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Bicycling is an environment-friendly, healthy, and low-cost transportation mode that 

is especially suitable for short distance travels. There is a bicycling renaissance in the North 

America, and Seattle takes a leading role in this change. Increasing bicycle use in the US will 

amplify the exposure to crashes and injuries, and the outcomes will likely depend on the 

bicycle route choice and the risk factors in the built environment.  
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Both bicyclists’ route preferences and bicycling safety performance are connected to 

the built environment features. To understand the effect of the built environment on 

bicycling, this dissertation addresses three interrelated research questions: (1) what built 

environment features are correlated with bicycle route choice, (2) how built environment 

features are correlated with bicycle crash frequency and bicycle crash risk, and (3) how built 

environment features are correlated with bicyclist injury severity. Using Seattle’s data, the 

research methodologies include advanced discrete choice models and count data models as 

key components.  

The results of this dissertation research show that changing the factors of land use, 

demographics, road network and design, contribute to a convenient, safe, and attractive 

bicycling environment, which encourages more bicycle use. The most significant built 

environment features impacting bicyclists’ route preferences and safety outcomes are: land 

use mixture, household density, employment density, bicycle facility types, waters and parks, 

commercial land use, street lights, street trees, slopes, and posted speed limit.  

Several policy implications can be drawn from the aforementioned results. First, in 

light of bicyclists’ route preferences, transportation planners should add cycle tracks and bike 

lanes on shortcuts in flat areas. In addition, local authorities should lower posted speed limits, 

improve street lighting conditions, and plant more street trees. Second, to reduce bicycle 

crash frequency and bicycle crash risk, local authorities should influence bicycling and 

driving behaviors with higher degrees of mixed land use, and place a greater percentage of 

commercial lands along popular bike routes. Transportation planners should encourage dense 

development and separate bike lanes from road traffic. Third, to mitigate bicyclist injury 

severity, local authorities should lower posted speed limits to reduce the risk of severe 
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bicyclist injuries or separate bicycle lanes from road traffic. And transportation planners 

should, once again, advocate for the dense development and mixed land use, while improving 

street lighting and avoiding placing bike lanes on steep slopes in planning practice. Overall, 

encouraging compact development and implementing considerate roadway designs would 

promote safety and create a favorable bicycling environment. 
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Chapter 1. Introduction 

 

1.1 Problem statement 

Bicycling is a green transportation mode widely advocated for by the public, authorities, 

and scholars. The United States (US) faces many environmental and public health problems as a 

consequence of longtime car dependence (Younger et al. 2008). Regular bicycling activities 

generate physical and mental benefits, such as improving fitness and reducing stress (Blair et al. 

2001). Furthermore, an increase in the amount of bicycling reduces car use, parking demand, 

energy consumption, road congestion, and traffic related air-pollution (Litman and Burwell 2006, 

Woodcock et al. 2009).  

In order to promote bicycle use, state and local authorities advocate building urban areas 

that are convenient, safe, and have attractive bicycling environments. As a result, many US cities 

are creating or implementing bicycle master plans to encourage bicycling, such as Seattle 

(Seattle Department of Transportation 2014). However, these plans focus on adding bicycle 

facilities. Connections between other built environment1 features, such as factors of land use and 

road network, and bicycling behaviors are not adequately analyzed and discussed.  

The problems related to bicycle planning, specifically for route choice and bicycle safety, 

are not adequately answered. Therefore, this dissertation aims to inform bicycle planning 

practices by addressing the following questions. 

 What built environment features are correlated with bicycle route choice? 

                                                           
1 The built environment, short for BE, is defined as the man-made settings for human activities. In this dissertation, 

the built environment includes land use and road network features.  
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 How are built environment features correlated with bicycle crash frequency and 

bicycle crash risk? 

 How are built environment features correlated with bicyclist injury severity? 

How bicyclists interact with the built environment is essential in deciding where to place 

new bicycle facilities. In order to understand bicycle route choice, it is important to investigate 

areas in which bicyclists are traveling to. Before the development of GPS trackers, the built 

environment features of bicycle routes remained ambiguous to researchers, because there was no 

effective way to record the bicycling environment features associated with bicyclists’ 

preferences. Previous studies largely relied on attitudinal surveys or retrospective interviews, 

creating a perception of less reliable results. Emerging data collection technology helps track the 

observed bicycle routes, where the connections between bicycle routes and built environments 

can be modeled with revealed-preference data and produce more accurate estimates of factors 

impacting bicyclists’ route preferences.  

The importance of the bicycling environment in mitigating bicycle crash risk is somehow 

underestimated in US safety studies. Among existing studies focusing on built environment 

factors, bicycle route types and intersection design are given more considerations. Land use is 

somehow ignored. Compact development, such as higher densities and greater mixed land use, 

shorter trip distances, and more difficulties in owning, driving, and parking a car, are shown to 

be correlated with greater bicycling popularity (Pucher & Buehler, 2006, 2008). In addition, 

bicycle mode choice and route choice are also dependent on road safety. In fact, safety acts as 

the most important deterrent preventing people from bicycling because bicyclists are more 

vulnerable than motorists in sharing roads (Wegman et al. 2012, Wei and Lovegrove 2012). 

Mitigating the conflicts between bicyclists and motorists through improving bicycle routes may 
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result in mode switch from driving to bicycling. Integrating the consideration of risk factors2 into 

bicycle planning contributes to improved bicycle use. Improved road safety is essential to the 

success of bicycle plans and programs. Finally, due to the low mode share of bicycling, the 

requirements and techniques of bicycle planning in the US are different from countries in Europe 

and Asia, and their successful experiences of bicycle planning may not be directly transferable. 

To plan convenient, safe, and attractive US bicycling environments, the efforts to understand 

safety issues are essential.  

1.2 Background: bicycle mode share and bicycle safety worldwide 

Bicycling is an affordable transportation mode. Bicycling uses no fossil energy, relieves 

mental pressures, and promotes the livability of cities (Pucher and Buehler 2008). Compared 

with walking, bicycling covers greater travel distances at higher speeds. Compared with riding 

transits, bicycling provides a seamless door-to-door mobility option. Compared with driving, 

bicycling is more environment-friendly and physically healthy (OECD 2013). However, to 

support a bicycling renaissance in the US, it is important to review the trends in bicycle use 

around the world and the issues that have manifested with increasing bicycle use. 

1.2.1 Bicycle mode share worldwide 

Bicycle mode share3 varies greatly among Asia, Europe, Australia and Oceania, South 

America, and North America (see Figure 1-1). Megacities in countries such as the Netherlands, 

Germany, India, and China, have bicycling as the primary transportation mode, where they are 

                                                           
2 Risk factor is any attribute, characteristic or exposure of an individual that increases the probability of involving an 

injury. 

3 Bicycle modal share, also called bicycle mode split, is the percentage of trips made using bicycles among all 

transportation modes. Table 1-1 shows modal shares for the bicycle, which consists of the conventional bicycle and 

the electric bicycle. 
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used for utilitarian trip purposes (Pucher and Buehler 2008, Tiwari et al. 2008). In comparison, 

the bicycle mode share remains low in countries such as the US, United Kingdom, Canada, and 

Australia (Moudon et al. 2005, Pucher et al. 2011). The variations in bicycle popularity can be 

due to economic development, transportation policies, the built environment, bicycling culture, 

topography, and weather (Pucher and Buehler 2008, Buehler et al. 2011, Gallop et al. 2012, 

Hankey et al. 2012, El Esawey et al. 2015). 

   The bicycle was invented in Europe, where the bicycling culture runs deep. Many 

European countries have built convenient, safe, and attractive bicycling environments. The 

Netherlands, Denmark, and Germany have taken advantage of planning and policy tools to 

maintain bicycling as a primary transportation mode (Pucher and Buehler 2008). However, as 

shown in Table 1-1, bicycling is no longer popular in other European countries (e.g., UK) 

because of automobile-oriented polices (Pucher and Buehler 2008).   

Bicycling has been an important transportation mode in Asian countries since the early 

20th century, and the bicycle continually serves as a primary mobility tool. However, as 

automobiles are becoming more affordable with continual economic growth, bicycle use is 

steadily decreasing in China and India (Tiwari et al. 2008, Mittal et al. 2015). For instance, 

bicycle mode share in Beijing dropped from 62.70% in 1986 to 14.00% in 2010 (Yang et al. 

2014).  
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Figure 1-1: Bicycle mode share in world megacities 

Source: (Singapore land transport and authority 2014, City lock magazine 2014, Charting transport 2014, 

European cyclists’ federation 2015) 

 

In China, the bicycle mode share is negatively associated with per-capita income but it 

still remains popular in many Chinese cities. Based on dense population, relatively well-planned 

bicycle facilities are built in some Chinese megacities. It is worth noting that electric bicycles are 

increasingly popular in China in recent decades because bicyclists desire faster speeds and 

greater mobility (Cherry 2007).  
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Table 1-1: Bicycle mode share in selected large cities Worldwide 

City Cycling Year Region 

Beijing 14.00% 2013 Asia 

Daejeon 2.00% 2012 Asia 

Delhi 6.00% 2012 Asia 

Mumbai 6.00% 2008 Asia 

Osaka 24.00% 2012 Asia 

Shanghai 28.00% 2014 Asia 

Singapore 1.00% 2011 Asia 

Taipei 5.00% 2013 Asia 

Tokyo 14.00% 2008 Asia 

Ahmedabad 14.00% 2008 Asia 

Bangalore 3.00% 2010 Asia 

Guangzhou 8.00% 2015 Asia 

Hangzhou 34.00% 2007 Asia 

Hong Kong 1.00% 2011 Asia 

Nanjing 38.00% 2015 Asia 

Shenzhen 6.00% 2010 Asia 

Tianjin 37.00% 2010 Asia 

Wuhan 19.00% 2008 Asia 

Xi'an 18.00% 2011 Asia 

Adelaide 1.00% 2011 Australia 

Brisbane 1.00% 2011 Australia 

Melbourne 2.00% 2011 Australia 

Perth 1.00% 2011 Australia 

Sydney 1.00% 2011 Australia 

Auckland 1.00% 2009 Oceania 

City Cycling Year Region 

Bogota 2.00% 2008 Brazil 

San Paulo 1.00% 2012 Brazil 

Toronto 2.00% 2011 Canada 

Calgary 3.00% 2011 Canada 

Edmonton 2.00% 2010 Canada 

Montreal 2.00% 2010 Canada 

Vancouver 3.70% 2011 Canada 

Curitiba 5.00% 2011 Columbia 

Amsterdam 40.00% 2014 Europe 

Barcelona 12.00% 2012 Europe 

Berlin 13.00% 2012 Europe 

Brussels 3.00% 2010 Europe 

Budapest 2.00% 2004 Europe 

Copenhagen 30.00% 2012 Europe 

Hamburg 12.00% 2008 Europe 

London 3.00% 2011 Europe 

Madrid 0.00% 2006 Europe 

Munich 17.00% 2011 Europe 

Paris 3.00% 2010 Europe 

Prague 1.00% 2009 Europe 

Rome 0.00% 2001 Europe 

Rotterdam 14.00% 2004 Europe 

Stockholm 4.00% 2012 Europe 

Utrecht 34.00% 2015 Europe 

Vienna 6.00% 2013 Europe 

City Cycling Year Region 

Warsaw 1.00% 2009 Europe 

Zurich 4.00% 2005 Europe 

Boston 2.00% 2009 US 

Chicago 1.00% 2009 US 

Dallas 0.00% 2009 US 

Houston 0.00% 2009 US 

Las Vegas 0.00% 2009 US 

Los Angeles 1.00% 2009 US 

New York 1.00% 2009 US 

Philadelphia 2.00% 2009 US 

Phoenix 1.00% 2009 US 

Portland 6.00% 2009 US 

San Diego 1.00% 2009 US 

San 

Francisco 

3.00% 2009 US 

San Jose 1.00% 2009 US 

Seattle 4.00% 2013 US 

Washington 

DC 

2.00% 2009 US 

Minneapolis 1.00% 2009 US 

 

Sources:  

(Singapore land transport and authority 

2014, City lock magazine 2014, Charting 

transport 2014, European cyclists’ 

federation 2015) 
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In India, the bicycle mode share varied from 7.00% to 15.00% in large cities, and from 

13.00% to 21.00% in medium and small cities (Tiwari et al. 2008). The bicycle mode share is 

also negatively correlated with per capita income in India. Bicycling is the most affordable and 

convenient mobility mode for short distance travels for low-income people.  

In the US, only 0.50% of commuters use bicycles (American Association of State 

Highway and Transportation Officials and US Departmemt of Transportation 2013). The 

majority of bicycle trips in the US are for exercise and recreational purposes (Moudon et al. 

2005, Pucher and Buehler 2008). The past decade has observed an increase in bicycling cultures 

across large US cities, the scope is still small when compared to the international level. As 

shown in Figure 1-2, the percentage of bicycle commuters in the 50 states varies from 0.00% to 

1.90%. 

To summarize, bicycle mode share varies substantially by nations. In general, bicycle 

mode share decreases sharply in Asian developing countries, keeps stable in European developed 

countries, and observes a bicycling renaissance in North America. The popularity of bicycling 

depends on many factors, such as weather, season, topography, city size, travel distance (Martens 

2004, Rietveld and Daniel 2004), bicycle facility, bicycling culture, transportation policy, 

impedance, safety concern, and relative costs of using alternative modes (Martens 2004, Rietveld 

and Daniel 2004, Dill 2009, Winters et al. 2011, Pucher et al. 2012).  
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Figure 1-2: Mode share of bicycle commuters in the United States 

Source: (United States Department of Transportation 2010) 

1.2.2 Bicycle safety worldwide  

Bicycle safety issues also vary greatly by country. In China, for instance, motorists treat 

bicyclists with insufficient respect. Chinese bicyclists enjoy the great mobility that is provided by 

electrical bicycles. However, the use of electrical bicycles induces major safety issues. Electrical 

bicyclists are likely to violate traffic laws, such as speeding and red-light running, which poses 

threats to motorists and other bicyclists (Wu et al. 2012, Zhang and Wu 2013).  

In India, lack of dedicated bike routes and sufficient surveillance, the contributing factors 

of bicycle crashes are more complicated but are largely explained by ineffective traffic 
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management. Motorcycles and vehicles easily hit bicyclists and leave the scene (“hit and run”) 

(Mohan et al. 2009). For example, nearly 37.00% of reported bicycle crashes occurred on 

national highways in India (Tiwari et al. 2008). This percentage indicates that local authorities 

fail to prevent bicyclists from entering highways, and fail to monitor bicycle crashes on arterial 

routes and local streets. The number of bicyclist fatalities in Mumbai and Delhi is fewer than that 

of pedestrians and motorcyclists, but much more than that of the other transportation modes 

(Mohan et al. 2009). The understanding of India’s bicyclist safety is inaccurate and limited in the 

existing literature. 

Comparatively, bicycling is safer in Europe than in the US, India, and China. Existing 

studies have compared the relative risk of bicycle crashes to car crashes in European countries. 

In general, a lower degree of crash risk is associated with a larger bicycle mode share. The 

relative risk4 of fatal injuries per distance of bicycle crashes to car crashes is about 6 times in 

Norway and the Netherlands. This relative risk is approximately 11 times in Switzerland and 

Denmark, and roughly 15 times in the United Kingdom and New Zealand (OECD 2013).  

In the US, building separated bike lanes is not realistic or affordable in most cities 

because of insufficient bicycling demand. Bicyclists have to share roads with motorists and are 

required to wear helmets.  Most bicycle crashes result from conflicts between motorists and 

bicyclists. As shown in Figure 1-3, Florida and Arizona have greater numbers of bicyclist 

fatalities per million people than the other states.   

                                                           
4 Relative risk is the ratio of the probability of an injury happening in an exposed group to the probability of that 

injury happening in a comparison, non-exposed group, or the probability of one type of injury to the probability of 

another type of injury.  
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Figure 1-3: Bicyclist fatalities per million people in the United States 

Source: (The National Highway Traffic Safety Administration 2013) 

 

To summarize, bicycle mode share and safety concerns vary greatly across the world. In 

the US, there exists a low level of bicycle mode share and a high level of bicycle crash risk. The 

bicycle planning experiences of European and Asian countries may not be directly transferable to 

the US. Subsequently, specific research focusing on the US urban context for bicycling should be 

conducted. This dissertation studies how to increase bicycle use and reduce bicycle crash risk in 

order to produce convenient, safe, and attractive bicycling environments in the US.  
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1.3 Conceptual framework and research objectives 

This dissertation originated from a research project to comprehend the factors impacting 

bicycle route choice, but the dissertation expanded to understanding the relationship between 

individual bicyclists and the built environment. The public’s perception of the lack of safety is an 

obstacle to the popularity of bicycling (Reynolds et al. 2009). In order to make more insightful 

policy recommendations promoting bicycle use in the US, safety has been included as another 

component that impacts bicycling.  

This dissertation places bicycle route choice and safety issues in the loop between 

individual bicyclists and the built environment, as shown in Figure 1-4. This loop considers the 

three elements linking individual bicyclists and the built environment: (1) use5, (2) access6, and 

(3) exposure7. The three elements are interrelated. Better planned bicycle facilities encourage 

more bicycle use, promote bicycling accessibility, and hence bring safety benefits to bicyclists. 

Many issues are related to bicycle use, such as mode choice, bicycle volume, bicycle miles 

traveled, and trip frequency. Bicycle route choice is the major concern of accessibility. The 

typical bicycle exposures in the built environment are the risks of collision, injury, and air 

pollution. For instance, the placement of the barriers installed between bike lanes and drive lanes 

                                                           
5 “Use” describes an action or state of affairs that was done repeatedly or existed for a period of time. The use of 

bicycle is related to the mode choice of bicycling, bicycle volume, bicycle frequency, bicycle miles traveled, and 

bicycle hours traveled. 

6 “Access” refers to the ease of an individual to reach a destination. Accessibility, the measurement of access, is 

frequently quantified by proximity, which is a location-based distance measurement to different land uses, locations, 

or activities. Composite accessibility measurement considers all types of land use nearby, which reflects the accurate 

land use composition, but is hard to be interpreted. 

7 “Exposure” in this study refers to the behavioral or environmental factor that may cause or associate with the 

outcome of a bicycle crash or a bicyclist injury.  
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reduces the risk of collision that bicyclists are exposed to motorists. This dissertation only 

focuses on access and exposure. 

 

Figure 1-4: Individuals and the bicycling environment  

Source: University of Washington URBDP 576 Pedestrian Travel, Land Use, and Urban Form  

This dissertation contributes to the literature through the following three aspects. First, 

traditional route choice cost functions, such as the shortest path, do not adequately capture 

bicyclists’ joint consideration of multiple factors on route preferences. There are many additional 

factors to be considered in bicycle route choice, such as leisure and safety. Second, due to the 

lack of appropriate denominators, existing bicycle safety studies have not sufficiently 

investigated bicycle crash risk. This dissertation project consequently includes a zonal-counted 

number of bicycle trips to measure the bicycle crash risk. Third, spatial dependence is a common 

statistical concern in urban studies. This dissertation addresses the concern on spatial 

autocorrelation in modeling.  

This dissertation is aimed at understanding how built environment features are associated 

with bicycle route choice, bicycle crash frequency, bicycle crash risk, and bicyclist injury 

severity. This dissertation project employs quantitative methods to investigate the associations 

Access Exposure 

Use 

Bicycling 

Environment 
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between the built environment and bicycling factors in the US context. It is targeted at 

facilitating designs for bicycling through building convenient, safe, and attractive urban 

environments, reducing the number of collisions and the severities of injuries, and providing 

resources for evidence-based policy design. The specific research objectives are listed below: 

 To apply the theory of utility maximization to the study of bicycling, to connect 

compact development elements with bicycle route choice, and to use GPS-tracked 

bicycle routes to understand how bicyclists interact with the built environment.  

 To examine the theory of safety in numbers, to link the built environment features to 

bicycle crash data, and to determine what elements influence bicycle crash frequency, 

bicycle crash risk, and bicyclist injury severity. 

 To draw lessons from the research outcomes that can be applied to bicycle facility 

planning, and promote bicycle accessibility and safety. 

1.4 Dissertation structure 

The remainder of this dissertation is organized into three interrelated studies and a 

synthesis. The first study focuses on bicycle route choice in an attempt to understand how 

bicyclists consider convenience, safety, and leisure in choosing bicycle routes. The second study 

examines the safety in numbers theory through comparing a bicycle crash frequency model with 

a bicycle crash risk model, and highlights policy implications drawn from density-related 

measurements. The third study investigates the relationship between built environment risk 

factors and different types of bicyclist injuries. Finally, a summary of policy implications and 

future research is presented in the last chapter.  
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1.4.1 Analyzing bicycle route choice 

The first study employs a GPS dataset gathered by a smartphone application called 

“CycleTracks”. The bicycle traces are recorded with the GPS points. The cost functions of the 

recorded bicycle traces are developed by multiple principal component analyses. Two safety-

related elements, including posted speed limit and bicycle facility type, are selected as the 

primary factors in defining those principal components. Through comparing the traces with the 

generated routes, the defined route alternatives are used to identify the significant built 

environment features that impact bicycle route choice using a path size logit model. The 

assumption is that bicycle route choice is jointly impacted by convenience, safety, and leisure. 

The objective of this paper is to provide a reference for bicycle planning through evaluating 

bicyclists’ route preferences. This study is under review for possible publication in the journal of 

“Transportation Research Part A, Policy and Practice”.  

1.4.2 Analyzing bicycle crash frequency and bicycle crash risk 

In the second study, the associations between automobile-involved bicycle crash 

frequency, bicycle crash risk, and built environment features are investigated by two Poisson-

Lognormal random effects models. The hypothesis is that areas with higher density and more 

mixed land use would have higher bicycle crash frequencies but lower bicycle crash risks. 

Traffic analysis zone8 is selected as the spatial unit to match the available exposure variables. 

This study considers the spatial autocorrelations among analytical units by employing two 

random effects. The objective of this chapter is to examine the theory of “safety in numbers” in 

the US context, and to provide insights to compare the variations in offering protections for road 

                                                           
8 TAZ short for Traffic Analysis Zone, is the commonly employed unit for transportation planning modeling. 
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users on different bicycle facilities. This study has been published as an article, entitled “Built 

environment features in explaining the automobile-involved bicycle crash frequencies: A spatial 

statistic approach,” in the journal “Safety Science”.   

1.4.3 Analyzing bicyclist injury severity  

The third study examines the correlation between bicyclist injury severity and the built 

environment using a generalized ordered logit model and a general additive model. The 

hypothesis is that compact developed areas have relatively lower driving speeds, hence bicycle 

injury severities are less serious. This study is conducted at a disaggregate level, therefore 

motorist and bicyclist-related factors are better explained. Specifically, injury type is assumed to 

follow an ordered categorical distribution, and the possible spatial dependence across crash sites 

is examined. The findings provide useful information for modifying the road network and land 

use for safety improvements. This study has been published in the journal “Accident Analysis 

and Prevention” as an article, which is titled “Built environment effects on cyclist injury severity 

in automobile-involved bicycle crashes.”   
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Chapter 2. Built environment effects on bicyclists’ route preferences: a 

GPS data analysis  

 

Abstract 

The goal of this study presented in this chapter was to examine the effects of the built 

environment on bicycle route choice using data from Seattle. This goal was achieved 

using a smartphone application called “CycleTracks” that records GPS data and 

associated bicycle route features. Features of land use and road network favored by 

bicyclists are then identified and analyzed. A route choice set is modeled by the labeling 

route approach, and a path size logit regression is then estimated. There were six major 

findings: (1) bicycle route choice involves joint consideration of convenience, safety, and 

leisure; (2) most bicyclists prefer to cycle on short, flat, and well-planned bicycle 

facilities; (3) some bicyclists prefer routes with low posted speed limits; (4) a substantial 

percentage of bicyclists prefer routes surrounded by low floor area ratio; (5) some 

bicyclists prefer routes surrounded by mixed land use, or near waters and parks; and (6) 

some bicyclists favor routes planted with street trees and installed with street lights. 

These conclusions offer valuable insights for planning strategies that facilitate efficient, 

safe, and comfortable bicycling. 
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2.1 Background 

Bicycling creates economic, environmental, and social benefits by reducing travel 

costs, decreasing traffic-related pollution, and promoting public health (Pucher and 

Dijkstra 2003, Sælensminde 2004, Weichenthal et al. 2011). According to the American 

Community Survey, 55 major US metropolitan areas witnessed an increase in the amount 

of bicycle commuters in the past decade (ACS 2013). Transportation planners face many 

challenges in attempting to meet this undeniable bicycling growth. For instance, 

transportation planners must consider where and what types of bicycle routes should be 

built and how different built environment features encourage bicycling.  

Many studies have been conducted to address the above concerns. The effects of 

bicycle facility provisions on bicycling behaviors have been examined (Tilahun et al. 

2007, Akar and Clifton 2009, Dill 2009, Chen et al. 2012, Teschke et al. 2012). As 

agreed, if new bicycle lanes are built, bicyclists will use them (Dill and Carr 2003). The 

correlations between bicycle facility changes and bicycling risk factors have been 

investigated (Parkin et al. 2007, Cheng and Liu 2012, Washington et al. 2012). For 

instance, the placement of safety countermeasures is correlated with increased number of 

bicyclists (Chen et al. 2013). A number of studies explored how policy interventions 

could encourage more bicycling (Dill and Carr 2003, Pucher et al. 2012), such as the 

effect of public bicycle sharing programs (Shaheen et al. 2010, Faghih-Imani et al. 2014). 

Additionally, several researchers used stated-preference data to analyze bicycle route 

choice (Stinson and Bhat 2003, Hunt and Abraham 2007, Sener et al. 2009). Due to the 

limitation in tracking bicycle routes, the interaction between the built environment and 

bicycle route choice has not been sufficiently investigated in the previous literature. This 
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study leverages new data collection technology to track bicycle routes and extract 

relationships between the built environment and bicycle route choice.   

Many local agencies adopt plans and programs to promote bicycling due to the 

health and environmental benefits. For example, the City of Seattle has added bicycle 

lanes throughout Seattle. However, traditional four-step travel demand forecasting 

models are incapable of effectively supporting bicycle planning. Attaining detailed data 

related to bicycle route choice is key to advancing travel demand forecasting models. In 

particular, promoting the modeling capacity is important for the fast-paced propagation of 

bicycle programs. The success of programs such as the “safe routes to school” program, 

which has already been adopted in many US states to endorse travel safety for children 

and teenagers, and to promote active transportation (Boarnet et al. 2005, Buckley et al. 

2013), depends on bicycle planning. Advancements in travel data collection technology, 

such as GPS applications, generate new opportunities for enhanced understanding of 

bicycle route choice and create opportunities for more accurate models.  

2.2 Literature review 

A bicycle route choice model supports bicycling behavior analysis and acts as an 

indispensable element of trip assignment. Many previous studies used stated-preference 

data to examine the associations between road network and bicycle route choice. GPS 

data-based route choice model is anticipated to offer a more precise understanding of the 

relationship between bicycling behavior and the built environment by employing 

revealed-preference data. The following sections present the frequently discussed topics 

of bicycle route choice, including factor selection, choice set generation, and discrete 

choice modeling.  
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2.2.1 Factors influencing bicycle route choice 

Bicycle facility type9, slope, trip distance, posted speed limit, street lighting, and 

road signal density are essential elements impacting bicycle route choice (Hunt and 

Abraham 2007, Sener et al. 2009, Menghini et al. 2010, Broach et al. 2012). Studies 

focused on stated-preference data emphasize bicyclists’ characteristics, street parking, 

crosswalks, stop signs, pavement quality, and the presence of separated bicycle lanes on 

bridges (Stinson and Bhat 2003, Sener et al. 2009). In general, bicyclists favor shortcut 

routes detached from vehicle traffic.  

2.2.2 Choice set generation 

Path search methods have explicit procedures for the route choice set generation, 

which are divided into deterministic and stochastic approaches (Bovy 2009). K-shortest 

paths and labeling routes are deterministic approaches to generate route alternatives. The 

K-shortest path10 approach is restricted to minimize trip distance, which is inadequate for 

capturing other factors impacting bicycle route choice. The labeling route11 approach is 

endorsed for producing a better bicycle choice set because this approach exploits various 

segment12 features and creates more realistic route alternatives. In recent bicycle route 

                                                           
9 Bicycle facility type is commonly classified as cycle track, bike lane, and bike boulevard. More detailed 

descriptions about bike facilities are stated in WSDOT’s instruction (WSDOT, 2012. WSDOT road design 

manual: Bicycle facilities chapter 1520). The order of bicyclists’ preference is cycle track, bike lane, bike 

boulevard, and arterial route.  

10 The K-shortest path routing algorithm is a generalization of the shortest path problem. “Path” is a similar 

term as “route”. 

11 The labeling route approach minimizes costs by creating functions through a linear combination of 

factors, and labels a route with the prominent factor. 

12 A road segment is defined by the link between two consecutive nodes. 
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choice studies, a calibration process was applied to improve the existing labeling route 

methods (Broach et al. 2010). Link elimination13 and link penalty14 are simulation 

(stochastic) methods for enumeration (Bekhor et al. 2006, Bovy 2009, Prato 2009). Link 

elimination is not an ideal method for enumeration because it may result in an unsolvable 

road network. For example, if the bridges connecting north and south Seattle are 

disregarded in the link elimination process, no additional route alternatives can be created 

based on the remaining road network. In terms of the number of generated comparable 

routes, the link penalty approach is better. However, when bicycling distance is long and 

road network is made of densely connected streets, large numbers of generated route 

alternatives can be unmanageable. 

Assuming that segment length was the primary factor impacting bicycle routing, 

Broach et al. (2010) conducted a stepwise simulation to acquire a rich bicycle route 

choice set, and then allocated labels to the added factors, such as maximizing all bike 

facilities and minimizing upslope. This approach generated realistic routes for great 

overlap with observed traces15. Similarly, Ehrgott (2012) advanced a generic term of 

suitability by merging several factors and made a bicycle route cost function based on 

travel time and a suitability score.  

                                                           
13 Link elimination approach is described as continually eliminating the shortest path segments from the 

road network to find the next best route until converged. 

14 Link penalty approach is labeled as repeatedly increasing the impedances of the shortest path segments to 

search the next best route until converged. 

15 Trace: a trace is a type of visible mark left by a passenger, such as a footprint. The difference between a 

trace and a route lies in whether the footprints have been snapped to the road network or not.  
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2.2.3 Discrete choice modeling: path size logit model 

The correlations16 among created routes remain a primary focus in route choice 

research. More sophisticated models are required to eliminate the problem of identical 

and irrelevant alternatives. Current GPS-based bicycle route choice studies select the path 

size17 logit model for analysis (Menghini et al. 2010, Broach et al. 2012). The path size 

logit model is a variant of the multinomial logit model, which includes a spatially 

measured route similarity index. Therefore, the path size logit model requires less 

computation as compared to the other advanced discrete choice models. Also, the path 

size logit model works efficiently in identifying similarities among candidate routes by 

accounting for the issue of independence of irrelevant alternatives. Besides the path size 

logit model, there are other methods for route choice modeling, such as the mixed logit 

model (Prato 2009). 

2.2.4 GPS-tracked bicycle route choice research 

Only three GPS data-based bicycle route choice studies are available in the 

current literature. Those studies were carried out in Zurich (Menghini et al. 2010), 

Portland (Broach et al. 2010, Broach et al. 2012) and San Francisco (Hood et al. 2011). 

Menghini’s study (2010) used the simulated K-shortest path approach with link 

elimination to create route alternatives. Yet, this study only took segment length, bicycle 

facility type, slope, and street lighting into account for the cost functions18, which may 

                                                           
16 Correlation refers to the degree of independence of each alternative route. If two routes have overlapped 

road segments, they are correlated.  

17 Path size is a spatial index that describes the portion of a route overlapping with other route alternatives. 

18 Transportation cost refers to the sum of input that a passenger pay to reach a destination, such as 

monetary cost, time cost, and physical effort cost. A cost function is a curve expressing the sum of input. 



25 
 

not be adequate to understand the observed route features. Broach et al.’s study (2010) 

advanced the calibrated labeling route approach to create route alternatives, which 

improved the quality of the choice set considerably. However, the independent variables 

were restricted to traffic volume, the number of turns, slope, and bicycle facility types.   

2.3 Research objective and data sources 

The objective of this research is to comprehend the effects of built environment 

features, such as the characteristics of land use and road network, on bicycle route choice. 

This study employs GPS data from Seattle bicyclists to empirically determine bicycle 

route choice characteristics that are important to travel demand forecasting.  

Seattle is making efforts to become bicycle friendly city. Currently, 4.10% of 

commuters use bicycles as a primary transportation mode in Seattle, which is higher than 

that of the US national average (Seattle Department of Transportation 2013). The city is 

determined to support the mode switch from driving to bicycling.  

The GPS data were acquired from a smartphone application called “CycleTracks,” 

and the GIS information of the built environment was collected from related agencies. As 

observed bicyclists’ routes are obtained, the origins and destinations of the GPS traces are 

identified. Then the built environment features are quantified in ArcGIS. The unit of 

analysis for quantifying the built environment is road segment, and the unit of analysis 

for discrete choice modeling is route. The approach of labeling route is employed to 

generate bicycle route alternatives, which make up the sensible and feasible bicycle route 

choice set. Additionally, a path size logit model is created to estimate the effects of the 

built environment on bicyclists’ route preferences. This study contributes to the field by: 

(1) measuring built environment features along with the GPS-tracked bicycle routes; (2) 
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offering a practical method for processing smartphone GPS data; (3) assimilating safety-

related indicators as primary factors to generate cost functions using principal component 

analyses; and (4) taking convenience, safety, and leisure into account for bicycle route 

choice.  

2.4 Research design 

2.4.1 Theoretical assumptions 

The theory of modeling bicycle route choice is the utility maximization theory. 

Bicycle route choice involves the joint consideration of multiple objectives. The assumed 

objectives of bicycle route choice in this study are simplified to (1) convenience, (2) 

safety, and (3) leisure. The first objective, convenience, emphasizes the efficiency 

concerning bicycle route choices, such as the shortest path or shortest travel time. The 

second objective, safety, focuses on bicyclists’ concerns about minimizing risks in 

bicycling. Some safety-related elements are intrinsically associated with crash frequency 

and injury severity, such as posted speed limits and bicycle facility types. The third 

objective, leisure, highlights the pleasure gaining from bicycling, such as the 

attractiveness of a route (Hunt and Abraham 2007).  

Under the guidance of the utility maximization theory, a GPS-data based bicycle 

route choice model involves the procedures of (1) processing raw GPS data to traces, and 

traces snapping to the road network, (2) generating cost functions using principal 

component analyses, (3) creating alternative routes using selected cost functions, (4) 

quantifying built environment features and selecting variables, and (5) modeling bicycle 

route choice using the path size logit regression. The detailed research design is 

expressed by Figure 2-1. 
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Figure 2-1: Research design 
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2.4.2 GPS data and processing  

The GPS data used in this study were gathered by a smartphone application 

“CycleTracks”, which was developed by the San Francisco County Transportation 

Authority. This application demonstrates that smartphone apps can be operative tools in 

gathering bicycle route data. The GPS data were collected for the city of Seattle between 

11/18/2009 and 03/24/2014 (3.5 years). A total of 4.9 million GPS points were converted 

to 3,310 routes for 197 bicyclists, as shown in Figure 2-2. All app-users are recruited as 

bicyclists. The application archives one GPS point every two seconds. The reported 

variables are age, gender, and bicycling frequency. In addition, travel time is simply 

calculated as the difference between the starting time and the ending time. Employing 

this GPS data helps better comprehend the bicyclists’ route preferences by clearly tracing 

the route chosen and then associating built environment features along the entire trips. 
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Figure 2-2: Raw data imported from “CycleTracks” 
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A limitation of the smartphone GPS data was the number of errors observed. The 

urban canyon19 effect was evident in the traces and the GPS-tracked routes in areas where 

there was a cluster of tall buildings. As noted in Figure 2-2, reflected signals result in the 

GPS points jumping away from the traces. Therefore, in this study, several algorithms are 

used to clean, choose, and snap GPS points to the road network in ArcGIS. First, GPS 

points are converted to lines where many irregular traces are observed. Second, the 

converted lines are split at the GPS points, and the distance of each trace segment is 

thereby measured. The distance of each trace segment between two GPS points higher 

than a certain threshold is defined to filter problematic points, resulting a sample of 2,922 

clean routes. This study assumes that a temporal bicycling speed is impossible to be 

greater than 50 mph, and the trace segment between two consecutive GPS points cannot 

be longer than 1/36 mile. 

Issues regarding sampling validity require a selection of the responded bicyclists’ 

traces. First, over-representing bias is involved in the sample. Similar routes are 

identified from bicyclists who reported multiple times, whereas some bicyclists reported 

only one or two times. Second, some short routes seem to be a portion of a trip. Bicyclists 

may terminate recording due to an insufficient battery, weak signals, or other factors. 

Third, rounding tours20 are not appropriate to be selected for modeling bicycle route 

choice. It is impossible or ineffective to create realistic routes for such traces.  

                                                           
19 Urban canyon effect could be described as smartphone signals being blocked in places where the streets 

are flanked by buildings.  

20 A rounding tour is defined as a trip starting and ending at a same location or geographically 

approximating locations. 
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This selection process creates several possible biases. First, in the sampling 

procedures, short distance travels are underrepresented. Trip distance less than one mile 

is disregarded. There is no effective way to discern whether the trips are of real short 

distances, or are partially recorded due to weak signals or smartphone running out of 

batteries. Second, long distance bicycle trips (more than five miles) are not so frequent, 

but are overrepresented in the final sample. The sampling process drops out many short 

distance routes contributing to the average longer trips in the final sample. For instance, 

the longest trip distance in the GPS-tracked routes is 22.67 miles, which is reported by an 

experienced bicyclist. Therefore, a significant assumption made in this study is that 

experienced bicyclists share similar bicycling environment preferences as regular 

bicyclists. 

To snap the traces to the road network, the GPS points are overlaid with road 

intersection buffers. Two consecutive intersection IDs are then used to identify the 

corresponding road segment IDs. Errors occur when GPS points are snapped to 

inappropriate neighboring intersections or missing correct intersections. For instance, A, 

B and C are three points on segments AB and BC. If GPS points are snapped to B’s 

neighbor D, there would be four segments in that route, including AB, BD, DB and BC, 

as shown in Figure 2-3 (a). Furthermore, assuming B as the breaking/turning point of 

segments AB and BC, the missing point B result in an incorrect segment AC, which may 

not exist in the road network, as shown in Figure 2-3 (b). ArcGIS editing tools are 

employed to correct these small errors. 
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(a)                                                                 (b) 

Figure 2-3: Two types of GPS data snapping errors 

 

Due to limitations in the data, explained later, traces were filtered based on: each 

responded bicyclist must have a valid user ID, and each selected trace must be unique for 

a user. Moreover, “dirty” traces, rounding tours, and multimodal trips were eliminated 

from the sample. For traces crossing the city boundaries, only the portion inside Seattle 

was kept. The filtering procedures result in a sample consisting of 544 traces, as 

presented in Figure 2-4. 
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Figure 2-4: Snapped bicycle routes 
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2.4.3 Principal component analysis for cost function generation 

Principal component analysis is a commonly used multivariate method to identify 

the underlying structure of a set of variables by considering the correlations among 

variables. In this study, the intention of using principal component analysis lies in its 

capability of combining multiple variables by extracting the data (Jolliffe 2002). In other 

words, a principal component analysis replaces original variables by creating a set of new 

orthogonal variables through linear combination (Abdi and Williams 2010), and provides 

a procedure for generating cost functions for bicycle route choice. The principal 

component analyses are employed to explore the factor compositions within the built 

environment features and develop composite cost functions in this study.  

A commonly observed challenge in developing cost function for route choice is 

that many qualitative factors are measured as ordered categorical variables. Ordered 

categorical variables do not have variations for a given category, such as a particular type 

of bike facility. If two alternative segments have the same type of bike facility, their costs 

cannot be differentiated using this categorical variable alone. As a solution, principal 

component analysis can integrate the ordinal variables with continuous variables through 

linear combination to differentiate the costs21 of such road segments.  

A composite cost function can be defined by combining multiple variables, and a 

label can be assigned to this cost function. The principal component analysis involves 

three steps in this study: (1) identifying the primary factors, (2) choosing the added 

factors, and (3) defining the cost functions and labeling the routes.  

                                                           
21 Transportation cost refers to the sum of costs that a passenger pays to reach a destination, such as 

monetary cost, time cost, and physical effort cost. A cost function is a curve expressing this sum. 
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In the first step, two safety-related factors are selected as primary factors for the 

principal component analyses based on previous literature. Safety is a key concern in 

bicycle route choice (Hunt and Abraham 2007, Winters et al. 2011a, Winters et al. 

2011b, Ehrgott et al. 2012, Teschke et al. 2012), which is measured by posted speed 

limits and bicycle facility types in this study. Bicycle facility types have four levels and 

are recorded on an ordered categorical scale, which include cycle tracks22, bicycle 

lanes23, bicycle boulevards24, and arterial routes. The posted speed limits were divided 

into six levels, including 0, 20, 25, 30, 35 and 40 mph. Traffic volume and the number of 

lanes are the two other possible factors to quantity road safety. They are excluded from 

this study due to the lack of required data on local streets. The built environment features 

are measured in the unit of road segment and standardized25 for the principal component 

analyses.  

Second, following the idea of labeling route approach, the two safety-related 

primary factors are integrated with the ten added factors accordingly using principal 

component analyses, as shown in Tables 2-1 and 2-2. Among the composite principal 

                                                           
22 Cycle track is a type of separated route dedicated to bicycling and walking. A cycle track is commonly 

placed next to a major street, but separated by a curb, a hedge or other physical barriers. 

23 Bike lane is an element of the paved arterial marked with painted lines. Bike lanes are designated 

exclusively for cyclists, but parallel with drive lane and street parking. In Washington State, the bike lane 

has three types, including protected bike lanes, buffered bike lanes, and conventional bike lanes. 

24 Bike boulevard is signed as being a bike route in low volume local streets, and may have traffic circles or 

speed bumps at intersections. Bicyclists use the same lanes with motorists when bicycling in bike 

boulevard. 

25 Standardization is to rescale the factors into a range of 0 to 1 by  

X’=(X - min(X))/ range(X) 

Where X’ is the standardize value, X is the reported value, min(X) is the minimum X, and range(X) is the 

difference between the maximum X and minimum X. 
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component functions, the route label is assigned to the factor with the greater loading. 

More factors have been considered in this study, but excluded for multicollinearities, 

such as road signals, crosswalks, and stop signs. Traffic circles26, parking signs, and bus 

stops are excluded for generating cost functions of unrealistic alternatives. Table 2-1 

presents the ten added factors that are selected. 

 

                                                           
26 The traffic circle contains raised concrete circles centered at local street intersections, and is designed to 

calm down vehicles as they enter a neighborhood. 
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Table 2-1: Two primary factors and ten added factors for principal component analyses 

Primary factors Unit 

  1. Bicycle facility 

types  

Cycle track (0), separated/buffered/conventional bike lane 

(1), bike boulevard (2), and arterial route (3). 

  2. Speed limit  Mph 

Added factors  

  1. Segment length  Miles; 

  2. Segment slope  Degrees; 

  3. Floor area ratio27 Average floor area ratio per mile in 500-feet buffers; 

  4. City features Number of city features per mile in 500-feet buffers, 

including churches, community centers, libraries, art centers, 

play grounds, schools, and theatres; 

  5. Water and parks Percentage of water and parks per mile in 500-feet buffers, 

including rivers, lakes, seas, wetlands, and parks; 

  6. Street lights Number of street lights per mile in 50 feet buffers; 

  7. Land use mixture28  Land use mix entropy along each segment, measured in 500-

feet buffers; 

  8. Street trees  Number of street trees per mile in 50 feet buffers; 

  9. Road intersections  Number of intersections per mile;  

  10. Green space and 

residential lands 

Percentage of residential lands and green spaces in 500-feet 

buffers. 

 

 

                                                           
27 FAR short for Floor Area Ratio is calculated by the total area of a building divided by the area of the lot.  

28 LUM short for Land Use Mixture, reflects the level of integration within a given area of different types 

of land uses, which may include residential, office, commercial, water and parks, and public space. Land 

use mixture is measured by an entropy index, expressed as: 

Land use mixture= -∑(Pi * ln Pi )/ln n 

Where n is the number of different land use types, and Pi is the proportion of land in type i. The resulting 

variable land use mixture is an entropy index, which varies from 0 (homogeneous land use) to 1 (most 

mixed) land use. 
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The third step is to implement the ten three-variable principal component 

analyses29, which eventually result in the eleven cost functions, displayed in Table 2-2. 

The fifth column in Table 2-2 presents the variance proportion of the selected principal 

components.  

The first principal component in each of the ten principal component analyses is 

explained primarily by the safety-related primary factors, i.e. bike facility types and 

posted speed limits, and their weights are similar in each case. Therefore, this study only 

selects one out of the ten first principal components (PC1) to represent the cost function 

determined mainly by bicycle facility types and posted speed limits, plus a third factor, 

for example segment length (as shown in the first row listed in Table 2-2). The ten 

second principal components (PC2) are mostly explained by the added factors. Therefore, 

ten additional cost functions are established, each consists of an added factor and one or 

two contributing primary factors. These ten additional cost functions are shown from the 

2nd row to the 11th row in Table 2-2).  

The coefficients of each function are generated by the ten principal component 

analyses. For example, the quantification of the first cost function listed in Table 2-2 is 

expressed by 

PC1segment =0.697*Speed Limits + 0.695*Bike Facility Types - 0.178*Segment Length 

Similarly, the quantification of the second cost function listed in Table 2-2 is 

expressed by  

                                                           
29 These analyses produce similar weights in the 10 3-variable principal component analyses, of 53%, of 

33%, and of 14%, in the three principal components. Any of the first two principal components in the 10 

principal component analyses explain 86% of the variances. 
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PC2segment =0.111*Speed Limits + 0.140*Bike Facility Types + 0.984*Segment Length 

 

Table 2-2: Eleven cost functions generated from principal component analyses (PCAs) 

Route alternative 

labels 

Weight of primary 

factors 

Weight of 

added factor 

Variance 

explained by PC1 

or PC2 in ten 

PCAs 

Speed limit Bike 

facility 

type 

1. Max. prioritized 

bicycle facilities 

(minimize speed limits 

simultaneously with 

segment length as 

added factor) 

0.697 0.695 -0.178 

 

53.72% (PC1) 

2. Min. trip distance 0.111 0.140 0.984 32.70% (PC2) 

3. Min. trip slopes -0.140  0.990 33.30% (PC2) 

4. Min. floor area ratio   0.998 33.39% (PC2) 

5. Max. city features   0.999 33.35% (PC2) 

6. Max. water and 

parks 

0.165 0.188 0.968 31.98% (PC2) 

7. Max. street lights  -0.243 0.970 33.27% (PC2) 

8. Max. land use 

mixture 

 -0.155 0.988 33.32% (PC2) 

9. Max. street trees   0.993 33.60% (PC2) 

10. Min. road 

intersections 

  0.998 33.25% (PC2) 

11. Max. residential 

lands and green spaces 

 0.121 0.993 33.34% (PC2) 

     

Note: PC1, the first principal components; PC2, the second principal components. 
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2.4.4 Route choice set generation 

A choice set consists of selected routes and a set of sensible route alternatives. 

The number of route alternatives for an OD pair can be unmanageable given a dense 

urban street network. The labeling route (deterministic) generation is preferred to obtain a 

route choice set of a reasonable size.  

Based on the spatial overlay, the selected alternatives are defined by the 

alternatives overlapped the most with the GPS-tracked routes, while the remained 

candidate routes are included for comparison in the final model. Yet, challenges occur 

when overlapped road segments in two or more route alternatives are identical. In total, 

15 out of 544 OD pairs have two or more identical alternative routes. These 15 OD pairs 

are therefore removed for offering limited or no insights to differentiate the features 

correlated with bicycle routes. Route alternatives with no overlap of the GPS-tracked 

routes are not observed in the sample.  

In the process of generating route alternatives, the methods to minimize and 

maximize costs are slightly different. Some functions are directly employed to minimize 

the costs of road segments, such as the route labeled by minimizing intersection density. 

However, some functions are reversed when maximizing their costs.  
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Figure 2-5: Percentages of labeled route alternatives in the defined choice set (n=525) 

Figure 2-5 shows the percent of each selected route alternative in the choice set. 

The alternative maximizing prioritized bicycle facilities takes the greatest share (28.57%) 

regarding the degrees of overlapping with the GPS-tracked routes. The alternative 

minimizing trip distance denotes 19.62% in the selected routes. These two labeled route 

alternatives nearly take a half of the defined choices.  

2.4.5 Variable selection 

The spatial overlay function in ArcGIS is used to identify the road segment-based 

built environment features. The built environment features were measured at the segment 

level, but are aggregated to the trip level in the final model. Floor area ratio, land use 

mixture, city feature density, and percentage of waters and parks in 500-feet buffers 
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surrounding the road segments are included in the final model. As specified in Table 2-3, 

the road network factors included are the densities of street trees, intersections, street 

lights, and average posted speed limit.  

Several individual-specific factors were considered in the model such as age, 

gender, bicycling frequency, bicycling speed, and distance to the closest bicycle facilities 

from origins and destinations. These factors were eliminated from the model because 

they did not show a statistically significant impact. Hence, the individual-specific 

information cannot be used to conclusively explain bicyclists’ route preferences.  The trip 

purpose reported from the “CycleTracks” application was not considered reliable given 

that the data were self-reported with a high likelihood of reporting the wrong trip 

purpose. The app-users can slide the phone screen, and select one out of eight trip 

purposes. However, app-users could easily report wrong trip purposes, and there is no 

incentive to correct any wrong inputs. Many app-users actually reported similar routes for 

different trip purposes. 

2.4.6 Path size logit model  

The path size logit model is chosen to examine the correlation between the built 

environment and bicyclists’ route preferences. The path size logit model has become 

increasingly popular for route choice studies for its advantage in accounting for spatial 

similarity. The probability function of a path size logit model is expressed by Equation 2-

1:   
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 𝑃𝑘 =
𝑒𝑥𝑝(𝑉𝐾+𝛽𝑃𝑆∗𝑙𝑛𝑃𝑆𝑘)

∑𝑒𝑥𝑝(𝑉𝑙+𝛽𝑃𝑆∗𝑙𝑛𝑃𝑆𝑙)
                                                                               Equation 2-1 

Where 𝑃𝑆𝑘 and 𝑃𝑆𝑙 are the path size of routes k and l, 𝛽𝑃𝑆 is the estimated parameter. 𝑃𝑘 

is the probability of alternative route k being chosen. 𝑉𝑘 and 𝑉𝑙 are the utilities of routes k 

and l respectively. The total utility of choosing alternative route k is equal to the utility of 

k’s fixed covariates 𝑉𝑘, and the utility resulting from the correlations among alternatives, 

which is explained by log (path size). 

Equation 2-2 shows how to calculate the path size of route k. Path size describes 

the proportion of a route overlapping with other route alternatives, which is depending on 

the overlapping frequency across route alternatives. The path size of a unique route is 

equivalent to 1, while the path size of n replicated routes is 1/n (Ben-Akiva and Bierlaire 

1999, Bovy 2009, Prato 2009). 

𝑃𝑆𝑘 = ∑
𝐿𝛼

𝐿𝑘

1

∑𝛿𝛼𝑙
                                                                                           Equation 2-2 

Where 𝐿𝛼 is the length of overlapped segments; 𝐿𝑘 is the length of the whole route; ∑𝛿𝛼𝑙 

refers to the occurrences that one road segment of a route is overlapped with the other 

candidate routes. Path size ranges from 0 to 1. This path size logit model is simulated 

with R program using “mlogit” package (Croissant 2012). The elasticities of this path 

size logit (multinomial logit) model are computed by Eq. 2-3: 

𝐸 = 𝛽(1 − 𝑃) ∗ 𝑋̅                                                                                      Equation 2-3 

2.5 Descriptive analysis  

Table 2-3 displays the descriptive statistics of selected variables of the eleven 

route alternatives. The age of responding bicyclists ranges from 20 to 61, of which 



44 
 

72.00% are males. The mean bicycling frequency30 is 3.23, suggesting that most 

respondents bicycled daily or several times each week. The average bicycling time is 31. 

89 minutes (more than a half hour). Therefore, the respondents are more experienced 

bicyclists. 

The mean length of generated alternatives is 5.33 miles, 0.57 miles longer than 

the average distance of GPS-tracked routes, which was 4.76 miles. The longest GPS-

tracked route is 22.67 miles, while its longest generated alternative route is 22.65 miles.  

The average floor area ratio and land use mixture are, respectively, 1.46 and 0.28 

in the sample, greater than the city mean of 1.29 and 0.22 correspondingly. Therefore, 

bicycling is more popular in densely developed areas. The average posted speed limit on 

these routes is 18.30 mph. The path size ranges from 9.00% to 100.00% in the sample. 

                                                           
30 Bicycling frequency in this study are coded as "daily"(4), "several times per week"(3), "several times per 

month"(2), and "less than once a month"(1). 
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Table 2-3: Variable dictionary and data summary (n=525) 

Variable Mean S.D. Min. Max. Description 

Trip 

distance 

5.33 3.57 0.51 22.65 Distance of generated alternatives, miles; 

Speed limit 18.30 7.75 0.00 36.40 Average driving speed limit, mph; 

Slope  2.57 1.26 0.05 7.55 Average slope, in percent; 

Land use 

mixture 

0.28 0.09 0.03 0.58 Land use mixt entropy, ranging from 0 to 

1; 

Floor area 

ratio 

1.46 0.71 0.17 7.09 Average floor area ratio; 

City feature 

density 

11.89 8.20 0.00 62.45 Number of city features per mile, 

including churches, community centers, 

environment education places, libraries, 

art centers, play grounds, schools, and 

theatres; 

Proportion 

of waters & 

parks 

0.09 0.07 0.00 0.53 Percentage of water or public parks in 

500-feet buffers, including rivers, lakes, 

seas, wetlands and parks; 

Bus stop 

density 

4.09 3.12 0.00 27.74 Number of bus stops per mile in 50 feet 

buffers; 

Prioritized 

bike lane 

0.51 0.27 0.00 1.00 Proportion of cycle tracks and bike lanes 

of each route alternative 

Bike 

boulevard 

0.23 0.22 0.00 1.00 Proportion of bike boulevard of each 

route alternative 

Light 

density 

60.99 23.66 10.10 340.62 Number of street lights per mile in 50 feet 

buffers; 

Tree density 87.47 71.07 0.00 1047.02 Number of street trees per mile in 50 feet 

buffers; 

Path size 0.45 0.25 0.09 1.00 A ratio of spatial similarity; 

Log (path 

size) 

-0.97 0.59 -2.40 0.00 The log of path size; 

Age 39.01 9.18 20.00 61.00 Age; 

Gender 0.72 0.45 0.00 1.00 Gender: female (0), male (1); 

Bicycling 

frequency 

3.23 0.81 1.00 4.00 Frequency: "daily"(4), "several times per 

week"(3), "several times per month"(2), 

and "less than once a month"(1); 

Travel time 31.89 19.95 4.35 124.97 Bicycling time per trip, minutes. 

Variables marked in “Italic” are excluded from the final model. 
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Table 2-4: Modeling outcome of path size logit for eleven route alternatives (n=525) 

 Convenience Safety  Leisure 

Variable 
Min. trip 

distance 

Min. 

intersection 

Min. 

slope 

Max. 

prioritized 

bicycle 

facility 

Max. 

street 

lights 

Max. 

LUM 

Max. 

waters & 

parks 

Max. 

trees 

Min. 

FAR 

Max. 

residential 

lands & 

green 

spaces 

Max. city 

features 

Trip 

distance 
-0.31*** -0.48*** -0.47*** -0.45*** -0.84*** -0.37*** -0.57*** -0.62*** -0.29** -0.33*** -0.39* 

Speed limit 0.03 -0.07 -0.04 0.00 0.07 0.04 0.04 -0.10*** 0.00 0.00 -0.16* 

Slope -0.77** -0.29 -0.46 -0.96*** -0.91** -1.05*** -1.19*** -0.66*** 0.18 -0.72*** -0.46 

LUM -3.36 0.95 2.04 6.38* 5.18 -4.71 1.67 -1.23 1.20 -0.78 2.52 

FAR -1.68** -1.13* -0.19 -1.40* -0.73* -0.37 -1.37* 0.07 -1.16 -0.49 -1.00 

City feature 

density 
0.06 -0.02 -0.03 -0.02 0.00 0.00 -0.01 -0.06 -0.04 -0.05 -0.02 

Proportion 

of waters & 

parks 

-12.6* -0.80 2.62 4.39 8.45 -6.19 -0.02 9.07** -5.78 3.34 -8.00 

Prioritized 

bike lane 
4.00** 1.13 2.13 3.98** 3.73* 5.44*** 3.99*** 1.02 0.45 1.52 7.11** 

Bike 

boulevard 
2.22 0.85 2.63 -0.53 2.98 2.16 -0.68 0.59 -0.21 -1.35 1.07 

Light 

density 
0.00 0.00 0.01 0.02 -0.02 -0.01 0.01 0.06*** 0.00 0.00 -0.01 

Tree density 0.00 0.01* -0.01 0.01 0.00 0.01 0.01 0.00 -0.01 0.02** 0.04*** 

Log(path 

size) 
0.08 -0.11 0.96 2.56*** 3.28* 1.16** 0.53 1.19** 0.42 0.01 2.74** 

Indicated by estimates with level of significance (*<0.05, **<0.01, ***<0.001) 

Model fit Log-likelihood: -882.12 
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Table 2-5: Calculated elasticities 

 Convenience Safety Leisure 

Variable 

Min. 

trip 

distance 

Min. 

intersection 

Min. 

slope 

Max. 

prioritized 

bicycle 

facility 

Max. 

street 

lights 

Max. 

LUM 

Max. 

waters 

& parks 

Max. 

trees 

Min. 

FAR 

Max. 

residential 

lands & 

green 

spaces 

Max. city 

features 

Trip distance -1.18 -2.34 -2.33 -1.93 -4.20 -1.85 -2.94 -3.12 -1.49 -1.65 -1.96 

Speed limit                     -2.76 

Slope -1.41     -1.98 -2.20 -2.53 -2.96 -1.60   -1.74   

LUM       1.44               

FAR -1.75 -1.51   -1.64 -1.00   -1.94         

City feature density                       

Proportion of waters & 

parks 
-0.81 

            
0.77 

      

Bus stop density                       

Prioritized bike lane 1.46     1.63 1.79 2.60 1.97       3.42 

Bike boulevard                       

Light density               3.45       

Tree density   0.80               1.64 3.30 
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2.6 Inferential analysis  

To summarize, this research suggests the importance of maximizing convenience, safety, 

and leisure in bicycle routing. Firstly, alternatives labeled as maximizing riding in prioritized 

bike facilities and minimizing trip distance account for 28.52% and 19.70% of all the selected 

routes, which aligns with the general expectation. Additionally, the most important features 

affecting bicyclists’ route choices are trip distance, slope, floor area ratio, the proportion of 

riding in prioritized bicycle facilities, and street tree density.  

In particular, most bicyclists prefer short, flat, and prioritized bicycle facilities (defined as 

cycle tracks and bike lanes in this study). Some bicyclists favor routes with low speed limits, and 

routes with street lights and street trees. In terms of land use features, some bicyclists prefer 

routes surrounded by low floor area ratio, near waters and parks, or mixed land use. Other 

factors, including the densities of bus stops and city features, and the proportion of riding in bike 

boulevards, do not explain bicyclists’ route preferences. The above results of the path size logit 

model are presented in Table 2-4. 

To account for the statistical concern of IIA (independence of irrelevant alternatives) 

issue among route alternatives, the log (path size) is included in the final model. As shown in the 

results, the estimates of the log (path size) are significant for the route alternatives labeled by 

maximizing riding in prioritized bicycle facilities, maximizing city features, maximizing street 

lights, maximizing street trees, and maximizing land use mixture. These results suggest that these 

five created route alternatives are spatially overlapped. In other words, a great proportion of the 

five route alternatives is made of the same road segments.   
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To further interpret the results, the following sections split the eleven route alternatives 

by the assumed threefold-objective, namely convenience, safety, and leisure. The categories are 

as follows. (1) Route alternatives mainly considering convenience include minimizing trip 

distance, minimizing intersections, and minimizing slopes. (2) Route alternatives focusing more 

on safety are maximizing riding in prioritized bicycle facilities, maximizing street lights, and 

maximizing land use mixture. (3) Route alternatives primarily interested in accommodating 

bicyclists’ leisure are minimizing floor area ratio, maximizing residential lands and green spaces, 

maximizing waters and parks nearby, maximizing street trees, and maximizing city features. It is 

worth noting that some alternatives could be assigned to either objective, for example, bicyclists 

spend fewer efforts biking in flat routes, but the alternative may also be attributed to flat routes 

being safer to biking. However, another classification will not alter the essential interpretation.  

Table 2-5 presents the elasticities calculated for the significant variables. The elasticity 

indicates the probability change of one route alternative resulting from one percent change of an 

independent variable. Because all the independent variables are continuous measures, the 

elasticities in this study are calculated using the equation of direct elasticity for the multinomial 

logit model, as shown in Eq. 2-3. 

2.6.1 Route alternatives considering convenience 

Among the three route alternatives considering convenience, the alternative labeled by 

minimizing trip distance is the most important one because it has more significant fixed effects 

and riders most frequently select this route among the three. The probability of selecting this 

alternative is negatively correlated with trip distance, slope, floor area ratio, and the proportion 

of waters and parks nearby, but is positively associated with the proportion of riding in 

prioritized bicycle facilities. For this alternative, trip distance, slope, and prioritized bicycle 
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facilities have elasticities of the smallest magnitudes. A 1.00% increase in these measures is 

correlated with -1.18%, -1.41%, and 1.46% changes in the probabilities of choosing this 

alternative respectively. It suggests that choosing this alternative is most inelastic to changes of 

the significant fixed effects. In addition, choosing this alternative is negatively correlated with 

the proportion of waters and parks nearby. A possible explanation is that shortcuts are less likely 

to be close to waters and parks with Seattle’s topography.  

Compared to the dominant convenience alternative, the alternative labeled by minimizing 

slopes does not an add explanation to bicyclists’ route preferences. On the other hand, the 

alternative labeled by minimizing intersections has consistent trip distance and floor area ratio 

effects with the dominant convenience alternative. It is worth noticing that street tree density is 

positively correlated with choosing this alternative.   

2.6.2 Route alternatives considering safety 

The three safety-focused route alternatives show largely consistent fixed effects, and 

spatially overlap regarding the results of the log (path size). As a result, any one of these 

alternatives is representative for the other two.  

For the alternative labeled by maximizing riding in prioritized bicycle facilities, trip 

distance, slope, and prioritized bicycle facilities have greater elasticities than those of the 

alternative labeled by minimizing trip distance. A 1.00% increase in these measures is correlated 

with -1.93%, -1.98%, and 1.63% changes in the probabilities of choosing this alternative 

accordingly. These findings verify that if you build good bicycle facilities (short, flat, and 

separated), people will use them. In addition, a 1.00% increase in land use mixture is correlated 

with 1.44% increase of choosing this route.   
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The alternative labeled by maximizing street lights is the most elastic (-4.20) to the 

change of trip distance, indicating that long distance trips are much less likely to be on routes 

defined by maximizing street lights. Also, this alternative is the most inelastic (-1.00) to the 

change of floor area ratio. Perhaps buildings provide lighting in densely developed areas rather 

than street lights.  

2.6.3 Route alternatives considering leisure 

While the fixed effects are similar to the previous alternatives considering safety, the 

alternative labeled by maximizing waters and parks nearby has shown greater elasticities. For 

example, a 1.00% increase of trip distance is associated with a 2.94% decrease of choosing this 

alternative, which is the second largest across the elasticities of the significant fixed effects. 

Also, a 1.00% increase of floor area ratio is correlated with a 1.97% decrease of choosing this 

alternative.  

The alternative labeled by minimizing floor area ratio does not provide additional 

explanation to bicyclists’ route preferences. The other three route alternatives considering 

leisure, including maximizing residential lands and green spaces, maximizing city features, and 

maximizing street trees, all indicate consistent relationships with the core measurements of 

bicycle route choice (trip distance, slope, and proportion of riding in prioritized bicycle 

facilities). It is worth noting that street tree density is positively correlated with probabilities of 

choosing the routes labeled by maximizing residential lands and green spaces, and maximizing 

city features. In particular, a 1.00% increase of street tree density is associated with a 1.64% and 

3.30% increment in the probabilities of choosing these two routes, respectively. Other findings 

include that a 1.00% increase in the proportion of waters and parks nearby is correlated with a 
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0.77% increment and a 1.00% increase of street light density is associated with a 3.45% 

increment of choosing the route labeled by maximizing street trees accordingly.  

2.7 Conclusions and limitations 

The study presented in this chapter provides insights on the relationship between 

bicyclists’ route preferences and the built environment, which fills the gap in the traditional four-

step models that has commonly ignored bicycle route choice. This smartphone-recorded GPS 

data offer evidence of how bicyclists choose preferred routes in urban settings. The results 

suggest that a GPS data-based bicycle route choice model can be integrated into a travel demand 

forecasting model, and can be used to assist bicycle planning.  

In a nutshell, this study identifies five factors as the core contributing elements of a 

convenient, safe, and comfortable bicycling environment: trip length, slope, floor area ratio, 

prioritized bicycle facilities, and trees. It is worth noting that the significance of posted speed 

limit is largely undermined by its multicollinearity with prioritized bicycle facilities. 

Additionally, some bicyclists prefer routes surrounded by mixed land use, or near waters and 

parks. 

Based on the above findings, local authorities should build more separated bicycle 

facilities with shortcuts and flat routes to promote bicycling. This conclusion is consistent with 

Menghini et al.’s research (2010). Another policy implication is that local authorities should 

isolate bicycle routes from vehicle traffic, place new routes in areas with relatively low floor area 

ratio, and plant street trees. Moreover, local authorities should encourage mixed land use and 

improve street lighting conditions of the existing bicycle facilities. In addition, low posted speed 

limits should be encouraged when mixing with bicycle traffic, which is again largely consistent 

with previous research (Broach et al. 2012). However, there are also tradeoffs between bicyclist 
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and motorists as the latter may be displeased with speed reduction because of their decreased 

utility for driving. Hence, adding cycle tracks and separated or buffered bike lanes could be a 

better solution than simply lowering posted speed limits.  

Several limitations are noted in this research. First, traffic volume and the number of 

lanes are only available on Seattle’s arterials and highways. Otherwise, more safety-related 

indicators could be accounted for cost functions and possibly creating a greater route choice set 

that captures the observed bicycle route features. Second, the smartphone GPS data over-

represent experienced bicyclists’ behaviors, which may not be completely representative for 

regular bicyclists. Third, smartphone GPS data have many small errors. Thus, further quality 

enhancements of smartphone gathered GPS data are required for future research. Fourth, the 

aggregation from the segment level to the trip level raises the issue of “regression towards the 

mean”. More disaggregate analyses for route choice are expected. 

To enrich future research, the joint use of different transportation modes should be 

considered, such as bicycling integrated with riding public transit. Such integration is under-

investigated in the existing research, possibly due to restrictions in gathering valid data. Building 

more attractive bicycling environments needs integration of bicycles and transits.   
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Chapter 3. Built environment features in explaining automobile-involved 

bicycle crash frequencies and risks 

 

Abstract 

The objective of this study is to examine the relationship between built environment features and 

automobile-involved bicycle crash frequencies versus risks. The method employed is the 

Poisson-Lognormal random effects model using hierarchal Bayesian estimation. The City of 

Seattle is selected for empirical analysis. The traffic analysis zone, short for TAZ, is selected as 

the unit of analysis to quantify the built environment features. The assembled dataset provides a 

large set of variables, including factors of road network and design, land use, and travel demand. 

The research questions are twofold: how are the built environment features associated with 

bicycle crash frequencies and risks, and are the TAZ-based bicycle crash frequencies versus risks 

spatially correlated? The findings of this study are: (1) safety improvements should focus on 

places with more mixed land use, and greater proportions of commercial lands; (2) off-arterial 

bicycle routes are safer than on-arterial bicycle routes; (3) TAZs with more road signals are 

likely to have more bicycle crashes and greater risks; (4) TAZs with more total trips have more 

bicycle crash frequencies, but less bicycle crash risks; and (5) compact urban environment has 

lower bicycle crash risks. For policy implications, the results suggest that the local authorities 

should lower the posted speed limits, encourage compact development, and separate bicycle 

lanes from road traffic.  
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3.1 Introduction 

Regular cycling activity generates physical and mental benefits, such as losing weight, 

reducing stress, and improving fitness (Clark et al. 1998). An increase in the number of bicyclists 

can reduce car dependence, demand for parking spaces, energy consumption, road congestion, 

and traffic-related air-pollution.  

Regarding the bicycling status in the US, increased popularity of cycling was observed as 

the number of bicycle trips doubled from 1.7 billion in 2001 to 4.0 billion in 2009 (bikeleague, 

U.S. Department of Transportation 2009). However, the percentage of bicyclist fatalities steadily 

increased from 1.50% in 2003 to 2.20% in 2012 (The National Highway Traffic Safety 

Administration 2013). Bicyclists are more vulnerable road users than motorists (Wegman et al. 

2012, Wei and Lovegrove 2012). Most of US bicyclists inevitably rode close to automobiles on 

the roads, and plenty of bicyclists were killed by cars though they were wearing helmets. Though 

the number of bicyclists is increasing, overall the bicycle volume remains low in the US. Only 

0.50% commuters rode bicycles in 2013 (American Association of State Highway and 

Transportation Officials and US Departmemt of Transportation 2013).  

In the US, more research on the relationship between cycling safety and the built 

environment is needed. Firstly, in explaining the causes of bicycle crashes, prior studies 

weighted motorist and bicyclist-related factors as important elements, such as helmet use 

(Attewell et al. 2001, Walker 2007). Most of those studies were conducted at the micro-level 

focusing on individual bicyclists. However, bicyclists in Europe are not required to wear helmets 

and the bicycle crash risk is lower than that in the US (Teschke et al. 2012). Certain built 

environment features can explain the causes of bicycle collisions beyond motorist and bicyclist-

related factors. The macro area-based studies, which highlighted the effects of the built 

environment features, were greatly underestimated and insufficiently investigated (Siddiqui et al. 
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2012). Secondly, among the bicycle safety studies having connections with the built 

environment, many of them worked on bicycle facility types (Harris et al. 2011, Chen et al. 

2012, Teschke et al. 2012), while relatively less effort has been placed on area-wide land use 

features. Thirdly, research findings from other countries with compact development may not be 

applicable to the US. US cities are characterized as low density land use pattern, high degrees of 

motorization, and low bicycle volume. Therefore, the cycling environment features vary 

significantly between the European and US cities. Fourthly, studies on the motorist and bicyclist-

related factors provide insights for education programs and policy enforcement to reshape 

driving and cycling behaviors. Research on built environment features contributes to lowering 

bicycle collision risks through engineering modifications in the road environment. Findings from 

these two types of research are mutually supportive.  

The research objectives of this study are twofold: (1) to explore the effects of the built 

environment features on bicycle crash frequencies and bicycle crash risks at the TAZ level; (2) to 

account for the unobserved heterogeneity and spatial dependence among TAZs by modeling two 

random effects employing the Poisson-Lognormal models. The remainder of this chapter is 

organized into four sections, starting with a review of the literature, followed by the description 

of data sources and geo-spatial unit selection, the descriptive and inferential analyses, and ending 

with a discussion, limitations, and conclusions.  

3.2 Literature review 

3.2.1 Key definitions 

In this study, a bicycle crash is defined as a collision between a bicycle and an 

automobile. The crash frequency, also known as the incidence, is the number of collisions at a 

certain location or area per unit time. The incidence rate, also known as the risk, is commonly 

calculated by the number of crashes reported per 1,000 trips, 1,000 hours or 1 kilometer of 
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exposures (de Geus et al. 2012). In this study, the bicycle crash risk is calculated as the number 

of crashes divided by the corresponding TAZ-counted number of bicycle trips. However, many 

risk factors are not quantifiable, but are explained by surrogate measures. In this study, cycling 

risk is explained using factors associated with the built environment features, motorist, and 

bicyclist. Risks can result in travel resistances such as perceptions in non-safe environments 

(Schepers et al. 2013).  

3.2.2 The theory of safety in numbers 

“Safety in numbers” is a commonly cited theory as a policy reference to improve bicycle 

mode share and to support a bicycle plan. According to this theory, there is a non-linear 

relationship between the number of bicycle crashes and bicycle volume. This theory was 

developed based on an international comparison study between the European and US cities 

(Jacobsen 2003, Elvik 2009). Under the framework of this theory, as more bicyclists use the 

roads, motorists become more aware of their existence and slow down to avoid potential 

conflicts; and the expectations are that the bicycling environment would be even safer. Bhatia 

and Wier questioned the applicability of this theory in the US (Bhatia and Wier 2011). Blindly 

encouraging bicycling by simply inferring the “safety in numbers” theory can mislead and 

diminish the attention on potential environmental hazards. In addition, local authorities must 

evaluate the adaptability and capability of the built environment features in supporting bicycle 

programs. Till the relationships between the built environment and bicycle crash frequencies 

versus risks are identified, it is premature to justify the causal inference of the “safety in 

numbers” theory.  

https://www.google.com/search?es_sm=93&q=applicability&spell=1&sa=X&ei=Id2kVMqUA8zToASJ8oL4Cg&ved=0CBwQBSgA
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3.2.3 Relationships between built environment features and bicycle crash frequency 

A large number of studies have investigated the relationships between built environment 

features and bicycle crash frequencies. For the lack of appropriate denominators, bicycle crash 

risk has barely been examined.  

The unit of analysis in prior bicycle crash frequency research varies extensively, such as 

traffic analysis zones (Siddiqui et al. 2012, Wei and Lovegrove 2012), census tracts 

(Narayanamoorthy et al. 2013), grid-based structures (Gladhill and Monsere 2012), and locations 

(Wang and Nihan 2004, Schepers et al. 2011, Zahabi et al. 2011, Strauss et al. 2013, 

Vandenbulcke et al. 2014). Besides, prior research has considered a large set of explanatory 

variables to investigate the bicycle crash frequency in connection with the built environment 

features, which include the factors of road network and land use. In addition, factors of travel 

demand are also included.  

Regarding road network features, the densities of intersections, roadways, and bicycle 

lanes have been included for modeling. Among different types of intersections, positive 

associations between intersection density and bicycle crash frequency are confirmed (Siddiqui et 

al. 2012, Wei and Lovegrove 2012, Strauss et al. 2013). In addition, complex intersections 

increase the probability of involving bicycle collisions (Vandenbulcke et al. 2014). As for the 

effects of roadway density, more drive lanes and bicycle lanes are positively associated with the 

number of bicycle crashes (Wei and Lovegrove 2012). Of different types of bicycle facilities, 

off-road bicycle lanes are safer than on-road bicycle lanes (Reynolds et al. 2009, Teschke et al. 

2012, Hamann and Peek-Asa 2013), and the installation of bicycle lanes does not lead to 

additional crashes, but a possible increase in the number of bicyclists (Chen et al. 2012). 

Sakshaug et al. (2010) found that adding roundabouts produced more bicycle conflicts as the 

yielding rules were ambiguous in roundabout areas, contributing to a lower yielding rate and less 
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trust among road users. By differentiating roundabouts at different locations, Daniels et al. found 

that roundabouts with cycle lanes performed worse than roundabouts in mixed traffic and 

separated cycle paths (Daniels et al. 2009).  

In terms of street elements, bus stop density is positively associated with bicycle crash 

frequencies (Miranda-Moreno et al. 2011b, Wei and Lovegrove 2012, Strauss et al. 2013). 

Among current studies, street lighting has only been included for modeling bicycle injury 

severity (Klop and Khattak 1999, Kim et al. 2007), but is rarely considered for bicycle crash 

frequency. Most cities do not have accurately geo-coded street light data. Also, aggregating the 

lighting condition of individual crashes to areas is not reasonable.  

Parking entrances do not appear to have a significant relationship with bicycle crash 

frequency (Miranda-Moreno et al. 2011b), but parked automobiles near separated bicycle 

facilities are associated with an increased crash risk because bike lanes and parking areas are 

placed together (Vandenbulcke et al. 2014).  These findings are hypothesized to be related to 

three things: (1) when passing through entrances to parking lots, drivers focus on pedestrians and 

bicyclists passing across the entrance to avoid a collision. (2) Urban roadway mileage has a 

greater proportion of street parking relative to parking entrances, therefore the likelihood of 

bicycle crashes occurring at parking entrances when compared to lots is relatively low. (3) 

Bicyclists are also more likely to be in drivers’ blind spots. Because drivers are less likely to see 

the bicyclists, they are therefore more likely to hit them when backing, starting, or opening 

doors.  However, there are no observed studies on this and further research will be needed to 

validate these hypotheses.  

Among travel demand variables, vehicle volume (Schepers et al. 2011, Hamann and 

Peek-Asa 2013) and bicycle volume (Miranda-Moreno et al. 2011b, Schepers et al. 2011, 

Hamann and Peek-Asa 2013, Strauss et al. 2013) have been considered and all the models 
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suggest positive associations with the frequency of bicycle crashes. As for road design variables, 

a higher density of low-speed streets (< 15 mph) is negatively associated with the number of 

bicycle crashes (Siddiqui et al. 2012), while more roads with high-speed limits (> 35 mph) 

correlate with more bicycle crashes (Siddiqui et al. 2012, Chen and Fuller 2014). Additionally, 

the traffic signal density is positively correlated with the bicycle crash frequencies (Wei and 

Lovegrove 2012).  

In relation to land use factors, the percentage of commercial land use and proximity to it 

were positively associated with bicycle crash frequency and bicyclist evident injuries 

(Narayanamoorthy et al. 2013, Vandenbulcke et al. 2014), but percentage of commercial land 

use was not a significant predictor of bicycle crashes in Strauss et al.’s study (2012). 

Inconsistencies remain in the effects of land use factors. Siddiqui et al.’s study showed that the 

densities of population and employment were positively related to bicycle crash frequency 

(2012). 

3.2.4 Modeling techniques 

The concerns of crash frequency modeling include over-dispersion or under-dispersion of 

count data, unobserved heterogeneity, spatial dependence, and the excess of zeros (Lord and 

Mannering 2010, Mannering and Bhat 2014). Data over dispersion is the presence of great 

variability, expressed by that the variance is largely greater than the mean of a variable. Data 

over dispersion is commonly observed in count data. The basic model used in bicycle crash 

frequency research is the negative binomial regression, which can handle data over-dispersion. 

Zero-inflated models can account for the excess of zeros by jointly working with the Poisson or 

negative binomial model. The generalized additive model and random effects model can 

calculate spatial dependence. The above modeling advantages can be jointly considered, such as 

the Poisson-lognormal conditional-autoregressive model (Wang and Kockelman 2013) and the 
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Bayesian multivariate Poisson-Lognormal model (Park and Lord 2007, Aguero-Valverde and 

Jovanis 2009). The spatial statistical approach provides a chance to capture the spatial 

autocorrelation with accurately estimated parameters. It contributes to the generalizability that 

same treatments can be applied to areas with similar features.  

3.3 Modeling approach 

This study employs two area-based Poisson-Lognormal random effects models. The 

models have two attractive features: handling over-dispersion of count data, and accounting for 

unobserved heterogeneity and spatial dependence. They provide the subject-specific estimates 

based on conditional probability, as compared to the aggregated population parameters in the 

other fixed effects models.  

The Poisson-Lognormal random effects model is becoming popular in crash frequency 

and crash risk research. Fixing the random effects can improve the model fit and the precision of 

posterior estimates (Aguero-Valverde 2013). The marginal distribution of this Poisson-

Lognormal model does not have a closed form; hence, it is implemented with the hierarchal 

Bayesian estimation.  

An important statistical concern is to differentiate frequency and risk. According to the 

theory of “safety in numbers”, areas with more bicycle collisions may be less risky for bicycling. 

With this assumption, the risk is measured by the TAZ-counted number of bicycle crashes 

divided by the TAZ-estimated number of bicycle trips in this study, as specified in Equation 3-1. 

𝑅𝑖𝑠𝑘𝑖 =
𝑌𝑖

𝐸𝑖
                                                                                                                             Equation 3-1 

Yi refers to the number of bicycle crashes in each TAZ, and Ei is the expected number of 

bicycle trips. The frequency model and the risk model are expressed in Equations 3-2 and 3-3:  

| , , , ~ ( )i i i iX

i i i iY Poisson e e
                                                                                                   Equation 3-2 
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| , , , ~ ( )i i i iX

i i i i iY Poisson E e e
        

                                                                Equation 3-3 

The difference of the models specified in Equations 3-2 and 3-3 lies in whether the 

models have included the Ei as a denominator. Each model has an intercept α, and a vector of 

estimated parameters βi for the fixed effects. Xi is a vector of the independent variables. The 

unknown quantities are the coefficients of the vectors of ui and vi, which are two latent random 

effects to compose the posterior distributions of spatial variance (ui) and unobserved 

heterogeneity (vi).  

 
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                                                                                                             Equation 3-4 

 
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

 
                                                                                                                                          Equation 3-5 

 

Equations 3-4 and 3-5 describe the distribution of the random effect that is employed to 

estimate the spatial dependence. ui is the local spatial random effects assumed to follow a 

lognormal distribution. To define a neighbor, ne(i) is the set of adjacent polygons of area i , and 

mi is the number of neighbors of area i. The neighbors are defined by at least sharing one border. 

Specifically, for area i, the variance of ui is conditional on the variance of uj, and j ∈ ne(i). These 

models assign the spatial random effects an intrinsic conditional on the autoregressive prior. The 

spatial random effect’s mean is the mean of the neighboring TAZs, and the variance is 

proportional to one over the number of its neighbors. This approach was developed by Besag et. 

al. (Besag et al. 1991). 

     2~ 0,i vv N                                                                                                           Equation 3-6 

Where vi represents the random effect of unobserved heterogeneity, assuming it follows 

independent and identical distribution, as expressed by Equation 3-6. vi captures the residual or 
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unexplained log frequency/risk of collisions in area i, where the variance σv
2 controls the extra-

Poisson variation (Aguero-Valverde 2013).  

Both σu
2 and σv

2 are defined with respect to the log scale. σu
2 is a conditional variance and 

its magnitude determines the amount of spatial variation, whereas σv
2 has a marginal 

interpretation. Bayesian inference is carried out through the R INLA package. INLA is short for 

integrated nested Laplace approximation.  

3.4 Data sources and geo-unit selection 

The empirical setting of this study is the city of Seattle. As a bicycle friendly city, Seattle 

Department of Transportation has been working steadily toward developing an urban bicycle 

trail system to accommodate bicyclists. To better understand bicycle safety, the data employed in 

this study include two components, the bicycle crash records and the built environment features.  

3.4.1 Automobile-involved bicycle crash data 

The bicycle crash data were collected by Seattle Department of Transportation from 2010 

to 2013. The bicycle crash data had 1,389 records. In that 4-year period, the total number of 

automobile-involved crashes in Seattle was 46,797, and the bicycle crashes were accounted for 

2.97%. The data had five types of injuries, including fatality (dead at scene/ on arrival/ in 

hospitals), serious injury, evident injury, possible injury and property damage only.  

These crash data have limitations because a large number of minor incidents are 

unreported to authorities (de Geus et al. 2012, Wegman et al. 2012). The possible biases 

included are: (1) less severe crashes are widely underestimated, including property damages, 

possible injuries, and evident injuries; (2) collisions that occurred at local streets and suburban 

areas are relatively under surveillance; and (3) collisions between bicyclists, conflicts between 

bicyclists and pedestrians, and single falls are not covered in the sample.  
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3.4.2 Risk factors 

Bicycle crash frequency or risk results from the interaction of three traffic safety pillars: 

road user(s), bicycle(s) or automobile(s), and the built environment (Schepers et al. 2013). Risk 

factors are defined as any built environment features or risk-taking travel behaviors that increase 

the probability of a bicycle crash. In this study, the built environment data are supported by 

Puget Sound Regional Council, Seattle Department of Transportation, and King County. The 

sources, explanations, and data summary of selected variables are listed in Table 3-1. The 

variable selection based on multicollinearity, which indicates that two or more predictor 

variables in a multiple regression model are highly correlated. The selection criterion is based on 

the variance inflation factor (VIF), which measures the severity of multicollinearity in a 

regression using the ordinary least squares as the estimating method. If the VIF of a variable is 

greater than 5.0, that variable is excluded in this study.  

Being consistent with existing research, the built environment features included for 

modeling are classified as factors of road network and land use. In addition, variables of road 

design and travel demand are also included for modeling. The built environment features are 

quantified with the analysis unit of the TAZ. The road network features includes 3-way 

intersections, 4-way intersections, and complicated intersections (more than 4-way), the densities 

of on-arterial versus off-arterial bicycle routes, and zonal mean slope. The land use factors are 

land use mixture, the proportion of commercial and mixed lands, the proportion of office and 

government lands, the proportion of industrial lands, household density, and employment 

density.  

In addition, the road design variables include the densities of road signals and stop signs, 

and zonal mean of posted speed limits. The zonal mean of posted speed limits is equal to the 

length of road segment multiplied by the corresponding posted speed limit, and divided by the 
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sum length of roads. The street elements are the densities of bus stops, street lights, street trees, 

and traffic circles. The density of crosswalks and the densities of local streets versus arterial 

routes are excluded due to multicollinearity.  

Also, three travel demand variables are included for modeling. The numbers of bicycle 

trips and total trips are estimated by Puget Sound Regional Council (PSRC), which are a part of 

the output of an activity-based travel forecasting model, called SoundCast. The origin based the 

TAZ-counted number of bicycle trips and the total number of trips are the major outputs of this 

model31. The original data were surveyed and gathered by Puget Sound Regional Council. 

Traffic volume (annual average daily traffic, AADT) and the number of lanes are not included in 

this research, because Seattle only has those data for arterial routes. The bicycle volume and 

bicycle miles traveled are also not available. In this study, the origin-based TAZ-counted number 

of bicycle trips acts as a substitute for the bicycle volume, while the total number of trips is a 

substitute for the traffic volume. The bicycle mode share is calculated by the number of bicycle 

trips divided by the total number of trips in TAZs. The use of these travel demand variables is 

novel in measuring bicycle exposure.   

3.4.3 Geo-spatial analytical unit selection 

The geographic unit in quantifying the built environment and aggregating crash 

frequencies varied in prior studies, such as county (Aguero-Valverde and Jovanis 2006, Huang et 

al. 2010), census tract (Ukkusuri et al. 2012), TAZ (Siddiqui et al. 2012, Wei and Lovegrove 

2012), grid-cell (Gladhill and Monsere 2012) and intersection (Miranda-Moreno et al. 2011a, 

Castro et al. 2012, Vandenbulcke et al. 2014). There is a trade-off when a geographical scale is 

                                                           
31 This study uses the origin-counted trips (bicycle versus all transportation modes). The risk of using these data for 

research include: (1) bicycle crashes usually not happen at origin or destination, but on the way to destinations; (2) 

Surveyed number of trips is likely to underestimate the non-motorized trips, which are of recreational purposes, and 

is likely to underestimate intra-zonal travels, which are not of primary transportation modes.    
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chosen. Larger areas provide more stable rates, but the accuracy of measurements may be 

reduced due to aggregation. Aggregating at a large geospatial scale may produce the threat of 

regression toward the mean. Some localized effects can only be detected on a small scale.  

This study takes TAZ as the analytical unit, because it matches the census information on 

important demographic profiles and travel demand characteristics, including population density, 

employment density, bicycle mode share, the number of bicycle trips, and the total number of 

trips.  

Another challenge is the possible error of counting the bicycle crashes. A collision may 

just fall into the cross-boundary between two neighboring TAZs. TAZs are usually split by the 

arterials, and many bicycle crashes occurred on arterial routes. An inaccurate geo-coding error 

may result in the changes of counted crash occurrences among TAZs. This study uses “spatial 

join” function in the ArcGIS to count bicycle crashes, assuming that the data were correctly geo-

coded by Seattle Department of Transportation.  

 



70 

 

Table 3-1: Variable definitions and data summary (n = 707) of potential predictors for bicycle crashes in Seattle TAZs.  

Variable Mean S.D.  Min. Max. Unit Source 

Bicycle crash       

      Number of bicycle crashes (Ei) 1.97 2.58 0.00 28.00 numb/TAZ SDOT 

Road network  

      Number of 3-way intersections per ha 0.31 0.26 0.00 1.75 numb/ha PSRC 

      Number of 4-way intersections per ha 0.46 0.34 0.00 2.28 numb/ha PSRC 

      Number of complicated intersections (5 or more ways) per ha 0.04 0.14 0.00 1.33 numb/ha PSRC 

      Number of traffic circles per ha 0.06 0.09 0.00 0.51 numb/ha SDOT 

      Length of on-arterial bicycle lanes per ha 0.02 0.02 0.00 0.19 km/ha SDOT 

      Length of off-arterial bicycle lanes per ha 0.04 0.03 0.00 0.20 km/ha SDOT 

      Zonal mean slope (average gradients, absolute value) 0.21 0.33 0.00 4.11 ratio SDOT 

      Number of bus stops per ha 0.26 0.31 0.00 2.74 numb/ha King 

County 

      Number of street lights per ha 5.12 2.22 0.00 15.48 numb/ha SDOT 

      Number of street trees per ha 8.53 6.26 0.00 31.46 numb/ha SDOT 

      Number of parking signs per ha 4.36 6.97 0.00 43.4 numb/ha SDOT 

Road design  

      Number of stop signs per ha 0.50 0.43 0.00 2.87 numb/ha SDOT 

      Zonal mean of posted speed limits  25.25 4.53 20.00 48.08 mph SDOT 

      Number of traffic signals per ha 0.19 0.34 0.00 2.13 numb/ha SDOT 

Travel demand   

      Bicycle mode share  0.02 0.02 0.00 0.18 ratio PSRC 

      Number of bicycle trips in TAZs (Yi) 0.07 0.17 0.00 3.68 103 PSRC 

      Number of trips in TAZs 3.55 2.98 0.03 40.86 103 PSRC 

Land use  

      Land-use mixture, ranging from 0 to 1 0.51 0.15 0.00 0.87 ratio PSRC 
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      Proportion of industrial lands in TAZs 0.07 0.14 0.00 0.91 ratio PSRC 

      Proportion  of commercial and mixed lands in TAZs 0.10 0.15 0.00 0.81 ratio PSRC 

      Proportion  of office and government lands in TAZs 0.10 0.15 0.00 0.83 ratio PSRC 

      Area of each TAZ 0.31 0.33  0.01 3.37 km2 SDOT 

Demographics  

    Household density  0.02 0.03 0.00 0.18 103/ha PSRC 

    Employment density  0.09 0.23 0.00 2.09 103/ha PSRC 

      Number of households in the TAZs 402.21 352.24 0.00 2,181 numb/TAZ PSRC 

      Number of jobs in the TAZs 680.36 954.75 0.00 17,304 numb/TAZ PSRC 

The variables in italics are excluded in modeling due to multicollinearity.  
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3.5 Descriptive analysis 

The number of bicycle crashes ranges from 0.00 to 28.00, with a mean of 1.97 

collisions and a standard deviation of 2.58 collisions, suggesting that the distribution of 

the bicycle crash frequency is dispersed. The number of bicycle trips ranges from 1 to 

3,680. As indicated in Figure 3-1, more collisions are clustered in downtown Seattle. A 

supportive figure to show the pattern of bicycle crash risk is displayed in Figure 3-2. As 

displayed, the bicycle crash risks are greater in North and South Seattle. The clusters of 

bicycle crash frequency and risk are not matching spatially. 

Table 3-2 lists the outcome of the Poisson-Lognormal random effects model using 

hierarchal Bayesian estimation. The estimates at 2.50% and 97.50% credential intervals 

with no possible zero parameters are significant factors. The significant factors in the 

bicycle crash frequency and risk models: the 3-way intersection density, the density of 

on-arterial bike lanes versus off-arterial bike lanes, the densities of road signals, the zonal 

mean of posted speed limits, and the total number of trips. The land use mixture is only 

significant in the bicycle crash frequency model. Bicycle mode share, the density of street 

trees, the proportion of commercial and mixed lands, household density, and employment 

density are only significant in the bicycle crash risk model.  

The spatial dependence is calculated based on the variances of the two random 

effects, expressed by 
𝜎𝑢

𝜎𝑢+𝜎𝑣
, accounting for 54.49% and 56.82% of the random effects 

variances in the bicycle crash frequency and bicycle crash risk models accordingly. This 

model indicates that more than half of the errors can be explained by the spatial 

autocorrelation or spatial spillover effects. It also suggests 45.50% and 43.18% of 
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unobserved heterogeneities remain in the two models. The same modifications can be 

applied to areas with similar built environment features to reduce bicycle crash frequency 

and bicycle crash risk.  

In the outcomes of the Poisson-Lognormal random effects models, the 3-way 

intersection density and the density of off-arterial bicycle lanes suggest negative 

relationships with bicycle crash frequencies and risks. The density of road signals, the 

zonal mean of posted speed limits, the total number of trips, and the density of on-arterial 

bicycle lanes are positively correlated with bicycle crash frequencies and risks.  

The elasticity is computed as the regression parameter times the mean value of the 

variable ( *i iE X ) (Ewing and Cervero 2010). By fixing the other included fixed 

covariates, the calculated elasticity reflects the relationship between 1.00% change in the 

independent variable and the corresponding percentage change in the dependent variable. 
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Figure 3-1: Bicycle crash frequencies in Seattle traffic analysis zones, 2010-2013 (Yi) 
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Figure 3-2: Bicycle crash risks in Seattle traffic analysis zones, 2010-2013 (Yi/Ei) 



76 

 

3.6 Inferential analysis 

Table 3-2: The estimates of the Poisson-Lognormal random effects models and the elasticities for significant variables 

 Bicycle crash frequency model Bicycle crash risk model 

Fixed effects: Mean S.D. 2.5% CI 97.5% CI Elasti. Mean S.D. 2.5% CI 97.5% CI Elasti. 

    Intercept -1.31 0.43 -2.16 -0.47  -2.93 0.46 -3.83 -2.03  

Road network           

   Number of 3-way intersections per ha -0.37 0.17 -0.70 -0.04 -0.11 -0.44 0.18 -0.79 -0.09 -0.14 

   Number of complicated intersections per ha -0.57 0.32 -1.21 0.06  -0.58 0.34 -1.25 0.08  

   Number of 4-way intersections per ha -0.20 0.19 -0.57 0.17  -0.36 0.20 -0.76 0.04  

   Number of traffic circles per ha -0.15 0.55 -1.23 0.93  -0.29 0.58 -1.43 0.84  

    Length of on-arterial bicycle lanes per ha 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00 

    Length of off-arterial bicycle lanes per ha -0.01 0.00 -0.01 -0.00 -0.00 -0.01 0.00 -0.02 -0.01 0.00 

    Zonal mean slope -0.30 0.18 -0.67 0.05  -0.09 0.19 -0.47 0.28  

    Number of bus stops per ha 0.27 0.18 -0.07 0.62  0.21 0.18 -0.15 0.57  

    Number of street lights per ha 0.03 0.02 -0.02 0.07  0.00 0.03 -0.05 0.06  

    Number of street trees per ha -0.01 0.01 -0.02 0.01  -0.02 0.01 -0.03 -0.00 -0.14 

Road design           

    Number of parking signs per ha 0.01 0.01 -0.01 0.03  0.01 0.01 -0.01 0.03  

    Number of stop signs per ha 0.13 0.13 -0.12 0.38  0.21 0.13 -0.05 0.48  

    Zonal mean of posted speed limits  0.03 0.01 0.01 0.05 0.80 0.04 0.01 0.01 0.06 0.91 

    Number of traffic signals per ha 0.62 0.22 0.19 1.05 0.12 0.95 0.23 0.50 1.40 0.18 

Travel demand            

    Bicycle mode share  -2.76 1.67 -6.05 0.50  -6.41 1.76 -9.89 -2.96 -0.13 

    Number of bicycle trips  -0.60 0.37 -1.33 0.13  --- --- --- ---  

    Number of trips  0.06 0.02 0.02 0.11 0.23 -0.11 0.02 -0.14 -0.07 -0.37 

Land use            
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    Land use mixture 1.21 0.35 0.53 1.89 0.62 -0.27 0.36 -0.98 0.43  

    Proportion of industrial lands -0.03 0.43 -0.88 0.81  0.35 0.45 -0.55 1.23  

    Proportion of commercial and mixed lands  0.29 0.37 -0.45 1.02  0.80 0.39 0.04 1.57 0.08 

    Proportion of office and government lands  0.13 0.37 -0.60 0.85  0.38 0.39 -0.38 1.13  

Demographics 

    Household density  -0.02 0.26 -0.53 0.47  -0.81 0.27 -1.34 -0.27 -0.02 

    Employment density  4.06 4.59 -5.29 12.75  -25.54 5.29 -35.95 -15.15 -2.30 

           

Random effects:          

 Mean S.D. 2.5% CI 97.5% CI  Mean S.D. 2.5% CI 97.5% CI  

𝜎𝑣 8.31 3.43 3.98 17.13  7.13 3.05 3.29 14.97  

𝜎𝑢 0.93 0.23 0.53 1.43  0.83 0.22 0.44 1.32  

Marginal likelihood -1963.59 -1988.99 

Spatial dependence 
𝜎𝑢

𝜎𝑢+𝜎𝑣
 54.49% 56.82% 
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3.7 Discussion 

The purpose of this study is to examine how the built environment features are related to 

bicycle crash frequency and risk, particularly to identify the modifiable factors that contribute to 

better cycling safety. To differentiate bicycle crash frequency and risk, and highlight the 

importance of quantifying exposure to comprehend the built environment risk factors, this 

research design is unique through investigating the same set of fixed covariates with two 

different safety measures.  

Both the random effects of the spatial variations in bicycle crash frequency and for 

bicycle crash risk take more than half of the total variations accordingly. These results confirm 

the existence of significant spatial autocorrelations among TAZs, indicating that the estimates of 

nearby TAZs are more related than those of distant TAZs. These results indicate that engineering 

modifications and planning strategies could be applied to TAZs with similar built environment 

features. 

In relation to the road network features, the modeling outcomes suggest that the 3-way 

intersection density is negatively associated with bicycle crash frequencies and risks. The effects 

of the 4-way and complicated intersections remain unclear. However, some prior research found 

positive relationships between bicycle crashes and intersection density/counts (Siddiqui et al. 

2012, Wei and Lovegrove 2012). There is a possible explanation for this inconsistency. The 

exposure to encounters between intersecting automobiles increases as a number of intersections 

increase; but road networks with more intersections may contribute to lower driving speeds and 

thereby lessen severe bicycle crashes. Hence, the results are mixed. Cycling on on-arterial bike 

lanes is more dangerous than cycling on off-arterial bike lanes, which is consistent with the past 
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research on the effects of different bicycle routes (Teschke et al. 2012, Wei and Lovegrove 2012, 

Lusk et al. 2013). 

The outcome shows that a higher zonal mean of posted speed limits is associated with 

more bicycle crash frequencies and risks. The elasticities are 0.80% of bicycle crash frequencies 

and 0.91% of bicycle crash risks for a 1.00% change in the zonal mean of posted speed limits. 

Prior area-based research did not include zonal mean of posted speed limits as risk factors. 

However, other micro-level bicycle injury severity studies suggested that higher posted speed 

limits are associated with more severe bicyclist injuries (Kim et al. 2007, Eluru et al. 2008, 

Zahabi et al. 2011, Chen and Fuller 2014). In short, all research indicates that lowering posted 

speed limits is an effective approach to reduce cycling risks.  

This study shows that bicycle crash risk is lower when cycling on streets with more trees. 

Also, the results on traffic signals are consistent with past research (Wei and Lovegrove 2012); a 

higher signalized intersection density is associated with more bicycle crash frequencies and risks.  

In relation to land uses, a study showed that industrial and commercial land uses were 

positively related to bicyclist injuries (Narayanamoorthy et al. 2013), but those results remain 

unclear with Seattle’s data regarding bicycle crash frequency. However, the result of the risk 

model shows that bicycle crash risk is higher in zones with a greater proportion of commercial 

and mixed lands. The land use mixture has barely been investigated in prior bicycle crash 

frequency studies. This study suggests that a 1.00% increase in the land use mixture is associated 

with a 0.62% increase in the number of bicycle crashes. This positive relationship may result 

from the conflicts between concentrated human activities in places with different land use 

purposes.  
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This study used the total number of trips as a substitute for the traffic volume. Even 

though the variables are different, the findings are somewhat consistent (Miranda-Moreno et al., 

2011; Chen and Fuller, 2014, Vandenbulcke et al., 2014). A positive relationship between the 

total number of trips and bicycle crash frequencies is identified in this study. However, in the 

risk model, the corresponding relationship between bicycle crash risks and the total number of 

trips is negative. These opposite coefficients in the two models indicate that more bicycle crashes 

could be observed in high traffic area, but the risk of involving a bicycle collision is lower.  

To examine the theory of “safety in numbers”, the remaining interpretations focus on 

several density-related measures. As noted in the risk model, the outcome shows that bicycle 

crash risk is negatively correlated with the bicycle mode share, the total number of trips, 

household density, and employment density. It is worth noting that a 1.00% change in the 

employment density is associated with a 2.30% change in the bicycle crash risk. Promoting 

employment density could bring safety benefits to the bicyclists. These outcomes provide strong 

evidence to support the conclusion that bicycling is safer in densely developed areas. 

3.8 Limitations 

Some limitations of this study should be noted. A major challenge comes from the trend 

confounding effect across a 4-year period. Road design factors are time-varying explanatory 

variables so that the temporal effects of traffic signals are hard to control. For instance, the 

signals could have been installed after the crashes had occurred, which could be a plausible 

alternative explanation for the positive association between bicycle crashes and the number of 

signals. A similar case can be found in the interpretation of the relationship between bicycle 

crashes and on-arterial bicycle lanes. The local authority may have given higher priority to 

improving the bicycle facilities where crashes had occurred. Because the order of the events 
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cannot be confirmed, uncertainty remains in the interpretation. A possible way to control this 

confounding effect is to add random effects for space-time modeling. However, the space-time 

model assumes that the crash risks in the temporal trends are linear (Knorr-Held and Besag 

1998). This assumption does not apply to Seattle Department of Transportation bicycle crash 

data. The sample is too small to be further split, and bicycle crash counts in TAZs are likely to 

have the problem of the excess of zeros.  

The second challenge comes from the underreporting/under-surveillance and 

unavailability of data used in this study. Firstly, there are many unreported minor bicycle 

collisions, especially in suburban areas and local streets. This underreporting of bicycle crash 

counts poses a threat to the reliability of the data. Similarly, the traffic volume data are only 

gathered at arterials and freeways, but missing on local streets. Secondly, data unavailability 

could have a negative effect on the accuracy of modeling. For instance, this study suggests that 

the density of on-arterial bicycle lanes is positively correlated with bicycle crash frequency. This 

conclusion could be impacted by missing bicycle volume data. Bicycle miles traveled and 

bicycle volume are more accurate in describing the distance bicyclists traveled and the number of 

on-road bicyclists. Better data should be gathered to enrich future bicycle safety research.  

The denominator used to measure bicycle crash risk is the zonal-counted number of 

bicycle trips. The original number of bicycle trips was collected from regional household travel 

behavior survey. The survey data are mostly collected from bicycle tours with a primary trip of 

commuting purpose (Puget Sound Regional Council 2014). Yet the majority of bicycling trips 

serves the purposes of recreation and exercise. For example, two-thirds of the bicycle trips are of 

general recreation (Seattle Department of Transportation 2014). And in many cases, bicycle trips 
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are ignored as intra-zonal travels. Therefore, the bicycle crash risk measured in this study is just 

an approximation. 

It remains questionable whether findings generalized from Seattle are applicable to other 

US cities. This is because, firstly, Seattle is a city of relatively high density, posing a threat to the 

generalizability in the other low-density cities. It is likely that these results apply the best to other 

central downtown areas. Secondly, Seattle continually implements the bicycle master plan and 

cycle share program to promote bicycling as a primary transportation mode. It may not be an 

appropriate inference for cities having much lower bicyclist volume.  

3.9 Conclusions 

The popularity of cycling is greatly related to actual and perceived safety. Lowering 

bicycle crash risk is a key step in increasing the likelihood of bicycle use and in promoting 

cycling as an active mode of transportation. The safety ramification of increased bicycle use in 

North America was evaluated in this chapter within an urban environment.  

Regression techniques were employed in this study to highlight the importance of 

measuring spatial dependence and unobserved heterogeneity. The results indicate that zonal 

bicycle crash frequencies are spatially correlated. This study has included some bicycle exposure 

variables that had not been investigated in prior studies. Unique variables include the number of 

bicycle trips versus the total number of trips, the zonal mean of posted speed limits, the zonal 

mean slopes, and the densities of street trees and parking signs. The significance of these new 

variables helps to better understand the exposure and risks of cycling behaviors. There were 

limitations in the bicycle exposure data and future research will need to capture improved data to 

verify some of the results.  
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For transportation engineers, planners and policy makers, this study provides several 

statistically founded recommendations to improve bicycle safety through engineering 

modifications. For instance, local authorities should lower the posted speed limits, encourage 

compact development, and separate bicycle lanes from road traffic. Additionally, the incentive of 

speed limit reduction for bicycle safety is to decrease actual driving speeds. For good roadway 

design practices, transport engineers should apply the principles of Vision Zero (Tingvall and 

Haworth 2000), and Functionality, Homogeneity and Predictability (Wegman et al. 2005) to 

operate a sustainable and safe traffic system. In view of the widely ongoing planning and 

construction to promote increased cycling in the North America, continual research on bicycle 

crash risks is urgently needed. Safety cannot be traded for the sake of mobility (Tingvall and 

Haworth 2000). 
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Chapter 4. Built environment features in explaining bicyclist injury severity 

 

Abstract 

This analysis employs a generalized ordered logit model and a generalized additive model to 

estimate the built environment effects on bicyclist injury severity in automobile-involved bicycle 

crashes, and to accommodate the possible spatial autocorrelation among bicycle crash sites. The 

research data are obtained from the Seattle Department of Transportation bicycle collision 

profiles. This study categorizes the bicyclist injury types as property damage only, possible 

injury, evident injury, and severe injury or fatality. The modeling results indicate that: (1) 

employment density is negatively associated with bicyclist injury severity; (2) severe injury or 

fatality is negatively associated with the degrees of mixed land use; (3) lower probability of 

injuries is observed for bicyclists dressing reflective clothes; (4) better street lighting is 

associated with less probabilities of bicyclist injuries; (5) a higher posted speed limit increases 

the probabilities of evident injury and severe injury or fatality; (6) older bicyclists are more 

vulnerable to severe injury or fatality; and (7) bicyclists are more apt to be severely injured when 

large vehicles are involved in crashes. One recommendation drawn from this research is that 

cities should encourage mixed land use and promote compact urban development, optimally 

lower posted speed limits on streets with both bicycles and automobiles, avoid place bicycle 

lanes in steep streets, and improve lighting conditions to provide a safe bicycling environment. In 

addition, bicyclists are encouraged to wear reflective clothes. 
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4.1 Introduction 

Bicycling is an active transportation mode, which offers health, environmental, and social 

benefits, such as decreased rate of obesity, lowered greenhouse gas emissions, reduced 

congestion, and improved livability. Bicycling activities are increasingly popular in the US due 

to better awareness of eco-friendly lifestyles. However, bicyclist injuries remain a serious public 

health problem. Safety issue acts as an important deterrent preventing people from bicycling. 

According to a recent report, only 0.50% of commuters in the US take bicycles as their primary 

transportation mode (American Association of State Highway and Transportation Officials and 

US Departmemt of Transportation 2013). While the number of deaths in traffic crashes steadily 

decreased in the past four decades (The National Highway Traffic Safety Administration 2012), 

the number of reported injured bicyclists increased from 45,000 in 2001 to 49,000 in 2012. The 

percentage of bicyclist fatalities among total traffic deaths increased from 1.70% to 2.20% in the 

same period (The National Highway Traffic Safety Administration 2013). Therefore, it is vital to 

investigate what the leading causes are correlated with bicyclist injury severity.  

Human factors that are directly associated with bicyclist injury severities include helmet 

use by the bicyclist, and intoxication and distraction by the drivers (Attewell et al. 2001, 

Cummings et al. 2006, Walker 2007, Goldenbeld et al. 2012). The exploration of the correlations 

between the built environment and bicyclist injury severity has not been sufficiently examined 

for two reasons. First, exploring this link requires qualified bicyclist injury records and capability 

in conducting interdisciplinary research. Second, in contradiction of posted speed limit, vehicle 

type, and bicyclist age, built environment features are perceived as indirectly correlated with 

bicyclist injury severity. Hence, built environment features were mostly adjusted as confounders, 

or disregarded, in previous research.  
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This chapter uses a generalized ordered logit model and a generalized additive model to 

identify the foremost land use and road network features factors correlated with bicyclist injury 

severities for Seattle, Washington. This study highlights the effects of employment density and 

land use mixture in mitigating bicyclist injury severity.  

4.2 Literature review 

The majority of transportation safety studies concentrates on two issues: crash frequency 

and injury severity. The objective is to identify risk factors and draw policy recommendations 

and road network features guidelines for safety improvements. Previous bicyclist injury severity 

studies considered a large set of influential factors, reclassified as: (1) individual socio-

demographics, such as age and gender of motorists and bicyclists; (2) behavioral factors, such as 

drinking alcohol using drugs, being distracted and inattentive, violating traffic regulations such 

as misusing helmets; (3) vehicle types; (4) road network features, such as bicycle facility types, 

slopes, and other features associated with intersections or mid-blocks; (5) road design variables, 

such as signals, stop signs, and posted speed limits; (6) environmental factors, such as the time of 

day and weather conditions; (7) land use variables, such as density and land use mixture; and (8) 

crash characteristics, such as the directions and movements of driving and bicycling.  

Posted speed limit, vehicle type, and age of injured bicyclists are significant factors that 

directly contributed to severe bicyclist injuries (Kim et al. 2007, Walker 2007, Eluru et al. 2008, 

Bíl et al. 2010, Chong et al. 2010, Yan et al. 2011). As for motorist and bicyclist-related factors 

in the existing safety research, the momentary activities of road users are regarded as more 

important factors in explaining bicyclist injury outcomes. Furthermore, the effects of using 

protective equipment and making improper driving behaviors have been evaluated frequently 

(Kim et al. 2007, Bíl et al. 2010, Chong et al. 2010, Boufous et al. 2011, Moore et al. 2011). For 
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instance, a research article showed that helmet use mitigated the severity of bicyclists’ brain 

injury by more than 85.00% (Moore et al. 2011).  

According to the existing research, environmental settings are also related to the severity 

of bicyclist injuries. Darkness, measured by the time of day, is an important factor associated 

with fatality (Klop and Khattak 1999, Eluru et al. 2008, Bíl et al. 2010, Boufous et al. 2011). 

Additionally, adverse environmental circumstances, such as wet surfaces, ice, and fog, increase 

the probability of serious bicyclist injuries (Moore et al. 2011). 

In relation to road network features, it is safer to ride bicycles on signalized intersections 

with good lighting conditions (Eluru et al. 2008, Bíl et al. 2010, Zahabi et al. 2011). The factors 

correlated with intersection and mid-block bicyclist injury severity are slightly different (Klassen 

et al. 2014). Roadway classifications and on-street parking are the factors affecting the injury 

severity of the mid-block bicycle crashes (Klassen et al. 2014). Zahabi et al. found that compared 

to the collisions occurring at mid-blocks, bicyclist injuries occurred more frequently but less 

severely at intersections due to driving speed reduction at intersection areas (2011). Another 

study showed that the proportions of industrial and commercial land use were positively 

associated with evident bicyclist injuries (Narayanamoorthy et al. 2013). Other land use 

variables, such as land use mixture, population density, and road connectivity, showed no 

significant correlations with bicyclist injury severity (Zahabi et al. 2011).  

Some challenging methodological issues are debated for the ordered categorical attribute 

of bicyclist injury severity (Savolainen et al. 2011, Yasmin and Eluru 2013, Mannering and Bhat 

2014). Injury severity is usually classified into ordered categories of fatality, severe injury, 

evident injury, possible injury, and property damage only. How injury severities are correlated 

with the independent variables are frequently examined by ordered and unordered response 
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models. However, injury severity types are interrelated in nature. Ordered logit model, also 

called proportional odds model, is capable of capturing the ordinal attribute across different 

levels of injuries (Mooradian et al. 2013). The underlying assumption of an ordered logit model 

forces the coefficients for covariates to remain constant for all injury types. In other words, the 

coefficients of one factor on all injury types are assumed to be in the same direction. However, 

some variables may decrease the probability of one injury type while increasing the probability 

of another. The impacts of some covariates can be biasedly reported under the ordered logit 

modeling framework.  

On the other hand, injury severity is considered as a categorical variable which allows the 

independent variables to influence response levels differently in the unordered response models 

(Yasmin and Eluru 2013). In addition, minor bicycle collisions are widely underreported (de 

Geus et al. 2012, Wegman et al. 2012), particularly those occurred on local streets and in 

suburban areas. In this context, the more effective approaches of modeling are the unordered 

response models (Yasmin and Eluru 2013), such as multinomial logit and mixed logit models. 

Even though the nested logit model can capture the ordinal nature inherent in injury levels within 

nests, some studies found that the added complexity from the nested structure could not be 

justified by its limited improvement in the prediction accuracy (Abdel-Aty 2003, Mooradian et 

al. 2013). 

Another appealing choice is the partial proportional odds model. It loosens the 

assumption of an ordinal data attribute. As a substitute to the ordered logit model, it assumes that 

a subset of explanatory variables affects an injury category independently (Mooradian et al. 

2013). The generalized ordered logit model offers an even more flexible modeling framework, 

which relaxes the constant cutoff point across injury cases (Eluru 2013, Yasmin and Eluru 2013). 
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The spatial dependence among collision sites is another methodological issue debated in 

prior research (Savolainen et al. 2011, Castro et al. 2013). Two types of spatial dependencies, 

called “spatial spillover” and “spatial correlation,” have been discussed (Castro et al. 2013). 

“Spatial spillover” causes the injury risk tendency at one place to affect the probability of injury 

at its nearby places. “Spatial correlation” results in the same type of places sharing similarities in 

injury risks. The spatial dependence will cause the cases to no longer be independent. Several 

ways of calculating spatial dependence have been applied to injury severity (Castro et al. 2013, 

Klassen et al. 2014). 

4.3 Modeling approach  

A generalized ordered logit model and a generalized additive model are employed in this 

chapter to discern how built environment features are associated with different bicyclist injury 

categories, where bicyclist socio-demographics and motorist momentary behaviors are adjusted 

as confounders. The generalized ordered logit model relaxes the ordered logit modeling 

framework by allowing covariates to affect bicyclist injury severities differently. In addition, a 

generalized additive model is selected to investigate the possible spatial dependence. 

4.3.1 Generalized ordered logit model 

The generalized ordered logit model is shown in Equation 4-1, which assumes the vector 

of unobserved utility having a cumulative distribution (Williams 2006, Agresti and Kateri 2011). 

More specifically, supposing an ordered categorical dependent variable Yi has M values, the 

generalized ordered logit model produces a set of estimates, including M-1 cutoff points, at 

which Yi can be dichotomized. 
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The probability functions when Yi is equivalent to each of the values 1, 2, ..., M are 

presented in Equations 4-2, 4-3 and 4-4 (Williams 2005, Eluru et al. 2008, Kaplan and Prato 

2012). 

              1( 1) = 1 ( X )i iP Y g                                                                                                    Equation 4-2 

              ( 1)( ) = ( ) ( )i j i j iP Y j g X g X   , 2,..., 1j M                                                           Equation 4-3 

              ( 1)( ) = ( )i M iP Y M g X                                                                                               Equation 4-4 

Where M is the number of ordinal categories of bicyclist injury severities, 𝑃(𝑌𝑖) is the 

probability of any given injury type for case i, j represents the cutoff points between different 

injury categories, 𝑋𝑖 is the vector of fixed covariates that explain bicyclist injury severity, 𝛼𝑗 is 

the intercept, and 𝛽𝑗 is the vector of corresponding estimates. In the generalized ordered logit 

model, three cutoff points are specified, including the cutoff points between generalized ordered 

logit model and possible injury, possible injury and evident injury, evident injury and severe 

injury or fatality. Equation 4-2 represents the probability of the first category (property damage 

only), Equation 4-3 represents the probabilities for the middle categories (evident injury and 

possible injury), whereas Equation 4-4 represents the probability of the last category (severe 

injury or fatality). 

4.3.2 Generalized additive model 

A generalized additive model is specified to capture the possible spatial dependence. The 

generalized additive model is built on a standard ordered logit model by adding a smooth 

function to account for the spatial dependence among crash locations (Wood 2006, Agresti and 
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Kateri 2011). An ordered logit model assumes the estimated coefficients for fixed covariates 

keep the same for all ordinal categories. The additional term, 𝛿(𝑆𝑖), is a smooth spline function 

made by the vector of latitude and longitude for spatial covariates, as listed in Equation 4-5.  

               i i coori cooriS S (x , y )                                                                                                   Equation 4-5 

The generalized additive model is shown in Equation 4-6, where the 𝑖, 𝑗, 𝛼, 𝛽, 𝑃(𝑌𝑖 > 𝑗) 

and 𝑋𝑖 are the similar items as specified in the generalized ordered logit model (Wang and 

Kockelman 2005). 
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                                                                      Equation 4-6 

The generalized ordered logit model is implemented with R “VGAM” package (Yee 

2010), and generalized additive model is estimated using R “mgcv” package (Wood 2001).  

4.3.3 Elasticity formulas for generalized ordered logit model 

Elasticity calculating formulas of the generalized ordered logit model is derived as 

follows.  

(1 )
P V
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 
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 
                                                                                                 Equation 4-7 

For all models, elasticity is written as 

P X
E

X P



 . If X is a dummy variable, elasticity is 

computed as:   

1 0
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x x
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



                                                                                                       Equation 4-8 

However, if X is a continuous variable, for this generalized ordered logit model, the 

elasticities for the four injury categories are computed as Equations 4-9 to 4-12:  
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4.4 Data 

       

(a) Property damage only                                                      (b) Possible injury 
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(c) Evident injury                                                      (d) Severe injury or fatality 

Figure 4-1: Spatial distribution of bicyclist injury severity in Seattle, 2004-2013 
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Seattle is ranked third among large US cities in regards to the percentage of commuters 

using bicycles (Seattle Department of Transportation 2014). In addition, Seattle is implementing 

a bicycle master plan, which continually provides bicycle routes and contributes to the steady 

growth in the number of bicyclists. The total number of bicyclist injuries increased in the past 

decade due to increased use of bicycles, while the injury rate per bicyclist decreased in that 

period (Seattle Department of Transportation 2013).  

The employed data for this empirical analysis includes two components: the bicycle crash 

records and the built environment features. The bicycle crash records were collected by Seattle 

Department of Transportation from January 2004 to March 2013. The geo-coded data, displayed 

in Figure 4-1 (a) to (d), helps locate the bicycle crashes and identify the built environment 

characteristics. Seven types of bicyclist injury severity categories were recorded in the original 

crash data, including three detailed categories for fatal crashes (dead at scene/on arrival/at 

hospitals). To ensure each injury type has a sufficient sample size to obtain valid statistical 

inference, severe injury and fatality are merged into one category. Hence, injury severities are 

aggregated into four ordered categories: property damage only, possible injury, evident injury, 

and severe injury or fatality.  

However, missing values for various fields are observed in many records, such as 

bicyclist age, bicyclist gender, and posted speed limit. In total the sample had 3,310 crashes; the 

number of observed cases with injury severity reported was 2,911. After excluding records with 

missing values, a sample of 1,502 cases was acquired for the final model. The number and the 

percentage of each bicyclist injury category is presented in Table 4-1. The full sample with 

complete injury severity information and the final sample yield very similar descriptive statistics. 

Therefore, the estimation based on the final sample does not misrepresent the results greatly.     
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Table 4-1: The number and percentage of each bicyclist injury type in the crash data 

Injury types Property 

damage 

only 

Possible 

injury 

Evident 

injury 

Severe 

injury 

Fatality 

Sample with injury severity 

information (2,911 cases) 

267 

(9.17%) 

834 

(28.65%) 

1,551 

(53.28%) 

243 

(8.35%) 

16 

(0.55%) 

Final sample (1,502 cases) 113 

(7.52%) 

416 

(27.70%) 

826 

(54.99%) 

137 

(9.12%) 

10 

(0.67%) 

In the full sample, 16 bicyclists were fatally injured, and 10 of them remained in the final 

sample for modeling. Property damage only, possible injury, evident injury, and severe injury or 

fatality accounted for, respectively, 8%, 28%, 55% and 9% of the total. The other data acquired 

for modeling contains built environment features quantified through ArcGIS spatial overlay 

analysis. Seattle Department of Transportation and Puget Sound Regional Council provide GIS 

maps of the built environment. The data summary is shown in Table 4-2.  

4.5 Conceptual framework and variable selection 

Figure 4-2 shows the modeling framework that presents the variables assumed to be 

associated with bicyclist injury severity. Eleven categories of variables are considered, including 

features of land use, road network, road design, individual profiles of bicyclists and motorists, 

behavioral factors, vehicle information, motorist movement, and other conditions. 
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Figure 4-2: Modeling framework   
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In the final models, the factors of collision direction and motorist demographics are not 

included. Collision direction for bicycle crashes is unavailable in the Seattle Department of 

Transportation data. Motorist demographics are excluded due to a large percentage of missing 

values. Other conditions, time of day and weather, are included. As for bicyclist demographics, 

bicyclist age is included, but bicyclist gender is excluded due to insignificance.  

Vehicle type is an important element frequently investigated in previous studies. Yet, 

only 62 large vehicles (more than 10,000 lbs, including trucks, farm tractors and buses) and 7 

motorcycles were involved in the 1,502 bicycle crashes. Large vehicle is selected for modeling, 

while the motorcycle is excluded for limited observations.  

The built environment features comprise the factors of land use and demographics, road 

network and design. Three land use and demographic variables— household density, 

employment density, land use mixture—are included for modeling. The slope and the number of 

street lights nearby collision sites are included. As for road design factors, because momentary 

driving speed when a collision occurred is not available, police-reported posted speed limit is 

included as a substitute. Other land use, road network and design features, such as the number of 

crosswalks, the proportion of commercial land use, the proportion of industrial land use, the 

number of stop signs, and the number of signals, are excluded due to insignificance or 

collinearity issues.  

Wearing reflective clothing and equipping with helmets are included. The motorists’ 

momentary driving activities, such as going straight, turning left, turning right, backing, 

stopping, starting, parking, changing lanes and merging traffic, are considered. Motorist turning 

left and right are the momentary driving activity included in the final models. Police-reported 

contributing factors, such as motorist performing improper behaviors, motorist being distracted 
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or intoxicated, motorist violating traffic regulations, and motorist failing to yield to pedestrians, 

are considered but excluded from the final models for showing no statistical significance. 

4.6 Descriptive analysis 

Among the 1,502 observations, 74.30% of injured bicyclists were males, which is close 

to the national average of 77% (AARP and APTA 2014). The average age of injured bicyclists 

was 32.89 years old. In the sample, only 7.66% of bicyclists dressed reflective clothing, while 

71.30% of them wore helmets. As for motorists’ momentary activities, 28.10% of bicyclists were 

turning left, 19.44% were turning right, 34.75% were going straight, and less than 1.00% were 

backing. Regarding police-reported contributing factors, dozens of contributors were reported in 

the crash data. Failing to yield to pedestrians accounted for 48.14%, whereas another 15.84% 

were comprised of small proportions. Of this 15.84%, motorists performing improper behaviors, 

such as improper turns and following too close, accounted for 4.46%; traffic violations 

accounted for 4.46%; and being intoxicated, fatigued or distracted accounted for 6.92%. 

The built environment features, such as land use mixture and street light density, are 

captured using ArcGIS overlay functions. The distance (the radius of buffers) used to quantify 

built environment factors is 50 meters in this study. The rationale to determine such distance is 

relative to the maximum width of a road surface and the minimum distance between the central 

lines of two neighboring streets. For example, if a road has six lanes (3.7 meters each) with 

barriers, collectors, and bike lanes on each side, the road surface could be 30 meters wide. In that 

case, 50 meter is a reasonable distance to capture the built environment features along the roads, 

such as land use nearby.  
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Table 4-2: Variable dictionary and summary of selected variables quantified at crash sites (n=1,502) 

Variable Mean S.D. Min. Max. Source Description 

Land use and demographics 

  Household density 2.97 3.40 0.00 17.69 PSRC Household density in corresponded TAZ, in 1k/km2; 

  Employment density 9.97 22.47 0.00 208.56 PSRC Employment density in corresponded TAZ, in 1k/km2; 

  Land use mixture 0.39 0.09 0.13 0.64 PSRC Measured by entropy of five types of land use, including 

residential, green spaces, offices, commercial and industrial, 

within 50-meter buffers of collusion sites; 

Road network and design 

  Number of street lights 2.88 2.00 0.00 10.00 SDOT Number of street lights within 50-meter buffers of collusion sites; 

  Slope  0.03 0.02 0.00 0.13 SDOT The slope of the crash site;  

  Speed limit 29.06 3.38 10.00 50.00 SDOT Police-reported posted speed limit at crash locations, in mph; 

Bicyclist socio-demographics 

  Bicyclist age 32.89 12.76 3.00 79.00 SDOT Age of injured bicyclist; 

Other conditions 

  Weather  0.12 --- 0.00 1.00 SDOT If the crash occurred in rainy and snowy days, 1, else 0; 

  Day time 0.20 --- 0.00 1.00 SDOT If the crash occurred in darkness, 1, else 0; 

Vehicle type 

  Large vehicle 0.04 --- 0.00 1.00 SDOT If a large vehicle is involved in a bicycle crash (>10,000 lbs, 

including trucks, farm tractors and buses) 1, else 0; 

Bicyclist-related behavioral factors 

  Bicyclist reflective suit 0.08 --- 0.00 1.00 SDOT Bicyclist dressed in reflective clothing 1, else 0; 

  Bicyclist helmet 0.71 --- 0.00 1.00 SDOT Bicyclist wore helmet, 1, else 0; 

Motorist momentary driving activities 

  Motorist left turn 0.28 --- 0.00 1.00 SDOT Crashes occurred when motorists turning left 1, else 0; 

  Motorist right turn 0.20 --- 0.00 1.00 SDOT Crashes occurred when motorists turning right 1, else 0; 
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4.7 Inferential analysis 

4.7.1 Estimated results for generalized ordered logit model 

Insignificant variables (p-value is greater than 0.1) on the three cutoff points are removed 

from the final generalized ordered logit model. Table 4-3 shows the results of the estimated 

generalized ordered logit model. The estimated parameters (𝛽𝑗) and p-values are shown in the 2-

paralleled columns under the three cutoff points.  

4.7.1.1 Land use, demographics, road network and design features  

This research measures many built environment features to explore how they are 

correlated with bicyclist injury severity. Among the land use and demographic factors, 

employment density is negatively associated with bicyclist injury severity, whereas the land use 

mixture is negatively correlated with severe injury or fatality. Of road network features, the 

parameter estimated for the number of street lights is marginally significant at the first cutoff 

point, indicating that better lighting condition is associated with a lower probability of bicyclist 

injuries as compared to property damage only. Furthermore, the estimate for the slope is 

marginally significant at the third cutoff point, indicating that the probabilities of severe injury or 

fatality in steep streets are greater than other types of injury. As for road design, posted speed 

limit is a positive predictor of evident injury and severe injury or fatality.  
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Table 4-3: Generalized ordered logit modeling results (n=1,502) 

Variable Cutoff point Between  

property damage only 

and possible injury 

Cutoff point Between  

possible injury and 

evident injury 

Cutoff point between  

evident injury and severe 

injury or fatality 

 Estimate p-value Estimate p-value Estimate p-value 

  Intercept 1.61 0.10 -0.70 0.21 -2.66** 0.00 

Land use and demographics 

  Household density 0.00 0.99 -0.01 0.43 -0.03 0.35 

  Employment density -0.01*** 0.00 -0.00* 0.05 -0.01 0.34 

  Land use mixture 0.96 0.43 0.31 0.65 -2.93** 0.01 

Road network and design 

  Number of street 

lights 

-0.09 0.08 -0.03 0.24 -0.05 0.27 

  Slope  5.03 0.29 3.14 0.21 6.91 0.06 

  Speed limit 0.02 0.54 0.05** 0.00 0.04 0.15 

Bicyclist individual profiles 

  Bicyclist age 0.01 0.48 -0.01 0.20 0.01* 0.04 

Other conditions 

  Weather  0.02 0.95 -0.06 0.71 0.12 0.66 

  Day time 0.04 0.88 -0.04 0.78 -0.07 0.74 

Vehicle type 

  Large vehicle 0.16 0.76 0.02 0.95 1.11*** 0.00 

Bicyclist-related behavioral factors 

  Bicyclist reflective 

suit 

-0.82** 0.01 -0.41* 0.05 -1.13* 0.02 

  Bicyclist helmet 0.16 0.48 0.16 0.21 -0.10 0.60 

Motorist momentary driving activities 

  Motorist left turn 0.22 0.39 0.09 0.49 0.55** 0.01 

  Motorist right turn -0.17 0.50 -0.19 0.20 -0.22 0.41 

       

Indicated by estimate with level of significance (*<0.05, **<0.01, ***<0.001) 

Degrees of freedom: 4,461 

Model fit Residual deviance: 3,246.80 Log-likelihood: -1,623.40 
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Table 4-4: Generalized additive modeling results (n=1,502) 

 Estimate p-value 

  Intercept 0.43 0.40 

Land use   

  Household density -0.01 0.53 

  Employment density -0.01* 0.04 

  Land use mixture -0.34 0.60 

Road network and design   

  Number of street lights -0.04 0.11 

  Slope  4.77* 0.04 

  Speed limit 0.04** 0.00 

Bicyclist socio-demographics   

  Bicyclist age 0.00 0.98 

Other conditions   

  Weather  0.00 0.99 

  Day time -0.02 0.84 

Vehicle type   

  Large vehicle 0.38 0.16 

Bicyclist-related behavioral factors   

  Bicyclist reflective suit -0.56** 0.00 

  Bicyclist helmet 0.08 0.48 

Motorist momentary driving activities   

  Motorist left turn 0.20 0.10 

  Motorist right turn -0.18 0.18 

   

Indicated by estimate with level of significance (*<0.05, **<0.01, ***<0.001) 

Significance of smooth terms Degrees of freedom p-value 

S(X coordinate, Y coordinate) 5.76 0.40 

Deviance explained = 22.40% - Restricted maximum likelihood = 1,670.800 

 

4.7.1.2 Motorist and bicyclist-related factors 

For bicyclists, age is positively correlated with severe injury or fatality, while wearing 

reflective clothing is negatively correlated with injury severity. Motorist turning left is positively 

correlated with the probability of bicyclist injuries. 

https://en.wikipedia.org/wiki/Restricted_maximum_likelihood
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4.7.1.3 Vehicle type 

The involvement of a large vehicle is positively associated with severe injury or fatality.  

4.7.2 Estimated results for generalized additive model  

To capture the ordered categorical nature of injury severity, and to measure the possible 

spatial dependence among bicycle collision sites, a generalized additive model is further 

estimated. This generalized additive model is specified as an ordered logit model plus a spline 

smoothing function. Table 4-4 presents the modeling results. Among significant predictors of 

bicyclist injury severity in the generalized ordered logit model, five of them show highly 

consistent effects in the generalized additive model: slope, employment density, posted speed 

limit and bicyclist dressing reflective clothing are significant factors, and motorist turning left is 

only marginally significant. 

The p-value estimated for the smoothing terms is not significant (p-value = 0.40), which 

suggests that the “spatial spillover” or the “spatial autocorrelation” effect is not observed among 

the collision sites. Therefore, bicyclist injury severity is not spatially auto-correlated in Seattle.  

4.7.3 Model comparison 

The generalized ordered logit model offers richer insights on specific injury cutoff points 

and injury types, and considers the ordered categorical nature of the injury severity variable. The 

generalized additive model has the advantage in accounting for the spatial dependence. For this 

study, the generalized ordered logit model provides greater details into the relationship between 

bicyclist injury severity and the built environment.  
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4.7.4 Elasticity effects from the generalized ordered logit model 

The elasticities calculated for the preferred generalized ordered logit model are shown in 

Table 4-5, measured for the four types of bicyclist injury severities accordingly. The numbers are 

interpreted as the percentage change in the probability of an individual bicyclist injury severity 

category due to 1.00% change in the explanatory variables.  

The outcomes suggest that severe injury or fatality is generally more sensitive to the 

explanatory variables than other injury types. The largest elasticity in absolute value is associated 

with land use mixture, indicating that a 1.00% increase in this measure is associated with a 

1.13% reduction in the probability of a bicyclist experiencing severe injury or fatality. Also quite 

strongly relating to decreases in the probabilities of severe injury or fatality are bicyclists 

dressing reflective suit and the number of street lights within the buffer area, with elasticities of -

0.49 and -0.14 accordingly. It is worth noting that a 1.00% increase in slope is associated with a 

0.20% increment in the probability of severe injury and fatality.  

On the other hand, increasing posted speed limit is most strongly associated with 

increased probability of a bicyclist experiencing severe injury or fatality; specifically, a 1.00% 

increase in posted speed limit is related to a 0.95% higher probability of severe injury or fatality. 

Involvements of a large vehicle and an older bicyclist in bicycle crash are also quite strongly 

associated with higher probabilities of severe injury or fatality, with calculated elasticities of 

0.46 and 0.30 accordingly. 
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Table 4-5: Elasticities calculated for the generalized ordered logit model 

 Property damage 

only 

Possible injury Evident injury Severe injury or 

fatality 

 Elasticity S.D. Elasticity S.D. Elasticity S.D. Elasticity S.D. 

Household density 0.00 0.00 0.01 0.01 -0.02 0.03 -0.08 0.10 

Employment 

density 

0.07 0.13 -0.08 0.62 0.01 0.02 -0.10 0.22 

Land use mixture -0.33 0.08 0.02 0.00 0.19 0.02 -1.13 0.27 

Number of street 

lights 

0.20 0.13 -0.06 0.06 -0.08 0.06 -0.14 0.10 

slope -0.14 0.10 -0.01 0.01 0.05 0.02 0.20 0.14 

Speed limit -0.52 0.06 -1.21 0.24 -0.15 0.09 0.95 0.09 

Bicyclist age -0.29 0.12 0.16 0.04 -1.23 1.09 0.30 0.11 

Weather  -0.01 --- 0.02 --- -0.04 --- 0.06 --- 

Day time -0.02 --- 0.01 --- -0.01 --- -0.03 --- 

Large vehicle -0.07 --- 0.02 --- -0.25 --- 0.46 --- 

Bicyclist reflective 

suit 

0.30 --- -0.07 --- -0.08 --- -0.49 --- 

Bicyclist helmet -0.07 --- -0.02 --- 0.07 --- -0.05 --- 

Motorist left turn -0.09 --- 0.01 --- -0.04 --- 0.25 --- 

Motorist right turn 0.07 --- 0.02 --- -0.06 --- -0.10 --- 

 

4.8 Conclusions and future research 

Employing Seattle’s data, this research has investigated the associations between 

bicyclist injury severity and several categories of factors, including bicyclist socio-

demographics, vehicle type, road design, motorist momentary behavior, road network, and land 

use. The modeling results are largely consistent with the significant effects of a number of 

important variables identified in the existing literature. First, older bicyclists are more likely to 

be severely injured in bicycle crashes. Second, large vehicle-involved bicyclist injuries are more 

likely to be severe. Third, street lighting condition is negatively associated with severe injury or 

fatality. Finally, posted speed limit is positively correlated with evident injury and severe injury 

or fatality. 
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This research has gained additional insights in understanding the importance of particular 

behavioral factors and the built environment features. Regarding behavioral factors, bicyclists 

dressing reflective clothing suggest a lower probability of injuries, and crashes happened while 

motorists are turning left are more likely to result in severe injuries. As for the built environment 

features, employment density is negatively associated with bicyclist injury severity, the slope is 

positively associated with severe injury or fatality, and land use mixture is negatively associated 

with severe injury or fatality. 

These findings suggest that certain environmental treatments and road improvements can 

improve bicycle safety. Several important policy recommendations can be obtained from this 

analysis. First, the safety effects of diversifying land use and densifying employment should be 

considered in zoning. Second, improving street lighting conditions to bicycle routes, placing 

bicycle lanes in flat areas, and optimally lowering posted speed limit for streets should be 

considered where motorists and bicyclists share road spaces. Third, bicyclists are encouraged to 

dress reflective clothing. These principles should be jointly considered in bicycle master plans.  

While the outcome indicates the benefit of lowering posted speed limits for the sake of 

safety. Safety concerns should be balanced with other road users’ mobility requirements. Perhaps 

a more feasible approach to mitigate the conflict is to add more separated bike lanes to isolate 

bicyclists from road traffic. However, since bicycling accounts for only a small proportion of the 

transportation mode share, lowering road speed limits of the whole transportation system may 

not be cost-effective.  

Future research may investigate continuous measurements of the built environment. An 

assumption made in this research is that the built environment is stable in the ten-year period as 

quantified in the GIS maps. This assumption may not be realistic for many locations. . For 
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instance, employment densities in some areas may have increased over years, which no longer 

represent the true employment densities correlated with crashes happened earlier. Even though 

the built environment is relatively stable in most US cities, measuring the built environment 

more frequently is desirable. 
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Chapter 5. Synthesis: contributions, implications, and future research 

 

This concluding chapter: (1) synthesizes the findings; (2) highlights the scholarly 

contributions; (3) draws implications that can inform researchers, transportation planners, 

and policy makers; and (4) discusses the directions for future research. 

5.1 Summary of findings 

This dissertation investigates the determinants of bicycling in the US context for 

route preference and road safety. Specifically, this dissertation has employed the theory 

of “utility maximization” to understand bicycle route choice and its connection with built 

environment features. Also, in referencing to the theory of “safety in numbers”, this 

dissertation has compared the differences between the frequency of and the risk of 

bicycle crashes, and has highlighted the bicycling risk factors in the built environment, as 

presented in Table 5-1. 

5.1.1 Land use features 

Improving density and land use mixture to build a safe bicycling environment is 

beneficial for encouraging bicycling. As shown in Table 5-1, for bicycle safety, 

household density is negatively associated with bicycle crash risk, and employment 

density is negatively correlated with bicyclist injury severity and bicycle crash risk. In 

addition, for bicycle route choice, many bicyclists prefer bicycle routes surrounded by 

lands of low floor area ratio. Some bicyclists prefer bicycle routes surrounded by mixed 

land use and near waters and parks. Though bicycle routes with higher land use mixture 

may have higher rates of collisions, the land use mixture is negatively associated with the 
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injury severity incurred in bicycle crashes. On the other hand, the percentage of 

commercial land use is positively correlated with the risk of involving a bicycle crash. 

Table 5-1: Significant built environment variables in the three studies 

Variable Route choice Crash 

frequency 

Crash 

risk 

Injury 

severity 

Household density ---  Negative  

Employment density ---  Negative Negative  

Floor area ratio Negative --- --- --- 

Proportion of commercial and mixed 

land  

---  Positive --- 

Proportion of parks and waters Positive/Negative --- --- --- 

Land use mixture Positive Positive  Negative 

Slope  Negative   Positive 

Street lighting Positive   Negative 

Posted speed limit Negative Positive Positive Positive 

Intersection density --- Negative Negative --- 

Signal density --- Positive Positive --- 

On-arterial bike lanes (bike lanes) --- Positive Positive --- 

Off-arterial bike lanes (cycle tracks + 

bike boulevards) 

--- Negative Negative --- 

Prioritized bike lanes (cycle tracks + 

bike lanes) 

Positive --- --- --- 

Street tree density Positive  Negative --- 

Note: 

(1) Positive: positive and significant; 

(2) Negative: negative and significant; 

(3) ---: considered but excluded for being insignificant or multicollinearity; 

(4) Blank: included but not significant. 

 

5.1.2 Road network variables 

As listed in Table 5-1, bike lanes in hilly areas are associated with more severe 

bicyclist injuries. In addition, bicycle facility types affect route choice, crash frequencies, 
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and crash risks. A denser street network is negatively correlated with bicycle crash 

frequencies and risks. Of roadway design elements, street tree density is positively 

associated with bicyclists’ route preferences, and negatively associated with bicycle crash 

risks. Improving street lighting is likely to attract bicyclists and reduce the risk of severe 

injury or fatality. Furthermore, both bicycle crash frequency and bicycle crash risk are 

positively correlated with signal density. Of utmost importance, higher posted speed limit 

detrimentally impacts bicycle route choice and safety outcomes.  

5.2 Contributions 

5.2.1 Conducting interdisciplinary research 

Interdisciplinary research is motivated by drawing findings from different fields, 

and by employing diverse methodologies and concepts. With the idea of applying 

interdisciplinary research, this dissertation transcends the conventional boundary of urban 

planning by extending to transportation engineering, public health, and statistics. 

Consequently, the three studies of this dissertation are published in interdisciplinary 

journals or presented at different conferences. Both the practical and academic values of 

this dissertation interest a wide body of groups, such as government officers and 

researchers. 

5.2.2 Applying advanced statistical methods 

This dissertation applies multiple advanced statistical models to understand 

bicycle planning research questions. Building on quantitative reasoning, three different 

statistical approaches were employed to examine spatial relationships. Description, 
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estimation, comparison, interpretation, and limitation of analytical techniques for 

planning practice are also covered in this dissertation. 

5.2.3 Examining theories  

The dominant theories explaining the relationship between individual bicycling 

behavior and the built environment in this dissertation are utility maximization and safety 

in numbers. Convincing empirical evidence validating these theories is identified and 

discussed in this dissertation.   

5.2.4 Drawing practical policy implications 

Beyond the academic contribution, this dissertation identifies and delivers explicit 

policy recommendations to policy makers, transportation planners and engineers, and 

advocacy groups. The substantial findings related to public policy and planning practice 

are separately stated in previous chapters and collectively summarized in this chapter.  

5.3 Policy implications 

Through multiple statistical analyses, this dissertation gains rich insights towards 

optimized promotion of safe and efficient bicycling. Utilizing the advancement in GPS 

data collection and well-documented bicycle crashes, the results of this project could 

assist in increasing bicycle route attractiveness and minimizing bicycling risks.  

Concerning land use features, policy makers should (1) encourage mixed land 

use, (2) utilize green spaces and water resources in planning bicycle facilities, and (3) 

minimize the potential conflicts between motorists and bicyclists near commercial areas.  

To provide a safe road network, policy makers and planners should focus on the 

slopes, bicycle facility types, intersection density, and street trees. Transportation 
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planners should avoid placing bike lanes in steep areas and should separate road traffic 

and bicycle traffic as much as possible. Separation is a desirable solution to balance the 

velocity discrepancies between motorists and bicyclists. To improve street connectivity 

for better bicycling environments, transportation planners should design dense blocks, 

where the traffic operating speeds are likely to be slower. Authorities should plant more 

street trees, because more street trees contribute to improved attractiveness of bicycling 

environments and reduced risks of bicycle crashes.  

Considering road design variables, policy makers and planners should make 

priorities for managing road signals and posted speed limits. The conflicts between 

motorists and bicyclists are likely to happen in areas with greater signal densities. 

Authorities should promote surveillance in signalized areas to monitor possible traffic 

violations. In addition, wherever conflicts may occur between bicyclists and motorists, 

posted speed limits should be adjusted to an acceptable level to ensure safe bicycling. As 

suggested, greater bicycle mode share contributes to reduced bicycle crash risks, but no 

significant increase in either injury severity or crash frequency. Though more trips are 

associated with reduced bicycle crash risks, more trips are also associated with a greater 

number of bicycle crashes. Regardless the overall effect, it is not sensible for the 

authorities to encourage more driving. 

To summarize, as supported by the theories of utility maximization and safety in 

numbers, planning strategies advocated for the compact development provide appealing 

solutions in building an attractive bicycling environment. Neighborhood changes to the 

built environment should focus on but not limit to increasing commercial land use, green 

spaces and waters, mixed land use, household density, employment density, street 
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lighting, prioritized bike facilities, and intersection density, and decreasing slopes and 

posted speed limits.  

5.4 Future research 

To promote evidence-based policy making, assist route planning, improve road 

safety, guide municipal investments, and establish maintenance priorities, future bicycle 

research beyond this dissertation may focus on the following issues. The first future 

research direction highlights the possible ways to advance data collection and integration, 

and the next three future research directions contribute to a more in-depth understanding 

of bicycling. 

5.4.1 Utilizing emerging data  

More robust data would lead to better-informed bicycle policy making, cost-

effective bicycle infrastructure investments, and overall improved bicycling outcomes. 

For instance, current bicycle crash data include police-reported collisions, online self-

reported crashes, hospital trauma reviews, and insurance company records. The 

integration of such data is not well-developed. With the increased complexity of analysis 

activities, there is an urgent need to utilize all available data resources effectively.  

Collecting and utilizing camera data for bicycling research is an unexplored field. 

Camera data can assist in the evaluation of infrastructure quality and in the measurement 

of bicyclists’ perceived risks. In general, bicycle use is closely attached to the perceived 

risks of bicycling. The joint utilization of GPS trackers and cameras can build rich data to 

investigate bicyclists’ instant reactions in response to different road environments.  
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Utilizing smartphone applications to assist research is increasingly popular for 

researchers. The development of an app to promote bicycle safety through the 

collaboration of police, health professionals, and injured bicyclists can lead to more 

efficient reporting. App-recorded data are easily standardized, and are accessed across 

cities, states, or even nations. Police and health professionals can use the same patient ID 

to fill out different sections requested in the app under the same response menu. This 

would link police-reported data and trauma interviews. Individuals can participate in 

reporting. In that way, the widely underestimated minor collisions can be better captured 

by authorities and documented for researchers. This assists authorities to notice how 

many minor crashes are occurring. In addition, the design of such an app could minimize 

the possible errors in transcribing from paper forms to computers. Finally, on-site 

pictures could be taken by police for health professionals to reevaluate the crash 

outcomes.  

5.4.2 Analyzing bicycle volume  

This dissertation project has done research on the interactions between individuals 

and the built environment on exposure and access; however, what is not yet clear is the 

impact of bicycle use. Barely any bicycle use studies have been done due to the lack of 

well-recorded bicycle count data. From 2011 January, the City of Seattle began to count 

bicycles at 50 selected locations. These data could be used to investigate two questions: 

(1) Considering weather conditions, and adjusting for effects of seasons, weekends, and 

peak hours, which built environment features are associated with bicycle counts? (2) 

Does the implementation of the bicycle master plan and of the cycle share program 
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predict the bicycle volume? The final output of such research would be used to predict 

bicycle volume for all road intersections. 

5.4.3 Exploring perceived risk and route acceptability 

Perceived risk and route acceptability are obstacles to promote bicycling. Many 

people fear cycling in the US. A better understanding of these issues assists planners to 

improve bicycle facilities from a psychological perspective, as well as provide policy 

makers evidence for policy design and decision making. Current research on perceived 

risk relies greatly on data collected through interviews on bicyclists’ experiences and 

perceptions of riding in different built environments. However, retrospective information 

may not be consistent with real behaviors. The joint use of camera data, GPS data, 

interviews, and surveys provides an opportunity to better understand why people are 

reluctant to ride bicycles. The findings may provide informative insights for bicycle 

planning.  

5.4.4 Understanding cycling risks in different built environments 

Research on bicyclist injury severity tends to overlook cities that have relatively 

few bicyclists, and consequently, cities that have different levels of bicycling and 

different built environments for bicycling have not been analyzed. As cities make 

bicycling a key component of their urban transportation plans in response to the growing 

demand, it is time to initiate serious research efforts that improve our understanding of 

the connections between different built environments and bicycling collisions. The new 

knowledge can effectively inform planning and policy making, and thus help transform 

our cities into safer places for bicycling. Future research advancing the understanding of 

the effects of built environment features on bicyclist injury severity and crash frequencies 
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should be conducted with the following question: are bicycling risks significantly 

different among cities with different levels of bicycling and different built environments? 
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Appendix A. Generated alternative bicycle routes 

 

Figure A-1: Bicycle facilities in Seattle  
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Figure A-2: Alternative routes labeled by minimizing trip distance  
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Figure A-3: Alternative routes labeled by minimizing slope 
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Figure A-4: Alternative routes labeled by minimizing floor area ratio 
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Figure A-5: Alternative routes labeled by maximizing city features 
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Figure A-6: Alternative routes labeled by maximizing waters and parks 
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Figure A-7: Alternative routes labeled by maximizing street lights 
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Figure A-8: Alternative routes labeled by minimizing land use mixture 
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Figure A-9: Alternative routes labeled by maximizing street trees 
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Figure A-10: Alternative routes labeled by minimizing the number of intersections 
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Figure A-11: Alternative routes labeled by maximizing prioritized bicycle facilities 
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Appendix B. Road network and design, and land use data 

 

Figure B-1: Bicycling rate of each traffic analysis zone in Seattle 
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Figure B-2: Land use in Seattle (Zoning) 
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Figure B-3: Floor area ratio in Seattle (number of stories) 
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Figure B-4: Household density in Seattle 
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Figure B-5: Employment density in Seattle 
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Figure B-6: Public city features in Seattle 

(Churches, parks, libraries, art centers, play grounds, schools, theatres, etc.) 
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Figure B-7: Stop signs in Seattle 
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Figure B-8: Traffic signals in Seattle 
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Figure B-9: Street parking signs in Seattle 
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Figure B-10: Transit routes and bus stops in Seattle 
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 (a)                                                                                                                             (b) 

Figure B-11: Street lights in Seattle (a) and zonal street light density (numb/ha) (b)  



 
 

146 

 

              

 (a)                                                                                                                             (b) 

Figure B-12: Street trees in Seattle (a) and zonal street tree density (numb/ha) (b) 
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 (a)                                                                                  (b)                                                                                  (c) 

Figure B-13: 3-way, 4-way, and more than 4-way intersection density in Seattle (numb/ha) 

 


