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In the sensorimotor areas of the cortex, motor execution and imagery have been found to be 

associated with increases in the high gamma (HG) frequency band, as well as decreases in the 

beta, and mu frequency bands. Because these cortical rhythms can be intentionally modulated 

by motor imagery or execution, they have often been used in brain-computer interface (BCI) 

studies as a control signal. However, the non-invasive recording of the modulation of the HG 

frequency band is still a relatively novel concept and most HG studies have been limited to 

invasive recording methods, due to the low signal-to-noise ratio of the neuronal ensemble 

activity at these frequencies. Consequently, the systematic study of HG effects has been limited 

to narrow populations (typically epilepsy patients) and cortical locations, which are usually 

determined by clinical needs rather than by the experimental paradigm one wishes to study. 

This thesis serves as a proof-of-concept that the HG frequency band can be studied non-

invasively, thus opening up this band to a much wider subject population and range of 

experimental paradigms. In addition, this thesis provides evidence that an implanted 

subdermal recording electrode system may provide a reliable, long-term, portable method for 

recording these motor related control signals for BCI control.  
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Chapter 1. INTRODUCTION  

A Brain-Computer Interface (BCI) is a system that acquires and analyzes brain signals with the 

goal of creating a communication channel between the brain and the computer (Wolpaw et al. 

2002). BCIs have great potential to facilitate the lives of paralyzed individuals with intact brain 

function but damaged cortico-spinal pathways. Many non-invasive BCIs typically rely on slow 

cortical rhythms such as mu/alpha (8-12 Hz), beta (17-32 Hz), or evoked potentials (e.g. P300) 

for control signals. While these systems are working to a degree, overall efficacy is limited due 

to the time latency it takes, on the order of several hundred milliseconds, for the frequency 

band’s amplitude to evolve (Pfurtscheller and Lopes da Silva 1999; Pfurtscheller and Lopes da 

Silva 1999). That is, the reliable detection of a response can take seconds for BCIs based on these 

control signals. This makes such systems unintuitive and cumbersome to use. Ideally, a smaller 

response lag is desired (i.e. 100 ms or less) to ensure a fluid, natural, and practical alternative to 

input devices that rely on motor movements such as keyboards, mice, eye trackers, etc. This 

requires cortical responses that can change rapidly within the desired lag time of the system.  

 

The high gamma (HG) band has these properties; typical oscillations are greater than 70 Hz and 

detectable power shifts within this frequency band occur on very short time scales (~ 50 ms) (F 

Darvas et al. 2010). Another desirable property of the HG band is that it is spatially more focal 

than more slowly evolving potentials and thus highly specific to a given task (Kai J Miller et al. 

2007). The HG band has been successfully used for BCI control using invasive 

electrocorticography (ECoG) techniques (Leuthardt et al. 2006). It has been shown that HG 

activity can be detected non-invasively by EEG in the primary motor area prior to finger 

movements (F Darvas et al. 2010). However, HG signals from surface EEG recordings suffer 

from two problems 1) low signal-to-noise ratio (SNR) and 2) overlap with EMG activity. In 

addition, due to the highly focal nature of the HG rhythm, single scalp electrodes, if not placed 

directly over the location of the source, can ‘miss’ power shifts in this frequency band. 
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However, due to the large range of potential changes for cortical point sources, the entire EEG 

montage can pick up these changes collectively, but with a very small signal in each electrode. 

The work described in chapters 2 and 3 of this thesis attempts to overcome these problems by 

using a combination of signal processing and cortical mapping techniques that utilize the 

subject’s individual head anatomy acquired from MRI.  

 

While we found that cortical neural signals can accurately be detected on the surface of the 

scalp through cortical mapping techniques, the neural signals detected with surface EEG 

electrodes still suffer from attenuation due to the fact that the signals need to pass through the 

thick skull and scalp. In addition, EEG electrodes are often contaminated with motion artifacts 

or changes in impedance values as the electrodes shift positions, or when the scalp muscles 

contract. Chapter 4 of this thesis presents results from needle electrode recordings that were 

placed underneath the scalp as an attempt to bypass these contaminations produced by 

movement and decrease portion of the signal attenuation due to the scalp.  The results from the 

studies presented in this thesis may contribute to developing a rapid, long-term, EEG-based BCI 

that is capable of detecting motor signals so that control is approximately coincident with real-

time intention. 

 

The three main aims of this thesis are as follows and are discussed in chapters 2-4: 

Aim 1. Detect high gamma non-invasively, using surface EEG electrodes, during imagined 

movement.  

Significance: The first study to show that the high gamma frequency band can be detected non-

invasively using surface EEG during a motor imagery task in healthy subjects using individual 

subject’s head models. 
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Aim 2. Determine the degree of spatial correlation between the cortical representations of 

high gamma activity detected using surface EEG electrodes and BOLD fMRI signals 

generated from a motor imagery task. 

Significance: The first study to examine the relationship between fMRI and the underlying 

neurophysiological responses during a motor imagery task.  

 

Aim 3: Investigate the motor related brain activity of healthy subjects in the mu, beta, and 

high gamma frequency bands recorded using subdermal EEG electrodes. 

Significance: Demonstrate a signal quality comparison of surface EEG and subdermal electrodes 

in awake/healthy subjects performing a motor execution task. These comparisons may support 

the use of subdermal recording electrodes as an option for long-term BCI use.  

 
 
The following sections in this chapter will provide the basic neuroscience, BCI, and signal 

processing research background necessary to understand the intentions, methods, and results of 

the studies presented in Chapters 2-4.  

 

1.1 CORTICAL NEURONAL ACTIVITY 

Current BCI systems utilize the electric or magnetic signals produced by the nervous system to 

convey the user’s intentions. In the brain, the electric fields are often described according to the 

location of the recording device and nature of the neural activity that produced the signal. The 

first category of electric fields includes local field potentials (LFPs). LFPs are recorded within 

the cortex and reflect current sources that are related to synaptic activity at a distance between 

0.1-1.0 mm from the electrode. The second category includes the fields recorded on the surface 

of the cortex by ECoG electrodes, which are thought to reflect synaptic activity occurring at a 

depth of 2-5 mm below the surface of the cortex. The third category includes the electric fields 

recorded from the scalp using surface EEG electrodes. Each EEG electrode is thought to reflect 
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synaptic source activity that occurs over large portions of the underlying cortex (between 10-40 

cm2) and is thought to represent the average activity over a cortical region obtained from 

thousands of cortical neurons.   

 

The work described in this thesis focuses on recording the electric fields recorded just below 

and above the scalp. It is thought that the EEG signal reflects the summation of excitatory and 

inhibitory postsynaptic potentials of populations of neurons with parallel orientations (Buzsáki, 

Anastassiou, and Koch 2012). These potentials are generated by the flow of ions into and out of 

the neuron. The orientation of the neurons producing the potentials within the cortex is one 

factor that determines how strong the signal will be at the scalp. Those neurons with radial 

orientation relative to the scalp will generate the strongest signals, while neurons with 

tangential orientations will likely cancel each other out and not contribute to the signal recorded 

at the scalp. The recorded electric field on the surface of the scalp is thought to be reflective of 

the synchronous neural activity of tens of thousands of cortical neurons (Murakami and Okada 

2006).   

 

An important consideration when recording neural signals from electrodes outside the brain is 

that the conductivity of the various intervening tissue layers (such as skull and scalp) between 

the brain and the electrode has a significant impact on the signal quality recorded at the 

electrode. The electric currents produced by neurons are strongly affected by jumps between 

these very conductive tissue layers.  When trying to perform neuronal source localization the 

conductivity values of these tissue layers must be taken into consideration in order to produce 

accurate results. This subject is discussed a bit further in the section 1.6: Cortical Source 

Localization.  
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1.2 MOTOR ANATOMY AND NEUROPHYSIOLOGY 

The vast majority of BCI research has focused on measuring brain signals thought to originate 

in the cortex because the cortex is accessible to electrodes and possesses defined areas known to 

be involved in motor and communication executive functions.  These identifiable landmarks on 

the cortical surface in regions devoted to specific functions are often used to guide the 

placement of intracortical electrodes. In order for the signal features to be useful for controlling 

a BCI it is important that the user can modulate these recorded signals. A BCI user can 

volitionally modulate the oscillations in several frequency bands recorded in the sensorimotor 

regions and is one reason why BCIs are typically driven by cortical signals recorded over the 

motor cortex.  

 

The following subsections will provide a brief background, along supporting published data, on 

the roles each cortical motor region (Figure 1.1) plays in the generation of movement. However, 

it must be kept in mind that research on the cortical role in movement is constantly evolving.  

 
 

 
 
 
 
 
 
 

Figure 1.1. Motor areas of the cortex.  
 

Adapted from: http://thebrainlabs.com 
 
 
 
 
 
 
 

 
 
 
 



 

 

6 

1.2.1 Primary Motor Cortex 

The primary motor cortex (M1) is frequently used in BCI research because of its involvement in 

the execution and intention of movement. The M1 is located in the frontal lobe along the 

anterior wall of the central sulcus (caudal M1) and extends to the precentral gyrus (rostral M1). 

It is organized somatotopically such that certain regions of M1 are devoted to the control of 

particular parts of the body. This organization is depicted in Wilder Penfield’s homunculus 

(Figure 1.2) (Penfield and Rasmussen 1950).  The body parts shown in the homunculus are 

spatially distorted because the amount of cortical area devoted to control of certain body parts 

varies according to the complexity of the motor control of that body part.  

 

Studies that support the notion that M1 is involved in motor execution show that the 

modulation of neural activity in M1 begins approximately 50-200ms before the onset of 

movement ( a P. Georgopoulos et al. 1982). In addition, these studies showed evidence that M1 

cortical neurons encode information about movement direction, a robust finding that has been 

replicated several times (Schwartz, Kettner, and Georgopoulos 1988; Kalaska, Caminiti, and 

Georgopoulos 1983). Additional kinematic features such as position, velocity, and movement 

distance have also been found to be encoded in M1. Other studies have shown that M1 activity 

is also modulated during movement intention and has been used to predict future movement 

directions (A. P. Georgopoulos 1989).  
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Figure 1.2. Motor Homunculus. 
 

Adapted from Wilder Penfield, 1950 
  
 

 

1.2.2 Premotor Cortex 

The premotor cortex (PM) is located in the frontal lobe and is anterior to the primary motor 

cortex. Although electrical stimulations in the premotor cortices have been shown to also elicit 

movement similar to M1, the PM cortex is thought to be more involved in movement planning 

(Weinrich and Wise 1982; Crammond and Kalaska 2000; Hatsopoulos, Joshi, and O’Leary 2004). 

The PM cortex is divided into premotor dorsal (PMd) and ventral (PMv) areas, which are 

distinguished by their particular input originations and output destinations (Matelli et al. 1998; 

Ghosh and Gattera 1995). To complicate the PM cortex’s role in movement, PMd neurons have 

been found to represent a target’s location (Shen and Alexander 1997), while PMv neurons are 

thought to encode the direction of wrist-movement (Kakei, Hoffman, and Strick 2001).  Medial 

to PMd is an area known as the supplementary motor area (SMA) that is located mostly within 

the interhemispheric fissure, but extends slightly onto exposed area of the cortex. This area is 

known to be involved with complex limb movements (Shima et al. 2000), as the neurons in the 
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SMA were shown to only fire to a specific sequence of movements and not for individual 

movement segments.  

 

1.2.3 Somatosensory Cortex 

The primary somatosensory cortex (S1) is located in the anterior portion of the parietal lobe and 

conveys the sensations of touch, temperature, pain, and limb position (proprioception) that are 

important in guiding movement. Proprioception originates from sensors located in muscles and 

joints (Golgi tendon organs, muscle spindles, etc.) and their inputs converge upon S1. 

Interestingly, S1 is somatotopically organized in a similar manner to M1.  

 

1.2.4 Posterior Parietal Cortex 

The posterior parietal cortex (PPC) is also known as a multimodal association cortex because 

many of the neurons in the area receive a combination of visual, auditory, and somatosensory 

inputs (Blatt, Andersen, and Stoner 1990; Andersen et al. 1997).   There are several areas within 

the PPC that are important to movements such as eye saccades, coding space in head-centered 

coordinates, as well as the control of grasping and reaching movements. Studies have also 

shown evidence that the PPC receives visual information that is related to both the state of the 

limb and the goal of the movement (Baizer, Ungerleider, and Desimone 1991).  

 

1.2.5 Prefrontal Cortex 

The prefrontal cortex (PFC) is located in the frontal lobe and is thought to have a major role in 

high-level executive functions relating to movement (Tanji and Hoshi 2008). The PFC shows 

similar characteristics to PM cortex in that neurons in the PFC display direction-dependent 

activity related to the onset of movement. Although, these neuronal responses were found to 

begin approximately 150ms earlier than the neuronal responses recorded in PM cortex (di 

Pellegrino and Wise 1991). 
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1.3 NEURAL RECORDING SYSTEMS  

Electrophysiology is often the preferred method to analyze brain activity due to its ability to 

capture a wide range of neural phenomena, from the spiking activity of individual neurons to 

the slower network oscillations of neural populations. The electrical nature of neuronal activity 

makes it possible to detect signals on electrodes at a distance from the source, but each type of 

recording electrode comes with its own caveats. Typical electrophysiological recording methods 

include those on the microscale that measure currents of single ion channels (patch-clamp), or 

direct measurements of intracellular voltage (microelectrode), as well as at the macroscale that 

measure relatively large areas of brain activity (e.g. fMRI, EEG, ECoG). 

 

Electrodes placed closer to the brain provide greater signal than those that are placed further 

away such as on the surface of the scalp. Electrocorticography (ECoG) electrodes are placed 

directly on the exposed surface of the brain to record electrical activity from the cortex. ECoG 

electrodes provide a signal that is many degrees of magnitude larger than the signal recorded 

from surface EEG electrodes. However, ECoG electrodes are considered invasive, as they 

require surgery to place the electrodes on the surface of the brain. 

 

EEG electrodes are placed on the surface of the scalp. As discussed briefly above, EEG measures 

the summation of inhibitory and excitatory postsynaptic potentials of populations of neurons. 

EEG is a neural recording technique that provides a relatively high-temporal resolution when 

compared to methods such as fMRI that are 2-3 orders of magnitude slower. This is one reason 

why EEG is a commonly used tool for measuring fast and dynamic motor neuronal processes. 

Another reason is that EEG measures neural population activity directly. The voltage values 

recorded using EEG electrodes are relative voltages, as the voltages recorded from one electrode 

are actually the change in electrical potential between that electrode and a reference electrode 

placed elsewhere on the head. A downside to EEG recordings is that it has relatively low spatial 
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resolution compared to fMRI techniques. The activity that is recorded below one electrode is not 

necessarily reflective of only the activity of the neurons directly beneath that electrode, but is 

likely a mixture of near and distant neuronal activity. This is in part because the signal recorded 

by an EEG electrode depends on the anatomy of the cortex and skull.    

 

ECoG electrodes provide a signal that is many degrees of magnitude larger than the signal 

recorded from surface EEG electrodes. However, ECoG electrodes are considered invasive, as 

they require surgery to place the electrodes on the surface of the brain. Subdermal electrodes 

are placed below the scalp, but above the skull, and can be thought to provide an intermediate 

option in regards to the degree of invasiveness and signal quality when compared to surface 

EEG electrodes.  Research has shown that subdermal wire electrodes maintain good recording 

characteristics with stable impedances for long-term monitoring of cortical neural signals.  

 

In contrast to ECoG, EEG, and Subdermal signals, the functional magnetic resonance imaging 

(fMRI) BOLD (blood oxygenation level dependent) signal is a measure of hemodynamic activity 

and it not a direct measure of neural activity. The idea behind the fMRI BOLD signal is that 

there is an increase in blood flow to areas of high neuronal activity. The fMRI method is based 

on MR images that are sensitive to the changes in the oxygenation state of hemoglobin 

molecules (Ogawa et al. 1990). Hemoglobin has different magnetic properties based on the 

concentration of oxygen molecules that are bound to it; when it is fully saturated with oxygen 

molecules it behaves like a diamagnetic substance and when oxygen molecules are removed it 

behaves as a paramagnetic substance. Therefore, the areas of the brain containing a higher 

concentration of oxygen molecules will provide a higher signal than those areas with a lower 

concentration.  
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Figure 1.3. Schematic of several common 
electrode depths and relevant layers of 

anatomy. Not to scale.  
 

Adapted from Olson et al. 2015 
 

 
 
 
 
 

1.4 BRAIN-COMPUTER INTERFACES 

A BCI typically focuses on utilizing the cortical signals produced by a certain area of the brain 

that are associated with a particular function (e.g. movement or cognitive process). The goal of 

the BCI is to allow a person to use these neuronal signals to control a device for communication 

or manipulation purposes such as a keyboard, mouse, or prosthetic limb. The cortical signals 

used for device control are often referred to as “signal features”, which need to be extracted 

from extraneous content (known as noise) of the recorded cortical signal. An important 

measurement often used to represent how much of the desired signal features are corrupt with 

noise is known as the “signal-to-noise ratio (SNR)”, which is simply a ratio of signal power to 

noise power. Therefore, a high SNR indicates that the signal of interest is minimally corrupted 

with background noise. The signal features that drive a BCI are often combinations or 
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transformations of multiple features detected at multiple time points and/or electrodes, which 

often represent the user’s intentions more accurately.    

 

The signals recorded for BCI control range from neuronal firing rates, or ‘spikes’, recorded from 

extracellular electrodes to frequency oscillations measured from ECoG or EEG electrodes. These 

oscillations are thought to reflect the rhythmic fluctuations in the excitability of neurons or 

population neurons and vary in their frequency, amplitude, and phase. The most common 

frequency oscillations utilized for BCI control are the low frequency mu (8-13 Hz) and beta 

oscillations (18-30 Hz) and the high frequency gamma (> 30 Hz) oscillations. During motor 

related tasks a decrease in amplitude known as event-related desynchronization (ERD) can be 

detected both invasively and non-invasively in the mu and beta frequency bands over the 

sensorimotor regions of the cortex. (McFarland et al. 2000; C Neuper and Pfurtscheller 2001; 

Christa Neuper et al. 2005). Subjects can learn to control these amplitude changes to control 

some feature of a BCI system such as the movement of a curser on a computer screen.  The 

higher frequencies have been found to increase in amplitude in the sensorimotor regions with 

movement related tasks (C Neuper and Pfurtscheller 2001; Crone et al. 1998) and subjects have 

also learned to control these amplitude changes in a similar manner .  

 

Studies have found that actual movement and imagined movements result in similar changes in 

brain activity (McFarland et al. 2000; K. Miller et al. 2010). Motor imagery is the mechanism by 

which many BCI implementations are driven and is a useful paradigm to prove the concept of a 

pure brain-driven device, in contrast to overt movement. In paralyzed subjects who are not 

capable of overt movement, imagery and attempted overt movement might be 

indistinguishable. Recording and using HG power from the motor cortex due to imagery in an 

EEG-based BCI is challenging due to the very small amplitude of the signals and the imprecise 

timing inherent in imagery tasks. In addition, since imagery strategies vary across trials and 
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subjects, one cannot expect a fixed average time course for the HG activity and thus the ability 

of trial averaging to improve SNR is limited.  

 

Even in the absence of any suitable motor cortex function, a BCI user might still be capable of 

controlling a BCI by activation of other areas of the cortex voluntarily. An example of this is the 

P300 speller paradigm (Wolpaw et al. 2002; Sellers et al. 2006; Ahi et al. 2011; Belitski, Farquhar, 

and Desain 2011). However, unlike a motor rhythm driven BCI, this type of interface is not 

generally well suited for continuous feedback due to its discrete output as only one letter can be 

selected at a time. Thus, no continuous or graded output is possible with this paradigm. Non-

motor tasks such as mental rotation, auditory imagery, and mental subtraction can modulate 

cortical rhythms in the alpha and beta ranges (Friedrich, Scherer, and Neuper 2012). These 

paradigms can provide an alternative control signal in the absence of any meaningful motor 

cortex signal.  

 

1.5 EEG SIGNAL PROCESSING 

1.5.1 Data Sampling 

EEG signals are captured through a process known as sampling where the continuous analog 

signal is sampled at certain instants in time to capture the raw voltage values. These captured 

voltage values are referred to as “samples” and the rate at which the samples were captured is 

know as the “sampling rate”, typically measured in samples per second, or Hertz (Hz). 

Therefore, the higher the sampling rate the more accurately the sampled signal represents the 

true EEG signal. However, the true signal can be represented accurately with a minimum 

sampling rate known as the “Nyquist Sampling Rate”. The basis of the Nyquist sampling rate 

involves a discussion that goes beyond the scope of this thesis; so briefly, it is the sampling rate 

that is at least double the highest frequency in the analog signal.   
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EEG signals recorded from the brain are often on the order of microvolts (μV) and need to be 

amplified to levels that can be processed. Once amplified the signals are digitized, using an 

analog-to-digital converter, and sent to a computer. Most raw EEG data is collected in the time-

domain (i.e. the signal amplitude values are viewed over time) and needs to be transformed 

into its equivalent frequency-domain (i.e. the amplitude and power over the range of 

frequencies). This transformation can be accomplished using variations of the Fourier 

transform, which allows us to view the frequency content of the signal.  

 

1.5.2 Data Filtering 

Data is often filtered in a way that modifies its frequency content by amplifying or attenuating 

certain frequencies in order to help remove artifacts, low-frequency drifts, or electrical line 

noise. The four most common filters used in EEG signal processing include low-pass, high-pass, 

notch, and bandpass filters. Low-pass filters attenuate high frequencies; in a similar manner 

high-pass filters attenuate low frequencies, often to minimize low-frequency drift. Bandpass 

filters preserve signal power in a specified range of frequencies, while notch filters attenuate 

signal power in a specified range of frequencies (it is most commonly used for attenuating 

50/60 Hz line noise). Time-frequency decomposition methods apply temporal filters to the data 

and are discussed briefly in the section below.  

 

1.5.3 Artifact Detection and Removal 

An important preprocessing step prior to data analysis is to remove any trials containing 

artifacts that may skew the results. There are several sources of artifacts that need to be 

considered when recording any type of neural activity. Artifacts include interference from 

electrical sources such as 50/60 Hz line noise, biological artifacts from sources such as eye 

movement (electrooculographic; EOG), heartbeat (electrocardiographic; ECG), and muscle 

activity (electromyography; EMG). There are several methods that are often used to address 
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these types of artifacts.  Line noise in the 50 or 60 Hz frequencies that is generated from 

electrical systems can often be removed by applying a notch filter to attenuate a narrow 

frequency band around the noise frequency. Attenuating artifacts generated from EMG sources 

is often difficult due to its broadband activity, which makes it difficult to detect and remove. 

The most prominent EMG activity can occasionally be removed through a manual inspection of 

the raw data. EOG artifacts are usually in the low frequencies (around 1 Hz) and are often fairly 

easily removed by applying a high-pass filter.  

 

1.6 CORTICAL SOURCE LOCALIZATION 

As mentioned previously, EEG records changes in scalp potentials due to cortical activity 

through a number of spatially distributed electrodes placed on the scalp. However, due in part 

to the attenuation of the signals as they pass through the tissue layers of the head, the spatial 

distribution of these recorded voltages do not accurately reflect the spatial distribution of the 

true cortical activity. The cortical activity can be computed from the EEG recordings by solving 

what is known as the inverse problem.  

 

In order to compute an inverse solution from EEG surface recordings, a forward model is 

required. Forward models predict what the EEG scalp potentials would be based on the 

conductivity information provided by the geometry of a head model. This process of generating 

the forward model solely depends on the head geometry and the electrode positions and can be 

computed independent of the actual EEG data. The head models used in the studies outlined in 

this thesis were derived from the subject’s individual head anatomy, which was acquired with 

MRI. There are several different methods that are used to model the conduction throughout the 

various tissues in the head. In our studies, we generated a realistic boundary element model 

(BEM) for each of the separate tissue compartments (skin, outer skull, inner skull, and 

gray/white matter interface). Another necessary component of the head model is the scalp 
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electrode position for each electrode. This can often be measured using a 3D localizer.  The scalp 

electrodes and MRI derived BEM models are then co-registered based on anatomical landmarks 

to determine where the electrodes are positioned in relation to the brain.  

 

With the forward model a solution to the inverse problem of localizing the cortical source 

activity can be computed in several ways. The most common methods for EEG source 

localization are minimum-norm solutions and beamformers. These spatial filters are designed 

as a constrained minimization problem. For example, the Linear Constrained Minimum 

Variance (LCMV) method (M. Yutchman 1997) is designed to pass the signal coming from a 

given spatial location while attenuating signals coming from other locations. This result is 

obtained by applying an appropriate weight vector to the signal time series in order to focus on 

processing individual source locations to explain the measured data while blocking signals 

from all other locations.  
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Chapter 2. DETECTION OF EEG HIGH GAMMA CORTICAL ACTIVITY DURING 
MOTOR IMAGERY 

 

2.1 INTRODUCTION AND BACKGROUND 

The high gamma band (70-150 Hz; HG) is a rapidly evolving, spatially localized signal (Crone et 

al. 1998; K J Miller et al. 2009) that is thought to be associated with local neuronal processing 

(Manning et al. 2009; Kai J Miller, Weaver, and Ojemann 2009). This high frequency activity has 

been found across the cortex reflecting local computation across a number of functional 

domains including sensory processing, attention, memory, and movement control. 

Additionally, invasive studies with electrocorticography (ECoG) have shown that motor 

imagery elicits HG activity in the motor cortex (K. Miller et al. 2010). Combined with the rapidly 

evolving, spatially constrained nature of the signal this makes HG band responses an attractive 

candidate for brain-computer interface (BCI) control. Unfortunately, HG activity overlaps 

entirely with the spectral bandwidth of muscle activity (20-300Hz) leading to artifacts from 

muscle activity in non-invasive electroencephalographic (EEG) recordings from the scalp. In 

addition, the high frequency band has a low signal-to-noise ratio (SNR) in EEG recordings due 

to the attenuation and smearing of electrical potentials when they diffuse through the 

intervening tissues (dura, skull, and scalp) to the surface recording electrode (Buzsáki, 

Anastassiou, and Koch 2012). Therefore, the bulk of the work done to date on HG activity has 

used invasive recording modalities where the SNR is greater and muscle artifacts almost non-

existent.  

 

It has recently been shown that HG activity can be detected non-invasively by 

electroencephalography (EEG) and magnetoencephalography (MEG). HG activity was found in 

the primary motor cortex prior to and during finger movements in EEG recordings (Ball et al. 

2008; Dalal et al. 2008; F Darvas et al. 2010) and MEG studies have demonstrated that high 
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frequencies peak around 70-80 Hz in the primary motor cortex, with a bandwidth of ~40 Hz, 

during self-paced movements of the upper and lower limbs (Cheyne et al. 2008). These peak 

frequencies and bandwidth were found to vary across individuals and the limb that is moved.   

 

During motor execution, as well as mental motor imagery, event-related desynchronization 

(ERD) can be detected both invasively and non-invasively in the mu (8-13 Hz) and the beta (18-

30 Hz) frequency ranges (McFarland et al. 2000; C Neuper and Pfurtscheller 2001; Christa 

Neuper et al. 2005). The HG signals in motor cortex during motor execution and imagery have 

been detected using invasive modalities including ECoG (K. Miller et al. 2010) and studies have 

shown HG activity in the visual cortex during a mental rotation task using MEG (De Lange et 

al. 2008), HG activity detected from non-invasive recording methods during motor imagery has 

not yet been reported. Here I present an analysis of HG activity during motor imagery using 

non-invasive EEG in healthy subjects.  

 

The following work was published in: 
 
(Smith et al. 2014). Non-invasive detection of high gamma band activity during motor 
imagery. Front. Hum. Neurosci. 8:817 
 

 
 

2.2 MATERIALS AND METHODS 

2.2.1 Subjects 

Data were recorded from ten healthy adult subjects (4 males, mean age=24.9 years, range=20-30 

years). Nine subjects were right-handed and one subject was left-handed. Subjects gave their 

informed consent according to the protocol approved by the Institutional Review Board (IRB) of 

the University of Washington.  
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2.2.2 Task 

Subjects were cued to imagine moving their fingers in a tapping sequence: pinch thumb to each 

digit once from proximal to distal and then ending the sequence by pinching thumb to ring-

finger. Subjects imagined moving both their left and right hands. During the EEG session, 

subjects were seated in a recliner and 4 blocks of 25 right and 25 left hand trials were recorded, 

totaling 100 trials per hand. The subjects had their eyes open and fixated on a fixation cross 

during rest or cue during movement. Each trial consists of a rest period of 2 s, during which a 

fixation cross was shown. At the end of that rest period the fixation cross was changed to a 

written instruction, i.e. the cue, which was either “right” for right hand imagery or “left” for left 

hand imagery. The cue was shown for 3 s and then changed back to a fixation cross, which 

concluded the trial. During each block “left” and “right” cues were presented in random order, 

for a total of 50 cues per block. 

 

Figure 2.1. Description of motor imagery task. Right or left hand cue was 
randomly presented at t =  0 and persisted for 3 seconds. Subject was able 
to perform the motor imagery task once at any time during cue 
presentation. An inter-trial interval of random length between 2-3 seconds 
was presented as a blank screen after the cue disappeared. During which 
time the subject could blink or move. A rest period consisting of 
crosshairs centered on the screen was presented for 2 seconds just before 
cue onset.   

0 

Time	
  (s) 
1 2 3 -­‐1 -­‐2 

   
Cue 

Left	
  or	
  Right 
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  Movement Rest 
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2.2.3 MRI Data Acquisition 

Scanning was conducted at 3T (Philips Achieva) using an 8-channel head-coil. For source 

estimation and cortical surface reconstruction, T1-weighted 3-dimensional high-resolution 

multi-echo MPRAGE (MEMPRAGE) structural images (with a 4 echo read out with echo times 

starting at 2 ms and stepped every 2 ms) and two Fast Low-Angle Shot (FLASH) sequences 

(Haase et al. 1986) starting at both TE 5 and 30 ms respectively (each with an echo train of 6, 

stepped every 2 ms) were acquired. All sequences were reconstructed into a 13 mm tissue space 

before head model reconstruction. 

 

2.2.4 EEG/EMG Data Acquisition 

EEG data was continuously recorded from 54 electrodes (BrainProducts 64-channel actiCAP 

(BrainProducts, Gilching, Germany)) during each block. The actiCap has a subset of electrodes 

based on the 10-20 system. A schematic of the electrode montage is shown in Fig 1. Data was 

sampled at 1200 Hz, using four GugerTec (GugerTec, Graz, Austria) EEG amplifiers recorded in 

DC, from -250 mV to +250 mV. Impedance values were kept below 20 kOhm. In parallel, we 

recorded at the same sampling rate the EMG (electromyogram) from the flexor indices from 

both hands and EOG (electrooculogram) in bipolar configurations. 

 

A 3D localizer (Patriot, Polhemus, Colchester, VT) was used to determine the electrode 

positions for each subject, as well as the positions of three anatomical landmarks: nasion, and 

the left and right pre-auricular points. 
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2.2.5 EEG/EMG Data Segmentation 

For each block, data was segmented into 5 s long segments, with time 0 s centered at the 

presentation of the cue, i.e. “left” or “right” hand imagery, resulting in a within-trial time axis 

ranging from -2 s to 3 s. The motor imagery was taking place anywhere between 0 and 3 s. The 

same segmentation was applied to EMG and EOG data. 

 

2.2.6 Head Modeling 

A 3D structural headmodel was created for each participant by averaging across all acquired 

echo times within the MEMPRAGE scan and incorporating 2 FLASH sequences (flip angle = 5 

and 30 deg) (Figure 1). We used the FreeSurfer (http://surfer.nmr.mgh.harvard.edu/) 

reconstruction software for an automated segmentation of the MR images into separate tissue 

types and boundary surfaces, specifically scalp, outer skull, inner skull and white matter/gray matter 

interface. The white/gray matter interface served as a source space for EEG source 

reconstruction. The BrainStorm software package ((Tadel et al. 2011) - 

http://neuroimage.usc.edu/brainstorm) was then used to compute a realistic boundary 

element model (BEM) for each subject. The final BEM output was used to create a forward 

model for each subject, which is a requirement for any inverse mapping of activity from the 

EEG sensors to the cortex. Scalp electrode positions, measured with a Polhemus FastTrak device 

(Polhemus, Colchester, VT), were co-registered with the MR images and thus with the 

headmodel through three anatomical landmarks: nasion, left pre-auricular point, and right pre-

auricular point.  
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Figure 2.2. An example of an individual subject’s segmented tissues from MEMPRAGE and 
FLASH MRI scans. Segmentation shows the boundaries of the scalp, outer skull, inner skull, and 
white/gray matter surfaces. 

 
 
 
 
 

2.2.7 Source Mapping 

We used a linearly constrained minimum variance (LCMV) beamformer to map from the EEG 

channel domain onto the white/gray matter interface. Similar to a minimum norm least squares 

(MNLS) estimate mapping, the LCMV beamformer provides a transfer matrix from channel 

domain to source domain, which is essential for fast computation of source maps, but produces 

more focal results (F Darvas et al. 2004). ECoG studies (Kai J Miller et al. 2007; Crone et al. 1998) 

have shown HG to be typically focal in nature and thus the LCMV provides a more accurate 

mapping of this focal source type than the MNLS method. Similar to (Felix Darvas, Rao, and 

Murias 2013), we compute a map of cortical activity for a specific frequency from a wavelet 

transform of the data, using the complex Morlet wavelet for the time-frequency decomposition. 

The beamformer weights were computed based on the broadband signal, which yields a single 

set of channel weights for each cortical source location, which are then applied to each of the 

complex wavelet transformed data. Due to the linearity of the mapping transform, the complex 

wavelet coefficients for a specific frequency for the channel data can be mapped into source 
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space by multiplication of the transfer matrix to the time by channel vector of complex 

coefficients, i.e.: 

 

𝑗! 𝑡, 𝑓 = 𝑇  𝑑! 𝑡, 𝑓 , 

 

where d is the complex wavelet transform of recorded data at time t and frequency f, T is the 

transfer matrix and j is the resulting cortical map of complex coefficients for the ith trial. The 

average time varying power or amplitude is then computed as: 

 

𝑝 𝑡, 𝑓 = 𝑗! 𝑡, 𝑓 !!
!!! (power) or  

 

𝑎 𝑡, 𝑓 = 𝑗! 𝑡, 𝑓!
!!!  (amplitude),  

 

where N is the number of trials. Here we compute amplitudes to reduce the sensitivity to 

outliers. We normalize the resulting cortical amplitude map with respect to a baseline interval (-

1s – 0s) to equalize the amplitude differences across voxels of the map, by computing Z-scores 

(see Bar et al. 2006) for similar application). The Z-scores of the amplitude time series represent 

changes in a given frequency relative to the baseline, measured in units of the standard 

deviation (over time) of the baseline. Unlike a relative percent change measure, which is 

frequently used in ERD/S analysis, the Z-scores take into account the variability of the baseline 

and thus provide a more realistic assessment of the relative change. 

 

2.2.8 Statistical Analysis 

EEG signals, especially in the HG range, are highly susceptible to noise originating from non-

cortical sources. Of particular concern is that of muscle activity (EMG), which overlaps the HG 

frequency range and exceeds cortically generated HG power by orders of magnitude. EMG 
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artifacts can arise from neck muscles, facial muscles, particularly the jaws and are difficult to 

control. During the course of the experiment, inevitably these artifacts will contaminate a 

number of trials, even in the overall absence of gross motion or position shifts of the subject. 

Since the sources of these artifacts are random, removal of these artifacts from the signal of 

interest based on stable spatial patterns across the sensors is difficult. In order to control for 

these artifacts, we removed any contaminated trials from the study. Unlike cortical sources, the 

EMG spectrum increases in power over a much wider range, thus excessive increase in power 

above 100 Hz, very large increases in HG power (>99 percentile of the overall HG power over 

time) or synchronous increases in multiple channels were identified as artifacts. Artifact 

contamination in the analysis of event related synchronization (ERS) is additionally confounded 

by the fact that we average over powers, i.e. the errors in the average due to artifacts do not 

cancel out. Therefore, significant changes in mean amplitude or power, in the time evolution of 

HG power, can easily be attributed to a single artifact contaminated trial.  

To ensure the stability (across trials) and significance of HG changes during motor imagery, we 

applied a permutation test. We tested for a significant increase of HG amplitude during the 

period of the paradigm where the subject was instructed to imagine movement. Here we 

consider an interval from t=0s (presentation of instruction, i.e. cue, to imagine either left or right 

hand movement) to 1s. The permutation test has the advantage of not having to make any 

assumptions about the null hypothesis, i.e. HG activity during periods of non-motor imagery. 

Furthermore, it allows us to test for non-linear statistics of the data (here the maximum HG 

power change over the cortical volume and over time) and it is less sensitive to outliers in single 

trials, thus ensuring trial-to-trial stability of the average HG power. For the permutation test, 

which is described in detail in (Pantazis et al. 2005), we randomly exchange a one second 

interval from (-1s to 0s) of the base line with the signal interval (0s – 1s) for half of all the trials, 

before computing the average time varying amplitude for a given frequency across trials.  
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Such a surrogate signal is computed for every voxel in our cortical map. By repeating this step n 

times, we can build up a histogram for any statistic we wish to compute on the amplitude Z-

scores. Since we postulate an increase in HG amplitude in the signal interval, we chose the 

maximum of the Z-score over the signal period. Since motor imagery is subject initiated, we 

expect onset times of any HG changes to vary substantially between subjects. By taking the 

maximum over the signal interval, our statistic is independent of individual variation in that 

period. Also, for the permutation test, we avoid having to correct resulting p-values of the test 

for multiple comparisons across different time points. Non invasive, scalp based approaches (F 

Darvas et al. 2010; Cheyne et al. 2008; Felix Darvas, Rao, and Murias 2013) have shown that HG 

activity in the motor system is relatively narrow band and can vary across individuals. 

Therefore, for the permutation test, we test over the whole band from 70 Hz to 100 Hz in 1 Hz 

steps and again, choose the maximum Z-score across frequencies. Finally, due to the variant 

spatial resolution of the inverse mapping, we also select the maximum across all voxels of the 

map, i.e. the whole cortex. By building a histogram over the maximum in time, frequency, and 

space, we avoid having to correct the resulting p-values for any multiple comparisons. The 

permutation test also implicitly examines trial-to-trial stability of the average. That is, since any 

outlier trial with large HG power in the signal interval, which could cause the average HG 

power to be high as well, has a 50% chance of being permuted with a baseline segment and 

would skew the baseline HG power distribution in the same manner, the resulting average 

power would consequently no longer be in the tail end of the baseline distribution. Therefore, 

increases in the average HG power over trials in the signal period due to outliers will be tested 

as non-significant. 

2.2.9 EMG/EOG Data Processing 

EMG and EOG are sources of noise in the HG band and can exceed the cortical signal 

considerably.  EOG electrodes were placed approximately 1 cm above the left and right brows 

and 1 cm below left and right eyes. Through the permutation test on the EEG data, we can make 
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sure that any significant HG effects observed in the data are not due to transient, non- stimulus 

induced HG activity originating from either EMG or EOG. However, any stimulus-induced, 

systematic EMG or EOG activity that would introduce an artifact into the EEG would still pass 

the permutation test. In order to rule out such systematic contamination, we compute the 

average EMG and EOG HG power over all trials. This was then subsequently entered into the 

EEG source analysis to identify systematic increases in HG in the EMG and EOG channels. 

Since EMG and EOG are typically of broadband nature, in the range from 70-100 Hz, we band 

pass filtered both signal types for each subject and side and computed the mean amplitude from 

the Hilbert transform of the 70-100 Hz filtered signals. Because the human brain’s power 

spectrum recorded non-invasively hits the noise floor at around 100 Hz, this 70-100 Hz band 

pass filter was applied to EEG recordings.  

 

2.1 RESULTS 

2.1.1 HG EEG Activity 

EEG and MRI data were collected on separate days in the same group of ten subjects (see Figure 

2.3 for the EEG montage used).  
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Figure 2.3. Schematic view of the EEG montage and cortical 
surface used for EEG data acquisition.  

 
 
 
 

 
The only significant task induced EMG activity between 0 and 2000 ms after motor imagery cue 

onset was found in subject 4 (Figures 2.4 & 2.5). There was significant increase in EOG activity 

in subject 5 after 2000 ms, but also not overlapping with any cortical HG activity (Figures 2.5 & 

2.6). 
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Figure 2.4. EMG HG magnitude of the left hand during left hand motor imagery. 
EEG recording sessions (n=10). EMG activity was averaged over all trials that were 
not contaminated by artifacts.  

 
 
 
 



 

 

29 

 
 
 

Figure 2.5. EMG HG magnitude of the right hand during right hand motor 
imagery EEG recording sessions (n=10). EMG activity was averaged between all 
trials that were not contaminated by artifacts.  
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Figure 2.6. EOG HG magnitude during left hand EEG motor imagery recording 
sessions (n=10). EOG activity was averaged over all trials that were not 
contaminated by artifacts.  
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Figure 2.7. EOG HG magnitude during right hand EEG motor imagery recording 
sessions (n=10). EOG activity was averaged over all trials that were not 
contaminated by artifacts.  
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Significant HG increases were found to occur between 0.3s to 1.0s during the task period. 

Baseline was selected from -1s to 0s and the cortical distributions of relative change in the HG 

band were determined. Peak HG frequencies for each subject are shown in Table 1. Time-

frequency representations were computed for each individual subject for the most significant 

voxel in the cortex after motor imagery cue onset (Subjects 5 and 8 shown in fig. 9. The 

remaining 8 subjects are shown in fig. 10 and fig. 11). Subjects showed significant HG activity in 

narrow bands that were centered between 70 and 90 Hz. In addition, most subjects showed a 

decrease in beta band activity that preceded power increases in the HG band, at the sites of HG 

activity. Because this result is commonly noted during motor imagery tasks and replicates a 

well-characterized phenomenon (F Darvas et al. 2010) it is likely an additional indicator that the 

recorded HG activity is of genuine cortical origin. Group averages of this beta band decrease are 

shown as cortical representations in fig. 12. 
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Table 2.1. Peak HG frequencies between cue onset and 1s post cue onset 
during left hand (LH) and right hand (RH) motor imagery EEG sessions.  
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Figure 2.8. Z-score time-frequency maps for subjects 5 and 8 for the cortical regions indicated on 
the cortical surface displayed in the upper left corner. The maps show that subjects have significant 
HG increases post-cue in a narrow band. A) Time-frequency maps during left hand motor imagery. 
B) Time-frequency maps during right hand motor imagery.  
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Figure 2.9. Z-score time-frequency maps during left hand motor imagery of the 8 
remaining subjects for the cortical regions indicated on the cortical surface displayed 
in the upper left corner. The maps show that subjects have significant HG increases 
post-cue in a narrow band.  
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Figure 2.10. Z-score time-frequency maps during right hand motor imagery of the 8 
remaining subjects for the cortical regions indicated on the cortical surface displayed 
in the upper left corner. The maps show that subjects have significant HG increases 
post-cue in a narrow band. 
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Figure 2.11. Z-score group average maps of beta band activity (15-35 Hz) 
of all subjects (n=10). Activity was mapped in Montreal Neurological 
Institute (MNI) space. A) Averaged beta activity during left hand motor 
imagery. B) Averaged beta activity during right hand motor imagery. The 
threshold for the group average was set at Z=0.72, corresponding to 2.3 in 
a normal distribution or a 99% confidence level. 

 

 

 

2.2 DISCUSSION  

Our results show that HG activity during motor imagery can be recovered with EEG using an 

individual subject’s anatomical head model and inverse modeling methods. This high 

frequency spectral power change has been shown to correlate directly with firing rate 

(Whittingstall and Logothetis 2009; Manning et al. 2009; K J Miller et al. 2009) and has been 

demonstrated to reflect broad spectral changes across all frequencies (Kai J Miller et al. 2007; K J 

Miller et al. 2009).  

 

Taken together, these results suggest that EEG can accurately resolve spatially specific estimates 

of local cortical high frequency signals, potentially opening an avenue for characterizing HG 
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signals from diverse sets of neurologically impaired populations, including various 

neurodegenerative disorders. Research shows that event-related oscillations in alpha, beta, 

gamma, delta, and theta frequency bands are highly modified in pathological brains, especially 

in patients with cognitive impairment (Başar et al. 2012; Basar-Eroglu, Schmiedt-Fehr, and 

Mathes 2012; Yener and Bajar 2012; Ozerdem et al. 2012; Vecchio et al. 2013; Yener and Basar 

2012). Non-invasive EEG signals in these subject populations are currently only detected up to 

the beta frequency range, oscillations that are focally non-specific and likely represent an 

amalgamated signature of numerous anatomical substrates. There is growing evidence 

supporting the idea that disorders such as Alzheimer’s disease target specific and functionally 

connected neuronal networks (Reid and Evans 2013). Thus, the non-invasive resolution of HG 

signals, which are believed to represent the activation of focal neural populations, may provide 

insights into specific neurophysiology mechanisms underlying neurodegenerative disorders 

such as Parkinson’s and Alzheimer’s. These gamma modulations could prove to be a useful 

electrophysiological biomarker to examine the pathophysiology of such neurological diseases. 

 

HG EEG activity related to motor imagery 

Frontal eye fields (FEF) in the prefrontal cortex are thought to play a key role in the planning 

and execution of saccadic eye movements, as well as visual selective attention (Bullier 2001; 

Russo and Bruce 1994). MEG studies have indicated that early HG activity over the right FEF is 

present during saccade preparation. During saccade execution, HG activity is observed in the 

supplementary eye fields (SEF), then subsequently progresses to the visual cortex and FEF 

bilaterally (Hinkley et al. 2011). In addition to FEF, it has been suggested that transient increases 

in scalp EEG gamma band power (above 30 Hz) in the parietal-occipital cortex can be linked to 

task-related saccadic eye movements (Reva and Aftanas 2004; Yuval-Greenberg et al. 2008; 

Trujillo et al. 2005). Yuval-Greenberg and colleagues (2008) showed data that indicates the 

broadband (30-90 Hz) and transient (between 200-300 ms) gamma activity recorded with EEG in 

the parietal-occipital cortex mirrors eye movements following the display of a new image and 
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that this gamma signal may be the consequence of associated ocular muscle artifacts 

engendered from miniature saccades. Invasive studies showed that saccadic ocular muscle 

activity might generate gamma-range artifacts in ECoG data that is confined to the medial 

temporal pole and is likely due to its immediate vicinity to the lateral rectus eye muscle (Jerbi et 

al. 2009). The results from the present study do not show significant increases in HG activity 

during the cued baseline period, indicating that the HG activity we see after cued motor 

imagery onset is related to motor imagery and not activity induced during miniature saccades.  

 

HG EEG as a control signal for brain-computer interface 

In the sensorimotor areas of the cortex, motor imagery has been found to be associated with 

increases in the HG band, as well as decreases in the beta and mu bands. Because these cortical 

rhythms can be intentionally modulated by motor imagery, they have been used in non-

invasive (i.e. mu and beta) (Pfurtscheller et al. 2003; Pfurtscheller and Neuper 2006) and 

invasive (HG, mu and beta) brain-computer interface studies as a control signal (Leuthardt et al. 

2006). In addition to control signals, motor imagery-based BCIs have recently shown great 

potential for restoring lost function and inducing activity-dependent brain plasticity in patients 

suffering from paralysis due to stroke (Bai et al. 2008; Buch et al. 2008; Bundy et al. 2012). 

However, current non-invasive motor imagery-based BCI research has been based on the low 

spatial resolution offered by EEG/MEG electrodes and spatially broad mu and beta rhythms, 

resulting in unreliable and coarse BCI control with average information transfer rates in the 

range 10-20 bits/min for motor-imagery BCIs (Rao 2013). The overall efficacy of these systems is 

limited due to the time it takes for the low frequency rhythm’s amplitudes to evolve, which is 

on the order of several hundred milliseconds (Pfurtscheller and Lopes da Silva 1999). Ideally, a 

smaller response lag is desired, i.e. 100 ms or less, to ensure a more fluid alternative for device 

control and rehabilitation. The HG rhythms that we were able to detect in this study, with their 

increased spatiotemporal resolution and greater task specificity, have the potential to enhance 

the performance of EEG-driven orthotic and prosthetic devices by allowing the brain to interact 
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with assistive devices on a more natural timescale.  In addition, the demonstrated ability to 

detect HG changes offline and non-invasively, a major strength of using EEG, will enable the 

development of paradigms that allow the neurophysiological functions in humans to be studied 

non-invasively on a more global scale compared to ECoG. 
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Chapter 3. CORRELATION BETWEEN EEG HG AND FMRI BOLD ACTIVITY 

 

3.1 INTRODUCTION AND BACKGROUND 

In order to examine the relationship between fMRI and the underlying neurophysiological 

responses several studies have compared local field potentials (LFPs), single-unit, and multi-

unit spiking activity in functionally relevant areas of cortex with blood-oxygen-level-dependent 

(BOLD) signal responses (Logothetis et al. 2001; Mukamel et al. 2005; Niessing et al. 2005). 

These studies found a positive correlation between the high frequency power changes in the 

LFPs and BOLD signal changes. However, the cortical regions surrounding the functionally 

relevant areas were not examined and it is unclear whether these regions have 

neurophysiological correlates as well. It may be expected that they do because typical BOLD 

activity maps display large BOLD signal changes in cortical areas known to be related to the 

behavior being performed, as well as weaker, more variable signal changes in the surrounding 

areas (Rombouts et al. 1997; Saad et al. 2003).  

 

Two recent studies (Conner et al. 2011; Hermes et al. 2012) examined the correlation of the 

BOLD signal and spectral power changes measured by ECoG. Hermes and colleagues (Hermes 

et al. 2012) found that spectral power increases in the high frequency range co-localized with 

spatially focal BOLD peaks on primary sensorimotor areas, while Conner et al. (2011) showed a 

positive correlation between BOLD activity and HG in pre and post central cortical areas (i.e. 

covering motor areas) and negative correlations with the beta frequency band. 

 

However, ECoG recordings only provide a limited neurophysiological correlation because they 

do not record from the whole brain. Non-invasive studies with simultaneous EEG and fMRI 

have reported negative correlations with BOLD in the low frequency (4-30 Hz) range of the 

spectrum (Yuan et al. 2010), but the spatial association between whole-brain HG band neural 
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activity detected by EEG and the hemodynamic changes of the fMRI BOLD signal has not been 

reported. The remainder of this chapter presents an analysis comparing the HG activity 

measured non-invasively with EEG and the BOLD response measured with fMRI for a motor 

imagery paradigm.  

 

The following work was published in:  
 
(Smith et al. 2014). Non-invasive detection of high gamma band activity during motor 
imagery. Front. Hum. Neurosci. 8:817 
 

 

3.2 MATERIALS AND METHODS 

3.2.1 Subjects 

Data were recorded from the same population of ten healthy adult subjects (4 males, mean 

age=24.9 years, range=20-30 years) mentioned in chapter 2. Nine subjects were right-handed 

and one subject was left-handed. Subjects gave their informed consent according to the protocol 

approved by the Institutional Review Board (IRB) of the University of Washington.  

3.2.2 Task 

For both fMRI and EEG sessions, subjects were cued to imagine moving their fingers in a 

tapping sequence: pinch thumb to each digit once from proximal to distal and then ending the 

sequence by pinching thumb to ring-finger. Subjects imagined moving both their left and right 

hands. During the EEG session, subjects were seated in a recliner and 4 blocks of 25 right and 25 

left hand trials were recorded, totaling 100 trials per hand. The subjects had their eyes open and 

fixated on a fixation cross or cue. Each trial consists of a rest period of 2 s, during which a 

fixation cross was shown. At the end of that rest period the fixation cross was changed to a 

written instruction, i.e. the cue, which was either “right” for right hand imagery or “left” for left 

hand imagery. The cue was shown for 3 s and then changed back to a fixation cross, which 
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concluded the trial. During each block “left” and “right” cues were presented in random order, 

for a total of 50 cues per block. 

 

3.2.3 MRI/fMRI Data Acquisition 

Scanning was conducted at 3T (Philips Achieva) using an 8-channel head-coil. For source 

estimation and cortical surface reconstruction, T1-weighted 3-dimensional high-resolution 

multi-echo MPRAGE (MEMPRAGE) structural images (with a 4 echo read out with echo times 

starting at 2 ms and stepped every 2 ms) and two Fast low-angle shot (FLASH) sequences 

(Haase et al. 1986) starting at both TE 5 and 30 ms respectively (each with an echo train of 6, 

stepped every 2 ms) were acquired. All sequences were reconstructed into a 13 mm tissue space 

before head model reconstruction. 

 

Whole brain functional images for each task-based scan were collected using a gradient echo 

T2* weighted sequence (TE/TR = 21/2000 ms, matrix size 80x80). Subjects participated in a 

standard block-designed fMRI task of imagined movement, with randomly presented blocks of 

left & right imagery as well as rest. A total of 15 blocks were presented, with each conditional 

block being presented 5 times. No condition was repeated. Each block consisted of 10 visually 

presented cues (left, right or rest) in the center of the screen for 2 seconds followed by a 2 

second inter-trial interval. Each block lasted for 40 sec. The experiment began and terminated 

with a 40 sec rest period.  

 

3.2.4 EEG/EMG Data Acquisition 

EEG data was continuously recorded from 54 electrodes (BrainProducts 64-channel actiCAP 

(BrainProducts, Gilching, Germany)) during each block. The actiCap has a subset of electrodes 

based on the 10-20 system. A schematic of the montage is shown in Fig 1. Data was sampled at 

1200 Hz, using four GugerTec (GugerTec, Graz, Austria) EEG amplifiers recorded in DC, from -
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250 mV to +250 mV. Impedance values were kept below 20 kOhm. In parallel, we recorded at 

the same sampling rate the EMG (electromyogram) from the flexor indices from both hands and 

EOG (electro-oculogram) in bipolar configurations.  

 

A 3D localizer (Patriot, Polhemus, Colchester, VT) was used to determine the electrode 

positions for each subject as well as the positions of three anatomical landmarks: nasion, and the 

left and right pre-auricular points.   

 

3.2.5 EEG/EMG Data Segmentation 

For each block, data was segmented into 5 s long segments, with time 0 s centered at the 

presentation of the cue, i.e. “left” or “right” hand imagery, resulting in a within-trial time axis 

ranging from -2 s to 3 s. The motor imagery was taking place anywhere between 0 and 3 s. The 

same segmentation was applied to EMG and EOG data. 

 

3.2.6 Head Modeling 

A 3D structural headmodel was created for each participant by averaging across all acquired 

echo times within the MEMPRAGE scan and incorporating 2 FLASH sequences (flip angle = 5 

and 30 deg). We used the FreeSurfer (http://surfer.nmr.mgh.harvard.edu/) reconstruction 

software for an automated segmentation of the MR into separate tissue types and boundary 

surfaces, specifically scalp, outer skull, inner skull and white matter/gray matter interface. The latter 

served as a source space for EEG source reconstruction. The BrainStorm software package 

((Tadel et al. 2011) - http://neuroimage.usc.edu/brainstorm) was then used to compute a 

realistic boundary element model (BEM) for each subject. The final BEM output was used to 

create a forward model for each subject, which is a requirement for any inverse mapping of 

activity from the EEG sensors to the cortex. Scalp electrode positions, measured with a 

Polhemus FastTrak device (Polhemus, Colchester, VT), were co-registered with the MR images 
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and thus with the headmodel through three anatomical landmarks: nasion, left pre-auricular 

point, and right pre-auricular point.  

 

3.2.7 Source Mapping 

We used a linearly constrained minimum variance (LCMV) beamformer to map from the EEG 

channel domain onto the white/gray matter interface. Similar to a minimum norm least squares 

(MNLS) estimate mapping, the LCMV provides a transfer matrix from channel domain to 

source domain, which is essential for fast computation of source maps, but produces more focal 

results (F Darvas et al. 2004). ECoG studies (Kai J Miller et al. 2007; Crone et al. 1998) have 

shown HG to be typically focal in nature and thus the LCMV provides a more accurate 

mapping of this focal source type than e.g. the MNLS method. Similar to (Felix Darvas, Rao, 

and Murias 2013), we compute a map of cortical activity for a specific frequency from a wavelet 

transform of the data, using the complex Morlet wavelet for the time-frequency decomposition. 

The beamformer weights were computed based on the broadband signal, which yields a single 

set of channel weights for each cortical source location, which are then applied to each of the 

complex wavelet transformed data. Due to the linearity of the mapping transform, the complex 

wavelet coefficients for a specific frequency for the channel data can be mapped into source 

space by multiplication of the transfer matrix to the time by channel vector of complex 

coefficients, i.e.: 

 

𝑗! 𝑡, 𝑓 = 𝑇  𝑑! 𝑡, 𝑓 , 

 

where d is the complex wavelet transform of recorded data at time t and frequency f, T is the 

transfer matrix and j is the resulting cortical map of complex coefficients for the ith trial. The 

average time varying power or amplitude is then computed as: 
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𝑝 𝑡, 𝑓 = 𝑗! 𝑡, 𝑓 !!
!!! (power) or  

 

𝑎 𝑡, 𝑓 = 𝑗! 𝑡, 𝑓!
!!!  (amplitude),  

 

where N is the number of trials. Here we compute amplitudes, to reduce the sensitivity to 

outliers. We normalize the resulting cortical amplitude map with respect to a baseline interval (-

1s – 0s) to equalize the amplitude differences across voxels of the map by computing Z-scores 

(see (Bar et al. 2006) for similar application). The Z-scores of the amplitude time series represent 

changes in a given frequency relative to the baseline, measured in units of the standard 

deviation (over time) of the baseline. Unlike a relative percent change measure, which is 

frequently used in ERD/S analysis, the Z-scores take into account the variability of the baseline 

and thus provide a more realistic assessment of the relative change. 

 

3.2.8 Statistical Analysis  

fMRI/MRI 

fMRI data processing was carried out using FEAT (FMRI Expert Analysis Tool) Version 5.98, 

part of FSL (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl). The preprocessing pipeline 

included motion correction, high-pass temporal filtering for removal of liner drift, a spatial filter 

of 5 mm full-width half maximum (FWHM) and a pre-whitening filter to remove signal 

autocorrelations throughout the time-course. BOLD responses were estimated on an individual 

subject basis by applying a box-car, general-linear model design with a standard hemodynamic 

response convolution. Whole-brain BOLD activity was contrasted between active (left or right) 

and rest periods, converted into Z-scores and with a threshold at Z > 2.3 (uncorrected). Clusters 

of significant activity were masked into regions of interest (ROIs). For each participant, all 

functional data sets were co-registered into native MPRAGE space using a rigid-body (6 degrees 

of freedom) registration and trilinear interpolation.  
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EEG 

EEG signals, particularly in the HG range, are highly susceptible to noise originating from non-

cortical sources. Of particular concern is that of muscle activity (EMG), which overlaps the HG 

frequency range and exceeds cortically generated HG power by orders of magnitude. EMG 

artifacts can arise from neck and facial muscles, particularly muscles in the jaws, and are 

difficult to control. During the course of the experiment, inevitably these artifacts will 

contaminate a number of trials, even in the overall absence of gross motion or position shifts of 

the subject. Since the sources of these artifacts are random, removal of these artifacts from the 

signal of interest based on stable spatial patterns across the sensors is difficult. In order to 

control for these artifacts, we remove any contaminated trials from the study. Unlike cortical 

sources, the EMG spectrum increases in power over a much wider range, thus excessive 

increase in power above 100 Hz, very large increases in HG power (>99 percentile of the overall 

HG power over time) or synchronous increases in multiple channels were identified as artifacts. 

Artifact contamination in the analysis of event related synchronization (ERS) is additionally 

confounded by the fact that we average over powers, i.e. the errors in the average due to 

artifacts do not cancel out. Therefore significant changes in mean amplitude or power, e.g.in the 

time evolution of HG power can easily be attributed to a single artifact contaminated trial.  

To ensure the stability (across trials) and significance of HG changes during motor imagery, we 

applied a permutation test. We tested for a significant increase of HG amplitude during the 

period of the paradigm where the subject was instructed to imagine movement. Here we 

consider an interval from t=0s (presentation of instruction, i.e. cue, to imagine either left or right 

hand movement) to 1 s. The permutation test has the advantage of not having to make any 

assumptions about the null hypothesis, i.e. HG activity during periods of non-motor imagery. 

Furthermore, it allows us to test for non-linear statistics of the data (here the maximum HG 

power change over the cortical volume and over time) and it is less sensitive to outliers in single 
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trials, thus ensuring trial-to-trial stability of the average HG power. For the permutation test, 

which is described in detail in (Pantazis et al. 2005), we randomly exchange a one second 

interval from (-1s to 0s) of the base line with the signal interval (0s – 1s) for half of all the trials, 

before computing the average time varying amplitude for a given frequency across trials.  

Such a surrogate signal is computed for every voxel in our cortical map. By repeating this step n 

times, we can build up a histogram for any statistic we wish to compute on the amplitude Z-

scores. Since we postulate an increase in HG amplitude in the signal interval, we chose the 

maximum of the Z-score over the signal period. Since motor imagery is subject initiated, we 

expect onset times of any HG changes to vary substantially between subjects. By taking the 

maximum over the signal interval, our statistic is independent of individual variation in that 

period. Also, for the permutation test, we avoid having to correct resulting p-values of the test 

for multiple comparisons across e.g. different time points. Non invasive, scalp based 

approaches (F Darvas et al. 2010; Cheyne et al. 2008; Felix Darvas, Rao, and Murias 2013) have 

shown that HG activity in the motor system is relatively narrow band and can vary across 

individuals. Therefore, for the permutation test, we test over the whole band from 70 Hz to 100 

Hz in 1 Hz steps and again, choose the maximum Z-score across frequencies. Finally, due to the 

variant spatial resolution of the inverse mapping, we also select the maximum across all voxels 

of the map, i.e. the whole cortex. By building a histogram over the maximum in time, frequency 

and space, we avoid having to correct the resulting p-values for any multiple comparisons. The 

permutation test also implicitly examines trial-to-trial stability of the average. That is, since any 

outlier trial with large HG power in the signal interval, which could cause the average HG 

power to be high as well, has a 50% chance of being permuted with a baseline segment and 

would skew the baseline HG power distribution in the same manner, the resulting average 

power would consequently no longer be in the tail end of the baseline distribution. Therefore, 

increases in the average HG power over trials in the signal period due to outliers will be tested 

as non-significant 
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3.2.9 EMG/EOG Data Processing 

EMG and EOG are sources of noise in the HG band and can exceed the cortical signal 

considerably.  EOG electrodes were placed approximately 1 cm above the left and right brows 

and 1 cm below left and right eyes. Through the permutation test on the EEG data, we can make 

sure that any significant HG effects observed in the data are not due to e.g. transient, non- 

stimulus induced HG activity originating from either EMG or EOG. However, any stimulus-

induced, systematic EMG or EOG activity that would introduce an artifact into the EEG would 

still pass the permutation test. In order to rule out such systematic contamination, we compute 

the average EMG and EOG HG power over all trials. This was then subsequently entered into 

into the EEG source analysis to identify systematic increases in HG in the EMG and EOG 

channels. Since EMG and EOG are typically of broadband nature, in the range from 70-100 Hz, 

we band pass filtered both signal types for each subject and side and computed the mean 

amplitude from the Hilbert transform of the 70-100 Hz filtered signals. Because the human 

brain’s power spectrum recorded non-invasively hits the noise floor at around 100 Hz, this 70-

100 Hz band pass filter was applied to EEG recordings.  

 

3.2.10 Determining Goodness of Match Between EEG HG and fMRI and its Significance 

In order to determine how well the HG EEG map and the fMRI match, we group the significant 

fMRI activity and significant HG activity (i.e. at p<0.1) into contiguous clusters on the cortical 

surface. For each cluster we compute a centroid position and a mean spherical radius, i.e. the 

mean distance of each cluster member from the center. For each EEG and fMRI cluster, we 

compute the distance between modalities as the distance between the centroids minus the 

sphere-radius for each cluster. Negative distances, due to overlap of clusters, are set to zero. For 

all fMRI clusters, we select the distance to the nearest EEG cluster. If there are more fMRI 

clusters than EEG clusters, we select smallest distances, matched to the number of EEG clusters. 
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A compound measure is formed by taking the median across these minimal distances. This will 

serve as our assessment of the goodness of match between solutions.  

  

Using 3D distances instead of actual geodesic distances on the folded cortical surface is a 

simplification of the ground truth match between modalities. However, deviations from the 

‘true’ distance are expected to be small, as we expect this value to be dominated by gross 

mismatches on the order of several centimeters and our measure merely serves as proxy for the 

goodness of match.  

 

To compute statistical significance for our goodness-of-fit measures, we resampled the fMRI 

clusters on the cortical surface for each subject and condition (left or right imagery), where we 

keep the number of clusters and the cluster size constant between our permutation and the 

original. Thus we can build a histogram of goodness of match values for arbitrary fMRI 

solutions of similar shape to the original. A p-value, and thus a measure of the specificity of the 

actual match, is derived by comparing the actual measure vs. the resampled value. We generate 

1000 resamples per subject and condition to provide for a sufficient accuracy of the computed p-

values. 

 

3.3 RESULTS 

3.3.1 HG EEG Activity 

EEG and fMRI data were collected on separate days in the same group of ten subjects using 

identical behavioral protocols (see fig. 1 for the EEG montage used). As stated previously in 

chapter 2, the only significant task induced EMG activity between 0 and 2000 ms after motor 

imagery cue onset was found in subject 4 (fig. 2 & 3). There was significant increase in EOG 

activity in subject 5 after 2000 ms, but also not overlapping with any cortical HG activity (fig. 4 

& 5). 
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The EEG results show significant power increases in the HG band during motor imagery (fig. 6 

for subjects 5 and 8. For the remaining 8 subjects, see fig. 7 and fig. 8). These power increases 

were spatially focal and mostly restricted to the sensorimotor areas of the contralateral cortex, 

but do cover other cortical areas, not typically associated with motor imagery as well. Single-

subject fMRI activity, which is also shown in figures 5-8, also does overlap in most subjects with 

the EEG reconstruction, but also shows unrelated activity. We find at least one cluster with 

p<0.05 in 9 out 10 subjects for right hand imagery and in 8 out of 10 subjects for left hand 

imagery. Two subjects had only HG activity with p<0.1 for one side (subject 6 for left hand 

imagery and subject #9 for right hand imagery). Subject #10 had no significant HG activity for 

left hand imagery. 
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Figure 3.1. EEG and fMRI BOLD activity mapped to realistic cortical headmodels of 
subjects 5 and 8. The cortical surfaces have been smoothed for better visibility. Blue 
indicates significant fMRI BOLD activity at Z-score > 2.3. Red indicates significant EEG 
HG activity at Z >7, the black contour line shows HG at p <= 0.1, the green contour line 
shows HG at p <= 0.05, and yellow colored areas show overlap between fMRI and EEG. 
A) Cortical activity during left hand motor imagery. B) Cortical activity during right hand 
motor imagery.  
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Figure 3.2.  EEG and fMRI BOLD activity mapped to realistic cortical 
headmodels of 7 of the remaining subjects during left hand motor 
imagery. The cortical surfaces have been smoothed for better visibility. Blue 
indicates significant fMRI BOLD activity at Z-score > 2.3. Red indicates 
significant EEG HG activity at Z >7, the black contour line shows HG at p <= 
0.1, the green contour line shows HG at p <= 0.05, and yellow colored areas 
show overlap between fMRI and EEG. A) Cortical activity during left hand 
motor imagery. B) Cortical activity during right hand motor imagery. 
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Figure 3.3. EEG and fMRI BOLD activity mapped to realistic cortical 
headmodels of the 8 remaining subjects during right hand motor imagery. 
The cortical surfaces have been smoothed for better visibility. Blue indicates 
significant fMRI BOLD activity at Z-score > 2.3. Red indicates significant 
EEG HG activity at Z >7, the black contour line shows HG at p <= 0.1, the 
green contour line shows HG at p <= 0.05, and yellow colored areas show 
overlap between fMRI and EEG. A) Cortical activity during left hand motor 
imagery. B) Cortical activity during right hand motor imagery. 
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3.3.2 Spatial Correlation Between fMRI BOLD Response and EEG HG Activity 

The task-related fMRI BOLD changes are also shown in Fig. 6 along with the EEG source 

changes in HG bands on an inflated cortical surface for the imagination of movement of the left 

and right hands for subjects 5 and 8 (data for the remaining eight subjects are shown in fig. 7 

and fig. 8). Individual fMRI results showed BOLD signal increases both in the sensorimotor 

areas as well as additional BOLD signal increases in the surrounding cortical areas that are 

varied across subjects. Averages of the fMRI activity during the motor imagery of the left and 

right hand of all ten subjects are shown in fig. 3.4. Individual fMRI activity spatially co-localizes 

with the EEG locations of significant power increases in the HG band in most subjects, albeit 

due to the sometimes more widespread fMRI activity. We find our measure of proximity 

ranging from 3 to 32 mm (mean 14 mm, 8 mm std.) across all subjects and conditions (except for 

subject 10, left imagery, where no match exists). P-values range from p<0.001 to p<0.84, but we 

find across 7 subjects at least 1 condition with p<0.05 and among those 2 with both conditions at 

p<0.05. Distances and p values are listed in table 2. In most cases there is a correlation between 

small proximity measures and significance, but in cases where there are many fMRI clusters 

spread out across the cortex, the specificity of the solution remains still small. 
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Figure 3.4. Z-score group average fMRI BOLD maps of all subjects 
(n=10). fMRI BOLD activity was averaged from all subjects in standard 
Montreal Neurological Institute (MNI) space. A) Averaged fMRI BOLD 
activity during left hand motor imagery. B) Averaged fMRI BOLD activity 
during right hand motor imagery. The threshold was determined from a 
mixed effect model, correcting for multiple comparisons at the group 
level, using a Gaussian weighted cluster correction at p < 0.05.  

 
 
 
 

Table 3.1. Results of the proximity analysis for all 10 subjects and 
left/right imagery. 
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3.4 DISCUSSION  

In this study, we aimed to recover motor-imagery-related EEG changes in the HG band and 

examine its spatial overlap with evoked hemodynamic responses. To study this, we collected 

EEG and fMRI BOLD data of subjects performing a left and right hand motor imagery task in 

separate sessions. We compared spatial maps of fMRI BOLD signal changes to HG spectral 

power changes in the measured EEG potential during the motor imagery task. Both modalities 

were carefully co-registered to allow for direct comparison. Our results show that HG activity 

during motor imagery can be recovered with EEG using an individual subject’s anatomical 

head model and inverse modeling methods. This high frequency spectral power change has 

been shown to correlate directly with firing rate (Whittingstall and Logothetis 2009; Manning et 

al. 2009; K J Miller et al. 2009) and has been demonstrated to reflect broad spectral changes 

across all frequencies (Kai J Miller et al. 2007; K J Miller et al. 2009). Furthermore, cortical 

increases in HG band activity recorded with EEG co-localized with an increase of the fMRI 

BOLD signal.  

 

EEG HG and fMRI co-localization within the motor network 

Group averaged beta decreases across the motor system during EEG recordings and increases 

of the fMRI BOLD signal show spatial co-localization, but individual HG results co-localize best 

to individual fMRI results and do not produce a coherent grand-average map. This is consistent 

with ECoG studies that show HG is better than beta frequencies in terms of localization on an 

individual basis (Hermes et al. 2012). In addition to motor cortex, EEG HG and fMRI activity 

were found in other cortical areas, which did not overlap when subjected to averaging to 

common brainspace (MNI152). This is different from our earlier work on HG activity during 

overt movement (F Darvas et al. 2010), where a generic model was used to map HG activity, but 

more importantly active movement was used and the EEG signal was segmented based on 
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actual EMG onset. This can be expected to produce a stronger and temporally better aligned HG 

response than motor imagery, where the only indication of onset of activity is given by the cue.  

 

Since fMRI measures blood oxygenation as a proxy for neuronal activity and the EEG signal is a 

direct measure of the activity of large groups of coherently active neurons, co-localization of the 

two modalities is not strictly necessary. Additionally, different layers of neurons in the 

generation of the two signals are involved (Nunez and Silberstein 2000), which can overlap in 

activation for a given task, but do not have to. 

 

The scattered nature of the EEG localization, but also of the fMRI activity in our results could be 

attributable to differences in a subject’s imagery strategy. Additionally, any EEG inverse 

mapping method is prone to localization errors, e.g. the LCMV beamformer that we used, can 

introduce spurious spatial localizations, even from single “true” sources, where the time series 

of the reconstructed sources matches the original source, thus leading to a robust result with 

our trial-to-trial stability test. 
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Chapter 4. DETECTION OF CORTICAL MOTOR ACTIVITY WITH SUBDERMAL 
ELECTRODES 

4.1 INTRODUCTION AND BACKGROUND 

Long-term EEG monitoring is useful for monitoring physiological changes in brain function, 

such as epileptic seizures, as well as changes in brain signals that can be used to control brain-

computer interface (BCI) devices. However, continuous, long-term EEG monitoring is difficult 

to perform on awake, ambulatory patients due to increased artifacts from muscles and 

electronic interference. Current surface EEG systems require continuous supervision with 

frequent electrode readjustments to acquire quality data over extended periods of time (days to 

months). In addition, common artifacts generated by these recording systems during movement 

can lead to misleading clinical diagnosis and suboptimal control signals for BCI systems. An 

implanted, stable, subdermal electrode system could provide the high fidelity signals necessary 

for the long-term control of a BCI device.  

 

Prior research has shown that subdermal wire electrodes maintain good recording 

characteristics with stable impedances for long-term monitoring of EEG signals (Martz, Hucek, 

and Quigg 2009). In addition, subdermal wire electrodes have been found to be less susceptible 

to artifacts than surface electrodes (Young et al. 2006). A study comparing the alpha attenuation 

over the occipital lobe during eye closure in an implanted subcutaneous system to a surface 

EEG system found the recordings of both systems to be similar (Duun-Henriksen et al. 2015). 

The investigators also concluded that the subcutaneous recording system provides a stable 

signal with long-term use (26 days).  

 

Research comparing subgaleal and ECoG recordings have shown that neural signals outside of 

the skull are attenuated linearly and can be recorded up to 110 Hz (Olson et al. 2015). Their 

study indicated that subgaleal electrodes could record HG signals without frequency distortion 
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from the skull. In addition, Olson and colleagues (Olson, Wander, and Darvas, unpublished.) 

have reported activity dependent changes in beta and HG frequency bands recorded with 

subdermal electrodes during the same finger tapping task outlined in this chapter. They 

observed decreases in the beta frequency band power (Figures 4.1 and 4.2) over motor areas of 

the cortex that preceded and coincided with movement. In addition, they were able to spatially 

localize high gamma activity that preceded movement by implementing a spatial beamformer 

over all subjects to increase the SNR of the HG band (Figure 4.3).  

 

 

Figure 4.1: Median spectrogram across all bipolar channels and subjects. Adopted 
from Olson, Wander, and Darvas. Not published. The median was used to make the 
presentation more robust to outliers, which e.g. can be clearly seen in figure 3. The 
median spectrogram has been normalized using the z-transform with a baseline period 
from -1.5 s to -0.7s before movement onset. Blue represents decrease in power relative to 
baseline, red an increase. Z-scores between -1 and 1 have been masked for better visual 
clarity. The time axis ranges from -1.5 s prior to EMG onset to 2.5 s post EMG, the 
frequency axis covers a range from 3 to 100 Hz. There is a clear movement induced 
alpha/beta suppression and beta rebound visible across the area surveyed with the 
needle electrodes, well in line with the literature on non-invasive EEG recording of 
movement over motor areas. 
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Figure 4.2: Average beta power across all subjects and electrodes from a 
band pass filter (17-25 Hz). Adapted from Olson, Wander, and Darvas. Not 
published. Blue show the z-transformed beta power averaged across all 
monopolar channels and subjects. Red shows the 95% CI across subjects. Like 
figure 5, this shows the typical beta power behavior for voluntary 
movements: initial depression, followed by a later rebound. 
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Figure 4.3: T-statistic of the comparison between beamformed resting period spectrograms 
and voluntary movement spectrograms, subjected to a cluster-correction across all subjects.  
Adapted from Olson, Wander, and Darvas. Not published. Clusters shown are globally 
significant, across all subjects, at p<0.05. Red indicates significant increase in power vs. rest, 
blue significant decrease. The black lines show individual EMG traces for each subject. There 
is significant HG power increase prior to EMG onset, with a relative timing to the beta 
decrease similar to previous non-invasive studies (Darvas et. al. 2009, High gamma mapping 
in EEG). 

 

 

 

The aim of this study was to investigate the motor related brain activity of healthy subjects in 

the mu, beta, and high gamma frequency bands recorded using subdermal EEG electrodes. 

Cortical activity was recorded over the motor regions of the cortex while healthy subjects 

participated in a finger-tapping task. To assess the quality of these subdermal recordings they 

were compared to recordings performed simultaneously using surface EEG electrodes. This 

study found neural recordings using subdermal electrodes were comparable to those of surface 

recordings, and thus these subdermally detected motor-related brain signals may prove to be 

used for the development of BCIs that can be used reliably for long-term outpatient use.  
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Results of the following work are to be published in: 

Smith, M.M., Olson, J.D., Rao, R.P.N., Darvas, F., “Utilizing Subdermal Electrodes as a Non-
invasive Alternative for Motor-based BCIs”. Brain Computer Interfaces Handbook: 
Technological and Theoretical Advances.  
 
 
 

4.2 MATERIALS AND METHODS 

4.2.1 Subjects 

Data were recorded from healthy subjects that provided their informed consent according to the 

protocol approved by the Institutional Review Board (IRB) at the University of Washington.  

 

4.2.2 Electrodes and Electrode Placement 

To detect movement onset, surface electromyography (EMG) electrodes were placed over the 

forearm flexor with reference and ground electrodes placed on bony prominences at the wrist to 

minimize electrocardiogram (ECG) artifacts.  

 

 

 

Figure 4.4. Schematic of subdermal 
needle electrode depths relative to other 
common recording locations and relevant 
layers of anatomy. Not to scale. Adapted 
from Olson et al. 2015. 
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Using clean technique, bare-metal FDA approved subdermal needle electrodes (Rochester 

Electro-Medical, Lutz, FL) were placed at the bone-scalp interface depicted in Figure 1, with 2 

electrodes around C3/C4, 1 reference at Cz, and 1 ground at G using the standard scalp EEG 10-

20 system (Niedermeyer and Lopes da Silva 2004) as in Figure 2. Surface electrodes were placed 

directly above subcutaneous electrodes. Subcutaneous electrodes were placed directly under 

the surface electrodes. Electrode pairs were placed approximately one inch apart from each 

other.  

 

 
 

 
 
 
 

 
 
 

Figure 4.5. Location of needle 
electrodes relative to the accepted 10-20 
EEG system. Electrodes were placed 
around C3/C4, with 1 reference at Cz, 
and 1 ground at G.  
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4.2.3 Task 

Subjects were cued to move either their left or right forefinger once per trial. Subjects were 

seated in a recliner and four blocks of 25 right and 25 left hand trials were recorded (only left 

hand trials were recorded and executed from Subject 2), totaling 100 trials per hand. The 

subjects had their eyes open and fixated on a cross or cue. Each trial consisted of a rest period of 

2 seconds, during which a fixation cross was shown. At the end of that rest period the fixation 

cross was changed to a written instruction, which indicated either “right” for right finger 

movement, or “left” for left finger movement. The cue was shown for 3 seconds and then 

changed back to a fixation cross, which concluded the trial. During each block “left” and “right” 

cues were presented in random order, for a total of 50 cues per block. 

4.2.4 Data Acquisition 

Surface and subdermal EEG data were continuously recorded during each block. Data were 

sampled at 1200 Hz using two GugerTec (GugerTec, Graz, Austria) EEG amplifiers recorded in 

DC from -250 to +250 mV. Impedance values were below 20kΩ for all subdermal and surface 

electrodes. In parallel, EMG activity was recorded at the same sampling rate from the flexor 

indices from both hands.  Data was high pass filtered at 2 Hz using an 8th order Butterworth 

filter, as well as notch filtered from 58 to 62 Hz using a 4th order Butterworth filter to remove 

any line noise.  

 

4.2.5 Data Preprocessing 

Trials were inspected for artifacts (excessive EMG, eye blinks, etc.) and rejected if any channels 

showed artifact contamination. Both surface and subdermal EEG data were re-referenced to a 

common average reference to eliminate any common noise introduced by activity recorded at 

the reference electrode. Data were then segmented from continuously recorded EEG data into 5 
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second long segments for each block, with time 0 seconds centered at the onset of movement 

(detected by EMG) resulting in a within-trial axis ranging from -2 to 3 seconds (rest being 

between -2 and 0 s).  

 

4.2.6 Comparing Mu, Beta, and High Gamma Band Power Changes in Subdermal and Surface 
Electrode Recordings  

In order to compare the strength of the signals recorded with subdermal vs. surface electrodes, 

power spectra were generated using a windowed FFT. Specifically, a hanning window was 

applied to each trial, an FFT and squared absolute value were then computed. These results 

were then averaged over all trials. Data were divided into rest (-1.5 to -0.5 s) and movement (0 

to 1 s) periods. The spectra were normalized by dividing by the mean power across all trials at 

each frequency and the log of the values were determined. To determine the degree of 

separation in the low frequency (8-30 Hz) and high frequency (70-100 Hz) band powers 

between rest and movement tasks, the area between the curves in each corresponding 

frequency range was calculated.  

 

4.2.7 Comparing Magnitude Squared Coherence Between Subdermal and Surface Electrode 
Recordings 

To determine the similarity between subdermal and surface electrode recordings, the 

magnitude squared coherence spectrum was calculated for movement states. The coherence 

spectrum was computed using Welch’s averaged periodogram method (a function of the power 

spectral densities Pxx(f), Pyy(f), and the cross power spectral density, Pxy(f)): 

𝐶!" 𝑓 =    |!!" ! |!

!!!   !   .    !!!(!)
 . 

 
 



 

 

67 
4.3 RESULTS 

4.3.1 Comparison of Low and High Frequency Band Power Changes in Subdermal and Surface 
Electrode Recordings 

We found that the power spectra of subdermal electrodes provide similar signals to those of 

surface electrodes. Current motor-based BCIs typically rely on the change in spectral power in 

the low or high frequency ranges and in order to assess the degree of differentiation of the 

change in spectral band powers during a movement task, power spectra during rest and 

movement periods were compared. Two frequency bands were considered: the low frequency 

band (8-30 Hz) and high frequency band (70-100 Hz). Figures 1-4 show that the subcutaneous 

electrodes provide similar differentiation between rest and movement periods, in each of the 

designated frequency bands, when compared to surface electrodes recorded simultaneously. 

Table 1 shows a comparison between the areas between the movement and rest power spectra.  
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Figure 4.6. A comparison of power spectral densities for subdermal and surface recordings 
during rest and left hand movement periods recorded from electrode pairs 2 (A) and 4 (B). 
Spectra are for recordings over C4. Blue power spectra are representative of the normalized 
power over frequencies 3-100 Hz during the rest period (-1.5 to -0.5 s before movement onset). 
Red power spectra are representative of the normalized power over the same frequency range 
during the movement period (0 to 1 s, with 0 s being the onset of movement). Blue fill between 
rest and movement power spectra represents the area between the two curves in the low 
frequency band of 8-30 Hz. Red fill between rest and movement power spectra represents the 
area between the two curves in the high frequency band of 70-100 Hz. Numerical values above 
each of the low and high frequency bands indicate the value of the area between the two curves 
in each frequency range.  
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Figure 4.7. A comparison of power spectral densities for subdermal and surface recordings 
during rest and right hand movement periods recorded from electrode pairs 1 (A) and 3 (B). 
Spectra are for recordings over C4. Blue power spectra are representative of the normalized 
power over frequencies 3-100 Hz during the rest period (-1.5 to -0.5 s before movement onset). 
Red power spectra are representative of the normalized power over the same frequency range 
during the movement period (0 to 1 s, with 0 s being the onset of movement). Blue fill between 
rest and movement power spectra represents the area between the two curves in the low 
frequency band of 8-30 Hz. Red fill between rest and movement power spectra represents the 
area between the two curves in the high frequency band of 70-100 Hz. Numerical values above 
each of the low and high frequency bands indicate the value of the area between the two curves 
in each frequency range.  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 



 

 

70 

  
Table 4.1. Area between movement and rest power spectra in low (8-32 Hz) and high (70-100 
Hz) frequency bands. For each subject electrode pair, in each frequency band, the electrode 
that provides the larger area between the power spectra is given in bold.  

 
 

Location/Pair	
  #	
   Low	
  Frequency	
  (8-­‐32	
  Hz)	
   High	
  Frequency	
  (70-­‐100	
  Hz)	
  
	
   Subdermal	
   Surface	
   	
   Subdermal	
   Surface	
  

C3/1	
  
C3/2	
  
C4/3	
  
C4/4	
  

33.4	
  
7.7	
  
67.2	
  
129.8	
  

72.2	
  
13.1	
  
52.9	
  
74.7	
  

	
  
	
  
	
  
	
  

20.7	
  
46.9	
  
22.7	
  
0.5	
  

16.5	
  
37.7	
  
29.0	
  
3.2	
  

 
 
 
 
 

4.3.2 Comparison of Magdnitude Squared Coherence Between Subdermal and Surface Electrode 
Recordings 

To assess the similarities between the signals recorded from subdermal and surface electrodes, 

the magnitude squared coherence spectrum between each electrode pair was computed. The 

coherence spectrums in figures 1-4 show that the lower frequencies (< 30 Hz) in each electrode 

pair have greater coherence than the higher frequencies (2-30 Hz). These coherence results 

indicate that there appears to be mutual information between the subdermal and surface 

electrode signals in the low frequency signals, but many of signals in the higher frequencies 

may be unique to each surface and subdermal electrode.  
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Figure 4.8. Magnitude squared coherence spectrum of electrode pairs 1-4 over C3 during right 
hand movements and C4 during left hand movements. Black line indicates 95% confidence 
interval. 

 
 

 

4.4 DISCUSSION  

The goal of this study was to characterize the movement related cortical signals recorded over 

the motor cortex using subdermal EEG electrodes. Brain signals were recorded over the 

contralateral motor cortex while healthy subjects performed a finger-tapping task. Our analysis 

focused on frequency bands that are frequently used for motor related BCI control signals (mu, 

beta, and high gamma). Overall, the signals recorded using subdermal needle electrodes were 

found to be comparable to those recorded simultaneously with surface EEG electrodes.  
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The spectral and coherence analyses showed that subdermal and surface recording electrodes 

provide very similar signals, especially in the low frequency bands. Considering that the degree 

of separation between the power in the low frequency bands during rest and movement in 

subdermal recordings are similar to those of surface recordings, these results further support 

the idea that an implantable subdermal electrode system may be able to provide reliable, long-

term motor control signals for BCI control.  

 

Several limitations of this study should be noted. The first limitation being that sources of noise 

could have been introduced due to the instability of the electrode connections to the skin or 

from induced currents due to movement of the electrodes. These sources of noise may be 

reduced and the SNR of the system could be improved if the subdermal electrodes are fully 

implanted with a rigid connection. Second, because high gamma band activity is spatially focal 

on the cortex compared to the beta band activity it is possible that our single electrode 

placements could have missed the cortical location of high gamma band activity. Using a high-

density electrode array could potentially improve the SNR in the high-gamma band. Third, in 

order to determine the usefulness of subdermally driven BCI, real-time control of a BCI using 

these motor-related signals needs to be studied. Lastly, In order to provide reliable, long-term 

monitoring and BCI control the subdermal recording devise must provide a high SNR with little 

data loss with long-term use. An extension of this work could assess the fidelity of the signals in 

longitudinal studies. 
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Chapter 5. CONCLUDING REMARKS AND FUTURE DIRECTIONS 

Over the last few decades, there have been remarkable advances in non-invasive BCIs. Their 

usability, information transfer, and robustness have been improved, with machine learning and 

signal processing techniques. BCIs that utilize control signals based on motor imagery have not 

only proven to be useful for users with limited motor disabilities, but have also shown to 

facilitate improved motor function during stroke rehabilitation (Ang et al. 2011; Daly et al. 2009; 

Ramos-Murguialday et al. 2013; Broetz et al. 2010; Prasad et al. 2010). As previously stated, 

typical non-invasive motor imagery based BCIs rely on ERS/ERD using bandpower in the mu 

and beta rhythms. Non-invasive recording of the modulation of HG is still a relatively novel 

concept and most HG studies have been limited to invasive electrocorticography methods, due 

to the low SNR of the neuronal ensemble activity at these frequencies. Consequently the 

systematic study of HG effects has been limited to narrow populations (typically epilepsy 

patients) and cortical locations, which are usually determined by clinical needs rather than by 

the experimental paradigm one wishes to study. The main strategy of this thesis was to recover 

HG activity in motor cortex from non-invasive, scalp EEG data during motor imagery. This is a 

particularly compelling application, as motor imagery presumably generates weaker HG 

activity than overt motor actions (K. Miller et al. 2010). At the same time, imagery (rather than 

overt movements) reduces possible confusion or confound with EMG interference in this 

frequency band. This work serves as proof-of-concept that HG can be studied non-invasively, 

thus opening up this band to a much wider subject population and range of experimental 

paradigms.  

 

In addition, the second portion of this thesis presents for the first time a comparison between 

HG range activity measured non-invasively with EEG and the BOLD response, measured with 

fMRI, for this same motor imagery paradigm. While the degree of direct overlap between the 

cortical locations of HG activity detected with EEG electrodes and the spatial distributions of 
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the fMRI BOLD response in each individual subject was relatively small, our proximity analysis 

showed the HG and BOLD responses to be in close proximity to each other. There are several 

possible explanations for the limited amount of direct spatial overlap between the two 

modalities on the cortex. First, previous studies that have shown a correlation between HG 

activity and fMRI BOLD activity (Hermes et al. 2012) were performed using ECoG electrodes 

placed directly on the surface of the brain and significant HG activity was determined for each 

electrode location. Whereas, our study used inverse modeling techniques to localize significant 

HG activity on the cortical surface. While HG activity was localized to expected sensorimotor 

regions of the cortex several factors could have contributed to slight errors in the true location 

of the source. Errors in detecting boundaries between tissue types when developing our realistic 

forward head models, conductivity values for each of the tissue layers, and electrode positions 

can all contribute to source localization errors between 4- 20mm (Akalin Acar and Makeig 2013).  

Second, Hermes and colleagues were able to minimize fMRI artifacts from the large arterial and 

venous blood vessels to focus on the BOLD effects originating from the capillary bed using an 

fMRI acquisition technique; a technique not used for our study. Third, EEG and fMRI recording 

sessions were performed on different days and each subject may have shifted their motor 

imagery strategy between recording sessions that could have resulted in altered cortical 

activation.  

 

When performing inverse modeling techniques for HG source localization, we incorporated 

estimates, obtained from MRI, of the boundaries between tissues with different conductivity, 

specifically the cortex, skull, and scalp, into boundary element models. However, because of our 

limited knowledge of the true conductivities of these tissues it is not clear that these subject 

specific models represent a significant improvement in source localization over generic head 

models. An extension of the work presented in this thesis could include a comparison between 

the strength of the HG signal recovered from a generic head model and the HG signal recovered 

from an individual’s realistic head model.     
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High gamma signals measured from scalp EEG electrodes are of low amplitude and SNR, 

especially during motor imagery. Thus, in order to extract relevant high gamma activity during 

motor imagery we needed to average over many trials (between 50-100 trials) for each subject.  

These trials were averaged after trials that contained artifacts were rejected, resulting in the loss 

of potentially useful data and leading to the inability to use the HG signals for real-time BCI 

control. Empirical mode decomposition (EMD) filtering methods (Huang et al. 1998) have been 

proposed to correct muscle artifacts in EEG recordings in the time-domain without the need to 

reject potentially useful data (Chen et al. 2010). One possible extension of our studies is to 

utilize real-time EMD based filtering techniques to correct for artifacts in the EEG recordings in 

order to obtain a higher SNR and possible real-time BCI control using the high gamma 

frequency band.   

 

Future experiments that could build off of the work presented in this thesis include identifying 

additional cortical areas in non-primary motor regions (such as prefrontal regions) that are 

activated during voluntary movement, movement observation, or motor imagery. One 

limitation of current motor imagery-based BCI control methods is that the cortical areas 

involved are limited to the left and right hand, foot, and tongue regions of the primary motor 

cortex. Real-time measures of the synchronization/interaction between the non-primary motor 

cortical areas can be used to enhance specificity of the motor activity and thus facilitate real-

time detection. Because the execution of motor or cognitive tasks requires the interaction 

between multiple cortical regions that exchange their information, incorporating signals that 

occur outside of the motor cortex to drive a BCI will have significant impact on people with 

limited motor cortical activity and muscle control, as well as support a BCI with a more flexible 

range of output. 

 

Additional experiments are prompted by the observation that ECoG signals for a given function 

(such as finger flexion) differ depending on the task’s context, such as pinching the thumb and 
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forefinger together versus making a fist. These cortical signals are also evident outside of the 

motor cortex. Thus, it may be possible to decode movement context using information in 

primary motor or secondary motor areas such as the supplementary motor area. By utilizing the 

information provided with fMRI it may be possible to identify locations where a specific 

activity pattern can decode motor context or intention among movements such as 1) simple, 

self-paced index finger flexion, 2) a pinch task involving repetitive approximation of the tips of 

the thumb and index finger, 3) fist-formation repeated over the interval, and 4) tactile 

exploration of objects. After localizing these context specific regions, we can then attempt to use 

them to support a BCI that will distinguish what hand movements are being imagined by the 

subject. These spatially distinct signals may be used for multiple control signals for the dynamic 

control of a BCI devise.  

 

The third portion of this thesis was based on the knowledge that electrodes placed closer to the 

brain provide greater signal than those that are placed further away on top of the scalp. As a 

general rule, the amplitude of recorded brain signals decreases proportionally to the inverse 

square of the distance from the source. Therefore, ECoG electrodes provide a signal that is 

many degrees of magnitude larger than the signal recorded from surface EEG electrodes. 

However, ECoG electrodes are considered invasive, as they require surgery to place the 

electrodes on the surface of the brain. Subdermal electrodes placed below the scalp may provide 

an intermediate option in regards to the degree of invasiveness and signal quality when 

compared to surface EEG electrodes. Several studies have shown that subdermal electrodes 

enhance the precision and accuracy of EEG measurements compared to scalp EEG electrodes 

(Wendel et al. 2010; Subramaniyam et al. 2011). The data analysis outlined in this thesis was 

intended to determine the capacity to record brain signals with subdermal electrodes, focusing 

on characterizing the movement related cortical signals that are relevant to BCI research 

recorded over the motor cortex. Our results show that the motor-related signals recorded with 

subdermal electrodes are comparable to scalp EEG electrodes. While the intent of the data 
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analysis did not include a comparison of the SNR between subdermal and scalp EEG electrodes, 

our results, in conjunction with previous studies showing an improved SNR in subdermal 

electrodes when compared to scalp EEG eelctrodes (Subramaniyam et al. 2011; Wendel et al. 

2010), show that subdermal electrodes may provide an intermediate option between scalp and 

ECoG electrodes when studying motor-related brain signals. While invasive recordings such as 

ECoG still provide a greater SNR than subdermal electrodes, it is possible that the SNR of the 

subdermal system could be improved if the subdermal electrodes were fully implanted with a 

rigid connection. In addition, a fully implanted subcutaneous system with wireless telemetry 

could provide a long-term option for a BCI device or clinical monitoring.   

 

The major contributions of this work include the ability to non-invasively detect and localize 

high gamma activity on the cortex during a motor-imagery task. While this high gamma activity 

has the potential to provide a faster, more responsive BCI control signal than signals currently 

used for non-invasive BCIs, more advanced algorithms need to be developed and applied in 

order to be able to utilize this high gamma band in real-time non-invasively. In addition to 

refined algorithms, electrodes that are optimally placed could improve high gamma signal 

quality.  Placing an implanted subdermal electrode system in optimal locations under the scalp 

could provide the high fidelity signals necessary for the long-term control of a motor-related 

BCI device. Taken together, the work outlined in this thesis suggests that a subdermally 

implanted BCI system that utilizes beam-formed HG control signals in real-time could provide 

a long-term, fast-response, non-invasive BCI option.   
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