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Acoustic models require a large amount of training data. However, lots of labor is re-

quired to annotate the training data for automatic speech recognition. More importantly, the

performance of the acoustic model could degenerate during test time, where the conditions

of test data differ from the training data in speaker characteristics, channel and recording

environment. To compensate for the deviation between training and test conditions, we in-

vestigate a graph-based semi-supervised learning approach to acoustic modeling in automatic

speech recognition.

Graph-based semi-supervised learning (SSL) is a widely used semi-supervised learning

method in which the labeled data and unlabeled data are jointly represented as a weighted

graph, and the information is propagated from the labeled data to the unlabeled data. The

key assumption that graph-based SSL makes is that data samples lie on a low dimensional

manifold, where samples that are close to each other are expected to have the same class

label. More importantly, by exploiting the relationship between training and test samples,

graph-based SSL implicitly adapts to the test data.

In this thesis, we address several key challenges in applying graph-based SSL to acoustic

modeling. We first investigate and compare several state-of-the-art graph-based SSL algo-

rithms on a benchmark dataset. In addition, we propose novel graph construction methods



that allow graph-based SSL to handle variable-length input features. We next investigate

the efficacy of graph-based SSL in context of a fully-fledged DNN-based ASR system. We

compare two different integration frameworks for graph-based learning. First, we propose a

lattice-based late integration framework that combines graph-based SSL with the DNN-based

acoustic modeling and evaluate the framework on continuous word recognition tasks. Sec-

ond, we propose an early integration framework using neural graph embeddings and compare

two different neural graph embedding features that capture the information of the manifold

at different levels. The embedding features are used as input to a DNN system and are

shown to outperform the conventional acoustic feature inputs on several medium-to-large

vocabulary conversational speech recognition tasks.
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Chapter 1

INTRODUCTION

1.1 Motivation

The emergence of big data has had a huge impact on machine learning research. With the

abundance of training data, researchers can train more reliable models for different learning

tasks such as speech recognition, text classification, and object recognition. However, in the

research area of automatic speech recognition (ASR), lots of labor is required for manual

transcription of speech audio, which is time-consuming, expensive, and error-prone. Even

expert human transcribers tend to make mistakes at the phonetic level. The labor is even

more demanding when it comes to a low-resource language. While labeled samples are

expensive to obtain in speech recognition, we have an unprecedented amount of unlabeled

data in many practical applications. For example, we can collect a huge amount of audio

data from multiple sources such as daily life conversation, digital assistant, or the World

Wide Web.

More importantly, there is a consistent need to perform adaptation on new test data for

speech recognition. Speech recognition systems usually suffer from performance degradation

on unseen test data because acoustic models cannot generalize well to unseen test data

when there is a mismatch between training and test conditions. The mismatch between the

training and test data comes from different factors, such as environment variations, speaker

variations and channel variations. For example, an acoustic model trained on native English

speakers may generalize well to other native English speakers during test time, but could

yield worse recognition results on an accented English speaker.

Semi-supervised learning (SSL) is a natural solution to both of these problems, as it

leverages both labeled and unlabeled data to achieve a better performance than supervised
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learning. Among various semi-supervised learning techniques, graph-based semi-supervised

learning [158] has drawn increasing attention for different reasons: 1) the graph is a unified

representation for many different data types such as images, speech sounds, and texts; 2)

most graph-based SSL methods can be characterized as optimizing an energy function, and

this objective is usually convex which guarantees global optima.

In graph-based SSL, labeled data and unlabeled data are represented as nodes on a

weighted graph where the weights of edges reflect the similarity between nodes. The infor-

mation of the labeled nodes is “propagated” via the graph to infer the labels of unlabeled

data. Graph-based SSL is distinct from any other SSL methods as it utilizes not only sim-

ilarities between training and test data, but also exploits similarities between different test

data. Graph-based SSL methods are based on the smoothness assumption on manifolds:

the data points are assumed to have a lower-dimensional manifold embedding and the label

assignment must respect the inherent clustering properties expressed by the manifold. This

means the highly similar data points are encouraged to receive the same labels and are closer

on the manifold, whereas dissimilar data points are more likely to receive different labels and

are further apart on the manifold.

As shown in previous work [64, 65, 29], speech sounds live on a lower-dimensional man-

ifold of the high dimensional space of all possible sounds. Motivated by this evidence, we

investigate graph-based SSL methods for acoustic modeling in a fully-fledged ASR system.

1.2 Contributions of the Thesis

To integrate graph-based SSL into acoustic modeling, we need to address several main chal-

lenges. In this thesis, we make the following contributions in addressing these challenges:

1. What is the best graph-based SSL algorithm for acoustic modeling?

In the past, different graph-based SSL algorithms have been proposed, some of which

have been applied to several very small-scale speech classification tasks. It is hard

to assess which algorithm is most preferable, as there was no comparison using the
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same experimental setup and same benchmark datasets. In this thesis, we propose

an extension to a graph-based semi-supervised learning algorithm based on entropy

regularization [130]. We explicitly use prior regularization in the learning objective,

and we show that using the prior regularization significantly improves the phonetic

classification tasks compared to other state-of-the-art graph-based SSL algorithms on

TIMIT benchmark dataset.

2. How to construct a good graph for graph-based SSL algorithm?

As pointed out in a seminal work [159], the importance of the graph quality far exceeds

the learning algorithm and constructing a good graph is ‘more art than science’. Even

with a ‘perfect’ graph-based SSL algorithm, inference on a poorly constructed graph

can lead to incorrect predictions. The graph quality hinges on various aspects, which

include the definition of a similarity measure for the graph weights and a robust feature

representation of the speech signals. In this thesis, we study different feature represen-

tations that are particularly effective in DNN-based acoustic modeling. We compared

and evaluated several feature representations in the context of DNN-based ASR sys-

tems. Experimental results show significant improvement in frame-level accuracy, and

a consistent word error rate (WER) reduction compared to standard acoustic features.

In addition, we propose a novel graph construction method that allows graph-based

SSL to handle variable length input vectors. This is especially important because the

speech units (i.e. phoneme, syllables, word) consist of variable length by nature. The

proposed methods are also applicable to other generic machine learning tasks where

the input vectors can be variable-length (such as natural language processing, compu-

tational biology, and computer vision).

3. How to integrate graph-based SSL into a fully-fledged ASR system?

In previous work, graph-based SSL methods have shown promising results on simple

acoustic modeling tasks such as TIMIT phoneme classification. However, there was no
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framework for, or experimental results on, integrating GBL into a fully-fledged ASR

system. In addition, all the previous works used Gaussian mixture models (GMMs) as

the baseline acoustic models. Since GMMs have largely been replaced by deep neural

networks, it is worth exploring whether graph-based SSL can further boost the perfor-

mance of DNN-based acoustic models. More importantly, we need to investigate how

graph-based SSL can improve the word error rate on a realistic conversational speech

dataset. In this thesis, we propose a lattice-based framework which systematically in-

tegrates the graph-based SSL method into a fully-fledged DNN-based ASR system. We

show that the proposed framework results in significant improvements in frame-level

classification accuracy as well as consistent reductions in word error rates in continuous

word recognition tasks.

4. How to scale up graph-based SSL methods to large vocabulary conversa-

tional speech recognition (LVCSR) systems?

To apply graph-based SSL in LVCSR systems, we need to address several characteristics

of graph-based SSL which hamper the application of graph-based SSL methods to

acoustic modeling for LVCSR tasks. When working on acoustic modeling for LVCSR

tasks, the amount of training samples (frames) is usually in the millions or billions.

For example, the popular LVCSR benchmark dataset Switchboard has 120 million

frames in total, which is equivalent to 309 hours of speech. As a result, the graph

consists of more than 120 million nodes, which can be computationally prohibitive to

construct. Even with the graph, learning and inference on such large graphs can be

extremely time-consuming. This makes standard graph-based SSL impractical for real-

time applications, since for each test set a new graph has to be constructed. In addition,

when optimizing the graph-based SSL component, we do not take other factors such

as language modeling, pronunciations, and the decoder, into consideration. It is often

observed that improving one component alone does not help reduce the WER. In this

thesis, we propose a novel neural graph embedding method for acoustic modeling and
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adaptation. Instead of constructing a similarity graph over a large amount of samples,

we encode the information expressed by the graph into a continuous feature space.

The original acoustic features, augmented with the learned embedding features, are

used as inputs to the DNN model. We show several schemes of encoding the graph

information at different level: 1) encoding local neighborhood information; 2) encoding

global manifold information. We show statistically significant improvements on LVCSR

tasks using the different state-of-the-art deep architectures for ASR systems. More

importantly, the proposed approach scales well to very large datasets and achieves

real-time performance compared to the lattice-based integration framework.

1.3 Outlines

The rest of the thesis is organized as follows:

In Chapter 2, we review the background of the thesis. We first describe the fundamen-

tals of automatic speech recognition. Then we describe the background on semi-supervised

learning and various SSL methods in practice. In particular, we give an overview of graph-

based semi-supervised learning and its motivation, as well as the mathematical formulations

of different graph-based SSL methods.

In Chapter 3, we first describe several widely used techniques of semi-supervised learning

in acoustic modeling. We propose an extension to measure propagation [130], and refer to

it as the ‘prior-regularized measure propagation (pMP)’. We will describe its formulation as

well as its optimization.

In Chapter 4, we study how different graph-based SSL algorithms perform on phoneme

classification. We compare the pMP algorithm to several state-of-the-art graph-based SSL

methods on a benchmark frame-level phonetic classification task. Then we show how to

extend the graph-based SSL to variable-length input vectors and show experimental results

on segment-level phonetic classification task. To address the computational cost in segment-

level classification, we propose a novel feature selection algorithm based on submodular

function optimization.
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In Chapter 5, we show how graph-based SSL algorithm can be applied to a fully-fledged

DNN-based ASR system. We propose a novel framework based on lattice rescoring, and

describe several graph construction techniques that improve the quality of the graph, and

consequently, the inference result on the graph. We show experimental results on phone

recognition as well as several small-to-medium vocabulary word recognition tasks.

In Chapter 6, we describe a novel neural graph embedding method that learns a compact

representation from a similarity graph. The original acoustic features, augmented with the

graph embedding features, are used as inputs to the DNN model. We show that the proposed

method not only reduces the computational cost by orders of magnitude, but also achieves

significant improvements in WER compared to the standard graph-based SSL paradigm on

LVCSR tasks using different state-of-the-art ASR systems.

In Chapter 7, we conclude the thesis by summarizing the main contributions of the thesis.

We also point out several potential future directions for research on graph-based learning in

acoustic modeling.
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Chapter 2

BACKGROUND

In this chapter, we describe the background of this thesis: automatic speech recognition

(ASR) and semi-supervised learning (SSL). In Section 2.1, we introduce the fundamentals of

ASR, which includes different components in an ASR system and different acoustic modeling

techniques. In Section 2.2, we introduce the concepts of semi-supervised learning and describe

different semi-supervised learning techniques as well as their motivations and assumptions. In

Section 2.3, we focus on graph-based semi-supervised learning, a popular SSL method based

on manifold assumption. We describe the manifold assumption, mathematical formulation,

and graph construction techniques of graph-based SSL algorithms.

2.1 An Overview of Automatic Speech Recognition

The goal of automatic speech recognition (ASR) is to take an input speech signal and convert

it to a word sequence. ASR technology has been widely used in various applications, including

voice search, virtual assistant, telephony and dictation.

From a statistical point of view, the fundamental problem of speech recognition can be de-

scribed as follows [67]: given a sequence of speech observations (frames)X = {x1,x2, · · · ,xT},
the goal of ASR is to predict the most likely word sequence W ∗ = {w1, w2, · · · , wm} by :

W ∗ = argmax
W

p(W |X) (2.1)

where W denotes a word sequence. With Bayes’ Rule, the equation can be expanded as

follows:

P (W |X) =
p(X|W )P (W )

p(X)
(2.2)

∝ p(X|W )P (W ) (2.3)
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Here, the speech signal is first processed by front-end preprocessing such as Mel-frequency

cepstral coefficients (MFCCs) and perceptual linear predictions (PLPs) extraction and is

represented as a sequence of acoustic feature vectors xt ∈ Rd. The term p(X|W ) in Equa-

tion 2.2 is the acoustic likelihood of an acoustic feature sequence X being generated by

a word sequence W , and is computed by an acoustic model; the term p(W ) is the prior

distribution of a word sequence W and is usually given by a language model. A commonly

used language model is the N-gram language model. In a N-gram language model, the prob-

ability of a word wi in W is conditioned on its previous N − 1 words. Thus, we can compute

the prior of a word sequence W as follows:

p(W ) = p(w1, w2, · · · , wn) (2.4)

=
n∏
i=1

p(wi|wi−1 · · ·wi−N+1) (2.5)

More recently, neural network based language models have shown significant improvements

over the conventional N-gram language model [9, 98], and have been widely used in different

natural language processing tasks.

To compute the acoustic likelihood p(X|W ), we usually decompose the word sequences

W into smaller linguistic units Y such as phonemes, syllables, or context-dependent phones.

Thus, the original term p(X|W ) can be computed as follows:

p(X|W ) =
∑
Y

p(X, Y |W ) (2.6)

=
∑
Y

p(X|Y )p(Y |W ) (2.7)

The acoustic model is used to calculate p(X|Y ) and the pronunciation model is used

to calculate p(Y |W ). The pronunciation model is usually determined by a dictionary, or

lexicon. The acoustic likelihood is computed by a hidden Markov model (HMM) based

system and will be described in the following section. To predict the most likelihood word

sequence W ∗, the decoder searches through all possible word sequences and returns the

most likely paths. Figure 2.1 shows a schematic depiction of an ASR system.
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Figure 2.1: An illustration of automatic speech recognition system.

2.1.1 Hidden Markov Models in ASR

The key component in an ASR system is the hidden Markov model (HMM). The hidden

Markov model dates back to the 1950s and 1960s, and was first used in speech recognition

in the early 1970s. In HMM-based speech recognition systems, the acoustic feature sequence

(or observation sequence) X = {x1,x2, · · · ,xT} is assumed to be generated by a hidden state

sequence Y = {y1, y2, · · · , yT}, where yt comes from a finite set of states S. There are two

key assumptions in a HMM. First, each hidden state yt is only conditioned on its previous

state yt−1, i.e. p(yt|yt−1, · · · , y1) = p(yt|yt−1). This is often referred to as the Markov

assumption. Second, each observation xt is assumed to be generated only by hidden state

yt. Thus, an acoustic observation xt is conditionally independent of all other observations

given the state that generated it, i.e. p(xt|yt, yt−1, · · · , y1,xt−1, · · · ,x1) = p(xt|yt). This is
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often referred to as the conditional independence assumption.

An HMM M is parameterized by the following components 1:

• S = {s1, · · · , sN}: a finite number of states. In speech recognition, these states are

small phonetic units such as phonemes, monophone states, or more often context-

dependent phone states [78] (which is often referred to as senones);

• A = {a11, a12, · · · , an1, ann}: the transition probability matrix A, where each element

aij is the transition probability from state i to state j and
∑

j aij = 1;

• B = bj(xt): acoustic likelihood or emission probability, which measures the probability

of an observation xt being generated from a state j.

As explained in a seminal work [115], there are three fundamental problems related to

HMMs:

1. Compute the likelihood of an observation sequence X = {x1,x2, · · · ,xT} in an HMM;

2. Discover the best hidden state sequence Y ∗ = {y1, y2, · · · , yT} that can best explain

the observation sequence X;

3. Determine the best parameters in an HMM.

To compute the likelihood of an observation sequence X = {x1,x2, · · · ,xT} given an

HMM M, the forward algorithm is used to compute the likelihoods:

p(X;M) =
∑
Y

T∏
t=1

byt(xt)aytyt+1 (2.8)

where Y is the set of all possible hidden state sequences associated with that observation

sequence.

1In many textbooks, the observation sequence is represented as O and the hidden state sequence is
represented as Q.



11

Finding the hidden state sequence Y = {y1, y2, · · · , yT} that can best explain the obser-

vation sequence X is often referred to as the decoding problem in an HMM. The Viterbi

algorithm [47] with backtrace is used to compute the best path.

Finding the best parameters in an HMM given the training data is often referred to as

the training problem in an HMM. The standard training algorithm for HMM is the Baum-

Welch algorithm [7], a special version of the EM algorithm.

2.1.2 Acoustic Modeling in ASR

In an HMM-based ASR system, we need to compute the acoustic likelihood of an observation

xt being generated from a state j. A commonly used acoustic model to compute the likelihood

is the Gaussian mixture model (GMM). In a GMM-based acoustic model, it is assumed

that each observation xt is generated by a mixture of Gaussians. The output likelihood for

an observation xt ∈ Rd being generated by state j is given as follows:

bj(xt) =
M∑
m=1

wmN (xt;µjm,Σjm) (2.9)

where

N (xt;µjm,Σjm) =
1√

(2π)d|Σjm|
exp(−1

2
(xt − µjm)ᵀΣ−1(xt − µjm)) (2.10)

Here M is the number of components in the mixture model, wm is a positive weight for the

m-th component and
∑M

m=1wi = 1, µm and Σm are the mean vector and covariance matrix

of the m-th component, respectively.

The GMM-based acoustic model has played a major role in speech recognition since the

1970s. Combined with the context-dependent phone states [78], the GMM-HMM system

has achieved considerable success in the past decades. GMM-based acoustic models are

also attractive because of the well-defined algorithms for speaker adaptation. Maximum

likelihood linear transformation (MLLR) [79] and feature-based MLLR (fMLLR) [33] are

well known adaptation techniques for GMM-based models.

Although the GMM is a generative model, previous studies showed that discriminative
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training of the GMM-based model can yield far superior performance. Examples of discrim-

inative GMM training include maximum mutual information (MMI) estimation/ boosted

MMI (bMMI) [112], minimum classification error (MCE) [70], minimum phone/word error

(MPE/MWE) [113] and minimum Bayes risk (MBR) [38].

Deep Neural Networks

DNN-based acoustic models have achieved drastic improvements on ASR in recent years. It

is reported by different research groups that the DNN-based acoustic model outperforms the

GMM-based system in different large vocabulary conversational speech recognition (LVCSR)

by a large margin [53, 23, 121]. Neural networks are inspired by biological neural networks.

The networks consist of interconnected nodes that mimic the behavior of neurons, and the

information is propagated through the network. Each neuron takes in a linear combination

of the inputs, followed by a nonlinear activation function. Figure 2.2 shows a depiction of a

simple neuron. Given an input x ∈ Rd, the neuron produces an activation output as follows:

hw,b = f(wᵀx + b) = f(
d∑
i=1

wixi + b) (2.11)

where xi is the i-th dimension of x, f is a nonlinear function, wi is the weight from xi to

the neuron and b is a bias term. In acoustic modeling, the nonlinear activation function f

usually takes one of the following forms:

1. Sigmoid function: f(z) = 1
1+exp(−z) ;

2. Hyperbolic tangent (tanh) function: f(z) = ez−e−z

ez+e−z ;

3. Rectified linear unit (ReLU) function: f(z) = max(0, z).

A deep neural network consists of multiple layers with an input layer, an output layer and

multiple hidden layers, where each layer consists of multiple neurons. Figure 2.3 shows an

example of a 4-layer feedforward deep neural network. A feedforward neural network is one
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Figure 2.2: An example of a single unit (neuron) in a deep neural network.

neural network where the input information is passed through the network layer by layer,

with no feedback or loops in the network. An alternative to a feedforward neural network is

the recurrent neural network, which will be described in the following paragraph. For acoustic

modeling, the input layer consists of acoustic features, such as MFCCs, or fMLLR features.

Usually, the acoustic feature vector is concatenated with the vectors for its preceding and

succeeding frames. The output layer corresponds to target classes. In the context of acoustic

modeling, they are usually phonemes, or more often senones. The network is parameterized

by a weight matrix Wl for each layer l. Each weight wlji is associated with a unit i in the l-th

layer, and another unit j in the (l+ 1)-th layer. The output layer consists of K nodes, where

K is the number of classes. Each unit in the output layer produces a posterior probability

p(sk|xt) for class sk. These probabilities are obtained by transforming inputs to the neuron

with a softmax function, given as follows:

p(sk|xt) = g(ak) =
exp(ak)∑K
k′=1 exp(ak′)

(2.12)

where sk is the class label, ak is the linear combination of inputs from the previous layer

to the k-th node in the output layer, K is the total number of classes in the output layer

and g is the softmax function. The posterior p(sk|xt) cannot be directly used in the HMM.
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To obtain the likelihoods, the posterior is divided by the class prior p(sk), and we have the

following likelihood:

p(xt|sk) ∝ p(sk|xt)/p(sk) (2.13)

Figure 2.3: An example of a 4-layer feedforward deep neural network.

To train the weights in a DNN, we need to define an objective function that measures the

training error of the network. In acoustic modeling, a popular choice of the error function is

the cross-entropy between predicted and target outputs, given as follows:

CE = −
T∑
t=1

log p(yt|xt) (2.14)

where yt is target label at time t (derived from forced alignment), and p(yt|xt) is the posterior

obtained from the DNN output layer. To train the DNN, the weights are optimized by

minimizing the cross entropy objective function using gradient descent. The gradients for

weights in a DNN can be calculated using chain rules with back-propagation. In current

DNN training, the networks are usually trained with stochastic gradient descent (SGD)

using mini-batches. Training a DNN can often result in local optima because the objective

is not convex. As a result, the initialization of the weights in the network is critical. The

training of DNNs can be generalized categorized into two approaches:
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1. Layer-wise pre-training using Restricted Boltzmann Machines (RBM) [54];

2. Greedy layer-wise supervised training [10].

Recurrent Neural Networks and Long Short Term Memory (LSTM)

A major drawback of feedforward DNNs is that the DNN does not remember the previous

state in the network. A recurrent neural network (RNN) overcomes this issue by allowing

feedbacks (loops) in the network, thus allowing information to persist. A simple RNN is

shown in Figure 2.4, where xt is the input at time t, yt is the output, and ht is the hidden

layer output. Note that there is a loop that passes information from the previous step to the

next. Thus, at time t, the nodes in the hidden layer take in both current input xt, and its

previous state ht−1. With this feedback loop, RNN can use previous states of the network

to make predictions. Similar to the DNN formulation, a simple RNN can be formulated as

follows:

ht = f(Whxxt + Whhht−1 + bh) (2.15)

where Whx is a weight matrix between input and hidden layer, Whh is a weight matrix

between current state of the hidden layer and its previous state, bh is a bias term and f is

element-wise non-linear activation function. The output layer of the RNN uses an element-

wise softmax function g:

yt = g(Wyhht + by) (2.16)

where Wyh is a weight matrix between hidden layer and output layer, and by is a bias

term. The training of the RNN network can be done by first unfolding the network multiple

times, and then applying the standard back-propagation. This method is often referred to

as back-propagation through time (BPTT) [145].

In a standard RNN, the output at time t depends on inputs and hidden layer outputs

from time 0 to t−1 and does not use information after time t. To utilize information from the

entire sequence, a bidirectional RNN (BRNN) is used to process input sequences in both
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Figure 2.4: An example of a simple recurrent neural network.

forward and backward directions with two separate sub-layers. A BRNN usually outperforms

a standard uni-directional RNN.

Training a RNN can be difficult because of the vanishing gradient (or exploding gradient

in rare occasions) [55]. Long short term memory networks (LSTMs) [56] were introduced

to overcome this problem. LSTM is an improved RNN, with a special memory block in

the recurrent hidden layer. Each memory block consists of multiple cells, which replace

conventional nodes in the DNNs. Each cell contains a node with a self-loop which is used to

store temporal information. Each cell also consists of multiple gates that control the flow of

information. A forget gate is used to decide what information to discard from the cell. An

input gate is used to decide what new information to inject to the cell. An output gate is

used to decide what information to emit. Combining bidirectional RNNs with LSTMs, the

model leverages long-range context and achieves considerable improvements over a DNN-

based acoustic model [42, 119].

Figure 2.5 shows a depiction of a long short-term memory (LSTM) network. In short,
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the LSTM consists of the following functions:

ct = ft � ct−1 + it � tanh(Whcht−1 + Wxcxt + bc) (2.17)

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (2.18)

ft = σ(Wxfxt + Whfht−1 + Wcfct−1 + bf ) (2.19)

xt = σ(Wxoxt + Whoht−1 + Wcoct + bo) (2.20)

ht = xt � tanh(ct) (2.21)

In these equations, σ is a element-wise sigmoid function, tanh is a element-wise hyperbolic

tangent function, � is a element-wise multiplication symbol. it, ft,xt are the value of the

input, forget and output gate at time t. ct stores the cell information at time t. W∗∗ are the

weight matrices between gates and cells, where Wc∗ is diagonal. A detailed description of

LSTM network can be found in [56, 43, 42]. The LSTM network can be stacked into multiple

layers, resulting in a deep LSTM (DLSTM) network. The information in memory cells is

updated according to Equation 2.17. When ft = 0, the cell completely forgets its previous

state; when ft = 1, the previous state remains in the cell. Similarly, when it = 1, new

information is injected into the cell; when it = 0, no new information is injected. The values

of it, ft are obtained from two sigmoid functions, defined in Equation 2.18 and Equation 2.19.

To get the output information from a cell, Equation 2.21 is used to obtain the hidden layer

output. When xt = 0, the hidden layer is set to 0 and does not emit any output; when

xt = 1, the output information is completely emitted.

2.1.3 Lexicon and Language Model

A language model is a critical component in an ASR system. It is used to compute the the

prior probability of word sequences that can be recognized by an ASR system. Formally, a

language model predicts the probability of a word sequence P (W ), where W = {w1, · · · , wT}
and wi is the word in the i-th position of W . To compute this quantity, the probability is
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Figure 2.5: An example of a long short-term memory network.

decomposed using the chain rule as follows:

p(w1, · · · , wT ) = p(w1)
T∏
i=2

p(wi|w1, · · · , wi−1) (2.22)

In practice, instead of the conditional probability based on the history of words, we usually

make an assumption that the conditional probability of a word wt only depends on its

previous N − 1 words wt−1, · · · , wt−(N−1). Thus, conditional probability p(wt|w1, · · · , wt−1)

can be approximated as follows:

p(wt|w1, · · · , wt−(N−1)) = p(wt|wt−(N−1), · · · , wt−1) (2.23)

This is the most common language model, and it is often referred to as the N-gram language

model. When N = 2, it is referred to as the bigram language model; when N = 3, it is

referred to as the trigram language model.

The pronunciation model is often represented as a dictionary, which consists of a list of

pronunciations for each word. The pronunciations are represented as a phone sequences. In
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most LVCSR systems, most words have one pronunciation; sometimes, they may consist of

multiple pronunciations.

2.1.4 Search and Decoding

The decoding problem of an ASR system can be formulated as an optimal Bayes classifier,

where we want to predict the most likely word sequence W ∗ as follows:

W ∗ = argmaxW∈Lp(X|W )P (W ) (2.24)

where L is a set of candidate output word sequences, p(X|W ) is the acoustic likelihoods and

P (W ) is the language model score. In practice, we usually add a language model scaling

factor (LMSF) and rewrite the above equation in log probability as follows:

W ∗ = argmaxW∈L log p(X|W ) + LMSF × logP (W ) (2.25)

The decoder of an ASR system uses the Viterbi algorithm to decode the input sentence. To

find the most probable path, the decoder has to search through all possible word sequences

defined by a search graph. The size of the graph usually grows with a more complex model

such as a higher-order language model. In a LVCSR system, the size of the graph can be

huge. For this purpose, a multipass decoding scheme is often used, where a set of initial

potential decoding outputs is derived using a simple model (such as simpler acoustic model,

and/or simpler language model). A more sophisticated model is then used to re-rank the

decoding candidates.

Word lattices are often used in multipass decoding scheme. A word lattice is a compact

representation for a set of candidates, which correspond to the highly probable decoding

outputs. It is usually generated during first-pass decoding, where the word hypotheses that

are active in the beam search at each time point are preserved, while the other paths are

pruned away. A word lattice is often represented as a weighted finite state automata (WFSA)

G = {V,E,W}, where each node v ∈ V is associated with a time point, and each edge e ∈ E
is connect to two nodes u, v ∈ V , which represents the starting and ending time for a word.
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The edges are associated with acoustic likelihood and language model score. Since each

word hypothesis in the lattice is associated with its acoustic likelihoods and language model

probability, we can either use a more sophisticated language model, or a more complicated

acoustic model to do lattice rescoring. We can also inject additional scores for lattice

rescoring.

2.1.5 Connectionist Temporal Classification for ASR

The conventional DNN-HMM-based (or RNN-HMM-based) ASR system is often referred to

as “hybrid system”. In these hybrid systems, we need to obtain frame-level labeling as targets

for DNN training. To obtain these labels, we need to train different GMM-HMM systems

including monophone GMM systems and context-dependent GMM systems. Each of these

systems involves different front-end features. Moreover, the training of these systems involve

lots of expert knowledge in context-dependent phone decision trees, number of Gaussians,

and number of senones.

Recently, end-to-end speech recognition using Connectionist temporal classification

(CTC) [44, 50, 5, 97] has drawn much attention. CTC uses an objective function [43]

for sequence labeling problems involving variable-length input/output sequences that do

not have to be of the same length. Unlike hybrid system training, CTC does not rely on

frame-level training targets derived from a forced alignment and can automatically learn

the alignments between acoustic feature vectors and labels. CTC training also removes the

complicated steps such as different GMM-HMM system training, design of context-dependent

phone decision trees, which simplifies the ASR training framework.

CTC is used to train a RNN or LSTM network. Formally, given U input sequences

X = {X1, · · · , XU} and their corresponding label sequences Z = {Z1, · · · , ZU}, where

each input sequence Xu = {xu1 , · · · ,xuTu} and label sequence Zu = {zu1 , · · · , zuMu
} consist of

variable lengths, the goal of CTC is to minimize the negative likelihoods of label Z given
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input X defined as follows:

−
U∑
i=1

log p(Zi|Xi) (2.26)

The labels are defined at the phoneme level, or character level. For English speech recog-

nition, these labels usually consist of 45 phonemes, in addition to a blank symbol which

means no label is observed at the output. To train RNNs or LSTMs, the parameters are

optimized by SGD using the objective function in Equation 2.26. Note that the length of

Zi is usually smaller than that of Xi. To bridge the length difference, a CTC path [43] is

used. A CTC path for utterance u is defined as Cu = {cu1 , · · · , cuTu}, where Tu is the length

of Xu. The CTC path includes blank symbols, and repetitions of different labels, and has

the same length as the input sequence. The likelihood p(Zi|Xi) can be computed as follows:

p(Zi|Xi) =
∑
Ci∈Φi

p(Ci|Xi) (2.27)

where Φi is a set that consists of all possible CTC paths. Similar to HMM, Equation 2.27

can be computed on a trellis using forward-backward algorithm. The CTC objective is

differentiable to the RNN/LSTM output and gradients can be efficiently computed using

back-propagation.

2.2 Semi-supervised Learning

In this section, we give a brief walk-through of different semi-supervised learning methods.

There are roughly three types of machine learning paradigms. The first two paradigms are

supervised learning and unsupervised learning:

1. Supervised learning: In supervised learning, a set of training samples is given

L = {(xi, yi)}li=1, where xi is the feature vector of a sample i, and yi is the label

associated with the sample. Supervised learning trains a classifier f : xi → yi using

the training samples, with the goal to predict the labels of unseen test data. To train

the classifier, we usually find the best parameter that minimizes the empirical loss

function defined on the training set L.
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2. Unsupervised learning: In unsupervised learning, a set of samples is given D =

{xi}ni=1 without any supervision information (i.e. label information). The goal is to

cluster similar samples into groups, or perform dimensionality reduction that preserves

the original geometric information. Examples of unsupervised learning include image

segmentation, k-means clustering, and principle component analysis.

Semi-supervised learning (SSL) is a machine learning paradigm between supervised learn-

ing and unsupervised learning. In SSL, samples from both labeled and unlabeled data are

modeled jointly. Here we follow the conventional notations by defining two sets for SSL. The

first set L = {(xi, yi)}li=1 contains the labeled data with its class information, and the second

set U = {xi}ni=l+1 contains the unlabeled data, where n = l + u. Each data example xi lies

in a d-dimensional vector space Rd. Depending on the goal, SSL can be categorized into two

broad classes:

• Transductive learning: the goal is to train a classifier f using both L and U , and

infer the class labels for U .

• Inductive learning: the goal of inductive learning is to learn a classifier f using L and

U , and predict the class labels for unseen test data. In other word, inductive learning

can be generalized to any other unseen test data, whereas transductive learning can

only be applied to one specific test set.

2.2.1 Self-training

The simplest SSL method is the self-training approach. In this approach, the learning process

iteratively teaches itself by using the predictions from the previous model. To be precise,

the self-training approach starts with the labeled set L = {(xi, yi)}li=1 and unlabeled set

U = {xi}ni=l+1. An initial model f is trained using only the labeled data using standard

supervised learning. The resulting model f is then used to make predictions on U , where

the most confident predictions are removed from U and added to L together with their
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corresponding class predictions. In the next learning cycle, the model f is refined with this

augmented set L. This predict-and-augment procedure is the key to self-training. A critical

assumption of the self-training method is that the predictions added to the initial labeled set

are reliable enough; otherwise in some degenerate situations, adding false predictions to the

training set tends to make the model worse. Self-training is a wrapper method, and different

learning algorithms can be applied using the self-training framework. Algorithm 1 shows the

framework of self-training approach.

Algorithm 1 Self-training approach.

1: Given labeled set L = {(xi, yi)}li=1 and unlabeled set U = {xi}ni=l+1, a learning rate k

2: repeat

3: Train a classifier f using L;

4: Make prediction on U ;

5: Add k most confident predictions U ′ ⊆ U , augment L ← L∪U ′ and remove them from

U : U ← U \ U ′;
6: until All unlabeled data is consumed or no improvement of f is observed.

2.2.2 Co-training

Co-training, another standard SSL method, is proposed in [15]. Co-training resembles self-

training, with a distinct feature of “multiple views”. In co-training, it is assumed that the

examples x have two views, [x(1),x(2)]. For example, in the web page classification task, the

texts in the webpage (i.e. bag-of-word features) can be considered as the first view of the

example; the links and other metadata in the HTML files is the second view of the example.

It also assumes that each view can be used to make good classification given sufficient training

data, and each view is conditionally independent of the other given the class label.

Co-training procedure starts by duplicating L into two identical training data sets: L1

and L2. Iteratively, we train two classifiers: f (1) from L1 using the first view x(1) of the

examples, and f (2) from L2 using the second view x(2). The unlabeled data U is classified
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using f (1) and f (2). The most confident predicted samples x using the first classifier, along

with their predicted labels f (1)(x) are added to L2; and the most confident predicted samples

x using the second classifier, along with their predicted labels f (2)(x) are added to L1. The

selected examples are then removed from U . Co-training method is also a wrapper method

in which different learning algorithms can be applied. Algorithm 2 shows the co-training

framework.

Algorithm 2 Co-training approach.

1: Given labeled set L = {(xi, yi)}li=1 and unlabeled set U = {xi}ni=l+1, a learning rate k

2: Initialize L1 = L2 = L.

3: repeat

4: Train classifier f (1) using L1 and classifier f (2) using L2;

5: Make prediction on U using f (1) and f (2) separately;

6: Add k most confident predictions U ′1 = {x, f (1)(x)}, and augment L2 ← L2 ∪ U ′1;

7: Add k most confident predictions U ′2 = {x, f (2)(x)}, and augment L1 ← L1 ∪ U ′2;

8: Remove them from U : U ← U \ U ′1 \ U
′
2;

9: until All unlabeled data is consumed or no improvement of f is observed.

2.2.3 SSL for Generative Models

Generative models are trained to maximize the probability of generating training data un-

der the model assumption. Before we explain SSL for generative models, let us first visit

generative model training in supervised learning scenario, where we have L = {(xi, yi)}li=1.

In supervised learning, we learn the parameters θ∗ of the generative model by maximizing

the log-likelihood as follows:

log p(L|θ) = log
l∏

i=1

p(xi, yi|θ) (2.28)

This is the well-known maximum likelihood estimation (MLE) criterion for training genera-

tive models. In the SSL scenario [104, 22], we maximize the log-likelihood on both L and U .
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The objective function can be rewritten as follows:

log p(L,U|θ) = log
l∏

i=1

p(xi, yi|θ) + log
l+u∏
i=l+1

p(xi|θ) (2.29)

=
l∑

i=1

log(p(yi|θ)p(xi|yi, θ)) +
l+u∑
i=l+1

log p(xi|θ) (2.30)

where in addition to the likelihood defined on L, we have a marginal probability defined on

U . Unlike the supervised learning case, where the log-likelihood is concave, this objective is

not concave. EM algorithm can find a local optimal solution θ.

The key assumption of SSL for generative models is the model correctness. With an

incorrect model assumption, the learning process may result in erroneous solutions.

2.2.4 SSL for Discriminative Models: Avoiding Dense Regions

In contrast to the generative models, discriminative models directly work on the conditional

probability p(y|x). Support vector machine (SVM) [21] is a well known discriminative model.

Given additional unlabeled examples, can we build a better model for support vector ma-

chines? In a seminal work [68], transductive SVM was proposed. The key idea of a

transductive SVM is the low-density separation criterion. In the supervised SVM, the goal

is to find a hyperplane in the Reproducing Kernel Hilbert Space such that the hyperplane

separates different classes by a large margin. In the transductive SVM, the goal is to use the

additional unlabeled data to refine this hyperplane. Intuitively, the unlabeled data guides

the hyperplane to avoid dense regions.

Figure 2.6 shows an example of the intuition of the transductive SVM. The examples

in white circles and white squares are the labeled data which correspond to two classes;

the remaining examples in black circles are the unlabeled data. In a supervised SVM, the

best hyperplane will be the solid line which separates the labeled examples at the maximum

margin; with the unlabeled data, however, the best hyperplane becomes the dotted line.

Obviously, this decision boundary avoids cutting through the dense region in the space.

Given the labeled data L = {(xi, yi)}li=1, the SVM objective can be formulated as minimizing
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the hinge loss function defined as follows:

min
w,b

l∑
i=1

[1− yi(wTxi + b)]+ + λ||w||2 (2.31)

where [x]+ = max(x, 0) is the hinge loss function. However, for transductive SVM, the class

of the unlabeled data is not known so it is hard to incorporate the information from the

unlabeled data directly into the hinge loss function for SVMs. Nevertheless, suppose the

classifier makes the right decision on the unlabeled data, we can use the putative labels on

U for the hinge loss function. The modified objective is formulated as follows:

min
w,b

l∑
i=1

[1− yi(wTxi + b)]+ + λ||w||2 + ν
l+u∑
i=l+1

[1− |wTxi + b|]+ (2.32)

class 0
class 1

unlabeled

Figure 2.6: Example of transductive SVM. The solid line is the decision boundary using only

the labeled data. The dotted line is the decision boundary using both labeled and unlabeled

data; this boundary tries to find a low-density separation.

A similar idea was also presented in entropy regularization [41], which uses the con-

ditional entropy H(y|x) on the unlabeled data U for regularization. Although not expressed

explicitly in their original work, entropy regularization can be viewed as an analogue of

transductive SVM with logistic regression. Recall that logistic regression models the pos-

terior p(yi|xi) by p(yi|xi) = 1/(1 + exp(−yif(xi))), where f(xi) is a linear model of xi
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parameterized by w and b: f(xi) = wTxi + b. Training a supervised logistic regression

model is equivalent to minimizing the following empirical risk function:

min
w,b

l∑
i=1

log(1 + exp(−yif(xi))) + λ||w||2 (2.33)

As shown in their work [41], the entropy encourages the model to have as great a certainty

as possible on the label prediction of U . By incorporating the entropy regularization term

into the above function, we have:

min
w,b

l∑
i=1

log(1 + exp(−yif(xi))) + λ||w||2 + ν
l+u∑
i=l+1

H(1/(1 + exp(−f(xi)))) (2.34)

where H(·) is the entropy term, and λ, ν are regularization constants.

2.3 Graph-based Semi-supervised Learning

In this section, we describe the background on graph-based SSL, a popular subclass of the

SSL methods. In graph-based semi-supervised learning, the data samples are represented as

an undirected weighted graph G = (V,E,W ), where V consists of data samples in L and U ,

and E are the edges on the graph, weighted by w ∈W. The weight captures the similarity

between a pair of samples.

The goal of graph-based semi-supervised learning is to infer the class labels on U by

propagating the information from L on the weighted graph. The inference of labels on the

weighted graph can be formulated as minimizing an energy function defined on the graph,

and we will describe the formulation in details.

The key assumptions of graph-based SSL are the manifold assumption, smoothness as-

sumption and cluster assumption:

1. Manifold assumption: the data has a low-dimensional manifold structure;

2. Smoothness assumption: data points that are close to each other are likely to receive

the same class label;
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3. Cluster assumption: data points tend to form clusters, and points in the same cluster

are likely to share a label.

Unlike other SSL methods, a distinct feature of graph-based SSL is that it utilizes not only

similarities between training and test data, but also similarities between different test data.

There are two essential elements in graph-based SSL: 1) graph inference: inferring la-

bels on the graph; 2) graph construction: constructing a graph over all training and test

samples. In Section 2.3.1, we describe different inference algorithms and their objective; in

Section 2.3.2, we describe different graph construction techniques for graph-based SSL.

2.3.1 Graph-based Semi-supervised Learning Algorithms

Different graph-based semi-supervised learning methods have been proposed in the past.

They include label propagation [158, 160], local and global consistency [157], modified ad-

sorption [132], measure propagation [130], quadratic cost criterion [8] and more [51]. Before

we describe these graph-based SSL algorithms in detail, we first define some conventional

notations that are used in this chapter in Table 2.1.

Label Propagation

Label propagation [158] iteratively propagates the information from the labeled data on a

graph according to Algorithm 3. Given a similarity matrix W constructed over L and U , we

first compute a transition matrix T, where each entry is the probability of jumping from node

j to i. Iteratively, the label information is propagated using the transition matrix and the

row in Ŷ is renormalized after each propagation step. A key property of label propagation

is that the first n rows in Ŷ have to be reset to Y after each iteration.

Label propagation is also known as Gaussian random fields (GRF), which is proposed

in the authors’ later work [160]. As one of the first graph-based SSL algorithms, label

propagation has a significant impact on subsequent work and is still used as a de facto

baseline in many applications. It enjoys many properties such as a closed-form solution and
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Symbols Description

W Similarity matrix

wij Similarity between node i and j

Dii Degree of node i

L = {(xi, yi)}li=1 Labeled Set

U = {(xi)}l+ui=l+1 Unlabeled Set

l Number of labeled samples

u Number of unlabeled samples

n = l + u Number of labeled and unlabeled samples

m Number of Classes

Y ∈ Rl×m Seed Label Matrix

Ŷ ∈ Rn×m Predicted Label Matrix

ŶL ∈ Rl×m First l rows in Ŷ (labeled portion)

ŶU ∈ Ru×m Last u rows in Ŷ (unlabeled portion)

yi, ŷi ∈ Rm Label distribution of node i

yik, ŷik Probability of node i being assigned to class k

Table 2.1: Notations in Graph-based SSL Algorithms

Algorithm 3 Label Propagation Algorithm

1. Construct a similarity matrix W (self-weight ← 0);

2. Compute the transition matrix T: Tij =
wij∑n

k=1 wkj
, and initialize the first l rows in Ŷ by

Y , and the remaining u rows randomly;

3. Label propagation by Ŷ ← T Ŷ ;

4. Normalization for rows in Ŷ ;

5. Fix the labeled portion in Ŷ and repeat from step 3 until convergence.
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a natural extension to multi-class classification. However, there are several main drawbacks

of label propagation:

• The labeled portion in Ŷ has to be fixed at every iteration. However it is highly possible

that there are incorrectly labeled data points in the training set. This is even true for

speech recognition tasks where the labels, such as phoneme or senones, are less reliable.

It would be preferable to change the initial label assignment in those cases.

• Label propagation can often lead to degenerate inference in complex scenarios.

Local and Global Consistency (LGC)

In [157], the authors propose another objective “Local and Global Consistency (LGC)” for

graph-based SSL. In LGC, the goal is to minimize the following objective function:

m∑
c=1

[µ
∑
i

(ŷic − yic)2 +
∑
i

∑
j

wij(
ŷic√
Dii

− ŷjc√
Djj

)2] (2.35)

The first term in the objective is the supervised loss term and the second term is the man-

ifold smoothness term. The LGC objective overcomes a problematic assumption in label

propagation, where the first l rows in Ŷ have to be reset to Y . Also, the label value in LGC

is normalized by the degree of the node, which regularizes the influence of nodes with higher

degrees.

Modified Adsorption

Modified adsorption [132] represents a controlled random walk. Unlike traditional random

walks, each node v has three alternative actions: injection, continuation, and abandon,

associated with probabilities pinjv , pconjv , pabdnv , respectively, where pinjv + pconjv + pabdnv = 1.

Injection refers to the termination of a random walk and uses prior knowledge about the

vertex (labeled points in the training data); continuation refers to the normal continuation

of the random walk according to the transition matrix of the graph, and abandon refers to

abandoning a random walk and defaulting to a dummy label.



31

In modified adsorption, the predicted label matrix Ŷ is augmented by an additional

column. The last column corresponds to a ‘dummy’ label. In addition, we also define a

default matrix R ∈ Rn×(m+1). The goal of the modified adsorption algorithm is to minimize

the following objective function:

∑
i

[µ1

∑
k

pinji (yik − ŷik)2 + µ2

∑
j∈N (i)

∑
k

pconti wij(ŷik − ŷjk)2 + µ3

∑
k

pabdni (ŷik − rik)2] (2.36)

This objective can be decomposed into three parts: 1) the output is close to the given

supervised knowledge; 2) the manifold should be as smooth as possible (i.e. for samples with

a high pairwise similarity value wij, the label assignments are encouraged to be as similar

as possible); 3) the output is a dummy default label if the first two terms are not favored.

The loss function in Equation 2.36 can be considered a convex optimization problem that

can readily be solved by Jacobi iteration. The values of pinjv , pconjv , pabdnv can be set using grid

search, or can be computed by tuning a hyperparameter as described in [132]. Compared to

the previous graph-based SSL, the ‘dummy’ label in modified adsorption allows the user to

use an external classifier to inject label information. Thus, modified adsorption can prevent

degenerate scenarios.

Measure Propagation

In previous graph-based SSL methods, a quadratic loss function is defined on the label

distribution. Measure propagation [130] minimizes a Kullback-Leibler divergence (KLD)

based loss instead of the quadratic loss. Here we define two sets of probability distribution

ri ∈ Rm, i = 1, · · · , l, and pi ∈ Rm, i = 1, · · · , n, where ri is the given label distribution of

vertex i of the labeled data (or reference), and pi is the predicted label distribution. Both ri

and pi live in the m-dimensional probability simplex. Since the labels of training data are

already given, ri is a ‘one-hot’ vector with a single entry set to 1 in the given class position

and 0 otherwise. The objective function of measure propagation to minimize the following
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objective:

l∑
i=1

DKL(ri||pi) + µ

n∑
i=1

∑
j∈N (i)

wijDKL(pi||pj)− ν
n∑
i=1

H(pi) (2.37)

This objective function also consists of three parts: 1) the first term ensures that the pre-

dicted probability distribution matches the given distribution on labeled vertices as closely

as possible; 2) the second term stands for the smoothness on the manifold (i.e. close points

should have a smaller KL divergence); and 3) the third term encourages high-entropy out-

put (if the first two terms are not preferred, the output is then expected to have a uniform

distribution). This problem can be solved via interior-point methods but the computation

is expensive. In [130], alternating minimization (AM) has been proposed to solve the opti-

mization problem. To see a detailed procedure to derive the update equation and proof of

convergence for AM, the reader is to referred to [128]. Measure propagation has many ad-

vantages: 1) KL-divergence is a natural loss function for probability distribution, rather than

quadratic loss; 2) it allows soft label assignment on L; 3) inference using measure propagation

can be parallelized and can handle large-scale datasets. In the past, measure propagation

has been used in large-scale dataset such as WebKB [129] and Switchboard [131].

Quadratic Cost (QC) Criterion

In [8], the authors formulate a unified objective of the graph-based SSL by minimizing a

quadratic cost function. The objective function is defined as follows:

||ŶL − Y ||2 + µŶ TLŶ + ν||Ŷ ||2 (2.38)

The first term, namely the supervised loss term, penalizes the inconsistency with initial labels

and predicted labels of set L. The second term reflects the smoothness on the manifold. The

last term in the objective is added to prevent degenerate situations.

The whole optimization can be derived in closed-form

Ŷ = (S + µL+ νI)−1SY (2.39)
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where S is a diagonal matrix, where Sii = 1,∀i ≤ l and Sii = 0, ∀i > l. The QC criterion

has a big impact on graph-based SSL: it generalizes most graph-based SSL objectives. In

fact, label propagation can be formulated as a QC criterion under certain conditions, and

is discussed in detail in [8]. The QC criterion also sheds light on explaining the measure

propagation algorithm: the first two terms in Equation 2.37 are the supervised loss term and

the manifold smoothness penalty term, respectively; as for the third term, minimizing the

`2 norm of the label distribution in the third term in QC has a similar effect to maximizing

the entropy of the label distribution in Equation 2.37.

2.3.2 Graph Construction

As stated in [158], the importance of the graph quality far exceeds the learning algorithm,

and constructing a good graph is ‘more art than science’. Even with a ‘perfect’ graph-based

SSL algorithm, inference on a poorly constructed graph can result in incorrect prediction. A

‘good’ graph should consist of the following attributes: 1) The weights on the graph should

reflect the pairwise similarity. This requires us to have a robust feature representation and a

good distance metric. 2) The graph should preserve the manifold information. This requires

us to have a good structure of the graphs (such as the degrees of the nodes). In this section,

we give a brief overview on graph construction methods in graph-based SSL.

Graph Construction Methods

We first introduce various approaches that result in different graph structures. The most

common techniques are listed as follows:

1. k-nearest-neighbor (kNN) graph: given a vertex xi, we select k-nearest neighbors

of xi. The resulting graph has a constant degree on all the vertices, but the graph is

asymmetric. This can be resolved by making the kNN graph symmetric: if vertex j is

among the k-nearest neighbor to vertex i, we add the vertex i to the nearest neighbors

for j. The resulting degree of the vertices on the graph is then at least k, and the
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graph is guaranteed to have no isolated component. Efficient exact kNN search, or

approximate kNN search, can be done by using data structures such as kd-trees [11].

2. Mutual k-nearest-neighbor (mkNN) graph: given a vertex xi, we preserve the

edges only if a vertex xj is among the k-nearest neighbors to xi and xi is also among

the k-nearest neighbors to xj. The resulting graph is guaranteed to be symmetric, but

unlike the kNN graph, the degree of the vertices on the mkNN graph is at most k and

is usually sparse. To avoid isolated components in the graph, a maximum spanning

tree is constructed and the minimum number of edges are added to the graph [107].

The mKNN graphs are usually used to avoid hubs (nodes with very high degrees) in

the graph.

3. ε-ball neighbor graph: given a pre-defined search radius ε, we preserve the edges if

the weight w is smaller than ε. ε-ball neighbor graph behaves similarly to the mKNN

graph, which is guaranteed to be symmetric, but has no guarantee to avoid isolated

components. In practice, the ε parameter is sensitive to the graph quality. Thus kNN

graph is often preferred over the ε-ball neighbor graph and mkNN graph.

4. b-matching graph: In [66], the authors propose a graph construction scheme such

that each node on the graph has exactly b neighbors. They argue that the kNN graphs

are irregular and imbalanced, and the learning algorithms can degrade significantly on

such graphs. However, constructing a b-match graph is shown to be computationally

expensive. The empirical complexity of a fast b-matching algorithm [57] is O(n2.5),

which makes the method impractical on large-scale graph.

Edge Weighting

Second, we describe several edge weighting methods for graphs. To compute the similarity

between a pair of feature vectors, we can the following similarity measures:
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1. Binary weighting: The simplest edge weighting method is the binary weight. If there

exists an edge between two samples xi and xj on the graph, the corresponding weight

wij is set to 1; otherwise, wij = 0.

2. Weighting with distance metric: A more conventional similarity measure is to

convert distance measures using a radial basis function (RBF) kernel function, which

is defined as follows:

wij = exp(−d(xi, xj)

2σ2
) (2.40)

where d(xi, xj) is the distance between a pair of sample xi and xj, and σ is the window

size of the RBF kernel function which controls the flatness of the kernel function. There

are many options for the distance measures:

• Euclidean distance: de(xi, xj) = ||xi − xj||2;

• Mahalanobis distance: dm(xi, xj) = (xi − xj)
ᵀΣ−1(xi − xj), where Σ � 0 is

a positive semidefinite matrix. Learning a good Mahalanobis distance metric is

critical, and has been studied in previous literatures [147, 143].

• Cosine distance [30]: dc(xi, xj) = 1 − cos(xi, xj) = 1 − xi·xj
||xi||||xj || . The cosine

distance is also a widely used distance metric and has been applied in many

natural language processing and information retrieval tasks.

• Kullback-Leibler divergence: dKL(xi, xj) =
∑m

d=1 x
d
i log

xdi
xdj

. The KL diver-

gence is used to calculate the distance between two probability distribution, where

xi and xj live on a d-dimensional probability simplex.

• Jenson-Shannon divergence: dJS(xi, xj) =
dKL(xi,xk)+dKL(xj ,xk)

2
. The KL

divergence is not a valid metric because of its asymmetric property. Jenson-

Shannon divergence is a popular method to compute the distance between two

probability distributions. Again, xi and xj live on a d-dimensional probabilistic

simplex. xk is the equal-weight interpolation of xi and xj, i.e. xdk = (xdi + xdj )/2.
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3. Weighting with local reconstruction: A different edge weighting method is

proposed in [138, 24], which is based on the idea of the locally linear embedding

method [117]. Instead of defining an explicit distance measure, each example x is

considered to be reconstructed from its neighboring examples. In this case, we want

to solve the following objective:

min
∑
i

||xi −
∑
j∈Ni

wijxj||2 (2.41)

s.t.
∑
j∈Ni

wij = 1 (2.42)

wij ≥ 0 (2.43)

where Ni is the neighboring nodes of example xi.
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Chapter 3

GRAPH-BASED SEMI-SUPERVISED LEARNING
ALGORITHM FOR ACOUSTIC MODELING

In this chapter, we propose an extension to measure propagation [130] which is referred

to as the ‘prior-regularized measure propagation’ (pMP) algorithm for acoustic mod-

eling. First, we describe semi-supervised learning techniques used in acoustic modeling in

Section 3.1. Then, we describe the mathematical formulation of the pMP algorithm in Sec-

tion 3.2. Finally, we describe the optimization procedures for pMP algorithm in Section 3.3.

3.1 Semi-supervised Learning in Acoustic Modeling

Semi-supervised learning techniques for acoustic modeling can be generally categorized into

three types:

1. Self-training approaches;

2. Entropy-based approaches;

3. Graph-based approaches.

3.1.1 Self-training in Acoustic Modeling

Although there are many semi-supervised learning methods, as reviewed in the previous

chapter, the most dominant semi-supervised learning method for acoustic modeling is self-

training. In self-training, an initial “seed” acoustic model is trained using a set of training

utterances. After the seed model has been trained, the remaining unlabeled utterances are

decoded. The most reliable machine-transcribed utterances are selected according to the

decoder confidence score, and added back to the training data set. The augmented training
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data is then used to train a refined acoustic model. These steps are repeated for a number

of iterations, or until there is no further improvement of the model. The diagram in Figure

3.1 shows an example framework of self-training for acoustic models.

Initial Labeled 
Data

Initial Unlabeled 
Data

Initial AM

Training 
Data 1

Unlabeled 
Data 1

AM1Data 
Selection

Data 
Selection

Training 
Data 2

Unlabeled 
Data 2

AM2Data 
Selection

Stage 0 Stage 1 Stage 2

Figure 3.1: Self-training framework for semi-supervised acoustic model training. Given a

set of transcribed data, and a set of untranscribed data, an initial acoustic model is trained

using only the transcribed data. The model is used to decode the remaining untranscribed

data. Data selection method is used to select the most reliable data, which is added back to

the original transcribed data. The steps are repeated for a number of iterations, or stopped

if there is no further improvement of the system.

These self-training methods have been studied in GMM-based acoustic models [76, 77,

48, 146, 105, 153]. In recent studies [136, 45, 60, 82], self-training methods are also used in

DNN-based acoustic model training. The success to self-training hinges on two aspects: first,

the “seed” model has to be reasonably good; second, the confidence level and unit selection

is important in bootstrapping the system performance in later iterations.
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3.1.2 Entropy-based Approaches

Contrary to these bootstrapping approaches, other methods are proposed which jointly mod-

els the labeled and unlabeled data. One family of the SSL is motivated from entropy mini-

mization, and has been proposed in [59, 151].

In [151], the authors proposed a unified global entropy reduction maximization (GERM)

framework for active learning and semi-supervised learning for acoustic modeling. They

showed that both the traditional confidence-based active learning and semi-supervised learn-

ing approaches can be improved by maximizing the lattice entropy reduction over the whole

dataset.

In [59], the authors proposed to jointly model the labeled and unlabeled data in a condi-

tional entropy minimization framework [41]. In addition to maximizing the posteriors on the

labeled data, the authors also maximized the empirical conditional entropy regularization

term posed on the unlabeled data. This additional regularizer encourages the model to have

as great certainty as possible on the label prediction on the unlabeled data. The optimization

of the framework was performed using the extended Baum-Welch algorithm. The method was

evaluated in different speech recognition tasks such as phonetic classification and phonetic

recognition tasks [58], where improvement was obtained on the TIMIT dataset compared to

a supervised discriminatively trained GMM model (with MMI estimation criteria).

3.1.3 Graph-based Approach

Another family of methods involves graph-based semi-supervised learning, which is the main

theme of this thesis. In these graph-based methods, it is assumed that samples that are close

to each other on the manifold are encouraged to receive the same class label. The goal of

graph-based SSL is to infer the class label distributions for all samples in U defined on the

graph G according to an objective function. Figure 3.2 shows an illustration of graph-based

approaches for acoustic modeling. In this example, each frame in the labeled and unlabeled

data is represented as a node in the graph. The weights on the graph encode the similarity
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for a pair of samples. Here we have four phonetic labels /ey/, /ow/, /n/ and /h/. The goal is

to infer the label distribution of all samples in U according to an objective function defined

on the graph G. Different objective functions, such as label propagation [158], measure

propagation [130], and modified adsorption [132], are defined on the graph.

Note that unlike the self-training and entropy-based approaches, where “unlabeled train-

ing data” are used to train a better model, most graph-based approaches are in a transductive

learning setting. The unlabeled data in graph-based approaches is the test data and the goal

of the learning algorithm is to infer labels for a given test set. Whenever a new test set is

encountered, we need to repeat the process.

/ey/

/ow/

/h/

/n/

/ow/

/h/

/n/
?

/ey/

?

?

?

?

?

?

?

?

?
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/ey/ /ow/ /n/ /h/
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?
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Figure 3.2: An example of graph-based SSL for acoustic modeling. Each node in the graph

is associated with a frame in either labeled set L or unlabeled set U . The weights on the

graph indicate the pairwise similarity between two frames. The goal is to infer the label

distribution for all samples in U (nodes with question marks).

In [3], the authors used the label propagation algorithm for vocal classification tasks.

The work was evaluated on Voice Joystick dataset [71], a 8-vowel classification task that was

used to develop voice-controlled assistive devices for patients with motor impairments. It

was shown that the method outperforms a purely supervised GMM and MLP classifier.
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In [131], the authors proposed to use measure propagation [130] for Switchboard-I pho-

netic transcription. The motivation of the project was to annotate the original Switchboard-I

dataset at phonetic and syllable levels. Since the human efforts for phonetic annotation is

prohibitive, time-consuming, and error-prone, the authors used 75 minutes of annotated

speech to infer the phonetic labels of the remaining 320 hours of speech using graph-based

SSL. This is the largest graph-based SSL known to date, which consists of 120 million nodes.

In [94], instead of optimizing the label distribution on the graph, the authors added the

graph-based manifold regularization term to the multi-layer perceptron (MLP) objective.

Recall that the optimal weights θ of a MLP can be obtained by cross entropy training, the

authors of [94] added a graph regularization term to the cross entropy objective as follows:

J(θ) =
L∑
i=1

DKL(ti||p(xi; θ))+γ
n∑

i,j=1

wijDKL(p(xi; θ)||p(xj; θ))+β
n∑
i=1

DKL(p(xi; θ)||u)+λ||θ||2

(3.1)

where ti is the target label distribution for sample i, p(xi; θ) is the label prediction obtained

from the MLP output layer, u is the uniform distribution, DKL(·, ·) is the KL divergence

between two probability distribution, and ||θ||2 is a `2 regularization term for the MLP

weights. γ, β, λ are the regularization constants. Equation 3.1 is inspired from the measure

propagation algorithm and the new objective is similar to the objective in Equation 3.2. The

method was evaluated on the frame-level phonetic classification task and showed consistent

improvement over the supervised MLP baseline.

In [73], the authors used the modified adsorption algorithm [132] for phonetic classi-

fication. Experimental results on the TIMIT dataset showed that the modified adsorption

algorithm outperformed the label propagation as well as the supervised MLP baseline system.

Unfortunately, none of these works have addressed the fundamental problem of how

graph-based SSL can help the ASR performance: these works neither showed a systematic

integration into a fully-fledged ASR system, nor did they show its efficacy on a real continuous

word recognition task.
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3.2 Prior-Regularized Measure Propagation

Different graph-based objectives have been used for frame-level phonetic classification tasks.

However, these graph-based methods are evaluated using different benchmark datasets with

different setup. It is hard to gauge which algorithm works best for acoustic modeling in

practice. In this section, we describe the prior-regularized measure propagation algorithm -

an extension to “measure propagation” [130]. We describe the mathematical formulation of

the algorithm as well as the optimization procedures. In the next chapter, we will compare

its performance to several other state-of-the-art graph-based SSL methods on the TIMIT

benchmark dataset under identical experimental setup.

Symbols Description

W Similarity matrix (wij is the similarity between node i and j)

L = {(xi, ri)}li=1 Labeled Set: l samples in total

U = {(xi)}l+ui=l+1 Unlabeled Set: u samples in total

ri ∈ Rm Label distribution of node i (m is the number of classes)

pi ∈ Rm Predicted label distribution of node i

p̃i ∈ Rm Prior label distribution of node i

n Total number of labeled and unlabeled samples

Ni nearest neighbors of node i

Table 3.1: Notations in prior-regularized measure propagation and measure propagation.

First, we define the notations in Table 3.1. We have a set of labeled data L = {(xi, ri)}li=1,

and a set of unlabeled data U = {xi}l+ui=l+1. xi ∈ Rd is a d-dimensional acoustic feature vector

for a given sample (frame) i. For acoustic modeling, x is usually a MFCC feature vector,

possibly with additional preprocessing steps such as splicing, LDA or fMLLR transforma-

tions, etc. ri ∈ Rm is the reference distribution over class labels (e.g., phone labels, senones,

etc.) for sample i. l and u are the number of frames in the labeled (training) and unlabeled
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(test) set, respectively.

We construct a graph G = {V,E,W} over all samples from L and U , where V is the set of

nodes in the graph (representing samples in L∪U), E is the set of edges that connect a pair

of nodes i and j, and each edge is associated with a weight wij that encodes the similarity

between them. The goal is to infer the label distribution pi for i ∈ U .

3.2.1 Objective Functions

To infer the label distribution of all samples in U on the weighted graph G, we need to design

an objective function. Unlike many graph-based SSL algorithms which minimize a quadratic

loss function, measure propagation minimizes a Kullback-Leibler divergence (KLD) based

loss. In fact, KL divergence is a more natural distance function to measure the distance

between label distributions, rather than the Euclidean distance.

As a brief recap, the measure propagation minimizes the following objective defined on

a graph G:

l∑
i=1

DKL(ri||pi) (3.2)

+µ
n∑
i=1

∑
j∈Ni

wijDKL(pi||pj)− ν
n∑
i=1

H(pi)

Here, pi is the predicted label distribution of all samples in L∪U , which we want to optimize.

ri is reference label distribution of all samples in L, and is usually a one-hot vector (derived

from forced alignment). H(·) is the entropy of a probability distribution. DKL(·, ·) is the

Kullback-Leibler divergence between a pair of probability distribution. wij is the similarity

between sample i and j. Ni is the set of nearest neighbors of sample i. This objective

function consists of three parts: 1) the first term ensures that the predicted probability

distribution matches the given distribution on labeled vertices as closely as possible; 2) the

second term stands for the smoothness on the manifold (i.e. close points should have a

smaller KL divergence); and 3) the third term encourages high-entropy output (if the first
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two terms are not preferred, the objective is minimized by assigning a uniform distribution

to all of the unlabeled frames).

For the pMP algorithm, instead of maximizing the entropy distribution in the third term

in Equation 3.2, we use the prior information as an additional regularization term. Formally,

the objective function of the pMP algorithm can be written as:

l∑
i=1

DKL(ri||pi) + µ

n∑
i=1

∑
j∈Ni

wijDKL(pi||pj)

+ν
n∑
i=1

DKL(pi||p̃i) (3.3)

The notation is the same as defined in measure propagation, with an additional set of vari-

ables {p̃i}ni=1, which is the prior label distribution. Instead of encouraging maximizing the

entropy of all samples, we penalize the inconsistency between the predicted label distribu-

tion and the prior label distribution. We show that adding the prior regularization term

can help prevent degenerate scenarios. The objective function can be solved efficiently using

alternating minimization (AM), which will be described in the following section.

3.3 Optimization for pMP using AM algorithm

The objective function in Equation 3.3 is convex with respect to pi. However, there is no

closed-form solution. By taking the derivative of the objective function 3.3 with respect to pi

and setting to zero, we have the following forms: k1pi(y) log pi(y) + k2pi(y) + k3, where pi(y)

is the probability of sample i being classified as class y, k1, k2, and k3 are some constants.

Consequently, numerical optimization procedures are needed to solve the pMP problem.

Method of multipliers and interior methods [16] can be applied to solve the problem.

Similar to measure propagation, we use the alternating minimization (AM) algorithm to

solve the optimization. Given an objective function d(p,q) where variables p and q belong

to a separate set, AM algorithm finds an optimal pair of variables (p,q) that minimizes the

function. The procedures can be described as the following iterative steps:

• At t = 0, choose a random initial point q(0) ∈ Q;
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• For t > 0, repeat the following two steps until convergence:

– P-Step: Find an optimal projection p(t) ∈ P that minimizes d(p(t),q(t−1));

– Q-Step: Fix q(t), find an optimal projection q(t) ∈ Q that minimizes d(p(t),q(t)).

In order to have a formulation that is amenable for AM algorithm, a third set of probability

distributions {qi}ni=1 is introduced. To be complete, the AM formulation of the pMP problem

in Equation 3.3 is rewritten as follows:

minimize
l∑

i=1

DKL(ri||qi)

+µ
n∑
i=1

∑
j∈N ′(i)

w′ijDKL(pi||qj)

+ν
n∑
i=1

DKL(pi||p̃i) (3.4)

subject to
∑
y

pi(y) = 1, pi(y) > 0∑
y

qi(y) = 1, qi(y) > 0

w′ij = [W′]ij

W′ = W + αIn

N ′(i) = {i}
⋃
N (i), α ≥ 0 (3.5)

where {pi}ni=1 and {qi}ni=1 are two sets of probability distributions to optimize. pi(y), qi(y)

is the probability of sample i being classified as class y. α is hyper-parameter (and the only

one) in this formulation, which plays a role in enforcing that pi and qi are similar. When

α→∞, the AM formulation is the same as the original formulation. Again, the optimization

problem in Equation 3.4 is a convex optimization over the variables pi and qi.
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3.3.1 Update Equation for pMP using AM algorithm

By writing out the Lagrangian of the objective function in Equation 3.4 and setting the

partial derivative w.r.t. p and q to zero, we arrive at a closed-form update equation for p:

p
(t)
i (y) =

exp(
β′i(y)

α′i
)∑

y exp(
β′i(y)

α′i
)

(3.6)

where

α′i(y) = µ
∑
j

w′ij + ν

β′i(y) = µ
∑
j

w′ij(log q
(t−1)
j (y)− 1) + ν(log p̃i(y)− 1)

Similarly, a closed-form update equation for q can be derived as following:

q
(t)
i (y) =

ri(y)δ(i ≤ l) + µ
∑

j w
′
jip

(t)
j (y)

δ(i ≤ l) + µ
∑

j w
′
ji

(3.7)
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Chapter 4

GRAPH-BASED SEMI-SUPERVISED LEARNING IN
PHONETIC CLASSIFICATION

In this chapter, we describe how to use graph-based semi-supervised learning for phonetic

classification tasks [89]. Phonetic classification tasks are relatively artificial but are very

informative in evaluating novel acoustic modeling methods. In this chapter, we focus on two

different phonetic classification tasks. The first task is the conventional frame-level phone

classification. In frame-level phone classification, it is assumed that the time boundary

information for phone segments is given. Each frame is assigned to a phone label. In

semi-supervised learning, we are given a set of labeled data L = {(xi, yi)}li=1, and a set of

unlabeled data U = {xi}l+ui=l+1, where l and u are the number of samples in L and U , xi ∈ Rd

is a feature vector in d-dimensional space and yi ∈ {1, · · · , C} is the phoneme class label,

the goal is to infer the class labels for the unlabeled set U . We will evaluate the performance

of graph-based SSL in frame-level phone classification in Section 4.1 and Section 4.2. The

second task is segment-level phone classification. In segment-level classification, each

acoustic segment x = {x1, · · · ,xs} is assigned to a phone label. Since these segments consist

of a variable-length sequence of frames, it is challenging to use graph-based SSL, which was

developed for fixed-length feature vectors. In Section 4.3, we will propose several novel graph

construction methods that allow graph-based SSL to handle variable-length input vectors.

In Section 4.4, we will evaluate the proposed methods for segment-level classification. In

both these tasks, we compare the pMP algorithm from Chapter 3 to several state-of-the-

art graph-based SSL algorithms and show a consistent improvement over other graph-based

methods as well as supervised baseline system. We wrap up this chapter in Section 4.5.
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4.1 Frame Level Phone Classification

In this section, we investigate graph-based SSL for phonetic classification tasks. In previous

work [3, 131, 73, 106], graph-based SSL algorithms have been adopted for phone classification

tasks. On one hand, these studies show promising results that the graph-based SSL method

can improve over a purely supervised baseline system; on the other hand, it is difficult to

gauge which graph-based SSL is most suitable for acoustic modeling tasks. They either

use different graph construction methods, or evaluate on different benchmark datasets with

different baseline systems. In this thesis, we first evaluate the pMP algorithm against three

other state-of-the-art graph-based SSL algorithms: label propagation (LP) [158], measure

propagation (MP) [130], and modified adsorption (MAD) [132]. We evaluate the performance

on the popular phonetic classification benchmark dataset TIMIT, with identical experimental

setups.

4.1.1 Benchmark Dataset

We use the TIMIT dataset [35] to evaluate frame-level and segment-level phone classification.

The TIMIT dataset is a popular benchmark dataset in phonetic classification. It was de-

signed by Massachusetts Institute of Technology (MIT), SRI International (SRI) and Texas

Instruments, Inc. (TI), and is used for acoustic-phonetic studies. TIMIT contains record-

ings of read speech from 630 speakers of 8 dialects of American English. The sentences were

created to be phonetically rich, and were read by different speakers. The TIMIT dataset

provides not only the word-level transcription, but also a careful frame-level phonetic anno-

tation. Thus, phonetic classification using TIMIT is a well-designed task for fast evaluation

of novel acoustic modeling methods.

Following the conventional setup, we use 3696 sentences from 462 speakers, excluding all

the dialect sentences (sa sentences), as training data, 192 sentences (24 speakers) from the

core test set as evaluation data. We also use a development set of 210 sentences from 50

speakers [49]. The TIMIT dataset has 61 phoneme labels. For training, we collapse the 61
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phone labels into 48 phone labels; for evaluation, we further collapse them into 39 phones.

We exclude all the glottal stop segments. Table 4.1 shows the phone labels used in TIMIT.

For front-end processing, we extract 39-dimensional feature vectors (consisting of 12 MFCC

coefficients, 1 energy coefficient, deltas, and delta-deltas) every 10ms with a window of 25ms.

Mean and variance normalization of the feature vectors are applied on a per-speaker basis.

The total number of samples for the training, development and test sets, are 1044671, 63679,

and 57908, respectively. This corresponds to 121385, 7416, and 6589 phone segments. To

simulate different training conditions for semi-supervised learning, we use 10%, 30%, 50%

and 100% of the training data, respectively, to investigate the performance of graph-based

SSL algorithms on varying amounts of training data.

4.1.2 Graph Construction for Frame-level Classification

The graph can be obtained from a nearest neighbor graph (either kNN, or ε-NN) as described

in Section 2.3.2. In our specific case for frame-level classification, we adopt the same graph

construction method in [39, 3], which is shown in Figure 4.1. To be precise, for each sample

in U , we find kl nearest neighbors in the labeled data L, and ku nearest neighbors in the

unlabeled data U . We also perform a symmetrization on the graph such that if sample i

is one of the nearest neighbors of sample j, then we also add j to the nearest neighbors of

sample i.

For graph construction, a common approach is to use the Euclidean distance between

MFCC feature vectors, and convert it into similarity with an RBF kernel function. In

this task, we follow another graph construction approach based on similarity for probability

distributions [73]. First, a first-pass supervised classifier is trained on the labeled data set. In

our case, we train a 3-layer multi-layer perceptron (MLP), which takes as input a window of

9 acoustic frames. Thus, the dimensionality of the input vector is 39×9 = 361. We use 2000

hidden units in the hidden layer with a sigmoid nonlinear activation function. The output

layer consists of 48 units, which corresponds to 48 phone labels. The output layer uses a

softmax function. This MLP also serves as the supervised baseline system. For each training
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Phone Label
Mapping

(48/39)
Phone Label

Mapping

(48/39)
Phone Label

Mapping

(48/39)

1 iy iy/iy 22 ch ch/ch 43 en en/n

2 ih ih/ih 23 b b/b 44 eng ng/ng

3 eh eh/eh 24 d d/d 45 l l/l

4 ey ey/ey 25 g g/g 46 r r/r

5 ae ae/ae 26 p p/p 47 w w/w

6 aa aa/aa 27 t t/t 48 y y/y

7 aw aw/aw 28 k k/k 49 hh hh/hh

8 ay ay/ay 29 dx dx/dx 50 hv hh/hh

9 ah ah/ah 30 s s/s 51 el el/l

10 ao ao/aa 31 sh sh/sh 52 bcl vcl/sil

11 oy oy/oy 32 z z/z 53 dcl vcl/sil

12 ow ow/ow 33 zh zh/sh 54 gcl vcl/sil

13 uh uh/uh 34 f f/f 55 pcl cl/sil

14 uw uw/uw 35 th th/th 56 tcl cl/sil

15 ux uw/uw 36 v v/v 57 kcl cl/sil

16 er er/er 37 dh dh/dh 58 q

17 ax ax/ah 38 m m/m 59 pau sil/sil

18 ix ix/ih 39 n n/n 60 epi epi/sil

19 axr er/er 40 ng ng/ng 61 h# sil/sil

20 ax-h ax/ah 41 em m/m

21 jh jh/jh 42 nx n/n

Table 4.1: TIMIT phone labels.
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…

labeled set

unlabeled set

Figure 4.1: kNN graph for acoustic modeling. For each node in the unlabeled set U (for

example, the red node), we find kl nearest neighbors in the labeled data L, and ku nearest

neighbors in the unlabeled data U .

condition the MLP only receives the same training data as the subsequent graph-based SSL

algorithms, i.e. 10%, 30%, 50% or 100%.

After the MLP classifier has been trained, we derive a phone label distribution for each

sample in the test data. These probability distributions are used as a new feature rep-

resentation for graph construction. In our previous work [88], we showed that this graph

construction yielded far superior classification performance than using the raw MFCC feature

vectors. With a first-pass classifier, we can remove noise from the original acoustic feature

space. In addition, we can significantly reduce the training data size. Compared to naive

graph construction which requires n = l + u nodes and n2 similarity computation, we only

need C + u nodes in the graph, where u is usually much smaller than l 1 and C = 48. Be-

cause we are using phone label distribution as the feature space, instead of using all training

samples for graph construction, we only need to create 48 canonical (‘seed’) feature vectors.

For each phone class, a one-hot feature vector is created with 1 at the corresponding label

and 0 elsewhere.

1For TIMIT, l ≈ 107 and l ≈ 105.
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To compute the similarity measures on the weighted graph, we can use the Jenson-

Shannon divergence as described in Section 2.3.2. As a recap, the Jenson-Shannon divergence

for probability distributions is defined as follows:

dJS(xi,xj) =
dKL(xi,xk) + dKL(xj,xk)

2
(4.1)

where, xi and xj live on a d-dimensional probabilistic simplex. xk is the equal-weight in-

terpolation of xi and xj, i.e. x
[i]
k = (x

[i]
i + x

[i]
j )/2, where x[i] is the ith dimension of the

probability distribution. We set kl = ku = 10 for the nearest neighbor graph construction. A

fast nearest neighbor search procedure using kd-trees [11] is used to select the training and

test data points within a given radius r around each test point. (r = 7.0 for selecting training

points, r = 0.02 for test points). For MP and pMP, since the Jensen-Shannon divergence

between a given unlabeled vertex and all the seeds can be very small (i.e. < 10−10), we set

the largest weight to 0.1 and scale up the other weights accordingly.

4.2 Experimental Results: Frame Level Classification

We evaluate the pMP algorithms against three other widely used graph-based SSL algo-

rithms: label propagation (LP) [158], measure propagation (MP) [130], and modified ad-

sorption (MAD) [132]. The supervised baseline system on each training condition has an

accuracy between 65.94% and 72.45%. Better accuracy can be achieved using a more ad-

vanced classifier, such as a deep neural network; however, we concentrate on comparing the

pMP algorithms to other graph-based methods under identical setup. We will show how

pMP algorithms can improve over a DNN-based system in Chapter 5.

Both MAD and pMP algorithms can utilize prior information. For the pMP algorithm,

we use the MLP output as the prior term p̃ in Equation 3.3. For MAD, the predicted

label distribution consists of a ‘dummy’ label. In case the ‘dummy’ label receives highest

probability, we use the MLP output as the prediction. Table 4.2 shows the frame-level

classification accuracies under different training conditions using four different graph-based

SSL algorithms. The numbers in bold face indicate a significant improvement over the
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supervised baseline system at p = 0.05 using z-test. We observe that for each training

condition, LP and MP do not have a better classification accuracy compared to the supervised

baseline system. On the contrary, the best graph-based SSL algorithms are those that

incorporate prior information, namely MAD and pMP. The best results are obtained by

pMP; improvements over the supervised baseline range between 1.28% and 1.82% absolute.

The pMP algorithm is consistently outperforming MAD, and we assume that this is because

pMP uses the prior information in the objective function and during label inference, while

MAD injects a hard label assignment provided by the prior after the label inference.

Amount of training data

System 10% 30% 50% 100%

MLP 65.94 69.24 70.84 72.45

LP 65.47 69.24 70.44 71.46

MP 65.48 69.24 70.44 71.46

MAD 66.53 70.25 71.60 73.01

pMP 67.22 71.06 72.46 73.75

Table 4.2: Accuracy rates (%) for frame-based phone classification for the baseline (MLP)

and various graph-based learners. Bold-face numbers are significant (p < 0.05) improvements

over the baseline.

4.3 Segment Level Phone Classification

4.3.1 Motivation

Frame-level modeling has been the predominant approach. However, when we apply graph-

based SSL to frame-level modeling, the resulting graph is usually very large, consisting of

millions of nodes. To alleviate the computational overhead, we can apply graph-based SSL

at the segment level. The segments can be extracted from lattices, or confusion networks.
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The resulting number of segments is usually much smaller than the number of frames.

In graph-based SSL, each node is associated with a feature vector. In frame classification

task, the feature vector is usually a fixed-dimensional MFCC feature vector. In segment

classification task, each node represents a variable-length speech segment. In the following

sections, we propose several novel graph construction methods that enable the graph-based

SSL to handle variable-length input vectors. These methods either transform the variable-

length input vectors into fixed-dimensional feature vectors, or directly compute the pairwise

similarity between a pair of segments. To be specific, we will describe the following three

graph construction approaches:

1. First-pass classifier approach;

2. Rational kernel approach;

3. Fisher kernel approach.

We assume that the time boundaries of the speech segments in the classification task

are provided, along with their corresponding phone labels. In a real segment-level ASR

system, however, these time boundaries and the labels need to be inferred and are not

usually provided a priori.

4.3.2 First-pass Classifier Approach

First-pass classifier approach is already described in graph construction for frame-level clas-

sification. In short, each acoustic feature vector x ∈ Rd is mapped into a probabilistic feature

space p ∈ Rm using a supervised classifier (such as a neural network), where d and m are the

dimensionality of the original feature space and new feature space, respectively. To calculate

the similarities in the new feature space, Jenson-Shannon divergence is applied. The same

idea can also be used in segment-level classification task. We need to compute the phoneme

distribution over a segment. To compute this, for each phone i ∈ {1, · · · ,m}, we train a
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monophone HMM, where each state is parameterized by a Gaussian mixture model. To

compute the label distribution over a phoneme segment, we compute the Viterbi score si

(represented in log-likelihood) for each phone i. The phone label distribution of a segment

p(i|X) is derived by the following equation:

p(i|x) =
si∑m
i=1 si

(4.2)

Thus, we can map a variable-length speech segment X = {x1, · · · ,xn} to a fixed-length

probabilistic feature space Rm. To compute the pairwise distances for graph construction,

Jenson-Shannon divergence is applied. The distances are converted into similarity values

using an RBF kernel function. Figure 4.2 shows an illustration of the first-pass classifier

approach.

p1

p2

dJS(p1, p2) =
dKL(p1, a) + dKL(p2, a)

2

ai = (pi
1 + pi

2)/2

Jenson-Shannon Divergence:

X2

X1

Figure 4.2: First-pass classifier approach for variable-length inputs. Variable inputs are

converted to fixed-length posterior distributions using a supervised classifier.
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4.3.3 Rational Kernel Approach

An alternative similarity measure is a symbol-based similarity measure. Instead of mapping

a variable-length input into a continuous vector space, a symbol-based approach represents

the original input segment as a string of symbols. For our purpose, we generate a string of

linguistic units (such as phonemes) for each speech segment using a tokenizer. To measure

the similarity between a pair of strings, we can use several well-defined string similarity

measures. These similarity measures include:

• Bag-of-Word feature similarity: In the bag-of-word feature approach, each phone

sequence is represented as a vector, with each entry representing the number of occur-

rences of the corresponding units. Then cosine similarity function is applied to derive

the similarity measure between two sequences.

• TF-IDF weighted N-gram cosine similarity: The cosine similarity between phone

sequences si and sj is computed as:

sim(i, j) =

∑
w∈si tfw,si · tfw,sj · idf2w√∑

w∈si tf2w,si idf2w

√∑
w∈sj tf2w,sj idf2w

(4.3)

where tfw,si is the count of n-gram w in si and idfw is the inverse document count of

w (each sentence is a document).

• String kernel: String kernel [116] is a kernel defined on a pair of strings, which

can be variable-length. Formally, we define a string s as a concatenation of symbols

from a finite alphabet Σ and an embedding function from strings to feature vectors,

φ: Σ∗ → H. The string kernel function K(s, t) computes the distance between the

resulting vectors for two strings si and sj. The embedding function is defined as:

φku(s) :=
∑

i:u=s(i)

λ|i|, u ∈ Σk (4.4)
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where k is the maximum length of subsequences, |i| is the length of i, and λ is a penalty

parameter for each gap encountered in the subsequence. K is defined as

K(si, sj) =
∑
u

〈φu(si), φu(sj)〉wu (4.5)

where w is a weight dependent on the length of u, l(u). Finally, the kernel score is

normalized by K(si, si) · K(sj, sj) to discourage long string from being favored.

• Rational kernel: Instead of computing the pairwise similarity between two strings,

rational kernels [20] consider sets of strings. They are generalizations of the above ker-

nels, and can be implemented efficiently using a finite-state transducer (FST) frame-

work. For speech this means that rather than using a single sequence of phones or

HMM states we can use lattices of symbols for each utterance, and compute the kernel

between the lattices. The idea behind rational kernels is intuitive: two sequences, or

more generally, two lattices, are similar when they share some common structure. In

short, a kernel K is rational if there exists a weighted finite-state transducer T such

that for all weighted automata A and B, the following equation holds:

K(A,B) =
∑
x,y

[[A]](x) · [[T ]](x, y) · [[B]](y) (4.6)

where [[A]](x) is the sum of the weights of all successful paths labeled with x; [[T ]](x, y)

is the sum of the weights of all successful paths with input x and output y. More

formally, we recap some algebraic definitions and notations. In abstract algebra, a

system (K,⊕,⊗, 0, 1) is a semiring that may lack negation, where ⊕,⊗ are the binary

operations: addition and multiplication. An 8-tuple T = (Σ,∆, Q, I, F, E, λ, ρ) is a

weighted finite-state transducer over a semiring K, where Σ is the finite set of input

symbols of the transducers, ∆ is the finite set of output symbols of the transducers, Q

is the finite set of states, I ⊆ Q is the set of initial states, F ⊆ Q is the set of final

states, E is the set of transitions, and λ, ρ denotes the weights of initial states and final

states, respectively. The above definition can be generalized to the case of an arbitrary

semiring for more general operations as follows:
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Definition 1. Let A and B be two acyclic weighted automata over the semiring K,

a kernel K is rational if there exist a weighted transducer T over K and a function

φ : K→ R such that for all A and B:

K(A,B) = φ(
⊕
x,y

[[A]](x)⊗ [[T ]](x, y)⊗ [[B]](y)) (4.7)

A weighted finite-state transducer supports operations such as union, intersection,

and composition, which can be found in [20] in details. Rational kernels have been

successfully applied in ASR research, such as speech recognition [100], spoken-dialog

classification [19] and emotion detection in speech [125]. In graph-based SSL, suppose

we are given multiple sequences of phones or HMM state labels for an utterance,

we can express each utterance in a weighted finite-state automaton - a special case

of weighted finite-state transducer with identical input and output symbols at each

transition. To compute the similarity between a pair of sets of sequences for two

utterances, we can apply the ⊕,⊗-operation which computes the sum of counts of all

matching (sub)sequences on the two sets according to Equation 4.6.

4.3.4 Fisher Kernel Approach via Generative Models

Fisher kernels [63] approach maps a variable-length feature vector into a fixed-length high-

dimensional feature space (aka Fisher score vector). Fisher kernels have been used in audio

classification [101], speaker verification [137] and image classification [109]. Formally, given

a sequence of feature vectors X = {x1, x2, · · · , xT} and a generative model (such as a GMM,

or a HMM) with parameter vector θ that models the underlying generation process, the

Fisher score vector UX is the vector of derivatives of the log-likelihood of X with respect to

the parameters θ by the following equation:

U θ
X = 5θ logP (X|θ) (4.8)

Each component in U θ
X is a derivative of the log-likelihood of the segment X with respect

to a particular parameter of the generative model. When multiple generative models θ1 · · · θm
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aa-0, aa-0, aa-1, aa-1, aa-1, aa-1, aa-2, aa-2
ae-0, ae-1, ae-1, ae-1, ae-1, ae-1, ae-2, ae-2

… ...
zh-0, zh-0, zh-0, zh-1, zh-1, zh-1, zh-2, zh-2

aa-0,  aa-0, aa-0, aa-1, aa-1, aa-1, aa-1, aa-1, aa-2, aa-2
ae-0, ae-0, ae-1, ae-1, ae-1, ae-1, ae-1, ae-2, ae-2, ae-2

… ...
zh-0, zh-0, zh-0, zh-0, zh-1, zh-1, zh-2, zh-2, zh-2, zh-2

Rational Kernel

X2

X1

similarity

Figure 4.3: Rational-kernel approach for variable-length inputs.

are used, the resulting Fisher score vectors are derived by simply concatenating each Fisher

score vector as follows:

U θ
X = ((U θ1

X )ᵀ, (U θ2
X )ᵀ, · · · , (U θm

X )ᵀ)ᵀ (4.9)

In our case, we use a GMM-HMM as the generative model. Each HMM consists of 3

states, and each state is parameterized by a N -component Gaussian mixture model. Each

GMM consists of the mean vector µi, the diagonal covariance matrix Σi. The derivatives of

a speech segment X = {x1, x2, · · · , xT} with respect to the mean vector are given as follows:

5µi logP (X|θ) =
T∑
t=1

P (i|xt)Σ
−1
i (xt − µi) (4.10)
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where P (i|xi) is the posterior of mixture i given xt.

Similarly, the derivatives of a speech segment X = {x1, x2, · · · , xT} with respect to the

diagonal covariance matrix are given as follows:

5Σi
logP (X|θ) =

1

2

T∑
t=1

P (i|xt)(−Σ−1
i + Σ−1

i (xt − µi)(xt − µi)ᵀΣ−1
i ) (4.11)

After the Fisher score vectors have been obtained, the Fisher kernel is then defined as

K(Xi, Xj) = Uᵀ
XI
−1UY (4.12)

where I is the covariance matrix of the Fisher score vectors, also called the Fisher information

matrix. For computational reasons, I is often omitted, or it is approximated by its diagonal.

Alternatively, we can also use the Euclidean distance between two Fisher score vectors, and

convert it to similarity using a RBF kernel function. Figure 4.4 shows an illustration of

Fisher kernel approach for segment classification.

Depending on the number of models and parameters in the generative models, the Fisher

kernel vector can be extremely high-dimensional, and many dimensions may be redundant.

As a short digression, we will describe a novel feature selection method that alleviates the

intensive computational cost in the following section.

4.3.5 Digression: Feature Selection in Fisher Score Vector Space

The Fisher score vector is a long vector of derivatives of the log-likelihood of the data with

respect to the parameters θ. Depending on the number of models and number of parameters

per model, Fisher score vectors can be very high-dimensional. For example, in segment-level

phonetic classification task where we use 48 3-state monophone HMM models, each of which

is trained with a 16-component Gaussian mixture model, the resulting acoustic score feature

vector is extremely high-dimensional: more than 180, 000 in dimensionality. This could be a

potential problem for performing practical graph-based SSL procedures: 1) in many of these

dimensions, there might exist little information or redundancy with other dimensions, some

of which could be noisy as well. 2) in graph construction, the computational complexity
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X1

X2

Generative Models (HMMs) parameterized by ✓

U✓
X = r✓logP (X|✓)

Fisher score vectors:

Figure 4.4: Fisher-kernel approach for variable-length inputs. Fisher kernel maps variable-

length input vectors to fixed-length Fisher score vectors.

of a pairwise Euclidean distance is linear with respect to the dimensionality of the feature

vectors. Thus, an efficient dimensionality reduction procedure is needed, both to reduce the

computational cost in graph construction, and to remove the noise and redundancy in the

feature vectors.

Dimensionality reduction algorithms are often used to map the original high-dimensional

feature space into a low-dimensional embedding. The mapping is learned by preserving the

locality information of samples. However, in a very high-dimensional feature space, spectral

based dimensionality reduction algorithms, such as principle component analysis (PCA)

[69], Isomap [133], local linear embedding (LLE) [117], maximum variance unfolding (MVU)
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[144], become impractical as these algorithms need to invert a graph Laplacian. Instead of

performing dimensionality reduction, feature selection methods are more preferable as they

select a subset of important features or attributes. Unlike dimensionality reduction, where a

mapping is learned to transform the high-dimensional feature space into a low-dimensional

space, feature selection methods select a subset of features or attributes. A good feature

selection method can produce a meaningful subset of features that is interpretable by users;

it also reduces the complexity of the model which saves time for both training and testing.

Different feature selection methods have been proposed in the past. A classical method

is Lasso [135], which was initially used in training a linear regression model. Lasso penal-

izes the model parameters with an `1 norm, which explicitly forces many of the parameter

weights to be zero. The remaining features with non-zero weights are selected as the fea-

tures. Lasso is a widely used technique in different models, including logistic regression,

support vector machines, and deep neural networks [92]. More recently, a feature selection

based on gradient boosting [148] was proposed. Another feature selection method is based

on the dependency between features and class labels. Common methods include the mutual

information, pointwise mutual information and Pearson correlation coefficient [46]. While

these feature selection methods capture the most relevant features for classification tasks,

they ignore the redundancy within the selected feature sets. A popular feature selection

method “maximum relevance minimum redundancy (mRMR)” was proposed in [108]. On

one hand, mRMR explores the most relevant features about the target labels; on the other

hand, it tries to minimize the redundancy among the selected features. However, a caveat

of the method is the quadratic complexity, which is impractical for a feature selection task

in a feature space with hundreds of thousands of dimensions.

For feature selection in Fisher score vectors, previous works either selectively used the

derivatives of only some parameters [101], such as only mean vectors or mixture weights

of Gaussian mixtures, to reduce the number of dimensions; or they have applied binary

compression [110]. In this thesis, we introduce a novel feature selection method that is

applicable to high-dimensional feature space using submodular function optimization [32].
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Problem Statement

Formally, the feature subset selection problem is formulated as maximizing a monotone

submodular function f , subject to a cardinality constraint. To be specific, given the number

K, which is the number of features to be selected, we are solving the following optimization

problem:

argmax
S⊆V

{f(S) : |S| ≤ K} (4.13)

where V = {v1, v2, · · · , vN} is the entire set of features, |S| is the cardinality of the feature

subsets and K is the number of features to be selected. We define the function f as the

following form:

f(S) = L(S) + λR(S) (4.14)

where the first term L(S) measures how well the selected feature covers, or represents, the

original feature sets; the second term R(S) measures how diverse the selected feature subset

is. The notation is similar to a traditional machine learning optimization problem, where

the first term measures the accuracy or fitness of the model, and the second term serves as a

regularization term to control the complexity of the model to avoid overfitting. For concrete

function instantiations, readers are referred to our previous work [93, 141, 75, 74].

The objective in Equation 4.14 is a monotone non-decreasing submodular function, hence,

the formulated optimization problem for feature selection can be solved near-optimally using

a greedy algorithm. The greedy algorithm is guaranteed to approximate the optimal solution

to within a constant factor 1 − 1
e
. In our case, we use an accelerated greedy algorithm [99]

to further speed up algorithm.

Connection to Maximum Relevance Minimum Redundancy Feature Selection

Maximum Relevance Minimum Redundancy (mRMR) feature selection, as proposed in [108],

is a widely used feature selection method. The motivation of the method is to select features

that are most relevant in class prediction, while keeping the redundancy within the selected

features as small as possible. Our proposed submodular feature selection is analogous to
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mRMR: 1) the L(S) term in the objective function is the maximum relevance term as we

want to cover as many features as possible to represent the original feature set; 2) the R(S)

term serves as a regularizer so that the redundancy within selected features is small. Since

the R(S) term encourages features to be more diverse, selecting redundant features is not

favored.

The submodular feature selection method also scales to very high-dimensional feature

spaces. In mRMR approach, a naive greedy algorithm is applied where the complexity is

O(N2). When we need to rank the importance of hundreds of thousands of features, it is not

practical to apply mRMR. For the submodular feature selection, because of the accelerated

greedy algorithm [99], it can handle a very high-dimensional feature space.

4.4 Experimental Results: Segment-Level Classification

Similar to the previous frame-level classification task, we use the TIMIT dataset [35] with

the same experimental setup. The number of samples for the training, development and

test set are 121385, 7416, and 6589, respectively. To simulate different training conditions

for semi-supervised learning, we also use 10%, 30%, 50% and 100% of the training data, to

investigate the performance of graph-based SSL algorithms on varying amounts of training

data.

4.4.1 Supervised Baseline Systems

We train a supervised baseline system for the segment classification task. For each training

data condition, we train the baseline system separately using the GMTK toolkit [13]. The

supervised baseline system is a 3-state monophone HMM system for each phone. In each

monophone HMM, we use 16-component Gaussian mixture models with diagonal covariance

matrices for each phone state. To classify the phoneme segment, we run each one of the 48

HMMs over the segment. The phone class prediction is given by the following equation:

c = argmaxip(O; θi) (4.15)
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where θi are the parameters in the i-th monophone HMM, and p(O; θi) is the log-likelihood

of segment O being generated by that model. Table 4.3 shows the classification accuracy of

the baseline system under each training condition. The performance of the baseline system

saturates at 30% of the training data; for the higher percentage cases, better performance

might be achieved by using more mixture components; however this would lead to even

higher-dimensional Fisher score spaces, as explained below.

Amount of training data

System 10% 30% 50% 100%

HMM 66.81 68.09 67.92 68.02

Table 4.3: Supervised baseline system accuracy rates (%) for segment classification.

4.4.2 First-pass classifier approach

The first experiment is to evaluate the first-pass classifier approach. Each test speech segment

is converted into a probability distribution by the baseline classifier, and 48 canonical vectors

are defined as the training examples. Jenson-Shannon divergence is used to compute the

distance, and the similarity value is derived using an RBF kernel function. A 10-NN graph

is constructed for each training condition.

Table 4.4 shows the test set results. In the table, we observe significant improvements

over the baseline systems in different training conditions. This proves our method to be an

efficient way to handle variable-length input vectors for graph-based SSL methods.

4.4.3 Rational kernel approach

In this work, we apply rational kernels on a N-best list of hypotheses. To be specific,

we use each one of the 48 HMMs to generate a hypothesis over the segments, where each

hypothesis is a string of HMM states and takes the following form: ax-[0],ax-[0],ax-[1],ax-
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Amount of training data

System 10% 30% 50% 100%

HMM 66.81 68.09 67.92 68.02

LP 66.87 68.45 68.77 69.10

MP 66.93 68.80 68.86 69.84

MAD 68.81* 69.30 69.25 69.19*

pMP 69.33* 69.59* 69.39 69.74*

Table 4.4: Accuracy rates (%) for segment classification, baseline system (HMM) and

the various graph-based SSL algorithms. Similarity measure is based on Jenson-Shannon

divergence between pairwise segment posteriors. Bold-face numbers indicate improvement

over the baseline; bold-face numbers with ∗ marks are significant (p < 0.05) improvements

over the baseline.

[1],ax-[1],ax-[2],ax-[2]. In total, we can generate a 48-best list for each segment. To compute

the similarity between a pair of 48-best lists, a rational kernel can be applied. We use the

C++ implementation based on OpenFST and OpenKernel [4]. Here the order of the kernel

is 3; the maximum gap allowed between two symbols is set to 2; and the gap penalty is

set 0.3. The state output for the labeled segments can be extracted by performing forced

alignment. After the similarity has been computed, a 10-NN graph is constructed and we

again run 4 different graph-based SSL algorithms on the graphs. In Table 4.5, we observe

consistent improvements over the baselines and significant improvements with the proposed

pMP algorithm. In the 10% case, this method outperforms the other two graph construction

procedures, indicating that the rational kernel is indeed helping to build a more accurate

graph with very limited amount of labeled data. In this particular case, all the graph-based

learners gain accuracy. To our knowledge, this is the first time that a discrete symbol-based

graph construction procedure is performed on graph-based SSL.
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Amount of training data

System 10% 30% 50% 100%

HMM 66.81 68.09 67.92 68.02

LP 68.02 69.34 69.25 69.42

MP 63.32 69.48 69.78* 69.49

MAD 69.02* 69.45 69.40* 69.69*

pMP 70.03* 71.30* 71.27* 70.69*

Table 4.5: Accuracy rates (%) for segment classification, baseline system (HMM) and the

various graph-based SSL algorithms. Similarity measure is based on 3-gram rational kernel,

with gap penalty λ = 0.3. Bold-face numbers indicate improvement over the baseline; bold-

face numbers with ∗ marks are significant (p < 0.05) improvements over the baseline.

4.4.4 Fisher kernel approach

To compute the Fisher score vector for each speech segment, we need a generative model.

In this case, for each one of the 48 phones, we train 3-state HMMs, where each state is

parameterized by a 16-component GMM. In order to compute the Fisher score vectors, we

take derivatives of all parameters in the GMMs, and stack them into one single vector using

the GMTK toolkit. The resulting dimensionality of the Fisher kernel vector is 182017.

The huge dimensionality makes graph construction computationally prohibitive: the com-

putation for pairwise similarity is too costly, and the space cost for storing the vectors is

demanding. To reduce the dimensionality, we first prune the original feature set by eliminat-

ing each feature i in the initial feature set F for which its mutual information with the classes,

MI(fi;C), is less than a threshold τ (set to 0.01 in our case). In order to compute mutual

information on continuous Fisher scores, they are first quantized into 50 equal-width bins.

This is similar to traditional feature selection based on mutual information value ranking.

We then apply our submodular feature selection method [93, 75] on the remaining feature



68

set (73978 features), and reduce the dimensionality to 800 final features. To compute the

similarities, we first compute the dot product on these vectors, and then normalize them by

the following equation:

K̃ij =
Kij√
KiiKjj

(4.16)

Again, a 10-nearest neighbor graph is constructed for each training condition. Table 4.6

shows improvements of different graph-based SSL algorithms over the baseline system under

each training condition. Again, the proposed pMP algorithm and MAD outperform label

propagation and measure propagation by a large margin. The best improvements over the

supervised baseline classifier are achieved by the pMP algorithm, with an absolute gain from

2.62% to 3.64%.

Amount of training data

System 10% 30% 50% 100%

HMM 66.81 68.09 67.92 68.02

LP 62.01 67.26 68.72 69.43

MP 63.32 67.49 69.01 70.45*

MAD 67.23 69.42 69.62* 70.21*

pMP 70.45* 70.71* 70.89* 71.15*

Table 4.6: Accuracy rates (%) for segment classification, baseline system (HMM) and the

various graph-based SSL algorithms. Similarity measure is based on Euclidean distance

between pairwise Fisher kernel vectors. Bold-face numbers indicate improvement over the

baseline; bold-face numbers with ∗ marks are significant (p < 0.05) improvements over the

baseline.

In addition, we compare the number of features used for graph construction and the

effects on the classification accuracy. Recall that in order to alleviate the computational cost

in high-dimensional Fisher score vector space, we perform feature selection and reduce the
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dimensionality of the score vectors. Here, we compare our submodular (SubMod) feature

selection to a modular feature selection. In the modular (Mod) feature selection, we select

the most informative features based on mutual information value between feature and class

labels. This method is modular because it does not allow any direct interaction between the

features (unlike submodular approach which does). We select the same amount of features

using both approaches, and use the reduced feature vectors for graph construction. After

the graph has been constructed, we run the graph-based SSL algorithm and compare the

classification accuracy.

Table 4.7 shows the results of segment classification using submodular feature selection.

Here, the baseline HMMs have an accuracy of 68.02%, which corresponds to the system using

100% training data. We reduce the size of the Fisher score vectors to 400, 800, 2000, 4000 and

10,000. With only 400 features, the modular feature selection leads to a significant drop in

performance, resulting in ∼ 42% classification accuracy; however, using the top 400 features

selected by the submodular method we achieve ∼ 67%. With 800 features selected by the

submodular method, we obtain a significant improvement over the baseline model with only

0.4% the size of the original features. This shows that our method based on submodular

optimization is highly effective in selecting the most useful features. More importantly, the

selection procedures can be done quite rapidly. For additional applications of the proposed

submodular feature selection, readers are referred to [93, 75].

400 800 2k 4k 10k

LP MP LP MP LP MP LP MP LP MP

Mod 42.07 42.95 63.83 64.23 62.80 64.09 68.05 68.99 63.48 64.30

SubMod 66.46 67.16 69.43 70.45 68.87 69.25 69.24 69.48 67.04 67.14

Table 4.7: Accuracy rates for segment classification, with modular (mod) and submodular

(sub) feature selection. The baseline model (monophone HMMs, without graph-based learn-

ing) has a classification accuracy of 68.02%. Bold-face numbers are significant (p < 0.05)

improvements over the modular MI-based method.
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4.5 Summary

In this chapter, we evaluate the pMP algorithm on TIMIT phone classification tasks. We

perform evaluation on both frame-level and segment-level classification. For segment-level

classification, we propose several novel graph construction techniques that allow graph-based

SSL algorithms to handle variable-length input vectors. We show that under identical con-

ditions the pMP algorithm consistently outperforms three state-of-the-art graph-based SSL

algorithms as well as supervised baseline system.
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Chapter 5

GRAPH-BASED SEMI-SUPERVISED LEARNING IN SPEECH
RECOGNITION

In this chapter, we describe a system integration that combines graph-based SSL with a

fully-fledged DNN-based ASR system. Previous works were limited to phone classification

tasks. It is yet to be discovered how to integrate graph-based SSL methods into a fully-

fledged ASR system. More importantly, previous works only show improvements over a

GMM-based system. In this chapter, our goal is to investigate the graph-based learning

with a state-of-the-art acoustic modeling approach (i.e. DNN-based acoustic models).

In the following sections, we propose a lattice-based system integration, which allows the

graph-based SSL to be integrated into a fully-fledged DNN-based system. We show that

graph-based SSL method can achieve a significant improvement in frame-level accuracy over

a state-of-the-art DNN system, and a consistent improvement in the word error rate. In Sec-

tion 5.1, we describe the lattice-based integration framework. In Section 5.2, we describe the

datasets and baseline DNN systems. In Section 5.3, we describe various graph improvement

methods using different feature representations for graph construction. In Section 5.4, we

show experimental results on phone recognition and continuous word recognition tasks. In

Section 5.5, we describe the limitations of the lattice-based integration framework. We wrap

up this chapter in Section 5.6.

5.1 Lattice-based System Integration

In this section, we describe a proposed lattice-based integration framework [90]. A word

lattice is a compact representation of a set of candidates, which correspond to the highly

probable decoding outputs. It is often represented as a weighted finite state automata
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(WFSA) G = {V,E,W}, where each node v ∈ V is associated with a time point, and each

edge e ∈ E is connect to two nodes u, v ∈ V , which represents the starting and ending

time for a word. There are two associated scores on the edges: an acoustic model (AM)

score, and a language model (LM) score. In this framework, we inject information from

the graph-based learner into the lattices. The information we inject is the senone posteriors

from the graph-based SSL algorithm. These posteriors are converted to likelihoods and then

linearly interpolated into the lattice. To distinguish these likelihood scores from the DNN

acoustic likelihood scores, we refer to them as “graph likelihood” scores. Figure 5.1 shows

the framework of integrating graph-based SSL into a fully-fledged DNN-based system.

In Figure 5.1, the solids arrows correspond to the procedures in a conventional DNN

system. During the training stage of the DNN-based system, the training samples in L =

{xi, yi}li=1 are used to train a DNN acoustic model, where x is the acoustic feature vector,

and yi is the target context-dependent phone state (senone) which is derived from forced

alignment.

During test time, we obtain the senone posterior p(y|x) for each frame in the test set

using the trained DNN model. To get the acoustic likelihoods p(x|y), we divide the senone

posterior by its prior p(y). With the pronunciation dictionary and language model, a decoder

is used to generate lattices and the best paths are obtained.

The graph-based SSL method can be incorporated into the conventional supervised frame-

work. The dotted arrows in Figure 5.1 show graph-based SSL procedures. The steps of our

graph-based method for acoustic modeling are as follows:

1. Given both training and test samples, a graph is constructed over the entire set L and

U . Each node is the graph is associated with an acoustic feature vector (i.e. MFCC,

fMLLR) from L and U . To alleviate the huge computational overhead, a sparse graph

is usually constructed instead of a fully dense graph. For each node in the test sample,

we find k nearest neighbors in L and k nearest neighbors in U . The nearest-neighbor

graph is further symmetrized: if node i is a nearest neighbor for node j, we also add
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node j as the nearest neighbor for node i.

2. The prior-regularized measure propagation algorithm is then run over the graph to

produce a new set of senone posteriors pi for each frame i ∈ U . To run the graph

inference, we derive the reference label distributions over senones ri, i ∈ L for each

node in the training data from the forced alignment. The prior distributions over

senones p̃i, i ∈ U are derived using the supervised DNN classifier. We minimize the

pMP objective defined in Equation 2.37, and derive a set of posteriors p over U . These

posteriors are the are converted to “graph likelihood” (to distinguish them from the

ordinary acoustic likelihood) as follows:

p(x|sj) ∝
p(sj|x)

p(sj)
(5.1)

where p(sj|x) is the posterior of senone sj derived from pMP algorithm, and p(sj) is

the prior distribution for senone sj.

3. The new graph likelihoods are interpolated with the original acoustic score and the LM

score in the original lattices for lattice rescoring. Let the acoustic likelihood, language

model likelihood and graph likelihood be AMscore, LMscore and Gscore, respectively. We

use the following equation for each edge on the lattice for rescoring:

AMscore + λLMscore + θGscore (5.2)

The optimal constants are tuned on a development set.

5.2 Data and System

In this section, we describe the datasets and baseline systems. We evaluate the proposed

framework on a continuous phone recognition task and two continuous word recognition

tasks. For the phone recognition task, we use the TIMIT dataset [35]. We use 3696 sen-

tences (462 speakers), 200 sentences (25 speakers), 192 sentences (24 speakers) as training,
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Figure 5.1: A flowchart of integrating GB-SSL into DNN-HMM system.

development and evaluation datasets, respectively. For the continuous word recognition task,

we evaluate the proposed framework on two small datasets. The first task is the DARPA Re-

source Management (RM) task [114]. For training we use the RM-SI dataset, which consists

of 3990 sentences. We use the test-feb89 set as our dev set, which consists of 300 sentences.

As evaluation sets, we use test-oct89, test-feb91, and test-sep92, each of which consists of 300

sentences. The second task is a subset of the Switchboard-I dataset [87] that was selected to

have a limited vocabulary while being acoustically rich. For evaluation purposes, we use the

100-vocabulary subset of Switchboard-I, which we refer to as the SWB-100 dataset. Table 5.1

shows the sizes of the data sets (amount of non-silence speech) and of the vocabulary sizes

for the word recognition task. Although these two word recognition tasks are much smaller

compared to a LVCSR task, they represent a fair amount of acoustic variations, multiple

speakers, and different recording conditions (both read speech and conversational speech).
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Set Training Dev Test Vocab

RM 3.8 0.27 0.83 1000

SWB-100 3.79 1.27 1.26 100

Table 5.1: Vocabulary sizes and data set sizes (in hours) for Resource Management (RM)

and Switchboard subset (SWB-100) tasks.

For front-end feature processing, we extract 13-dimensional MFCC feature vectors (12

MFCC coefficients and 1 energy coefficient) every 10 milliseconds with a window size of 25

milliseconds. Cepstral mean vectors are subtracted on a per speaker/ conversation-side basis.

We also concatenate feature vectors with a context size of 9 frames (±4 frames) and use LDA

to project the features down to a 40-dimensional feature vector for the GMM-HMM training.

For TIMIT phone recognition, we also apply a maximum likelihood linear transformation

(MLLT) [40] (also known as global semi-tied covariance transform [34]), followed by a feature-

space MLLR (fMLLR) transform per speaker at both training and test time using a GMM-

HMM system. We further splice the fMLLR features with a context size of 9 frames, and

use the 360-dimensional feature as inputs to the DNN.

Our baseline DNN system is bootstrapped from the GMM-HMM system. The forced

alignments from GMM-HMM system are used as the target labels for the DNN training. The

deep neural networks for the recognition tasks have 4 hidden layers. The nonlinear activation

function in each layer is a tanh function. The output layer uses a softmax function, and

represents the posterior of the senones. The network architecture for the three recognition

tasks is listed in Table 5.2.

We use the cross entropy training for the DNN with greedy layer-wise supervised train-

ing [10, 124]. The network weights are randomly initialized with a normal distribution

multiplied by 0.1, and the biases of the sigmoid units are initialized by sampling uniformly

from the interval [−4.1,−3.9]. We use 20 epochs to train the baseline DNN, with a mini-

batch size of 256. For the first 15 epochs, we decrease the learning rate from 0.01 to 0.001
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Task Network 1

I H1 H2 B H3 O

TIMIT 360 1024 1024 1024 1024 1951

RM 40 1070 1070 1070 1070 1421

SWB-100 40 1185 1185 1185 1185 624

Table 5.2: Sizes of networks’ input (I), hidden (H), bottleneck (B) and output (O) layers for

TIMIT, RM, and SWB-100 tasks.

and fix the learning rate at 0.001 for the last 5 epochs. We use the Kaldi toolkit [111] to

train all systems. The language models are trained using SRILM [127]: we train a bigram

phone model for TIMIT, a bigram model for the RM task and a trigram language model

with standard backoff for the SWB-100 task.

5.3 Improvements in Graph Constructions

In this section, we describe several techniques to improve the quality of the graphs. It

is widely acknowledged that the quality of the graph far outweighs the graph-based SSL

algorithm [158]. The quality of the graph hinges on the feature representation and similarity

measures. In previous studies of graph-based SSL methods in speech processing, all the

graphs use the front-end features (i.e. MFCC features) directly for graph construction.

However, as pointed in [88], with a better baseline classifier, the improvements become

smaller. We describe and evaluate different feature representations for graph construction.

We use the SWB-100 development set to evaluate the accuracy of frame-level HMM state

classification as well as word error rate using different graph construction techniques.

5.3.1 Feature Representations for Graph Construction

In this section, we explore different feature representations that are directly related to the

DNN system. We compare the performance of both frame classification accuracy and word
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error rate using different features on the SWB-100 development set. The features we con-

sidered to construct the graph are the following:

1. Front-end features (LDA): the input features to the DNN (spliced MFCC features with

a window of 4 frames, and a LDA projection down to 40 dimensions).

2. DNN posterior features: posterior distributions from the softmax function of the base-

line DNN; we concatenate posterior distributions within a window of 2 frames.

3. DNN hidden-layer features (HLF): the linear outputs from the last hidden layer in the

DNN.

4. DNN bottleneck-layer features (BNF): the linear outputs from the bottleneck layer in

the DNN, which is inserted between the last two hidden layers. We splice the features

with a window of 9 (±4 frames) to get the final features.

After the graphs have been constructed, we run the pMP algorithm over the graphs and

evaluate the classification accuracy. To evaluate the frame-level state classification accuracy,

we use the HMM state labels derived from a forced alignment of the HMM states with the

baseline DNN and use them as ground-truth reference. Figure 5.2 shows the frame-level

senone classification accuracy using graphs with different feature representations. We ob-

serve a consistent improvement in the classification accuracy using pMP compared to the

supervised baseline system. The improvements over the supervised baseline are all signifi-

cant at p = 0.001. However, with improved frame-level accuracy the word error rate does

not necessarily improve with all features. Table 5.3 shows the word error rate using differ-

ent feature representations. Among these features, the bottleneck features yield the best

performance, outperforming the baseline DNN by a relative improvement of over 20% in

frame-level accuracy and a 1% absolute reduction in word error rate. On the contrary, the

input-level (LDA features) and output-level features (posterior features) do not yield an im-

provement in word error rate (sometimes they even result in higher word error rate). The raw
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Frame-level HMM State Accuracy

Figure 5.2: Frame-level HMM state prediction accuracy using different feature representa-

tions on the SWB-100 dev set.

input-level features may be too noisy to discriminate between different senones. Posterior

features, on the other hand, typically represent sharply peaked, low-entropy distributions

that tend to introduce search errors during the subsequent Viterbi decoding process when

predictions are wrong but highly confident. Hidden layer features and bottleneck features

are automatically learned in deep neural networks via multiple layers of nonlinear transfor-

mation. These features are more discriminative than the input features but at the same

time more fine-grained than the posterior features. The bottleneck features outperform the

hidden layer features because, due to their low dimensionality, they are concatenated across

4 frames, thus providing context-dependent information. Similar splicing could be applied

to hidden layer features but the resulting high dimensionality of the feature vectors would

slow down the graph construction process.
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System WER

DNN Baseline 27.40%

GBL: LDA 27.06%

GBL: Posterior 28.42%

GBL: HLF 26.99%

GBL: BNF 26.45%

Table 5.3: Word error rate (WER) of graphs using different feature representations, SWB-100

development set.

5.4 Experimental Results

5.4.1 Phone recognition

In this section, we show the experimental results using graph-based SSL on the TIMIT

phone recognition task. Unlike phone classification tasks in the previous chapter, where

the frame-level labels are provided, phone recognition needs to recognize continuous phone

sequences. Because the language model is much simpler than continuous word recognition,

phone recognition is often used as a pilot study to evaluate acoustic modeling methods on

continuous recognition task.

To simulate different learning conditions, we use 30%, 50% and 100% of the training

data. A 40-dimensional bottleneck layer feature is used for graph construction. The num-

ber of nearest neighbors is set to 10. After the graph is constructed over the training and

test samples, we use the pMP algorithm to do the inference and derive a new set of senone

posteriors. These posteriors are converted to likelihoods by dividing the senone prior distri-

butions. The optimal weights for acoustic likelihoods, graph likelihoods and language model

scores are 1, 0.4 and 3, respectively. We also replace the acoustic likelihood with the graph

likelihoods on the lattices. Table 5.4 shows the frame-level accuracy and phone error rate

(PER) on the development set and evaluation set. The row ‘baseline DNN’ indicates the
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baseline DNN performance; the row ‘GBL only’ shows the results by replacing all acoustic

likelihoods with the graph likelihoods on the lattices; the row ‘GBL+DNN’ shows the results

of interpolating graph likelihoods into the acoustic likelihoods and language model scores on

the lattices.

Among all training conditions, the frame-level accuracy improves by at least 5% absolute.

The phone error rate improves by 0.7% - 1% absolute when we replace the original DNN

acoustic likelihoods with the new graph likelihoods. The phone error rate further improves

by 1.2% absolute when the graph likelihoods are interpolated into the lattices.

Graph-based SSL can be viewed as an adaptation technique at test time. The base-

line DNN systems in this task use speaker adaptively trained features (fMLLR features).

Nevertheless, the graph-based SSL method further improves over a speaker-dependent DNN

system significantly. This shows that graph-based SSL is complementary to existing speaker

adaptation techniques such as feature-space MLLR, and it can be used to exploit additional

useful information.

Core Eval Set

30% 50% 100%

Frame Acc. PER Frame Acc. PER Frame Acc. PER

Baseline DNN 45.35% 28.30% 48.66% 26.39% 49.85% 24.16%

GBL only 50.78% 27.60% 51.75% 25.53% 55.01% 23.13%

GBL + DNN X 27.53% X 25.42% X 22.90%

Table 5.4: Frame accuracy and WER on TIMIT under different learning scenarios: 30%, 50%

and 100% training data is used, respectively. Baseline DNN: 4-layer DNN system; GBL only:

recognition performance by replacing original acoustic likelihoods with the graph likelihoods;

GBL + DNN: recognition performance by interpolating graph likelihoods with other scores

on the lattices.
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5.4.2 Word recognition

In this section, we show the experimental results using graph-based SSL for continuous word

recognition on SWB-100 and Resource Management (RM) datasets. The dimensionality of

the bottleneck layer for SWB-100 and RM is 40 and 42, respectively. We build the kNN

graph and set the number of nearest neighbors to 10. The optimal weights for acoustic

likelihoods, graph likelihoods and language model score are 1, 0.3, and 20, respectively on

SWB-100. In addition to using a standard trigram for decoding, we also run a decoding pass

with a unigram language model (optimal score weights: 1, 0.5, and 15) to better assess the

contribution of our method under a weak language model. The optimal weights for Resource

Management task are 1, 1, and 6, respectively.

Table 5.5 shows results obtained on the SWB-100 test set. We see a consistent improve-

ment over the DNN-HMM system. With a simpler language model, the improvement is

around 1.6% absolute, compared to 0.4% using a trigram language model.

Table 5.6 shows frame-level accuracy and word error rates on Resource Management

corpus. The baseline system is a state-of-the-art DNN system with a bigram LM, which

already achieves a very low word error rate on this task (with a WER ranging from 1.73%

to 4.03%). However, the GBL system gains a further improvement on all test sets except for

test-feb91, where the word error rate remains constant.

System Trigram Unigram

DNN 29.11% 40.64%

GBL 28.69% 39.06%

Table 5.5: WERs on SWB-100 test set for baseline DNN system and best GBL system.
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RM
Test Feb89 (Dev) Test Feb91 Test Oct89 Test Sep92

DNN GBL DNN GBL DNN GBL DNN GBL

Frame Acc. 58.91% 64.44% 57.91% 63.09% 58.49% 63.98% 54.51% 60.19%

WER 2.42% 2.26% 1.73% 1.73% 2.68% 2.46% 4.03% 3.52%

Table 5.6: Frame accuracy and WER on Resource Management datasets.

Speaker-dependent (SD) vs speaker-independent (SI) graph construction

In all these experiments, we construct a graph for each speaker and we refer to this graph

construction technique as speaker-dependent (SD) graph construction. Recall that the un-

derlying assumption of our approach is that the test data lies on a manifold. The manifold

structure is dependent on the characteristics of the test data, such as speaker, channel, and

noise. Constructing a graph separately for each speaker rather than globally for the entire

test data is therefore a better choice. On the other hand, speaker-independent (SI) graph

construction integrates the entire unlabeled data set into the learning process.

Figure 5.3 shows an example of SD and SI graph construction. In this figure, different

colors in the nodes correspond to different speakers. In SI graph construction, for each

sample in U , we find k nearest neighbors in L and k nearest neighbors in U . These neighbors

can come from different speakers. In SD graph construction, we find k nearest neighbors in

L and k nearest neighbors only in samples from that speaker rather than the entire test data

U .

We compare the performance of SD graph and SI graph in SWB-100 development set.

Figure 5.4 shows the frame-level accuracy on the SWB-100 development set. We use the DNN

hidden layer feature and bottleneck layer feature with speaker-independent and speaker-

dependent graphs. The frame-level accuracy with a SD graph is consistently better than the

accuracy achieved with a SI graph. Table 5.7 shows a comparison of the word error rates

using SI and SD graph with the bottleneck layer features. The word error rate obtained with
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Figure 5.3: A comparison between speaker-independent (SI) and speaker-dependent (SD)

graph. In SI graph construction, we select nearest neighbors from all unlabeled samples; on

the contrary, in SD graph construction, we only select nearest neighbors from samples of a

particular speaker.

the SD graphs is better than that obtained from the SI graph.

SI graph SD graph

Frame Acc. WER Acc WER

42.80% 27.65 43.85% 26.45

Table 5.7: Frame-level HMM state prediction accuracy and WER for speaker-independent

(SI) vs.speaker-dependent (SD) graphs on the SWB-100 dev set.

Comparison to Self Training

We also compare our results against a self-training approach. Following the conventional

self training [76, 77, 48, 146, 105, 153] approach, we first train an initial DNN-HMM system

using the training data, and decode on the test data. For data selection, we pick utterances

with the highest average per-frame decoding likelihood and add them to the training data.
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Frame-level HMM State Accuracy

Figure 5.4: Frame-level HMM state prediction accuracy using speaker-independent (SI) and

speaker-dependent (SD) graphs on the SWB-100 dev set.

Selection is stopped when the number of frames in the selected set is equal to the number

of test samples used by the GBL systems, to ensure comparable conditions. This results in

about 1100 utterances for SWB and 260 utterances for RM. Three iterations of self-training

are performed, after which no further improvements are obtained. In addition, we also select

the entire decoded test data, and add all of of them to the training data. We compare the

supervised baseline system, self training without data selection and self training with data

selection in Table 5.8.

Self-training with data selection achieves better results on SWB-100 and one of the RM

test sets while GBL yields better results on the remaining two RM test sets. Differences are

not statistically significant; however, GBL can be done in a single iteration and is very fast

in itself. Graph construction and inference for the graphs used in this study took less than

10 minutes and 1-2 minutes, respectively, on a 64-core Intel 2.00GHz machine. By contrast,

one iteration of baseline system retraining took 1 hour (with DNN training paralleled across

64 CPUs).
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RM SWB-100

System Test Feb89 (Dev) Test Feb91 Test Oct89 Test Sep92 dev test

Baseline 2.42% 1.73% 2.68% 4.03% 27.40% 29.11%

Self-training, all 1.99% 1.77% 2.61% 3.99% 29.66% 28.95%

Self-training 1.99% 1.69% 2.98% 3.67% 26.45% 28.01%

GBL 2.26% 1.73% 2.46% 3.52% 26.45% 28.69%

Table 5.8: WERs for baseline system, self-trained system, and GBL. Boldface numbers

indicate the best-performing system.

5.5 Limitations of the Lattice-Based Integration Framework

Acoustic modeling requires algorithms that are scalable to large-scale dataset with real-time

performance. One major caveat of graph-based SSL arises from the prohibitive computa-

tional cost: when dealing with large-scale training data, the graph usually consists of millions

or billions of nodes. For example, the Switchboard dataset has 120 million nodes in total,

which is equivalent to 310 hours of speech. A naive similarity graph construction requires

n2 operations of the pairwise distance computations, where n is the number of nodes in the

graph. To achieve faster graph construction, data structures such as k-d tree [31], ball trees

[85] and cover trees [12] can be adopted. These tree-based data structures partition the input

data into blocks of bounding regions. During test-time, nearest neighbor search can be sped

up by examining a small number of blocks. These tree-based structures perform poorly in

higher dimensional feature spaces. Other approximation techniques for graph construction

have been proposed [17, 155, 26].

A second computational bottleneck arises during test time: for an acoustic modeling task,

we need a real-time solution. For DNNs, real-time performance at test-time can be achieved

using one pass of the forward algorithm for each test sample. However, the graph inference

algorithm can be time-consuming on large graphs. Most graph-based SSL algorithms are
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formulated to minimize a quadratic energy function defined on the graphs. The naive closed-

form solution requires an inversion of a graph Laplacian, which takes O(n3) in time. The

Jacobi iterative algorithm is often used to avoid inverting the graph Laplacian. In the pMP

algorithm, we also use an iterative solver. Nevertheless, with n = 108, graph inference can

take up to hours. Moreover, we need to store a large graph in memory to do the inference.

Finally, whenever we have a new test set, we need to build a new graph over all training

samples and the new test samples, which becomes problematic for acoustic modeling tasks.

A third problem with the lattice-based integration framework is its lack of optimization

with other components in an ASR system. In graph-based SSL, the output posteriors are

optimized according to the graph-based SSL criterion only. In other words, the optimization

of graph-based SSL does not take other factors such as language modeling, pronunciations,

and the decoders, into consideration. As a result, it is often observed that a significant

improvement in frame-level accuracy does not always lead to a better word error rate.

In the next chapter, we address these issues by proposing a novel neural graph embedding

approach. Instead of optimizing the frame-level accuracy in the back-end during lattice

rescoring, we learn a compact representation that encodes the manifold information for

each sample, and use these features as front-end inputs to the DNNs. The DNN can thus

implicitly combine different information sources in the best possible way. Moreover, learning

graph embeddings can also get rid of the expensive graph construction, and can achieve

real-time performance during test time.

5.6 Summary

In this chapter, we describe a novel lattice-based framework that integrates the graph-based

SSL into a fully-fledged DNN-based system. We show several techniques that improve the

quality of graphs, and consequently obtain better frame-level accuracy and better word error

rates. The framework is evaluated on both phone recognition and two small-to-medium

vocabulary word recognition tasks. While previous work shows promising improvement in

phone classification over a supervised GMM system, this is the first framework that shows
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the efficacy of graph-based SSL in DNN-based speech recognition system. We also show that

the graph-based SSL is orthogonal to existing speaker adaptation techniques in DNNs. The

proposed framework can also be potentially useful in acoustic model training for low-resource

languages, where only a few training data is available for each speaker.
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Chapter 6

ACOUSTIC MODELING USING NEURAL GRAPH
EMBEDDINGS

In the previous chapters, we described a lattice-based framework which integrates graph-

based SSL into a fully-fledged DNN system. A graph is constructed over all training and test

samples. After that, the graph-based SSL algorithm is run over the graph, and a new set of

posteriors over senones is obtained. The new posteriors are converted to graph likelihoods

and are linearly interpolated with the original scores (acoustic likelihoods and language model

scores) in the lattice for lattice rescoring. The framework shows significant improvements in

frame level accuracy, and a consistent reduction in phone error rate, as well as word error

rate in small-to-medium vocabulary continuous word recognition tasks. However, there are

several major challenges that hamper the application of graph-based SSL methods in acoustic

modeling to large vocabulary conversational speech recognition (LVCSR) tasks as described

in Section 5.5.

In this chapter, we address the computational and optimization challenges in the stan-

dard graph-based SSL framework for acoustic modeling by proposing a novel neural graph

embedding method. The neural graph embedding approach learns a compact feature repre-

sentation for each sample in the graph. These resulting features are used as inputs to the

DNN classifier [91]. This chapter will be organized as follows: In Section 6.1, we give a brief

introduction to neural graph embedding features. In Section 6.2, we recap previous work on

learning graph embedding features and introduce an autoencoder-based graph embedding

feature framework. We also describe how to integrate the graph embedding features into

the DNN training. In Section 6.3 and Section 6.4, we describe two types of neural graph

embedding features. The first method is based on local neighborhood information, which
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is referred to as the neighborhood graph embedding; the second method is based on global

manifold information, which is referred to as similarity graph embedding. In Section 6.5, we

describe the LVCSR datasets and baseline systems. In Section 6.6, we show experimental

results obtained with the graph embedding features. In Section 6.7, we show the connections

between the proposed neural graph embedding approach and other adaptation techniques

used in DNN-based acoustic models. We wrap up the chapter in Section 6.8.

6.1 Introduction

In the previous chapter, we reported improvements in both frame-level accuracy and word

error rate over a standard DNN baseline system. However, our previous work has also

identified two main drawbacks of the standard GBL setup: First, although the frame-level

classification accuracy consistently improves it does not always result in decreases in word

error rate; rather, word error rates only decrease when the frame-level improvement is sub-

stantial. In the standard setup the graph-based learner is trained and applied independently

at the output level of a DNN-based HMM state classifier. The resulting modified posterior

distributions are then combined with the original posteriors and are used for lattice rescor-

ing. Thus, the GBL is not optimized jointly with other system components. Second, graph

construction incurs a high computational cost, which limits the scalability to large data sets.

In this chapter, we therefore propose a different framework for integrating GBL, where

the information provided by the graph is used at the input level to the DNN-based classifier:

by embedding the similarity graph into continuous space through an autoencoder we learn

novel features that are then used directly in the input layer to the DNN. The DNN learner

can thus implicitly combine different information sources in the best possible way. While

neural graph embeddings have been utilized previously in clustering [134] and in natural

language understanding [52], their use in acoustic modeling is to our knowledge novel. In

addition, we address the computational issues by landmark-based graph construction, which

reduces the cost by orders of magnitude while yielding good performance.
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6.2 Graph Embedding using Autoencoders

Mapping graph representations into continuous space has been proposed in previous work

[134, 52]. For this purpose, an autoencoder is often used to learn a compact feature repre-

sentation for a given input. The simplest form of an autoencoder is a feedforward neural

network, consisting of an input layer, a hidden layer and an output layer. The hidden layer

usually consists of fewer number of nodes than the number of nodes in the input layer. The

output layer has the same number of nodes as the input layer. The autoencoder first maps

an input vector x to a hidden representation g via a nonlinear transformation, defined as

g = s(W(1)n + b(1)). This procedure is often termed as the “encoding” step, where the

original feature vector is encoded into a compact feature vector. After the encoding step,

the hidden representation g is then passed through another nonlinear transformation to re-

construct the input, i.e. x̃ = s(W(2)g+b(2)). This step is often referred to as the “decoding”

step. Here, W(1),W(2),b(1),b(2) are the parameters of the network and s is a nonlinear

activation function, which can be either sigmoid function or tanh function. To train the

autoencoder, we use the standard backpropagation. Instead of minimizing cross entropy, we

minimize the reconstruction loss of the training samples
∑N

i=1 ||xi− x̃i||2. The nonlinear acti-

vation output of the hidden layer is used as the compact feature representation. Throughout

this thesis, we refer to these features as the neural graph embedding features. Similar to other

dimensionality reduction methods, an autoencoder learns a lower-dimensional embedding via

several nonlinear transformations.

6.2.1 Previous Work

In [134], the authors use a deep autoencoder to map the similarity graph into a low-

dimensional continuous vector space. Let the similarity matrix be defined as S ∈ Rn×n,

and the diagonal degree matrix as D = diag{d1, d2, · · · , dn}, where di is the degree of node

i, and n is the total number of nodes in the graph. The input to the autoencoder for each
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Figure 6.1: A depiction of an autoencoder.

sample i is the row vectors of the normalized similarity matrix, defined as follows:

xi = [
Si1
di
, · · · , Sin

di
] (6.1)

where Sij is the similarity value between sample i and j. Let the autoencoder output be

defined as x̃i for each sample i. An autoencoder is trained to minimize the reconstruction

loss
∑

i ||xi− x̃i||2. The nonlinear activation outputs from the last hidden layer are extracted

as the ‘graph embedding features’, which are then used as inputs to a standard k-means clus-

tering algorithm. Empirical results show that clustering with the graph embedding features

yields better results than clustering with the similarity graph row vectors using k-means, or

spectral clustering on the similarity graph.

In [52], the authors use neural embeddings of a semantic knowledge-graph for the purpose

of semantic parsing. In [139], the authors propose a ‘generalized autoencoder’ which extends

the traditional autoencoder by taking manifold information into the reconstruction term of

the autoencoder training. Our proposed approach is similar to [134] but different in many

ways. The framework in [134] is not scalable to large-scale acoustic modeling task because

of the huge construction overhead of the similarity graph. Moreover, the graph is built over
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one specific data set and cannot extend to any new test data. To apply on new test data,

we must rebuild a new similarity graph, which becomes impractical for acoustic modeling.

6.2.2 Connections between Graph Embedding and Spectral Clustering

In this paragraph, we briefly describe the findings in [134] that showed a close connection

between autoencoder-based graph embeddings and the spectral clustering approach. Given

the similarity matrix S and the diagonal degree matrix D, we define the graph Laplacian

matrix L as L = D − S. We also define a matrix Q = D−1L. For spectral clustering, we

perform an eigenvalue decomposition of Q as Q = YΛYᵀ, where Y ∈ Rn×n is the eigenvector

matrix with each column representing an eigenvector. Λ is a diagonal matrix, where each

element Λii is the ith eigenvalue and Λ11 > Λ22 > · · · > Λnn. For spectral clustering,

we extract k columns from Y that correspond to the smallest non-zero eigenvalues as the

embedding matrix Yk. Each row vector in Yk is a new feature representation for a sample,

and is used as input to a standard k-means algorithm.

To relate spectral clustering with reconstruction, Eckart-Young-Mirsky Theorem [28]

shows the reconstruction nature of spectral clustering.

Theorem 1 (Eckart-Young-Mirsky Theorem [28]: Reconstruction Nature of Spectral Clus-

tering). Given a rank-r matrix P ∈ Rm×n, let the singular value decomposition (SVD) be

P = UΣVᵀ, where UᵀU = I, VᵀV = I and Σ = diag{σ1, σ2, · · · , σr, 0, · · · , 0}. Then, for

any rank k < r, we can find a rank-k matrix P̃ as follows:

argminP̃∈Rm×n,rank(P̃)=k||P− P̃||F = UΣ̃Vᵀ (6.2)

where Σ̃ = diag{σ1, σ2, · · · , σk, 0, · · · , 0}. Σ̃ is the same matrix as Σ, and the only difference

is that it only contains the k largest singular values and the other singular values are replaced

with 0.

When we replace P matrix with a symmetric similarity matrix S (or normalized similar-

ity matrix S̄ = D−1S), we have eigenvalue decomposition of S as follows: S = UΛUᵀ, where
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Λ is the diagonal matrix that contains the eigenvalues in S. According to the Eckart-Young-

Mirsky Theorem, we can reconstruct the similarity matrix S using k largest eigenvectors,

which is the best rank-k approximation under the Frobenius norm. In [134], the key ob-

servation is that the reconstruction of a similarity matrix can also be achieved by

the use of an autoencoder. Instead of minimizing the Frobenius norm, an autoencoder

minimizes the following reconstruction loss:

n∑
i=1

||xi − x̃i||2 (6.3)

where xi is defined in Equation 6.1, which is the row vector of a normalized similarity matrix.

It can be observed that the objective of autoencoders is quite similar to the loss in Frobenius

norm in Equation 6.2.

6.2.3 Neural Graph Embeddings in Acoustic Modeling

In this thesis, we propose two different approaches that encode information expressed by

the graph structure at different levels. The first type of information we can encode is the

neighborhood information for a given sample. To infer the label distribution, the label

information of the neighboring nodes plays an important role. In this approach, we will

extract information that represents the neighborhood information and use this information

as the inputs to the autoencoder. Another type of information we can encode is the global

information for each sample in the graph. These global information can be expressed by the

manifold structure, such as the distances to each node in the graph. In [134], the row vectors

in a similarity matrix were used as input information for the autoencoder training. In the

following two sections, we will describe how to extract neighborhood graph embeddings and

similarity graph embeddings in detail, and will evaluate their performance in LVCSR tasks.

After the graph embedding features have been extracted using the autoencoder, the next

question is how to combine the new features with the conventional acoustic features. A con-

ventional input acoustic feature vector to an DNN is usually a MFCC feature vector, with

possible feature preprocessing including splicing, LDA, MLLT and fMLLR feature transfor-
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mation. The graph embedding features can be integrated with the acoustic features in various

ways. Figure 6.2 and Figure 6.3 show the early stage and late stage feature integration. The

white nodes at the input layer correspond to the raw acoustic features. The green nodes cor-

respond to the graph embedding features and the similarity values. The blocks show different

feature preprocessing steps such as initial splicing, LDA, MLLT, fMLLR transformation, and

additional splicing. The dotted blocks are optional. During early stage feature integration

as depicted in Figure 6.2, the graph embeddings are appended to the raw acoustic features,

followed by additional preprocessing modules such as splicing, LDA and MLLT. During late

stage integration as depicted in Figure 6.3, the raw acoustic features are first processed. The

graph embeddings are then appended to the processed acoustic features.

Splicing LDA MLLT/
fMLLR Splicing

Figure 6.2: Early stage feature integration using graph embedding features. Blocks in dotted

lines are optional.

6.3 Neighborhood Graph Embedding Features

In this section, we will describe the first type of neural graph embedding features - neigh-

borhood graph embedding features. In the pMP algorithm, the most important factor

for graph inference is the label information of the neighboring nodes for each sample. To

extract graph embedding features that encode neighborhood information, we need to design
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Splicing LDA MLLT/
fMLLR Splicing

Figure 6.3: Late stage feature integration using graph embedding features. Blocks in dotted

lines are optional.

a feature that represents the neighborhood information and use this feature for autoencoder

training. For this purpose, we define a neighborhood encoding vector (n-vector in short)

for each sample as follows:

ni = [l1, · · · , lj, · · · , lk] ∀j[j = 1, ..., k → j ∈ Ni] (6.4)

Here, Ni are the neighbors of sample i. lj is the label distribution of the jth neighbor

of a sample. The labels can be defined at the monophone level or senone level. We have

two options to create the label distribution vector l. The first choice is a one-hot vector

representation. This is a binary vector representation with 1 representing the top-scoring

class and 0 for all other classes. For training samples, the top-scoring class is determined

by forced alignment of the training transcriptions with the acoustic data; for test samples,

they are determined by a first-pass decoding output. The second choice is a soft-label

representation. This is the full probability distribution over class labels obtained from a

supervised classifier. We can either use the DNN classifier from our baseline ASR system

to compute the posteriors, or we can train a separate classifier. Having obtained the n-

vectors for the training samples, we train an autoencoder to map them to a more compact
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representation.

In fact, the neighborhood information of a sample can be viewed as a special graph - a

weighted bipartite graph G = {U, V,E,W}. A bipartite graph is a graph whose vertices

can be divided into two disjoint sets U and V . Each edge e ∈ E connects a vertex u ∈ U to a

vertex in v ∈ V . W ∈ R|U |×|V | is a weight matrix that encodes the similarity between u ∈ U
and e ∈ E. Figure 6.4 shows an example of a bipartite graph that encodes the neighborhood

information of 3 samples. Each sample consists of 5 nearest neighbors and all neighbors are

included in set U . Set V consists of the labels - in Figure 6.4, there are 3 labels.

U (1)

U (2)

U (3)

V

U

Figure 6.4: An example of a weighted bipartite graph. The nodes on the left partition (U)

correspond to the k nearest neighbors for each frame; the nodes on the right partition (V )

correspond to labels, which can either be monophone labels or senones.

The n-vectors are vectorized representation of the weight matrix defined on the bipartite

graph. To give an intuition of how the neighborhood information can reveal the similarity
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between a pair of samples, we show the 5 nearest neighbors of three different samples as

bipartite graphs in Figure 6.5. These three graphs are the subgraphs in Figure 6.4, where

each subgraph encodes the neighborhood information for a sample. The neighbors for each

sample i are in set U (i) = {u(i)
1 , · · · , u(i)

k }, where u
(i)
j is j nearest neighbor of i. The labels

for each neighbor are in set V = {v1, · · · , vC}. The weight matrix W(i) is shown below each

graph. To compare the neighborhood information between a pair of node i and j, we can

use the Frobenius norm as follows:

||W(i) −W(j)||F =
√
Tr((W(i) −W(j))(W(i) −W(j))ᵀ) (6.5)

Or equivalently, we can just compute the `2 distance between ni and nj.

In Figure 6.5, the first and third samples have similar neighborhood information: for

example, the 5 nearest neighbors of the first sample are 1, 2, 1, 2, 3, respectively; the 5 nearest

neighbors of the third sample are also 1, 2, 1, 2, 3. The `2 distance between n1 and n3 is 0.51.

On the other hand, the neighbors of the first and second samples are slightly different: the 5

nearest neighbors of the second sample are 1, 1, 1, 2, 1. Consequently, the `2 distance between

n1 and n2 is 1.2.

6.3.1 Dataset Compression using Landmarks

The computational bottleneck in extracting neighborhood graph embeddings lies in the ex-

traction of n-vectors. To create the n-vectors, we need to perform a nearest neighbor search

in millions of samples. To speed up the process, instead of performing kNN search in a

huge amount of samples, we select a set of landmark points1 from the entire set of samples

and perform kNN search using these landmark points only. Landmarks are widely used in

manifold learning. In previous work on manifold learning [126] and graph-based SSL [86],

it is shown how large-scale graph construction can be rendered manageable by selecting a

much smaller set of “landmark” samples instead of the entire set of samples.

1The use of the term “landmark” here is unrelated to acoustic-phonetic landmarks.
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L1 L2 L3
N1 0.8 0.1 0.1
N2 0.1 0.7 0.2
N3 0.5 0.1 0.4
N4 0 0.9 0.1
N5 0.2 0 0.8

U (1) V VU (2)
VU (3)

L1 L2 L3
N1 0.7 0.1 0.2
N2 0.5 0.2 0.3
N3 0.7 0.1 0.2
N4 0.3 0.6 0.1
N5 0.5 0.4 0.1

L1 L2 L3
N1 0.8 0 0.2
N2 0.2 0.6 0.2
N3 0.6 0.2 0.2
N4 0.1 0.8 0.1
N5 0.1 0.3 0.6

Figure 6.5: An example of three subgraphs from the weighted bipartite graph in Figure 6.4.

Each subgraph is a neighborhood representation for a sample.

These landmarks can be obtained by uniform subsampling of the original data set, or

according to a principled objective function (e.g., [93, 140, 142, 87]), or by k-means clustering.

In this work, we use the k-means centroids as landmarks. We extract landmarks from the

training and test samples, and denote these landmark sets as ZL and ZU , respectively. As a

result, we only need to perform nearest neighbor search using a set of landmarks in each set

rather than searching in the entire labeled training set and unlabeled set.

6.3.2 Framework

Figure 6.6 summarizes the framework of extracting neighborhood graph embedding features.

Given training data L and test data U , we extract separate sets of landmarks ZL and ZU
using k-means. We also select a subset of the training data to train a simple MLP, which is

used to produce the soft-label representation of the n-vectors. For each sample in L, we run
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kNN search in ZL and use the MLP classifier to create the n-vectors. These n-vectors from

L are used to train the graph embedding feature extractor (autoencoder). The hidden layer

outputs are used as the embedding features g for L.

For test samples, we create two n-vectors nL and nU for each sample. The resulting n-

vectors are then passed through the trained autoencoder separately to derive two embedding

features gL and gU . In addition, we further enrich the graph embedding features with a

similarity vector s, which contains the similarity values to the neighbors. Define the acoustic

feature vector as a, which can be MFCC features or fMLLR features. The final input feature

vector to the DNN takes the following form:

• Training data: x = [aᵀ,gᵀ
L,g

ᵀ
L, s

ᵀ
L, s

ᵀ
L]ᵀ

• Test data: x = [aᵀ,gᵀ
L,g

ᵀ
U , s

ᵀ
L, s

ᵀ
U ]ᵀ

Note that in order to have the same dimensionality, the graph embedding features g and

similarity feature vectors s for training samples are duplicated.

Training Samples
Test Samples

landmarks landmarks

kNN kNN

n nL nU

MLP

gUgLg

Auto
Encoder

Training Stage
Test Stage

Figure 6.6: Procedure for extracting graph-embedding features.
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6.3.3 Speaker-dependent Graph Embeddings

In the previous chapter, we proposed speaker-dependent graph construction. We showed that

constraining the nearest neighbor search to a set of samples from a specific speaker yields

better performance than using the entire set. Similarly, we can extract graph embedding

features in a speaker-dependent approach.

Recall that the graph embedding features in the previous section have the following form:

for training samples, we extract graph embedding features g using the n-vectors extracted

from the landmarks ZL, which are extracted from the entire training samples. For test

samples, we extract graph embedding feature gL using landmarks ZL, and graph embedding

feature gU using landmarks ZU .

For speaker dependent graph embeddings, in addition to the landmarks extracted from

the entire training samples, we also extract landmarks on a per-speaker basis. In Figure 6.6,

we show our framework for extracting speaker-dependent graph embedding features. We first

extract a set of landmarks from the entire training samples, and we refer to them as global

landmarks Zglobal. For each speaker, we also extract a set of landmarks from all samples in

that speaker, and refer to this landmark set as local landmarks Zlocal. For each sample, we

create two n-vectors nglobal and nlocal, by doing nearest neighbor search in Zglobal and Zlocal.
The resulting n-vectors are passed into the autoencoder to extract two graph embeddings

feature vectors gglobal and glocal. We also create two similarity vectors sglobal and slocal. The

final input feature vector to the DNN takes the following form:

x = [aᵀ,gᵀ
global,g

ᵀ
local, s

ᵀ
global, s

ᵀ
local]

ᵀ (6.6)

For real-time performance, speaker-dependent graph embedding features are preferred

over the speaker-independent features. For speaker-independent features, we need to create

landmarks from the entire test set; however, for speaker-dependent features, we can create

local landmarks much more rapidly. Moreover, the global and local graph embedding features

outperform the speaker-independent features, as shown in the next section.
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global
landmarks

local 
landmarks

kNN MLP

Auto
Encoder

nglobal nlocal

gglobal glocal

Figure 6.7: Procedure for extracting speaker-dependent neighborhood graph embedding fea-

tures.

6.4 Similarity Graph Embedding Features

In the previous section, we describe a neighborhood graph embedding feature extraction pro-

cedure. These features are extracted by encoding neighborhood information into a compact

feature representation using an autoencoder. The neighborhood information is local - we use

the label information of the k nearest neighbors for a given sample. In this section, we try

to learn a different embedding feature by encoding global manifold information.

Following [134], a direct way to encode the manifold information is to use the row vectors

of a similarity matrix to train the autoencoder. Figure 6.8 illustrates the framework. First,

we construct a similarity graph over all training and test samples. Then, the row vectors of

the similarity matrix are used to train an autoencoder. The nonlinear activation outputs from

the hidden layer are the graph embedding features. In contrast to the previous neighborhood

graph embedding features, we refer to this type of embedding features as similarity graph
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embedding features.

xi x̃igi

Figure 6.8: Training autoencoder using row vectors in a similarity matrix. Each row vector

is the input to the autoencoder. The nonlinear activation outputs from the hidden layer are

the graph embedding features.

However, this approach is not directly applicable to LVCSR tasks. First, we need to

construct a similarity graph over all training and test samples, which is computationally ex-

pensive. More importantly, a new graph needs to be built on every new test set. Thus, this

approach cannot be used as is for acoustic modeling. In this section, we propose an approx-

imation framework to extract similarity graph embedding features. We leverage the notion

of landmarks again to approximate the similarity matrix using low-rank approximation. The

resulting framework addresses both computational bottleneck and achieve real-time perfor-

mance.

6.4.1 Similarity Matrix Approximation using Landmarks

To construct a similarity matrix with n nodes, the time complexity is O(n2). On the other

hand, to train the autoencoder, we need to store all the row vectors in a large similarity
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matrix. In [86], an anchor graph approach was proposed. The idea of anchor graph is to

approximate the large similarity matrix using a small set of “landmark” points or anchor

points. The notion of landmark was also used in the previous chapter, where we extracted

n-vectors by doing kNN selection using a small representative subset of “landmarks” instead

of a huge amount of samples.

Formally, given a similarity matrix W, and a set of landmarks Zi, i = 1, · · · ,m, the

similarity matrix can be approximated as follows:

W̃ = ZΛ−1Zᵀ (6.7)

where W̃ is the approximated similarity matrix of W, Z ∈ Rn×m is a low rank matrix,

Λ is a diagonal matrix with Λkk =
∑n

i=1 Zik. Z is a design matrix with Zij measuring

the relationship between sample i and landmark j. According to Nadaraya-Watson kernel

regression [102], Zij is defined as follows:

Zij =
Kh(xi, zj)∑

z′∈Z Kh(xi, z′)
(6.8)

where Z = {z1, · · · , zm} is a set of landmark points, Kh(xi, zj) is a kernel function defined

on a given sample xi and a landmark point zj (in our case, we use the RBF kernel). In this

way, we can represent a large similarity matrix W using a much smaller low rank matrix Z.

More importantly, it is not necessary to train new models whenever we have a new test set

- all we need is a set of precomputed landmark points.

To train the autoencoder, we can use the row vectors in Z, which reduces the space

complexity from O(n2) to O(mn), where m << n. In our experiment for LVCSR, n is

usually in the range of 107 whereas m is usually in the range of 103, which reduces the data

size by 4 orders of magnitude. After the autoencoder has been trained, we can create the

graph embedding features g. To use these features, we augment the existing acoustic features

a as follows:

x = [aᵀ,gᵀ]ᵀ (6.9)
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6.5 Data and Systems

We evaluate the framework on two large vocabulary conversational speech recognition (LVCSR)

tasks: SVitchboard-II [87] task and 110-hour Switchboard-I. SVitchboard-II is a set of high-

quality, low-complexity conversational English speech benchmark datasets created from the

original Switchboard-I dataset. The corpora were selected to be acoustically rich, while lim-

ited in vocabulary size. Compared to the original Switchboard-I corpus with 30k vocabulary,

the SVitchboard-II corpora have different vocabulary sizes ranging from 50 to approximately

10, 000. We use the largest-vocabulary task in SVitchboard-II for this study, which has a

vocabulary size of 9983 and refer to it as SVB-10k. The training, development, and test

sizes are 67642, 8491, and 8503 utterances, which correspond to 69.1 hours, 8.8 hours and

8.8 hours, respectively. A trigram backoff language model built on the training data is used

for decoding. For the Switchboard task, we use the first 100k utterances from the entire

Switchboard-1 Phase 2 pack, and the resulting training data consists of 110 hours. We also

use another 4k utterances as development set. For evaluation purposes, we use the Eval2000

(Hub5-00) set. The Eval2000 set consists of 20 conversation sides from Switchboard (SWB),

and another 20 conversation sides from CallHome English (CHM). We report the perfor-

mance on the Eval2000-SWB part. A trigram language model is trained on the Switchboard

dataset (excluding Fisher corpus). We train several different baseline systems for the two

tasks.

6.5.1 Speaker-Independent (SI) DNN

The SI DNN system is trained using the same procedure as described in Section 5.2. The

resulting DNN network consists of 4 hidden layers with tanh function: for SVB-10k task,

each layer consists of 1024 nodes; for Switchboard, each layer consists of 1200 nodes. The

input features to the DNNs are spliced MFCCs (with a context window size of 4), followed

by an LDA transformation (without dimensionality reduction) which is used to decorrelate

the input features. The resulting feature vector has 117 dimensions in total. The output
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layer consists of sigmoid units, and the total number of senones in the DNN for these tasks

is 1864 and 2390, respectively. A softmax function is used to produce senone posteriors. We

perform greedy layer-wise supervised training [10, 124] on multiple CPUs and GPUs using

the Kaldi toolkit [111]. We use 20 epochs to train the DNN, with a mini-batch size of 256.

For the first 15 epochs, we decrease the learning rate from 0.01 to 0.001 and fix the learning

rate at 0.001 for the last 5 epochs.

6.5.2 Speaker-Dependent (SD) DNN

To train a SD-DNN, we use the features from a speaker adaptive trained (SAT) GMM-

HMM system. The SAT GMM-HMM system uses 40-dimensional fMLLR features. To get

the features, the MFCC features are first spliced with a context window size of 9 (± 4

frames). They are then projected down to 40 dimensions using LDA, followed by a semi-

tied covariance transform. Then, the fMLLR transform is applied to the features for each

conversation side. We use the 40-dimensional fMLLR features to the DNN and refer to this

baseline as “SD-DNN (40)”. In addition, we further splice the fMLLR features with another

context window size of 9 (± 4 frames), and refer to it as “SD-DNN (360)”. Table 6.1 shows

the baseline DNN-HMM system’s word error rate.

Systems
SVB-10k Switchboard

Dev WER Eval WER Dev WER Eval WER

SI-DNN 32.04% 32.17% 28.7% 23.7%

SD-DNN (40) 29.96% 30.01% 27.9% 22.0%

SD-DNN (360) 27.96% 27.97% 25.4% 20.0%

Table 6.1: Baseline system word error rates for SVB-10k and Switchboard.
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6.6 Experimental Results

6.6.1 Standard GBL Experiment

We first evaluate the standard graph-based SSL framework described in Section 5.2 for

SVB-10k tasks. The baseline system we used for the task is SI-DNN system. In line with

Section 5.2, we use the bottleneck features from the baseline DNN and splice them with a

context window of 9. The resulting frames (excluding silence frames) of the training and test

data L and U are used to build a kNN graph. Due to the huge size of the graph (for SVB-10k,

we have 17 million non-silence frames), we perform a uniform subsampling to select 10% of

the samples from the training set. For each sample in U we select 10 nearest neighbors in L
and 10 in U . After the graph is constructed, we run the pMP algorithm to obtain a new set

of senone posteriors. The new posteriors are converted to “graph likelihoods” by dividing

the state priors, and the likelihoods are interpolated with the original scores in the lattice.

All parameters are tuned on the development data. The parameters of pMP are µ = 10−6

and ν = 8 × 10−6; the linear score combination weights are 0.2, 0.8, and 8 for the graph

likelihood score, acoustic likelihood score and language model score, respectively. Table 6.2

shows the performance of the standard GBL framework. It can be observed that the frame

accuracy on the development set is improved from 32.5% to 38.2%, a 5.7% absolute. However,

the significant improvement in the frame accuracy does not lead to a better word error rate.

On both the development and evaluation set, the word error rates are decreased only by a

small margin. This again demonstrates a major disadvantage of the standard GBL - while

GBL optimizes the frame level accuracy according to the graph-based SSL objective, it does

not take other ASR components into consideration. Moreover, the whole procedure cannot

be done in real-time: the graph construction takes up to days on multiple CPUs.

6.6.2 Experiment: Comparison of Different Neighborhood Graph Embeddings

First, we compare different schemes to extract neighborhood graph embedding features on the

SVB-10k task. For the experiment we use the same bottleneck layer feature representation of
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Dev WER Dev Frame Acc. Eval WER

DNN Baseline 32.04% 32.5% 32.17%

+standard GBL 31.95% 38.2% 32.13%

Table 6.2: Results for standard GBL framework.

the data as in the preceding section. The number of frames in the training data is around 25

million. We extract landmarks from this set using k-means clustering. First, we assign each

frame a phone label based on the forced alignment of training transcriptions. For silence

frames we run k-means with k = 64. For the remaining non-silence frames, we run k-means

with k = 32 for each of the 42 non-silence phone classes. The resulting centroids are used

as landmarks, resulting in 1408 landmarks, which is 4 orders of magnitude less than the

original graph size. For each set (training, development and test), we create a separate set

of landmarks. We perform kNN search using the landmark sets. The similarity measure we

used is an RBF kernel with Euclidean distance. For the training samples we select 10 nearest

neighbors in the landmark set of L. For the test data we select 10 nearest neighbors in the

landmark sets of L and U , respectively.

In particular, we compare the following setups in Table 6.3:

• Graph-embedding features with different nearest neighbor encoding schemes: 1) one-

hot label distribution vector and 2) soft-encoding label distribution vector (#1, #2 vs

#4, #5);

• Different feature integration scheme: 1) early integration and 2) late integration (#1

vs #3) and #4 vs #6;

• Graph embedding features with different dimensionality (#1 vs #2, #4 vs #5);

• Raw n-vectors input versus embedding features (#7 vs #4): in order to evaluate the

effect of the usage of an autoencoder, we directly use the raw n-vectors as inputs to the
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DNN, and compare the performance to the DNN trained with the embedding features

obtained from an autoencoder.

To generate the label-encoding vector l, we experiment with both a one-hot and a soft-

label vector representation. The labels are those of the 43 phone classes. For a one-hot

encoding the frame-level forced alignment information is used for the training data and the

first-pass decoding output for the test data. To create soft-label neighborhood encoding

vectors, we train a simple 3-layer multi-layer perceptron (MLP) with `2 regularization for

phone classification using the Theano [6] toolkit. The hidden layer of the MLP consists of

2000 nodes. The nonlinearity function in the MLP is the tanh function. We train the MLP

on a random 10% subset of the entire training data using stochastic gradient descent with a

minibatch size of 128. The learning rate of the MLP is 0.01 and the total number of epochs

is 1000. The regularization constant is set to 0.001. We use early stopping during training.

The MLP has a classification accuracy of 67% on a 1.2 million held-out dataset. The MLP

outputs are then used to generate phone label distributions for the landmark samples.

Setup Description

#1 One-hot; 43-d embedding features; early integration

#2 One-hot; 100-d embedding features; early integration

#3 One-hot; 43-d embedding features; late integration

#4 Soft label; 43-d embedding features; early integration

#5 Soft label; 100-d embedding features; early integration

#6 Soft label; 43-d embedding features; late integration

#7 Soft label n-vectors; early integration

Table 6.3: Experimental setup for neighborhood graph embedding.

Table 6.4 shows the word error rates (WER) on the development and test sets using

the different setups. For diagnostic purposes we excluded 300 sentences from the training
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data and randomly selected 4000 frames as validation frames, and computed the frame-

level accuracy of the HMM state label predictions on this set. Bold-face numbers indicate

statistically significant improvements (p < 0.05).

We first compare different weighting schemes for the neighborhood encoding vectors.

The neighborhood encoding vectors in Equation 6.4 can be designed in two ways: one way

is to use one-hot vector encoding for l in Equation 6.4; the other way is to use soft-label

assignment for l. Comparing Experiment #1 versus #4, and Experiment #2 versus #5, we

observe that using soft-label assignment for the n-vectors yields consistently better validation

frame accuracy and the word error rate. Both the one-hot encoding vectors and soft-label

assignments achieve a significant better validation frame accuracy; however, only the n-

vectors using soft-label assignments show a significant improvement in the word error rate.

The reason why improvements are not larger may be due to the way we derived the one-hot

encodings: the labels of the training data are derived using forced alignments whereas the

labels of the test data are derived using first-pass decoding output. The discrepancy between

the label accuracies could be a contributing factor.

Secondly, we compare different feature integration schemes. In Section 6.2, we propose

both early stage feature integration as well as late stage feature integration. The details

are shown in Figure 6.2 and Figure 6.3. For SI-DNN system on SVB-10k, we use the

first two modules (initial splicing and LDA transformation) in the figures for preprocessing.

Comparing Experiment #1 with #3 and #4 with #6, the early stage feature integration

yields significantly better validation frame accuracy (49.05% versus 46.1%) and word error

rate. In Experiment #4, we achieve a WER of 30.57% on the development set using early

stage feature integration; on the contrary, the late stage feature integration results in a

31.95% WER, more than 1% absolute increase.

We then compare graph embedding features with different dimensionalities (Experiment

#1 vs #2, Experiment #4 vs #5). To obtain a different dimensionality of the embedding

features, we try different numbers of hidden units in the autoencoder. In addition to 43

units in the hidden layer, we also increase it to 100 units. From the experiments, it can be
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concluded that the dimensionality of the hidden layer in the autoencoder (Experiment #1

vs. #2 and #4 vs. #5) does not have a consistent effect.

Finally, we also use the raw n-vectors as additional input features to the DNNs. Compar-

ing Experiments #4 and #7, the raw concatenated n-vectors only have marginal improve-

ments over the baseline system (46.1% validation accuracy over 45.4% baseline accuracy, and

31.75% WER over 32.04% baseline WER). The system using embedding features extracted

from the autoencoder yields much better validation accuracy and word error rate. This is

because the autoencoder performs a nonlinear dimensionality reduction over the raw inputs;

a DNN trained with the raw n-vectors is more prone to overfit the n-vector part which has

hundreds of dimensions compared to the much smaller acoustic features.

WER Dev Test Valid Acc.

DNN Baseline 32.04% 32.17% 45.4%

#1 31.65% 32.05% 49.05%

#2 31.76% 31.98% 47.7%

#3 31.76% 32.00% 46.1%

#4 30.57% 30.59% 51.95%

#5 30.61% 30.71% 51.05%

#6 31.95% 32.07% 45.73%

#7 31.75% 31.79% 46.1%

Table 6.4: Results for standard GBL framework vs. neighborhood graph embedding features.

In the following experiments, we adopt the optimal configuration of the neighborhood

graph embedding features as follows:

• We use the soft-label encoding method to create the n-vectors;

• We use the early stage feature integration to combine graph embedding features with

acoustic features.
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6.6.3 Experiment: SI-DNN system with neighborhood graph embedding features

SVitchboard-10k task

We first evaluate the performance of the SI-DNN system using the graph embedding features

on the SVB-10k task. In addition to the SI-DNN baseline system in Table 6.1, we add several

additional competitive SI-DNN systems for further evaluations. We increased the number of

hidden units per layer in the DNN from 1024 to 2048, and the number of hidden layers from

4 to 6. Additionally, we trained a SI-DNN using maxout unit [154], which tends to yield

better performance. For the maxout network, we used a group size of 5 and set the number

of groups to 800. The value of p of the p-norm was set to 2. The graph embedding features

are fused with the acoustic features using the early stage feature integration scheme. We

splice the input features with a context window size of 9. An LDA without dimensionality

reduction is performed on top of the spliced features for decorrelation. The final resulting

feature has a dimensionality of 9× (13 + 43 + 43 + 10 + 10) = 1071.

Table 6.5 shows the experimental results using graph embedding features on top of SI-

DNN systems. We can observe that augmenting the original acoustic features with graph

embedding features yields consistent and significant improvements for all baseline systems.

The absolute WER improvement over various conventional DNN system varies from 0.9%

to 1.6%, with a relative improvement ranging from 3% to 5%. For the first SI-DNN system,

adding graph embedding features achieves a similar WER to the SD-DNN(40) system. This

shows that the graph embedding features can be used as an adaptation technique.

Increasing the number of nodes and layers leads to a better performance (2nd and 3rd

SI-DNN systems); nevertheless, adding graph embedding features achieves additional gain.

The gain becomes smaller as we use a deeper network, e.g. the 3rd system with 6 hidden

layers. The best baseline performance among all systems on the development is achieved

by the maxout network. Nevertheless, the combination with graph-embedding features still

reduces the WER further by about 0.5% absolute.

It is worth noting that the input layer of the DNN when using the graph-embedding fea-
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Dev Eval

(1024) 4-layer DNN 32.04% 32.17%

+ neighborhood graph embedding 30.57% 30.59%

(2048) 4-layer DNN 31.23% 31.31%

+ neighborhood graph embedding 29.59% 29.72%

(2048) 6-layer DNN 30.61% 30.76%

+ neighborhood graph embedding 29.65% 29.85%

Maxout 30.63% 30.86%

+ neighborhood graph embedding 30.18% 30.32%

Table 6.5: Neighborhood graph embedding features for different SI-DNN baseline systems

on SVB-10k. The number in parentheses is the number of nodes per hidden layer. Numbers

in bold face indicate a significant improvement at p = 0.05.

tures is generally larger than when using only acoustic features, resulting in more parameters

in the new DNN system. For a controlled experiment, we increased the size of the baseline

DNN by increasing the number of nodes in the hidden layer, and made the number of pa-

rameters roughly the same for both networks. To do this, we increased the number of nodes

per layer from 1024 to 1145, resulting in 6.16 million parameters in total for the baseline

DNN. The SI-DNN baseline system has 6.15 million parameters. Table 6.6 shows the results

of an experiment where we controlled the overall number of parameters. Comparing the two

systems, the system using graph embedding gave a 1.4% absolute improvement on the test

set.

Switchboard-I 110-hour task

We also evaluate the performance on the Switchboard 110-hour task using the same SI-

DNN system. For Switchboard-I task, we select 1504 landmarks in total (64 landmarks for



113

Dev Test

(1145) 4-layer DNN, # params: 6.16M 31.89% 32.01%

+ neighborhood graph embedding, # params: 6.15M 30.57% 30.59%

Table 6.6: WER comparison controlled for the number of parameters. The number in

parentheses is the number of nodes per hidden layer. Numbers in bold face indicate a

significant improvement at p = 0.05.

the silence phone, and 32 landmarks for each one of the remaining 45 phones). Table 6.7

shows the system performance using graph embedding features on Switchboard. The SI-

DNN system achieves a WER of 23.7% on the evaluation set; graph embedding gives a

boost of 0.8% in absolute WER reduction. In the following section, we also investigate

the performance using stronger SD-DNN systems. Nevertheless, the experiments indicate

that the graph embedding features provide auxiliary information in addition to the acoustic

features, and lead to consistent improvements on SI-DNN systems.

Dev Eval

(1200) 4-layer DNN 28.7% 23.7%

+ neighborhood graph embedding 28.3% 22.9%

Table 6.7: Graph embedding features for SI-DNN systems on Switchboard 110-hour task.

The number in parentheses is the number of nodes per hidden layer. Numbers in bold face

indicate a significant improvement at p = 0.05.

6.6.4 Experiment: SD-DNN system with neighborhood graph embedding features

In the previous experiment, the graph embedding features were extracted in a speaker-

independent approach. The landmarks were extracted from the entire training or test set.

In this section, we investigate the speaker-dependent (SD) neighborhood graph embedding
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features. We also evaluate the performance of using neighborhood graph embedding features

on top of a SD-DNN system.

First, we use speaker-dependent graph embedding features on top of a speaker-independent

DNN baseline system. Table 6.8 and Table 6.9 show the results of two SI-DNN systems, and

the performance using two different graph embeddings. The SI graph embedding features

reduce the WER from 32.17% to 30.59% on SVB-10k, and it reduces the WER from 23.7%

to 22.9% on Switchboard. The DNN systems using SD graph embedding features achieve

further improvement. The WER on SVB-10k is improved to 30.18%, which is a 2% absolute

and a 6.2% relative improvement over the baseline system. The WER on Switchboard is im-

proved to 22.5%, which is a 1.2% absolute and a 5% relative improvement over the baseline.

The results indicate that the SD neighborhood graph embedding is explicitly performing

adaptation.

Dev Eval

SI-DNN 32.04% 32.17%

+ neighborhood graph embedding (SI) 30.57% 30.59%

+ neighborhood graph embedding (SD) 30.03% 30.18%

Table 6.8: Comparison of SI and SD neighborhood graph embedding features for SI-DNN

systems on SVB-10k. Numbers in bold face indicate a significant improvement at p = 0.05.

In the second set of experiments, we use the speaker dependent DNN systems as base-

lines. Table 6.10 shows the results of two SD-DNN systems, and the performance using graph

embedding features. The SD-DNN(40) system improves the SI-DNN system by 2% absolute.

Additional splicing on the fMLLR features gives another improvement of 2% absolute. Us-

ing graph embedding features, we achieve a consistent reduction in WER in both systems.

However, the graph embedding features extracted in the speaker-independent approach only

give a slight improvement. In SD-DNN(360), the improvement is actually negligible. On

the other hand, the graph embedding features extracted in the speaker-dependent approach
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Dev Eval

SI-DNN 28.7% 23.7%

+ neighborhood graph embedding (SI) 28.3% 22.9%

+ neighborhood graph embedding (SD) 27.6% 22.5%

Table 6.9: Comparison of SI and SD neighborhood graph embedding features for SI-DNN

systems on Switchboard 110-hour. Numbers in bold face indicate a significant improvement

at p = 0.05.

give a much stronger boost. In both SD-DNN(40) and SD-DNN(360) system, we achieve 1%

absolute reduction in WER on both development and evaluation set. This indicates that in

order to accommodate a speaker-dependent DNN system, which uses transformed features

on a per speaker basis, we also need to extract neighborhood graph embedding features in a

speaker-dependent approach.

Dev Eval

SD-DNN (40) 29.96% 30.01%

+ neighborhood graph embedding (SI) 29.40% 29.60%

+ neighborhood graph embedding (SD) 28.79% 29.06%

SD-DNN (360) 27.96% 27.97%

+ neighborhood graph embedding (SI) 27.90% 27.93%

+ neighborhood graph embedding (SD) 26.78% 26.90%

Table 6.10: Comparison of SI and SD neighborhood graph embedding features for SD-DNN

systems on SVB-10k. Numbers in bold face indicate a significant improvement at p = 0.05.

Finally, we report the performance on the Switchboard 110-hour task. In Table 6.11, the

graph embedding features give a consistent reduction in WER in SD-DNN(40) system. The
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speaker-dependent graph embedding features achieve a significant improvement (p = 0.05) on

the development set, although the improvement on the evaluation set is marginal, from 22.0%

to 21.8%. In SD-DNN(360) system, the speaker-independent graph embedding features does

not further improve the WER; on the other hand, the speaker-dependent graph embedding

features reduce the WER from 25.4% to 24.6% on the development set, and from 20.0% to

19.5% on the evaluation set, which corresponds to a 3.1% and 2.5% relative improvement,

respectively.

Dev Eval

SD-DNN (40) 27.9% 22.0%

+ neighborhood graph embedding (SI) 27.4% 21.8%

+ neighborhood graph embedding (SD) 26.9% 21.8%

SD-DNN (360) 25.4% 20.0%

+ neighborhood graph embedding (SI) 25.2% 20.2%

+ neighborhood graph embedding (SD) 24.6% 19.5%

Table 6.11: Comparison of SI and SD neighborhood graph embedding features for SD-DNN

systems on Switchboard 110-hour. Numbers in bold face indicate a significant improvement

at p = 0.05.

6.6.5 Experiment: Similarity graph embedding features

In this section, we compare the similarity graph embedding features to the neighborhood

graph embedding features on the same tasks. The goal here is to evaluate the performance

of different graph embedding features on LVCSR acoustic modeling.

To extract the similarity graph embedding features, we need to create a low rank matrix

Z. Here, we use the same set of landmarks as in the previous experiments to ensure a fair

comparison. The autoencoder has the same number of units in the hidden layer. After the
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autoencoder has been trained, we can create a similarity graph embedding features.

We compare the neighborhood graph embedding features and similarity graph embedding

features using both SI-DNN baseline system and SD-DNN baseline system. Table 6.12 shows

the performance of similarity graph embedding features in SVB-10k task. In the SI-DNN sys-

tem, the SI neighborhood graph embedding features achieve an absolute reduction in WER

of 1.5%. The similarity graph embedding features can further reduce the word error rate by

an additional 2% absolute. In the SD-DNN system using 40-dimensional fMLLR features,

the SD neighborhood graph embedding features can reduce the WER by 1% absolute; the

similarity graph embedding features can further reduce the WER by another 0.5%. In the

last SD-DNN system, similarity graph embedding feature can achieve a similar word error

rate while using fewer parameters in the network. For example, the number of parameters

in the DNN system using similarity graph embedding features is only 90% of the number of

parameters in the DNN using neighborhood graph embedding features.

We also show the similarity graph embeddings on the Switchboard 110-hour task in

Table 6.13. In the SI-DNN system, the best neighborhood graph embedding features achieve

an absolute reduction in WER of 1.2%. The similarity graph embedding features can reduce

the word error rate by 2.6% absolute, an 11.0% relative improvement. In the SD-DNN

system, the SD neighborhood graph embedding features achieve an absolute reduction in

WER of 0.5%. The similarity graph embedding features can achieve the similar performance

while using fewer parameters in the DNN system.

Comparing to neighborhood graph embeddings, similarity graph embeddings achieve con-

sistently better performance with fewer number of parameters in the DNN system. In ad-

dition, neighborhood graph embedding features are a somewhat ad-hoc representation of

local neighborhood information. By contrast, the similarity graph embedding features have

a more solid theoretical foundation and a tight connection to spectral clustering.
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Dev Eval

SI-DNN 32.04% 32.17%

+ neighborhood embedding (SI, 6.1M parameters) 30.57% 30.59%

+ similarity graph embedding (5.5M parameters) 28.55% 28.60%

SD-DNN (40) 29.96% 30.01%

+ neighborhood embedding (SD, 5.3M parameters) 28.79% 29.06%

+ similarity graph embedding (5.2M parameters) 28.39% 28.53%

SD-DNN (360) 27.90% 27.97%

+ neighborhood embedding (SD, 6.5M parameters) 26.78% 26.90%

+ similarity graph embedding (5.9M parameters) 26.79% 26.80%

Table 6.12: Comparison of neighborhood graph embedding features and similarity graph

embedding features for SI-DNN/ SD-DNN systems on SVB-10k.

6.6.6 Experiment: Improving Front-end Features for LSTM-CTC using similarity graph

embedding features

In this section, we evaluate graph embedding features in a LSTM-CTC-based ASR system.

The DNN is used as the acoustic model to compute the emission probability in the HMM.

Usually, the cross entropy objective is used as the training criterion. However, the frame-level

independence assumptions are inherently too strict for speech recognition. More recently,

researchers have been investigating novel architectures that do not depend on the HMM

assumption. The connectionist temporal classification architecture [42, 44, 119, 96], or CTC,

has been successfully applied in ASR. CTC is a sequence modeling technique that does not

rely on frame-level independence assumptions. Combined with recurrent neural networks

with long short-term memory cells, the new model has achieved considerable success in

recent years. More importantly, a CTC-based model significantly reduces the complexity of

training an ASR system. Most deep models still depend on a GMM-based system, in which
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Dev Eval

SI-DNN 28.7% 23.7%

+ neighborhood graph embedding (SI, 8.5M parameter) 28.3% 22.9%

+ neighborhood graph embedding (SD, 8.5M parameter) 27.6% 22.5%

+ similarity graph embedding (7.8M parameter) 26.4% 21.1%

SD-DNN (360) 25.4% 20.0%

+ neighborhood graph embedding (SI, 8.8M parameter) 25.2% 20.2%

+ neighborhood graph embedding (SD, 8.8M parameter) 24.6% 19.5%

+ similarity graph embedding (8.1M parameter) 24.6% 19.5%

Table 6.13: Comparison of neighborhood graph embedding features and similarity graph

embedding features for SI-DNN/ SD-DNN systems on Switchboard-I.

the forced alignments are used to initialize the training of a deep model. The quality of the

alignment has a big impact on training the deep model. To train good GMM models, we need

to spend lots of effort in developing different models such as monophone models, context-

dependent triphone models. We also need expertise in linguistic knowledge to build decision

trees for tied triphone states, and lots of feature preprocessing such as LDA, MLLT and

fMLLR. With a CTC-based model, we can reduce the complexity in training a fully-fledged

ASR system at different stages, thus achieving an end-to-end ASR architecture.

While LSTM-CTC-based ASR shows promising results on various LVCSR tasks, the

studies of front-end features have been limited to filterbank features, MFCC features or

fMLLR features. In the following experiment, we investigate how to leverage this novel ASR

architecture with the graph embedding features.

First of all, we train a LSTM-CTC-based system on SVB-10k task using EESEN [96].

We use bidirectional LSTMs as the model and train it with the CTC objective function. The

building block of the RNN is long short-term memory (LSTM) cells. As baseline systems, we
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train a 2-layer and a 4-layer bidirectional LSTM network. Each layer contains 320 memory

cells in the forward layers, and 320 memory cells in the backward layers. For CTC objective

training, we use the phonemes as the CTC labels (45 phonemes plus a blank symbol). The

input features to the LSTM network are 40-dimensional fMLLR features, with mean and

variance normalization applied for each conversation side. In Table 6.14, the WER using

LSTM-CTC is 31.84% using 2-layer network, and 28.47% using 4-layer network on the SVB-

10k development set. On the other hand, a 4-layer DNN-HMM system can achieve a WER

of 27.90%.

Next, we explore the possibility of integrating graph embedding features with the original

fMLLR features. In our experiment, we use the similarity graph embedding features, and

append them to the fMLLR features. After the features have been obtained, we apply mean

and variance normalization on a per conversation-side basis. In Figure 6.9, we show the CTC

token accuracy with different numbers of training epochs in different baseline LSTM-CTC

systems. The improved front-end features using graph embeddings consistently achieve a

higher token accuracy than the original front-end features. In Table 6.14, the WER of the

system using graph embedding features is reduced by 1% absolute in the 2-layer network,

and by 0.8% absolute in the 4-layer network. While it remains an open question of front-

end feature engineering for LSTM-CTC-based systems, we show that the graph embedding

features can be used as a rapid adaptation technique to improve the conventional front-end

features. To our knowledge, this is the first feature augmentation based adaptation technique

in a LSTM-CTC-based system.

6.7 Connections to Speaker Adaptation

In this section, we describe the connection between acoustic modeling with neural graph

embeddings and speaker adaptation. The neural graph embedding approach is closely related

to different adaptation techniques for DNN-based acoustic model training.

Here, we describe different DNN adaptation techniques used in the previous literatures.

Generally speaking, the DNN adaptation techniques can be categorized into following types:
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Figure 6.9: Token accuracy using LSTM with CTC-objective training. The x-axis is the

number of epochs, and the y-axis is the token (phoneme) accuracy on the development set.

The original front-end features are 40-dimensional fMLLR features. The improved front-

end features are obtained by concatenating graph embedding features to fMLLR features

(fMLLR + GE). Top figure corresponds to the 2-layer LSTM-CTC system; bottom figure

corresponds to the 4-layer LSTM-CTC system.

1. Conservative training [14]

Usually, given a limited amount of adaptation data, the DNN model tends to overfit the

adaptation data. Conservative training aims at adding regularization to the adapted

model training. This can be achieved by adding `2 regularization, or adapting to

selected weights in the DNN [81].

2. Model transformation based adaptation [103, 36, 80, 150]

In model transformation approach, the network is augmented with an affine transfor-

mation network to the input layer, hidden layer or the output layer. The parameters
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Dev Eval

(320) 2-layer LSTM-CTC 31.84% 31.27%

+ similarity graph embedding 30.22% 30.20%

(320) 4-layer LSTM-CTC 28.47% 28.44%

+ similarity graph embedding 27.66% 27.60%

Table 6.14: Similarity graph embedding features for LSTM-CTC systems on SVB-10k. The

number in parentheses is the number of nodes per hidden layer.

in the affine transformation networks are usually trained while fixing the rest of the

networks. Thus, only a few parameters are adapted using limited adaptation data.

3. Feature based adaptation [123]

In GMM-HMM based system, speaker adaptation is achieved using maximum like-

lihood linear regression (MLLR), and feature space MLLR (fMLLR). These features

are used in DNN-based systems, and usually outperform the model trained with raw

acoustic features.

4. Subspace-based adaptation [27]

In subspace-based approach, a speaker subspace is obtained. To adapt to a new speaker,

the adapted model is approximated by a linear combination of the bases in the subspace.

5. Regularization-based adaptation [152]

In the regularization-based approach, a KL divergence penalty is used in addition to

the cross entropy training. The KL divergence term forces the senone distribution

estimated from the adapted model to be close to the senone distribution from the

unadapted model.
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6. Feature augmentation based adaptation [122, 2, 1, 149]

Under the feature augmentation approach, a speaker-specific feature is learned. Typi-

cally, i-vectors and other speaker codes are used. These features are appended to the

original acoustic feature vectors as inputs. Compared to the raw acoustic feature vec-

tors, these augmented features explicitly incorporate the speaker information into the

DNN training.

The neural graph embedding approach falls into the last category. The difference between

the graph embedding features and other speaker-dependent features such as i-vectors and

speaker codes is the feature integration. In i-vectors and speaker codes approaches [122,

2, 1, 149], the speaker-specific features are learned at the speaker level. For each speaker

or conversation side, we extract one specific feature, and duplicate it to every frame. In

our approach, we are learning frame-level speaker-specific embedding features. In other

work [95, 156], the acoustic features are also augmented by additional information such as

prosodic features and signal-to-noise ratios at the frame-level. Nevertheless, our proposed

approach is the first approach that uses manifold information as DNN inputs.

Among i-vectors, speaker codes and other additional side information, our neural graph

embeddings bear similarity to i-vectors [25, 122]. I-vectors are usually extracted using a

special GMM, which is referred to as the universal background model (UBM-GMM). I-

vectors are used to measure how an UBM-GMM should be adapted in an affine subspace in

order to capture the variability of the underlying speech segments. I-vectors can be extracted

at either utterance or speaker level. Similar to the graph embedding approach, the i-vector

extractor needs to compute a set of UBM centroids, which is analogous to the landmark set

we are using for graph embedding features. The difference is that i-vectors capture speaker

variability at the speaker/utterance level; whereas the graph embedding features capture

the manifold information at the frame level. The feature extractor is also different: for the

i-vector extractor, we find a linear subspace; for the graph embedding feature extractor, we

use an autoencoder that finds a nonlinear embedding.
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6.8 Summary

In this chapter, we have described a novel neural graph embedding framework for DNN-

based acoustic modeling. We have demonstrated improved scalability and better optimiza-

tion, compared to the standard graph-based semi-supervised learning approach. We have

proposed two different graph embedding frameworks that encode information at both the

local neighborhood level (neighborhood graph embeddings) and the global manifold level

(similarity graph embeddings). We have evaluated the efficacy of the framework on two

LVCSR tasks and have shown that the graph embedding features can improve the WER in

both SI-DNN and SD-DNN system. In addition, we have demonstrated that the similarity

graph embeddings consistently yield superior performance than the neighborhood graph em-

beddings. Finally, we have shown that the similarity graph embeddings can be used as rapid

adaptation techniques in a novel LSTM-CTC-based ASR system.
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Chapter 7

CONCLUSION AND FUTURE WORK

7.1 Contributions

In this thesis, we address how to use graph-based SSL for acoustic modeling. In retrospect,

the contributions of this thesis can be summarized as follows:

1. Prior-regularized Measure Propagation (pMP) Algorithm

We propose a new graph-based semi-supervised learning algorithm based on [130]. The

proposed algorithm allows us to explicitly inject prior knowledge in the learning objec-

tive. We show that the pMP algorithm significantly improve the phonetic classification

tasks compared to other state-of-the-art graph-based SSL algorithms including label

propagation, measure propagation and modified adsorption.

2. Graph-based SSL with Variable-length Inputs

In conventional graph-based SSL, each node is associated with a fixed-length feature

vector. We address the problem where each node is associated with a variable-length

speech segment. To deploy graph-based SSL in such scenarios, we propose several graph

construction techniques that map the variable-length speech segments into fixed-length

feature vectors. We show strong performance on segment-level phonetic classification

tasks with different graph construction techniques.

3. Efficient Feature Selection for Speech Processing

We address a computational challenge that arises from variable-length input vectors.

To extend the graph-based learner to variable-length speech inputs, we use the Fisher
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kernel method, which maps a variable-length input vector into a fixed-length, but

high-dimensional acoustic feature vector. We propose a novel scalable feature selection

method based on submodular function optimization. We show that instead of using

hundreds of thousands of features in the Fisher score vectors, we can reduce the feature

space by 3 orders of magnitude without compromising the performance of the graph-

based SSL.

4. Improved Graph Construction for DNN-based System

We explore different feature representations for graph construction in DNN-based

acoustic models. The features we extract are directly relevant to the DNN system.

We show that several better feature representations can be obtained which result in

significantly better frame-level accuracy, as well as a reduced word error rate (WER),

compared to the standard input acoustic features.

5. Lattice-based Integration Framework for Graph-based SSL in Acoustic Mod-

eling

We show a lattice-based framework that integrates graph-based SSL into a fully-fledged

ASR system. To our knowledge, all previous work on graph-based SSL for acoustic

modeling has been limited to simple artificial tasks such as TIMIT phoneme classifi-

cation using a weak GMM-based model. It is yet to discover if the graph-based SSL

method can improve a DNN-based acoustic model, and it is even more critical to design

an integration framework that allows graph-based SSL to be deployed in a fully-fledged

ASR system. We demonstrate the performance of the framework on phone recognition

as well as continuous word recognition tasks.

6. Neural Graph Embedding Approach to Acoustic Modeling in LVCSR Sys-

tems

We address a couple of major caveats of graph-based SSL which hampers the appli-
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cation of graph-based SSL methods in acoustic modeling for LVCSR tasks: 1) com-

putational challenge and 2) lack of joint optimization with other system components.

We propose a novel neural graph embedding approaches. Neural graph embedding

features are produced by an autoencoder that maps graph structures defined over the

speech signal to a continuous vector space. The resulting compact feature representa-

tion is then used to augment the original acoustic features. We propose two different

neural graph embedding methods, one based on a local neighborhood graph encoding,

and another based on global similarity graph encoding. We evaluate the graph em-

bedding approach in DNN-HMM-based and LSTM-CTC-based ASR systems on two

medium-to-large vocabulary conversation speech recognition tasks and show significant

improvements in word error rates.

7.2 Future Work

In this thesis, we propose graph-based SSL method for acoustic modeling. To integrate the

graph-based learning technique with a state-of-the-art DNN-based system, we introduce two

different integration methods. The first method is a lattice-based integration framework

which allows graph-based learning to be combined with the DNN system at the output

level. The second method is a neural graph embedding approach which extracts a compact

feature representation that encodes the graph neighborhood information, and this feature

is combined with the original acoustic feature at the input level. In the future, we plan to

investigate the following directions.

First, we plan to extend the lattice-based framework for graph-based SSL to under-

resourced ASR tasks. Although the lattice-based framework entails expensive modeling

procedures for large-scale acoustic modeling such as LVCSR system, the framework can

be potentially very useful in under-resourced scenarios. In under-resourced scenarios, the

amount of training data can vary from 30 minutes to a few hours of speech. The graph

construction and inference can be generally finished in a reasonable amount of time. More

importantly, the acoustic model trained using a limited amount of labeled data cannot be
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easily generalized to unseen test data. The information from the manifold can be beneficial

to improve the supervised classifier.

Second, we would like to investigate the performance of neural graph embedding approach

in some targeted applications, where the conditions of the test data differ drastically from

the training data. These applications include accented speech recognition, speech recognition

under novel environment conditions.

Finally, we would like to study how to dynamically update the landmarks for neural

graph embedding approach and how to update the feature extractor (autoencoder) in an

online approach.
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Appendix A

SVITCHBOARD-II & FISVER-I: HIGH-QUALITY
LOW-COMPLEXITY CONVERSATIONAL ENGLISH SPEECH

CORPORA

In this chapter, we describe the datasets used in this thesis. We first explain the motiva-

tions of creating a new benchmark dataset to evaluate the performance of acoustic models

for LVCSR systems in Section A.1. We then describe the overall objective and general sub-

modular optimization framework in Section A.2. In Section A.3, we describe the algorithms

and function instantiations used in creating the new benchmark datasets. In Section A.4,

we show the detailed information on the final selected corpora.

A.1 Motivation

Speech recognition is one of the most challenging tasks in applied machine learning, and one

that requires enormous amounts of rich training data. Among different aspects of a speech

recognition system, training acoustic models for LVCSR system is the most challenging tasks.

To train good acoustic models for LVCSR system, we need to use datasets that are

diverse in acoustic characteristics. This is due to the fact that the acoustic characteristics

(variability in pronunciation, speaker, and environment) of conversational speech are more

diverse than those of carefully read speech. Also, conversational speech recognition involves

large vocabularies. Finally, novel acoustic models, especially the deep models, require long

training and experimental turnaround time. While most research groups in industry [53, 23,

118, 42, 119, 120, 121] have the computational resource and large amount of training data,

it is much more difficult for researchers with limited computational resources in academia.

The complexity of acoustic model training is usually linear in n (i.e., O(n)), where n is the
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number of tokens in the training data. For very large n and computationally demanding

models like DNNs, it can take weeks to train just one system even on GPUs. Such long

experimental turnaround time makes large-scale speech recognition impractical, particularly

in academia where most researchers and students have limited computational resources.

To address this issue, we craft a new set of benchmark datasets with high quality but

limited complexity corpora for LVCSR system. We create these new corpora from two of

the most commonly used conversational speech corpora: Switchboard-I [37] and Fisher [18]

datasets, both of which are large in terms of vocabulary size and number of training samples.

Our goal is 1) to produce useful but acoustically rich and challenging subsets of Switchboard

and Fisher, 2) to establish baselines performance numbers, and 3) to release the corpora

definitions for free to the community. We refer to the resulting corpora as SVitchboard-II

(SVB-II), and FiSVer-I, where in each case “SV” stands for “small vocabulary.” By doing

so, we hope to provide researchers with smaller but still challenging speech corpora, thus

facilitating faster experimental throughput for testing novel acoustic modeling and machine

learning methods.

A.2 Subset Selection Objective

The basic goal of high-quality limited-complexity corpus selection is to choose a large

subset X of a ground set V of speech utterances (e.g., the entire 309-hour Switchboard-I

dataset) that has limited complexity but is similar to the original dataset in some way. That

is, we wish to choose a subset X ⊆ V that have the following two properties:

1. high quality: That is, X being high quality may mean that the utterances X con-

stitute a large amount of speech, a large number of tokens, or be acoustically diverse

and/or confusable in some way. We construct a function g(X) that measures the

quality of X, and we choose X such that g(X) is maximized.

2. low complexity: Complexity may correspond to computational cost of running an

ASR system, so an obvious complexity measure is the vocabulary size in X (i.e., the
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number of distinct types in X). We define a function f(X) that measures the com-

plexity of X, and choose X such that f(X) is minimized.

Selecting such subset is a difficult combinatorial optimization task as it involves exploring

an exponential amount of possible subsets (2|V |), where V is the size of the ground set. In

previous work [72], a heuristic method was proposed to select different subsets of Switch-

board (with vocabulary size of 10, 25, 50, 100, 250, and 500 words). In general, the heuristic

approach in [72] greedily selected the most frequent words in the transcripts until the vocab-

ulary size constraint were met, a procedure that can have unboundedly poor performance

[84]. In this work, we investigate a principled approach based on [83, 84, 62, 61] to data

selection using submodular function [32] optimization.

A.3 Subset Selection using Submodular Function Optimization

A.3.1 Algorithm

In this section, we apply three submodular function optimization algorithms for the subset

selection task. The first algorithm we evaluate is proposed in [62] and referred to as “Sub-

modular Cost Submodular Cover (SCSC)”, and “Submodular Cost Submodular Knapsack”

(SCSK), respectively:

Problem 1 (SCSC): min{f(X) | g(X) ≥ c}, and (A.1)

Problem 2 (SCSK): max{g(X) | f(X) ≤ b}, (A.2)

where both g : 2V → R+ and f : 2V → R+ are polymatroid (non-negative monotone-

nondecreasing submodular) functions.

This addresses exactly the problem we wish to solve. In particular, we can use the

formulation of Problem 2 and directly enforce constraints on the vocabulary size while max-

imizing the quality. Unlike submodular function minimization, however, this problem is

NP-hard [62]. Several of the algorithms proposed in [62], however, are scalable and admit

bounded approximation guarantees.
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The second algorithm is the difference of submodular functions optimization, or “DS” in

short [61]. DS algorithm minimizes the difference between submodular functions, defined as

follows:

Problem 3 (DS): min
X⊆V

v(X) (A.3)

where v(X) = λf(X) − g(X) is a difference of two submodular functions. Similar to

SCSC/SCSK, this method addresses the underlying problem; different values of λ will amount

to different vocabulary sizes. Unfortunately, unlike SCSC and SCSK, we do not have explicit

control over the vocabulary size and we instead need to tune λ to obtain the right solution.

Like SCSC/SCSK this problem is NP-hard, but the algorithms proposed in [61] are scalable

and work well in practice.

Finally, we evaluate the submodular function minimization algorithms, or “SFM” in

short. In SFM, we minimize the following objective:

Problem 4 (SFM): min
X⊆V

h(X) (A.4)

where h(X) = g(V \ X) + λf(X) is a submodular function. We minimize g(V \ X), the

quality of X’s complement V \X, rather than maximizing the quality of X. With these new

algorithms, therefore, we can directly address the problem of high quality limited complexity

corpus selection. In the following section, we describe different function instantiations for

the quality function g(·) and complexity function f(·).

A.3.2 Function Instantiations

We start with four different modular functions as quality functions g. All are normalized so

that g(∅) = 0 and g(V ) = 1.

• Utterance count: g1(X) = |X|/|V |. This defines high quality as containing a large

percentage of utterances in V . Each utterance (short or long) is given equal weight.

• Amount of speech: g2(X) = wV (X)/wV (V ) where wV (X) =
∑

v∈X wV (v) and wV (v)

measures how much speech (excluding silence) is in utterance v.
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• Number of tokens: g3(X) = wV (X)/wV (V ) where wV (X) =
∑

v∈X wV (v) and wV (v)

measures how many tokens are contained in the transcription of utterance v.

• Intra-utterance acoustic dispersion/diversity. g4(X) = wV (X)/wV (V ) where

wV (X) =
∑

v∈X wV (v) and wV (v) measures the “acoustic dispersion” of utterance v.

If xv = (xv1, x
v
2, . . . , x

v
T ) is a sequence of MFCC vectors for utterance v, then we can

measure acoustic dispersion via:

wV (v) =
1

T 2

∣∣∣∣∣
T∑
i=1

T∑
j=1

(xvi − xvj )(xvi − xvj )ᵀ
∣∣∣∣∣ (A.5)

Hence, we prefer an utterance if it is internally acoustically diverse.

In addition to the above modular quality functions, we also consider a submodular qual-

ity function, or the so-called “feature-based function” defined in [140]. The feature-based

function has the following formulation:

g5(X) =
∑
u∈U

wuφ(mu(X)) (A.6)

where φ(·) is a non-negative monotone non-decreasing concave function, U is a set of features,

and mu(S) =
∑

j∈Smu(j) is a non-negative score for feature u in set S, with mu(j) measuring

the degree to which utterance j ∈ S possesses feature u. wu is a non-negative weight for

feature u. We note that Equation (A.6) is a sum of concave functions over modular functions,

and is hence submodular.

Each term in the sum is based on a “feature” of the objects being scored. The fea-

ture based submodular functions are convenient for applications in speech processing since

speech objects can often be described by a variety of phonetic or prosodic feature labels (e.g.

phonemes, triphones, words, syllables, tones, etc.). Feature-based submodular functions,

therefore, have the ability to leverage much of the important work on both knowledge- and

data-driven feature engineering that has been available in speech processing.

In [140], U is the set of triphones over frame labels that are derived from the word

transcriptions via forced alignments using a trained system. The function φ() is the square
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root function. The score mu(s) is the count of feature u in element s, normalized by term

frequency-inverse document frequency (TF-IDF), i.e., mu(s) = TFu(s) × IDFu(s), where

TFu(s) is the count of feature u in s, and IDFu = log( |V |
d(u)

) is the inverse document count

of the feature u with d(u) being the number of utterances that contain the feature u (each

utterance is considered a “document”). The choice of wu affects the attribute of the subset.

When wu = 1 for all u ∈ U , maximizing this objective naturally encourages diverse coverage

of all features within X. When wu is set to the prior distribution of feature u in the ground

set V , maximizing this objective would result in a subset X that is acoustically representative

of V . In this work, we choose the latter option for the feature weights.

A.4 Corpora Selection

In the previous section we proposed three different algorithms with different f(·) and g(·)
instantiations. Our goal here is to create subsets using different submodular optimization

algorithms as well as function instantiations. For Switchboard I and Fisher we first remove

utterances containing the disfluencies and fillers. For example, we remove utterances that

contain only word fragments (e.g. sim[ilar]- ), uh, [noise], yeah, [laughter], huh, hm, [laughter-

*], uh-huh, um-hum hum, huh-uh, um. The size of the resulting ground sets V for Switchboard

I and Fisher is 93312, and 1.7 million, respectively. For Switchboard I, we use a combination

of different algorithms and function instantiations for a given target vocabulary size. For

Fisher, we use the SCSK algorithm with g5 as the quality function because of scalability and

the computational efficiency of the SCSK algorithm.

To choose the best resulting corpus for a particular target vocabulary size, we run each

of the optimization methods which gives us a relatively small number of corpora to choose

from. We then compute a set of statistics on each of the resulting corpora such as the

actual vocabulary size, average number of phonemes per word, the number of utterances

and tokens, the speech durations, etc. We also compute the value g5 for each subset; note

that the g5 function measures the representativeness of the subsets. We believe this value

is a good indicator of corpus diversity. To show a corpus’s phonetic balance, we compute
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the normalized entropy of the phoneme distribution H(p)
log(43)

and the normalized entropy of

the non-silence phoneme distribution H(p)
log(42)

, where we use 43 phones in the lexicon with 42

non-silence phones. H(p) is the entropy of the probability distribution over phonemes in the

selected subset.

In order to have the best final corpus for the current vocabulary size, we make the final

selection by visual inspection of these statistics (i.e., by hand). Table A.1 and Table A.2

shows the statistics of our chosen corpora, comprising both SVitchboard-II and FiSVer-I.

Table A.3 shows the specific algorithm and function instantiations we used to create each

subset in Svitchboard-II.

SVitchboard-II Dataset

Task Vocab Size Avg. Phone # Utts # Tokens Speech (hrs) g-value # conv. norm. ent 1 norm. ent 2

50 50 3.32 24033 38154 4.01 4.13054e9 4491 0.4688 0.3916

100 100 3.28 27228 51254 4.93 4.8425e9 4571 0.4998 0.4203

500 500 3.95 39694 131815 10.30 7.70767e9 4749 0.6122 0.5243

1000 1001 4.50 48445 230876 16.81 9.70981e9 4801 0.6831 0.5911

5000 5003 5.55 74162 668261 46.28 1.49496e10 4867 0.78340 0.6911

10000 9983 5.97 84636 883710 61.19 1.68402e10 4871 0.8059 0.7152

All 30021 6.22 262473 3109768 224.11 1.0244404e11 4876 0.8016 0.7108

(310 total)

Table A.1: Statistics of SVitchboard-II datasets. Vocab size: actual vocabulary size; Avg.

Phone: average number of phonemes per word; #Utts: number of utterances; #Tokens:

number of tokens; Speech: hours of speech (excluding the silence parts); g-value: the function

value of g5(X); # conv.: number of conversation sides; norm. ent 1: normalized entropy of

phoneme distribution; norm. ent 2: normalized entropy of non-silence phoneme distribution

A.5 Downloads

The corpora can be downloaded from: https://bitbucket.org/melodi/

hqlc-speechcorpora.

https://bitbucket.org/melodi/hqlc-speechcorpora
https://bitbucket.org/melodi/hqlc-speechcorpora
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FiSVer-I Dataset

Task Vocab Size Avg. Phone # Utts # Tokens Speech (hrs) g-value # conv. norm. ent 1 norm. ent 2

10 10 4.6 64998 73650 9.96 3.21993e10 15561 0.4740 0.3815

50 50 5.92 115512 144906 17.95 6.91023e10 21052 0.5609 0.4678

100 100 5.6 138722 191156 22.01 9.56028e10 22062 0.5891 0.4958

500 500 5.34 258307 653847 55.32 2.25651e11 23111 0.7129 0.6175

1000 1000 5.43 352261 1299566 99.06 3.23534e11 23214 0.7744 0.5911

All 42154 6.36 1.7M 17M 1242.5 1.30739e12 23300 0.8596 0.7737

(1593 total)

Table A.2: Statistics of FiSVer-I datasets. Vocab size: actual vocabulary size; Avg. Phone:

average number of phonemes per word; #Utts: number of utterances; #Tokens: number of

tokens; Speech: hours of speech (excluding the silence parts); g-value: the function value of

g5(X); # conv.: number of conversation sides; norm. ent 1: normalized entropy of phoneme

distribution; norm. ent 2: normalized entropy of non-silence phoneme distribution

Task Algorithm and Function

50 DS, g5

100 SFM, g2

500 DS, g5

1000 DS, g5

5000 SFM, g2

10000 SFM, g2

Table A.3: Selected datasets for Svitchboard-II and the corresponding algorithms and func-

tions.
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