]
n−1

)
+ 0.01

]
(1.11)

where P and P̂ are observed and the model-predicted catch proportions at age. Finally,

recruitment deviates are penalized under the assumption of lognormality,

Pen =
A−1∑
a=2

Rε
2
1,a

2σ2
R

+
tmax−1∑
t=2

Rε
2
t,1

2σ2
R

(1.12)

where Rε1,a and Rεt,1 are recruitment deviates in the initial year and subsequent years, and

σR is a measure of the extent of recruitment variability. The estimation models are given the

correct (i.e. the operating model) values for σI =0.2, the effective sample size n=50 for the

catch-at-age data, and recruitment variability σR =0.6.

1.2.4 Reference points

Six reference points are evaluated as potential management quantities of interest: Bcurrent

(current biomass), ucurrent (current harvest rate), Depletion (current depletion level), MSY

(maximum sustainable yield), Bcurrent/BMSY (current biomass relative to BMSY, and Surplus

(current surplus production). These reference points are chosen because they are commonly

used in fisheries management. Bcurrent, ucurrent, and Depletion are calculated using the equa-

tions:

Bcurrent =
∑
a

N2005,aΦawa (1.13)

ucurrent = Y2004 /
∑
a

(CSaN2004,awa)e
−M/2 (1.14)

Depletion = Bcurrent /B0 (1.15)

The maximum sustainable yield, MSY, is defined as the long-term average catch when the

harvest rate is set to an optimal value, uMSY. The average catch at a given harvest rate can
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be calculated in closed form, by combining methods from Lawson and Hilborn (1985) and

Francis (1992). First, the equilibrium age composition is standardized so that the number of

1-year olds equals 1:

n?a =



e−(a−1)M

a−1∏
i=1

(1−CSiu), a < A

e−(A−1)M

A−1∏
i=1

(1−CSiu)

1− e−M(1−CSAu)
, a = A

(1.16)

At this harvest rate, the average recruitment is R? = (SBPR?−α)/(βSBPR?), where

α=SBPR0(1−h)/(4h), β=(5h−1)/(4hR0), SBPR?=
∑

a n
?
aΦawa, and SBPR0 is calculated

in the same way as SBPR? except that u=0. The average long-term catch for a given harvest

rate is

Y ? = uR?e−M/2
∑
a

n?aCSawa (1.17)

and the corresponding spawning biomass is:

B? = R? × SBPR? (1.18)

MSY and BMSY are calculated by searching iteratively for the u that maximizes Y ?.

Finally, current surplus production is defined as the last year’s catch, plus the resulting

change in vulnerable biomass:

Surplus = Y2004 +
∑
a

CSawa(N2005,a−N2004,a)e
−M/2 (1.19)

The true reference point values from the operating model vary due to stochastic re-

cruitment, except ucurrent which is pre-defined in each scenario (Table 1.2) and MSY which

depends only on R0, h, M and commercial selectivity. The true MSY value is in all cases
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203 thousand tonnes, with harvest rate uMSY = 0.154 and spawning biomass BMSY = 1270

thousand tonnes. Table 1.5 gives an idea of the approximate values of the reference points,

using the special case of deterministic recruitment (all Rεt,a=0 and σR =0) as an example.

1.2.5 Performance measures

The performance of an estimation model is quantified by comparing the estimates from the

100 data sets with the true values from the operating model, using two performance measures.

One performance indicator is the bias of estimators,

Median bias = median

(
θ̂− θ
θ

)
(1.20)

where θ̂ is the estimated value of a reference point and θ is the true value. The median bias

is used rather than the mean, to make the performance indicator more robust to outlying

estimates of the management quantities. The other performance indicator is the proportion

of estimates that are less than half or greater than twice the true value,

Failure rate = Pr(θ̂/θ<0.5 ∪ θ̂/θ>2) × 100 (1.21)

where 0.5 and 2 bound an arbitrarily chosen range of ‘acceptable’ error. The failure rate is

a robust measure of accuracy, capturing both bias and imprecision, while the median bias

is better at detecting relatively small but consistent bias. Median bias has a possible range

from −1 to ∞, and failure rate is between 0 and 100. An estimation model that performs

well has median bias close to 0 and failure rate close to 0. The performance is also presented

graphically using Tukey’s boxplots, where a solid box shows the inner quartiles, and whiskers

extend from the box to the outermost datapoint within 1.5 times the interquartile range

(Tukey 1977).



20

1.3 Results

A total of 5200 model runs are analyzed: 100 data sets for each of the four scenarios and 13

estimation models. In the first part of the results, we look at how well the models estimate

the reference points, and the second part focuses on selected model parameters.

1.3.1 Reference points

To facilitate comparison, the distribution of the estimated reference points (Figure 1.6) are

expressed as ratios of the true values known from the operating model. The multipanel box-

plot allows one to visually evaluate the estimation performance for each reference point across

data scenarios and estimation models. For example, the top left panel shows how well each

model estimates current spawning biomass when the data are simulated based on scenario

A (one-way trip). In this panel the boxplot medians are not far from 1, indicating that the

models estimate current abundance with relatively small bias. However, the uncertainty of

the estimates is considerably greater for model families 1 and 2 than for model family 3. This

is understandable, because model families 1 and 2 ignore the catch-at-age and abundance-

index information, respectively, while model family 3 uses all of the available data. The two

performance measures, median bias and failure rate (Tables 1.6 and 1.7), summarize the

information in Figure 1.6.

Bcurrent

When estimating current abundance (Figure 1.6, top row of panels), the models exhibit only

a small bias in data scenario A (one-way trip), with models 2 and 2m exhibiting a negative

bias of−0.2. The failure rate is also relatively low in scenario A, ranging from 0 for model 3, to

24 for models 1h and 2h. Most of the boxplots are wider in scenario B (no change), indicating

that the data in this scenario are less informative about current abundance. Models 3 and

3h are exceptions from this general pattern, as their performance is comparable to scenario

A. The considerably higher failure rate of models 3m, 3r, 3mr and 3hmr in scenario B shows
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how the uncertainty increases when the natural mortality rate and/or right-hand selectivity

are unknown. The performance of the estimation models in scenario C (good contrast) is

better than in scenario B and about as good as scenario A. The greatest bias in scenario C

is −0.4 for model 2m, which also has a relatively high failure rate of 51, while models 3 and

3h have 0. Scenario D (rebuild only) is the least informative about current abundance. The

lowest failure rates are 6 and 9 for models 3 and 3h, but the estimates from these models

have a bias of −0.2 and −0.3. The other models have much higher failure rates in scenario

D, including the highest of all cases, 92 for model 2m.

ucurrent

The current harvest rate (Figure 1.6, second row of panels) is never greatly overestimated

in scenario A. This is because the estimated fraction of the biomass caught in a year cannot

be many times higher than the true value of 0.408 in this scenario (Table 1.5). Nevertheless,

a small but consistent positive bias of c. +0.1 is shown by model family 3, but failure rates

are quite low, 0 for models 3, 3h and 3r, up to 20 for model 1h. In scenario B, all models

have high failure rates except for models 3, 3h and 3r, with 0, 2 and 10, respectively. Model

3r is unbiased, but 3 and 3h are positively biased by +0.1. The models that estimate natural

mortality, 1m, 2m, 3m, 3mr and 3hmr all show high failure rates, between 37 and 70. Failure

rates in scenario C are lower than in scenario B, but higher than in scenario A. The median

bias ranges from 0 for models 3 and 3h, to +0.8 for model 2m, and failure rates are lower for

model family 3 than the simpler models. Model performance in scenario D is considerably

worse than in the other scenarios. Models 3 and 3h have low failure rates of 5 and 6, but

consistently overestimate the harvest rate with a bias of +0.3 and +0.4. Model 3r has a

smaller bias of −0.1, but a failure rate of 25, while model 2m shows an extreme −1.0 bias

and a failure rate of 90.
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Depletion

Many of the models estimate current depletion (Figure 1.6, third row of panels) in scenario

A about as well as current abundance, but there are noteworthy exceptions. Specifically, the

failure rate is consistently higher for current depletion compared to current abundance when

the natural mortality rate is unknown, in models 1m, 2m, 3m, 3mr and 3hmr. Scenario B

is again less informative than scenario A about current depletion, with median bias ranging

from −0.8 for models 1m and 3hmr, to +0.3 for model 3m, and failure rate from 3 for model

3 to 81 for models 1h and 3hmr. Models 2, 2r, 3, 3h and 3r perform quite well in scenario C,

with failure rates below 10, while model 2m is negatively biased and has a high failure rate

of 62. Scenario D is clearly more informative about depletion than absolute abundance, with

the models showing less extreme biases and failure rates. Nevertheless, models 1h, 1m and

3hmr provide negatively biased and inaccurate estimates of current depletion in scenario D.

MSY

All models in scenario A estimate the maximum sustainable yield (Figure 1.6, fourth row of

panels) with quite low failure rates, although the estimates are often slightly biased towards

overestimation. Model 1h has the highest failure rate, 29, but the failure rates of the remaining

models are between 0 and 12. Models 2, 2r, 3, 3h and 3r perform relatively well in scenario

B, but the other models overestimate MSY considerably. Model performance in scenario C

is again similar to that in scenario A, except that models 1m and 2m have larger bias and

higher failure rates. Scenario D is highly uninformative about MSY for all models except 3

and 3h, which have failure rates 3 and 13, respectively. Other models in this scenario are

positively biased with failure rates between 26 and 88.

Bcurrent/BMSY

The ability to estimate the ratio Bcurrent/BMSY (Figure 1.6, fifth row of panels) is largely

similar to that for current depletion, the other ratio reference point, reflecting a strong



23

correlation between the B0, Bcurrent and BMSY parameter estimates. The failure rates in

scenario A range from 2 for model 3, to 45 for model 2h. Scenario B is less informative about

the stock status relative to BMSY, although models 2, 3 and 3r perform relatively well. The

estimation models in scenario C are subject to rather small biases, with the exception of

−0.6 for model 2m. In scenario D, most of the models have failure rates below 50, but model

3hmr is strongly biased downwards, with median bias −1.0.

Surplus

All models estimate current surplus production (Figure 1.6, bottom row of panels) quite

accurately in scenario A, with failure rates ranging from 0 for model 3r, to 20 for model

2h, which also shows the greatest bias of +0.2. Scenario B is much more informative about

surplus production than about other reference points, with a bias of −0.2 to +0.1, and failure

rates from 8 for model 3, to 45 for model 2m. The estimation performance is also good in

scenario C, with the greatest bias being −0.3 for model 2r, and failure rates ranging from 4

for model 3, to 39 for model 2m. In scenario D, failure rates are generally high, over 50 for

all models in families 1 and 2. The only models that perform well here are 3 and 3h, with

failure rates of 13 and 15, and a bias of −0.1. Thus, estimating surplus production reliably in

scenario D requires that both catch-at-age data and an index of abundance are available, as

well as perfect knowledge about the true natural mortality rate, recruitment steepness and

right-hand selectivity.

1.3.2 Parameters

Steepness h and natural mortality M are estimated directly in the model, while selectivity

at oldest age S10 is a derived parameter from Equation 1.3. In Figure 1.7, the estimated

parameter values are divided by the true values from the operating model, which are h=0.7,

M=0.2, and S10 =0.94.

Steepness is overestimated by all models in all scenarios, but relatively accurate estimates

are seen in scenario D using models 2h and 3h. By definition, steepness has an upper bound
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of 1 (Francis 1992) and many estimates in the top row of panels in Figure 1.7 run into this

bound, where ĥ/h = 1.0/0.7 = 1.43, but less frequently in scenario D. Estimates of natural

mortality rate are generally unreliable, especially using the 1m or 3hmr models, but relatively

accurate estimates are seen in scenario A using the 3m model. When right-hand selectivity

is estimated as well, in models 3mr and 3hmr, M becomes biased towards underestimation.

In other words, when the estimated selectivity does not fully target older fish, the relatively

high frequency of older fish in the catch can be fitted by increasing the natural mortality rate.

Selectivity at oldest age is consistently underestimated (Figure 1.7, bottom row of panels).

This bias is partly due to the true value of S10 = 0.94 being so near the theoretical upper

bound of 1, but the estimates are also inaccurate, in many cases less than half the true value.

The performance does not differ much between models 2r, 3r, 3mr and 3hmr, but scenario

A is slightly more informative than the others about selectivity at oldest age.

1.4 Discussion

Below, the hypotheses are reviewed in light of the results, using average failure rate as

a summary statistic. This is followed by a general discussion about implications and the

strengths and weaknesses of the experimental design.

1.4.1 Hypotheses

H1 Fisheries data are most informative when they span a period where the population was

fished down to a low level.

H2 Fisheries data are most informative when they span a period where the population was

fished down to a low level and then allowed to rebuild for some time.

Table 1.8 shows the estimation performance in each scenario, where each average is based

on 65 failure rates from Table 1.7, across models and reference points. There is a clear

division, also noticeable in Figure 1.6, where fishing histories A (one-way trip) and C (good

contrast) provide more reliable data to estimate the reference points than B (no change) and
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D (rebuild only). The results provide slightly more support to hypothesis 1 (average failure

rate in scenario A=12.7) than hypothesis 2 (C=21.0), but both of those scenarios are much

more informative than B or D.

The results from the ‘one-way trip’ scenario imply that fisheries data spanning an early

period of high abundance followed by low abundance are likely to be informative in age-

structured stock assessment, even if the fishing history does not include subsequent rebuild-

ing. This is in contrast to findings from simulation studies of biomass-dynamic models, where

a rebuilding phase provides necessary information to estimate the population growth param-

eters (Hilborn 1979, Hilborn and Walters 1992). It is worth noting that those studies looked

at how well the parameters of the Schaefer model were estimated, not just reference points.

H3 The level of stock depletion is estimated more reliably than other reference points.

The reference point with the lowest overall failure rate is not the current depletion level,

but surplus production (Table 1.9). But from Figure 1.6 it is clear that Depletion is a more

robust reference point across all scenarios. The reference points that are in absolute biomass

units (Bcurrent, MSY and Surplus) become highly unreliable in scenario D (rebuild only),

particularly when natural mortality is unknown. The relative biomass estimates (Depletion

and Bcurrent/BMSY) perform much better in those cases.

Punt et al. (2002) and other studies have shown that depletion is generally estimated

more reliably than other reference points. The greater the correlation is between the Bcurrent

and B0 parameter estimates, the smaller the variance around the estimated ratio of the two.

The results from scenarios A through D indicate that depletion may be subject to slightly

higher failure rates than some other reference points when the data are informative, but is a

robust quantity to estimate in worst-case uninformative scenarios.

An interesting exception is how accurately current surplus production is estimated in

scenario B. This is understandable, since if the abundance index and catch is constant over

time, then the surplus production must be roughly equal to the catch.
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H4 A data set that includes both an index of relative abundance and catch-at-age data is

much more informative than a data set that includes only one of these two types of

data.

Estimation models of family 3 (all data types) perform better than family 1 (no age data)

and family 2 (no abundance index), as shown in Table 1.10. This comes as no surprise and is

in agreement with the recommendations by Deriso et al. (1985). Models similar to those of

family 1 have been used by Hilborn (1990) and others, and are seen by many as a preferable

alternative to traditional biomass-dynamic models (Maunder 2003). Their argument is that

traditional biomass-dynamic models make implicit assumptions that offer limited freedom

to explore different hypotheses about the fishery dynamics.

Model family 2 performs surprisingly well. Even in the absence of abundance-index data,

the landings and age-composition data provide considerable information to estimate both

absolute abundance and relative depletion. The common view is that estimation of these

quantities requires either an abundance index or highly restrictive assumptions (Shepherd

1984, Deriso et al. 1985, Hilborn and Walters 1992), but here the assumptions of model family

2 are similar to families 1 and 3. Furthermore, convergence diagnostics indicated that models

of family 2 were no less estimable than the other models. This behaviour may be due to the

simplified nature of the simulation environment, but it is worth remembering that a precursor

of the statistical catch-at-age model (Doubleday 1976) did not include abundance-index data.

Statistical catch-at-age models combine the landings and the commercial catch-at-age data

in a framework that provides more insight than analyzing each cohort separately (Fournier

and Archibald 1982). An additional element of information for model families 1–3 is the

penalty (Equations 1.9 and 1.12) that allows the estimated recruitment to vary considerably

(c. 20-fold difference between largest and smallest recruitment in scenario B with σR = 0.6)

but not by many orders of magnitude, whereas recruitment is completely free in the model

used by Deriso et al. (1985).

H5 Not knowing M , h, and right-hand selectivity leads to inaccurate estimates of stock
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abundance and reference points.

As expected, the models perform better when parameters are fixed at the true value, than

when they are estimated. Even so, the 3hmr model performs quite well in the informative

scenarios A and C, especially estimating current abundance, harvest rate, MSY and surplus

production (Figure 1.6, Tables 1.6 and 1.7).

By admitting uncertainty about M , h, and right-hand selectivity, model 3hmr represents

the real task facing stock assessment scientists. These parameters are highly confounded, so

model 3hmr cannot be expected to perform reliably when fitted to real fisheries data, that

come from a much more complex system than the operating model used in this study. In

practice, some or all of these parameters would be fixed at an assumed value, or be assigned

an informative Bayesian prior probability distribution. The effect of fixing these parameters

at values that are very different from the true dynamics has been explored by Thompson

(1994), Clark (1999), Ianelli (2002), and others.

H6 Models estimating M perform about as well as models estimating h.

Models estimating h perform better on the average than those estimating M , especially when

the data include both catch at age and an index of abundance (Table 1.11). This means

that uncertainty about the natural mortality rate is more important than the uncertainty

about the shape of the stock-recruitment curve, when estimating the stock status. Model 3m

shows particularly bad performance in scenarios B and D, so in those scenarios any external

information about M would be valuable. This information could be used to construct a

Bayesian prior for M , or to fix the parameter, which is analogous to an extremely narrow

Bayesian prior (Gelman et al. 2004).

The highest overall failure rates were shown by model 2m in scenario D. As expected

(Beverton and Holt 1957), it is simply not feasible to estimate harvest rate and natural

mortality from catch-at-age, when harvest rate has been steady and low.
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H7 M can be estimated reliably if age-composition data are available from when the pop-

ulation was unfished.

H8 M can be estimated reliably from the rate of population increase if the stock is allowed

to rebuild from a low level.

Model 3m estimates M with greater accuracy in scenarios A and C than in the other scenarios

(Figure 1.7). This was expected, since the age structure in the first few years of the fishery

carries information about the natural mortality rate (Beverton and Holt 1957). After taking

the individual cohort sizes into account, using data from all years, M can be inferred from

the age composition in the first years. Importantly, the model was not ‘told’ that the stock

was unfished in the first year in scenarios A and C, as the parameters Rinit and uinit were

estimated in all cases.

The estimation of M is less accurate in scenario D. One might have expected this scenario

to be informative about the value of M , as the rate at which the stock rebuilds is dependent

on this parameter. The other main factor determining the rebuilding rate is recruitment, so

the variable recruitment (σR =0.6) might explain why scenario D is not informative about M .

Another reason could be that the observation noise (σI =0.2) causes the observed abundance

index to suggest random fluctuations instead of a steady growth.

H9 h can be estimated reliably from catch-at-age data and an index of relative abundance

when the data cover a period in which abundance varies substantially.

Although scenario A involves the widest range of abundance (Figure 1.2), it is only in scenario

D that model 3h estimates h reliably (Figure 1.7). Recruitment success at low spawning

stock levels is informative about the shape of the stock-recruitment curve (Ricker 1958),

and scenario D includes a large number of cohorts spawned by a small parent stock. The

initial stock status in scenario D (c. 3% of B0) is also considerably lower than the last year’s

stock status in scenario A (c. 10% of B0). When the data do not include years of very low

abundance, the models tend to overestimate the steepness parameter (Figure 1.7).
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H10 Right-hand selectivity can only be estimated reliably when M is known.

The results from this study are not conclusive about the estimation of right-hand selectivity,

as the only case considered is when the true selectivity curve is nearly asymptotic. Nonethe-

less, the results do suggest that when the true selectivity is nearly asymptotic, the reliability

of estimating right-hand selectivity (Figure 1.7, bottom panel) depends more on the scenario

than on whether M is estimated or fixed. Thompson (1994) performed a more thorough

analysis of the relationship between these parameters, concluding that right-hand selectivity

can only be estimated reliably when M is known.

1.4.2 Implications

The results presented here show how the perceived uncertainty about stock status is not only

affected by the available data, but also by the assumptions made in the estimation process.

The features of different fishing history scenarios determine how informative the data are

about management quantities. The main feature of an informative fishing history is a large

decrease in abundance, while other features, such as contrast in harvest rate, seem to be of

secondary importance. Although strong depletion is to be avoided due to the ecological risk

and economic cost, it does provide informative data. In the words of John G. Pope (personal

communication), ‘the more fish you catch, the better you know how many there were.’

An uninformative fishing history, commonly seen in practice, is when a relative index

of abundance and age data are not available from the early years of the fishery. In these

cases, depletion level tends to be more robust than other commonly used reference points,

although surplus production can also be estimated accurately when the abundance remains

stable over a long period. When the data are informative, other reference points can be

expected to perform just as well, or better. Despite regular criticism, MSY remains a key

concept in fisheries management, if not as a goal, then as an upper limit of a precautionary

approach (Mace 2001, Punt and Smith 2001). MSY is independent of the current stock

status, being a function of R0, M , h, commercial selectivity, weight, and maturity at age.
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When the estimation models are given the true value of most of those quantities, MSY will

be estimated quite accurately. This can be seen from the performance of our models 1, 2

and 3, which generally estimated MSY with a lower failure rate than the other reference

points. However, it is also important to note that MSY was more often overestimated than

underestimated.

Catch-at-age data can provide information about the current stock status, even without

a relative abundance index. When the true value of M is known, the total mortality rate of

cohorts leads to an accurate estimate of annual harvest rate, which combined with known

annual catches leads to an accurate estimate of vulnerable biomass. The assumption of a

known constant M plays a central role here. This assumption is commonly made in practice,

and the effects of its violations are largely understood (Mertz and Myers 1997, Clark 1999).

It is an unrealistic assumption (Cotter et al. 2004), but a time-constant M , estimated or

fixed, is seen as necessary to evaluate the consequences of alternative catch levels (Punt and

Hilborn 1997), which is the central purpose of fisheries stock assessment.

The statistical catch-at-age model yields more information from catch-at-age data than

earlier catch-curve methods, given that the added assumptions about recruitment are justi-

fiable. Catch-at-age and abundance-index data become particularly informative when used

together, as they provide complementary information about different aspects of the popula-

tion dynamics, and are subject to different assumptions. It is known that the sampled and

processed catch-at-age data do not necessarily reflect the population age-structure very well

(Pope 1988), and empirical evidence also undermines the assumption about a constant linear

relationship between the abundance index and population abundance (Harley et al. 2001).

When these two data types tell a consistent story about the population trends, it indicates

that the model assumptions are likely to be justifiable. This can be checked by fitting models

that exclude data components, as was carried out in this study, or by changing the likelihood

weights via the catch-at-age sample size and observation uncertainty σI about the abundance

index. When the two data types provide contradicting information about the stock status,

the validity of each data source needs to be examined (Schnute and Hilborn 1993).
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When evaluating confidence bounds around estimated quantities, one should strive to

incorporate all major sources of uncertainty. This means estimating parameters instead of

fixing them, but this is not always statistically feasible. Confounded parameters like natural

mortality rate M , stock-recruitment steepness h and declining right-hand selectivity can be

estimated when the data carry information about these quantities. For M , this means catch-

at-age data from the early years of the fishery, or at least a contrasted history of harvest

rates (Beverton and Holt 1957) and for h it means catch-at-age data from a period of very

low abundance (Ricker 1958), as verified in this study. With the constant harvest rates in

scenarios B and D, there is no information to separate the total mortality rate between

natural mortalities and fishing mortalities. The selectivity of older fish can be estimated

when M is a fixed parameter (Thompson 1994). In a Bayesian model, one or more of these

parameters can be assigned an informative prior distribution, perhaps from a meta-analysis

of many related stocks (Myers et al. 1999), instead of estimating as a free parameter or fixing

completely.

Overall, the estimation models showed considerably high failure rates, where manage-

ment quantities were underestimated or overestimated by a factor of two or more. Bearing

in mind the simple ‘laboratory conditions’ of this simulation study, stock assessment models

can only be expected to have higher failure rates when fitted to real fisheries data. A retro-

spective look at fisheries assessments around the world shows that management quantities

are not estimated as accurately as statistical theory suggests, due to violated assumptions

and ignored sources of uncertainty (NRC 1998, Walters and Martell 2004).

1.4.3 Strengths and weaknesses

This study advances our understanding of fisheries stock assessment models, with respect to

what kinds of data are informative or uninformative, and highlights the role of assumptions.

Based on the experimental design and findings of Hilborn (1979), Hilborn and Walters (1992),

NRC (1998), Gavaris and Ianelli (2002) and Punt et al. (2002), this simulation study uses

up-to-date statistical methods that take advantage of the computing power available today.
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The scope is wide, addressing a variety of questions, and the conclusions can be used to

support various decisions made in any fisheries stock assessment.

Compared to real fisheries, with their complex interaction between biological and human

systems, the simulation approach is a simplified abstraction. Apart from stochastic recruit-

ment, the parameters in the operating model are constant over time (natural mortality rate,

catchability and selectivity), and the estimation models are specified without model error

and given the true survey selectivity. These decisions were made deliberately to make the

results as easy to interpret as possible. Excluding survey catch-at-age data from the study

allowed a clear separation between two kinds of information: commercial catch at age reflect-

ing the age distribution of the population over time and a survey abundance index reflecting

relative changes in biomass over time.

The wide scope of this study comes at a cost, as the experimental design is not optimal for

any one of the 10 hypotheses. Each of them could be tested more rigorously with a simulation

study specifically designed for that purpose. Similarly, there are many more hypotheses that

could be addressed using the same simulation framework, but applying other treatments

than was done here. For example, examining the effect of fixing parameters at values that

are substantially lower or higher than the true value. Model errors and violated assumptions

are inevitable in stock assessments, but the combined experience from real fisheries and

simulation studies will help making fisheries data as informative as possible.
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Figure 1.1. The simulation procedure. Arrows and boxes indicate

the workflow for a single run, and multiplications describe how the

study consists of multiple runs.
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Figure 1.2. The four fishing history scenarios considered in this study,

in terms of the relationship between the harvest rate and the expected

value of the abundance index. Circles represent the status of the fishery

in the first year. (A) One-way trip, (B) no change, (C) good contrast,

(D) rebuild only.
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Figure 1.3. The four fishing history scenarios considered in this

study, in terms of spawning biomass (line) and landed catch (bars).

(A) One-way trip, (B) no change, (C) good contrast, (D) rebuild only.
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Figure 1.4. Age-specific characteristics of the

operating model: survey selectivity (plain line),

commercial selectivity (line with circles), maturity

(dashed line), and weight (bars).
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Figure 1.5. Examples of stochastic data sets (random seed = 100),

in terms of the relationship between the harvest rate and the expected

value of the abundance index. Circles represent the status of the fishery

in the first year. (A) One-way trip, (B) no change, (C) good contrast,

(D) rebuild only.
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Figure 1.6. Distribution of estimated reference points. Panel columns correspond to

fishing history scenarios A–D and panel rows are the six different reference points. Each

Tukey boxplot shows the distribution of 100 estimates, divided by the true value of the

reference point from the operating model. The x-axis is truncated to avoid loss of detail.
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Figure 1.7. Distribution of estimated parameters h (steepness), M (natural mortality),

and derived parameter S10 (selectivity at oldest age). Panel columns correspond to fishing

history scenarios A–D and panel rows are the different parameters. Each Tukey boxplot

shows the distribution of 100 estimates, divided by the true value of the parameter from

the operating model.
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Table 1.1. Age-specific weight (kg) and maturity (proportion)

used in the operating and estimation model.

Age 1 2 3 4 5 6 7 8 9 10+

Weight (kg) 0.3 0.7 1.3 1.8 2.6 3.6 4.9 6.3 7.7 10.1

Maturity 0.0 0.0 0.1 0.4 0.6 0.8 0.9 1.0 1.0 1.0
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Table 1.2. Parameter values and harvest rate schedules

for the four fishing history scenarios.

Scenario A B C D
One way No change Contrast Rebuild

Parameters

R0 250 000 * * *
h 0.7 * * *
M 0.2 * * *
Rinit 1 0.8 1 0.2
uinit 0 0.16 0 0.4
Rplus 1 * * *

CSfull 5 * * *

CSleft 1 * * *

CSright 6 * * *

SSfull 4 * * *

SSleft 1 * * *

SSright 15 * * *
q 2.5× 10−7 * * *

Harvest rate
1985 0.026 0.160 0.039 0.067
1986 0.036 0.160 0.050 0.067
1987 0.050 0.160 0.064 0.067
1988 0.067 0.160 0.079 0.067
1989 0.088 0.160 0.096 0.067
1990 0.113 0.160 0.114 0.067
1991 0.142 0.160 0.132 0.067
1992 0.174 0.160 0.151 0.067
1993 0.208 0.160 0.168 0.067
1994 0.241 0.160 0.184 0.067
1995 0.273 0.160 0.199 0.067
1996 0.301 0.160 0.209 0.067
1997 0.325 0.160 0.207 0.067
1998 0.345 0.160 0.193 0.067
1999 0.361 0.160 0.168 0.067
2000 0.374 0.160 0.138 0.067
2001 0.385 0.160 0.107 0.067
2002 0.394 0.160 0.080 0.067
2003 0.401 0.160 0.053 0.067
2004 0.408 0.160 0.023 0.067

An asterisk indicates that the same parameter value
applies across all scenarios.
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Table 1.3. The 13 estimation models in terms of data types and parameters

estimated.

Model 1 1h 1m 2 2h 2m 2r 3 3h 3m 3r 3mr 3hmr

Data
Catch x x x x x x x x x x x x x
Index x x x x x x x x x
CA x x x x x x x x x x

Estimated
R0 x x x x x x x x x x x x x
h x x x x
M x x x x x
Rinit x x x x x x x x x x x x x
uinit x x x x x x x x x x x x x
Rplus x x x x x x x x x x

CSfull x x x x x x x x x x

CSleft x x x x x x x x x x

CSright x x x x
q x x x x x x x x x

Rε x x x x x x x x x x

Catch stands for landings, Index for survey abundance index, and CA for commercial
catch at age.
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Table 1.4. Bounds on estimated parameters, along

with the true values from the operating model.

Parameter True value Lower bound Upper bound

R0 250 000 1 000 10 000 000
h 0.7 0.2 1
M 0.2 0 0.5
Rinit 0.2−1 0 5
uinit 0−0.4 0 1
Rplus 1 0 2

CSfull 5 3 10

CSleft 1 −2 5

CSright 6 −2 15
log q −15.2 −30 0

Rε * −15 15

The true value of Rinit and uinit varies among scenarios
(see Table 1.2).

*: Initial age structure and annual recruitment varies
varies between the simulated data sets.

Table 1.5. True reference point values from the operating

model, given deterministic recruitment.

Scenario A B C D
One way No change Contrast Rebuild

Bcurrent 400 1216 1791 1672

ucurrent 0.408 0.160 0.023 0.067

Depletion 0.101 0.306 0.451 0.421

MSY 203 203 203 203

Bcurrent/BMSY 0.315 0.957 1.410 1.316

Surplus 170 203 195 185
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Table 1.6. Bias of estimated reference points, by scenario and model.

Bcurrent ucurrent Depletion MSY Bcurrent

BMSY
Surplus

A1 +0.1 −0.1 +0.2 +0.2 +0.1
A1h +0.1 −0.1 +0.1 +0.2
A1m −0.1 +0.1 +0.1 +0.1
A2 −0.2 +0.2 −0.1 −0.1
A2h +0.2 +0.2 +0.6 +0.2
A2m −0.2 +0.2 −0.1 +0.1 −0.1
A2r +0.1 +0.1
A3 −0.1 +0.1 −0.1 +0.1 −0.1 +0.1
A3h +0.1 +0.1 +0.2 +0.1
A3m −0.1 +0.1 −0.1 +0.1 −0.1
A3r +0.1
A3mr +0.1 −0.1 +0.1 −0.1 +0.1
A3hmr +0.1 −0.1 +0.2 +0.1
B1 −0.4 +0.6 −0.5 +2.0 −0.5 +0.1
B1h −0.7 +1.8 −0.7 +0.5 −0.6 +0.1
B1m −0.1 +0.2 −0.8 +1.4 −0.8 +0.1
B2 −0.1 +0.1 −0.2 −0.2
B2h −0.1 +0.1 −0.2 +0.2 +0.2
B2m +0.5 −0.3 +4.3 −0.1
B2r +0.3 +0.2 +0.1 +0.2 −0.2
B3 −0.1 +0.1 −0.1 −0.1
B3h −0.1 +0.1 +0.1 +0.5 +0.1
B3m +0.4 −0.2 +0.3 +1.6 +0.3
B3r +0.3 +0.2 +0.1 +0.2
B3mr +0.5 −0.1 +0.1 +0.7 +0.1
B3hmr −0.2 +0.3 −0.8 +1.9 −0.7
C1 −0.2 +0.3 −0.2 +0.2 −0.2
C1h −0.2 +0.2 −0.2 +0.2 −0.1 +0.1
C1m −0.3 +0.4 −0.2 +0.5 −0.1 −0.2
C2 −0.2 +0.2 −0.1 −0.1
C2h −0.3 +0.3 −0.2 +0.1 +0.1 −0.2
C2m −0.4 +0.8 −0.6 +0.5 −0.6 −0.2
C2r +0.1 +0.1 −0.3
C3 +0.1
C3h +0.1 +0.2 +0.1
C3m −0.1 +0.1 −0.2 +0.1 −0.2
C3r +0.2 −0.1 +0.1 +0.1 +0.1 −0.1
C3mr +0.1 −0.2 +0.2 −0.2 −0.1
C3hmr +0.2 −0.2 +0.2
D1 +12.8 +1.2
D1h −0.5 +0.8 −0.5 +3.2 −0.4 +0.5
D1m +0.3 −0.2 −0.3 +12.1 −0.3 +0.9
D2 +0.2 −0.2 −0.2 +0.5 −0.2 +0.2
D2h +0.3 −0.2 −0.1 +0.4 −0.1 +0.2
D2m +26.9 −1.0 +0.2 +23.8 +0.2 +4.8
D2r +4.3 −0.8 +0.1 +2.5 +0.2
D3 −0.2 +0.3 −0.1 −0.1 −0.1 −0.1
D3h −0.3 +0.4 −0.2 −0.1 −0.1 −0.1
D3m +0.2 −0.2 +0.1 +0.8 +0.1
D3r +0.2 −0.1 +0.1 +0.1 +0.1
D3mr +0.7 −0.2 +1.1
D3hmr −0.3 +0.9 −1.0 +1.8 −1.0 −0.2

Blank entries denote negligible bias, between −0.05 and +0.05.
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Table 1.7. Failure rates of estimated reference points, by scenario and model.

Bcurrent ucurrent Depletion MSY Bcurrent

BMSY
Surplus

A1 20 13 34 1 34 7
A1h 24 20 29 29 39 17
A1m 15 11 39 12 41 12
A2 9 3 10 0 10 5
A2h 24 15 25 6 45 20
A2m 16 10 39 7 40 7
A2r 19 4 16 1 17 5
A3 0 0 2 0 2 1
A3h 1 0 5 1 17 1
A3m 5 4 28 7 28 4
A3r 1 0 4 0 4 0
A3mr 2 1 26 7 26 4
A3hmr 2 1 25 4 27 1
B1 74 70 73 63 73 24
B1h 83 82 81 46 75 25
B1m 74 70 74 58 77 25
B2 34 27 22 12 22 21
B2h 45 38 41 28 49 28
B2m 65 64 67 61 69 50
B2r 45 39 29 21 30 30
B3 0 0 3 0 3 4
B3h 2 2 20 20 43 5
B3m 49 39 68 56 69 36
B3r 21 10 18 5 20 9
B3mr 45 37 62 45 65 34
B3hmr 60 58 81 69 88 29
C1 32 32 35 13 35 24
C1h 21 22 32 17 36 25
C1m 41 40 46 39 52 23
C2 16 14 8 4 8 11
C2h 36 36 33 31 47 38
C2m 51 52 62 35 62 39
C2r 21 16 8 6 9 37
C3 0 0 0 0 0 4
C3h 0 0 7 5 19 7
C3m 3 3 28 7 30 12
C3r 9 1 3 0 3 17
C3mr 8 8 30 8 31 22
C3hmr 8 8 35 15 42 22
D1 74 73 46 59 46 57
D1h 91 90 56 59 56 59
D1m 84 83 52 69 49 58
D2 69 66 26 54 26 61
D2h 77 76 24 73 25 77
D2m 92 90 44 88 48 87
D2r 83 85 21 78 23 77
D3 6 5 10 3 10 13
D3h 9 6 17 13 21 15
D3m 49 47 36 47 38 42
D3r 31 25 9 26 11 32
D3mr 53 46 33 52 35 41
D3hmr 85 89 64 57 65 55
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Table 1.8. Average failure rate in each scenario,

across all reference points and models.

Scenario A Scenario B Scenario C Scenario D

12.7 41.8 21.0 49.1

Table 1.9. Average failure rate for each reference point, across

all models and scenarios.

Bcurrent ucurrent Depletion MSY Bcurrent

BMSY
Surplus

34.3 31.4 32.4 27.2 35.4 26.1



47

Table 1.10. Average failure rate for each

estimation model family, across all reference

points and scenarios.

Family 1 Family 2 Family 3

45.4 35.8 20.9

Table 1.11. Average failure rate for

estimation models 1h, 1m, 2h, 2m, 3h,

and 3m, across all reference points and

scenarios.

h m

Model family 1 46.4 47.7

Model family 2 39.0 51.9

Model family 3 9.8 30.6
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Chapter 2

MEASURING UNCERTAINTY IN FISHERIES
STOCK ASSESSMENT: THE DELTA METHOD,

BOOTSTRAP, AND MCMC

Abstract

Fisheries management depends on reliable quantification of uncertainty for decision-making.

We evaluate which uncertainty method can be expected to perform best for fisheries stock

assessment. The method should generate confidence intervals that are neither too narrow nor

too wide, in order to cover the true value of estimated quantities with a probability matching

the claimed confidence level. This simulation study compares the performance of the delta

method, the bootstrap, and Markov chain Monte Carlo (MCMC). A statistical catch-at-age

model is fitted to 1000 simulated datasets, with varying recruitment and observation noise.

Six reference points are estimated, and confidence intervals are constructed across a range

of significance levels. Overall, the delta method and MCMC performed considerably better

than the bootstrap, and MCMC was the most reliable method in terms of worst-case perfor-

mance, for our relatively data-rich scenario and catch-at-age model, which was not subject

to substantial model misspecification. All three methods generated too narrow confidence

intervals, underestimating the true uncertainty. Bias correction improved the bootstrap per-

formance, but not enough to match the performance of the delta method and MCMC. We

recommend using MCMC as the default method for quantifying uncertainty in fisheries stock

assessment, although the delta method is the fastest to apply, and the bootstrap is useful to

diagnose estimator bias.
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2.1 Introduction

2.1.1 Which method performs best?

Fisheries management relies not only on point estimates of key quantities, such as biomass

and harvest rate, but also on the uncertainty about these estimates. The uncertainty can be

used to convey likely outcomes resulting from different management decisions, or incorpo-

rated into management strategy evaluation to find a long-term harvest strategy that performs

well in face of uncertainty.

When estimating measurement uncertainty, fisheries scientists generally choose the statis-

tical method they are most familiar with, or one that has become traditional for a particular

stock. Three commonly used methods that will be evaluated here are the delta method,

the bootstrap, and Markov chain Monte Carlo (MCMC) simulation. These methods have

been shown to perform well with simple models, when all assumptions are met (Oehlert

1992; Efron and Tibshirani 1993; Gelman et al. 2004). In this study, we ask the question:

given a typical age-structured stock assessment model and simulated datasets, which method

performs best?

Patterson et al. (2001) provide a thorough review of uncertainty methods and describe

three paradigms for evaluating uncertainty in stock assessment: frequentist, likelihood, and

Bayesian inference. For the purposes of fisheries stock assessment, the theoretical difference

between these paradigms is often ignored in practice (Restrepo et al. 2000; Patterson et al.

2001; Gavaris and Ianelli 2002; Hilborn 2003), and the methods are all used to express the

plausible range of estimated quantities. In the strict frequentist sense, a confidence interval

is a probabilistic statement about the proportion of such intervals that would cover the true

parameter value in repeated experiments (Neyman 1937; Casella and Berger 2002). This

frequentist statement treats the interval limits as random and the parameter as fixed, in the

context of repeated experimental trials, and is therefore quite meaningful in a simulation

study like this one, but it does not directly answer the relevant questions for environmen-

tal decision-making (Ellison 1996; Punt and Hilborn 1997; Ascough et al. 2008). Bayesian
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inference, on the other hand, treats the interval limits as fixed and the parameter as ran-

dom, leading to an intuitive statement about the probability that the true parameter value

lies in the interval. The Bayesian interval is sometimes called a ‘credible interval’ (Casella

and Berger 2002), a ‘posterior interval’ (Gelman et al. 2004), or simply a ‘confidence inter-

val’ (Hilborn and Mangel 1997; Clark 2005) when the theoretical difference is considered of

secondary importance, as is the case in this study.

For the purposes of this study, an uncertainty method is considered to perform well when

it generates x% confidence intervals for estimated quantities that contain the true value

approximately x% of the time. The method should generate neither too narrow intervals

that underestimate uncertainty, nor too wide intervals that overestimate uncertainty.

The delta method was introduced by Cramér (1946) and popularized in ecological mod-

elling by Seber (1973). Most applications of the delta method in stock assessment (e.g. Booth

and Quinn 2006; Trzcinski et al. 2006; McGarvey et al. 2007) use the AD Model Builder

programming framework to automate the computation of the required partial derivatives

(Schnute et al. 1998; Fournier et al. 2012). The bootstrap was introduced by Efron (1979)

and popularized by Efron and Tibshirani (1993). Early applications of the bootstrap in stock

assessment include Mohn (1993) and Punt and Butterworth (1993). Variations of the boot-

strap are outlined by Patterson et al. (2001), citing Gavaris and Van Eeckhaute (1998) as the

current recommended bootstrap method for stock assessment. MCMC simulation of prob-

ability distributions was introduced by Metropolis et al. (1953) and Hastings (1970), and

popularized in fisheries circles by Gelman et al. (1995). The potential usefulness of MCMC

in stock assessment was described by McAllister and Ianelli (1997) and Punt and Hilborn

(1997), with early applications including Punt and Kennedy (1997), Virtala et al. (1998),

and Patterson (1999).

Patterson et al. (2001) list five desirable properties of methods quantifying uncertainty.

They should be (i) based on statistical distributions derived from data rather than arbitrarily

chosen distributions, (ii) unbiased, (iii) accurate, (iv) use few distributional assumptions

and be robust to misspecifications of such assumptions, and least importantly (v) easy to



51

understand and implement. They mention that the bootstrap and MCMC have become more

common than the delta method in fisheries stock assessment to avoid restrictive distributional

assumptions. Hilborn (2003) noted that the use of the bootstrap has faded in recent years, as

Bayesian methods have grown in popularity, because of their intuitive probability statements

and theoretical and technical progress in this field of computational statistics. The bootstrap

has been described as an automatic processor for frequentist inference, with MCMC as its

Bayesian counterpart (Efron 2000).

2.1.2 Previous comparison studies

There are mainly two approaches to compare the performance of uncertainty methods, either

using real stock assessment data or using simulated data. With real data, one can compare the

estimated uncertainty for each method and speculate why differences occur. With simulated

data, one knows the true value of the estimated quantities and can therefore quantitatively

judge the performance of each method. A simulation study can use a relatively complex

operating model to generate the simulated datasets and a simpler assessment model to fit

those datasets, or use the same model to violate fewer assumptions.

Mohn (1993) compared the delta method and bootstrap, fitting an age-structured model

to actual cod data. Retrospective analysis was used to approximate the true estimated val-

ues, showing that the delta method tended to underestimate uncertainty. Gavaris (1999)

also compared the delta method and the bootstrap, fitting an age-structured model to had-

dock data. The bootstrap distribution indicated skewed uncertainty about stock abundance,

implying that the delta method with a symmetric Gaussian distribution would be inap-

propriate for statistical inference. Patterson (1999) compared the bootstrap and MCMC,

fitting an age-structured model to herring data and noted that MCMC generated wider

confidence intervals than the bootstrap. Gavaris et al. (2000) compared the delta method,

the bootstrap, and MCMC and analyzing data from three stocks using two age-structured

models. The uncertainty methods gave somewhat different results, but no clear or consistent

trends emerged. Booth and Quinn (2006) compared the delta method and MCMC, fitting a
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simple age-structured model to monkfish data. The two methods gave similar results when

non-informative Bayesian priors were used for MCMC, and the study highlighted how prior

information can be incorporated to decrease uncertainty when using MCMC. Mohn (2009)

compared the delta method, bootstrap, and MCMC, fitting an age-structured model to cod

data. The bootstrap generated considerably wider confidence intervals than the delta method

and MCMC, and the author pointed out that the bootstrap might be overestimating mea-

surement uncertainty.

Fewer studies have used simulated data to compare the performance of uncertainty meth-

ods. Punt and Butterworth (1993) compared the delta method and the bootstrap, using

an age-structured operating model and a simpler biomass-dynamic assessment model. The

methods worked equally well, as long as some bootstrap pitfalls were avoided. Restrepo et

al. (2000) compared the delta method, bootstrap, and MCMC, fitting age-structured assess-

ment models to a simulated dataset. The delta method and bootstrap performed marginally

better than MCMC in their study, and bias-correction methods proved beneficial.

2.1.3 This study

Overall, previous comparison studies have not identified which uncertainty method performs

best. They have highlighted the strengths and weaknesses of each method and provided

useful recommendations regarding their implementation. This study revisits the question

with previous recommendations in mind, using a modern statistical catch-at-age model both

to simulate and to analyze data that are known to be informative (Magnusson and Hilborn

2007). The study also benefits from greater computing power than was available a decade

ago, allowing a more rigorous experimental design that involves a larger number of simulated

datasets and population trajectories.

The working hypothesis is that all three methods work perfectly, for example, that 90%

confidence intervals for a reference point contain the true value 90% of the time. This hypoth-

esis is not going to be accepted or rejected, but the delta method, bootstrap, and MCMC

will be rated in terms of how accurate the probabilistic statement is.
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2.2 Methods

First, we define a set of true population parameters and generate stochastic datasets, using

an operating model based on age-structured population dynamics. The performance of three

uncertainty methods is then evaluated, with respect to how accurately they report the uncer-

tainty about reference points. The simulation procedure (Figure 2.1) is repeated 1000 times,

using 10 different recruitment scenarios so the results do not depend on a particular popula-

tion trajectory. The operating model first outputs the resulting reference point values, and

then applies random observation noise to the assessment data that are used as input for the

estimation model. Finally, the confidence interval for each reference point is evaluated using

the delta method, bootstrap, and MCMC, and compared with the ‘true’ reference points.

2.2.1 Operating model

The operating model is age-structured and follows the parametrization of the Coleraine gen-

eralized population model (Hilborn et al. 2003). The population dynamics of this operating

model are described in detail by Magnusson and Hilborn (2007). There are 10 age classes,

including a plus group, and 20 years of data, nominally referred to as 1985–2004, and the

biology and fishery characteristics (see Appendix, Figure A.1, Tables A.1 and A.2) are based

on Atlantic cod (Gadus morhua, Gadidae).

Each dataset includes landings, a survey abundance index, commercial catch at age and

survey catch at age. The landings are assumed to be known exactly, but the commercial and

survey catch-at-age data and the abundance index are subject to random observation error.

The datasets are based on 10 recruitment scenarios that are generated randomly (Table

A.3), and within each scenario there are 100 stochastic datasets with different realizations

of observation noise. The level of recruitment variability (lognormal σR = 0.6), observation

noise for the abundance index (lognormal σI =0.2), and observation noise for the commercial

(multinomial Cn=50) and survey catch-at-age (multinomial Sn=50) are similar to those used

in assessments of Icelandic cod (ICES 2003). All the scenarios follow the same harvest rate
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schedule, but the recruitment pattern leads to 10 different landings and biomass trajectories

(Figure 2.2).

The survey abundance index is proportional to the biomass vulnerable to the survey in

the middle of the fishing year,

It = q
∑
a

SSaNt,awa e
−M/2 × exp(Iεt) (2.1)

where It is the observed abundance index at time t, q is the catchability coefficient, SSa

is survey selectivity at age a, Nt,a is population size, wa is body weight, M is the natural

mortality rate, and Iεt∼N(0, σ2
I ) is observation noise. The commercial catch-at-age data are

provided to the assessment model in the form of proportions at age. These proportions are

generated assuming that sampling is multinomial,

CPt,a ∼ Multinom

(
Cn,

CSaNt,a∑
a CSaNt,a

)/
Cn (2.2)

where CPt,a is the observed catch at age and Cn is the multinomial sample size. Survey

catch-at-age data are generated in the same way.

2.2.2 Estimation model

The estimation model is a statistical catch-at-age model (Fournier and Archibald 1982)

implemented using Coleraine and has the same parametrization as the operating model. It

would therefore fit the data perfectly, if it was not for the observation noise both in the survey

abundance index and in the commercial and survey catch-at-age data. The parametrization

allows the commercial selectivity curve to decline at the oldest ages, but the survey se-

lectivity curve is correctly assumed to be asymptotic. Some of the estimated parameters,

including natural mortality rate M , stock-recruitment steepness h, and declining right-hand

commercial selectivity are known to be correlated and problematic to estimate (Magnusson

and Hilborn 2007). Wide bounds (Table A.2) are assigned to all estimated parameters so as
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not to impose any major constraints on the parameter values. The estimation model is given

the correct (i.e. operating model) value for recruitment variability, σR =0.6.

The objective function for the estimation model is the sum of four components. The

first three relate to observed data, and the last component is a penalty on deviations from

Beverton-Holt recruitment. The abundance index is assumed to be lognormally distributed,

the robust normal likelihood for proportions (Fournier et al. 1990) is assumed for the com-

mercial and survey catch-at-age data, while the recruitment deviates are assumed to be

lognormal. The magnitude of observation error for the abundance index is estimated using

maximum likelihood, while the effective sample sizes for the commercial and survey catch-

at-age data are estimated using the approach of McAllister and Ianelli (1997). The same

age-composition sample size is assumed for all years, calculated as the median of estimated

annual effective sample sizes.

2.2.3 Reference points

Six reference points are evaluated as potential management quantities of interest: Bcurrent

(current spawning biomass), ucurrent (current harvest rate), Depletion (depletion level, Bcurrent

relative to virgin spawning biomass), maximum sustainable yield (MSY), Bcurrent/BMSY

(Bcurrent relative to BMSY) and Surplus (current surplus production). These reference points

describe the current stock status and potential yield, and are described in detail by Mag-

nusson and Hilborn (2007). MSY and BMSY are defined as the long-term average catch and

spawning biomass when the harvest rate is set to an optimal value, uMSY. Surplus production

is defined as the last year’s catch, plus the resulting change in vulnerable biomass.

The true reference point values from the operating model vary between recruitment sce-

narios (Table 2.1), except ucurrent that is predefined (Figure 2.2, Table A.3), and MSY that

depends only on R0, h, M , and commercial selectivity. The true MSY value is in all cases 203

thousand t, with harvest rate uMSY =0.154 and spawning biomass BMSY =1270 thousand t.
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2.2.4 Evaluating uncertainty

The three methods used to quantify uncertainty start with the same input, the simulated

datasets. Equation (2.3) summarizes how each method generates a probability distribution

that is used to construct confidence intervals,

y
model−−−−→
delta

θ̂, ŜEθ̂

Norm−−−−→ p(y|θ)

y
model−−−−→ θ̂

bootstrap−−−−−−→ y?1, y
?
2, . . . , y

?
B

model−−−−→ θ̂?1, θ̂
?
2, . . . , θ̂

?
B

density−−−−−−→
bias corr

p(y|θ)

y
model−−−−→

MCMC
θ1, θ2, . . . , θT

density−−−−−→ p(θ|y) (2.3)

where y denotes the observed data, θ is a vector of parameters (and derived quantities),

the ˆ symbol indicates an estimate of a parameter or derived quantity, ŜEθ̂ is the estimated

standard error of θ̂, y?b is a bootstrap dataset, θ̂?b is a bootstrap estimate, and θt is an MCMC

iteration. The sampling distribution p(y|θ) and posterior distribution p(θ|y) are used to

generate confidence intervals at any given confidence level.

Delta method

The estimation model uses automatic differentiation (Griewank and Corliss 1991; Fournier

et al. 2012) to evaluate the Hessian matrix and hence the approximate variance-covariance

matrix for the estimated parameters. The delta method (Seber 1973), which assumes that

both estimation bias and the quadratic terms of the Taylor series are negligible, is then used

to estimate the variance of each derived quantity,

ŜEĝ =

√√√√∑
i

∑
j

Ĉov
(
θ̂i, θ̂j

)( ∂g
∂θi

)(
∂g

∂θj

)
(2.4)
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where g is a derived quantity, such as a reference point, that is a function of some estimated

parameters θ1, θ2, . . . , θn. The symmetric confidence interval for g is then

[
ĝ − z1−α/2ŜEĝ, ĝ + z1−α/2ŜEĝ

]
(2.5)

where z is the standard normal quantile.

The reference points Bcurrent and MSY are log-transformed for the purpose of applying the

delta method, because the uncertainty about these quantities can be expected to be closer to

lognormal than normal (Mohn 1993; Patterson et al. 2001), and exploratory bootstrap and

MCMC runs indicated that this was the case. Although surplus production is also measured

in biomass units, it is not log-transformed, as exploratory results showed fairly symmetric

distributions, and because surplus production can be negative when weak cohorts are entering

the fishable stock.

Bootstrap

A parametric model-conditioned approach is used to generate 1000 bootstrap datasets for

each simulated dataset. In their simulation study, Punt and Butterworth (1993) found that

100 bootstrap datasets was adequate for variance estimation, but 1000 bootstrap datasets

are used here, because more replicates are needed to estimate quantiles than variance. The

bootstrap is parametric with residuals sampled from estimated probability distributions, and

model-conditioned in that the residuals are not applied to the observed data but to predic-

tions from the model fit to the original data (Efron and Tibshirani 1993). The parametric

bootstrap was chosen because it is probably what would be used in practice for this par-

ticular assessment model, as there is no straightforward way to resample residuals for the

catch-at-age data when they are proportions. The bootstrap survey abundance index is

I?t = Ît × exp(Iε
?
t ), Iε

?
t ∼N(0, σ̂I

2) (2.6)

where I?t is the bootstrap datum for year t, Ît is the predicted index for year t from the model
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fit to the original dataset, Iε
?
t are bootstrap residuals, and σ̂I is the estimated magnitude of

observation error. The bootstrap commercial catch at age is

CP
?
t,a ∼ Multinom

(
Cn̂, CP̂t,a

)/
Cn̂ (2.7)

where CP
?
t,a are the bootstrap data, Cn̂ is the estimated effective sample size, and CP̂t,a is the

model-predicted commercial catch at age for year t.

The estimation model is fitted to each of the 1000 bootstrap datasets, resulting in 1000

bootstrap estimates for each parameter and derived quantity. A bias-correction factor is then

applied, which has been shown to lead to more accurate confidence intervals (Efron 2003). In

fisheries stock assessment, Gavaris and Van Eeckhaute (1998) and others have used the BCa

algorithm (bias correction and acceleration, Efron and Tibshirani 1993) with the acceleration

coefficient set to zero. Acceleration relates to the rate of change of the standard error of θ̂

with respect to the true parameter value θ, so zero acceleration implies that the standard

error of θ̂ is the same for all θ. The algorithm then simplifies to

BC
~̂
θ? = Ω̂−1

[
Φ
(

2Φ−1
[
Ω̂(θ̂)

]
+ Φ−1(~α)

)]
(2.8)

where BC
~̂
θ? is a vector of bias-corrected bootstrap estimates in ascending order, Φ(·) is

the standard normal cumulative distribution function, Ω̂(x) = #{θ̂?< x}/B is the empirical

cumulative distribution function of the bootstrap estimates θ̂?, while Φ−1(·) and Ω̂−1(·) are

the corresponding inverse functions, B is the number of bootstraps, and ~α is a vector of

probability levels 1/B, 2/B, . . . , B/B.

The bias-correction algorithm compares the bootstrap estimates of a given quantity to

the original point estimate. If the median of the bootstrap estimates is above or below the

original point estimate, it is seen as an indication of a biased estimator. As the original point

estimate was subject to the same bias, the algorithm corrects for the bias by transforming the

bootstrap estimates (Figure 2.3). The algorithm performs no transformation if the median of

the bootstrap estimates is the same as the original point estimate. It is also worth noting that
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the bias-corrected bootstrap estimates are always within the range of the ‘raw’ bootstrap

estimates. The resulting confidence interval may be narrower or wider.

The algorithm fails in the rare case when the bias is so extreme that all the bootstrap

estimates are above or below the original point estimate. In these cases, the Ω̂(θ̂) term,

the proportion of bootstrap estimates that are below the original point estimate, is 0 or 1,

resulting in expressions such as Ω̂−1[Φ(−∞+∞)], which is not mathematically defined. To

avoid this problem, a robust algorithm is used, where the Ω̂(θ̂) term is bounded between 0.1

and 0.9:

BC
~̂
θ? = Ω̂−1

[
Φ
(

2Φ−1
[
max{0.1,min{0.9, Ω̂(θ̂)}}

]
+ Φ−1(~α)

)]
(2.9)

These safety bounds guarantee a valid interval, but without the safety bounds, 5 of

6000 bias-corrected bootstrap intervals were undefined. The bias demonstrated in Figure

2.3 corresponds to Ω̂(θ̂) = 0.84, so the safety bounds at 0.1 and 0.9 are irrelevant for that

example. The computer code for the robust bias-correction algorithm is provided in Section

4.3. The bias-corrected bootstrap confidence interval is calculated as:[
α

2
quantile from BC

~̂
θ?,

(
1−α

2

)
quantile from BC

~̂
θ?
]

(2.10)

MCMC

Markov chain Monte Carlo simulation is used to approximate the posterior distribution of

estimated parameters and reference points. The simulation method is Metropolis-Hastings

with an adaptive multivariate normal jumping distribution (Gelman et al. 2004; Fournier et

al. 2012).

All model parameters are assigned uniform priors based on their bounds (Table A.2,

except the deviations about Beverton-Holt stock-recruitment relationship have a lognormal

prior. The MCMC simulation is run for 1 million iterations and then thinned, keeping ev-

ery 1000th iteration. Convergence of the estimated reference points is diagnosed using the
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‘coda’ package (Plummer et al. 2006), adopting an autocorrelation threshold of 0.1, Geweke

threshold of 1.96, and Heidelberger-Welch threshold of 0.05. If any criteria are not met, the

MCMC chain is extended to a maximum of 10 million iterations, still thinning to 1000 it-

erations, to reduce autocorrelation and stabilize the distribution quantiles. This proved to

be necessary for a few hundred model runs, owing to unstable model convergence as can be

expected when simultaneously estimating correlated parameters such as natural mortality

rate M , stock-recruitment steepness h, and declining right-hand selectivity (Magnusson and

Hilborn 2007).

The MCMC confidence interval is calculated as[
α

2
quantile from θ1, θ2, . . . , θT ,

(
1−α

2

)
quantile from θ1, θ2, . . . , θT

]
(2.11)

where θ1, θ2, . . . , θT are the iterations retained from the MCMC chain.

2.3 Results

We first examine the performance of confidence intervals at the 90% confidence level, then

broaden the analysis to all confidence levels, and finally examine the sensitivity of the re-

sults to changes to assumptions. Results are shown for both bias-corrected and ‘raw’ (non-

bias-corrected) bootstrap confidence intervals to evaluate whether and how much the bias

correction improves the bootstrap performance.

2.3.1 90% confidence level

A total of 24 000 confidence intervals are analyzed at the 90% confidence level (four uncer-

tainty methods, six reference points, 10 recruitment scenarios, and 100 stochastic datasets

for each recruitment scenario). Before summarizing, it is useful to look at an example set

of confidence intervals (Figure 2.4), where the uncertainty method is MCMC, the reference

point is current surplus production, and the recruitment scenario is 10. For a 90% confidence

level, one would expect around 90% of the confidence intervals to cover the true value (227
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thousand t), so the coverage probability in this example, 93 of 100, is slightly higher than

the nominal value of 90.

Looking across all uncertainty methods, reference points, and recruitment scenarios, the

coverage probability is usually lower than the target (Table 2.2), with 216 of 240 combinations

having coverage probabilities below 90. The example described previously, with a coverage

probability of 93, can be found in the lower right-hand corner of Table 2.2. The coverage

probabilities vary considerably between recruitment scenarios and the purpose of including

ten scenarios instead of only one is to prevent the results from depending on a particular

recruitment history.

The overall trends emerge after averaging over recruitment scenarios (Table 2.3), with

the delta method, bootstrap, and MCMC all showing coverage probabilities < 90, that is,

the methods lead to 90% confidence intervals that cover the true value < 90% of the time.

Overall, the delta method and MCMC perform better than the bias-corrected bootstrap,

with mean coverage probabilities of 73.0, 72.5 and 64.1, respectively. The performance of the

bootstrap is considerably poorer before bias correction, with a mean coverage probability of

57.4. The delta method outperforms the other methods in evaluating the uncertainty about

the current biomass, current harvest rate, depletion, and surplus production, but performs

poorly for Bcurrent/BMSY. MCMC performs better than the delta method and bootstrap

for MSY and Bcurrent/BMSY, and its mean coverage probability is above 60 for all reference

points. The bias-corrected bootstrap has similar or lower coverage probabilities than the delta

method and MCMC, including a particularly low coverage probability of 45.6 for MSY. Bias

correction generally improves the bootstrap performance, although it reduces the coverage

probability from 71.2 to 65.6 for Bcurrent/BMSY. On the other hand, bias correction leads to

a substantial increase in coverage probability for current harvest rate, from 44.9 to 66.5.

2.3.2 All confidence levels

When the analysis is repeated for different confidence levels (Figure 2.5, Table A.4), the

results confirm the trends for the 90% confidence level. The delta method, bootstrap, and
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MCMC show coverage probabilities that are consistently lower than expected at all confi-

dence levels. The general pattern is that the delta method and MCMC perform better than

the bootstrap, the main exception being Bcurrent/BMSY, where the delta method performs

considerably worse than MCMC and the bootstrap. The delta method performs slightly bet-

ter than MCMC for current biomass, current harvest rate, and depletion at confidence levels

higher than 50%, but the two methods perform equally well for MSY and surplus produc-

tion. On the whole, the bias-corrected bootstrap performs poorer than the delta method and

MCMC, particularly for MSY. Bias correction leads to improved performance of the boot-

strap, with the exception of Bcurrent/BMSY, and the improvement is especially noticeable for

current harvest rate. MCMC has the most consistent performance for the various reference

points (Figure 2.5). Its coverage probability is always close to that for the best-performing

method, and it shows no conspicuous failures, unlike the bootstrap for MSY and the delta

method for Bcurrent/BMSY.

When the results are averaged across the six reference points (Fig. 2.6), the delta method

and MCMC show similar performance, substantially better than the bias-corrected boot-

strap. At the 50% confidence level, MCMC has a mean coverage probability of 38, the delta

method has 35 and the bootstrap 30. At the 95% confidence level, the delta method and

MCMC have a mean coverage probability of 80, while the bootstrap has 71 (Figure 2.6, Table

A.4).

2.3.3 Sensitivity analysis

Four analyses are used to examine what factors may lead to the low coverage probabilities

(Figure 2.6). The first analysis assumes that the estimation method ‘knows’ the true magni-

tude of observation error, the second analysis uses a multinomial catch-at-age likelihood, the

third assumes that the estimation method ‘knows’ the bias of estimated reference points, and

the fourth combines all of the above. These analyses are only conducted for the delta method

owing to computational demands. Finally, a supplementary sensitivity analysis (Table A.5)

indicates that the overall results would not change very much if more recruitment scenarios
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would be included in the study.

Known magnitude of observation error

The observation noise in the simulated datasets is generated using lognormal σI = 0.2 and

multinomial Cn= 50 and Sn= 50, but this magnitude of observation error is often underes-

timated by the estimation model. The iteratively estimated σ̂I is often too low, the median

estimate being 0.186, while Cn̂ and Sn̂ are often too high, with median estimates 52 and

53. This leads to narrower confidence intervals, which could explain the low coverage prob-

abilities. When the estimation model uses the true values for σI, Cn and Sn, the coverage

probability of the delta method improves only marginally, from 72.9 to 74.5 at the 90%

confidence level (Figure 2.7, left panel).

Multinomial catch-at-age likelihood

The operating model generates catch-at-age data under the assumption of multinomial sam-

pling, but the estimation model uses the Fournier robust normal likelihood for proportions.

This introduces a model misspecification, which could explain the low coverage probabili-

ties. When the estimation model assumes a multinomial catch-at-age likelihood instead of

the robust normal likelihood for proportions, the coverage probability of the delta method

improves noticeably, from 72.9 to 78.4 at the 90% confidence level (Figure 2.7, center panel).

Known bias

Each reference point is estimated with some bias. The median of the 1000 point estimates

compared with the true value, median(θ̂− θ)/θ, is −0.13 for current biomass, +0.22 for cur-

rent harvest rate, −0.20 for current depletion level, +0.20 for MSY, +0.05 for Bcurrent/BMSY,

and +0.14 for current surplus production. When the delta-method confidence intervals are

shifted to correct for the median bias of each reference point, the coverage probability im-

proves noticeably, from 72.9 to 78.8 at the 90% confidence level (Figure 2.7, right panel).
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Combined effect

When the estimation model assumes a multinomial catch-at-age likelihood, given the true

values for σI, Cn and Sn, and the confidence intervals are then shifted to correct for the

median bias of each reference point, the coverage probability improves considerably, from

72.9 to 82.6 at the 90% confidence level.

2.4 Discussion

2.4.1 Confidence intervals are too narrow

The delta method, bootstrap, and MCMC all produced confidence intervals that did not cover

the true value as often as the nominal confidence level implies (Figure 2.6). The three methods

are well established in the statistical literature, widely used, and have been shown to perform

well for simple models, when all assumptions are met (Seber 1973; Efron and Tibshirani

1993; Gelman et al. 2004). The purpose of this study was to examine how well they perform

with a typical stock assessment model of medium complexity, when most assumptions are

met. Generally, the performance of all statistical methods degrades with increased model

complexity, as non-linearity and correlated parameter estimates undermine the assumptions

and lead to estimation bias (Seber and Wild 1989). The optimization method also becomes

less likely to find the global minimum. In this study, sensitivity analysis showed that even

after correcting for estimation bias, the delta-method 90% confidence intervals still covered

the true value <80% of the time.

The expectation was that the methods would show some inaccuracy, because of model

complexity, but not necessarily that the confidence intervals would be too narrow. It would

seem, a priori, just as possible that some of the methods might generate confidence intervals

that covered the true value more often than the nominal confidence level implies.

This study is based on a scenario that is known to be informative (Magnusson and

Hilborn 2007), where the stock is first fished down and then allowed to rebuild (Figure

2.2), with standardized surveys and age data from the start of the fishery. Furthermore, the
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data are generated using the same dynamics as the estimation model, and landings, body

weight, maturity, and recruitment variability are known without error. When analyzing real

data, we can expect model error and process variability to lead to considerably more bias,

and therefore, confidence intervals that are even less likely to cover the true value. The

notion that statistical methods in stock assessment tend to underestimate the real extent of

uncertainty is reflected in the literature (Hilborn and Mangel 1997; Punt and Hilborn 1997;

Patterson et al. 2001; Gavaris and Ianelli 2002) and demonstrated here in a setting where one

would expect the methods to perform well. In a recent meta-analysis of multiple assessment

models fitted to 17 stocks off the United States West Coast, Ralston et al. (2011) found that

model specification error can be expected to be considerably greater than the estimation

error.

2.4.2 Delta method and MCMC perform better than bootstrap

The delta method and MCMC provided better confidence intervals than the bootstrap on

average (Figure 2.6). For example, at the 90% confidence level, the delta-method intervals

covered the true reference point value 73.0% of the time, MCMC 72.5% and bias-corrected

bootstrap 64.1%. Although the intervals from all three methods were generally too narrow,

the delta method and MCMC were considerably closer to attaining the nominal confidence

level.

It is somewhat surprising to see how well the delta method performed, compared with the

bootstrap and MCMC. Automatic differentiation (Griewank and Corliss 1991; Fournier et al.

2012) facilitates the use of the delta method with complex models, where derived quantities

are not simple functions of estimated parameters, by applying automated algorithms to

compute the partial derivatives. In application, the delta method is orders of magnitude

faster than the computationally intensive bootstrap and MCMC methods, which can be a

major advantage for iterative simulations, complex models, and/or large datasets (Maunder

et al. 2009).

The delta method has been shown to perform about as well as the bootstrap for stock
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assessment (Punt and Butterworth 1993; Restrepo et al. 2000), or slightly worse (Mohn 1993;

Gavaris 1999). A simulation study comparing the delta method, bootstrap, and MCMC (Re-

strepo et al. 2000) found that the delta method and bootstrap performed about as well, but

MCMC performed poorer. The present study’s ranking of the uncertainty methods is there-

fore quite different from the results of previous simulation studies. The contradictory results

are most likely due to model differences; the previous studies used relatively simple biomass-

dynamic models and ADAPT, with fewer estimated parameters, fewer objective function

components, and more restrictive assumptions than the statistical catch-at-age model used

here. Variations in the implementation of the delta method, bootstrap and MCMC can also

affect their performance (Patterson et al. 2001; Gelman et al. 2004; Givens and Hoeting

2005). Finally, the studies vary in terms of whether they compare confidence intervals or

variance estimates, and whether they focus on the uncertainty about model parameters or

reference points.

2.4.3 Bias correction improves bootstrap performance

Overall, the bootstrap performed considerably better with bias correction than without it

(Figure 2.6), with the mean coverage probability at the 90% confidence level increasing

from 57.4 to 64.1. This shift of 6.7, compared with a shift of 32.6 that would bring it to

ideal performance, amounts to around 20% improvement. This performance improvement

did not, however, apply uniformly across all reference points (Figure 2.5), ranging from

particularly beneficial for current harvest rate and depletion, to slightly detrimental for

MSY and Bcurrent/BMSY.

The estimation of current harvest rate was subject to greater bias than the other reference

points. It is therefore reassuring to see that bias correction was most beneficial for that

reference point, effectively correcting for the positive bias. It is also reassuring to see a

similar performance gain for negatively biased reference points, such as current depletion.

When bias correction does not lead to improved performance, it is because the perceived

bias, that is, the difference between the bootstrap estimates and the point estimate, does
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not reflect the true estimation bias.

This study evaluates the performance of the BCa bias-correction method for the boot-

strap using zero acceleration. Alternative approaches include ABC (approximate bootstrap

confidence), ABCq, and various ways to estimate the BCa acceleration coefficient (Efron and

Tibshirani 1993, DiCiccio and Efron 1996). The implementation used here is recommended

in the current fisheries stock assessment literature (Patterson et al. 2001; Gavaris and Ianelli

2002), and the results from this study support that recommendation.

2.4.4 Other findings

Why did the bootstrap perform so poorly for MSY? This reference point was positively

biased, mainly due to a positive bias in the estimated stock-recruitment steepness parameter

h. This bias can be expected in statistical catch-at-age models when the stock-recruitment

steepness is estimated, unless the data include years of extremely low abundance, and the

natural mortality rate and selectivity of older fish are known (Magnusson and Hilborn 2007;

Conn et al. 2010). Despite this bias, the delta method and MCMC performed very well

for MSY, providing confidence intervals of appropriate width at any given confidence level

(Figure 2.5).

The delta method showed unusually low coverage probability for Bcurrent/BMSY, com-

pared with the other reference points. The most likely reason for this is that the assump-

tion of symmetric Gaussian uncertainty is not appropriate for this ratio statistic. There are

many transformations that could be used for each reference point, and it is beyond the

scope of this study to explore all possibilities. Logarithm and square-root transformation are

ruled out if the original quantity can be negative, such as, surplus production, as are logit

and probit transformation when the quantity can exceed 1.0, such as depletion level and

Bcurrent/BMSY. Transforming reference points has an important effect on the performance

of the delta method, but transforming model parameters can improve the performance of

the bootstrap and MCMC as well (Efron and Tibshirani 1993; Gelman et al. 2004). The

use of statistical transformations in stock assessment models is a topic worthy of further
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investigations.

The sensitivity analysis showed that the estimation model performed noticeably better

when multinomial likelihood was used for catch at age, instead of the default Fournier robust

normal likelihood for proportions. As the operating model uses multinomial random draws to

generate the catch at age data, this sensitivity test quantifies the model error introduced by

likelihood misspecification. The Fournier likelihood is designed to be more robust than the

multinomial likelihood when observed data are subject to greater variability than statistical

theory predicts (Fournier et al. 1990) and has been shown to perform well when that is the

case (Ernst 2002). This study, on the other hand, shows that the Fournier likelihood does

not perform as well as the multinomial likelihood when the data are random draws from the

multinomial distribution. The Fournier likelihood is not a generalization of the multinomial

that allows greater variance, but rather a hybrid between normal and multinomial that

explicitly downweights two kinds of outliers: ages with few observations and predictions that

are far from the observations. We recommend using the Fournier likelihood to analyze real

fisheries data, and use it in this study to represent a typical estimation model in stock

assessment.

The additional analyses also examined the impact of biased reference points, and how

much of the total error is because of bias, as opposed to too narrow confidence intervals. Mag-

nusson and Hilborn (2007) described what kinds of biases can be expected when estimating

reference points, depending on the fishing history, model assumptions, and available data.

As the fishing history and estimation model analyzed here were selected from that study, the

biases were known beforehand. When these biases were corrected for each reference point,

the performance of the delta method improved about one-third towards ideal performance.

When analyzing real fisheries data, the total error cannot be partitioned in this way, because

bias can only be evaluated when the true value is known.
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2.4.5 Recommendations

The overall performance trends suggest that MCMC is the most reliable of the three un-

certainty methods, given the dataset and catch-at-age assessment method. Both the delta

method and the bootstrap performed poorly for one or more reference points, while MCMC

was always close to the best-performing method. When time and resources allow, we rec-

ommend using more than one method to evaluate uncertainty, to see whether they lead to

markedly different conclusions. If only one method is to be used, it seems that MCMC is the

least likely to severely misrepresent uncertainty. All three methods, however, have a strong

tendency to underestimate the uncertainty.

On the average, the delta method performed well compared with the computationally

intensive bootstrap and MCMC methods and can be recommended for quick evaluation

of uncertainty while exploring a variety of modelling options, before applying the bootstrap

and/or MCMC to selected model runs. The delta method may also be useful when confidence

intervals are required in a large number of simulations. In this study, the delta-method

calculations were around 1000 times faster than the bootstrap and MCMC. Management

strategy evaluation (Butterworth and Punt 1999; De Oliveira et al. 2008) is a common

application where this can be relevant. Possible transformations of model parameters and

reference points should be explored when using the delta method.

One advantage of the bootstrap is that it can detect bias in the estimation model, thus

providing valuable diagnostic information for the modeller (Haddon 2003). We recommend

applying bias correction when using the bootstrap, having seen around 20% overall perfor-

mance improvement in this study. That said, the bootstrap was generally outperformed by

the delta method and MCMC, in spite of bias. It would be interesting to see a similar perfor-

mance comparison of uncertainty methods where the estimators are more biased than here.

Another potential advantage of the bootstrap is that computations can be split into parallel

threads, thus taking less time than computing a very long MCMC chain.

Each method for evaluating uncertainty is based on a particular set of assumptions. It
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appears that the choice between frequentist methods, such as the delta method and boot-

strap, and Bayesian methods, such as MCMC, is not the most important decision for the

modeller. In this study, for example, the overall performance of the delta method and MCMC

was more similar than that of the bootstrap. It is at least as important that the modeller

considers, and preferably tests, the sensitivity of the results to specific assumptions within

a method. The effects of different transformations for the delta method have been discussed

earlier, and Patterson et al. (2001) describe several bias-correction methods. Choices within

the bootstrap include parametric vs. nonparametric, model-conditioned vs. non-conditioned,

and a variety of bias-correction methods (Efron and Tibshirani 1993). In Bayesian inference,

the choice of prior distributions can be important, and different algorithms to approximate

the posterior probability have their strengths and weaknesses (Gelman et al. 2004). The same

estimation model can often be expressed as frequentist or Bayesian with few or no modifica-

tions, as is done in this study. The trend in the current statistical literature (e.g. Kass 2011)

has been to deflate the frequentist-Bayesian debate, focusing instead on the assumptions that

relate models to data. When frequentist and Bayesian procedures do lead to very different

conclusions, the choice should primarily be based on their performance with simulated data.

Although we have limited the analysis to the delta method, bootstrap, and MCMC, other

methods can also be used to evaluate uncertainty in stock assessment. Sampling-importance

resampling (SIR) can be used to simulate Bayesian posterior distributions instead of MCMC,

but both methods should lead to the same distribution if run long enough (Gelman et al.

2004). When stock assessment models include more than a dozen parameters, MCMC is

more computationally efficient than SIR (McAllister et al. 1994; Punt and Hilborn 1997).

Profile likelihood (Edwards 1992; Hilborn and Mangel 1997) is a straightforward method

to evaluate the uncertainty about estimated parameters, but it is problematic to generate

the profile likelihoods for derived quantities such as reference points and future projections.

Finally, adjunct Monte Carlo can be used to diagnose the consequences of changing the

value of a fixed parameter, such as natural mortality rate or the shape of a stock-recruitment

function (Patterson et al. 2001).
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The main limitation of a study such as this one is that the conclusions are based on one

particular estimation model and one artificial suite of data. Our goal in the experimental

design was to use a typical stock assessment model of medium complexity, with generic

groundfish data scenarios that are known to be rather informative (Magnusson and Hilborn

2007). Many stock assessments use simpler or more complex models that are conceptually

and analytically related to the statistical catch-at-age model used here. In cases where the

data and models are fundamentally different from what we used, perhaps involving species

interaction or migration between areas, we can recommend using this study’s simulation

framework to investigate the performance of candidate uncertainty methods.
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Figure 2.2. Harvest rate, recruitment, landings, and biomass in

the operating model. The plotting symbols identify recruitment

scenarios 1–10.
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Figure 2.3. Effect of bias correction on bootstrap estimates.

In this hypothetical example, the bootstrap estimates (left

boxplot) are lower than the point estimate from the original

data (horizontal line). The resulting bias-corrected bootstrap

estimates (right boxplot) take into account that the original

point estimate was subject to the same bias.
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Figure 2.4. Example results, showing 90% confidence intervals for surplus production,

from Markov chain Monte Carlo analysis of 100 stochastic datasets for recruitment

scenario 10. Seven confidence intervals (thick lines) of one hundred do not cover the

true value (horizontal line). In this example, the coverage probability is 93.
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Figure 2.5. Coverage probability for confidence intervals by uncertainty method

and reference point, evaluated at several confidence levels (0, 10, 20, 30, 40, 50,

60, 70, 80, 90 and 99%).
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Figure 2.6. Coverage probability for confidence intervals

for each uncertainty method averaged across all six reference

points, evaluated at several confidence levels (0, 10, 20, 30,

40, 50, 60, 70, 80, 90 and 99%).
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Figure 2.7. Coverage probabilities for the sensitivity tests. White triangles indicate

the base case delta method (same as Figure 2.6), and black triangles indicate the

outcomes of each sensitivity test.
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Table 2.1. True reference point values from the operating model for each recruitment

scenario. Bcurrent, MSY, and Surplus are expressed in thousands of tonnes. ucurrent and

MSY are 0.023 and 203, respectively, for all 10 recruitment scenarios.

Recruitment scenario
Reference point 1 2 3 4 5 6 7 8 9 10

Bcurrent 1904 2156 1611 1793 2537 1318 1960 1704 1484 1802

Depletion 0.479 0.543 0.405 0.451 0.639 0.332 0.493 0.429 0.374 0.454

Bcurrent/BMSY 1.499 1.697 1.268 1.411 1.997 1.038 1.543 1.341 1.168 1.418

Surplus 83 315 158 164 166 198 245 300 84 227
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Table 2.2. Coverage probability for 90% confidence intervals for each uncertainty method,

reference point, and recruitment scenario. The non-bias-corrected bootstrap is referred to

as ‘raw’ and bias-corrected bootstrap as ‘bootstrap’. Ideally, the coverage probability at

this confidence level should be 90.

Reference Recruitment scenario
Method point 1 2 3 4 5 6 7 8 9 10

Delta Bcurrent 80 70 75 77 73 80 78 70 72 72

ucurrent 78 71 73 74 68 78 73 70 71 71

Depletion 79 54 66 74 77 79 67 83 70 80

MSY 72 19 100 96 94 99 61 99 100 87

Bcurrent/BMSY 37 54 51 47 42 50 63 39 57 44

Surplus 70 95 90 86 81 94 89 93 71 94

Raw Bcurrent 71 45 65 58 57 78 42 59 49 61

ucurrent 52 28 53 44 46 71 18 52 36 49

Depletion 61 17 46 58 62 79 5 76 50 68

MSY 20 1 49 47 28 100 6 98 78 37

Bcurrent/BMSY 85 62 49 75 72 70 78 73 65 83

Surplus 44 94 82 67 67 86 75 83 20 96

Bootstrap Bcurrent 62 66 66 66 61 68 74 69 61 57

ucurrent 65 65 69 72 60 78 62 77 59 58

Depletion 67 63 71 73 64 69 39 71 73 59

MSY 30 6 73 56 42 58 27 76 59 29

Bcurrent/BMSY 61 71 74 66 63 63 56 57 87 58

Surplus 68 77 81 78 70 80 79 85 67 83

MCMC Bcurrent 66 72 61 71 66 69 68 66 69 69

ucurrent 63 64 55 66 59 67 66 62 65 63

Depletion 73 72 66 74 71 64 53 61 71 83

MSY 81 30 89 98 79 98 78 93 99 87

Bcurrent/BMSY 70 84 66 78 62 53 76 36 74 73

Surplus 75 94 90 88 78 90 85 91 66 93
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Table 2.3. Coverage probability for 90% confidence intervals for each

uncertainty method and reference point, averaged across recruitment

scenarios. The non-bias-corrected bootstrap is referred to as ‘raw’ and

bias-corrected bootstrap as ‘bootstrap’. Ideally, the coverage probability

at this confidence level should be 90.

Delta Raw Bootstrap MCMC

Bcurrent 74.7 58.5 65.0 67.7

ucurrent 72.7 44.9 66.5 63.0

Depletion 72.9 52.2 64.9 68.8

MSY 82.7 46.4 45.6 83.2

Bcurrent/BMSY 48.4 71.2 65.6 67.2

Surplus 86.3 71.4 76.8 85.0

Average 73.0 57.4 64.1 72.5
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Chapter 3

CONFRONTING UNCERTAINTY IN
FISHERIES STOCK ASSESSMENT

Abstract

Fisheries stock assessment and the resulting management advice is subject to considerable

uncertainty, and it is important to incorporate this uncertainty in the advice to quantify the

risk of undesired outcomes. A variety of statistical methods and approaches exist to evaluate

uncertainty. The objective of this study is to give an overview of commonly used methods

and to summarize their performance, based on simulations and actual fisheries data. The

benchmark comparison of uncertainty methods involves the delta method, profile likelihood,

bootstrap, and Bayesian Markov chain Monte Carlo (MCMC) analysis. Approaches to evalu-

ate uncertainty also include comparing alternative estimation models, retrospective analysis,

quantifying the amount of information in each data component, and evaluating whether a

dataset is likely to be informative about the stock status and key parameters. Following the

review of analytical techniques and their performance, a list of general recommendations is

provided for confronting uncertainty in stock assessments.

3.1 Introduction

3.1.1 Stock assessment and uncertainty

The general objectives in stock assessment are to understand the history of abundance,

exploitation and productivity of a fish stock. The assessment is then used to formulate

management advice that is robust to violated assumptions. The exact format of the advice

depends on the management goals and procedures in place. In some cases, the advice is in

the form of short-term projections of the stock response to alternative levels of harvest, but
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in other cases point estimates are used as the basis of advice, e.g., as input to a harvest

control rule.

A key part of stock assessment is to evaluate estimation uncertainty, in the form of

probabilistic statements about quantities of interest, as well as model uncertainty, which

involves exploring various assumptions about the underlying dynamics. The basic principle

for incorporating uncertainty into management is the precautionary approach, to harvest

conservatively when faced with a high level of uncertainty. A formal statistical approach to

incorporate uncertainty into management is to adopt a harvest control rule that has been

shown to perform well in long-term stochastic simulations across the many dimensions of

uncertainty (Jakobsson and Stefánsson 1998, Butterworth and Punt 1999).

Fisheries stock assessment involves making technical decisions that have a direct impact

on the management advice. These decisions include choosing a model family, fixing or es-

timating model parameters, deciding which data components to include when fitting the

model, and choosing methods to evaluate uncertainty. The available data are the main basis

for such decisions. Ideally, the technical decisions are backed by simulation studies where

the relative performance of alternative methods is evaluated across a variety of simulated

datasets.

Fisheries data are informative when they lead to accurate and precise estimates of model

parameters and derived quantities, such as stock size and reference points. The quantity and

resolution of the data are not the only factors determining whether data are informative

or not, but also features such as the fishing history (Hilborn 1979, Magnusson and Hilborn

2007) and what kinds of data are available. In some cases, the only data component is the

estimated annual landed catch, which contains important but limited information about the

stock status, and methods based only on catch generally do not provide reliable information

to guide management (Hilborn et al. 2003, Pauly et al. 2013). Adding a survey biomass

index and/or age composition makes a dataset considerably more informative (Shepherd

1984, Chen et al. 2003, Magnusson and Hilborn 2007).

The most commonly used methods to quantify uncertainty in stock assessment are the
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delta method, profile likelihood, bootstrap, and Bayesian analysis using Markov chain Monte

Carlo (MCMC). Each method has its strengths and weaknesses, both theoretical and practi-

cal (Patterson et al. 2001, Bolker et al. 2013). The delta method is orders of magnitude faster

to compute, profile likelihood can isolate selected quantities of interest, bootstrap simulation

can detect estimation bias, and Bayesian MCMC analysis has been shown to have the most

reliable performance across a range of simulated stock assessment scenarios (Magnusson et

al. 2013).

3.1.2 Example: Icelandic saithe

Saithe (Pollachius virens) is a gadoid species that forms the basis for one of Iceland’s major

fisheries, with an average annual catch of 60 kt (ICES 2015b). Since 2013, the fishery has

been managed with a 20% harvest control rule that sets the TAC each year as the average of

two numbers: 20% of the current biomass of ages 4 and older, and the preceding year’s TAC.

Moreover, if the spawning biomass is estimated below SSBtrigger, defined as 65 kt, the target

harvest rate is decreased (Hjörleifsson and Björnsson 2013, Magnusson 2013, ICES 2015b).

Stock assessment of Icelandic saithe is based on similar data as the other two major

gadoid stocks, cod (Gadus morhua) and haddock (Melanogrammus aeglefinus), but is subject

to greater uncertainty. This is apparent from large residuals between the data and model

fits, as well as retrospective estimation errors (Hjörleifsson and Björnsson 2013, ICES 2015b).

Factors contributing to the uncertainty include fluctuations in the survey data, as well as

irregular changes in fleet selectivity. Although the annual groundfish bottom trawl survey

(Pálsson et al. 1989) is data-rich in terms of numbers of stations and otoliths sampled, it does

not specifically target the saithe, a species that is partly pelagic, schooling, and relatively

widely migrating (ICES 2015b).

3.1.3 This study

The objective of this study is to give an overview of commonly used methods to confront

uncertainty in stock assessment and to summarize their performance, based on previous sim-
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ulations and analysis of the Icelandic saithe data. Four issues will be examined in particular:

(1) the overall fishing history and whether it is likely to be informative about the stock status

and key parameters, (2) the effects of different assumptions about the natural mortality rate

M , stock-recruitment steepness h, and the shape of the selectivity curve for the oldest fish,

(3) the amount of information contained in the survey data about the stock status, and (4)

whether the delta method, profile likelihood, bootstrap, and MCMC lead to similar conclu-

sions about the uncertainty of estimated quantities. The results from analyzing the saithe

data are interpreted in light of previous studies, which evaluated the estimation performance

of the same methods using simulated data (Magnusson and Hilborn 2007, Magnusson et al.

2013).

The goal is not to challenge the official assessment, which takes into account features

specific to the saithe stock and fishery, such as migration events and time-varying selectivity

(ICES 2015b). Rather, the models used in this analysis can be seen as diagnostic tools with

relatively well known properties from previous studies. Based on simulations (Magnusson

and Hilborn 2007) the expectation is that the data are informative about the stock status

and M if they include years of varying fishing intensity, and informative about h if they

include years of very small as well as moderate stock size. Furthermore, the delta method

and MCMC can be expected to evaluate the uncertainty more accurately than the bootstrap

(Magnusson et al. 2013), but confidence intervals can be expected to be too narrow in general.

Neither of those studies involved data from actual fisheries, which gave rise to the current

study. Following the analysis, some general findings and recommendations are summarized

for stock assessment and uncertainty analysis.

3.2 Methods

3.2.1 Data

There is a relatively large amount of data available from the saithe fishery: catch-at-age

data from commercial landings go back to 1980 and the annual groundfish survey started
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in 1985. As a result, there are mainly four data components that contain information about

the status of the saithe stock: annual landed catch in tonnes since 1980, a survey biomass

index since 1985, and the age distributions from the fishery and the survey (Figure 3.1).

Saithe is primarily caught in a mixed bottom trawl fishery around Iceland, and the annual

otolith sample sizes are around 3000 from the fishery and 1000 from the survey. Discards

are estimated to be negligible, around 0.1% of the catch in numbers (ICES 2015b). The

complete dataset, including mean weight and maturity by year and age, can be found in the

annual assessment reports (ICES 2015b, MRI 2015) and on the Marine Research Institute

data server, http://data.hafro.is. For the purpose of the current analysis, ages 11 and

older are pooled together in a plus group that comprises 3% of the catch data.

3.2.2 Models

Eight assessment models are used in the analysis and they differ in terms of which data types

are included and which parameters are estimated (Table 3.1). The model naming scheme

is based on Magnusson and Hilborn (2007), and a detailed description of the population

dynamics and likelihood components is given in Appendix B.1.

The first three models use only a subset of the available data. Model 1 uses only landings

and the survey index, model 2 uses landings and commercial catch at age, model 3 uses

all of the above, and model 4 adds the survey catch at age. Model 4 is termed the basic

model and the parameters that are not estimated in models 1–3 take their values from the

basic model estimates. The rest of the models estimate three key parameters separately or

together, where ‘h’ stands for stock-recruitment steepness, ‘m’ natural mortality rate, and ‘r’

right-hand selectivity. When these parameters are not estimated, they are fixed at h= 0.9,

M=0.2, and asymptotic selectivity.

The purpose of the simpler models (1–3) is to diagnose the effect of each data component

on the estimated stock status and the uncertainty. The purpose of the more complex models

(4h, 4m, 4r, 4hmr) is to diagnose the effects of those parameters on the estimated stock status

and uncertainty, as well as evaluating how informative the data are about those parameters.

http://data.hafro.is
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3.2.3 Bayesian priors / likelihood penalties

Diffuse Bayesian priors are used in the 4h, 4r, and 4hmr models to prevent h and right-hand-

selectivity from hitting the lower or upper bounds during the estimation. Such likelihood

penalties can also be applied in non-Bayesian modelling context to implement bounds in

constrained optimization (Bard 1974). The prior on h follows the approach of Dorn (2002),

defining a dummy parameter β as a shifted logit of h,

βh = log

(
h− 0.2

1− h

)
(3.1)

and the inverse relationship is:

h =
0.2 + exp(βh)

1 + exp(βh)
(3.2)

For h in the interval (0.2, 1), the logit β ranges from −∞ to ∞. The diffuse prior

βh ∼ N(2, 102) (3.3)

is relatively flat for h between 0.25 and 0.999, but drops towards zero as h tends to the

bounds at 0.2 and 1. The choice of µ= 2 places the peak of the prior at h= 0.90, the same

value as used in the basic model, while σ=10 makes the prior sufficiently wide to allow high

and low values of h.

The prior on right-hand selectivity of the commercial fleet is applied to the shape param-

eter CSright (see Appendix, Equation B.3). The broad normal distribution for this parameter,

CSright ∼ N(6, 102) (3.4)

places the peak of the prior at S11 =0.94, where the oldest age class is almost fully selected

by the commercial fleet, but allows the estimated selectivity to be fully asymptotic or fully

declining, as the prior is relatively flat for S11 between 0.002 and 0.999.

The diffuse priors are designed to be quite flat over a wide range of values and then curve
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down at the predefined bounds. In this way, they improve model convergence and evaluation

of confidence intervals, while having a negligible effect on the estimated values.

3.2.4 Uncertainty methods

Four methods are used to evaluate the uncertainty about the estimated quantities of interest:

the delta method, profile likelihood, bootstrap, and MCMC. The procedures are described in

detail in Appendix B.2. The delta method (Seber 1973) is implemented using ‘sdreport’ vari-

ables in AD Model Builder (Fournier et al. 2012). Profile likelihood (Venzon and Moolgavkar

1988) is applied directly to model parameters, but a penalty approach is used for derived

quantities such as biomass and harvest rate. The parametric bootstrap is conditioned on the

model fit to the data, and applied with and without BCa bias correction with zero accelera-

tion (Efron and Tibshirani 1993). The MCMC simulation (Metropolis et al. 1953, Hastings

1970) is run for 10 million iterations and then thinned, keeping every 10,000th iteration. For

the sake of convenience, the term ‘confidence interval’ is used in this study to refer collectively

to frequentist confidence intervals and Bayesian posterior intervals. Bivariate confidence re-

gions are calculated using the R package ‘r2d2’ (Magnusson and Burgos 2014), combining

two-dimensional kernel smoothing (Wand and Jones 1995) and polygon overlay algorithms

(Bivand et al. 2013).

3.3 Results

3.3.1 Basic model fit to data

Model 4 is termed the basic model, being the simplest model that uses all the available data.

The observed survey biomass index (Figure 3.2, panel A) fluctuates greatly between years in

the early period of 1985–1994, and in later years the index shows medium-term fluctuations

that the model does not fit very well. Overall, the residuals are positive when the fitted

biomass is high and negative when the fitted biomass is low. The magnitude of the survey

index observation noise is estimated iteratively as σI =0.43.



89

The model fits the age distribution in the commercial catch and survey in most years, but

with some exceptions, such as 1984 in the commercial catch and 1993 in the survey (Figure

3.2, panels B and C). The effective sample size is of similar magnitude for the commercial

and survey catch at age, Cn = 46 and Sn = 56, estimated iteratively across all years. The

estimated recruitment variability is σR =0.51.

3.3.2 Model estimates and fishing history

For the purpose of managing the Icelandic saithe fishery, there are three quantities of main

interest: the spawning biomass, the reference biomass (ages 4 and older), and the harvest

rate (landings divided by the reference biomass). Results from the basic model indicate that

the spawning biomass was at the reference point SSBtrigger = 65 kt in 1997, but above it in

other years (Figure 3.3). The reference biomass declined from 451 to 150 kt between 1988

and 1995 and has increased in recent years, from 200 to 286 kt between 2009 and 2015. The

estimated harvest rate exceeded 30% in 1994–1995 and again in 2008–2009, but has declined

in recent years and is estimated at 16.1% for 2014. The average reference biomass since 1980

has been 272 kt with a 23% harvest rate.

Recruitment has varied between 11 and 111 million recruits at age 3 (Figure 3.4, panel

A) and shows a weak relationship with the spawning biomass (panel B). Surplus production

(the catch plus the subsequent change in reference biomass, panel C) is mainly driven by

recruitment, with a correlation of 0.93 between panels A and C at a lag of three years, when

cohorts are about to enter the reference biomass. The relationship between stock size and

surplus production is weak, but a loess line indicates an optimum around 330 kt (panel D).

Based on historical average recruitment, maturity, and weights, the virgin spawning

biomass (SSB0) is estimated at 696 kt. From this, the relative SSB can be calculated as

SSB/SSB0. When the historical harvest rates are plotted against the relative SSB, the de-

velopment of the fishing history shows a repeated anticlockwise pattern (Figure 3.5. During

the period 1980–2012, the relative SSB has varied from 9 to 26 percent of SSB0.



90

3.3.3 Retrospective analysis

When the basic model is fitted to truncated datasets, sequentially removing the last year

of data, the stock size trajectories diverge at the terminal end (Figure 3.6). The stock size

estimates are relatively high when the datasets end in 2013 and 2014, corresponding to

high survey biomass indices in those years (Figure 3.1, panel B). The opposite trend can

be seen around 2007–2009, when a sequence of low survey biomass indices cause the stock

size estimate to decline several years in a row. Overall, the retrospective pattern indicates

considerable estimation errors, but not a consistent bias towards under- or overestimation of

the stock size.

3.3.4 Uncertainty and sensitivity analysis

The uncertainty about the estimated reference biomass in 2015 (Bcurrent) and harvest rate in

2014 (ucurrent) depends on both the estimation model and the method used to construct the

intervals (Figure 3.7). For example, the estimates and 90% confidence intervals for the basic

model using the delta method are Bcurrent =286 kt (199–410 kt) and ucurrent =16% (11–21%).

For the delta method and profile likelihood analysis, the point estimate is the maximum

likelihood estimate, but for the bootstrap and MCMC analysis the point estimate is the

median of the bootstrap estimates and MCMC posterior. Profile likelihood and MCMC

produce quite similar intervals as the delta method, while the ‘raw’ (non-bias-corrected)

bootstrap intervals indicate smaller biomass and higher harvest rate. Applying bias correction

to the raw bootstrap estimates produces intervals around a larger biomass and lower harvest

rate than the other methods.

Compared to the basic model, the uncertainty increases slightly when the survey catch-

at-age data are excluded from the analysis (model 3), and the intervals become almost twice

as wide when the survey biomass index is also excluded in model 2 (Figure 3.7). With the

annual landings and survey biomass index as the only input data, model 1 tends towards

an infinite stock size with zero harvest rate. Estimating steepness h or right-hand selectivity
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in models 4h and 4r has almost no effect on the intervals, but when natural mortality M

is estimated, models 4m and 4hmr tend towards an infinite stock size with zero harvest

rate (Figure 3.7). The profile likelihood and MCMC intervals are not restricted to have any

predetermined shape, but they show a similar lognormal shape as the delta method intervals

for both Bcurrent and ucurrent.

The likelihood improvement in models 4h and 4r is negligible compared to the basic

model 4 (Table 3.2). Models 4m and 4hmr, that tend to an infinite stock size, fit the data

considerably better, specifically the commercial catch at age, although the improved fit to

this data component is not visually apparent. The likelihood values from models 1, 2, and 3

are not comparable, since they include fewer likelihood components than models in family

4. The point estimates from model 2 indicate a slightly smaller current biomass than model

4, and model 3 a slightly larger current biomass, but the confidence intervals overlap to a

great extent.

3.3.5 Steepness, natural mortality, and right-hand selectivity

When stock-recruitment steepness h is estimated in model 4h instead of fixing it at 0.9,

the point estimates and intervals are close to the upper bound of 1.0 for the delta method

and bootstrap, but the profile likelihood and MCMC 90% intervals extend slightly below

0.8 (Figure 3.8, upper panel). For model 4hmr, that tends to an infinite stock size, the 90%

intervals extend to steepness values as low as 0.4.

Natural mortality rate M is estimated at 0.57 yr−1 in models 4m and 4hmr, almost three

times higher than the fixed value of M=0.2 yr−1 that is assumed in the other models (Figure

3.8, middle panel). The delta method and MCMC intervals extend from 0.55 to 0.60, the

profile likelihood intervals are slightly wider, 0.49 to 0.60 for both models 4m and 4hmr, and

the bootstrap intervals are much wider.

The right-hand side of the fleet selectivity curve in models 4r and 4hmr is estimated as

asymptotic, with S11 = 0.99 as the selectivity for the oldest age group (Figure 3.8, bottom

panel). The delta method and MCMC intervals are relatively narrow, from 0.92 to 1.00,
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but the profile likelihood intervals are slightly wider, 0.82 to 0.99 for model 4hmr. The raw

bootstrap intervals are much wider, 0.56 to 1.00 for model 4hmr, with most of the bootstrap

estimates below the maximum-likelihood estimate, resulting in a strong BCa bias-correction

effect that leads to bias-corrected bootstrap intervals between 0.99 and 1.00 for models 4r

and 4hmr.

3.3.6 Maximum sustainable yield

The optimal harvest rate uMSY is estimated at 0.23, based on models 1, 2, 3, and 4 (Figure

3.9, upper panel). In these models there is effectively no perceived uncertainty about the

estimated uMSY where h and M are fixed, as uMSY depends strongly on those parameters.

When h is estimated in model 4h, the point estimate of uMSY is 0.27, with the delta method

and bootstrap producing very narrow intervals, but the 90% intervals from profile likelihood

and MCMC are between 0.17 and 0.28. In models 4m and 4hmr, the point estimate of uMSY

is 0.37 with relatively wide confidence intervals, especially for the 4hmr model.

The estimated BMSY (ages 4+) is 278 kt in model 4, with the delta method, profile

likelihood, and MCMC intervals between 230 and 330 kt (Figure 3.9, middle panel). MSY

is estimated at 63 kt, with 90% intervals between 53 and 75 kt, but the bootstrap intervals

are narrower than the other methods. Models 2, 3, 4h, and 4r give similar results as model

4, except the estimate of BMSY is lower in model 4h. In models 4m and 4hmr, the estimates

of BMSY and MSY tend to infinity.

Overall, the status of the Icelandic saithe stock is estimated to be close to BMSY with a

current harvest rate slightly below the target harvest rate (Figures 3.5 and 3.10). To evaluate

the stock status, models 2, 3, 4, and 4h are of main interest, as models 1, 4m, and 4hmr

tend to an infinite stock size, while estimates from model 4r are identical to model 4. The

uncertainty about the stock status decreases considerably between models 2 and 3, and also

between models 3 and 4, reflecting the amount of information contained in the survey data.

The relative degree of uncertainty for each model can be quantified by calculating the unitless

area of the 90% bivariate confidence region with Bcurrent/BMSY and ucurrent/uMSY on the x
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and y axes (Figure 3.10). This area is 0.497 for model 2, but 0.261 for model 3 and 0.200

for model 4. Based on this comparison between models 2 and 4, the survey data (catch at

age and biomass index) decrease the uncertainty about the stock status by 60%. When h is

estimated, the perceived uncertainty increases again, to 0.287 for model 4h.

3.4 Discussion

3.4.1 Summary of findings

Fishing history

The Icelandic saithe assessment demonstrates that a data-rich fishery, where age data have

been sampled intensively for decades from the fishery and annual surveys, does not necessarily

mean informative data. The narrow range of historical harvest rates results in a dataset that

is not informative about M , and the measurement noise in the survey data lead to greater

uncertainty about the stock status than for the related species cod and haddock (MRI 2015).

Besides having a relatively narrow range of harvest rates and stock size, the fishing

history shows a clear circular pattern (Figure 3.5). The underlying causes are likely to be

an interaction of dynamics that can be seen as a predator-prey cycle. The fishery could be

considered the driving force: when the harvest rate increases the stock size goes down, then

harvest rate is reduced, the stock recuperates, and the system is ready for another circle.

Alternatively, the fish stock could be the driving force: when the stock size goes down due

to natural fluctuations, humans react slowly so the harvest rate increases for some years,

and when both the stock size and harvest rates have reached a low level, a strong cohort

or two increase the stock size again. Charles (2001) describes similar dynamics between the

natural and human components of fisheries as systems. Management actions are applied to

the human component, and with the harvest control rule in place it is likely that the harvest

rate will become more stable than in the past.
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Sensitivity analysis

The sensitivity analysis comparing models 2, 3, and 4 (Figure 3.7) shows confidence intervals

that overlap to a great extent. The effect of removing entire data components (survey catch

at age, survey biomass index) from the basic model has the effect of increasing the overall

uncertainty, but the point estimates of current biomass and harvest rate do not shift greatly.

The general agreement between models 2, 3, and 4 indicates that the various data sources

are consistent and not contradictory (Richards 1991, Schnute and Hilborn 1993).

The stock-recruitment steepness h cannot be estimated reliably from the saithe data, but

appears to be high. Diagnostic model runs (Figure 3.8) give a point estimate close to 1.0

for h, suggesting that when the spawning stock size is near 20% of the virgin stock size, the

expected recruitment is about the same as when the stock is much larger. The data include

years when the relative stock size is between 9% and 26%, which should be an informative

range for determining the shape of the curve, but the stock-recruitment scatter (Figure 3.4)

does not indicate that recruitment is greatly affected at the lower range of spawning stock

size. The lower bound of 90% confidence intervals for h is around 0.8, with profile likelihood

and MCMC indicating greater uncertainty than the delta method and bootstrap. The shape

of the stock-recruitment curve is important for long-term management advice, and basing the

management on a maximum likelihood estimate of h=1.0 would be neither precautionary nor

biologically plausible (Mangel et al. 2010). The Icelandic saithe harvest control rule defines a

lower threshold of stock size, below which recruitment is expected to be impaired and harvest

rate should be decreased. In the harvest control rule evaluation for saithe (Hjörleifsson and

Björnsson 2013) it is noted that such a threshold stock size is not well defined by the data,

but SSBtrigger =65 kt is set at the lowest historical spawning stock size, implicitly assuming

a high steepness.

Likewise, the natural mortality rate M cannot be estimated reliably from the saithe

data. Diagnostic model runs give a point estimate of M at 0.57 yr−1, almost three times

higher than the traditionally assumed value of 0.20 yr−1. The diagnostic models estimating
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M also estimate the stock size as being infinitely large, with a harvest rate of 0.00. In other

words, these diagnostic models successfully estimate the average total mortality rate, but

fail to partition the total mortality rate of 0.57 yr−1 between natural and fishing mortalities.

Estimating M is an ongoing challenge in current stock assessment research (Lee et al. 2011,

Hamel 2015, Johnson et al. 2015, Maunder and Piner 2015, Then et al. 2015), and the

reliability of the estimation is largely determined by the fishing history. To estimate M

reliably, one would require a dataset with age data from years with very low harvest rates, as

well as years when harvest rate was several times higher (Beverton and Holt 1957, Magnusson

and Hilborn 2007). The value of M is important to evaluate the optimal long-term harvest

rate, and the harvest control rule evaluation for saithe is based on M = 0.2 yr−1. Estimation

of right-hand selectivity is strongly confounded with M (Thompson 1994, Magnusson and

Hilborn 2007). When M is fixed at 0.2 yr−1, the fleet selectivity is estimated fully or nearly

asymptotic, but the uncertainty increases about the selectivity of older fish when M is

estimated (Figure 3.8, bottom panel).

The delta method does not perform well evaluating the uncertainty about uMSY when

h is estimated, generating a much narrower interval than profile likelihood and MCMC.

This may be a result of how uMSY is estimated in the model, using bisection optimization

within each function evaluation to search for the harvest rate that maximizes the sustainable

yield (Magnusson and Hilborn 2007). Since uMSY is not directly derived from the estimated

parameters, profile likelihood and MCMC seem better suited to evaluate the uncertainty

about uMSY.

Overall, the bootstrap estimates are often biased compared to the point estimates, the

bias being positive for current harvest rate but negative for current biomass and selectivity

of the oldest fish (Figures 3.7 and 3.8). This could reflect a real estimator bias, which can be

expected with challenging estimation problems in stock assessment (Magnusson and Hilborn

2007). The problem of too narrow bootstrap intervals when estimating MSY (Figure 3.9)

was also identified by Magnusson et al. (2013), when an estimation model similar to the

4hmr model was applied to well-behaved simulated data. The BCa bias correction improves
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the reliability of bootstrap intervals, but the delta method and MCMC tend to produce

more reliable intervals, even when stock assessment model estimates are biased (Magnusson

et al. 2013). It is worth noting that parametric model-conditioned bootstrap is a form of

‘self-testing’ an assessment model, which can be useful to diagnose estimation biases and

structural inconsistencies (Deroba et al. 2015).

Comparison with predictions

It is in agreement with expectations that the data are not informative about M , as the saithe

fishery has been subject to rather steady levels of fishing intensity. It has also been noted

prior to this analysis that the saithe stock has never been fished down to a critical level

where recruitment is affected (Hjörleifsson and Björnsson 2013), so it is not surprising that

there is insufficient information to distinguish whether h is high or very high. The estimated

optimal harvest rate increases with h, but the resulting MSY changes much less.

Although the bottom trawl survey is known to be an unreliable indicator of changes in

the saithe stock size (ICES 2015b), the analysis presented here suggests that the overall effect

of the survey data is to decrease uncertainty about the stock status by around 60% (Figure

3.10). Nevertheless, the model fit to the survey biomass index has large residuals, similar to

the official assessment model (ICES 2015b).

From previous simulations, it was expected that the parametric model-conditioned boot-

strap would not perform well for evaluating the uncertainty about estimated quantities using

this assessment model (Magnusson et al. 2013). Profile likelihood was not part of the earlier

simulation analysis, so it is reassuring to see that this method generates intervals that are

generally comparable to the delta method and MCMC intervals.

Comparison with official assessment results

The point estimates B2015 = 286 kt and u2014 = 16.1% are relatively close to the point

estimates of the official assessment, B2015 = 255 kt and u2014 = 17.5% (ICES 2015b). In the

current study, the optimal harvest rate is estimated at 23% using the basic model 4, but the
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simulations behind the 20% harvest control rule adopted for the Icelandic saithe fishery take

into account that each year’s assessment is subject to considerable error when estimating

the current stock size. Based on historical assessments, the harvest control rule simulations

used an autocorrelated assessment error of σ=0.20 and ρ=0.45 (Hjörleifsson and Björnsson

2013).

3.4.2 General recommendations

The delta method, profile likelihood, bootstrap, and MCMC are commonly used to evaluate

uncertainty in stock assessments. These methods have different strengths and weaknesses,

and several variations are available for each method (Patterson et al. 2001, Magnusson et

al. 2013). Profile likelihood is well-suited to evaluate the uncertainty about key parameters

such as h and M , but slightly cumbersome to analyze derived quantities such as biomass and

harvest rate. In the analysis presented here, the profile likelihood intervals are comparable

to the delta method and MCMC intervals, but the bootstrap intervals seem biased and

too narrow. For challenging estimation problems, model convergence can become a greater

issue for the bootstrap than the other uncertainty methods. A more sophisticated bootstrap

approach, applied to non-aggregated data at the sampling level, may capture the underlying

spatial and temporal correlations and perform better than the bootstrap approached used

here (Elvarsson et al. 2014).

For a given stock assessment, it is better to compare the results from more than one

method of estimating uncertainty, rather than just using one arbitrarily chosen method.

Uncertainty analysis is not only about evaluating probabilities and confidence intervals, but

iterative methods such as profile likelihood, bootstrap, and MCMC can also indicate lack

of model convergence, find a new global optimum, identify highly correlated or ill-defined

parameters, and suggest parameter transformation.

When analyzing complex data, it is important to run a variety of models to explore model

uncertainty and test the effects of different assumptions (Tukey 1997). Comparative model

runs should therefore involve both variations of one model, as done in this study to exam-
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ine the effects of specific assumptions, and also compare fundamentally different models to

approximate the true range of uncertainty. For example, the ICES (2015b) assessment com-

pared ADAPT, state-space, and statistical catch-at-age models that represent a continuum

in how variability in the data can be partitioned between process variability and observation

error. Model comparison can also help identify how informative the data are, separate the

information contained in each data component (Magnusson and Hilborn 2007), and examine

contradictory data sources (Schnute and Hilborn 1993) by downweighting or excluding data

components. Thus, model comparison is not only about selecting the best model, but forms

an essential part of analyzing stock assessment data.

Several parameters describing fish population dynamics are known to be problematic for

statistical estimation, which can have a large effect on the resulting management advice.

These include h, M , and right-hand selectivity (Magnusson and Hilborn 2007). In the best

case, informative data allow the estimation of these parameters. One approach is to use

Bayesian priors to borrow information from similar stocks (Punt and Hilborn 1997), but in

many assessments the parameters are simply fixed at a somewhat arbitrary value.

It is worth considering that a harvest control rule (HCR), whose aim is to keep the

harvest rate as constant as possible, may produce the least informative data for future stock

assessments, as it minimizes the potential contrast in harvest rates and stock size. This

can still be the optimal harvest strategy, if earlier data have already provided sufficient

information about the stock dynamics. In some cases, it might be sensible to probe a stock

with very high and very low harvest rates (Ludwig and Hilborn 1983, Walters 1986) before

adopting a HCR, to get more reliable estimates of what harvest rate is optimal and what

level of spawning biomass should be chosen as the lower threshold.

Before a HCR is adopted, it is evaluated against the main sources of uncertainty, but

after the adoption many HCRs only require point estimates as input, with limited or no un-

certainty analysis performed annually. Examples include Icelandic cod (ICES 2009), haddock

(Björnsson 2013) and saithe (Hjörleifsson and Björnsson 2013), where the required input is

the current reference biomass and spawning stock biomass (SSB). For those stocks, the man-
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agement goals are to achieve maximum sustainable yield and to reduce the fishing mortality

rate when SSB is estimated below a defined limit. Other HCRs explicitly incorporate annual

uncertainty, which is expected to vary between years. For example, the Icelandic capelin HCR

(ICES 2015a) is based on the lower confidence limit of the latest acoustic survey estimate of

biomass, where the management goal is to ensure with 95% probability that SSB is above a

defined limit, and to fish the excess.

To summarize, our general recommendations are:

• Use more than one method to evaluate uncertainty.

• Keep in mind that the real uncertainty is greater than the analytical confidence intervals

indicate.

• Use more than one model and variations of models to evaluate how sensitive the main

conclusions are to alternative assumptions.

• Use retrospective analysis to evaluate uncertainty from an empirical viewpoint.

• Use simulation analysis to evaluate the performance of the estimation model, which

parameters can be estimated reliably, and which uncertainty methods work best.

• Examine the fishing history to evaluate whether the data are likely to be informative

about the stock status and key parameters like h and M .

• Consider ways to reduce uncertainty by generating informative data via management

(e.g., applying different fishing mortalities between years) and research (e.g., design a

dedicated survey for a given stock, sample age data).

• Harvest control rules can be a practical way to incorporate uncertainty into manage-

ment advice.

The overall conclusion regarding uncertainty in fisheries stock assessment is simple: we know

we will always be wrong, but if we’re smart we can avoid being terribly wrong.
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Figure 3.1. Icelandic saithe data: (A) landings 1980–2014, (B) survey biomass index 1985–2015,

(C) commercial catch at age 1980–2014, and (D) survey catch at age 1985–2015. The area of

each dot in panels C and D reflects absolute numbers of fish, with age 11 as a plus group.
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Figure 3.2. Basic model fit to the data: (A) survey biomass index, (B) commercial

catch at age, and (C) survey catch at age. Observed data are shown as dots and

model fit as lines.
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Figure 3.3. Estimated biomass and harvest rate for the basic model.

The reference biomass (B4+) is shown as columns with the mature

part (SSB) in gray, the SSBtrigger = 65 kt reference point is shown as

a horizontal dotted line, and the harvest rate as a solid line.
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Figure 3.4. Estimated recruitment and surplus production for the basic model:

(A) cohorts, (B) stock-recruitment with Beverton-Holt line, (C) surplus production

by year, and (D) surplus production vs. stock size with loess line.
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Figure 3.5. Estimated fishing history for the basic model. Labels show the years 1980–2014,

with a circle around the initial year and arrows indicating the development of the fishing

history. The dotted lines show the 20% target harvest rate and SSBtrigger = 65 kt reference
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rate uMSY and the long-term average spawning stock size at that harvest rate.



106

1980 1985 1990 1995 2000 2005 2010 2015

0
1
0
0

2
0
0

3
0
0

4
0

0

Year

R
e
fe

re
n
c
e
 b

io
m

a
s
s
 (

k
t)

Figure 3.6. Retrospective analysis of reference biomass (B4+) for the basic model.

The black line shows the biomass estimated from the full dataset, but the gray lines

are estimates from sequentially truncated datasets.
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Table 3.1. Assessment models used in this study, in terms of data

types used and parameters estimated. Catch stands for landings, Index

for survey biomass index, cCA for commercial catch at age, and sCA

for survey catch at age.

1 2 3 4 4h 4m 4r 4hmr

Data
Catch x x x x x x x x
Index x x x x x x
cCA x x x x x x x
sCA x x x x x

Estimated
R0 x x x x x x x x
h x x
M x x
Rinit x x x x x x x x
uinit x x x x x x x x
Rplus x x x x x x x

CSfull x x x x x x x

CSleft x x x x x x x

CSright x x

SSfull x x x x x

SSleft x x x x x
q x x x x x x x

Rε x x x x x x x
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Table 3.2. Summary of diagnostic model runs. The column

‘npar’ shows the number of parameters estimated in each

model and ∆f is the objective function improvement when

h, M , and CSright parameters are estimated, compared to the

basic model 4. Bcurrent and ucurrent are the estimated current

biomass and harvest rate.

Model npar ∆f Bcurrent ucurrent

1 4 n/a ∞ 0.0%

2 50 n/a 264 18.4%

3 51 n/a 326 15.1%

4 53 0.0 286 16.1%

4h 54 −0.4 288 16.0%

4m 54 −6.3 ∞ 0.0%

4r 54 0.0 286 16.1%

4hmr 56 −6.4 ∞ 0.0%
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Chapter 4

SOFTWARE PACKAGES DEVELOPED
FOR SIMULATION ANALYSIS

Introduction

Simulation studies can be considered a third mode of science, complementing and adding

to experimental/observational studies (inference from data) and theoretical studies (method

development and logical relationships). Common objectives in simulation studies include:

• Evaluate uncertainty about estimated quantities, e.g., using bootstrap or MCMC.

• Evaluate estimation performance, often comparing different methods in terms of bias,

precision, robustness, power, coverage probability, etc.

• Evaluate performance of policies, such as alternative harvest control rules, in face of

uncertainty.

• Test whether an estimation model has software bugs, by fitting to datasets that were

simulated with an operating model written in another programming language.

The idea of using long sequences of random numbers to support statistical analysis, also

known as the Monte Carlo method, is not entirely new. Early probabilists used simple dice

to validate methods and by the late 19th century, tools had been devised to generate random

normal deviates as a foundation for simulation analysis (Stigler 1991). Computers ushered

in new possibilities in applying simulations to iteratively approximate solutions that are

unobtainable in closed form (Metropolis and Ulam 1949).

Simulating a large number of realistic datasets as model input was first used to evaluate

uncertainty about estimated quantities (Efron 1979) and later to evaluate the performance

of alternative models (Sacks et al. 1989). The role of simulations within the scentific method
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is a current challenge in the philosophy of science (Peck 2004, Winsberg 2010) and technical

references on the design and analysis of simulation studies include those by Banks (1998),

Santner et al. (2003), Asmussen and Glynn (2007), and Robert and Casella (2010).

The research presented in this dissertation is largely based on simulations. It is the nature

of such analysis that computational tasks are repeated, often thousands of times, and then

re-run with modifications. Any improvements in the efficiency and capabilities of software

tools are therefore valuable.

Statistical simulations require the analyst to work with large amounts of data and results,

to modify and apply methods, examine the effects of alternative options, diagnose statistical

issues that arise, and make informed decisions on the final experimental design based on

intermediate results. This is achieved with a combination of scripts and functions to perform

calculations, along with interactive tools for exploratory analysis.

Some of the software written to perform the analysis of Chapters 1–3 was implemented

in a general way so that other statistical modellers might find it useful for their work. The

functions and packages listed below have been actively maintained and developed for a while,

made available on the ADMB and R Project websites (with the exception of BCboot which

was published in Fish and Fisheries, as part of Chapter 2), and some of the software is now

widely used. The packages and functions can be broadly categorized as follows:

Software to implement and modify methods

1. ADMB additions: ADMB-IDE and compilation scripts

2. Bivariate confidence regions: R package r2d2

3. Bootstrap bias correction: R function BCboot

Software to aggregate and diagnose results

4. CODA addition: R function cumuplot

5. MCMC diagnostic plots: R package plotMCMC

6. R-Core additions: R functions boxplot/bxp and aggregate (coauthor)

7. Statistical catch-at-age plotting environment: R package scape
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4.1 ADMB additions

AD Model Builder (ADMB) is a programming framework based on automatic differentiation,

aimed at highly nonlinear models with a large number of parameters (Fournier et al. 2012).

The main advantages of ADMB are flexibility, speed, precision, stability, and built-in methods

to quantify uncertainty. Some of the challenging issues for both new and experienced ADMB

users used to be:

1. Shell commands to build models were numerous and inconsistently named between

different combinations of operating systems and compilers.

2. Editing code was cumbersome, especially with models consisting of several thousand

lines of code.

3. Installation was difficult, requiring the user to modify environment variables and setting

up additional components, most importantly a C++ compiler.

My first contribution as a member of the ADMB Core Team in 2009 was a redesigned

model compilation pathway, based on a single shell command admb that works consistently to

build models on all platforms (cf. issue 1 above). The new compilation scripts were introduced

in ADMB 9.1 released that same year and have been the default since then.

The improvement in the user interface at the shell level made it possible to design an

efficient integrated development environment (IDE), providing syntax highlighting, menu

commands to compile and debug, as well as commands to quickly navigate between sections

of the code (cf. issue 2 above). Users can choose between two ways to set up the IDE:

(1) experienced Emacs users can download a lightweight admb-mode and use it without

changing their keyboard settings, while (2) non-Emacs users can download ADMB-IDE which

automatically installs and configures ADMB along with the additional components of a full-

featured IDE (compiler, debugger, and a customized editor for ADMB with simple keyboard

settings). In this way, ADMB-IDE (Magnusson 2009, Magnusson 2015) addresses both issues

2 and 3 above (Figure 4.1).
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4.2 Bivariate confidence regions

In Chapter 3, an algorithm was needed to quantify the two-dimensional uncertainty about

stock status, in terms of relative stock size and harvest rate (see Figure 3.10). A search

through the literature and existing packages revealed that no out-of-the-box solution was

available. The problem is a general one, and multiple theoretical solutions exist to draw an

arbitrary shape that includes a specified proportion of a two-dimensional cloud of points.

In challenging cases, no method can guarantee that a contiguous shape can be found that

includes exactly the right number of points.

After some experimentation, the solution was to combine two-dimensional kernel smooth-

ing (Wand and Jones 1995) and polygon overlay algorithms (Bivand et al. 2013), and the

algorithm was implemented as a function conf2d released in an R package ‘r2d2’ (Magnusson

and Burgos 2014).

The function constructs a large number of smooth polygons, and then chooses the polygon

that comes closest to containing a given proportion of the total points. The user can select

between two kernel smoothers and specifies the confidence level, along with several shape

parameters. Figure 4.2 shows the default output that contains 950 out of 1000 points in an

example dataset that comes with the package.

My coauthor, Julian Burgos, has a strong background in spatial statistics and contributed

to the overall approach and the choice of algorithms.
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4.3 Bootstrap bias correction

The following R function was implemented for this study to apply BCa bootstrap bias

correction with zero acceleration, robust to extremely biased cases (Equation 2.9). The ef-

fect of BCa bias correction is demonstrated in Figure 2.3. This function was published in the

journal Fish and Fisheries (Magnusson et al. 2013, p. 342).

BCboot <- function(thetastar, thetahat, bounds=c(0.1,0.9))
################################################################################
### #
### Function: BCboot #
### #
### Purpose: Apply bias correction to bootstrap estimates #
### #
### Args: thetastar is a vector of bootstrap estimates #
### thetahat is a point estimate from original data #
### bounds is a vector of lower and upper limits to handle extremely #
### biased cases #
### #
### Notes: BCa with zero acceleration #
### Based on bcanon() in package 'bootstrap' by Tibshirani #
### See Efron and Tibshirani (1993, pp. 184-186), Gavaris and Van #
### Eeckhaute (1998, p.10), Gavaris (1999, p. 47), and Magnusson #
### et al. (2013, p. 342) #
### #
### Returns: Vector of bias-corrected bootstrap estimates #
### #
################################################################################
{
B <- length(thetastar)
alpha <- (1:B) / B
lower <- bounds[1]
upper <- bounds[2]
z0 <- qnorm(max(lower, min(upper, sum(thetastar<thetahat)/B)))
zalpha <- qnorm(alpha)
newalpha <- pnorm(2*z0 + zalpha)
Omegainv <- approx(alpha, sort(thetastar), newalpha, rule=2)$y
bias.corrected <- Omegainv[rank(thetastar)]

return(bias.corrected)
}
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4.4 CODA addition

CODA is an R package for MCMC analysis and diagnostics, providing a suite of plots and

tests for this purpose. In the past, it was missing a plot to diagnose visually whether the

MCMC chain has been run long enough for the quantiles to stabilize.

Posterior quantiles, e.g., the 5th and 95th percentiles, are the standard approach for

constructing Bayesian intervals, which is an important output from Bayesian analysis. It is

therefore highly relevant to diagnose whether increasing the number of MCMC iterations

would be likely to result in changes in the Bayesian interval.

The cumuplot function has been a part of the main diagnostic plots of the CODA package

since version 0.6-1. This contribution makes me a coauthor of the CODA package (Plum-

mer et al. 2015), and the usage of cumuplot as an MCMC diagnostic is recommended by

authorities in the field such as Robert and Casella (2010, pp. 243–268).
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4.5 MCMC diagnostic plots

The main shortcoming of the CODA package is the limited support for multipanel plots. As

computer monitors have increased in size and resolution, multipanel plots offer an efficient

way to visually diagnose MCMC chains for many estimated quantities simultaneously.

The ‘lattice’ package provides a flexible framework to produce multipanel plots (Sarkar

2008). The purpose of the ‘plotMCMC’ package is to combine the features of CODA and

‘lattice’ to produce multipanel plots for MCMC analysis and diagnostics (Magnusson and

Stewart 2014). An example plot is shown in Figure 4.4. The package consists of six user

functions, whose purpose is listed below.

Diagnostic plots

plotTrace look for unwanted trends or patterns in MCMC traces

plotAuto calculate autocorrelation to decide if further thinning is required

plotCumu check whether quantiles have converged

plotSplom evaluate confounding of parameters

Posterior plots

plotDens plot posterior distribution and quantiles

plotQuant plot multiple posteriors on a common y-axis

My coauthor, Ian Stewart, introduced me to formal MCMC diagnostics and contributed

to the overall approach and the design of each plot.
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4.6 R-Core additions

R is a popular statistical software platform (R Core Team 2015, Tippmann 2015), particularly

effective for visual and interactive data analysis. The packages that make up the minimal

installation of R and provide the basic functionality are called the core packages, and to

maximize the stability and long-term maintainability of R, the Core Team is very reluctant

to add new features to these packages. Instead, they encourage users to fulfill their own

‘wishlist’ features by contributing new packages to the CRAN central package repository,

or to add new functions to existing user-contributed packages. For these reasons, many of

my proposed changes to R-Core have been rejected, but over the years I have contributed a

few dozen lines of code that have made it into the R codebase. My implementation of these

features was guided by R core developers Martin Mächler and Kurt Hornik.

Boxplot graphical parameters

The formatting options for boxplots in R used to be quite limited, in terms of controlling line

widths, line types, point symbols, and colors. The graphical parameters that specify these

visual aspects are defined in the bxp function, which is called by the user function boxplot

to render the plot. Since R version 2.0, every graphical aspect of the boxplot can be specified

by the user. See R help page on bxp and Figure 4.5.

Aggregate formula interface

The aggregate function in R splits data into subsets and computes summary statistics

for each subset. The statistic can be the sum, mean, median, count, minimum, maximum,

standard deviation, or in fact any function, while the data grouping variables can be a

combination of factors such as year, age, species, area, etc.

The user interface to specify the main variables and grouping variables for aggregate

used to be rather cumbersome. R 2.11 introduced a more convenient formula interface, similar

to the formula interface used in standard plots and models. See R help page on aggregate.
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4.7 Statistical catch-at-age plotting environment

For the analysis in Chapters 1–3, the Coleraine assessment model was fitted to thousands

of simulated datasets. It became clear at an early stage that an efficient suite of plotting

functions was needed to quickly visualize and diagnose any model run of interest. This was

implemented as an R package called ‘scape’ (Statistical Catch-at-Age Plotting Environment,

Magnusson 2005, Magnusson 2014). Besides plotting, the package provides functions to it-

eratively estimate lognormal sigmas and multinomial effective sample sizes, and to import

MCMC results that can be plotted with the ‘plotMCMC’ package (Section 4.5).

Import model results

importCol import Coleraine model results

Plot model fit to data

plotCA plot catch at age

plotCL plot catch at length

plotIndex plot abundance index

plotLA plot length at age

Plot derived quantities

plotB plot biomass, recruitment, and landings

plotN plot numbers at age

plotSel plot selectivity and maturity

Sigmas and sample sizes

getN, getSigmaI, getSigmaR extract sigmas and sample sizes

estN, estSigmaI, estSigmaR estimate sigmas and sample sizes

iterate iteratively estimate all sigmas and sample sizes
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Import MCMC results

importMCMC import MCMC traces of likelihoods, parameters, biomass, and recruitment

importProj import MCMC future projections of biomass and catch

The ‘scape’ package comes with a function to import results from Coleraine output files,

but users can write their own import function for other statistical catch-at-age models. An

example of this is an in-house function at the Marine Research Institute called importADCAM,

tailored for the model used to assess the Icelandic cod and saithe stocks (Bjornsson and

Magnusson 2009).

Each plotting function can display the data and model results in various ways. Examples

of three ways to plot catch at age with the plotCA function are shown in Figures 4.6–4.8.
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Figure 4.1. Typical AD Model Builder session, using ADMB-IDE. The top-left window

shows the model code, demonstrating some of the sections and classes recognized by the

ADMB-to-C++ translator. The menu includes commands to build a model, run, and view the

output. Other windows show point estimates, standard errors, and correlation of estimated

quantities. [From Fournier et al. 2012, p. 239.]
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Figure 4.2. 95% bivariate confidence region for a random

U-shape scatter. This corresponds to the output of the first

example on the conf2d help page.
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Figure 4.3. Cumulative median and quantiles (2.5%, 97.5%) of

an MCMC chain for the model parameter CSfull. This example

dataset is from the ‘plotMCMC’ package, which calls cumuplot

to render the plot.
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Figure 4.4. MCMC traces for parameters R0, Rinit, uinit, CSleft,

CSfull, SSleft, SSleft, and log q. This corresponds to the output of

the first example on the plotTrace help page.
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Figure 4.5. Boxplot with non-default format,

as a result of user-specified graphical parameters.

This corresponds to the output of an example on

the bxp help page.
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Figure 4.6. Bubble plot showing observed catch at age.

The area of each bubble reflects the proportion of fish at

that age in the catch, with no data available from 1987.

This corresponds to the output of an example on the

plotCA help page.
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Figure 4.7. Multipanel plot showing model fit to catch at age.

This corresponds to the output of an example on the plotCA

help page.
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Figure 4.8. Multipanel plot showing observed survey catch at age
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on the plotCA help page.
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CONCLUSIONS

The chapters in this dissertation share a common theme, which is uncertainty in fisheries

stock assessment. As a whole, the dissertation provides guidelines for stock assessment prac-

titioners, as a compendium of methods, recommendations, and caveats. The analysis in

Chapter 1 sheds light on what kind of fisheries data are informative about stock status and

other quantities of interest. Chapter 2 tests the performance of different methods for eval-

uating uncertainty, to identify which approaches can be recommended in stock assessment.

Chapter 3 acts as a synthesis of the previous chapters, as well as broadening the scope to

cover additional methods to confront uncertainty, using the Icelandic saithe fishery as a case

study.

Among the findings in Chapter 1 is that a ‘one-way trip’ scenario, where harvest rate

gradually increases while abundance decreases, proved no less informative than a contrasted

catch history. Although strong depletion is to be avoided due to the economic cost and risk

of collapse, it does provide informative data. This observation is encapsulated in the words of

John Pope, that ‘the more fish you catch, the better you know how many there were’. Data

from a well-managed stock, where fluctuations in stock size and harvest rate are avoided,

are therefore not informative for stock assessment unless they include an earlier period with

greater contrast. The fishing history also affects the ability to estimate key parameters. Data

can be expected to be informative about the stock status and M if they include years of

varying fishing intensity, and informative about h if they include years of very small as well

as moderate stock size.

The benchmark results from Chapter 2 suggest that the delta method and Markov chain

Monte Carlo (MCMC) can be expected to evaluate uncertainty in stock assessment more

accurately than the bootstrap. All the methods, however, can be expected to give intervals
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that are too narrow in general. Bias correction improved the bootstrap performance, but not

enough to match the performance of the delta method and MCMC, which were clear ‘winners’

in this benchmark. It is important to keep in mind, though, that the analysis is based on one

particular estimation model applied to an artificial suite of data, using parametric model-

conditioned bootstrap. For different estimation models, other variations of the bootstrap have

been reported to perform well in simulation studies. The general recommendation, therefore,

is to use simulations to analyze the expected performance of different uncertainty methods

given a specific model and data scenarios of interest.

The case study in Chapter 3 presents a fishing history that is not informative about

natural mortality rate M , as a result of too little contrast in fishing intensity. Diagnostic

model runs give a point estimate of M at 0.57 yr−1, almost three times higher than the

traditionally assumed value of 0.20 yr−1. The diagnostic models estimating M also estimate

the stock size as being infinitely large, with a harvest rate of 0.00. In other words, these

diagnostic models successfully estimate the average total mortality rate, but fail to partition

the total mortality rate of 0.57 yr−1 between natural and fishing mortalities. The data suggest

a high value of steepness h, but are not informative enough for reliable estimation, with the

diagnostic model run essentially running into the upper bound of h=1.0. The key parameters

M and h have a direct effect on the estimated optimal harvest rate, so the basis of the long-

term advice becomes subjective when these parameters cannot be estimated. The survey

data in the Chapter 3 case study are characterized by a high level of measurement noise, as

reflected in the interannual variability. Nevertheless, the analysis shows that these survey data

reduce the overall uncertainty about the stock status by around 60% when compared to no

survey data. As for the results from the uncertainty analysis, the bootstrap is clearly the odd

one out, while the delta method, MCMC, and profile likelihood intervals are comparable in

most cases. Profile likelihood is well-suited to evaluate the uncertainty about key parameters

such as M and h, but slightly cumbersome to analyze derived quantities such as biomass

and harvest rate. In the end, uncertainty analysis is not only about evaluating probabilities

and confidence intervals, but iterative methods such as the bootstrap, MCMC, and profile
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likelihood can also indicate lack of model convergence, find a new global optimum, identify

highly correlated or ill-defined parameters, and suggest parameter transformation.

To summarize, a checklist of general recommendations emerging from this dissertation

are:

• Use more than one method to evaluate uncertainty.

• Keep in mind that the real uncertainty is greater than the analytical confidence intervals

indicate.

• Use more than one model and variations of models to evaluate how sensitive the main

conclusions are to alternative assumptions.

• Use retrospective analysis to evaluate uncertainty from an empirical viewpoint.

• Use simulation analysis to evaluate the performance of the estimation model, which

parameters can be estimated reliably, and which uncertainty methods work best.

• Examine the fishing history to evaluate whether the data are likely to be informative

about the stock status and key parameters like h and M .

• Consider ways to reduce uncertainty by generating informative data via management

(e.g., applying different fishing mortalities between years) and research (e.g., design a

dedicated survey for a given stock, sample age data).

• Harvest control rules can be a practical way to incorporate uncertainty into manage-

ment advice.
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Appendix A

SUPPLEMENTARY INFORMATION FOR CHAPTER 2

A.1 Supplementary figures and tables
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Figure A.1. Age-specific characteristics of the

operating model: survey selectivity (plain line),

commercial selectivity (line with circles), maturity

(dashed line), and weight (bars).
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Table A.1. Age-specific weight (kg) and maturity (proportion)

used in the operating and estimation model.

Age 1 2 3 4 5 6 7 8 9 10+

Weight (kg) 0.3 0.7 1.3 1.8 2.6 3.6 4.9 6.3 7.7 10.1

Maturity 0.0 0.0 0.1 0.4 0.6 0.8 0.9 1.0 1.0 1.0

Table A.2. Parameter values used in the operating model, along with bounds used

in the estimation model.

Parameter Meaning True value Lower bound Upper bound

R0 Average virgin recruitment 250 000 1 000 10 000 000
h Recruitment steepness 0.7 0.2 1

M Natural mortality rate 0.2 0 0.5

Rinit Initial population scaler 1 0 5

uinit Initial harvest rate 0 0 1

Rplus Initial plus group scaler 1 0 2

CSfull Age at full selectivity (fleet) 5 3 10

CSleft Selectivity left curve (fleet) 1 −2 5

CSright Selectivity right curve (fleet) 6 −2 15

SSfull Age at full selectivity (survey) 4 2 10

SSleft Selectivity left curve (survey) 1 −2 5

log q Catchability coefficient −15.2 −30 0

Rε Recruitment deviates * −15 15

*: Initial age structure and annual recruitment varies between scenarios.
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Table A.3. Annual harvest rate and recruitment used in the operating model.

Harvest Recruitment in scenario number
Year rate 1 2 3 4 5 6 7 8 9 10

1985 0.039 143 122 117 238 126 245 824 198 132 211
1986 0.050 145 405 299 324 62 119 297 241 363 130
1987 0.064 215 248 161 200 405 221 306 64 172 261
1988 0.079 121 174 384 172 307 217 203 74 306 108
1989 0.096 228 133 290 198 231 115 104 68 103 305
1990 0.114 138 123 367 215 195 197 251 202 293 134
1991 0.132 583 700 283 74 344 178 79 145 125 271
1992 0.151 305 355 220 519 173 184 370 276 203 282
1993 0.168 334 663 62 319 60 271 373 150 70 69
1994 0.184 238 151 127 101 123 152 327 200 111 339
1995 0.199 510 155 252 67 408 107 208 245 225 354
1996 0.209 125 103 141 240 104 122 146 154 197 82
1997 0.207 138 163 154 285 476 104 242 99 191 340
1998 0.193 428 250 137 299 826 64 266 222 231 129
1999 0.168 123 420 451 207 184 317 256 83 152 140
2000 0.138 159 256 108 158 74 122 103 378 271 293
2001 0.107 143 237 124 217 277 222 441 362 50 178
2002 0.080 150 373 164 106 71 157 83 187 78 319
2003 0.053 154 359 190 121 245 221 345 385 120 270
2004 0.023 247 194 191 496 196 86 326 82 238 375
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Table A.4. Coverage probability for confidence intervals

by uncertainty method and reference point, evaluated at

several confidence levels. The non-bias-corrected bootstrap

is referred to as “raw”, and bias-corrected bootstrap as

“bootstrap”. Ideally, the coverage probability should equal

the confidence level. The bottom part of the table averages

across reference points.

Reference Conf.
point level Delta Raw Bootstrap MCMC

Bcurrent 50% 33.0 24.4 32.0 33.3
75% 56.3 40.9 48.8 51.3
90% 74.7 58.5 65.0 67.7
95% 82.7 69.7 73.4 76.2

ucurrent 50% 30.4 17.8 33.9 32.0
75% 52.3 29.2 51.0 49.7
90% 72.7 44.9 66.5 63.0
95% 83.6 54.7 73.0 72.6

Depletion 50% 35.9 24.0 29.3 35.2
75% 56.9 38.4 49.2 54.6
90% 72.9 52.2 64.9 68.8
95% 80.5 60.7 72.7 76.5

MSY 50% 45.1 18.7 20.1 45.6
75% 69.0 33.3 32.5 68.8
90% 82.7 46.4 45.6 83.2
95% 89.4 55.4 52.7 88.4

Bcurrent/BMSY 50% 24.3 35.6 29.3 34.9
75% 37.0 54.8 49.0 52.5
90% 48.4 71.2 65.6 67.2
95% 55.4 79.0 72.3 74.4

Surplus 50% 43.0 35.0 37.3 44.0
75% 68.0 55.3 59.8 67.2
90% 86.3 71.4 76.8 85.0
95% 91.4 80.2 84.0 90.1

Average 50% 35.3 25.9 30.3 37.5
75% 56.6 42.0 48.4 57.4
90% 73.0 57.4 64.1 72.5
95% 80.5 66.6 71.4 79.7
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Table A.5. Coverage probability for 90% confidence intervals

(cf. bottom line in Table 2.3), when the computations are

repeated while leaving out one recruitment scenario at a time.

The best-performing method is shown in boldface. Adding one

or more recruitment scenarios might alter the relative rank of

the delta method and MCMC, but not the ranking of the two

bootstrap methods.

Delta Raw Bootstrap MCMC

Include all 73.0 57.4 64.1 72.5
Leave out 1 73.4 57.6 64.6 72.6
Leave out 2 74.3 59.2 64.7 72.8
Leave out 3 72.6 57.4 63.1 72.6
Leave out 4 72.6 57.4 63.6 71.7
Leave out 5 73.0 57.7 64.5 72.9
Leave out 6 72.2 54.9 63.5 72.4
Leave out 7 73.1 59.7 64.9 72.6
Leave out 8 72.6 55.6 63.1 73.0
Leave out 9 72.9 58.3 63.7 72.3
Leave out 10 72.8 56.5 64.8 71.9



152

Appendix B

SUPPLEMENTARY INFORMATION FOR CHAPTER 3

B.1 Estimation model

The population dynamics are governed by the equation,

Nt+1,a+1 = Nt,ae
−M(1− CSau

?
t ) (B.1)

where Nt,a is population size at time t and age a, M is the rate of natural mortality, CS is

the selectivity of the commercial fishery and u? is harvest rate. The oldest age group, age A,

is treated as a plus group:

Nt+1,A = Nt,A−1 e
−M(1−CSA−1u

?
t ) + Nt,A e

−M(1−CSAu
?
t ) (B.2)

Selectivity is an asymmetric normal curve determined by three shape parameters,

Sa =


exp

(
−(a− Sfull)

2

exp(Sleft)

)
, a ≤Sfull

exp

(
−(a− Sfull)

2

exp(Sright)

)
, a >Sfull

(B.3)

where Sfull is the age at full selectivity, Sleft describes the left-hand slope and Sright the right

hand slope of the curve. Harvest rate is defined as the fraction removed from the vulnerable

biomass in the middle of the fishing year, u?t = Yt /
∑

a(CSaNt,awt,a)e
−M/2, where Y is catch

and w is body weight. For the purposes of the harvest control rule, however, the term harvest

rate is used in the context of the 20% harvest control rule, which defines harvest rate as the

annual catch divided by the reference biomass of ages 4 and older at the beginning of the

year, ut = Yt/
∑A

a=4(Nt,awt,a).
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The population size at the start of the first year is

N1,1 = R0Rinit × exp(Rε1,1− σ2
R/2)

N1,a = R0Rinit e
−(a−1)M

a−1∏
i=1

(1−CSiu
?
init)× exp(Rε1,a− σ2

R/2)

N1,A = R0Rinit e
−(A−1)M

A−1∏
i=1

(1−CSiu
?
init) / [1−e−M(1−CSAu

?
init)]×Rplus (B.4)

for 1-year-olds, intermediate ages, and the plus group. R0 is average virgin recruitment, Rinit

scales the initial population size across all ages, u?init is the initial harvest rate, and Rplus

scales the initial plus group.

Recruitment is stochastic around a Beverton-Holt stock-recruitment function, reparame-

trized according to Francis (1992),

Nt+1,1 =
4hR0(SSBt/SSB0)

1−h+(5h−1)(SSBt/SSB0)
× exp(Rεt+1,1−σ2

R/2) (B.5)

where SSBt =
∑

aNt,aΦt,awt,a is spawning biomass,

SSB0 =
A−1∑
a=1

R0e
−(a−1)M Φ̄aw̄a + R0 e

−(A−1)M Φ̄Aw̄A/(1−e−M) (B.6)

is average virgin spawning biomass, h is steepness of the stock-recruitment curve, and Φ is

proportion mature, Φ̄ and w̄ are the average maturity and weights over all years.

Maximum sustainable yield (MSY) and related reference points (uMSY, BMSY) are eval-

uated using an inner optimization routine (Magnusson and Hilborn 2007), taking advantage

of the following relationships,
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R? =
SBPR? − α
β SBPR?

α =
SBPR0 (1−h)

4h

β = (5h−1)/(4hR0) (B.7)

where R? is the average recruitment at a given harvest rate, SBPR? is spawning biomass per

recruit at that harvest rate, SBPR0 is virgin spawning biomass per recruit, and α and β are

Beverton-Holt dummy parameters to simplify the first equation.

The model is fitted to three data components: an annual survey biomass index, commer-

cial catch at age, and survey catch at age. The predicted survey index is proportional to the

biomass vulnerable to the survey in the middle of the fishing year,

Ît = q
∑
a

SSaNt,awt,a e
−M/2 (B.8)

where Î is the predicted survey index, q is the catchability coefficient, and SS is survey

selectivity. The catch-at-age predictions are in the form of proportions that sum to one

within each year,

CP̂t,a =
CSaNt,a∑
a CSaNt,a

(B.9)

SP̂t,a =
SSaNt,a∑
a SSaNt,a

(B.10)

where CP̂t,a and SP̂t,a are the predicted commercial and survey catch at age.
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The objective function for fitting the model relates to the three data components, as well

as a penalty on recruitment deviations from the stock-recruitment relationship:

f = − logLI − logLC − logLS + Pen (B.11)

The survey index likelihood component is lognormal,

− logLI =
∑
t

(log It − log Ît)
2

2σ2
I

(B.12)

where I and Î are the observed and model-predicted survey indices, and σI is the observation

noise for the survey index. The robust normal likelihood for proportions (Fournier et al. 1990)

is assumed for the catch-at-age data,

− logLC = −
∑
t

∑
a

log

[
exp

(
−(CPt,a−CP̂t,a)

2

2
[
CPt,a(1−CPt,a) + 0.1/A

]
Cn−1

)
+ 0.01

]
(B.13)

− logLS = −
∑
t

∑
a

log

[
exp

(
−(SPt,a−SP̂t,a)

2

2
[
SPt,a(1−SPt,a) + 0.1/A

]
Sn−1

)
+ 0.01

]
(B.14)

where CP and CP̂ are the observed and the model-predicted catch proportions at age, Cn is

the effective sample size for the commercial catch, while SP , SP̂ , and Sn are the corresponding

quantities for the survey catch at age. Finally, recruitment deviates are penalized under the

assumption of lognormality,

Pen =
A−1∑
a=2

Rε
2
1,a

2σ2
R

+
tmax−1∑
t=2

Rε
2
t,1

2σ2
R

(B.15)
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where Rε1,a and Rεt,1 are recruitment deviates in the initial year and subsequent years, and

σR is a measure of the extent of recruitment variability.

The level of observation noise (σI, Cn, Sn) in the data and recruitment variability of the

stock (σR) is estimated iteratively (McAllister and Ianelli 1997) from the empirical residuals

and deviates of the base model,

σ̂I =

√∑
(log It − log Ît)2

T − 1
(B.16)

σ̂R =

√∑
ε2
d

D
(B.17)

Cn̂ = median(Cnt), Cnt =

∑
a

(
CP̂t,a [1−CP̂t,a]

)
∑

a

(
CPt,a − CP̂t,a

)2 (B.18)

Sn̂ = median(Snt), Snt =

∑
a

(
SP̂t,a [1−SP̂t,a]

)
∑

a

(
SPt,a − SP̂t,a

)2 (B.19)

where T is the number of survey index datapoints and D is the number of recruitment

deviates.

B.2 Uncertainty methods

Four methods are used to quantify uncertainty: the delta method, profile likelihood, boot-

strap, and MCMC. The computations are the same as in Magnusson et al. (2013), with

the addition of profile likelihood. Equation B.20 summarizes how each method generates a

distribution that is used to construct confidence intervals,
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y
model−−−−→
delta

θ̂, ŜEθ̂

Norm−−−−→ p(y|θ)

y
model−−−−→ max

η
L(η |θp, y)

profile−−−−→ L(θ|y)

y
model−−−−→ θ̂

bootstrap−−−−−−→ y?1, y
?
2, . . . , y

?
B

model−−−−→ θ̂?1, θ̂
?
2, . . . , θ̂

?
B

density−−−−−−→
bias corr

p(y|θ)

y
model−−−−→

MCMC
θ1, θ2, . . . , θT

density−−−−−→ p(θ|y) (B.20)

where y denotes the observed data, θ is a vector of parameters (and derived quantities),

the ˆ symbol indicates an estimate of a parameter or derived quantity, ŜEθ̂ is the estimated

standard error of θ̂, η is a vector of model parameters other than the θp parameter of interest,

y?b is a bootstrap dataset, θ̂?b is a bootstrap estimate, and θt is an MCMC iteration. The

sampling distribution p(y|θ), profile likelihood L(θ|y), and posterior distribution p(θ|y) are

then used to generate intervals expressing the uncertainty about estimated parameters and

derived quantities.

Delta method

The estimation uses automatic differentiation (Fournier et al. 2012) to evaluate the Hessian

matrix and hence the approximate variance-covariance matrix for the estimated parameters.

The delta method (Seber 1973), which assumes that both estimation bias and the quadratic

terms of the Taylor series are negligible, is then used to estimate the variance of each derived

quantity,

ŜEĝ =

√√√√∑
i

∑
j

Ĉov
(
θ̂i, θ̂j

)( ∂g
∂θi

)(
∂g

∂θj

)
(B.21)
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where g is a derived quantity, such as a reference point, that is a function of some estimated

parameters θ1, θ2, . . . , θn. The symmetric confidence interval for g is then

[
ĝ − z1−α/2ŜEĝ, ĝ + z1−α/2ŜEĝ

]
(B.22)

where z is the standard normal quantile.

The quantities Bcurrent, BMSY, and MSY are log-transformed for the purpose of applying

the delta method, because the uncertainty about these quantities can be expected to be closer

to lognormal than normal (Magnusson et al. 2013, Stewart et al. 2013). The current harvest

rate ucurrent (landings/biomass in 2014) is also log-transformed, since a constant divided by

a lognormal random quantity is also lognormal.

Profile likelihood

It is straightforward to calculate the profile likelihood (Venzon and Moolgavkar 1988, Hilborn

and Mangel 1997, Millar 2011) for model parameters such as h, M , and CSright. An iterative

procedure is applied to a parameter of interest, fixing it at a different value in each iteration,

while maximizing the total likelihood (Equation B.11) over all other (nuisance) parameters,

max
η
L(η |θp, y) (B.23)

where L is the likelihood, η is the vector of nuisance parameters, θp is the parameter of

interest, and y is the data. The resulting confidence interval,

[ θp | logL = logLmax−0.5χ2
df=1,α] (B.24)

contains all values of θp where the log-likelihood is less than 0.5χ2
df=1,α away from the global

maximum log-likelihood.

A variation of this procedure is used to calculate the profile likelihood for derived quan-

tities such as Bcurrent, ucurrent, uMSY, BMSY, and MSY. These quantities cannot be fixed at

a certain value during the optimization, so an objective function penalty λp(θ̂p−θtarget)
2 is
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introduced to force the estimated quantity to be close to a given value in each iteration. The

penalty weight λp is chosen so the penalty ends small in each iteration, and the penalty is

excluded from the objective function when storing the profile likelihood (Equation B.23) at

each value of θp.

Bootstrap

A parametric model-conditioned approach is used to generate 1000 bootstrap datasets, with

residuals sampled from probability distributions and applied to the model fit to the original

data (Efron and Tibshirani 1993). The bootstrap survey abundance index is

I?t = Ît × exp(Iε
?
t ), Iε

?
t ∼N(0, σ̂I

2) (B.25)

where I?t is the bootstrap datum for year t, Ît is the predicted index for year t from the model

fit to the original dataset, Iε
?
t are bootstrap residuals, and σ̂I is the estimated magnitude of

observation error. The bootstrap commercial catch at age is

CP
?
t,a ∼ Multinom

(
Cn̂, CP̂t,a

)/
Cn̂ (B.26)

where CP
?
t,a are the bootstrap data, Cn̂ is the estimated effective sample size, and CP̂t,a is the

model-predicted commercial catch at age for year t. Similarly, the bootstrap survey catch at

age is:

SP
?
t,a ∼ Multinom

(
Sn̂, SP̂t,a

)/
Sn̂ (B.27)

Each estimation model is fitted to the bootstrap datasets, yielding bootstrap estimates

for each parameter and derived quantity. A bias-correction factor is then applied, which has

been shown to lead to more accurate confidence intervals (Magnusson et al. 2013),

BC
~̂
θ? = Ω̂−1

[
Φ
(

2Φ−1
[
max{0.1,min{0.9, Ω̂(θ̂)}}

]
+ Φ−1(~α)

)]
(B.28)
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where BC
~̂
θ? is a vector of bias-corrected bootstrap estimates in ascending order, Φ(·) is

the standard normal cumulative distribution function, Ω̂(x) = #{θ̂?< x}/B is the empirical

cumulative distribution function of the bootstrap estimates θ̂?, while Φ−1(·) and Ω̂−1(·) are

the corresponding inverse functions, B is the number of bootstraps, and ~α is a vector of

probability levels 1/B, 2/B, . . . , B/B. The bias-corrected bootstrap confidence interval is

calculated as:[
α

2
quantile from BC

~̂
θ?,

(
1−α

2

)
quantile from BC

~̂
θ?
]

(B.29)

Bayesian MCMC analysis

Markov chain Monte Carlo (MCMC) simulation is used to approximate the posterior distri-

bution of estimated parameters and derived quantities. The simulation method is Metropolis-

Hastings with an adaptive multivariate normal jumping distribution (Gelman et al. 2004,

Fournier et al. 2012).

All model parameters are assigned uniform priors with wide bounds, except the recruit-

ment deviates (Equation B.15), which have a lognormal prior in all estimation models, and h

and CSright, which have diffuse priors (Equations 3.3–3.4). The MCMC simulation is run for 1

million iterations and then thinned, keeping every 1000th iteration. The simulation starts at

the best model fit, so no burn-in period is required. Convergence of the estimated quantities

is diagnosed using the ‘coda’ package (Plummer et al. 2006), adopting an autocorrelation

threshold of 0.1, Geweke threshold of 1.96, and Heidelberger-Welch threshold of 0.05. If any

criteria are not met, the MCMC chain is extended to a maximum of 10 million iterations,

keeping every 10,000th iteration, to reduce autocorrelation and stabilize the distribution

quantiles. The MCMC confidence interval is calculated as[
α

2
quantile from θ1, θ2, . . . , θT ,

(
1−α

2

)
quantile from θ1, θ2, . . . , θT

]
(B.30)

where θ1, θ2, . . . , θT are the iterations retained from the MCMC chain.
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