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Group sequential designs (GSDs) have been the standard sequential approach to maintain

scientific, ethical, and efficiency goals in any confirmatory Phase III studies. Over the past

two decades, adaptive extensions to group sequential designs have been proposed to allow

more flexible modification of aspects of the trial. However, such use of unblinded estimates

computed from accruing clinical trial data has been viewed extremely cautiously by regu-

latory agencies such as the U.S. Food and Drug Administration (FDA) and the European

Medicines Agency (EMA). In their Guidance to Industry on adaptive designs, the FDA has

distinguished adaptive designs that are “less well understood” from the “well understood”

GSDs. There is thus much interest in characterizing potential benefits (e.g., efficiency, flexi-

bility), as well as the potential for harm (e.g., inflation of statistical error rates, introduction

of operational bias), when using adaptive designs. Randomized clinical trials (RCTs) involv-

ing censored time to event data are of particular interest, as the aspects of adaptive designs

that are “less well-understood” in that setting may have as much to do with how well we

understand standard censored data models as with the general properties of unblinded adap-

tation.

A major focus of any sequential procedure is the appropriate control of statistical oper-

ating characteristics, including the type 1 error. A common requirement of all commonly



used sequential methods is the proper characterization of the growth of statistical informa-

tion about the parameter of greatest interest. When sequentially analyzing time to event

data, the censoring distribution can have great impact. It can affect both the choice of the

distributional parameter used to summarize treatment effect (e.g., 5 year survival, median

survival, hazard ratios) and the growth of statistical information over time. Further, effi-

ciency of inference might need to consider not only the number of subjects accrued to the

study, but also factors related to time as measured by both the typical time of patients on

study (“study time”), as well as the calendar time needed from the start of accrual until

the final analysis is performed. In this research, we investigate how these issues of informa-

tion growth and time may impact (a) scientific interpretation, and (b) statistical credibility

(control of type 1 error and study precision).

In the first part of the research, we focus on the proportional hazards setting wherein

issues of (1) calendar time and (2) information growth are separable. We first investigate the

efficiency of the adaptive weighting scheme as a consequence of changing the timing of the

adaptation in prevention trials with potentially low background rates (either as a consequence

of overestimating the event rate and/or high treatment efficacy). Noting that GSDs are better

able to avoid any operational bias that might be introduced by the more flexible forms of

adaptive designs, we compare our ability to preserve study precision solely through the use

of blinded adaptations within prespecified GSDs versus the use of an unblinded adaptation

which might better distinguish between low event rates versus extreme treatment effects.

We next investigate how poor understanding of information growth (in the weighted logrank

statistics) can impact the ability of adaptive procedures to preserve the overall Type 1 error.

We examined scenarios whereby simply changing the censoring distribution can directly

impact the ability of adaptive procedures to preserve the overall Type 1 error. We provide

some recommendations from our findings.

In the second part of our research we consider settings in which we cannot presume a



parametric or strongly semiparametric probability model, for instance, when crossing survival

curves are plausible. Under the weak null/non proportional hazards setting, calendar time

and information growth are no longer separable. We investigate the degree to which the

use of “less well-understood” statistics in presence of time varying treatment effect and

censoring as induced either sequentially or accrual affects the degree to which we can control

the probability of rejecting the null hypothesis when we may be concerned with the weak

null.
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Chapter 1

Introduction

1.1 Goal of Clinical Trials

Before a new treatment/intervention can be approved by the regulatory bodies for public

use, it undergoes a series of rigorous clinical trials to investigate its safety, efficacy, and effec-

tiveness. Each of the phases of the drug discovery process may have different goals. Phase 1

studies involve administration of the treatment in screened human volunteers to investigate

the appropriate dosing of the treatment, as well as to identify major safety concerns or side

effects of the treatment that might preclude further study. Phase 2 clinical trials are con-

ducted in a larger population of screened human volunteers to investigate preliminary safety

and efficacy, and to refine dosing strategies of the treatment. Phase 3 clinical trials are

typically confirmatory in nature, using a much larger sample of human volunteers. The goal

of Phase 3 studies is to determine whether the treatment is safe, efficacious, and effective in

the ultimate intended population.

The focus of this dissertation is largely concerned with Phase III confirmatory randomized

clinical trials (RCT). Such trials may be directed toward superiority, (bio)equivalence, or non-

inferiority of an experimental treatment relative to the current standard of care. The primary

objective is to provide scientifically interpretable results with statistically reliable inference.

It is vital that any confirmatory Phase III clinical trial be conducted in an ethical, efficient,

and rigorous way to minimize any form of operational bias. Well-executed confirmatory

trials can provide definitive proof to support the hypothesized claims and enable regulatory

bodies (e.g., European Medicines Agency [EMA], US Food and Drug Administration [FDA])
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to appropriately label new treatments, thereby facilitating clinicians’ use of these treatments

in an evidence-based setting.

In recent years, much focus has been on the way in which scientifically rigorous and

statistically credible Phase 3 clinical trials can be designed to afford the greatest flexibility

during the conduct of the RCT. Such flexible designs are targeted to satisfy a variety of opti-

mality criteria, including the frequentist Type 1 and Type 2 statistical errors and statistical

efficiency. In this introductory chapter, we present an overview of the topics to be covered

as we explore the special issues presented by the use of adaptive clinical trials in the setting

of censored time to event data.

1.2 Conventional Clinical Trial Designs

Historically, Phase III clinical trials were conducted using fixed sample designs (FSDs). In a

FSD, we randomize and treat a predefined number of participants, and only analyze the data

when all outcomes have been observed. We introduce the general principles behind FSDs in

section 2.1 along with notation that will serve as the basis for later sections. While FSDs are

still the most common and convenient RCT designs, they have both ethical and efficiency

limitations. When a treatment provides definitive proof of superiority over placebo, we may

want to adopt the treatment quickly so as to expedite delivery to patients and improve

public health. Alternatively, if the treatment indicates evidence of harm, we want to stop

randomizing subjects to the treatment as soon as possible in order to protect the interests

of the patients on the study. Such might also allow them to participate in other trials

with potentially effective treatments. In situations when the treatment is neither markedly

effective nor harmful when compared to control, it is also advantageous to stop the trial

early and reallocate resources to other trials. Thus, it is desirable to periodically monitor

the accruing data during the conduct of a clinical trial to safeguard the interests of the

human volunteers as well as improve the efficiency of the design. Such a process constitutes

a sequential design.

Group sequential designs (GSDs), currently the gold standard for such monitoring, over-
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come the shortcomings of FSDs by allowing for periodic looks at the data during the course

of the trial after groups of subjects/events are accumulated. There is a rich statistical lit-

erature describing methods for group sequential sampling [Whitehead, 1997, Jennison and

Turnbull, 1999]. Key to these methods is the quantification of the “information growth”,

which is inversely related to the variability of the test statistics at interim analyses compared

to the variability of the test statistic at the planned final analysis [DeMets and Lan, 1995,

Jennison and Turnbull, 1997, Scharfstein et al., 1997, Burington and Emerson, 2003]. A

“stopping boundary” is first chosen to determine thresholds for making clinical decisions,

where the threshold at any given analysis is based on the statistical information available

at that analysis. A broad spectrum of “boundary shape function” have been characterized,

each of which would control the type 1 and 2 statistical errors while addressing particular

needs for caution at the earliest interim analyses or the need for efficiency with respect to

average stopping time. Because such stopping rules have the potential to introduce bias

into the classical statistical analysis methods, a variety of statistical procedures were also

developed to enable frequentist inference to compensate for the bias in presence of early

stopping [Tsiatis et al., 1984, Whitehead, 1986, Chang, 1989, Emerson and Fleming, 1990].

In section 2.2 and 2.3, we describe ways in which the structure of a group sequential stopping

rule is carefully constructed to protect against multiple comparison issues. These methods

provide a basis for understanding adaptive RCT designs.

Key to the use of GSD is the principled implementation of the stopping rule to avoid

the bias of investigators influencing the schedule of analyses. Group sequential monitoring

is overseen by an independent Data Monitoring Committee (DMC or Data Safety and Mon-

itoring Board) whose main role is to protect the integrity of such unblinded use of interim

results as well as the well being of participants [Ellenberg et al., 2003]. Guidance documents

for DMC functioning are well established by both regulatory and academia to protect against

operational bias during the conduct of a clinical trial [Whitehead, 1997, Jennison and Turn-

bull, 1999, Ellenberg et al., 2003, Food et al., 2006]. However, the design assumptions used

in the selection of monitoring rules at the planning phase may often prove to be incorrect
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during the conduct of the study. Thus, there is a desire to adapt the RCT design to reflect

updated information about the exact schedule of analyses [DeMets and Lan, 1995, Burington

and Emerson, 2003] or the variance of individual observations [Gould and Shih, 1998, Gould,

1992]. Proschan et al. investigated the extent to which data driven changes in the schedule

of analyses in a GSD might affect the type 1 error and cautioned against indiscriminate al-

teration of the sampling plan. Section 2.4 touches on various aspects of blinded adjustments

to the analysis schedule or sample size re-estimation that can be implemented in the context

of GSD without adversely affecting statistical error rates.

However, there has been a desire to incorporate more extensive modification(s) to RCT

designs during the conduct of a study in a flexible manner. In these generalized sequential

sampling plans, conventional statistical adjustments may no longer be sufficient to protect

against inflation of overall Type 1 error. This led to the explosion of literature in adaptive

clinical trial design.

1.3 Adaptive RCT

There has always been considerable interest in the possibility of incorporating adaptive fea-

tures into the design of the clinical trial with the goal of modifying either scientific or statisti-

cal aspects of the trial. Some of these motivations arise from the desire to use unblinded trial

data when deciding to (1) re-power studies for unanticipated differences in treatment effect,

(2) modify randomization ratios, (3) drop treatment arms, (4) modify the definition of the

primary outcome based on interim data, and/or (5) modify eligibility criteria. Historically,

such modifications have been performed sequentially across the different phases of clinical

trials in a lengthy drug discovery process. More recent innovative strategies have considered

a seamless Phase II-III design with the aim of reducing this calendar time (often referred to

as “white space”) between the conclusion of a Phase II study and the start of a Phase III

study. Similarly, there has also been strong interest in making such modifications within a

single phase of investigation.

One major focus of the early adaptive literature is the use of interim outcome data to
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extend a trial beyond some pre-specified maximum stopping time. A common approach was

to design some GSD, and then use the unblinded trial results at the penultimate interim

analysis to choose the final, maximal sample size. In section 2.5, we illustrate how such an

adaptive design differs from the classical GSD and describe how standard GSD software can

allow selection of critical values when the adaptive rule is fully pre-specified. In that sense,

the relevance of section 2.3 is highlighted, because these adaptive designs can be thought of

as varying the timing of analyses and the conservatism of the boundary shape functions of

a GSD.

It should be noted however, that a major interest of the adaptive RCT literature is to

allow modifications to a RCT design that have not been fully planned in advance. Because

it was well-known that unplanned sample size modifications can lead to an inflation of the

overall Type 1 error [Proschan et al., 1992, Proschan and Hunsberger, 1995], the earliest

statistical literature was primarily concerned with protecting the overall Type 1 error [Bauer

and Köhne, 1994, Proschan and Hunsberger, 1995, Fisher, 1998, Cui et al., 1999, Denne,

2001, Chen et al., 2004, Müller and Schäfer, 2004, Gao et al., 2008, Mehta and Pocock,

2011]. In section 2.6, we provide a summary of these methods, which can be implemented so

long as the information growth can be quantified at each stage of the design. Later authors

noted that the same adjustments would further allow modifications to randomization ratios

or subgroup enrichment.

Emerson [2006], Fleming [2006], and Emerson and Fleming [2010] pointed out numerous

scientific, statistical and operational issues with unblinded adaptations. However, three issues

that arise with the use of these flexible procedures are of particular interest. First, these

procedures choose rules based on weighted statistics which violate the sufficiency principle,

thus potentially leading to an unnecessary loss of efficiency [Mehta and Tsiatis, 2001, Jennison

and Turnbull, 2003]. Second, there has not been a clear definition on what is considered a

good or bad adaptive rule. Third, adaptive features made on the basis of unblinded data can

not only inflate the overall Type 1 error through sequential testing, but can further introduce

bias from sponsors/researchers who have potential conflict of interest. Such possibilities
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might raise concerns about the validity of the trial results.

In FDA’s “Guidance on Adaptive Design for Industry”, FDA contrasts the “well-understood”

designs of FSDs and GSDs with the “less well-understood” adaptive designs. We discuss some

of the difficulties that must be addressed when using adaptive RCT and review some added

challenges that arise in the setting of time to event analyses (section 2.7). When addressing

these “less well understood” issues in the time to event analyses, it became important to

better quantify additional properties of “well understood” GSD to enable us to characterize

the specific aspects of adaptive designs that might be contributing to loss of efficiency. These

new investigations are presented in Chapter 3.

1.4 Adaptive RCT in the Time To Event Setting

This dissertation is motivated by some unresolved statistical issues in the time to event

setting with the use of adaptive designs. Our goal is to enhance the understanding of the

benefits/limitations on the use of adaptive design in the broader context of time to event

analysis. It is the thesis of this dissertation that much of what is considered “less well-

understood” relates closely to the interplay between adaptive designs and the longitudinal

nature of most RCT. That is, “less well-understood” analysis methods have much to do with

“less well-understood” adaptive designs. We regard this to be especially true in the analysis

of censored time to event data, and provide relevant properties of such analyses in Chapter

4.

1.5 Unmet Needs in the Time To Event Setting

In typical time to event RCTs, patients are accrued over some period of time. After being

randomized to the treatment/placebo, they are then followed until some event of interest.

During the RCT, interim analyses may be conducted prior to or after completion of accrual,

giving rise to many issues related to the censoring distribution. Furthermore, in a sequential

study, the censoring distribution typically varies substantially across interim analyses (sec-
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tion 4.1). The time frame of observation that is of greatest interest should drive the choice

of summary measure used to compare treatment groups (section 4.2), though the range of

such parameters that can be estimated is similarly affected by the censoring distribution.

This then often dictates whether a strong or weak null hypothesis is of greatest interest

(section 4.4). When the contrast across treatment groups might be subject to time varying

effects, for example, non proportional hazards (PH) when using Cox regression, the censoring

distribution encountered in sequential analysis with incomplete accrual complicates inferen-

tial methods (section 4.3). We review how these issues affect the most common statistical

analysis model (proportional hazards model and unweighted logrank statistic) used for such

data in section 4.5, as well as the less common analysis methods (such as weighted logrank

test, Nelson-Aalen, or Weighted Kaplan-Meier statistics) in section 4.6.

The original research presented in Chapter 3 and 5 - 7 in this dissertation is directed to-

ward better understanding of the use of adaptive RCT with time to event data. In particular,

we consider three important settings where current knowledge and methods are lacking:

1. A comparison of GSDs vs adaptive designs when event rates are low, but strong treat-
ment effects are plausible,

2. The use of weighted log rank tests, as an example of a non-PH analysis, with adaptive
RCTs, and

3. The sequential analysis of time to event data when weak null hypotheses are of greatest
interest (e.g., when crossing survival curves are plausible, or in non inferiority trials).

Our organization in this dissertation is directed towards addressing the important settings

as laid out first under the PH setting, which includes the strong null hypothesis of exact

equality of entire survival distributions. We investigate

1. The (a) impact of early adaptations based on weighted statistics and (b) the impact
of changing the analysis schedule as a function of the degree of early conservatism
(Chapter 3).

2. The flexibility of (prespecified) adaptive procedures in the time to event setting in
presence of extreme treatment effect (Chapter 5).
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3. The impact of adaptive procedures on the overall Type 1 error and power of the
(weighted) log-rank statistic when changing the censoring distribution (Chapter 6).

Under the setting of non PH/weak null hypothesis in Chapter 7, we investigate

1. how the censoring distribution can affect (a) the information growth across interim
analyses, (b) the control of the probability of rejecting the null hypothesis, and (c) the
test statistic/estimate as well as the interpretation in the presence of a time varying
treatment effect, including the possibility of crossing survival curves,

2. the use of alternative summary measures to identify the better treatment under fixed
sample and group sequential setting when considering a weak null hypothesis, and to
illustrate the dilemmas faced by DMC in sequential adaptive monitoring.

Finally, in Chapter 8, we summarize our findings and describe the operational bias that

arises as a consequence of adaptations, and we comment on the open statistical questions in

adaptive designs in the time to event setting.

The scope of this dissertation did not investigate the potential availability of secondary

statistical information during interim analysis that might be used to make adaptations. If

adaptations were made on the basis of this secondary data, it is possible to inflate the overall

Type 1 error even after adjusting for having looked at the primary outcome [Bauer and Posch,

2004]. Since accumulating data used for adaptations may include statistical information not

captured by the sufficient statistics, generalized procedures that do not account for the

correlation between the secondary data and primary endpoint would not adequately control

the overall Type 1 error. Several authors have since explored some of the statistical issues

[Jenkins et al., 2011, Irle and Schäfer, 2012, Magirr et al., 2014, Mehta et al., 2014, Magirr

et al., 2016]. This issue is of special concern in the time to event setting in designing seamless

Phase 2/3 trials or the use of biomarkers in enrichment designs. However, this is beyond the

scope of this dissertation, though we do include comments in Chapter 8 on how our findings

might magnify these issues.
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Chapter 2

Background: Fixed Sample, Group Se-
quential and Adaptive Designs

We introduce the notation for the fixed sample, group sequential and adaptive design

in the immediate outcomes settings. Because FSD can be considered a subset of GSD, and

GSD can be considered a subset of adaptive design, in this dissertation we find it useful to

distinguish adaptive designs that cannot be considered a GSD. Thus, we adopt the modified

definition of an adaptive design from FDA as one whereby aspects of the study design may be

modified on the basis of unblinded interim data. This definition precludes GSD but includes

both pre-specified adaptive design and the more flexible fully adaptive design. We provide

a simple example so to highlight differences between the 3 classes of designs. The notation

developed in the context of immediately observed outcomes (or nearly immediate relative

to accrual period) serves to transition to the time to event or longitudinal setting. We also

describe various statistical aspects in the time to event setting that are typically not an issue

in immediate settings. It is these special characteristics of time to event data analyses that

present particular issues in both group sequential and adaptive designs.

2.1 Fixed Sample Design

In a classical fixed sample clinical trial, the data that are gathered on all participants ran-

domized to the treatment and placebo arms are only analyzed when the study has concluded.

During the planning of the RCT, the (bio)statistician collaborating on the clinical trial is

asked to estimate the sample size required to address the scientific question of interest. The
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answer to this question is governed by many factors such as the scientific question of inter-

ests, the primary endpoint(s), logistical and financial constraints, as well as calendar time.

The statistician, thus becomes the middleman in balancing all of the constraints that are

implicitly imposed by parties such as clinical researchers, regulatory bodies, ethicists, etc.

To determine the appropriate sample size, the clinical team must define not only the

clinical variable that will be measured as the RCT’s primary outcome, but also how the

distribution of that outcome will be summarized (e.g., mean, median, hazard) within each

treatment arm and contrasted (e.g., difference, ratio) across treatment arms. We use θ to

represent the target parameter of interest that reflects the potential benefit/harm that a

new treatment has over some current standard of care. Without loss of generality, we can

assume that larger values of θ are indicative of superiority of the new treatment. At the

time of designing the trial, we also indicate some null value θ0 that potentially represents no

advantage of the new treatment, and some design alternative θAlt that represents a clinically

important improvement.

Unless otherwise stated, we will be primarily interested in the 1-sided hypothesis testing

where large positive values of θ reflect the superiority of the new experimental treatment

over the current standard. Less often, investigators may be interested in demonstrating

non-inferiority or equivalence and involve testing a different hypothesis. We next describe

notation in the setting of a primary response variable that is a continuous and immediately

available outcome.

2.1.1 Notation

Consider the balanced two-sample design in Jennison and Turnbull [1999] where potential

observations XAi randomized to treatment A and potential observations XBi randomized to

treatment B are immediately observed in the clinical setting. XAi and XBi are independent

and distributed with mean ωA and ωB respectively with known variance σ2 for i = 1, · · · , N .

Our target parameter of interest, θ = ωA−ωB, is the difference in the mean of the responses

comparing subjects randomized to group A (experimental group) relative to subjects ran-
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domized to group B (placebo group). We are concerned with testing the null hypothesis of

H0 : θ ≤ θ0 against the 1-sided alternative of HA : θ ≥ θAlt > θ0 at some one-sided level α.

When all the data have been gathered, we can construct the following test statistics with

its respective asymptotically derived approximate distribution on the right:

1. Partial sum statistics: S = ∑N
i=1(XAi −XBi) S ∼̇ N (Nθ, 2Nσ2)

2. MLE estimate: θ̂ = S/N θ̂ ∼̇ N (θ, 2σ2/N)

3. Normalized Z statistic/Wald: Z = (θ̂ − θ0)/ŝe(θ̂ − θ0) Z ∼̇ N (δ, 1)

4. Fixed sample P -value statistic: P = 1− Φ(Z) = 1−
∫ z
−∞

1√
2π exp−u2/2 du

where δ = (θ − θ0)
√
N/2σ2. Under HA, δA = (θAlt − θ0)

√
N/2σ2 is commonly referred

as our standardized design alternative. This standardized notation later comes into use in

Chapter 7. The asymptotic statistical information based on 2N subjects is I = N/(2σ2).

S/(2σ2) ∼̇ N (θI, I) is the score statistic. The notation in this section can be generalized

to other settings [Whitehead, 1997].

Our sample size for each group can be determined based on some given level α, and

statistical power β, to discriminate between H0 : θ ≤ θ0 vs the alternative of interest HA :

θ ≥ θA using the general formula

N = (z1−α + zβ)2V

(θAlt − θ0)2

where zp denotes pth quantile of a standard normal distribution for p ∈ (0, 1), and V is the

variance contributed by a single sampling unit. Based on the above setup and assuming a

1:1 randomization, V = 2σ2. V will be used to describe the procedure when blinded revision

of sample size is applied.

2.2 Group Sequential Designs

It is often desirable to make interim looks during the course of the trial to balance scientific,

ethical and efficiency concerns. Armitage et al. [1969] quantified the inflation in type 1 error
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that results if the accruing data were analyzed at multiple interim looks and assessed naïvely

using the “standard” statistical critical values appropriate for FSD. Valid statistical inference

instead needs to use critical values that account for the multiplicity of analyses, using the

correlation structure induced by the repeated significance testing. Many methods have been

proposed to derive boundaries for sequential clinical trials that protect against inflation of

Type 1 error. In particular, two of the earliest described approaches for stopping boundaries

[Pocock, 1977, O’Brien and Fleming, 1979] are often used as examples to illustrate the relative

trade-offs between efficiency defined by average sample size(ASN) and the degree of early

conservatism that would allow more precise assessment of safety and secondary endpoints.

Some hybrids of the above are also used.

Group sequential designs allowing for interim monitoring of data for efficacy and futility

balance the scientific, ethical, and efficiency goals in the design and conduct of confirmatory

RCTs. At each interim analysis, a summary statistic or estimand of interest is computed.

The test statistic or summary statistic is then compared to pre-defined critical values at the

interim analysis. If the test statistic/summary measure is large and in the right direction

suggestive of efficacy, the trial is stopped. Otherwise, if the test statistic is in the opposite

direction and much smaller than the predetermined boundaries, the trial is stopped for

futility.

In the remainder of this section, we introduce the notation for group sequential design, the

stopping sets, the sampling density, and the general class of designs as described by the unified

family [Kittelson and Emerson, 1999]. We then describe some of the asymptotic distribution

of the test statistics and the frequentist inference following a sequential procedure. Later,

in section 2.3, we elaborate on the choice of the sequential stopping rule based on either the

scientific criterion or optimality criterion from a statistical standpoint.

2.2.1 Notation and Stopping Sets

It is often the case that clinical trialists plan a fixed sample design and then expand the

design to incorporate sequential monitoring [Emerson et al., 2007]. Recall the hypotheses of
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interest in the FSD: H0 : θ ≤ θ0 vs the alternative hypothesis, HA : θ ≥ θAlt > θ0.

Suppose a total of J analyses are potentially conducted at sample sizes N1, · · · , NJ ac-

crued on each arm in the balanced setting for j = 1, · · · , J analyses. The capitalized notation

for N and J are used to indicate that we allow the number and timing of analyses in a GSD

to be random, though as discussed later, it is important that the schedule of analyses be

independent of the unblinded estimates of treatment effect. We shall denote small letter,

nj, for realizations of random variables Nj, and for convenience in later formulas we denote

the size of the groups accrued between analyses using an asterisk: N∗j = Nj −Nj−1, with n∗j
denoting a particular realization of N∗J .

At the jth interim analysis, we use the accrued observations to compute the test statistic,

Tj = H(XAj,XBj), where XAj = {XA1, · · ·XAnj} and XBj = {XB1, · · ·XBnj} and H to be

some function of the summarized measure comparing group A and B. We can then partition

the sample space Tj into stopping set Sj and continuation set Cj where Sj ∩ Cj = ∅ and

Sj ∪Cj = <1. Beginning at the first interim analysis with j = 1, we obtain a test statistic Tj.

Subsequently, if Tj ∈ Sj, we stop the study and analyze the data. If Tj ∈ Cj, we proceed to

the (j+ 1)th interim analysis after accruing n∗j+1 subjects on each arm. By choosing CJ = ∅,

we guarantee that the trial will definitely stop at or before the J th analysis. It can be shown

that a minimal sufficient statistic for θ in this setting can be described on the partial sum

statistic scale as (NM , SM), where stopping time M = min{1 ≤ j ≤ J : Sj 6∈ Cj}.

There are many ways of specifying the stopping sets and continuation sets. In particular,

Kittelson and Emerson [1999] noted that continuation sets can be generalized to be of the

form Cj ≡ {(aj, bj]∪ [cj, dj)} such that −∞ ≤ aj ≤ bj ≤ cj ≤ dj ≤ ∞. The boundary values

aj, bj, cj, and dj typically represent the critical values that are used to make some decision

rule on efficacy/equivalence/non efficacy/harm of the treatment relative to the placebo.

In a one-sided GSD investigating the efficacy/effectiveness of the treatment over the

current standard, it is convenient to set bj = cj in most situations. We shall be interested in

comparing Tj with the boundary values of aj or dj to assess futility/non efficacy or efficacy

respectively at the interim analysis. We will later describe how the stopping and continuation
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sets can be further parameterized to obtain some of the common monitoring rules such as

O’Brien Fleming (OBF) monitoring boundary.

On the basis of the accrued data at the jth interim analysis, the test statistic Tj might

correspond to any one of the following statistics: the partial sum statistic Sj, MLE θ̂j,

standardized Z statistic Zj, or fixed sample P value statistic Pj, each of which are defined

in a manner analogous to that used in FSD. In addition, clinical trialists might consider the

error spending scale [Lan and DeMets, 1983], a conditional probability scale, or a Bayesian

predictive probability scale. As discussed in Emerson et al. [2007], when the variance σ2 is

known, these scales are 1 to 1 monotonic (usually nonlinear) transformations of each other.

The interested reader is referred to that tutorial in Emerson et al. [2007] for more details

about the exact relationships among these scales.

It is, however, of particular interest to comment further on the conditional power scale,

because many authors of manuscripts on adaptive designs have proposed using adaptive

rules in which a new adaptive sample size is a function of the conditional power (see sec-

tion 2.6). The conditional power is most often computed at the jth interim analysis as the

estimated probability of achieving “statistically significant” results at the final J th analysis,

conditional on the observed trial results (at some jth interim analysis where Sj = sj) and

some assumption θ∗ about the true treatment effect θ. This is defined as follows:

Cj(dJ , θ∗) = Pr(SJ > dJ |Sj = sj; θ = θ∗) = Φ
dJ − sj − θ∗ + [NJ −Nj]√

V [NJ −Nj]



Common choices for θ∗ might be the design alternative θAlt or the MLE at the jth analysis

θ̂j = sj
Nj

. It should again be noted that when σ2 is known, stopping boundaries chosen for

one boundary scale can be easily transformed to stopping boundaries for another scale.

However, the appropriateness of naively derived thresholds on the various scales is often not

well understood by clinical trialists [Emerson et al., 2005, 2011b, Levin, 2013].
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2.2.2 Independent Increment Structure

When defining some forms of the test statistics in the FSD setting, we appealed to approx-

imate distributions based on asymptotic large sample results. In GSDs, these approximate

distributions do not hold in general for the cumulative statistics due to the multiplicity

of repeated significance testing and the sequential stopping rule. Rather, by appealing to

the independence of the increments of observations accrued between interim analyses, the

method of Armitage et al. [1969] can be used to compute the exact sampling distribution of

the sequential test statistics.

To facilitate notation used later for the adaptive setting, we again note the use of the

superscript ∗ to represent the incremental data between interim analyses. We denoteN∗j to be

the incremental sample size accrued between the j−1th and jth analyses, i.e., N∗j = Nj−Nj−1.

The incremental statistics S∗j , Z∗j , θ∗j used to denote data that are accrued during the jth

interim analysis can be expressed as follows:

S∗j =
Nj∑

i=Nj−1+1
(XAi −XBi) = Sj − Sj−1

θ̂∗j = S∗j /N
∗
j

Z∗j =
√
N∗j (θ̂∗ − θ0)/

√
2σ2

P ∗j = 1− Φ(Z∗j )

Conditional on the schedule of analyses, S∗j |(N1, . . . , Nj) ∼̇ N (N∗j θ, 2σ2N∗j ). Under the

incremental Hj
0, the incremental statistics Z∗j ∼ N (0, 1), P ∗j ∼ U(0, 1) are conditionally

independent of each other. However, the marginal and joint distribution of these statistics

may not be well-characterized under alternatives. Our cumulative test statistics at interim

analyses can be expressed in term of incremental statistics from each stage.
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Sj =
Nj∑
i=1

(XAi −XBi) =
j∑
l=1

S∗l

θ̂j =
∑j
l=1N

∗
l θ̂l
∗∑j

l=1N
∗
l

, since
j∑
l=1

N∗l = Nj

Zj =
√
Nj

2σ2

∑j
l=1N

∗
l θ̂l
∗

Nj

− θ0

 =
∑j
l=1N

∗
l (θ̂l

∗ − θ0)√
2σ2Nj

=
j∑
l=1

√
N∗l
Nj

Z∗l =
j∑
l=1

w∗l Z
∗
l

where w∗l =
√
N∗l /Nj for l = 1, · · · , j.

A key assumption of a GSD is that the schedule and timing of interim analyses is inde-

pendent of the estimates of treatment effect. In that setting, the above probability model is

said to have “independent increments” in the sequential literature. Hence, the distribution

of the minimal sufficient group sequential test statistic can be given in the form used by

Armitage et al. [1969] as recursive convolutions of normal densities with a truncated density

from the previous stage. (Later, in section 2.5, when we consider the adaptive setting, our

incremental statistics may no longer be independent under the alternatives since the future

interim analysis is dependent on the estimated treatment effect at previous analyses.)

For convenience, we describe the sampling distribution of our test statistics on the partial

sum statistic scale. When independent increments hold, we can write the sampling distribu-

tion of the partial sum statistic based on the stopping sets for the observation (M = m,S = s)

that is defined recursively via Armitage et al. [1969] as

pM,S,θ =


f(m, s, θ) s /∈ Cm

0 else
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where the (sub)density function f(j, s; θ) is further defined as:

f(1, s; θ) = 1√
n∗1V

φ

(
s− n∗1θ√
n∗1V

)

f(j, s; θ) =
∫
Cj−1

1√
n∗jV

φ

s− u− n∗jθ√
n∗jV

 f(j − 1, u, θ)du, j = 2, · · · , J

with φ(x) = exp−x2/2 /
√

2π denoting the density of a standard normal distribution where

n∗j = nj − nj−1 and n0 ≡ 0.

When a group sequential design terminates, statistical inference is desired to provide some

quantification of the treatment effect, i.e, a point estimate, 100(1− p)% confidence interval,

and some p-value. As a consequence of the sequential sampling, the sampling density above

is no longer an approximate normal distribution. Special inference procedures are required to

account for this possibility of early stopping. This adjusted inference makes use of the above

sampling distribution of the minimal sufficient statistic to derive bias-adjusted or median

unbiased estimates, exact confidence intervals, and exact P values. Various authors have

explored the relative behavior of alternative strategies in the GSD setting [Tsiatis et al.,

1984, Whitehead, 1986, Chang, 1989, Emerson and Fleming, 1990].

2.2.3 Families of Designs

When later comparing the operating characteristics of particular adaptive designs, we will

want to appeal to the current knowledge about GSD. In section 2.5, we see that commonly

implemented adaptive designs can be viewed as stochastically switching between alternative

GSDs. In these settings, the behavior of the adaptive design can sometimes be anticipated

based on the properties of GSDs having different maximal sample sizes, different schedules

of analyses, and different boundary shape functions. It is thus useful to consider the general

behavior of GSD within a broad family of GSDs.

Families of GSDs can be defined on a variety of scales as noted above. Perhaps most com-

monly used are scales based on the MLE, Z statistic, or fixed sample P values, error spending
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scales, or scales based on conditional or Bayesian predictive power. For our purposes, we are

primarily interested in how “early conservatism” and schedule of analyses might affect the

operating characteristics of GSDs, and thus it is immaterial which family of GSDs we might

use for our investigations. For convenience we use a family defined on the MLE scale.

The unified family [Kittelson and Emerson, 1999] includes many of the most commonly

used sequential sampling schemes (O’Brien Fleming, Pocock, Wang and Tsiatis [Wang and

Tsiatis, 1987]). In the unified family, the “boundary shape function” linking the critical values

across analyses is of the form f(Π;A,P,R)G = (A + Π−P (1 − Π)−R)G, where Πj = Nj/NJ

is the proportion of maximal sample size observed at the jth analysis, and parameters A,P ,

and R are typically viewed as controlling the “early conservatism” of the GSD. The values of

G are typically obtained by a numerical search to ensure that the boundaries formed would

provide the right level of α to test the null hypothesis, and to distinguish the alternative with

some appropriate power. For certain choices of A,P , and R, we can choose the threshold

at the earliest analyses to be so extreme that the GSD will only allow early stopping when

there is compelling evidence of benefit or harm.

The boundary shape characterizes the degree of conservatism at early analyses, which

in turn affects the efficiency of the design. The O’Brien Fleming (OBF) monitoring rule

can be specified by setting f(Π, 0, 1, 0) = Π−1 while the Pocock design is specified using

f(Π, 0, 0.5, 0) = Π−0.5. The OBF designs are the most common designs used in practice

due to its early conservatism. The Pocock designs are also frequently used to explore GSD

methodology, as they tend to be approximately efficient in terms of average sample size.

While it is immaterial how the stopping rule is defined, it is of concern how the stopping

rule can affect the operating characteristics of the study which in turn affects the scientific,

ethical, and efficiency when competing designs are of interest.

2.3 Choice of Stopping Rules

In a fixed sample level α design, the conventional boundary on the Z scale is determined

such that when the alternative is true, the power is roughly β. This enables one to determine
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the sample size required to enable discrimination of the hypothesis in order to identify the

treatment benefit at the time when all data are accrued and analyzed. In selecting an

appropriate design, we often consider an optimality criterion that maintains the competing

goals of science, ethics, and efficiency. In experimental designs, the best designs are selected

under which “bias and variance are minimized”, and “cost is minimal” [Sanchez, 2014].

With a sampling/monitoring rule, there is no single unique way to pick a design in this

over-parametrized space. When considering alternative stopping rules at the design stage,

there may be many criteria that we may choose to constrain or optimize. It is conceivable

that one chooses to fix the overall Type 1 error, power for a specific alternative of interest,

and the number/timing of interim analysis. Among designs with say 97.5% power at the

hypothesized alternative, for a one sided alternative under a symmetric design, the unified

family still includes a large class of stopping boundaries with varying degrees of early or late

conservatism. Differences among such alternative designs with respect to other operating

characteristics may constitute criteria that we want to further constrain or select to optimize.

One of the most common optimality criterion to minimize is the sample size. Since the

sample size is a random variable, it is often of interest at the design stage to consider the

average sample size in the study, because the number of subjects is directly related to the cost

of the trial. However, other optimality criterion may be considered at design stage that more

appropriately suit other aspects. This can include power under the hypothesized treatment

effects (which includes the null hypothesis for type I error and alternative for the power),

other aspects of the sample size distribution (75th percentile or maximum), or probability

of early termination at each interim analysis. Just as with the statistical power afforded by

the GSD, the sample size distribution and stopping probabilities vary as a function of the

true treatment effect.

This last aspect relates to the probability of having an adequate sample size to be able to

assess safety endpoints and other important secondary endpoints. Hence, we are sometimes

interested in the degree of “early conservatism” that would ensure that the information on

secondary endpoints is not compromised unless evidence about strong effects on the primary
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endpoint is overwhelming. Because there is an infinite number of designs within the unified

family, it is typically the role of the statistician to help distinguish the good and bad operating

characteristics in order to balance the logistical, financial, ethical, scientific, and regulatory

goals.

2.3.1 Degree of Early Conservatism: Holding Power Fixed

The degree of early conservatism is an important design property to consider. We generally

want to be conservative in choosing our efficacy boundaries at early analyses to protect

against random high bias when there is less information to judge whether the treatment is

beneficial. When the treatment may exhibit some lack of benefit or indicate some harm,

we may want to be anti-conservative in choosing our futility boundaries at early analyses in

order to protect patients on the trial.

The simplest way to comparing designs is to hold power fixed for the alternative of interest

and forcing an interim analysis to be made at 50% of the maximum sample size. The different

monitoring boundaries in Figure 2.1 presents differential behavior of early conservatism of

alternative GSD when compared to a FSD having sample size 1.0. The OBF boundary is

most conservative relative to all other displayed boundaries as illustrated by the relatively

extreme critical values for the estimated treatment effect that would be required in order

to stop the trial at the first interim analysis. A key property of this one-sided OBF rule is

that halfway through the study, i.e., at 50% of the maximum sample size, the trial would

have excluded any value of θ ≤ 0. The Pocock boundary is less conservative than the OBF

boundary, as seen by the less extreme critical values relative to that of the OBF, thus making

it more easy to stop at the first analysis. An asymmetric boundary can however be chosen to

take advantage of the early conservatism of OBF (P = 1) and the less conservative Pocock

(P = 0.5) as the efficacy and futility boundary respectively (represented notationally by

P = c(0.5, 1) in Figure 2.2). Such a choice significantly reduces the maximal sample size

compared to using a Pocock boundary but still ensure the high degree of early conservatism

of an OBF monitoring boundary. We can flexibly vary the degree of early conservatism
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for the futility boundary by choosing P = 0.8 which has a less aggressive futility boundary

relative to a Pocock futility boundary but less conservative relative to an OBF futility. This

is illustrated by P = c(0.8, 1).
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Figure 2.1: One-sided symmetric sequential boundaries [Emerson and Fleming, 1989] pre-
sented on the sample mean scale and Z scale. All boundaries illustrated have power of
97.5% at alternative θ = 7.84. P = c(0.5, 1) corresponds to the hybrid design with a Pocock
futility and OBF efficacy boundary. P = c(0.8, 1) corresponds to the hybrid design using a
P = 0.8 as the futility boundary that is intermediate between P ∈ (0.5, 1), and OBF efficacy
boundary.

Holding the overall power constant for a hypothesized alternative no longer gives us the

same maximum sample size. As such, even though the interim analyses are conducted at 50%

of the way relative to this maximum sample size, the sample size at which the first interim

analysis is conducted is no longer held constant for the different monitoring boundaries.

Relative to a fixed sample design where a unit sample size is required with 97.5% power to

discriminate the alternative of θAlt = 7.84, the OBF rule results in a mild inflation of this
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maximal sample size while the Pocock requires > 20% inflation. Generally speaking, for a

symmetric design, as the level of early conservatism decreases, i.e., P decreases from∞ (i.e.,

FSD) towards 0, the required maximum sample size to maintain power also increases.
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Figure 2.2: Average and 75th percentile of the sample size distribution for the various designs
all having power of 97.5% at the design alternative θ = 7.84 across different θ’s between the
null and alternative.

The different levels of early conservatism from these monitoring boundaries produce a

spectrum of average ASN curves that are maximized at different values of potential al-

ternatives. Among the symmetric boundaries, the less conservative Pocock boundary pro-

duced minimum ASN among values ranging between the null and alternative, while the OBF

boundary averaged a slightly higher ASN relative to Pocock but a smaller ASN relative to

the fixed sample design. The asymmetric rule with P = c(0.5, 1.0) for futility and efficacy

might better provide efficiency in discarding ineffective treatments, while having desirable
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early conservatism that allows more detailed data on safety and secondary endpoints for

effective therapies. The curves for the 75th percentile of the sample size distribution also

exhibit different behavior for the various monitoring boundaries across intermediate values

of θ0 and θAlt.
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Figure 2.3: Difference in power relative to fixed sample design having the same maximal
sample size as the OBF for the various designs used in Figure 2.1 with power of 97.5% at
alternative θ = 7.84 across different θ’s between the null and alternative.

We can also compare the various GSDs with respect to their power curves. Figure 2.3

shows the difference in power curve relative to the FSD with the same maximum sample size

as the OBF. Such a FSD is included in this comparison to enable us to assess the “cost” of

including an interim analysis using an OBF design without increasing the maximal sample

size. Because the OBF design is the most conservative GSD considered in Figure 2.3, the

FSD provides greater power than all the other designs in this graph. It should be noted

that all the GSDs were chosen to have an overall Type 1 error of 0.025 and power 0.975 at
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the same design alternative. Hence, the only differences among the various GSDs are how

the power curves differ at other alternatives. At other alternatives between the null and

design alternative, the difference in power is negligible. The choice of the symmetric Pocock

boundary ensures higher power at alternatives between half the hypothesized alternative to

the alternative relative to all other monitoring boundaries presented. The OBF, on the other

hand, beats the other monitoring boundaries between the null and half of the hypothesized

alternative.

In summary, when holding power fixed, the unified family which consists of a spectrum of

monitoring boundaries can have different operating characteristics. For “conservative early”

designs like the OBF, the differences in the power curves will not differ substantially from a

FSD with the same maximal sample size. However, for less conservative (but in the case of

the Pocock more efficient on average) designs, there are more variations between the power

curves relative to the OBF or FSD design.

2.3.2 Effect of Adding Interim Analyses: Holding Power Fixed

Often, the number of interim analyses affects the logistical and financial cost of the trial. We

describe the impact of additional analyses with the use of the OBF monitoring rule while

holding power fixed under the same alternative. With additional analyses, the maximum

sample size is increased. The monitoring boundaries are interpolated more finely across

interim analysis but remain approximately similar (Figure 2.4).

Additional interim analyses also reduce the ASN curves uniformly such that designs with

fewer analyses averaged higher ASN curves across θ ∈ (θ0, θAlt) (Figure 2.5). The curves for

the 75th quantile of the sample size distribution are dominated differently depending on how

close the true θ is to the alternative and the null.
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Figure 2.4: Sequential boundaries on the sample mean scale for the one-sided symmetric
OBF design with different number of interim analyses and power fixed at 97.5% at alternative
θ = 7.84. (Right) Difference in power, relative to fixed sample design with the same maximal
sample size for the two-stage OBF design, are shown for designs with different number of
interim analyses while keeping power at 97.5% under design alternative θ = 7.84.
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at 97.5% under design alternative θ = 7.84. The ASN curves in blue, gold, and gray corre-
spond to 2, 4, and 8 analyses respectively.
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Figure 2.6: Probability of stopping for efficacy or futility for the various OBF designs with
different number of interim analyses while keeping power at 97.5% under alternative θ = 7.84.
In gold, the region describes the probability of rejecting H0 for efficacy, while in light blue,
the region describes the probability of rejecting H0 for futility/non-efficacy.

Figure 2.6 describes the degree of early conservatism as shown by the monitoring bound-

aries on the probability scale often interpreted as the probability of early stopping which

ties back indirectly to the computation of the ASN curves. This figure can be interpreted

as follows: Consider the leftmost sub-figure, the light blue colored region corresponds to the

probability of rejecting H0 for futility/non-efficacy while the golden region corresponds to

the probability of rejecting H0 for efficacy. The line indicated by the number k represents the

cumulative stopping probability (sum of the light blue and gold region) at the kth analysis

across the different design alternatives ranging from θ = 0 to θAlt = 7.84.

Under the design alternative θAlt = 7.84, when there are only 2 interim analyses, this

cumulative probability of stopping by the first interim analysis is 50%. As we increase the

number of interim analyses, this cumulative probability of early stopping at θAlt is sub-

divided and discretized by the interim analyses to allow more opportunities to stop even

earlier when sufficient and statistically credible evidence has been established regarding the

futility/non-efficacy or efficacy of the treatment/prevention strategy. This property of the
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GSD is key when planning a prevention trial with the possibility of incorrect assumption of

the background rates potentially coupled with extreme treatment efficacy in Chapter 5.

2.3.3 Effect of Adding Interim Analyses: Holding Maximum Statistical Infor-

mation Fixed

In general, when holding the maximum statistical information fixed, the consequence of ad-

ditional interim analyses at design stage will result in some loss of overall power. Depending

on the choice of the monitoring procedure, this loss of power may be minimal. We consider

the OBF and the Pocock boundary as illustrations (Figure 2.7 and 2.8). For this illustration,

we hold fixed the maximum sample size for the same hypothesized θAlt while increasing the

number of equally spaced interim analyses.

There are minor differences in the OBF monitoring boundaries, with slight loss of sta-

tistical power under the design alternative, as well as across the various θ’s between the

null and alternative. The critical value at the final analysis for the Pocock monitoring rule

is more extreme as we increase the number of interim analyses. However, the consequence

of holding the maximum sample size fixed and increasing the number of interim analyses

for the Pocock boundary also changes the relative behavior of the power curves vastly for

intermediate values of θ between the null and alternative.

The ASN curves generally decrease when interim analyses are added as seen in Figure 2.8.

The curves for the 75% quantile of the sample size distribution are not necessary dominated

at all θ ∈ (θ0, θAlt) with the addition of interim analyses.
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Figure 2.7: Monitoring boundaries and differences in power relative to the fixed sample design
for O’Brien Fleming and Pocock designs when increasing the number of interim analyses
while maintaining the statistical information under the same alternative θ = 7.84. The
monitoring boundaries are slightly different for Pocock and generally show bigger loss of
power when holding maximum statistical information fixed but increasing the number of the
interim analysis relative to the OBF class of designs.
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Figure 2.8: Average and 75th percentile of the sample size distribution for the O’Brien
Fleming and Pocock design are shown as we increase the number of interim analyses while
maintaining statistical information for the same alternative θ = 7.84. The fixed sample
design has both the maximum and average sample size at 1.
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2.3.4 Summary

In summary, when holding power fixed, common operating characteristics of the group se-

quential designs such as maximum statistical information, ASN, 75th percentile of the sample

size, and the probability of early stopping vary depending on the degree of early conservatism

of the monitoring rules. When adding interim analysis (holding power fixed)

• ASN decreases

• Maximum statistical information increases

• Probability of stopping at earlier interim analysis increases

We rarely choose the optimal design based purely from a statistical standpoint. In prac-

tice, the choice of the monitoring procedure is based on science, logistics, or even ethics which

may be less tangible to parametrize. However, the large class of designs that satisfies at least

general concerns such as the overall Type 1 error, power for a specific alternative, or the

degree of early conservatism is sufficient to facilitate picking operating characteristics that

balance science, ethics, logistics, etc. In this over parameterized space, we see the difficulty

of choosing a single best design since slight modifications may no longer allow us to fairly

compare another design of choice.

2.4 Blinded Sample Size Revision: Information Based Approach

There are many methods that have been proposed to allow for sample size revisions to

maintain statistical power [Wittes and Brittain, 1990, Gould and Shih, 1992, 1998]. However,

it is vital that when sample size revision is performed during interim analysis, the integrity

of the trial not be compromised as a consequence of unwittingly unblinding the treatment

groups. Thus, blinded procedures that do not disclose information about the treatment

groups assignments are typically preferred and regarded as “well-understood” procedures by

FDA. For these reasons, it is generally preferred that blinded revisions not be performed by

a DMC that has seen unblinded interim results. We describe interpretations of the sample
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size formula that give rise to some of these procedures. Later, we describe procedures that

choose to unblind the study to repower the trial to a different alternative (section 2.6).

2.4.1 Notation

In the fixed sample setting, we are interested in discriminating the null hypothesis of H0 :

θ ≤ θ0 vs the alternative HA : θ ≥ θAlt in a hypothesis test with an overall 1-sided Type 1

error of α and power β. The general sample size formula may be written as N = δ2
αβV

∆2 where

δαβ = (z1−α + zβ) and ∆ = θA − θ0 [Emerson, 2000]. We refer to δαβ as the standardized

alternative under the fixed sample design having maximal statistical information of 1.0.

This can be extended to group sequential design by making some multiplicative adjustment

such that δαβR is the maximum sample size for the group sequential design where R is this

multiplicative adjustment described in Jennison and Turnbull [1999].

In the general setting, V may be a function of the summary measure, θ, as well as other

parameters that may be independent of the summary measure θ. Many times, V may not

be precisely known at the design stage and is instead chosen based on a reasonable guess

from prior studies. Because an incorrect specification of V can often lead to underpowered

or overpowered studies, it is sometimes written into the protocol that the sample size will

be revised when a more precise estimate of V is obtained.

Under the immediate outcome setting used as our example, V is equivalent to 2σ2 based

on a 1:1 randomization. Equations 2.1 & 2.2 present alternative formulations of the usual

sample size formula.

Maintain sample size: N = (z1−α + zβ)2

(θA−θ0)2

V

(2.1)

Maintain statistical information: N

V
= (z1−α + zβ)2

(θA − θ0)2 (2.2)

Equation 2.1 can provide an interpretation of our RCT design where we choose to main-

tain the sample size despite observing variability V̂ different than that used when planning
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the RCT. When the observed V̂ during the trial differs from our guess V , our test statistic

would not attain the same power β to detect the designed difference ∆. Instead, when evalu-

ating power under various alternatives, we are comparing power curves based on alternatives

that are measured in terms of “standard deviation”, i.e., ∆/
√
V . At the planning phase,

sensitivity analyses may be desired under different assumed variability V [Emerson, 2000].

For example, when our sample size is 1 unit, V is assumed to be 1 at design stage with level

α = 0.025, power β = 0.975, and ∆/
√
V = 3.9199. By holding our sample size constant, i.e.,

at 1 unit, when V is truly 1.25, holding α and β fixed, we can only discriminate our hypoth-

esis when ∆/
√
V = 3.919928/

√
1.25 = 3.50609. Alternatively, one may interpret having a

lower power (β∗ = 93.89%) if one chooses to further hold ∆ constant.

Equation 2.2 illustrates an interpretation for the blinded revision of sample size strat-

egy where one chooses to maintain a possibly prespecified maximal statistical information

N/V . By keeping our statistical information fixed, the right hand side can be interpreted

as choosing to maintain our level α and power β to discriminate our original hypothesis ∆.

Hence, when V is incorrect, we can modify our sample size N to approximately hold the

right hand side constant, while maintaining the same power to discriminate ∆. Because

modification of the sample size is conditional upon this observed variability V̂ during the

course of the trial, as long as the treatment effect is blinded, we consider V̂ to be ancillary

and thus asymptotically independent of the estimated treatment effect.

Whitehead et al. [2001] investigated the use of this strategy to maintain statistical in-

formation for GSD without unblinding. Other authors such as Mehta and Tsiatis [2001] de-

scribed the general approach of using information based monitoring but did not fully specify

how to keep the design blinded at interim analysis to revise estimates of the nuisance param-

eters in their examples. Other monitoring approaches to revise boundaries based on accrued

statistical information by Lan and DeMets [1983] or Burington and Emerson [2003] are sim-

ilarly generally considered “well-understood” within the context of GSD. In Appendix B, we

present such an example of blinded adaptation and its use during the course of monitoring.

This general approach will later be relevant to the results presented in Chapter 5.
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In the setting when our responses are continuous, the use of the overall variance, σ2, is typ-

ically preferred to maintain blinding. [Whitehead, 1997] advised against the use of the pooled

variance which can result in breaking the blind of the treatment effect. In particular, when

our primary outcome is the difference in probability, we can use p̂ = ∑N
i=1

∑
w=0,1Xiw/(2N) =

(Rp1 +p0)/(R+1) to solve for the event rate under the null where R is the randomization ra-

tio, and w = 0, 1 to denote treatment group 0 and 1 respectively. By plugging in p0 = p1 +θ,

we can obtain p̂ = p0 −Rθ/(R+ 1) to compute the variance. Table 2.1 displays a summary

of estimators that are used to perform blinded adaptations in more general settings.

Table 2.1: Test statistics provided when sample size review is performed in the general
setting.

Setting Blinded Assumption
Difference in proportions p p0 = p1 + θ

Difference in means σ2 = ∑
i,w(Xiw −X)2 θ0 = θ1 + θ

Log-rank analysis Number of events log(θHazard Ratio)

The use of blinded procedures can adequately address incorrect assumptions at design

stage that are applied during the sample size calculation. As per FDA guidance documents

[FDA, 2010, 2015], blinded procedures that do not unblind the study generally do not intro-

duce bias. It is also recommended that these adjustments be made as late as possible when

a more precise estimate of the baseline rate is obtained. While it is not recommended that

these adjustments be used to decrease sample size, blinded procedures may be considered

in conjunction with group sequential methods to possibly revise the sample size for early

stopping. There are however times whereby trials are not adequately designed with the ap-

propriate statistical power, or lack a thorough evaluation of all assumptions during planning

stage that lead to more attractive options to “repower” aspects of the trial design based

on unblinded interim analyses. These form the basic arguments for most of the statistical

development in designing more flexible, adaptive trials.
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2.5 Prespecified Adaptive Designs

Group sequential monitoring was first used to overcome many of the ethical and efficiency

concerns present in a fixed sample design. Bauer and Köhne [1994] introduced the idea of

added flexibility for modifications to mid-trial designs in confirmatory setting. The concept

of “self-designing” trial envisioned by Fisher [1998] considered adaptations to possibly (1)

drop treatment arms, (2) re-power studies for unanticipated differences in treatment effect,

(3) modify the definition of primary outcome based on interim data, (4) modify eligibility

criteria, and/or (5) modify randomization ratios.

Group sequential monitoring can adequately address most statistical concerns in (1) and

(2). Other adaptations in 3-5 are more difficult to interpret and less acceptable as they involve

complex modification of the scientific hypotheses of interest [Fleming, 2006, Emerson, 2006,

Emerson and Fleming, 2010]. Nonetheless, there are differences between the newer adaptive

designs and the classical GSD that might provide some additional advantage in efficiency of

clinical testing of new treatments.

It is possible to pre-specify an adaptive sampling scheme in a manner to allow inference

based on minimum sufficient statistics [Levin, 2013]. With a pre-specified adaptive sam-

pling scheme, a known sampling distribution can be used to perform frequentist inference,

thus enabling evaluation of operating characteristics. This notion is similar to the class of

“sequentially planned decision procedures” [Schmitz, 1993]. Since GSD is a special class of

pre-specified adaptive design, choosing adaptive rules based on minimum sufficient statistics

among this larger class of designs should theoretically allow us to be more efficient so long we

pre-define the opportunities to make changes to the sampling plan that increase the sample

size [Jennison and Turnbull, 2006a]. This can more appropriately allow us to investigate the

degree of efficiency gain with judicious choice of sampling plan based on specific optimality

criteria that balance scientific and ethical constraints.

We introduce notation for the prespecified adaptive design, which can be defined by a

sequence of group sequential designs with different maximum statistical information. Be-
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cause these adaptive rules are prespecified, the full sampling distribution can be written

down, enabling frequentist inference to be computed in a manner analogous to that used for

frequentist inference in GSD. For purposes of this dissertation, we shall be concerned with

statistical adaptations in the time to event setting. However, such statistical adaptations

become complex when they inherently affect the scientific interpretation of the results.

2.5.1 Notation

Using the notation in section 2.2.1, we consider a single adaptive interim analysis is made

based on the GSD. We summarize the necessary notation for this setting based on Levin et al.

[2014]. We apply the same set up and will generally be concerned with the following test

statistics, namely: the partial sum statistic, Sj = ∑Nj
i=1(XAi −XBi); the MLE estimate, θ̂ =

Sj/Nj; the normalized Z statistic/Wald, Zj =
√
Nj(θ̂− θ0)/

√
2σ2; the fixed sample Pj-value

statistic, 1− Φ(Zj). In addition, our incremental statistics are S∗j = ∑N∗j
i=N∗j−1+1(XAi −XBi),

θ̂∗j = S∗j /N
∗
j , Z∗j =

√
N∗j (θ̂∗ − θ0)/

√
2σ2, and P ∗j = 1− Φ(Z∗j ).

Following Levin et al. [2013], at the adaptive interim analysis h such that {h : 1 ≤ h < J},

future incremental sample sizes are modified as follows: We partition the continuation region

Ch at the adaptive interim analysis h into r mutually exclusive continuation sets, denoted by

Ckh for k = 1, · · · , r where Ck′h ∩Ckh = ∅ if k = k′, and ∪rk=1Ckh = Ch. Let each continuation set,

Ckh, which is made at the adaptive analysis, to correspond to a future group sequential path

k with a maximum of Jk interim analyses. Then, each continuation region Ckh+1, · · · , CkJk
will correspond respectively to some potential future sample size nkh+1, · · · , nkJk . Also, let

the continuation set Ckh at the adaptive analysis to correspond to a symmetric continuation

region. We can define the random sample path variable K for values 0, 1, · · · , r made after

the adaptive interim analysis. We now have a three dimensional statistic (J, S,K) where J is

the stage, S is the partial sum statistic calculated at the stopping, and K to be the sequential

path that led to the stopping. This statistic has been shown to be minimal sufficient by Levin

[2013]. For notational convenience, we shall suppress the superscript for J .

Consider Figure 2.9 as an illustration. In this design, we have a two stage (J = 2) pre-
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specified adaptive design where an adaptive interim analysis is conducted at the first interim

analysis (h = 1), with K = 3 different maximum statistical information n1
2, n

2
2, and n3

2. This

two stage design has r = 3 mutually exclusive continuation regions C1 = ∪3
k=1Ck1 such that

each continuation region can be described as a group sequential design. More explicitly,

one such two-stage group sequential design has an interim analysis conducted at n1 subjects

with continuation region C1 = (a1, d1) leading to a maximum statistical information n1
2 as

described by the blue lines. Similarly, another two-stage group sequential design has an

interim analysis conducted at n1 but a continuation region C3 = (a3, d3) that leads to a much

bigger maximum statistical information n3
2 relative to n1

2 or n2
2 as described by the yellow

lines.
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Figure 2.9: A pre-specified adaptive design with a single adaptive interim analysis where the
different continuation regions correspond to different final statistical information. The above
can be described as a series of group sequential design with different continuation regions or
more formally as a stochastic hybrid of group sequential designs.
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Such a prespecified adaptive design as shown in Figure 2.9 can otherwise be described

as a stochastic hybrid of group sequential designs that randomly switches between the three

different maximum statistical information n1
2, n

2
2, and n3

2, comprising of the respective con-

tinuation sets Ck1 = (ak, ak+1) ∪ (dk+1, dk) for k = 1, 2, and C3
1 = (a3, d3). It is this random

switching of group sequential designs with different maximum statistical information that

allows the sampling density to be characterized.

The sampling density for the class of prespecified adaptive designs can be considered as

an extension of the notation described for the sampling density of the GSD in section 2.2.1.

Frequentist operating characteristics can be obtained with the extension of the GSD sam-

pling density. We refer the reader to Levin [2013] for more details on the sampling density,

characterization of minimum sufficiency, as well as the evaluation of inferential procedures.

2.6 (Fully) Adaptive Designs

Adaptive features made on the basis of unblinded data can not only inflate the overall Type

1 error through sequential testing but can further introduce bias from sponsors/researchers

who have potential conflict of interest. This possibility may raise concerns about the validity

of the trial results. Since there is a regulatory need for “adequate and well-controlled” inves-

tigations (Kefauver-Harris, 1962) in confirmatory studies to enable appropriate labeling of

any new treatment, adaptive designs that were not fully specified (“fully adaptive”) received

less regulatory support from both FDA and EMA. Recent guidance documents from EMA

[2007] and FDA [2010, 2015] provided substantial discussions on what aspects of adaptation

are deemed acceptable, less acceptable, or outside the scope of discussion in the context of

major confirmatory Phase III settings. Despite minor differences between each agencies’ def-

inition of adaptive designs, both agencies recognize the need for adequate and well-controlled

confirmatory trials, and that appropriately planned and well-executed adaptive designs in

earlier phase studies could lead to improvements in the drug discovery process.

Regulatory agencies are concerned with unplanned adaptations for reasons besides sci-

entific interpretability of results. One of the biggest issue with such procedures was first
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examined by Proschan et al. [1992] and elaborated in more detail in Proschan and Huns-

berger [1995]. In their two stage setting, a sample size modification is made based on the

interim estimate of the treatment effect using the function n∗2 = h(z1, n1) where z1, n1, n
∗
2 are

the interim stage one z statistic, first stage sample size, and incremental second stage sample

size respectively. As might be expected, the authors demonstrated that failure to adjust for

the multiplicity of analyses results in an inflation of the overall Type 1 error. However, the

surprising result was that the overall Type 1 error can more than double and the usually

conservative Bonferroni correction assuming two analyses fails to protect us against such

inflation. At first glance, the results appear paradoxical. However, knowing the unblinded

interim results, one can effectively avoid actually performing analyses unlikely to achieve sta-

tistical significance, and try to hone in on sample sizes that maximize the chance of achieving

statistical significance. In effect, then, a user has considered many more analyses than the

two that were actually performed, and a Bonferroni correction based on only two analyses

would be incorrect.

In the following sections, we summarize the proposed approaches for controlling the

overall Type 1 error when modifying the sample size using unblinded interim results in

the adaptive setting. These approaches can be classified into (1) combination function, (2)

conditional error, (3) re-weighting of test statistic approaches.

2.6.1 Combination Approaches

Bauer and Köhne [1994] proposed the combination approach via Fisher’s method of meta-

analysis. Incremental p values obtained independently from different stages of the discovery

pipeline are combined via a pre-specified function h(p∗1, p∗2). Under H0 : θ = 0, p ∼ U(0, 1).

By distribution theory, we know that −2 log p ∼ χ2
2. This thus defines a rejection region R

such that α = Pr[h(p∗1, p∗2) ∈ R|H0] =
∫ ∫

R h(p∗1, p∗2) dP ∗1 dP ∗2 .

In a two stage setting, Fisher’s criterion allows one to combine incremental p∗1, p∗2 values

obtained from results based on two independent stages, with the rejection region defined as

p∗1p
∗
2 ≤ cα = exp[−1

2χ
2
4(1 − α)]. At stage one, reject H0 for efficacy if p∗1 ≤ α1, or reject H0
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for futility if p∗1 ≥ α0. If not, continue to stage two. At stage two, reject H0 for efficacy if

p∗1p
∗
2 ≤ cα where α0, α1 is solved by

Pr[p∗1 ≤ α1] + Pr[(p∗1 ∈ (α1, α0)) ∩ (p∗1p∗2 ≤ cα)] = α.

They evaluated the loss of power by comparing their approach to the UMP test of the

design based on the total sample size obtained separately from the two stages. Additionally,

their numerical evaluation considered the degree of this loss of power based on different

fractions of this total sample size. Their evaluation has several limitations. The original

sampling scheme for the two stage design is unknown and based upon the sample size of

n1 +n∗2 that is regarded to be the true design. Naïvely, this second stage is always conducted

regardless of the results obtained from the first stage. Thus, one may consider this as

expanding some FSD with an unknown maximum sample size based on an administrative

look.

A similar approach to combining incremental p∗ values was also investigated by Lehmacher

and Wassmer [1999] where they proposed using pre-specified weights to combining these p

values obtained from independent stages. Under the null hypothesis, these p∗ values can

be combined via Z = ω1Φ−1(1 − p∗1) + ω2Φ−1(1 − p∗2) with ω2
1 + ω2

2 = 1. Such approach

has an intuitive and linear mapping of the weight function on the Z scale and differs from

the combination approach of Bauer and Köhne [1994] that has a non-linear mapping of the

weights. We note that when sample sizes for the second stage are dependent on the first

stage results, these p∗ are no longer independent under the alternatives.

2.6.2 Conditional Error Approaches

The conditional error approach was first suggested by Proschan and Hunsberger [1995] where

they examined the worst case setting of using unblinded treatment results to make sample

size adaptations in a two stage setting. They proposed the use of pre-specifying a conditional

error function A(z∗1) to preserve the overall type I error where A(z∗1) = PrH0 [Z2 > k|Z∗1 =
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z∗1 , n1)] ∈ [0, 1]. A(z∗1) is defined as the probability of incorrectly rejecting the null hypothesis

conditional on some observed interim statistic Z1 = z∗1 . Proschan and Hunsberger proposed

several forms of conditional error functions. The linear A(z∗1) = Φ(az∗1 + b) and the circular

function A(z∗1) = 1 − Φ(
√
h2 − z∗12), where constants h, or a and b are chosen to maintain

the α at some desired level, are more popular in the adaptive literature.

Müller and Schäfer [2001] and Müller and Schäfer [2004] described the more general

procedure of using GSDs to make sample size adaptations by preserving the conditional error.

This generalized procedure allow the use of unplanned modifications in the context of GSDs

with multiple interim analysis by preserving the conditional Type 1 error at the adaptive

interim analysis. Their approach first conditions out the interim estimated treatment effect

and re-evaluates the future modified boundaries based on the remaining conditional error.

Even though a prespecified conditional weighting is established, one does not know the future

course of the stopping boundary until the interim analysis. Because the sampling rule may

not be prespecified in advance, there is difficulty in providing frequentist estimation after

the trial stops. Despite that, Brannath et al. [2009], Gao et al. [2013] and Levin et al. [2014]

have proposed methods on evaluating the adjusted point estimates and confidence intervals

accounting for unplanned adaptations.

2.6.3 Re-weighting of Test Statistic

Methods proposed by Fisher [1998], Shen and Fisher [1999], Cui et al. [1999], Schäfer and

Müller [2001], and Shen and Cai [2003] approached the problem by re-weighting the test

statistic to control for the overall Type 1 error after making an unplanned unblinded adap-

tation. Consider the design with the original sample size n = n∗1 + n∗2. At the first interim

analysis, when n1 subjects are accumulated, based on accumulated data summarized by Z1,

the trial is modified to increase the stage two sample size from n∗2 to ñ∗2, with ñ∗2 = γ(n∗1).

Although Z∗1 ∼ N (0, 1) and Z̃∗2 ∼ N (0, 1) under the (incremental) null hypothesis, where Z̃∗2
is the incremental statistics based on the new n∗2 subjects, the naïve sampling distribution

of Z2 = n∗1
n∗1+ñ∗2

Z∗1 + ñ∗2
n∗1+ñ∗2

Z̃∗2 based on weighting all the data equally no longer have the usual
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standard normal distribution since ñ∗2 depends on Z∗1 . Thus, the naïve use of the test statistic

based on the standard normal distribution will result in an inflation of overall Type 1 error.

To correct for this data adaptive look, Cui et al. [1999] (CHW) considered re-weighting

the later part of the data when the sample size is increased at the adaptive interim analysis.

Later, Chen et al. [2004] defined the use of “promising regions” such that when the estimated

treatment effect is within some range of conditional power, it is considered promising to

extend the trial by more than doubling the sample size to target a different effect size than

planned. Gao et al. [2008] and Mehta and Pocock [2011] extended such notion to characterize

larger regions via conditional power where the naïve Type 1 error procedure may be used

even when the sample size is more than doubled. Gao et al. [2008] claimed such an approach

does not “downweight data accumulated in different periods”.

It is easy to see that Gao et al. [2008]’s claim is incorrect. (1) When we choose to use the

naïve test statistic, we apply the re-weighting scheme by CHW; Or (2), when we re-weight

our test statistic, we use the naïve critical value. Consider the J-look GSD whereby an

adaptation is made at the penultimate interim analysis to increase the original statistical

information from IJ to INew. Let the final adapted Z statistic with the naïve weighting

be ZNaïve =
√
IJ−1
INew

ZJ−1 +
√
INew−IJ−1
INew

ZNew∗
J where ZNew∗

J denotes the incremental Z statistic

between the J − 1 and J analysis.

The naïve critical value dJ based on the original GSD is no longer acceptable when an

unblinded adaptation using the interim estimated treatment effect θ̂J−1 is used to change

the design. We denote d?J to be the CHW critical value after such a design change is made

to increase IJ to INew. The adjustment procedure using CHW is as below

ZNaïve > d∗J = 1√
INew

[√
INew − IJ−1√
IJ − IJ−1

(
dJ
√
IJ − ZJ−1

√
IJ−1)

)
+ ZJ−1

√
IJ−1

]
(2.3)
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Substituting ZNaïve into 2.3, we get

(√
IJ−1

INew
ZJ−1 +

√
INew − IJ−1

INew
ZNew∗
J

)√
INew − ZJ−1

√
IJ−1 >[√

INew − IJ−1√
IJ − IJ−1

(
dJ
√
IJ − ZJ−1

√
IJ−1)

)]

=⇒
√
INew − IJ−1

INew
ZNew∗
J

√
INew

√
IJ − IJ−1√
INew − IJ−1

> dJ
√
IJ − ZJ−1

√
IJ−1√

IJ−1

IJ
ZJ−1 +

√
IJ − IJ−1

IJ
ZNew∗
J > dJ√

IJ−1

IJ
ZJ−1 +

√
INew − IJ−1

IJ

√
IJ − IJ−1

INew − IJ−1
ZNew∗
J > dJ (2.4)

Equation 2.4 contradicts Gao et al. [2013]’s argument that the procedure of Cui et al. [1999]

does not downweight any aspects of the data based on the adapted design.

2.6.4 Variance Spending Approach

Fisher introduced the more general concept using the “variance-spending” method that allows

one to modify various aspects (sample size, primary endpoint, eligibility criteria, etc) of the

trial at any point during the trial as long as the variance spending function is not used up.

In addition, the statistical properties of their approach are preserved as long as the weights

are chosen prospectively for future observation based on the prior data but before the next

observation enters.

2.6.5 Notation

We describe the notation for the fully adaptive design based on the notation used in GSD

where, without loss of generality, we assume an unblinded interim analysis is made at the

jth interim analysis to modify statistical aspects of the design. There are two interpretations

of such an adaptation. We can (1) consider the pre-specified adaptive rule in the previous

section as being fully flexible; or (2) completely assume these adaptations to be unplanned
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and thus require additional adjustments at the unblinded interim analysis.

In general, the J-look adaptive design has continuation sets, Cj = [aj, bj] ∪ [cj, dj], and

stopping sets, Sj = Ccj , described previously has a specified unblinded interim analysis at the

hth interim analysis for h : {1 ≤ h < J}. At the hth interim analysis, given the observed

Ŝh, the conditional error of rejecting H0 based on the observed data as far, αCond, can be

expressed as

αCond = Pr(Sh+1 ∈ Sh+1|Sh = Ŝh; θ = 0)+
J∑

j=h+2
Pr((∩j−1

l=h+1Sl ∈ Cl) ∩ (Sj ∈ Sj)|Sh = Ŝh; θ = 0)

The general approach of preserving the conditional rejection probability, also known

as the conditional rejection principle (CRP) [Müller and Schäfer, 2001], has a Markovian

interpretation that if the future course of a trial is altered in such a way that the Type 1

error conditional on the data observed so far remains the same for the original and altered

trials, then the unconditional Type 1 error of the original and altered trials is also preserved

under the null hypothesis [Gao et al., 2013]. Thus, conditional on the data observed so far,

we can define the altered course with continuation and stopping sets, C∗h and S∗h as in the

setting of section 2.5 respectively. Unlike the prespecified setting where the adaptive rule

is known in advance, here, because the design change is unplanned and based on the data

observed so far, there is a need to further adjust using the CRP principle. We thus need to

control the conditional Type 1 error αCond by evaluating

Pr(Sh+1 ∈ Sh+1|Sh = Ŝh; θ = 0) +
J∑

j=h+2
Pr((∩j−1

l=h+1Sl ∈ Cl) ∩ (Sj ∈ Sj)|Sh = Ŝh; θ = 0) =

αCond =

Pr(Sh+1 ∈ S∗h+1|Sh = Ŝh; θ = 0) +
J∑

j=h+2
Pr((∩j−1

l=h+1Sl ∈ C∗l ) ∩ (Sj ∈ S∗j )|Sh = Ŝh; θ = 0)

This approach to monitoring the unplanned adaptations will be used to evaluate fully flexible
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adaptive designs in Chapter 5.

2.6.6 Equivalence of Methods under the Two Stage Setting

Jennison and Turnbull [2003] provided a comprehensive review of the adaptive sample size

procedures described earlier and demonstrated equivalence of these proposed methods under

the two stage setting. In their review, they demonstrated that these flexible procedures do

not attain the level of efficiency compared to a GSD. Similar results were obtained from

Tsiatis and Mehta [2003] in a more restrictive setting. These early comparisons were often

unclear in terms of specifying the optimality criterion. Jennison and Turnbull [2006a,b]

re-evaluated the class of adaptive designs from a decision theoretic framework similar to

Schmitz [1993] that shed light on the advantages and disadvantages of adaptive procedures.

2.7 “Well understood” vs “Less well-understood” Designs

We highlight some of these current issues with the use of adaptive designs that have further

implications in the time to event setting [Gillen and Emerson, 2005, Emerson et al., 2011a,

Levin et al., 2013, Levin, 2013, Shoben and Emerson, 2014, Garcia, 2015].

2.7.1 Adaptive Sample Size Re-estimation

Levin et al. [2013] evaluated the class of pre-specified adaptive designs relative to GSDs

using the ASN as their optimality criterion. They found negligible improvement with the

use of pre-specified adaptive design over the best GSD in terms of ASN when a total of two

analyses are allowed. In addition, when the pre-specification was relaxed, group sequential

design is almost fully efficient compared to the best analogous adaptive design with ad-hoc

unplanned adaptations. Other authors [Tsiatis and Mehta, 2003, Jennison and Turnbull,

2003, 2006a] also found efficiency gains in the use of GSDs over adaptive designs using the

maximum statistical information as their optimality criteria. However, in these comparisons,

the operating characteristics between the designs were not similar in terms of either the
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number or the timing of the interim analyses.

Currently, adaptive modification of statistical information in the immediate setting has

not shown any marked advantage over current standard designs with respect to efficiency

as defined using ASN. However, in the time to event setting, when the overall cost of the

trial is related to the total number of subjects as well as the calendar time of obtaining

all relevant events, there may be compelling reasons (such as medical ethics) to consider

adaptive modification of patient accrual depending on trends in the treatment effect.

Emerson et al. [2011a] found scenarios among a limited spectrum of pre-specified adaptive

designs where the best GSD averaged a higher sample size over pre-specified adaptive designs

without compromising the trial duration in the censored setting under proportional hazards

(PH). They found potential for benefit in the use of adaptive designs when θ < 0.8 with

slow accrual. In fact, adaptive designs that allow for the reduction of the accrual of subjects

come with the cost of a slight extension of the study duration. When the accrual rate is

fast, adaptive designs do not appear to gain any advantage as the matched GSD achieves

shorter average duration over adaptive design with similar number of subjects. While it

was uncertain that such benefit may persist with the use of weighted statistics that require

further adjustment to control the overall Type 1 error, their research provided some glimmer

of hope that adaptive strategies may play a bigger role in the improvement of efficiency over

standard designs under time varying treatment effects.

2.7.2 Information Growth

In sequential analysis, monitoring boundaries are approximated by the information fraction.

As such, the concept of maximum statistical information plays an important role in making

distinctions between group sequential, blinded revision of sample size, and adaptive strate-

gies. In a group sequential design or blinded revision of sample size, we maintain maximum

statistical information at some pre-specified level. It is this property that distinguishes these

“well-understood” strategies from adaptive strategies when interim analyses allow adapta-

tion to a different maximum statistical information or sequential paths based on unblinded
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interim results. In any well-understood design, at the design stage, we know the rule for

defining the maximum statistical information. Adaptive procedures designed to test mul-

tiple alternatives typically have unknown maximum statistical information at design stage

until the unblinded interim analysis when the adaptation is made.

Many such adaptive approaches that adjust this maximum statistical information require

specifying the statistical information at the interim analysis as well as at the possibly revised

final analysis [Bauer and Köhne, 1994, Proschan and Hunsberger, 1995, Cui et al., 1999, Posch

and Bauer, 1999, Chen et al., 2004, Jennison and Turnbull, 2006a,b, Gao et al., 2008, Mehta

and Pocock, 2011, Levin et al., 2013]. Characterization is easy in the immediate setting

when the sample size is a surrogate measure of statistical information. In the time to event

setting, this actual information growth may be unknown unless presuming the use of the

logrank statistic under PH.

In longitudinal settings, information growth depends upon the statistical method of choice

as well as the underlying assumptions dictating the hypothesis of interest [Gillen and Emer-

son, 2005, Shoben and Emerson, 2014]. Under the strong null, i.e., when we have exact

equality of distributions at all moments, the censoring weights do not affect the statistical

validity of the (unweighted) logrank test statistic. However, the use of weighted versions

of the logrank statistics in the setting of strong null, or the use of logrank statistics (both

weighted and unweighted) in the presence of time varying treatment effects is affected by

this censoring distribution [Gillen and Emerson, 2005]. This consequence affects directly the

scientific credibility of the trial results and most importantly gives rise later to issues in our

ability to precisely quantify information growth as well as the maximum statistical infor-

mation. Additionally, these statistical issues in the longitudinal setting can be considerably

exaggerated with the use of inefficient estimators [Shoben et al., 2010].

Often, we may consider the use of weighted logrank statistics or other test statistics to

gain efficiency when we desire to emphasize clinical importance of earlier/later survival time.

In such situations, information growth under the strong null is no longer linear as the risk

sets are dependent on the censoring and underlying survival curves [Gillen and Emerson,
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2005, Shoben, 2010, Brummel and Gillen, 2014]. Even though such a choice of an efficient

weighting scheme is made to gain efficiency under non proportional hazards alternatives,

characterization of the control of the overall Type 1 error needs to be evaluated under

the strong null hypothesis of proportional hazards. Furthermore, any common methods of

analyzing time to event data may induce a time varying treatment effect across time or stage

of the clinical trial unless using the Cox regression or the unweighted logrank statistics, and

that the proportional hazards assumption is valid.

2.7.3 Inference after Adaptations

With a sampling rule, it is convenient to understand the operating characteristics to en-

able comparisons with GSDs. Standard frequentist procedures using the sampling density

in section 2.5 can be applied. In these settings, where the expected length of confidence

intervals for the parameter of interest is the optimality criterion, methods using the minimal

sufficient statistics based on the LR ordering or stage-wise ordering can be compared to

adaptive trial methods such as those proposed by Brannath et al. [2009]. Levin et al. [2014]

provided a comprehensive evaluation of these approaches when prespecified adaptations are

made. As might be anticipated based on statistical theory for FSD, in a broad spectrum of

adaptive settings, methods based on the minimal sufficient statistic and using the likelihood

ratio ordering were found to be more efficient than those adaptive methods that cannot be

implemented based on the minimal sufficient statistic alone. However, it should be noted

that these observations are empirical: No general theory about uniformly most accurate CI

is available in the sequential setting.

In fully adaptive procedures, the lack of pre-specification generally means that the in-

ference procedure in presence of early stopping is more limited to approaches by Brannath

et al. [2009] or Gao et al. [2013]. The degree to which fair comparisons can be made are more

difficult in this over parameterized space when issues of information growth and schedule of

analyses further impact the monitoring rule.
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2.7.4 Adaptive Enrichment

Several authors recognize that methods described in section 2.6 can be used to allow adaptive

modifications to randomization ratios or subgroup enrichments. In enrichment/adaptive

randomization ratio settings, when secular trends exist in accrual of subjects, Garcia [2015]

cautioned that there is a need to adjust for the analysis when estimating the treatment

effect as a consequence of confounding as introduced through the randomization ratio. More

research is needed to better understand statistical issues when these adaptive procedures

are already in place such as I-SPY-2 [Barker et al., 2009] or BATTLE [Kim et al., 2011].

Because of the close interplay between multiple comparison adjustments and finding the

right subgroup, adapting randomization ratios in presence of secular trends can further bias

the results away from the null, potentially affecting the predictive values of the treatment in

future Phases.

2.7.5 Operational Bias

One key distinction between group sequential or blinded revision of sample size as opposed

to adaptive strategies is the preservation of blinding of treatment groups to all groups other

than the DMC and the statistical center performing the analysis for the DMC. In adaptive

strategies, this blinding is broken and may be conducted by another statistical center inde-

pendent from the main statistical center performing analysis for the DMC [Fleming, 2006].

There are additional concerns in ensuring confidentially in adaptive designs further discussed

in FDA [2010]. Confusion on the roles of each party involved may compromise the under-

standing of the clinical trial results [Emerson, 2006, Fleming, 2006, Emerson and Fleming,

2010].

2.7.6 Patient-wise Separation

In the immediate outcomes setting, response measurements are made after having been on

the treatment/placebo for a relatively short period of time (e.g., weeks) relative to the entire
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time during which the RCT is conducted (e.g., years). In these settings, participants are

accrued and randomized in groups, and all participants’ responses are measured at clear

defined time points before the next sequential group of patients are randomized.

In other clinical settings, patients who are randomized to treatment/prevention strategies

to treat a particular disease condition may experience the effect of the intervention long

after receiving the treatment. Many of these clinical settings are concerned with irreversible

outcome(s) that take longer time than what can be quickly evaluated within a matter of

weeks. Such outcomes can include mortality in cardiovascular trials or seroconversion of

HIV status in HIV prevention settings. Thus, interim analyses may be conducted when the

majority of the subjects do not have the outcome of interest but may be required to be

monitored further past the interim analysis for the outcome to mature.

Bauer and Posch [2004] pointed out an issue with the use of unblinded interim analyses

in the time to event setting particularly when surrogate or short term data collected on

the patients is available. The use of unblinded secondary outcome data that is predictive

of the patients’ response to the treatment becomes more prominent in the settings with

delayed ascertainment of outcomes. At interim analyses, some participants randomized to

the treatment/placebo may not have the outcome of interest but do have data available on

a surrogate outcome correlated with the primary outcome. Other participants may not yet

been accrued into the study. This differential length of follow-up constitutes what is known

as “patient-wise” separation at interim analyses. The use of unblinded procedures based on

surrogate secondary outcomes for adaptations can potentially increase the risk of inflation

of the overall Type 1 error [Bauer and Posch, 2004]. Naïve re-weighting of critical values

based only on information from the primary outcomes would not necessarily control for the

additional correlation of the surrogate endpoint with the primary test statistic. Subsequent

literature by Jenkins et al. [2011], Irle and Schäfer [2012], Magirr et al. [2014] and Magirr

et al. [2016] have proposed approaches to account for this correlation, though none of these

literature have comprehensively evaluated the cost in efficiency relative to the use of GSDs.
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2.8 Summary

In summary, we presented some of the distinctions between group sequential designs as op-

posed to these more recently described adaptive strategies. In particular, the immediate

outcomes settings provide notational convenience for setting up the foundations of both

group sequential design or pre-specified adaptive design. The notation in the immediate

outcomes settings in this Chapter extends easily to the time to event setting. The issues

highlighted in section 2.7.1 and 2.7.2 are of focus in this dissertation. While we will later

address issues related to operational bias in section 2.7.5, an assumption made through-

out this dissertation is that surrogate outcomes are not considered when making unblinded

adaptations in section 2.7.6.
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Chapter 3

Impact of Analysis Schedule on Oper-
ating Characteristics of Designs

GSDs often present a natural setting for us to gain intuition on aspects of the operating

characteristics of adaptive designs. As described in Chapter 2, an adaptive design can be

viewed as a stochastic hybrid of two or more group sequential designs. In section 2.3, we

described some “well-known” properties of GSDs and how changing aspects of the design,

such as the degree of early conservatism, or the schedule of interim analyses, can affect other

operating characteristics such as average efficiency, maximum sample size, or power.

For example, with one-sided symmetric designs, when holding power fixed and allowing

the maximum statistical information to vary, the known property of Pocock boundary shape

functions being more efficient in terms of ASN over OBF is true when interim analyses are

equally spaced and the true treatment effect is such that the probability of rejecting the null is

between 0.001 and 0.999. Many of these “well-known” assumed properties of GSD, however,

are often characterized based on equally spaced interim analyses. These characteristics may

no longer hold true when the analysis schedule is no longer equally spaced, as would be

typical under many proposed adaptive RCT.

Considerations to modify aspects of a RCT design are often planned at a specified “adap-

tive analysis”. When adapting based on a FSD with no early stopping at the adaptive anal-

ysis, n is typically modified to ñ to increase statistical power β. When adapting based on

a GSD, the popular approach to sample size re-estimation is often proposed at a planned

penultimate interim analysis. This future sample size is modified from a previously specified
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maximum statistical information NJ to ÑJ , where ÑJ is some function of interim treatment

estimate θ̂J−1. Changing this maximal sample size, however, also changes the boundary

shape function. That is, with an adaptation from NJ to ÑJ , we also change the schedule of

analyses. The stopping boundaries implemented prior to the adaptive analysis must now be

considered relative to the new maximal statistical information.

The degree of early conservatism for the choice of the revised monitoring boundary is

dependent upon the choice of Π = (Π1, · · · ,ΠJ), A, P,R, and NJ at design stage, where

Πj = Nj/NJ . When the maximum sample size is no longer maintained with the original

monitoring boundary, then the desired degree of early conservatism may be appropriate

based on another GSD with Π′ = (Π′1, · · · ,ΠJ), A′, P ′, R′, and N ′J .

We motivate the above with an example based on a modified version of the schizophrenia

trial described in Mehta and Pocock [2011]. We assume a two-look, one-sided symmetric

GSD with an OBF boundary that has 79.7% power to detect a mean Negative Symptoms

Assessment score difference of δ1 = 2 with a one-sided level 0.025 using known standard

deviation of 7.5. In this GSD (OBF442 ), a maximal sample size of 442 was initially chosen

with an interim analysis scheduled after 208 subjects’ data were available (47.1% of the

maximum statistical information). In OBF442, an observed interim treatment effect greater

than or equal to 2.9868 would suggest early termination in favor of efficacy while an observed

interim treatment effect less than or equal to -0.1757 would suggest early termination for

“futility”. Any observed estimates between -0.1757 and 2.9868 would suggest continuing to

the maximal sample size of 442.

We then suppose that investigators want to consider adapting to a larger sample size when

interim results are “promising”, but not as large as initially anticipated. In their example,

Mehta and Pocock considered an adaptive rule that would increase the conditional power of

the study up to 80% within some “promising zone”, but not exceed a maximal sample size

that is doubled of what was originally planned (so up to 884). As illustrated by Levin et al.

[2013], nearly the same efficiency can be achieved by considering a more discrete adaptive

process, and we use such an approach in our illustration.
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Figure 3.1: Adaptive design as a stochastic hybrid of two GSDs with the continuation regions
(as represented by the dotted lines) in blue to 442 subjects, and in pink to a maximum sample
size of 884. In gray are the plausible critical values based on CHW.

Hence, we arbitrarily presume that an interim estimated treatment effect between 0.7082

and 2.1029 will lead to an adaptive increase in the maximal sample size to 884 subjects (23.5%

of the maximum statistical information based on 884). Other estimates in the continuation

region (in Figure 3.1) will leave the maximal sample size unchanged at 442. This adaptive

design (a stochastic hybrid of OBF442 in blue, and Adapt884 in pink as shown in Figure 3.1)

has an experiment-wise Type 1 error rate of 0.025, and has 89.968% power to detect the design

alternative of 2.0 with known standard deviation of 7.5. We note that with this arbitrarily
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chosen adaptive rule, there is a 22.6% chance of increasing the sample size under the null

hypothesis. As noted by Emerson et al. [2011b], there is rarely a reason to use an adaptive

rule that would double the maximal sample size in this manner.

It is of interest to examine the resulting adaptive design relative to competing GSDs that

are in some way comparable. We want to consider designs that have the first interim analysis

conducted with 208 subjects, and have power of 89.968% to detect the alternative of 2.0.

This then allows us to vary how we define the boundary shape function and the maximal

sample size. Based on these constraints, we can construct several other GSDs for comparison,

all of which are one-sided level 0.025, with 89.968% power to detect the design alternative

of 2.0, and a total of two analyses with the first analysis conducted at 208 subjects. These

alternative GSDs can include:

1. OBF90 : Boundary shape function of a one-sided symmetric OBF yielding a maximal

sample size of 592, with critical values (on the Z statistics scale) at the interim analysis

of -0.9834 for futility and 3.3103 for efficacy. In this design, the interim analysis occurs

at Π1 = 208/592 = 35.1% of the total statistical information.

2. MOD90 : Boundary shape function is chosen such that the critical values (on the

Z statistics scale) at the interim analysis agree with the original OBF442, yielding

maximal sample size of 608.32. The design with these constraints is no longer within

the family of one-sided symmetric designs. The boundary shape function for the efficacy

boundary is P = 0.8532, a value intermediate to the OBF (P = 1) and the Pocock

(P = 0.5). In this design, the interim analysis occurs at Π1 = 208/608 = 34.2% of the

total statistical information.

3. MOD884 : Boundary shape function with P = 0.37105 corresponds to a one-sided

symmetric design with analyses conducted at 208 and 884. Such a boundary shape

function is less “conservative early” than a Pocock design, which generally indicates a

loss of average efficiency. In this design, the interim analysis occurs at Π1 = 208/884 =
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23.5% of the total statistical information.

Note that we can further consider a GSD with a maximal sample size of 884 subjects

(MODMatched884, not shown here), and constrain this design to have the same boundaries

as OBF442 conducted at the interim analysis of 208 subjects. Such a design has an overall

power of 96.3% to detect the design alternative of 2. The boundary shape function for these

designs are shown in Figure 3.2 with the respective ASN curves and relative power as shown

in Figure 3.3.
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Figure 3.2: Sequential boundaries for OBF442/Adapt442 (79.7% power) and other GSDs as
shown. The GSDs corresponding to Mod884, GSD90, and Mod90 are matched at 89.97%
power to the adaptive design that comprises of OBF442 and Adapt884 under the design
alternative of 2, and known standard deviation of 7.5.
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The above illustration highlights the difficulty in trying to compare GSDs with adaptive

designs. As we change the maximum statistical information, we generally change our relative

schedule of analyses. It thus becomes unclear whether our schedule of analyses should be

described relative to the new maximum sample size or the original design as this reflects

different degrees of early conservatism. In the above example, when we preserve the level of

early conservatism based on OBF442 at the first interim analysis, the design Mod90 beats

OBF90 in terms of ASN that is more efficient for all alternatives between 0 and 2. We will

appeal to some of these difficulties as we try to identify aspects of the potential adaptive

rules that might explain differences in operating characteristics. That is, we will appeal to

how the adaptive rule might be viewed as changing the maximal sample size, power function,

relative timing of analyses, and the boundary shape function.
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Figure 3.3: Relative power curves calibrated to OBF90 on the left and ASN curves on the
right for the various designs (OBF90, Mod90, and Mod884 ) are matched to the power of
the pre-specified adaptive design that comprises of Adapt442 and Adapt884 with an overall
power 89.97% under the design alternative of 2, and known standard deviation of 7.5.
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It should be noted that the above results all presumed a pre-specified design and analyses

based on the minimal sufficient statistic. If, however, the adaptive rule was not adequately

pre-specified, the critical value chosen at the final analysis would have to be determined by,

say, the CHW approach. In Figure 3.1, the grey line depicts the range of plausible critical

values that might be used depending upon where the interim estimate fell in the continuation

region leading to an adaptive increase in the sample size. When using such variable critical

values, the power of the adaptive design decreases negligibly to 89.90% (the corresponding

pre-specified rule gives a simulated power of 89.97%, the OBF442 design gives 79.67% power

based on 10,000,000 simulations).

This chapter is divided into two sections. In the FSD setting with no early stopping at

the adaptive analysis, we investigate the impact on the overall power of the design when the

timing of the adaptive analysis to increasing/decreasing the maximum statistical information

is varied. More specifically, when there is either logistical difficulty in accrual, or event rates

differ from trial assumptions, adaptations on the basis of unblinded interim analysis may

have to be made based on results gathered from early interim analysis as opposed to late

occurring analysis.

Various operating characteristics within the family of GSDs can often be improved upon

by increasing the number of analyses (at the expense of increasing the maximum statistical

information) or increasing the maximum statistical information while holding other aspects

of the design fixed. When the total number of interim analyses has not been changed,

the degree of early conservatism based on the original design is no longer preserved when

modifications are made to the maximum sample size. This interplay of changing both the

maximum statistical information and analysis schedule in a GSD contributes to the difficulty

of understanding the advantages and disadvantages of adaptive designs. In order to better

separate the efficiency issues associated with the use of a pre-specified adaptive sampling

scheme vs having to perform adjusted analyses for fully adaptive designs, it is vital that we

understand the “game theory” that the adaptive clinical trialists might be able to use. To do

so, we rely on the properties of the GSDs to describing this bivariate relationship by holding
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other operating characteristics constant.

In a fully flexible design, the adaptive trialists make adaptations based on some knowledge

of the unblinded treatment effect that re-weights the incremental test statistics differently

across stages. These strategies are often evaluated as if only one of the potential sample paths

is chosen in a flexible design. Thus, in order to characterize this degree of uncertainty, we

consider a prespecified version of this fully adaptive sampling scheme in order to understand

the best operating characteristics one would have obtained.

3.1 Effect of Unequally Spaced Interim Analyses on ASN
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Figure 3.4: Sequential boundaries for the two-stage, one-sided symmetric, OBF and Pocock
designs with interim analyses conducted at 20%, 50%, 80% of the maximum statistical
information. The maximum statistical information for the Pocock boundaries are inflated
least relative to the fixed sample design when interim analyses are conducted as late as
possible. The maximum statistical information for OBF boundaries are inflated more when
the interim analyses are conducted later.
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Our knowledge in the GSD literature is such that the ASN based on the Pocock rule typically

dominates the ASN curve for the OBF rule ∀ θ ∈ (0, θA) (Figure 3.5). Consider the OBF

and Pocock monitoring boundaries where an interim analysis is conducted at either 20%,

50%, or 80% of the maximum statistical information. The equally spaced analyses are often

favored and chosen at design stage for convenience. In this case, the OBF with an interim

analysis conducted at 50% of the maximum statistical information would have stopped the

trial for either futility or non-efficacy when the interim estimated treatment effect of less

than 0 is obtained (Figure 3.4).
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Figure 3.5: Average and 75th percentile of the sample size distribution for the one-sided,
symmetric two-stage OBF and Pocock with interim analyses conducted at either 20%, 50%,
or 80% of the maximum statistical information. The common assumption that the Pocock
design has a lower ASN relative to the OBF design holds when an interim analysis is con-
ducted at 50% of the maximum statistical information. When the interim analyses are no
longer equally spaced, this known property may not be true for values between the null and
alternative.
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However, when the schedule of analyses is no longer equally spaced for the OBF and the

Pocock rule, this known property of Pocock being more efficient in terms of ASN within the

null and alternative values relative to the OBF boundary no longer holds true. When an

interim analysis is conducted at 20% of the maximum sample size, the ASN curve for the

Pocock boundary is no longer dominating the ASN curve for the OBF rule ∀ θ ∈ (0, θA)

(Figure 3.5). In contrast, when the schedule of analyses is moved such that this interim

analysis is conducted at 80% of the maximum statistical information, the OBF design is now

more efficient than the Pocock boundary ∀ θ ∈ (0, θA).

In practice, when flexible modifications are made to the statistical information of the

design at some interim analyses, the pre-defined level of early conservatism may no longer

be held constant after an adaptation.

3.2 Timing of Interim Analyses

Previous research [Jennison and Turnbull, 2003, Tsiatis and Mehta, 2003, Jennison and

Turnbull, 2006a, Levin et al., 2013] have not found adaptive designs to be markedly more

efficient than GSD in the best case. This is in part due to the use of statistics that violate the

minimal sufficiency principle, leading to inefficient weighting of the available data [Bauer and

Köhne, 1994, Proschan and Hunsberger, 1995, Cui et al., 1999]. However, clinical trialists

also choose inefficient adaptations in practice where they either more than double the sample

size at the penultimate analysis or choose a poor sampling scheme (in terms of timing at

which the adaptation is made) [Chen et al., 2004, Gao et al., 2008, Mehta and Pocock, 2011].

Limited research has attempted to address how each of the individual components when

chosen optimally can affect the efficiency of the design. In situations when the sampling

scheme is not pre-specified, the impact of the role of inefficient statistics is unclear.

In this section, we investigate the efficiency loss using overall power as our optimality cri-

terion to better understand the impact of the timing of analysis schedule when the adaptive

sampling scheme is not pre-specified. Weighted statistics are thus used in these situations to

adjust for the flexible adaptations. In contrast, we compare these flexible designs to adap-
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tive designs that use minimal sufficient statistics at the time of termination as in section 2.5.

When the target of inference is the difference in incidence rates, or the sample size is de-

pendent upon disease rates in the time to event setting, a lower than anticipated event rate

may necessitate “flexible” adaptations based on unblinded interim results to facilitate design

changes.

3.2.1 Notation

Without loss of generality, we consider the two-stage FSD where an interim analysis is

made with no early stopping under the immediate setting when the target of inference is

the difference in treatment means. Recall the notation setup in section 2.1, let potential

pairs of observations for the prespecified first stage and second stage sample size be n∗1, n∗2
respectively with the total sample size of the trial be n = n∗1 + n∗2. Let θ = ω1 − ω2 be

the difference in treatment means with variance σ2, i.e., each treatment group has variance

σ2/2. The respective distributions for the estimate of the difference in treatment means for

each stage are Xn∗j
|n∗j ∼ (θi, σ

2

n∗j
) for j = 1, 2. The hypotheses of interest are H0 : θ ≤ θ0 vs

HA : θ ≥ θA > θ0. We shall suppress ∗ for Z1, n1 for the rest of this section.

The best linear unbiased estimator X = w1Xn1 +w2Xn∗2
has the most efficient weighting

under this sampling scheme with w1 = n1
n1+n∗2

and w2 = n∗2
n1+n∗2

. In general, n1, n
∗
2 are fixed

under this optimal procedure since the sample size has been predetermined at the beginning

of the trial. Thus, Z1|n1 is independent of Z∗2 |n∗2 under H0 and w1Z1 + w2Z
∗
2

H0∼ N(0, 1).

Consider the flexible two-stage design in Fisher [1998] where we prespecified recruiting

n subjects. After recruiting n1 subjects, our estimator at interim Xn1 based on the data

collected so far has mean θ and variance σ2

n1
. Suppose a design modification is made on

the basis of the estimated treatment effect obtained thus far. Conditional on the estimated

treatment effect Xn1 , and the first stage sample size, n1, we can determine the number of

second stage subjects ñ∗2 need to be recruited to detect the same design alternative. We can

preserve the overall Type 1 error by applying the remaining weights, w2 = n∗2/n, on each of

the ñ∗2 subjects. Each subject is given weights 1
n
× n∗2

ñ∗2
rather than 1

n
.



62

Alternatively, we can optimize this adaptation at design stage by pre-specifying the same

rule that the flexible design uses that led to ñ∗2 subjects. Then, this design would be optimal

by theory of best linear unbiased estimator since we would efficiently weigh our estimator

by the proportion of sample size from each stage, i.e., w1 = n1
n1+ñ∗2

and w2 = ñ∗2
n1+ñ∗2

with the

respective variance as illustrated in Table 3.1.

Table 3.1: Table of the weights for each estimator and the (conditional) variance as a result
of adapting.

Designs Sample size Weights Estimator Variance

Original n = n1 + n∗2 w1 = n1
n ; w2 = n∗2

n w1Xn1 + w2Xn∗2
σ2

n

Fully Adaptive ñ = n1 + ñ∗2 w1 = n1
n ; w∗2 = n∗2

n w1Xn1 + w∗2X ñ∗2

n1 + (n∗2)2

ñ∗2

n2 σ2

Prespecified Adaptive ñ = n1 + ñ∗2 w∗1 = n1
ñ

; w∗∗2 = n∗2
ñ

w∗1Xn1 + w∗∗2 X ñ∗2

σ2

ñ

In either the original or the prespecified design, the total sample size (n and ñ respectively)

is fixed. Hence, the conditional variance of the estimator is also the unconditional variance

of the estimator. The variance under the flexible adaptive design is conditional on the final

sample size ñ since n1 is fixed and ñ∗2 is conditionally random depending on the estimated

treatment effect at stage 1. Because ñ∗2 is some function of Xn1 and n1, so long as the

total weights in the second stage is spent on the ñ∗2 subjects, the overall Type 1 error is

preserved following theoretical arguments by Fisher [1998]. The conditional variance of the

adaptive estimator is no longer equivalent to the unconditional variance of the estimator.

The unconditional variance estimator needs to account for all other potential sample sizes

the adaptive design would have chosen that did not occur.
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3.2.2 Relative Efficiency

We can evaluate the relative efficiency of the conditional variance of the estimator obtained

from the flexible adaptive design relative to the (conditional) variance of the estimator based

on the prespecified adaptive design. The conditional relative efficiency can be expressed as

Relative Efficiency =
Var

[
X ñ

∣∣∣n1, ñ
∗
2

(
Xn1

)]
Var

[
X

Opt
ñ

∣∣∣n1, ñ∗2
] = ñ

n2

(
n1 + ñ∗2

(n∗2)2

(ñ∗2)2

)

=
(γ + θ)

(
γ + 1

θ

)
(γ + 1)2 ≥ 1 unless ñ∗2 ≡ n∗2

The last line above follows by parameterizing θ = ñ∗2/n
∗
2 and γ = n1/n

∗
2. We can interpret

θ as the fraction of the increase/decrease in the revised second stage data with respect to

the second stage data based on the original design and γ being the ratio of sample sizes of

the first stage to the second stage from the original design. The contour plot for the above

relative efficiency is as shown in Figure 3.6.

For each fixed γ, when θ increases (θ > 1), the relative efficiency increases. When θ

(< 1) decreases to 0+, we see that this relative efficiency also increases. This translates

directly to a loss of efficiency in the variance estimator of the flexible design as opposed to

the optimal design. Interestingly, at bigger values of γ, i.e., at late adaptations when we

have a more reliable estimate of our treatment effect, the relative efficiency increases in a

non linear fashion. This increase in relative efficiency also indicates a less efficient weighting

with this flexible adaptation.

We can further re-parametrize the above by defining k to be the relative increase/decrease

of the total sample size n of the original design. Let the total sample size of the flexible

adaptive design be revised from n to ñ which is k times the original sample size n. Then

n1 + ñ∗2 = kn = k(n1 + n∗2). Via the substitution θ = (k − 1)γ + k, the relative efficiency as
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a function of γ and k can be re-expressed as follows:

Relative Efficiency = k
1 + (k − 1)γ
k + (k − 1)γ

with the restriction that θ > 1
n∗2
> 0, i.e., the trial must sample at least 1 more participant.
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Figure 3.6: Contour plot for θ vs γ comparing the relative (conditional) efficiency of the
variance estimators of the flexible design vs that of the optimal estimator for the design with
n1 + ñ∗2 subjects.

The contour plot of the relative efficiency (Figure 3.7) presented for k vs γ provides

another interpretation of Figure 3.6. We now see that when γ < 1/9, the relative efficiency is

close to 1, indicating that any form of adaptation leading to a larger sample size is essentially

reweighting the second stage data to be similar to the equal weighting scheme from the
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optimal design. However, when these adaptations are made earlier on to decrease the sample

size, this may lead to a bigger loss of efficiency depending on k. If k = 0.5, and an adaptation

is made at 1/10 of n, then the second stage data is weighted heavily using 9/10 of the

remaining weights that is more than twice the weight of the optimal design. When γ > 9,

adaptations are close to the maximal sample size, any form of adaptation to increase the

second stage sample size by k > 1 can lead to a much bigger loss of efficiency since this

remaining, revised larger sample size is allocated a smaller weight as compared to the first

stage data.

It is of use to quantify how the relative efficiency based on unplanned adaptations can
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translate directly to the overall power of the design when the probability of adaptation

changes. The above characterization makes the assumption that the unblinded adaptation is

made all the time without considering other potential adaptations. To appropriately compare

between unplanned adaptations with FSDs or designs with known sampling scheme, we must

thus hold fixed the probability of an unplanned adaptation to modify the final sample size

from n to ñ.

3.2.3 Design Settings

A prespecified sampling scheme has some known probability p of adapting to either a larg-

er/smaller sample size. With blinded analyses, p is independent of the estimated interim

treatment effect under majority of the settings. With unplanned flexible adaptations, this

probability is unknown, and direct comparison with competing designs with known sam-

pling schemes is difficult. This is because there is an infinite number of decision rules one

can make to determine the second stage sample size, ranging from stopping after n1 subjects

are accumulated to recruiting a finitely large sample size for the second stage [Emerson,

2006].

Consider the following design scenarios in the superiority setting with the following max-

imum statistical information that is dependent on some sample size n to detect a particular

alternative at some level α and power β with suitable assumptions of the variance estimates

(population variance, event rates, etc).

1. In.

2. Iñ (Iñ may or may not be known at planning)

3. In subjects with probability p of adapting to statistical information Iñ in a blinded
analysis

4. Study design planned with statistical information In, and an unplanned adaptation at
some unblinded interim analysis leads one to revise the statistical information to Iñ

where Iñ may be bigger or smaller than In.
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Study design 1 is typical of the setting where a sponsor may plan their design based on an

assumed treatment effect of interest, population variance of the estimated treatment effect,

or expected event rate of the placebo group in event driven studies to achieve some specific

power.

When trial assumptions differ from practice, study design 1 may be underpowered and

the planned statistical information In may not provide the desired power as anticipated.

Therefore, in study design 2, this corresponds to a design that correctly specifies the variance

of the treatment effect, or the true event rate of the placebo group. In time to event settings,

or settings when we are interested in the difference in incidence rates, the total statistical

information may be prespecified in terms of calendar time. Hence, study design 2 corresponds

to the setting of having the optimal statistical information Iñ when we know all the correct

parameters for the trial.

Recall previously in section 2.4, we described information based approaches that are

used to revise design assumptions such as statistical variance or event rates based on blinded

interim results. (Recall the example in Appendix B.) Study design 3 describes the setting

whereby blinded sample size revisions are made based on either the pooled event rates or

aggregate sample variance to maintain our statistical information by revising n to ñ to detect

the same design alternative and maintaining statistical power. If one truly knows the variance

of the treatment effect/event rates, the study design would be optimal in terms of statistical

power to detect the alternative as well as maintain overall Type 1 error. As such, most trial

designs may in fact be powered somewhere between design 1 and 2.

Study design 4 is related to the setting whereby an unplanned, adaptive element is in-

corporated into design 1 with the intention to possibly modify statistical information based

on unblinded interim results. In this setting, an adjustment using Cui et al. [1999] has to be

applied to control for any potential inflation of the overall Type 1 error as demonstrated by

Proschan and Hunsberger [1995].
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3.2.4 Statistical Criterion for Comparison across Designs

In experimental design, the optimal design is one that is superior to other existing study

designs with respect to some statistical criterion. It is thus of interest for one to compare

designs that are optimal when “bias and variance are minimized, efficiency is maximized, and

cost is reduced” [Sanchez, 2014]. To achieve the multiple goals during clinical trial planning,

the optimal design has to address the competing goals of science and ethics.

To do so, we tend to focus on comparing designs with similar ASNs since this is very

often the limiting factor that affects patient accrual as well as the overall cost of the trial.

After holding the average sample size fixed, we can isolate what constitutes a design that is

optimal according to some criteria (in terms of operating characteristics, stopping rules) vs

one that may be sub-optimal. The design with similar ASN and operating characteristics

that maximizes the efficiency will be most important to clinical investigators.

In group sequential testing that allows early stopping, we can characterize the operating

characteristics of a design/test with respect to the distribution of sample sizes at the time of

study termination. Often this distribution is characterized by the expected number of sub-

jects accrued prior to study termination, the average sample number (ASN). Other summary

measures of the sample size distribution such as median, 75th percentile, or 90th percentile

may be more useful in other situations. We may thus write the distribution of the sample

size as a function of the stopping boundaries and the value of the true mean θ. This may be

written as FN(n; θ) = ∑
j:Nj≤n Pr(M = j|θ) where M is the analysis time. A consequence of

sampling variation (dropouts or recruitment) or conducting interim analyses on the calendar

time is that we may observe n′1, n
′
2 rather than n1, n2 in practical settings.

3.2.5 Simulation Study

We consider the setting when there is no early stopping. To compare across designs, we hold

fixed the timing of this interim analysis as well as the ASN. We consider the class of designs

with similar ASNs and thus constrain all flexible adaptive designs to have some probability
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p of modifying the final sample size. A numerical search can be performed to maximize the

overall power of this class of flexible adaptive design. To examine specifically the loss/gain

in power, numerical simulations were performed to compare between blinded vs unblinded

designs.

We simulated 1,000,000 clinical trials, each with a sample size of n = 100 subjects

equally randomized into two groups, with 90% power to detect the design alternative of

θ = 0.4584195, and known variance σ2 = 0.5 for each group. Let p be the probability of

adapting to a final sample size of ñ. Thus, 1− p is the probability of staying the course with

a final sample size of n. The ASN is n(1− p) + pñ. We let the adaptation be conducted at

an interim analysis corresponding to kn for k = {0.1, 0.2, · · · , 0.9}.

We optimize the overall power for this fully, flexible adaptive design using a grid search

that has some probability p of adapting under the same design alternative. We then adjust

the critical value based on Cui et al. [1999] to control the overall Type 1 error in this fully

adaptive setting when using the unblinded treatment results to make an adaptation.

Simulation/Optimization algorithm

1. Simulate S1, S
∗
2 , and S̃∗2 from N(θn1, n1), N(θn∗2, n∗2), and N(θñ∗2, ñ∗2) respectively.

2. Compute Z1, Z2, Z̃2 via Z1 = S1/
√
n1, Z2 = (S1 + S∗2)/

√
n1 + n∗2, and Z̃2 = (S1 +

S̃∗2)/
√
n1 + ñ∗2 respectively.

3. Compute the CHW critical region at stage 2 regardless of whether an adaptation was
made.

4. Search for the adaptive rule that maximizes the overall power subject to a fixed known
probability p of adapting based on CHW.

5. Compute the respective (unadjusted) power based on this adaptive rule in 4 that has
some known probability p of adapting.

6. To obtain the true (adjusted) power such that this optimal rule controls the overall
Type 1 error, we recalibrate the usual critical value zα to z‡α under the null to fix α.
We then recompute the power (adjusted) of this prespecified rule using the new critical
value z‡α.
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The optimal rule obtained from part (4) of the above algorithm is used to prespecify

Study Design 3. This then allows us to obtain the corresponding power of an adaptive

design based on minimal sufficient statistic when the study terminates.

Commonly proposed procedures in the adaptive literature often allow modifications to

the sample size at slightly less than one-half of the sample size. We explore the setting where

we adapt to a smaller sample size at some interim analysis by finding the optimal adaptive

rule that maximizes the overall power. We then prespecify this adaptive rule so that we can

use the minimal sufficient statistic at the end of the trial. Having held fixed the adaptive

rule, we can then evaluate the potential loss in power when we decide on either an early

or late adaptation relative to the original design. We describe results when adapting to a

smaller sample size and refer the interested reader to Appendix C for additional results.

3.2.6 Simulation Results for Adapting to a Smaller Sample Size

Consider the setting when we adaptively decrease the total number of subjects in the study

to 50 based on some known probability of p = 0.5 (blue lines of Figure 3.8). At early

adaptations, we do not obtain much improvement in overall power when we prespecify the

adaptive rule from this grid search. For example, at 10% of the sample size of the original

design, when we adapt to a smaller sample size based on the best sampling scheme in a

fully adaptive design, the overall power is 78.76% (Table 3.2, 3.3) which is negligibly lower

(∼0.7%) relative to an adaptive design using minimum sufficient statistics. This indicates

that at early interim analyses, our estimates may be so unreliable that any form of adaptation

is purely random. In such situations, the remaining weights that are not used is reallocated

to a smaller number of subjects as compared to the original second stage sample size.

Consider the same scenario where instead we decide to make a late adaptation with the

same known probability of 50%. Relative to an early adaptation based on a fully adaptive

design, a late flexible adaptation has negligible gain in power. However, when we prespecify

the best flexible adaptive rule and thus eliminate the need to use weighted statistics, we

obtain a substantial gain in overall power (represented by the blue solid line) relative to
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the power based on a late flexible adaptation. This is because, as we gather more reliable

information about our treatment estimate to effectively make the right adaptation to stop

the trial with a smaller number of subjects, we need to pay a much bigger penalty for having

make this late adaptive look based on CHW, leading to a bigger loss of power (7.6%). As

the probability of adaptation increases and the adaptation is made later in the study, the

loss of power becomes pretty substantial when we compare between the prespecified adaptive

design and the fully adaptive design.

Consequently, this means that when we obtain more reliable information about the esti-

mate of the treatment effect, we should be making smarter adaptations if we prespecify the

rule. However, by choosing to use weighted statistics, i.e., to make unplanned, data adap-

tive looks to modify our design, we lose more power since the inefficiency of the weighting

scheme leads to a substantial penalty paid for the use of this late unplanned look. This

in turn translates to a huge loss of efficiency as quantified by the loss of power relative to

prespecified adaptations.

We can compute the assumed sample size for a fixed sample design based on the power

obtained from the flexible strategy vs the prespecified strategy in column CHW ‡ and Adj4

(Table 3.2 and 3.3) respectively. By doing so, the sample sizes computed in columns SS‡

and SS4 allow us to contrast the benefit of what would have been the required sample size

had we preplanned the entire study envisioning this amount of power was required. At early

interim analyses, the prespecified adaptive rule provides some gain in statistical information

(up to 2.5% gain) over an unplanned fully adaptive design at halfway through the study.

However, when this prespecified adaptation is made later, the efficient weighting scheme can

provide up to 25% gain in overall power over the use of a fully adaptive rule.

In our grid search, we also considered other probabilities of adaptations (30%, 50%, 80%,

90%). We did not find a setting for which the unplanned adaptive rule provided additional

benefit in terms of achieving higher statistical power relative to a prespecified rule when

choosing to decrease the final sample size. Across the different probability of adaptations

used, the relative loss of power is generally larger when late adaptations are made.
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Figure 3.8: Plot of the overall power for adaptive design based on minimal sufficient statistics (Pre) vs the use of
weighted statistics (CHW) when we consider various probabilities of decreasing the sample size from n = 100 to 50.
The prespecified adaptive design has consistently higher power across various probability of decreasing the final sample
size compared to the fully adaptive design requiring further adjustments using CHW.
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Table 3.2: Simulation summary under the setting of decreasing the total sample size by half based on the probability
of adaptation p where ASN = 50p + 100(1 − p). The original design has at least 90% power to detect the design
alternative of θ ≥ 0.4584195.

n=100 ñ = 50 Overall Power Sample size (FSD)∗∗

n1 n∗2 ñ∗2 γ RE Orig CHW‡ Unadj Adj4 4/‡ CHW‡ Unadj Adj4 4/‡ SS‡ SS4 SS4/SS‡

p
=

30
%

5 95 45 0.05 1.028 89.99 62.53 62.94 62.89 1.006 83.45 84.74 84.05 1.007 81.82 83.19 1.017
10 90 40 0.11 1.062 89.98 62.14 63.01 62.74 1.01 84.07 85.93 85.03 1.011 83.23 85.51 1.027
15 85 35 0.18 1.107 89.99 61.53 63 63.04 1.024 84.51 86.91 86.04 1.018 84.26 88.08 1.045
20 80 30 0.25 1.167 90.02 60.91 63.1 63.1 1.036 84.9 87.75 86.73 1.022 85.2 89.92 1.055
25 75 25 0.33 1.25 90.03 60 62.96 62.9 1.048 85.26 88.49 87.4 1.025 86.09 91.79 1.066
30 70 20 0.43 1.375 89.98 58.88 62.98 62.93 1.069 85.44 89.06 87.94 1.029 86.55 93.35 1.079
35 65 15 0.54 1.583 90.04 57.37 62.96 62.93 1.097 85.67 89.65 88.67 1.035 87.13 95.6 1.097
40 60 10 0.67 2 90 55.24 63.09 63.13 1.143 85.66 89.99 89.21 1.041 87.08 97.31 1.117
45 55 5 0.82 3.25 90.03 51.48 63 62.94 1.223 85.39 90.15 89.6 1.049 86.42 98.62 1.141

p
=

50
%

5 95 45 0.05 1.028 89.98 62.6 62.98 63.08 1.008 78.16 79.78 78.73 1.007 71.33 72.35 1.014
10 90 40 0.11 1.062 90.08 62.07 62.97 63.03 1.015 78.76 81.31 79.78 1.013 72.4 74.27 1.026
15 85 35 0.18 1.107 89.99 61.53 62.97 62.91 1.022 79.12 82.47 80.7 1.02 73.05 76.06 1.041
20 80 30 0.25 1.167 90.02 60.85 62.97 63.07 1.036 79.45 83.65 81.57 1.027 73.66 77.8 1.056
25 75 25 0.33 1.25 90.03 60.04 63.04 62.97 1.049 79.67 84.79 82.28 1.033 74.07 79.26 1.070
30 70 20 0.43 1.375 90.02 58.92 62.99 63.06 1.07 79.76 85.91 83.17 1.043 74.25 81.2 1.094
35 65 15 0.54 1.583 89.95 57.37 62.98 62.87 1.096 79.58 87.03 84.07 1.056 73.91 83.24 1.126
40 60 10 0.67 2 90.01 55.2 63.04 63.19 1.145 79.25 88.33 85.28 1.076 73.3 86.14 1.175
45 55 5 0.82 3.25 90.01 51.4 62.96 63.06 1.227 78.08 89.69 86.48 1.108 71.19 89.23 1.253

Sample size (FSD)∗∗ is the average sample size of a FSD for each of the respective approaches based on the power under column “Overall
Power” attained.
RE: (Conditional) Relative efficiency based on the relative variances of the flexible adaptive design to the pre-specified adaptive design.
CHW‡: Power after adjusting for the unplanned adaptation.
Unadj: Power computed based on naïve overall Type 1 error of α = 0.025.
Adj4: Adjusted power for fixed overall Type 1 error of α = 0.025.
SS‡: Sample size of a FSD based on the power obtained using CHW.
SS4: Sample size of a FSD based on the power obtained based on the (Adj)usted test for fixed overall Type 1 error of α = 0.025.
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Table 3.3: Simulation summary under the setting of decreasing the total sample size by half based on the probability
of adaptation p where ASN = 50p + 100(1 − p). The original design has at least 90% power to detect the design
alternative of θ ≥ 0.4584195.

n=100 ñ = 50 Overall Power Sample size (FSD)∗∗

n1 n∗2 ñ∗2 γ RE Orig CHW‡ Unadj Adj4 4/‡ CHW‡ Unadj Adj4 4/‡ SS‡ SS4 SS4/SS‡

p
=

80
%

5 95 45 0.05 1.028 90 62.59 62.99 63.06 1.008 69.31 70.69 69.76 1.006 57.81 58.41 1.01
10 90 40 0.11 1.062 89.97 62.19 63.07 63.2 1.016 69.44 71.7 70.25 1.012 57.98 59.09 1.019
15 85 35 0.18 1.107 90 61.54 63.05 63.13 1.026 69.32 72.53 70.46 1.016 57.83 59.36 1.027
20 80 30 0.25 1.167 90 60.89 63.03 62.89 1.033 69.09 73.22 70.58 1.022 57.52 59.54 1.035
25 75 25 0.33 1.25 90.01 60 63.06 63.03 1.05 68.68 73.93 70.84 1.031 56.98 59.89 1.051
30 70 20 0.43 1.375 89.99 58.97 63.06 63.08 1.07 68.03 74.52 70.84 1.041 56.12 59.9 1.067
35 65 15 0.54 1.583 90 57.33 62.98 62.9 1.097 66.9 75.09 70.79 1.058 54.68 59.82 1.094
40 60 10 0.67 2 90.01 55.17 63 62.93 1.141 65.29 75.69 70.67 1.082 52.69 59.66 1.132
45 55 5 0.82 3.25 89.98 51.48 62.98 62.98 1.223 62.23 76.08 70.5 1.133 49.1 59.43 1.210

p
=

90
%

5 95 45 0.05 1.028 90.01 62.63 63.04 62.99 1.006 66.09 67.12 66.34 1.004 53.67 53.99 1.006
10 90 40 0.11 1.062 90.01 62.19 63.06 63.2 1.016 65.97 67.73 66.68 1.011 53.52 54.41 1.017
15 85 35 0.18 1.107 90.04 61.59 63.02 63.18 1.026 65.57 68.05 66.75 1.018 53.04 54.49 1.027
20 80 30 0.25 1.167 90.01 60.91 63.05 63 1.034 65.07 68.42 66.56 1.023 52.44 54.26 1.035
25 75 25 0.33 1.25 89.96 60.01 63.01 63.15 1.052 64.34 68.6 66.54 1.034 51.56 54.23 1.052
30 70 20 0.43 1.375 89.98 58.96 63.04 62.95 1.068 63.43 68.79 66.27 1.045 50.49 53.91 1.068
35 65 15 0.54 1.583 89.96 57.4 63 63.13 1.1 62.01 68.85 66.25 1.068 48.85 53.87 1.103
40 60 10 0.67 2 89.97 55.2 63.03 63.08 1.143 59.87 68.76 65.91 1.101 46.48 53.45 1.150
45 55 5 0.82 3.25 89.96 51.48 63.04 62.88 1.222 56.28 68.58 65.47 1.163 42.7 52.91 1.239

Sample size (FSD)∗∗ is the average sample size of a FSD for each of the respective approaches based on the power under column “Overall
Power” attained.
RE: (Conditional) Relative efficiency based on the relative variances of the flexible adaptive design to the pre-specified adaptive design.
CHW‡: Power after adjusting for the unplanned adaptation.
Unadj: Power computed based on naïve overall Type 1 error of α = 0.025.
Adj4: Adjusted power for fixed overall Type 1 error of α = 0.025.
SS‡: Sample size of a FSD based on the power obtained using CHW.
SS4: Sample size of a FSD based on the power obtained based on the (Adj)usted test for fixed overall Type 1 error of α = 0.025.
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3.2.7 Summary

Other scenarios such as increasing the sample size at different interim analysis in a two-stage

setting were also explored. These results are in Appendix B. In these situations, where

we choose to increase the sample size based on such flexible adaptation, there is slight but

negligible gain in overall power relative to the prespecified adaptive design. This occurs at

very early interim analyses. When early adaptations are made to decrease the sample size

based on a fully flexible rule, there is generally negligible gain in overall power as compared

to a prespecified adaptive design. However, when late adaptations are considered to either

increase or decrease the sample size, there is generally substantial power loss when using a

flexible adaptive rule as compared to having prespecify the same rule at design stage.

In summary, unplanned adaptive rules to decrease sample size can come at a substantial

loss of power when these adaptations are made late during the study. When adaptations

are made early, this loss of power does not appear as large relative to the power loss as a

consequence of late adaptations. Even though our simulation study is focused on the fixed

sample setting, the results in this section provide some intuition on the impact of unplanned

adaptive rules on the overall power of the trial. Later, in the censored time to event setting,

we are interested in adaptations made in the presence of monitoring rules that allow early

stopping. In the time to event setting, certain situations may favor an adaptation that is

conducted at early interim analyses.

3.3 Impact of Interim Analyses on Efficiency of Group Sequential
Designs

Adaptive designs with the aim of increasing the maximum statistical information are often

compared with respect to GSDs by adding more interim analyses so as to beat the operat-

ing characteristics of the adaptive design in an unfair manner. Currently, few authors have

attempted to separate out what defines a good/bad sampling scheme in presence of such

adaptations when the number of interim analyses is held fixed. Since GSD is a special case
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of prespecified adaptive design, it is of use to consider the properties of GSD to understand

how prespecified adaptive design may behave later when we choose to modify the maximum

statistical information. Earlier on, we see that the analysis schedule for an adaptive design

may change when an adaptation is made. This modification of the maximum statistical

information can affect the degree of early conservatism when judged by the maximal sample

size the revised monitoring boundary. To better understand this, we now describe the dif-

ficulty by characterizing how changing the schedule of analyses based on a GSD can affect

other operating characteristics as defined using the ASN.

Several authors have investigated finding the best sequential design based on some opti-

mality criterion. Jennison [1987] considered group sequential tests that minimize the sample

size based on several competing null and alternatives of interest. Extensions to finding effi-

cient sequential designs were later formulated using a Bayesian decision theoretic framework

by placing point mass priors on alternatives of interest [Eales and Jennison, 1992, Barber

and Jennison, 2002]. Eales and Jennison [1992] found negligible improvement in ASN when

choosing between non optimal vs optimal schedule of analyses.

For scientific reasons, we often choose the OBF design since we are often reluctant to

inflate our maximal sample size relative to a FSD, and we want to maximize safety infor-

mation in the presence of more modest treatment benefits. However, in an adaptive design,

as we have seen from the schizophrenia example, when we increase our maximum statistical

information, we no longer maintain the same degree of early conservatism.

We highlight some of the potential issues by considering a two-stage GSD with interim

stopping. As more interim analyses are added, the optimality of the monitoring schedule

becomes less clear. Results for the three-stage GSDs were also investigated and we also refer

the interested reader to Appendix B.

3.3.1 Characterizing the ASN of Two-stage Designs

We consider a 2-stage GSD under the unified family framework. At level α = 0.025, we

assume a FSD that has power β = 1 − α to detect the alternative of 0.1, and a common
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known standard deviation of 1. Such a design requires a total sample size of 6,146 subjects.

We enumerate all possible stopping rules within the unified family framework by allowing

P to vary, while setting A and R to 0 to search for the critical value G. Using ASN as our

optimality criterion, we characterize the ASN contours under the alternative among the class

of one-sided symmetric, two-sided symmetric, and hybrid GSDs (using a fixed OBF efficacy

boundary while varying the futility boundary). We note that there is a wider variety of

designs that may be considered, and that the designs that are found to be “best” according

to our constraints may no longer be “best” when we expand the search to a bigger class of

designs, or consider other more complex optimality criterion. However, these 3 classes of

GSDs are sufficient to illustrate our point.

We can find the “best” design within each class that has minimal ASN within this bi-

variate space characterized by the function of the schedule of analyses and the parameter

space for P > 0. The contour plots of this bivariate space for each class of designs explored

are shown in Figure 3.9. The blue points (in the top row) show the global minimum within

this bivariate space. We describe the results for the one-sided symmetric designs (Table 3.4).

Among all possible combinations of P and schedule of interim analyses, the best one-sided

symmetric GSD occurs when P ≈ 0.54 with a minimum ASN of 4213 conducted at roughly

42.7% of the maximum statistical information (Table 3.4). This value of P is close to a

Pocock design.

In this space, we can also characterize the ASN among all equally spaced interim analyses

for each P > 0. Alternatively, we can fix the spacing of the schedule of interim analyses

to characterize the ASNs across various P parameters. Likewise, such characterization can

be done by holding P fixed. Of note, P < 0.5 tends to be less efficient with respect to a

Pocock rule (P = 0.5) and thus we choose to focus on describing the discretized space for

P ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1}.

The Pocock design with an equally spaced analysis schedule has an ASN of 4,325, and a

maximum sample size 20.2% higher than that of a FSD. Had we chosen the optimal schedule

of interim analyses that is conducted at 42.9% of the total statistical information using
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the Pocock boundary, then we obtain an even lower ASN of 4218, at the cost of inflating

our maximum statistical information to 22.2% relative to the FSD. An OBF design, on

the other hand, with an equally spaced schedule of analyses has an ASN of 4,662 (higher

than the optimal Pocock design), and a maximum sample size of only 1.3% higher than the

sample size of a FSD. This maximum statistical information is substantially lower than the

Pocock design with either the equally spaced analyses, or optimized spacing of analyses. The

optimal schedule of analyses for the OBF design takes place at 58.3% of the total statistical

information, which attains a minimum ASN of 4,509 at the cost of a slight inflation of the

maximum sample size relative to the FSD.

In practice, however, we often choose P to reflect the degree of early conservatism in

order to balance scientific, ethical and efficiency concerns. Thus, one may alternatively want

an optimal schedule of analyses for some fixed P that minimizes the ASN. However, given

this best schedule of interim analyses, this bivariate space is poorly behaved in the sense that

one can find some other parameter P within the same class of design to obtain an even lower

ASN based on this same schedule of interim analysis. Each of these optimization results are

considered local minimums (relative to the global minimum) since we only hold fixed either

the schedule of analyses or the P parameter. This aspect is illustrated in the bottom row of

Figure 3.9 where each profile curve for the ASN corresponds to a particular choice of early

conservatism for P ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1}.

For example, we can consider the symmetric one-sided OBF design. The optimal schedule

for the two-stage OBF design has an interim analysis conducted at 58.3% of the maximum

sample size (ASN=4520). This increases the maximum sample size by 3% relative to a FSD.

However, for this same schedule of interim analysis, the design with P = 0.76 beats the ASN

for this two-stage OBF design, with a slightly higher maximum sample size (6.9%) relative

to the FSD.

In general, relative to the FSD, the ASN decreases marginally as P decreases over the

investigated range of P . Similar trends are observed for the two-sided symmetric designs.

We see that for the one/two-sided symmetric monitoring rules, the contour plots are pretty
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similar. The ASN tends to increase as the timing of the interim analysis approaches 1.

Table 3.4: Optimal spacing of analysis schedule for designs with a total of two analyses. A
FSD having 97.5% power requires N = 6146 to detect a design alternative of θ = 0.1.

Equally Spaced Holding P fixed Holding IP
1 fixed

P ASN Max Max
N ASNP MaxP Max

N

P IP
1 POpt ASNOpt MaxOpt

MaxOpt
N

O
ne

-S
id
ed

0.5 4325 7387 1.202 4218 7510 1.222 41.4 0.53 4214 7328 1.192
0.6 4266 6966 1.133 4222 6973 1.134 44.7 0.56 4217 7149 1.163
0.7 4277 6660 1.084 4272 6650 1.082 48.1 0.61 4241 6933 1.128
0.8 4352 6447 1.049 4346 6459 1.051 51.6 0.66 4284 6773 1.102
0.9 4483 6309 1.026 4432 6348 1.033 55.3 0.71 4348 6657 1.083
1 4662 6226 1.013 4520 6277 1.021 58.3 0.76 4412 6568 1.069

Opt 4213 7262 1.182 42.7 0.54

Tw
o-
Si
de

d

0.5 4137 6683 1.087 4078 6735 1.096 42.9 0.41 4059 7016 1.141
0.6 4159 6512 1.059 4137 6518 1.060 45.9 0.44 4073 6875 1.119
0.7 4222 6382 1.038 4220 6380 1.038 49.2 0.48 4109 6740 1.097
0.8 4326 6287 1.023 4316 6295 1.024 52.6 0.51 4166 6653 1.082
0.9 4473 6224 1.013 4414 6243 1.016 55.8 0.56 4244 6552 1.066
1 4659 6185 1.006 4509 6211 1.010 58.8 0.61 4320 6479 1.054

Opt 4059 7019 1.142 41.2 0.41

H
yb

rid
(F
ut
,E

ff) (0.5, 1) 4776 6742 1.097 4648 6714 1.092 57.8 1.20 5091 6166 1.003
(0.6, 1) 4734 6565 1.068 4605 6577 1.070 57.6 1.19 4896 6175 1.005
(0.7, 1) 4702 6430 1.046 4572 6467 1.052 57.8 1.20 4731 6185 1.006
(0.8, 1) 4681 6333 1.030 4548 6380 1.038 57.6 1.24 4607 6195 1.008
(0.9, 1) 4668 6267 1.020 4531 6322 1.029 58.2 1.30 4531 6206 1.010
Opt 4508 6214 1.01 58.8 1.41

“Fut” refers to the futility boundary and “Eff” refers to the efficacy boundary.
Equally spaced: The ASNs for GSDs with equally spaced analyses are evaluated for each specific P
parameter.
By P : For each P , we obtained the GSD with the schedule of analyses that minimizes the ASN. Using this
schedule of interim analyses based on the fixed P , we can find another GSD with some other parameter P ′
that may minimize this ASNP further.
Opt: The optimal GSD with the best analysis schedule with the minimum ASN among P > 0.

The contour plot for the class of one-sided hybrid design with a fixed OBF efficacy

parameter behaves relatively differently. In general, such a design constraining the efficacy
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boundary using the OBF rule is optimal when the futility boundary is further away from

1. Within this specific class of designs, the best GSD has an interim analysis conducted

at ≈ 58.8% of the maximum statistical information with the futility parameter P = 1.41.

For other choices of futility parameter P , the best schedule of interim analysis is generally

conducted at ≈ 58% of the maximum statistical information. Within the class of one-sided

hybrid design having an OBF efficacy parameter and futility parameter of P > 0.7, there

is generally mild inflation of the maximum statistical information relative to the FSD. This

specific class of design has comparable ASN properties as the class of one-sided symmetric

designs with P ∈ (0.7, 1). In comparison, it may be worthwhile to consider exploring the

smaller class of asymmetric designs, i.e., {Pfutility, Pefficacy} ∈ (0.7, 1)× (0.7, 1) to potentially

gain more efficiency in terms of ASN under the null while maintaining statistical power to

detect the same design alternative.

3.3.2 Implications in the Time To Event Settings

We investigated the scenario of characterizing the optimal design using ASN as the optimality

criterion while holding other aspects of the operating characteristics constant. By varying

the spacing of the interim analyses, we observed the following:

• When we plan our study assuming equally spaced analyses based on some fixed pa-
rameter P , our ASN may not be best compared to other potential schedule of analyses
under the alternative.

• The optimized schedule of interim analyses for a fixed P can however not be optimal
with respect to another design with the same schedule of analyses.

• The difficulty of characterizing the best or even better optimal design is made more
difficult as we expand the class of symmetric designs to incorporate asymmetric designs.
Further complications include optimizing the schedule of analyses.

It is typical that in practice we seldom pick the design that minimizes the ASN since other

scientific, logistical constraints may dictate the choice of the monitoring rule. However, it is

important to note that when evaluating the operating characteristics of a GSD, one should
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take into consideration other potential, competing designs so as to carefully compare various

operating characteristics such as ASN. As illustrated, we see that some of the less known

choices of the GSDs within the unified family, with a different schedule of analyses, can lead

to improvements in ASN relative to common choices of sequential designs.

3.4 Summary

In adaptive designs where we may potentially switch monitoring rules as a consequence of

adapting the maximum statistical information, we need to be cautious in understanding

whether our ability to stop the trial early may change as a consequence of this switching.

For example, when the test statistic attained 90% of the statistical information at 3/4 of

the way through the study, we may have a tendency to stop the trial sooner when we have

reliable safety data to establish the safety/futility of the treatment. On the other hand, at

3/4 of the way through the study, having only 30% of the statistical information may lead

us to act differently. In such a situation, it is possible that we may want to explore a more

conservative boundary to match our level of expectation. We now describe the advanced

background issues in the time to event setting.



82
One−Sided Symmetric Design

P (Efficacy)

In
te

rim
 (

%
 F

in
al

)

 4300 

 4400 

 4500 

 4700 

 4800 

 4900 
 5000  5100  5200 

 5300 

 5400 

 5400  5500 

 5600 

 5600 
 5700  5800  5900 

 6000 

 6000 

 8000 

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0
20

0
40

0
60

0
80

0
10

00

●

Two−Sided Symmetric Design

P (Efficiacy)

In
te

rim
 (

%
 F

in
al

)

 4100 

 4200 

 4300 

 4400 
 4500  4600 

 4700  4800 

 4900 

 4900  5000  5100  5200 
 5300  5400  5500 

 5600 

 5600  5700  5800  5900  6000 

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0
20

0
40

0
60

0
80

0
10

00

Asymmetric design with OBF Efficacy 

P (Futility)

In
te

rim
 (

%
 F

in
al

)

 4600 
 4700 

 4800 

 4900 

 4900 

 5000 

 5000 

 5100 

 5100 

 5200 

 5200 

 5300 

 5300 

 5400 

 5400 

 5500 

 5500 

 5600 

 5600 

 5700 

 5700 

 5800 

 5800 

 5900 

 5900 

 6000 

 6000 

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0
20

0
40

0
60

0
80

0
10

00

●

0.2 0.4 0.6 0.8 1.0 1.2 1.4

42
00

43
00

44
00

45
00

46
00

47
00

One−Sided Symmetric Test

P

A
S

N

●

● Global min
ASN(equal interim)*

0.2 0.4 0.6 0.8 1.0 1.2 1.4

40
00

42
00

44
00

46
00

Two−sided Symmetric Test

P

A
S

N
●

●

0.2 0.4 0.6 0.8 1.0 1.2 1.4

45
00

45
50

46
00

46
50

47
00

Nonsymmetric with OBF Efficacy

P (Futility)

A
S

N

●

●
● Global min ASN(equal interim)*

●P=0.5 P=0.6 P=0.7 P=0.8 P=0.9 P=1

Figure 3.9: Top row: Contour plots of ASN for relative timing of interim analyses vs P for group sequential monitoring
boundaries corresponding to one-sided symmetric, two-sided symmetric, and one-sided hybrid boundaries. Each of
these designs has a total of two analyses, statistical power of 97.5% to detect the design alternative of 0.1, and known
variance of 1. The blue dash-dotted line describes the ASN based on a equally spaced interim analyses for each fixed
P . Bottom row: The blue dotted lines characterize the valley of local minimums of ASN (the minimum is represented
by the black point) for a fixed level of early conservatism P based on the best schedule of interim analyses. The blue
points correspond to the ASN with equal schedule of analyses which may not be the local minimum relative to the
black point with the same symbol.
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Chapter 4

Background: Advanced Issues in the
Time To Event Setting

In this chapter, we describe some of the statistical themes and the less common statistical

methods in the time to event setting used in this dissertation.

4.1 Censoring Distribution

We measure the study time of an individual on the trial from the time of randomization

to the last follow-up (either observing the event of interest, lost-to-follow-up, or censored

administratively at time of the interim analysis). Different time scales are of relevance in the

time to event setting: study time, accrual time, calendar time, and the information time.

The study time is of scientific interest to the regulatory bodies and clinicians in determin-

ing whether sufficient evidence has been obtained about the treatment thought to improve

aspects of the patients’ well-being. This is typically measured from the time of random-

ization of an individual to the last observed time (either due to lost of follow-up, event of

interest, or still alive at the calendar time). For example, a short study time in establishing

the efficacy of a treatment may not be clinically important when the subjects in the study

have only been followed up for an average of 3 months as compared to a longer study with

at least 3 years of follow-up. Once all the outcomes have been observed, the study may

be extended to obtain additional safety information that are less relevant to answering the

primary question of interest. We are typically less interested in this additional follow-up

for our primary objective once we acquire all number of events are reached or if the trial is



84

stopped early for efficacy, futility, or lack of benefit. However, we may be interested in this

additional follow-up to collect more safety information.

The accrual time refers to the active period of time whereby subjects are enrolled into

the study and randomized into the treatment groups. Recruitment typically occurs by en-

rolling patients at multiple sites. The rate of accrual depends on multiple factors such as the

number of sites, the number of patients the sites can handle, as well as the disease preva-

lence/incidence. For instance, the accrual period in prevention trials may often be brief when

participants can be recruited immediately. In rare disease settings, this period may take a

longer time. Logistical constraints, however, can affect the number of participants a site can

feasibly enroll. New sites may not be experienced with the recruitment of patients into the

trial, but may over the course of time develop experience in identifying potential patients to

be recruited over time. For example, in certain chronic disease settings, the early patients

who are enrolled into the trial may more likely be the prevalent cases or patients who failed

other treatment regimens. As these prevalent cases are exhausted over time, the recruitment

rate may slow down as sites await for eligible incident and potentially healthier cases to be

enrolled into the trial.

The information time provides a useful way to conceptualize the degree of early conser-

vatism of the sequential monitoring rules at design phase. These stopping boundaries for the

GSDs as seen in Chapter 2 are defined based on the information time, often characterized

by the ratio of statistical information gathered at some interim analyses relative to the total

statistical information at the final analysis. In adaptive designs, this information time, as

seen based on the schizophrenia example in Chapter 3, is less well-defined as a consequence

of the unknown maximum statistical information at design. A maximum duration study is

conducted by allowing termination of the study when the pre-defined stopping time of the

trial is met even when the amount of statistical information has not been gathered. When

the study is terminated based on all the required number of events accumulated, we call this

a maximum information study.
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Figure 4.1: Patients are recruited in a staggered setting and followed until the disease of
interest have been obtained. At some interim analyses when the accrual of subjects is
incomplete, some participants (in black) may or may not have the event of interest. As they
are followed further, those who are at risk at the interim analyses may develop the disease (in
gold) as new participants are continuously recruited and randomized into treatment groups
and followed (in blue).

Interim analyses are often conducted based on ethical, economic, and logistic concerns.

It is very often the case that although the planning of GSDs or adaptive designs are based

on the information scale, interim analyses are conducted based on the calendar time of the

study. The calendar time most appropriately reflects the financial and logistical concerns of

the sponsors or research institutes. It is viewed as some transformation of the information

time and is of paramount importance in the application of sequential monitoring in settings

with delayed ascertainment of outcomes.
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The censoring distribution in a time to event analysis is defined to be some function of

the accrual and survival distributions that can be described by the above time scales. With

sequential monitoring, interim analyses truncate the survival distributions and create this

“patient-wise” separation such that participants in the study may (1) be randomized and

had the event of interest, (2) be randomized and are still currently followed but have not had

the event of interest as observed in Figure 4.1. These different components are later seen

to come indirectly into the estimation of the treatment effect in the most common time to

event analyses.

4.2 Choice of Summary Statistic

In general, the summary statistic of choice in the time to event setting will depend upon

assumptions about the actual distribution of the survival times in each group. At planning

stage, it is of use to postulate plausible survival functionals that are clinically meaningful

to the treatment of the disease. Often, the data gathered from prior trials are sufficient

to enable us to establish the relevant alternative survival functionals of interest, and/or

exclude functionals that do not reflect clinical/scientific importance but may plausibly surface

during monitoring of a clinical trial. Having decided on the distributional functionals that

capture our preferential ordering of treatments, and most appropriately reflect scientific

importance and clinical benefit to patients, we now seek to choose summary measures that

provide greatest statistical efficiency to quantify and distinguish/discriminate the functionals

of interest.

Several summary statistics can be used to quantify/distinguish the survival functionals

that represent most importance to us. We may choose to

1. Compare the vertical separation of the curves by considering the probability of sur-
viving past any particular time point. There are many ways that we may compare the
difference in survival probabilities and the choice of a particular time point typically
represents scientific/clinical importance.

2. Compare the horizontal separation of the curves by considering an arbitrary quantile
of the survival distribution. The median survival is the most common quantile used for
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such comparison. Other potential quantiles may be used and the choice of the quantile
is typically driven by scientific/clinical importance.

3. Compare the difference in area under the survival curves up to some specified time
point/up to some specific survival quantile. This can be interpreted as the average
difference in the amount of time saved over a specified time period, which is often
referred as restricted mean survival. Alternatively, we may compare the difference in
area restricted to the quantiles of the survival distribution. This interpretation is thus
more difficult to describe and additional restrictions may be required when the survival
curves do not attain the required survival quantile.

4. Compare the weighted average slopes of the survival curves relative to the survival
probability at the particular time point. The weights may be chosen based on statistical
efficiency under some assumed (semi-)parametric model. The most common choice is
the log rank test where the weights are efficient under Lehmann alternatives [Lehmann,
1953, Davies, 1971] and locally efficient when the hazards are proportional over time.

Typically, when one survival curve is always greater than another (i.e., the distributions

functions are stochastically ordered at all times) in the RCT setting, we have a clear idea

which treatment we prefer. Any summary statistics based on the entire functionals that may

be used as a basis for statistical inference will order the true survival curves accordingly to

the preferred treatment. These summary statistics include any of the above choices [1-4],

the medians, or other quantiles, survival probabilities at some pre-specified time, restricted

means, or, with the censoring distribution commonly encountered in randomized clinical

trials, a weighted hazard ratio as might be computed in Cox regression.

However, when the distributions of survival times are not stochastically ordered across

treatment groups (i.e., when the true survival curves cross at some point in time), the

definition of the “preferable” treatment is less clear. Factors that might have to be considered

would include the time at which the survival curves cross, the survival probability at time of

crossing, the relative advantage in mean survival for one treatment over the other prior to

crossing (e.g., the area between the survival curves), the relative advantage in mean survival

in the opposite direction after crossing (perhaps extrapolated into the future), and the patient

population being treated (e.g., our interest in any extrapolation of treatment effect into the

future might be more extensive for children than it would be for adults).
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Figure 4.2: Curves (Truth) exhibiting the possibility of crossing hazards that may result in
crossing survival.

To better illustrate how different survival functionals may affect our choice of summary

statistics, we provided several non exhaustive alternative scenarios that represent different

clinical benefit to patients in different disease settings as shown in Figure 4.2. The top row

of the survival curves described the setting where we have stochastic ordering over the first

5 years. When the treatments’ survival distributions are expected to exhibit proportional

hazards as in the top left figure (and thus are stochastically ordered), all summary statis-

tics such as the survival probability at any pre-specified time, any pre-specified quantile,

restricted mean up to any pre-specified time will enable us to pick A as the “better” treat-
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ment. The Cox proportional hazards model will tend to be most efficient in picking A to be

the better treatment with the censoring distribution that commonly arise in RCT setting as

a consequence of accrual.

In the other two settings, we may posit survival functionals that deviate from proportional

hazards but ultimately exhibit stochastic ordering survival curves (as in the rest of the Figures

on the top row) characterized by non proportional hazards with only “early differences” (as

might arise with crossing hazards), or only “late differences” (as might arise with diverging

hazards). Under these scenarios, treatment A will typically be identified as “better” if we

choose to base comparisons on survival probabilities at any arbitrary time, on any arbitrary

quantile, or the restricted mean up to any arbitrary time up to year 5.

With the log rank statistic, when accrual of patients over time naturally induce different

censoring distributions (across interim analyses) as we analyze our data at different calendar

times, the (unweighted) log rank statistic’s weighting of the difference in hazard functions

would tend to identify A as the same “better” treatment. Under censoring distributions that

arise under “left entry” or with weights modified to emphasize later hazards, the conclusion

drawn from the log rank test need not be consistent for the “better” treatment. Similarly,

other weighted averages of the hazard functions could lead to inconsistent identification of

the “better” treatment.

Crossing survival curves present both challenging scientific and statistical dilemmas. In

the second row, it is not at all clear what is the preferred treatment when we have crossing

survival curves. In practice, the decision in a RCT setting would at minimum depend on

other quantitative measures such as

M1. The “degree of separation” between survival curves prior to crossing and after crossing

M2. The timing of the crossing

M3. The survival probability at which the curves cross

While additional information (such as toxicities, safety, etc) can be employed for decision

making to quantify the better treatment, without loss of generality, these three quantitative
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measures are sufficient for further elaboration on determining the choice of statistics for the

primary endpoint.

This degree of separation between the survival curves prior to crossing might be judged

simply by the vertical differences in survival curves. With minimal separation between the

curves, there may be less dilemma in judging whether A or B is better. However, if a huge

separation exists, then this may affect any tendency to base treatment decisions on the long

term benefits, and many different decisions may be made depending on the disease setting.

The timing at which this crossing occurs may also have to be factored in to the treatment

decision. To make a judgment based on any of those quantitative measures will depend upon

the clinical setting and the objective of the trial. For instance, in childhood cancers, if this

crossing occurs within the first year, we may gravitate more towards greater emphasis on the

longer term survival than we might for older adults who may have similar survival curves.

Lastly, the survival probability at which this crossing occurs will affect the treatment

decisions. In the survival curve IV of Figure 4.2, this crossing happened when the survival

probability is 0.1, implying that the number of subjects receiving any benefit from the treat-

ment with the better survival is thus fewer. Since this vertical separation is big, the disease

setting and the age of the participants have to be factored in to determine whether this

long term benefit is truly beneficial to patient survival. On the other hand, if this survival

probability is relatively high, the decisions may be guided by any of the previous 2 points.

4.3 Consequences of Time Varying Treatment Effect

Consider a RCT comparing the use of a chemotherapy regimen vs a standard of care. Serious

toxicity issues may affect the survival benefit earlier relative to the standard but if the patient

recovers from the toxicity of the treatment, there may be some survival benefit as seen in

Figure 4.3. In such situations, the unweighted logrank test may not be optimal to pick

out the meaningful difference if we are interested in the survival benefit at year 5. The

behavior of early treatment differences in such situations can be influenced by changes to the

censoring distribution as might happen with interim analyses. Other time to event methods
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may be preferred in presence of time varying treatment effect. However, the monitoring

strategies chosen are often evaluated under the assumption of the strong null hypothesis of

no treatment effect, thus presuming constant treatment effect across time. We must then try

to evaluate the sensitivity of competing monitoring strategies to avoid picking out early/late

differences that do not matter clinically when answering the scientific question. This is of

particular importance in Chapter 7.
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Figure 4.3: Crossing survival curves where prior to time 2, the treatment appear to be
superior over the placebo. However, this effect wears off by time 2 and placebo is then
superior over the treatment after time 2. The difficulty of picking the preferred treatment
depends upon the clinical setting and personal preference of the patients.

The consequence of interim analyses induces a natural/administrative censoring of the

follow-up time that further truncate what may be clinically relevant to the scientific question.

Under such situations, when the survival curves appear to converge, clinical investigators may

consider the plausibility that the early treatment effect has waned (i.e., survival curves start

to converge), or that subsequent exposure to the treatment may be harmful (i.e., survival
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curves may be expected to cross). We may thus be concerned with other analyses methods

to better address the non PH settings as seen in the earlier examples (Figure 4.2) that all

demonstrate some form of time-varying treatment effect (except for I).

4.4 Strong Null vs Weak Null

To facilitate investigation in the time to event setting, we set out to distinguish two differ-

ent null hypotheses setting, namely, the strong null and the weak null hypothesis [Emerson,

2011]. We define testing the strong null hypothesis as HS
0 : F (x) = G(x), ∀x. By this defi-

nition, this would encompass equality of distribution for all moments such that the distance

measure between F and G, d(F,G) = 0 [Rudser, 2007]. In the survival setting, we are inter-

ested in testing the exact equality of survival distributions which is, under this strong null

hypothesis, naturally proportional hazards. The Kolmogorov-Smirnov test is an example of

such consistent testing procedure of the strong null hypothesis.

The weak null hypothesis, HW
0 , can be heuristically defined such that the distance mea-

sure between d̂(F,G) = 0 but F (x) 6= G(x) for some x. An example of such test of hy-

pothesis can be seen when testing for difference in normal means. Let the density of F be

f ∼ N(µF , σ2) and the density of G be g ∼ N(µG, 2σ2). Under testing of the weak hypoth-

esis HW
0 : µF = µG = µ0, the means of the distribution of F,G are equivalent under the null

hypothesis. However, the entire distribution F is not equivalent to G in the higher moments.

The notion of the weak null plays a pivotal role in enabling us to quantify the rela-

tive importance of the estimate of the treatment effect under the non proportional hazards

settings. Under this definition, there is a rich collection of functionals where various test

statistics characterize the weak null differently depending on the weighting scheme of these

test statistics as well as the time frame of analysis.

In randomized clinical trials and many other studies, we characterize the operating char-

acteristics of design under the (strong) null hypothesis of HS
0 : SA(t) = SB(t),∀t as analyzed

by either the Gρ,γ, weighted Kaplan-Meier, or Nelson-Aalen statistics. Our alternatives may

be written as HS
A : SA(t) 6= [SB(t)], for some t, and θ 6= 1. When t → ∞, we obtain full
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knowledge of the survival distribution, and thus all our test statistic are consistent tests of

the strong null hypothesis with the correct size, α.

Most often, the above does not hold true when scientific questions are sufficiently ad-

dressed by a consistent test of the weak null hypothesis, i.e., HW
0 : SA(t) = SB(t) as

parametrized by using the average hazard ratio, or the average difference in survival trun-

cated to some follow-up time of interest. In many clinical settings, incomplete follow-up as a

consequence of limitations of resources or less emphasis on characterizing the full (later) sur-

vival distribution of the participants naturally truncate our test statistic up to some known

maximum follow-up time of interest (i.e., we do not follow all patients in the clinical trial

until all of them have the event of interest). Thus, we do not have full knowledge of the

functional forms of the survival distributions [Emerson and Emerson, 2013].

4.5 Cox Proportional Hazards Regression/Log Rank Test

The hazard ratio is one of the most commonly used summary measures used to quantify this

difference in hazards. It arises naturally based on the logrank test/Cox proportional hazards

regression. Under the strong null and when presuming proportional hazards alternatives, the

logrank statistic/Cox proportional hazards regression is the most efficient rank based test.

In the presence of censoring, as defined either by incomplete accrual of subjects or interim

analyses due to sequential monitoring, statistical information (the measure of the inverse

of the variability of the log hazard ratio) is generally related to the number of events. Un-

der the strong semi-parametric assumption of proportional hazards, adaptive modifications

based on the primary endpoint with appropriate adjustments do not impact the scientific

interpretation/credibility of the trial results.

4.5.1 Notation and Setup

For convenience, we describe the fixed sample setting by letting J = 1 and suppress the

sequential notation for now. We also denote the analysis time to be defined on the calendar
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time. Let E, T , C be the random variables corresponding to the calendar time of entry into

the study, the study time for the event of interest, and the study time for loss-to-follow-up

with the respective distribution functions H, F , and G.

Under the fixed sample setting with a total accrued sample of N subjects where the final

analysis is conducted at calendar time τ , our data for the ith subject can be represented in the

form (Xi, ∆i, Zi) where Xi = max(min(Ti, Ci, τ −Ei), 0) is the observed time for individual

i, ∆(Xi) is the indicator variable for an observed failure time if Xi ≤ min(Ci, τ −Ei) and 0 if

Ei > τ and that loss of followup is only due to administrative censoring, and the randomized

treatment assignment is

Zi =


0 if the ith individual belongs to treatment group 0

1 if the ith individual belongs to treatment group 1

For notational simplicity later, we further let ∆1(Xi) = ∆(Xi)Zi and ∆0(Xi) = ∆(Xi)(1−

Zi) where they are the indicators of failure for the ith subject coming from group 1 and 0

respectively. Let d1(t) = ∑N
i=1 ∆(Xi)Zi1[Xi≤t] denote the total number of events by time t

where 1[.] is the indicator function for treatment group 1. Thus, d0(t) = ∑N
i=1 ∆(Xi)(1 −

Zi)1[Xi≤t] is the total number of events by time t for treatment group 0. We first describe

the Score representation of the Cox proportional hazards regression model that is directly

related to the logrank statistic.

The (partial) score statistic for the (unweighted) logrank statistic at some interim analyses

written in both statistical/scientific interpretation, as evaluated at β = 0, is as follows

U(β)|β=0 =
N∑
i=1

∆i

[
Zi −

∑
l∈R(Xi) Zl∑
l∈R(Xi)

]
︸ ︷︷ ︸

Statistical:
Estimating function

=
N∑
i=1

n0(Xi)n1(Xi)
n0(Xi) + n1(Xi)

[
∆1(Xi)
n1(Xi)

− ∆0(Xi)
n0(Xi)

]
︸ ︷︷ ︸
Scientific: Weighted average

of difference in hazards

where R(Xi) = {l : Xl ≥ Xi} is the risk set at analyses time Xi, and nk(Xi) is the number

at risk at analyses time Xi for the group k for k = 0, 1.
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Under random censoring, this number at risk at some timeX can be expressed as nk(X) ≡

NkPr(Tk ≥ X,Ck ≥ X, τ − Ek ≥ X) = Nk(1− Fk(X))(1− Gk(X))Hk(τ −X) is a function

of the survival, censoring, as well as the entry times. Nk denotes the number initially at risk

for group k. We note that under immediate accrual we observe the full survival time of the

patients unless they are subjected to random censoring. With staggered accrual, this delay

of accrual further induces a natural censoring that is common in most clinical trials. This

dependence on both the censoring and survival later becomes an issue when we investigate

the use of adaptive modifications to the design in the time to event setting.

A consistent estimator of the variance σ2 for the above Score representation of the Cox

regression can be written as

σ̂2 =
N∑
i=1

n0(Xi)n1(Xi)
n0(Xi) + n1(Xi)

[
1− ∆1(Xi) + ∆0(Xi)

n0(Xi) + n1(Xi)

]
∆1(Xi) + ∆0(Xi)
n0(Xi) + n1(Xi)

Under some local alternative β, the Cox regression model can be written as follows

U(β) =
N∑
i=1

∆(Xi)
[
Zi −

n1(Xi) expβ
n0(Xi) + n1(Xi) expβ

]

=
N∑
i=1

[
∆1(Xi)

(
n0(Xi)

n0(Xi) + n1(Xi) expβ

)
−∆0(Xi)

(
n1(Xi) expβ

n0(Xi) + n1(Xi) expβ

)]

=
N∑
i=1

n0(Xi)n1(Xi)
n0(Xi) + n1(Xi) expβ

[
∆1(Xi)
n1(Xi)

− ∆0(Xi)
n0(Xi)

expβ
]

The statistical information can be represented as

I(β) = E
[
− ∂

∂β
U(β)

]
=

N∑
i=1

{
∆(Xi)n1(Xi)n0(Xi) exp−β
[(n0(Xi) exp−β +n1(Xi)]2

}

Our Score and Wald versions of the Cox PH model/logrank statistic are represented
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below.

Score Statistics: U(β)|β=0√
I(β)|β=0

d−→ N (0, 1)

Wald Statistics : (β̂ − β)
√
I(β̂) d−→ N (0, 1)

Asymptotically, the limiting distributions for both test statistics are standard normal. How-

ever, evaluating the variance of the Score/Wald statistics makes different assumptions about

the hypotheses of interest. For the Score statistic, the variance of U , V(β), is commonly

evaluated under the null hypothesis by setting β = 0. This gives us the logrank test statis-

tic. On the other hand, the variance of the Wald statistic is evaluated based on the (partial)

MLE of the Cox PH model.

4.5.2 Sample Size Formula

We can denote θ(t) = −β(t) to be the log hazard ratio − log(λ1(t)/λ0(t)) where λ1(t), λ0(t)

are the corresponding hazard function at time t for the treatment and placebo respectively.

By this parametrization, under proportional hazards (we suppress the dependence on t under

the PH setting), our hypotheses can then be interpreted such that positive values of θ denote

superiority of the treatment over the placebo with H0 : θ ≤ 0 vs HA : θ > θA. At level α, and

power β, our event size estimated based on a r : 1 randomization schedule can be obtained

using d = V (z1−α + zβ)2/θ2
A where V = (r + 1/r)2.

Under a 1 : 1 randomization, V = 4. A reasonable method to determine the accrual

size can be obtained via N = 2d
[∑

k=0,1

(
1− exp(−λk(τ−a))

λka
+ exp(−λkτ)

λka

)]−1
[Schoenfeld, 1983].

This assumes uniform accrual of subjects over some time interval (0, a), with the final analysis

taking place at time τ ≥ a, and censoring of observations to occur only by continued survival

at the time of analysis. Additionally, this formulation assumed exponential survival times

for both placebo and treatment. Specifying these parameters requires making an educated

guess using prior research. However, that guess may differ greatly from the conditions under
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which the clinical trial is actually implemented.

Sample size revision strategy can be performed using the aggregate observed event rate

during the course of the trial to revise the accrual of subjects when the hypothesized event

rate may be lower than anticipated. Because under approximate proportional hazards and

equal randomization, N/V ≈ d/4 when using the logrank statistic. Such sample size revi-

sions to increase accrual without changing the number of events do not affect the statistical

power of the design because modification of the sample size does not affect the formula for

computing the number of events. Alternatively, one may prespecify the threshold based on

the lower quantile of the approximate number of events to be anticipated at the calendar time

of analysis to facilitate sample size re-estimation. We describe more of this in Chapter 5.

More complex “sample size” calculations (for e.g., piecewise survival, piecewise weibull, etc)

can be performed using RCTdesign [Emerson, 2000].

4.5.3 Limitations of Cox Proportional Hazards Regression/Log Rank Statistic

The assumption of a common treatment effect across stages in a clinical trial may be rea-

sonable under the (strong) null hypothesis (where we presume exact equality of survival

distributions across all times), or under strong parametric, or semi-parametric assumptions

(such as proportional hazards). In most situations, such departures may arise even when

we are demonstrating superiority and do not preclude users from conventional test statistics

such as the logrank test. Other comparisons of the experimental therapy with the standard

of care may have different efficacy profiles across time. Thus, under such departures, we may

no longer be concerned with the assumption of a constant treatment effect but may need to

consider the design operating characteristics under a time varying treatment effect.

Amna Ibrahim, MD of the Food and Drug Administration and Center for Drug Evalu-

ation and Research remarked during an Oncologic Drugs Advisory Committee meeting on

September 13, 2005: “Hazard ratios give only an incomplete picture. Hazard ratios may rep-

resent statistical significance, however, clinical relevance as the benefit provided to the patient

is not captured. For example, hazard ratios will treat the improvement from three days to six
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days the same as improvement from three years to six years.”

In the presence of non PHs, the hazard ratio may not be the best summary measure

to make inferential decisions on the preferred treatment since it no longer provides consis-

tent and relevant scientific interpretation. Because the risk sets are dependent on both the

censoring and the underlying survival distribution as in 4.5.1, in presence of time varying

treatment effects, we have an average hazard ratio interpretation [Xu and O’Quigley, 2000].

With sequential monitoring, the consequence of interim analyses thus imposes a differential

weighting scheme that modifies the relative importance of the treatment effect across time,

and/or unnecessarily induces trends unrelated to the scientific estimate of interest.

The average hazard ratio interpretation is also non transitive across trials [Gillen and

Emerson, 2007]. This non transitivity has implications in the non inferiority settings. Since

the estimates of the standard of care treatment effect are based on historical data from a

placebo controlled RCT, those estimates may not be based on the same censoring distribution

as the current active trial. As such, results comparing the placebo, standard of care, and

experimental treatment may give rise to bizarre interpretations as discussed in Gillen and

Emerson [2007]. Specific weighting schemes for the logrank statistics have been investigated

to emphasize scientific importance rather than statistical efficiency, thereby preserving the

transitivity of the test statistic in the group sequential setting [Gillen and Emerson, 2007].

However, the weighted estimates lack clear interpretable results.

4.6 Less Common Time To Event Analysis

We now introduce the less common time to event analyses methods that are often used in

the setting of delayed ascertainment of outcomes.

4.6.1 Weighted Logrank Statistics/Gρ,γ

Assume the notation from 4.5, let w(t) = n0(t)n1(t)
n0(t)+n1(t) [Ŝ(t−)]ρ[1 − Ŝ(t−)]γ where Ŝ(t−) is the

pooled Kaplan Meier survival estimate. Fleming and Harrington [1991] introduced the above
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flexible weight function in the log rank test statistic to accommodate comparison of a bigger

class of survival curves. In this setup, at some time τ ,

Gρ,γ =
√
N0 +N1

N0N1

N∑
i=1

w(Xi)
[

∆1(Xi)
n1(Xi)

− ∆0(Xi)
n0(Xi)

]

W ρ,γ =
√

N0N1

N1 +N0
Gρ,γ

W ρ,γ has its equivalent representation as the weighted score statistics. Under the strong

null hypothesis, H0 : S0(t) = S1(t), ∀t > 0, a consistent estimator of the variance of the Gρ,γ

statistic can be expressed as

σ̂2 = N0 +N1

N0N1

N∑
i=1

w2(t)
[

1
n0(Xi)

+ 1
n1(Xi)

] [
1− ∆1(Xi) + ∆0(Xi)

n0(Xi) + n1(Xi)

]
∆1(Xi) + ∆0(Xi)
n0(Xi) + n1(Xi)

.

The number of patients at risk in each comparison group will depend on the analyses

time under staggered accrual. Since the Gρ,γ statistics or the weighted logrank statistics can

be re-expressed as a weighted sum of statistics, Uτj(β), based on accumulated data up to

calendar time τj (the calendar time at the jth interim analysis), we can represent V (τj) in

the form of σ̂2
j and estimate the information growth at the jth interim analysis, Πj, via

Πj = V (τj)/V (τJ) =
[(

N0,jN1,j

N0,j +N1,j

)
σ̂2
j

]/[(
N0,JN1,J

N0,J +N1,J

)
σ̂2
J

]
.

where Nk,j denotes the number initially at risk for treatment group k at the jth interim

analysis.

Under the strong null hypothesis, our weighted test statistic, Uτj , is approximately nor-

mal with mean 0 and variance/Fisher’s information, V (τj). Uτj has the asymptotic proper-

ties of the Brownian motion with uncorrelated increments in the covariance structure with

Cov(Uτj+1 , Uτj) = V (τj) for j = 1, · · · , J − 1 under the strong null hypothesis [Tsiatis, 1982,

Gu and Lai, 1991, Bilias et al., 1997].
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4.6.2 Nelson Aalen Statistic

Let E, T , and C be the random variables corresponding to the calendar time of entry

into the study, the study time for the event of interest, and the study time for loss-to-

follow-up with respective distribution functions H, F , and G. Let x be the study time of

interest. At calendar time τ , a total of N = N0 +N1 independent subjects have entered the

study, and are randomized to treatment groups 0 and 1. The data for the ith subject can

be represented as (Xik(τ), ∆ik(τ), k) where Xik(τ) = max(min(Tik, Cik, τ − Eik), 0) is the

observed time for individual i, ∆ik(τ) is the indicator variable for an observed failure time

if Xik(τ) ≤ min(Cik, τ − Eik) and 0 if Eik − τ > 0 and that loss of followup is only due to

administrative censoring, and k is the randomized treatment assignment taking values 0 or

1.

At calendar time τ , the Nelson-Aalen estimator of the cumulative hazard function Λk(x) =∫ x
0 λ(u)du at some time x computed for the kth treatment group is thus

Λ̂k(x; τ) =
∑

{i:Xik(τ)≤x}

∆ik(τ)
nik(τ)

where nik(τ) = ∑N
i=1 1{Xjk(τ) ≥ Xik(τ)}, ∆i0(τ) = ∆i(τ)(1− Zi), and ∆i1(τ) = ∆i(τ)(Zi).

The estimate of the variance σ̂2
k for group w is thus

σ̂2
k(x; τ) =

∑
{i:Xik(τ)≤x}

∆ik(τ)
n2
ik(τ)

Formally, we can compare the difference in the survival curves by testing the following

hypothesis, HNA
0 : S1(x) = S0(x). Since S(x) = exp(−Λ(x)), the above hypothesis can be

represented based on the cumulative hazard function. We may thus write the hypothesis as

HNA
0 : Λ1(x) = Λ0(x). At some calendar time, τ , a total of N0 and N1 subjects from group
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0 and 1 respectively are initially at risk, our asymptotic distribution

√
N
[
(Λ̂1(x; τ)− Λ̂0(x; τ))− (Λ1(x)− Λ0(x))

]
→ N (0,W)

with the variance W of the Gaussian process defined as ρ−1σ2
0(τ) + (1 − ρ)−1σ2

1 where ρ =

limmin{N0,N1}→∞N0/(N1 +N0) in Lin et al. [1996].

Denote i = 1, · · · , N0, and l = 1, · · · , N1 to be the indices for the total number of subjects

in group 0 and 1 respectively. Then our estimator can be expressed as follows:

Λ̂(x; τ) = Λ̂1(x; τ)− Λ̂0(x; τ) =
∑

{l:Xl1(τ)≤x}

∆l1(τ)
nl1(τ) −

∑
{i:Xi0(τ)≤x}

∆i0(τ)
ni0(τ)

Our variance estimator of W is

Ŵ = ρ−1σ̂2
0(τ) + (1− ρ)−1σ̂2

1 = N
(
v̂ar{Λ̂1(τ)}+ v̂ar{Λ̂0(τ)}

)
= N

 ∑
{i:Xi1≤x}

∆i1(τ)
n2
i1(τ) +

∑
{i:Xi0≤x}

∆i0(τ)
n2
i0(τ)


= NV̂ (τ) = I(τ)−1

The inverse of the statistical information, I(τ)−1, can be estimated using NV̂ (τ).

At calendar time τ , our test statistic is then represented by

Z(τ) = Λ̂(τ)− ΛH0(τ)√
V̂ (τ)

where Z(τ) is the Wald test statistic with I(τ) ≡ I1(τ). Note that IN = NI(τ) and can be

estimated by 1/V̂ (τ). Under the null, the Score representation of the test statistic is

UN(τ) =
√
NI1(τ)Z(τ) =

√
IN(τ)Z(τ) = Z(τ)/

√
V̂ (τ)

We later consider the above Nelson-Aalen test statistic to be used jointly with the logrank
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test statistic to obtain the composite statistics that will be investigated in Chapter 7.

4.6.3 Weighted Kaplan Meier Statistic

The restricted mean or the Weighted Kaplan Meier statistic [Pepe and Fleming, 1989] can

be used to compare the area under the survival curves. In particular, we are interested in

comparing this area under the two survival curves at some calendar time τ while restricting

the comparison to a study time of x. This is formulated by

ŴKM1 vs 2(x) =
√

N1N2

N1 +N2

∫ x

0
ŵ(t)

[
Ŝ1(t)− Ŝ2(t)

]
∂t

where ŵ(t) denotes the weight function that can be chosen to place importance on parts of

the survival curves, Ŝk(t), Ĉk(t−) are the Kaplan Meier estimate of survival distribution up

to time t and the probability of not being censored before time t− in group k, and Nk is

the total number of patients initially at risk in group k for k = {1, 2}. Choosing ŵ(t) = 1

reduces to the restricted mean statistic.

Typically, let x = sup{t : Ĉ1(t) ∧ Ĉ2(t) > 0} where Ĉ(t)k is the Kaplan Meier estimator

of the censoring survival function for each group. In practice, we replace x by x− t∗ where

t∗ is some number of time units chosen to avoid integrating over a support of 0 for stability

reasons.

The unpooled and pooled variance estimator are defined as below

σ̂2
Unpooled = −

2∑
l=1

p̂3−w
Nl

Nl − 1

∫ x

0

[
∫ x

0 w(u)Ŝw(u)du]2

Ŝw(t)Ĉw(t)Ŝ−w (t)
dŜ(t)

σ̂2
Pooled = −

∫ x

0

[
∫ x

0 w(u)Ŝ(u)du]2

Ŝ(t)Ŝ−(t)

(
p̂1Ĉ1(t) + p̂2Ĉ2(t)

Ĉ1(t)Ĉ2(t)

)
dŜ(t)

where Ŝ(t) is the Kaplan-Meier estimator calculated from the pooled sample, p̂1 = N1/N ,

p̂2 = N2/N , and N is the total number at risk at the beginning of the trial. Under H0, both

estimators are consistent [Pepe and Fleming, 1991]. One may choose the weight function,
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w(t) = 1(t ≥ 0), or the optimal choice described by Pepe and Fleming [1989] as

wc(t) =
(

p1

Ĉ2(t)
+ p2

Ĉ1(t)

)−1

4.7 Summary

This chapter serves mainly as a background to the common statistical methods that are

employed as the analysis tool of choice in the time to event setting during the design and

conduct of clinical trials. There are many recent statistical methods such as targeted learning

[Van Der Laan, 2011] that are gaining popularity. Other approaches also may allow covariate

adjustments in analyzing the primary endpoint in the clinical trial setting. These are not

discussed in this dissertation since we choose to focus on using these common approaches to

portray some of the statistical concerns with the use of GSDs and adaptive designs.

We now investigate the use of adaptive designs under the PH setting assuming the use

of the efficient logrank test statistics in the next chapter.



104

Chapter 5

Adaptive Monitoring of HIV Preven-
tion Trials in the Presence of Extreme
Treatment Effect

In recent years, there has been considerable interest in the possibility of incorporating

adaptive features in clinical trials of new prevention strategies. Recent HIV prevention trials

such as HPTN052 and Partners Pre-Exposure Prophylaxis dealt with operational issues

related to the observation of extremely low event rates at blinded analyses. In such a setting,

trial investigators may need to consider increasing accrual rates, prolonging calendar time of

follow-up, and/or accepting a lower number of events. The best strategy from among these

options may depend on whether such an observation arises primarily from a low “background”

event rate, or from an extremely beneficial treatment effect, or from a combination of both.

In this research, we compare our ability to preserve study precision solely through the use

of blinded adaptation within a pre-specified group sequential design versus the use of an

unblinded adaptation that might better distinguish between low background event rates and

extreme treatment effects. In particular, we consider the constraints that calendar time might

impose on the scientific interpretation and statistical credibility of the chosen strategies.

5.1 Introduction

HIV prevention trials typically involve randomizing a large number of participants and fol-

lowing them for a period of time until sufficient information has been obtained about the

incidence of sero-conversion. Because statistical information in a time-to-event setting is
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presumed to correspond to the number of events, determination of the sample size requires

additional information about the event rate and patterns of accrual into the study. An event

rate markedly lower than planned can lead to an undesirably long calendar time before the

planned number of events can be observed. Fortunately, recent experiences of some ran-

domized controlled trials (RCTs) have shown that extreme treatment effects can mitigate

problems of unanticipated low event rates, but knowledge that such has occurred requires

access to unblinded interim trial results that may bias the operational aspects of RCT. It is

useful to consider the experience of two such recent RCTs:

HPTN052 was declared as one of the scientific breakthroughs of the year in 2011 [Co-

hen, 2011]. The primary objective in HPTN052 was to determine whether the early use of

combination anti-retroviral therapy (ART) in infected patients among serodiscordant cou-

ples is effective in the prevention of HIV-1 transmission to uninfected partners [Cohen et al.,

2011]. The trial was designed to provide at least 87% power to detect at least 39% reduc-

tion in the primary endpoint of HIV incidence. Based on various logistical constraints (18

months accrual, projected completion of follow-up at 6.5 years), an estimated accrual size

of 1750 participants was computed assuming average 5-year placebo (13.2%) and treatment

(8.3%) event rates, and an anticipated 188 events. Six years after HPTN052 started, blinded

analysis during a planned formal interim review showed 39 HIV infections among the 1,763

enrolled couples (877 on delayed vs 886 on early) with 28 of them being linked transmissions.

Unblinded analysis showed that 27 of the linked transmissions arose on the delayed ART arm

while only one came from the early ART arm yielding a hazard ratio of 0.04 (95% CI: 0.01

- 0.27; p-value < 0.0001). On the basis of this analysis, the DSMB recommended stopping

further follow-up in the RCT due to demonstrated efficacy of the experimental treatment.

Partners PrEP(Pre-Exposure Prophylaxis) is a Phase III, randomized control, double-

blind, three arm trial of daily oral tenofovir (TDF), or emtricitabine/tenofovir (FTC/TDF)

for the prevention of HIV transmission as their primary endpoint among HIV serodiscordant

partners [Baeten et al., 2012]. Based on a placebo event rate of 2.75 infections per 100 PY,

4,747 HIV serodiscordant couples, randomized with equal probability to the three arms and
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followed for 36 months, would be expected to provide the necessary number of events. Using

a GSD with up to a maximum of four planned interim analyses, the trial was stopped early

at the third interim analysis due to crossing the efficacy boundary. The observed placebo

event rate was much smaller than what was used in planning, with the observed treatment

effects to be more extreme than had been anticipated.

5.1.1 Scientific Issues

These two trials illustrate two main factors that can complicate the design and conduct of

vaccine/preventive strategies and influence the calendar time of the trial greatly: lower than

anticipated control event rates (30% lower than planned in Partners PrEP, and more than

60% lower than planned in HPTN052) and stronger than anticipated observed treatment

effects (strikingly so in HPTN052). Other time to event trials that face problems of low

event rates during monitoring have also been observed previously in other disease settings

such as the Look AHEAD [Group, 2003] study and the National Lung Screening Trial [Aberle

et al., 2011].

Poorly characterized event rates at design stage in a time to event trial may not balance

the ethics of randomizing exposure of prevention strategy with unknown efficacy profile to

participants. An under-estimated sample size can limit the total number of events accumu-

lated by the constraints of the calendar time, thereby preventing one from distinguishing

between the scientific hypotheses of interest. Likewise, this can result in unnecessary ex-

tension of a trial that may not balance the overall goal of science, ethics, and efficiency.

In this research, we focus on the setting when the true treatment effect is extremely more

effective than hypothesized. This presents the additional challenge as observed in the trials

above, whereby during a blinded interim analysis, trial investigators may be posed with the

dilemma of choosing between unnecessarily prolonging the study to obtain the events, to

increase accrual, to accept a lower number of events, or some combination of the above.

Following the promising results from HPTN052 and Partners PrEP, the introduction of

non-vaccine preventive methods (NVPM) to the public will likely lead to a decrease in the
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incidence of the HIV infections in the coming years [Janes et al., 2013]. If the overwhelmingly

positive results of these trials translate directly to effectiveness, future prevention trials

may require a larger accrual size in order to detect meaningful effects within some three

to five years of follow-up. Alternatively, the usual five years of follow-up data that current

prevention trials have been using may be insufficient to address the effectiveness of preventive

strategy as the rate of HIV infections becomes even lower. Hence, it is important to anticipate

potential misspecification in incidence rates of HIV during trial planning, and explore the

implications on statistical power to detecting the hypothesized treatment effects, the impact

on calendar time, and the total number of patients required.

Estimating the incidence of HIV seroconversion over time for future trials is more com-

plex in a time to event setting. Since the estimate of the incidence is an average over various

at risk populations that can differ greatly in terms of risk, attitudes, and behavior, this

may present challenges to appropriately characterizing the incidence over time. The ease of

modern preventive methods as compared to traditional preventive strategies (condom use)

can modify individual’s behavior and attitudes towards sexual practices over time. In addi-

tion, new efficacious interventions have yet to demonstrate effectiveness in a public setting,

thus many unanswered scientific questions on whether poor adherence to such strategies

will result in resistant strains of HIV or that the increase risks of exposure with a waning

prevention strategy have to be determined in subsequent trials to assess the impact on the

participants. Potential changes in sexual behaviors, poor adherence in modern preventive

strategies, in combination with emerging resistant HIV strains may introduce some form

of waning treatment effect over time. As such, extension of the HIV prevention trial may

change the scientific objective from effectiveness to durability of the prevention strategy.

5.1.2 Statistical Issues

Group sequential designs are the current gold standard used to balance scientific, ethical and

efficiency concerns in clinical trials. Typically, a monitoring rule is pre-specified at design

stage to determine the maximum statistical information IJ required where J is the final
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analysis. At periodic intervals during the course of the trial, a test statistic is computed and

compared with the pre-specified monitoring rule to determine whether the trial should stop

early with a maximum of J such analyses being allowed.

The growing literature of adaptive strategies and FDA’s recent guidance on adaptive

designs [FDA, 2010] have led many researchers to consider whether adaptive RCT designs

could protect against greatly prolonged (at best), or largely non-informative (at worst) stud-

ies. Following guidelines of FDA [2010], it is thus of use to compare adaptive designs with

the class of designs that are “well-understood” (fixed sample design, blinded sample size

revision, or group sequential designs with prespecified futility and efficacy boundaries). One

of the most common form of adaptation includes extending the trial beyond some previously

planned maximum stopping time in the immediate settings, such as cure of infections within

10 days of treatment initiation [Bauer and Köhne, 1994, Proschan and Hunsberger, 1995,

Cui et al., 1999, Schäfer and Müller, 2001, Chen et al., 2004].

Levin et al. [2013] evaluated this class of pre-specified adaptive designs with GSDs using

the average sample size as their optimality criterion under the immediate setting. They

found that the best GSD have only very slightly higher ASN over the best prespecified

adaptive design. In addition, when the pre-specification was relaxed, GSD is almost fully

efficient compared to the best analogous adaptive design with ad-hoc unplanned adaptations.

Other authors [Tsiatis and Mehta, 2003, Jennison and Turnbull, 2003, 2006a] also found

little efficiency gains in adaptive designs over the use of standard GSDs. However, such

explorations have typically been limited to the setting when the sample size is a surrogate

measure of statistical information.

In the time to event setting, the overall cost of the trial is generally related to the total

number of subjects as well as the calendar time of obtaining all relevant events. Since the

calendar time is related to the financial and logistical burdens of the sponsor or research

institute, there is thus an appeal to enable possible modification of the accrual of subjects

depending on trends in treatment effect to decrease the overall cost of the trial. Emerson

et al. [2011a] investigated a limited spectrum of pre-specified adaptive designs where the best



109

GSD averaged a higher sample size over pre-specified adaptive designs without compromising

the trial duration in the censored setting. Their exploration did not consider sub-optimal

adaptive rules commonly favored in the adaptive literature [Schäfer and Müller, 2001, Shen

and Cai, 2003] which re-weights the test statistics to preserve the overall Type 1 error.

Under low “background” rates, there is still a degree of uncertainty on whether the use of

pre-specified adaptive design can buy the trialists added efficiency and protection when the

timing of interim analysis do not align with the expected schedule.

A low “background” rate during a blinded interim analysis in the trial can often be

due primarily to an extremely effective treatment, or primarily due to low event rate, or

a combination of both. As determination of the sample size typically requires additional

information about the event rate and patterns of patient accrual, an event rate markedly

lower than planned can lead to an undesirably long calendar time before the planned number

of events can be observed. In the extreme situations, such as HPTN052, where the treatment

effect is more extreme than hypothesized, misspecification of the event rates at planning

phase can also lead to insufficient sample size as a consequence of events only accruing on

the placebo arm. As such, trials may either have to consider the possibility of both extending

the calendar time as well as increasing the accrual size to account for these misspecifications,

or instead terminate a trial for futility.

In situations when blinded increase in accrual is allowed, the timing during which the

additional accrual is performed can be crucial. An adaptation too early during the trial may

benefit the sponsor in terms of continued accrual, but the lack of precision of the event rate

may unnecessarily expose relatively more patients to treatments with unproven benefit-to-

risk profile. Likewise, an adaptation made too late in the trial may provide better precision

of the overall “background” rate, but it has the downside of having to restart accrual which

is logistically difficult. Additionally, ethicists may argue against the use of such strategies

in extreme settings, such as HPTN052, when there is potentially strong evidence already

accumulated regarding the efficacy of the treatment.

There are strong ethical reasons to favor the use of unblinded interim data to better guide
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decision making to efficiently increase accrual only when necessary. An interim treatment

effect that is close to statistical significance with the placebo event rate as expected, may

not require as much an accrual in sample size as compared to a situation when the event rate

is clearly underestimated. In settings with poorly characterized incidence rates regarding a

serious, life-threatening rare disease, there may be a stronger rationale to using unblinded

interim results to better characterize the event rate during the conduct of the trial. The

accuracy of the decision making to increase accrual may, similar to the blinded setting,

depend on whether this adaptation should be conducted during an interim analysis when

patient accrual is still open as opposed to after the accrual of subjects have stopped.

5.1.3 Organization

Our goal is to investigate the use of unblinded interim analyses in the setting of potentially

low event rates/extreme efficacy to determine whether we can address the “right” scientific

question with statistical credibility as compared to the use of “well-understood” designs. We

restrict attention to comparing between group sequential designs vs pre-specified adaptive

designs using common monitoring rules that are used in practice. Within the scope of GSDs,

we introduce a modification to incorporate the maximum calendar time as an additional

stopping criteria together with the design of choice. We further incorporate a blinded revision

of sample size with the hopes of increasing the overall event rate. We then examine the

operating characteristics of such a GSD, which is equipped with fully blinded adaptations

and pre-specified calendar time of stopping, under possible low event rate settings.

In the immediate setting, adaptive designs have not been shown to be markedly more

efficient than GSD in the best case. This is consistent with theoretical arguments that these

statistics violate the minimal sufficiency principle, thus leading to an inefficient weighting

scheme of the data collected prior to and after a design modification based on unplanned,

unblinded interim results [Tsiatis and Mehta, 2003, Jennison and Turnbull, 2003, 2006a,

Emerson, 2006]. However, many statistical papers considered such inefficient adaptations

that might include a decision at the penultimate analysis to more than double the maximal
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sample size [Cui et al., 1999, Chen et al., 2004, Gao et al., 2008, Mehta and Pocock, 2011].

It is thus unclear whether an optimal flexible adaptive strategy can be selected to maximize

the operating characteristics and beat GSDs.

To distinguish whether such a flexible adaptive strategy can provide any advantage over

fully blinded adaptations based on GSDs, we must first separate out design issues that

are related to choosing a good/bad sampling scheme (i.e., the timing of the unplanned

adaptation) vs the use of weighted and inefficient statistics. We model this flexible adaptive

strategy by considering the worst-case scenario when an adaptation was prespecified but

may fail to provide the sponsor an edge to make desired adaptations. This is particularly

important in the time to event setting when planned event rates/treatment effect may deviate

from the expected calendar time of analyses. As such, we consider finding the “best” sampling

scheme when making adaptations based on sufficient, but not necessary minimal, statistics.

This approach differs from the methods described in Emerson et al. [2011a] and Levin

et al. [2013] where the best sampling scheme is obtained based on finding the design that

uses minimal sufficient statistics. By selecting this “best” inefficient rule and pre-specifying

it at design stage, this “flexible adaptive rule” would now be based on a minimal sufficient

statistics among the class of sampling schemes that employs the use of weighted statistics.

Henceforth, we are evaluating the class of fully flexible adaptive designs in the best possible

light. This allows us to contrast how much gain/loss of overall power we can obtain had

the adaptation be specified in advance. We note that these flexibilities in the fully adaptive

design also mean that there are limited statistical inference techniques that can be used to

account for the sequential stopping rules and early stopping.

5.2 Conventional Statistical Designs at Planning Stage

We motivate the notation under the FSD setting based on the use of the logrank analysis

or Cox proportional hazards regression. Let θ(t) denote our hazard ratio, λ1(t)/λ0(t), where

λ1(t), λ0(t) are the corresponding hazards at time t for the treatment (1) and control arm

(0) respectively. Under PH alternatives, λ1 = θλ0, with θ(t) = θ, ∀t. When testing a new
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treatment with respect to an existing treatment or placebo, our hypotheses can be expressed

as H0 : log(θ) ≥ 0 vs HA : log(θ) ≤ log(θA), where θ < 1 represents the efficacy of treatment

over placebo. Using a one-sided level α, and power β, our event size can be estimated

using d = 4(z1−α + zβ)2/[(log(θ))2] where zp denotes the pth quantile of a standard normal

distribution for p ∈ (0, 1). A reasonable method to determine the accrual size assuming a 1:1

randomization scheme can be computed via N = 2d
[∑

k=0,1

(
1− exp(−λk(τ−a))

λka
+ exp(−λiτ)

λka

)]−1

[Schoenfeld, 1983]. This assumes uniform accrual of subjects over some time interval (0, a),

with the final analysis taking place at time τ ≥ a, censoring of observations to occur only

by continued survival at the time of analyses, and assuming exponential survival times for

both placebo and treatment. Specifying these parameters require making educated guesses

based on prior research that may differ vastly from current conditions.

Without loss of generality, the accrual size at planning stage can be obtained based on

either λ0 and θA, or λ0 and λ1. The latter takes into account treatment estimates obtained

from earlier trials. The former approach makes the PH assumption and exponential survival

rates. Since λ1 can be obtained via θλ0 under PH, this approach only requires guessing

the estimate of λ0 from prior studies and hypothesizing a clinically meaningful θ. Using

our design alternative of θ = θA to estimate λ1 is similar to blinded repowering strategies

when the overall event rates are lower than anticipated. When the average event rate, λ̂, is

provided, one may revise the trials’ accrual size by directly invoking the accrual size formula

again. If only λ̂0 is provided, one may plug in the design alternative θA to obtain θ̂1 without

unblinding the treatment effect to re-estimate the new accrual size.

In the immediate setting, the sample size is a direct surrogate to the statistical informa-

tion. In a time to event setting, under PH and presuming the use of the log rank analysis, the

maximum statistical information is directly proportional to the number of events. The num-

ber of subjects to accrue depends then on the accrual rate, accrual time, and the distribution

of the survival time. Blinded revision of the background rates to increase the accrual size in

the time to event setting, when baseline rates are “incorrect”, do not materially change the

overall power of the trial at design stage.
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5.2.1 Notation for Group Sequential Design

A naïve FSD in a time-to-event setting may not appropriately address and balance scientific,

ethical, or efficiency concerns. GSD is the current gold standard for clinical trial design.

The ultimate goal of sequential sampling in group sequential design is to only proceed to the

maximal sample/event size when the treatment benefit/risk is uncertain at interim analyses,

or when there is potential that additional results of the trial can change the current public

health or clinical practice.

Consider a GSD with continuation sets Cj ≡ {(aj, bj] ∪ [cj, dj)} such that −∞ ≤ aj ≤

bj ≤ cj ≤ dj ≤ ∞ for j = 1, · · · J analyses [Kittelson and Emerson, 1999]. At each analysis,

we compute the normalized score statistic, Zj = Uj/
√
V (tj), and define our proportion

of information at the analysis, j, to be of the form, Πj = V (tj)/V (tJ), where Uj is the

(cumulative) score statistic at jth analysis, and V (tj) = Var[Uj] is the variance of the score

statistics or Fisher’s information. Πj refers to the fraction of the statistical information

available from all patients at the time of the jth interim analysis relative to the maximum

statistical information defined at design stage.

Sequential analysis sampling schemes usually consist of stopping sets which are linked

across interim analysis via smooth parametric functions of the proportion of statistical infor-

mation Πj. Wang and Tsiatis [1987] and Kittelson and Emerson [1999] are some examples

of such classes of stopping boundaries. The unified family in Kittelson and Emerson [1999],

as described in section 2.2.1, includes many of these commonly used sequential sampling

schemes which we shall use for construction of the group sequential boundaries for a test of

H0 : log(θ) ≥ 0 against HA : log(θ) ≤ log(θA). Different parametrizations of the boundary

shape function will provide different levels of early conservatism at each interim analysis.

In order to stop at a particular analysis, scientific, statistical, and ethical aspects have to

be taken into consideration. An appropriate stopping rule would provide operating charac-

teristics to provide statistical credibility of the study when the trial is stopped. The choice

of a monitoring rule serves as a reference for the DSMBs to make decisions on stopping the
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trial early for safety, efficacy, or futility reasons. Often, decisions undertaken by DSMBs in

sequential monitoring are a complex balance of whether sufficient evidence has been estab-

lished for them to act on the monitoring rules, i.e., to make decisions on early stopping, or

extend follow-up to better understand the safety profile of the therapy. In other situations,

decisions may be straightforward if the safety profile of the participants are unfavorable.

Several monitoring boundaries can be considered to achieve the desired Type 1 error and

power as well as balance ethical and scientific considerations. The O’Brien Fleming boundary,

the most commonly implemented stopping boundary used in clinical trials, is well-known to

be relatively conservative at early stages of the trial and tends to only stop trials when

extreme treatment effects are highly statistically significant [O’Brien and Fleming, 1979].

The Pocock boundary assumes a constant critical boundary on the Z statistics scale across

interim analyses and tends to be more efficient in terms of ASN under the same hypotheses

tested [Pocock, 1977]. Other choices can be a hybrid of O’Brien Fleming efficacy boundary

and a moderate futility boundary as described in Kittelson and Emerson [1999].

In many time to event trials, conduct of interim analyses are often defined on the cal-

endar time basis. This may be conducted on an annual or biannual basis. With sequential

monitoring, increasing the number of analyses while keeping to constraints of the alterna-

tive and maintaining the same power can result in a increase in required maximal statistical

information. With certain monitoring boundaries, this can inflate the maximum statistical

information slightly while keeping other operating characteristics competitive.

In planning a GSD in the time to event setting for this research, we assume that the

interim analyses are conducted biannually. Because the use of interim analyses can increase

both financial and logistical cost of the trial, and it is often the case that sponsors commit

financial and logistical resources to the conduct of the study on the calendar time scale. Thus,

interim analyses that are planned on the calendar time relates directly to the sponsors’

logistical and financial concerns. A monitoring boundary can be appropriately adjusted

based on the accumulated statistical information using “well-understood” procedures [Lan

and DeMets, 1983, Burington and Emerson, 2003], so long as the decision to eliminate any
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future interim analyses is independent of the current estimated treatment effect.

5.2.2 Specification of a Group Sequential Design

Following Emerson et al. [2007], we motivate the planning and design of a clinical trial using

a FSD before incorporating a monitoring rule. We consider a fixed sample design (FSD)

with 92.16% power to detect at least a 36.6% reduction in risk of infection using a one-sided

α = 0.025, thus requiring 220 events. As previously described, additional constraints such

as accrual rate, accrual time, amount of follow-up after the subjects are accrued, total study

duration, and the distribution of the survival curves have to be factored in to determine the

total number of subjects. With these constraints, one has to further choose the appropriate

study duration to enable answering the relevant scientific question as closely as possible.

Planning the study under the null hypothesis or alternative hypothesis can result in different

sample sizes.

With censoring, and different choices of λ0 and λ1, the maximum calendar time of analysis

will result in a different estimated sample size to maintain the statistical power for the

alternative of interest, θA. The planning of the design is preferred under the alternative as

such a maximal sample size will ensure stopping at the desired (average) calendar time when

the trial parameters are approximately correct [DeMets and Lan, 1995].

We consider a modification of the HPTN052 study as an example to illustrate how the

different assumptions can lead to various sample sizes. First, we impose the logistical con-

straint of uniform accrual of 18 months and restrict the total duration of the trial to be 78

months. The minimum amount of follow-up can range from as short as 60 months to a max-

imum of 78 months, thus giving an average follow-up of 69 months. With this consideration,

Table 5.1 presents the plausible average accrual size when we plan the study under either the

null or alternative, and using different combinations of accrual time and total study time.

For example, in Table 5.1, assume that the trial duration is 78 months with 18 months

of accrual. If our event rates were λ0 = 0.002395, λ1 = λ0θ = 0.001519, and we plan our

accrual size under the null hypothesis, on average, 1450 subjects are necessary to provide on
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average 220 events by 78 months. On the other hand, if our alternative is true, then with

1750 subjects, we tend to stop on average by 78 months while possibly stopping earlier on

average (at approximately 65 months) if the null hypothesis is correct. In that table, for

other plausible values of event rates, we get a completely different total number of subjects

to be accrued into the study. One can thus expect the total number of subjects to almost

double had the event rates been halved or even lower.

Table 5.1: Fixed sample design powered based on average exponential null rate or alternative
rate of (1.555e-3) to ensure stopping at 78 months with a sample size of 1750 assuming 18
months accrual (in bold) obtained via numerical integration. The remaining sample size is
computed based on the average event rate under null or alternative.

Calendar Time: 78 months Calendar Time: 156 months

H0 HA H0 HA H0 HA H0 HA

Accrual of Accrual of Accrual of Accrual of
Design Parameters (x10−3) 18 months 36 months 18 months 36 months

λ0 = 1.948, λ1 = 1.235 1750 2120 2000 2420 884 1060 934 1120
λ0 = 2.392, λ1 = 1.517 1450 1750 1650 2000 742 887 783 937

For the remainder of this chapter, we considered a sequential design with 10 equally

spaced analyses based on a one-sided symmetric O’Brien Fleming stopping boundary, a Type

1 error of α = 0.025, and 90% power to detect the alternative θA ≤ 0.6343 (GSDOBF). As

such, the maximal event size of 220 is required if we do not stop early for overwhelming

efficacy or futility, and that the interim estimates permit continuation to the final analysis.

We assumed our baseline placebo event rate is λ0 = 0.002395, with accrual parameters

and study time as described in the FSD example. By planning under the alternative, when

the new treatment presents no benefit in efficacy, i.e., the null hypothesis of no treatment

effect, the average calendar time of stopping is 65 months. On the other hand, under the

alternative, the average calendar time of stopping will be 78 months. We consider alter-

native monitoring rules using a hybrid design (GSDHYB) that comprises of an O’Brien
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Fleming efficacy boundary, and unified family boundary shape parameter P = 0.8 for the

non-efficacy/futility boundary. We constrain the GSDHYB with the same design assump-

tions. The hybrid design has a less aggressive futility boundary with 89.2% power to detect

the same alternative θA.
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Figure 5.1: Heatmap of the cumulative probability of stopping at the interim analyses over-
laid with the contours of the average calendar time of stopping for various hazard ratios θ is
shown on the left. The average stopping time under the alternative is 78 months and shown
as the red contour line in the heatmap. The pink vertical dash-dotted line represents the
design alternative. The power curve under the planned event rate is presented on the right.

To investigate the impact of how incorrect baseline rates can affect the operating charac-

teristics of the design, we also consider additional baseline rates λ ∈ λ0{1/8, 1/4, 1/2, 3/4}

with λ0 as our preplanned design rate. We evaluate the operating characteristics (power,

average sample size, average event size) for the set of θ ∈ (1.2, 1, 0.75, θA, 0.5, 0.25, 0.1, 0.04)

in combination with the various event rates of consideration. At interim/final analyses, the

log rank statistic was fit to compute the Z statistic.

Using the monitoring rules, we can evaluate the operating characteristics of the design
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under misspecification of the event rates and compute the average calendar time at each in-

terim analysis. When the baseline rates are as expected, the cumulative stopping probability

for the various θs’ (ranging from 0.01 to 1.5) at each interim analysis can be computed. Sim-

ilarly, we can also compute the expected calendar time at each interim analysis for these θs’.

These results are shown in Figure 5.1. Using the OBF rule, there is high probability(> 0.999)

that the trial can stop prior to 78 months under extreme treatment effects (θ < 0.5) in con-

clusion of efficacy of the treatment. At values of θ > θA, the trial would proceed to stop on

average at a later calendar time.

5.2.3 Consequence of Low Event Rate

In general, the expected calendar time of attaining the maximal statistical information under

the design alternative is greatly prolonged. Consider the GSDOBF design in Figure 5.2 (left

column when the true event rates are halved or quartered of what was planned). Under

the design alternative and presuming the use of an OBF boundary, our calendar time is

on average doubled. The contour lines are shifted downwards with the red line indicating

the expected maximum trial duration at planning stage. By planning for multiple interim

analyses, there is a high probability of allowing the trial to stop early when θ is (sufficiently)

extreme. At lower event rates, as the cumulative probability decreases at extreme treatment

effects, we are somewhat protected with the ability to stop early by planning these multiple

interim looks at design stage. If we assume that the calendar time of stopping is at 78

months, then there is high probability of stopping a trial at some earlier interim than planned

at various values of θ. At values of θ that are moderately effective, i.e., θ ∈ (0.5, θA), there

is a lower cumulative probability of stopping by 78 months which directly impact the overall

power of the trial. Similar effect is also seen with the hybrid monitoring boundary.
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Figure 5.2: Cumulative stopping probability for OBF and hybrid designs overlaid with the average calendar time at
various lower baseline event rates. The left column describes this cumulative stopping probability for the GSDOBF
designs while the right column corresponds to the GSDHYB design under plausible low event rate settings. There is
a slightly higher cumulative stopping probability for futility for the GSDHYB when the hazard ratio θ is in the wrong
direction.
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In order to avoid having a more prolonged trial than anticipated, a natural strategy that

we choose here is to pre-specify the maximum calendar time of stopping. This strategy al-

lows us to incorporate an “escape clause” into the group sequential design. With a sequential

monitoring rule, we describe in the next section how to implement such a procedure with the

use of error spending functions. Such an approach while avoiding the possibility of a pro-

longed follow-up, does not overcome the issue of loss of power. To increase the overall power,

we later combine the strategy of using blinded sample size revision with pre-specification

of the censoring distribution to increase the overall event rates. We describe the logistical

concerns with the use of such a fully blinded strategy.

5.2.4 Prespecified Calendar Time of Stopping

Using the group sequential monitoring rule, we can prespecify the maximum duration of the

trial, τ ∗, to enable us to terminate the trial in presence of low event rates. This prespecified

choice of τ ∗ must be chosen appropriately to enable us to have sufficient follow up data to try

to address the primary scientific question on the effectiveness/efficacy of the prevention strat-

egy. The use of the “escape clause” thus addresses the operational constraints and protects

against having an unreasonably prolonged follow-up of participants as a direct consequence

of extreme treatment effect.

The future analyses of the GSD are dropped when we need to terminate the trial early

in presence of low event rates and operational constraints. With a prespecified monitoring

boundary, the overall Type 1 error can be adequately controlled with the use of pre-defined

error spending functions [Lan and DeMets, 1983] or “well-understood” procedures [Pampal-

lona et al., 1995, Burington and Emerson, 2003] even when these future analyses are dropped

[Lan and DeMets, 1983, Proschan et al., 1992]. In essence, when the trial does not attain

the maximal number of events by τ ∗, and has not been terminated earlier in favor of efficacy

or inefficacy, the “escape clause” can be applied by spending the remaining unused α at τ ∗.

The Lan-DeMets error spending function [Lan and DeMets, 1983] or constrained bound-

aries approach [Burington and Emerson, 2003] are some flexible implementations that can be
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used during the course of trial monitoring. The error spending function, α[Πj], is a function

of Π, defined by the amount of statistical information with respect to the maximum planned

statistical information at some interim analyses. This function α[Πj] is a monotonically,

non-decreasing function of the amount of statistical information such that at the beginning

of the trial, α(0) = 0, and when all statistical information is obtained in an event driven

trial, α(1) = α.

The monitoring procedure is as follows: When the trial does not attain the maximal

number of events by the prespecified calendar time, and has not been terminated earlier for

efficacy or non-efficacy, we invoke the “escape clause” by spending the remaining α−α(ΠJ∗−1)

at the maximum calendar time, τ ∗, where J∗(≤ J) is now our final analysis. This means

that α(ΠJ∗) = 1 instead of α(ΠJ) = 1, with ΠJ∗ defined to be our new maximum statistical

information at the stopping time.

Figure 5.3 describes some of the revised GSDOBF monitoring boundaries under different

event rates on the left and its respective power curves shown on the right. The use of the

pre-specified maximum calendar time of stopping means that we are stopping a trial much

earlier than expected. This induces some loss of power under our hypothesized alternative

and can be regarded as a disadvantage.

For illustration, we describe the impact on the overall power when the true placebo rate

is half of the original planned rate (Figure 5.4). With a monitoring rule, the trial is protected

by the high probability of stopping by the maximum planned calendar time when there is

an extreme treatment effect, i.e., θ < 0.5. These contour lines that represent the average

calendar time are observed to have doubled for each interim analysis under the design pro-

portional hazards alternative of θA. In order to obtain all statistical information under the

design alternative, the average calendar time has to double. When the treatment effect is

extremely more efficacious than planned θ < 0.5, there is sufficiently high cumulative proba-

bility of stopping the trial (as indicated by the bright yellow and white regions) by 78 months.

Since we have imposed frequent interim looks in this design, we are protected even with the

escape clause, translating to high power in presence of extreme efficacy. However, when our
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Figure 5.3: Left: Revised boundaries for the various baseline event rate considered for the
OBF design. Right: Revised power curves for the respective GSDs with the revised bound-
aries.

treatment effect is moderately effective, i.e., θ ∈ (0.5, θA), this cumulative probability of

stopping prior to 78 months decreases (as indicated by the blue regions), and consequently

we lose power when applying the “escape clause”.

5.2.5 Incorporate Blinded Revision of Sample Size

Blinded sample size revision strategies can be employed to increase the overall event rate

by either increasing accrual of subjects into the study, and/or extending the calendar time

of the trial. The use of this strategy requires an approximate “estimation” of the optimal
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Figure 5.4: Heatmap of the cumulative probability of stopping by the interim analysis over-
laid with the contours of the calendar time of stopping (left) and the power curve under the
1/2 the event rate is presented on the right. On average, under the alternative, the average
stopping time is twice that of 78 months. The use of frequent interim looks protects us by
allowing more opportunities for early stopping prior to 78 months in presence of extreme
efficacy even when our hypothesized event rate is incorrect.

time to increase accrual. In practice, the availability of subjects is dependent on the disease

setting. From a logistical perspective, performing blinded strategies too early in the trial

may be practical but may raise ethical concerns of exposing more subjects to treatments with

unknown safety profile. However, choosing to restart accrual much later during the study

may unnecessarily encourage speculation of potentially poor treatment response and induce

operational bias. On the other hand, when the treatment effect is extreme and compounded

with an extremely incorrect event rate, it is arguable that repowering the trial at any point

in time is useful.

Many approaches to revise the sample size in a blinded fashion during the course of trial
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monitoring have been proposed. Gould and Pecore [1982] and Gould [1992] explored ap-

proaches in the immediate setting to revise the sample size for the trial based on interim

estimate of the variance when the variance hypothesized at design stage may be incorrect.

Since the variance estimate is ancillary to the estimate of the treatment mean, such pro-

cedures do not inflate the overall Type 1 error and are regarded as “well-understood” by

FDA. Other authors [Whitehead et al., 2001, Mehta and Tsiatis, 2001] have also described

approaches to revise the sample size in the time to event setting by maintaining the statis-

tical information in GSDs which were elaborated in section 2.4. Recall the “sample size”

formula based on proportional hazards assumption,

Sample size formula: D = (z1−α + zβ)2

(log(θA))2 V

Maintain statistical information: D

V
= (z1−α + zβ)2

(log(θA))2 (5.1)

Using a r : 1 randomization, V = (r + 1)(1/r + 1). With equal allocation, V ≈ 4.

This formulation under the time to event setting naturally indicates that one can choose

to maintain a prespecified maximal statistical information D/V by holding our level α and

power β fixed to detect our design alternative log(θ). Whitehead et al. [2001] described

that such revisions can be based on the estimate of the aggregate event rate λ̂ to preserve

blinding. This is computed dividing the aggregate number of events with the estimated

amount of follow-up based on the expected accrual rate and the current number of patients

randomized. Assuming PH, based on the estimated λ̂, we can solve for λ0 using λ = λ1 +θλ0

and λ1 = λ0θ to determine the additional subjects required.

We consider a modification of the above strategy to increase the overall event rate by

increasing the accrual when this number of events falls below some prespecified quantile.

Based on our planned baseline event rate of λ0 = 0.0023, at 18 months, we expect to increase

accrual with some prespecified accrual rate when this accumulated number of events is < 22

events (or < 111 events at 48 months respectively). We consider the timing of the blinded

sample size revision to be conducted at 18 months to reflect the strategy of continuing
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accrual. Thus, the strategy of restarting accrual at 48 months is thought to be considered a

late accrual size revision in the study. Upon conducting this predefined interim analysis, we

either drop the subsequent analysis or skip the interim analysis that is less than 3 months

prior to the prespecified examination of accrual rate. Following an increase in accrual size,

we do not distinguish between subjects who had entered earlier but only contribute events

after this added accrual. We assumed that there is no surrogate information available to

predict the survival times [Bauer and Posch, 2004]. This is an important assumption made

when we are evaluating both blinded and prespecified adaptive design that was discussed in

section 2.7.6.
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5.2.6 Group Sequential Design + “Escape Clause” + Blinded Revision of Sam-

ple Size

This comprehensive combined strategy is formulated within the “well-understood” setting

with the objective of preserving the study integrity through the use of blinded adaptations

using a group sequential design. Using 10,000 simulations, we evaluate the operating charac-

teristics of this comprehensive strategy that include the use of GSD, equipped with blinded

revision of sample size when aggregate events are low at a predefined calendar time, and

assuming the use of the “escape clause” strategy.

In general, there is an improvement in overall power with this strategy under low event

rates (Figure 5.5). The power of the original design, as indicated by the solid blue lines, is

approximately 40% under the design alternative at a quarter of the planned rate. An early,

one time blinded increase in accrual size at 18 months greatly improves the power from 40%

to approximately 60%, while restarting accrual at 48 months boosts the power to only 50%.

The disadvantage in continuing accrual is that a much larger accrual size is needed in both

the setting of low event rate as well as extreme treatment effect.

Restarting accrual later during the course of the trial can enable one to decrease the need

for additional accrual particularly when this observed low “background” rate is a consequence

of a stronger treatment effect than hypothesized. However, it is often viewed to be less feasible

and difficult in practice. The shaded yellow region is of particular interest to us later since

this corresponds to a moderately effective treatment effect. In this research, we now consider

whether the use of unblinded interim analysis can help us better identify this source that is

either a consequence of low event rate, extreme treatment effect, or a combination of both.

5.2.7 Issues with Fully Blinded Adaptations

Consider the combined strategy in the previous section where a prespecified blinded revision

is planned at a calendar time of 48 months. In this example, the first two interim analyses

are conducted at 39 and 48 months with the respective total number of events being 22 and
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31. At 48 months, this total number of events is lower than what was prespecified (and

anticipated), an increase in sample size should be made based on the specified protocol to

increase the event rates. We assume no extension of the calendar time is made in this setting.

Figure 5.6 shows the original O’Brien Fleming design boundaries (grey) on the Z statistic

scale without the sequential path for now. At this blinded interim analysis, our Z statistic

is neither too high or too low to enable early stopping.
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Figure 5.6: Sequential design for a simulated realization of a clinical trial based on true
hazard ratio of 0.5 and baseline rate λ0/4 (sequential path is not shown) where an interim
analysis is conducted at 48 months to potentially increase accrual. Both the original schedule
and projected schedule of analyses are shown to illustrate how far off one is in this particular
realization of a clinical trial. The projected schedule of analyses can be estimated based on
the total number of events and the aggregate follow-up based on initial trial assumptions.
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Table 5.2: Table of efficacy and futility boundary based on OBF monitoring rule under the
common scales Z, sample mean θ, 1-sided fixed P -value scale, and the error spending scale
E. The expected calendar time under specific θ = {0.5, θA, 1} are presented. Comparing
the expected number of events to be obtained at 48 months with the example in Figure 5.6,
there is clear evidence of low event rate.

Analysis Efficacy Mean Time Futility

No Events Z θ P E 0.5 θA θ0 Z θ P E

1 22 -6.461 0.06 1.0000 0.0000 16 15 14 5.169 9.06 0.0000 0.0000
2 44 -4.569 0.25 1.0000 0.0001 23 22 19 2.741 2.29 0.0031 0.0001
3 66 -3.731 0.40 0.9999 0.0039 31 29 25 1.492 1.44 0.0678 0.0039
4 88 -3.231 0.50 0.9994 0.0261 38 36 30 0.646 1.15 0.2591 0.0261
5 110 -2.890 0.58 0.9981 0.0861 45 42 36 0.000 1.00 0.5000 0.0861
6 132 -2.638 0.63 0.9958 0.1961 53 49 42 -0.528 0.91 0.7011 0.1961
7 154 -2.442 0.67 0.9927 0.3590 61 56 47 -0.977 0.85 0.8357 0.3590
8 176 -2.284 0.71 0.9888 0.5707 69 63 53 -1.371 0.81 0.9148 0.5707
9 198 -2.154 0.74 0.9844 0.8136 77 71 59 -1.723 0.78 0.9576 0.8136
10 220 -2.043 0.76 0.9795 1.0000 85 78 65 -2.043 0.76 0.9795 1.0000

Highlighted in yellow are the interim analyses for potential hazard ratios where the calendar time is
approximately 48 months.

Based on the total number of events and the total amount of follow-up thus far, we can

project the future calendar time of analyses assuming (a) no increase in accrual is made, or

(b) an additional 1,750 subjects are enrolled into the trial. This projected schedule, as shown

in Figure 5.6, suggests that it is more feasible to increase accrual to stop on average by 78

months, with an average of 66 events, as opposed to concluding the trial with a much lower

number of events. Compared to Table 5.2 as well as the original schedule defined on the top

row of Figure 5.6, we may suspect our event rate to be a quarter of what was planned if our

design alternative is true.

There are arguments against the use of fully blinded adaptations in the low event rate

setting in the above example. Even though the calendar time of this adaptation is considered

rather late in the study, it is otherwise early on the information time scale (≈15% of the total

amount of statistical information). Additionally, at this interim analysis, our continuation
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region is rather uninformative since it ranges from less than -5 to approximately 4 on the Z

scale. If our current Z statistic is close to the efficacy/futility boundary, i.e., the event rate is

low and the absolute Z statistic was large (with either low HR or high HR), it may no longer

be ethical to randomize more subjects into the trial since the future trend of the data may

allow early termination by the calendar time of interest. However, if this current Z statistic

is further away from the monitoring boundaries, and our event rates are truly low, then this

may necessitate increasing accrual to gather more information about the treatment effect.

Had our estimated treatment effect been between the null and alternative, it may seem

reasonable to increase accrual since we can potentially rule out extreme treatment effect.

Alternatively, had our estimated treatment effect appear sufficiently strong such as, θ̂ = 0.5,

we may presumably stop within some reasonable calendar time if the trend persists. Thus,

a potential adaptive decision is to stay the course. One may then argue that if the event

rate is truly a quarter of what was planned, and the treatment effect may be moderately

effective, then it may be reasonable to increase accrual to obtain a more reliable estimate of

the treatment effect with better precision by some maximum calendar time.

Thus, in presence of low “background” rate, there may be a stronger ethical rationale

to decide the adaptation on the basis of the unblinded interim data to hopefully distinguish

between low event rate, or extreme treatment effect, or both. If one can precisely identify the

reason for this low “background” rate, and make the appropriate adjustments to either stay

the course or increase accrual, it seems plausible that an adaptive design with a carefully

planned adaptive rule should potentially beat the fully blinded strategy using a GSD.

To some extent, treatment effects that are less effective than our hypothesized alternative

are of less important in a setting where current strategies already confer benefit. This leads

us to place emphasis in the shaded region in Figure 5.5 that will be of interest when we

further consider flexible adaptive designs under these scenarios. To the extent that the best

comprehensive GSD strategy does not further improve our overall power under moderately

effective treatment effect and markedly lower event rates, we investigate whether the use

of unblinded interim results with more flexible adaptations can potentially help us better
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distinguish between low event rate vs extreme treatment effect.

5.3 Adaptive Design

In recent years, there has been considerable interest in the possibility of incorporating adap-

tive features by unblinding interim results to make design changes. Several authors have

found minimal gains in efficiency with the use of adaptive designs in comparison with group

sequential designs in the settings where the sample size is a surrogate for statistical infor-

mation [Mehta and Tsiatis, 2001, Jennison and Turnbull, 2006a, Levin et al., 2013] . The

advantage of the use of pre-specified adaptive rules is that they are based on minimal suffi-

cient statistics and thus mitigate issues of inefficiency where there is a need to adjust for the

unblinded adaptations [Levin et al., 2013, 2014]. Additionally, while frequentist inference

can be conducted in presence of early stopping with these prespecified adaptive designs,

fully flexible adaptive designs have limited inferential procedures to account for this early

stopping [Brannath et al., 2009, Gao et al., 2013, Levin et al., 2014].

In the survival/time to event setting, there has been even less comprehensive evaluation

of adaptive procedures in the low event rate setting. Prior research by Emerson et al.

[2011a] saw some benefit in limited censored time to event settings. However, lacking in

their evaluation was whether this benefit still persists when using weighted statistics that

require further adjustment to control the overall Type 1 error as often explored in earlier

adaptive literature [Schäfer and Müller, 2001, Shen and Cai, 2003, Togo and Iwasaki, 2011].

These adaptive sampling strategies are also obfuscated by poor choices of analysis schedule or

sub-optimal rules, and thus lead to poor understanding of the benefits/limitations of adaptive

designs. Particularly, adaptive rules are often recommended to be made late into the study.

Under low event rates, this may no longer be justified or appropriate. In section 3.2, we

explored this consequence in the FSD to gain understanding on how the timing of adaptation

can affect the degree of overall power loss when comparing adaptive designs that use minimum

sufficient statistics vs weighted statistics that require further adjustments.

Our goal now is to investigate the use of group sequential rules together with the use of
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unblinded interim treatment effect to determine whether these unblinded adaptations can

better guide us when confronted with low “background” rate at some interim analyses. In

settings of unanticipated extreme treatment effect or low event rates, we want to compare

the best strategy the adaptive trialists may consider that can lead to increasing accrual vs

the best GSD to appropriately characterize the benefit/loss in overall power while holding

other operating characteristics as constant as possible. Since the calendar time dictates the

duration of the trial and thus the overall cost of the trial, it is important to consider the trade-

offs in calendar time, power, total sample size, and the event size when accepting a smaller

event size with any such adaptations. In practice, the statistician who is in favor of adaptive

strategies may choose to extend the calendar time of the study. However, as pointed out by

several authors [Bauer and Posch, 2004, Jenkins et al., 2011, Magirr et al., 2014, 2016], there

are major statistical issues that need to be carefully addressed when incorporating extension

of follow-up into the analysis.

5.3.1 Prespecified Adaptive Design

There is ethical rationale in favoring an adaptive design over the GSD in the low “back-

ground” rate setting. In prevention settings, disease incidence rates can vary from one

region/country to another. Even though such knowledge can be revised from prior Phase 2

studies or burn-in pilot Phase within the Phase 3 settings, they may not be reliable when

the trial is later conducted in a bigger setting.

Within the framework of unblinded adaptations, adaptive strategies can be classified

based on using either minimal sufficient statistics or weighted statistics. The use of a pre-

specified unblinding, or flexible strategy to better understand the cause of the low event

rate in these settings may thus seem more appropriate in a clinical setting. However, it is

necessary that such a decision rule be envisioned and specified to refine the design by adap-

tively increasing accrual or accepting a smaller event size, draw sensible conclusions while

preventing operational bias from having knowledge of the unblinded study results. Emer-

son et al. [2011a] and Levin [2013] have shown that it is entirely possible that an adaptive
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sampling scheme can be completely pre-specified so that minimum sufficient statistics can

be used at the stopping time. However, many proposed adaptive sampling schemes are not

based on minimal sufficient statistics or are chosen in some sub-optimal manner that lack

comprehensive evaluation with other competing designs.

In this exploration, we focus on monitoring rules that are commonly chosen to address

competing scientific and ethical concerns. Since sponsors often value calendar time as one of

the limiting constraints in time to event settings, conservative boundaries such as OBF allow

eliminating non efficacious treatments early and re-investment of public resources to other

potential clinical trials with promising agents. These boundaries are often not optimal in

terms of ASN but address many competing goals in the design of a clinical study. Thus, for

this exposition, we limit exploration to common boundary choices such as the OBF and/or

the hybrid designs to form the basis of our comparison. In Chapter 3, we highlighted some

of the difficulties in comparing several GSDs and this holds true even more in the class of

adaptive design.

5.3.2 Statistical Issues with Unblinded Interim Analysis during Monitoring

In this section, we described the “flexible” version of the GSD design that has a prespecified,

prospectively planned opportunity to use unblinded interim results to possibly (1) decide on

modifying aspects of the accrual size when event rates are low, or (2) decide on modifying

aspects of the accrual size with pre-specification on the use of both estimated treatment

effect and overall event rates. These fully adaptive sampling schemes are based on weighted

statistics via the use of some form of conditional error functions [Proschan and Hunsberger,

1995, Schäfer and Müller, 2001].

Any form of unplanned, unblinded adaptations during the conduct of clinical trial have

been shown to substantially inflate the overall Type 1 error [Proschan and Hunsberger,

1995]. To protect against inflation of the overall Type 1 error, several authors [Bauer and

Köhne, 1994, Proschan and Hunsberger, 1995, Cui et al., 1999, Lehmacher and Wassmer,

1999, Schäfer and Müller, 2001, Jennison and Turnbull, 2003, Chen et al., 2004, Müller and
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Schäfer, 2004] have proposed similar methods to specify control of the conditional error under

the null hypothesis. The conditional rejection principle (CRP) in Müller and Schäfer [2004]

is used to control for the overall Type 1 error by preserving the conditional error in a GSD.

That is, the probability of incorrectly rejecting the null hypothesis conditional on the current

interim estimate.

When the design is “unchanged”, i.e., after we have/have not adapted, the future mon-

itoring boundaries should be monitored on the conditional error scale. More specifically,

with a fully flexible adaptive design, any form of unblinded look leading to an adaptation

or staying the course would be considered an adaptation if this ultimately lead to an early

stopping at some maximum calendar time of stopping. As such, it is necessary to make

statistical adjustments after an unblinded interim analysis.

5.3.3 Notation

Recall in section 2.6, we introduced briefly the conditional rejection principle (CRP) approach

by Müller and Schäfer [2001] that allows for the control of the overall Type 1 error with the

use of sequential monitoring if the future course of the analysis schedule is altered based

on unplanned unblinded adaptations. The application of the CRP under the low event rate

setting can be applied when the maximum calendar time is used as a stopping criterion after

an unblinded adaptation that may or may not lead to changing aspects of the design.

To ensure comparability with GSD, we define our continuation regions in the form of

group sequential monitoring boundaries by considering the approach in section 2.5. These

continuation regions are decision rules that are based on some joint function of the average

event rate and sufficient statistics usually defined based on the interim estimated treatment

effect. The estimated treatment effect can then either be the difference in event rates λ̂1− λ̂0,

or the estimated hazard ratio θ̂. At the hth interim analysis (either at 18 months or 48

months), accounting for the possibility of low event rate, our continuation region can then

be partitioned into Ch = C1
h ∪ C2

h, where C1
h = [A,D] and C2

h = (ah, A] ∪ [D, dh).

Under low event rates, we can base these continuation regions using some function of θh
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and λh, where λh is our average event rate that is defined by the total number of events

divided by the total follow-up at the interim analysis for all participants accrued thus far.

The sampling plan at the unblinded interim analysis is defined as such:

• If θ̂ ∈ C1
h and λ̂ ≤ λh, we increase accrual for the next 18 months using the same

accrual rate based on the first N subjects.

• If θ̂ ∈ C1
h and λ̂ > λh, we stay the course.

• If θ̂ ∈ C2
h, we stay the course.

When our sampling strategy involves the difference in event rates λDiff = λ0 − λ1, the

sampling plan is not a direct function of our continuation regions. We can either define some

regions based on λhDiff such that values of θ̂ do not lead to an early stopping at the hth interim

analysis or apply proportional hazards assumption and equate λDiff ≈ λ0 − λ0θ. Under PH

assumption, the pair of values, λh and λhDiff, can be used to characterize the adaptive rules so

that we can then map them back to the continuation regions that is defined on the hazard

ratios. For simplicity, we assume our adaptive rules is defined based on λhDiff, λ
h in our

simulation study. The adaptive sampling plan based on λDiff and λ is as follows:

• If f(λ̂Diff, λ̂) ∈ C1
h, we increase accrual for the next 18 months at the same accrual rate.

• If f(λ̂Diff, λ̂) /∈ C1
h, we stay the course.

5.3.4 Optimization Procedure

Using the 10-look GSD, we hold fixed the prespecified interim analysis where an additional

accrual is made based on the blinded data, and proceed to find the best fully adaptive design.

We further constrain all adaptations to have some known probability of p of increasing

accrual. We then use a grid search to find the best rule with this known probability p of

adapting to a bigger accrual size that requires further adjustments. We call this rule to be

“sup-optimal” since this adaptation is presumed to first be unplanned and thus based on

the sufficient statistic, such as estimated hazard ratio, or difference in event rates, which
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is selected among the class of fully flexible adaptive designs that require further statistical

adjustments.

Among this larger class of designs (bigger than the class of pre-specified adaptive designs),

we can then find the “best sub-optimal” rule that maximizes this overall adjusted power.

Using this best “sub-optimal” rule that maximizes the overall power of the fully flexible

adaptive design, we can then pre-specify this rule so that this is now based on minimal

sufficient statistics, and thus can be evaluated as if this was a prespecified adaptive strategy

following Emerson et al. [2011a] and Levin [2013]. Our approach of optimizing this reweighted

rule eliminates comparison with some non-optimal, inefficient sampling scheme, while holding

fix the interim analyses for which the unblinding is to be made. By doing so, we can then

evaluate adaptive designs in the best possible light.

5.3.5 Conditional Monitoring Example

We illustrate the differences in trial conclusions with the use of the CRP procedure vs

the usual monitoring procedure based on the earlier example shown in Figure 5.7. In this

unblinded approach, the same interim analysis is conducted at 48 months and an adaptive

decision is made to decide whether an increase in accrual is necessary. The CRP procedure

is applied to preserve the overall Type 1 error to account for this unplanned decision.

Under the fully blinded adaptation, an adaptation to increase accrual is made and the

full sequential path is shown in Figure 5.8. After an interim analysis is conducted at 48

months, subsequent analyses are conducted at 66 months (with 44 events, and Z = −2.465)

and then at 78 months (with 63 events and Z = −2.456). In the blinded setting, the group

sequential boundaries are revised appropriately based on the error spending approach. By

78 months, the calendar time is up and since all 220 events are not attained, we apply the

error spending approach to spend the remaining unused error and treat this calendar time as

our final analysis when there is a total of 63 events. The final revised critical value is -1.96,

leading to an efficacy decision upon comparison with our Z statistic (Z = −2.456) based on

the data collected by the end of 78 months.
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Figure 5.7: Sequential path for a simulated realization of a clinical trial where an interim
analysis is conducted at 48 months to potentially increase accrual. We describe two potential
strategies whereby (a) blinded revision of sample size is performed if the event rate is too
low, or (b) consider unblinded revision of sample size with the treatment effect to determine
whether the low event rate is due to treatment effect or background rate.

For the unblinded adaptation, the future monitoring rule has to be reweighted accordingly

using CRP to preserve the overall Type 1 error rate. This means that the first 31 events is

weighted as 14% of the total data (relative to 220 events), leaving the remaining 86% of the

weight to be redistributed among the future number of events one can get between 48 and

78 months. The conditional Type 1 error on the basis of the observed data, Z = −2.7515

is 0.1961. Conditional on 48 months (31 events), the future boundary at 66 months is
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unadjusted since the event size of 44 was planned for this interim analysis.
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Figure 5.8: Sequential path (extended from Figure 5.7 for the same simulated realization)
of a clinical trial where an interim analysis is conducted at 48 months to increase accrual.
Blinded adaptation leads to increasing accrual of more subjects. At the final analysis, based
on the strategy described in section 5.2.6 (i.e., using constrained boundaries monitoring,
with a prespecified fully blinded adaptation, and application of the “escape clause”), the
trial terminates with a conclusion for efficacy.

By applying the CRP, our “new” design starts at a calendar time of 48 months with ΠC
0 (0),

and the maximum statistical information defined by 189 events if there was no change to

the design. At 66 months, relative to this (conditional) maximum statistical information of

189 events, the information fraction is 6% for this “new GSD” that has a conditional Type

1 error rate of 0.1961. Our design is nonetheless “unchanged” at this point and our original

maximum statistical information is still 220 events.
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When we stopped at the maximum calendar time, the CRP approach also has to spend

the remaining unused conditional error at this final analysis. Based on the original design,

had this been a fully blinded adaptation, each of these newly accrued 32 events would be

weighted similarly as each of the first 31 events. With early termination using the calendar

time, these 63 events in the fully blinded GSD setting are weighted equally.
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Figure 5.9: Sequential path for the same simulated realization as in Figure 5.8 of a clinical
trial where an interim analysis is conducted at 48 months to increase accrual. For the
same simulated sequential path, an unblinded interim analysis leads to the same decision
to increase accrual of subjects. The flexibility in the design requires conditional monitoring
to control the conditional Type 1 error. At the final analysis, when the trial terminates
early with the same sample path, a futility conclusion is obtained as opposed to an efficacy
decision.

With an unplanned unblinded design, the weighting scheme now differs when we apply
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the CRP which weights the events non linearly using the conditional error function. We

provide a simple explanation by first considering the remaining unused information fraction

(86% relative to the original design) assuming the naïve Z statistic is used at the end of

the trial. If we assume that these 63 events correspond to the original maximum statistical

information, then the new 32 events should correspond to 51% of the total weight rather

than 86% of the weight assuming 220 events as the original event size. So, in order to control

for the overall Type 1 error, the CRP approach must adaptively re-weight these events. This

results in a more extreme final critical value of -2.5399, thus leading to a conclusion for non

efficacy (shown in Figure 5.9). Although this example is a simulated realization, we can

anticipate the impact on the overall power when applying the use of this flexible adaptation

during the course of trial monitoring.

5.4 Simulation Study Comparing Fully Adaptive Designs, Pre-
specified Adaptive Designs, and GSDs

In the prevention setting, it is of particular concern whether extension of the study, by

increasing the follow-up of the subjects, can affect the scientific hypothesis of interest. For

example, in the setting of HPTN052, the study requires having at least 60 months of follow-up

to avoid the possibility that “any short-term interruption of the transmission of HIV virus

may be a direct consequence of delaying infection due to the potential for more resistant

variants” as defined in the protocol of HPTN052 in the supplementary material of Cohen

et al. [2011].

Thus, any evaluation of HIV transmission over the defined follow up should provide

sufficient long term information about the effectiveness and public health utility of this

therapy. If the trial was extended in a manner that participants are followed for longer than

the average specified follow up, the scientific question would be changed and the results of

the trial may no longer be addressing the primary objective. As such, we focus on describing

our results in the setting where the maximum calendar time is not extended (A2 which is in

bold). In our exploration, we also considered various scenarios as such:
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A) No extension of study calendar time (Possibly answering the same scientific question)

1. No extension of accrual size
2. Allow extension of accrual size (at most twice the original sample size

while adhering to accrual specifications)

B) Allow extension of study calendar time (by most 50%) (May no longer answer the same
scientific question)

1. No extension of accrual size
2. Allow extension of accrual size (at most twice the original sample size while ad-

hering to accrual specifications)

Briefly, we conducted 10,000 simulations to evaluate comparisons between the best GSD,

the best prespecified adaptive designs, and the best fully adaptive designs. We simulated

patient survival data assuming an exponential distribution with baseline rate parameter λ0 =

0.002395, with uniform accrual over a period of 18 months. We considered the following com-

bination of θ ∈ {0.04, 0.025, 0.5, 0.6343, 0.75, 1.0, 1.2} and λTruth = {1/8, 1/4, 1/2, 3/4, 1}λ0.

We then analyze patients as according to the sequential monitoring rules and use the lo-

grank test statistics at each interim analyses. In our simulation study, when we consider

more extreme event rates (such as λ0/8), it is possible that there are no events observed

at the predefined interim analysis used to revise the accrual size when this accrual is made

early. As such, we chose to increase the accrual size and maintain the accrual rate and only

analyze the trial at the prespecified maximum calendar time.

When imposing the calendar time as a constraint, we may refer to the fixed sample

design described earlier with 18 months of accrual as FSD078 or FSD117 where 78 and

117 represent the total duration of the trial on the calendar time. Several ideal designs

can be constructed to serve as a reference as we try to quantify the potential gain or loss

in power across the blinded vs unblinded strategies. In other words, we can construct the

optimal strategy of having planned the design with an accrual size of 2N . We can (a) accrue

subjects uniformly over the first 36 months, or (b) accrue the first N subjects over the first

18 months and then restarting accrual of the remaining N subjects at 48 months. In both
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settings, we hold the accrual rate similar. These designs with different accrual patterns thus

reflect the ideal situation when we plan for a bigger accrual size of 2N while holding the

prespecified maximum calendar time of stopping at either 78 months (GSD3500A), or 117

months (GSD3500B). This allows us to understand the maximum attainable power possible

had we always decided to accrue patients uniformly over the first 36 months.

The above two strategies have relevance to our design choices later. The first corresponds

to having planned the optimal strategy with an accrual size of 2N with subject enrollment

performed uniformly over the first 36 months. This strategy is similar to continuing accrual

when invoking blinded adaptations at early interim analysis. The second describes the

optimal strategy where accrual is conducted twice, the first enrollment is conducted within

the first 18 months while the remaining accrual is conducted uniformly between 48 months

and 66 months. This represents the setting of restarting accrual later in the study. These

designs thus allow us to assess whether our overall power for the various θs are maximized.

Hence, any additional gain in power should ideally be due to appropriate adaptations.

We summarize our main results for setting A2 in the next section. We refer the interested

reader to Appendix D for the other results.

5.4.1 Results for Setting A2

We shall denote the GSD with the “escape clause” strategy, incorporating a possible blinded

revision of sample size as GSDMod. Later, this GSDMod has the dual interpretation as a

fully prespecified adaptive design. What this means is that if one had completely prespecify

all the potential adaptation one would want to make during the conduct of the trial, as

well as having prespecify the procedure when there is low event rate, then we can use the

minimum sufficient statistics at the end of the study. Thus, the results for the fully blinded

strategy (GSDMod) is exactly the same as that of a prespecified adaptive design.

If such prespecified unblinding does not have a properly defined adaptive rule, and that

no adjustments to the design have been made, the conservative critic can suspect any of the

following potential adaptations were contemplated and evaluated:
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1. They saw something that was sufficiently close to statistical significance and so decided
not to increase accrual with the hope for statistical significance at the calendar time
of stopping, or

2. They saw that the event rate was low and the results were far from statistical signif-
icance and choose to increase accrual with the hope that at the maximum calendar
time, one may obtain statistical significance.

Thus, we pay a price for allowing this flexibility as seen in the adjusted analysis (denoted

as GSDCond) where we apply the CRP approach to account for this unplanned opportunity.

The results are shown in Table 5.3. Compared to GSDMod, we pay some penalty for allowing

such flexibility in the protocol with a loss in overall power (<5% relative to the GSDMod)

when the true event rates are markedly lower (λ > λ0/4) and moderately effective (θ ∈

(0.5, θA)). This observation holds true regardless of whether this adaptation was made early

or late. There is however a substantial loss in overall power (> 10%) with the use of fully

flexible adaptive design when this event rate is more extreme, i.e., λ ≤ λ0/4, relative to

GSDMod.

One can claim that the above adaptation is unfair since we did not incorporate any rule

to attain the best possible adaptation or provide the adaptive strategy the best sampling

scheme to make the adaptation. The proportion of adaptations to a larger accrual size is

consistently determined by the ad-hoc rule based on the overall number of events rather than

the estimated treatment effect. In particular, under the alternative, when the true baseline

rate is markedly lower (≤ λ0/2), we increase accrual 100% of the time. Thus, it is unfair

since we have not allow the adaptive design to make more realistic adaptations based on

interim treatment results. As described earlier, we thus have to decrease this probability of

adaptation to some p < 1 so as to realistically compare GSDs with adaptive designs in a fair

manner.
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Table 5.3: Table of power for GSDMod (One-sided symmetric OBF design with 90% power, allowing for blinded
adaptations, and use of “escape clause”) vs GSDCond and GSD Ref. There is generally a loss of power when applying
the CRP as a consequence of early termination of the trial at the maximum calendar time.

78 Months 117 Months
Continue Restart Continue Restart

Blinded Adaptive Blinded Adaptive Blinded Adaptive Blinded Adaptive
GSD GSDMod GSDCond GSD GSDMod GSDCond GSD GSDMod GSDCond GSD GSDMod GSDCond
Ref NMax = 3500 Ref NMax = 3500 Ref NMax = 3500 Ref NMax = 3500

θ
=

0.
04

λ0/8 100 100 100 99.96 99.96 99.75 100 100 100 100 100 100
λ0/4 100 100 100 100 100 100 100 100 100 100 100 100
λ0/2 100 100 100 100 100 100 100 100 100 100 100 100
3λ0/4 100 100 100 100 100 100 100 100 100 100 100 100
λ0 100 100 100 100 100 100 100 100 100 100 100 100

θ
=

0.
1

λ0/8 99.99 99.99 99.97 99.63 99.63 98.46 100 100 100 100 100 100
λ0/4 100 100 100 100 100 100 100 100 100 100 100 100
λ0/2 100 100 100 100 100 100 100 100 100 100 100 100
3λ0/4 100 100 100 100 100 100 100 100 100 100 100 100
λ0 100 100 100 100 100 100 100 100 100 100 100 100

θ
=

0.
25

λ0/8 97.33 97.33 97.19 92.8 92.8 86.84 99.94 99.71 99.7 99.68 99.68 99.49
λ0/4 100 100 100 99.8 99.8 99.54 100 100 100 100 100 100
λ0/2 100 100 100 100 100 100 100 100 100 100 100 100
3λ0/4 100 100 100 100 100 100 100 100 100 100 100 100
λ0 100 100 100 100 100 100 100 100 100 100 100 100

θ
=

0.
5

λ0/8 62.97 62.97 62.01 51.34 51.34 44.65 83.89 83.08 82.84 77.29 77.29 75.61
λ0/4 90.08 90.08 89.72 80.27 80.27 76.88 98.75 98.76 98.75 96.95 96.95 96.94
λ0/2 99.49 99.41 99.41 97.84 97.84 97.78 99.77 99.69 99.69 99.79 99.79 99.79
3λ0/4 99.79 99.47 99.46 99.72 99.73 99.73 99.79 99.47 99.46 99.84 99.85 99.85
λ0 99.82 99.8 99.8 99.81 99.81 99.81 99.82 99.8 99.8 99.81 99.81 99.81

θ
=
θ A

λ0/8 35.89 35.89 35.33 28.19 28.19 24.8 53.45 52.99 52.72 46.85 46.85 45.75
λ0/4 61.95 61.95 61.83 49.68 49.68 47.37 82.82 82.82 82.8 76.38 76.39 76.4
λ0/2 88.4 87.61 87.6 79.47 79.47 79.51 90.22 89.34 89.32 90.41 90.41 90.41
3λ0/4 89.83 86.6 86.62 90.06 89.76 89.75 89.83 86.6 86.62 90.4 90.08 90.08
λ0 89.96 89.05 89.05 89.88 89.17 89.17 89.96 89.05 89.05 89.88 89.17 89.17

θ
=

0.
75

λ0/8 18.04 18.04 18.09 14.92 14.92 13.21 27.34 27.19 27.3 23.57 23.57 23.02
λ0/4 32.05 32.05 31.92 24.98 24.98 23.64 48.15 48.14 48.15 42.04 42.06 42.24
λ0/2 53.08 51.75 51.73 44 44.01 43.93 54.15 52.88 52.87 54.37 54.39 54.39
3λ0/4 53.85 50.9 50.85 53.89 52.9 52.88 53.85 50.9 50.85 53.94 52.95 52.93
λ0 54.03 53.16 53.16 53.57 53.17 53.16 54.03 53.16 53.16 53.57 53.17 53.16

θ
=

1

λ0/8 2.6 2.6 2.49 2.75 2.75 2.46 2.67 2.69 2.66 2.59 2.59 2.65
λ0/4 2.42 2.42 2.38 2.25 2.25 2.29 2.73 2.73 2.74 2.71 2.71 2.76
λ0/2 2.75 2.63 2.62 2.48 2.49 2.5 2.76 2.64 2.63 2.69 2.7 2.7
3λ0/4 2.75 2.56 2.56 2.54 2.58 2.57 2.75 2.56 2.56 2.54 2.58 2.57
λ0 2.84 2.57 2.57 2.55 2.69 2.64 2.84 2.57 2.57 2.55 2.69 2.64

GSD Ref design corresponds to the setting when an accrual size of 3500 was planned right from the start with the continuous, uniform
accrual over 36 months (Continue) or uniform accrual over first 18 months for 1750 subjects and restarting later at 48 months to accrue
uniformly 1750 subjects over another 18 months (Restart).
GSDMod can be interpreted as a pre-specified adaptive design that makes the same adaptation as blinded repowering.
GSDCond is the fully adaptive design with conditional monitoring.
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5.4.1.1 Adaptive Rule Based on A Hazard Ratio of 0.5 and Baseline Event Rate

of λ0/4

We describe results based on the OBF boundaries. We arbitrary set p to be 80% in the adap-

tive design and investigate the setting under moderate efficacy θ ∈ (0.5, θA) and markedly

lower event rate, i.e., λ ∈ (λ0/4, λ0/2) to determine the best adaptive rule. To appropriately

compare results obtained from the adaptive design with a lower rate of adapting under mod-

erate efficacy, we find the average event rate such that the GSD only makes a blinded increase

in accrual 80% of the time. This then allows us to match all other operating characteristics

(average accrual size, average calendar time, and average event size) so as to appropriately

compare the best adaptive design with the GSD under low event rate and extreme treatment

effect setting. By further holding the timing of this adaptation fixed, we can then prespecify

the best sampling strategy obtained from the inefficient weighting scheme and compare the

results in a fair manner with the best GSDs to evaluate the potential for benefit.

At θ = 0.5, λTruth = λ0/4, our average accrual size, event size, and calendar time of

trial completion is similar. Reducing the proportion of blinded adaptations by 20%, our

overall power decreases by approximately 5% (relative to adapting fully using the ad-hoc

rule) regardless of when the added accrual is conducted.

Table 5.4 shows the summary of the results based on finding the best adaptive rule when

either continuing accrual or restarting accrual. We interpret the results for restarting accrual

when θ = 0.5. Using the fully blinded GSDMod, the best achievable power is 80.27%, which

is similar to the optimal setting when we start off planning the trial with 3500 patients in

mind and restarting accrual. This optimal strategy can be thought to be starting a second

site when funding opportunities or approval is later provided to conduct the study in that

setting. When we choose to decrease the probability of adaption to 80%, the power for

GSDMod decreases to 78.27% as a consequence of 20% fewer adaptations.

Using the best (“sub-optimal”) rule that adapts 80% of the time and having pre-specified

these rules in advance, the overall power of the best adaptive design is nearly efficient to the
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Table 5.4: Summary of overall power for various designs when making adaptations at 80%
of the time. The results under Cond refers to the strategy of applying CRP while Pres
corresponds to using minimal sufficient statistics at the trial termination. The adaptive
designs (Adapt) make an adaptation either based on hazard ratio (HR) or rate difference
(Rate Diff) at 80% of the time.

HR=0.5; λ0/4 HR=θA; λ0/2
Continue Restart Continue Restart

Pres Cond Pres Cond Pres Cond Pres Cond
FSD078 (N=1750) 68.69 - 68.69 - 67.55 - 67.55 -
Ref 90.08 - 80.27 - 88.40 - 79.47 -
GSDMod (100%)† 90.08 89.72 80.27 76.88 87.61 87.60 79.47 79.51
GSDMod (80%)‡ 86.33 85.74 78.27 73.91 84.63 84.59 77.55 77.36
Adapt: Rate Diff (80%) 88.09 86.52 80.27 75.25 86.21 85.69 79.31 78.84
Adapt: HR (80%) 87.55 86.31 80.10 75.07 86.10 85.58 79.35 78.77

FSD078 : GSD design based on 1750 subjects, and terminating at 78 months
Ref: Optimal strategy (GSD3500A) when this accrual size of 3500 is always enrolled depending on the
accrual patterns.
†: GSD with “escape clause” and blinded adaptations at 100% of the time.
‡: GSD with “escape clause” and blinded adaptations at 80% of the time.

the reference design (Ref or GSD3500A). This best adaptive design also beats the design

GSDMod that adapts 80% of the time. There are slight, negligible differences in the overall

power depending on whether the rate difference or estimated hazard ratio is used. However,

when these adaptive rules are not prespecified in advance and requires further statistical

adjustments, we lose a substantial amount of power. A much later adaptation results in up

to 5% loss of power if this rule was not prespecified prior to the conduct of the trial.

Similar results are observed when we choose the best adaptive rule under θA. When we

continue accrual, i.e., an adaptation is made very early during the study, this loss of power

is considerably lesser and is consistent with the results observed in section 3.2.

5.4.1.2 Application of the Best Rule Based on λ0/4 and θA = 0.5 to Other Set-

tings

It is harder to compare how the adaptive rule can compare with each other when applied to

other values of θ since we are no longer holding other operating characteristics similar. This
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is as seen in Table D.10 in Appendix D. Because the probability of adaptation is different,

this is generally harder to interpret. It is often the case, however, that a higher probability of

adaptation increases the overall power of the design. When the adaptive rule is selected based

on late adaptations, at other values of θ, there is basically little gain in power as compared

to GSDMod. The adaptive rule that is selected based on early adaptations generally results

in more adaptations across other values of θ. However, such adaptations in accrual also

increases the average patient size to be recruited into the study at the cost of little gain in

overall power.

5.5 Discussion

In vaccine efficacy trials, sponsors may be concerned about the possibility of non-proportional

hazards with a beneficial vaccine efficacy that may wane over time. A beneficial vaccine treat-

ment may potentially wane over time, thus requiring booster shots to maintain immunity.

Using a fixed sample design, it is entirely possible that one may detect an average hazard

ratio greater than the hypothesized effect and thus miss an opportunity to find an effective

vaccine. With multiple interim monitoring, one can detect this non proportionality and the

possibility of a vaccine that wanes over time.

Suppose again for illustration, our vaccine treatment may be efficacious over the first

4 years with a low hazard ratio close to 0.1. However, after 5 years, the vaccine becomes

less effective in conferring protection. If the vaccine treatment has an average hazard ratio

θ = 0.3, interim monitoring can enable one to detect the earliest effect at roughly 42 - 54

months with high probability above 0.999. Since this stopping probability is almost certain

at this interim analysis, with a monitoring rule in place, the DSMB can act to “extend”

the trial without unblinding the results until 78 months if there are speculations that the

treatment may modify how public health practice or lead to future studies on how booster

shots may be implemented.

For discussion purposes, we consider additional scenarios whereby the first three scenarios

present high protection up to 78 months but differing in protection past 78 months. Survival
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curve 1 corresponds to the use of placebo in the public health setting. In scenario 2, we

postulate a piecewise constant hazard where the vaccine may no longer be effective by 78

months, i.e., a booster shot may be required to maintain the levels of protective antibody.

Such survival curve has a hazard ratio of 0.1, 0.75, 1.6, and 1 over the first 22.5, next 27

months, next 30 months, and past 79.5 months with respect to the placebo. The last scenario

postulates the setting where the vaccine/prevention effects wear off totally after 104 months

with signs of increasing hazard after 66 months. A piecewise constant hazard of such setting

can have a hazard ratio of 0.1, 0.75, 1.6, and 1 over the first 30, next 36 months, next

40 months, and past 104 months respectively relative to the placebo survival curve. This

reflects the possibility that the levels of protective antibody are no longer sufficient to confer

protection or the potential changes in behaviors that increase the risks of infection.

While the survival curves are stochastically ordered, the use of the log rank test may

not be most efficient under such scenarios to pick the better treatment. Instead, other

weighted versions of the logrank test statistics may be preferred to gain efficiency when

the above treatment scenarios are highly plausible. For example, the use of G1,0 or the

Peto-Peto Prentice Wilcoxon statistics may be used to emphasize early differences in vaccine

efficacy that may wane over time. Even then, it is conventional to evaluate the operating

characteristics of a trial under the strong null of proportional hazards. In situations whereby

waning treatment effect is likely, then it is useful to consider evaluating such alternatives

which will be discussed in later chapters.

5.6 Conclusions

We investigate the use of GSD to adaptively revise the study design based on the pre-

specified use of “escape clause” in situations when misspecification of event rates or presence

of extreme treatment effect is plausible. While such a strategy results in reasonable loss

of power under the hypothesized alternative, there is high power in presence of extreme

treatment effect under various combinations of lower event rates than anticipated. When

the study design is not limited to constraints of calendar time or patient size, extension of
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Figure 5.10: Different non proportional hazards scenarios with time varying treatment effect.
Sequential analysis with the use of the logrank statistic estimates a different functional since
interim analyses affect the risk sets as used by the logrank statistic. Consequently, a different
scientific question is addressed at each interim analysis. The logrank statistic is less efficient
under this stochastically ordered, non proportional hazards setting. Despite that, the logrank
statistic has sufficient power to detect the difference in hazards at early interim analyses.

the study with blinded revision of sample size to either continue or restart accrual generally

improved the overall power under our hypothesized alternative.

When this calendar time is of interest and the patient size can be feasibly enlarged,

fully blinded strategies through the use of GSD is more than sufficient. In situations when

the treatment benefit may not be overwhelmingly optimistic, simple adaptive rules may

not provide clear benefit in terms of overall power but a slight increase in patient size and

longer study period. The fully blinded GSD strategy has the additional advantage of a clear

interpretation at the end of the trial.
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In limited scenarios corresponding to moderate efficacy and markedly lower event rate, we

see potential benefit with the use of adaptive designs. However, at either extreme efficacy or

lower than anticipated event rate, GSDs are shown to be nearly efficient and generally protect

us without the complications such as potential operational bias induced as a consequence

of the use of unblinded adaptations. Our results also indicate that if one cannot justify

the potential operational bias and require further statistical adjustments through the use of

weighted statistics, there is a general loss of overall power. This points out the difficulty as

well as the added complications when planning an adaptive design since more thought has to

be judiciously placed in the selection of not only the monitoring rules but also sensible, fully

specified, adaptive rules in order to avoid having to pay the price with the use of weighted

statistics.

Our exploration of the adaptive strategies is limited to several monitoring boundaries. We

did not find the best adaptive strategy using the optimal GSD that is efficient at the interim

analysis to better evaluate the utility of adaptive strategies. The practicality of selecting an

optimal GSD may not be best in addressing other constraints such as minimal increase in

maximum statistical information or scientific, logistical, or ethical concerns. Here, we want

to demonstrate that rather than making flexible adaptations, one should carefully evaluate

all potential competing strategies and evaluate the potential for misspecification of design

assumptions so as to better understand the robustness of their chosen design. The general

principle that we have chosen in evaluating both GSDs and adaptive design as described in

this chapter can be applied to general settings when planning a clinical trial.

In the next chapter, we consider the use of weighted log rank statistics to help us gain

power under the plausibility of waning treatment effect as often hypothesized in many clinical

settings other than vaccine trials. We consider the implications of naïvely presuming the

number of events as a general rule to quantifying statistical information in the time to event

setting and the perils when considering unblinded adaptations with the use of such “less

well-understood” survival analyses methods.
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Chapter 6

Information Growth for the Weighted
Logrank Statistics

Common approaches to analyzing time to event data consider the use of the logrank

statistic or Cox PH regression to compare treatment groups. The logrank statistic or Cox

PH regression is semi-parametric efficient under the strong null hypothesis when the hazards

for the comparison groups are proportional and similar over time or under proportional

hazards alternatives. However, when there is a priori evidence of time varying treatment

effect as characterized by the difference in hazard function, weighted forms of the logrank

statistics (Gρ,γ family) may be used to gain power under these hypothesized alternatives.

Several Phase III confirmatory/prevention trials such as Women’s Health Initiative [The

Women’s Health Initiative Study Group], XINLAY trial [Carducci et al., 2007], or National

Lung Screening Trial [Aberle et al., 2011] have employed the use of weighted logrank statistics

to analyze the primary endpoint of interest. For example, the National Lung Screening Trial

[Team et al., 2011] was conducted to determine whether the use of spiral CT as compared

to chest X-rays was effective as a screening tool in the prevention of mortality from lung

cancer. In this trial, a weighted version of the log-rank statistics was used to specifically

down-weight earlier lung cancer deaths to account for the delayed effects of the intervention

strategy.

Typically, in an event driven time to event setting, interim analyses are performed when

some number of events have been accumulated. While the “sample size” or statistical in-

formation is directly proportional to the number of events when analyzing censored data
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using logrank statistic under the strong null, this may no longer hold true when using the

weighted forms of logrank statistics. Information growth in the weighted versions of the

logrank statistics (Gρ,γ) has been shown to be a function the censoring (that includes the

patient accrual distribution) and the underlying survival distribution [Gillen and Emerson,

2005]. In the sequential setting, Gillen and Emerson [2005] characterized the nonlinear be-

havior of the true information growth vs the proportionate events (the fraction of the number

of events accumulated relative to the pre-defined maximum number of events). Using these

“less well-understood” weighted versions of the logrank statistics, the presumption of a linear

trend between information growth and proportionate events no longer holds true.

In this chapter, we explore some of these issues that may arise in the use of adaptive

designs while making the naïve presumption of using the number of events accumulated

at interim analysis as a direct surrogate to measure statistical information based on less

commonly used analyses techniques in survival. TheGρ,γ family of weighted logrank statistics

is such an example as described in section 4.6 whereby a different weighting scheme is chosen

to gain efficiency under non proportional hazards alternatives to place emphasis on either

early or late differences in survival. To demonstrate that this naïve presumption is no longer

true when using these “less well-understood” survival analyses methods, we evaluate this

assumption by assessing the degree of overall Type 1 error control when we modify the

censoring distribution, as measured by the accrual patterns, that may commonly arise in

many clinical settings.

We investigate this under the setting where this modification is first made based on

fully blinded adaptations as described in section 6.2, and then expand this to the adaptive

setting whereby modification is made based on unblinded interim results (section 6.3). Then,

we describe how an adaptive modification to the censoring distribution when using these

weighted statistics have inherently modified the information growth in section 6.4. We

investigate the use of Cui et al. [1999] to control for this inflation of overall Type 1 error

and the degree to which we must accurately characterize information growth when applying

these “less well-understood” adaptive procedures with these “less well-understood” survival
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analyses methods in section 6.5. We discuss the potential for benefit as well as the risks of

applying these adaptive procedures in the clinical trial setting when dealing with censored

data.

6.1 Sequential Analysis with Gρ,γ Family

We briefly review some of the notation in section 4.6 necessary for this chapter.

6.1.1 Notation

Consider a GSD with continuation sets Cj ≡ {(aj, bj] ∪ [cj, dj)} such that −∞ ≤ aj ≤

bj ≤ cj ≤ dj ≤ ∞ with j = 1, · · · J analyses [Kittelson and Emerson, 1999]. Let tj be the

information time at which the interim analysis is conducted where we define tJ = 1 at the

final analysis. At the jth analysis, we compute the normalized score statistic Zj = Uj/
√
V (tj)

where Uj is the (cumulative) score statistic, and V (tj) = Var[Uj] is the variance of the score

statistics, or Fisher’s information at the jth analysis.

Define our proportion of information at analysis j to be of the form Πj = V (tj)/V (tJ)

where Πj is the fraction of total statistical information available from all patients at the

time of interim analysis relative to the maximum planned statistical information at the end

of the trial. Under the null hypothesis, our test statistic Uj is approximately normal with

mean 0 and variance V (tj). With efficient estimators, Scharfstein et al. [1997] and Jennison

and Turnbull [1997] showed that Uj has the independent increments covariance structure

such that Cov(Uj+1, Uj) = V (tj) for j = 1, · · · , J . Under the design alternative, Uj can

be approximated using the normal distribution with mean θV (tj) and variance V (tj) where

θ is the parameter of interest. In this section, we focus on the two stage design with no

interim stopping for efficacy or futility similar to the intent to cheat example in Proschan

and Hunsberger [1995].
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6.1.2 Weighted Logrank Statistics/Gρ,γ

Consider the comparison of the survival experience between two treatment groups, k =

0, 1 in a GSD where a total of J analyses are conducted at the pre-defined calendar times

τ1, · · · , τJ . Our hypothesis of interest can thus be written as H0 : S1(t) = S0(t) ∀ t vs

HA : S1(t) 6= S0(t) for some t. Under the strong null hypothesis (and thus proportional

hazards alternative), we presume exact equality of survival and our null hypotheses are in

the form H0 : S1(t) = S0(t)θ ≡ θ = 1 ∀ t, vs HA : S1(t) 6= S0(t) ≡ θ 6= 1 for some t. For the

remainder of this chapter, our hypothesis of interest is set up such that we are interested in the

superiority of treatment (1) vs the placebo (0). Thus, H0 : θ ≤ 1 vs HPH
A : θ ≥ θA where θA

is our design proportional hazards alternative. We parameterize log(θA) = log(h0(t)/h1(t))

such that large values of log(θA) indicate superiority of the treatment.

Let E, T , C be the random variables corresponding to the calendar time of entry into

the study, the study time for the event of interest, and the study time for loss-to-follow-up

with the respective distribution functions H, F , and G. At the jth interim analysis that is

conducted at some calendar time τj, where a total of Nj subjects have been accrued, the ith

subject has data of the form (Xi,j, ∆i,j, Zi) where Xi,j = max(min(Ti,j, Ci,j, τj − Ei,j), 0) is

the observed time for individual i, ∆(Xi,j) is the indicator variable for an observed failure

time if Xi,j ≤ min(Ci,j, τ − Ei,j) and 0 if Ei,j > τ and that loss of followup is only due to

administrative censoring, and the randomized treatment assignment is

Zi =


0 if the ith individual belongs to treatment group 0

1 if the ith individual belongs to treatment group 1.

For notational simplicity later, we further let ∆1(Xi,j) = ∆(Xi,j)Zi and ∆0(Xi,j) =

∆(Xi,j)(1 − Zi) where they are the indicators of an observed failure for the ith subject

coming from group 1 and 0 respectively at the jth interim analysis. Recall from section 4.3,

our (partial) score statistic based on the data collected at the jth interim analysis that is
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conducted at some calendar time τj can be expressed as

U(βj)|β(j)=0 =
Nj∑
i=1

∆i,j

[
Zi −

∑
l∈Rj(Xi,j) Zl∑
l∈Rj(Xi,j)

]

=
Nj∑
i=1

n0,j(Xi,j)n1,j(Xi,j)
n0,j(Xi,j) + n1,j(Xi,j)

[
∆1(Xi,j)
n1,j(Xi,j)

− ∆0(Xi,j)
n0,j(Xi,j)

]

where Rj(Xi,j) = {l : Xl,j ≥ Xi,j} is the risk set at analyses time Xi,j that is based on

the data collected at the jth interim analysis, Nj is the total number initially at risk at

the jth interim analysis, Nk,j is the number initially at risk for group k at the jth interim

analysis, Nj = N0,j + N1,j, and nk,j(Xi,j) is the number at risk at analysis time Xi,j for the

kth treatment group for k = 0, 1.

Let w(t) = n0,j(t)n1,j(t)
n0,j(t)+n1,j(t) [Ŝ(t−)]ρ[1 − Ŝ(t−)]γ where Ŝ(t−) is the pooled Kaplan Meier

survival estimate. Fleming and Harrington [1991] introduced this flexible weight function

within the log rank test statistic to allow comparison of a bigger class of survival curves. By

this setup, at some time τ , the general form of the Gρ,γ statistics is

Gρ,γ =
√
K

Nj∑
i=1

w(Xi,j)
[

∆1(Xi,j)
n1,j(Xi,j)

− ∆0(Xi,j)
n0,j(Xi,j)

]
.

where Kj = N0,j+N1,j
N0,jN1,j

.

By this general representation, when ρ, γ are both 0, we obtain the Cox regression/log

rank test for comparison of the survival experience between two groups. Under the strong

null hypothesis, H0 : S0(t) = S1(t) ∀t > 0, a consistent estimator of the variance of the Gρ,γ

statistic can be expressed as follows:

σ̂2 = K
Nj∑
i=1

w2(Xi,j)
[

1
n0,j(Xi,j)

+ 1
n1,j(Xi,j)

] [
1− ∆1(Xi,j) + ∆0(Xi,j)

n0,j(Xi,j) + n1,j(Xi,j)

]
∆1(Xi,j) + ∆0(Xi,j)
n0,j(Xi,j) + n1,j(Xi,j)
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We can further re-write the Gρ,γ statistic in the sequential testing framework as

W ρ,γ
j = 1√

Kj

Gρ,γ ≡ U∗τj

such that W ρ,γ can be represented as some form of weighted score statistics U∗τj .

Define our proportion of information at analysis j to be of the form Πj = V (τj)/V (τJ)

where Πj is the fraction of the statistical information available from all patients at the time

of interim analysis τj relative to the maximum statistical information at the end of the trial

conducted at τJ . This gives us the information fraction at the jth interim analysis as

Πj =
[(

N0,jN1,j

N0,j +N1,j

)
σ̂2
j

]/[(
N0,JN1,J

N0,J +N1,J

)
σ̂2
J

]

6.1.3 Censoring Distribution

The censoring distribution, as characterized by the accrual distribution of patients, plays an

integral role to estimating the information growth of the test statistic. We consider a flexible

parametric accrual distribution used in Gillen and Emerson [2005] to simulate the accrual

patterns. Let E be the random variable describing the accrual distribution. The cumulative

accrual distribution is of the form,

FE(t) =
(
t

A

)q
, A > 0, q > 0 and 0 < t ≤ A (6.1)

where A controls the period of accrual. Note that the random variable E ′ that has cumulative

distribution FE′ (t) = (1− t/A)q generates another potential family of accrual distribution.

When A is non-zero, patients are accrued over the time period A. The parameter q

controls the rate of patient accrual into the clinical trial. When q = 1 and A > 0, patients

are accrued uniformly over the time period between 0 and A. As q → ∞, patients enter

slowly at the beginning of the trial and more rapidly when we are closer to time A. As

q → 0, patients are accrued in rapidly at the beginning of the trial.
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Figure 6.1: Varying plausible patterns of accrual in a clinical trial setting based on the para-
metric formulation of equation 6.1. This formulation gives us a variety of accrual patterns
that can be used to investigate the impact of censoring in a clinical setting.

For example, suppose we consider accruing 1,000 subjects into a clinical trial over a period

of four years, with A = 4 as according to Equation 6.1. Several plausible accrual scenarios

based on Equation 6.1 can be obtained. For example, when q = 1, we have uniform accrual

of subjects as shown via the dotted bold line in Figure 6.1. q = 2 represents a particular

instance of delayed accrual as shown via the solid blue line. q = 0.5 describes a particular

form of early accrual as shown by the thin dotted line. If we let q = 0, and for any arbitrary

positive, non-zero A, this mimics the immediate accrual setting shown by the dash-dotted

line where the entire patient size is recruited at calendar time 0. The above parametric family

of accrual distributions allow us to simulate various accrual patterns for our exploration later.
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6.2 Blinded Accrual Size Adaptations using Gρ,γ Statistics

In Chapter 5, we explored the use of blinded sample size re-estimation to decrease accrual

using the logrank statistic. We previously consider the strategy of allowing both extension

of accrual size as well as calendar time, and/or keeping calendar time fixed as an “escape

clause”. We investigate the impact of increasing accrual on the control of overall Type 1

error when using the Gρ,γ statistics while holding the total number of events fixed. The

G0,0 test corresponds to the unweighted logrank statistic. We consider four specific forms of

the weighted statistics for the remainder of this chapter to illustrate the extremes for these

combinations of ρ and γ parameters. Namely, the logrank statistic (G0,0), G1,0 (commonly

referred to as Peto-Peto and Prentice Wilcoxon statistic), G0,1, and G1,1 are of interest. We

explored the impact of blinded adaptations on the control of the overall Type 1 error under

the strong null setting.

6.2.1 Simulation Setup for Blinded Adaptations

To investigate the above, we suppose a FSD is planned with a (minimum) sample size

commitment of 1,000 subjects, and that the final analysis is conducted when a total of 765

events are attained. In this FSD, we assume an administrative look is made part way through

the study to modify accrual, with the objective of increasing the overall event rates based

on blinded data. We interpreted this as some version of “start small, ask for more later”

concept whereby trials may commit a minimum number of subjects to be recruited at the

beginning of the trial. When there is more funding, or logistically more feasible to open up

new sites, sponsors may increase accrual part way through the study without increasing the

total number of “events”.

We conducted 100,000 simulations under the strong null setting where the survival dis-

tributions for S0(t) and S1(t) are drawn from the Weibull distribution with shape parameter

of 0.5, and “rate” parameter of 120.1 such that S(6) = 0.8 (with the definition of the Weibull

distribution consistent with the parametrization in Shorack [2010]). At level α = 0.05, the
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unweighted logrank statistic has 93.1% power under no censoring (other than administrative

censoring) to detect a proportional hazards design alternative, θA ≈ 1.2538. Based on θA,

the G1,0, G0,1, and G1,1 statistic has 90%, 90%, and 84.8% power respectively to detect this

design alternative. Thus, under θA, a total of 1,000 subjects are thought to be required

to obtain approximately 765 events at the end of the study. Note that we did not choose

specific alternative distributions that are most efficient for these weighted logrank statistics

due to the difficulty of characterizing the appropriate survival functionals particularly for

the weighting schemes based on G0,1 and G1,1.

Various accrual patterns are considered. Based on Equation 6.1, we set our accrual period

A to be 4. We investigated the setting of uniform accrual (q = 1), delayed accrual (q = 2

based on FE′ rather than FE), and early accrual (q = 1/2). The immediate accrual setting

is considered to provide a limiting case of what would happen in absence of censoring. We

assume further that there is no loss to follow up and administrative censoring to take place

at the time of analysis.

An interim analysis is conducted at either 1/3, 1/2, or 2/3 (255, 382, and 510 respectively)

of the total number of events to increase the accrual size. At this interim analysis, we do not

allow early stopping for futility or efficacy. Additionally, we presume this blinded adaptation

is made without any other knowledge of secondary results. We consider expanding our total

accrual size from 1,000 to either 1500, 2000, 3000, and 5000. Following this interim analysis,

all remaining subjects who have not been enrolled (based on the 1,000), together with the

additional subjects to be accrued, are then enrolled uniformly at double the original accrual

rate, i.e., at 500 subjects per year.

We apply the above blinded procedure consistently at this interim analysis and continue

follow-up of all subjects until a total of 765 events are accumulated. We analyzed the trial

by computing the Z statistic for each simulation and each analysis method (G0,0, G1,0, G0,1,

and G1,1). These Z statistics are parameterized such that large values denote the superiority

of treatment (1) over placebo (0), small values are consistent with superiority of placebo

over the treatment. At level α, we compute the total number of significant trials where
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Z > Φ−1(1− α).

Realistically speaking, these forms of accrual adaptations in accrual size may not be

optimal for the various Gρ,γ statistics where we do not prolong the total study duration

and/or increase the total number of events. For example, the weighting scheme of the

G1,0 statistic places emphasis on early differences in survival. Thus, increasing accrual part

way through the study only improves upon the power of the test statistic when these early

differences are of scientific interest. In the context of G0,1 or G1,1, increasing accrual rapidly

while not allowing for additional follow-up can potentially not improve the overall power

since the weighting scheme places emphasis on mid to late differences in survival. In other

words, any early events based on the later accrual is given less emphasis by the weighting

scheme. Nonetheless, our objective in this chapter is basically to demonstrate what are the

consequences of making adaptations in terms of accrual size while maintaining the maximal

number of events. That is, we attempt to demonstrate how incorrect assumptions on the

part of clinical trialists (i.e., that information growth is proportional to the number of events)

might be particularly deleterious with adaptive clinical trials..

6.2.2 Results for Blinded Accrual Size Adaptations

Results for α = 5% and 2.5% are similar. We refer the interested reader to Appendix E.1

for additional results when blinded adaptations are conducted at other interim analyses

(Table E.1, E.2, E.3, E.4, and E.5). In summary, the overall Type 1 error rate is protected

when a blinded increase in sample size is made at the interim analyses defined above. The

results are somewhat intuitive. Since we are only conditioning on our knowledge of the

presumed “statistical information” d(t), which is the number of events, this is ancillary of

the estimated treatment effect. Thus, under the strong null hypothesis, blinded adaptations

of the accrual size should not inflate our overall Type 1 error.

Under the PH alternative, we see that the overall power of the unweighted logrank statistic

remains unaffected (compared to the power based on a accrual size of 1000). In summary,

any form of accrual size increase will improve the overall power for the G1,0 statistic slightly
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(2% relative to 90%). For G0,1 and G1,1 statistics, any form of blinded adaptation to increase

accrual size results in considerable loss of power. For the G0,1 statistic, this can decreasing

the overall power from 90% to 80%. For the G1,1 statistic, this can result in the overall power

to decrease from 85% to 80%. In particular, the overall power decreases (for G0,1 and G1,1)

as more subjects are added into the trial following interim analysis without either extending

follow-up and/or the total number of events.

Despite having characterized and evaluated the overall Type 1 error under the strong

null hypothesis which is coincidentally proportional hazards, we did not evaluate the above

strategy based on the alternatives that are most efficient for these weighted statistics. This

is generally difficult especially for the G0,1 or G1,1 statistic where the alternative functionals

are harder to parametrize. An alternative evaluation for the G0,1 or G1,1 statistic is to

decrease the rate of accrual by half so that the remaining events take a longer time to

accumulate. However, such an approach no longer provides benefit due to economic and

financial concerns with a larger trial and prolonged follow-up. Although the PH alternatives

may not be most efficient for G1,0 since it emphasizes early differences, blinded increase

in accrual can maintain/improve the overall power of the G1,0 statistic since this generally

allows better characterization of the survival curves earlier on. Since we did not consider

extending the follow-up time, increase in accrual should improve only the precision of the

estimate of the early survival curve.

6.3 Intent To Cheat Sensitivity Analysis

We investigate the impact of sample size adaptation based on the use of unblinded interim

results. We term this as the intent-to-cheat sensitivity analysis since at interim, the future

accrual of the subjects is now dependent on the estimated treatment effect we observed at

interim. Our objective is to determine the degree of inflation of the overall Type 1 error

when holding our total number of events fixed.

Thus, at some interim analyses, we condition on the unblinded treatment effect to deter-

mine whether we should increase accrual. Since we are no longer conditioning on an ancillary
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statistic, but rather our sufficient statistic that is a function of our estimated treatment ef-

fect, this sensitivity procedure is similar to the worse case inflation described by Proschan

and Hunsberger [1995] with the caveat that we now presume holding constant our “sample

size” as defined using the total number of events.

Consider the clinical trial scenario in the context of a DMC meeting involving the statis-

tician in the DMC as well as the independent statistical center presenting and analyzing

the results for the DMC. When results are first presented in a blinded fashion, the DMC

may potentially recognize that the event rate may be lower than anticipated and if not pre-

sented any form of unblinded safety/adverse events data, recommendations can be provided

to the sponsor or investigators to decide whether additional accrual is required. However,

once the DMC are unblinded to the interim data, the DMC are possibly biased to making

such suggestions unless they are pre-specified in the protocol. Additionally, the DMC or the

independent statistical center are also unable to make recommendations to the sponsors or

investigators to increase accrual unless the sponsors have appropriately stipulated the rule

for which an increase in accrual is deemed reasonable subject to pre-specified definition of

low event rate in the protocol prior to the start of the trial, or possibly before unblinding of

any (interim) trial results.

6.3.1 Unblinded Accrual Size Adaptations

Using the same simulation set up as in section 6.2.1, we choose to now use the unblinded

interim estimate of the treatment effect to adapt our future accrual of subjects into the

study. Let ẐInterim ∈ < be our Z statistic computed based on the data accrued at the interim

analysis when a total of dInterim events are obtained. Following the approach of Chen et al.

[2004], Gao et al. [2008] and subsequently Mehta and Pocock [2011], we partition this sample

space of plausible Z’s at interim analysis into the three zones: “Unfavorable”, “Promising”,

and “Favorable”. Let ZLower be the value that divides “Unfavorable” and “Promising” zones,

and ZUpper be the value that divides the “Promising” and “Favorable” zones. The three zones

can be described as follows:
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1. Unfavorable: When the ẐInterim < ZLower, we modify accrual from N to N1. Since the

interim results may be disappointing, an investigator may choose to modify accrual.

Mehta and Tsiatis [2001] describe such a region to have sufficiently low conditional

power that is generally not worth continuing the trial further.

2. Promising: When the ẐInterim ∈ [ZLower, ZUpper], we modify accrual from N to N2. This

region is characterized as the promising zone in the adaptive literature since the results

computed based on conditional power are “promising” enough to warrant modification

of the sample size to repower the study to a treatment effect θ∗A where θ∗A ∈ (1, θA).

3. Favorable: When the ẐInterim > ZUpper, we modify accrual from N to N3. In this region,

the results have high conditional power of being statistically significant at some future

analyses. Often, increase in accrual in these regions are not truly warranted.

The summarized algorithm is shown in Figure 6.2.

Based on a particular fixed value of ZLower and ZUpper, we can determine the future sample

path for all the simulations when the interim result falls into one of the above zones. We

can then compute the significance of this trial based on the final statistic obtained after such

an adaptation. This is then computed for all the simulations to obtain the overall Type 1

error associated with an adaptation based on this fixed value of ZLower and ZUpper. In order

to determine the maximum Type 1 error, we have to evaluate all potential placement of

ZLower and ZUpper, with the added condition that ZLower < ZUpper, based on a grid search.

We describe this grid search procedure next.

Let the interim analysis be conducted at some fraction k of the total number of events that

is fixed at 765, for k = 1/3, 1/2, 2/3. These values of k correspond to 255, 382, and 510 events

respectively. For each of the 100,000 simulations, we compute the interim Z statistics for the

analyses method of choice when 765k events have been gathered. We allow ZLower and ZUpper

to take possible values of Φ(Z) such that p = Φ(Z) ∈ (0.05, 1− α) subject to the constraint

that ZLower < ZUpper ≤ Φ−1(1− α) where Φ(.) is the cumulative distribution function of the
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Figure 6.2: The intent to cheat sensitivity analysis is shown with the x-axis to reflect the total
number of subjects at the end of the study. The beige, blue, and yellow dotted line describes
the continuation regions corresponds to the “Unfavorable” (allowing adaptation in accrual
up to NFinal

1 ), “Promising” (allowing adaptation in accrual up to NFinal
2 ), and “Favorable”

(allowing adaptation in accrual up to NFinal
3 ) zone, where ZLower divides the “Unfavorable”

and “Promising” zones while ZUpper divides the “Promising” and “fFavorable” zones.

standard normal distribution. For each pair of fixed ZLower and ZUpper, we then compute the

overall Type 1 error rate, i.e., the proportion of the number of statistically significance trials

such that Φ(ZFinal) > 1 − α based on all the simulations. We iterate this through a grid

search consisting of all possible pairs of {pLower, pUpper} such that pLower < pUpper ≤ 1 − α

where pLower = Φ(ZLower) and pUpper = Φ(ZUpper). This procedure is similar to the approach

taken in Proschan and Hunsberger [1995] in the immediate setting.

One of the most common approach is to increase accrual to some number N2 only in the

promising region, i.e., when ẐInterim ∈ [ZLower, ZUpper] while letting N1 = N = N3 for other
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zones. Thus, an adaptation is allowed only when the interim results ẐInterim fall within this

promising zone. Our final ZN2
Final is computed based on this new accrual size when we obtain

all 765 events. In this particular setting, when ẐInterim /∈ [ZLower, ZUpper], we continue the

trial with the original accrual size where N1 ≡ N3 = 1000, and analyze the results when all

765 events are obtained. This is then evaluated for all 100,000 simulation for each pair of

fixed {pLower, pUpper}.

Table 6.1: Summary of the potential accrual size adaptations depending on the whether the
interim Ẑ statistic falls within the “Unfavorable”, “Promising”, or “Favorable” zone. The
total number of events remain unchanged while the total number of patients recruited may
change depending on the Rule. For example, in #4b, we increase accrual to 2000 when this
interim estimate is in either the “Unfavorable” or “Promising” zone while continuing with
1000 subjects when in the “Favorable” zone.

Rule “Unfavorable” “Promising” “Favorable”
# N1 N2 N3

1 2000a, 3000b, 5000c 1500 1000
2 3000a, 5000b 2000 1000
3 5000 3000 1000
4 1500a, 2000b, 3000c, 5000d 1000
5 1000 1500a, 2000b, 3000c, 5000d 1000

We set α = 0.05, and discretized values of p in steps of 0.05, from 0.05 to 0.8 (inclusive),

and then in steps of 0.01, from 0.81 to 0.95. This gives us a total of 465 possible combinations

of pLower and pUpper. Each combination of pLower and pUpper gives us an adaptive rule that

enable us to characterize the overall Type 1 error. We then characterize regions in this space

that leads to an inflation of the overall Type 1 error. Note that 564 such combinations are

possible with this setup when α = 0.025.

Table 6.1 presents some of the potential sample size strategy which we explore in the

next section. Adaptive rule 1 may reflect the setting of continuing accrual when results may

not be favorable but increasing accrual slightly when in the promising region. We consider
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settings in rule#5 (a-d) to be most interesting, since they reflect the typical scenarios of

increasing accrual when interim treatment results are “potentially promising”. We describe

our simulation results for the specific setting #5b when an interim analysis is conducted at

255 events, at level α = 0.05, and assuming uniform accrual for the rest of this chapter.

Other results are in Appendix E.

6.3.2 Simulation Results for Intention To Cheat Sensitivity Analysis
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Figure 6.3: A particular slice of an adaptation with the lower limit fixed at Φ(ZLower) = 0.05.
The upper limit of Φ(ZUpper) is allowed to vary from 0.1 to 0.95. For any ẐInterim > 0, i.e.,
Φ(ẐInterim) > 0.5, on average, doubling the accrual size following an interim analysis often
leads to an inflation of Type 1 error for the G1,0 statistic. This same approach leads to a
conservative Type 1 error for the G0,1 or G1,1 statistic for fixed Φ(ZLower) = 0.05 and any
ẐInterim > 0 in this Figure.
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Based on 100,000 simulations, at level α = 5%, the maximum Type 1 error obtained

for the weighted logrank statistics (G1,0, G0,1, and G1,1) are shown to be inflated with the

application of this procedure. The overall Type 1 error for the logrank statistic does not

appear to be inflated with the application of this procedure. To determine whether this

inflation is only for specific choices of ZLower and ZUpper, we first look at results when we

hold Φ(ZLower) = 0.05 (refer to Figure 6.3). The x-axis describes values of Φ(ZUpper) in this

Figure which range from 0.1 to 0.95. The dotted lines correspond to the 95% confidence

interval of a typical Type 1 error rate of 0.05 based on 100,000 simulations. Each point in

the figure represents the average number of significant trials based on 100,000 simulations

when we hold fixed the lower boundary, on the p-value scale, at 0.05 and select some upper

limit, say Φ(ZUpper) = 0.5.

In Figure 6.3, the G1,0 statistic has an overall Type 1 error at approximately 5.25% while

both the G0,1 and G1,1 statistic show a conservative control of Type 1 error of approximately

4.7 and 4.4% respectively. Across other values of this ZUpper that we investigated, majority

of the regions show an inflation of overall Type 1 error for the G1,0 statistic, other regions

for the G0,1 and G1,1 demonstrate high conservatism.

In Figure 6.3, we see that the logrank statistic does not present such a behavior as we

vary ZUpper. Generally, we did not see an unacceptable inflation of the overall Type 1 error.

The weighted logrank tests do not appear to preserve the overall Type 1 error with most of

the adaptations. In fact, the overall Type 1 error is inflated for G1,0 statistic. For G0,1 and

G1,1, inflation of the overall Type 1 error occurs only when we make interim changes to the

accrual size investigated under Rule 5 in the promising zone.

As we move Φ(ZLower) away from 0.05, as shown in Figure 6.4, we see major inflation

of overall Type 1 error for the weighted logrank statistics. This inflation of overall Type 1

error is dependent on the choices of ZLower and ZUpper across the 33 slices explored. Note

that the x-axis of Figure 6.4 now represents sets of Φ(ZLower) that consist of values ranging

from 0.05, 0.1, 0.15, · · · , 0.95. Within each vertical pair of consecutive dotted lines, the x-axis

represent values of ZUpper that are greater than some fixed value of ZLower similar to the way
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the x-axis of Figure 6.3 is labeled.
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Figure 6.4: Degree of inflation of overall Type 1 error when increasing the accrual size to
2000 in the promising region under uniform accrual with interim analysis conducted at 1/3
of the total event size. Grey highlighted region is a slice as shown in Figure 6.3 with the
lower limit fixed at 0.05 and the upper limit set at other values of p ∈ (0.05, 0.95]. In general,
each point summarizes the amount of Type 1 error inflation for a combination of pLower and
pUpper, and a particular analysis method of choice. The behavior of the inflation of overall
Type 1 error varies across different combinations of pLower and pUpper.

Alternatively, these regions can be viewed as contour plots for each analysis method

presented on the right of Figure 6.4. These contour plots describe the heatmap of the overall

Type 1 error for values of ZLower vs ZUpper. In these contour plots, increasingly red colored

regions indicate an overall Type 1 error beyond the upper limit of the 95% CI of α = 0.05

using 100,000 simulations. Increasingly bright green regions indicate an overall Type 1 error
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that is more conservative than expected based on the lower limit of the 95% CI of α = 0.05

using 100,000 simulations.

The general behavior for the overall Type 1 error for these test statistics vary. However,

we generally see an inflation of overall Type 1 error when we consider an adaptation in

accrual within this promising zone regardless of the timing of the adaptation considered. In

summary:

• Unblinded adaptations for the logrank statistic do not seem to affect the overall Type

1 error in this case. This is to be expected, as the true information growth of the

unweighted logrank statistic is proportional to the number of events.

• The overall Type 1 error can be inflated as high as 6.2% for the G1,0 statistic. This is

seen across values ranging from Φ−1(0.05) to 1.96.

• For G0,1 and G1,1, the behavior of the Type 1 error inflation is in direct contrast to the

G1,0 statistic.

• This often leads to more conservative overall Type 1 error for Gρ,1 for ρ ≥ 0 in regions

where G1,0 has an inflation of overall Type 1 error.

• Regions that result in an inflation of the overall Type 1 error for G0,1 are typically

smaller (i.e., smaller range of interim Z estimates), have the estimated interim treat-

ment effect close to statistical significance in the preferential direction for superiority

of the treatment over the placebo. On the other hand, when the promising region is

broader, the G0,1 statistic tends to be more conservative in terms of overall Type 1

error. This behavior is similar for the G1,1 statistic.

• In order to inflate the overall Type 1 error beyond 10% with the use of the G1,1 statistic,

the total accrual size has to be considerably larger than 2000.
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Intuitively, if the number of events is some linear surrogate to measuring the information

growth with the use of these weighted statistics, as in the immediate setting, then any

potential increase in accrual during the course of the trial through the use of unblinded

adaptations without modifying our total number of events should ideally not inflate the

overall Type 1 error. Since the overall number of “events” has not been adapted, naïvely

speaking, we should be protected in terms of the overall Type 1 error.

The results in this section indicate that the number of events is no longer appropri-

ate to characterize information growth when applying these “less well-understood” survival

methods. The additional accrual of subjects via this intent-to-cheat procedure must thus

be affecting the information growth in some aspects. We now expand our understanding of

the behavior of the information growth of these statistics from Gillen and Emerson [2005]

and investigate the impact of changing accrual part way through the study in an unblinded

manner on our information growth to better understand the root cause of this inflation of

overall Type 1 error.

6.4 What GoesWrong: Impact of Censoring on Information Growth

We investigate the impact of changing the censoring distribution on the information growth

with the use of these weighted logrank statistics. To do so, we considered plausible underlying

survival scenarios that may be practical in a typical clinical trial. For example, we can

consider survival settings with a pattern of long term survival which is typical in prevention

settings, where the event rate may take a sufficiently long time to accumulate. In more

serious, life-threatening rare disease settings such as Ebola, or Stage 4 Melanoma, they may

be represented by survival distributions with shorter median time. We investigate some of

these settings under long term survival based on the previous example, as well as short term

survival (a Weibull distribution with shape parameter 0.5, and “rate” parameter of 1) in

order to characterize the information growth.

Using the design specifications as in the previous section, we compute the information

fraction by taking the ratio of the variance estimate at the interim analysis relative to the
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total variance at the end of the trial (defined as 765 events). Under balanced random-

ization, the maximum statistical information when using the logrank statistic would be

V = D/4 = 191.25. A naïve user might presume that this was also the maximal statistical

information when using weighted logrank statistics. To illustrate the error associated with

such naïve assumptions, we compare the statistical information for weighted logrank statis-

tics (as estimated from simulations) to the naïve ratio of the total number of events at the

interim analysis relative to the total number of events at the final analysis. This will enable

us to characterize the degree to which the true information growth is well approximated as

a linear function of the number of events. We note that we do expect the true information

growth to depend on both the underlying survival distribution and the censoring distribution.

6.4.1 Information Growth without Accrual Size Adjustment
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Figure 6.5: The average information growth for the various test statistics are different.
In addition, the magnitude for which the average maximum statistical information at the
planned final event size is vastly different for each test statistic of interest such that the
assumption of a linear trend in number of events is no longer appropriate.
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The average maximum statistical information for our choice of Gρ,γ family accumulates

differently depending on the weighting scheme (Figure 6.5). The G1,1 test statistic is seen to

have the smallest maximum statistical information relative to the unweighted logrank test

within the Gρ,γ family class of statistics. Relative to the proportion of total events, only

the unweighted logrank statistic has linear (maximum) information growth unaffected by

patterns of accrual.

The accrual distribution is seen to impact the information growth under short term sur-

vival more drastically relative to a long term underlying survival. The immediate entry

characterizes the information growth that is unaffected by accrual. Compared to the im-

mediate setting, the information growth presents more variability depending on the type of

accrual pattern for the weighted logrank statistics. This induces a differential rate of growth

in the short term survival setting as seen in Figure 6.5. Because the accumulated number of

events is happening at a much slower rate in the long term setting, there is less variability

seen in the information growth.

Figure 6.6 describes the cumulative proportion of information at interim analyses relative

to the final statistical information as a function of the cumulative fraction of events under

the short term survival setting. For the G0,0 or the logrank statistic, the information growth

is linear with respect to the proportion of events under all patterns of accrual and all survival

distributions. Under the extreme setting of immediate entry, the information growth tends

to be non-linear for the G1,0, G0,1, or G1,1 statistic. With staggered entry, we observed more

variations to the information growth for the weighted statistics.

The rate of information growth is related to the choice of weighting in these weighted

statistics. The G1,0 statistic places emphasis on early survival and the information growth

is seen to increase more rapidly at earlier fraction of events as compared to the information

growth later. This is evidenced by the larger spacing between consecutive points at earlier

fraction of events relative to later fractions. The G0,1 statistic, on the other hand, places

relatively more weight on the late differences than early differences. The G1,1 statistic places

relatively more weight on mid differences rather than early or late differences.
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Figure 6.6: Cumulative proportion of statistical information relative to the fraction of the
total number of events at each analysis for the weighted logrank statistics under short term
survival. The logrank statistic is presented as a benchmark by the diagonal black line.
Cumulative proportion of statistical information for the long term survival correspond to the
results under immediate entry (blue lines).

Proportionate information tends to the limiting case of immediate accrual under long

term survival. The (average) maximum information in the weighted logrank statistics are no

longer linearly related to the event size. We now investigate the information growth when

we make changes to accrual partway through the study.

6.4.2 Information Growth with Accrual Size Adjustment

We investigate the setting when we modify the accrual size of the study at an interim analysis

while presuming the total number of events to be fixed at the end of the study. Following

interim analysis at predetermined event size, we accrue the remaining 1000 patients that

may not have entered the trial at double the original rate of accrual. We also included
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the immediate accrual setting to exaggerate the degree to which extreme accrual can affect

information growth. Thus, following an interim analysis under the immediate accrual setting,

we immediately recruit the additional required patients into the study.

We describe the results for this section based on the long term survival setting simulated

from the Weibull distribution with “shape” parameter of 0.5 and “rate” parameter of 120.1

for both treatment and placebo arm. The results based on short term survival simulated

under the strong null present trends in information growth with slightly more variability

under different accrual patterns.

6.4.2.1 Long Term Survival

Figure 6.7 shows the plot of the information growth of the various test statistics vs the

proportion of events (relative to final event size of 765). For the logrank statistic, information

growth is predictable in the sense that given the final event size and the randomization ratio,

we can estimate the information at each interim analysis to determine the proportionate

information. This observed linear trend also suggests that the accrual size does not modify

the information growth of the test statistics when we hold the total number of events fixed.

In the case of the G1,0 statistic, we see in Figure 6.7 that the estimated information

growth following interim modifications to the accrual changes drastically. We note that in the

extreme scenario when we have immediate accrual of patients following interim analysis, the

information growth increases beyond the presumed maximum statistical information based

on 1000 subjects. At later interim analysis, we observed similar trends when we attempt

to increase our sample size following interim analysis immediately. Under various accrual

patterns, we see similar patterns for the information growth as we make modifications to the

sample size after interim analysis (Figure 6.7). Information growth tends to be more linear

following a large sample size modification regardless of accrual pattern.
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With either the G0,1 ot G1,1 statistic, we see that any modification to the censoring

distribution also affects the information growth. Under the most extreme scenario when we

accrue all the sample size we want following an interim analysis, while holding the maximum

number of event fixed, the maximum statistical information is very much reduced. This is

because with this huge amount of subjects accrued, the entire information growth is weighted

heavily by 1−S(t−). Thus, unless the number of events is increased or the accrual is allowed

to be conducted in a prolonged manner, the information growth will be be weighted away

from the information growth relative to the original design based on 1000 subjects. That

is, the additional events accrued under this adaptive accrual scheme contribute very little

information to the final analysis.

With various accrual patterns, the information growth also demonstrates minor increase

in the statistical information. This slower rate of information growth, as a consequence of

this additional influx of subjects contributing immense weight to the earlier portion of the

pooled survival (and thus the pooled probability of not being censored), also increases the

variability, and thus reduces the precision to which we can accurately measure our statistical

information across interim analyses. In specific scenarios described in Appendix E.5, we see

that this results in the apparent behavior of “backward” information when our statistical

information is not growing sufficiently fast across interim analyses.

6.5 Application of Adaptive Procedures to Control for Inflation
of Type 1 Error

It is sometimes described in the adaptive literature that if no adaptation was made to the

statistical information during an unblinded analysis, one need not adjust for the adaptive

analysis [Müller and Schäfer, 2001]. When a clinical trialist naively believes that statistical

information is proportional to the number of events, he/she may regard that changes limited

to accrual patterns (i.e. with no changes to the maximal number of events) do not represent

an adaptation. This naïve principle does not apply to the weighted logrank statistics when

unblinded analysis is used to decide on the amount of additional accrual necessary. We have
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seen the consequence of how additional accrual of subjects under the strong null has lead to

an inflation of overall Type 1 error with the use of these weighted logrank statistics, because

such changes in accrual patterns modify the censoring distribution. Additionally, the root

cause leading to this inflation is that our maximum statistical information, within the class

of weighted logrank statistics, has been changed when we adaptively increase accrual in an

unblinded manner. Because the information growth has changed, a statistical adjustment is

now necessary when using the weighted logrank statistics.

We considered the general procedure described in Cui et al. [1999] to adjust our final

critical value to ensure control of the overall Type 1 error after making an adjustment

in statistical information. We note that other authors [Proschan and Hunsberger, 1995,

Lehmacher and Wassmer, 1999, Müller and Schäfer, 2001, Chen et al., 2004, Gao et al.,

2008] also describe the other versions of the above procedure and they have been shown to

be equivalent under the two-stage setting by Jennison and Turnbull [2003]. For simplicity,

we shall abbreviate this procedure as CHW since Cui et al. [1999] formally introduced this

as a closed form adjustment in the two-stage setting.

The procedure for this approach is as follows: At the penultimate analysis, we modify

our statistical information from V (tJ−1) at information time tJ−1 to the new statistical

information V (ζJ) rather than continuing to the originally planned information V (tJ) based

on the observed (unblinded) estimated treatment effect. To ensure control of the overall

Type 1 error, we adjust the final critical value from zJ to z?J based on the current estimated

treatment effect θ̂ or interim test statistic Ẑ(tJ−1), and current information V (tJ−1) to

z?J = 1√
V (ζJ)


√
V (ζJ)− V (tJ−1)√
V (tJ)− V (tJ−1)

(
zJ
√
V (tJ)−

√
V (tJ−1)Z(tJ−1)

)
+
√
V (tJ−1)Z(tJ−1)



where we substitute Z(tJ−1) by the interim estimated Ẑ(tJ−1) statistic. The degree to which

the maximum statistical information is correctly specified is later seen to also affect the

degree of Type 1 error control.
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6.5.1 Flexible Procedures: Only Adjust when Adapting the Accrual Size

There are several challenges with the use of the CHW procedure. First, this requires under-

standing the information growth for the test statistics of choice. Second, when an adaptive

procedure is used, i.e., when we adapted to a new design, we need to know what is the original

maximum statistical information, V(tJ) of the original design. Thus, if the design protocol

is unclear, then we do not know what is the original design. Otherwise, following an interim

analysis, after we adapted to the new design, we no longer “observe” the original design. As

such, there is a need to prespecify what is the maximum statistical information of the original

design so as to implement the CHW approach. In particular, when the information growth

is highly nonlinear as seen in the previous section, this can give rise to misspecification since

we may not know the true censoring distribution or underlying survival in a clinical trial.

We first investigate the common claim in the adaptive literature [Mehta and Pocock,

2011] that one only needs to adjust using CHW for the adaptation when the “sample size” is

modified. We consider pre-specifying the statistical information V(t2) and only apply CHW

when the accrual is modified based on unblinded interim analysis. We also define the original

sample size of the design to be based on 1000 subjects. Thus, V(t2) is defined based on the

presumed accrual distribution, as well as underlying survival based on 1000 subjects.

When one does not adapt, V(t2) is equivalent to V(ζJ), and thus the naïve z2 can be used

as a critical value. However, when an adaptation is made to the accrual, the information

growth can be modified such that we may not have the precision to accurately estimate

what would have been the information growth had we not adapted. This difficulty is further

amplified by the non-linear behavior of the information growth for these weighted logrank

statistics.

Hence, we first consider the potential strategies to only adjust when we adapt. Then, we

investigate the consequences when V(t2) is not correctly estimated. The above two settings

are sufficient to characterize some issues with the adjustment procedure. We note that in

the Gρ family when γ = 0, the estimated information growth will always increase since the
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precision of S(t−) will improve with additional accrual of subjects into the trial.

6.5.1.1 Only Adjust when We Adapt the Sample Size; V(t2) is Correctly Speci-

fied

We use the mean of V(t2)True that is based on all the simulations and specify this as the

final statistical information for the original design to be used after an adaptation to increase

accrual size is made. At level α = 5%, we then compute the proportion of times the Z statistic

is rejected when all the total number of events are accumulated. With this procedure, there

will be times when the naïve critical value of zJ = 1.645 is used, and at other times z?J will be

used based on V(ζ2) and prespecified V(t2)True. In these settings, there is adequate control

of the overall Type 1 error after application of the adjustment procedure.

6.5.1.2 Only Adjust when We Adapt the Sample Size; V(t2) is Incorrectly Spec-

ified

We investigate whether the adaptive approach using CHW can control the overall Type 1

error at level α = 5% when V(t2) is incorrectly specified. We present the simulation results

where V(t2) was incorrectly specified for G1,0, G0,1, and G1,1. We refer to setting #5b to

illustrate the results since this most resembles the approach of the “promising” zone in the

adaptive literature. In particular, we specify V(t2)1000 for G1,0, G0,1, and G1,1 to be 110,

20, and 6.5 respectively. Had no design changes been made, the true average statistical

information V(t2) for each of the test statistics G1,0, G0,1, and G1,1 would be 82.5, 37.25, and

7.75 respectively.

The overall Type 1 error of α = 5% is not controlled everywhere when we only adjust the

critical value when an adaptation is made at an interim analysis to double the original total

sample size while presuming the naïve dJ at other times (Figure 6.8) . The G1,0 statistics

has an inflated Type 1 error when adaptations are made in the “promising” region. When

the ZLower is positive, the overall Type 1 error can be inflated as high as 5.6% (>10% higher

than the nominal Type 1 error on the relative scale). The G0,1 statistic is seen to be more
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Figure 6.8: Overall Type 1 error rate for the procedure where we only adjust when one makes
an adaptation, and incorrectly specify the maximum statistical information at design stage.

conservative than the nominal 5% when adaptations are made in the “promising” region.

The G1,1 statistic is borderline conservative.

These results indicate that the naïve concept of only adjusting when an adaptation is

made do not necessary hold true in general. In particular, when there is lack of precision in

accurately quantifying the information growth of our original design, and also choosing to

adjust when an adaptation is made, the CHW procedure does not offer the protection of the

overall Type 1 error as claimed. Worse still, when applying these weighted logrank statistics,
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the non linear and highly unpredictable behavior of the information growth gives rise to great

difficulty in accurately quantifying the statistical information when no adaptation is made.

6.5.2 Fully Adjusted Procedures

It thus seems that if we always adjust using CHW, we should ideally control for this uncer-

tainty involved when there is substantial variability in our test statistics when these weighted

statistics may be affected by the censoring distribution. We consider the ideal setting where

we “always” adjust for this unspecified adaptation regardless of whether an unplanned, un-

blinded adaptation was made to increase accrual (possibly decreasing accrual too).

We first investigate the scenario of always adjusting for the correct original statistical

information defined by the average V̂(t2) based on simulations regardless of adaptation. We

then relax this assumption and attempt to apply this procedure consistently even when this

prespecified VPrespecified(t2) is incorrect. In other words, when we do not change the course of

the design, i.e., we assume our original accrual size of 1000 and holding the total number of

events at 765, we adjust the critical value using CHW based on VPrespecified(t2) rather than

the observed V̂(t2). As such, it is possible that VPrespecified(t2) may be different from the

observed V̂(t2).

6.5.2.1 Simulation Results

The results for adjusting for the right V(t2) or original statistical information regardless of

an adaptation controls the overall Type 1 error. When this prespecified maximum statisti-

cal information VPrespecified(t2) is different from what was obtained (i.e., V̂(t2)) had we not

adapted, and we consistently adjust for what we prespecified (i.e., VPrespecified(t2)), this over-

all Type 1 error is also maintained. These results have direct implications when applying

the CHW procedure not only with these weighted logrank statistics, but also with many of

the other “less well-understood” analyses methods in the time to event setting. Because the

information growth in the survival setting is much harder to predict or quantify with these

“less well-understood” approaches, the concept of adaptation becomes more difficult when
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we cannot accurately predict information growth. Based on our explorations, unless we can

correctly quantify the statistical information when obtaining any number of events (such as

with the logrank statistics), the adjustment procedure of CHW has to applied regardless of

the analyses method of choice.

This approach of always adjusting based on the prespecified statistical information at

design stage when applying the procedure of CHW appears counter-intuitive. However,

the procedure of CHW can be interpreted as some average across all potential adaptations

that have occurred, as well as those that had not have occurred but may be considered. By

consistently adjusting for this imprecise (“incorrect”) but prespecified statistical information,

we are considerably adjusting for some form ancillary statistic that accounts for all potential

adaptations one would have imagined based on the unblinded interim results of the primary

endpoint. Thus, in some sense, we have accounted for potential adaptation choices that have

happened as well as those adaptations that did not lead us to increase/decrease accrual.

6.6 Summary

In this chapter, we demonstrated that the lack of understanding of information growth

can affect the degree of control of the overall Type 1 error when applying these adaptive

procedures to these “less well-understood” survival methods. When we want to emphasize

clinical importance and efficiently weight the survival curves at different times, we may

choose weighted statistics to gain power under these hypothesized alternatives. However, the

evaluation of the overall Type 1 error is typically performed under the strong null hypothesis

of proportional hazards. In the class of weighted logrank statistics, information growth is a

function of the censoring distribution, the entry distribution, and the number of events. Any

form of adaptive modification to only the censoring distribution thus has a direct impact

on the information growth of the family of weighted logrank statistics. Hence, by naïvely

presuming that the number of events is always a surrogate for information growth in general

time to event settings, this can result in undesirable inflation of the overall Type 1 error

when using the weighted statistics.
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Additionally, while we can apply the adaptive methods to adjust for such unblinded adap-

tations, the naïve claim of only having to adjust when an adaptation is made does not hold

true unless we can precisely quantify the entire information growth when an adaptation is

made, as well as when an adaptation is not performed. With weighted logrank statistics,

information growth lacks predictability when we modify our accrual. Thus, if we lack preci-

sion to estimating information growth, then we are no longer able to apply CHW efficiently

to help control for this unblinded adaptations. Such is true when we change accrual or even

change analysis methods. Application of adaptive designs in TTE studies using “less well

understood” survival analysis is much harder to implement in practice.

In summary, our investigation led to some interesting conclusions regarding the use of

adaptive methods in the time to event setting. So long as one cannot precisely quantify

the information growth for the weighted analysis, the CHW procedure should be applied

regardless of whether an adaptation is made in order to preserve the overall Type 1 error.

Additionally, investigators must also prespecify what is their predicted original statistical

information based on hypothesized accrual patterns under the null hypothesis to allow for

CHW to be applied. This means that even when we can/cannot precisely quantify the

maximum statistical information, we have to use this “imprecise” quantity to adjust using

CHW for consistency.

While the results of this section are obtained based on assumption of the strong null, later,

under time varying treatment effect, we may be interested in controlling our probability of

rejection under the weak null hypothesis. In these settings, the censoring distribution and

information growth are intricately tied together such that any form of interim analysis can

further lead to differential weighting of the survival curves with the use of logrank statistic.

Under such scenarios, we may no longer choose the (weighted) logrank statistics but other

test statistics may be favored.
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Chapter 7

Evaluation of Designs in the Setting of
Anticipated Crossing Survival Curves

In a time to event clinical trial, researchers may posit the possibility that survival curves

may cross at some time point. Logan et al. [2008] and Logan and Mo [2015] considered the

analysis of censored time to event data with the objective of detecting the “better” treatment

when crossing survival curves are quite plausible. We investigate the alternatives used by

Logan et al.’s composite statistics, and use simulations to assess how their test statistics

behave under the setting of non proportional hazards, both with stochastically ordered and

with potentially crossing survival. We further investigate the behavior of the alternative

test statistics as a function of the censoring distribution. We then examine how this may

impact any sequential designs, where a DMC may make an interim decision to stop the trial

early or adapt trial parameters based on unanticipated differences in survival. We find little

advantage to the use of Logan et al.’s proposed composite statistics over judicious choice

among the commonly used test statistics in the sequential survival setting.

7.1 Introduction

Both “well-understood” and/or “less well-understood” designs involve quantifying the infor-

mation growth at each interim analysis. To enable application of these procedures under time

varying treatment effects, it is crucial we understand some of the issues lingering with the use

of group sequential methods, because GSD is a special case of adaptive design. Of concern

in the time to event setting is that many of such methods are “less well-understood” or in-
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adequately characterized to enable understanding of application of these statistical methods

in planning a sequential study. The natural censoring that arises from the use of interim

analyses truncates the survival, potentially modifying the estimates based on any of the sta-

tistical methods, and most importantly, the rate of information growth. The theme in this

chapter is: How does censoring affect our knowledge of these interim estimates as well as the

information growth under the presumption of time varying treatment effects (such as might

be characterized in the time to event setting as non proportional hazards)?

We motivate this chapter based on the clinical setting taken from Logan et al. [2008]

with the objective of identifying the better treatment with the better survival by some fixed

time point as claimed in Logan et al. [2008]. Using the composite statistics introduced in

Logan et al. [2008] and subsequently extended by Logan and Mo [2015] to sequential testing,

we describe the scientific issues in this poorly characterized bivariate parameter space in

section 7.2. We evaluate their test statistics under the weak null hypothesis in the fixed

sample design framework. In section 7.3, we consider both stochastically ordered survival

distributions, as well as distributions having crossing hazards. We then return to investigate

the consequences of censoring on estimates of the treatment effect and information growth

in section 7.4.

In section 7.5, we note how the lack of guidance on the use of composite statistics may

present dilemmas whereby the DMC may not be able to reliably judge the trial using various

statistics. When unanticipated large differences in survival are observed early on during

DMC monitoring, the DMC may need to act on the emerging data to judge whether there

is equipoise. While approaches considered in section 7.5.1 can be used to recalibrate the

boundaries to circumvent such situations from occurring in the clinical setting, the lack of

understanding of some of these “less well-understood” analyses methods in the time to event

setting present as much issues with “less well-understood” adaptive designs. We conclude

with a summary of the issues to ponder upon during the design stage of the study and the

considerations that must be anticipated when dealing with any time to event driven trial

with sequential analyses.



185

7.2 Use of Composite Statistics

Using autologous vs allogeneic bone marrow transplantation as a motivating example in their

2008 paper, both Logan et al. [2008] and Logan and Mo [2015] argued that the treatment

with the greatest long term survival would generally be preferred. Logan et al. [2008] and

Logan and Mo [2015] proposed basing inference on a two-sided test based on a quadratic form

constructed from the joint distribution of an estimate of the survival curve at a pre-specified

time and a weighted log rank statistic that has zero weight assigned prior to the pre-specified

time under a fixed sample design. They recommended the use of two composite statistics

that might a priori be thought to provide greater power to distinguish such late differences

in survival in the fixed sample setting as compared to more commonly used approaches in

limited simulation settings. Subsequently, Logan and Mo [2015] extended their procedures

to the group sequential framework by proposing suitably normalized versions of the linear

composite statistics that have the desired “independent increments” property. Furthermore,

they demonstrated that their composite statistics beat other competing, and commonly used

test statistics in the sequential setting to test for “long term” survival benefit under specific

alternatives they constructed.

We find that insufficient characterization has been made in their description of the com-

posite statistic(s) as well as evaluating the operating characteristics in both papers. There

are key scientific and statistical issues with the use of their test statistics. Generally, the

lack of guidance on how to interpret the results based on their statistics, such as a point

estimate, or confidence interval, makes it difficult to quantify the effect of long term benefit

that is the objective in many randomized clinical setting. We describe some of the statistical

issues with interpretation of the parameter space with the use of the composite statistics.

We characterize the asymptotic properties of their test statistics using the distribution of the

Z statistic that has interpretation as standardized alternatives (Refer to Appendix F.1). In

summary, their statistics are truly directed towards crossing hazard functions than crossing

survival curves, and may mislead naïve clinical trialists when planning a time to event study.
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7.2.1 Composite Statistics

Logan et al considered application of the composite statistics that included an “appropri-

ately” calibrated sum of Nelson-Aalen and Log-rank test statistics to address a modified

null hypothesis, namely, a composite null hypothesis. The null hypothesis is stated as

H0 : S0(t) = S1(t),∀t ≥ τ0 where S1(t), S0(t) denote the survival curves at time t for

the treatment (1) and placebo (0) group, and τ0 denotes some prespecified time of poten-

tially crossing survival curves. They note that this null hypothesis is equivalent to testing

H0 : {S1(τ0) = S0(τ0)} ∩ {λ1(t) = λ0(t), t > τ0} = H01 ∩ H02 where λk(t) represents the

hazard function at time t for group k taking values 0 and 1. By formulating the hypothesis

as such, they thus considered testing the hypothesis of equality of survival curves at τ0, and

the hypothesis of no difference in hazard functions after time τ0.

Under H0, they formulated alternative test statistics such that H01 : S1(τ0) = S0(τ0) can

be tested using the standardized difference in Kaplan Meier estimates or the standardized

difference in Nelson Aalen estimate of the cumulative hazard. Then, the hypothesis H02 :

λ1(t) = λ0(t), t > τ0 can be tested using the left-truncated log-rank test statistic.

The “linear combination test statistic” is defined by ZOLS(τ0, t) = ZNA(τ0,t)+ZLR(τ0,t)√
2 . The

“quadratic test statistic” is defined by a sum of the squares of the individual components

of the linear test statistics such that χ2(τ0, t) = Z2
NA(τ0, t) + Z2

LR(τ0, t) at some fixed time

t. ZNA(τ0, t) is the Nelson-Aalen statistic computed from time 0 to the time of anticipated

crossing τ0 with the survival curves updated to time t for t > τ0. ZLR(τ0, t) is the truncated

logrank statistic computed from time of crossing τ0 to time t for all t > τ0. These two

statistics can be found as equation (5) and (7) from Logan et al. [2008] respectively.

Since events happening prior to τ0 are independent of events happening after τ0 under

noninformative censoring, ZNA(τ0, t) and ZLR(τ0, t) are thus independent and have joint

asymptotic bivariate normal distribution with mean vector 0 and variance-covariance matrix

Σ equivalent to the identity matrix. Using suitably normalized weighting which they found

most appropriate for the setting they are interested in, they proposed two composite test
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statistics with asymptotic distributions of the following

ZOLS = ZNA(τ0, t) + ZLR(τ0, t)√
2

∼̇ N (0, 1)

ZQuad = [ZNA(τ0, t)]2 + [ZLR(τ0, t)]2 ∼̇ χ2
2.

ZOLS has the analogous interpretation to the ordinary least squares statistic proposed by

O’Brien [1984] to accommodate multiple testing of endpoints. Logan et al. [2008] recommend

in particular the quadratic test as an omnibus test against various simulation setting explored

in their paper while favoring also the ZOLS to have better power to identify the better

treatment.

7.2.1.1 Under local alternatives

Under some local alternatives, appealing to asymptotic normality, we note that the individual

components of the composite statistics can be represented in the following:

ZNA ∼̇ N (θNA/
√
VNA, 1) ∼= Z2

NA ∼̇ χ2
1(δ2

NA = θ2
NA/VNA)

ZLR ∼̇ N (θLR/
√
VLR, 1) ∼= Z2

LR ∼̇ χ2
1(δ2

LR = θ2
LR/VLR)

ZNA(τ0, t) ∼̇ N (δ1, 1)

ZLR(τ0, t) ∼̇ N (δ2, 1)

where VNA, VLR denote the variance of the Nelson-Aalen estimator and the variance of the

logrank statistic respectively.

We shall refer to δ1, δ2, δ, δNA, δLR as standardized alternatives since they are a function

of the parameter of interest and the precision of the parameter of interest. This standardized

notation is later of interest for characterizing the time varying treatment effect for comparison

with other time to event analyses methods.
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The composite statistics thus have asymptotic distribution of the form

ZOLS = ZNA(τ0, t) + ZLR(τ0, t)√
2

∼̇ N
(
δOLS ≡

δ1 + δ2√
2

, 1
)
∼= χ2

1(δ2
OLS)

ZQuad = [ZNA(τ0, t)]2 + [ZLR(τ0, t)]2 ∼̇
∑

i={NA,LR}
(Zi + δi)2 ∼= χ2

2(δQuad = δ2
1 + δ2

2)

7.2.2 Scientific Interpretation with the Use of Composite Statistics

To describe the scientific issues with the use of the composite statistics, we consider the

comparison of two treatments groups, A and B, and let τ0 to be some anticipated time of

potentially crossing survival curves. The null hypothesis HL
0 = HNA

0 ∩HLR
0 is the intersection

of:

• HNA
0 : SA(τ0) = SB(τ0) (which is tested using ZNA(τ0, t) based on the Nelson-Aalen

estimate of the cumulative hazard functions), and

• HLR
0 : λA(t) = λB(t), ∀t ≥ τ0 (which is tested using ZLR(τ0, t) based on a log rank

statistic that places no weight prior to time τ0 and equal weights to failure times

thereafter).

There are interpretation issues with the use of the composite statistics by Logan et al.

[2008]. In their paper, they concluded that their test is suitable as a two-sided test to obtain a

“p-value” as evidence against the strong null hypothesis. However, when the objective of the

main paper was to “identify the better treatment”, we would tend to prefer a one-sided test in

order to determine the better treatment. Secondly, the comparison of survival curves based

on Logan’s hypotheses is conditional upon the fact that the crossing is correctly anticipated.

Additionally, the authors have failed to provide adequate guidance on the interpretation of

the test statistics when this presumed crossing of survival curves may not be real.

To better delineate the issues mentioned above, we examine the sample space for which

each component of the composite statistics by defining the following notations HT
K where T
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denotes the test type (NA or LR), and K to represent the treatment that is better and takes

values A,B, or 0 where 0 indicates that treatment A and B are not different.

For comparisons of survival probabilities at τ0:

• (treatment B is better) HNA
B : SA(τ0) < SB(τ0), and

• (treatment A is better) HNA
A : SA(τ0) > SB(τ0).

For comparisons of hazards after τ0:

• (treatment B is better) HLR
B : λA(t) ≥ λB(t); ∀t ≥ τ0 with λA(t) > λB(t) for some

t > τ0, and

• (treatment A is better) HLR
A : λA(t) ≤ λB(t); ∀t ≥ τ0 with λA(t) < λB(t) for some

t > τ0.

We now consider the clinical interpretation of the various hypotheses. Note that our

nomenclature is such that the parameter space is only partially ordered by these hypotheses:

• HNA
0 and HLR

0 are the strong null hypothesis

• HNA
0 , HNA

A , and HNA
B partition the parameter space for (SA(τ0), SB(τ0)).

• HLR
0 , HLR

A , and HLR
B do not partition the parameter space for (λA(t), λB(t)) for t ≥ τ0,

as it is unclear which treatment might be preferable if hazards cross after time τ0.

• We definitely prefer treatment A if (HNA
0 and HLR

A ), or (HNA
A and HLR

0 ), or (HNA
A and

HLR
A )

• We definitely prefer treatment B if (HNA
0 and HLR

B ), or (HNA
B and HLR

0 ), or (HNA
B and

HLR
B )

However, for other combinations of the hypotheses, it is more difficult to characterize the

preference, and in fact HLR
A , HLR

0 , and HLR
B do not partition the parameter space following τ0,

because we could have crossing hazards. Nonetheless, the above are sufficient to explore the

issues we find with the combination statistics in practice. Table 7.1 shows the hypotheses

that result in crossing hazards and the possible conclusions from the use of the bivariate

statistics on the outcome space.
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Table 7.1: A tabular summary of the potential conclusions one can draw from this partially
ordered sample space where we presume monotonic hazard ratio after τ0.

HLR
0 ∀t > τ0

λA(t) < λB(t) λA(t) = λB(t) λA(t) > λB(t)

H
N
A

0

SA(τ0) < SB(τ0) Inconclusive1 Treatment B Treatment B
SA(τ0) = SB(τ0) Treatment A Inconclusive Treatment B
SA(τ0) > SB(τ0) Treatment A Treatment A Inconclusive2

1,2 represents the scenario whereby we have crossing hazards.

The authors have constructed a sample space that is ultimately ordered by choosing one

of their univariate composite statistics. We find it more important to consider our clinical

preference for treatments in the partially ordered space defined using the two hypotheses

above, namely, HNA
0 : SA(τ0) = SB(τ0), and HLR

0 : λA(t) = λB(t), ∀t ≥ τ0 respectively. Ac-

cording to the authors, the hypothesis can be tested by considering appropriately calibrated

combinations of a linear or quadratic statistic, ZNA(τ0, t) or ZLR(τ0, t), in order to compare

survival curves at some pre-specified time τ0, and hazard functions after time τ0.

In the context of their problem, their composite statistics appear to rely on the as-

sumption as specified before the trial. However, it is possible to have stochastically ordered

survival curves over time such that treatment A is always better than treatment B, and have

the composite test statistics instead favor treatment B with high probability.

We note that such partitioning of the parameter space as seen in Table 7.1 covers four

quadrants in the real space where the x-axis describes the standardized alternatives of the

Nelson-Aalen statistic δ1, and the y-axis represents the standardized alternatives of the

truncated logrank statistic δ2. In this parameter space, Quadrant I and III are consistent with

the standardized alternatives pointing in the same direction, thus consistently identifying

either treatment A, or B as the better treatment. On the other hand, Quadrant II and

IV represent regions where the directions of the standardized alternatives are not in the

same direction, thus leading to uncertainty regarding a conclusive identification of the better
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treatment. More details about these standardized alternatives are described in terms of the

probability of rejecting the null hypothesis in the Appendix F.1.

7.2.3 Naïve Interpretation of the Composite Statistics

One naïve interpretation of the test statistic is to presume that the sign of ZOLS conveys the

direction of the treatment effect. Note that the cumulative hazard Λ(t) = − logS(t). Then

− log[SA(τ0)] − {− log[SB(τ0)]} = ΛA(τ0) − ΛB(τ0) compares the difference in cumulative

hazards at time τ0.

• When ZOLS < 0, we might (naïvely) presume that the cumulative hazard prior to time
of crossing at τ0 for treatment group A and the integrated weighted hazard past τ0 is
less than that of treatment group B. Thus, A is the preferred treatment.

• When ZOLS > 0, we might (naïvely) presume that the cumulative hazard prior to time
of crossing at τ0 for treatment group B and the integrated weighted hazard past τ0 is
less than that of treatment group A. Thus, B is the preferred treatment.

However, even with this naïve interpretation that appears “consistent” with how the test

statistics behave, this interpretation can be problematic. We now discuss the issues with the

use of composite statistics under several non proportional hazards settings not considered

in either Logan et al. [2008] or Logan and Mo [2015] in the FSD and sequential settings

respectively.

7.3 Issues with the Use of Composite Statistics in the Fixed Sam-
ple Setting

In this section, we investigate Logan’s composite statistics in the fixed sample setting. Recall

in section 3, an adaptive design can be chosen to either expand the study based on a FSD

or modify the maximum statistical information based on a group sequential design. In some

sense, Logan et al’s test statistics can be interpreted as an adaptive switching of the test

statistics in the fixed sample setting. It is thus of use to investigate any potential issues

with the use of Logan’s composite statistics in such settings. If statistical issues related to



192

interpretation of results, or quantifying the level of evidence cannot be resolved in the fixed

sample setting, then the use of the composite statistics will be expected to pose similar issues

when extended to the group sequential setting.

7.3.1 Simulation Study Setup

Our main objective is to identify the treatment with the better survival based on the use

of the test statistics. Thus, we want to have some form of summary measure at the end

of the study that would quantify the evidence in favor of, or against a treatment strategy.

We conducted a simulation study to describe the shortfalls of the composite statistics, and

the issues pertaining to interpretation. We present summary statistics as well as the less

commonly used test statistics in the fixed sample setting. We let τ0 = 2 to be the anticipated

time of potentially crossing survival curves. For simplicity, we assumed that patients were

immediately accrued in the fixed sample setting.

We simulate our survival curves based on some mixtures described as follows: Denote

M ∼ Bernoulli(π) to be the random variable that characterizes the mixture of exponential

survival distributions after being assigned randomized treatment (either treatment A or B).

After being randomized to treatment k = {A,B}, the survival time for a patient has some

probability π of coming from the distribution corresponding to M = 1 with exponential

rate λ1
k, and probability 1 − π coming from the distribution corresponding to M = 0 with

exponential rate λ0
k. Thus, our survival time distribution based on the following mixtures of

exponential distribution can be described as follows

fk(t) =


λ1
k exp(−λ1

kt) M = 1 with probability π

λ0
k exp(−λ0

kt) M = 0 with probability 1− π

For each mixture M = {0, 1}, denote the hazard ratio (Λk for k = {A,B}) between

each treatment group to be λ1
A = Λ1λ1

B and λ0
A = Λ0λ0

B. The expected survival at time

t, SA(t), for any patient in the control group is π exp(−λ1
At) + (1 − π) exp(−λ0

At). Sim-
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ilarly, the expected survival at time t, SB(t), for any patient in the treatment group is

π exp(−λ1
Bt) + (1 − π) exp(−λ0

Bt). This general formulation can allow us to simulate both

the proportional hazards and non-proportional hazards setting. For the proportional hazards

setting, it suffices to set either π = 0 or 1 so that the simulated survival distribution will

always come from one of the pair of mixtures. Extension to mixtures of Weibull distributions

are described in Appendix F.3 for more flexible survival curves.

We simulated 10,000 survival curves as shown in Figure 7.1 where I corresponds to the

stochastically ordered survival curves without true crossings, and II for crossing survival

curves. The hazard functions for both simulated scenarios cross approximately at year 0.5.

Furthermore, in our simulated setting, although our true survival curves for I are stochasti-

cally ordered over the period of 5 years, the estimated survival curves will appear to cross

with a probability arbitrarily close to 50%. At the calendar time of analyses, we censor the

survival time for all subjects under the immediate accrual or uniform accrual setting. We

compute summary statistics based on the 10,000 simulation: the total number of events,

number of events in each treatment group, the estimated hazard ratio based on the logrank

statistic with treatment group B as the reference group (HRRef:B), the estimated restricted

mean survival for each treatment group, and the estimated survival probability at each cal-

endar time. In addition, we compute the total number of events, number of events in each

treatment group after this prespecified time of crossing, τ0 = 2. We then compute the number

of survival curves that are observed to have crossed by τ0, i.e., ŜA(t) > ŜB(t) for t > τ0.

We can further compute the following test statistics at the end of the trial: the logrank

statistics at time 5 (LR), the Nelson-Aalen at time 5 (NA), the restricted mean statistics at

time 5 (RMS), the Nelson-Aalen at τ0 based on all the data collected up to time 5 (NA(τ0, t)),

the left truncated logrank statistic restricted to data after τ0 (LR(τ0, t)), the linear composite

statistics (OLS), and the quadratic statistic (Quad).
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Figure 7.1: (I) Simulated scenario under the setting where our survival curves are stochasti-
cally ordered without true crossings over the first five years. However, spurious crossings are
observed based on a random sample of 1000 simulations. The hazard ratio are (Λ1,Λ0) =
(4, 0.01). The hazard rate for each treatment group are (λ1

B, λ
0
B) =

(
−log(0.04)

2 , −log(1−5e−13)
5

)
with respective mixing probability {π1, π0} = {0.515, 0.485}. (II) Simulated scenario un-
der the setting where our survival curves are truly crossing within the first five years. The
corresponding hazard functions for the simulated survival curves are presented in the right
column.
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7.3.2 Simulation Results for Stochastically Ordered, Crossing Hazards Survival

Curves

We describe results for immediate accrual setting for setting (I) to investigate how the test

statistics behave when there is only administrative censoring at time of analysis. Additional

results for stochastically ordered with crossing hazards with uniform accrual, and simula-

tion settings for crossing survival curves (both censored and uncensored) have also been

investigated and are in Appendix F.2.

7.3.2.1 Descriptive Statistics

Under immediate accrual (based on 10,000 simulations each with 1000 subjects per treatment

group), on average, a total of 1030 events are observed by year 5 with an equal number of

events seen in either treatment group A or B (Table 7.2). By analysis time 2, there are more

events observed in treatment group A as a consequence of the high hazard we imposed at

earlier survival times.

Based on our simulations, we observed that 17.2% of the time, a crossing in survival

curves is observed at time 2 such that treatment A has an estimated survival probability

better than treatment B, i.e., ŜA(2) > ŜB(2) and ŜA(1) < ŜB(1) . This probability of

crossing increases to 48.4% by analysis time 5 . In addition, the estimated survival curves

are approximately equal by t = 2.

Based on our simulated setup, all the events that occurred after the time of crossing now

accumulate in treatment B group as a consequence of its higher hazard. Despite that, our

estimated hazard ratio consistently concludes that B is the better treatment at each calendar

time of analyses. On average, the difference in survival probability(group B vs group A) at

time 2 decreases from 0.021 to 0.0002 by calendar time 5, favoring group B earlier on with

this advantage to diminish at later calendar time. However, the use of the 5-year restricted

mean statistics pointed to sufficiently large survival benefit in terms of 0.22 years saved by

being in the treatment A group. This difference (∼ 0.24) is consistently observed across all
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the calendar time.

Table 7.2: Summary statistics based on 10,000 simulations under immediate accrual where
(@) survival curves are stochastically ordered without true crossings over the first five years
with treatment group B being the preferred treatment in terms of survival probability at all
time. Descriptives are presented in the format mean (standard deviation).

Stochastically ordered survival curves@

t = 1 t = 2 t = 3 t = 4 t = 5

Total number of events 926 (22) 1010 (22) 1026 (22) 1030 (22) 1030 (22)
Events (B vs A) 412 vs 514 495 vs 515 511 vs 515 514 vs 515 515 vs 515

Number of events ≥ τ0 - - 17 (4) 20 (4) 20 (5)
Events (B vs A) - - 17 vs 0 20 vs 0 20 vs 0

HRRef:B(± logSD) 1.58 (0.066) 1.30 (0.064) 1.26 (0.063) 1.25 (0.063) 1.25 (0.063)
RMSA(t)‡ 0.44 (0.010) 0.93 (0.026) 1.41 (0.042) 1.90 (0.058) 2.38 (0.074)
RMSB(t)‡ 0.59 (0.008) 1.15 (0.022) 1.65 (0.036) 2.14 (0.051) 2.62 (0.066)
ŜA(t) 0.4856 (0.02) 0.4848 (0.02) 0.4848 (0.02) 0.4848 (0.02) 0.4848 (0.02)
ŜB(t) 0.5880 (0.02) 0.5055 (0.02) 0.4890 (0.02) 0.4856 (0.02) 0.4850 (0.02)
% of ŜA(t) > ŜB(t)† - 17.2 41.4 47.2 48.4

†: Percentage of times a crossing is observed.
‡: The restricted mean statistic is truncated to 3 months just prior to the calendar time t.

7.3.2.2 Test Statistics

It is also important to point out the lack of power in the use of the Nelson-Aalen test to

detect a 0.02 difference in survival probability at this prespecified crossing time. Based on

our significant results obtained at time 5, we stratify these results at time 5 based on those

survival curves that have crossed by time 2 vs those that have not crossed at time 2. In this

case, 17.2% of them have crossed by time 2. Among those that crossed at time 2, only 1.38%

of them conclude that treatment A is statistically significantly better than treatment B (24

in favor of A out of 1723 crossing in Table 7.3). Furthermore, among those survival curves in

which a crossing is not observed at τ0 = 2, the Nelson-Aalen test (NA(τ0, 2)) concludes that

treatment B is statistically significantly better than treatment A 18.9% of the time (1564

out of 8277). This indicates that the Nelson-Aalen test does not have high power to detect

a difference in survival at time of prespecified crossing.
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Table 7.3: Table of the statistically significant results at level α = 2.5% based on 10,000
simulations under the setting where survival curves are stochastically ordered without true
crossings over the first five years under immediate accrual of subjects. The columns, A and
B, indicate the total number of times the test statistic concludes the trial in favor of the
treatment arm. Note that analyses are conducted on the calendar time.

Analyzed at time 5 Crossing at time 2 Crossing by time 5

Crossing No Crossing Crossing No Crossing
Overall ŜA(2) > ŜB(2) ŜA(2) < ŜB(2) ŜA(5) > ŜB(5) ŜA(5) < ŜB(5)

sig in favor of n= 1723 n= 8277 n= 4836 n= 5158

Statistic Sig A B A B A B A B A B
ZLR 9403 0 9403 0 1127 0 8276 0 4239 0 5164
ZNA 520 279 241 279 0 0 241 279 0 0 241
ZRMS 6816 0 6816 0 0 0 6816 0 1653 0 5163

ZNA(τ0, t) 1588 24 1564 24 0 0 1564 24 0 0 1564
ZLR(τ0, t) 10000 10000 0 1723 0 8277 0 4836 0 5164 0

ZOLS 7394 7394 0 1723 0 5671 0 4832 0 2562 0
Z∗∗Quad 9994 9994 1723 8271 4836 5158

Crossing at time 2 is defined as ŜA(2) > ŜB(2) and ŜA(1) < ŜB(1).
Crossing at time 5 is defined as ŜA(5) > ŜB(5) and ŜA(1) < ŜB(1).
∗∗: Direction of the quadratic test is selected based on OLS’s direction.

Using a 1-sided level α = 0.025 , our overall unweighted log-rank test detects a statistically

significant difference in survival between the two treatment groups 94.4% of the time and

concludes in favor of treatment B. The average hazard ratio comparing A with respect to B is

1.25 (± log SD = 0.063). However, the use of the (weighted) log rank test that is restricted

to the “clinically meaningful” time interval, τ0 and t = 5, detects a significant difference

100% of the time. A naïve user using the results based on this truncated logrank test may

interpret the number of events arising from treatment B to perhaps conclude that treatment

A past τ0 is better than treatment B!

7.3.3 Interpretation in Terms of Preferred Treatment

Suppose we naïvely assume that for all the test statistics described in Table 7.3, the direction

of the test statistics indicates the preferred treatment. In other words, the log-rank test

statistic (LR) and the restricted mean statistics (RMS) both conclude with probability of
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94.0% and 68.2% that treatment group B is the preferred treatment with lower average

hazard and higher average years of life saved respectively. The Nelson Aalen test statistic

concludes 2.4% of the time that there is a difference in survival probability with B being the

preferred treatment. The survival probability of being on treatment B is on average higher

than the survival probability when randomized to treatment group A.

Both the linear and quadratic combination tests reject the composite null hypothesis with

high statistical significance. However, the directionality of the quadratic test is lacking but

rejects the composite null hypothesis almost 100% of the time based on level α = 0.05, with

a crossing in estimated survival curves observed approximately 50% of the time. Note that

while the linear combination test does not have such high probability of rejecting the null

composite hypothesis, the direction of the test statistics concludes that treatment group A

has lower hazard as compared to treatment group B.

When we further examine the number of statistically significant survival curves that

crossed by year 5, all 48.36% of the observed crossings by year 5 conclude A as the preferred

treatment. This is despite the fact that only 5.8% (279/4836) of them were significantly in

favor of A based on Nelson-Aalen test statistic conducted at year 2. By construction, as a

consequence of this spurious crossing, the OLS statistic significantly rejects the (composite)

null hypothesis almost 100% of the time, making a Type 1 error of at least ≈ 48% of the

time.

7.3.4 Issues with Lack of Guidance for Clinicians

If the Nelson-Aalen test statistic at τ0 = 2 is not statistically significant, a naïve researcher

using the composite statistics might erroneously assume that SA(2) = SB(2). However,

because at time 5, ŜA(5) > ŜB(5) and with ZLR(2) being highly statistically significant,

the researcher may assume that λA(t) < λB(t) when ŜA(2) > ŜB(2) since the crossing has

already occurred by time 5. Hence, by concluding that the long term survival at time of

analysis, t = 5, is better for treatment A rather than for B.

However, on the other hand, if ZNA(2) is statistically significant in favor of treatment B
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but that the weighted log rank statistic ZLR(2, 5) concludes in favor of B, the naïve researcher

might be smart enough to realize that the ZLR(2, 5) is non-diagnostic. For anyone using the

above statistics, a naïve researcher will make a type I error of ≈ 49% of the time based on

what we observed in our simulations. In observing an extremely low hazard for treatment

group A past τ0, it is incorrect to infer and extrapolate that this continuing high hazard

ratio (comparing B relative to A) would necessarily lead to crossing survival over the time

frame of interest.

7.4 Impact of Censoring on the Treatment Effect (Finite Follow-
up)

With sequential sampling, interim analyses are conducted when part of the survival distri-

bution is obtained and/or in presence of incomplete patient accrual. We investigate the

impact of censoring on the estimates of the treatment effect in the finite follow-up setting

for the various time to event analysis method described in Chapter 4. We assume patients

are administratively censored at the time of interim analyses.

Characterizing this time varying treatment effect under the setting of non PH is more

challenging when the different test statistics are estimating different quantities across time.

For example, when using the logrank statistic, this estimate of the treatment effect as rep-

resented using the hazard ratio is no longer interpretable since we are averaging over risk

sets that change over time. When using other test statistics that may be capturing other

aspects of the contrasts of functionals, then the estimates of the treatment effect are no

longer comparable.

To mitigate this problem, we consider a naïve approach in the context of sequential

sampling and provide more details in section 7.4.1. In summary, with sequential sampling,

for some local alternative δ, at some analyses time t, these Z statistics on the “standardized

scale” are asymptotically N (δ, 1). Since the planning of sequential rules can be planned

on various scales that are 1-1 functions of each other as described in section 2.2, it makes

natural sense to characterize this time varying treatment effect based on the “standardized
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alternative” as represented on the Z statistics scale under both proportional hazards and

non proportional hazards settings.

7.4.1 Standardized Alternatives

Consider the sample size formulation in section 2.1. Our sample size for each group can be

determined based on some given level α, and statistical power β, to discriminate between

H0 : θ ≤ θ0 vs the alternative of interest HA : θ ≥ θA using the general formula

N = (z1−α + zβ)2V

(θAlt − θ0)2

where zp denotes pth quantile of a standard normal distribution for p ∈ (0, 1), and V is the

variance contributed by a single sampling unit. Note that

θAlt − θ0√
V/N

2

= (z1−α + zβ)2

The LHS can be interpreted as our usual standardized Z statistic which is asymptotically

distributed with δ = z1−α + zβ and variance 1.

Table 7.4: Table of standardized alternatives δ for various β while holding fixed α = 0.025
(z1−α = 1.96), N = 1, and V = 1.

zβ δ

-1.96 0
0 1.96

1.28 3.24
1.96 3.92

In particular, we may make the following interpretation. When holding fixed N = 1 = V

and α = 0.025, then Z = 3.24 = δαβ. We may interpret that a constant treatment effect
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across time will tend to attain this power of β as we accrue more statistical information

across time. We will use the Z statistic to describe our standardized alternatives for the

various test statistics computed so as to characterize the time varying alternative. Some

values of Zβ and the standardized alternative δ are as shown in Table 7.4.

7.4.2 Description of Simulation Setup

In this section, we regard these test statistics, namely, Nelson-Aalen test (ZNA(t)), logrank

test (ZLR(t)), and the restricted mean statistics (ZRMS), as commonly used statistics. Ad-

ditionally, we describe the composite statistics based on Logan to consist of the following:

Nelson-Aalen test at time of crossing (ZNA(τ0, t)), truncated logrank statistic after antic-

ipated time of crossing (ZLR(τ0, t)), linear composite statistic (ZOLS), and the quadratic

statistic (ZQuad) We prespecify τ0 = 2 to denote the anticipated time of crossing survival

curves for Logan’s statistics.

We parameterize positive values of the Z statistic to be consistent with the treatment

being superior over the placebo at the interim analysis of time 1. For the restricted mean

statistic, we computed the standardized difference in the area under the survival curve for

the experimental treatment arm with respect to the placebo arm and define our support from

0 up to t − 3. We take the square root of the χ2 statistics to represent our “standardized

alternatives” for the quadratic composite statistics. We set the critical value as Φ−1(1− α),

with α = 0.025 for comparison with all test statistics except for the quadratic statistics

where we use the square root of χ2
2,1−2α. All standardized alternatives Z are averaged over

10,000 simulations.

We presume accrual of subjects uniformly (q = 1) over various accrual periods (A =

2, 3, 4) to characterize the degree of censoring that will affect these standardized alternatives

based on equation 6.1. The immediate entry setting is used to characterize the setting with

only administrative censoring at time of analyses. We analyze the data at calendar time t

at 1, 2, 2.75, 3.5, 4.25, and 5 to describe the trends of the standardized alternatives across

time.
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7.4.3 Proportional Hazards Alternatives

Without loss of generality, we simulate true survival distributions from a Weibull distribution

with common shape parameter of 0.5 for both groups, and “mean” parameter corresponding

to 5.467002 and 11.48289 for the placebo (black) and treatment group (blue) respectively (left

column of Figure 7.2). 10,000 simulations were performed under these proportional hazards

alternatives and we computed the mean of all the Z statistics at each interim analysis and

show the estimates on the right column of Figure 7.2. They are then plotted over time

where the x-axis corresponds to the timing of the interim analysis. The thick solid black

lines on the right corresponds to the immediate entry scenario, with increasingly lighter

shades of blue (from dark blue to light blue) to represent increasing accrual over a longer

period of time (from 2 to 4). The thin red lines corresponds to the critical value based on√
χ2

2,1−α = 2.447747 (dashed), Φ−1(1− α/2) (dash-dotted-dash) and the x-axis (dotted).

In the absence of censoring, under proportional hazards, each of the commonly used

test statistics are consistently estimating the same ordering of survival curves over time.

The average of the estimated Z statistics for all three commonly used test statistics are

consistently favoring treatment over placebo and estimating the same functional of survival

curves across analyses time. Logan’s statistics also consistently favor the treatment over

placebo. However, with the left truncated logrank statistic, this average of the Ẑ quantity

is weaker as a consequence of the truncation.

In presence of censoring as reflected by staggered accrual, each of the commonly used

statistics is estimating the same quantity with more variability. At early interim analyses,

these estimates are often attenuated away from the solid line. The Nelson-Aalen estimator

behaves differently under staggered entry and the estimates do not converge to the solid lines

even at the end of the analyses, indicating that censoring can impact the average estimate of

the results with ZNA. However, the general behavior is consistent in terms of the ordering of

the survival curves, reassuring us that under the PH setting, comparison of survival curves

via any of the methods (including the composite statistics) will yield similar conclusions,
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with differences in overall power depending on the efficiency of the test statistics under PH.

The OLS statistic, a weighted average of the Nelson-Aalen at time of crossing and the left

truncated log rank statistic, has the average of the estimated Z being partway in between

the Nelson-Aalen at time of crossing and truncated log rank test. The precision of these

estimates of OLS is dependent on the sample size of the study. The OLS appears to be

consistent in terms of estimating alternatives under PH which comprises of the NA(τ0, t)

and the left truncated logrank statistic. In comparison with the commonly used statistics,

the mean Ẑ is also estimating the same functional consistently under PH.

The information growth for the various test statistics is presented in Table 7.5. In general,

with censoring, the rate of information growth is expected to decrease when we extend the

calendar time of accrual. Under the proportional hazards setting, this amount of information

growth for the logrank test statistic is relatively close to the average of the number of events

divided by the total average at calendar time 5. Under the censored setting, this rate of

information growth decreases as we extend the accrual period. Consequently, the maximum

statistical information also decreases.

Consider the information growth of the Nelson-Aalen test restricted to time τ0 and the

truncated log-rank test statistics after time τ0 that are each calibrated to its own respective

maximum statistical information on the “score” scale. The Nelson-Aalen test, NA(τ0, t),

typically obtain its maximum statistical information much earlier relative to time 5. With

censoring, this can more or less control this information growth but requires the accrual to

be sufficiently long to obtain complete characterization by time 5. The LR(τ0, t) behaves

differently in terms of magnitude and the growth of statistical information. With censoring,

this drastically affects the total number of events coming in after τ0 that can be used to

estimate the statistical information, because events prior to τ0 are not counted towards the

test statistic. When this accumulation of events after τ0 is slow, the information growth is

thus slower and possesses more variability. As such, when all the data is analyzed by time 5,

the truncated logrank statistic may not have attained the maximum statistical information,

i.e., participants may not have complete followup between τ0 and 5. This can lead to differ-
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ent amounts of information contributed by each component of the test statistic, leading to

difficulties in calibrating the individual components when considering weighted versions of

the information growth of these test statistics as described in Logan and Mo [2015].
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Figure 7.2: Survival curves and plot of standardized alternatives for proportional hazards
survival curves under various accrual patterns and interim analyses for n = 600 and 1000.
The average standardized alternatives Ẑ are consistently positive (respectively in quadrant
I) for the commonly used or composite statistics.
LR: Overall logrank statistic conducted at time t.
NA: Nelson-Aalen test statistic at time t.
RMS: Restricted mean statistics conducted at time t− 0.25.
LR(τ0, t): Truncated logrank statistic up to time t starting at time τ0.
NA(τ0, t): Nelson-Aalen test conducted at time t restricted to time τ0.
OLS: Linear composite statistics.
Quad: Quadratic test statistics.√
χ2

2,α: line corresponding to the square root of the critical value based on the χ2
2 at α = 0.05.

Φ−1(z1−α/2): line corresponding to the critical value based on the standard normal.
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Table 7.5: Average information growth under proportional hazards for the various test statis-
tics and the average number of events at each calendar time. The information growth con-
ducted on the calendar time is affected by censoring even for the log rank statistics under
constant treatment effect across time. The maximum statistical information is affected by
censoring. Because the Nelson-Aalen test at τ0 = 2 generally obtain all statistical infor-
mation when accrual is complete at the time of crossing. Since this depends on the accrual
patterns, we see that this information growth is different with respect to the logrank statistic.

Statistic Accrual t = 1 t = 2 t = 2.75 t = 3.5 t = 4.25 t = 5 Î5

Imm 180.97 238.31 268.29 292.27 312.35 329.55
Events (t) 2.00 63.19 169.12 222.58 257.04 283.50 305.09

3.00 42.12 112.74 176.24 230.88 264.16 289.61
4.00 31.59 84.65 132.24 184.83 237.28 270.21

Imm 29.98 53.96 74.04 91.24
Events 2.00 5.83 21.76 45.19 66.78
(τ0, t) 3.00 3.90 14.47 30.59 51.30

4.00 2.93 10.87 22.92 38.47

ZLR

Imm 55.18 72.57 81.62 88.84 94.86 100.00 81.85
2.00 20.73 55.59 73.13 84.39 93.00 100.00 75.84
3.00 14.51 38.97 60.96 79.84 91.28 100.00 72.02
4.00 11.63 31.31 48.95 68.45 87.86 100.00 67.21

ZLR(τ0, t)

Imm 33.00 59.31 81.26 100.00 22.45
2.00 8.67 32.56 67.69 100.00 16.44
3.00 7.50 28.12 59.58 100.00 12.62
4.00 7.47 28.11 59.49 100.00 9.45

ZNA(τ0, t)

Imm 100.00 100.00 100.00 100.00 100.00 224.12
2.00 43.17 80.83 97.60 100.00 100.00 224.12
3.00 31.00 59.09 83.41 96.41 100.00 224.12
4.00 25.79 46.81 68.20 87.94 100.00 213.32

ZLR: Overall logrank statistic conducted at time t.
ZNA(τ0, t): Nelson-Aalen test conducted at time t restricted to time τ0.
ZLR(τ0, t): Truncated logrank statistic.
Imm refers to immediate accrual.
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7.4.4 Non Proportional Hazards with Stochastically Ordered Survival Curves

Previously, in section 7.3, we evaluated the composite statistics in the fixed sample setting

under stochastically ordered, crossing hazards scenario when patients are accrued immedi-

ately. We now describe the impact of censoring on the estimated standardized alternatives

as well as the information growth in presence of this time varying treatment effect. Other

scenarios are investigated in Appendix F.3.2 where we (1) varied this probability of survival

at analyses time 5 from 90% (Figure F.6) to 10% (Figure F.7), (2) survival curves that

diverge (Figure F.11), and (3) survival curves where this long term benefit diminishes at

different survival times (Figure F.8, F.9, and F.10). Of interest here is the setting when this

long term benefit diminishes.

In the absence of censoring (as defined by immediate accrual of subjects), the commonly

used test statistics are now estimating different standardized alternatives over time (Fig-

ure 7.3). The overall LR test ZLR and the restricted mean statistic ZRMS both account for

the entire history of the survival curves and are “consistent” in concluding the experimental

treatment arm to be better relative to the placebo arm. Even though the PH assumption

is violated under the weak null and under alternatives using the LR test, the stochastically

ordered survival curves allow the LR test to consistently estimate the standardized alterna-

tive and to conclude that the experimental treatment to be better. However, in presence of

censoring, the magnitude of the ẐLR is attenuated. This is similar for ẐRMS and can have

implications when we later implement sequential monitoring.

On the other hand, the Nelson Aalen test, ẐNA, is targeted towards identifying whether

there is a difference in survival across different analyses time. Thus, if the long term treatment

effect was of interest, then the overall Nelson-Aalen test at time 5 (as shown by the unshaded

diamonds in the plot titled “Common Statistics”) will be the right test to use since this

standardized alternative is close to 0 and should ideally be rejecting the null hypothesis close

to level α. The choice of which test statistics to use then depends on the scientific interest

and whether the survival at time 5 is clinically relevant or the entire survival experience is
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more relevant.
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being “better” at all times from 0 to 5 relative to placebo.
LR: Overall logrank statistic conducted at time t.
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LR(τ0, t): Truncated logrank statistic up to time t starting at time τ0.
NA(τ0, t): Nelson-Aalen test conducted at time t restricted to time τ0.
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Quad: Quadratic test statistics.√
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2,α: line corresponding to the square root of the critical value based on the χ2
2 at α = 0.05.

Φ−1(z1−α/2): line corresponding to the critical value based on the standard normal.
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We no longer observe the consistency when using the components of the composite statis-

tics as seen under the proportional hazards setting. In particular, the standardized alter-

native for the truncated version of the log-rank test statistics is estimating a quantity that

places preferential treatment on the placebo rather than the treatment. This relatively

large imbalance in number of events creates a large, negative standardized alternative using

ẐLR(τ0, t), hence ordering our outcome incorrectly when we place 0 weights prior to crossing.

The Nelson-Aalen test restricted to time of crossing (ẐNA(τ0, t)) has low power to conclude

a statistically significant difference in the majority of the time as reflected by being partway

between 0 and Φ−1(0.975). Even though this standardized alternative is in the right direction,

the overwhelmingly negative average estimate of the ẐLR(τ0, t) now weights the Z statistic

to favor the placebo as the preferential treatment with sufficiently high probability. The

quadratic version of the test fares “slightly better” by taking the sum of the squares but

ignores the direction of these misleading estimates. However, the result is having high

probability of perhaps claiming statistical significance that a crossing has occurred even

though such is not the case, with the added problem of lacking interpretability.

With censoring, the maximum information growth for the various test statistics are af-

fected. In particular, when accrual is conducted over 4 time units, the ZNA(τ0, 2) has accu-

mulated at least 30% of the maximum statistical information. Because we place 0 weights on

the truncated logrank statistic ZLR(τ0, 2), we can only measure this statistical information at

time 2.75. By time 2.75, the ZNA(τ0, 2.75) has accumulated > 50% of its maximum statistical

information while the ZLR(τ0, 2.75) only obtain 12% of its maximum statistical information.

Suppose we choose a one-sided symmetric OBF boundary with equally spaced analyses

to be conducted at calendar time 2.75, 3.5, 4.25, and 5. At 2.75 where we are thought to be

relatively conservative, the ZNA(τ0, 2.75) has accumulated sufficient statistical information

to at least reject the futility boundary when there is harm in the use of the treatment. On

the other hand, the ZLR(τ0, 2.75) has only accumulated 12% of the statistical information

and is thus relatively conservative in making a decision in favor of harm of efficacy. This

partitioning of the parameter space by the composite statistics creates a “discontinuity” in
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the information growth, giving an additional difficulty in deciding whether to combine the

information growth equally or in some efficient weighted version to truly reflect the same

degree of early “conservatism” as the monitoring rule.

Table 7.6: Average information growth for survival curves that are stochastically ordered
without true crossings over the first five years (Stochastically Ordered Scenario 2) for the
various test statistics under patterns of accrual and different interim analyses. The informa-
tion growth conducted on the calendar time is affected by censoring even for the log rank
statistics under constant treatment effect across time. The maximum statistical information
is affected by censoring. Because the Nelson-Aalen test at τ0 = 2 generally obtain all statis-
tical information when accrual is complete at the time of crossing. Since this depends on the
accrual patterns, we see that this information growth is different with respect to the logrank
statistic.

Statistic Accrual t = 1 t = 2 t = 2.75 t = 3.5 t = 4.25 t = 5 Î5

Events (t)

Imm 523.28 587.31 602.39 608.22 610.47 611.36
2.00 189.08 470.02 567.88 595.03 605.39 609.37
3.00 125.97 313.36 462.33 568.20 595.51 605.58
4.00 94.39 235.17 346.78 460.33 563.60 594.69

Imm 15.08 20.91 23.16 24.05
Events 2.00 3.27 10.19 18.08 22.06
(τ0, t) 3.00 2.19 6.77 12.34 18.27

4.00 1.65 5.10 9.23 13.68

ZLR

Imm 85.47 96.01 98.51 99.48 99.85 100.00 150.52
2.00 31.01 77.11 93.11 97.61 99.34 100.00 150.03
3.00 20.76 51.69 76.31 93.78 98.31 100.00 149.08
4.00 15.82 39.49 58.27 77.39 94.77 100.00 146.36

ZLR(τ0, t)

Imm 62.71 86.95 96.32 100.00 6.00
2.00 14.74 46.09 81.92 100.00 5.51
3.00 11.84 36.91 67.46 100.00 4.56
4.00 11.88 37.09 67.41 100.00 3.41

ZNA(τ0, t)

Imm 100.00 100.00 100.00 100.00 100.00 312.74
2.00 57.60 90.86 99.17 100.00 100.00 312.74
3.00 39.45 69.41 91.40 98.63 100.00 312.74
4.00 30.83 53.19 73.59 92.32 100.00 306.49

ZLR: Overall logrank statistic conducted at time t.
ZNA(τ0, t): Nelson-Aalen test conducted at time t restricted to time τ0.
ZLR(τ0, t): Truncated logrank statistic.
Imm refers to immediate accrual.

In general, under our stochastically ordered, non proportional hazards survival setting,
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commonly used test statistics will order our standardized alternatives consistently with the

survival curves. Our standardized alternatives tend to remain consistently in quadrant I

across different interim analysis. In other words, these standardized alternatives do not

switch over from the positive to the negative quadrant. This is consistent even when sub-

jected to different accrual patterns.

Logan’s composite statistics, however, are characterized as having δ1 ≥ 0 and δ2 < 0,

thus belonging to other quadrants instead of I. The inconsistency between the direction of

δ1 and δ2 is partly due to weighting of the hazards prior to time of crossing as 0 for the

truncated log rank test. Without knowing the history of the number at risk, the truncated

log rank test orders the hazards in this partial space as if the survival curves are evaluated

with followup starting from time τ0.

7.4.5 Non Proportional Hazards with Crossing Survival Curves

In this section, we characterize the time varying treatment effect in the setting of non pro-

portional hazards settings with crossing survival curves based on Figure 7.4. Other crossing

survival curves were considered in Appendix F.3.3 and their behavior is similar so long as

there is some large non-negligible difference in survival by the end of the study (Figure F.12

and F.13). By construction, the difference in the area under the survival curves by the end

of the study in all these scenarios are negligible and 0.

The commonly used statistics all exhibit properties of switching conclusions of the pre-

ferred treatment (as exhibited by the change in sign of the standardized alternative) over the

course of time. For example, with censoring via patient accrual, the conclusions based on

the overall log rank test are further dependent on when the crossing of survival takes place.

When crossing happens later (after τ0), further accentuated by a slow and long accrual, the

alternative of the overall logrank test attenuates less rapidly to 0, indicating that this change

of sign is reflected much later in the trial (may happen outside the calendar time of the study

and unless we ensure that everyone has complete followup for 5 time units). In contrast,

with rapid accrual, the alternative converges more rapidly to alternatives as observed un-
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der immediate entry. Additionally, only the immediate setting captures this change in sign

much earlier than time 5. Under long accrual times, the pattern of changing quadrants is

not obvious.
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Figure 7.4: Standardized alternatives for various test statistics when we have crossing survival
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Other variations on when the survival curves cross are in Appendix F.3.2: prior to τ0, or
after τ0. Here, the survival curves cross at approximately τ0. The combination of composite
alternatives changes from Quadrant III (-,-), Quadrant III/IV(0, -), Quadrant IV (+,-) with
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LR(τ0, t): Truncated logrank statistic up to time t starting at time τ0.
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2,α: line corresponding to the square root of the critical value based on the χ2
2 at α = 0.05.

Φ−1(z1−α/2): line corresponding to the critical value based on the standard normal.
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The Nelson-Aalen test statistic captures this change point quite accurately since it di-

rectly measures the difference in survival probability. In presence of censoring, the average

estimated Z is weakened towards 0. The restricted mean statistics, on the other hand, are

seen to decrease from an extremely large and positive alternative to almost 0, providing con-

sistent standardized alternatives with our simulation setup in which this difference in area

under the curve is negligible by time 5.

Table 7.7: Average information growth for crossing survival curves (Crossing Scenario 2)
for the various test statistics under patterns of accrual and different interim analyses. The
statistical information when analyzed on the calendar time is affected by censoring even for
the log rank statistics under constant treatment effect across time.

Statistic Accrual t = 1 t = 2 t = 2.75 t = 3.5 t = 4.25 t = 5 Î5

Imm 69.10 122.00 165.04 201.39
Events 2.00 13.66 49.89 102.27 149.26
(τ0, t) 3.00 9.11 33.27 69.28 115.19

4.00 6.82 24.94 51.98 86.37

Events (t)

Imm 477.78 630.45 699.56 752.45 795.50 831.85
2.00 148.85 430.62 587.56 672.88 732.72 779.71
3.00 99.18 287.23 453.80 604.48 687.90 745.65
4.00 74.39 215.29 340.42 476.59 615.26 700.01

ZLR

Imm 57.50 75.90 84.25 90.61 95.73 100.00 206.38
2.00 19.08 55.23 75.36 86.33 94.02 100.00 193.65
3.00 13.27 38.49 60.85 81.07 92.27 100.00 185.20
4.00 10.59 30.71 48.60 68.08 87.91 100.00 173.84

ZLR(τ0, t)

Imm 34.67 61.04 82.29 100.00 49.74
2.00 9.15 33.52 68.69 100.00 37.01
3.00 7.87 28.90 60.21 100.00 28.56
4.00 7.82 28.86 60.22 100.00 21.39

ZNA(τ0, t)

Imm 100.00 100.00 100.00 100.00 100.00 271.62
2.00 35.60 79.05 97.34 100.00 100.00 271.62
3.00 25.23 56.30 81.76 96.03 100.00 271.62
4.00 20.94 44.66 66.30 86.53 100.00 257.24

ZLR: Overall logrank statistic conducted at time t.
ZNA(τ0, t): Nelson-Aalen test conducted at time t restricted to time τ0.
ZLR(τ0, t): Truncated logrank statistic.
Imm refers to immediate accrual.

The estimates provided by the composite statistics behave similarly under the crossing
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survival, crossing hazards setting. The linear composite statistic is now averaging out the

magnitude and direction of the estimated Z from the individual components. The quadratic

statistic on the other hand has high probability of rejecting the null hypothesis with a larger

magnitude.

7.4.6 Summary

In general, our simulation results suggest that unless we have proportional hazards alterna-

tives, the different test statistics considered can lead to different conclusions on the preferred

treatment. Under non proportional hazards, when we have stochastically ordered, crossing

hazards survival curves, the behaviors of these commonly used test statistics are generally

consistent in presence of censoring and can identify the preferred treatment. When we have

crossing survival with crossing hazards at some point in time, all test statistics are essentially

estimating different quantities across interim analyses, selecting different treatments across

analyses time. This effect is exaggerated when there is further censoring as introduced by

accrual of subjects.

The use of composite statistics, and their individual components, are observed to perform

poorly in terms of being able to identify the preferred treatment when we have stochastic

ordering of survival curves. Particularly, the truncated logrank statistic, by placing 0 weights

prior to time of crossing, can no longer order the outcome space correctly with the ranked

failure times. This at times creates the illusion of identifying the placebo arm as preferred

when logically it would be less desirable. When the Nelson-Aalen statistics conducted at the

time of prespecified crossing do not have strong standardized alternatives to compensate for

this apparent behavior seen in the truncated logrank statistic, the conclusion of the composite

statistics will be weighted heavily by this direction of the standardized alternative based on

the truncated log rank test.

In the clinical setting, if we were to apply Logan et al’s test statistics to pick the preferen-

tial treatment, then under our setting of non proportional hazards with stochastic ordering,

there is high probability of identifying the wrong treatment based on the estimated alter-
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native. This can be as high as the probability of observing a spurious crossing as seen in

the fixed sample setting. In our exploration using the standardized alternatives, the bizarre

behavior of the truncated log rank statistic (almost) always orders the treatment effect in-

correctly under stochastic ordering where the presumed crossing is unreal. When a huge

treatment benefit is observed prior to time of crossing, their test statistic often ignores these

differences when ordering the outcome space after crossing, i.e., the preferential treatment

after averaging the effect over time.

In this section, many of these non proportional hazards survival curves examined can

be considered a version of some weak null hypothesis. For example, in crossing survival

curves, the timing at which the analysis is conducted presents different conclusions depending

on the choice of the test statistics used. Because all these test statistics provide different

interpretations of the preferred treatment, they thus may not consistently be testing the same

average null hypothesis. This differential preference of what may or may not be clinically

or statistically relevant at the timing of the analysis is of concern with testing the weak

null hypothesis. Here, we may be making a Type 1 error if we incorrectly reject the null

hypothesis when this rejection does not correspond to making the right clinical decision in

favor of the preferred treatment.

7.5 Sequential Planning: Concerns and Considerations

As seen in section 7.4, in the presence of time varying treatment effect, censoring as induced

by interim analysis/incomplete accrual of subjects can weight the survival curves differently

across time, changing the relative importance of the treatment effect. We discuss some of

the potential decisions the DMCs can make based on the use of summary statistics presented

to summarize the differences in survival as described in section 4.6 to address the primary

question of identifying the better treatment quantified by possibly 5 year survival. We now

tie in the concepts of what we investigated in section 7.3 and 7.4 to now address more

general issues concerned with planning a GSD in the time to event setting where we may be

concerned with the weak null hypothesis as seen in the previous section.
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Figure 7.5: Survival curves (Truth) exhibiting crossing hazards: Stochastically ordered (Scenarios A-C) with high
probability of crossing vs partially ordered survival curves with probability one of crossing (Scenarios D-F). In the
bottom row, the survival curves are partially ordered, with the treatment group exhibiting better survival probability
at pre-specified time of crossing (τ0 = 2) relative to the standard of care (SOC) group. However, the restricted mean
survival (RMS) time is similar for the treatment and standard of care group by year 5.
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Scenarios A-F are simulated from on a mixture of exponential distributions based on

section 7.3.1. The degree of mixing was chosen for π=(0.1, 0.51, 0.9), the respective rates,

hazard ratios for the mixtures are provided in Table 7.8. The survival curves for the various

weak null alternatives are shown in Figure 7.5.

Each of the scenarios in A-C represents stochastically ordered, non PH alternatives over

the first 5 years with high probability of the survival curves exhibiting crossing by year 5.

By way of construction, the hazards for these three scenarios all cross much earlier than 2

years with the survival curves observed to cross spuriously by 2 years. Note that each of

these scenarios represents different clinical settings where judgement of long term benefit is

dependent on the disease setting and the probability for which this long term benefit happens.

For example, in childhood cancer, when we are interested in cure rates, then scenario B and

C may not be acceptable as compared to scenario A due to the high probability of survival

past time 5. Additionally, it may be the case that maybe A is not reasonable if this long

term survival benefit does not persist beyond year 5 and thus may be clinically less relevant

to the child in the trial.

Table 7.8: Table of parameter values chosen for each of the scenarios shown in Figure 7.5
where Scenario A - C represent stochastic ordering with crossing hazards over the first 5
years where Group 0 is the preferred treatment while D-F denotes crossing survival curves.

Scene eTrt, eStd ΛTrt, ΛStd π N RMSTrt,RMSStd STrt(2), SStd(2) STrt(5), SStd(5)

A 0.08, 5e-13 4, 0.01 0.1 5400 4.58, 4.52 0.9080, 0.900004 0.900181, 0.9
B 0.08, 5e-13 4, 0.01 0.51 1058 2.83, 2.54 0.5257, 0.490012 0.490661, 0.49
C 0.08, 5e-13 4, 0.01 0.90 600 1.21, 0.66 0.1720, 0.100037 0.101629, 0.1

D 0.33, 0.055 4, 0.001 0.1 5400 4.54, 4.54 0.913, 0.901 0.857, 0.9
E 0.210, 0.318 2.892, 5e-4 0.51 1058 2.67, 2.67 0.528, 0.496 0.340, 0.49
F 0.121, 0.99985 2.1, 5e-4 0.90 600 0.90, 0.90 0.112, 0.111 0.005, 0.1

Each of the scenario in D-F, on the other hand, was constructed such that the survival

curves cross definitely after 2 years in addition to crossing hazards. By construction, our

outcome space or the probability of survival for each treatment group changes depending
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on the time of analyses. Treatment group (1) appear to be preferred prior to year 2 on the

survival scale with a higher survival probability over standard of care (0). Standard of care

(0) has a higher survival probability when followed longer up to year 5 over treatment group

(1). Additionally, by construction, the true restricted mean comparing difference in the areas

between the curves when analyzed at year 5 is 0. In other words, the absolute number of

years of life saved comparing treatment group 1 with respect to treatment group 0 by year

5 is thus equivalent.

When we are more concerned about the long term benefit of the treatment effect, and

less about the early differences, then any of the above scenarios are potentially testing a

weak null hypothesis. As such, the conclusions may differ depending on when the timings

of these analyses are restricted to. In A-C, they all represent the weak null setting when

we consider the use of Nelson-Aalen to test at specific calendar time corresponding to year

4 and beyond. Other test statistics may potentially conclude benefit in favor of group 0

when evaluation is made over the support of the survival curves. In D-F, application of the

restricted mean statistic makes different conclusions at say 2 year vs 4 year. At year 5, the

restricted mean statistic will conclude no benefit between treatment and placebo. Similarly,

other test statistics may make different conclusions across the calendar time.

For discussion purposes, we describe results for scenarios B and E for the rest of this

section whereby this time of crossing is suspected to take place by 2 years. Scenario B

only has < 0.1% difference in survival probability at time 5. Scenario E only has small

differences in survival probability at time 2 but the preferred treatment changes at time 5.

Both scenarios exhibit relatively large early differences that may or may not matter clinically

depending on the clinical setting.

We discuss some of the statistical considerations when choosing to either pick a fixed

sample design, and/or a sequential monitoring rule to guide statistical monitoring when

the objective is concerned with identifying the better treatment with long term survival as

defined possibly by 5 years. We consider some potential dilemmas that may force a DMC to

make a recommendation to stop the study early, such as in the CHER trial (Appendix A),
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or in a bone marrow transplant setting, using various summary statistics and/or measures

at interim analyses. We consider how to possibly incorporate this early difference when

choosing sequential rules.

The ultimate goal is to pick the treatment with the long term benefit while ignoring any

early differences in survival, then it may be possible that a fixed sample design can do as well.

However, when we are anticipating a scenario E to possibly happen, then it may no longer be

ethical to wait until year 5 to terminate the trial when this crossing indicates unacceptable

harm to participants on the trial. Then, our monitoring rules must be selected such that

at early interim analyses, the probability of stopping and rejecting the null is not so large

enough that we cannot identify clinically meaningful differences when the full time period of

interest has been observed. While other scenarios are not discussed here, the concept can be

applied when planning a trial to guide monitoring. We next describe some of the calibration

approaches to handling potential non independent increments structure.

7.5.1 Calibration Approaches for GSDs to Preserve the Overall Type 1 Error

As a consequence of constructing the sequential rules to address the scientific considerations,

and assess the potential considerations in these weak null setting, our control of the strong

null may not be preserved. We first describe some of the approaches that can be used to

recalibrate our boundaries to ensure control of the strong null Type 1 error rate. Additionally,

some of these approaches may be used with non-independent increment statistics, such as,

in the setting of the restricted mean survival or Nelson-Aalen test when the support of the

statistics change.

For any design scenario of interest, we may consider the following boundaries construction

1. Using specified information growth based on the Z statistic scale.

• Naïve (equal) information growth at each calendar time of analyses
• True information growth under the null hypothesis at each calendar time of anal-

yses

2. Constrained boundaries approach based on the Z statistic scale.
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• Continuously revise our monitoring boundaries based on current estimated sta-
tistical information
• Revise our boundaries at the end of the trial

3. Error spending approach

• Specify our monitoring boundaries based on the amount of error one wants to
spend on each analysis.

In (1), test statistics without independent increment property are presumed to assume

monitoring boundaries that are equally spaced at calendar time or assume statistical infor-

mation based on the logrank test statistic. These test statistics include the Nelson-Aalen

test at year 5, restricted mean statistic at year 5, quadratic test statistic. To apply the

approach of constrained boundaries (2), one requires approximately independent increment

property. Test statistics such as Nelson-Aalen, restricted mean statistic, both performed at

time of analyses, have support that changes across analyses time and no longer possess the

property of independent increments. The quadratic test statistic also does not possess such

a property. Thus, in (2), we restricted ourselves to the overall log rank test statistic (both

with 3 or 4 interim analyses), Nelson Aalen at year 2, and the appropriately calibrated OLS.

7.5.1.1 Pre-specified information growth based on the Z statistic scale

The first approach assumes boundaries that are fixed on the Z statistic scale based on

either naïve information growth or the true (average) information estimated under the null

hypothesis. In other words, at each interim analysis, we use the pre-specified boundaries as

defined on the Z-statistic scale when we monitor our interim analysis on the calendar time

scale. Thus, we can,

• Construct boundaries based on the specified information growth/fraction either pre-
suming naïve information growth or the true information growth

• At each interim analysis, we compare the Z-statistic at a interim analysis and compare
that to our monitoring boundaries on the Z scale. If the estimated Z statistic is either
above the upper boundary or below the lower boundary, we stop the trial and conclude
the trial based on the direction of the test statistic.
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• If not, we continue the trial to the next interim analysis. We do not modify our
monitoring boundaries at any stage.

The merits of this first approach is the simplicity and can be applied when test statistics

are not computed with a fixed support that can lead to correlated increments. We can

directly calibrate any test statistic to ensure control of our overall Type 1 error under the

strong null hypothesis and apply comparison of boundaries directly on the Z statistic scale.

However, the consequence of such a simple approach is that this naïve approach may not

be appropriate when the statistical information across interim analysis are non monotonic.

When the statistical information fraction is different from planned, one may overspend or

underspend the appropriate amount of Type 1 error at any interim analysis. This leads us

to consider a slightly more flexible approach to calibrate the monitoring boundaries over the

course of the trial.

7.5.1.2 Constrained Boundaries Approach Based on the Z Statistic Scale

The constrained boundaries approach described in Burington and Emerson [2003] provides

a flexible way to revise the boundaries when dealing with changes in observed statistical

information from the planned levels of statistical information. The appeal of the constrained

boundaries approach stems from the fact that one may presume the pre-specified maximum

statistical information at design stage and allows updating of this maximum statistical in-

formation when there is accrued data becomes more reliable. One can either (a) calibrate

the boundary at every stage, or (b) only recalibrate the boundaries at the end of the trial or

when the statistical information is used up.

The constrained boundaries approach (a) is as follows:

• Construct the monitoring boundaries ({aj, dj}Jj=1 where aj represent the futility bound-

ary and dj the efficacy boundary) using the specified information growth (Πj) with the

maximum statistical information defined as IJ . This can be performed either using

the naïve or true information growth for the test statistic.
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• At the first interim analysis, if the observed statistical information, Î1, does not match

the planned statistical information, I1, we revise {a1, d1} to {a∗1, d∗1} based on the cur-

rent estimated statistical information, Î1, while holding the future monitoring bound-

aries {aj, dj}Jj=2 fixed. We then compare the current z statistic with the revised bound-

aries, {a∗1, d∗1}, to determine whether the interim z statistic has crossed either the re-

vised efficacy or futility boundaries. If not, we continue the trial.

• At the jth interim analysis, if the observed statistical information, Îj does not match

the planned statistical information, Îj, we use the sequence of monitoring boundaries

before j that are possibly revised, {a∗l , d∗l }
j−1
l=1 , based on the prior sequence of statistical

information {Îl}j−1
l=1 , we hold the future boundaries fixed and constrain on the current

statistical information, Îj, to obtain {a∗j , d∗j}. We then compare the current Zj statistic

with the revised boundary, Z∗j , to determine whether the interim Zj statistic has crossed

either the revised efficacy or futility boundary.

• At the final analysis, if ÎJ < IJ , we spend the remaining unused error using this

estimate of the final statistical information, ÎJ .

Alternatively, a simpler version of the constrained boundary approach (b) is as below:

• Construct the boundaries ({aj, dj}Jj=1 where aj represent the futility boundary and dj
the efficacy boundary) using the specified information growth (Πj) with the maximum

statistical information be IJ . This can be performed either using the naïve or true

information growth for the test statistic.

• At the jth interim analysis, we presume the monitoring boundaries, {al, dl}jl=1 as pre-

specified and compare the current Z statistic with these boundaries. We do not re-

vise the boundaries according to the observed statistical information. We then decide

whether the Z statistic has cross the efficacy/futility boundary. If not, we continue the

trial.
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• At the final analysis, we spend the remaining unused error by specifying our true

observed sequence of statistical information, {Îl}Jl=1.

In situations when the test statistics have the independent increment property, either

one of the above approaches can allow one to handle changes from the planned schedule of

analyses. Operationally, it is possible for statistical information to “flow” backwards due to

imprecision of the prior estimate of the statistical information. This can result when the

statistical information across analyses present more variability at later interim analysis than

the previous, leading to little changes in information fraction. This can happen when the

interim analyses are conducted too close to each other on the information fraction scale.

To circumvent such issues from occurring, it is possible for one to skip the current interim

analysis and move this analysis to the next planned calendar time when this information

fraction is close to 1. However, Proschan et al. [1992] has shown that even with common

monitoring rules, revision of monitoring boundaries when the information growth is negligible

can inflate the overall Type 1 error by up to 20% with conservative monitoring strategies

such as OBF. Burington and Emerson [2003] suggested the approach of revising the previous

estimate of the statistical information based on this updated knowledge of the test statistics.

7.5.1.3 Error spending approach

We describe the error spending approach in the more general fashion that can be used to

handle mild deviations from the independent increments by re-calibrating our monitoring

boundaries.

We may start off by planning the study using a pre-specified information growth (defined

either based on the naïve or true) to obtain our monitoring boundaries on the Z scale. We

then

1. Apply the sequential boundaries to the planned monitoring boundaries.

2. Compute the empirical overall Type 1 error rate under the strong null hypothesis.
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3. If the overall Type 1 error rate is within (F−1
Bin(n,α)(0.025), F−1

Bin(n,α)(0.975)), we can keep
our monitoring boundaries as pre-specified. If not, we can adjust the critical value at
the final analysis such that it is fixed level α.

Typically, to employ the above approach it is useful to simulate sufficient data to obtain

this revised boundaries and then test this revised boundaries on another simulated set of

data to evaluate the behavior of this revised rule.

Alternatively, we can pre-specify the amount of rejection at each successive interim analy-

sis. This concept is similar to the error spending approach. In order to obtain the sequential

boundaries for this method, we can then

1. Specify the sequence of errors to be spent at each interim analysis at each information
time such that ∑J

j=1 αj = α.

2. At the first interim analysis, for j = 1, determine the empirical F−1(α1/2, lower) and
F−1(1− α1/2, upper). Set them to be either the lower or upper boundary.

3. At subsequent analysis, j = 2, · · · , J , among the remaining simulations that are not
statistically significant, determine the F−1(αj/2, lower) and F−1(1− αj/2, upper) such
that only αj are statistically significant.

4. At the final analysis, determine the F−1(αJ/2, lower) and F−1(1 − αJ/2, upper) such
that the remaining simulations are only significant for αJ of the n simulations.

The above approaches can be implemented even for test statistics with the usual inde-

pendent increments. When simulation scenarios under the strong null gives rise to weak

correlations across calendar time, we can typically apply the above rule to recalibrate our

overall Type 1 error.

7.5.2 Fixed Sample Designs vs Group Sequential Designs

We present some summary statistics described yearly from year 1 to 5 that are typical of

the setting when the DMC may convene to deliberate on the data obtained. The summary

statistics in Table 7.10 are: the total number of events (nEvk), total number of events past

τ0 (nEvk(τ0, t)), restricted mean statistic truncated to 3 months prior to interim analysis
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(RMSk(t)), average hazard ratio (unweighted), probability of survival for each treatment

group (Sk(t)), and the proportion of times SStd(t) > STrt(t) for treatment group k = Trt, Std

where τ0 = 2 is again the pre-specified time of crossing.

We included a fixed sample design based on a two-sided level α/2 = 0.025 test for

comparison purposes. To compare how the decisions based on the monitoring boundaries

can be used across various test statistics, we assume that our planned schedule of analyses

are conducted at time 3, 4, and 5. We note that if other choices of test statistics were

used, the interim analyses are typically conducted when accrual is incomplete. However, the

composite statistics are not well behaved to make any decisions prior to the prespecified time

of crossing. Thus, this makes decision making in terms of efficacy of the treatment relative

to the standard of care difficult.

We present summary statistics for the following test statistics in Table 7.13: the log-rank

test statistics (ZLR(t)), the Nelson-Aalen test statistics (ZNA(t)), the Nelson-Aalen test statis-

tics restricted to time of crossing (ZNA(τ0, t), the restricted mean test statistics (ZRMS(t) used

interchangeably with ZWKM(t)), the linear combination test statistic (ZOLS(τ0, t), and the

quadratic test statistic (ZQuad(τ0, t)) where τ0 denotes some prespecified time of potentially

crossing survival curves. Note that the composite statistics (ZOLS(τ0, t) and ZQuad(τ0, t))

cannot be summarized at t = 1, 2.

We have considered various GSDs ranging from

• OBF(Equal): two-sided symmetric OBF with information fraction that is equally

spaced on the calendar time,

• OBF(Info): two-sided symmetric OBF with information growth calibrated to the test

statistic of choice at each calendar time,

• HP: two sided symmetric Haybittle-Peto design with interim analysis requiring p <

0.001 for efficacy/futility,

• Equal: two-sided symmetric equal error design,
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• Poc: two-sided symmetric Pocock with information fraction that is equally spaced

analysis on the calendar time,

• Poc(Info): two-sided symmetric Pocock with equally spaced analysis calibrated to the

test statistics of choice at each calendar time.

Additionally, we note that for test statistics with independent increments across analyses

time, we can incorporate the true information growth to get a more precise calibration of

the monitoring boundaries.

In our exploration, we calibrated ZNA(t), ZRMS(t) to the information growth of ZLR(t).

The ZOLS Fixed, (ZLR(τ0, t)+ZNA(τ0, t))/
√

2, is assumed to use the OBF boundary with equal

information fraction. Note that the ZOLS Fixed can be calibrated to allow for the property of

independent increments as discussed in Logan and Mo [2015]. The first (denoted as ZN
OLS)

that we considered is the ZN
OLS = UN/

√
Var(UN) which is the non-standardized version of

the calibration that is a weighted average of the information growth for each of the two

components. The second (denoted as ZS
OLS) is calibrated such that each component of the

composite statistic is weighted equally by summing up the information fraction for each

component relative to its maximum statistical information at the end of the trial. In this

case, by the final calendar time, the maximum statistical information based on ZS
OLS =

US/
√
Var(US) is always 2. For discussion, we focus on the monitoring boundaries OBF(Equal)

and OBF(Info).

We calibrated the boundaries to ensure a fixed two-sided level 0.05 test under the strong

null hypothesis with the stopping probability for each interim analysis presented in Table 7.9.

The respective application under scenario B is shown later in Table 7.11. Scenario E is

calibrated by assuming a different set of strong null simulation. Note that it may often be

useful to calibrate, in this case scenario E, to the same derived monitoring rule under the

strong null as in Table 7.9. The disparity between OBF and OBF(Info) becomes apparent

when we reject too frequently at some early interim analysis that may not balance the

scientific goals of the study.
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Table 7.9: Overall Type 1 error rate, probability of stopping at interim analyses, the re-
spective conclusion for the two monitoring rules considered for the various test statistics
evaluated under the strong null hypotheses. Monitoring rules are based on equally spaced
information growth assumption with recalibration of the final monitoring boundary under
the strong null to ensure fixed 5% type 1 error.

t = 3 t = 4 t = 5 Overall

Std/Trt Std/Trt Std/Trt Both/ Std/Trt

O
B
F
(E

qu
al
)

ZLR 0.01/0.02 0.59/0.62 1.77/1.99 5.00/2.37/2.63
ZNA 0.02/0.00 0.70/0.55 1.92/1.81 5.00/2.64/2.36
ZRMS 0.02/0.03 0.58/0.59 1.74/2.04 5.00/2.34/2.66
ZNA(2, t) 0.05/0.02 0.57/0.65 1.91/1.80 5.00/2.53/2.47
ZOLS Fixed 0.00/0.05 0.60/0.64 1.88/1.83 5.00/2.48/2.52
ZS
OLS 0.00/0.02 0.64/0.67 1.84/1.83 5.00/2.48/2.52

ZQuad 0.04/0.02 0.78/0.75 1.84/1.57 5.00/2.66/2.34

O
B
F
(I
nf
o)

ZLR 0.88/0.93 1.10/1.12 0.44/0.53 5.00/2.42/2.58
ZNA 0.94/0.73 1.16/1.27 0.46/0.44 5.00/2.56/2.44
ZRMS 0.90/0.89 1.07/1.16 0.43/0.55 5.00/2.40/2.60
ZNA(2, t) 0.66/0.58 1.27/1.32 0.60/0.57 5.00/2.53/2.47
ZOLS Fixed 0.07/0.17 0.81/0.90 1.61/1.44 5.00/2.49/2.51
ZS
OLS 0.04/0.12 0.82/0.89 1.64/1.49 5.00/2.50/2.50

ZQuad 0.16/0.08 1.23/0.99 1.41/1.13 5.00/2.80/2.20

7.5.2.1 Monitoring under the scenario with spurious crossing

We first describe the issues when this prespecified crossing is spurious as defined by Scenario

B. Summary results are in Table 7.10. On average for scenario B, the average total number

of events at the first interim analysis is 222 with an average of 35% of the events coming from

treatment group, with the remaining to come from standard of care. We note that there is

an excess of 77 deaths on the standard of care, with a hazard ratio of 2.29. The difference in

probability of survival comparing the treatment and standard of care is at least 0.1487, the

difference in area under the survival curves comparing the treatment and standard of care is

0.1421. There is a 2.3% chance that some of the survival curves may have crossed in B.
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Table 7.10: Summary statistics based on 10,000 simulations under scenario B, E and the
strong null setting comparing treatment (Trt) vs standard of care (Std).

t = 1 t = 2 t = 3 t = 4 t = 5

N
ul
l

No of events by t 156 (12) 457 (19) 801 (23) 1001 (23) 1057 (23)
Events (Trt vs Std) 78 vs 78 229 vs 229 400 vs 400 500 vs 500 529 vs 529

No of events in (τ0,t) 0 (0) 0 (0) 12 (4) 37 (6) 64 (8)
Events (Trt vs Std) 0 vs 0 0 vs 0 6 vs 6 18 vs 18 32 vs 32

HRRef: Trt 1.00 (0.162) 1.00 (0.093) 1.00 (0.071) 1.00 (0.063) 1.00 (0.062)
RMSStd(t)‡ 0.6145 1.217 1.739 2.237 2.73
RMSTrt(t)‡ 0.6146 1.217 1.739 2.237 2.73
ŜStd(t) 0.6351 0.5311 0.5017 0.4931 0.4909
ŜTrt(t) 0.6352 0.531 0.5019 0.4931 0.4908
% of ŜStd(t) > ŜTrt(t)† 50.0 49.9 49.7 50.2 50.5

Sc
en

ar
io

B
:A

lt

No of events by t 222 (14) 553 (20) 904 (23) 1040 (23) 1068 (23)
Events (Trt vs Std) 78 vs 145 229 vs 324 400 vs 504 500 vs 539 529 vs 540

No of events in (τ0,t) 0 (0) 0 (0) 6 (3) 18 (4) 32 (6)
Events (Trt vs Std) 0 vs 0 0 vs 0 6 vs 0 18 vs 0 32 vs 0

HRRef: Trt 2.29 (0.140) 1.77 (0.085) 1.57 (0.067) 1.35 (0.062) 1.27 (0.062)
RMSStd(t)‡ 0.4659 0.9581 1.448 1.938 2.428
RMSTrt(t)‡ 0.6146 1.217 1.739 2.237 2.73
ŜStd(t) 0.4931 0.4898 0.4899 0.4899 0.49
ŜTrt(t) 0.6352 0.531 0.5019 0.4931 0.4908
% of ŜStd(t) > ŜTrt(t)† 2.3 13.4 31.7 44.5 48.6

Sc
en

ar
io

E:
A
lt

No of events by t 170 (12) 484 (19) 846 (23) 1065 (23) 1156 (23)
Events (Trt vs Std) 62 vs 109 203 vs 281 386 vs 460 534 vs 531 617 vs 539

No of events in (τ0,t) 0 (0) 0 (0) 18 (4) 62 (8) 122 (11)
Events (Trt vs Std) 0 vs 0 0 vs 0 17 vs 1 59 vs 3 117 vs 5

HRRef: Trt 2.01 (0.160) 1.61 (0.092) 1.38 (0.069) 1.15 (0.062) 1.00 (0.060)
RMSStd(t)‡ 0.5516 1.079 1.573 2.063 2.553
RMSTrt(t)‡ 0.6466 1.289 1.792 2.216 2.588
ŜStd(t) 0.5435 0.4956 0.4904 0.4899 0.4899
ŜTrt(t) 0.6884 0.5285 0.4394 0.3836 0.3448
% of ŜStd(t) > ŜTrt(t)† 2.8 22.6 92.2 100.0 100.0

Descriptives are presented in the format mean (standard deviation).
†: Percentage of times a crossing is observed.
‡: The restricted mean statistic is truncated to 3 months just prior to the analyses time.

We see a similar situation at interim analyses at year 2. In B, we see that this excess

death has accumulated to 95 deaths on the standard of care, a difference in area under the

survival with extra 0.2589 years saved on the treatment group, and a difference in survival
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probability of 4.1%.

Interim analyses conducted at time t ≥ 3 have similar total number of events for the

standard of care past the interim analysis conducted at τ0 = 2. As noted, the average

number of events contributing to the log-rank statistic after the pre-specified τ0 for scenario

B all falls on the treatment arm. By the final analysis, on average, more than 45% of the

survival curves have spuriously crossed, indicating that the standard of care has a better

survival as compared to the treatment. As such, the probability that the DMC observed a

crossing in survival curves by t = 3, 4, and 5 would be at least 30%, 40%, and 45% on average

respectively.

Without sequential monitoring at early interim analyses, the DMC have to make judg-

ment based on the available data. This large treatment benefit is observed for both scenarios,

presenting a challenging situation to the committee when the monitoring guidance precludes

having an appropriate boundary for the early analyses. On the basis of the data presented,

the DMC have to judge collectively on whether this excess of death arising on the standard

of care arm is sufficient to warrant stopping the trial early when there appears to be this

overwhelming benefit. Other summary measures are consistently pointing to early benefit

with treatment over standard of care. The DMC may not call for stopping early possibly

there may be random high bias, although with over 100 events, this may not be the case.

If accruing data demonstrates an even larger difference in survival, the DMC may po-

tentially have to act on the results despite the objective of identifying a better long term

treatment. This is true in exaggerated scenarios where the treatment group may, for ex-

ample, have survival probability of 0.9 by time 2 relative to the standard of care, where

this probability is 0.53. This sufficiently large difference in survival and high number of

events falling on the treatment arm may no longer enable the trial to continue to achieve its

objective for ethical reasons.
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Table 7.11: Probability of rejecting the null hypothesis and the respective conclusion Type
1 error obtained for various methods of monitoring the various test statistics under different
monitoring rules for Scenario B and E. Monitoring rules are either based on equally spaced
information growth assumption with recalibration of the final monitoring boundary under
the strong null to ensure fixed 5% type 1 error or based on the information growth of the
test statistic.

t = 3 t = 4 t = 5 Overall
Std/Trt Std/Trt Std/Trt Both/Std/Trt

Sc
en

ar
io

B

O
B
F

ZLR 0.00/99.97 0.00/0.00 0.00/0.00 99.97/0.00/99.97
ZNA 0.00/0.33 0.31/1.03 1.63/1.70 5.00/1.94/3.06
ZRMS 0.00/95.42 0.00/1.07 0.00/0.00 96.49/0.00/96.49
ZNA(2, t) 0.00/3.64 0.00/22.96 0.00/18.87 45.47/0.00/45.47
ZOLS Fixed 0.00/0.28 6.23/0.00 69.98/0.00 76.49/76.21/0.28
ZS
OLS 0.01/0.00 15.63/0.00 60.23/0.00 75.87/75.87/0.00

ZQuad 6.85 92.59 0.56 100.00

O
B
F
(I
nf
o
ba

se
d) ZLR 0.00/100.00 0.00/0.00 0.00/0.00 100.00/0.00/100.00

ZNA 0.07/3.72 0.90/1.35 0.33/0.20 6.57/1.30/5.27
ZRMS 0.00/99.76 0.00/0.00 0.00/0.00 99.76/0.00/99.76
ZNA(2, t) 0.00/20.88 0.01/19.16 0.00/4.43 44.48/0.01/44.47
ZOLS Fixed 0.02/0.56 8.41/0.00 66.28/0.00 75.27/74.71/0.56
ZS
OLS 0.04/0.00 19.79/0.00 54.96/0.00 74.79/74.79/0.00

ZQuad 15.92 83.76 0.32 100.00

Sc
en

ar
io

E

O
B
F

ZLR 0.00/89.23 0.00/0.02 2.29/0.00 91.54/2.29/89.25
ZNA 0.32/ 0.00 84.48/0.00 15.08/0.00 99.88/99.88/0.00
ZRMS 0.00/71.79 0.00/0.23 0.88/0.00 72.90/0.88/72.02
ZNA(2, t) 0.00/1.29 0.01/14.01 0.05/15.33 30.69/0.06/30.63
ZOLS Fixed 0.14/0.01 75.06/0.00 24.79/0.00 100.00/99.99/0.01
ZS
OLS 2.37/0.00 94.52/0.00 3.11/0.00 100.00/100.00/0.00

ZQuad 47.48 52.52 0.00 100.00

O
B
F
(I
nf
o
ba

se
d) ZLR 0.00/98.29 0.00/0.00 0.94/0.00 99.23/0.94/98.29

ZNA 6.50/0.01 84.46/0.00 8.90/0.00 99.87/99.86/0.01
ZRMS 0.00/92.73 0.00/0.02 0.69/0.00 93.44/0.69/92.75
ZNA(2, t) 0.02/8.19 0.04/15.85 0.00/5.76 29.86/0.06/29.80
ZOLS Fixed 0.21/0.01 76.81/0.00 22.97/0.00 100.00/99.99/0.01
ZS
OLS 3.88/0.00 93.49/0.00 2.63/0.00 100.00/100.00/0.00

ZQuad 58.21 41.79 0.00 100.00
ZRMS and ZNA are calibrated based on the information growth of the logrank statistic.
ZOLS Fixed is calibrated to the information growth with the sum of equally weighted components from each
test statistic.
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For comparison, scenario E has summary measures similar to what was seen in scenario

B, whereby in this scenario, the crossing is as hypothesized. Basically, at this point in time,

when a judgement has to be passed on whether the trial should continue in favor of the

treatment effect, neither B nor E may continue past time 2 if this difference in survival

is clinically meaningful. However, stopping the trial at this time, again indicates that the

scientific objective may not be addressed when we are interested in the long term benefit.

This thus summarizes the conflicting goals and potential decisions the DMC may make.

7.5.2.2 Sequential monitoring plan in place

At interim analyses conducted at calendar time 3, we see a high probability of early stopping

in favor of the treatment arm for both scenarios. In fact, the logrank and restricted mean

statistic both identify the treatment as the better arm. The Nelson-Aalen, however, is not

powered to detect a difference that is 0.02 and 0.05 for scenario B and E respectively. The

restricted mean is larger on the treatment group for both scenarios. The DMC must then

face a choice on deciding whether to stop the trial based on the choice of monitoring rule

and the evidence provided so far.

The use of Logan’s statistic is however inconsistent with what the data are presenting.

Because of the dependence on this crossing being as anticipated and the Nelson-Aalen be

powered adequately to tell this difference apart, we see that the two versions of the composite

statistics are not making a recommendation for early stopping. However, the individual

component of ẐNA(τ0, 3) is indicative of favoring the better treatment for the standard of

care when considering the information based OBF monitoring. In contrast to E, this stopping

probability falls short. The quadratic statistic is not useful here in identifying the better

treatment strategy despite sufficiently high probability of crossing by time 3 for scenario E.

The overall probability of rejecting at time 5 is seen to be sufficiently high for scenario

B where both logrank and restricted mean are identifying the better treatment as the treat-

ment group over standard of care group. Even though the Nelson-Aalen does not have high

power to detect the difference in survival probability, it is addressing the “right” question if
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5 year survival is of clinical interest while early differences may be deemed to be less clini-

cally important. Because this estimate is “essentially” disregarding all survival information

earlier on, it would not identify potential treatment strategies as well in situations when,

for instance, there is plausibility of a waning treatment effect in vaccine settings where a

booster shot may be useful to take advantage of this sufficiently large effect early on. In such

settings, sufficiently large early differences are of interest.

Table 7.12: Probability of rejecting the null hypothesis in favor of either treatment (Trt) or
standard of care (Std) for scenario B, E based on a fixed sample design at time t = 5.

Scenario B Scenario E
Stat Overall Std Trt Overall Std Trt
ZLR 97.44 0.00 97.44 5.44 2.74 2.70
ZNA 4.76 1.95 2.81 99.70 99.70 0.00
ZRMS 88.95 0.00 88.95 7.00 0.90 6.10
ZNA(τ0, 5) 25.88 0.02 25.86 17.08 0.04 17.04
ZOLS Fixed 76.63 76.63 0.00 100 100 0.00
ZQuad 100.00 - - 100 - -

Additionally, we contrast how the overall conclusions of the fixed sample design differs

from the sequential monitoring. Under the fixed sample setting when there is spurious

crossing:

• The Nelson Aalen (NA) rejects the null hypothesis at roughly 5%.

• The logrank and restricted mean statistic conclude with high probability in favor of

the treatment.

• The linear composite statistic concludes with high probability in favor of the standard.

• The quadratic statistic concludes with 100% probability of rejecting the composite null

hypothesis that a crossing occurs.
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However, with sequential analyses,

• The Nelson Aalen (NA) rejects the null hypothesis at roughly 6% with slightly higher

probability favoring the treatment.

• Both logrank and restricted mean statistics conclude with high probability in favor of

the treatment by time 3.

• The use of the OLS that is calibrated to the information growth based on the sequential

version of OLSS has only high probability of stopping at the final analysis to reject the

composite null of no crossing and identifying the standard of care as the preferred

treatment.

• Use of the quadratic statistic stops early at time 4 with the conclusion that there is

100% probability of rejecting the composite null hypothesis.

In contrast to a fixed sample design, when there is truly a crossing such as in scenario

E, the sequential analyses generally result in the same conclusions for the logrank statistic,

and even higher probability of stopping with the linear composite statistics. The restricted

mean, although has slightly lower probability, is overpowered at earlier analyses even with the

assumption of naïve information growth. The Nelson-Aalen statistic, ZNA, with sequential

analyses is at least powered to ultimately detect a difference in E, that is consistent with

results from the fixed sample design. The use of composite statistics do not always provide

consistent conclusions with results from the other test statistics in scenario B, despite being

similar in the setting of crossing survival. This indicates that while the composite statistics

are “adequate” as promised to detect true crossing survival curves, many often, when this

crossing is spurious in both fixed sample and sequential setting, the results are unreliable to

enable guidance for statistical monitoring. The over reliance on using the p-value to guide

stopping and the “less well-understood” aspect of how the composite statistics perform in a
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variety of situations to provide conflicting results with other summary measures that make

guidance difficult in practice.

7.5.2.3 Additional concerns with choice of boundaries
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Figure 7.6: Standardized alternatives estimated for various test statistics at each interim
analyses with several choices of monitoring boundaries to account for early differences that
are not meaningful. Positive values of Z are consistent for the treatment being better than
the standard while negative values of Z are consistent for standard of care being better.
The black solid lines describe some potential sequential boundaries with varying degree of
early conservatism. The crossing scenario (E) becomes problematic when these time varying
estimates crosses the boundaries and then recrosses back later on.

The sequential monitoring plan can be chosen to take place at later analyses as what we

just described as well as in Logan and Mo [2015]. It is often the case that data monitoring

are conducted frequently to inspect the trial for any safety issues that might arise. Thus,
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interim analyses may be conducted on a yearly basis even though a sequential rule is placed

at later calendar time. However, during a DMC meeting, members of the committee are

often presented efficacy data as well as safety data in order to be able to judge the trial and

assess the benefit to risk of the treatment. When the sequential monitoring plan does not

present a guidance to allow the DMC to judge the trial, they have to rely on other aspects

of the data, such as summary statistics in order to assess this benefit to risk. However,

poor choices of monitoring rules such as what we described earlier can lead to too frequent

stopping at a calendar time that does not matter clinically when assessing long term benefit.

Suppose for now we may be able to make our first formal interim analysis with an

appropriate monitoring rule based on previous section. Both the log rank and Nelson-

Aalen test statistic have high probability of stopping by this time in favor of the treatment.

However, by now, our survival curves may have crossed in scenario B and most often in

E. Then, a difficulty arises as to whether the conclusions of the logrank and Nelson-Aalen

are useful since there may be concern that this treatment effect past 3 years may no longer

address the same clinical question. In such a setting, we see that the naïve choice of a

monitoring rule that we presume is conservative may not be ruling out differences that

matter clinically to us. In this setting, we see that the (average) standardized alternatives

for these test statistics are sufficiently higher than that of our proposed boundaries as in

Table 7.13. Consequently, if this difference does not balance the scientific considerations of

the trial, then a more extreme rule should have been chosen to preclude rejecting the null

hypothesis too often at early interim analyses.

Such a scenario is also observed at the second interim analyses. We see the problem of

choosing a simple monitoring boundary that does not necessarily protect us under the weak

null setting such as scenario B and E. Additionally, when attempting to calibrate the bound-

ary with the true information growth, this makes the implicit assumption that the earlier

information growth does not matter, particularly with the composite statistics. Incidentally,

if long term benefit was of interest, then the Nelson-Aalen test would be sufficient to detect

this long term benefit at some time point of interest since in E, the test has high power to
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detect this difference. In scenario B when this difference in survival probability diminishes,

then the test do not reject sufficiently often which is more appropriate than any of the other

test statistics considered.

When we posit the possibility of crossing survival curves, then the decision is harder

since we need to assess the relative benefit prior to crossing, the time of crossing as well

as the probability that this crossing takes place as noted in earlier section. With these

in mind, the restricted mean statistic may present a better candidate with the appropriate

monitoring rule. In the fixed sample setting, neither treatment groups for scenario E presents

an advantage as the late difference in area under the survival curves is negated by this early

difference in area under the survival curves.

Figure 7.6 illustrates the time varying standardized alternatives for the various statistics.

In particular, we present other plausible boundaries using a two-sided symmetric OBF designs

that spanned across the graph with different levels of early conservatism. However, when the

history of the survival is to be used, both the logrank and restricted mean statistics provide

differing level of statistical evidence. We noted previously that with the sequential rules

imposed, we were not able to control this probability of stopping at the first analyses. This

is further illustrated in both Table 7.13 and Figure 7.6 where we see that the standardized

alternatives are far away from 0 so that more conservative boundaries may need to be chosen.

Below, we see some other potential rules that we have computed to reflect how early this

level of conservatism needs to be.

1. OBF(0.1, 0.3, 0.5, 0.8, 1) : Two-sided symmetric OBF boundary with a total of 5

analyses conducted at information fraction of 0.1, 0.3, 0.5, 0.8, and 1.

2. OBF(0.2, 0.4, 0.6, 0.8, 1) : Two-sided symmetric OBF boundary with a total of 5

analyses conducted at equally spaced information fraction.

3. OBF(0.05, 0.2, 0.4, 0.6, 1) : Two-sided symmetric OBF boundary with a total of 5

analyses conducted at information fraction of 0.05, 0.2, 0.4, 0.6, and 1.
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4. Wang and Tsiatis P = 1.5 : Two-sided symmetric Wang and Tsiatis boundary (P =

1.5) with a total of 5 equally spaced analyses.

Table 7.13: Average of the Z statistics at each interim analysis under the weak null scenario
of B and E that must be considered when wanting to exclude early differences that are not
important. The monitoring boundaries on the Z-scale are also presented for a total of 3
analyses. Although these boundaries selected can be calibrated to control the overall Type
1 error rate, note that if early differences were not of concern, none of these boundaries are
suitable since there is high probability the standardized alternatives will cross the boundaries
(Table 7.11). As such, our level of early conservatism as represented via the calendar time
is not maintained with the use of these common boundaries.

Stat t = 1 t = 2 t = 3 t = 4 t = 5

Sc
en
ar
io

B

ZLR 6.03 6.67 6.79 4.82 3.93
ZNA 2.69 1.26 0.51 0.17 0.05
ZRMS 6.60 6.13 5.17 4.05 3.19
ZNA(τ0, t) 2.69 1.26 1.67 1.84 1.87
ZLR(τ0, t) -2.36 -4.14 -5.50
ZOLS Fixed -0.48 -1.62 -2.57
ZQuad 9.65 21.75 35.00

Sc
en
ar
io

E

ZLR 4.42 5.19 4.71 2.35 -0.02
ZNA 2.32 0.90 1.23 1.42 1.46
ZRMS 4.70 5.25 4.05 2.17 0.40
ZNA(τ0, t) 2.32 0.90 1.23 1.42 1.46
ZLR(τ0, t) -3.66 -7.20 -10.50
ZOLS Fixed -1.72 -4.09 -6.39
ZQuad 16.41 55.36 113.80

Bo
un

da
rie

s OBF(Equal) 3.4711 2.4544 2.0040
Haybittle-Peto 3.0902 3.0902 1.9704
Equal Error 2.3941 2.2937 2.2002
OBF(Info[Ref:LR]) 2.3633 2.1139 2.0567

The last two boundaries can be chosen to preclude early termination of the study when

there may be suspicion of crossing survival curves. Of note, each of the boundaries may

address different levels of early conservatism but may not be best in the setting of E when
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this time varying treatment effect can lead to crossing the boundaries and then crossing over

again. In such settings, common sequential strategies as above may not be best suited for

crossing survival without maintaining other scientific aspects of the trial. In other words,

when we posit crossing survival curves, we are excluding the possibility that this crossing can

be spurious. When choosing any sequential rules, we may be less concerned with scenario B

when there may be no crossing over the calendar time we conduct the study.

Even though the boundaries can be selected to ensure early conservatism, the late crossing

may not be adequately captured with these preferred rules. It may be the case whereby a

more extreme version of the Haybittle-Peto boundary needs to be selected such that the

boundary shape function are flat on the Z scale to ensure having captured sufficient long

term data to establish the benefit and proper identification of the better long term treatment.

However, such a monitoring rule is deemed to be less efficient than competing boundaries

such as OBF or Pocock. Additionally, such choices also imply we are imposing high constant

degree of conservatism to balance statistical goals, which may come with the price of not

addressing competing constraints such as scientific or ethical goals.

7.6 Discussion

Sequential analyses of clinical trials are conducted for ethical and efficiency concerns with

the goal of protecting the safety and well being of the patients on the trial. The DMCs

are charged with many important ethical and often difficult scientific decisions related to

protecting the integrity of the study as well as the patient’s safety. Thus, the summary/test

statistics that can elucidate understanding of any impending safety issues are of utmost

important. Because many of these scientific decisions are complex, the use of simple statistics

that enable understanding of the efficacy and effectiveness of the data accrued thus far far

outweighs the use of complex statistics that do not address the scientific question in a reliable

manner.

Potentially, when crossing survival are possible, we may have to consider the use of fixed

sample strategies while putting additional considerations in how to judge a trial with the use
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of the summary statistics. Kaplan Meier survival curves may enhance better understanding

together with various summary statistics in order to make clear informed decisions to eval-

uate the strategy. Over-reliance purely on statistical significance obtained from sequential

boundaries may not be the single statistic to provide reliable quantification of treatment

benefit.
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Chapter 8

Conclusions

In this dissertation, we have investigated the statistical issues associated with the applica-

tion of adaptive designs in the time to event RCT setting. We do not regard each chapter to

stand separately on its own when considering the issues that may arise during the planning

of a clinical trial to determine whether a treatment/prevention strategy is worth pursuing.

Instead, each of these chapters is focused on different issues that can arise during the design,

conduct, and monitoring of any time to event clinical trial. We have attempted to separate

out some of these issues that are currently lacking in the adaptive literature and conducted

comprehensive evaluation of the potential benefit and risk when planning an adaptive interim

analysis in the setting with delayed ascertainment of outcomes.

The setting with delayed ascertainment of outcomes presents a variety of challenges when

there is an added dimensionality of time. Conventional adaptations made at the penultimate

analysis in the immediate setting are no longer feasible logistically since these adaptations

in presence of low event rate may be chosen late on the calendar time which are no longer

considered late on the statistical information scale. Additionally, when there are logistical

difficulties, the trial may need to be terminated earlier, thus lending itself the plausibility

of adaptively stopping with a smaller sample size. In the immediate outcome settings,

findings have not found adaptive designs to be markedly more efficient over competing group

sequential designs. However, the statistical literature also has not been adequate to separate

out efficiency issues, differentiating between good or bad flexible adaptive designs vs selecting

the best time to make such an adaptation. Thus, we investigated the setting of finding the

best flexible design while keeping the schedule fixed to determine whether such benefit can
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be attained in the fixed sample setting with the aim of decreasing the final sample size. We

found that when studies have to be terminated earlier, the best flexible adaptation tends to

lead to significant loss of power over having prespecified these rules at design stage. And that

when studies are enlarged, there is significant loss in power when such schedule of analyses

are conducted late using the flexible adaptations. While gains in power are negligibly better

at very earlier analyses, it also points out that under such circumstances, one should have

started off designing the study with care, rather than choosing late adaptations.

Estimating the background rates in a time to event setting can be a difficult task. When

an apparently “low background rate” arises during the conduct of the study, the options

of either increasing accrual, terminating a study earlier than expected, and/or extending

calendar time may well depend on whether this is a consequence of truly low event rate,

and/or extreme treatment effect. In such settings, the utility of an adaptive strategy thus

depends on how well the rule can distinguish this difference. We investigated the plausibility

of comparing a fully blinded adaptive design based on a group sequential method vs an un-

blinded procedure that might be used to better distinguished between low event rates and/or

extreme efficacy of treatment effect. When this low background rate is due to the presence

of an extreme treatment effect, we found that fully blinded group sequential approaches are

most often more than adequate. Furthermore, protecting the integrity of the trial without

the additional complications of potential operational bias from third party to conduct the

adaptive steps.

In limited settings when the treatment effect is moderately effective and that event rates

are not sufficiently extreme, we found potential for benefit within the class of “prespecified

adaptive designs” vs fully blinded group sequential procedures. However, when such pre-

specifications are lacking, which is very often the case in many of the adaptive literature, we

found negligible benefit in a fully adaptive strategy. Additionally, when scientific considera-

tions restrict extension of the calendar time, the best fully adaptive strategy loses efficiency

over fully blinded strategies. Our results have implications on the notion of the cost of not

planning to plan a RCT properly. The “price to pay” with a fully adaptive strategy is a
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substantial loss of power when regulatory agencies are not convinced that sponsors have not

demonstrated any form of “intent-to-cheat” due to potential operational bias with these “less

well-understood” unplanned, unblinded procedures.

In many settings, investigators speculate on the potential possibility of a waning treat-

ment effect and thus considered the plausibility of gaining power under such hypothesized

alternatives with the use of approaches to differentially weigh the survival curves. This leads

to the question of whether “less well understood” approaches can be used together with these

“less well understood” adaptive designs. Many “less well-understood” time to event analyses

methods may be considered to gain power under time varying treatment alternatives but are

however evaluated otherwise under the strong null setting for their operating characteristics.

However, many of such procedures to control the overall Type 1 error require characterizing

the information growth. We investigate the use of weighted logrank statistics on the control

of overall Type 1 error with unblinded adaptations to evaluate the robustness of adaptive

procedures to misspecification of information growth.

We find that in situations when an unblinded interim analysis is made to modify aspects

of the censoring distribution as quantified by the accrual of subjects, this can indiscrim-

inately affect the control of the overall Type 1 error by as much as 20%. When further

evaluating the robustness of current adaptive procedures to these “less well understood” sur-

vival procedures, the typical assumption of not needing to adjust when one has not adapted

no longer holds true. We found that when adaptations are made to increase accrual based on

unblinded results, or even potentially switching from logrank to Wilcoxon statistic to gain

efficiency, there is added loss of precision to quantifying this nonlinear information growth

that is dependent on both the censoring and survival distribution. This difficulty to accu-

rately quantify the maximum information growth leads to difficulty in adequately controlling

our Type 1 error inflation. In such situations, when the protocol allows for potential un-

blinded adaptation with these “less well-understood” analyses methods for censored data,

the consequence of such is the need always adjust for any potential for operational bias.

In presence of time varying treatment effects, there is less clarity on how best to answer
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any of these questions. We discussed plausible scenarios on how to describe this outcome

space and investigated the degree to which censoring affects time varying treatment effects

either as a consequence of interim data analyses and/or incomplete accrual of subjects. We

found that in many situations, “less well-understood” analyses methods used in practice

are similarly affected by the degree of censoring, such that they are affect the scientific

interpretation of the study results.

This presents a challenge when investigators posit the possibility of crossing survival

curves during the design of clinical trials and considered the plausibility of placing scientific

weightings to switch between test statistics. We investigated the consequences of such use

based on an example taken from Logan et al. [2008] to evaluate the potentially robustness

of the test statistics when such crossings are spurious. We find difficulty in the use of their

proposed statistics to distinguish between a true crossing as opposed to the scenario when

such crossings are spurious. We then compared their results some of the commonly used test

statistics and evaluated how they fare when the primary objective is to identify the better

long term treatment with the plausibility that earlier on, there may be strong potential

benefit of survival for one group but then this benefit essentially disappears.

We investigate further how the totality of these findings may be used in a DMC situation

when they faced difficult ethical dilemmas. With sequential boundaries imposed using a

group sequential rules, we investigate the degree to which naïvely chosen conservative rules

that are thought to protect against early conservatism can affect decision making based

on “less well-understood” statistics. We find that in such situations, the sole use of the

monitoring boundaries to guide decision making is insufficient to judge survival benefit and

that over-reliance on obtaining statistically significance without a proper quantification of

the evidence of the treatment can results in poor decision making. When there is potential

for time varying treatment effects, the planning of a sequential monitoring rule has to be

even more cautiously specified so that we do not tend to stop too early for unanticipated

differences that do not matter clinically.

The general theme of this dissertation is to evaluate the potential for benefits and risk
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on the use of adaptive methods. There has been an explosion of literature pushing for more

innovative designs to speed up the drug discovery process. While these creative approaches

are laudable, many of these approaches are lacking comprehensive evaluations to what are

potential operational and logistical issues in practice. Our results in the time to event setting

have found that there are many potential issues that can arise that are not easily solved. It is

not sufficient to assume a proposed monitoring rule that is known to be conservative to hold

in practice. Instead, there is a need to consider a wide variety of designs to understand the

operating characteristics, robustness to misspecification of event rates. Additionally, when

positing time varying treatment effects, it is not sufficient to only consider the alternatives

based on prior trials but to evaluate them with regard to potential possible scenarios that

could well occur so as not to be surprised by the outcome.

There are many operational issues with the use of adaptive designs in the time to event

setting that has not been considered in this dissertation. One of the main issues is that in

many clinical trials, interim analyses often consist of many other endpoints that are measured

immediately. Of concern is whether the implementation of these adaptive approaches has

been made with these additional information. This issue was pointed out by Bauer and

Posch [2004]. In such situations, there is high risk that approaches by Cui et al. [1999] are

unable to correct for the use of these secondary endpoints.

The design of clinical studies entail experimenting with a treatment with unproven ben-

efit to risk profile on human volunteers with the objective of being able to reliably establish

evidence of efficacy, effectiveness, and safety. Such design and planning is often an iterative

collaborative process where concerns from various communities, such as, the scientific re-

searchers, regulatory agencies, ethical review boards, logistics etc, have to be accommodated.

The thought process going into a design of a time to event setting is more complex when we

are trying to determine the appropriate strategy over time. Thus, a wide range of designs

should be evaluated to be properly evaluated against potential misspecification (Chapter 5)

to unanticipated low event rates, inferior group sequential design that do not balance the

scientific concerns when there may potential crossing in survivals. In such settings, sequen-
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tial rules have to be chosen with care, stress-tested with misspecification of assumptions,

plausible time varying alternatives, specify what are the not surprising outcomes, and what

are the early important clinical differences that matter so as to provide a comprehensive,

achievable protocol that balances multiple competing goals of clinical research.
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Appendix A

Time To Event Trials of Interests

A.1 National Lung Screening Trial

In the National Lung Screening Trial (NLST), the objective of the trial was to determine

whether the use of screening procedure via low dose CT (computed tomography) as compared

to the use of chest radiography as a screening measure for lung cancer can reduce lung cancer

mortality among smokers or previous smokers with no history of lung cancer or cancers of

other form [Team et al., 2011]. 53,454 participants were enrolled between the period of

August 2002 through April 2004. A total of three annual screenings were to be conducted

for all eligible participants. Compliance was high in both arms.

The objective of the NLST is to determine whether the use of low-dose CT as compared

to the use of the chest radiography was effective in prevention of mortality from lung cancer.

T0, T1, and T2 are the screening visits at baseline, year 1, and year 2. Following the

screening visits, the participants are further followed for an additional 6 - 8 years with the

duration of the trial to take place for a total study time of 10 years (including 3 years of

screening). A weighted version of the logrank statistic, linear ramp was placed from time of

randomization to year 4 with a full weighting after 4 years, was chosen with the scientific

rational of emphasizing weights on later deaths relative to deaths within the first 4 years. A

total of 6 analyses were performed such that interim analyses were conducted annually from

2006 to 2009, and two analyses were performed semiannually in 2010.

During the first few years of screening, the LDCT arm detected a higher proportion

of early stage lung cancer relative to chest radiography, while chest radiography detected
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a higher frequency of later stage cancer. A lower death rate observed during statistical

monitoring raised study concerns. If the study was extended longer, the study would have

addressed a totally different scientific question. In particular, the first three years of baseline

screening would not have been sufficient to prevent lung cancer mortality for a longer period

than what the study had planned for. By extending the trial, the study would not have been

able to address whether LDCT was efficacious as a screening measure to detect early stages

of lung cancer, and thus prevent lung cancer mortality.

A.2 HPTN052

HPTN052 was declared as one of the scientific breakthroughs of the year in 2011 [Cohen,

2011]. The primary objective in HPTN052 was to determine whether the early use of com-

bination anti-retroviral therapy (ART) in infected patients among serodiscordant couples is

effective in the prevention of HIV-1 transmission to uninfected partners [Cohen et al., 2011].

The trial was designed to provide at least 87% power to detect at least 39% reduction in

the primary endpoint of HIV incidence. Based on various logistical constraints (18 months

accrual, projected completion of follow-up at 6.5 years), an estimated accrual size of 1750

participants was computed assuming average 5-year placebo (13.2%) and treatment (8.3%)

event rates, and an anticipated 188 events.

Six years after HPTN052 started, blinded analysis during a planned formal interim review

showed 39 HIV infections among the 1,763 enrolled couples (877 on delayed vs 886 on early)

with 28 of them being linked transmissions. Unblinded analysis showed that 27 of the linked

transmissions arose on the delayed ART arm while only one came from the early ART

arm yielding a hazard ratio of 0.04 (95% CI: 0.01 - 0.27; p-value < 0.0001). On the basis

of this analysis, the DSMB recommended stopping further follow-up in the RCT due to

demonstrated efficacy of the experimental treatment.

The pilot phase of the study Pilot phase started in April 2005, and enrollment took place

from June 2007 through May 2010. The DSMB took place on April 2011 on the basis data

collected up to Feb 2011. Composite monitoring of primary outcomes took place around
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30% of the 340 events, i.e., at 105 events which result in crossing the efficacy boundary. In

summary, no interim monitoring was planned solely for the primary outcome for only HIV

infections.

A.3 Partners Pre-Exposure Prophylaxis (PrEP)

Partners PrEP is a Phase III, randomized control, double-blind, three arm trial of daily oral

tenofovir (TDF) and emtricitabine/tenofovir (FTC/TDF) PrEP for the prevention of HIV as

their primary endpoint among HIV serodiscordant partners [Baeten et al., 2012]. Based on

a placebo event rate of 2.75 infections per 100 person-years (PY), 4747 HIV serodiscordant

couples randomized with equal probability to the three arms followed for 36 months would

be expected to provide the necessary number of events. Using a group sequential design with

up to a maximum of four planned interim analyses, the trial was stopped early at the third

interim analysis due to crossing the efficacy boundary. The observed placebo event rates

were much smaller than what was used in planning with the observed treatment effects to

be more extreme than had been anticipated.

A.4 Children with HIV Early Antiretroviral Therapy (CHER)
Trial

We motivate the scientific and ethical deliberations of the DSMB charged with monitoring

the CHER trial [Violari et al., 2008]. The primary objective of the study was to determine

whether a limited course of ART administered to babies immediately (with interruptions)

when their HIV statuses are known would have a long-term heath benefit, when compared

to HIV-infected babies who are treated continuously with ART only after they developed

symptoms of HIV, or weakened immune systems (referred to deferred ART). At design stage,

a total of 375 children are projected to be enrolled over an 18 month accrual period, to provide

a minimum of 3.5 years of followup data. Such a design would provide at least 80% power

to reject the null hypothesis of no difference among the three groups assuming the global

log-rank test with a two-sided alpha level of 0.05. Under their hypothesized alternative, they
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postulated the possibility of crossing hazards.

The guiding statistical criterion for monitoring the trial is based on a difference of at least

3 SD in the log relative hazard (or nominal P<0.001) in any interim analysis (according to the

Haybittle-Peto rule). During the course of the trial monitoring, a strong treatment effect was

observed at the second interim analysis. However, the average follow-up of all participants

was 40 weeks (Range: 24 - 58), far shorter than what was planned at the beginning of the

trial. The DMC faced the dilemma of whether it was ethical to continue followup, and

that if the hypothesized crossing of hazards was real, this early separation of survival curves

may come back together when followup was extended. Despite these dilemmas, the DMC

recommended stopping the trial with compelling strong evidence of difference in mortality

(75% reduction in risk of mortality) being demonstrated. The DMS further recommended

that babies in the deferred therapy group not currently receiving ART to possibly initiate

ART, and continue followup for all three groups.

A.5 Autologous vs Allogenic Stem Cell Transplant

In both Logan et al. [2008] and Logan and Mo [2015]’s paper, they provided the bone marrow

transplant example and a RCT in the disease setting of acute lymphoblastic leukemia (ALL)

RCT as scientific motivations on identifying the treatment with better long term survival.

The ALL RCT was designed to address two questions. One of which was to compare whether

there was evidence of allogenic effect of transplantation between those who receive allogenic

vs those who did not receive allogenic transplant. The other scientific question of interest

was to determine whether among patients who did not receive allogenic transplant, does

those who had autologous transplant compared to those on maintenance/chemotherapy be

effective [Goldstone et al., 2008]. In this trial, the patients who had allogenic transplantation

were observed to have higher risk of mortality, and have higher probability of survival at the

end of 5 year relative to patients on the autologous transplantation arm. In this clinical trial

example, as motivated in Logan et al. [2008], there was compelling evidence that the survival

curves do indeed cross sometime after 2 years.
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The scientific rationale of the potential of crossing hazards/survival using the ALL trial as

an example can be argued as follows: Patients having an autologous bone marrow transplant

may be at high risk of infections (organ related) after exposure to chemotherapy use. This

suppress the patients’ immune system in order to facilitate the stem cell transplant early

on after the transplant. Upon surviving this period of weakened immune, the patients may

recover over some period of time. On the other hand, it is plausible that had their stored

stem not been completely purged of cancer cells, these patients’ may have higher risk of

relapse later in time. Thus, the prognosis for patients’ whose stored stem cells were not free

of malignant cancer cells, may have higher probability of relapse over time when their new

immune system were unable to purge these cells.

For patients having allogenic bone marrow transplant in the ALL trial, their initial hazard

may differ from patients on the autologous arm. In addition to the high risk of infections

after exposure, there is additional hazard as a consequence of Graft-vs-Host disease (GVHD),

or other organ related complications if the donor’s HLA is not a perfect match. Thus, the

initial risk of mortality may be higher for patients on the allogenic arm as compared to the

autologous arm. This initial high risk or hazard rate may change greatly over time if either

the donor’s stem cells are a perfect match to the patient’s. Therefore, the risk of GVHD

becomes negligible, or the patient survives the complications of GVHD, and makes a near

complete recovery if the host accepts the foreign cells over time, “curing” the disease. Thus,

at any time, it is entirely possible that the hazards for each treatment group crosses after

some time. However, depending on the risk of dying, it is entirely possible that some crossing

in hazard rates for the two treatment group can potentially give rise to stochastically ordered,

survival curves over the time frame of interest, with high probability of observing a spurious

crossing.
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Appendix B

Additional Results for Chapter 2

B.1 Blinded Repowering: Sepsis Example

We refer to the sepsis example described in Emerson et al. [2007] for illustration. Sepsis is

a potentially life threatening complication of an infection. Typically, infection starts out in

several stages. Sepsis occurs when chemicals released into bloodstream to fight an infection

trigger an inflammatory response, resulting in a cascade of changes that may damage multiple

organs, resulting in fatality. Often, this can induce septic shock. The current treatment is

antibiotics. However, this works only if the infection was a direct result of Gram positive

bacteria infection rather than non-bacteria/Gram negative bacteria infection.

The sepsis study was designed to compare the 28-day mortality probabilities between

groups of patients receiving antibodies to endotoxin and groups of patients who receive

placebo. Consider the following notation in comparing the difference in the probability of

28-day mortality, we define Xik to be the indicator of 28 day mortality for the ith patient

on the k treatment group where k = 0 if randomly assigned to placebo and 1 if randomly

assigned to treatment group for i = 1, · · · , n. Then, our outcome Xik ∼ B(1, pk). The target

parameter, θ = −(p1−p0), compares the difference in the probability of dying on the placebo

arm relative to the treatment arm, parametrized such that positive values of θ correspond

to a benefit in the experimental treatment (relative to the placebo). We are concerned in

testing the null hypothesis H0 : θ ≤ θ0 vs HA : θ ≥ θAlt at some level α. We motivate this

example when the background rate for the placebo group may be incorrect.

We can construct the estimator for θ̂ = −(p̂1− p̂0) = ∑n
i=1Xi0/n−

∑n
i=1Xi1/n for which n
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subjects are recruited per arm. Our asymptotic distribution of θ̂ is N
(
θ, p0(1−p0)

n
+ p1(1−p1)

n

)
.

At level α, in order to detect the design alternative, θA, at power β, our sample size formula

follows from the immediate setting with V = p0(1− p0) + p1(1− p1).

Assuming the design in Emerson et al. [2007], we let our hypothesized background rate

be 0.30, and our design alternative θA = 0.07. Then, the incidence rate for the experimental

treatment is 0.23. We want to test H0 : −(p1 − p0) ≤ θ0 vs HA : −(p1 − p0) ≥ θA. Based on

the sample size formula, using a one-sided level α = 2.5%, presuming the baseline incidence

rate p0 = 0.30, and the treatment arm to decrease the incidence rate to p1 = 0.23, then a

fixed sample design based on 1700 patients (i.e., n0 = n1 = 850 per arm) yield a statistical

power of 90.7% to detect the design alternative θA = 0.07.

We assume a GSD is planned with 4 equally spaced looks as according to the hybrid

monitoring boundary that comprises of an OBF lower efficacy boundary, and a upper futil-

ity boundary corresponding to P = 0.8 in the unified family. This would correspond to the

Futility.8 stopping boundary in the sepsis example that was chosen by the sponsor in Emer-

son et al. [2007]. Based on this design, for a sample size of 1700, we would have 88.8% power

to detect the design alternative θA. The boundary values are presented in Table B.1. We

denote superscripts to refer to the interim analysis at which the test statistics or estimates

were computed.

Table B.1: Summary of the Futility.8 boundary values on either the Z statistic, sample mean
(θ) scale, or fixed sample P -value (lower) scale.

Analyses (Sample Size) Z θ P (lower)
Futility Efficacy Futility Efficacy Futility Efficacy

Time 1 (n= 425) -1.1082 3.9756 -0.0473 0.1697 0.00004 0.86611
Time 2 (n= 850) 0.3211 2.8112 0.0097 0.0848 0.00247 0.37408
Time 3 (n= 1275) 1.2577 2.2953 0.0310 0.0566 0.01086 0.10425
Time 4 (n= 1700) 1.9878 1.9878 0.0424 0.0424 0.02342 0.02342

Specifically, at any interim analysis, p̂ is used to estimate the common mortality proba-
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bility p̂ under the null hypothesis of no treatment effect with the test statistic

Z = −p̂1 + p̂0√
p̂(1− p̂)(1/n1 + 1/n0)

In particular, if the estimated variability of θ̂ at the end of the trial matches the variability

at design stage, i.e., V̂ ar(θ̂) = (0.3 × 0.7 + 0.23 × 0.77)/n = 0.3871/n, the trial is said to

have attained it’s maximum statistical information. Otherwise, blinded revision of sample

size may be required.

Suppose for now the event rate is as expected, i.e., p0 = 0.3 but the true incidence rate of

the treatment group to be 0.17. At the first interim analysis conducted based on 424 patients,

110 “successes” were observed (Table B.2). In a blinded setting, the overall estimate of p1

can be computed, and further solved via p = 110
424 = (n1p0 +n0p1)/(n0 +n1), giving rise to the

estimate of p1
0 = 0.2944. Since the computed V̂ arp1 based on the solved estimate of p1

0, p
1
1

is 0.3818/n, the deviation from the planned variance of 0.3871/n is less than 2%, the trial

continues to the next interim analysis.

At the second interim analysis, V̂p2 = 0.3587/n is slightly lower than anticipated. In this

analysis, presuming that our final sample size is 1700, then our estimated quantity V̂2 is 7%

lower relative to V̂1. However, the Z-statistic has crossed the efficacy boundary, and the

trial may terminate for efficacy (if sufficient safety data has been obtained) even though the

aggregate event rate is lower.

Suppose now our event rate is truly incorrect, i.e., p0 = 0.2, we consider the second

scenario in the Table B.2 where the true treatment effect is 0.13 but our design alternative

remains the same. In this case, at the first interim analysis, an observed lower event rate is

seen with p = 0.1368. A simple calculation of V̂ arp1 = 0.2337/n indicates that this quantity

now deviates by about 40% from the planned variance of 0.3871/n. In order to maintain the

same statistical information, we need to adjust n to 1.66n, which is more than 50% increase

in sample size. However, since this interim analysis is early, it is possible that our estimates

are more variable. In a blinded setting, we may choose to stay the course and continue to
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Table B.2: Interim estimates based on a realization of simulated data. Column θ and Z
would not be shown in a blinded setting. Instead, only p and the estimated V̂ arp computed
based on evaluating p0 using overall estimate of p. The reference V = 0.3871/n.

p0 p1 Analyses (Sample Size) Success (p) V̂p θ Z

0.3 0.17

Time 1 (n= 424) 110 (0.2594) 0.3818 0.113 2.659
Time 2 (n= 850) 201 (0.2365) 0.3587 0.125 4.278
Time 3 (n= 1274) 305 (0.2394) 0.3617 0.118 4.924
Time 4 (n= 1700) 399 (0.2347) 0.3568 0.126 6.123

0.2 0.13

Time 1 (n= 424) 58 (0.1368) 0.2337 0.028 0.848
Time 2 (n= 850) 116 (0.1365) 0.2332 0.066 2.798
Time 3 (n= 1274) 194 (0.1523) 0.2557 0.072 3.587
Time 4 (n= 1700) 255 (0.1500) 0.2525 0.072 4.143

the next interim analysis to decide whether this “low event rate” persists.

At the second interim analysis, there may be cause for worry since the estimated event

rate is now similar to the previous interim analysis. V̂ arp2 = 0.2332/n is still not too different

from the first interim analysis. To maintain the planned statistical information, we are still

required to adjust our sample size by > 50%. Two strategies are likely, (1) one can choose

to stay the course and wait for the third interim analysis to decide. Alternatively, one may

revise the design at this time to consider expanding the trial by having 50% more subjects

and keeping with a total of four analysis.

In this case, with 50% more subjects, the schedule of interim analysis should take place

when roughly 638, 1275, 1913, and 2550 subjects are recruited. Since we already spend

two analysis at 424 and 850, then by revising the design now, our next two analyses should

take place at roughly 1913 and 2550. The deliberation here is that if our blinded estimates

were truly transient and the event rate will ultimately pick up at the later analyses, then

it is infeasible/unethical to conduct this next analysis at a larger sample size than what we

initially had planned. We may choose to act according to FDA guidance [FDA, 2010], and

stay the course, and prospectively plan to increase the sample size when the event rates at
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the third analysis are still low.

At the third interim analysis, we are now 75% of the way through the study if our

maximum sample size is 1700, V̂ arp2 = 0.2332/n is clearly lower than anticipated. Although

there is concrete evidence that our event rate is truly lower than what we anticipated, we

have crossed the efficacy boundary. Had a sample size revision been performed at the second

analysis, we would have proceed beyond our planned sample size even though the difference

between our treatment effect and placebo is hypothesized correctly.

Note that if a FSD is assumed, then in either of the above setting, we would only terminate

the study when we complete accrual of all 1,700 subjects. This is less efficient under there

is misspecification of design assumption, or when the treatment effect is more optimistic

than anticipated. Using a GSD, we see the relative merits of adaptively revising the trial to

a smaller sample size in a blinded fashion rather than continuing to the planned maximal

sample size.

In both of these illustrations, the blinded adaptation only considers the use of the overall

estimate of the event rate rather than the average of the individual rates from both arms.

Additionally, both illustrations make use of the hypothesized treatment effect θ at planning

stage to update design assumptions. When we revise the variance, the inverse of our Fisher’s

information, we are essentially revising N/V as described in section 2.4. At any point during

the study, the use of the aggregate estimates do not unblind any aspects of the study. This

preservation of the blinding through the use of blinded adaptations are considered well-

understood by regulatory bodies so long as the procedures are clearly documented, and the

parties involved in making these blinded adaptations have no knowledge of the treatment

assignments or other aspects of the unblinded data in the trial.

Many of the adaptive procedures that we described in section 2.6 are however interested

in making an increase in sample size at the penultimate stage based on unblinded data.

While the blinded procedure appears justified to protecting the integrity of the trial, there

may be ethical reasons to unblind the study in presence of low “background rates” during

the course of monitoring. If the true baseline event rate was lower than anticipated, and the
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interim estimated treatment effect is close to our design alternative, then increasing accrual

may be important to improving precision. However, if extreme treatment efficacy is the

sole reason leading to a lower than anticipated event rate, then there may not be a strong

rationale to increase the sample size since the monitoring rule can potentially allow early

stopping (See Chapter 5).
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Appendix C

Additional Results for Chapter 3

C.1 Additional Results for Section 3.2

C.1.1 Relative Efficiency: Doubling the Original Sample Size

Consider the following design strategy. At some interim analyses, we double the sample

size of the original design from n to 2n (= ñ∗). By parameterizing θ = γ + 2, the relative

efficiency can be re-expressed as 2(γ+1)
γ+2 . γ = n1/n

∗
2 can be interpreted as the fraction of the

sample size at the interim analysis relative to the remaining sample size to be accrued based

on the original design. Figure C.1 shows the behavior of the relative efficiency as a function

of γ.

When unplanned adaptations are made during the trial, this loss of efficiency depends

on when the adaptation is made to increase the number of subjects. The remaining weight,

n∗2/n, has to be re-distributed over a bigger pool of stage two subjects when the adaptation

is chosen closer to n, i.e., n1 ≈ n, to double the total number of subjects from n to 2n. The

inefficiency of the use of the weighted statistics to control for the inflation of the overall Type

1 error is illustrated by the change in relative efficiency. We see that the inefficiency of the

weighted statistics increases the variance of this weighted estimator relative to the variance

of the optimal estimator when assuming the use of the pre-specified design.
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Figure C.1: Plot of relative efficiency vs γ under the simple setting of doubling the sample
size of the original design after an interim analysis is made after accruing n1 subjects.

C.1.2 Simulation Results for Adapting to A Larger Sample Size

We simulated 1,000,000 clinical trials, each with a sample size of n = 100 subjects, statistical

power β to detect the design alternative of θ, known variance σ2 = 0.5, and one-sided level

α = 2.5%. Denote p to be the probability of adapting to a final sample size of ñ. Thus,

1− p is the probability of staying the course with n respectively. The ASN is (1− p)n+ pñ.

We let an adaptation be conducted at an interim analysis corresponding to kn for discrete

choices of k = {0.1, 0.2, · · · , 0.9}. At the interim analysis, we do not stop the trial early for

efficacy/futility. We considered values of p ∈ (0.2, 0.3, 0.5, 0.7, 0.9).

We proceed to find the pre-specified adaptation that is best among all fully flexible designs

with known probability p. We optimized the overall power of this fully, flexible design using

a grid search for each known probability p of adapting under the design alternative. With

this best fully adaptive rule, we find the empirical critical value that control the overall Type

1 error rate at 2.5% level based on a separate 1,000,000 simulations evaluated under the null
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hypothesis using this best fully adaptive rule. We then evaluated the overall power for this

best fully adaptive rule based on this empirical critical value, thus obtaining the power based

on pre-specifying this adaptive rule. We then adjust this empirical critical value based on

the approach by Cui et al. [1999] to control the overall Type 1 error in the fully adaptive

setting when using the unblinded treatment results to make an adaptation. The results for

these simulations are shown in Figure C.2, and presented in Table C.1 under the scenario

for β = 0.8, and θ = 0.396204.

When an earlier adaptation is conducted after 0.2n subjects are accumulated, the un-

planned adaptation provides slight gain in terms of power relative to a fully prespecified

procedure. We do not anticipate high efficiency gains at early adaptations since the esti-

mated treatment effects at early interim analyses are less reliable as a consequence of possible

random high bias. However, there is greater potential to be more “effective” in terms of de-

termining the optimal sample size flexibly as we accumulate more statistical information

(proportional to n1). This flexibility at later adaptations does not enable us to be more

efficient since we have already spend majority of the weights earlier on (Table C.1).

Specifically, we also considered the scenario where β = 0.9 and θ = 0.4584195, with

the objective of evaluating whether this adaptive strategy is consistent at higher power. The

results based on adapting 50% of the time are presented in Table C.4. We observed negligible

loss in overall power (∼ 0.9%) from the use of reweighted statistics relative to having planned

the design based on the minimum sufficient statistics (99.55% power).
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Figure C.2: Plot of overall power for adaptive design based on minimal sufficient statistics (Pre) vs the use of weighted
statistics (CHW) when we considered various probabilities of increasing the sample size from n = 100 to 200. The
prespecified adaptive design has higher power across various probability of increasing the final sample size. After
adjusting for CHW, bigger loss of power is observed when late adaptations are made. At early adaptations, the loss
of power is minimal relative to the prespecified adaptive design.
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Table C.1: Simulation summary to double the original sample size n based on various probabilities, p, of adapting to
ñ = 2n. We examined the scenario when the original design has 80% power to detect an alternative θ = 0.396204.

n=100 ñ = 200 ASN= 200p+ 100(1− p) Sample size (FSD)

n1 n∗2 ñ∗2 γ RE Orig CHW‡ Unadj Adj4 4/‡ CHW‡ Unadj Adj4 4/‡ SS‡ SS4 SS4/SS‡

p
=

20
%

10 90 190 0.11 1.053 80.04 97.62 97.71 97.7 1.001 85.67 85.9 85.07 0.993 116.6 114.6 0.9828
20 80 180 0.25 1.111 79.95 97.49 97.72 97.73 1.002 86.62 87.04 85.85 0.9911 120 117.3 0.9773
30 70 170 0.43 1.176 79.98 97.35 97.72 97.74 1.004 87.44 88.06 86.7 0.9915 123 120.3 0.9775
40 60 160 0.67 1.25 80.06 97.16 97.74 97.77 1.006 88.18 89.02 87.31 0.9901 126 122.5 0.9728
50 50 150 1 1.333 79.98 96.91 97.72 97.72 1.008 88.77 89.84 87.8 0.989 128.4 124.4 0.9689
60 40 140 1.5 1.429 80.06 96.54 97.72 97.73 1.012 89.44 90.76 88.52 0.9898 131.3 127.4 0.97
70 30 130 2.33 1.538 80.05 96 97.73 97.72 1.018 90.05 91.63 89.37 0.9925 134.1 131 0.9768
80 20 120 4 1.667 80.01 95.09 97.72 97.73 1.028 90.52 92.24 90.21 0.9965 136.4 134.9 0.9888
90 10 110 9 1.818 79.96 93.12 97.72 97.72 1.049 90.62 92.96 91.26 1.007 136.9 140.2 1.024

p
=

30
%

10 90 190 0.11 1.053 79.99 97.64 97.74 97.73 1.001 87.94 88.21 87.49 0.9949 125 123.2 0.9858
20 80 180 0.25 1.111 80.04 97.52 97.75 97.75 1.002 89.14 89.57 88.53 0.9932 130 127.4 0.9802
30 70 170 0.43 1.176 80.08 97.37 97.75 97.74 1.004 90.06 90.69 89.37 0.9923 134.2 131 0.9763
40 60 160 0.67 1.25 79.97 97.17 97.73 97.74 1.006 90.83 91.65 90.2 0.9931 137.9 134.8 0.9776
50 50 150 1 1.333 79.97 96.91 97.72 97.74 1.009 91.6 92.69 91.06 0.9942 142 139.1 0.9798
60 40 140 1.5 1.429 80.01 96.54 97.75 97.72 1.012 92.23 93.67 91.86 0.9959 145.6 143.4 0.9851
70 30 130 2.33 1.538 79.96 96.01 97.75 97.76 1.018 92.83 94.56 92.9 1.001 149.3 149.7 1.003
80 20 120 4 1.667 80.04 95.07 97.72 97.73 1.028 93.1 95.33 93.93 1.009 151 156.9 1.039
90 10 110 9 1.818 79.99 93.16 97.73 97.74 1.049 92.51 95.49 94.82 1.025 147.3 164 1.113

p
=

50
%

10 90 190 0.11 1.053 79.94 97.64 97.74 97.72 1.001 91.7 91.95 91.39 0.9967 142.6 140.9 0.9882
20 80 180 0.25 1.111 80 97.51 97.74 97.74 1.002 92.85 93.25 92.56 0.9969 149.4 147.6 0.988
30 70 170 0.43 1.176 79.98 97.37 97.73 97.7 1.003 93.74 94.28 93.56 0.9981 155.5 154.2 0.9918
40 60 160 0.67 1.25 80.04 97.14 97.73 97.74 1.006 94.41 95.16 94.48 1.001 160.6 161.1 1.003
50 50 150 1 1.333 80.03 96.9 97.74 97.73 1.009 94.94 95.91 95.25 1.003 165.1 167.8 1.017
60 40 140 1.5 1.429 80.02 96.58 97.73 97.71 1.012 95.33 96.59 95.95 1.006 168.6 174.8 1.037
70 30 130 2.33 1.538 79.95 95.99 97.72 97.7 1.018 95.32 97.1 96.62 1.014 168.5 182.7 1.084
80 20 120 4 1.667 79.99 95.1 97.75 97.72 1.027 94.89 97.46 97.12 1.024 164.6 189.7 1.153
90 10 110 9 1.818 79.99 93.22 97.74 97.73 1.048 93.21 97.23 97.17 1.043 151.8 190.5 1.255

RE: (Conditional) Relative efficiency based on the relative variances of the flexible adaptive design to the pre-specified adaptive design.
CHW: Power after adjusting for the unplanned adaptation.
Unadj: Power computed based on naïve overall Type 1 error of α = 0.025.
Adj: Adjusted power for the overall Type 1 error fixed at α = 0.025.
SS‡: Sample size of a FSD based on the power obtained using CHW.
SS4: Sample size of a FSD based on the power obtained based on the (Adj)usted test for fixed overall Type 1 error of α = 0.025.
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Table C.2: Simulation summary to double the original sample size n based on various probabilities, p, of adapting to
ñ = 2n (continued from previous table). We examined the scenario when the original design has 80% power to detect
an alternative θ = 0.396204.

n=100 ñ = 200 ASN= 200p+ 100(1− p) Sample size (FSD)

n1 n∗2 ñ∗2 γ RE Orig CHW‡ Unadj Adj4 4/‡ CHW‡ Unadj Adj4 4/‡ SS‡ SS4 SS4/SS‡

p
=

70
%

10 90 190 0.11 1.053 80.03 97.64 97.74 97.77 1.001 94.72 94.92 94.71 0.9999 163.1 163 0.9995
20 80 180 0.25 1.111 80 97.52 97.74 97.76 1.003 95.53 95.85 95.61 1.001 170.5 171.3 1.005
30 70 170 0.43 1.176 80.03 97.36 97.73 97.73 1.004 96.01 96.47 96.19 1.002 175.5 177.6 1.012
40 60 160 0.67 1.25 80.01 97.15 97.73 97.75 1.006 96.3 96.95 96.75 1.005 178.8 184.4 1.031
50 50 150 1 1.333 80 96.9 97.73 97.74 1.009 96.43 97.32 97.14 1.007 180.4 189.9 1.053
60 40 140 1.5 1.429 79.97 96.52 97.71 97.69 1.012 96.3 97.53 97.38 1.011 178.9 193.8 1.083
70 30 130 2.33 1.538 80.02 96.02 97.74 97.71 1.018 95.95 97.69 97.58 1.017 174.9 197.2 1.127
80 20 120 4 1.667 80.03 95.07 97.7 97.69 1.028 95.06 97.71 97.65 1.027 166.1 198.3 1.194
90 10 110 9 1.818 80 93.21 97.75 97.78 1.049 93.21 97.75 97.77 1.049 151.8 200.6 1.322

p
=

90
%

10 90 190 0.11 1.053 79.99 97.68 97.77 97.82 1.001 97 97.12 97.12 1.001 187.9 189.7 1.009
20 80 180 0.25 1.111 80.04 97.56 97.77 97.76 1.002 97.2 97.43 97.37 1.002 190.9 193.6 1.014
30 70 170 0.43 1.176 80.05 97.36 97.74 97.75 1.004 97.18 97.57 97.54 1.004 190.6 196.4 1.031
40 60 160 0.67 1.25 79.99 97.18 97.76 97.77 1.006 97.1 97.7 97.67 1.006 189.4 198.8 1.05
50 50 150 1 1.333 80.01 96.9 97.75 97.75 1.009 96.87 97.73 97.72 1.009 186.2 199.6 1.072
60 40 140 1.5 1.429 80.04 96.56 97.74 97.72 1.012 96.55 97.73 97.71 1.012 181.9 199.6 1.097
70 30 130 2.33 1.538 80.06 96.01 97.75 97.75 1.018 96.01 97.75 97.75 1.018 175.5 200.3 1.141
80 20 120 4 1.667 79.99 95.08 97.75 97.73 1.028 95.08 97.75 97.73 1.028 166.3 199.9 1.202
90 10 110 9 1.818 80 93.18 97.74 97.75 1.049 93.18 97.74 97.75 1.049 151.6 200.2 1.32

RE: (Conditional) Relative efficiency based on the relative variances of the flexible adaptive design to the pre-specified adaptive design.
CHW: Power after adjusting for the unplanned adaptation.
Unadj: Power computed based on naïve overall Type 1 error of α = 0.025.
Adj: Adjusted power for the overall Type 1 error fixed at α = 0.025.
SS‡: Sample size of a FSD based on the power obtained using CHW.
SS4: Sample size of a FSD based on the power obtained based on the (Adj)usted test for fixed overall Type 1 error of α = 0.025.
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Table C.3: Simulation summary to decrease the original sample size from n to ñ = 50 with the probability of adaptation
of 50% using CHW at different interim analyses for different power. We examined scenarios when the original design
has either 80% power to detect the alternative of θ = 0.396204, or 90% power to detect the alternative of 0.4584195
respectively.

n=100 ñ = 50 ASN = 75 Sample size (FSD)

n1 n∗2 ñ∗2 γ RE Orig CHW‡ Unadj Adj4 4/‡ CHW‡ Unadj Adj4 4/‡ SS‡ SS4 SS4/SS‡

90
%

Po
w
er

5 95 45 0.05 1.028 89.98 62.6 62.98 63.08 1.008 78.16 79.78 78.73 1.007 71.33 72.35 1.014
10 90 40 0.11 1.062 90.08 62.07 62.97 63.03 1.015 78.76 81.31 79.78 1.013 72.4 74.27 1.026
15 85 35 0.18 1.107 89.99 61.53 62.97 62.91 1.022 79.12 82.47 80.7 1.02 73.05 76.06 1.041
20 80 30 0.25 1.167 90.02 60.85 62.97 63.07 1.036 79.45 83.65 81.57 1.027 73.66 77.8 1.056
25 75 25 0.33 1.25 90.03 60.04 63.04 62.97 1.049 79.67 84.79 82.28 1.033 74.07 79.26 1.07
30 70 20 0.43 1.375 90.02 58.92 62.99 63.06 1.07 79.76 85.91 83.17 1.043 74.25 81.2 1.094
35 65 15 0.54 1.583 89.95 57.37 62.98 62.87 1.096 79.58 87.03 84.07 1.056 73.91 83.24 1.126
40 60 10 0.67 2 90.01 55.2 63.04 63.19 1.145 79.25 88.33 85.28 1.076 73.3 86.14 1.175
45 55 5 0.82 3.25 90.01 51.4 62.96 63.06 1.227 78.08 89.69 86.48 1.108 71.19 89.23 1.253

80
%

Po
w
er

5 95 45 0.05 1.028 79.97 50.44 50.8 50.93 1.01 66.32 68.03 66.79 1.007 72.24 73.02 1.011
10 90 40 0.11 1.062 80.04 50.06 50.86 51 1.019 66.68 69.32 67.4 1.011 72.84 74.06 1.017
15 85 35 0.18 1.107 80.03 49.47 50.77 50.63 1.024 66.75 70.31 67.73 1.015 72.95 74.63 1.023
20 80 30 0.25 1.167 80 48.96 50.86 50.76 1.037 66.8 71.29 68.1 1.019 73.05 75.26 1.03
25 75 25 0.33 1.25 79.96 48.14 50.86 50.77 1.055 66.67 72.23 68.49 1.027 72.82 75.95 1.043
30 70 20 0.43 1.375 79.99 47.22 50.88 50.83 1.076 66.63 73.35 68.97 1.035 72.75 76.79 1.056
35 65 15 0.54 1.583 79.94 45.76 50.79 50.92 1.113 66.15 74.42 69.4 1.049 71.96 77.56 1.078
40 60 10 0.67 2 79.97 43.97 50.82 50.93 1.158 65.57 75.83 70.11 1.069 71.01 78.85 1.11
45 55 5 0.82 3.25 80.01 40.69 50.83 50.7 1.246 64.06 77.69 70.12 1.095 68.57 78.85 1.15

RE: (Conditional) Relative efficiency based on the relative variances of the flexible adaptive design to the pre-specified adaptive design.
CHW: Power after adjusting for the unplanned adaptation.
Unadj: Power computed based on naïve overall Type 1 error of α = 0.025.
Adj: Adjusted power for the overall Type 1 error fixed at α = 0.025.
SS‡: Sample size of a FSD based on the power obtained using CHW.
SS4: Sample size of a FSD based on the power obtained based on the (Adj)usted test for fixed overall Type 1 error of α = 0.025.
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Table C.4: Simulation results allowing 50% probability of adaptation to double the sample size of the original design.
The original design has either 80% power to detect an alternative of θ = 0.396204, or 90% power to detect an alternative
of θ = 0.4584195. Loss of power is observed after applying CHW when unplanned adaptation is made late during the
study relative to the prespecified adaptive design with similar probability of adaptation timing.

n=100 ñ = 200 ASN = 150 Sample size (FSD)

n1 n∗2 ñ∗2 γ RE Orig CHW‡ Unadj Adj4 4/‡ CHW‡ Unadj Adj4 4/‡ SS‡ SS4 SS4/SS‡

90
%

Po
w
er

10 90 190 0.11 1.053 89.97 99.54 99.57 99.57 1 96.8 96.87 96.65 0.9984 138.4 136.8 0.9888
20 80 180 0.25 1.111 89.95 99.51 99.57 99.57 1.001 97.6 97.69 97.46 0.9986 147.5 145.8 0.9884
30 70 170 0.43 1.176 89.92 99.47 99.58 99.58 1.001 98.12 98.26 98.03 0.9991 155.2 153.7 0.9904
40 60 160 0.67 1.25 89.96 99.41 99.57 99.56 1.002 98.54 98.72 98.54 1 163.1 163.1 0.9998
50 50 150 1 1.333 90.06 99.32 99.56 99.57 1.003 98.84 99.11 98.99 1.002 170.4 174.6 1.025
60 40 140 1.5 1.429 90.02 99.2 99.56 99.56 1.004 98.95 99.33 99.25 1.003 173.5 183.6 1.058
70 30 130 2.3 1.538 90.07 99.02 99.56 99.56 1.006 98.93 99.49 99.45 1.005 172.9 192.7 1.115
80 20 120 4 1.667 89.92 98.68 99.57 99.57 1.009 98.67 99.56 99.55 1.009 166 199 1.198
90 10 110 9 1.818 89.99 97.92 99.58 99.58 1.017 97.92 99.58 99.58 1.017 152.1 200.6 1.319

80
%

Po
w
er

10 90 190 0.11 1.053 79.94 97.64 97.74 97.72 1.001 91.7 91.95 91.39 0.9967 142.6 140.9 0.9882
20 80 180 0.25 1.111 80 97.51 97.74 97.74 1.002 92.85 93.25 92.56 0.9969 149.4 147.6 0.988
30 70 170 0.43 1.176 79.98 97.37 97.73 97.7 1.003 93.74 94.28 93.56 0.9981 155.5 154.2 0.9918
40 60 160 0.67 1.25 80.04 97.14 97.73 97.74 1.006 94.41 95.16 94.48 1.001 160.6 161.1 1.003
50 50 150 1 1.333 80.03 96.9 97.74 97.73 1.009 94.94 95.91 95.25 1.003 165.1 167.8 1.017
60 40 140 1.5 1.429 80.02 96.58 97.73 97.71 1.012 95.33 96.59 95.95 1.006 168.6 174.8 1.037
70 30 130 2.33 1.538 79.95 95.99 97.72 97.7 1.018 95.32 97.1 96.62 1.014 168.5 182.7 1.084
80 20 120 4 1.667 79.99 95.1 97.75 97.72 1.027 94.89 97.46 97.12 1.024 164.6 189.7 1.153
90 10 110 9 1.818 79.99 93.22 97.74 97.73 1.048 93.21 97.23 97.17 1.043 151.8 190.5 1.255

RE: (Conditional) Relative efficiency based on the relative variances of the flexible adaptive design to the pre-specified adaptive design.
CHW: Power after adjusting for the unplanned adaptation.
Unadj: Power computed based on naïve overall Type 1 error of α = 0.025.
Adj: Adjusted power for the overall Type 1 error fixed at α = 0.025.
SS‡: Sample size of a FSD based on the power obtained using CHW.
SS4: Sample size of a FSD based on the power obtained based on the (Adj)usted test for fixed overall Type 1 error of α = 0.025.
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C.2 Additional Results for Section 3.3

C.2.1 Optimal Three Stage Designs

In this section, we evaluate and describe the operating characteristics of the GSDs when J =

3. We evaluate numerically the operating characteristics by considering the class of one-sided

symmetric designs, two-sided symmetric designs, and one-sided asymmetric designs. Contour

plots for the minimum ASN based on a grid of possible combinations of schedule of interim

analyses are shown for specific fixed P of interest (Figure C.4, C.5 and C.6 respectively).

We first characterized the ASN for each fixed value of P when presuming an equally spaced

analyses that is most common at design stage, as described by the blue line in Figure C.3.

We then characterized the minimum ASN among all possible spacings of the interim analyses

for each fixed value of P as shown by the black lines in Figure C.3.

For each fixed P , we note that the schedule of interim analyses for each optimal design,

among the class of one-sided symmetric designs, is typically conducted earlier than an equally

spaced design. This is observed similarly for the class of two-sided symmetric designs. In

Table C.5, the best one-sided symmetric designs tends to be optimal when the schedule of

interim analyses is conducted earlier (27.5% and 53% of the maximum statistical information)

relative to an equally spaced design (with interim analyses conducted at 33.3% and 67% of

the maximum statistical information). This best optimal design has a minimum ASN of

3685, a 40% reduction in ASN relative to the FSD, and has a P parameter defined in the

unified family that is close to the Pocock class of designs. Results for the class of two-sided

symmetric designs are similar.

The class of three-stage hybrid designs, with a fixed OBF efficacy parameter, tends to

have the first interim analysis conducted at more than 1/3 of the way through the study. The

second interim analysis is then conducted close to 2/3 of the way through the study. These

schedules of interim analysis are rather similar across fixed values of P . The inflation of the

maximum statistical information relative to the FSD is at most 1.14% among the choices

explored. Additionally, relative to the best one-sided symmetric three-stage OBF design, the
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schedules of analyses obtained for each P within these choices of hybrid design are similar.

Table C.5: Optimal spacing of analysis for common designs P for the one-sided, two-sided,
and asymmetric group sequential designs under the unified family with a total of three
analyses, assuming σ = 1. A fixed sample design requires N = 6146 under the same
alternative of θ = 0.1.

Equally Spaced By P By Interim IP
1

P ASN Max Max
N ASNP MaxP Max

N

P IP
1 IP

2 POpt ASNOpt MaxOpt
MaxOpt

N

O
ne

-S
id
ed

0.5 3801 8123 1.32 3685 8315 1.35 270 525 0.50 3685 8315 1.35
0.6 3799 7412 1.21 3713 7427 1.21 305 550 0.53 3694 7962 1.30
0.7 3880 6936 1.13 3790 6924 1.13 350 580 0.58 3734 7546 1.23
0.8 4023 6633 1.08 3893 6636 1.08 390 610 0.63 3793 7252 1.18
0.9 4202 6448 1.05 4006 6466 1.05 435 635 0.69 3877 6999 1.14
1 4382 6337 1.03 4118 6361 1.03 470 660 0.74 3956 6848 1.11

Opt 3685 8199 1.33 275 530 0.51

Tw
o-
Si
de

d

0.5 3648 6953 1.13 3593 7021 1.14 300 565 0.45 3583 7229 1.18
0.6 3713 6677 1.09 3656 6695 1.09 325 575 0.46 3595 7147 1.16
0.7 3834 6487 1.06 3756 6492 1.06 360 595 0.48 3630 7026 1.14
0.8 3999 6362 1.04 3873 6371 1.04 405 620 0.52 3703 6861 1.12
0.9 4187 6283 1.02 3994 6296 1.02 445 645 0.56 3788 6739 1.10
1 4372 6235 1.01 4112 6250 1.02 480 670 0.60 3876 6646 1.08

Opt 3582 7294 1.19 290 560 0.44

H
yb

rid
(F
ut
,E

ff) (0.5, 1) 4584 7115 1.16 4244 7025 1.14 460 645 1.28 4115 6264 1.02
(0.6, 1) 4502 6820 1.11 4199 6807 1.11 460 650 1.28 4114 6267 1.02
(0.7, 1) 4447 6614 1.08 4166 6640 1.08 465 655 1.32 4111 6265 1.02
(0.8, 1) 4413 6478 1.05 4143 6514 1.06 465 655 1.32 4111 6265 1.02
(0.9, 1) 4584 7115 1.16 4127 6426 1.05 470 660 1.37 4110 6262 1.02
Opt 4109 6267 1.02 480 670 1.38

Equally spaced: GSD with equally spaced analysis obtained for each parameter P .
By P : For each P , the GSD with the schedule of analyses that attains the minimum ASN is obtained.
Using this favorable interim analysis, we then search for the design parameter P that can minimize this
ASNP .
Opt: Optimum GSD with schedule of interim analyses chosen to minimize ASN under class P > 0
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Figure C.3: Top row: Contour plot of minimum ASN for the first vs the second interim analysis. The black point
corresponds to the minimum ASN similar to the adjacent plot on the left. The blue point corresponds to the minimum
ASN for a monitoring rule with equal information. This point corresponds to the P for the adjacent plot on the left.
Bottom row: Plot of best ASN for each P (black line). The blue line corresponds to the ASN line when assuming an
equally spaced statistical information monitoring for the various P .
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Figure C.4: Optimal ASN for three-stage, one-sided, symmetric boundaries at level α = 0.025, and power of 97.5% to
detect the design alternative of 0.1, and known variance 1. The global minimum ASN is close to the local minimum
ASN when we choose a Pocock boundary. This global minimum moves further away from this local minimum as
we becoming increasing conservative at earlier interim analyses, i.e., P increases. The designs with equally spaced
analyses tend to have higher ASN relative to the designs with optimized schedule of interim analyses either globally
or locally for the respective P .
Global optimum in black circle for P = 0.51; Local optimum for P is shown in blue diamond; Equal information
monitoring for the P is shown as a gold triangle.
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Pocock [P=0.5] ; 2 sided (3 analysis)
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Interim 1: 2; ASN
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Interim 1: 2; ASN
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Equal:  33.3%: 66.7%; 3999.0
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P = 0.9 ; 2 sided (3 analysis)
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Figure C.5: Optimal ASN for three-stage, two-sided, symmetric boundaries at level α = 0.025, and power of 97.5% to
detect the design alternative of 0.1, and known variance 1. The global minimum ASN is close to the local minimum
ASN when we choose a Pocock boundary. This global minimum moves further away from this local minimum as
we becoming increasing conservative at earlier interim analyses, i.e., P increases. The designs with equally spaced
analyses tend to have higher ASN relative to the designs with optimized schedule of interim analyses either globally
or locally for the respective P .
Global optimum in black circle for P = 0.44; Local optimum for P is shown in blue diamond; Equal information
monitoring for the P is shown as a gold triangle.
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Pocock [P=0.5] : 1 sided (3 analysis)
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Figure C.6: Optimal ASN for three stage, one-sided, asymmetric designs with OBF efficacy boundaries at level
α = 0.025, and power of 97.5% to detect the design alternative of 0.1, and known variance 1. There is little difference
between the global ASN and local ASN. However, designs with equally spaced analyses averaged higher ASN.
Global optimum in black circle for P = 1.38; Local optimum for the P is shown in blue diamond; Equal information
monitoring for the P is shown as a gold triangle.



281

Appendix D

Additional Results for Chapter 5

D.1 Miscellaneous Results

Several competing well-understood designs have been considered to provide references so that

we can compare the operating characteristics with the adaptive strategies. We evaluated the

operating characteristics (average calendar time of stopping, average event size, average ac-

crual size, and overall power) of the fixed sample design (FSDInf ) for various combinations of

event rates, and design alternative without the maximum calendar time restriction. We eval-

uated the ideal operating characteristics of the competing group sequential designs based on

either the O’Brien Fleming (GSDOBFInf ) design, or hybrid design (GSDHYBInf ) similarly

without imposing the maximum calendar time restriction.

We then impose calendar time as a constraint for stopping the study. This allows us to

evaluate the operating characteristics of the fixed sample designs (FSD078 and FSD117 ),

group sequential designs presuming original sample size (GSDOBF078, GSDHYB078, GS-

DOBG117, GSDHYB117 ), and group sequential designs incorporating the strategy of

blinded adaptation (either continue or restart accrual), and escape clause. These operating

characteristics obtained from the FSDs (FSD078 and FSD117 ), and GSDs (GSDOBF078,

GSDHYB078, GSDOBG117, GSDHYB117 ) provide some form of reference to enable us to

understand the best power one can obtain in the ideal setting. Note that additional group

sequential designs that are planned with 3,500 subjects from the start of the study with

accrual patterns similar to continuing accrual, or restarting accrual later in the study can

also provide benchmarks on the best possible power one can obtain.
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Table D.1: Table of the overall power for the various fixed sample designs (FSDs) and group sequential designs (OBF
and Hybrid) evaluated under different maximum calendar time of stopping, and different combinations of hazard ratios
θ, and baseline event rates.

N = 1750 N = 3500
No additional accrual Cont Restart Cont Restart

∞ 78 117 78 117
FSD OBF HYB FSD OBF HYB FSD OBF HYB OBF HYB OBF HYB OBF HYB OBF HYB

θ
=

0.
04

λ0/8 100 100 100 99.72 99.72 99.72 100 100 100 100 100 99.96 99.96 100 100 100 100
λ0/4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
λ0/2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
3λ0/4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
λ0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

θ
=

0.
1

λ0/8 100 100 100 98.15 98.15 98.15 99.91 99.91 99.91 99.99 99.99 99.63 99.63 100 100 100 100
λ0/4 100 100 100 99.99 99.99 99.99 100 100 100 100 100 100 100 100 100 100 100
λ0/2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
3λ0/4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
λ0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

θ
=

0.
25

λ0/8 100 100 100 84.59 84.59 84.59 96.04 96.04 96.04 97.33 97.33 92.8 92.8 99.94 99.94 99.68 99.68
λ0/4 100 100 100 98.75 98.75 98.75 99.98 99.98 99.98 100 100 99.8 99.8 100 100 100 100
λ0/2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
3λ0/4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
λ0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

θ
=

0.
5

λ0/8 99.93 99.81 99.71 41.39 41.39 41.39 58.44 58.44 58.44 62.97 62.97 51.34 51.34 83.89 83.89 77.29 77.29
λ0/4 99.93 99.8 99.73 68.69 68.69 68.69 87.09 87.09 87.09 90.08 90.08 80.27 80.27 98.75 98.73 96.95 96.96
λ0/2 99.96 99.82 99.75 93.5 93.5 93.5 99.16 99.14 99.14 99.49 99.45 97.84 97.83 99.77 99.68 99.79 99.68
3λ0/4 99.96 99.82 99.72 98.92 98.9 98.89 99.92 99.81 99.71 99.79 99.71 99.72 99.62 99.79 99.71 99.84 99.74
λ0 99.95 99.81 99.71 99.83 99.75 99.66 99.95 99.81 99.71 99.82 99.74 99.81 99.73 99.82 99.74 99.81 99.73

θ
=
θ A

λ0/8 91.85 89.66 88.91 22.53 22.53 22.53 32.63 32.63 32.63 35.89 35.89 28.19 28.19 53.45 53.45 46.85 46.85
λ0/4 91.86 89.74 89.1 39.88 39.88 39.88 57.41 57.41 57.41 61.95 61.95 49.68 49.68 82.82 82.62 76.38 76.38
λ0/2 92 89.7 88.99 67.61 67.55 67.54 84.74 84.31 84.07 88.4 87.82 79.47 79.41 90.22 89.28 90.41 89.53
3λ0/4 91.96 89.8 89.01 83.15 82.89 82.74 91.95 89.81 89.01 89.83 88.93 90.06 89.41 89.83 88.93 90.4 89.6
λ0 92 89.76 89.04 91.27 89.54 88.87 92 89.76 89.04 89.96 89.19 89.88 89.12 89.96 89.19 89.88 89.12

θ
=

0.
75

λ0/8 57.14 53.18 52.66 12.15 12.15 12.15 16.85 16.85 16.85 18.04 18.04 14.92 14.92 27.34 27.34 23.57 23.57
λ0/4 57.13 53.33 52.44 19.91 19.91 19.91 29.09 29.08 29.08 32.05 32.05 24.98 24.98 48.15 47.9 42.04 41.98
λ0/2 57.36 53.45 52.7 35.76 35.73 35.73 50.68 49.85 49.44 53.08 52.27 44 43.95 54.15 53.2 54.37 53.02
3λ0/4 57.35 53.5 52.65 49.18 48.65 48.32 57.35 53.5 52.65 53.85 52.97 53.89 53.13 53.85 52.97 53.94 53.16
λ0 57.2 53.54 52.81 56.93 53.54 52.81 57.2 53.54 52.81 54.03 52.96 53.57 52.54 54.03 52.96 53.57 52.54

θ
=

1

λ0/8 2.58 2.54 2.51 2.52 2.52 2.52 2.64 2.64 2.64 2.6 2.6 2.75 2.75 2.67 2.67 2.59 2.59
λ0/4 2.58 2.52 2.48 2.36 2.36 2.36 2.52 2.52 2.52 2.42 2.42 2.25 2.25 2.73 2.64 2.71 2.73
λ0/2 2.59 2.59 2.59 2.42 2.41 2.4 2.47 2.51 2.47 2.75 2.7 2.48 2.49 2.76 2.71 2.69 2.63
3λ0/4 2.73 2.54 2.58 2.56 2.58 2.6 2.73 2.54 2.58 2.75 2.71 2.54 2.49 2.75 2.71 2.54 2.49
λ0 2.67 2.56 2.56 2.67 2.56 2.56 2.67 2.56 2.56 2.84 2.78 2.55 2.53 2.84 2.78 2.55 2.53
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Table D.2: Table of the average number of events for the various fixed sample designs (FSDs) and group sequential
designs (OBF and Hybrid) evaluated under different maximum calendar time of stopping, and different combinations
of hazard ratios θ, and baseline event rates.

N = 1750 N = 3500
No additional accrual Cont Restart Cont Restart

∞ 78 117 78 117
FSD OBF HYB FSD OBF HYB FSD OBF HYB OBF HYB OBF HYB OBF HYB OBF HYB

θ
=

0.
04

λ0/8 220 44 44 19 19 19 29 29 29 32 32 24 24 44 44 43 43
λ0/4 220 44 44 37 37 37 57 44 44 44 44 44 44 44 44 44 44
λ0/2 220 44 44 72 44 44 111 44 44 44 44 44 44 44 44 44 44
3λ0/4 220 44 44 106 44 44 161 44 44 44 44 44 44 44 44 44 44
λ0 220 44 44 139 44 44 207 44 44 44 44 44 44 44 44 44 44

θ
=

0.
1

λ0/8 220 45 45 20 20 20 31 31 31 34 34 26 26 46 45 44 44
λ0/4 220 45 45 39 39 39 61 45 45 46 45 45 44 46 45 46 45
λ0/2 220 45 45 77 45 45 118 45 45 46 45 45 45 46 45 45 45
3λ0/4 220 46 45 113 45 45 171 45 45 46 45 45 45 46 45 46 45
λ0 220 46 45 148 46 45 216 46 45 46 45 46 45 46 45 46 45

θ
=

0.
25

λ0/8 220 61 61 22 22 22 35 35 35 39 39 29 29 59 57 52 51
λ0/4 220 62 61 44 44 44 69 59 59 62 60 54 54 63 61 62 61
λ0/2 220 62 61 87 62 61 134 62 61 62 61 62 61 63 61 62 61
3λ0/4 220 62 61 129 62 61 196 62 61 62 61 62 61 62 61 62 61
λ0 220 62 61 169 62 61 220 62 61 62 61 62 61 62 61 62 61

θ
=

0.
5

λ0/8 220 104 103 27 27 27 42 42 42 47 47 35 35 75 75 65 65
λ0/4 220 104 103 53 53 53 83 80 79 87 86 69 69 103 102 100 99
λ0/2 220 104 104 105 93 92 161 103 103 104 103 102 101 105 103 104 104
3λ0/4 220 104 104 155 103 102 219 104 104 105 104 104 103 105 104 104 104
λ0 220 104 104 202 104 104 220 104 104 105 104 104 104 105 104 104 104

θ
=
θ A

λ0/8 220 143 141 29 29 29 46 46 46 51 51 38 38 83 83 71 71
λ0/4 220 143 141 58 58 58 90 89 89 99 98 76 76 135 132 125 124
λ0/2 220 143 141 114 109 108 175 138 136 141 139 129 128 143 140 143 141
3λ0/4 220 143 141 168 136 134 220 143 141 143 140 143 140 143 140 143 141
λ0 220 143 141 215 143 141 220 143 141 144 141 143 140 144 141 143 140

θ
=

0.
75

λ0/8 220 163 156 31 31 31 49 49 49 55 55 41 41 89 89 76 76
λ0/4 220 163 156 62 62 62 96 95 95 107 105 81 81 152 146 139 135
λ0/2 220 164 156 122 119 116 187 157 151 161 154 145 140 163 155 163 156
3λ0/4 220 163 156 180 154 148 220 163 156 163 155 163 156 163 155 163 156
λ0 220 163 156 219 163 156 220 163 156 163 156 163 156 163 156 163 156

θ
=

1

λ0/8 220 125 111 36 36 36 56 56 55 62 61 47 47 97 90 85 81
λ0/4 220 125 111 71 70 69 110 101 94 109 99 90 84 125 110 122 109
λ0/2 220 125 111 139 115 104 210 125 111 125 111 123 110 125 111 125 111
3λ0/4 220 125 111 203 125 111 220 125 111 125 111 125 111 125 111 125 111
λ0 220 125 111 220 125 111 220 125 111 125 111 125 111 125 111 125 111
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Table D.3: Table of the average calendar time of stopping for the various fixed sample designs (FSDs), and group
sequential designs (OBF and Hybrid) evaluated under different maximum calendar time of stopping, and different
combinations of hazard ratios θ, and baseline event rates.

N = 1750 N = 3500
No additional accrual Cont Restart Cont Restart

∞ 78 117 78 117
FSD OBF HYB FSD OBF HYB FSD OBF HYB OBF HYB OBF HYB OBF HYB OBF HYB

θ
=

0.
04

λ0/8 926 174 174 78 78 78 117 117 117 78 78 78 78 101 101 113 113
λ0/4 468 92 92 78 78 78 117 93 93 59 59 74 74 59 59 74 74
λ0/2 238 50 50 78 50 50 117 50 50 38 38 50 50 38 38 50 50
3λ0/4 162 37 37 78 37 37 117 37 37 31 31 37 37 31 31 37 37
λ0 124 30 30 78 30 30 116 30 30 27 27 30 30 27 27 30 30

θ
=

0.
1

λ0/8 864 169 169 78 78 78 117 117 117 78 78 78 78 98 97 111 110
λ0/4 437 89 89 78 77 77 117 89 89 58 58 73 72 58 58 73 73
λ0/2 223 49 49 78 49 49 117 49 49 38 38 49 48 38 38 49 48
3λ0/4 151 36 36 78 36 36 117 36 36 31 31 36 36 31 31 36 36
λ0 116 29 29 78 29 29 114 29 29 27 27 29 29 27 27 29 29

θ
=

0.
25

λ0/8 744 201 199 78 78 78 117 117 117 78 78 78 78 109 106 114 112
λ0/4 377 105 104 78 77 77 117 102 101 66 65 75 75 67 65 81 80
λ0/2 193 57 57 78 57 57 117 57 57 42 42 55 54 42 42 54 54
3λ0/4 132 41 41 78 41 41 117 41 41 34 34 41 41 34 34 41 41
λ0 101 33 33 78 33 33 101 33 33 29 29 33 33 29 29 33 33

θ
=

0.
5

λ0/8 611 282 282 78 78 78 117 117 117 78 78 78 78 115 114 117 116
λ0/4 310 146 145 78 78 78 117 113 113 74 74 77 77 85 84 98 98
λ0/2 160 78 77 78 70 70 117 77 77 52 51 66 65 52 52 66 66
3λ0/4 109 55 55 78 54 54 109 55 55 41 40 52 52 41 40 52 52
λ0 84 44 43 78 43 43 84 44 43 35 35 43 43 35 35 43 43

θ
=
θ A

λ0/8 560 360 354 78 78 78 117 117 117 78 78 78 78 116 116 117 117
λ0/4 284 185 182 78 78 78 117 116 115 77 76 78 78 98 97 108 107
λ0/2 147 97 95 78 75 74 117 93 92 60 59 72 71 61 60 76 75
3λ0/4 101 68 66 78 64 64 101 68 66 47 46 60 60 47 46 60 60
λ0 78 53 52 76 53 52 78 53 52 39 39 51 50 39 39 51 50

θ
=

0.
75

λ0/8 522 384 367 78 78 78 117 117 117 78 78 78 78 117 116 117 117
λ0/4 266 197 188 78 78 78 117 116 115 77 76 78 78 103 100 111 108
λ0/2 137 103 98 78 76 75 117 99 95 63 61 74 72 64 61 79 76
3λ0/4 95 72 69 78 68 66 95 72 69 48 47 63 61 48 47 63 61
λ0 73 56 54 73 56 54 73 56 54 41 40 53 51 41 40 53 51

θ
=

1

λ0/8 458 258 229 78 78 78 117 117 116 78 77 78 78 111 105 115 111
λ0/4 233 134 119 78 78 76 117 109 101 71 66 76 74 79 72 93 86
λ0/2 121 71 64 78 66 60 116 71 64 48 45 62 57 49 45 62 57
3λ0/4 84 51 46 78 50 46 84 51 46 38 36 49 44 38 36 49 44
λ0 65 40 37 65 40 37 65 40 37 33 31 40 36 33 31 40 36
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Table D.4: Table of the average sample/accrual size for the various fixed sample designs (FSDs), and group sequential
designs (OBF and Hybrid) evaluated under different maximum calendar time of stopping, and different combinations
of hazard ratios θ, and baseline event rates.

N = 1750 N = 3500
No additional accrual Cont Restart Cont Restart

∞ 78 117 78 117
FSD OBF HYB FSD OBF HYB FSD OBF HYB OBF HYB OBF HYB OBF HYB OBF HYB

θ
=

0.
04

λ0/8 1750 1750 1750 1750 1750 1750 1750 1750 1750 3500 3500 3500 3500 3500 3500 3500 3500
λ0/4 1750 1750 1750 1750 1750 1750 1750 1750 1750 3500 3500 3479 3479 3500 3500 3479 3479
λ0/2 1750 1750 1750 1750 1750 1750 1750 1750 1750 3467 3467 2053 2052 3467 3467 2053 2052
3λ0/4 1750 1750 1750 1750 1750 1750 1750 1750 1750 3043 3043 1751 1751 3043 3043 1751 1751
λ0 1750 1750 1750 1750 1750 1750 1750 1750 1750 2641 2641 1750 1750 2641 2641 1750 1750

θ
=

0.
1

λ0/8 1750 1750 1750 1750 1750 1750 1750 1750 1750 3500 3500 3500 3500 3500 3500 3500 3500
λ0/4 1750 1750 1750 1750 1750 1750 1750 1750 1750 3500 3500 3460 3459 3500 3500 3460 3459
λ0/2 1750 1750 1750 1750 1750 1750 1750 1750 1750 3446 3445 2019 2001 3446 3445 2015 2000
3λ0/4 1750 1750 1750 1750 1750 1750 1750 1750 1750 2996 2987 1763 1761 2998 2988 1764 1761
λ0 1750 1750 1750 1750 1750 1750 1750 1750 1750 2610 2600 1750 1750 2610 2600 1750 1750

θ
=

0.
25

λ0/8 1750 1750 1750 1750 1750 1750 1750 1750 1750 3500 3500 3500 3500 3500 3500 3500 3500
λ0/4 1750 1750 1750 1750 1750 1750 1750 1750 1750 3500 3500 3459 3453 3500 3500 3459 3453
λ0/2 1750 1750 1750 1750 1750 1750 1750 1750 1750 3459 3453 2500 2467 3460 3454 2497 2467
3λ0/4 1750 1750 1750 1750 1750 1750 1750 1750 1750 3224 3199 1813 1810 3224 3200 1814 1811
λ0 1750 1750 1750 1750 1750 1750 1750 1750 1750 2847 2826 1752 1752 2847 2826 1752 1752

θ
=

0.
5

λ0/8 1750 1750 1750 1750 1750 1750 1750 1750 1750 3500 3500 3500 3500 3500 3500 3500 3500
λ0/4 1750 1750 1750 1750 1750 1750 1750 1750 1750 3500 3500 3497 3495 3500 3500 3496 3495
λ0/2 1750 1750 1750 1750 1750 1750 1750 1750 1750 3497 3496 3120 3110 3497 3496 3121 3111
3λ0/4 1750 1750 1750 1750 1750 1750 1750 1750 1750 3428 3422 2337 2328 3428 3422 2339 2328
λ0 1750 1750 1750 1750 1750 1750 1750 1750 1750 3234 3223 1924 1918 3234 3223 1924 1918

θ
=
θ A

λ0/8 1750 1750 1750 1750 1750 1750 1750 1750 1750 3500 3500 3500 3500 3500 3500 3500 3500
λ0/4 1750 1750 1750 1750 1750 1750 1750 1750 1750 3500 3500 3499 3498 3500 3500 3499 3498
λ0/2 1750 1750 1750 1750 1750 1750 1750 1750 1750 3499 3498 3350 3336 3499 3498 3351 3336
3λ0/4 1750 1750 1750 1750 1750 1750 1750 1750 1750 3475 3469 2842 2807 3475 3469 2843 2807
λ0 1750 1750 1750 1750 1750 1750 1750 1750 1750 3388 3375 2301 2267 3388 3375 2301 2267

θ
=

0.
75

λ0/8 1750 1750 1750 1750 1750 1750 1750 1750 1750 3500 3500 3500 3500 3500 3500 3500 3500
λ0/4 1750 1750 1750 1750 1750 1750 1750 1750 1750 3500 3500 3499 3494 3500 3500 3499 3494
λ0/2 1750 1750 1750 1750 1750 1750 1750 1750 1750 3499 3494 3410 3346 3499 3494 3411 3346
3λ0/4 1750 1750 1750 1750 1750 1750 1750 1750 1750 3484 3462 3025 2920 3484 3462 3025 2920
λ0 1750 1750 1749 1750 1750 1749 1750 1750 1749 3431 3384 2437 2355 3431 3384 2437 2355

θ
=

1

λ0/8 1750 1750 1750 1750 1750 1750 1750 1750 1750 3500 3500 3500 3497 3500 3500 3500 3497
λ0/4 1750 1750 1750 1750 1750 1750 1750 1750 1750 3500 3497 3480 3394 3500 3497 3479 3394
λ0/2 1750 1750 1749 1750 1750 1749 1750 1750 1749 3482 3418 2919 2659 3482 3418 2921 2659
3λ0/4 1750 1750 1747 1750 1750 1747 1750 1750 1747 3350 3193 2200 2083 3350 3193 2200 2083
λ0 1750 1749 1734 1750 1749 1734 1750 1749 1734 3105 2920 1864 1833 3105 2920 1864 1833
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Table D.5: Table of the percentage of adaptations for the various monitoring rules (OBF and HYB for O’Brien
Fleming and Hybrid design respectively) evaluated under different maximum calendar time of stopping, and different
combinations of hazard ratios θ, and baseline event rates. Stay means continue the design with only 1,750 subjects
while Adapt means increase accrual to 3,500 subjects

78 Months 117 Months
Continue Restart Continue Restart

OBF Hybrid OBF Hybrid OBF Hybrid OBF Hybrid
Stay Adapt Stay Adapt Stay Adapt Stay Adapt Stay Adapt Stay Adapt Stay Adapt Stay Adapt
1750 3500 1750 3500 1750 3500 1750 3500 1750 3500 1750 3500 1750 3500 1750 3500

θ
=

0.
04

λ0/8 0 91.6 0 91.6 0 100 0 100 0 91.6 0 91.6 0 100 0 100
λ0/4 0 99.3 0 99.3 0 100 0 100 0 99.3 0 99.3 0 100 0 100
λ0/2 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100
3λ0/4 2.4 97.6 2.4 97.6 0 100 0 100 2.4 97.6 2.4 97.6 0 100 0 100
λ0 23.2 76.8 23.2 76.8 0 100 0 100 23.2 76.8 23.2 76.8 0 100 0 100

θ
=

0.
1

λ0/8 0 92.8 0 92.8 0 100 0 100 0 92.8 0 92.8 0 100 0 100
λ0/4 0 99.4 0 99.4 0 100 0 100 0 99.4 0 99.4 0 100 0 100
λ0/2 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100
3λ0/4 4.2 95.8 4.2 95.8 0 100 0 100 4.2 95.8 4.2 95.8 0 100 0 100
λ0 32.1 67.9 32.1 67.9 0.4 99.6 0.4 99.6 32.1 67.9 32.1 67.9 0.4 99.6 0.4 99.6

θ
=

0.
25

λ0/8 0 94.9 0 94.9 0 100 0 100 0 94.9 0 94.9 0 100 0 100
λ0/4 0 99.8 0 99.8 0 100 0 100 0 99.8 0 99.8 0 100 0 100
λ0/2 0.2 99.8 0.2 99.8 0 100 0 100 0.2 99.8 0.2 99.8 0 100 0 100
3λ0/4 11.6 88.4 11.6 88.4 0 100 0 100 11.6 88.4 11.6 88.4 0 100 0 100
λ0 55.8 44.2 55.8 44.2 10.4 89.6 10.4 89.6 55.8 44.2 55.8 44.2 10.4 89.6 10.4 89.6

θ
=

0.
5

λ0/8 0 97.2 0 97.2 0 100 0 100 0 97.2 0 97.2 0 100 0 100
λ0/4 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100
λ0/2 1.8 98.2 1.8 98.2 0 100 0 100 1.8 98.2 1.8 98.2 0 100 0 100
3λ0/4 36.1 63.9 36.1 63.9 1.1 98.9 1.1 98.9 36.1 63.9 36.1 63.9 1.1 98.9 1.1 98.9
λ0 86 14 86 14 75.9 24.1 75.9 24.1 86 14 86 14 75.9 24.1 75.9 24.1

θ
=
θ A

λ0/8 0 98 0 98 0 100 0 100 0 98 0 98 0 100 0 100
λ0/4 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100
λ0/2 4 96 4 96 0 100 0 100 4 96 4 96 0 100 0 100
3λ0/4 52.6 47.4 52.6 47.4 8.1 91.9 8.1 91.9 52.6 47.4 52.6 47.4 8.1 91.9 8.1 91.9
λ0 93.4 6.6 93.4 6.6 95.2 4.8 95.2 4.8 93.4 6.6 93.4 6.6 95.2 4.8 95.2 4.8

θ
=

0.
75

λ0/8 0 98.3 0 98.3 0 100 0 100 0 98.3 0 98.3 0 100 0 100
λ0/4 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100
λ0/2 7.3 92.7 7.3 92.7 0 100 0 100 7.3 92.7 7.3 92.7 0 100 0 100
3λ0/4 65.8 34.2 65.8 34.2 25.4 74.6 25.4 74.6 65.8 34.2 65.8 34.2 25.4 74.6 25.4 74.6
λ0 97 3 97 3 99.2 0.8 99.2 0.8 97 3 97 3 99.2 0.8 99.2 0.8

θ
=

1

λ0/8 0 99.1 0 99.1 0 100 0 100 0 99.1 0 99.1 0 100 0 100
λ0/4 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100
λ0/2 19.1 80.9 19.1 80.9 0 100 0 100 19.1 80.9 19.1 80.9 0 100 0 100
3λ0/4 85.7 14.3 85.7 14.3 77.2 22.8 77.2 22.8 85.7 14.3 85.7 14.3 77.2 22.8 77.2 22.8
λ0 99.4 0.6 99.4 0.6 100 0 100 0 99.4 0.6 99.4 0.6 100 0 100 0
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Table D.6: Table of the overall power(%) for the hybrid monitoring rule based on a O’Brien Fleming efficacy rule, and
a futility rule that is intermediate between the O’Brien Fleming and Pocock rule (P = 0.8 using the unified family
design in Kittelson and Emerson [1999]) evaluated under different maximum calendar time of stopping, and different
combinations of hazard ratios θ, and baseline event rates.

78 Months 117 Months
Continue Restart Continue Restart

GSD GSDMod GSD GSDMod GSD GSDMod GSD GSDMod
Ref Pres Adj Ref Pres Adj Ref Pres Adj Ref Pres Adj

θ
=

0.
04

λ0/8 100 100 100 99.96 99.96 99.75 100 100 100 100 100 100
λ0/4 100 100 100 100 100 100 100 100 100 100 100 100
λ0/2 100 100 100 100 100 100 100 100 100 100 100 100
3λ0/4 100 100 100 100 100 100 100 100 100 100 100 100
λ0 100 100 100 100 100 100 100 100 100 100 100 100

θ
=

0.
1

λ0/8 99.99 99.99 99.97 99.63 99.63 98.5 100 100 100 100 100 100
λ0/4 100 100 100 100 100 100 100 100 100 100 100 100
λ0/2 100 100 100 100 100 100 100 100 100 100 100 100
3λ0/4 100 100 100 100 100 100 100 100 100 100 100 100
λ0 100 100 100 100 100 100 100 100 100 100 100 100

θ
=

0.
25

λ0/8 97.33 97.33 97.2 92.8 92.8 87.01 99.94 99.71 99.7 99.68 99.68 99.5
λ0/4 100 100 100 99.8 99.8 99.56 100 100 100 100 100 100
λ0/2 100 100 100 100 100 100 100 100 100 100 100 100
3λ0/4 100 100 100 100 100 100 100 100 100 100 100 100
λ0 100 100 100 100 100 100 100 100 100 100 100 100

θ
=

0.
5

λ0/8 62.97 62.97 62.03 51.34 51.34 44.88 83.89 83.08 82.88 77.29 77.29 75.75
λ0/4 90.08 90.08 89.73 80.27 80.27 77.08 98.73 98.73 98.73 96.96 96.95 96.95
λ0/2 99.45 99.37 99.37 97.83 97.82 97.82 99.68 99.6 99.6 99.68 99.67 99.67
3λ0/4 99.71 99.42 99.41 99.62 99.62 99.62 99.71 99.42 99.41 99.74 99.74 99.74
λ0 99.74 99.71 99.71 99.73 99.71 99.71 99.74 99.71 99.71 99.73 99.71 99.71

θ
=
θ A

λ0/8 35.89 35.89 35.33 28.19 28.19 24.88 53.45 52.99 52.72 46.85 46.85 45.78
λ0/4 61.95 61.95 61.87 49.68 49.68 47.62 82.62 82.65 82.59 76.38 76.39 76.45
λ0/2 87.82 87.1 87.1 79.41 79.42 79.5 89.28 88.48 88.45 89.53 89.54 89.54
3λ0/4 88.93 86.12 86.13 89.41 89.21 89.2 88.93 86.12 86.13 89.6 89.38 89.38
λ0 89.19 88.36 88.35 89.12 88.68 88.68 89.19 88.36 88.35 89.12 88.68 88.68

θ
=

0.
75

λ0/8 18.04 18.04 18.11 14.92 14.92 13.29 27.34 27.19 27.29 23.57 23.57 23.04
λ0/4 32.05 32.05 31.91 24.98 24.98 23.78 47.9 47.91 47.93 41.98 41.98 42.14
λ0/2 52.27 51.12 51.13 43.95 43.97 43.93 53.2 52.05 52.06 53.02 53.11 53.11
3λ0/4 52.97 50.33 50.29 53.13 52.28 52.29 52.97 50.33 50.29 53.16 52.3 52.31
λ0 52.96 52.42 52.42 52.54 52.77 52.77 52.96 52.42 52.42 52.54 52.77 52.77

θ
=

1

λ0/8 2.6 2.6 2.49 2.75 2.75 2.49 2.67 2.69 2.66 2.59 2.59 2.62
λ0/4 2.42 2.42 2.37 2.25 2.25 2.28 2.64 2.64 2.63 2.73 2.74 2.75
λ0/2 2.7 2.61 2.6 2.49 2.5 2.49 2.71 2.62 2.61 2.63 2.63 2.63
3λ0/4 2.71 2.56 2.56 2.49 2.57 2.57 2.71 2.56 2.56 2.49 2.57 2.57
λ0 2.78 2.56 2.56 2.53 2.67 2.61 2.78 2.56 2.56 2.53 2.67 2.61

GSD Ref refers to the GSD with 3500 planned at the beginning.
GSDMod refers the strategy of blinded sample size adaptation conducted at either 18 months (continue accrual), or 48 months (restart
accrual). The GSDMod has both the interpretation of the prespecified adaptive design (Pres) and fully adaptive design(Adj).



288
Table D.7: Table of the average event size for the hybrid monitoring rule based on a O’Brien Fleming efficacy rule,
and a futility rule that is intermediate between the O’Brien Fleming and Pocock rule (P = 0.8 using the unified family
design in Kittelson and Emerson [1999]) evaluated under different maximum calendar time of stopping, and different
combinations of hazard ratios θ, and baseline event rates.

78 Months 117 Months
Continue Restart Continue Restart

GSD GSDMod GSD GSDMod GSD GSDMod GSD GSDMod
Ref Pres Adj Ref Pres Adj Ref Pres Adj Ref Pres Adj

θ
=

0.
04

λ0/8 32 32 32 24 24 24 44 43 43 43 42 42
λ0/4 44 44 44 44 43 43 44 44 44 44 44 44
λ0/2 44 44 44 44 42 42 44 44 44 44 42 42
3λ0/4 44 44 44 44 44 44 44 44 44 44 44 44
λ0 44 53 53 44 44 44 44 53 53 44 44 44

θ
=

0.
1

λ0/8 34 34 34 26 26 26 45 44 44 44 44 44
λ0/4 45 45 45 44 44 44 45 45 45 45 45 45
λ0/2 45 45 45 45 46 46 45 45 45 45 46 46
3λ0/4 45 46 46 45 45 45 45 46 46 45 45 45
λ0 45 56 56 45 45 45 45 56 56 45 45 45

θ
=

0.
25

λ0/8 39 39 39 29 29 29 57 56 56 51 51 51
λ0/4 60 60 60 54 54 54 61 61 61 61 61 61
λ0/2 61 61 61 61 61 61 61 61 61 61 62 62
3λ0/4 61 62 62 61 62 62 61 62 62 61 62 62
λ0 61 66 66 61 61 61 61 66 66 61 61 61

θ
=

0.
5

λ0/8 47 47 47 35 35 35 75 74 74 65 65 65
λ0/4 86 86 86 69 69 69 102 102 102 99 99 99
λ0/2 103 103 103 101 103 103 103 103 103 104 105 105
3λ0/4 104 104 104 103 107 107 104 104 104 104 107 107
λ0 104 104 104 104 106 106 104 104 104 104 106 106

θ
=
θ A

λ0/8 51 51 51 38 38 38 83 82 82 71 71 71
λ0/4 98 98 98 76 76 76 132 132 132 124 124 124
λ0/2 139 138 138 128 129 129 140 139 139 141 141 141
3λ0/4 140 138 138 140 143 143 140 138 138 141 144 144
λ0 141 141 141 140 144 144 141 141 141 140 144 144

θ
=

0.
75

λ0/8 55 55 55 41 41 41 89 88 88 76 76 76
λ0/4 105 105 105 81 81 81 146 146 146 135 135 135
λ0/2 154 151 151 140 141 141 155 152 152 156 156 156
3λ0/4 155 152 152 156 157 157 155 152 152 156 157 157
λ0 156 156 156 156 159 159 156 156 156 156 159 159

θ
=

1

λ0/8 61 61 61 47 47 47 90 90 90 81 81 81
λ0/4 99 99 99 84 84 84 110 110 110 109 109 109
λ0/2 111 110 110 110 112 112 111 110 110 111 113 113
3λ0/4 111 112 112 111 113 113 111 112 112 111 113 113
λ0 111 115 115 111 113 113 111 115 115 111 113 113

GSD Ref refers to the GSD with 3500 planned at the beginning.
GSDMod refers the strategy of blinded sample size adaptation conducted at either 18 months (continue accrual), or 48 months (restart
accrual). The GSDMod has both the interpretation of the prespecified adaptive design (Pres) and fully adaptive design(Adj).
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Table D.8: Table of the average calendar time for the hybrid monitoring rule based on a O’Brien Fleming efficacy rule,
and a futility rule that is intermediate between the O’Brien Fleming and Pocock rule (P = 0.8 using the unified family
design in Kittelson and Emerson [1999]) evaluated under different maximum calendar time of stopping, and different
combinations of hazard ratios θ, and baseline event rates.

78 Months 117 Months
Continue Restart Continue Restart

GSD GSDMod GSD GSDMod GSD GSDMod GSD GSDMod
Ref Pres Adj Ref Pres Adj Ref Pres Adj Ref Pres Adj

θ
=

0.
04

λ0/8 78 78 78 78 78 78 101 98 98 113 112 112
λ0/4 59 59 59 74 73 73 59 59 59 74 74 74
λ0/2 38 38 38 50 48 48 38 38 38 50 48 48
3λ0/4 31 32 32 37 37 37 31 32 32 37 37 37
λ0 27 31 31 30 30 30 27 31 31 30 30 30

θ
=

0.
1

λ0/8 78 78 78 78 78 78 97 95 95 110 110 110
λ0/4 58 58 58 72 72 72 58 58 58 73 73 73
λ0/2 38 38 38 48 49 49 38 38 38 48 49 49
3λ0/4 31 31 31 36 36 36 31 31 31 36 36 36
λ0 27 31 31 29 29 29 27 31 31 29 29 29

θ
=

0.
25

λ0/8 78 78 78 78 78 78 106 104 104 112 112 112
λ0/4 65 65 65 75 75 75 65 65 65 80 81 81
λ0/2 42 42 42 54 54 54 42 42 42 54 54 54
3λ0/4 34 35 35 41 41 41 34 35 35 41 41 41
λ0 29 33 33 33 33 33 29 33 33 33 33 33

θ
=

0.
5

λ0/8 78 78 78 78 78 78 114 113 113 116 116 116
λ0/4 74 74 74 77 77 77 84 84 84 98 98 98
λ0/2 51 52 52 65 66 66 52 52 52 66 67 67
3λ0/4 40 45 45 52 53 53 40 45 45 52 53 53
λ0 35 42 42 43 44 44 35 42 42 43 44 44

θ
=
θ A

λ0/8 78 78 78 78 78 78 116 115 115 117 117 117
λ0/4 76 76 76 78 78 78 97 97 97 107 107 107
λ0/2 59 60 60 71 71 71 60 61 61 75 75 75
3λ0/4 46 55 55 60 61 61 46 55 55 60 61 61
λ0 39 51 51 50 53 53 39 51 51 50 53 53

θ
=

0.
75

λ0/8 78 78 78 78 78 78 116 115 115 117 116 116
λ0/4 76 76 76 78 78 78 100 100 100 108 108 108
λ0/2 61 62 62 72 72 72 61 62 62 76 77 77
3λ0/4 47 59 59 61 63 63 47 59 59 61 63 63
λ0 40 53 53 51 55 55 40 53 53 51 55 55

θ
=

1

λ0/8 77 77 77 78 78 78 105 105 105 111 111 111
λ0/4 66 66 66 74 74 74 72 72 72 86 86 86
λ0/2 45 48 48 57 58 58 45 48 48 57 58 58
3λ0/4 36 44 44 44 46 46 36 44 44 44 46 46
λ0 31 38 38 36 37 37 31 38 38 36 37 37

GSD Ref refers to the GSD with 3500 planned at the beginning.
GSDMod refers the strategy of blinded sample size adaptation conducted at either 18 months (continue accrual), or 48 months (restart
accrual). The GSDMod has both the interpretation of the prespecified adaptive design (Pres) and fully adaptive design(Adj).
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Table D.9: Table of the average sample size for the hybrid monitoring rule based on a O’Brien Fleming efficacy rule,
and a futility rule that is intermediate between the O’Brien Fleming and Pocock rule (P = 0.8 using the unified family
design in Kittelson and Emerson [1999]) evaluated under different maximum calendar time of stopping, and different
combinations of hazard ratios θ, and baseline event rates.

78 Months 117 Months
Continue Restart Continue Restart

GSD GSDMod GSD GSDMod GSD GSDMod GSD GSDMod
Ref Pres Adj Ref Pres Adj Ref Pres Adj Ref Pres Adj

θ
=

0.
04

λ0/8 3500 3500 3500 3500 3500 3500 3500 3500 3500 3500 3500 3500
λ0/4 3500 3500 3500 3479 3456 3456 3500 3500 3500 3479 3456 3456
λ0/2 3467 3467 3467 2052 1860 1860 3467 3467 3467 2052 1860 1860
3λ0/4 3043 3036 3036 1751 1750 1750 3043 3036 3036 1751 1750 1750
λ0 2641 2649 2649 1750 1750 1750 2641 2649 2649 1750 1750 1750

θ
=

0.
1

λ0/8 3500 3500 3500 3500 3500 3500 3500 3500 3500 3500 3500 3500
λ0/4 3500 3500 3500 3459 3450 3450 3500 3500 3500 3459 3450 3450
λ0/2 3445 3445 3445 2001 2001 2001 3445 3445 3445 2000 2001 2001
3λ0/4 2987 2980 2980 1761 1751 1751 2988 2980 2980 1761 1751 1751
λ0 2600 2561 2561 1750 1750 1750 2600 2561 2561 1750 1750 1750

θ
=

0.
25

λ0/8 3500 3500 3500 3500 3500 3500 3500 3500 3500 3500 3500 3500
λ0/4 3500 3500 3500 3453 3458 3458 3500 3500 3500 3453 3458 3458
λ0/2 3453 3451 3451 2467 2430 2430 3454 3451 3451 2467 2460 2460
3λ0/4 3199 3082 3082 1810 1800 1800 3200 3082 3082 1811 1800 1800
λ0 2826 2320 2320 1752 1751 1751 2826 2320 2320 1752 1751 1751

θ
=

0.
5

λ0/8 3500 3500 3500 3500 3500 3500 3500 3500 3500 3500 3500 3500
λ0/4 3500 3500 3500 3495 3497 3497 3500 3500 3500 3495 3497 3497
λ0/2 3496 3465 3465 3110 3164 3164 3496 3465 3465 3111 3170 3170
3λ0/4 3422 2830 2830 2328 2408 2408 3422 2830 2830 2328 2408 2408
λ0 3223 1970 1970 1918 1835 1835 3223 1970 1970 1918 1835 1835

θ
=
θ A

λ0/8 3500 3500 3500 3500 3500 3500 3500 3500 3500 3500 3500 3500
λ0/4 3500 3500 3500 3498 3498 3498 3500 3500 3500 3498 3498 3498
λ0/2 3498 3428 3428 3336 3359 3359 3498 3428 3428 3336 3361 3361
3λ0/4 3469 2571 2571 2807 2811 2811 3469 2571 2571 2807 2811 2811
λ0 3375 1862 1862 2267 1795 1795 3375 1862 1862 2267 1795 1795

θ
=

0.
75

λ0/8 3500 3500 3500 3500 3500 3500 3500 3500 3500 3500 3500 3500
λ0/4 3500 3500 3500 3494 3494 3494 3500 3500 3500 3494 3494 3494
λ0/2 3494 3367 3367 3346 3367 3367 3494 3367 3367 3346 3368 3368
3λ0/4 3462 2340 2340 2920 2707 2707 3462 2340 2340 2920 2707 2707
λ0 3384 1801 1801 2355 1759 1759 3384 1801 1801 2355 1759 1759

θ
=

1

λ0/8 3500 3500 3500 3497 3496 3496 3500 3500 3500 3497 3496 3496
λ0/4 3497 3499 3499 3394 3389 3389 3497 3499 3499 3394 3390 3390
λ0/2 3418 3117 3117 2659 2710 2710 3418 3117 3117 2659 2711 2711
3λ0/4 3193 1972 1972 2083 1871 1871 3193 1972 1972 2083 1871 1871
λ0 2920 1758 1758 1833 1749 1749 2920 1758 1758 1833 1749 1749

GSD Ref refers to the GSD with 3500 planned at the beginning.
GSDMod refers the strategy of blinded sample size adaptation conducted at either 18 months (continue accrual), or 48 months (restart
accrual). The GSDMod has both the interpretation of the prespecified adaptive design (Pres) and fully adaptive design(Adj).
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D.2 Results for Setting A1: No Extension of Accrual Size

We considered the setting where the accrual size of the trial is fixed at 1750 and the calendar

time of the study to be 78 months. The use of a GSD with the prespecified opportunity

of making an adaptive resizing of the maximum statistical information in a blinded manner

based on our “escape clause” results in significant loss of statistical power under our design

alternative when the baseline event rate is misspecified. At event rates that are markedly

lower, i.e., λ ∈ (λ0/4, λ0/2), the overall power under the design alternative decreases to 68%.

When the treatment effect is extreme, i.e., θ ≤ 0.5, the use of a GSD has high statistical power

to stop prior to 78 months. At more extreme treatment effects, the average calendar time of

stopping based on the GSD is markedly shorter as compared to a FSD. Under combinations

of extreme efficacy and extreme low baseline rate, the overall power of the GSD is on average

similar to a FSD.

D.3 Results for Setting A2: Additional Results for Fully Blinded
Adaptations

The use of the GSD with the “escape clause” strategy, allowing a blinded revision of sample

size when event rates are low, generally improves the overall power under the design alterna-

tive. Compared to the optimal design with an accrual size of 3500, the overall power curve

is matched at event rates lower than a quarter while there is generally a slight loss in overall

power when the baseline event rates are greater than a quarter. This loss of power (≈ 1%)

is compensated by an overwhelmingly smaller expected accrual size at λ > λ0/4, and longer

average calendar time of stopping.

At extreme event rates, i.e., λ ≤ λ0/8, we have at least 90% power to detect the extreme

treatment effect if the true hazard ratio is less than 0.25. Overall power loss under the

design alternative is observed when the hazard ratio is greater than 0.25 across all settings.

In presence of extreme efficacy, i.e., when the hazard ratio ≤ 0.5, we have high statistical

power (> 99%) to declare efficacy with negligible difference in power when the blinded
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adaptation is made later during the study. In cases when the accrual is restarted and the

baseline event rate is markedly lower, our statistical power under the design alternative is

reduced to 80%.
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Figure D.1: Contour plots of average accrual size and average calendar time of stopping for
hazard ratios vs baseline event rates for continuing or restarting accrual.
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We compare the average accrual size required when the sponsor either continue accrual

early, or restart accrual later. In summary, by restarting accrual or keeping accrual open

as recommended in the statistical literature or guidance material from FDA [2010], and a

blinded adaptation at later interim analysis is often more cost effective, in terms of ASN,

relative to continuing accrual early. The reduction in cost saving can be substantial when

treatment effect is extreme as the monitoring boundaries enable early stopping. When θ is

closer to our design alternative, a slightly bigger accrual size is required when the event rate

is not far off than planned, i.e., λ ∈ (λ0/2, λ0), as seen in Figure D.1. This in turn leads to

a higher probability of a blinded adaptation. One of the disadvantages of keeping accrual

open is that this may not be logistically feasible in many clinical or prevention setting.

D.4 Results for Setting B1: No Extension of Accrual Size and
Extension of Maximum Calendar Time

Results when allowing the maximum follow-up to be extended to 117 months were similar

compared to results in setting A1. The average calendar time of stopping with the use of

monitoring boundaries, under combinations of extreme treatment effects, and lower than

anticipated event rate, is typically shorter relative to a FSD. In summary, the GSD with

the “escape clause” is clearly preferred over FSD when θ ≤ θA, and the event rate λ is

much lower than anticipated. Relative to the FSD, the GSD is almost matched in terms

of average power and total sample size. In addition, a smaller average event size, shorter

average calendar time of completion is required to obtain similar average statistical power.

We note that this result is similar when the “escape clause” is applied at either 78 or 117

months without additional accrual of patients.

The simulation results, based on a planned, original calendar time of 78 months, provide

a comparison of the operating characteristics if we choose to extend the study to 117 months

via blinded or unblinded adaptations. In addition, when the extension of the calendar time

is allowed such that this extension does not affect our ability to address the primary scientific

hypothesis, the average calendar time of stopping is not considerably longer than 78 months
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when the baseline event rate λ > λ0/4. In fact, even with extreme treatment effects, the

monitoring rule offers protection by adaptively stopping the trial early, and concluding with

high probability in favor of the treatment over the placebo.

D.5 Results for Setting B2: Increase in Accrual Size and Exten-
sion of Maximum Calendar Time

When we are allowed either a blinded/unblinded increase in our sample size, and at most

50% extension of the calendar time, we can consider the option of making an adaptation

early by extension of accrual when the very last patient enters or restart accrual later in the

study. When allowing for a blinded increase in accrual size, a smaller average accrual size

is observed when we increased patient accrual later. This translates to a lower operational

cost when patient costs dominate the budget of the trial.

When the hazard ratio is more extreme than our design alternative (HR ≤ θA), and

the event rate is not far off than planned, the average patient size is smaller if we restart

accrual since the group sequential monitoring boundaries have enabled early stopping before

additional accrual is necessary in the presence of extreme efficacy. When event rate is lower

than planned (λ ∈ (1/8, 1/2]λ0), the benefit of a smaller average patient size still persists

since the monitoring rule also enables early stopping prior to completion of additional accrual

with extreme efficacy. The consequence of restarting accrual, and allowing an extension of

the calendar time means that a longer follow-up is obtained on average.

When our hazard ratio is between θA and the null, the average patient size is larger,

the average calendar time is shorter when accrual was continued relative to the strategy of

restarting accrual. The strategy to adapt accrual later, however, provides a more reliable

estimate of the event rate.

Under our treatment effect is moderately effective such that θ ∈ (0.5, θA), there is little

difference in overall power between continuing accrual or restarting accrual when event rates

are markedly lower than planned. Restarting accrual decreases the average sample size, at

the cost of a slightly longer average calendar time relative to continuing accrual. When
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the baseline event rates are close to planned, i.e., λ ≥ λ0/2, there is minimal advantage

in choosing to either continue accrual or restart accrual in terms of overall power. On

average, a bigger sample size is observed, with a difference between the average calendar

time anywhere between 2 to 10 months of more follow-up when restarting accrual. The

ambiguity of either strategy occurs when the event rate is close to 3/4λ0. The strategy to

continue accrual surprisingly beats restarting accrual later with a smaller average sample

size, a shorter average calendar time at the cost of 4% loss of power.

Under the extreme event rate of λ0/8, either strategy of continuing or restarting accrual

appear similar in terms of average sample size with the expected calendar time terminating

close to the maximum extended time. The loss of power under this setting is minimal relative

to the strategy of designing the trial with twice the original sample size.
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Table D.10: Results for the various operating characteristics using the best sampling rule obtained based on θ = 0.5
and λ0/4 is prespecified and applied across other values of θ under continuous accrual. Generally, the overall Type 1
error is protected, the power under the hypothesized alternatives are higher relative to fully flexible adaptive design.

Blinded Blinded (C1) Adaptive (D0) Adaptive (D1) Percentage
GSDMod† GSDMod‡ Rate Diff HR Sample Size Calendar Time Events of adaptation

HR Rate Pres Cond Pres Cond Pres Cond Pres Cond C1 D0 D1 C1 D0 D1 C1 D0 D1 C1 D0 D1

C
on

ti
nu

ou
s
A
cc
ru
al

θ
=

0.
5

λ0/8 62.97 62.01 62.90 61.92 62.48 61.15 56.92 54.43 3489 3428 2929 78 78 78 47 46 40 99.4 95.9 67.3
λ0/4 90.08 89.72 86.33 85.74 88.09 86.52 87.55 86.31 3150 3150 3150 75 75 75 80 81 81 80.0 80.0 80.0
λ0/2 99.41 99.41 94.16 94.04 97.37 97.07 95.17 95.04 1902 2481 2123 68 62 66 94 100 96 8.7 41.8 21.3
3λ0/4 99.47 99.46 98.91 98.91 99.04 99.04 98.92 98.92 1753 1921 1770 54 53 54 103 103 103 0.2 9.8 1.1
λ0 99.80 99.80 99.75 99.75 99.75 99.75 99.75 99.75 1750 1760 1750 44 44 44 105 105 105 0.0 0.6 0.0

θ
=
θ A

λ0/8 35.89 35.33 35.75 35.17 35.62 34.65 33.06 31.50 3483 3441 3079 78 78 78 51 50 46 99.0 96.6 75.9
λ0/4 61.95 61.83 55.92 55.71 59.94 58.83 59.03 58.25 3014 3232 3199 77 77 77 87 93 92 72.2 84.7 82.8
λ0/2 87.61 87.60 68.59 68.31 79.33 78.59 70.73 70.49 1837 2550 2005 74 69 73 111 126 114 5.0 45.7 14.6
3λ0/4 86.60 86.62 82.89 82.95 83.73 83.76 82.93 82.99 1751 1877 1758 64 63 64 136 137 136 0.1 7.3 0.4
λ0 89.05 89.05 89.52 89.52 89.46 89.46 89.52 89.52 1750 1756 1750 53 53 53 143 143 143 0.0 0.3 0.0

θ
=

0.
75

λ0/8 18.04 18.09 17.92 17.96 17.93 17.70 17.35 16.79 3475 3449 3174 78 78 78 54 54 50 98.6 97.1 81.3
λ0/4 32.05 31.92 27.73 27.38 30.73 29.92 30.05 29.50 2883 3288 3182 77 77 77 91 101 99 64.8 87.9 81.8
λ0/2 51.75 51.73 36.42 36.14 44.14 43.55 37.50 37.16 1803 2539 1920 76 71 75 120 139 123 3.0 45.1 9.7
3λ0/4 50.90 50.85 48.67 48.62 48.97 48.90 48.66 48.61 1750 1834 1753 68 67 68 154 155 154 0.0 4.8 0.2
λ0 53.16 53.16 53.55 53.55 53.51 53.51 53.55 53.55 1750 1752 1750 56 56 56 163 163 163 0.0 0.1 0.0

θ
=

1

λ0/8 2.60 2.49 2.61 2.49 2.66 2.50 2.69 2.51 3450 3464 3294 78 78 78 61 62 59 97.2 97.9 88.2
λ0/4 2.42 2.38 2.35 2.31 2.37 2.23 2.39 2.31 2618 3352 3041 74 71 73 90 105 99 49.6 91.5 73.8
λ0/2 2.63 2.62 2.43 2.47 2.50 2.49 2.47 2.51 1765 2317 1815 66 60 65 115 118 115 0.8 32.6 3.7
3λ0/4 2.56 2.56 2.57 2.58 2.59 2.60 2.57 2.58 1750 1775 1750 50 50 50 125 125 125 0.0 1.5 0.0
λ0 2.57 2.57 2.56 2.56 2.56 2.56 2.56 2.56 1750 1750 1750 41 41 41 127 127 127 0.0 0.0 0.0

†: Corresponds to the group sequential design with “escape clause” and blinded adaptations conducted at 100% of the time under the
setting when θ = 0.5 and λ0/4.
‡: Corresponds to the group sequential design with “escape clause” and blinded adaptations at 80% of the time.
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Table D.11: Results for the various operating characteristics using the best sampling rule obtained based on θ = 0.5
and λ0/4 is prespecified and applied across other values of θ when accrual is restarted. Generally, the overall Type 1
error is protected, the power under the hypothesized alternatives are higher relative to fully flexible adaptive design.

Blinded Blinded (C1) Adaptive (D0) Adaptive (D1) Percentage
GSDMod† GSDMod‡ Rate Diff HR Sample Size Calendar Time Events of adaptation

HR Rate Pres Cond Pres Cond Pres Cond Pres Cond C1 D0 D1 C1 D0 D1 C1 D0 D1 C1 D0 D1

R
es
ta
rt

A
cc
ru
al

θ
=

0.
5

λ0/8 51.34 44.65 51.34 44.65 51.33 44.59 50.36 40.57 3500 3486 2992 78 78 78 35 35 33 100.0 99.2 71.0
λ0/4 80.27 76.88 78.27 73.91 80.27 75.25 80.10 75.07 3149 3150 3150 78 78 78 66 66 66 80.0 80.0 80.0
λ0/2 97.84 97.78 93.50 92.50 94.81 93.89 94.76 94.22 1750 1909 2035 70 70 70 94 95 96 0.0 9.2 17.0
3λ0/4 99.73 99.73 98.92 98.84 98.92 98.84 98.92 98.84 1750 1750 1750 55 55 55 105 105 105 0.0 0.0 0.0
λ0 99.81 99.81 99.75 99.74 99.75 99.74 99.75 99.74 1750 1750 1750 44 44 44 106 106 106 0.0 0.0 0.0

θ
=
θ A

λ0/8 28.19 24.80 28.19 24.80 28.21 24.74 28.04 23.56 3500 3486 3219 78 78 78 38 38 37 100.0 99.2 84.0
λ0/4 49.68 47.37 46.01 42.94 49.66 46.32 49.73 46.85 2847 3310 3383 78 78 78 69 74 75 62.7 89.1 93.3
λ0/2 79.47 79.51 67.56 66.01 68.65 67.15 68.58 67.18 1750 1854 1856 75 75 75 109 111 111 0.0 5.9 6.2
3λ0/4 89.76 89.75 82.90 82.82 82.90 82.82 82.90 82.82 1750 1750 1750 65 65 65 138 138 138 0.0 0.0 0.0
λ0 89.17 89.17 89.65 89.64 89.65 89.64 89.65 89.64 1750 1750 1750 54 54 54 146 146 146 0.0 0.0 0.0

θ
=

0.
75

λ0/8 14.92 13.21 14.92 13.21 14.92 13.21 15.03 12.89 3499 3477 3315 78 78 78 41 41 40 100.0 98.7 89.4
λ0/4 24.98 23.64 22.31 20.63 25.11 23.18 25.07 23.43 2569 3367 3453 78 78 78 71 80 81 46.8 92.4 97.3
λ0/2 44.01 43.93 35.74 34.79 35.85 34.99 35.86 34.99 1750 1790 1786 76 76 76 119 120 119 0.0 2.3 2.1
3λ0/4 52.90 52.88 48.68 48.52 48.68 48.52 48.68 48.52 1750 1750 1750 69 69 69 156 156 156 0.0 0.0 0.0
λ0 53.17 53.16 53.76 53.76 53.76 53.76 53.76 53.76 1750 1750 1750 57 57 57 167 167 167 0.0 0.0 0.0

θ
=

1

λ0/8 2.75 2.46 2.75 2.46 2.77 2.46 2.89 2.59 3497 3387 3352 78 78 78 47 46 46 99.8 93.5 91.6
λ0/4 2.25 2.29 2.36 2.28 2.49 2.26 2.28 2.23 2080 3208 3422 77 77 77 74 87 89 18.9 83.4 96.2
λ0/2 2.49 2.50 2.40 2.47 2.40 2.47 2.40 2.47 1750 1751 1751 67 67 67 116 116 116 0.0 0.0 0.0
3λ0/4 2.58 2.57 2.62 2.63 2.62 2.63 2.62 2.63 1750 1750 1750 51 51 51 127 127 127 0.0 0.0 0.0
λ0 2.69 2.64 2.70 2.65 2.70 2.65 2.70 2.65 1750 1750 1750 41 41 41 127 127 127 0.0 0.0 0.0

†: Corresponds to the group sequential design with “escape clause” and blinded adaptations conducted at 100% of the time under the
setting when θ = 0.5 and λ0/4.
‡: Corresponds to the group sequential design with “escape clause” and blinded adaptations at 80% of the time.
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Table D.12: Results for the various operating characteristics using the best sampling rule obtained based on θA and
λ0/2 is prespecified and applied across other values of θ under continuous accrual. Generally, the overall Type 1 error
is protected, the power under the hypothesized alternatives are higher relative to fully flexible adaptive design.

Blinded Blinded (C1) Adaptive (D0) Adaptive (D1) Percentage
GSDMod† GSDMod‡ Rate Diff HR Sample Size Calendar Time Events of adaptation

HR Rate Pres Cond Pres Cond Pres Cond Pres Cond C1 D0 D1 C1 D0 D1 C1 D0 D1 C1 D0 D1

C
on

ti
nu

ou
s
A
cc
ru
al

θ
=

0.
5

λ0/8 62.97 62.01 62.97 62.01 62.93 61.92 52.93 50.08 3500 3494 2583 78 78 78 47 47 36 100.0 99.6 47.6
λ0/4 90.08 89.72 90.08 89.71 89.84 89.10 84.01 81.81 3499 3410 2784 74 75 76 87 86 74 100.0 94.9 59.1
λ0/2 99.41 99.41 98.95 98.95 98.93 98.68 98.61 98.33 3289 2994 2890 54 57 58 104 103 102 88.1 71.1 65.2
3λ0/4 99.47 99.46 99.20 99.20 99.56 99.52 99.67 99.64 2255 2524 2778 50 47 45 104 104 105 29.5 44.7 59.8
λ0 99.80 99.80 99.76 99.76 99.83 99.83 99.83 99.83 1795 2013 2173 43 42 41 105 105 105 2.9 15.9 26.3

θ
=
θ A

λ0/8 35.89 35.33 35.89 35.33 35.86 35.28 30.39 28.72 3500 3495 2735 78 78 78 51 51 42 100.0 99.7 56.3
λ0/4 61.95 61.83 61.94 61.82 61.63 61.18 57.09 55.45 3499 3433 2995 77 77 77 99 97 87 100.0 96.2 71.2
λ0/2 87.61 87.60 84.63 84.59 86.21 85.69 86.10 85.58 3149 3150 3150 63 64 64 136 137 137 80.0 80.0 80.0
3λ0/4 86.60 86.62 84.56 84.58 87.48 87.44 88.21 88.20 2057 2647 2872 61 55 52 138 141 142 17.6 51.4 64.5
λ0 89.05 89.05 89.47 89.47 89.66 89.66 89.65 89.65 1767 1979 2066 53 51 50 143 144 144 1.0 13.4 18.6

θ
=

0.
75

λ0/8 18.04 18.09 18.04 18.09 18.02 18.04 16.22 15.35 3500 3495 2845 78 78 78 55 55 46 100.0 99.7 62.5
λ0/4 32.05 31.92 32.02 31.89 31.94 31.49 29.67 28.68 3498 3451 3135 77 77 77 107 105 98 99.9 97.2 79.1
λ0/2 51.75 51.73 48.34 48.22 50.96 50.53 51.25 50.86 2990 3249 3287 67 65 65 150 156 157 70.9 85.7 87.9
3λ0/4 50.90 50.85 49.41 49.35 51.67 51.54 52.01 51.91 1935 2636 2785 66 58 56 156 160 160 10.6 50.9 59.5
λ0 53.16 53.16 53.52 53.52 53.81 53.81 53.81 53.81 1757 1914 1949 56 54 54 163 163 163 0.4 9.5 11.6

θ
=

1

λ0/8 2.60 2.49 2.60 2.49 2.59 2.48 2.75 2.55 3500 3496 3017 78 78 78 62 62 55 100.0 99.8 72.4
λ0/4 2.42 2.38 2.42 2.39 2.40 2.31 2.50 2.35 3493 3472 3316 71 71 71 109 108 104 99.6 98.4 89.5
λ0/2 2.63 2.62 2.51 2.49 2.73 2.66 2.73 2.69 2603 3299 3341 57 50 50 120 123 124 49.0 89.4 91.8
3λ0/4 2.56 2.56 2.62 2.63 2.55 2.55 2.61 2.61 1800 2306 2347 50 46 46 125 125 125 3.0 34.0 36.4
λ0 2.57 2.57 2.56 2.56 2.58 2.58 2.58 2.58 1750 1791 1794 41 40 40 127 127 127 0.0 2.8 2.9

†: Corresponds to the group sequential design with “escape clause” and blinded adaptations conducted at 100% of the time under the
setting when θA and λ0/2.
‡: Corresponds to the group sequential design with “escape clause” and blinded adaptations at 80% of the time.
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Table D.13: Results for the various operating characteristics using the best sampling rule obtained based on θA and
λ0/2 is prespecified and applied across other values of θ when accrual is restarted. Generally, the overall Type 1 error
is protected, the power under the hypothesized alternatives are higher relative to fully flexible adaptive design.

Blinded Blinded (C1) Adaptive (D0) Adaptive (D1) Percentage
GSDMod† GSDMod‡ Rate Diff HR Sample Size Calendar Time Events of adaptation

HR Rate Pres Cond Pres Cond Pres Cond Pres Cond C1 D0 D1 C1 D0 D1 C1 D0 D1 C1 D0 D1

R
es
ta
rt

A
cc
ru
al

θ
=

0.
5

λ/8 51.34 44.65 51.34 44.65 51.34 44.59 47.33 36.81 3500 3490 2460 78 78 78 35 35 30 100.0 99.4 40.6
λ/4 80.27 76.88 80.27 76.88 80.27 76.78 78.29 70.18 3498 3459 2562 77 78 78 69 69 61 100.0 97.7 46.4
λ/2 97.84 97.78 97.70 97.64 97.77 97.43 97.72 97.00 3108 2728 2543 66 68 68 103 102 101 86.1 58.7 47.1
3λ/4 99.73 99.73 98.95 98.88 99.44 99.36 99.67 99.67 1784 1943 2260 55 55 54 105 106 107 2.4 13.0 37.4
λ 99.81 99.81 99.75 99.74 99.75 99.74 99.75 99.74 1750 1750 1763 44 44 44 106 106 106 0.0 0.0 1.1

θ
=
θ A

λ/8 28.19 24.80 28.19 24.80 28.18 24.74 26.29 21.07 3500 3466 2680 78 78 78 38 38 34 100.0 98.1 53.1
λ/4 49.68 47.37 49.68 47.37 49.63 47.31 48.71 43.37 3499 3456 2956 78 78 78 76 75 70 100.0 97.5 68.9
λ/2 79.47 79.51 77.55 77.36 79.31 78.84 79.35 78.77 3094 3121 3119 73 73 73 127 128 128 80.0 80.0 80.0
3λ/4 89.76 89.75 82.93 82.85 84.68 84.55 87.33 87.30 1755 1965 2404 65 64 63 138 140 143 0.3 13.4 43.4
λ 89.17 89.17 89.65 89.64 89.65 89.64 89.66 89.65 1750 1750 1751 54 54 54 146 146 146 0.0 0.0 0.1

θ
=

0.
75

λ/8 14.92 13.21 14.92 13.21 14.92 13.18 14.49 11.80 3500 3425 2776 78 78 78 41 41 37 100.0 95.7 58.6
λ/4 24.98 23.64 24.98 23.64 24.98 23.61 24.82 22.25 3499 3406 3113 78 78 78 81 80 77 100.0 94.6 77.9
λ/2 44.01 43.93 41.05 40.53 43.99 43.44 44.06 43.70 2812 3259 3314 75 74 74 136 144 145 62.1 87.5 91.0
3λ/4 52.90 52.88 48.69 48.53 49.37 49.24 50.55 50.46 1750 1846 2137 69 68 67 156 157 160 0.0 5.9 24.8
λ 53.17 53.16 53.76 53.76 53.76 53.76 53.76 53.76 1750 1750 1750 57 57 57 167 167 167 0.0 0.0 0.0

θ
=

1

λ/8 2.75 2.46 2.75 2.46 2.75 2.52 2.98 2.62 3500 3235 2753 78 78 78 47 45 42 100.0 84.8 57.3
λ/4 2.25 2.29 2.25 2.29 2.26 2.27 2.46 2.21 3481 3091 2957 76 77 77 90 86 85 99.7 76.7 69.0
λ/2 2.49 2.50 2.40 2.42 2.48 2.40 2.49 2.48 2033 2699 2896 66 64 63 119 124 125 18.2 60.8 74.8
3λ/4 2.58 2.57 2.62 2.63 2.62 2.63 2.61 2.62 1750 1752 1768 51 51 51 127 127 127 0.0 0.2 1.4
λ 2.69 2.64 2.70 2.65 2.70 2.65 2.70 2.65 1750 1750 1750 41 41 41 127 127 127 0.0 0.0 0.0

†: Corresponds to the group sequential design with “escape clause” and blinded adaptations conducted at 100% of the time under the
setting when θA and λ0/2.
‡: Corresponds to the group sequential design with “escape clause” and blinded adaptations at 80% of the time.
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Appendix E

Additional Results for Chapter 6

E.1 Additional Results for Blinded Adaptations

Table E.1: Overall Type 1 error rate when we increase the accrual size in a blinded fashion at interim analyses
conducted at either 1/3, 1/2, or 2/3 of the final event size.

Immediate Early Uniform Delayed

NFinal LR G1,0 G0,1 G1,1 LR G1,0 G0,1 G1,1 LR G1,0 G0,1 G1,1 LR G1,0 G0,1 G1,1

E
ve
nt
s=

25
5 1000 2.493 2.476 2.504 2.487 2.496 2.476 2.498 2.484 2.495 2.477 2.502 2.482 2.495 2.475 2.502 2.484

1500 2.483 2.474 2.472 2.469 2.483 2.475 2.480 2.484 2.481 2.473 2.476 2.475 2.479 2.472 2.477 2.472
2000 2.482 2.473 2.502 2.511 2.483 2.475 2.500 2.494 2.482 2.476 2.492 2.490 2.481 2.477 2.502 2.497
3000 2.478 2.479 2.484 2.477 2.476 2.473 2.489 2.475 2.479 2.487 2.478 2.483 2.473 2.476 2.485 2.486
5000 2.502 2.506 2.473 2.466 2.472 2.472 2.462 2.461 2.465 2.468 2.467 2.457 2.478 2.471 2.471 2.467

E
ve
nt
s=

38
2 1000 2.493 2.476 2.504 2.487 2.496 2.476 2.498 2.484 2.495 2.477 2.502 2.482 2.495 2.475 2.502 2.484

1500 2.456 2.467 2.474 2.475 2.469 2.472 2.472 2.480 2.466 2.472 2.468 2.475 2.462 2.468 2.473 2.473
2000 2.471 2.485 2.479 2.478 2.485 2.476 2.492 2.480 2.482 2.476 2.484 2.473 2.476 2.473 2.489 2.479
3000 2.461 2.456 2.467 2.462 2.473 2.467 2.468 2.470 2.472 2.463 2.466 2.458 2.468 2.463 2.464 2.458
5000 2.488 2.493 2.482 2.481 2.490 2.476 2.471 2.470 2.495 2.482 2.480 2.474 2.486 2.486 2.468 2.472

E
ve
nt
s=

51
0 1000 2.493 2.476 2.504 2.487 2.496 2.476 2.498 2.484 2.495 2.477 2.502 2.482 2.495 2.475 2.502 2.484

1500 2.485 2.482 2.483 2.486 2.481 2.474 2.485 2.490 2.474 2.475 2.479 2.492 2.478 2.474 2.483 2.492
2000 2.480 2.488 2.491 2.480 2.470 2.494 2.493 2.494 2.474 2.493 2.496 2.499 2.476 2.491 2.495 2.488
3000 2.487 2.466 2.473 2.458 2.471 2.484 2.487 2.487 2.463 2.481 2.482 2.483 2.469 2.484 2.480 2.487
5000 2.475 2.472 2.478 2.481 2.472 2.479 2.483 2.484 2.464 2.482 2.487 2.487 2.472 2.484 2.479 2.491

Error rate in blue denotes that the 1,000,000 simulations results are not within the 95% CI of what would have been a typical Type 1
error rate of 2.5% (2.4694 2.5306).
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Table E.2: Overall Type 1 error rate of α = 5% when we increase the accrual size in a blinded fashion at interim
analyses conducted at either 1/3, 1/2, or 2/3 of the final event size.

Immediate Early Uniform Delayed

NFinal LR G1,0 G0,1 G1,1 LR G1,0 G0,1 G1,1 LR G1,0 G0,1 G1,1 LR G1,0 G0,1 G1,1

Ev
en
ts
=
25
5 1000 4.980 4.976 5.018 4.997 4.980 4.976 5.023 4.999 4.982 4.976 5.026 4.998 4.981 4.977 5.020 4.998

1500 4.981 4.988 4.993 4.993 4.988 4.985 4.987 4.980 4.984 4.983 4.999 4.976 4.980 4.989 4.998 4.980
2000 4.967 4.961 4.994 4.984 4.971 4.959 5.005 4.986 4.974 4.956 4.997 4.982 4.972 4.958 4.989 4.984
3000 4.972 4.965 4.967 4.963 4.960 4.969 4.979 4.949 4.963 4.966 4.966 4.954 4.967 4.965 4.967 4.958
5000 4.986 4.993 4.949 4.959 4.951 4.952 4.934 4.929 4.961 4.963 4.935 4.938 4.956 4.953 4.949 4.951

Ev
en
ts
=
38
2 1000 4.980 4.976 5.018 4.997 4.980 4.976 5.023 4.999 4.982 4.976 5.026 4.998 4.981 4.977 5.020 4.998

1500 4.969 4.970 4.980 4.964 4.965 4.969 4.992 4.968 4.961 4.967 4.993 4.972 4.955 4.969 4.984 4.969
2000 4.948 4.957 4.961 4.956 4.946 4.954 4.961 4.964 4.955 4.958 4.957 4.961 4.958 4.957 4.958 4.961
3000 4.960 4.979 4.955 4.957 4.967 4.981 4.963 4.946 4.966 4.976 4.956 4.947 4.970 4.976 4.950 4.943
5000 4.991 5.005 4.962 4.980 4.967 4.961 4.958 4.946 4.974 4.968 4.965 4.954 4.980 4.964 4.976 4.950

Ev
en
ts
=
51
0 1000 4.980 4.976 5.018 4.997 4.980 4.976 5.023 4.999 4.982 4.976 5.026 4.998 4.981 4.977 5.020 4.998

1500 4.969 4.980 4.966 4.973 4.971 4.979 4.969 4.972 4.975 4.975 4.964 4.980 4.970 4.971 4.961 4.968
2000 4.998 4.989 4.966 4.963 4.990 4.970 4.968 4.976 4.986 4.980 4.969 4.973 4.991 4.983 4.979 4.980
3000 4.979 4.982 4.966 4.958 4.986 4.974 4.982 4.969 4.988 4.969 4.979 4.977 4.982 4.968 4.978 4.973
5000 4.969 4.979 4.977 4.973 4.986 4.970 4.987 4.965 4.979 4.963 4.983 4.979 4.982 4.974 4.985 4.973

Error rate in blue denotes that the 1,000,000 simulations results are not within the 95% CI of what would have been a typical Type 1
error rate of 5% (4.9573, 5.0428).



302

Table E.3: Overall power when we increase the accrual size in a blinded fashion at interim analysis conducted at 1/3
of the final event size using a one sided level α. Power is computed by assuming the alternative distribution from
Weibull with mean 120.5 and shape parameter of 0.5. In addition, the alternative is calibrated based on the G1,0

statistic assuming a accrual size of 1000 subjects accrued assuming the above accrual patterns with final event size of
765. Blinded accrual size increase is performed for all simulations after 1/3 the total number of events is observed.

Immediate Early Uniform Delayed

NFinal LR G1,0 G0,1 G1,1 LR G1,0 G0,1 G1,1 LR G1,0 G0,1 G1,1 LR G1,0 G0,1 G1,1

2.
5%

1000 93.15 90.02 90.06 84.85 93.15 90.02 90.06 84.90 93.16 90.01 90.06 84.87 93.16 90.02 90.06 84.89
1500 92.99 92.06 88.13 84.62 92.99 92.06 88.15 84.56 92.98 92.08 88.19 84.62 92.99 92.07 88.17 84.56
2000 93.01 92.61 87.05 84.31 92.99 92.59 87.04 84.23 92.98 92.58 87.06 84.27 93.00 92.60 87.02 84.24
3000 93.04 92.85 85.76 83.43 93.12 92.89 85.55 82.89 93.11 92.87 85.52 82.92 93.10 92.86 85.49 82.91
5000 93.12 92.98 81.92 78.69 93.00 92.80 83.52 80.33 93.02 92.80 83.48 80.31 93.04 92.83 83.48 80.32

5%

1000 92.86 90.00 89.99 85.45 92.86 89.98 90.02 85.43 92.87 89.98 90.03 85.42 92.88 89.98 90.03 85.42
1500 92.69 91.90 88.31 85.17 92.70 91.89 88.30 85.22 92.70 91.92 88.31 85.22 92.72 91.90 88.30 85.16
2000 92.79 92.41 87.37 84.93 92.72 92.32 87.30 84.77 92.78 92.34 87.30 84.82 92.75 92.33 87.30 84.83
3000 92.79 92.58 86.30 84.24 92.87 92.62 85.99 83.68 92.86 92.62 86.00 83.76 92.86 92.64 86.05 83.81
5000 92.84 92.75 82.96 80.10 92.81 92.59 84.19 81.41 92.79 92.58 84.08 81.43 92.79 92.58 84.16 81.44
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Table E.4: Overall power when we increase the accrual size in a blinded fashion at interim analysis conducted at 1/2
of the final event size using a one sided level α. Power is computed by assuming the alternative distribution from
Weibull with mean 120.5 and shape parameter of 0.5. In addition, the alternative is calibrated based on the G1,0

statistic assuming a accrual size of 1000 subjects accrued assuming the above accrual patterns with final event size of
765. Blinded accrual size increase is performed for all simulations after 1/2 the total number of events is observed.

Immediate Early Uniform Delayed

NFinal LR G1,0 G0,1 G1,1 LR G1,0 G0,1 G1,1 LR G1,0 G0,1 G1,1 LR G1,0 G0,1 G1,1

2.
5%

1000 93.15 90.02 90.06 84.85 93.15 90.02 90.06 84.90 93.16 90.01 90.06 84.87 93.16 90.02 90.06 84.89
1500 93.04 92.08 88.15 84.42 93.04 92.06 88.17 84.38 93.05 92.06 88.19 84.40 93.05 92.05 88.22 84.40
2000 93.08 92.50 86.82 83.38 93.10 92.50 86.86 83.27 93.06 92.51 86.80 83.23 93.08 92.52 86.86 83.28
3000 93.07 92.71 84.14 79.63 93.05 92.62 83.90 79.16 93.06 92.66 83.89 79.17 93.04 92.63 83.90 79.17
5000 93.02 92.67 78.04 72.20 93.02 92.66 82.72 77.74 93.03 92.63 82.76 77.69 93.03 92.61 82.70 77.69

5%

1000 92.86 90.00 89.99 85.45 92.86 89.98 90.02 85.43 92.87 89.98 90.03 85.42 92.88 89.98 90.03 85.42
1500 92.78 91.86 88.29 85.06 92.76 91.84 88.30 85.07 92.76 91.83 88.29 85.09 92.74 91.83 88.32 85.09
2000 92.79 92.26 87.19 84.13 92.86 92.33 87.12 84.02 92.84 92.30 87.19 84.03 92.85 92.28 87.21 84.06
3000 92.80 92.45 84.78 80.77 92.75 92.38 84.57 80.37 92.77 92.43 84.58 80.39 92.76 92.38 84.61 80.41
5000 92.74 92.42 79.44 74.37 92.76 92.43 83.53 79.11 92.75 92.42 83.52 79.12 92.78 92.46 83.57 79.10
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Table E.5: Overall power when we increase accrual size in a blinded fashion at interim analysis conducted at 2/3 of
the final event size using a one sided level α. Power is computed by assuming the alternative distribution from Weibull
with mean 120.5 and shape parameter of 0.5. In addition, the alternative is calibrated based on the G1,0 statistic
assuming a accrual size of 1000 subjects accrued assuming the above accrual patterns with final event size of 765.
Blinded accrual size increase is performed for all simulations after 2/3 the total number of events is observed.

Immediate Early Uniform Delayed

NFinal LR G1,0 G0,1 G1,1 LR G1,0 G0,1 G1,1 LR G1,0 G0,1 G1,1 LR G1,0 G0,1 G1,1

2.
5%

1000 93.15 90.02 90.06 84.85 93.15 90.02 90.06 84.90 93.16 90.01 90.06 84.87 93.16 90.02 90.06 84.89
1500 93.08 91.93 88.28 83.81 93.12 91.92 88.29 83.85 93.09 91.91 88.28 83.85 93.10 91.93 88.26 83.91
2000 93.09 92.17 86.49 81.27 93.10 92.22 86.60 81.22 93.13 92.20 86.59 81.24 93.12 92.20 86.57 81.29
3000 93.09 92.21 83.09 76.92 93.07 92.13 83.82 77.78 93.08 92.13 83.80 77.70 93.08 92.15 83.86 77.79
5000 93.00 92.19 79.34 73.11 93.07 92.14 83.82 77.75 93.08 92.13 83.79 77.68 93.08 92.15 83.84 77.79

5%

1000 92.86 90.00 89.99 85.45 92.86 89.98 90.02 85.43 92.87 89.98 90.03 85.42 92.88 89.98 90.03 85.42
1500 92.85 91.75 88.45 84.55 92.82 91.77 88.48 84.52 92.84 91.75 88.49 84.51 92.83 91.75 88.41 84.54
2000 92.77 91.97 86.86 82.21 92.83 91.98 86.77 82.15 92.80 91.97 86.79 82.13 92.77 91.96 86.80 82.13
3000 92.78 92.06 83.86 78.37 92.83 91.98 84.50 79.24 92.82 91.97 84.53 79.23 92.82 91.97 84.49 79.20
5000 92.76 91.96 80.50 75.09 92.83 91.99 84.49 79.23 92.81 91.97 84.51 79.23 92.82 91.96 84.48 79.20
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E.2 Additional Results for Unblinded Adaptations

Table E.6: Maximum overall Type 1 error rate with unblinded adaptation conducted at an interim analysis 1/3 of the
total event size. 95% CI for 5% error based on 100,000 simulations should be within 4.9573 and 5.0428.

Immediate Early Uniform Delayed

Rule LR G1,0 G0,1 G1,1 LR G1,0 G0,1 G1,1 LR G1,0 G0,1 G1,1 LR G1,0 G0,1 G1,1

1a 4.999 5.847 4.897 4.968 5.012 5.857 4.901 4.970 5.003 5.855 4.907 4.969 5.002 5.850 4.901 4.970
1b 5.012 6.059 4.878 4.957 5.003 6.056 4.883 4.958 5.000 6.054 4.886 4.956 5.001 6.053 4.880 4.957
1c 5.003 6.181 4.875 4.955 5.003 6.112 4.879 4.955 4.996 6.118 4.883 4.953 4.994 6.104 4.877 4.955

2a 5.016 6.055 4.841 4.939 5.000 6.053 4.849 4.940 5.001 6.051 4.849 4.940 5.005 6.052 4.843 4.940
2b 5.007 6.177 4.838 4.937 5.000 6.110 4.846 4.937 5.000 6.113 4.846 4.937 4.997 6.101 4.840 4.937

3 5.009 6.177 4.802 4.913 5.000 6.112 4.811 4.915 5.005 6.112 4.813 4.917 5.000 6.104 4.808 4.917

4a 4.992 5.600 4.926 4.981 5.002 5.606 4.927 4.982 4.992 5.606 4.932 4.981 4.993 5.601 4.927 4.982
4b 5.001 5.843 4.859 4.950 4.999 5.852 4.868 4.952 4.999 5.848 4.870 4.952 4.995 5.845 4.864 4.952
4c 5.009 6.050 4.805 4.916 4.996 6.054 4.815 4.917 4.993 6.044 4.816 4.920 4.995 6.048 4.811 4.920
4d 5.000 6.181 4.792 4.905 4.984 6.105 4.803 4.909 4.990 6.107 4.806 4.910 4.986 6.098 4.800 4.910

5a 4.993 5.600 5.239 5.056 5.002 5.606 5.250 5.060 4.993 5.606 5.258 5.059 4.995 5.601 5.254 5.067
5b 5.000 5.843 5.441 5.173 4.999 5.851 5.438 5.174 4.998 5.847 5.436 5.170 4.995 5.845 5.429 5.177
5c 5.008 6.049 5.711 5.390 4.999 6.053 5.689 5.347 5.000 6.043 5.700 5.370 4.999 6.046 5.675 5.360
5d 5.012 6.178 5.899 5.613 4.988 6.103 5.799 5.480 4.992 6.105 5.807 5.478 4.991 6.096 5.790 5.483
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Table E.7: Maximum overall Type 1 error rate with unblinded adaptation conducted at an interim analysis 1/2 of the
total event size. 95% CI for 5% error based on 100,000 simulations should be within 4.9573 and 5.0428.

Immediate Early Uniform Delayed

Rule LR G1,0 G0,1 G1,1 LR G1,0 G0,1 G1,1 LR G1,0 G0,1 G1,1 LR G1,0 G0,1 G1,1

1a 5.004 6.164 4.947 4.991 5.007 6.143 4.949 4.994 5.007 6.141 4.952 4.993 5.010 6.151 4.946 4.992
1b 5.003 6.390 4.947 4.991 4.998 6.351 4.949 4.994 4.994 6.341 4.952 4.993 5.004 6.358 4.946 4.991
1c 5.000 6.501 4.947 4.991 4.997 6.369 4.949 4.994 4.992 6.368 4.952 4.993 4.997 6.374 4.946 4.991

2a 5.005 6.384 4.936 4.988 5.004 6.347 4.938 4.991 5.003 6.344 4.941 4.989 5.007 6.353 4.935 4.988
2b 5.008 6.495 4.936 4.988 5.003 6.365 4.938 4.991 5.004 6.370 4.941 4.989 5.008 6.370 4.935 4.988

3 5.013 6.494 4.935 4.988 5.000 6.364 4.937 4.990 4.998 6.363 4.940 4.988 5.011 6.365 4.934 4.988

4a 4.994 5.841 4.951 4.992 4.987 5.829 4.953 4.995 4.988 5.830 4.957 4.994 4.987 5.838 4.950 4.992
4b 5.004 6.157 4.936 4.989 5.003 6.137 4.938 4.991 5.003 6.139 4.941 4.989 5.006 6.144 4.936 4.988
4c 5.000 6.372 4.935 4.988 4.999 6.344 4.937 4.990 4.994 6.335 4.940 4.988 5.009 6.347 4.934 4.988
4d 4.999 6.480 4.935 4.988 4.998 6.362 4.937 4.990 4.995 6.364 4.940 4.988 5.003 6.367 4.934 4.988

5a 4.995 5.841 5.315 5.067 4.987 5.829 5.328 5.062 4.992 5.830 5.321 5.059 4.990 5.838 5.314 5.056
5b 5.005 6.157 5.525 5.174 5.003 6.136 5.503 5.168 5.004 6.139 5.506 5.155 5.007 6.144 5.495 5.159
5c 5.004 6.372 5.589 5.284 5.003 6.344 5.607 5.276 5.000 6.335 5.599 5.262 5.011 6.346 5.594 5.271
5d 4.999 6.480 5.460 5.288 5.006 6.361 5.596 5.293 5.002 6.364 5.592 5.291 5.008 6.367 5.594 5.288
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Table E.8: Maximum overall Type 1 error rate with unblinded adaptation conducted at an interim analysis 2/3 of the
total event size. 95% CI for 5% error based on 100,000 simulations should be within 4.9573 and 5.0428.

Immediate Early Uniform Delayed

Rule LR G1,0 G0,1 G1,1 LR G1,0 G0,1 G1,1 LR G1,0 G0,1 G1,1 LR G1,0 G0,1 G1,1

1a 5.003 6.388 5.006 4.997 4.996 6.370 5.012 4.999 5.001 6.370 5.014 4.998 4.999 6.373 5.008 4.997
1b 4.988 6.550 5.006 4.997 4.994 6.516 5.012 4.999 4.996 6.510 5.014 4.998 4.990 6.511 5.008 4.997
1c 4.989 6.616 5.006 4.997 4.997 6.511 5.012 4.999 4.995 6.508 5.014 4.998 4.993 6.512 5.008 4.997

2a 5.003 6.533 5.006 4.997 5.001 6.510 5.012 4.999 5.000 6.507 5.014 4.998 4.997 6.505 5.008 4.997
2b 5.007 6.600 5.006 4.997 5.003 6.504 5.012 4.999 5.000 6.501 5.014 4.998 4.999 6.506 5.008 4.997

3 4.995 6.595 5.006 4.997 4.996 6.500 5.012 4.999 4.997 6.494 5.014 4.998 4.995 6.497 5.008 4.997

4a 4.987 6.099 5.006 4.997 4.987 6.098 5.012 4.999 4.985 6.092 5.014 4.998 4.986 6.097 5.008 4.997
4b 5.003 6.370 5.006 4.997 4.995 6.356 5.012 4.999 4.997 6.359 5.014 4.998 4.997 6.363 5.008 4.997
4c 4.990 6.524 5.006 4.997 4.993 6.498 5.012 4.999 4.995 6.492 5.014 4.998 4.994 6.491 5.008 4.997
4d 4.983 6.584 5.006 4.997 4.994 6.492 5.012 4.999 4.994 6.489 5.014 4.998 4.994 6.494 5.008 4.997

5a 4.989 6.099 5.336 5.069 4.987 6.098 5.333 5.066 4.990 6.092 5.333 5.067 4.988 6.097 5.328 5.063
5b 5.005 6.370 5.351 5.116 4.996 6.356 5.359 5.123 4.998 6.359 5.364 5.119 4.997 6.363 5.366 5.130
5c 4.992 6.524 5.267 5.122 4.993 6.498 5.307 5.124 4.995 6.492 5.315 5.121 4.995 6.491 5.301 5.121
5d 4.992 6.584 5.172 5.085 4.994 6.492 5.310 5.123 4.994 6.489 5.316 5.118 4.994 6.494 5.307 5.116
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E.3 Additional Results Based on Naïve Assumption that Statistical Information is

Related to the Number of Events
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Figure E.1: Degree of inflation of overall Type 1 error using the adaptive rule to increase accrual size to 1500 in the
promising zone, and 2000 in the favorable zone under uniform accrual when an adaptation is conducted at an interim
analysis 1/3 of the total event size.
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Figure E.2: Degree of inflation of overall Type 1 error using the adaptive rule to increase accrual size to 1500 in the
promising zone, and 3000 in the favorable zone under uniform accrual when an adaptation is conducted at an interim
analysis 1/3 of the total event size.
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Lo
w

er
 L

im
it 

Φ
 (Ẑ
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Figure E.3: Degree of inflation of overall Type 1 error using the adaptive rule to increase accrual size to 2000 in the
promising zone, and 3000 in the favorable zone under uniform accrual when an adaptation is conducted at an interim
analysis 1/3 of the total event size.
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Figure E.4: Degree of inflation of overall Type 1 error using the adaptive rule to increase accrual size to 1500 in the
promising zone, and 5000 in the favorable zone under uniform accrual when an adaptation is conducted at an interim
analysis 1/3 of the total event size.
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Lo
w

er
 L

im
it 

Φ
 (Ẑ
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Figure E.5: Degree of inflation of overall Type 1 error using the adaptive rule to increase accrual size to 2000 in the
promising zone, and 5000 in the favorable zone under uniform accrual when an adaptation is made at 1/3 of the total
event size.
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Lo
w

er
 L

im
it 

Φ
 (Ẑ
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Figure E.6: Degree of inflation of overall Type 1 error using the adaptive rule to increase accrual size to 3000 in the
promising zone, and 5000 in the favorable zone under uniform accrual when an adaptation is conducted at an interim
analysis 1/3 of the total event size.
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Figure E.7: Degree of inflation of overall Type 1 error using the adaptive rule to only increase accrual size to 1500 in
the promising/favorable zone under uniform accrual when an adaptation is conducted at an interim analysis 1/3 of
the total event size.
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●

●Naive LR Naive Wil Naive G01 Naive G11

Upper Limit Φ (ẐInterim)
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Figure E.8: Degree of inflation of overall Type 1 error using the adaptive rule to only increase accrual size to 2000 in
the promising/favorable zone under uniform accrual when an adaptation is conducted at an interim analysis 1/3 of
the total event size.
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Figure E.9: Degree of inflation of overall Type 1 error using the adaptive rule to only increase accrual size to 3000 in
the promising/favorable zone under uniform accrual when an adaptation is conducted at an interim analysis 1/3 of
the total event size.
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In
te

rim
)

0.1 0.3 0.5 0.7 0.9

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Wilcoxon: 5000/5000/1000*

Upper Limit Φ (ẐInterim)
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Figure E.10: Degree of inflation of overall Type 1 error using the adaptive rule to only increase accrual size to 5000
in the promising/favorable zone under uniform accrual when an adaptation is conducted at an interim analysis 1/3 of
the total event size.



318

4.
8

5.
0

5.
2

5.
4

5.
6

Ty
pe

 1
 E

rr
or

 (
%

)

●●
●
●
●
●

●

●

●

●

●

●

●

●

●
●
●
●
●●
●●
●●●●
●

●

●

●

●●
●
●
●

●

●

●

●

●

●

●

●

●
●
●
●
●●
●●
●●●●
●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●
●
●
●
●●
●●
●●●●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●
●
●
●●
●●
●●●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●
●
●●
●●
●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●●
●●
●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●●
●●
●●●●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●●
●●
●●●●
●

●

●

●

●

●

●

●

●

●

●
●
●
●
●●
●●
●●●●
●

●

●

●

●

●

●

●

●

●
●
●
●
●●
●●
●●●●
●

●

●

●

●

●

●

●

●
●
●
●
●●
●●
●●●●
●

●

●

●

●

●

●

●
●
●
●
●●
●●
●●●●
●

●

●

●

●

●

●
●
●
●
●●
●●
●●●●
●

●

●

●

●

●
●
●
●
●●
●●
●●●●
●

●

●

●

●
●
●
●
●●
●●
●●●●
●

●

●

●

●
●
●
●●
●●
●●●●
●

●

●

●

●
●
●●
●●
●●●●
●

●

●

●

●
●●
●●
●●●●
●

●

●

●

●●
●●
●●●●
●

●

●

●

●●
●●●●●

●

●

●

●

●●
●●●●
●

●

●

●

●●●●●
●

●

●

●

●●●●
●

●

●

●

●●●
●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.05 0.1 0.15 0.2 0.25 0.35 0.45 0.55 0.65 0.75 0.81 0.84 0.88

Lower Limit Φ (ẐInterim)
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In
te

rim
)

0.1 0.3 0.5 0.7 0.9

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

G0, 1: 1000*/1500/1000*

Upper Limit Φ (ẐInterim)
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Figure E.11: Degree of inflation of overall Type 1 error using the adaptive rule to only increase accrual size to 1500
in the promising zone under uniform accrual when an adaptation is conducted at an interim analysis 1/3 of the total
event size.
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Lo
w

er
 L

im
it 

Φ
 (Ẑ
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Figure E.12: Degree of inflation of overall Type 1 error using the adaptive rule to only increase accrual size to 3000
in the promising zone under uniform accrual when an adaptation is conducted at an interim analysis 1/3 of the total
event size.
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●

●Naive LR Naive Wil Naive G01 Naive G11

Upper Limit Φ (ẐInterim)
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Figure E.13: Degree of inflation of overall Type 1 error using the adaptive rule to only increase accrual size to 5000
in the promising zone under uniform accrual when an adaptation is conducted at an interim analysis 1/3 of the total
event size.
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Table E.9: Table of prespecified and flexible scenarios under various incorrect specification
of maximum statistical information. If no adaptation is done, then our final critical value
remains the same as designed since VFinal = VPrespecified.

VInterim VPrespecified VFinal
AA1 Estimated V̂Maximum Estimated
AA2 Re-estimated V̂Maximum Estimated

Fully prespecified Procedures
LR, Wil, G0,1, G1,1

B1 Estimated 191.25,110,20,6.5 Estimated
B2 Re-estimated 191.25,110,20,6.5 Estimated
B3 Estimated/Re-estimated∗∗ 191.25,110,20,6.5 Estimated
D1 Estimated 191.25,82.5,37.25,7.75∗ Estimated
D2 Re-estimated 191.25,82.5,37.25,7.75∗ Estimated
D3 Estimated/Re-estimated∗∗ 191.25,82.5,37.25,7.75∗ Estimated
F1 Estimated Mean/Estimated Estimated
F2 Re-estimated Mean/Estimated Estimated
F3 Estimated/Re-estimated∗∗ Mean/Estimated Estimated

Semi prespecified Procedures
C1 Estimated 191.25,110,20,6.5/Estimatedˆ Estimated
C2 Re-estimated 191.25,110,20,6.5/Estimatedˆ Estimated
C3 Estimated/Re-estimated∗∗ 191.25,110,20,6.5/Estimatedˆ Estimated
E1 Estimated 191.25,82.5,37.25,7.75∗/Estimatedˆ Estimated
E2 Re-estimated 191.25,82.5,37.25,7.75∗/Estimatedˆ Estimated
E3 Estimated/Re-estimated∗∗ 191.25,82.5,37.25,7.75∗/Estimatedˆ Estimated
G1 Estimated Mean/Estimated Estimated
G2 Re-estimated Mean/Estimated Estimated
G3 Estimated/Re-estimated∗∗ Mean/Estimated Estimated

VPrespecified: This would correspond to the statistical information for continuing the course of the trial
without performing a accrual size adaptation.
VFinal: This would correspond to the statistical information for continuing the course of the trial after
performing a accrual size adaptation.
∗ Maximum statistical information is specified based on the maximum information using simulation. In the
logrank setting, this is specified using the theoretical ratio.
ˆ: In this setting, if there is no adaptation performed, we observed the maximum statistical information,
and thus use the observed maximum statistical information rather than the prespecified statistical
information.
∗∗ In this scenario, we only re-estimate the interim information when our estimated information at final is
less than information at interim.
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E.4 Impact of Additional Accrual on Short Term Survival

Figure E.14 shows the plot of the average statistical information vs the proportion of events

(relative to final event size of 765) when we make accrual size increments at either 1/3 or

2/3 of the final event size assuming a short term survival under the null hypothesis. For

the logrank statistic, information growth is linear regardless of any accrual size adjustment.

However, when making accrual size adjustment with the use of the weighted versions of the

logrank statistics, the information growth behaves differently. Under the limiting case of

immediate accrual, the proportionate information for the other test statistics of interest has

kinks depending on when the interim analysis for this added adaptation was scheduled. The

G1,0 statistic down-weights earlier information relative to the new events from new accrual

size that occurred later as seen when the black solid lines becomes more and more weighted

towards the diagonal line. In the G0,1 and G1,1 scenario, increase in accrual size suggests that

the proportionate information is weighted heavily towards the earlier part of the information

growth. Under the extreme scenario of immediate accrual, when our interim analysis is

conducted at 2/3 of the total number of events, the proportionate information is close to 1

at such interim analysis.

Using the G1,0 statistic, the estimated average statistical information at interim analysis

is increasing nonlinearly with respect to the proportion of event size after making accrual size

adjustment. At either 1/3 or 2/3 of the way through the study, when we increases the accrual

size, information growth tends to grow more linearly. For other accrual patterns, information

growth appears to be more linear regardless of the degree to which the accrual size was

changed during the interim analysis. However, we see that the maximum information at the

prespecified final event size has high variability. Unless we can determine the underlying

survival distribution, it is difficult to estimate the maximum information during the course

of the trial.

For the G0,1 statistic, there is more variability in the information growth. The information

growth under the immediate pattern is the slowest in this family. Interim adaptations to the
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Figure E.14: Information growth for short term survival. Under this setting, the patterns of
accrual have differential impact on the variability of the information growth for the various
weighted logrank statisics.

accrual size results in the information growth to plateau or flattened as the weight function

1− S(t−) at this interim analysis increases dramatically. Staggered accrual patterns appear

to balance out this drastic modification of our weight function (as a consequence of accrual

size adaptation) and lead to a relative linear increase in information growth.

For the G1,1 statistic, we see trends in information growth similar to the G0,1 statis-

tic. Information growth is again non-linear and discontinuous under the immediate accrual

and increasing accrual size subsequently at interim analysis. Under the staggered accrual

pattern, our information growth appears to be linear in trend. Using the weight function

(1 − Ŝ(t−))Ŝ(t−), these weights changed the rate of information growth over time. When

we accrue patients immediately, the weight function grows at a rate of 1/n∗ rather than 1/n,

where n∗ >> n, thus the information growth increases in a relatively slow manner as more

patients are accrued during interim analysis.
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Under varying accrual patterns (early, delayed and uniform), there is a clear difference in

the estimated maximum information for both long term and short term survival. The rate

of information growth is modified further by changes to the accrual distribution when our

underlying survival distribution, and total number of events remain unchanged. Under short

term survival, different adaptations to the accrual patterns do not appear to have a direct

impact on information growth. However, we note that the rate of information growth tends

to be close to linear under different accrual patterns. In particular, there is an increased

variability in the information growth. This indicates that we may not be able to consistently

determine the final statistical information for the weighted logrank statistic as precisely as

possible unless we know both the true censoring distribution as well as the underlying survival

distribution.

E.5 Implications of Censoring on the Precision of the Variance
Estimate at Interim Analyses

Consider the group sequential design with a total of J analyses (recall section 2.2), and

our target parameter to be the difference in treatment means, and σ2 to be the variance

of the treatment. At the jth interim analysis, our estimate of the statistical information

can be denoted as Ij(σ2, µ) = nj
σ2
j

= Vj, where σ is often estimated based on the data.

The information fraction is then computed using Πj = nj
nJ

σ̂2
J

σ̂2
j

where σ̂2
J can be the original

statistical information based on design assumptions.

Sometimes, monitoring procedures may assume that σ̂2
J = σ̂2

j , and the information frac-

tion at interim analyses can be simplified to Πj = nj
nJ

for j = 1, · · · , J . Procedures for esti-

mation of σ2 may vary across interim analyses as a consequence of the precision of the test

statistic as we accumulate more statistical information. In order to recalibrate monitoring

boundaries with the use of error spending approaches, or constrained boundary procedures,

one can choose to update the variability of the test statistic based on current data, and revise

the boundaries accordingly with this revised update in the estimate of statistical information

[Burington and Emerson, 2003].
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In the time to event setting, the use of the logrank statistic naïvely translate to the ratio of

events at the interim analyses relative to the total planned number of events. The statistical

information of the weighted logrank statistics no longer has such simple relationship with

the number of events as seen earlier since this involves the number at risk, as well as the

estimate of the overall survival weights Ŝ(t−). An adaptive modification to the accrual of the

subjects changes the censoring distribution, further affecting the precision of Vj at interim

and the final statistical information VJ . We describe some isses when this imprecision of

weights earlier on, as a consequence of a smaller accrual size, can affect our estimation of

information growth at interim analyses, and possibly at the final analysis.

We consider the long term survival with decreasing hazard based on the Weibull distri-

bution with shape parameter 0.5 and mean time to be 120.1 to illustrate the above problem

under the null hypothesis. Under the extreme scenario of immediate accrual of 1000 subjects

at baseline, and increasing accrual again at interim analysis from 1000 to a final accrual size

of 5000, we observed an apparent reversal of statistical information for the G0,1 and G1,1

statistic. Roughly 20% and 5% of the estimated statistical information at the final analysis

for G0,1 and G1,1 are less than the estimated interim statistical information. We explained

the apparent reversal of statistical information below.

Following interim analysis, after accumulating 510 events, the remaining 255 events were

contributed mostly from patients who entered after the interim analysis. In this extreme

scenario, the calendar time to completion following this extreme increase in accrual size is

almost instantaneous. However, all 255 events contribute to improving the estimate of the

overall survival at the earlier time point. When the interim estimate of these survival curves

are less optimistic (blue dotted lines), i.e., the estimated overall survival was much lower

than the true survival (red line) at the earlier time-point, the remaining 255 events coming

from the 2nd stage patients re-weights the overall survival curve by pulling the (blue dotted)

survival curve closer to the true survival curves as indicated now by the black solid line. Our

estimate of Ŝ(tInt) is less precise compared to the estimate of Ŝ(tFinal) since our total number

at risk is different. This improvement in the precision of the estimates of the total number at



326

0.0 0.2 0.4 0.6 0.8

0.
88

0.
92

0.
96

1.
00

Calendar time (months)

S
ur

vi
va

l P
ro

ba
bi

lit
y

Survival curves

1000 patients
4000 patients
5000 patients
Truth

Estimated information at Interim > final

0.0 0.2 0.4 0.6 0.8
0.

88
0.

92
0.

96
1.

00

Calendar time (months)

S
ur

vi
va

l P
ro

ba
bi

lit
y

Survival curves

1000 patients
4000 patients
5000 patients
Truth

Estimated information at Interim < final

Figure E.15: Estimated survival curves for the different accrual size conducted at 2/3 of the
final event size, and the overall estimated survival curves at the end of the trial.

risk provides the apparent contradiction of non-monotonic or reversal of information growth

in the G0,1 and G1,1 setting. On the other hand, when the current estimate of the survival

curves prior to interim analysis is overly optimistic, i.e., the true survival experience is worse

than anticipated, such reversal of statistical information is not observed.

The above issues can be mitigated by applying the weights for these weighted logrank

statistics based on the “revised” total number at risk at the final analysis and restricting

these weights to the timing of the interim analysis. Such can overcome the imprecision

as a consequence of random high bias of the survival distribution at interim analysis and

facilitate a proper update of the interim statistical information. Alternatively, we can also

prespecify a weighting scheme based on some pre-specified survival distribution to replace

w(t) when estimating the variance of Gρ,γ. This observation is consistent with Gillen and

Emerson [2007], indicating that the precision of the statistical information can be greatly

affected by the drastic changes to our censoring distribution. However, the use of such pre-
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specified survival weights is less appealing since they are not based on the current clinical

data. Such apparent reversal of final statistical information can present challenges in the

adaptive setting when applying CHW to control our overall Type 1 error.
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Appendix F

Additional Results for Chapter 7

F.1 Asymptotic Properties of the Composite Statistics

O’Brien [1984] examined the general setting of applying a global test statistic to combining

endpoints to test for treatment differences in similar direction. The use of the generalized

(weighted) least squares statistics in O’Brien [1984] has the appealing property of the best

linear unbiased estimates property under the Gauss Markov Theorem. His procedure was

contrasted to the Hotelling’s T 2 statistics and the rank sum procedure that were both directed

at addressing the hypothesis of whether one or more treatments are different. The latter

tests lack specific direction on which treatment were favorable. Subsequently, Pocock et al.

[1987] extended O’Brien [1984]’s method of combining means to additional scenarios such

as combining both binary or survival endpoints or any combination of test statistics that

have asymptotically normal distributions. The linear composite and quadratic tests based

on Logan et al. follow similar principles as O’Brien [1984].

In realistic settings, it is unlikely that all m endpoints are independent. For purpose

of characterizing the properties of the composite statistics, we can envision that for the

same endpoint of interest, the different test statistics applied separately on the disjoint time

intervals can be combined linearly as motivated by Logan et al.. Hence, the data/events prior

to the pre-specified crossing time and after this pre-specified crossing time can be considered

time-wise independent as argued by Logan et al. [2008].

The adaptive strategy proposed in the literature considered switching the endpoints from

one stage of the data collection to another stage (such as progression free survival to overall
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survival). By adaptively switching between endpoints that are correlated, the resulting

test statistic can be correlated across different stages of the data collection, inducing a

correlation between test statistics. When such data from different stages are combined

without acknowledging the underlying correlation, this can inflate the overall Type 1 error

[Bauer and Posch, 2004, Jenkins et al., 2011, Irle and Schäfer, 2012, Magirr et al., 2016].

One of the appealing property of Logan et al. [2008]’s proposal is that data can be combined

independently by first pre-specifying the time of crossing, τ , and then using the Nelson-

Aalen on data prior to time of crossing and the weighted log-rank test after crossing. By

this partitioning of the data, the resulting test statistics are independent.

We describe the asymptotic behavior of Logan’s composite statistics by evaluating the

alternative hypothesis conditional on this pre-specified crossing. Using the asymptotic prop-

erties for the individual components, this allow us to characterize the power of the composite

statistics and better understand the relative behavior of the composite statistics in this bi-

variate parameter space. The asymptotic behavior of the composite statistics is limited since

in realistic settings, as with many clinical trials, there are administrative, accrual and logis-

tical constraints such that we do not have complete follow-up of all subjects in the study.

Simulations are used to examine how these alternatives (in particular non proportional haz-

ards alternatives discussed in section 7.4) may vary when subjected to censoring, as naturally

induced with the use of interim analyses, and/or different accrual patterns.

F.1.1 Formulation under Local Alternatives

Let δ1, · · · , δm be any constants such that δ = δ2
1 + · · · + δ2

m [Shorack, 2010]. Then, our

non-central χ2
m(δ) distribution with m degrees of freedom can be expressed as some function

of the standard normal using some alternative δ by writing

m∑
k=1

(Zk + δk)2 ∼= (Z1 +
√
δ)2 +

m∑
k=2

Z2
k
∼= χ2

m(δ)
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with mean and variance

E
[
χ2
m(δ)

]
= m+ δ

Var
[
χ2
m(δ)

]
= 2m+ 4δ

In the setting of uncensored continuous outcome, let X0ik and X1ik be potential, inde-

pendent observations measured from treatment group 0 and treatment group 1 respectively

where i denote the ith observation taking values 1, · · · , n, and k to denote the kth endpoint

for k = 1, · · · , K. Also, let X0ik and X1ik have mean ω0k and ω1k respectively with com-

mon variance Vk/2. Assume that our target parameter of interest for the kth endpoint,

θk = ω1k−ω0k, is the difference in the mean of the responses comparing subjects randomized

to group 1 relative to subjects randomized to group 0. Then, an unbiased estimator of the

treatment effect θk is θ̂k = n−1∑n
i=1(X1ik−X0ik) with the associated (known) variance Vk/n

can be computed for each endpoint of interest. Similar to O’Brien [1984], we can consider a

linear combination of the K independent endpoints, and define the estimator of interest as

µ = ∑K
k=1wkθk.

Appealing to asymptotics, each estimator θ̂k is asymptotically N (θk, Vk/n), for k =

1, · · · , K. Thus, our (weighted) linear combination statistic has an asymptotic normal dis-

tribution as follows

K∑
k=1

wkθ̂k ∼̇ N
(

K∑
k=1

wkθk , n
−1

K∑
k=1

w2
kVk

)

with the ∑K
k=1wk = 1.

A suitable hypothesis of interest would be the test of H0 : ∑K
k=1wkθk = 0 vs H1 :∑K

k=1wkθk 6= 0. We can define the test statistic Z = ∑K
k=1wkθ̂k/

√
VT . Under the null, Z has

mean 0 and variance VT = ∑K
k=1 w

2
kVk/n which is standard normal.

Each of the θk is independent of another, the mean and variance can be estimated inde-

pendently. Thus, if we assume further that our outcome in the continuous setting was coming
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from a normal distribution, then Vk as estimated under H0 in either the Score version of the

test statistic, Wald, or Likelihood Ratio test would be equivalent to VT . However, when the

endpoints are correlated such that either a mean variance relationship exists or some corre-

lation is induced across different endpoints (such as binary or survival endpoints or repeated

measurements), then our estimated variance evaluated under the null hypothesis can differ

from the estimated variance evaluated based on the MLE. The use of asymptotic normality

mitigates part of the difficulty in the survival setting by allowing us to quantify approxi-

mately how the alternatives of the composite statistics may behave under the ideal scenario

of immediate accrual when we have complete follow up of all subjects in the population at

each analysis time.

We apply the above extension to describe the asymptotic alternatives using the composite

statistics as described by Logan et al. [2008] in the context of time-to-event endpoint. Let

τ0 be the time of crossing. Thus, if we set τ0 = 0, the composite test reduces to the usual

log rank test statistics. Alternatively, we can simply use the Nelson-Aalen test statistic

solely at the end of the trial if we are interested in the difference in survival probability at a

prespecified time point.

Under H0, the composite test statistics have asymptotic distributions of the following

ZNA(τ0, t) + ZLR(τ0, t)√
2

∼̇ N (0, 1)

[ZNA(τ0, t)]2 + [ZLR(τ0, t)]2 ∼̇ χ2
2

w1ZNA(τ0, t) + w2ZLR(τ0, t) ∼̇ N (0, w2
1 + w2

2)

The last equation represents the linear composite statistic that is weighted by w1, w2 respec-

tively for each test statistic computed before and after the time of crossing.

Under local alternatives, the individual components of the composite statistics has asymp-
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totic distribution of the form

ZNA(τ0, t) ∼̇ N (δ1, 1)

ZLR(τ0, t) ∼̇ N (δ2, 1)

ZNA ∼̇ N (θNA/
√
VNA, 1) ∼= Z2

NA ∼̇ χ2
1(δ2

NA = θ2
NA/VNA)

ZLR ∼̇ N (θLR/
√
VLR, 1) ∼= Z2

LR ∼̇ χ2
1(δ2

LR = θ2
LR/VLR)

Thus, the composite statistics have asymptotic distributions of the form

ZOpt
OLS = w1ZNA(τ0, t) + w2ZLR(τ0, t)√

w2
1 + w2

2

∼̇ N

w1δ1 + w2δ2√
w2

1 + w2
2

, 1


ZOLS = ZNA(τ0, t) + ZLR(τ0, t)√
2

∼̇ N
(
δ1 + δ2√

2
, 1
)

ZQuad = [ZNA(τ0, t)]2 + [ZLR(τ0, t)]2 ∼̇
∑

i={NA,LR}
(Zi + δi)2 ∼= χ2

2(δ = δ2
1 + δ2

2)

Therefore, the quadratic versions for ZOpt
OLS, and ZOLS can be represented asymptotically as

(ZOpt
OLS)2 =

w1ZNA(τ0, t) + w2ZLR(τ0, t)√
w2

1 + w2
2

2

∼= χ2
1

(
(w1δ1 + w2δ2)2

w2
1 + w2

2

)

Z2
OLS =

(
ZNA(τ0, t) + ZLR(τ0, t)√

2

)2
∼= χ2

1

(
(δ1 + δ2)2

2

)

We shall refer to these alternatives δ1, δ2, δ, δNA, and δLR as standardized alternatives for

Nelson-Aalen restricted to time of crossing using complete follow up until time t, truncated

logrank statistic between time of crossing and t, quadratic test, Nelson Aalen test at time t,

and the overall logrank test at time t, since they are a function of the parameter of interest

as well as the precision of the test statistic.

We can characterize the probability of rejecting the null hypothesis using the composite

statistics by considering the bivariate parameter space spanned by the standardized alterna-

tives based on each test statistic. We note that such characterization assumes rejecting the
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composite null hypothesis when using the composite statistics. The use of individual com-

ponents of the composite statistics rejects the null hypothesis of no difference in survival.

Regions that represent the same such probability of rejecting the null for the quadratic

statistic can be described via the equation δ2
1 + δ2

2 = rq, where rq is the square of the radius

of the contour such that we have Pr(χ2
2(δ2

1 + δ2
2) > χ2

2, α(0)) = q. For the linear composite

statistics, the equation (δ1 + δ2)/
√

2 = rl would consist of the set of lines for which the

alternatives have the same probability of rejecting the null hypothesis Pr(ZOLS > Zα|
√
δ =

(δ1 + δ2)/
√

2) when using the appropriate critical value under H0. For example, at 5% level

under the null, we can obtain the critical value, χ2
2(0) = 5.991465 for the quadratic statistic.

For the linear composite statistic, the two-sided test under the null for the α = 0.05 would

define a critical value of Zα = ±1.959964.

We can solve the pair of simultaneous equation to obtain the combination of alternatives

such that the linear and quadratic statistics have equivalent probability of rejecting the

null hypothesis. By substituting δ1 = rl
√

2 − δ2 into the pair of equations, we have δ2
2 =

rq − (rl
√

2− δ2)2, giving δ2 =
√

2
2 rl ±

√
rq−r2

l

2 .

F.1.2 Asymptotic Probability of Rejecting H0 for the Composite Statistics un-

der Local Alternatives

Using the asymptotic results, we generated regions in the two dimensional space and char-

acterize regions when the composite statistics may have higher probability of rejecting the

null hypothesis over other test statistics for the same value of the standardized alternative.

Without loss of generality, we shall refer to δ as our alternatives for simplicity. This can

allow us to characterize the asymptotic probability of rejecting H0 based on the bivariate

space defined previously.

We compare Logan’s statistics with the procedure of using a single test statistic to ad-

dress the primary question of whether the treatment is superior as compared to placebo. The

choice of a single test statistic such as either the log-rank test, or the Nelson Aalen statistics

addresses different scientific questions. This standardized alternative chosen from picking
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either the log-rank or Nelson Aalen statistic, thus describes different power profiles as com-

pared to the same value of this standardized alternative computed based on the composite

tests.

Under H0, at level α=0.025, for the linear composite test statistics, we set our critical

value based on the asymptotic standard normal distribution, N(0, 1). We reject H0 if Z >

Φ0.975 = 1.9599. For the quadratic test, we set our critical value based on the χ2
2 distribution,

using a two-sided level α′ = 2α = 0.05. We thus reject the null hypothesis if ZQuad >

5.991465. In addition, we assume positive values of δ to be consistent with concluding the

experimental treatment is superior relative to the placebo arm.

F.1.2.1 Probability of rejecting H0 for composite statistics using different α’s

We evaluated the probability of rejecting H0 based on the bivariate space for the linear

composite, quadratic, and the individual components of the composite statistics computed

based on either 1-sided α = 0.025 or 0.005 (Figure F.1). The corresponding α′ for the

quadratic statistics are 0.05 or 0.01 respectively.

In the left figure, at level α = 0.025, the gold region, as bounded by the grey lines,

represents 90% probability of rejecting the null hypothesis based on the quadratic test. The

baby blue lines represents > 90% probability of rejecting the null hypothesis based on the

linear composite statistics while the dotted lines represents 90% probability of rejecting the

null hypothesis based on either ZNA or ZLR. Note that despite this characterization, we

acknowledge that each test statistic is addressing a different null hypothesis.

In this bivariate space, to achieve at least 90% power based on the alternative δ1 = 3.24,

the linear composite statistic would require an alternative δ2 ≥ 1.34. However, for the

quadratic statistic, when we hold δ1 = 3.24 fixed, δ2 has to be at least greater than 1.465 in

order to ensure the same 90% probability of rejecting H0. The use of the single test statistic,

Z1, or Z2, has at least 90% power to detect an alternative of either δ1 = 3.24 or δ2 = 3.24 as

denoted by the dotted lines. The right figure characterizes how the alternative changes as

we hold fixed the probability of rejecting the null hypothesis and vary our α to 0.005.
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Figure F.1: Contour plots of the probability of rejecting H0 based on standardized alternative when assuming a 1-
sided α = 0.025 or 0.005. The critical value of the χ2

2 distribution is based on 2α since no direction is provided for the
p-value. The x-axis (y-axis) comprised of labels corresponding to the alternative δ1 (δ2), the probability of rejecting
the null hypothesis obtained from the use of only ZNA (or ZLR) statistic. Changes are observed in the contour regions
of standardized alternatives having similar probability of rejecting the null hypothesis as we modify our α level.
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The results shown in quadrant I have interpretations consistent with the direction of the

standardized alternatives. When our standardized alternatives are in quadrant I or III, we

can interpret this probability of rejecting the null hypothesis as the power of the test statistics

since we know the ideal treatment. However, in quadrant II/IV, we interpret the contour

lines for the quadratic test or other tests as the probability of rejecting H0 without imposing

strictly which alternative to be correct. In such situations, we may not be able to quantify

the better alternative unless we seen the survival curves or have some prior knowledge on

what is the decision rule leading us to select the better treatment.

F.1.2.2 Comparison of the probability of rejecting H0 with a single test statistic

By symmetry of the bivariate parameter space, we describe the rejection probability for the

composite statistics in Quadrant I and IV. Quadrant I can be seen to describe the behavior of

the composite statistics when the alternatives for both the Nelson-Aalen test at time of cross-

ing, and the weighted log-rank test statistics after time of crossing are consistently picking the

experimental arm. We define positive values of the standardized alternatives to be consistent

with the experimental (Exp) treatment arm being superior relative to the placebo (Ctrl) arm

whereas the negative values of the standardized alternatives are consistent with the placebo

arm being superior over the experimental treatment arm. Thus, when we presume superi-

ority of experimental treatment over the placebo such that log[ΛCtrl(t)/ΛExp(t)] > 0, this

translates to the Nelson Aalen hypothesis of testing if SExp(t) > SCtrl(t) or equivalently

log ΛExp(t) < log ΛCtrl(t). Similarly, for the truncated log rank statistics, we are thus inter-

ested in the alternative ∑t≥τ0 [ΛCtrl(t)− ΛExp(t)] > 0.

The asymptotic rejection probability for the linear composite statistics can be described

using the bivariate parameter space that is symmetric about the axis δ1 = δ2 (Figure F.1). For

the quadratic statistic, the asymptotic probability of rejecting H0 can be parametrized in the

form of a circle with rings describing similar probability of rejecting the null hypothesis. In

Figure F.2 and F.3, a second x-axis can be used to characterize the standardized alternatives

that is mapped from assuming the use of a test statistic picked from either ZNA, or ZLR.
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Consider the contour lines that represent 90% probability of rejecting the null in quadrant

I (See Figure F.2). The shaded gray region characterizes the set of alternatives, i.e., δ1 and

δ2, for which the use of the single test statistic gives a higher probability of rejecting the

null as opposed to using the linear or quadratic statistic. The baby blue region indicates

that the linear composite statistic has higher probability of rejecting the null when the two

alternatives have magnitudes in the same direction over the single or quadratic statistics.

Combining them in an equally weighted manner provides a synergistic effect to increase such

probability of rejecting the null hypothesis over the use of either the single test statistic or

the quadratic statistic. Compared to the linear or single test statistic, the quadratic test

statistic rejects less frequently.

When one of the alternatives is weaker (as indicated by the gray region), for example,

if δ1 = 3.24 and δ2 = 0.32, or δ2 = 3.24 and δ1 = 0.32, then both the linear and quadratic

composite statistics have relatively low probability of rejecting the null hypothesis compared

to having picked the right test statistic to detect this joint difference. In this case, the

probability of rejecting the null is higher for the quadratic statistic over the linear statistic

in this shaded region. However, this probability of rejecting the null based on the quadratic

statistic is still lower than having picked the right single test statistic in the first place.

In Quadrant IV (as in Figure F.3), the combination of bivariate alternatives can be

described as antagonistic. This has a direct impact on the probability of rejecting H0 partic-

ularly for the linear composite statistics whereby the stronger alternative effect is weakened

when weighted equally with a standardized alternative in the opposite direction. In the con-

text of the composite statistics, we have high probability in detecting a difference in survival

such that the treatment is superior to the placebo. However, after the time of crossing, this

estimate of the alternative based on the truncated log rank test statistic provides evidence

in favor of the placebo being superior to the treatment. This switching of the preferential

treatment relates most closely to the understanding the behavior of the individual compo-

nents of the composite statistics in this partially ordered hazards space. Here, we see that

the truncated logrank statistic may not weigh the difference in hazards appropriately since



338

the history of prior survival is ignored. This consequence is illustrated using simulations in

finite sample settings in section 7.4 and characterized further in Appendix F.3.2.

In Quadrant IV, the single test statistic is dominant over a smaller region when the treat-

ment alternative in the opposing direction is relatively small. Since the quadratic statistic

ignores the direction of alternatives, there is high probability of rejecting H0 even when our

alternatives are antagonistic. This gives a bigger shaded region that provides the appearance

of high “statistical power” to claim a crossing as in Logan et al. [2008].
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Figure F.2: Contour plot of the probability of rejecting H0 based on the alternatives in
Quadrant I when assuming a 1-sided α = 0.025 (This is similar to Quadrant III). The
critical value of the χ2

2 distribution is based on 2α since no direction is provided for the
p-value. Using probability of rejecting H0 at ≤ 90% as benchmark, the shaded light-blue
region corresponds to the parameter space whereby the linear composite statistic dominates
over the other two statistics. The light gray region corresponds to the parameter space for
which the rejection probability of the single statistic (when chosen correctly) dominates.
There is no region for which the quadratic statistic has higher probability of rejecting H0
when compared to the single test statistic or the linear composite statistic.
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Figure F.3: Contour plot of the probability of rejecting H0 based on alternatives in Quadrant
IV when assuming a 1-sided α = 0.025 (This is similar to Quadrant II). The quadratic
statistic has a bigger region, which highlights a higher probability of rejecting H0, relative to
the use of the linear composite statistics or the single test statistic. Note that the quadratic
statistic ignores the directions of the standardized alternatives.
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F.1.2.3 Comparison of the Probability of Rejecting H0 with the Bonferroni Cor-

rected Test

An alternative (and less common) strategy in the clinical setting involved testing multiple

endpoints. This procedure involves choosing the minimum of the two p-values computed

from two statistical tests, each testing the superiority of the treatment over the placebo.

A Bonferroni multiplicity correction, applied for each test at level α/2, is then applied to

determine whether we reject the null hypothesis of interest. In our context, we may interpret

this as using both the logrank and Nelson Aalen test statistic, and starting follow-up from

time of first randomization until the end of the trial, and applying the Bonferroni adjustment

procedure.

We present the numerical results as previous, and further include the comparison with the

Bonferroni corrected test statistic in Figure F.4 and F.5. A third x-axis is added to describe

the cumulative probability of rejecting H0 (adjusted for multiplicity) for the alternative based

on the x-axis. In contrast, the second x-axis describes the cumulative probability of rejecting

H0 based on the single test statistic similar to the previous section. By comparison between

the second and third x-axis, the use of the single test statistic has a higher probability of

rejecting H0 as compared to the Bonferroni corrected test. The gray region serves as a

comparison from the previous section relative to using the Bonferroni corrected test. With

a multiplicity adjustment using the Bonferroni correction, the alternative providing at least

90% probability of rejecting H0 would need to be be much further away than 3.24.

The use of the Bonferroni corrected test has higher probability of rejecting H0 relative

to applying the composite statistics when one of the alternative is indicative of a strong

treatment effect, while the other alternative, in the same direction, is relatively weaker. The

advantage of the Bonferroni corrected test is minimal since when one of the alternatives

becomes weaker, the quadratic statistic dominates in terms of higher probability of rejecting

the null. In other words, either the Bonferroni corrected, or quadratic test has sufficiently

high probability of rejecting H0 so long as one of the alternatives has sufficiently high prob-
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ability to reject the null hypothesis. Picking the Bonferroni corrected procedure thus does

not present an advantage when both of the alternatives have moderate effect.

The linear composite test procedure presents an advantage over the Bonferroni corrected

or quadratic test when alternatives are synergistic, and are moderately effective as shown

in the blue region. Within the blue region, the linear combination test characterized a

bigger bivariate space where there is higher probability of rejecting H0 over the quadratic or

Bonferroni correct test.

In the previous section, clinicians are offered the choice of only a single test statistic to

select the better treatment. Picking a single, correct test statistic does not result in regions

whereby the quadratic test can dominate. Here, the Bonferroni corrected procedure allows

clinicians to choose between two potentially important endpoint by correcting for multiplicity.

The multiplicity correction allows a fairer comparison with the composite statistics even

though we may be quantifying different alternatives with the test statistics.

In Quadrant IV, the quadratic test now dominates majority of the bivariate space (Fig-

ure F.5). In contrast to Figure F.4, the alternative δ1 has to be more extreme in order for the

Bonferroni corrected test to gain advantage over the quadratic test. Similarly, the quadratic

test has high probability of rejecting H0 even when δ1 is weak so long as δ2 is highly negative.

In Quadrant IV, the Nelson-Aalen test has sufficiently high probability of rejecting the

null hypothesis in favor of the experimental treatment arm even when the alternative for

the truncated log-rank test is contrary to the conclusions by the Nelson-Aalen test at time

of crossing. The Bonferroni corrected test picks the experimental arm over the placebo arm

with high probability of concluding the placebo arm as superior over the experimental arm.

Note that in this space, for any pair of δ’s along the line of δ1 = −δ2, the linear composite

test has a level of 0.025 probability of rejecting H0. The quadratic test has the “advantage”

of summing the square of these alternatives to produce sufficiently higher probability of

rejecting H0 over the linear composite test. This resultant procedure is consistent with the

claim by Logan et al. [2008] where the quadratic test has high “power” to detect a crossing

and lack interpretability on the preferred treatment.
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Figure F.4: Contour plot of the probability of rejecting H0 in Quadrant I for the composite
statistics and the Bonferroni correction for multiple testing based on the standardized alter-
natives in Quadrant I when assuming a 1-sided α = 0.025 (This is similar to Quadrant III).
The critical value of the χ2

2 distribution is based on 2α since no direction is provided for
the p-value. With rejection probability of ≤ 90%, the shaded light-blue region corresponds
to the parameter space for which the rejection probability of the linear composite statistic
dominates. Incorporating the Bonferroni test statistic, the gold region corresponds to the
parameter space for which the quadratic test has higher rejection probability over linear or
Bonferroni corrected test. The green region represents the region for which the Bonferroni
corrected test has higher rejection probability over either linear or quadratic test. The light
gray region corresponds to the parameter space for which the rejection probability of the
single statistic (chosen correctly) dominates.
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Figure F.5: Contour plots of the probability of rejecting H0 in Quadrant IV for the compos-
ite statistics and the Bonferroni correction for multiple testing based on the standardized
alternatives in Quadrant IV when assuming a 1-sided α = 0.025 (This is similar to Quadrant
II). The critical value of the χ2

2 distribution is based on 2α since no direction is provided
for the p-value. With rejection probability ≤ 90%, the shaded light-blue region corresponds
to the parameter space for which the rejection probability of the linear composite statistic
dominates. In this quadrant (respectively in quadrant II), the quadratic test has the ap-
pearance of being more “powerful” over the other test statistics purely as a consequence of
picking the magnitude of the alternatives and ignoring the direction of the treatment effect.
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F.2 Additional Results for Section 7.3.1

F.2.1 Additional Simulation Results for Stochastic Ordered, Crossing Hazards

Survival Curves

The results in section 7.3.2 (Table F.1) are seen to be affected by patterns of accrual. In

comparison, with censoring, a higher proportion of curves (27.1% relative to 17.2%) has

spurious crossings when analyzed at time 2. One direct consequence of accrual is that,

by time 5, on average, a lower number of events is observed. Although this proportion of

survival curves crossing by time 5 is similar, there is a higher proportion of survival curves

that crosses at earlier calendar time (for example, time 2).

The probability of rejecting the null hypothesis for other common test statistics under

the censored setting (Table F.2) was generally similar to the results with immediate accrual

(Table 7.3). The results for the composite statistics were also similar (99%) with high

probability of rejecting the null hypothesis incorrectly in favor of A in the censored setting.

Table F.1: Summary statistics at various calendar time where survival curves are stochas-
tically ordered without true crossings over the first five years with uniform accrual over a 3
year period based on 10,000 simulation. Treatment group B is the preferred treatment in
terms of survival probability at all times relative to group A.

Stochastically ordered survival curves@ (Crossing Hazards)
t = 1 t = 2 t = 3 t = 4 t = 5

A
cc
ru
al

ov
er

3
ye
ar
s

Total number of Events 231 (14) 558 (20) 898 (22) 1009 (22) 1026 (22)
Events (B vs A) 86 vs 145 241 vs 317 409 vs 489 494 vs 515 511 vs 515

Number of events ≥ τ0 0 (0) 0 (0) 3 (2) 10 (3) 16 (4)
Events (B vs A) 0 vs 0 0 vs 0 3 vs 0 10 vs 0 16 vs 0

HRRef: B (± logSD) 2.09 (0.135) 1.65 (0.085) 1.49 (0.067) 1.31 (0.064) 1.26 (0.063)
RMSA(t)‡ 0.44 (0.019) 0.93 (0.033) 1.41 (0.043) 1.90 (0.058) 2.38 (0.074)
RMSB(t)‡ 0.59 (0.015) 1.15 (0.030) 1.65 (0.040) 2.14 (0.052) 2.62 (0.066)
ŜA(t) 0.4858 (0.03) 0.4849 (0.02) 0.4847 (0.02) 0.4848 (0.02) 0.4848 (0.02)
ŜB(t) 0.5888 (0.06) 0.5057 (0.03) 0.4890 (0.02) 0.4856 (0.02) 0.4850 (0.02)
% of ŜA(t) > ŜB(t)† 5.6 27.1 42.6 48.0 49.0

†: Percentage of times a crossing is observed.
‡: The restricted mean statistic is truncated to 3 months just prior to the calendar time t.
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Table F.2: Table of the statistically significant results for level α = 2.5% based on 10,000
simulations under the setting where survival curves are stochastically ordered without true
crossings over the first five years under uniform accrual of subjects over 3 years. The columns,
A and B, indicate the total number of times the test statistic concludes the trial in favor of
the treatment group A or B.

Crossing at time 2 Crossing by time 5

Crossing No Crossing Crossing No Crossing
Overall ŜA(2) > ŜB(2) ŜA(2) < ŜB(2) ŜA(5) > ŜB(5) ŜA(5) < ŜB(5)

n= 2712 n= 7288 n= 4904 n= 5096

Statistic Sig A B A B A B A B A B
ZLR(5) 9529 0 9529 0 2346 0 7183 0 4433 0 5096
ZNA(5) 506 264 242 215 3 49 239 264 0 0 242
ZRMS(5) 6815 0 6815 0 1041 0 5774 0 1720 0 5095
ZNA(τ0) 1183 30 1153 30 0 0 1153 30 132 0 1021

ZLR(τ0, 5) 9998 9998 0 2711 0 7287 0 4904 0 5094 0
ZOLS(5) 5929 5929 0 2290 0 3639 0 4825 0 1104 0
ZQuad(5) 9954 9954 9954 2693 2693 7261 7261 4884 4884 5070 5070

F.2.2 Simulation Results for Crossing Survival Curves

Table F.3 shows the summary statistics at each calendar time under the fixed sample setting

when we have crossing survival, and crossing hazards in Figure 7.1. With patients being

accrued uniformly, the common summary statistics, such as S(t), restricted mean up to time

t, tend to have more variation even though on average, they are consistent with summary

statistics obtained in the immediate accrual setting. The proportion of crossing at time 2 is

higher when we do not have immediate accrual.
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Table F.3: Summary statistics based on 10,000 simulations for the crossing survival curves with either immediate
accrual or uniform accrual of subjects over the first three years.

Crossing survival curves
t = 1 t = 2 t = 3 t = 4 t = 5

Im
m
ed

ia
te

A
cc
ru
al

Total number of Events∗ 827 (22) 1009 (22) 1099 (22) 1155 (22) 1194 (22)
Events (B vs A) 331 vs 497 494 vs 515 584 vs 516 639 vs 516 678 vs 516

Number of events ≥ τ0* 0 (0) 0 (0) 90 (9) 146 (11) 185 (12)
Events (B vs A) 0 vs 0 0 vs 0 89 vs 1 145 vs 1 184 vs 1

HRRef: B (± logSD) 1.86 (0.071) 1.28 (0.064) 1.06 (0.062) 0.95 (0.062) 0.88 (0.061)
RMSA(t)‡ 0.51 (0.009) 1.00 (0.024) 1.49 (0.040) 1.97 (0.056) 2.46 (0.072)
RMSB(t)‡ 0.64 (0.007) 1.26 (0.020) 1.74 (0.033) 2.15 (0.046) 2.50 (0.059)
ŜA(t) 0.5032 (0.02) 0.4850 (0.02) 0.4841 (0.02) 0.4839 (0.02) 0.4837 (0.02)
ŜB(t) 0.6693 (0.01) 0.5058 (0.02) 0.4164 (0.02) 0.3612 (0.02) 0.3220 (0.01)
% of ŜA(t) > ŜB(t)† 0.0 17.4 99.8 100 100

A
cc
ru
al

ov
er

3
ye
ar
s

Total number of Events∗ 184 (13) 494 (19) 847 (22) 1040 (23) 1121 (22)
Events (B vs A) 62 vs 122 202 vs 292 383 vs 464 526 vs 514 605 vs 516

Number of events ≥ τ0* 0 (0) 0 (0) 16 (4) 56 (7) 112 (10)
Events (B vs A) 0 vs 0 0 vs 0 16 vs 0 56 vs 1 111 vs 1

HRRef: B (± logSD) 2.37 (0.156) 1.76 (0.091) 1.48 (0.069) 1.19 (0.063) 1.02 (0.062)
RMSA(t)‡ 0.51 (0.017) 1.00 (0.032) 1.49 (0.042) 1.97 (0.056) 2.46 (0.072)
RMSB(t)‡ 0.64 (0.013) 1.26 (0.028) 1.74 (0.038) 2.15 (0.048) 2.50 (0.060)
ŜA(t) 0.5041 (0.04) 0.4853 (0.02) 0.4842 (0.02) 0.4839 (0.02) 0.4837 (0.02)
ŜB(t) 0.6696 (0.06) 0.5068 (0.05) 0.4171 (0.04) 0.3617 (0.03) 0.3222 (0.03)
% of ŜA(t) > ŜB(t)† 2.0 29.4 97.4 100 100

†: Percentage of times a crossing is observed.
‡: The restricted mean statistic is truncated to 3 months just prior to the calendar time t.
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Table F.4: Table of the statistically significant results for level α = 2.5% based on 10,000
simulations under the setting of crossing survival curves scenario with immediate accrual.
The columns, A and B, indicate the total number of times the test statistic concludes the
trial in favor of the treatment arm.

Condition on time 2 Condition on time 5

Crossing No Crossing Crossing No Crossing
Overall ŜA(2) > ŜB(2) ŜA(2) < ŜB(2) ŜA(5) > ŜB(5) ŜA(5) < ŜB(5)

n= 1737 n= 8273 n= 10,000 n= 0

Statistic Sig A B A B A B A B A B
ZLR(5) 5574 5574 0 1732 0 3842 0 5574 0 0 0
ZNA(5) 10000 10000 0 1737 0 8263 0 10000 0 0 0
ZRMS(5) 708 79 629 79 0 0 629 79 629 0 0
ZNA(τ0) 1586 20 1566 20 0 0 1566 20 1566 0 0

ZLR(τ0, 5) 10000 10000 0 1737 0 8263 0 10000 0 0 0
ZOLS(5) 10000 10000 0 1737 0 8263 0 10000 0 0 0
ZQuad(5) 10000 10000 10000 1737 1737 8263 8263 10000 10000 0 0

Table F.5: Table of the statistically significant results for level α = 2.5% based on 10,000
simulations under the setting of crossing survival curves scenario with uniform accrual over 3
years. The columns, A and B, indicate the total number of times the test statistic concludes
the trial in favor of the treatment arm.

Condition on time 2 Condition on time 5

Crossing No Crossing Crossing No Crossing
Overall ŜA(2) > ŜB(2) ŜA(2) < ŜB(2) ŜA(5) > ŜB(5) ŜA(5) < ŜB(5)

n= 2941 n= 7059 n= 10000 n= 0

Statistic Sig A B A B A B A B A B
ZLR(5) 619 157 462 113 33 44 429 157 462 0 0
ZNA(5) 9965 9965 0 2936 0 7029 0 9965 0 0 0
ZRMS(5) 708 80 628 61 43 19 585 80 628 0 0
ZNA(τ0) 1272 14 1258 14 0 0 1258 14 1258 0 0

ZLR(τ0, 5) 10000 10000 0 2941 0 7059 0 10000 0 0 0
ZOLS(5) 10000 10000 0 2941 0 7059 0 10000 0 0 0
ZQuad(5) 10000 10000 10000 2941 2941 7059 7059 10000 10000 0 0
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F.3 Additional Results for Section 7.4

F.3.1 Simulation Setup for Mixtures of Weibull Distributions

In this section, we simulated our survival curves based on mixtures of Weibull distributions

described as follows. Denote M ∼ Bernoulli(π) to be the random variable that characterizes

the mixture of Weibull survival distribution after being randomized treatment to either

treatment A or B. After being randomized to treatment k = {A,B}, the survival time for

a patient has some probability π of coming from the Weibull distribution corresponding to

M = 1 with shape parameter, a1, and “rate” parameter, λ1
k and probability 1 − π coming

from another Weibull distribution corresponding to M = 0 with shape parameter, a0, and

“rate” parameter λ0
k as below. Thus, our survival time for the ith subject randomized to the

k treatment group can be simulated from the mixtures of Weibull distribution described as

follows:

fik(t) =


a1
kλ

1
w(λ1

wt)a
1−1 exp(−(λ1

kt)a
1), M = 1 with probability π

a0
kλ

0
w(λ0

wt)a
0−1 exp(−(λ0

kt)a
0), M = 0 with probability 1− π

The expected survival at time t, SA(t), for any patient in the control group is

π exp(−(λ1
At)a

1
A) + (1− π) exp(−(λ0

At)a
0
A). Similarly, the expected survival at time t, SB(t),

for any patient in the treatment group is π exp(−(λ1
Bt)a

1
B) + (1 − π) exp(−(λ0

Bt)a
0
B). This

general formulation can allow us to simulate additional, more flexible survival functionals.

We describe additional results corresponding to scenario 4 - 7 under stochastically ordered,

crossing hazards survival curves, and scenario 4 and 5 for crossing survival, crossing hazards

survival curves that are simulated from the mixture of Weibulls setup. Results for crossing

survival, crossing hazards survival curves for scenario 1 and 3 are also provided that are

simulated from mixtures of Exponentials described in section 7.3.1.
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F.3.2 Stochastically Ordered, Crossing Hazards Survival Curves
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Figure F.6: Survival curves and plot of standardized alternatives for various test statistics
when survival curves are stochastically ordered without true crossings over the first five years
(Stochastically Ordered Scenario 1) under various accrual patterns and different interim
analyses. The commonly used test statistics have high probability of declaring a treatment
as superior for overall LR and RMS. The combination of alternatives for NA(τ0, t) and
LR(τ0, t) resides in quadrant IV and describes conflicting conclusions prior to crossing and
after crossing. This observation is as speculated and described in Table 7.1. The net effect for
the linear composite statistics concludes that the placebo arm is better than the treatment
arm even though the treatment arm is better than placebo across all analyses time from 0
to 5.
LR: Overall logrank statistic conducted at time t.
NA: Nelson-Aalen test statistic at time t.
RMS: Restricted mean statistics conducted at time t− 0.25.
LR(τ0, t): Truncated logrank statistic up to time t starting at time τ0.
NA(τ0, t): Nelson-Aalen test conducted at time t restricted to time τ0.
OLS: Linear composite statistics.
Quad: Quadratic test statistics.√
χ2

2,α: line corresponding to the square root of the critical value based on the χ2
2 at α = 0.05.

Φ−1(z1−α/2): line corresponding to the critical value based on the standard normal.



351

Table F.6: Average information growth for survival curves that are stochastically ordered
without true crossings over the first five years (Stochastically Ordered Scenario 1) for the
various test statistics under patterns of accrual and different interim analyses.

Statistic Accrual t = 1 t = 2 t = 2.75 t = 3.5 t = 4.25 t = 5 Î5

Events (t)

Imm 923.74 1036.82 1063.19 1073.45 1077.41 1078.96
2.00 333.33 829.87 1002.51 1050.39 1068.49 1075.50
3.00 222.25 553.13 816.25 1003.08 1051.23 1068.85
4.00 166.79 414.85 612.13 812.65 995.02 1049.83
Imm 26.37 36.63 40.59 42.14

Events 2.00 5.74 17.85 31.67 38.68
(τ0, t) 3.00 3.82 11.94 21.65 32.03

4.00 2.86 8.92 16.24 24.02

ZLR

Imm 85.61 96.09 98.54 99.49 99.86 100.00 269.65
2.00 30.99 77.16 93.21 97.66 99.35 100.00 268.79
3.00 20.79 51.75 76.36 93.84 98.35 100.00 267.13
4.00 15.88 39.51 58.30 77.41 94.78 100.00 262.37

ZLR(τ0, t)

Imm 62.57 86.92 96.31 100.00 10.54
2.00 14.83 46.13 81.88 100.00 9.67
3.00 11.93 37.26 67.60 100.00 8.01
4.00 11.90 37.14 67.62 100.00 6.00

ZNA(τ0, t)

Imm 100.00 100.00 100.00 100.00 100.00 25446.36
2.00 62.45 93.58 99.47 100.00 100.00 25446.36
3.00 42.41 73.54 93.77 99.10 100.00 25446.36
4.00 32.65 55.95 76.05 94.07 100.00 25103.18

ZLR: Overall logrank statistic conducted at time t.
ZNA(τ0, t): Nelson-Aalen test conducted at time t restricted to time τ0.
ZLR(τ0, t): Truncated logrank statistic up to time t starting at time τ0.
Imm refers to the setting of immediate accrual.
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Figure F.7: Survival curves and plot of standardized alternatives for various test statistics
when survival curves are stochastically ordered without true crossings over the first five years
(Stochastically Ordered Scenario 3) under various accrual patterns and different interim
analyses. The combination of alternatives for NA(τ0, t) and LR(τ0, t) resides in quadrant IV
and describe conflicting conclusions prior to crossing and after crossing. This observation is
as speculated and described in Table 7.1. The net effect for the linear composite statistics
conclude placebo is better than the treatment despite treatment being better at all times
from 0 to 5 relative to placebo.
LR: Overall logrank statistic conducted at time t.
NA: Nelson-Aalen test statistic at time t.
RMS: Restricted mean statistics conducted at time t− 0.25.
LR(τ0, t): Truncated logrank statistic up to time t starting at time τ0.
NA(τ0, t): Nelson-Aalen test conducted at time t restricted to time τ0.
OLS: Linear composite statistics.
Quad: Quadratic test statistics.√
χ2

2,α: line corresponding to the square root of the critical value based on the χ2
2 at α = 0.05.

Φ−1(z1−α/2): line corresponding to the critical value based on the standard normal.
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Table F.7: Average information growth for survival curves that are stochastically ordered
without true crossings over the first five years (Stochastically Ordered Scenario 3) for the
various test statistics under patterns of accrual and different interim analyses.

Statistic Accrual t = 1 t = 2 t = 2.75 t = 3.5 t = 4.25 t = 5 Î5

Events (t)

Imm 923.64 1036.78 1063.31 1073.63 1077.64 1079.18
2.00 333.45 829.71 1002.54 1050.44 1068.64 1075.71
3.00 222.40 553.33 816.18 1003.12 1051.25 1068.99
4.00 166.81 415.00 612.16 812.63 995.11 1049.87
Imm 26.52 36.85 40.86 42.40

Events 2.00 5.77 17.96 31.86 38.92
(τ0, t) 3.00 3.83 11.97 21.75 32.20

4.00 2.86 8.96 16.35 24.15

ZLR

Imm 85.92 95.62 98.32 99.41 99.84 100.00 233.30
2.00 32.48 78.46 93.01 97.38 99.25 100.00 232.43
3.00 21.79 52.64 77.20 93.98 98.21 100.00 230.78
4.00 16.63 40.18 58.95 78.09 95.29 100.00 226.47

ZLR(τ0, t)

Imm 61.70 86.55 96.27 100.00 10.22
2.00 14.09 45.27 81.32 100.00 9.35
3.00 11.13 36.33 67.02 100.00 7.70
4.00 10.91 36.07 67.07 100.00 5.75

ZNA(τ0, t)

Imm 100.00 100.00 100.00 100.00 100.00 43.53
2.00 45.36 85.19 98.29 100.00 100.00 43.53
3.00 31.72 61.53 86.49 97.43 100.00 43.53
4.00 25.57 47.89 68.84 88.62 100.00 42.02

ZLR: Overall logrank statistic conducted at time t.
ZNA(τ0, t): Nelson-Aalen test conducted at time t restricted to time τ0.
ZLR(τ0, t): Truncated logrank statistic up to time t starting at time τ0.
Imm refers to the setting of immediate accrual.
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Figure F.8: Survival curves and plot of standardized alternatives for various test statistics
when survival curves are stochastically ordered without true crossings over the first five years
(Stochastically Ordered Scenario 4) under various accrual patterns and different interim
analyses. The combination of alternatives for the composite statistics resides in quadrant
IV. However, we created a sufficiently large difference at the time of crossing such that the
net effect of the linear composite statistics conclude the treatment is better than the placebo.
The commonly used statistics are consistent in concluding some treatment effect relative to
placebo.
LR: Overall logrank statistic conducted at time t.
NA: Nelson-Aalen test statistic at time t.
RMS: Restricted mean statistics conducted at time t− 0.25.
LR(τ0, t): Truncated logrank statistic up to time t starting at time τ0.
NA(τ0, t): Nelson-Aalen test conducted at time t restricted to time τ0.
OLS: Linear composite statistics.
Quad: Quadratic test statistics.√
χ2

2,α: line corresponding to the square root of the critical value based on the χ2
2 at α = 0.05.

Φ−1(z1−α/2): line corresponding to the critical value based on the standard normal.
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Table F.8: Average information growth for survival curves that are stochastically ordered
without true crossings over the first five years (Stochastically Ordered Scenario 4) for the
various test statistics under patterns of accrual and different interim analyses.

Statistic Accrual t = 1 t = 2 t = 2.75 t = 3.5 t = 4.25 t = 5 Î5

Events (t)

Imm 224.16 333.69 426.06 520.88 602.22 660.26
2.00 78.89 217.95 307.43 396.24 487.52 571.13
3.00 52.60 145.26 240.04 338.56 426.99 512.40
4.00 39.49 108.94 180.00 268.89 368.68 453.79
Imm 92.37 187.18 268.53 326.57

Events 2.00 16.98 69.63 153.83 237.43
(τ0, t) 3.00 11.34 46.37 103.79 178.71

4.00 8.48 34.74 77.83 133.98

ZLR

Imm 34.24 50.55 64.32 78.62 91.06 100.00 161.83
2.00 14.00 38.50 54.03 69.38 85.28 100.00 139.66
3.00 10.40 28.59 47.10 66.22 83.35 100.00 125.27
4.00 8.80 24.18 39.83 59.38 81.32 100.00 111.02

ZLR(τ0, t)

Imm 27.84 56.77 81.92 100.00 80.02
2.00 7.03 29.02 64.46 100.00 57.85
3.00 6.23 25.68 57.82 100.00 43.46
4.00 6.20 25.64 57.81 100.00 32.55

ZNA(τ0, t)

Imm 100.00 100.00 100.00 100.00 100.00 685.12
2.00 35.92 78.02 96.98 100.00 100.00 685.12
3.00 25.81 56.63 81.39 95.60 100.00 685.12
4.00 21.71 45.18 67.14 87.13 100.00 646.04

ZLR: Overall logrank statistic conducted at time t.
ZNA(τ0, t): Nelson-Aalen test conducted at time t restricted to time τ0.
ZLR(τ0, t): Truncated logrank statistic up to time t starting at time τ0.
Imm refers to the setting of immediate accrual.
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Figure F.9: Survival curves and plot of standardized alternatives for various test statistics
when survival curves are stochastically ordered without true crossings over the first five years
(Stochastically Ordered Scenario 5) under various accrual patterns and different interim
analyses. In this scenario, the combination of alternatives for the composite statistics are
still in quadrant IV. However, we created a sufficiently large difference at time of crossing
such that the net effect of the linear composite statistics conclude the treatment is better
than the placebo. The commonly used statistics are consistent in concluding some treatment
effect relative to placebo.
LR: Overall logrank statistic conducted at time t.
NA: Nelson-Aalen test statistic at time t.
RMS: Restricted mean statistics conducted at time t− 0.25.
LR(τ0, t): Truncated logrank statistic up to time t starting at time τ0.
NA(τ0, t): Nelson-Aalen test conducted at time t restricted to time τ0.
OLS: Linear composite statistics.
Quad: Quadratic test statistics.√
χ2

2,α: line corresponding to the square root of the critical value based on the χ2
2 at α = 0.05.

Φ−1(z1−α/2): line corresponding to the critical value based on the standard normal.
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Table F.9: Average information growth for survival curves that are stochastically ordered
without true crossings over the first five years (Stochastically Ordered Scenario 5) for the
various test statistics under patterns of accrual and different interim analyses.

Statistic Accrual t = 1 t = 2 t = 2.75 t = 3.5 t = 4.25 t = 5 Î5

Events (t)

Imm 247.94 416.97 542.13 620.65 660.73 687.83
2.00 83.90 248.47 374.10 493.42 586.53 643.80
3.00 55.95 165.56 286.16 411.89 515.19 596.31
4.00 42.00 124.15 214.56 324.54 439.01 529.52
Imm 125.16 203.68 243.76 270.86

Events 2.00 24.47 87.80 169.55 226.82
(τ0, t) 3.00 16.29 58.50 114.95 179.33

4.00 12.20 43.88 86.25 134.49

ZLR

Imm 36.13 60.33 78.54 90.09 96.00 100.00 169.33
2.00 13.12 38.64 57.97 76.43 90.98 100.00 158.31
3.00 9.45 27.80 47.97 69.01 86.31 100.00 146.49
4.00 7.98 23.47 40.49 61.26 82.90 100.00 130.04

ZLR(τ0, t)

Imm 45.91 75.03 89.93 100.00 67.18
2.00 10.64 38.49 74.58 100.00 56.16
3.00 8.94 32.43 63.97 100.00 44.34
4.00 8.90 32.40 63.98 100.00 33.22

ZNA(τ0, t)

Imm 100.00 100.00 100.00 100.00 100.00 530.31
2.00 29.20 73.96 96.13 100.00 100.00 530.31
3.00 21.15 52.66 78.23 94.46 100.00 530.31
4.00 18.11 42.59 64.90 85.47 100.00 492.97

ZLR: Overall logrank statistic conducted at time t.
ZNA(τ0, t): Nelson-Aalen test conducted at time t restricted to time τ0.
ZLR(τ0, t): Truncated logrank statistic up to time t starting at time τ0.
Imm refers to the setting of immediate accrual.
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Figure F.10: Survival curves and plot of standardized alternatives for various test statistics
when survival curves are stochastically ordered without true crossings over the first five years
(Stochastically Ordered Scenario 6) under various accrual patterns and different interim
analyses. We have an advantage in survival prior to time τ0 but this difference wears off such
that there is negligible difference by time of crossing with negligible long term difference in
survival past time τ0.
LR: Overall logrank statistic conducted at time t.
NA: Nelson-Aalen test statistic at time t.
RMS: Restricted mean statistics conducted at time t− 0.25.
LR(τ0, t): Truncated logrank statistic up to time t starting at time τ0.
NA(τ0, t): Nelson-Aalen test conducted at time t restricted to time τ0.
OLS: Linear composite statistics.
Quad: Quadratic test statistics.√
χ2

2,α: line corresponding to the square root of the critical value based on the χ2
2 at α = 0.05.

Φ−1(z1−α/2): line corresponding to the critical value based on the standard normal.
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Table F.10: Average information growth for survival curves that are stochastically ordered
without true crossings over the first five years (Stochastically Ordered Scenario 6) for the
various test statistics under patterns of accrual and different interim analyses.

Statistic Accrual t = 1 t = 2 t = 2.75 t = 3.5 t = 4.25 t = 5 Î5

Events (t)

Imm 322.53 564.38 630.51 665.98 695.46 721.14
2.00 99.84 327.25 489.76 598.93 652.40 684.85
3.00 66.61 218.03 368.95 507.97 605.12 660.45
4.00 49.99 163.46 276.62 398.40 519.54 609.01
Imm 66.13 101.60 131.08 156.75

Events 2.00 14.47 46.24 88.02 120.47
(τ0, t) 3.00 9.66 30.84 59.98 96.06

4.00 7.23 23.09 44.98 72.01

ZLR

Imm 44.54 78.02 87.29 92.27 96.40 100.00 178.04
2.00 14.58 47.64 71.29 87.30 95.20 100.00 168.96
3.00 10.08 32.90 55.74 76.77 91.53 100.00 162.86
4.00 8.20 26.75 45.33 65.35 85.27 100.00 150.05

ZLR(τ0, t)

Imm 42.19 64.82 83.62 100.00 39.13
2.00 11.94 38.33 73.04 100.00 30.06
3.00 9.97 32.01 62.38 100.00 23.95
4.00 9.92 31.95 62.38 100.00 17.94

ZNA(τ0, t)

Imm 100.00 100.00 100.00 100.00 100.00 337.74
2.00 27.38 72.15 96.10 100.00 100.00 337.74
3.00 19.61 50.47 76.33 94.14 100.00 337.74
4.00 16.78 41.11 63.26 84.03 100.00 311.81

ZLR: Overall logrank statistic conducted at time t.
ZNA(τ0, t): Nelson-Aalen test conducted at time t restricted to time τ0.
ZLR(τ0, t): Truncated logrank statistic up to time t starting at time τ0.
Imm refers to the setting of immediate accrual.
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Figure F.11: Survival curves and plot of standardized alternatives for various test statistics
when survival curves are stochastically ordered without true crossings over the first five years
(Stochastically Ordered Scenario 7) under various accrual patterns and different interim
analyses. We now created the scenario where there is negligible difference by time 2 but a
difference exists at time 5 which still corresponds to a treatment benefit. Commonly used
statistics works sufficiently well to identify the perferred treatment without the complexity
of composite statistics providing conflicting conclusions before and after time of crossing.
LR: Overall logrank statistic conducted at time t.
NA: Nelson-Aalen test statistic at time t.
RMS: Restricted mean statistics conducted at time t− 0.25.
LR(τ0, t): Truncated logrank statistic up to time t starting at time τ0.
NA(τ0, t): Nelson-Aalen test conducted at time t restricted to time τ0.
OLS: Linear composite statistics.
Quad: Quadratic test statistics.√
χ2

2,α: line corresponding to the square root of the critical value based on the χ2
2 at α = 0.05.

Φ−1(z1−α/2): line corresponding to the critical value based on the standard normal.
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Table F.11: Average information growth for survival curves that are stochastically ordered
without true crossings over the first five years (Stochastically Ordered Scenario 7) for the
various test statistics under patterns of accrual and different interim analyses.

Statistic Accrual t = 1 t = 2 t = 2.75 t = 3.5 t = 4.25 t = 5 Î5

Events (t)

Imm 263.51 601.71 656.00 681.46 700.84 716.22
2.00 82.58 298.58 484.56 621.28 671.60 693.53
3.00 55.03 199.12 358.27 506.57 618.71 676.51
4.00 41.25 149.36 268.72 394.15 518.93 615.40
Imm 54.30 79.75 99.13 114.52

Events 2.00 13.06 38.40 69.90 91.82
(τ0, t) 3.00 8.71 25.62 48.07 74.80

4.00 6.52 19.21 36.08 56.14

ZLR

Imm 36.81 83.77 91.49 95.10 97.84 100.00 175.60
2.00 12.00 42.95 69.65 89.41 96.79 100.00 169.98
3.00 8.19 29.34 52.86 74.76 91.34 100.00 165.73
4.00 6.75 24.19 43.60 64.02 84.33 100.00 150.62

ZLR(τ0, t)

Imm 47.58 69.82 86.68 100.00 28.50
2.00 14.18 41.82 76.18 100.00 22.88
3.00 11.57 34.20 64.24 100.00 18.64
4.00 11.50 34.14 64.23 100.00 13.97

ZNA(τ0, t)

Imm 100.00 100.00 100.00 100.00 100.00 298.92
2.00 21.02 65.96 94.37 100.00 100.00 298.92
3.00 15.10 45.44 71.64 91.85 100.00 298.92
4.00 13.45 38.00 60.62 82.09 100.00 268.54

ZLR: Overall logrank statistic conducted at time t.
ZNA(τ0, t): Nelson-Aalen test conducted at time t restricted to time τ0.
ZLR(τ0, t): Truncated logrank statistic up to time t starting at time τ0.
Imm refers to the setting of immediate accrual.

In the results for scenario 1 and 3, if the long term treatment effect is the objective of the

study, i.e., we are primarily interested in the benefit of the treatment at some pre-defined

calendar time, then choosing the Nelson-Aalen test that evaluates the difference in survival

probability at year 5 would have directly address the question of interest. If the relative

benefit of this long term effect has to be weighted by the degree of early differences, then

picking the log rank test, or the restricted mean statistic may in fact be more appropriate
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over Logan’s composite statistics to address the scientific question of which is the preferred

treatment. The linear composite statistics, in this case, is weighted so heavily by the trun-

cated log-rank test that the aggregate direction based on the equal weighting scheme will

favor the placebo as the preferred treatment rather than the experimental treatment arm.

In scenario 4, 5, and 6 (Figure F.8, F.9, and F.10 respectively), we constructed sur-

vival curves with negligible difference in survival probability by time 5, and S(5) to be

approximately between 40% to 50%. However, we varied the timing for which the survival

probability is similar to the placebo arm with sufficiently large early survival differences.

For example, in Figure F.10 (Scenario 6), the survival curves are constructed such that ex-

perimental treatment survival curve is stochastically better than the placebo arm between

0 and 5. A significant difference is observed early on by time 1. However, this difference in

probability of survival disappears by time 2.

In Figure F.11, scenario 7, we constructed a difference in survival again by year 5. In

particular, this is the only stochastic ordered, non proportional scenario we investigated

such that the alternatives of the truncated log rank test is estimated in the positive (and

correct) direction. The commonly used statistics have relatively similar estimates when early

differences exists, with a positive upswing in the estimates of the alternatives for the overall

logrank statistic, and the Nelson-Aalen test statistics at calendar time of analyses. This leads

to selecting the experimental treatment arm as the preferred treatment over the placebo arm

by time 5. The composite statistics correctly pick up this positive upswing for scenario 7.

This is however weighted downwards by the alternatives by the Nelson-Aalen test at time of

crossing.
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F.3.3 Crossing Hazards, Crossing Survival Curves
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Figure F.12: Survival curves and plot of standardized alternatives for various test statistics
when we have crossing survival curves (Crossing scenario 1) under various accrual patterns
and different interim analyses. Simulated crossing hazards, crossing survival curves where we
added variations to whether the curves crosses just before 2, and after 2. The combination of
composite alternatives changes from Quadrant III (-,-), Quadrant III/IV(0, -), Quadrant IV
(+,-) with the net result providing conclusion of preferring the placebo over treatment. The
commonly used statistics is seen to have a changing alternative that switches from positive
to negative.
LR: Overall logrank statistic conducted at time t.
NA: Nelson-Aalen test statistic at time t.
RMS: Restricted mean statistics conducted at time t− 0.25.
LR(τ0, t): Truncated logrank statistic up to time t starting at time τ0.
NA(τ0, t): Nelson-Aalen test conducted at time t restricted to time τ0.
OLS: Linear composite statistics.
Quad: Quadratic test statistics.√
χ2

2,α: line corresponding to the square root of the critical value based on the χ2
2 at α = 0.05.

Φ−1(z1−α/2): line corresponding to the critical value based on the standard normal.
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Table F.12: Average information growth for crossing survival curves (Crossing Scenario 1)
for the various test statistics under patterns of accrual and different interim analyses.

Statistic Accrual t = 1 t = 2 t = 2.75 t = 3.5 t = 4.25 t = 5 Î5

Imm 70.36 125.51 171.11 210.06
Events 2.00 13.84 50.92 105.10 154.48
(τ0, t) 3.00 9.24 33.96 71.16 118.94

4.00 6.91 25.47 53.41 89.13

Events (t)

Imm 440.04 589.16 659.52 714.67 760.27 799.22
2.00 136.20 397.87 547.54 632.64 694.26 743.64
3.00 90.76 265.40 421.77 565.44 648.57 708.10
4.00 68.05 198.92 316.41 445.27 577.68 661.71

ZLR

Imm 55.17 73.89 82.73 89.62 95.25 100.00 198.51
2.00 18.31 53.53 73.68 85.15 93.42 100.00 184.95
3.00 12.79 37.46 59.57 79.88 91.62 100.00 176.15
4.00 10.24 30.02 47.80 67.30 87.32 100.00 164.60

ZLR(τ0, t)

Imm 33.86 60.23 81.80 100.00 51.82
2.00 8.96 33.08 68.22 100.00 38.26
3.00 7.74 28.59 59.90 100.00 29.46
4.00 7.70 28.58 59.97 100.00 22.06

ZNA(τ0, t)

Imm 100.00 100.00 100.00 100.00 100.00 311.81
2.00 35.38 78.90 97.31 100.00 100.00 311.81
3.00 25.12 56.21 81.66 95.98 100.00 311.81
4.00 20.91 44.62 66.28 86.52 100.00 295.13

ZLR: Overall logrank statistic conducted at time t.
ZNA(τ0, t): Nelson-Aalen test conducted at time t restricted to time τ0.
ZLR(τ0, t): Truncated logrank statistic up to time t starting at time τ0.
Imm refers to the setting of immediate accrual.
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Figure F.13: Survival curves and plot of standardized alternatives for various test statistics
when we have crossing survival curves (Crossing scenario 3) under various accrual patterns
and different interim analyses. Simulated crossing hazards, crossing survival curves where we
added variations to whether the curves crosses just before 2, and after 2. The combination of
composite alternatives changes from Quadrant III (-,-), Quadrant III/IV(0, -), Quadrant IV
(+,-) with the net result providing conclusion of preferring the placebo over treatment. The
commonly used statistics is seen to have a changing alternative that switches from positive
to negative.
LR: Overall logrank statistic conducted at time t.
NA: Nelson-Aalen test statistic at time t.
RMS: Restricted mean statistics conducted at time t− 0.25.
LR(τ0, t): Truncated logrank statistic up to time t starting at time τ0.
NA(τ0, t): Nelson-Aalen test conducted at time t restricted to time τ0.
OLS: Linear composite statistics.
Quad: Quadratic test statistics.√
χ2

2,α: line corresponding to the square root of the critical value based on the χ2
2 at α = 0.05.

Φ−1(z1−α/2): line corresponding to the critical value based on the standard normal.
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Table F.13: Average information growth for crossing survival curves (Crossing Scenario 3)
for the various test statistics under patterns of accrual and different interim analyses.

Statistic Accrual t = 1 t = 2 t = 2.75 t = 3.5 t = 4.25 t = 5 Î5

Events (t)

Imm 515.48 671.71 739.57 790.20 830.72 864.48
2.00 161.51 463.47 627.54 713.04 771.15 815.76
3.00 107.61 309.12 485.90 643.50 727.15 783.17
4.00 80.74 231.74 364.49 508.02 652.82 738.25
Imm 67.86 118.49 159.02 192.78

Events 2.00 13.47 48.82 99.45 144.05
(τ0, t) 3.00 8.99 32.58 67.40 111.46

4.00 6.73 24.43 50.55 83.58

ZLR

Imm 59.66 77.74 85.65 91.52 96.17 100.00 214.10
2.00 19.80 56.80 76.88 87.40 94.55 100.00 202.18
3.00 13.72 39.43 62.02 82.14 92.84 100.00 194.09
4.00 10.90 31.34 49.33 68.80 88.44 100.00 182.90

ZLR(τ0, t)

Imm 35.54 61.91 82.82 100.00 47.67
2.00 9.33 33.96 69.19 100.00 35.75
3.00 8.01 29.22 60.51 100.00 27.66
4.00 7.96 29.18 60.49 100.00 20.71

ZNA(τ0, t)

Imm 100.00 100.00 100.00 100.00 100.00 236.15
2.00 35.72 79.12 97.37 100.00 100.00 236.15
3.00 25.30 56.30 81.77 96.06 100.00 236.15
4.00 20.98 44.64 66.24 86.48 100.00 223.72

ZLR: Overall logrank statistic conducted at time t.
ZNA(τ0, t): Nelson-Aalen test conducted at time t restricted to time τ0.
ZLR(τ0, t): Truncated logrank statistic up to time t starting at time τ0.
Imm refers to the setting of immediate accrual.
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Figure F.14: Survival curves and plot of standardized alternatives for various test statistics
when we have crossing survival curves (Crossing scenario 4) under various accrual patterns
and different interim analyses. The commonly used statistics capture the large magnitude in
survival difference earlier on during the trial.The difference in survival is exaggerated earlier
on but treatment benefit wears off.
LR: Overall logrank statistic conducted at time t.
NA: Nelson-Aalen test statistic at time t.
RMS: Restricted mean statistics conducted at time t− 0.25.
LR(τ0, t): Truncated logrank statistic up to time t starting at time τ0.
NA(τ0, t): Nelson-Aalen test conducted at time t restricted to time τ0.
OLS: Linear composite statistics.
Quad: Quadratic test statistics.√
χ2

2,α: line corresponding to the square root of the critical value based on the χ2
2 at α = 0.05.

Φ−1(z1−α/2): line corresponding to the critical value based on the standard normal.
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Table F.14: Average information growth for crossing survival curves (Crossing Scenario 4)
for the various test statistics under patterns of accrual and different interim analyses.

Statistic Accrual t = 1 t = 2 t = 2.75 t = 3.5 t = 4.25 t = 5 Î5

Events (t)

Imm 261.39 586.05 694.52 720.69 739.70 754.73
2.00 80.71 288.56 483.18 637.02 708.47 732.56
3.00 53.86 192.42 356.36 514.98 637.95 710.74
4.00 40.41 144.32 267.28 400.05 532.23 636.87
Imm 108.47 134.64 153.65 168.69

Events 2.00 26.17 72.21 122.43 146.51
(τ0, t) 3.00 17.49 48.10 84.29 124.69

4.00 13.12 36.04 63.23 93.45

ZLR

Imm 34.58 77.40 91.93 95.43 97.98 100.00 185.71
2.00 11.07 39.26 65.74 86.80 96.67 100.00 180.17
3.00 7.61 26.97 50.02 72.32 89.65 100.00 174.74
4.00 6.37 22.57 41.87 62.76 83.55 100.00 156.42

ZLR(τ0, t)

Imm 64.30 79.78 91.06 100.00 41.98
2.00 17.80 49.24 83.55 100.00 36.43
3.00 13.93 38.49 67.54 100.00 31.00
4.00 13.92 38.45 67.59 100.00 23.21

ZNA(τ0, t)

Imm 100.00 100.00 100.00 100.00 100.00 315.07
2.00 19.57 64.94 93.68 100.00 100.00 315.07
3.00 14.29 44.77 71.10 91.34 100.00 315.07
4.00 12.85 37.62 60.43 82.05 100.00 281.88

ZLR: Overall logrank statistic conducted at time t.
ZNA(τ0, t): Nelson-Aalen test conducted at time t restricted to time τ0.
ZLR(τ0, t): Truncated logrank statistic up to time t starting at time τ0.
Imm refers to the setting of immediate accrual.
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Figure F.15: Survival curves and plot of standardized alternatives for various test statistics
when we have crossing survival curves (Crossing scenario 5) under various accrual patterns
and different interim analyses. Differential preference in survival is again seen in this scenario
where the treatment effect essentially wears off by time 5 to reflect no meaningful difference.
On average, the hazard ratio based on the log rank test statistic is 1. However, the crossing
survival curves at time 2 lead to averaging out this treatment effect via the use of the overall
logrank statistic.
LR: Overall logrank statistic conducted at time t.
NA: Nelson-Aalen test statistic at time t.
RMS: Restricted mean statistics conducted at time t− 0.25.
LR(τ0, t): Truncated logrank statistic up to time t starting at time τ0.
NA(τ0, t): Nelson-Aalen test conducted at time t restricted to time τ0.
OLS: Linear composite statistics.
Quad: Quadratic test statistics.√
χ2

2,α: line corresponding to the square root of the critical value based on the χ2
2 at α = 0.05.

Φ−1(z1−α/2): line corresponding to the critical value based on the standard normal.
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Table F.15: Average information growth for crossing survival curves (Crossing Scenario 5)
for the various test statistics under patterns of accrual and different interim analyses.

Statistic Accrual t = 1 t = 2 t = 2.75 t = 3.5 t = 4.25 t = 5 Î5

Events (t)

Imm 251.15 497.78 624.25 696.98 761.81 831.04
2.00 71.26 258.93 428.32 570.86 669.26 740.80
3.00 47.52 172.57 314.52 465.44 591.47 688.91
4.00 35.63 129.39 235.87 360.14 493.18 610.51
Imm 126.46 199.20 264.03 333.25

Events 2.00 26.11 87.95 171.47 243.01
(τ0, t) 3.00 17.42 58.64 116.46 191.13

4.00 13.06 44.00 87.26 143.36

ZLR

Imm 30.22 59.98 75.22 83.89 91.65 100.00 206.08
2.00 9.63 34.95 57.85 77.13 90.40 100.00 183.65
3.00 6.89 25.02 45.65 67.57 85.86 100.00 170.83
4.00 5.82 21.15 38.61 58.99 80.79 100.00 151.34

ZLR(τ0, t)

Imm 38.09 59.75 79.13 100.00 82.48
2.00 10.76 36.26 70.63 100.00 60.05
3.00 9.09 30.69 60.92 100.00 47.23
4.00 9.07 30.67 60.85 100.00 35.39

ZNA(τ0, t)

Imm 100.00 100.00 100.00 100.00 100.00 424.01
2.00 23.16 68.19 94.81 100.00 100.00 424.01
3.00 16.89 47.16 73.43 92.68 100.00 424.01
4.00 14.97 39.06 61.52 82.78 100.00 385.15

ZLR: Overall logrank statistic conducted at time t.
ZNA(τ0, t): Nelson-Aalen test conducted at time t restricted to time τ0.
ZLR(τ0, t): Truncated logrank statistic up to time t starting at time τ0.
Imm refers to the setting of immediate accrual.
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F.4 Additional Results for Section 7.5

F.4.1 Summary Statistics for Other Scenarios

Table F.16: Summary statistics based on 10,000 simulations under the stochastically ordered, crossing hazards survivals
scenario. Descriptives are presented in the format mean (standard deviation). (Calibrated to blue curves)

Null Alternative

t = 1 t = 2 t = 3 t = 4 t = 5 t = 1 t = 2 t = 3 t = 4 t = 5

Sc
en
ar
io

A

No of events by t 156 (12) 458 (21) 801 (27) 1001 (30) 1058 (31) 222 (15) 553 (23) 905 (29) 1040 (31) 1069 (31)
Events (B vs A) 78 vs 78 229 vs 229 401 vs 401 501 vs 500 529 vs 529 78 vs 144 229 vs 324 401 vs 504 501 vs 540 529 vs 540

No of events in (2,t) 0 (0) 0 (0) 12 (4) 37 (6) 64 (8) 0 (0) 0 (0) 6 (3) 18 (4) 32 (6)
Events (B vs A) 0 vs 0 0 vs 0 6 vs 6 18 vs 18 32 vs 32 0 vs 0 0 vs 0 6 vs 0 18 vs 0 32 vs 0

HRRef: B 1.00 (0.161) 1.00 (0.094) 1.00 (0.072) 1.00 (0.064) 1.00 (0.063) 1.92 (0.141) 1.46 (0.087) 1.30 (0.068) 1.11 (0.063) 1.05 (0.062)
RMSA(t)‡ 0.7235 1.646 2.552 3.454 4.354 0.6944 1.595 2.495 3.395 4.295
RMSB(t)‡ 0.7235 1.645 2.552 3.453 4.354 0.7235 1.645 2.552 3.453 4.354
ŜA(t) 0.9284 0.9081 0.9023 0.9007 0.9002 0.9008 0.9001 0.9 0.9 0.9
ŜB(t) 0.9285 0.908 0.9022 0.9006 0.9002 0.9285 0.908 0.9022 0.9006 0.9002
% of ŜA(t) > ŜB(t)† 49.9 50.3 51.3 50.2 50.2 3.4 18.4 36.2 45.9 48.7

Sc
en
ar
io

C

No of events by t 156 (12) 458 (17) 801 (16) 1001 (13) 1058 (11) 222 (13) 553 (17) 905 (14) 1040 (12) 1069 (11)
Events (B vs A) 78 vs 78 229 vs 229 401 vs 401 501 vs 501 529 vs 529 78 vs 145 229 vs 324 401 vs 504 501 vs 540 529 vs 540

No of events in (2,t) 0 (0) 0 (0) 13 (3) 37 (6) 64 (8) 0 (0) 0 (0) 6 (3) 18 (4) 32 (6)
Events (B vs A) 0 vs 0 0 vs 0 6 vs 6 18 vs 18 32 vs 32 0 vs 0 0 vs 0 6 vs 0 18 vs 0 32 vs 0

HRRef: B 1.00 (0.160) 1.00 (0.093) 1.00 (0.071) 1.00 (0.063) 1.00 (0.061) 3.24 (0.144) 2.70 (0.093) 2.44 (0.073) 2.16 (0.069) 2.03 (0.069)
RMSA(t)‡ 0.5112 0.8099 0.9657 1.081 1.186 0.2491 0.3529 0.4528 0.5525 0.6523
RMSB(t)‡ 0.5116 0.81 0.9665 1.082 1.187 0.5116 0.81 0.9665 1.082 1.187
ŜA(t) 0.3594 0.1743 0.121 0.1057 0.1015 0.1062 0.09966 0.09981 0.09977 0.09978
ŜB(t) 0.3584 0.1743 0.1212 0.1061 0.1018 0.3584 0.1743 0.1212 0.1061 0.1018
% of ŜA(t) > ŜB(t)† 50.1 50.2 49.6 48.9 49.3 1.5 6.1 21.9 36.6 45.3

†: Percentage of times a crossing is observed.
‡: The restricted mean statistic is truncated to 3 months just prior to the calendar time t.
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Table F.17: Summary statistics based on 10,000 simulations under the crossing survival scenario. Descriptives are
presented in the format mean (standard deviation). (Calibrated to blue curves except for F where a different param-
eterization was done to ensure the survival probability for both curves at t = 5 is 10%)

Null Alternative

t = 1 t = 2 t = 3 t = 4 t = 5 t = 1 t = 2 t = 3 t = 4 t = 5

Sc
en
ar
io

D

No of events by t 102 (10) 358 (19) 717 (26) 1048 (31) 1283 (34) 159 (12) 458 (21) 817 (28) 1055 (31) 1181 (33)
Events (B vs A) 51 vs 51 179 vs 179 359 vs 359 524 vs 524 642 vs 642 51 vs 108 179 vs 280 359 vs 459 524 vs 531 642 vs 539

No of events in (2,t) 0 (0) 0 (0) 45 (7) 165 (13) 342 (18) 0 (0) 0 (0) 24 (5) 86 (9) 177 (13)
Events (B vs A) 0 vs 0 0 vs 0 23 vs 23 82 vs 82 171 vs 171 0 vs 0 0 vs 0 23 vs 1 82 vs 3 171 vs 6

HRRef: B 1.00 (0.200) 1.00 (0.107) 1.00 (0.076) 1.00 (0.063) 1.00 (0.057) 2.17 (0.171) 1.61 (0.097) 1.32 (0.072) 1.04 (0.063) 0.86 (0.060)
RMSA(t)‡ 0.7335 1.672 2.578 3.462 4.33 0.7116 1.619 2.52 3.42 4.32
RMSB(t)‡ 0.7335 1.672 2.578 3.462 4.329 0.7335 1.672 2.578 3.462 4.329
ŜA(t) 0.947 0.9129 0.8891 0.8711 0.8568 0.911 0.9012 0.9001 0.9 0.9
ŜB(t) 0.9471 0.9131 0.8888 0.8711 0.8568 0.9471 0.9131 0.8888 0.8711 0.8568
% of ŜA(t) > ŜB(t)† 49.2 49.5 50.5 50.6 50.6 1.9 14.3 87.7 100.0 100.0

Sc
en
ar
io

F

No of events by t 138 (11) 421 (16) 755 (17) 969 (14) 1044 (12) 187 (12) 519 (17) 884 (15) 1073 (11) 1119 (9)
Events (B vs A) 69 vs 69 211 vs 211 378 vs 377 485 vs 485 522 vs 522 79 vs 108 239 vs 280 425 vs 459 541 vs 531 580 vs 539

No of events in (2,t) 0 (0) 0 (0) 17 (4) 52 (7) 93 (9) 0 (0) 0 (0) 10 (3) 30 (5) 53 (7)
Events (B vs A) 0 vs 0 0 vs 0 8 vs 8 26 vs 26 46 vs 46 0 vs 0 0 vs 0 9 vs 1 26 vs 3 47 vs 6

HRRef: B 1.00 (0.171) 1.00 (0.097) 1.00 (0.073) 1.00 (0.065) 1.00 (0.062) 1.64 (0.148) 1.50 (0.089) 1.39 (0.069) 1.28 (0.062) 1.19 (0.060)
RMSA(t)‡ 0.5411 0.8918 1.077 1.205 1.311 0.404 0.5727 0.6793 0.7797 0.8793
RMSB(t)‡ 0.5408 0.8912 1.077 1.205 1.312 0.5082 0.7725 0.8629 0.8933 0.9036
ŜA(t) 0.4159 0.2098 0.1366 0.1098 0.1002 0.2029 0.1112 0.1006 0.09953 0.09936
ŜB(t) 0.4151 0.2095 0.1365 0.1104 0.1003 0.3359 0.1166 0.04262 0.01648 0.006771
% of ŜA(t) > ŜB(t)† 50.5 50.5 50.3 49.3 50.1 8.9 44.2 97.7 100.0 100.0

†: Percentage of times a crossing is observed.
‡: The restricted mean statistic is truncated to 3 months just prior to the calendar time t.
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F.4.2 Example of Constrained Boundaries Approach

We present a worked example of the constrained boundaries based on the logrank test statistic

to illustrate the slight differences in the two procedures described in section 7.5.1.2. We

assume a four look, two sided level α = 0.05, symmetric GSD using an OBF boundary that

has 97.5% power to detect a standardized alternative of 7.929. In this GSD, the maximal

statistical information is presumed to be 264.2263, with annual interim analysis starting from

year 2, and ending at year 5. The sequence of average statistical information is 114.2607,

200.1134, 250.1231, and 264.2263, which corresponds to the sequence of information fraction

Πj to be 0.432, 0.757, 0.947, and 1.

Table F.18: The example illustrates the use of the constrained boundaries algorithm where
we revised our monitoring boundary (highlighted in yellow) at each interim analysis based on
the observed statistical information estimated from the logrank test statistic. Horizontally,
the second and third row of the table correspond to the true observed statistical information
at each interim analysis. The diagonal reflects the revised monitoring boundary for each
consecutive interim analysis as we observed the estimated statistical information relative
to the planned amount of statistical information. (b) This approach only adjusts the final
critical value at the end of the trial while holding fixed the earlier boundaries.

(a)
j Orig. 1 2 3 4 (b)

Ij 121.94 208.46 261.97 275.22
Πj 0.46 0.79 0.99 1.04

1 114.26 0.43 3.134 3.096 3.096 3.096 3.096 3.1335
Upp. boundary 2 200.11 0.76 2.368 2.368 2.330 2.330 2.330 2.3678

Z statistic 3 250.12 0.95 2.118 2.118 2.118 2.030 2.030 2.1179
4 264.23 1.00 2.061 2.061 2.061 2.061 2.203 2.055
1 114.26 0.43 0.035 0.039 0.039 0.039 0.039 0.035

Error Spending 2 200.11 0.76 0.371 0.371 0.410 0.410 0.410 0.370
Scale 3 250.12 0.95 0.797 0.797 0.799 0.958 0.958 0.799

4 264.23 1.00 1.000 1.000 1.000 1.000 1.000 1.000

At the first interim analysis, our observed statistical information at year 2 is 121.94 in-

stead of 114.2607, with Π̂1 = 0.46 based on our pre-specified maximal statistical information.

By constraining on the future boundaries, our revised boundaries on the Z scale at the first
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analysis time is 3.0961. The proportion of error spent is 0.039 instead of 0.035, translating

to having used up a cumulative α = 0.001.

At the second interim analysis, the statistical information at year 3 is 208.46 with

Π̂2 = 0.79 using 264.2263 as our maximum statistical information. Holding fixed the revised

boundaries from the past analyses, as well as the future boundaries, our revised oboundary

at the second analysis is now 2.3303. The proportion of error spent is now 0.41α. In other

words, we have spend a cumulative error of 0.001 + 0.009275 ≈ 0.01025.

At the third interim analysis, our observed statistical information is 261.97, with Π̂3 =

0.99 when assuming 264.2263 as our maximum statistical information. Our revised boundary

for the third analysis is 2.0304. The proportion of error spent is now 0.958 with a cumulative

error of 0.02396 spent. At this analysis, it is possible to terminate the trial since more than

95% of our error is used up. If we chose to stop at the third interim analysis, this leads to a

revised critical value of 2.0075 instead. Had we choose to continue and stop at the maximum

planned calendar time of 5, then our observed statistical information is more than what was

pre-specified (275.22). This leads to our revised, final, critical value to be 2.203, which is

more extreme than our original final critical value.

We can apply the alternative strategy (b) by keeping our boundaries fixed (defined on

the Z statistic scale) at the first three analyses, and only adjust the final boundary value to

account for the observed sequence of information growth over the course of the trial. Design

assumptions are revised at the end of the trial by using the observed sequence of statistical

information with respect to the true maximum statistical information based on the final

analysis (Column (b) in Table F.18). Such application will give rise to a slightly different

final critical value relative to approach (a).

F.4.3 Prespecified Boundaries Based on Equally Spaced Information Growth

The monitoring boundaries as constructed based on either the Z or E scale (or other scales)

can be used to reflect the degree of conservatism/anti-conservatism at interim analyses. We

considered the Pocock monitoring boundaries with a total of three equally spaced analyses
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Table F.19: Various monitoring boundaries presented based on the assumption of either the
calendar time of analyses correspond to equally spaced information time or equally spent α
on the error spending scale. All monitoring boundaries are calibrated with respect to OBF
and constrained to maintain the same maximal statistical information.

Equal Information Π Unified family E
Three Analyses Four Analyses Three Analyses Four Analyses

Time Πj OBF POC HP OBF POC HP OBF POC OBF POC
Power 0.975 0.959 0.976 0.975 0.956 0.976 0.975 0.965 0.975 0.964

U
pp

er
Z

t = 2 1/4 - - - 4.049 2.361 3.090 - - 3.460 2.498

t = 3 1/3 3.471 2.289 3.090 - - - 3.193 2.394 - -
1/2 - - - 2.863 2.361 3.090 - - 2.811 2.407

t = 4 2/3 2.454 2.289 3.090 - - - 2.493 2.294 - -
3/4 - - - 2.337 2.361 3.090 - - 2.378 2.321

t = 5 1 2.004 2.289 1.970 2.024 2.361 1.976 2.001 2.200 2.020 2.245

Er
ro
r
Sp

en
t t = 2 1/4 - - - 0.001 0.364 0.040 - - 0.011 0.250

t = 3 1/3 0.010 0.441 0.040 - - - 0.028 0.333 - -
1/2 - - - 0.084 0.631 0.073 - - 0.105 0.500

t = 4 2/3 0.286 0.759 0.073 - - - 0.268 0.667 - -
3/4 - - - 0.418 0.835 0.101 - - 0.393 0.750

t = 5 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
HP: Haybittle-Peto

for illustration. We first presume three equally spaced analysis on the calendar time (with

equal statistical information). On the information based scale, our Z statistic corresponds

to ±2.289 at all calendar time (highlighted in yellow) in Table F.19. On the E scale (a

1-1 mapping from the Z scale to the cumulative amount of error spent), our cumulative

proportion of error spent at each analysis translates to 44.1%, 75.9%, and 100%.

Clinical trialists may alternatively choose to plan the same study using the Lan-DeMets

error spending function using the Pocock monitoring boundary. Thus, on the error spending

scale, we presumably spend an equal amount of error at each calendar time, therefore our

cumulative error is thus 33.3%, 66.7%, and 100% (highlighted in light blue) in Table F.19.

However, conversion of the error spending scale to the Z scale results in slightly different

monitoring rule (2.394, 2.294, and 2.200 at the first, second, and third analysis) as compared

to the above monitoring boundaries presuming equally spaced statistical information defined

on the Z scale based on the calendar time. This difference in monitoring rule translates to

requiring a more extreme test statistic at the first interim analysis relative to the “fixed” Z
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statistic, as would be obtained based on an equal, information-based Pocock design. Under

the null hypothesis, and additional assumptions, either scale should ideally maintain control

of the overall Type 1 error under the strong null setting.

The OBF monitoring boundary, as defined on the Z statistic scale, tends to be more con-

servative when assuming an the equally spaced, information scale as compared to defining it

on the error spending scale (E) in RCTdesign. On the information scale, when the informa-

tion fraction Π < 0.5, the OBF monitoring boundary (defined on the Z statistic scale) tends

to be more extreme. Therefore, the (cumulative) error spent at earlier interim analysis is

extremely small relative to the OBF boundary derived on the error spending scale. For an

OBF design with a total of four equally spaced analyses, the cumulative proportion of error

is 0.418 when we are 3/4 of the way through the trial (highlighted in pink in Table F.19).

Compared to the boundaries defined on the unified family of E scale, the cumulative error

is only 0.393, with a more extreme Z statistic relative to the OBF design planned directly

using the information scale.

The Haybittle-Peto (HP) boundary mimics some form of Pocock design, by the use of

an extremely conservative boundary even at later interim analysis. The extreme boundary

at later interim analysis makes it harder to stop the trial even when accumulated data may

have demonstrated convincing evidence of efficacy/futility. As such, the critical value at the

final analysis for the HP design tends to be similar to conducting a fixed sample design with

the same maximum statistical information.

F.4.4 Results for Recalibrated Boundaries Based on Naïve Information Growth

Under the strong null hypothesis, the revised final boundaries tend to be more extreme

than the original critical boundaries if the overall Type 1 error without calibration is anti-

conservative. Likewise, the revised boundaries tend to be less extreme than the original

critical boundaries at the final analysis when the overall Type 1 error is conservative.

The test statistics, namely, ZLR, ZNA(t), and ZRMS, tend to be less extreme than the

final boundaries of the original monitoring rule under most scenarios except for D. This
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observation is consistent when the overall Type 1 error for the pre-specified rule for the

corresponding test statistic is rejecting less often than the nominal α. In particular, ZNA(t)

tends to reject more often for Scenario D under the Pocock monitoring rule designed us-

ing the unified family specified either on the statistical information or error spending scale

(Table F.20 & F.21).

Thus, the recalibrated final boundaries for ZNA(t) must be more extreme than, for ex-

ample, 2.2895, when presuming an equally spaced, information monitoring boundary. We

note that while ZNA(t) does not have an independent increment structure when performing

the timing analysis at different monitoring time, and changing the analysis, under the strong

null hypothesis, we observe a higher probability of rejecting the null hypothesis. When us-

ing the naïve linear combination statistic (that does not have independent increments), and

presuming an equally spaced information growth, the final boundary of the GSD requires

mild correction to obtain a fixed level α = 0.05.

For the quadratic test statistic, we perform the analysis by computing the p-value using

the χ2
2 distribution at the interim analyses, and then back transforming this computed p-

value, using the inverse normal distribution Φ−1(p), to the “Z”-statistic scale. We then

compare this “Z-statistic” obtained with our monitoring boundaries to evaluate whether we

have crossed the monitoring boundaries. This naïve approach tends to lead to an inflated

nominal Type 1 error, which can be avoided by recalibrating our final critical value to ensure

a fixed Type 1 error rate of α.

Table F.22 and F.23 show the recalibrated results under the weak null hypothesis for

scenarios A-F based on naïve information growth.
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Table F.20: Original and recalibrated boundaries to ensure a fixed overall Type 1 error
for various test statistics under the different monitoring rules for survival curves that are
stochastically ordered without true crossings over the first five years based on naïve infor-
mation growth.

Three Analyses Four Analyses

OBF OBFE POC POCE HP OBF OBFE POC POCE HP

O
rig

in
al

Π = 1/4 4.0486 3.4599 2.3613 2.4979 3.0902
Π = 1/3 3.4711 3.1929 2.2895 2.3941 3.0902
Π = 1/2 2.8628 2.8113 2.3613 2.4073 3.0902
Π = 2/3 2.4544 2.4935 2.2895 2.2937 3.0902
Π = 3/4 2.3375 2.3782 2.3613 2.3209 3.0902
Π = 1 2.0040 2.0009 2.2895 2.2002 1.9704 2.0243 2.0196 2.3613 2.2451 1.9759

Sc
en

ar
io

A

ZLR 1.9939 1.9906 2.0937 2.0440 1.9921 1.9981 1.9976 2.2539 2.1486 1.9979
ZNA 1.9931 1.9908 2.2387 2.1296 1.9863 2.0197 2.0196 2.3447 2.2266 1.9945
ZRMS 1.9874 1.9874 2.0782 2.0463 1.9876 1.9913 1.9930 2.2119 2.1361 1.9935
ZNA(2, t) 2.0123 2.0123 2.1176 2.0615 2.0129 2.0170 2.0204 2.2118 2.1347 2.0187
ZOLS Fixed 2.0040 2.0092 2.3550 2.2414 1.9855
ZN
OLS 2.0069 2.0069 2.1206 2.0689 2.0072

ZS
OLS 2.0024 2.0009 2.2989 2.1940 1.9871

ZQuad 2.0625 2.0625 2.4872 2.3633 2.0050

Sc
en

ar
io

B

ZLR 1.9600 1.9605 2.0248 1.9982 1.9615 1.9680 1.9695 2.1468 2.0831 1.9660
ZNA 1.9607 1.9562 2.1271 2.0944 1.9414 1.9936 1.9817 2.2685 2.1824 1.9457
ZRMS 1.9666 1.9677 2.0428 2.0031 1.9691 1.9723 1.9727 2.1434 2.0869 1.9723
ZNA(2, t) 1.9593 1.9590 2.0868 2.0445 1.9593 1.9819 1.9620 2.1757 2.1290 1.9597
ZOLS Fixed 1.9811 1.9774 2.2028 2.1205 1.9560
ZN
OLS 1.9555 1.9557 2.0760 2.0325 1.9558

ZS
OLS 1.9698 1.9698 2.2066 2.1400 1.9609

ZQuad 2.0340 2.0369 2.5609 2.3807 1.9694

Sc
en

ar
io

C

ZLR 1.9736 1.9725 2.0546 2.0249 1.9725 1.9769 1.9817 2.1947 2.1192 1.9822
ZNA 1.9523 1.9511 2.0742 2.0303 1.9278 1.9791 1.9702 2.1297 2.0954 1.9305
ZRMS 1.9605 1.9586 2.1280 2.0757 1.9586 1.9873 1.9926 2.2703 2.1819 1.9778
ZNA(2, t) 1.9678 1.9655 2.0897 2.0536 1.9632 1.9854 1.9779 2.1366 2.1012 1.9692
ZOLS Fixed 2.0194 2.0105 2.2846 2.1913 1.9909
ZN
OLS 2.0050 2.0031 2.1829 2.1122 1.9789

ZS
OLS 2.0164 2.0120 2.2456 2.1788 1.9857

ZQuad 2.0841 2.0774 2.6446 2.4002 2.0063

ZN
OLS: Non-standardized form of the linear composite statistic UN/

√
Var(UN ).

ZS
OLS: Standardized form of the linear composite statistic US/

√
Var(US) where the variance estimator is 2

by time 5.
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Table F.21: Original and recalibrated boundaries to ensure a fixed overall Type 1 error for
various test statistics under the different monitoring rules for crossing survival curves based
on naïve information growth.

Three Analyses Four Analyses

OBF OBFE POC POCE HP OBF OBFE POC POCE HP

O
rig

in
al

Π = 1/4 4.0486 3.4599 2.3613 2.4979 3.0902
Π = 1/3 3.4711 3.1929 2.2895 2.3941 3.0902
Π = 1/2 2.8628 2.8113 2.3613 2.4073 3.0902
Π = 2/3 2.4544 2.4935 2.2895 2.2937 3.0902
Π = 3/4 2.3375 2.3782 2.3613 2.3209 3.0902
Π = 1 2.0040 2.0009 2.2895 2.2002 1.9704 2.0243 2.0196 2.3613 2.2451 1.9759

Sc
en

ar
io

D

ZLR 2.0109 2.0088 2.2581 2.1722 1.9931 2.0485 2.0426 2.5573 2.3487 2.0069
ZNA 2.0274 2.0228 2.3220 2.2603 1.9771 2.0822 2.0785 2.5967 2.3456 1.9890
ZRMS 1.9951 1.9922 2.1472 2.0987 1.9860 2.0084 2.0062 2.3300 2.2438 1.9954
ZNA(2, t) 1.9989 1.9989 2.1221 2.0698 1.9936 2.0137 2.0068 2.2328 2.1382 1.9989
ZOLS Fixed 2.0470 2.0451 2.5325 2.3393 2.0170
ZN
OLS 1.9930 1.9915 2.1224 2.0682 1.9899

ZS
OLS 2.0508 2.0438 2.4555 2.3155 2.0068

ZQuad 2.0656 2.0621 2.5189 2.3707 2.0041

Sc
en

ar
io

E

ZLR 1.9831 1.9794 2.1015 2.0654 1.9718 2.0023 1.9998 2.2973 2.1744 1.9863
ZNA 1.9477 1.9430 2.1301 2.0791 1.9069 1.9947 1.9776 2.2000 2.1362 1.9160
ZRMS 1.9710 1.9692 2.0932 2.0499 1.9611 1.9898 1.9926 2.3017 2.1710 1.9810
ZNA(2, t) 1.9561 1.9561 2.1272 2.0444 1.9548 1.9581 1.9578 2.1543 2.0909 1.9561
ZOLS Fixed 1.9848 1.9787 2.2615 2.1903 1.9591
ZN
OLS 1.9688 1.9677 2.1529 2.0885 1.9631

ZS
OLS 1.9790 1.9784 2.2295 2.1556 1.9566

ZQuad 2.0465 2.0515 2.3748 2.2966 1.9773

Sc
en

ar
io

F

ZLR 1.9959 1.9957 2.1021 2.0613 1.9957 2.0046 2.0046 2.2194 2.1379 2.0046
ZNA 1.8870 1.8827 2.0324 1.9877 1.8649 1.9141 1.9082 2.0229 2.0049 1.8657
ZRMS 2.0058 2.0041 2.1660 2.1016 1.9969 2.0243 2.0225 2.3163 2.2143 2.0027
ZNA(2, t) 1.9671 1.9645 2.1079 2.0527 1.9630 1.9913 1.9913 2.1324 2.0902 1.9631
ZOLS Fixed 2.0221 2.0232 2.2924 2.2105 2.0006
ZN
OLS 2.0343 2.0289 2.1916 2.1495 2.0146

ZS
OLS 2.0247 2.0221 2.2663 2.1723 1.9968

ZQuad 2.0228 2.0189 2.6013 2.4163 1.9869
E represents the error spending version of the boundary shape describing specific class of monitoring rules.
In this case, the OBF monitoring boundary specified on the Z statistic scale gives a boundary shape
function different from that specified on the error spending scale.
ZN
OLS: Non-standardized form of the linear composite statistic UN/

√
Var(UN ).

ZS
OLS: Standardized form of the linear composite statistic US/

√
Var(US) where the variance estimator is 2

by time 5.
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Table F.22: Probability of rejecting the weak null hypothesis for survival curves that are
stochastically ordered without true crossings over the first five years based on naïve, equally
spaced information growth with boundaries calibrated to reject the strong null hypothesis
at a fixed 5% error rate for the different test statistics and monitoring rules.

Alt Hypothesis

OBF OBF (Error) Pocock Pocock(Error) Haybittle-Peto
Overall/Std/Trt Overall/Std/Trt Overall/Std/Trt Overall/Std/Trt Overall/Std/Trt

Sc
en
ar
io

A

ZLR 68.17/0.26/67.91 77.35/0.26/77.09 94.79/0.20/94.59 93.70/0.24/93.46 80.29/0.26/80.03
ZNA 4.87/2.22/2.65 4.91/2.23/2.68 5.62/1.42/4.20 5.46/1.70/3.76 5.00/2.27/2.73
ZRMS 75.41/0.00/75.41 79.46/0.00/79.46 94.80/0.00/94.80 93.71/0.00/93.71 81.05/0.00/81.05
ZNA(2, t) 27.44/0.04/27.40 27.45/0.04/27.41 25.93/0.06/25.87 26.72/0.06/26.66 27.40/0.04/27.36
ZOLS Fixed 88.71/88.71/0.00 88.60/88.60/0.00 78.38/78.36/0.02 82.09/82.09/0.00 89.17/89.17/0.00
ZN

OLS 24.37/0.05/24.32 24.39/0.05/24.34 23.54/0.06/23.48 23.82/0.07/23.75 24.40/0.05/24.35
ZS

OLS 88.84/88.78/0.06 88.97/88.83/0.14 81.74/80.06/1.68 84.58/83.40/1.18 89.32/89.13/0.19
ZQuad 100/0.00/100 100/0.00/100 100/0.00/100 100/0.00/100 100/0.00/100
ZLR[J = 4] 87.35/0.25/87.10 91.44/0.24/91.20 98.60/0.05/98.55 98.16/0.12/98.04 93.12/0.23/92.89
ZNA[J = 4] 5.11/2.14/2.97 5.74/2.14/3.60 12.60/1.08/11.52 11.19/1.36/9.83 6.70/2.21/4.49
ZRMS[J = 4] 89.65/0.00/89.65 94.03/0.00/94.03 99.30/0.00/99.30 99.00/0.00/99.00 95.77/0.00/95.77
ZNA(2, t)[J = 4] 27.36/0.04/27.32 27.40/0.04/27.36 26.26/0.05/26.21 26.71/0.05/26.66 27.55/0.04/27.51

Sc
en
ar
io

B

ZLR 99.97/0.00/99.97 99.99/0.00/99.99 100/0.00/100 100/0.00/100 100/0.00/100
ZNA 5.00/1.94/3.06 5.09/1.96/3.13 6.77/1.44/5.33 6.24/1.51/4.73 5.22/2.09/3.13
ZRMS 96.49/0.00/96.49 97.59/0.00/97.59 99.82/0.00/99.82 99.72/0.00/99.72 98.07/0.00/98.07
ZNA(2, t) 45.47/0.00/45.47 45.46/0.00/45.46 43.30/0.00/43.30 43.84/0.00/43.84 45.48/0.00/45.48
ZOLS Fixed 75.87/75.87/0.00 75.97/75.97/0.00 66.93/66.89/0.04 70.25/70.23/0.02 76.82/76.82/0.00
ZN

OLS 22.81/0.07/22.74 22.81/0.07/22.74 27.77/0.05/27.72 26.48/0.05/26.43 22.67/0.07/22.60
ZS

OLS 76.49/76.21/0.28 76.67/76.20/0.47 69.94/66.61/3.33 72.15/69.46/2.69 77.15/76.59/0.56
ZQuad 100/0.00/100 100/0.00/100 100/0.00/100 100/0.00/100 100/0.00/100
ZLR[J = 4] 100/0.00/100 100/0.00/100 100/0.00/100 100/0.00/100 100/0.00/100
ZNA[J = 4] 5.60/1.83/3.77 7.30/1.86/5.44 18.99/1.08/17.91 16.62/1.25/15.37 9.57/2.06/7.51
ZRMS[J = 4] 99.54/0.00/99.54 99.84/0.00/99.84 100/0.00/100 100/0.00/100 99.96/0.00/99.96
ZNA(2, t)[J = 4] 45.62/0.00/45.62 45.79/0.00/45.79 43.25/0.00/43.25 43.56/0.00/43.56 46.02/0.00/46.02

Sc
en
ar
io

C

ZLR 100/0.00/100 100/0.00/100 100/0.00/100 100/0.00/100 100/0.00/100
ZNA 7.00/1.51/5.49 7.63/1.51/6.12 15.64/1.06/14.58 14.38/1.22/13.16 7.63/1.68/5.95
ZRMS 100/0.00/100 100/0.00/100 100/0.00/100 100/0.00/100 100/0.00/100
ZNA(2, t) 95.40/0.00/95.40 95.43/0.00/95.43 94.64/0.00/94.64 94.91/0.00/94.91 95.47/0.00/95.47
ZOLS Fixed 8.88/8.78/0.10 8.97/8.87/0.10 7.79/5.28/2.51 8.33/6.50/1.83 9.27/9.17/0.10
ZN

OLS 43.11/0.01/43.10 43.71/0.01/43.70 65.06/0.00/65.06 62.54/0.01/62.53 38.16/0.01/38.15
ZS

OLS 14.21/8.82/5.39 17.26/8.86/8.40 37.70/5.72/31.98 35.08/6.66/28.42 18.74/9.25/9.49
ZQuad 100/0.00/100 100/0.00/100 100/0.00/100 100/0.00/100 100/0.00/100
ZLR[J = 4] 100/0.00/100 100/0.00/100 100/0.00/100 100/0.00/100 100/0.00/100
ZNA[J = 4] 13.55/1.41/12.14 21.59/1.42/20.17 50.51/0.72/49.79 46.85/0.90/45.95 28.00/1.63/26.37
ZRMS[J = 4] 100/0.00/100 100/0.00/100 100/0.00/100 100/0.00/100 100/0.00/100
ZNA(2, t)[J = 4] 95.31/0.00/95.31 95.39/0.00/95.39 94.83/0.00/94.83 94.98/0.00/94.98 95.49/0.00/95.49

ZN
OLS: Non-standardized form of the linear composite statistic UN/

√
Var(UN ).

ZS
OLS: Standardized form of the linear composite statistic US/

√
Var(US) where the variance estimator is 2

by time 5.
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Table F.23: Probability of rejecting the weak null hypothesis for crossing survival curves
based on naïve, equally spaced information growth with boundaries calibrated to reject the
strong null hypothesis at a fixed 5% error rate for the different test statistics and monitoring
rules.

Alt Hypothesis

OBF OBF (Error) Pocock Pocock(Error) Haybittle-Peto
Overall/Std/Trt Overall/Std/Trt Overall/Std/Trt Overall/Std/Trt Overall/Std/Trt

Sc
en
ar
io

D

ZLR 99.65/33.32/66.33 99.92/24.16/75.76 100/5.83/94.17 100/7.07/92.93 99.97/21.07/78.90
ZNA 99.89/99.89/0.00 99.89/99.89/0.00 99.80/99.75/0.05 99.82/99.79/0.03 99.87/99.87/0.00
ZRMS 80.38/0.93/79.45 87.30/0.93/86.37 97.98/0.50/97.48 97.51/0.60/96.91 89.29/0.92/88.37
ZNA(2, t) 52.59/0.00/52.59 52.59/0.00/52.59 51.02/0.00/51.02 51.73/0.00/51.73 52.82/0.00/52.82
ZOLS 100/100/0.00 100/100/0.00 100/100/0.00 100/100/0.00 100/100/0.00
ZN

OLS 34.61/0.02/34.59 34.58/0.02/34.56 38.54/0.01/38.53 37.86/0.01/37.85 34.30/0.02/34.28
ZS

OLS 100/99.98/0.02 100/99.92/0.08 100/98.95/1.05 100/99.17/0.83 100/99.88/0.12
ZQuad 100/0.00/100 100/0.00/100 100/0.00/100 100/0.00/100 100/0.00/100
ZLR[J = 4] 100/9.57/90.43 100/4.59/95.41 100/0.40/99.60 100/0.55/99.45 100/2.67/97.33
ZNA[J = 4] 99.90/0.79/99.11 99.89/2.96/96.93 99.82/16.66/83.16 99.86/14.05/85.81 99.89/5.56/94.33
ZRMS[J = 4] 96.84/0.61/96.23 98.88/0.32/98.56 99.93/0.03/99.90 99.90/0.03/99.87 99.40/0.21/99.19
ZNA(2, t)[J = 4] 52.37/0.00/52.37 52.80/0.00/52.80 50.12/0.00/50.12 51.69/0.00/51.69 53.01/0.00/53.01

Sc
en
ar
io

E

ZLR 91.54/2.29/89.25 95.66/1.98/93.68 99.74/0.52/99.22 99.63/0.68/98.95 96.72/1.86/94.86
ZNA 99.88/99.88/0.00 99.89/99.89/0.00 99.84/99.83/0.01 99.86/99.85/0.01 99.84/99.84/0.00
ZRMS 72.90/0.88/72.02 81.04/0.88/80.16 96.55/0.55/96.00 95.64/0.65/94.99 83.64/0.90/82.74
ZNA(2, t) 30.69/0.06/30.63 30.67/0.06/30.61 28.81/0.05/28.76 29.59/0.05/29.54 30.94/0.06/30.88
ZOLS 100/100/0.00 100/100/0.00 100/100/0.00 100/100/0.00 100/100/0.00
ZN

OLS 17.45/16.07/1.38 17.67/16.08/1.59 19.52/12.12/7.40 19.77/13.54/6.23 17.50/16.18/1.32
ZS

OLS 100/99.99/0.01 100/99.99/0.01 100/99.63/0.37 100/99.71/0.29 100/99.98/0.02
ZQuad 100/0.00/100 100/0.00/100 100/0.00/100 100/0.00/100 100/0.00/100
ZLR[J = 4] 98.63/1.12/97.51 99.25/0.55/98.70 99.96/0.03/99.93 99.95/0.08/99.87 99.52/0.36/99.16
ZNA[J = 4] 99.88/99.69/0.19 99.89/98.87/1.02 99.87/90.04/9.83 99.91/91.91/8.00 99.86/97.26/2.60
ZRMS[J = 4] 94.47/0.64/93.83 97.72/0.35/97.37 99.87/0.03/99.84 99.79/0.06/99.73 98.95/0.23/98.72
ZNA(2, t)[J = 4] 30.90/0.06/30.84 31.07/0.06/31.01 30.78/0.05/30.73 30.71/0.05/30.66 31.23/0.06/31.17

Sc
en
ar
io

F

ZLR 95.37/0.00/95.37 96.51/0.00/96.51 99.46/0.00/99.46 99.33/0.00/99.33 96.54/0.00/96.54
ZNA 99.99/99.99/0.00 99.99/99.99/0.00 99.98/99.98/0.00 99.99/99.99/0.00 100/100/0.00
ZRMS 55.45/0.82/54.63 64.37/0.82/63.55 89.54/0.49/89.05 87.41/0.60/86.81 67.87/0.83/67.04
ZNA(2, t) 4.99/1.93/3.06 5.06/1.95/3.11 4.87/1.87/3.00 5.03/1.94/3.09 5.04/1.97/3.07
ZOLS 99.96/99.96/0.00 99.96/99.96/0.00 99.88/99.88/0.00 99.89/99.89/0.00 99.96/99.96/0.00
ZN

OLS 96.63/96.63/0.00 96.64/96.64/0.00 95.37/95.31/0.06 95.74/95.70/0.04 96.74/96.74/0.00
ZS

OLS 99.96/99.96/0.00 99.96/99.96/0.00 99.89/99.88/0.01 99.91/99.91/0.00 99.96/99.96/0.00
ZQuad 100/0.00/100 100/0.00/100 100/0.03/99.97 100/0.00/100 100/0.00/100
ZLR[J = 4] 98.09/0.00/98.09 98.49/0.00/98.49 99.73/0.00/99.73 99.67/0.00/99.67 97.89/0.00/97.89
ZNA[J = 4] 99.99/99.99/0.00 99.99/99.99/0.00 99.99/98.33/1.66 99.99/98.84/1.15 100/99.90/0.10
ZRMS[J = 4] 80.38/0.77/79.61 87.49/0.70/86.79 98.18/0.17/98.01 97.55/0.22/97.33 90.58/0.64/89.94
ZNA(2, t)[J = 4] 4.97/1.93/3.04 4.93/1.90/3.03 5.67/1.65/4.02 5.50/1.76/3.74 5.08/1.97/3.11

ZN
OLS: Non-standardized form of the linear composite statistic UN/

√
Var(UN ).

ZS
OLS: Standardized form of the linear composite statistic US/

√
Var(US) where the variance estimator is 2

by time 5.
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F.4.5 Results for Recalibrated Boundaries Based on Average Information

Growth

In this section, we present results after we recalibrated the final critical value of the mon-

itoring rules based on the assumption of true average information growth for the various

test statistics with independent increments. We assume the true average information growth

under the null hypothesis for all the monitoring rules. Adjustments to our interim critical

values of the monitoring rules are not performed even though the interim statistical infor-

mation may differ from trial monitoring in this section. Instead, the critical values at the

final analysis are adjusted to calibrate the overall Type 1 error rate under the strong null.

Additionally, we considered recalibration of the final critical value based on the assumption

of an equal amount of error spent at each interim analysis.

For test statistics that do not have independent increments, we assume the monitoring

boundaries to be based on the information growth of the log rank test statistic. The infor-

mation growth for the NA(t) is based on the average information growth based on NA(2, t).

The information growth for the non sequential standardized OLS statistic, ZFixed
OLS , and the

quadratic combination statistic are assumed to follow the information growth based on the

standardized OLS statistic.

Table F.26 and F.27 show the calibrated boundaries based on average information growth.

Table F.24 and F.25 show the recalibrated results under the weak null hypothesis for scenarios

A-F based on average information growth.
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Table F.24: Probability of rejecting the weak null hypothesis for survival curves that are
stochastically ordered without true crossings over the first five years based on average infor-
mation growth with boundaries calibrated to reject the strong null hypothesis at a fixed 5%
error rate for the different test statistics and monitoring rules.

Alt Hypothesis

OBF Pocock Equal Error
Overall/Std/Trt Overall/Std/Trt Overall/Std/Trt

Sc
en
ar
io

A

ZLR 93.89/0.16/93.73 95.90/0.06/95.84 93.11/0.24/92.87
ZNA 5.67/1.47/4.20 6.29/1.27/5.02 5.29/1.73/3.56
ZRMS 94.09/0.00/94.09 96.03/0.00/96.03 93.19/0.00/93.19
ZNA(2, t)∗ 26.08/0.05/26.03 25.55/0.07/25.48 26.68/0.05/26.63
ZOLS Fixed 87.27/87.27/0.00 75.07/75.05/0.02 84.23/84.23/0.00
ZN

OLS 24.00/0.06/23.94 24.31/0.07/24.24 23.88/0.07/23.81
ZS

OLS 87.86/87.61/0.25 79.55/77.69/1.86 85.47/84.42/1.05
ZS

Quad 100/0.00/100 100/0.00/100 100/0.00/100
ZLR[J = 4] 96.25/0.13/96.12 98.74/0.01/98.73 98.00/0.13/97.87
ZNA[J = 4] 6.89/1.43/5.46 13.67/0.92/12.75 11.45/1.34/10.11
ZRMS[J = 4] 97.26/0.00/97.26 99.44/0.00/99.44 98.88/0.00/98.88
ZNA(2, t)[J = 4]∗ 26.09/0.05/26.04 25.32/0.05/25.27 26.70/0.04/26.66

Sc
en
ar
io

B

ZLR 100/0.00/100 100/0.00/100 100/0.00/100
ZNA 6.57/1.30/5.27 7.39/1.07/6.32 6.57/1.46/5.11
ZRMS 99.76/0.00/99.76 99.89/0.00/99.89 99.72/0.00/99.72
ZNA(2, t) 44.48/0.01/44.47 42.42/0.00/42.42 43.96/0.00/43.96
ZOLS Fixed 74.79/74.79/0.00 64.70/64.64/0.06 68.56/68.53/0.03
ZN

OLS 27.73/0.05/27.68 30.26/0.03/30.23 27.16/0.05/27.11
ZS

OLS 75.27/74.71/0.56 68.59/65.13/3.46 71.54/68.92/2.62
ZS

Quad 100/0.00/100 100/0.00/100 100/0.00/100
ZLR[J = 4] 100/0.00/100 100/0.00/100 100/0.00/100
ZNA[J = 4] 9.99/1.28/8.71 20.33/0.82/19.51 18.40/1.18/17.22
ZRMS[J = 4] 99.95/0.00/99.95 100/0.00/100 100/0.00/100
ZNA(2, t)[J = 4] 44.50/0.01/44.49 41.98/0.00/41.98 43.91/0.00/43.91

Sc
en
ar
io

C

ZLR 100/0.00/100 100/0.00/100 100/0.00/100
ZNA 15.04/0.93/14.11 17.87/0.79/17.08 18.04/0.76/17.28
ZRMS 100/0.00/100 100/0.00/100 100/0.00/100
ZNA(2, t) 94.93/0.00/94.93 94.29/0.00/94.29 94.73/0.00/94.73
ZOLS Fixed 8.63/8.50/0.13 7.66/5.07/2.59 8.25/6.40/1.85
ZN

OLS 54.18/0.01/54.17 66.64/0.00/66.64 64.08/0.00/64.08
ZS

OLS 16.15/8.53/7.62 37.96/5.65/32.31 35.91/6.34/29.57
ZS

Quad 100/0.00/100 100/0.00/100 100/0.00/100
ZLR[J = 4] 100/0.00/100 100/0.00/100 100/0.00/100
ZNA[J = 4] 31.32/0.89/30.43 52.60/0.55/52.05 55.08/0.44/54.64
ZRMS[J = 4]∗ 100/0.00/100 100/0.00/100 100/0.00/100
ZNA(2, t)[J = 4] 94.93/0.00/94.93 94.81/0.00/94.81 94.50/0.00/94.50

ZOLS Fixed: OLS statistic based on information growth of US/
√

Var(US) where the variance estimator is 2
by time 5.
ZN
OLS: Non-standardized form of the linear composite statistic UN/

√
Var(UN ).

ZS
OLS: Standardized form of the linear composite statistic US/

√
Var(US) where the variance estimator is 2

by time 5.
ZS
Quad: Assumes the information growth of the standardized form of the linear composite statistic ZS

OLS
where the variance estimator is 2 by time 5 as the information growth for the quadratic statistic.
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Table F.25: Probability of rejecting the weak null hypothesis for crossing survival curves
based on average information growth with boundaries calibrated to reject the strong null
hypothesis at a fixed 5% error rate for the different test statistics and monitoring rules.

Alt Hypothesis

OBF Pocock Equal Error
Overall/Std/Trt Overall/Std/Trt Overall/Std/Trt

Sc
en
ar
io

D

ZLR 100/12.16/87.84 100/5.07/94.93 100/8.07/91.93
ZNA 99.88/99.87/0.01 99.79/99.73/0.06 99.84/99.81/0.03
ZRMS 94.60/0.79/93.81 98.19/0.37/97.82 97.02/0.63/96.39
ZNA(2, t) 51.10/0.00/51.10 49.43/0.00/49.43 51.55/0.00/51.55
ZOLS Fixed 100/100/0.00 100/100/0.00 100/100/0.00
ZN

OLS 39.22/0.01/39.21 40.71/0.01/40.70 38.31/0.01/38.30
ZS

OLS 100/99.94/0.06 100/98.92/1.08 100/99.25/0.75
ZS

Quad 100/0.00/100 100/0.00/100 100/0.00/100
ZLR[J = 4] 99.99/6.98/93.01 100/0.40/99.60 100/0.61/99.39
ZNA[J = 4] 99.89/98.69/1.20 99.82/82.92/16.90 99.85/84.50/15.35
ZRMS[J = 4] 97.92/0.45/97.47 99.92/0.02/99.90 99.89/0.03/99.86
ZNA(2, t)[J = 4] 51.10/0.00/51.10 49.75/0.00/49.75 51.06/0.00/51.06

Sc
en
ar
io

E

ZLR 99.23/0.94/98.29 99.77/0.36/99.41 99.66/0.63/99.03
ZNA 99.87/99.86/0.01 99.82/99.79/0.03 99.85/99.84/0.01
ZRMS 93.44/0.69/92.75 97.09/0.38/96.71 95.59/0.60/94.99
ZNA(2, t) 29.86/0.06/29.80 27.47/0.05/27.42 29.13/0.05/29.08
ZOLS Fixed 100/100/0.00 100/100/0.00 100/100/0.00
ZN

OLS 18.48/14.43/4.05 18.54/10.25/8.29 19.64/13.24/6.40
ZS

OLS 100/99.99/0.01 100/99.62/0.38 100/99.70/0.30
ZS

Quad 100/0.00/100 100/0.00/100 100/0.00/100
ZLR[J = 4] 99.52/0.48/99.04 99.97/0.03/99.94 99.95/0.09/99.86
ZNA[J = 4] 99.89/99.08/0.81 99.87/89.50/10.37 99.85/89.69/10.16
ZRMS[J = 4] 97.93/0.35/97.58 99.87/0.02/99.85 99.78/0.06/99.72
ZNA(2, t)[J = 4] 29.86/0.06/29.80 30.37/0.05/30.32 30.83/0.05/30.78

Sc
en
ar
io

F

ZLR 99.32/0.00/99.32 99.61/0.00/99.61 99.38/0.00/99.38
ZNA 99.98/99.98/0.00 99.94/99.94/0.00 99.92/99.92/0.00
ZRMS 86.72/0.44/86.28 91.31/0.19/91.12 87.83/0.59/87.24
ZNA(2, t) 4.92/1.92/3.00 5.02/1.94/3.08 4.97/1.92/3.05
ZOLS Fixed 99.96/99.96/0.00 99.88/99.88/0.00 99.90/99.90/0.00
ZN

OLS 96.35/96.35/0.00 95.02/94.95/0.07 95.69/95.64/0.05
ZS

OLS 99.96/99.96/0.00 99.88/99.87/0.01 99.91/99.91/0.00
ZS

Quad 100/0.00/100 100/0.03/99.97 100/0.00/100
ZLR[J = 4] 99.38/0.00/99.38 99.76/0.00/99.76 99.70/0.00/99.70
ZNA[J = 4] 99.98/99.93/0.05 99.95/98.07/1.88 99.85/97.33/2.52
ZRMS[J = 4] 92.64/0.39/92.25 98.30/0.03/98.27 97.47/0.22/97.25
ZNA(2, t)[J = 4] 4.92/1.92/3.00 5.67/1.65/4.02 5.95/1.47/4.48

ZOLS Fixed: OLS statistic based on information growth of US/
√

Var(US) where the variance estimator is 2
by time 5.
ZN
OLS: Non-standardized form of the linear composite statistic UN/

√
Var(UN ).

ZS
OLS: Standardized form of the linear composite statistic US/

√
Var(US) where the variance estimator is 2

by time 5.
ZS
Quad: Assumes the information growth of the standardized form of the linear composite statistic ZS

OLS
where the variance estimator is 2 by time 5 as the information growth for the quadratic statistic.
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Table F.26: Original and recalibrated boundaries to ensure a fixed overall Type 1 error
for various test statistics under the different monitoring rules for survival curves that are
stochastically ordered without true crossings over the first five years when presuming true
average information growth.

OBF (True Avg Info) POC POC (Equal Error Spent)

Zt=2 Zt=3 Zt=4 Zt=5 ZRev
t=5 Zt ZRev

t ZRev
t=2 ZRev

t=3 ZRev
t=4 ZRev

t=5

Sc
en

ar
io

A

ZLR - 2.363 2.114 2.057 2.163 2.161 2.350 - 2.436 2.237 2.042
ZNA - 2.388 2.093 2.053 2.381 2.162 3.071 - 2.446 2.290 2.110
ZRMS - 2.363 2.114 2.057 2.108 2.161 2.262 - 2.435 2.227 2.036
ZNA(2, t) - 2.388 2.093 2.053 2.164 2.162 2.477 - 2.444 2.259 2.056
ZOLS Fixed - 3.729 2.529 1.996 1.994 2.301 2.311 - 2.452 2.341 2.171
ZN
OLS - 2.389 2.094 2.053 2.169 2.163 2.561 - 2.442 2.252 2.058

ZS
OLS - 2.965 2.313 2.024 2.169 2.256 2.561 - 2.442 2.252 2.058

ZQuad - 3.729 2.529 1.996 2.041 2.301 2.453 - 2.447 2.358 2.276
ZLR 3.133 2.367 2.118 2.061 2.176 2.288 2.622 2.543 2.436 2.290 2.126
ZNA 3.626 2.389 2.094 2.053 2.404 2.308 3.071 2.452 2.476 2.372 2.211
ZRMS 3.133 2.367 2.118 2.061 2.118 2.288 2.569 2.540 2.425 2.282 2.116
ZNA(2, t) 3.626 2.389 2.094 2.053 2.168 2.308 2.359 2.452 2.438 2.325 2.141

Sc
en

ar
io

B

ZLR - 2.363 2.114 2.057 2.057 2.161 2.176 - 2.387 2.206 2.017
ZNA - 2.485 2.114 2.051 2.231 2.184 2.400 - 2.366 2.233 2.121
ZRMS - 2.363 2.114 2.057 2.068 2.161 2.175 - 2.391 2.197 2.018
ZNA(2, t) - 2.485 2.114 2.051 2.051 2.184 2.223 - 2.404 2.234 2.048
ZOLS Fixed - 4.406 2.616 1.989 1.965 2.318 2.162 - 2.374 2.240 2.163
ZN
OLS - 2.508 2.125 2.051 2.036 2.189 2.201 - 2.392 2.218 2.048

ZS
OLS - 3.058 2.325 2.021 2.036 2.263 2.201 - 2.392 2.218 2.048

ZQuad - 4.406 2.616 1.989 1.989 2.318 2.479 - 2.397 2.395 2.281
ZLR 3.133 2.368 2.118 2.061 2.057 2.289 2.273 2.473 2.386 2.258 2.115
ZNA 3.956 2.485 2.114 2.051 2.231 2.326 2.512 2.395 2.418 2.342 2.215
ZRMS 3.133 2.368 2.118 2.061 2.068 2.289 2.296 2.470 2.392 2.262 2.112
ZNA(2, t) 3.956 2.485 2.114 2.051 2.051 2.326 2.260 2.395 2.440 2.304 2.135

Sc
en

ar
io

C

ZLR - 2.364 2.114 2.057 2.086 2.161 2.178 - 2.449 2.226 2.031
ZNA - 2.716 2.179 2.042 2.152 2.223 2.200 - 2.141 2.194 2.198
ZRMS - 2.364 2.114 2.057 2.159 2.161 2.341 - 2.412 2.237 2.088
ZNA(2, t) - 2.716 2.179 2.042 2.050 2.223 2.165 - 2.358 2.242 2.083
ZOLS Fixed - 4.530 2.633 1.987 1.995 2.321 2.230 - 2.381 2.304 2.203
ZN
OLS - 2.905 2.250 2.032 2.054 2.247 2.207 - 2.342 2.270 2.159

ZS
OLS - 3.277 2.368 2.014 2.054 2.277 2.207 - 2.342 2.270 2.159

ZQuad - 4.530 2.633 1.987 2.043 2.321 2.479 - 2.369 2.435 2.277
ZLR 3.136 2.368 2.118 2.061 2.100 2.289 2.413 2.505 2.456 2.275 2.111
ZNA 4.642 2.716 2.179 2.042 2.148 2.358 2.197 2.210 2.213 2.291 2.274
ZRMS 3.136 2.368 2.118 2.061 2.182 2.289 2.853 2.493 2.416 2.321 2.176
ZNA(2, t) 4.642 2.716 2.179 2.042 2.050 2.358 2.137 2.210 2.440 2.339 2.170

ZN
OLS: Non-standardized form of the linear composite statistic UN/

√
Var(UN ).

ZS
OLS: Standardized form of the linear composite statistic US/

√
Var(US) where the variance estimator is 2

by time 5.
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Table F.27: Original and recalibrated boundaries to ensure a fixed overall Type 1 error for
various test statistics under the different monitoring rules for crossing survival curves that
are stochastically ordered without true crossings over the first five years when presuming
true average information growth.

OBF (True Avg Info) POC POC (Equal Error Spent)

Zt=2 Zt=3 Zt=4 Zt=5 ZRev
t=5 Zt ZRev

t ZRev
t=2 ZRev

t=3 ZRev
t=4 ZRev

t=5

Sc
en

ar
io

D

ZLR - 2.725 2.254 2.037 2.087 2.232 2.400 - 2.462 2.289 2.138
ZNA - 2.552 2.134 2.049 2.159 2.197 2.503 - 2.381 2.269 2.277
ZRMS - 2.725 2.254 2.037 2.031 2.232 2.246 - 2.463 2.273 2.085
ZNA(2, t) - 2.552 2.134 2.049 2.120 2.197 2.290 - 2.410 2.242 2.081
ZOLS Fixed - 5.073 2.809 1.977 2.006 2.332 2.355 - 2.467 2.378 2.236
ZN
OLS - 2.555 2.136 2.049 2.115 2.198 2.315 - 2.412 2.248 2.082

ZS
OLS - 3.226 2.401 2.011 2.115 2.277 2.315 - 2.412 2.248 2.082

ZQuad - 5.073 2.809 1.977 1.998 2.332 2.389 - 2.382 2.373 2.327
ZLR 3.860 2.726 2.254 2.037 2.089 2.348 2.670 2.530 2.478 2.360 2.236
ZNA 4.442 2.552 2.134 2.049 2.159 2.342 2.660 2.424 2.449 2.360 2.342
ZRMS 3.860 2.726 2.254 2.037 2.032 2.348 2.366 2.539 2.480 2.332 2.172
ZNA(2, t) 4.442 2.552 2.134 2.049 2.120 2.342 2.277 2.424 2.452 2.323 2.165

Sc
en

ar
io

E

ZLR - 2.586 2.201 2.047 2.059 2.211 2.193 - 2.376 2.231 2.093
ZNA - 2.615 2.151 2.047 2.074 2.208 2.250 - 2.238 2.234 2.183
ZRMS - 2.586 2.201 2.047 2.041 2.211 2.197 - 2.392 2.237 2.067
ZNA(2, t) - 2.615 2.151 2.047 2.042 2.208 2.264 - 2.390 2.250 2.085
ZOLS Fixed - 5.141 2.785 1.978 1.954 2.332 2.214 - 2.407 2.301 2.175
ZN
OLS - 2.704 2.190 2.042 2.046 2.223 2.266 - 2.387 2.257 2.102

ZS
OLS - 3.268 2.397 2.011 2.046 2.278 2.266 - 2.387 2.257 2.102

ZQuad - 5.141 2.785 1.978 1.977 2.332 2.325 - 2.341 2.322 2.328
ZLR 3.571 2.587 2.202 2.047 2.068 2.330 2.393 2.524 2.383 2.308 2.173
ZNA 4.640 2.615 2.151 2.047 2.076 2.350 2.258 2.343 2.301 2.336 2.279
ZRMS 3.571 2.587 2.202 2.047 2.043 2.330 2.424 2.528 2.414 2.313 2.162
ZNA(2, t) 4.640 2.615 2.151 2.047 2.042 2.350 2.173 2.343 2.425 2.320 2.134

Sc
en

ar
io

F

ZLR - 2.418 2.134 2.056 2.123 2.176 2.246 - 2.383 2.245 2.079
ZNA - 2.730 2.183 2.041 2.046 2.225 2.125 - 2.161 2.158 2.160
ZRMS - 2.418 2.134 2.056 2.206 2.176 2.447 - 2.377 2.269 2.112
ZNA(2, t) - 2.730 2.183 2.041 2.041 2.225 2.160 - 2.330 2.245 2.099
ZOLS - 4.688 2.666 1.985 1.998 2.324 2.245 - 2.420 2.302 2.197
ZN
OLS - 2.951 2.266 2.029 2.073 2.252 2.233 - 2.347 2.304 2.156

ZS
OLS - 3.315 2.381 2.012 2.073 2.280 2.233 - 2.347 2.304 2.156

ZQuad - 4.688 2.666 1.985 1.995 2.324 2.416 - 2.416 2.361 2.279
ZLR 3.244 2.421 2.137 2.058 2.128 2.301 2.348 2.485 2.380 2.307 2.153
ZNA 4.763 2.730 2.183 2.041 2.046 2.361 2.110 2.191 2.244 2.263 2.250
ZRMS 3.244 2.421 2.137 2.058 2.206 2.301 2.947 2.515 2.406 2.342 2.206
ZNA(2, t) 4.763 2.730 2.183 2.041 2.041 2.361 2.132 2.191 2.383 2.336 2.209

ZN
OLS: Non-standardized form of the linear composite statistic UN/

√
Var(UN ).

ZS
OLS: Standardized form of the linear composite statistic US/

√
Var(US) where the variance estimator is 2

by time 5.
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F.4.6 Results for Recalibrated Boundaries Based on Constrained Boundaries

In Table F.28, the overall Type 1 error rate is inflated mildly for various test statistics when

adjusting the boundaries either by approach (a) or (b) based on the observed statistical

information under the strong null hypothesis. This is observed, particularly for Scenario A

and D when our accrual size is 10,800, to quantify the difference in survival where S(2) ≈ 0.9.

In particular, when the information growth is sufficiently close across consecutive interim

analyses, results from Proschan et al. [1992] suggest that this may lead to an inflation of the

overall Type 1 error even under the null hypothesis. We observed that previously, the Type 1

error rate based on the constrained boundaries approach, when applied to a Pocock stopping

rule, do not necessary conform to the typical 95% CI of 5% Type 1 error of anywhere from

4.58% and 5.43% based on 10,000 simulations.

Occasionally, our nominal Type 1 error rate may be inflated when we monitor the trial

on a calendar basis. This can be a consequence of delayed information growth accumulating

across calendar time, thus resulting in information growth that is too close apart. However,

we can correct for this inflation by choosing to either adjusting the final boundaries, or

recalibrating the monitoring boundary according to a different level α, for the monitoring

boundary of choice, and re-evaluating this revised boundary using simulations to determine

the control of the overall Type 1 error.

We described the latter approach by redefining our boundaries using a smaller α to

maintain the overall Type 1 error rate. This is similar to the notion of Neyman-Pearson

lemma, where we make statistical adjustments to calibrate the overall Type 1 error, while

trying to maintain the desired power under some chosen alternatives. This means that we

reapply the constrained boundaries approach to evaluate the true size of the monitoring

boundaries after shifting the α level of the boundary. We can then evaluate the weak null

hypothesis once our desired overall Type 1 error rate is held at roughly level α = 5%.

Table F.32 and F.33 show the results of such an approach whereby a level α′ monitoring

boundary is prespecified, and the constrained boundaries approach is applied to the simulated
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data to evaluate the overall Type 1 error rate. By adjusting the size of the α′ used to construct

the monitoring boundary, we can maintain the error rate under the string null scenario so

that they are as close to the desired level of α = 5%. This in turn changes the power for

the various test statistics when we applied the same level α′ monitoring rule respectively

to the alternative scenarios A-F (Table F.30 and F.31). Despite being able to control the

overall Type 1 error rate under the strong null, there are limitations since there are inherent

differences in the rate of information growth for the various test statistics. Thus, this makes

it harder to allow us to appropriately compare the boundaries in a fair manner.
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Table F.28: Probability of rejecting the strong null hypothesis according to overall, in favor
of standard of care (Std), or treatment (Trt) for the constrained boundaries method based
on the true information growth monitored on the calendar time scale using the monitoring
boundaries. The Type 1 error rate under the strong null are not all within the 95%CI of a
typical 5% error rate.

Contrained Boundaries Revised Information

OBF (a) OBF (b) Pocock (a) Pocock (b)
Both/Std/Trt Both/Std/Trt Both/Std/Trt Both/Std/Trt

A

ZLR 5.62/2.88/2.74 5.34/2.73/2.61 5.55/2.83/2.72 5.36/2.74/2.62
ZNA(2, t) 6.23/3.24/2.99 5.52/2.89/2.63 6.27/3.26/3.01 6.14/3.15/2.99
ZN
OLS 5.59/2.83/2.76 5.46/2.84/2.62 5.59/2.84/2.75 5.62/2.85/2.77

ZLR[J = 4] 5.62/2.88/2.74 5.38/2.76/2.62 5.46/2.82/2.64 5.45/2.79/2.66

B

ZLR 5.04/2.40/2.64 4.98/2.35/2.63 5.03/2.58/2.45 4.95/2.42/2.53
ZNA(2, t) 5.47/2.69/2.78 4.93/2.45/2.48 5.67/2.89/2.78 5.56/2.78/2.78
ZN
OLS 4.97/2.36/2.61 4.89/2.36/2.53 5.03/2.51/2.52 5.08/2.50/2.58

ZLR[J = 4] 5.05/2.41/2.64 5.02/2.37/2.65 4.91/2.53/2.38 4.99/2.44/2.55

C

ZLR 5.29/2.51/2.78 5.14/2.54/2.60 5.01/2.40/2.61 5.12/2.50/2.62
ZNA(2, t) 5.06/2.55/2.51 4.96/2.48/2.48 5.05/2.53/2.52 5.12/2.53/2.59
ZN
OLS 5.17/2.58/2.59 5.21/2.65/2.56 4.84/2.45/2.39 5.05/2.49/2.56

ZLR[J = 4] 5.33/2.55/2.78 5.10/2.49/2.61 5.22/2.62/2.60 5.23/2.52/2.71

D

ZLR 5.37/2.79/2.58 5.40/2.96/2.44 5.60/2.94/2.66 5.52/2.89/2.63
ZNA(2, t) 5.64/2.96/2.68 5.45/2.84/2.61 5.62/2.94/2.68 5.73/3.03/2.70
ZN
OLS 5.42/2.85/2.57 5.37/2.82/2.55 5.33/2.79/2.54 5.28/2.77/2.51

ZLR[J = 4] 5.38/2.80/2.58 5.39/2.86/2.53 5.57/2.90/2.67 5.61/2.90/2.71

E

ZLR 5.08/2.54/2.54 5.11/2.59/2.52 4.97/2.49/2.48 4.97/2.47/2.50
ZNA(2, t) 5.12/2.69/2.43 4.69/2.50/2.19 5.46/2.78/2.68 5.44/2.77/2.67
ZN
OLS 5.05/2.60/2.45 5.00/2.67/2.33 5.25/2.60/2.65 5.17/2.59/2.58

ZLR[J = 4] 5.10/2.56/2.54 5.15/2.57/2.58 5.20/2.65/2.55 5.20/2.62/2.58

F

ZLR 5.42/2.64/2.78 5.43/2.65/2.78 5.24/2.53/2.71 5.32/2.62/2.70
ZNA(2, t) 4.97/2.51/2.46 5.00/2.51/2.49 4.86/2.50/2.36 4.92/2.45/2.47
ZN
OLS 4.99/2.37/2.62 4.90/2.43/2.47 5.24/2.63/2.61 5.05/2.52/2.53

ZLR[J = 4] 5.41/2.63/2.78 5.41/2.64/2.77 5.12/2.66/2.46 5.27/2.75/2.52
ZN
OLS: Non-standardized form of the linear composite UN/

√
Var(UN ).
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Table F.29: Probability of rejecting the weak null hypothesis according to overall, in favor
of standard of care (Std), or treatment (Trt) for the constrained boundaries method based
on the true information growth monitored on the calendar time scale using the monitoring
boundaries. Note that from previous table, the Type 1 error rate under the strong null may
not be appropriately controlled

Contrained Boundaries Revised Information

OBF (a) OBF (b) Pocock(a) Pocock (b)
Both/Std/Trt Both/Std/Trt Both/Std/Trt Both/Std/Trt

A

ZLR 95.34/0.17/95.17 68.18/0.27/67.91 96.54/0.10/96.44 94.85/0.26/94.59
ZNA(2, t) 30.98/0.08/30.90 33.88/0.04/33.84 30.61/0.10/30.51 41.43/0.14/41.29
ZN
OLS 26.63/0.34/26.29 26.02/0.24/25.78 26.43/0.36/26.07 26.15/0.23/25.92

ZLR[J = 4] 97.11/0.16/96.95 87.36/0.26/87.10 98.94/0.04/98.90 98.66/0.11/98.55

B

ZLR 100/0.00/100 99.97/0.00/99.97 100/0.00/100 100/0.00/100
ZNA(2, t) 47.80/0.00/47.80 46.63/0.10/46.53 47.80/0.00/47.80 48.36/0.12/48.24
ZN
OLS 28.03/0.41/27.62 22.86/0.40/22.46 31.00/0.37/30.63 28.41/0.39/28.02

ZLR[J = 4] 100/0.00/100 100/0.00/100 100/0.00/100 100/0.00/100

C

ZLR 100/0.00/100 100/0.00/100 100/0.00/100 100/0.00/100
ZNA(2, t) 95.53/0.00/95.53 95.49/0.53/94.96 95.26/0.00/95.26 95.26/0.53/94.73
ZN
OLS 49.14/0.17/48.97 43.40/0.17/43.23 65.41/0.17/65.24 65.20/0.17/65.03

ZLR[J = 4] 100/0.00/100 100/0.00/100 100/0.00/100 100/0.00/100

D

ZLR 100/10.52/89.48 99.72/33.39/66.33 100/4.58/95.42 100/5.83/94.17
ZNA(2, t) 54.85/0.00/54.85 54.35/0.00/54.35 54.28/0.00/54.28 54.74/0.00/54.74
ZN
OLS 39.86/0.02/39.84 35.60/0.02/35.58 41.55/0.01/41.54 39.45/0.02/39.43

ZLR[J = 4] 100/5.67/94.33 100/9.57/90.43 100/0.38/99.62 100/0.40/99.60

E

ZLR 99.54/0.99/98.55 91.65/2.40/89.25 99.81/0.36/99.45 99.80/0.58/99.22
ZNA(2, t) 32.02/0.06/31.96 30.54/0.06/30.48 31.02/0.05/30.97 31.56/0.06/31.50
ZN
OLS 19.52/15.43/4.09 17.55/16.17/1.38 20.80/12.19/8.61 21.18/13.78/7.40

ZLR[J = 4] 99.71/0.48/99.23 98.67/1.16/97.51 99.97/0.03/99.94 99.97/0.04/99.93

F

ZLR 99.39/0.00/99.39 95.37/0.00/95.37 99.64/0.00/99.64 99.46/0.00/99.46
ZNA(2, t) 5.08/1.93/3.15 5.07/2.01/3.06 4.99/1.88/3.11 5.22/2.05/3.17
ZN
OLS 96.87/96.87/0.00 96.90/96.90/0.00 95.26/95.20/0.06 95.35/95.29/0.06

ZLR[J = 4] 99.47/0.00/99.47 98.09/0.00/98.09 99.76/0.00/99.76 99.73/0.00/99.73

ZN
OLS: Non-standardized form of the linear composite UN/

√
Var(UN ).
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Table F.30: Summary of the “calibrated” Type 1 error (strong null) and the probability of rejecting the weak null
hypothesis according to overall, in favor of either the standard of care (Std) or treatment (Trt) for the constrained
boundaries method based on the true information growth monitored on the calendar time scale using the OBF moni-
toring boundaries.

Strong Null Weak Null
t = 2 t = 3 t = 4 t = 5 Overall t = 2 t = 3 t = 4 t = 5 Overall

Std/Trt Std/Trt Std/Trt Std/Trt Both/Std/Trt Std/Trt Std/Trt Std/Trt Std/Trt Both/Std/Trt

A

ZLR 1.56/1.48 0.67/0.69 0.28/0.26 4.94/2.51/2.43 0.00/96.09 0.00/0.00 0.08/0.00 96.17/0.08/96.09
ZNA(2, t) 1.30/1.35 0.16/0.16 1.11/1.02 5.10/2.57/2.53 0.03/19.42 0.01/3.27 0.01/4.89 27.63/0.05/27.58
ZN

OLS 0.90/0.77 1.17/1.29 0.50/0.42 5.05/2.57/2.48 0.30/13.27 0.02/8.49 0.02/3.02 25.12/0.34/24.78
ZLR[J = 4] 1.26/0.93 0.75/0.75 0.36/0.50 0.21/0.22 4.98/2.58/2.40 0.00/98.27 0.00/0.49 0.00/0.00 0.03/0.00 98.79/0.03/98.76

B

ZLR 0.88/0.95 1.07/1.14 0.45/0.55 5.04/2.40/2.64 0.00/100 0.00/0.00 0.00/0.00 100/0.00/100
ZNA(2, t) 1.44/1.39 0.11/0.09 1.02/1.01 5.06/2.57/2.49 0.00/32.40 0.00/0.60 0.00/13.19 46.19/0.00/46.19
ZN

OLS 0.56/0.65 1.15/1.25 0.65/0.71 4.97/2.36/2.61 0.34/17.89 0.01/8.52 0.06/1.21 28.03/0.41/27.62
ZLR[J = 4] 0.05/0.06 0.82/0.88 1.09/1.13 0.45/0.57 5.05/2.41/2.64 0.00/100 0.00/0.00 0.00/0.00 0.00/0.00 100/0.00/100

C

ZLR 0.91/0.94 0.96/1.22 0.51/0.48 5.02/2.38/2.64 0.00/100 0.00/0.00 0.00/0.00 100/0.00/100
ZNA(2, t) 0.56/0.54 0.15/0.03 1.84/1.94 5.06/2.55/2.51 0.00/67.64 0.00/0.35 0.00/27.54 95.53/0.00/95.53
ZN

OLS 0.13/0.12 1.04/1.13 1.30/1.21 4.93/2.47/2.46 0.16/31.85 0.00/15.04 0.01/0.95 48.01/0.17/47.84
ZLR[J = 4] 0.16/0.09 0.82/0.87 0.94/1.19 0.50/0.48 5.05/2.42/2.63 0.00/100 0.00/0.00 0.00/0.00 0.00/0.00 100/0.00/100

D

ZLR 1.41/1.24 0.75/0.76 0.49/0.43 5.08/2.65/2.43 0.00/95.05 0.23/0.00 4.72/0.00 100/4.95/95.05
ZNA(2, t) 1.60/1.29 0.00/0.02 1.09/1.04 5.04/2.69/2.35 0.00/34.97 0.00/0.02 0.00/17.34 52.33/0.00/52.33
ZN

OLS 0.59/0.37 1.42/1.24 0.54/0.70 4.86/2.55/2.31 0.00/20.24 0.00/15.88 0.02/2.19 38.33/0.02/38.31
ZLR[J = 4] 0.99/0.91 0.85/0.71 0.48/0.49 0.34/0.31 5.08/2.66/2.42 0.00/99.51 0.00/0.09 0.04/0.00 0.36/0.00 100/0.40/99.60

E

ZLR 0.48/0.41 1.08/1.12 0.98/1.01 5.08/2.54/2.54 0.00/98.55 0.00/0.00 0.99/0.00 99.54/0.99/98.55
ZNA(2, t) 0.75/0.85 0.03/0.01 1.91/1.57 5.12/2.69/2.43 0.02/13.93 0.00/0.05 0.04/17.98 32.02/0.06/31.96
ZN

OLS 0.32/0.27 1.21/1.30 1.07/0.88 5.05/2.60/2.45 0.02/3.31 0.70/0.78 14.71/0.00 19.52/15.43/4.09
ZLR[J = 4] 0.03/0.02 0.47/0.41 1.08/1.11 0.98/1.00 5.10/2.56/2.54 0.00/95.90 0.00/3.33 0.00/0.00 0.48/0.00 99.71/0.48/99.23

F

ZLR 0.69/0.66 1.05/1.21 0.63/0.66 4.90/2.37/2.53 0.00/99.58 0.00/0.01 0.00/0.00 99.59/0.00/99.59
ZNA(2, t) 0.22/0.19 0.08/0.08 2.21/2.19 4.97/2.51/2.46 0.18/0.76 0.03/0.11 1.72/2.28 5.08/1.93/3.15
ZN

OLS 0.00/0.00 0.00/0.00 2.37/2.62 4.99/2.37/2.62 0.41/0.00 37.86/0.00 58.60/0.00 96.87/96.87/0.00
ZLR[J = 4] 0.03/0.04 0.63/0.64 1.06/1.21 0.61/0.65 4.87/2.33/2.54 0.00/98.81 0.00/0.93 0.00/0.01 0.00/0.00 99.75/0.00/99.75

ZN
OLS: Non-standardized form of the linear composite statistic UN/

√
Var(UN ).
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Table F.31: Summary of the “calibrated” Type 1 error (strong null) and the probability of rejecting the weak null
hypothesis according to overall, in favor of either the standard of care (Std) or treatment (Trt) for the constrained
boundaries method based on the true information growth monitored on the calendar time scale using the Pocock
monitoring boundaries.

Strong Null Weak Null
t = 2 t = 3 t = 4 t = 5 Overall t = 2 t = 3 t = 4 t = 5 Overall

Std/Trt Std/Trt Std/Trt Std/Trt Both/Std/Trt Std/Trt Std/Trt Std/Trt Std/Trt Both/Std/Trt

A

ZLR 1.56/1.48 0.67/0.69 0.28/0.26 4.94/2.51/2.43 0.00/96.09 0.00/0.00 0.08/0.00 96.17/0.08/96.09
ZNA(2, t) 1.50/1.59 0.12/0.10 0.95/0.80 5.06/2.57/2.49 0.05/20.69 0.01/2.70 0.01/4.05 27.51/0.07/27.44
ZN

OLS 1.55/1.55 0.75/0.74 0.26/0.16 5.01/2.56/2.45 0.32/18.34 0.02/4.80 0.01/1.65 25.14/0.35/24.79
ZLR[J = 4] 1.26/0.93 0.75/0.75 0.36/0.50 0.21/0.22 4.98/2.58/2.40 0.00/98.27 0.00/0.49 0.00/0.00 0.03/0.00 98.79/0.03/98.76

B

ZLR 1.64/1.37 0.68/0.77 0.26/0.31 5.03/2.58/2.45 0.00/100 0.00/0.00 0.00/0.00 100/0.00/100
ZNA(2, t) 1.44/1.39 0.11/0.09 1.02/1.01 5.06/2.57/2.49 0.00/32.40 0.00/0.60 0.00/13.19 46.19/0.00/46.19
ZN

OLS 1.44/1.38 0.71/0.78 0.36/0.36 5.03/2.51/2.52 0.35/26.38 0.01/3.90 0.01/0.35 31.00/0.37/30.63
ZLR[J = 4] 1.05/1.10 0.83/0.66 0.47/0.43 0.18/0.19 4.91/2.53/2.38 0.00/100 0.00/0.00 0.00/0.00 0.00/0.00 100/0.00/100

C

ZLR 1.41/1.52 0.66/0.72 0.23/0.25 4.79/2.30/2.49 0.00/100 0.00/0.00 0.00/0.00 100/0.00/100
ZNA(2, t) 1.39/1.22 0.03/0.01 1.11/1.29 5.05/2.53/2.52 0.00/78.40 0.00/0.18 0.00/16.68 95.26/0.00/95.26
ZN

OLS 1.10/0.96 0.71/0.86 0.56/0.47 4.66/2.37/2.29 0.16/59.71 0.00/4.67 0.01/0.07 64.62/0.17/64.45
ZLR[J = 4] 1.09/1.03 0.72/0.84 0.41/0.49 0.24/0.14 4.96/2.46/2.50 0.00/100 0.00/0.00 0.00/0.00 0.00/0.00 100/0.00/100

D

ZLR 1.41/1.24 0.75/0.76 0.49/0.43 5.08/2.65/2.43 0.00/95.05 0.23/0.00 4.72/0.00 100/4.95/95.05
ZNA(2, t) 1.60/1.29 0.00/0.02 1.09/1.04 5.04/2.69/2.35 0.00/34.97 0.00/0.02 0.00/17.34 52.33/0.00/52.33
ZN

OLS 1.46/1.19 0.77/0.64 0.26/0.41 4.73/2.49/2.24 0.00/30.31 0.00/8.43 0.00/0.92 39.66/0.00/39.66
ZLR[J = 4] 0.99/0.91 0.85/0.71 0.48/0.49 0.34/0.31 5.08/2.66/2.42 0.00/99.51 0.00/0.09 0.04/0.00 0.36/0.00 100/0.40/99.60

E

ZLR 1.33/1.25 0.74/0.78 0.42/0.45 4.97/2.49/2.48 0.00/99.45 0.00/0.00 0.36/0.00 99.81/0.36/99.45
ZNA(2, t) 1.50/1.60 0.01/0.01 1.27/1.07 5.46/2.78/2.68 0.02/18.74 0.00/0.03 0.03/12.20 31.02/0.05/30.97
ZN

OLS 1.34/1.43 0.72/0.80 0.54/0.42 5.25/2.60/2.65 0.11/8.34 0.62/0.27 11.46/0.00 20.80/12.19/8.61
ZLR[J = 4] 1.07/1.01 0.74/0.71 0.51/0.51 0.33/0.32 5.20/2.65/2.55 0.00/99.85 0.00/0.09 0.00/0.00 0.03/0.00 99.97/0.03/99.94

F

ZLR 1.26/1.36 0.74/0.73 0.27/0.40 4.76/2.27/2.49 0.00/99.58 0.00/0.01 0.00/0.00 99.59/0.00/99.59
ZNA(2, t) 1.19/1.03 0.04/0.04 1.27/1.29 4.86/2.50/2.36 0.87/1.83 0.02/0.04 0.99/1.24 4.99/1.88/3.11
ZN

OLS 1.18/1.09 0.00/0.00 1.45/1.52 5.24/2.63/2.61 5.82/0.06 37.65/0.00 51.73/0.00 95.26/95.20/0.06
ZLR[J = 4] 1.08/0.83 0.63/0.63 0.52/0.47 0.21/0.28 4.65/2.44/2.21 0.00/98.81 0.00/0.93 0.00/0.01 0.00/0.00 99.75/0.00/99.75

ZN
OLS: Non-standardized form of the linear composite statistic UN/

√
Var(UN ).
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Table F.32: Overall Type 1 error for the constrained boundaries method after adjusting the OBF boundaries for the
test statistics with independent increments. The boundaries are re-calibrated by shifting the α of the group sequential
design and recomputing the probability of rejecting the strong null. Each cell is the computed probability of rejecting
the strong null analyzed on the calendar time according to overall, in favor of standard of care (Std), or in favor of
treatment (Trt).

OBF
α = 4.0% α = 4.25% α = 4.35% α = 4.4% α = 4.5% α = 4.75% α = 5%

Both/Std/Trt Both/Std/Trt Both/Std/Trt Both/Std/Trt Both/Std/Trt Both/Std/Trt Both/Std/Trt

A

ZLR 4.41/2.19/2.22 4.74/2.40/2.34 4.86/2.47/2.39 4.93/2.52/2.41 4.94/2.51/2.43 5.38/2.76/2.62 5.62/2.88/2.74
ZLR[J = 4] 4.40/2.19/2.21 4.69/2.37/2.32 4.84/2.46/2.38 4.92/2.51/2.41 4.98/2.58/2.40 5.38/2.75/2.63 5.62/2.88/2.74
ZNA(2, t) 5.10/2.57/2.53 5.41/2.74/2.67 5.47/2.77/2.70 5.51/2.79/2.72 5.64/2.89/2.75 5.95/3.09/2.86 6.23/3.24/2.99
ZN
OLS 4.52/2.35/2.17 4.80/2.46/2.34 4.89/2.49/2.40 4.92/2.51/2.41 5.05/2.57/2.48 5.28/2.69/2.59 5.59/2.83/2.76

B

ZLR 4.06/1.96/2.10 4.35/2.08/2.27 4.48/2.14/2.34 4.51/2.16/2.35 4.53/2.35/2.18 4.86/2.34/2.52 5.04/2.40/2.64
ZLR[J = 4] 4.04/1.95/2.09 4.32/2.06/2.26 4.48/2.14/2.34 4.51/2.16/2.35 4.38/2.23/2.15 4.85/2.34/2.51 5.05/2.41/2.64
ZNA(2, t) 4.42/2.19/2.23 4.84/2.42/2.42 4.87/2.42/2.45 4.90/2.44/2.46 5.06/2.57/2.49 5.32/2.64/2.68 5.47/2.69/2.78
ZN
OLS 4.01/1.91/2.10 4.22/2.02/2.20 4.34/2.05/2.29 4.40/2.08/2.32 4.49/2.13/2.36 4.70/2.23/2.47 4.97/2.36/2.61

C

ZLR 4.21/1.97/2.24 4.44/2.08/2.36 4.51/2.12/2.39 4.55/2.12/2.43 4.68/2.26/2.42 5.02/2.38/2.64 5.29/2.51/2.78
ZLR[J = 4] 4.22/1.98/2.24 4.48/2.10/2.38 4.51/2.11/2.40 4.57/2.15/2.42 4.81/2.39/2.42 5.05/2.42/2.63 5.33/2.55/2.78
ZNA(2, t) 4.08/2.05/2.03 4.34/2.19/2.15 4.45/2.24/2.21 4.48/2.25/2.23 4.53/2.31/2.22 4.81/2.42/2.39 5.06/2.55/2.51
ZN
OLS 4.10/1.99/2.11 4.49/2.17/2.32 4.57/2.21/2.36 4.63/2.25/2.38 4.72/2.32/2.40 4.93/2.47/2.46 5.17/2.58/2.59

D

ZLR 4.30/2.20/2.10 4.61/2.40/2.21 4.70/2.46/2.24 4.73/2.47/2.26 5.08/2.65/2.43 5.13/2.68/2.45 5.37/2.79/2.58
ZLR[J = 4] 4.30/2.20/2.10 4.61/2.40/2.21 4.70/2.46/2.24 4.73/2.47/2.26 5.08/2.66/2.42 5.12/2.68/2.44 5.38/2.80/2.58
ZNA(2, t) 4.35/2.32/2.03 4.73/2.49/2.24 4.85/2.53/2.32 4.92/2.57/2.35 5.04/2.69/2.35 5.33/2.79/2.54 5.64/2.96/2.68
ZN
OLS 4.27/2.27/2.00 4.56/2.42/2.14 4.65/2.47/2.18 4.71/2.50/2.21 4.86/2.55/2.31 5.15/2.68/2.47 5.42/2.85/2.57

E

ZLR 4.10/2.03/2.07 4.32/2.09/2.23 4.47/2.14/2.33 4.50/2.15/2.35 4.49/2.25/2.24 4.87/2.40/2.47 5.08/2.54/2.54
ZLR[J = 4] 4.13/2.04/2.09 4.34/2.10/2.24 4.50/2.15/2.35 4.53/2.16/2.37 4.60/2.28/2.32 4.90/2.41/2.49 5.10/2.56/2.54
ZNA(2, t) 4.08/2.11/1.97 4.34/2.22/2.12 4.39/2.25/2.14 4.41/2.25/2.16 4.90/2.43/2.47 4.83/2.50/2.33 5.12/2.69/2.43
ZN
OLS 4.02/2.07/1.95 4.26/2.18/2.08 4.36/2.22/2.14 4.42/2.27/2.15 4.55/2.37/2.18 4.84/2.50/2.34 5.05/2.60/2.45

F

ZLR 4.31/2.05/2.26 4.61/2.21/2.40 4.71/2.26/2.45 4.79/2.28/2.51 4.90/2.37/2.53 5.18/2.53/2.65 5.42/2.64/2.78
ZLR[J = 4] 4.31/2.04/2.27 4.61/2.21/2.40 4.72/2.27/2.45 4.76/2.27/2.49 4.87/2.33/2.54 5.18/2.53/2.65 5.41/2.63/2.78
ZNA(2, t) 4.21/2.14/2.07 4.43/2.26/2.17 4.52/2.29/2.23 4.57/2.32/2.25 4.62/2.34/2.28 4.77/2.40/2.37 4.97/2.51/2.46
ZN
OLS 3.96/1.94/2.02 4.24/2.06/2.18 4.34/2.13/2.21 4.42/2.16/2.26 4.51/2.18/2.33 4.73/2.24/2.49 4.99/2.37/2.62

ZN
OLS: Non-standardized form of the linear composite UN/

√
Var(UN ).
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Table F.33: Overall Type 1 error for the constrained boundaries method after adjusting the Pocock boundaries for the
test statistics with independent increments. The boundaries are re-calibrated by shifting the α of the group sequential
design and recomputing the probability of rejecting the strong null. Each cell is the computed probability of rejecting
the strong null analyzed on the calendar time according to overall, in favor of standard of care (Std), or in favor of
treatment (Trt).

Pocock
α = 4.0% α = 4.25% α = 4.35% α = 4.4% α = 4.5% α = 4.75% α = 5%

Both/Std/Trt Both/Std/Trt Both/Std/Trt Both/Std/Trt Both/Std/Trt Both/Std/Trt Both/Std/Trt

A

ZLR 4.46/2.22/2.24 4.70/2.36/2.34 4.76/2.38/2.38 4.81/2.42/2.39 4.94/2.51/2.43 5.19/2.63/2.56 5.55/2.83/2.72
ZLR[J = 4] 4.41/2.28/2.13 4.71/2.44/2.27 4.83/2.50/2.33 4.87/2.52/2.35 4.98/2.58/2.40 5.25/2.71/2.54 5.46/2.82/2.64
ZNA(2, t) 5.06/2.57/2.49 5.36/2.74/2.62 5.48/2.81/2.67 5.48/2.81/2.67 5.64/2.89/2.75 5.92/3.06/2.86 6.27/3.26/3.01
ZN
OLS 4.45/2.27/2.18 4.70/2.39/2.31 4.79/2.42/2.37 4.88/2.48/2.40 5.01/2.56/2.45 5.21/2.68/2.53 5.59/2.84/2.75

B

ZLR 4.03/2.10/1.93 4.26/2.20/2.06 4.35/2.25/2.10 4.43/2.28/2.15 4.53/2.35/2.18 4.80/2.47/2.33 5.03/2.58/2.45
ZLR[J = 4] 3.86/1.89/1.97 4.10/2.05/2.05 4.20/2.10/2.10 4.26/2.14/2.12 4.38/2.23/2.15 4.67/2.41/2.26 4.91/2.53/2.38
ZNA(2, t) 4.38/2.20/2.18 4.73/2.36/2.37 4.92/2.47/2.45 4.93/2.48/2.45 5.06/2.57/2.49 5.37/2.73/2.64 5.67/2.89/2.78
ZN
OLS 4.02/1.94/2.08 4.29/2.11/2.18 4.37/2.16/2.21 4.41/2.19/2.22 4.54/2.26/2.28 4.79/2.40/2.39 5.03/2.51/2.52

C

ZLR 4.18/2.03/2.15 4.41/2.14/2.27 4.52/2.20/2.32 4.58/2.22/2.36 4.68/2.26/2.42 4.79/2.30/2.49 5.01/2.40/2.61
ZLR[J = 4] 4.31/2.14/2.17 4.56/2.28/2.28 4.65/2.32/2.33 4.68/2.32/2.36 4.81/2.39/2.42 4.96/2.46/2.50 5.22/2.62/2.60
ZNA(2, t) 4.01/2.05/1.96 4.23/2.15/2.08 4.35/2.22/2.13 4.41/2.26/2.15 4.53/2.31/2.22 4.79/2.43/2.36 5.05/2.53/2.52
ZN
OLS 3.83/1.99/1.84 4.15/2.15/2.00 4.27/2.21/2.06 4.32/2.22/2.10 4.40/2.24/2.16 4.66/2.37/2.29 4.84/2.45/2.39

D

ZLR 4.44/2.33/2.11 4.78/2.51/2.27 4.88/2.54/2.34 4.91/2.56/2.35 5.08/2.65/2.43 5.39/2.86/2.53 5.60/2.94/2.66
ZLR[J = 4] 4.47/2.35/2.12 4.73/2.47/2.26 4.85/2.55/2.30 4.93/2.59/2.34 5.08/2.66/2.42 5.31/2.76/2.55 5.57/2.90/2.67
ZNA(2, t) 4.49/2.37/2.12 4.68/2.49/2.19 4.86/2.58/2.28 4.93/2.63/2.30 5.04/2.69/2.35 5.30/2.82/2.48 5.62/2.94/2.68
ZN
OLS 4.22/2.24/1.98 4.52/2.41/2.11 4.57/2.44/2.13 4.61/2.45/2.16 4.73/2.49/2.24 5.04/2.65/2.39 5.33/2.79/2.54

E

ZLR 4.02/2.04/1.98 4.19/2.12/2.07 4.34/2.18/2.16 4.38/2.21/2.17 4.49/2.25/2.24 4.73/2.38/2.35 4.97/2.49/2.48
ZLR[J = 4] 4.01/2.04/1.97 4.36/2.20/2.16 4.50/2.26/2.24 4.54/2.27/2.27 4.60/2.28/2.32 4.95/2.47/2.48 5.20/2.65/2.55
ZNA(2, t) 4.18/2.08/2.10 4.48/2.23/2.25 4.62/2.30/2.32 4.65/2.32/2.33 4.90/2.43/2.47 5.18/2.63/2.55 5.46/2.78/2.68
ZN
OLS 3.98/1.92/2.06 4.31/2.11/2.20 4.44/2.17/2.27 4.50/2.22/2.28 4.58/2.26/2.32 4.89/2.43/2.46 5.25/2.60/2.65

F

ZLR 4.11/1.99/2.12 4.46/2.13/2.33 4.53/2.16/2.37 4.62/2.19/2.43 4.76/2.27/2.49 5.07/2.48/2.59 5.24/2.53/2.71
ZLR[J = 4] 4.19/2.18/2.01 4.46/2.36/2.10 4.49/2.37/2.12 4.52/2.39/2.13 4.65/2.44/2.21 4.92/2.52/2.40 5.12/2.66/2.46
ZNA(2, t) 3.92/2.00/1.92 4.05/2.06/1.99 4.20/2.13/2.07 4.21/2.14/2.07 4.35/2.20/2.15 4.63/2.36/2.27 4.86/2.50/2.36
ZN
OLS 4.02/1.92/2.10 4.33/2.12/2.21 4.45/2.20/2.25 4.50/2.22/2.28 4.64/2.30/2.34 4.92/2.47/2.45 5.24/2.63/2.61

ZN
OLS: Non-standardized form of the linear composite UN/

√
Var(UN ).
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