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This dissertation describes a set of statistical methods developed for analysis of single cell
gene expression. A characteristic of single cell expression is bimodal expression, in which
two clusters of expression are present. In any given transcript, the null cluster corresponds
to cells without detectable expression (hence a non-zero measurement reflects measurement
error) while the signal cluster contains cells with a positive, detectable level of expression.

Statistical models that accommodate this characteristic are considered.

e In Chapter 1, motivation and history of single cell gene expression is considered. Scien-
tific and statistical questions addressable through single cell expression are discussed,

and some statistical frameworks for bulk and single cell expression are described.

e In Chapter 2, I consider data generated from replicates of single cells and 100 cell
aggregates that were assayed through single cell reverse-transcriptase qPCR (rt-qPCR).
In rt-qPCR the null cluster manifests as bona-fide zeros, so expression is characterized
by zero-inflation of otherwise continuous values. The average expression from single

cells and 100-cell replicates is compared to develop quality control metrics that optimize



the single-cell, 100-cell concordance. A Hurdle model is proposed, which accounts for
the fact that genes at the single-cell level can be on (and a continuous expression
measure is recorded) or dichotomously off (and the recorded expression is zero). Based
on this model, I derive a combined likelihood-ratio test for differential expression that
incorporates both the discrete and continuous components. This chapter was originally

published in [McDavid et al.| [2013].

In Chapter 3, I consider application of the Hurdle model to single cell RNA sequencing
(scRNAseq). In these technologies, the binary zero-inflation described found in rt-
qPCR-based assays manifests itself as continuous, bimodal expression, motivating a
clustering and thresholding procedure to assign expression to a cluster. The Hurdle
model, extended and cast as a vector generalized linear model (vGLM), is provided as
an R package named MAST. The cellular detection rate (CDR) is defined as the number
of expressed genes found in a cell. It is identified as an important latent factor in single
cell experiments, and is argued to measure size and efficiency variations among cells.
Gene set enrichment analysis using the Hurdle model, and use of residuals defined
through such models are discussed. Parts of this chapter were originally published in

Finak et al. [2015], McDavid et al.| [2014].

In Chapter 4, the Hurdle model is generalized to model multivariate dependences
between cells, permitting the parametrization of graphical models. A neighborhood
selection-based method is proposed to leverage group-¢; penalized regression. Networks
estimated on single-cell and multi-cell experiments are contrasted and found to be very
distinct. In order to synthesize graphs estimated on transcriptome-scale data, a test

for enrichment of connections between and within gene ontology categories is proposed.
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Chapter 1

INTRODUCTION
1.1 Biological motivation for single cell gene expression

The ability to query the mRNA profile of an organism is one the experimental pillars of
modern biology. Two complementary trends broadly characterize its evolution: its dimen-
sionality has broadened, while the areas of application have deepened. Tiling arrays, and
then sequencing, unlocked reference, and then de novo assembled transcriptomes and evolved
from assuming a fixed transcript structure to allowing for exonic polymorphism and splicing
variation. At the same time, experiments more richly capture additional organisms, tissue
types and phenotypes.

The expansion of gene expression experiments in both cardinal directions has led to a
more complete, less biased picture of the average state of an organism across time and space.
A statistician is tempted to cast this as follows. Supposing that Y is a vector-valued gene
expression measurement, and X is a covariate, then much of the progress in gene expression

techniques has focused inference on

E(Y|X), (1.1)

and expanding the cardinality of Y and X, as well as the precision of the estimate of E(Y\X ) .

Compared to the bulk status quo, single cell gene expression experiments forge new
frontier. Though measuring expression in single cells does both broaden and deepen gene
expression application, it also adds a new rank: inference on heterogeneity. Cell-to-cell
variation is both feature and goal in single cell gene expression. While measuring and ac-

commodating cell-to-cell variation has long been a defining feature in flow cytometry, it is



unfamiliar ground in gene expression methods.
The study of variation can be expected to lead to several different forms of insight. The

statistician imagines the study of cell-to-cell variation means inference on
Var (Y;]X), (1.2)

for example, as per variance-components models. This would explain how unexplained vari-
ation in expression changes due to covariates. Or one might posit a latent variable Z, which
identifies a sub-population of cells, or their spatial or temporal features. Then we desire
inference on

E(Y|Z) (1.3)

and P(Z|Y), for example, as in factor analytic or finite mixture models. This would help
identify heretofore unknown structure, and estimate how it affects gene expression. Lastly,

we might desire inference on

Cov(Y), (1.4)

which explains how the expression of one gene tends to covary with another gene, as for
example is studied in graphical models. This might help us understand how genes can

regulate each other, and ultimately answer causal questions.
1.2 Distributional properties of single cell gene expression

A characteristic of single cell expression is bimodal expression, in which two clusters of
expression are present. The overt non-normality and bimodality of the data from these
experiments suggest that modeling the bimodality might yield more efficient and complete
answers to the previous statistical questions. Figure demonstrates archetypal expression
from reverse-transcriptase qPCR (rt-qPCR) and sequencing assays.

In any given transcript, the null cluster corresponds to cells without detectable expression
(hence a non-zero measurement reflects error due to, for example, cross-hybridization or

alignment ambiguity) while the signal cluster contains cells with a positive, detectable level
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Figure 1.1: Scatter plots and kernel density estimates from (a) Fluidigm single cell PCR
data (b) single cell RNA sequencing and (c) single cell RNA sequencing after thresholding.

of expression. Here

1if Y;; € signal cluster,
Vij =

0 else,
will be used throughout this manuscript as a cluster indicator, where Y;; gives expression of
replicate ¢ in gene j. This indicator may not always directly observed, and in some cases
plug-in estimates of V;; will be used. The manner in which bimodality and zero-inflation
manifests depends on the technology used to measure expression. Micro-fluidic arrays (e.g.
the Fluidigm Biomark) allow the use of targeted rt-qPCR to select for specific transcripts
and efficiently pre-amplify them by combining rt-qPCR primers with single cell lysate in
nanowells. The PCR thermocycler returns the cycle at which a fluorescence threshold is
crossed; if after a fixed number of cycles the threshold is not crossed, then the value is
reported as “undetected” which is mapped to a inverse cycle threshold of 0. Further details
are available in chapter 2. This implies that continuous values, which are proportional to

the log-expression, are inflated with zeros.

In contrast, in hybridization and sequencing-based assays, after log transforming normal-



ized hybridization events or aligned sequences, a null cluster may consist of small, continuous
values. Often, but not always, two modes are present. Chapter 3 proposes methods for

thresholding data to assign observations to null and signal clusters.

1.3 Previous methods for bulk and single cell expression

A cornucopia of methods have been proposed to analyze bulk gene expression. Although
distributional differences between bulk and single cell data render some methods inappro-
priate for single cell data testing, many features translate usefully. Here I discuss several
of the most wide-spread methods for testing for change in the conditional expression ([1.1)),
variance component models , clustering and latent variable models and covariance
or graphical modeling . I also review proposals specifically tailored for single cell gene

expression where available.

1.3.1 Adapting regression and ANOVA to test for bulk differential expression

The earliest specific proposals for bulk gene expression assumed that a vanilla linear model
held for data represented as a matrix y with independent rows and columns which might
represent normalized fluorescent intensities over an array of probes. The rows are “replicates”
i = 1,...,n (which will be tenuously defined to include both technical replicates that are
repeated measures of the same biological sample and biological replicates in which a new
sample is derived) and the columns are genes or features j = 1, ..., g. Each replicate belongs
to a class ¢(i) denoting treatment or some other categorical covariate. A mundane, but
nonetheless successful linear model for such data posits that each gene has a fixed intercept

«; and condition effect 5.(;); (which might be equal to zero) so that
Yij = aj + Bey; + €ijs (1.5)

where E(e;;) = 0, i.e. the linear model is well-specified and Cov(e;) is diagonal across genes

7, and constant across replicates i. The expression vectors of each sample Y; are typically



assumed to be independent; experiments with technical replicates nested within biological
replicates would violate this assumption.
A pressing issue is that the number of replicates n is typically not large and the variance
2

of each gene of = Var(e;) is typically similar, leading Smyth| [2004] to propose Limma, a

hierarchical model in which the 0']2» are assumed to come from a super-population. For

example, the conjugate prior
o5 ~ Inverse-Gamma(a, b)

leads to a simple empirical Bayesian procedure in which the gene-specific variances can be
integrated out and a and b chosen to maximize this marginal log-likelihood. Earlier, Tusher
et al.| [2001] had proposed the related idea of shrinking the standard deviation o; towards
a global value og, which can be defined in a variety of ways. In both cases, gene-level
variances are moderated towards the average gene variance, with the amount of moderation
determined adaptively.

In Limma, owing to the pseudo-observations available in the hierarchical model, moderated
t-tests in this regime possess additional degrees of freedom. These additional degrees of
freedom allow less stringent rejection regions for the same type I error rate a, since the
shrinkage reduces the variance of the o7 estimates. A modification of the Smyth| [2004]
procedure is proposed in Chapter 3 of this dissertation and appears to lead to more stable
inference.

Once sequencing-based RINAseq overtook array-based methods circa 2009, assuming
homoscedasticity was less tenable, as integer-valued counts are naturally returned in se-
quencing. Quasipoisson and negative binomial generalized linear models replaced equation
, again with some sort of de facto hierarchical model to share information on the dis-
persion parameter. In edgeR, Robinson et al. [2010] proposed a fairly direct adaptation of
the Limma model. Anders and Huber [2010] proposed Deseq, which uses fitted values from
local regression of gene x replicate estimates of the mean-variance relationship as plug-in

estimates. Despite Deseq not explicitly treating variability about the fitted mean-variance



relationship and the distinct formulations compared to edgeR, both methods typically lead
to similar inferences.

Later, it was observed that the linear link could still function (especially since near
ubiquitous pre-modeling normalization destroys the integral nature of the data) as long as
appropriate case-weights were available for weighted least squares |Law et al., 2014]. Pseudo-
replication across genes allows a non-parametric estimate of the mean-variance relationship
to derive these case-weights, and coherent use of similar moderated estimates as in Limma.

Auer and Doerge| [2010], and (Conesa et al.| [2016] offer a comprehensive reviews of differ-

ential expression methods for RNAseq.

RNAseq challenges in library size and alignment

RNAseq presented other challenges besides the specification of the regression. Many pro-
tocols fragment each source molecule of mRNA (which consist canonically of one or more
spliced exons and polyadenylated tail) into several pieces, zero or more of which will be
amplified, sequenced and aligned. This one-to-many map suggests that at a minimum one
might want to adjust for the transcript length (hence the number of fragments that might
be produced) as a normalizing factor, or offset in a generalized linear model (GLM). On the
other hand, an increase in the sequencing depth for a library (a blocking variable in which
samples are often nested) produces an arbitrary increase in the fragments detected. This
has been resolved through simple scalings such as counts per million (CPM), which just
divides each replicate by the total number of reads aligned in that replicate, or through more
ornate normalizations.

Ambiguity in alignment of fragments to source transcripts provides another challenge.
Alignment algorithms deterministically report one (or more) candidate alignments that lo-
cally optimize some alignment criteria. The candidates are later reduced to gene-level esti-
mates. In some cases, the ambiguity is substantial, and ignoring it can lead to bias and lack
of precision |Li and Deweyl, |2011].

There is also a fundamental imprecision in the notion that each gene generates a single,



unique transcript. Some genes produce several isoforms from the same locus, but differ
in the transcription start site, splicing, number of exons or untranslated regions (UTR).
Trapnell et al.| [2013] address complications and artifacts arising from differential isoform
usage between samples, which can affect the effective length (and mappability) of the same

locus in different samples.

In contrast to the vigorous methodological development for arrays and RNAseq, most
early, and many current users of single cell differential expression have applied Normal-
theory methods or ad-hoc adjustments for zero-inflation or bimodality. Section reviews
some early methods, many involving winzorization. Specialized proposals have included
SCDE [Kharchenko et al., 2014] which uses a two-component mixture of Poisson and negative
binomial distributions, Monocle [Trapnell et all |2014] which straightforwardly applies Tobit
regression, and Shalek et al.| [2014] who adapt a Hurdle model.

1.3.2  Latent variation and clustering

In bulk arrays, many studies of latent variation have emphasized the detection of batch
effects, owing to the pervasive (and often unavoidable) lack of randomization of treatment
variables. Surrogate Variable Analysis [Leek, [2014] and Remove Unwanted Variation
[Risso et al., 2014] have used principal component-like or factor analytic models to remove

batch effects.

As it is hoped that single cell expression will help define and discover new subpopulations
of cells, clustering and latent variation methods for single cell expression have received more
rapid development. These methods have run the gamet from parametric, model-based to
ad-hoc strategies for post processing. |Pierson and Yaul [2015] offer perhaps the most coherent
and principled approach for accommodating zero-inflation. They propose a censoring variable

Vi; that depends on a potentially unobserved level of background expression X;;. Letting Y;;



denote the observed level of expression in cell i, gene j then

Xij V;'j = 17
Yij = (1.6)
where P(v;;|zi;) = e_’\ngi, and X; follows a Normal distribution with low-rank (factor-

analytic) covariance. Thus latent Gaussian variables are stochastically censored for smaller
values of X;;. In contra, Buettner et al|[2014] proposed a factor analytic Tobit model for
dimensionality reduction of zero-inflated data in which the censoring occurs deterministically
for X;; sufficiently small. A non-zero inflated version of this model was later applied in |Buet-
tner et al.| [2015] to estimate factors on subsets of genes with known cell cycle annotation to
recover factors predictive of cell cycle.

Others have focused efforts on discovering temporal or spatial relationships between cells.
Monocle [Trapnell et al., 2014] imposes a spanning tree on single cell RNA sequencing (scR-
NAseq) data after initial dimensionality reduction through independent components analysis.
Once rooted, this tree yields “pseudotime” through the topological ordering induced by the
tree. Seurat [Satija et al. 2015] takes a semi-supervised approach to inferring spatial in-
formation from disassociated single cells. Here, bulk, in-situ RNAseq experiments yielded
an atlas of spatial expression in a set of landmark genes, providing the basis to train linear
discriminants. These discriminants were used to predict the originating spatial location of

the single cells using their gene expression measurements.

1.3.8  Variance components

Mixed models have found some use at modeling subject-to-subject or technical variability in
bulk expression experiments, but unlike the case of unmodeled dispersion parameters, there
have been few attempts to share information between genes and moderate estimates. van de
Wiel et al.|[2014] provide perhaps the most complete approach, fitting a hierarchical Bayesian
model gene-wise to estimate the posterior likelihoods for dispersion and variance parameters.

The marginal likelihood is generally not available in closed form, but an approximation is



available through integrated nested Laplace approximation, thus an EM-type algorithm is
available to maximize the marginal posterior likelihood iteratively.

Few models have been proposed or applied specifically for single cell gene expression,
although the above approach applies fairly directly, once a framework for zero-inflation is
selected. Single cell gene expression designs often do have natural variance components, when
multiple individuals, or subsets of cells from the same individual are repeatedly sampled, so
development of moderated variance component models would be useful.

Effort on variance component models for single cell expression have focused on injudicious
additive partitioning of observed gene-level variances into “technical” versus “biological”
components. Brennecke et al.| [2013] propose using mRNAs that have been spiked in at known
concentrations to bound the technical variability (the variance that be present in hypothetical
repeated sampling of an individual cell.) Genes with sample coefficients of variability that
exceed thresholds found through a parametric fit of the mean-variance function in the spike-
in genes are declared to have significant biological variability, and are perhaps exclusively
used in downstream analysis.

This idea received further treatment in [Vallejos et al.| [2015] who proposed a hierarchical
model to explain extra-Poisson variation in sequencing counts through a GLM including
random cell-level and gene-level intercepts, the former rendered estimable through spike-
in genes. Since single cell data is characterized by replicates of single cells, the benefit of
decomposing technical variability and biological single cell variability is unclear, apart from
forming the basis of a feature selection heuristic. It could be used in efforts to develop
biological protocols that minimize technical variability. Paradoxically, the spike-in RNAs
that render the technical variability estimable may actually increase it, as they complicate

the protocol.

1.3.4  Covariation

Attempts at studying (1.4) in bulk data have used both shrinkage and parametric restrictions

focused on model selection. [Schéafer and Strimmer| [2005] propose a shrinkage procedure for
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general covariance matrices, which can be of intrinsic interest for hierarchical clustering, for
instance.

However, when Y is multivariate Gaussian with a covariance matrix >, its precision
matrix X =1 is perhaps of even greater interest, since zeros in =1 correspond to conditional
independences between genes. These conditional independences can be used to encode a
graph, in which nodes are genes and edges are identified through a symmetric adjacency
matrix A = (a;;) with a;; = 1if [, ; 7 0 and 0 otherwise. These graphs provide a concise
visual summary of the relationship between genes.

Several methods have been proposed to estimate the pattern of zeros in ¥~!. The graph-
ical Gaussian lasso [Friedman et al., 2008] proposes an ¢; penalization of the joint Gaussian
log-likelihood, while neighborhood selection [Meinshausen and Biithlmann, 2006] uses an ¢;
penalized node-conditional Gaussian log-likelihood. Other innovations and variations of these
procedures are discussed in chapter 4.

In single cell gene expression, few investigators have considered measures of statistical
independence or covariation. Seurat [Satija et all [2015] exploits the correlation structure
of expression for single imputation of a subset of “landmark” genes through an /¢;-penalized
linear regression. The authors argue that the imputed estimate has lower variance and more
stability than the observed values. Beyond this, I am unaware of other attempts to estimate

or utilize dependence structures in single cell gene expression.

1.4 Statistical frameworks

Extant statistical methods provide ways to tackle many of the questions discussed above.

Here some of these methods are discussed in greater depth.

1.4.1 Censoring and sampling models

Two common approaches exist classically to accommodate zero inflation: censoring mod-

els and mixture models. In a censoring model, a latent, univariate variable u follows a
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distribution P(u), and we observe

v g(U) if h(U) =1, )

0 else,

where g(U) is generally a simple transformation of U, e.g., the identity function and h(U)
is an indicator function. The Tobit model lets P(u) be a univariate Normal distribution,
g(U) = U, and h(U) = 1ys, be an indicator that U exceeds some threshold. Thus U is
censored below some threshold and only a “0” is recorded.

In a mixture model, zeros arise from a function that does not deterministically depend
on U. Upon generalizing to a pair of variables (U, V'), formulation encompasses many
of these models as well. Zero-inflated discrete models, such as the zero-mixed Poisson, can

be written as follows. Let

U ~ Poisson(\),
V' ~ Bernoulli(p)

be independent random variables, g(U, V) = U and h(U,V') = V. Zeros arise both naturally
through Poisson variation, as well as from U. When U follows the zero-truncated Poisson
distribution supported on positive integers, P(u) = ﬁ, Hurdle models are generated.
Now, zeros only arise through the Bernoulli process on V. A non-zero is recorded only if the
Bernoulli hurdle is passed.

This model is adopted in chapter 2 and 3 of this dissertation by setting U ~ Normal(u, o%)
and V' ~ Bernoulli(p), g(U,V) = U, h(U,V) = V, and is referred to as a (Normal) Hurdle
model. It is extended to multivariate, zero-inflated variables in Chapter 4. A convenient
feature of this model is that V' is identified by the event U = 0, since that event occurs with
measure zero otherwise under the Normal distribution. (This convenience does not occur
generally when U follows some discrete distribution.)

An interesting generalization of the Normal Hurdle is the Heckit, or type II Tobit model.
In these, (U, V) are bi-variate Normal and g(U,V') = U, h(U,V) = 1y, so that (U, V) is
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censored in one coordinate given a threshold is crossed in the other. Identifiability requires
constraints on the mean and variance of the bi-variate Normal distribution. Amemiya| [1984]

and [Toomet and Henningsen| [2008] review these generalized Tobit models extensively.

1.4.2  Vector GLMs

It is natural to extend the Normal Hurdle to a regression setting by letting the parameters

be functions of covariates:

U; ~ Normal(x; 3, 0?), (1.8)

V; ~ Bernoulli(expit(x; ")), (1.9)

where x;, 3, 8" € RP are vectors of covariates, and parameters respectively, and expit(z) =

e?/(1 + €*). The density of Y = UV is

(y —xB)°

202

fly:8,8') = exp {1#0 xf' — —1/2log (27r02)] — log (1 + e"ﬁ') } (1.10)

202

= exp {1#0 n — M 1/21og (2#02)] —log (1 + e”/> } (1.11)

This is an example of a vector generalized linear model (vGLM) [Yee, 2015 in
which a base distribution depending on several parameters is extended by setting them to
be linear functions (predictors) n = x8,7" = xf’ of covariates. The vGLM specification
of expanding model parameters in terms of linear predictors n and 7’ is deliberately vague
compared to the relative formalism in GLM, which links the linear predictor to the first
moment of an exponential family base distribution. However, the vGLM specification allows

great flexibility.

Hurdle model properties

The log-likelihood log f(y; 8, ') of model (1.10)) of a sequence of datay =y, . .., y, separates
as a sum of the Gaussian log-likelihood and the logistic log-likelihood. Consequently, it has
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The Fisher information is block-diagonal with (3, 0) and 8" blocks consisting of the typical

Fisher information of the Gaussian linear and logistic models, respectively.

1.4.3  Graphical models

Graphical models provide a way to parametrize the conditional independences present in
some high-dimensional distribution through a graph. They have been used extensively as a

model for gene expression. Further background will be delayed until Chapter 4.
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Chapter 2

DATA EXPLORATION, QUALITY CONTROL AND TESTING
IN SINGLE-CELL QPCR-BASED GENE EXPRESSION
EXPERIMENTS

2.1 Single cell gPCR methods

The development of fluorescence-based flow cytometry (FCM) revolutionized single-cell anal-
ysis. Although populations of cells sorted by flow cytometry using surface markers may
appear monolithic, mRNA expression of specific genes within these cells can be heteroge-
neous |[Dalerba et al., 2011] and could further discriminate cell subsets. On the other hand,
classical gene expression experiments (microarrays, RNA-seq, qPCR) richly characterize a
cellular population, but at the cost of reporting a summation of expression from many indi-
vidual cells. Recent advances in microfluidic technology now permit performing thousands
of PCRs in a single device, enabling gene expression measurements at the single-cell level
across hundreds of cells and genes [Kalisky and Quake, 2011]. This provides a technology that
probes the stochastic nature of biochemical processes, resulting in relatively large cell-to-cell

expression variability.

This heterogeneity may carry important information: thus single cell expression data
should not be analyzed in the same fashion as population-level data. At the scale of a single
cell, biological variability (the object of interest) and technical variability (a nuisance factor)
are often of the same magnitude, making it difficult to distinguish between the two. No
expression (i.e. the gene is off) may be detected in individual cells due to real biological
effects, resulting in zero-inflation of otherwise continuous measures. These features of single-

cell data require special attention during analysis.

Here we focus on the reverse-transcriptase qPCR (rt-qPCR)-based Fluidigm (San Fran-
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cisco, CA) single-cell gene expression assay, which provides simultaneous measurements of
up to 96 genes on mRNA sources as minute as a single cell. In traditional rt-qPCR, de-
spite careful measurement of input cDNA concentrations, differences in starting material
below the limit of detection require correction for reliable results Vandesompele et al. [2002].
Subtraction of internal control genes, or averages thereof is typically used (e.g., the A-Ct
method), and results are often reported in fold increase per cell [Schmittgen and Livak, 2008].
In array-based gene expression, differences in hybridization and washing of non-specific DNA
between chips require additional correction.

Such normalization schemes are not directly applicable in single-cell gene expression
experiments, nor is it obvious that they are needed. For single cells, the individual cell is
the atomic unit of normalization and the amount of starting material naturally measured
in number of cells per reaction. Even if one attempted direct application of traditional
normalization approaches, the dichotomous nature of single-cell expression hinders their use.

Nonetheless, it is important to test for and address any technical biases. We present a
filtering approach for removing outlying measurements at the single-cell level that accounts
for the dichotomous nature of the data. Using concordance measures derived from three
data sets where gene expression was measured at the single-cell and hundred-cell levels, we
show that classical rt-qPCR type normalization is not necessary with single-cell multiplexed
PCR data and that our filtering step removes technical artifacts that most severely impact
quantitation.

A typical goal of gene expression experiments is to search for differential expression across
groups. The zero-inflation of expression in Fluidigm introduces problems for testing differen-
tial representation of cell subsets characterized by expression patterns, as well. Traditional
tests of differential expression such as the t-test or other approaches based on normality
are likely inappropriate for zero-inflated data [Smyth) 2004, |Gottardo et al., 2006]. Ap-
proaches to this problem have varied. Powell et al.| [2012] used a winsorized z-transformation
of the expression values, then treated them as continuous. |Glotzbach et al. [2011] used the

non-parametric, Kolmorgov-Smirnov test for differences in distribution to find differentially
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expressed genes, after winsorizing. [Flatz et al.| [2011] dichotomized the expression and worked
with the binary trait. Of these authors, only Flatz et al. [2011] and (Glotzbach et al.| [2011]
made use of formal tests of differential expression. However, as we will see later, both the
continuous and discrete parts of the measurements are informative for differential expression
and should be used. A parametric test allows directions of difference to be assessed.

Here we propose a discrete/continuous model for single-cell expression data based on a
mixture of a point mass at zero and a log-normal distribution. Using this model, we derive a
likelihood ratio test that can simultaneously test for changes in mean expression (conditional

on the gene being expressed) and in the percentage of expressed cells.

2.1.1 Data sets and notations

We use three Fluidigm single-cell gene expression data sets described below. We offer a
brief overview of the assay technology used for our data. Desired cells (e.g. antigen-specific
CD8+T cells) are selected and lysed, and a ¢cDNA library is generated through rt-qPCR. A
short (c. 15 cycle), multiplexed pre-amplification selects and enriches for the desired genes.
These products are loaded onto the Fluidigm chip and gene-specific primers are added for
single-cell gene expression quantitation. For the data presented here we used a 96 x 96 format
plate, i.e. 96 genes across 96 cells. The design of the chip generates each combination of
the 96 genes and 96 enriched cDNA libraries producing 9216 separate PCR reactions. After
each cycle, the fluorescence is read. The cycle (or interpolated fraction thereof) at which the
fluorescence crosses a pre-determined threshold is recorded, defined as the “ct” value. For
all data sets considered here, primers were chosen to have > 90% amplification efficiency.
Data set A: Twenty-eight 96 x 96 format plates of CMV- or HIV-specific CD8+ single
cell T cells were isolated from 16 individuals. The donors’ cells were stimulated with one of
four tetramers. Cells were sorted immediately after tetramer incubation (“unstimulated”) or
after 3 hours of exposure (“stimulated”). Approximately 90 individual cells were measured
for each patient-stimulation combination (“unit”).

Data set B: Ten subjects were considered, and approximately 180 activated CD4+ memory
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T cells were sorted per subject, with each subject crossed between two arrays.

Data set C: Two subjects were considered. Fluorescent staining of CD4+ T cells allowed
cytometric sorting into CD1544/- sub-populations. Approximately 40 cells were sorted per
sub-population per subject across three arrays.

Additionally, for each individual and treatment within each data set, aggregates of 100

cells (i.e., 100 cells per well on the array) were isolated and assayed by Fluidigm technology.
The expression measured in these 100-cell aggregates, after dividing by 100, provides a
“biological” average of expression per—cell, and can be compared to an in silico average
of the single-cell measurements. The concordance between these two averages serves as a
measure of experimental fidelity [Lin, |1989].
Notations: The standard assumptions of qPCR-based assays apply to the Fluidigm technol-
ogy, namely that the cycle threshold (ct) is inversely proportional to the log of fluorescence.
The fluorescence is directly proportional to the starting concentration of mRNA [Higuchi
et al., 1992, Karlen et all 2007]. The Fluidigm instrument returns the cycle threshold (ct),
however, we find it more useful to work with the complement of ct, which we define as the
expression threshold (et)

et = Cpax — Ct,

where ¢pay is the maximum number of cycles used, 40 in our case. Assuming all reactions
are in the exponential amplification phase, this quantity should be directly proportional to
the log-abundance of mRNA, plus an intercept term corresponding to the number of cycles it
takes for the minimally-detectable quantity of mRNA to cross threshold. If the fluorescence
does not cross the threshold after 40 cycles, then the Fluidigm instrument records a value
of N/A, and we say that the gene is not detected. As we will see in the results section,
detected genes typically have a value of ¢t much less than ¢y, suggesting that undetected
genes might be regarded as unexpressed genes. This assumption is supported by the idea
that transcription of mRNA is thought to occur in bursts of activity |[Levsky et al., 2002,
Kaufmann and van Oudenaarden, |2007], followed by quiescence. Other authors have noted

this feature in single cell expression studies as well [Glotzbach et al.,; 2011]. When looking at
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Figure 2.1: Histogram and theoretical (normal) distribution of (et;;|v;; = 1) for single cell
(left, light gray) and hundred cell experiments (right, dark gray). Genes FASLG, IFN-v,
BIRC3 and CD69 are depicted. The frequency expression of each gene in the single cell
experiments 71 is printed above each histogram. The mean of the hundred cell and single

cell experiments is indicated by a thick black line along the x-axis.
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the concordance of the single-cell and hundred-cell experiments, this assumption is reasonable
and leads to better concordance than omitting the N/A values. As a consequence, we treat
the undetected genes as unexpressed genes, and we set the corresponding et value to —oo,
so that the mRNA abundance is zero (i.e. 2¢ = 0).

For a fixed sample or experimental unit, let us denote by et;; the expression threshold
of well v and gene j, for t = 1,..., 1 and 7 = 1,...,J. This results in a matrix of log,
based expression values, ET = (et;;), just as in array-based gene expression. Similarly, we
will denote by Y = (y;;) the matrix of untransformed expression values where y;; = 2.
Usually a well contains one cell but the Fluidigm technology can be used with multiple cells
per well to quantify the gene expression of a mixture of cells. As a consequence, we prefer
to use the term “well” instead of “cell”. In the three data sets used here, wells will contain
either one or hundred cells. Finally, several biological units are typically measured in an

experiment, and in this case we will use an extra index k to refer to the biological units.
2.2 A two-part Hurdle model

As described previously, for a given cell, a gene can be defined as on (i.e. a positive et value
is recorded) or as off (i.e. the gene is undetected and y;; = 0). To simplify our model, we
will denote by v;; = 1[y;; > 0] the indicator variable equal to one if the gene j is expressed
in well 2 and zero otherwise. Following classical statistical conventions, we use upper cases
to denote the random variables, and lower cases to denote the values taken by these random

variables. Using these notations, we introduce the following model of single-cell expression

(Yi|Vij=1) ~ logNormal(uj,U?), (2.1)
(VlVy=0) ~ o (22)
Vi ~ Be(m), (2:3)

where §, denotes a point mass at zero, p; and sz are the log,-based mean and variance

expression level parameters conditional on the gene being expressed (i.e. V;; = 1), and 7, is

the frequency of expression of gene j across all cells. In the data sets considered here, the



20

frequency of expression greatly varies across genes from 0 to .99 with a median value of 7;
around .1. Note that assuming a log-Normal model for (Y;;|V;; = 1) is equivalent to modeling
(ET;;|Vi; = 1) as normally distributed. The empirical distribution of the data (Figure
and motivates our selection of a log-normal distribution and follows observations of
previous authors |Bengtsson et al., 2005].

Thus in a particular gene, three parameters characterize the expression distribution:
i, 0;, the mean and standard deviation of the et;;|V;; = 1, and 7;, the Bernoulli probability

of expression.
2.3 Quality control and filtering

The Fluidigm assay is sensitive, and due to the exponential amplification of starting mRNA,
even minute contamination can render a measurement unreliable. Similarly, variation in
cell preparation can have significant impact on the resulting experiment and data, such as
unintentional empty wells, which would distort estimates of ;. This suggests identifying,
and possibly removing outliers before conducting further analysis. We examine both the
discrete component v;; and the continuous component (et;;|v;; = 1) in screening for outliers.
We define the robust z-transformed positive expression value as

et;; — median;(et;;)

k- MADZ(Gt”) ’

Zij

where the median and median absolute deviation are calculated, for a given gene, over
expressed cells (i.e. v;; = 1), and k = 1.48 is a scaling constant that gives the standard
deviation in terms of the MAD for the normal distribution. Next, let f; = asin\/v;. be the
Bernoulli variance-stabilizing transformation of the proportion of genes expressed in well 7.
Then we define the robust z-transformed fraction as

fi — median;(f;)

%= T MAD(f)

where the median, MAD and k are as defined previously. This leads to the following steps
for filtering:
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1. Remove null cells with no detected genes, i.e. V;; =0, for all j.
2. Pick threshold for z filtering (t,); threshold for ¢ filtering (¢.).
3. Calculate z; and ¢;

4. Remove wells in which genes have |z| > ¢, OR |(| > t.

Step 1 removes wells where no cells were loaded, and thus all measured expression values
are null. It is important to perform this step first to prevent break-down in the median and
MAD estimates for the (’s in experiments with many amplification or flow cytometry failures.
Finally, step 4 removes unreliable wells that either have an extreme proportion of expression
or extreme cellxgene expression values. The thresholds ¢, and ¢, control the tolerance to
outliers, so typical advice for outlier thresholding applies. Biological replicates, such as the
hundred cell replicates described in Data set and Notations, permit the assessment of intra-
class deviance and then the thresholds can be selected to minimize this deviance. Using this
approach, we find that picking t, = 9,¢, = 9 works well for the data sets we consider here,

see section 2.5
2.4 Testing for differences between experimental groups

One typical goal of gene expression analysis is to test for difference in expression patterns
between experimental units. Here, we focus on testing differential gene expression between
two paired-biological units, e.g. before and after stimulation. Our framework should be
generalizable to other types of situations, see Section [2.6, The classical test for changes in
mean for samples with continuous measurements is the t-test. Conversely, if only a change
in 7 were of interest, then a contingency table test (Chi-square, Fisher’s Exact or Bernoulli
likelihood ratio) is appropriate. However, in our case, we would like to test for a change in

1 and 7 simultaneously, since both could be biologically relevant. Formally, we wish to test

Hy:mg=m and po=
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versus the alternative
Hy,:mg#m and  po # .

This can be accomplished using a likelihood ratio test that would simultaneously test for
differences in means or proportions of expression.

Suppose that I wells are assayed in each unit, though the unbalanced case (Iy # I)
would be treated similarly with obvious changes of notation. Based on , the likelihood
function for one gene across two biological units, omitting the gene index j for clarity, is
given by

L8y, v) H?rk (1= me) ™ T 9(vinliw. ), (2.4)

ZESk

where y and v are the vectors of observations for the gene across the two groups, 8 =
{ig, 02 mp; k = 0,1} is the vector of unknown parameters, Sy is the set of cells expressing
the gene in group & (i.e. Sy = {i : vy, = 1}), ny = D, v, is the number of cells expressing the
gene in group k, and ¢ is the density function of the log-normal distribution with parameters
w and o?. The likelihood ratio test (LRT) statistic A(y,v) is then defined as the ratio of the
null and alternative likelihoods obtained by replacing the unknown parameters with their

null and alternative maximum likelihood estimates.

Deriwvation of LRT

The likelihood ratio test is defined as

SUPgc H, L(@ly,v)
SUDPgcH 4 L(@ly,v) ’

Aly,v) = (2.5)

where the likelihood is given by equation (2.4). Using the following change of variable,
et = log y;, the likelihood function can be written as
L(O|et, V) Hﬂ'k (1 — ) H N (et |pr, 02), (2.6)
zesk

where N(:|u, 0?) is the density function of a normal distribution with mean p and variance

o2. Tt follows that the likelihood ratio test can be written as
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Aet.v) — SUpgey, Li(Olet, v)

Subacs, LBIoE, V)

SUP (g 02} 707 (L= m0)2 707 [T Ty, Netinlpo, 0?)
SUP {0 u0,02 1y} L1 T (1 — ) 7% Hiesk N(etik|pr, 0%)
sup,;, meot M (1 — mg)2—mo—m SUPy,, 623 [, Hiesk N(etir|po, o)

SUD (g mry [ T (1 — 7)1 ' SUD {01,023 | i Hiesk N(eti|pn, 02)

= Mp(v) - An(et?),

?

where Ay is a binomial LRT, A,, is a normal LRT and et™ is the set of positive et values.
Thus our combined LRT can be computed as the product of a binomial and a normal LRT
statistic, both of which can easily be derived using classical statistical theory.

An interesting observation is that the likelihood function given by is the prod-
uct of the Bernoulli likelihood for all cells and the log-normal likelihood for the expressed
cells. It follows that the log-LRT statistic decomposes as a sum of a Bernoulli log-LRT test
statistic and a log-normal log-LRT test statistic, since each component can be maximized
independently. It thus combines the two sources of information in a natural way, and this
decomposition allows post-hoc assessment of which of the component(s) drive the detected
difference by simply comparing the magnitude of the two log-LRTs. In Section [2.5 we will
show that our combined LRT test is more powerful than the Bernoulli or log-normal tests

alone.

Validity of asymptotic approximation

Applying classical asymptotic results about LRTs [Wilks, [1938], —21log A(y, v) converges to
a x? distribution with two degrees of freedom under Hy. Some care is warranted in invoking
this asymptotic result, since even for large I, the sample size for the log-normal LRT will
be wl. In simulation, in Figures and we find that the y? convergence is adequate for
ml > 8, even under departures from normality.

Bivariate samples of (y, v) are simulated from hypothetical genes with 7 = .02, .04, .08, .16, .32
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and sample size I = 100 in which there is no difference means and proportions between
classes. The standard deviation is 1.3, which is the median empirical standard deviation
across data sets. There is some inflation of the null distribution for smaller effective sample
sizes (mI < 8), chiefly in the form of additional skewness that would result in the size of
the test being higher than the nominal significance level. However, one is not forced to rely
on the asymptotic distribution of A for assessing significance. When the effective sample
size of the continuous component, 7/ is too small, e.g. 71 < 8, the null distribution can be
approximated using permutations |Ge et al. [2003]. This proviso applies similarly for purpose

of power calculations hence one may wish to conduct these through simulation.

Departures from normality

Figure depicts the same scenario as in Figure [2.3] however now logu is simulated from
a t-distribution with 4 degrees of freedom, and scaled by 1.3, the standard deviation used in
the prior simulation. This allows the assessment of the level of the test when the continuous
distribution does not follow a normal distribution. As expected, since the A, depends on
the mean of et the central limit theorem results in this mean converging in distribution to
a normal distribution, hence the test is somewhat robust to departures from normality. The

null distributions are very close to the ones obtained under the normal assumption.

5 10 5 10

1 1 1 1 1 1 1 1 1 1
< 0.02 0.04 0.08 0.16 0.32
5 0.98 /’ / ~ /F
w 0.96 y -
O 0.94 -
O 0.92 =
(] T T T T I T T T T T

5 10 5 10 5 10

A

Figure 2.3: The empirical cumulative distribution plot of A. The cumulative distribution of
X5 is plotted in gray. 5% significance is indicated by a vertical line. The gene frequency 7

varies. The sample size I = 100.
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Figure 2.4: The empirical cumulative distribution plot of A and of x2, considering depar-
tures from normality in the continuous component logu. logu is now simulated from a ¢

distribution with 4 degrees of freedom.

2.5 Application of filtering and Hurdle model in three datasets

2.5.1 Distributional assumptions

In Figure [2.1] we observe good agreement between the empirical distributions of positive et
values and their postulated normal distribution for four genes in data set A. This confirms
that a log-normal model for the positive expression level, y;;|v;; = 1, is appropriate. Even
cells in the lowest quantiles of et (and lowest quantiles of expression) still have expression
far away from the bound at 0, suggesting that undetected genes represent cells with null
or negligible RNA abundance. It is also noteworthy that the difference between the means
(shown as a heavy, vertical line) of the hundred cell replicates and single cell replicates is
approximately log, (100 - ﬂj(l)) cycles, where 7rj(-1) is the expression frequency of gene j in the
single-cell experiments. As such, in genes with 7TJ(-1) < 1, such as FASLG, this difference

) ~ 1. As we will see the next section, inclusion

between means is smaller than genes with 7r](-1
of the unexpressed cells (v;; = 0) is important to accurately relate the expression level of the

single-cell experiments to the hundred-cell experiments.
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2.5.2  Concordance between hundred-cell and single-cell experiments

The 100-cell aggregates (see section , data sets and notation) allows us to assess the
accuracy and reliability of our single-cell experiments by comparing this in-vitro 100-cell
expression to an in-silico estimate obtained by averaging the expression of 100 single-cell
measurements. The in silico average of signal in a gene j and unit k& from 100 single-cell
wells is yﬁ) = 211201 Yijk/100 where y;;; is the expression measurement of gene j in cell ¢ and
unit k. We compare this to the in-vitro “average” of signal from a 100 cell aggregate. In
this case, we just use the expression of a gene-unit and divide by the number of cells (100).

The concordance here is assessed both visually by plotting log, (y](,lc) +1) vs. log, (y](ioo) +
1) (Figure and by calculating the concordance correlation coefficient (r.) between the
two variables, which is often used to quantify reproducibility [Lin) [1989]. The shifted log
transformation allows visualization of both the discrete and continuous components while
being on the et scale.

We first use this concordance experiment to test whether wells that do not cross the fluo-
rescence threshold after ¢, should be treated as exact zeros or missing values. If we suppose
that v;; = 0 implies an assay failure and the measurement should be discarded, we would
simply compute the single cell average over expressed cells, i.e. y](-l) = i Yijvij/ >_; vij. Fig-
ure demonstrates good concordance between the hundred-cell and single-cell experiments

when the undetected genes are treated as zeros. However, this is not the case when the zeros

are treated as missing values.

2.5.3 Filtering outlying cells

In addition to the concordance measure r., we use another goodness-of-fit measure to opti-
mize our filtering parameters ¢, t; defined by,
2
o 1 100
WSS = 3 i (loga(uly) +1) — loga(ui™ + 1)) /JK, (2.7)
jk
where nj;, = >, v;j; is the number of positive wells for gene j in unit & in the single-cell

experiments. For a particular gene and unit, the WSS decreases as we lower the filtering
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Figure 2.5: Concordance between hundred cell *%) /100 and y™"), the in silico average of
single cell wells. The rows correspond to inclusion, case-wise deletion and inclusion and
filtering of zeros v;; = 0. Dark, thin lines show the initial location of a gene before filtering
and connect to the location of the gene after filtering. The concordance correlation coefficient
r. and average weighted squared deviation WSS is printed. The dotted black line shows a,

loess fit through the data. In all cases, the expression values are transformed using a shifted

log-transformation (log,(y + 1)).
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threshold and extreme values are filtered. Eventually, so many cells are removed that there
is zero expression (and a large deviance) for the in-silico estimate. Thus we wish to find a
set of values for the filtering parameters that would lead to the lowest WSS measure across
the three data sets used here. The addition of the scaling factor nj; gives higher weight to
combinations with more ez ante positive observations, so that the contribution to the sum
of squares would be smaller in genexunit combinations that have fewer expressed cells. The
factor n;, can also be interpreted as the scaling factor for the variance of the mean over
positive observations. Finally, the WSS is computed on the log,(y + 1) scale to reduce the

effect of extreme outliers.

When hundred-cell aggregates are available, one can optimize the filter parameters ¢, ¢,
by minimizing the WSS over possible combinations. In our case, we found that setting
t. = 9,tc = 9 achieves the best reduction in WSS across the three data-sets explored here
(Table . Using these values, our filtering criteria moderately improve the concordance
between the single-cell and hundred-cell experiments in two of the data sets but dramatically
improve (decrease) the weighted sum of squares. This improvement is evident graphically,

since the per-unit averages of et of multiple genes move towards the diagonal.

Beside improving WSS and generally improving r., we explore the effect of filtering on

detection of control genes in the (Table).

Filtering parameter optimization

We determine appropriate values of the continuous parameter ¢, and the expression propor-
tion parameter ¢; by searching the grid ¢,,t, € [3,5,...,9].For each value in the grid, the
weighted residual sum of squares WSS is calculated. The minimizing values vary somewhat
on the data set, so we based our recommendation of ¢, = ¢t = 9 by choosing values that

minimize the maximum residual WSS across data sets.



ls
Data set 3 5 7 9
A 3 644 295 295 283
A 5 526 1.17 0.11 0.00
A 7 526 001 040 1.02
A 9 521 0.00 043 1.64
B 3 885 533 556 6.28
B 5 318 0.00 0.04 0.69
B 7 318 0.00 0.04 0.69
B 9 318 0.00 0.04 0.69
C 3 2799 16.88 8.56 8.56
C 5 2798 890 7.08 6.13
C 7 2584 641 4.55 0.00
C 9 2584 641 4.55 0.00

30

Table 2.1: WSS — min,_ ;. WSS values across data sets and filtering parameters. For each

data set, the minimum WSS is subtracted so that cells that achieve that value contain zeros.

Effect of filtering on control genes

The flow cytometric sorting of the data sets we consider allows examination of how filtering

affects the quality of the sorted cells. In data sets B and C, the cells were putatively sorted

to be CD4+, and CDS8- using surface markers. In data set A, the cells were sorted to be

CD8+, CD4-. The flow sorting is based on protein presence, while the gene expression is

based on mRNA, so it’s expected that there will be differences between the two that reflect

biological differences between transcription and translation.

Nonetheless, with the proviso that it would be surprising for there to be 100% concordance
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between translated protein and transcribed mRNA | these genes still may serve limited roles as
positive and negative controls. As seen in Table , in two out of the three data sets (A and
C), the percentage of unexpected transcript decreases substantially after filtering. In B, little
change is noted in either positive control or negative control genes. Since this unexpected
transcript could reflect contamination or assay failure, and the filtering is agnostic to the
presence or absence of any particular gene, this provides additional evidence beyond WSS
that filtering may improve sample quality. The insubstantial changes in the positive control
genes (CD8 for A, CD4 for B and C) likely reflects the overall rareness of filtering (< .5%)

in any of the data sets.

In this calculation, the reference group was taken to be all wells with detected expression
in at least one gene, hence already includes step one of the filtering algorithm described in
section 2.3 of the main text. If we take the reference group to be the raw measurements,
then substantial increases in the expression of positive control genes are noted in B and C

(comparison not shown).

Data set Filtered Pre-CD4 Post-CD4 ACD4 Pre-CD8 Post-CD8  ACDS

A 0.3% 0.013 0.011 -16.9% 0.879 0.879 0.0%
B 0.2% 0.424 0.423  -0.0% 0.002 0.002 0.2%
C 0.3% 0.484 0.485 0.3% 0.016 0.013 -16.4%

Table 2.2: Effect of filtering, beyond the effect of excluding null wells, on control genes CD4
and CD8. Data set A is expected to be positive for CD8, negative for CD4. Data sets B and
C are expected to be negative for CDS8, positive for CD4. The percentage of cells filtered, the

frequencies 7 before and after filtering and percentage change in 7 of these genes is printed.
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2.5.4  Normalization and housekeeping genes

Other authors have noted that “the gene transcript number is ideally standardized to the
number of cells” [Vandesompele et all [2002], which is the case with gene expression from
sorted cells. So it is not entirely a surprise that we find little evidence for housekeeping genes
providing useful normalization here. For a housekeeper to have good validity, it should have
high cross correlation with other housekeeping genes. This is not the case for housekeepers
GAPDH and POLR2A, which in data set A, in linear regression have an R* = .027. In
Figure [2.6] we observe in scatter plots of housekeepers’ et that the correlation drops even
further (to an R? = .017) after filtering outlying cells (see previous section). Since the corre-
lation between housekeepers is present primarily in cells we suspect suffered from technical
error, we find little utility in normalization schemes. In fact, the use of housekeeping genes

for normalization could even result in masking cellular artifacts that should be filtered.

2.5.5 An efficient test of differential expression for single-cells

In data set A, approximately 90 cells in each of 16 subjects were measured in unstimulated
and stimulated states (see . This permits conducting a test for each gene in each subject
for differences in 7 and p, as described in section 2.4, We plot the number of discoveries at
various false discovery rates (FDR) in Figure[2.7] The combined likelihood test produces the
greatest number of discoveries over a wide range of FDR. For example, at an FDR of 1%,
our combined test could detect more than 20 additional genexunit changes across the four
stimulations.

Another feature of the combined LRT is its robustness to background gene frequency

7Tj.

Of course, if m; =~ 0 on average, then any test will be underpowered to detect group
differences. But using only the continuous components amounts to “throwing away” data
for genes with intermediate 7;. And similarly, using only the dichotomous component results
in a test insensitive to differences in p; in frequently expressed genes. This robustness to the

7; spectrum is shown in Figure in which —log;, p-values are shown for the Bernoulli,
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normal and combined LRTs versus frequency of 7;.

A total of 65 genes were detected at an FDR of 1% in at least one individual. We
define p* = —sign(p; — o) - logy, p as the negative log,, p-value times an indicator variable
which is positive when stimulated groups have greater expression, and negative otherwise.
Figure plots a heatmap of signed log,, p-values. The selected genes are in clustered rows;
the 16 individuals are arranged in columns by stimulation. The color above each column
indicates which of the four antigen stimulations the individual received. From this, it is
clear that genes cluster into up-regulated and down-regulated modules and that there is
much individual variability in response. Some genes appear to have stronger responses to
particular antigens, such as the response to CMV (red and purple columns) in FASLG and
CLEC2B.

2.6 Discussion

Current approaches for analysis of single-cell assays have incompletely utilized the salient
features of the experiment, and the resulting inference can be sub-optimal. In this chap-
ter, we have presented a framework for data exploration, quality control and testing for
differential expression using single-cell data. Our comparison of 100-cell and single-cell mea-
surements shows that undetected genes in an assay should be treated as effective “zeros.”
Both the discrete, zero-inflated portion and continuous portion of single-cell expression data
are meaningful for detecting outliers. Moreover, differences in either could be of biological
interest, so it is desirable to combine evidence from both to detect changes in expression.
Our likelihood ratio test allows just that.

Although we have suggested default parameters for the filtering of outliers, informed from
several data sets, our defaults are likely conservative. They are 3-4 times larger than the most
substantial difference in expression between experimental groups we observed. Acquiring
forms of ground-truth besides “bulk” experiments (in our case, 100-cell aggregates) could
allow forming tighter bounds. As in any outlier-based filtering procedure, it is desirable to

tune for the problem at hand. The thresholds ¢, and ¢, should be different when eliminating
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potential technical error is of greatest concern than when one is most interested in searching
for biological heterogeneity:.

We have used the x? asymptotic distribution of the LRT to compute p-values and assess
significance. This approximation is relatively accurate and robust to the distributional form
of Y when the expected number of expressed cells is greater than 8. Otherwise, approximat-
ing the null distribution using permutations as in |Ge et al.|[2003] is more appropriate.

Further work, incorporating a mixed-effects model to our likelihood ratio test, could ex-
tend its applicability. The test outlined in this chapter may not be appropriate in cases
where traits of interest are not blocked within individuals (e.g., comparing between pheno-
types like HIV+ vs. HIV-). In this case, one wishes to identify gene expression changes
across groups, in spite of high individual-to-individual heterogeneity. By modeling the mean
and proportion of expression as common across groups and adding specific random effects
for between-individual variability, our model could be extended to address such experimental
questions as well.

Single-cell gene expressions assays have already been shown to be useful in multiple
studies and will become even more routine once sequencing at the single-cell level becomes
practical [Varadarajan et all 2011, Ramskold et al., 2012]. As a consequence, the develop-
ment of effective statistical methods to analyze such data is becoming increasingly important.

This chapter offers a coherent framework for researchers using this nascent technology.
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line of the form et, ~ et, +intercept, and its standard error is plotted using unfiltered cells.
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Figure 2.7: Number of discoveries (genes x units) versus the false discovery rate, by treat-
ment, data set A. The combined likelihood ratio test is compared to a Bernoulli or normal-
theory only likelihood ratio test, as well as a t-test of the raw expression values (2 scale),

including zero measurements.
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Figure 2.8: —log,, P of tests (genes X units) versus frequencies of expression 7 of the genes.
The Bernoulli, normal-theory and combined likelihood ratio tests are plotted. * indicates

test is different from the combined test at 5% significance in a Wilcoxon signed-rank test.
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Chapter 3

TRANSCRIPTIONAL CHANGE AND HETEROGENEITY IN
SINGLE-CELL RNA SEQUENCING DATA

3.1 Previous methods for single cell whole-transcriptome sequencing

Whole transcriptome expression profiling of single cells via RNA sequencing (scRNA-seq)
is the logical apex to single cell gene expression experiments. In contrast to transcrip-
tomic experiments on mRNA derived from bulk samples, this technology provides powerful
multi-parametric measurements of gene co-expression at the single-cell level. However, the
development of equally potent analytic tools has trailed the rapid advances in the biochem-
istry and molecular biology, and several challenges need to be addressed to fully leverage the
information in single-cell expression profiles.

First, single-cell expression has repeatedly been shown to exhibit a characteristic bimodal
expression pattern, wherein the expression of otherwise abundant genes is either strongly
positive, or undetected within individual cells. This is due in part to low starting quantities
of RNA such that many genes will be below the threshold of detection, but there is also
a biological component to this variation (termed extrinsic noise in the literature) that is
conflated with the technical variability [Elowitz et al., 2002, Raj et al., 2008, Sanchez and
Golding;, 2013]. We and other groups [McDavid et al., [2013], Shalek et al., 2014, Kharchenko
et al., 2014, Trapnell et al [2014] have shown that the proportion of cells with detectable
expression reflects both technical factors and biological differences between samples. Results
from synthetic biology also support the notion that bimodality can arise from the stochastic

nature of gene expression [Kaufmann and van Oudenaarden|, 2007, [Marinov et al., 2014].

Secondly, measuring single cell gene expression might seem to obviate the need to nor-

malize for starting RNA quantities, but recent work shows that cells scale transcript copy
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number with cell volume (a factor that affects gene expression globally) to maintain a con-
stant mRNA concentration and thus constant biochemical reaction rates [Marguerat et al.,
2012, |Padovan-Merhar et al., 2015]. In scRNA-seq, cells of varying volume, and hence mRNA
copy number, are diluted to an approximately fixed reaction volume leading to differences in
detection rates of various mRNA species that are driven by the initial cell volumes. Technical
assay variability (e.g. mRNA quality, pre-amplification efficiency) and extrinsic biological
factors (e.g. nuisance biological variability due to cell size) that globally affect transcription
remain, and can significantly influence expression level measurements. Our approach easily
allows for estimation and control of the cellular detection rate (CDR) while simultaneously

estimating treatment effects.

Previously, [Kharchenko et al.| [2014] developed a so-called three-component mixture
model to test for differential gene expression while accounting for bimodal expression. Their
approach is limited to two-class comparisons and cannot adjust for important biological
covariates such as multiple treatment groups and technical factors such as batch or time
information, limiting its utility in more complex experimental designs. On the other hand,
several methods have been proposed for modeling bulk RNA-seq data that permit sophisti-
cated modeling through linear [Law et al 2014] or generalized linear models [Robinson et al.,
2010, Anders and Huber, 2010] but these models have not yet been adapted to single-cell
data as they do not properly account for the observed bimodality in expression levels. This is
particularly important when adjusting for covariates that might affect the expression rates.
As we will demonstrate later, such model mis-specification can significantly affect sensitivity

and specificity when detecting differentially expressed genes and gene-sets.

Here, we propose a Hurdle model tailored to the analysis of scRNA-seq data, providing a
mechanism to address the challenges noted above. It is a two-part generalized linear model
that simultaneously models the rate of expression over background of various transcripts,
and the positive expression mean. Leveraging the established theory for generalized linear
modeling allows us to accommodate complex experimental designs while controlling for co-

variates (including technical factors) in both the discrete and continuous parts of the model.
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We introduce the cellular detection rate (CDR): the fraction of genes that are detectably
expressed in each cell, which, as discussed above, acts as a proxy for both technical (e.g.
dropout, amplification efficiency, etc.) and biological factors (e.g. cell volume and other
extrinsic factors other than treatment of interest) that globally influence gene expression.
As a result it represents an important source of variability in scRNA-seq data that needs
to be modeled (Figure [3.1)). Our approach of modeling the CDR as a covariate, offers an
alternative to the weight correction of [Shalek et al.| [2014] that does not depend on the use
of control genes and allows us to jointly estimate nuisance and treatment effects. Our frame-
work permits the analysis of complex experiments, such as repeated single cell measurements
under various treatments and/or longitudinal sampling of single cells from multiple subjects
with a variety of background characteristics (e.g. gender, age, etc.) as it is easily extended to
accommodate random effects. These features are especially important when sampling single
cells since there are multiple sources of variance (e.g. cell-to-cell variance within a subject,
and subject-to-subject variance). These type of experiments/designs will become routine in
future single-cell studies such as for clinical trials where single-cell assays will be performed

on large cohorts with complex designs.

In our Hurdle model, differences between treatment groups are summarized with pairs
of regression coefficients whose sampling distributions are available through bootstrap or
asymptotic expressions, enabling us to perform complementary differential gene expression
and gene set enrichment analyses (GSEA). We use an empirical Bayesian framework to
regularize model parameters, which helps improve inference for genes with sparse expression,
much like what has been done for bulk gene expression [Smyth, 2004]. Our GSEA approach
accounts for gene-gene correlations, which is important for proper control of type I errors
[Wu and Smyth| [2012]. This GSEA framework is particularly useful for synthesizing observed
gene-level differences into statements about pathways or modules. Finally, our model yields
single cell residuals that can be manipulated to interrogate cellular heterogeneity and gene-
gene correlations across cells and conditions. We have named our approach MAST for

Model-based Analysis of Single-cell Transcriptomics.
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Figure 3.1: The fraction of genes expressed, or cellular detection rate (CDR), is correlated

with the first two principal components of variation in MAIT and DC data sets.

We illustrate the method on two data sets. We first apply our approach to an experi-
ment comparing primary human non-stimulated and cytokine-activated Mucosal-Associated
Invariant T (MAIT) cells. MAST identifies novel expression signatures of activation, and the
single-cell residuals produced by the model highlights a population of MAIT cells showing
partial activation but no induction of effector function. We then illustrate the application of
MAST to a previously-published complex experiment studying temporal changes in murine
bone marrow-derived dendritic cells subjected to LPS stimulation. We both recapitulate
the findings of the original publication and describe additional coordinated gene expression
changes at the single-cell level across time in LPS (lipopolysaccharide) stimulated mDC

(myeloid dendritic cells).
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3.2 Robust estimation of a vector regression model in scRNAseq

Our MAST framework models the log,(transcripts per million (TPM)+1) single-cell gene
expression matrix using a two-part generalized linear model. One component of MAST
models the discrete expression rate of each gene across cells, while the other component
models the conditional continuous expression level (conditional on the gene being expressed).

We address several obstacles to the use of this model in practice in transcriptomic data sets:

e The residual variance of each gene can be difficult to estimate for infrequently expressed
genes, yet many genes are expected to have similar residual variances. Accurate esti-
mation of this quantity is important for testing for differential expression. We propose
a hierarchical, empirical Bayes model to share information between genes on their

residual variances.

e The maximum likelihood estimate (MLE) may not exist when a covariate can perfectly
explain the discrete expression rate of a gene. Paradoxically, these linearly separable
genes are of greatest interest, since their expression patterns are so predictable. We
solve this by adopting a boundary-avoiding prior which results in a finite (penalized)

MLE.

Given an experimental design that provides covariates, the cell expression rate is modeled
using logistic regression. The expression level is modeled as Gaussian, conditional on the
presence of positive expression.

Given normalized, possibly thresholded (see [3.2.1]), scRNA-seq expression Y = [y;], the
rate of expression and the level of expression for the expressed cells are modeled conditionally
independent for each gene j. Define the indicator V' = [v;] indicating whether gene j is
expressed in cell ¢, i.e. vy; = 0if y; = 0 and v;; = 1 if y; > 0. We fit logistic regression
models for the discrete variable V' and Gaussian linear model for the continuous variable (

Y|V = 1) independently, as follows,
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logit (Pr (Vy = 1) = Xi67,

Pr(Y; =y|V;; = 1) = Normal (X,ﬂf,crz) :

J

Shrinkage of the continuous variance

As the number of expressed cells varies from gene to gene, so does the amount of information
available to estimate the residual variance of the gene. On the other hand, many genes can
be expected to have similar variances. To accommodate this feature of the assay, we shrink
the gene-specific variances estimates to a global estimate of the variance using an empirical
Bayes method. Let sz be the precision (1/variance) for Y;|V; = 1 in gene j. We suppose
77~Gamma (cv, (), find the joint likelihood (across genes) and integrate out the gene-specific
inverse variances. Then maximum likelihood is used to estimate o and 5. Due to conjugacy,
these parameters are interpretable providing 2« pseudo-observations with precision (/«.
This leads to a simple procedure where the shrunken gene-specific precision is a convex
combination of its MLE and the common precision. This approach accounts for the fact that
the number of cells expressing a gene varies from gene to gene. Genes with fewer expressed
cells end up with proportionally stronger shrinkage, as the ratio of pseudo observations to

actual observations is greater. Further details are available in section [A.T]

Bayesian logistic regression for discrete component

In logistic regression, when the binary outcome can be perfectly predicted by a covariate (or
linear combination of covariates), then “linear separation” is said to be present, and param-
eter estimates will diverge towards too while the Fisher information becomes singular. (In
contrast, if even a single cell were to violate this linear separation, then the Fisher Informa-
tion would be invertible.) Yet cases with linear separation are of particular interest, since
a gene that so sharply changes by condition is noteworthy. To accommodate this scenario,

we apply a Bayesian logistic regression procedure available in the bayesglm function in the
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R package arm. A Cauchy distribution prior centered at zero for the regression coefficients
results in maximum a posteriori (MAP) estimates nearly identical to the MLE when linear
separation is not present. Under linear separation the Bayesian MAP estimate is finite, with
non-singular Hessian about the MAP (providing an estimate of the statistical precision, akin

to the Fisher information.) Favorable small-sample frequentist properties have also been

described in |[Gelman et al., [2008].

Testing for differential expression

Because V; and Y} are defined conditionally independent for each gene, tests with asymptotic
x? null distributions, such as the likelihood ratio or Wald tests can be summed and remain
asymptotically 2, with the degrees of freedom of the component tests added. For the
continuous part, we use the shrunken variance estimates derived through our empirical Bayes
approach described above. The test results across genes can be combined and adjusted for
multiplicity using the false discovery rate (FDR) adjustment [Benjamini and Hochberg), 1995].
In this chapter, we declare a gene differentially expressed if the FDR adjusted p-value is less
than 0.01 and the estimated fold-change is greater than 1.5 (on logs scale).

3.2.1 FEstimating thresholds of expression

In previous studies, small, but non-zero expression values were thresholded using an arbitrary
fixed threshold [Shalek et al., 2014]. These conservative fixed thresholds do not allow any
variation between genes for differing levels of background noise as suggested by [Kharchenko
et al.| [2014]. In order to adaptively determine the level of background noise, we propose a
thresholding routine that shares information across genes. We, and others, have observed
that threshold for background expression may depend on the total expression in a gene,
consistent with varying levels of contamination with homologous genomic DNA, or differing
levels of mappability for various transcripts. Let m; denote median expression across cells

in gene j. The G genes are partitioned into K bins based on m; such the median of bin k is
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greater than bin k£ + 1, and so forth. This binning allows for thresholding that varies with
the expression level of a gene.

For each bin we apply kernel density estimation and determine if the distribution is
bimodal, then apply peak finding to estimate the threshold ¢, as the minimum density point
between the two major peaks in the bin. For bins that are not bimodal, their thresholds are

set as follows:

1. Determine a threshold ¢ in an examplar bin kx with two peaks that reliably represent
signal and background modes. We use the 75th percentile bin amongst bins where two

peaks are found, though other criteria (formal tests for bimodality) could be used.

2. Find adjusted thresholds t;: For k < kx, set t; = min(tx,t;). For k > kx, set

7. = max(tx, ).

This ensures that the thresholds are monotonically increasing and shares information across
bins to impute thresholds for bins where the distribution of the data was not bimodal. This

function is implemented in the thresholdSCRNACountMatrix function of the MAST package.

3.2.2  Module Scores

In order to assess the degree to which each cell exhibits enrichment for each gene module,
we use quantities available through our model to define module “scores,” which are defined
as the observed expression corrected for cellular detection rate (CDR) effect, analogous to
those defined by Shalek et al. The score s;; for cell 7 and gene j is defined as the observed
expression corrected for the CDR effect: s;; = y;; — y;; where y;; is the expected expression,
given all covariates except the treatment effects, from the fitted model. In our two part
model, y;; = 0;;9;; where v;; and ;; are the predicted values from the discrete and continuous
components of our hurdle model.

This can be interpreted as correcting the observed expression of gene j in cell i by

subtracting the conditional expectation of nuisance effects. A gene module score for cell 7 is
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the average of the scores for the genes contained in the module, i.e. > e .0y Sij/[modulel

3.3 Adjusting for the cellular detection rate through vector regression

The CDR, the proportion of genes expressed in a single cellis an important source of vari-
ability in the data sets we explore here where

a

CDR; =1/G ) vy

j=1
This is supported through principal component analysis (PCA) (Figure [3.1). Tt is highly
correlated with the second principal component (PC, Pearson’s rho=0.76 grouped, 0.91 stim-
ulated, 0.97 non-stimulated) in the MAIT dataset and with the first PC (rho=0.92 grouped,
0.97 non-stimulated, 0.92 LPS, 0.89 PAM, 0.92 PIC) in the mDC dataset. As we observe
larger CDR variability within treatment groups than across groups, it is likely that the CDR
is a nuisance factor. This is further supported by the fact that the CDR calculated using
control (e.g. housekeeping) genes is highly correlated with the CDR calculated over all genes
(Figure [A.2)).

We thus conjecture that CDR is a proxy for unobserved nuisance factors that should
be explicitly modeled. In particular, we suggest that the CDR captures variation in global
transcription rate due to difference in cell size (among other factors) [Padovan-Merhar et al.,
2015], as well as technical variation due to factors such as cell viability and efficiency in first
strand synthesis. Fortunately, MAST easily accommodates covariates, such as the CDR, and
more importantly allows joint, additive modeling of them with other biological variables of
interest, with the effect of each covariate decomposed into its discrete and continuous parts.
Applying an analysis of deviance with the MAST hurdle model, we quantified the amount
of variability that could be attributed to CDR. The CDR accounts for 5.2% of the deviance
in the MAIT data set and 4.8% in the mDC data set for the average gene, and often times
much more than that: it comprises more than 9% of the deviance in over 10% of genes in
both data sets, particularly for the discrete component of the model (Figure . It should

also be noted that the CDR deviance estimates for many of the genes are comparable (if
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not greater) to the treatment deviance estimates. It is possible that the CDR and treat-
ment effects could be partially confounded, for example, treated cells could become larger
in volume. We explored the effect of confounding between the CDR and treatment effects
on the MAST false positive rate in the presence and absence of CDR control in the MAST
model (Figure[A.4)). Controlling for CDR improves the sensitivity and specificity of MAST
in the presence of confounding, and doesn’t negatively impact its performance either in the

absence of confounding or in the absence of a CDR effect.

That CDR predicts expression levels contradicts the model of independent expression
between genes, since the level of expression (averaged across many genes) would not affect
the level in any given gene were expression independent. It is especially important to adjust
for it when testing for co-expression between genes, or the apparent correlation between
genes is greatly inflated (see Residual analysis identifies networks of co-expressed

genes implicated in MAIT cell activation)

Comparison to other approaches

Finally, we have investigated the relationship between our approach and the weight correction
of [Shalek et al.| [2014] and other technical bias correction approaches like RUV [Risso et al.|
2014] and SVA [Leek, [2014] (Figure [A.5). The CDR has a strong linear relationship to
the weights of [Shalek et al.| [2014], as well as with the first component of SVA and second
component of RUV. Thus, use of the CDR as a covariate can be seen as a statistically rigorous
way to correct for the dropout biases of Shalek et al, without the need to use control genes,
and more importantly with the ability to control for these while estimating treatment effects.
Although CDR is correlated to the latent components found via RUV or SVA in the data sets
we consider here, CDR has the advantage of biological interpretability as a cellular scaling

factor.
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3.8.1 Single-cell sequencing identifies a transcriptional profile of MAIT cell activation

We applied MAST to our MAIT dataset to identify genes up- or down-regulated by cytokine
stimulation while accounting for variation in the CDR. We detected 291 differentially ex-
pressed genes , as opposed to 1413 when excluding CDR. To determine whether this was due
to a change in ranking or a simply a shift in significance, we compared the overlap between
the top n genes in both models (varying n from 100 to 1413), and found that, on average, 35%
(range 32% - 38%) of genes are excluded when CDR is modeled, suggesting that inclusion
of this variable allows global changes in expression, manifest in the CDR, to be decomposed
from local changes in expression. This is supported by gene ontology enrichment analysis
(Figure of these CDR-specific genes (n=>539), where we see no enrichment for modules
associated with treatment of interest These CDR-specific GO terms (e.g. involvement of
regulation of RNA stability and protein folding) may hint at biology underlying differences

in the CDR that are not necessarily associated with treatment.

In order to assess the type-I error rate of our approach, we also applied MAST to identify
differentially expressed genes across random splits of the MAIT cells. As expected, MAST
did not detect any significant differences (Figure , whereas DEseq and edgeR, designed
for bulk RNA-seq, detected large number of differentially expressed genes even at stringent
nominal FDR. SCDE;, a single-cell RNA-seq specific method, also had higher false discovery
rates than MAST. Permutation analysis demonstrated that the null distribution of the MAST
test statistic was well calibrated (Figure [A.g).

We examined the GO enrichment of genes detected by limma, edgeR, DESeq, or SCDE
but not MAST and found that these sets generally lacked significant enrichment for modules
related to the treatment of interest. MAST with CDR control also detected enrichment of
immune-specific GO terms at a higher rate than other methods (Figure. MAST’s testing
framework has better sensitivity and specificity than these approaches. Among models that
do not adjust for CDR, SCDE performs best, but trails MAST and limma, which can adjust
for CDR.
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Figure 3.2: Single-cell expression (log,-TPM) of the top 100 genes identified as differen-
tially expressed between cytokine (IL18, IL15, IL12) stimulated (purple) and non-stimulated
(pink) MAIT cells using MAST (A). Partial residuals for up- and down- regulated genes are
accumulated to yield an activation score (B), and this score is consistent with stimulation

inducing heterogeneity compared to the unstimulated cells.
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Figure shows the single-cell expression (log,-TPM) of the top 100 genes identified as
differentially expressed between cytokine (IL18, IL15, IL.12) stimulated (purple) and non-
stimulated (pink) MAIT cells using MAST. Following stimulation with IL12/15/18, we ob-
serve increased expression in proteins with effector function including Interferon—+ (IFNG),
granzyme-B (GZMB) as has been reported in Natural Killer (NK), Natural Killer T-cells
(NKT) and memory T cells, and a concomitant downregulation of the AP-1 transcription
factor network. CDG9 is an early and only transient marker of activation that can be induced
by stimulation of the T cell receptor or by cytokine signals. Its downregulation at the mRNA
level after 24h is likely preceding subsequent protein-level downregulation [Chu et al., 2013,
Tyznik et al., 2014} Smeltz, [2007].

We used these lists of up- and down-regulated genes to define a MAIT activation score
that differentiates between stimulated and non-stimulated MAITs as shown in Figure [3.2
This yields a score for each cell, based on the model fit and adjusting for nuisance fac-
tors (see Methods), defined as the expected expression level across genes in a module. The
score differentiates stimulated and non-stimulated cells, and demonstrates that the stimu-
lated MAIT population is more heterogeneous in its expression phenotype. In particular,
a few stimulated MAIT cells (SC08, SC54, SC48, SC15, SC46, and SC61 in Figure
exhibit low expression of IFN-v response genes, suggesting these cells did not fully activate
despite stimulation. Post-sort experiments via FCM show that the sorted populations were
over 99% pure MAITs (Figure ), and exhibited a change in cell size upon stimulation
(Figure [A.10B), and that up to 44% of stimulated MAITs didn’t express IFN-y or GZMB
following cytokine stimulation ( Figure ) The non-responding cells in the RNA-seq
experiment likely correspond to these non-responding cells from the flow cytometry experi-
ment, and the observed frequencies of these cells in the RNA-seq and flow populations are
consistent with each other ( Pr(observing 6 or fewer non-responding cells) = 0.16 under bino-
mial sampling). We discuss this heterogeneity in a further section. Importantly, the lists of
up- and down-regulated genes can be used to define gene sets for gene set enrichment analysis

in order to identify transcriptional changes related to MAIT activation in bulk experiments.
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3.3.2  Temporal expression patterns of mouse dendritic cell maturation

Shalek et al analyzed murine bone-marrow derived dendritic cells simulated using three
pathogenic components over the course of six hours and estimated the proportion of cells
that expressed a gene and the expression level of expressing cells. We compared results from
applying our model to those obtained by Shalek et al when analyzing their lipopolysaccharide
(LPS) stimulated cells. As with the MAIT analysis, we used MAST adjusting for the CDR.
MAST identified a total of 1359 differentially expressed genes (1996 omitting the CDR), and
the CDR accounted for 5.2% of the model deviance in the average gene.

The most significantly elevated genes at 6h include CCL5, CD40, IL12B, and Interferon-
inducible (IFIT) gene family members, while down-regulation was observed for EGR1 and
EGR2, transcription factors that are known to negatively regulate dendritic cell immuno-

genicity [Miah et al., 2013].

3.4 Single cell gene set enrichment analysis

In many cases, it is desirable to synthesize the differential expression signature of a treatment
into its effects on various pathways or gene sets. A competitive gene set enrichment analysis
(GSEA) compares the average model coefficient in the fest set (gene set of interest) to the
average model coefficient in the null set (everything else) with a Z-test and is useful to
compare gene sets to a background. We adapt the hurdle vector generalized linear model
(vGLM) to provide such competitive tests. The approach is similar to that used by CAMERA
[Wu and Smyth| 2012] for bulk experiments in its accounting for inter-gene correlation that
is known to inflate the false significance (type-I error) in permutation-based GSEA protocols,
although it differs in that it uses the sampling variance of each model coefficient to estimate
the variance of the average coefficient, whereas CAMERA uses the empirical variance of the
model coefficients.

Fix a gene module, ie, a collection of gene indices. Let j = 1,...,G),...,G index the G

genes measured, with G — Gy genes in the test set (set of interest) and Gy genes in the null
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set (outside the set of interest). We assume that the following hurdle linear models

E(Y;|Y;>0) =a8; + Zn;,

logit E(Y; > 0) = 2} + Zn;

have been fit for j = 1,...,G. Here z is a simple covariate of interest (scalar in each
observation) while Z is all other covariates (potentially a vector in each observation). The
competitive gene set enrichment test considers the average coefficient of interest in the test

and null sets:
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it suffices to find some estimate of the genewise covariance matrix ¥ € RE*¢ for B.
We chose to accomplish this by bootstrap. Repeat R times: sample cells with replacement

and generate an expression matrix Y*, and refit the hurdle linear model providing coefficients
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B (and B’*) Collect the the bootstrapped coefficients in matrix 3* € RE*C. Estimate X via
the sample covariance on B* 7 scores are formed and calculated equivalently for the logistic
regression coefficients. GSEA tests are done separately on the two components of the hurdle
model and the results from the two components are combined using the Stouffer’s method,

which favors consensus in the two components.

Implementation Notes

We find that the bootstrapped covariances converge rather quickly, and R = 100 typically
more than suffices. An adjustment to Z to account for Monte Carlo variation in the boot-
strap estimate 3 is also available by comparing Z to a t-distribution with degrees of freedom
determined through Welch’s approximation on R effective observations. This modest re-
quirement can be relaxed for exploratory analysis by assuming independence across genes
and using model-based (asymptotic) estimates.

Note that the full covariance matrix estimate 3 never need be explicitly formed (since it is
potentially memory intensive). Rather we accumulate the sum over the (G — Go) (G — G+ 1) /2
inner products on the genes in the test set, to yield Var(f). A working estimate of Var(6y)
is updated by adding and subtracting only the covariances that have changed as Gy changes
between modules.

Stouffer’s method for combining Z-scores is used to form the composite Z = (Z+2")/+/2.

3.4.1 GSFEA highlights pathways implicated in MAIT cell activation.

We used MAST to perform GSEA in the MAIT data using the blood transcriptional modules
of[Li et al| [2014]. The cell-level scores for the top 9 enriched modules (Figure[3.3A) continue
to show significant heterogeneity in the stimulated and non-stimulated cells, particularly for
modules related to T-cell signaling, protein folding, proteasome function, and the AP-1 tran-

scription factor network. Although the standard deviations of the module scores were greater

for stimulated than non-stimulated cells in 7 of the top 9 enriched modules (Table [A.2)), the
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magnitude of variability for stimulated and non stimulated cells was fairly similar. Enrich-
ment in stimulated cells (green) and non-stimulated cells (pink) is displayed for each module
for the discrete and continuous components of the model (Figure , see Methods), as
well as a Z-score combining the discrete and continuous parts. The enrichment in the T-cell
signaling module is driven by the increased expression of IFNg, GZMB, IL2RA, IL2RB, and
TNFRSF9, 5 of the 6 genes in the module. Stimulated cells also exhibit increased energy
usage, translation and protein synthesis, while down-regulating genes involved in cell cycle
growth and arrest (and other cell cycle related modules). The down-regulation of cell cycle
growth inhibition genes indicates that 1L-12/15/18 signals are sufficient to prepare MAIT
cells for cell proliferation. Interestingly, we observe down-regulation of mRNA transcripts
from genes in the AP-1 transcription factor network. This has been previously described in
dendritic cells in response to LPS stimulation [de Wit et al. [1996] and, indeed, we observe
this effect in the mDC data set analyzed here (Figure [A.11)).

Our GSEA approach is more powerful than existing methods for bulk RNA-seq data (Fig-
ure , and we discover significantly enriched modules with clear patterns of stimulation-
induced changes that other methods omit (Figure . Two such modules include the “T-
cell surface signature” and “chaperonin mediated protein folding, whose component genes
show elevated expression in response to stimulation (Figure . These additional discov-
eries are not solely due to greater permissiveness in MAST. We applied MAST to identify
differentially expressed gene sets across random partitions of the non-stimulated cells, to ex-
amine its false discovery rate. As expected, MAST did not detect any significant differences,

which suggests that it has good type I error control (Figure [A.7)).

3.4.2 GSEA of mouse bone marrow-derived dendritic cells

In the mDC data set, besides finding signatures consistent with the modules from Shalek et.
al. (Figure ), we identify modules that show similar annotation and overlap significantly
with the core antiviral and sustained inflammatory signatures, including several modules

linked to type 1 interferon response and antiviral signatures (Figure |3.4B). The “cellular
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Figure 3.3: Module scores for individual cells for the top 9 enriched modules (A) and decom-
posed Z-scores (B) for single-cell gene set enrichment analysis in MAIT data set, using the
blood transcription modules (BTM) database. The distribution of module scores suggests
heterogeneity among individual cells with respect to different biological processes. Enrich-
ment of modules in stimulated and non-stimulated cells is due to a combination of differences
in the discrete (proportion) and continuous (mean conditional expression) of genes in mod-
ules. The combined Z-score reflects the enrichment due to differences in the continuous and

discrete components.
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response to interferon-beta” signature (n = 22) overlaps with the original core antiviral
signature (n = 99) by 13 genes; response and defense response to virus signatures overlap
with the core antiviral signature by 17/43 and 22/74 genes, respectively, suggesting the core
antiviral signature captures elements of these known signatures. The chemokine (n=16) and
cytokine activity (n=>51) modules overlap with the sustained inflammatory (n = 95) module
by 5 and 12 genes, respectively. All overlaps are significant at p < 1078 under hypergeometric
sampling.

Our modeling approach identifies the two “early marcher” cells in the core antiviral
module (marked with triangles on Figure ) corresponding to the same cells highlighted
in Figure 4b of Shalek et al. Other modules exhibiting significant time-dependent trends
include a module of genes involved in the AP-1 transcription factor network that is down-
regulated (Figure , a finding which has been previously shown in human monocytes
following LPS stimulation [de Wit et all |1996] . As with the MAITSs, under monte carlo

permutation of time-labels, no significant modules were found when using FDR control.

3.5 Residual analysis in hurdle vGLMs

Much of the heterogeneity between the non-responding and responding stimulated cells re-
mains even after removal of marginal (gene level) stimulation effects. Since, MAST models
the expected expression value for each cell, we can compute residuals adjusted for known
sources of variability. The residuals can be compared across genes to characterize cellular

heterogeneity and correlation.

The hurdle model, in general, provides two residuals: one for the discrete component
and one for the continuous component. The notion of a residual in a GLM is not uniquely
defined. We choose standardized deviance residuals. They are calculated for the discrete and
continuous component separately, and then we combine the residuals by averaging them. If
a cell is unexpressed, then its residual is missing and it is omitted from the average, thus the

approach assumes Y is missing completely at random, given V.
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Figure 3.4: Module scores (A) and decomposed Z-scores (B) for single-cell gene set enrich-
ment analysis for LPS stimulated cells, mDC data set, using the mouse GO biological process
database. The change in single-cell module scores over time for the nine most significantly
enriched modules in response to LPS stimulation are shown in A. The core antiviral, peaked
inflammatory and sustained inflammatory modules are among the top enriched modules, con-
sistent with the original publication. Additionally we identify GO modules cellular response
to interferon-beta and response to virus, which behave analogously to the core antiviral and
sustained inflammatory modules. No GO analog for the peaked inflammatory module was
detected. The majority of modules detected exhibit enrichment relative to the 1h time point
(thus increasing with time). The “early marcher” cells identified in the original publication
are highlighted here with triangles. We show the top 50 most significant modules (B). The
combined Z-score summarizes the changes in the discrete and continuous components of

expression.
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Deviance Residuals

For a given gene, and model component (discrete or continuous) the residual deviance D is -2
times the maximized log-likelihood, (centered so that D = 0 when every observation has its
own mean parameter). The deviance can be written as a sum of -2 times the log-likelihood

of each observation, or

The deviance residual is defined as

ri = sign(y; — 9:)v/ds,

and the standardized deviance residual given by 7/, = \/fi—hi, where h; is the leverage associ-
ated with observation 7.

The combined deviance residual for cell ¢ is the average of the standardized discrete
and continuous deviance residuals for the cell if both are present, otherwise it is only the

standardized discrete residual.

3.5.1 Identifying co-expressed genes implicated in MAIT cell activation.

We observe co-expression in the residuals from stimulated cells that is not evident in the non-
stimulated group (Figure ,B). Since the residuals have removed any marginal changes
due to stimulation in each gene, the average residual in the two groups is comparable. The co-
expression observed, meanwhile, is due to individual cells expressing these genes dependently,
where pairs of genes appear together more often than expected under a model of independent
expression.

Two clusters of co-expressed genes stand out in the residuals of the stimulated cells
(Figure . These clusters show coordinated, early up-regulation of GZMB and IFN-v
in response to stimulation in MAIT cells and a concomitant decrease in CD69 expression,
an early and transient activation marker. PCA of the model residuals highlights the non-

responsive stimulated MAIT cells.
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Figure 3.5: Gene-gene correlation (Pearson’s p) of model residuals in non-stimulated (A)
and stimulated (B) cells, and principal components analysis biplot of model residuals (C)
on both populations using the top 50 marginally differentially expressed genes. As marginal
changes in the genes attributable to stimulation and CDR have been removed, clustering of

subpopulations in (C) indicates co-expression of the indicated genes on a cellular basis.

Accounting for the CDR reduces the background correlation observed between genes.
When the CDR is included in the model, the number of differentially expressed genes with
significant correlations across cells (FDR adjusted p-value < 1%) decreases from 73 to 61 in
the stimulated cells, and from 808 to 15 in non-stimulated cells. This shows that adjusting
for CDR is also important for co-expression analyses as it reduces background co-expression
attributable to cell volume, which otherwise results in dense, un-interpretable patterns of

correlation.

MAIT non-responding stimulated cells

The hurdle model expression residuals identify six MAIT cells that do not have a typical
activated expression profile in response to stimulation (Figures and . The proportion
of these cells detected in the single cell RNA sequencing (scRNAseq) experiment is consistent

with what was detected in the flow cytometry experiment. The cells exhibit lower levels of
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[F'N-v and GZMB than activated cells (Figure, but also exhibit decreased expression of
AP-1 component genes Fos and FosB, consistent with other stimulated cells (Figure )
They do not produce IFN-v or GZMB upon to cytokine stimulation and exhibit expression
profiles intermediate to non-stimulated and stimulated cells (Figure [A.14(C).

3.5.2  Residual analysis of mouse bone marrow-derived dendritic cells identifies sets of co-

6$pT€886d genes.

We also explored stimulation-driven correlation patterns. Principal component analysis (Fig-
ure [3.6/A) of the model residuals demonstrates a clear time trend associated with PC1, as
cells increase co-expression of interferon-activated genes. After removing the marginal stim-
ulation and adjusting for the CDR, we observe correlation between chemokines CCL5, TNF
receptor CD40, and interferon-inducible (IFIT) genes (Figure [3.6B). A principal finding of
the original publication was the identification of a subset of cells that exhibited an early
temporal response to LPS stimulation. Recapitulating the original results here, when we ex-
amine the PCA of the residuals using the genes in the core antiviral module, we can identify
the “early marcher” cells at the 1h time-point (Figure |A.15). The co-expression plot for
other stimulations can be found in the supplementary material (Figures .

3.6 Data sets and biological protocols

3.6.1 MAIT cell isolation and stimulation

Cryopreserved PBMC were thawed and stained with Aqua Live/Dead Fixable Dead Cell
Stain and the following antibodies: CD3, CD8, CD4, CD161, Va7.2, CD56 and CD16.
CD8* MAIT cells were sorted as live CD3TCD8+ CD4 CD161"Va7.2% cells and purity was
confirmed by post-sort FACS analysis. Sorted MAIT cells were divided into aliquots and
immediately processed on a C1 Fluidigm machine or treated with a combination of IL-12
(eBioscience), IL-15 (eBioscience), and IL-18 (MBL) at 100ng/mL for 24 hours followed by

C1 processing.
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Figure 3.6: Principal components analysis biplot of model residuals (A) and Gene-gene
correlation (Pearson’s R) of model residuals (B) by time point for LPS cells, mDC experiment
using 20 genes with largest log-fold changes, given significant (FDR q <.01) marginal changes
in expression. PC1 is correlated with change over time. The two “early marcher” cells are
highlighted by an asterisk at the 1h time-point. Correlation structure in the residuals is
increasingly evident over time and can be clearly observed at the 6h time-point compared to

the earlier time-points.
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Data for the MAIT study were derived from a single donor who provided written informed
consent for immune response exploratory analyses. The study was approved by the relevant

institutional review boards.

C1 processing, Sequencing, and Alignment

After flow sorting, single cells were captured on the Fluidigm™ C1 Single-Cell Auto Prep
System (C1), lysed on chip and subjected to reverse transcription and cDNA amplification
using the SMARTer® Ultra™ Low Input RNA Kit for C1 System (Clontech). Sequenc-
ing libraries were prepared using the Nextera XT DNA Library Preparation Kit (Illumina)
according to C1 protocols (Fluidigm). Barcoded libraries were pooled and quantified using
a Qubit® Fluorometer (Life Technologies). Single-read sequencing of the pooled libraries
was carried out either on a HiScanSQ or a HiSeq2500 sequencer (Illumina) with 100-base
reads, using TruSeq v3 Cluster and SBS kits (Illumina) with a target depth of >2.5M reads.
Sequences were aligned to the UCSC Human genome assembly version 19 and gene expres-
sion levels quantified using RSEM |Li and Dewey, 2011] and TPM values were loaded into
R [Gentleman et al., 2004] for analyses. See supplement for more details on data processing

procedures.

Our thresholding approach does not adversely affect detection of differentially expressed

genes (Figure|A.1)) and serves to make the continuous expression (Et > 0) more Normal.

3.6.2  Time-series stimulation of mouse bone-marrow derived dendritic cells (mDC)

Processed RNA-seq data (transcripts-per-million, TPM) were downloaded from GEO un-
der accession number GSE41265. Alignment, pre-processing and filtering steps have been

previously described [Shalek et al., |2014]. Low quality cells were filtered as described.



64

3.6.3  Awailability of Supporting Data

MAST is available as an R package (http://www.github.com/RGLab/MAST, doi: 10.5281 /zen-
0do0.18539), released under the GPL license. All data and results presented in this chapter—
including code to reproduce the results — are available at: (http://github.com/RGLab/
MASTdata/archive/v1.0.1.tar.gz, doi: 10.5281/zenodo.19041). Raw data files have been

submitted to NCBI’s sequence read archive under project accession SRP059458.

3.7 Discussion

We have presented MAST, a flexible statistical framework for the analysis of scRNA-seq
data. MAST is suitable for supervised analyses about differential expression of genes and
gene-modules, as well as unsupervised analyses of model residuals, to generate hypotheses
regarding co-expression of genes. MAST accounts for the bimodality of single-cell data by
jointly modeling rates of expression (discrete) and positive mean expression (continuous)
values. Information from the discrete and continuous parts is combined to perform inference
about changes in expression levels using gene or gene-set based statistics. Because our
approach uses a generalized linear framework, it can be used to jointly estimate nuisance
variation from biological and technical sources, as well as biological effects of interest. In
particular, we have shown that it is important to control for the proportion of genes detected
in each cell, which we refer to as the cellular detection rate (CDR), as this factor can single-
handedly explain 13% of the variability in the 90% percentile gene. Adjusting for CDR
at least partially controls for differences in abundance due to cell size and other extrinsic
biological and technical effects. Using several scRNA-seq datasets, we showed that our
approach provides a statistically rigorous improvement to methods proposed by other groups
in this context [Shalek et al., 2014]. Although MAST has greatest efficiency when the
continuous (log)-expression is Normally distributed transformations (such as the Box-Cox)

could also be applied if the non-zero continuous measurements are skewed.

As discussed by [Padovan-Merhar et al.| [2015], care must be taken when interpreting
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experiments where the system shows global changes in CDR across treatment groups. The
question is essentially ontological: is the CDR a mediator of the treatment effect (is it caused
by the treatment and intermediate to expression of the gene of interest), or does it confound
the treatment effect (does it happen to co-occur with treatment). Regardless, the CDR-
adjusted treatment estimates are interpreted as the change in expression due to treatment,
if CDR were held constant between the two conditions.

Two other alternative uses of the CDR are of note. It is also possible to use CDR
as a precision variable (an uncorrelated secondary cause) by centering the CDR, within each
treatment groups, which makes the CDR measurement orthogonal to treatment. This would
implicitly assume that the observed changes are treatment induced, while still modeling the
heterogeneity in cell volume within each treatment group. An alternative approach would
be to estimate the CDR coefficient using a set of control genes assumed to be treatment
invariant, such as housekeeping or ERCC spike-ins |Brennecke et all 2013, Buettner et al.,
2015] and including it as an offset to the linear predictors in the regression. As noted by Hicks
et al. [2015], the optimal approach to handle confounding between technical and biological
effects on the CDR is to design experiments with biological replicates across multiple batches.
Finally, we note that while the methodology presented here was developed using scRNA-seq
data sets, it appears applicable to other single-cell gene expression platforms where bimodal,
conditionally Normal expression patterns are seen such as single cell RNA seq with unique

molecular identifiers.
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Chapter 4

GRAPHICAL MODELS FOR ZERO-INFLATED SINGLE CELL
GENE EXPRESSION

4.1 Background

Graphical models have synthesized high-dimensional biological experiments into understand-
able, canonical forms [Dobra et al., 2004, Markowetz and Spang, 2007]. Although inferring
causal relationships between genes is perhaps the ultimate goal of such analysis, causal
models are difficult to estimate with observational data, while experimental manipulation of
specific genes has remained costly, and largely inimitable to high-throughput biology. On the
other hand, undirected models parametrize the conditional independences present between
variables with a graph consisting of a set of vertices V and a set of edges £ C V x V. These
Markov random fields are estimable on iid observational data, and provide descriptions of the
statistical predictors of each gene. Each gene is optimally predicted using only its neighbors.

Improved descriptions of conditional dependence in gene expression experiments would
help answer a variety of scientific questions. They might provide new insights on—or at
least falsify—models of gene regulation, since statistical dependence is expected, given causal
dependence. In immunology, polyfunctional immune cells, which simultaneously express
multiple cytokines, have been identified as useful predictors of vaccine response |[Precopio
et al., 2007]. Simultaneous expression or co-expression of cellular surface markers has been
used to define cellular phenotypes [Lin et al., 2015], so expanding the “dictionary” of co-
expression may allow phenotypic refinement.

Several different approaches have been described to estimate the structure of parametric,
undirected graphical models. Fully parametric joint models have assumed a Gaussian distri-

bution [Yuan and Lin} 2007], or that the marginal distributions are monotone transformations
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thereof [Liu et al., 2009]. Pseudo-likelihood based models, which posit only the conditional
distribution of each gene without necessarily guaranteeing joint compatibility |[Arnold and
Press, |1989, Meinshausen and Bithlmann| |2006|, (Chen et al.| 2015] are more flexible, and have
also allowed high-dimensional generalized additive models [Voorman et al., 2014], where the
conditional expectation is a smooth, additive function. Many of these methods have seen
profitable application to gene expression experiments on bulk aggregates of cells assayed
through microarrays or RNA sequencing.

Microfluidic and molecular barcoding advances have enabled the measurement of the
minute quantities of mRNA present in single cells. A characteristic of single cell expres-
sion is zero-inflation of otherwise continuous measurements, in which measurements are
either strongly positive, or undetectable. These experiments have the potential to provide
unique resolution of gene co-expression, but the distributions are inadequately modeled with
a Gaussian distribution, and in any case the properties of the zero-inflation may be of in-
trinsic interest [Kim and Marioni, 2013]. To accommodate these features, we propose a joint

probability density function f(y) of the form

log f(y) = vy  Gvy + v, " Hy — %yTKy - C(G,H,K), (4.1)
in which both binary and continuous versions of gene expression are sufficient statistics, and
interactions thereof are parametrized. Here y represents an m-vector of gene expression,
[Vyli = Iy,20 is the element-wise non-zero indicator function, and G, H and K are matrices
of interaction parameters. This model can be shown equivalent to a finite mixture model of
singular Gaussian distributions. The neighborhood of each gene can be estimated using an
anisometric group-¢; penalized conditional likelihood of the form

argmax log fiy4(y;0) = A Y /0T Hyuba,

a€A

where log fip41(y; 0) is the conditional likelihood of y,|y 4, € is the concatenation of rows and
columns of interaction matrices, and A > 0 is a tuning parameter. Typically the group-
{1 penalty [Yuan and Lin| 2006] takes H,, = I. We propose to use the observed Fisher

information in block a under a null model 6, = 0 for all a € A.
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Section 2 of this chapter discusses the parameter targeted in single cell gene expression
experiments, and why it is not accessible from traditional gene expression experiments. Sec-
tion 3 describes the parametric Hurdle model for single cell gene expression and estimation of
graphical models using neighborhood selection via penalized regression. Section 4 provides a
simulation study. Section 5 illustrates the method in a data set in which selected gene profiles
were available for both single- and several-cell aggregates, while section 6 applies the method
to a high-dimensional data set. The proposed method yields substantial improvements in

simulation, and uncovers distinct networks compared to existing approaches.

4.2 From single cells to cellular co-expression

A typical cell contains 1-50 picograms of total RNA, of which perhaps 5% is assayable
messenger RNA encoding for proteins (the remainder is structural tRNA and rRNA) [Livesey,
2003]. Protocols for bulk gene expression experiments, such as for Illumina TrueSeq, may
call for 100 nanograms of total mRNA, hence require the equivalent of 80,000 cells’ worth
of mRNA. On the one hand, this biological “summation” over thousands of cells is expected
to yield sharper inference on the mean expression level of each gene. However, this comes at
the cost of distorting the conditional dependences present between genes.

Consider Y;, an #d sequence of random vectors in R? representing the copy number of
p transcripts present in single cells ¢ = 1,...,n. Now suppose the n cells are aggregated
and the total expression is measured using some linear quantification that reports values
proportional to the input counts of mRNA. Then the sum of expression is observed in bulk

experiments is
n
Z=>Y.
i

Although most bulk experiments are designed to test for differences in mean expression
due to experimental treatments and lack extensive replication within a condition, stochastic
profiling [Janes et all 2010] experiments have provided iid replicates of Z to suitable for

estimating higher order moments. But when the distribution of Y; obeys some conditional
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independence relationships, in general the distribution of Z does not obey these same rela-
tionships. For example, take p = 3 and suppose that Y; are id samples from a tri-variate
distribution [Y3, Y5, Y3] on {0,1}®. Suppose the probability mass function (PMF) factors as
the chain graph p(yi,y2,y3) = p(y1)p(v2|y1)p(ysly2). Then p(ys, valy1) = p(y2ly1)p(ysly2),
which is equivalent to saying that each 2 x 2 probability table p(ys, y2|y1 = j7), j = 0,1 has
non-negative rank one. Yet even summing over n = 2 cells, the PMF of Z = Y; + Y, will
not generally factor as such, as one may exhibit a 3 x 3 probability table for p(z3, z2]21) that
is not a non-negative rank one matrix.

The infamous case in which graphical structure commutes under convolution is when the
Y, are multivariate Normal. But as argued in the next section, single cell gene expression
is generally bimodal and zero-inflated, so not plausibly described by a multivariate Normal
distribution. Even though for large enough n the distribution of the bulk experiment Z
might approach multivariate (log-)normality, the networks estimated in bulk data will not
reflect the conditional independences that hold in single cell data.

In the limit of n large, Cov(Z) converges to the population covariance of Cov(Y). In
some models, and some graphs, such as tree-structured Ising models, the independence
structure of Y can be at least partially identified from Cov(Y)™!, but generally there is no
easy connection between Cov(Y) and the conditional independence structure of Y [Loh and

Wainwright, [2013].

4.2.1 Single cell expression

A distinctive feature of single cell gene expression data—across methods and platforms—is
the bimodality of expression values [McDavid et al., 2013 [Finak et al., 2015, Marinov et al.)
2014, |Shalek et al., [2014]. Genes can be on (and a positive expression measure is recorded) or
off-or below a limit of detection—and the recorded expression is zero or negligible. The cause
of the distributional bimodality remains unresolved. It has been argued that it represents
censoring of expression below a substantial limit of detection, yet comparison of in silico

signal summation from many single cells, to the signal measured in biological sums of cells
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Figure 4.1: Scatter plots of inverse cycle threshold (40 — Ct) measurements from a quanti-
tative PCR (qPCR)-based single cell gene expression experiment. The cycle threshold (Ct)
is the PCR cycle at which a predefined fluorescence threshold is crossed, so a larger inverse
cycle threshold corresponds to greater log-expression [McDavid et al., [2013]. Measurements

that failed to cross the threshold after 40 cycles are coded as 0.
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suggest that the limit of detection is essentially zero.

Moreover, the empirical distribution of the log-transformed counts appears rather differ-
ent, than would be expected from censoring: the distribution of the log-transformed, positive
values is generally symmetric. Yet the presence of bimodality in technically replicated ex-
periments (“Pool/split” experiments) implicates technical factors as a cause [Marinov et al.)

2014).

4.2.2  Markov graphs

An Markov random field encodes the conditional independence between components of a
random vector Y through a graph G = (V,€ C V x V). The set V contains vertices indexing
Y, while € is the edge set. This graph is undirected in the sense that if (a,b) € £ then so
is (b,a). Associated with G is a probability distribution P(Y). The graph specifies minimal
forms of conditional independence on P(Y).

Of primary use in this chapter will be when P(Y) is compatible with G under the local
Markov property. A distribution P(Y) satisfies this property with respect to G when for
all a € V, Y, L Yy\a(a)|Yae(a), where ne(a) denotes the neighborhood (adjacent vertices) of
a and cl(a) = ne(a) Ua is the closure. When P(Y) has a positive and continuous density f
with respect to some product measure, then the local Markov property is equivalent to the
pairwise and global Markov properties. The Hammersley-Clifford theorem then states that
any density—and only these densities—that are compatible with G will factor as a product of

potential functions that depend only on the cliques in G; see for example Lauritzen [1996,

ch. 3J.

The above implies that given some family that can parametrize all conditional indepen-
dences that G encodes, if for each a € V), we infer the node-wise local conditional indepen-
dences Y, L YV\cl(a)|Yne(a)= this suffices to identify all conditional independences that hold
in the joint distribution of Y. Moreover, if S is a separating set of genes a and b in G, then

knowing the expression of a can provide no information on the expression of b, given S.
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4.3 Hurdle models

Univariate Hurdle models arise as modifications of a density through excision of points in
the support, generally at the origin. Suppose F' is a measure on R admitting a density f
with respect to some dominating measure A. Then for any Borel set A, the zero-modified

Hurdle measure Fy on F' is defined as
Fo(A) = pF(AN\{0})/F({0}°) + (1 — p)do(A),

where dy is a point mass at 0. When X is Lebesgue measure, as in the case in this work,

F({0}) = 0. This implies a density with respect to the sum-measure A + d, of

foy) =pfy)vy + (1 —p)(1 —vy),

where v, = I+ is the indicator function for non-zero values of y.

4.8.1 Hurdle exponential families

When F' belongs to an exponential family, Fy also belongs to an exponential family with
modified sufficient statistics. In particular,when f(y) is the Normal density with mean £ and

precision 72 then the Hurdle modification at zero has density

fo(y) = exp {v, [1/21og (7%/ (2m)) +logp/(1 — p) — €7 /2]

+yér? — 1?7 /2 4+ log(1 — p)} (4.2)

with respect to the measure A+ dy. This implies that fy is a member of an exponential family

with sufficient statistics v,,y, —y*/2 and natural parameters
g =1/2log (7%/ (21)) +1logp/(1 —p) — £27°/2,

h=er?,

k=12
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or inversely the original parameters in terms of the natural parameters are:

(VarY|v,) ' = 72 =k,
EY|v, = €= h/k, (4.3)
logitEv, = logp/(1—p) =g —1/2log (k/2m) + h?/(2k).

4.3.2  Multivariate Hurdle models

Based on figure [4.1] a plausible multivariate model puts positive mass on every one of the 2™
coordinate subspaces, including the origin and the entire Euclidean space R™. It is easiest to
construct this model conditionally by first defining V = [Vi,..., Vi |" = Ly 20,- - - Lyzol”
to be the vector of non-zero indicator functions on Y, where the dependence on Y will be
suppressed from here on. Under any distribution on Y, V is most generally a collection of
Bernoulli variables distributed according to some 2" probability table.

A random vector Y has singular Normal distribution A (u, X) [Rao, [1973] with mean
p and covariance ¥ with rank r < m if U is a m X m — r matrix such that UTY = 0
and the following holds: a) UTY = Uy almost everywhere; and b) Y has a density
% exp{—(y — )" (y — u)/2}, restricted to the hyperplane UTY = U u. Here
det™ is the pseudo-determinant (product of non-zero eigenvalues) and X~ is a pseudo-inverse,
such as the Moore-Penrose inverse. In the case that X is zero outside a positive-definite
submatrix of size r x r, U can be chosen to be a diagonal selection matrix consisting of zeros
and ones, and Y has a density with respect to the measure A" x §)""", which is the case
treated subsequently.

In detail, given V| let r = |V| and Z = diag'V be the diagonal matrix with (7,7) entry

equal to V;, thus selecting the the non-zero entries of V, then
Y|V = v~ N (Zu(v), IE(W)T)

where p(v) and ¥(v) depend on v arbitrarily, but are only identifiable along the obvious

subspaces. This is the multivariate analog of excision of mass that defines the univariate
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Hurdle model. This construction is also equivalent to Y|V being distributed as
Y|V:V~N(K;hV,K;) , (4.4)

where K, = (ZK(v)Z)™ is the pseudo-inverse of a precision matrix with arbitrary depen-
dence on v subject to the constraint that its rows and columns are filled with zeros whenever
a coordinate of v is zero, and hy, = Zh(v) is a column vector that may depend on v arbitrarily
after being suitably zeroed out with its selection matrix.

The joint density P(Y,v(Y)) = P(Y) can be decomposed as P(Y|V)P(V):

ply) = p(v) x (2m) 772 (det* K) " exp { = (y — )" Ko (v — b) /2}

— p(v) x (27) "2 (det" K,)""* exp { —hTK,h, /2}
1
X exp {—5yTKvy + hfy}
=exp {g(v) —y"K,y/2 +hTy}, (4.5)

with respect to the m-fold product of XA + dg, the sum of Lebesgue measure and point mass
at 0.

As arbitrary functions of v, g(v), h, and K, are generically k& < m-order polynomials
in v, but for the sake of parsimony one may restrict k£ strictly less than m. When the
polynomial order is 2, 1, 0 for G, H and K respectively, then the quadratic statistics yy?,

vyT, vvl are minimally sufficient and the model simplifies to
1
p(y) = exp {VTGV +vIHy — §yTKy — C’} , (4.6)

where C' = log (o 1m €xp [VTGV + h” (IKI)_h/Z} (det™* IKI)UQ(QW)*”/Z. It follows
immediately that model (4.6) is a mixture of singular Gaussian distributions:

Proposition 1. Model @ is a 2™ mizture of Normal distributions, each singular along
a different coordinate axes. Given v, the conditional expectation is (IKI)fHV and the

conditional variance s (IKI)f.
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4.3.8  Conditional distributions identify interaction parameters

The normalizing constant in equation is a difficult sum of 2™ terms, as is true in
the pairwise Ising model. However, the conditional likelihood of each coordinate y,|y 4 is
tractable, and identifies parameters from a given row/column of the interaction matrices.
This is seen through examination of the conditional distributions. Recalling section [4.2.2}
V denotes the vertex set. Fixing a coordinate b and its complement A =V \ b, and making
the simplifications v;y; = y; and v? = v;, the kernel of the distribution in (4.6)) as a function

of yp is

10g fisia](y) = vogew + 207 gbaVa + vshoaya + Yphuy + yshab' va

1
—3 [yBkw + 2ypknaya] — Cpja)-

Factoring by the sufficient statistics over yp,

10g fip1a)(y) = vb [ger + 28pava + hoay a] +yp \[hbb +h’,va — kpaya (4.7)
bl A] h[‘bTA]
L2 k C
5 Yp \f;b_/ [b]4]
ki 4]
1
= o 4y — §y§kbb — Cpa)- (4.8)

Thus the conditional distribution is just an example of the univariate Hurdle of equation
(4.2) with natural parameters gpja), hpla) and kpja), which also serve as linear predictors
that depend on a design matrix constructed from y 4 and v4.
Concretely, we can write
gpia] = Zg 040 + Z Xabga,
acA
where Z; in this case is taken to be 1, but generally could include a vector of covariates,

Xo = [Va, Ya] and byq = [gba, hie). The linear predictor for hpa) can be written analogously.

We can solve for the natural parameters to yield parameters recognizable from the univariate
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case using equation [4.3] Then

2
Tyla] = K,

1
§pla] = - [hoy — Kab' ya+hap' val,
bb

log p/(1 = p)]jya) = (950 + 28bava + hpaya]

2
:1/2108; (kep/27) + [hup — kap' ya + hap' va] [/ (2ku),

J

Cila
so logp/(1 — p) depends on y4 both through a linear term 2g,ava + hpaya as well as a
quadratic term (derived from the normalizing constant for the Gaussian). Integrating with
respect to dp + A confirms directly that the normalizing constant is indeed given by Ciy4;.
The conditional distribution in defines a vector generalized linear model, since the
univariate family is parametrized by three natural parameters, g, h and k, the first two

of which are modeled as a linear function of covariates.

4.8.4  Other work on mized graphical models

The notation used here follows Lauritzen, [1996], who describes conditional Gaussian (CG)
models with inhomogeneous, non-singular precision K(v) that can depend on the discrete
set of covariates in arbitrary, positive-definite fashion. The formulation here is both a spe-
cial case, and an extension of Lauritzen’s inhomogeneous CG models, since it imposes the
inhomogeneity (conditional singularity, in fact) in a structured fashion.

Several authors have described algorithms to infer the structure of specializations of Lau-
ritzen’s CG models. [Lee and Hastie| [2013] and Cheng et al. [2013] describe ¢;-penalized,
pseudo-likelihood algorithms to estimate structure in specializations of the inhomogeneous,
pairwise case (in which the variance of continuous variables, given both discrete and contin-
uous neighbors are homoscedastic).

Other authors have described classes of graphical models with mixed node conditional
distributions. |Chen et al. [2015], and [Yang et al.| [2014] describe exponential-family graph-

ical models for which the conditional distributions follow a generalized linear model with
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neighbors entering additively. While this chapter was in preparation, Tansey et al.|[2015)]
proposed wector space graphical models that include the multivariate Hurdle as a special
case, estimated through sparse group-lasso penalized neighborhood selection. Their isomet-
ric group-lasso does not account for heterogeneity in the scaling of predictors in the con-
ditional distributions. The anisometric group-lasso proposed in the following section yields

substantial benefits in finite samples.

Other work considering dependence measures in mixed distributions include |Olkin and

Tate| [1961], Cox and Wermuth| [1992].

4.4 Neighborhood estimation via penalized regression

Equation shows that the conditional distributions of each node, given the rest, identify
rows and columns of the interaction matrices. If m is fixed and n — oo, maximum likeli-
hood, methods of moments or Bayesian estimators will concentrate around the true values
and hypothesis testing might reveal the neighborhood of a node. Although in single cell ex-
periments, the number of cell replicates, n, is larger than in many bulk mRNA experiments,
it is still generally the case that the number of genes, m measures in the thousands, while
n measures in the hundreds (though emerging technologies may change this), so estimators

and consistency guarantees under fixed m asymptotics are not applicable.

On the other hand, under scenarios in which n,m — oo while n > Cd®(logm)¥, where
C, ¢ and 9 are constants that depend on the model and d is the maximum vertex degree, pe-
nalized regression has been shown to consistently identify signed sparsity patterns in precision
matrices in multivariate Normal models [Meinshausen and Biithlmann| 2006], in interaction
matrices for Ising (auto-logistic) graphical models [Ravikumar et al., 2010] and exponential
family graphical models [Yang et al., 2014]. This motivates the application of node-wise

penalized regression for the problem at hand.
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4.4.1  Penalty and computation

By inspection of for yp, L Ya|yw\japy the four parameters [goq, hvas hap, kba] = 0o must
simultaneously vanish. Penalizing the conditional log-likelihood log fj4)(y) with the grouped
¢y penalty Py(0) =AY ,c4 /070, can lead to an optimum that is sparse in parameter blocks
responsible for vertex a. This penalty is equivalent to placing a sequence of independent,
multivariate Laplace (multivariate exponential power distribution [Eltoft et al., 2006]) priors
on blocks of # and reporting the MAP. It is well-known that this results in both shrinkage
and variable selection.

Viewed as a prior, the default group-lasso penalty implicitly assumes that each variable
in each block has a similar effect size. This may be reasonable, provided they are measured in
comparable units. For example if covariate X; is measured in meters, while covariate X, in
centimeters, then the distribution of effect sizes for Xy would be 1000-times more dispersed
than the distribution for X, revealing a kind of expected scale-equivariance. In penalized
GLMs, this is typically enforced “at run time” by ensuring covariates are on comparable
scales, or Z—scoring each column of the design if no intrinsic scale exists.

In the case of a vector regression, terms from linear predictor gp4) and linear predictor
hppa) end up together in blocks, and these coefficients are not necessarily comparable, as
one specifies log-odds of E(V;,|V, = 0) while the other specifies conditional expectations
of E(Y,|Y,). Re-scaling is not an option, since the same design matrix X, = [V,,Y,] is
used in each linear predictor, and even if it were, only reparametrization through isometric
transformations produces the same solution (in terms of fitted values) as has been noted for
the group-lasso in linear regression [Simon and Tibshirani, 2012]. But replacing the isometric

/5 norm in the sum so that the penalty is
Pua(0) =AY /0T Hy,0,, (4.9)
acA

where H = diag (H,,) is a block-diagonal, positive-definite matrix allows terms from the

linear predictors to have different scales of penalty. It also accounts for correlation between
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components of 8,, since columns of the design are correlated due to both v, and y, appearing
as predictors.

If prior information existed, the matrix H could be chosen accordingly, with interpretation
as a multivariate Laplace prior. Absent prior information, setting H equal to the Fisher
information under a null model 6, = 0 for all a results in variable selection approximately
equal to conducting score tests, with exact equivalence holding under a null hypothesis of

8, = 0 for all a, as is shown in the following proposition:

Proposition 2. Suppose that the inverse information H™! is also block-diagonal, where

H— [32 log fiv14)(¥)

50,0, | is the conditional information. This holds, for example, when H is block-

diagonal. The scaled {1 penalty is equivalent to a score test of the null hypothesis that 6 = 0
vs the alternative that a pre-specified subvector 6, # 0.

Proof: Let ¢ = V' \ {a, b} and suppose that 6. = 0. From the KKT conditions, 6, = 0 is

an optimum if and only if

VIH 'V, < X2,

where V, = %ﬁ'f](y) is the a-subvector of the conditional log-likelihood gradient. Taking
A% to be an appropriate quantile from a y?-distribution with dim(H,,) degrees of freedom

results yields a score test.

This leads to algorithm [I The covariates Z might just be an intercept column, but
generally could be any cell-level covariate deemed relevant, in which case the estimated
model has the interpretation of being a conditional Markov random field. The optimization
step in line 3 is solved using any Newton-like algorithm (eg BFGS) as the object is smooth
and concave, while proximal gradient ascent |[Parikh and Boyd} |2014] solves line 6, as the
objective is a sum of a concave, smooth function and a structured concave function. In

particular, we exploit the fact that while the proximal operator

1
prox (r) = argmax, ;Hx —ull3 + Z Vul'Hyu,

a€A
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is not available in the familiar form of a soft-thresholding operator as in the isometric group-
lasso, the proximal operator of the anisometric group-lasso can be efficiently found via a
line search and a few 4 x 4 matrix multiplications after one-time pre-calculation of the
singular value decomposition of H,, [Foygel and Drtonl, 2010]. Throughout the inner-loop,
warm starts are exploited for 6 as \ varies. Active set heuristics using the strong rules of
Tibshirani et al.| [2012] yield computational gains for sparse solutions with large m. In the

accompanying software, the algorithm is written in a combination of R and C++.

Data: Expression matrix Y € R™™, covariates Z € R™*9 penalty path A
Result: Neighborhoods ne(i, A), 1 <i<m, A € A

1 fori=1...mdo

2 X [Z,Vth---,W—1,Y}—1,W+17K‘+1,--->Vm7Ym} ;

3 O < argmaxy, 4_ log f([0o, 0], X);

4 H < Hessian (logf ([90, 0], X)),

5 for A € A do

6 [0, 0] < argmax,, ,log f([6o, 0], X) — Py (6);
7 ne(i, \) < ProcessNeighborhood (6);

8 end

9 end

Algorithm 1: Neighborhood selection

4.4.2  Convergence and model selection consistency

Tansey et al. [2015] provide model selection consistency guarantees under assumptions in-
volving both the sample information matrix and the joint log-partition function. The log-
partition function in model is computationally intractable for even moderate m (al-
though it could be numerically approximated). Thus these assumptions are generally difficult

to verify, even in simulation.
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Total selection consistency may require astronomically large samples; for example in
the course of running these simulations, it fails to occur even once in 30 simulations for
m = 128,n = 10000. The simulations in Tansey et al.| [2015] also do not achieve total
selection consistency even for samples of n = 25000. However, at realistic sample sizes
imperfect recovery, in which some number of false edges are included in a portion of the
true set, is feasible, and is explored further in section [£.5] Applying a positive-definite
penalty matrix rather than the isometric penalty offers drastically improved rates of imperfect

recovery.
4.5 Simulations

We consider a series of simulations under two sets of parametric alternatives. Observations
are generated through Gibbs sampling from model , with 2000 iteration burn-in, 10%
down-sampling. Down-sampled iterations exhibited only mild auto-correlation.

In the first study, the dependence structure is “dense:” if any of g;;, hi;, hji, kij # 0, then
all of them are non-zero. In the second study, only g;; is non-zero, and the Hurdle model is
a superset of the true model, which is Ising/logistic. In both cases the edge density is fixed
at 1.5% and the underlying graph is a chain, thus the maximum degree is 2. The number
of observations n = 100 is fixed and the dimension varies from m = 16 to m = 128, with 30
replicates run.

Five methods were examined to test graph structure inference: neighborhood selection
under the Hurdle model using 1) isometric and 2) anisometric penalties, neighborhood se-
lection using ¢;-penalized 3) logistic regression, 4) linear regression and 5) Gaussian copula
(NPN) models |Liu et al., 2009]. The logistic model is fit using the R package glmnet. Mod-
els 4 and 5 were fit using the R package huge, with “truncation” transformation function.
Neighborhoods are stitched together using an “or” rule, i.e. vertices a and b are adjacent if
either b € ne(a) or b € ne(a).

In each method, as a tuning parameter decreases, more edges are selected. Figure

shows a representative ROC curve (true positives vs false positives) for n = 100 and m = 64.
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Figure 4.2: Number of true positives vs false positives for simulated chain graphs under dense
and sparse dependence with m = 64 nodes and n = 100 observations. The ribbon shows
the simulation-induced standard errors about the average. The Anisometric and Isometric
models use neighborhood selection with the multivariate Hurdle model with group-¢;
penalty based on the null-model Fisher information and identity matrix, respectively. The
Gaussian, NPN and Logistic models use ¢; penalized neighborhood selection under linear

(Gaussian), Normal-score transformed linear (NPN) and logistic regressions.

In figure , the maximum sensitivity (W) under the oracle value of the tuning

total true

false positives

total positives) is shown.

parameter that admits fewer than 10% false discoveries (

4.6 T follicular helper cells

T follicular helper (Tfh) cells are a class of CD4™ lymphocytes resident in the germinal centers

of lymph nodes. B-cells that actively secrete antibodies require Tth cell co-stimulation to

activate these secretion properties [Ma et al, [2012]. HIV is known to induce changes in Tth

cells, increasing numbers of Tfh cells in germinal centers, while reducing numbers of Tth-
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Figure 4.3: Sensitivities (%) at 10% FDR as m, the number of nodes increases for

a chain graph under fixed sparsity. See the caption of figure for a description of the

methods.
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like cells in peripheral blood [Onabajo and Mattapallil, 2013]. We consider co-expression
networks in Tth cells measured in eight donors with recent HIV diagnosis and naive to anti-
retroviral therapy. 65 genes were selected for profiling via qPCR on the basis of their role in
Tth signaling and differentiation, generally with sparse expression across single cells (median
expression 28%, 90th percentile, 82%). 573 single cell, and 61 10-cell replicates were taken.

Figure 4.4| shows networks of 35 edges (network size chosen through stability selection, see
following) estimated using Hurdle, Gaussian (with centered data, see section and Logis-
tic, and Gaussian model using 10-cell aggregates. Normalized Hamming distances between
the four methods and the Gaussian model fit on the “raw”, uncentered data are reported in
table[f.1] The Hurdle and (centered) Gaussian models are most similar, while the logistic and
Gaussian 10-cell network are quite distinct. The Gaussian(raw) model on untransformed
data is similar to the logistic model. The zeros exert substantial leverage on the regression
compared to the variation among the non-zero values, so this is expected.

In the Gaussian and Hurdle networks, the gene CD3e, the backbone of T cell recep-
tor(TCR) signal transduction by which T cells receive antigens presented by other non-
immune cells, has a strong, positive association with CD4, which is a co-receptor necessary
for activation in helper T-cells. It is also strongly connected to IL2Rg, a subunit common to
several different interleukin receptors. CXCR4 and CD28 are also highly connected hubs in
both graphs. Of particular note, CXCR4 is the receptor by which T-tropic HIV isolates are
able to infect CD4" T-cells, so co-expression of STAT5B/CD95/CXCR4/FYN would tend
to make a Tth cell more susceptible to this path of infection. IL21, a cytokine inducing
cell division and proliferation in its ligands, has strong positive association with CTLA4, an
inhibitory immune system checkpoint, and NFATC1 (Nuclear factor of activated T-cells), a
transcription factor triggered during an immune response. Lck and Fyn, which both play a
key role in TCR signaling, interact via CD27, part of the TNF-receptor superfamily.

On the other hand, in the Hurdle model, CXCL13 is negatively associated with CCR4
and CTLA4. In the Gaussian model, the CXCL13-CTLA4 edge has inverted sign, and the

CCRA4 edge is absent. In fact, no edges indicating negative associations are present in the
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Gaussian(10) Hurdle logistic Gaussian(raw)

Gaussian 1.00 0.27 0.95 .87
Gaussian(10) - 1.00 1.00 1.00
Hurdle - - 0.96 87
logistic - - - 31

Table 4.1: Dissimilarities (W) between networks of size 35 estimated through
ges

various methods. The Gaussian(10) model is a Gaussian model estimated on 10-cell repli-

cates, while the Gaussian(raw) data is estimated on single cells without centering the data.

The Hurdle and logistic models are described in the text.

Gaussian model. The logistic is wildly different, with CXCL13 as a hub, and predominately
consists of negative connections.

Shah and Samworth [2013] propose a form of antithetic stability selection, and when
employed here the richness of the networks varies from 2 (Gaussianl0), 17 (Logistic), 26
(Hurdle) and 52 edges (Gaussian). In order to compare networks with equivalent richness,

we therefore examine a compromise of 35 edges in the four methods.

4.7 Mouse dendritic cells

In an experiment originally described in Shalek et al.| [2014], bone marrow-derived dendritic
cells, from mus musculus were exposed to lipopolysaccharide (LPS), a toxic compound se-
creted and structurally utilized by gram-negative bacteria. Cells were sampled after 0, 1,
2, 4, and 6 hours. Here we consider the transcription networks estimated using 4431 tran-
scripts expressed in at least 20% of 65 cells sampled 2 hours after LPS exposure. Rather
than attempting to perform model selection on this limited sample size, we consider highly
sparse (< .01% sparsity ) networks of 700 edges, chosen to provide tractable visualization

and illustration of the method.
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In a Gaussian model, the network is star-shaped, with MX1, CCL17, TAX1BP3 and
CCL3 as hubs all with degrees > 15, though none are directly inter-connected (figure |4.5)).
In all, 2.5% of non-isolated vertices contribute 50% of the edges in the network. With the
exception of TAX1BP3, these hub genes are all immune-signaling related.

In the Hurdle model, the graph is chain-shaped, with the maximum degree being 12: 7%
of nodes provide 50% of the edges. The strongest hub, MGL2 (also known as CD301b), has
been recently described to be involved in uptake and presentation of glycosylated antigens,
such as LPS, by dendritic cells |Denda-Nagai et al., 2010]. A sub-connected set of genes
coding for MHC-II antigen presentation (H2-AB1, H2-EB1, H2-AA) is the densest sub-
component, and interconnected to MGL2 as well as FABP5. Increased expression of FABP5
has been shown to increase expression of cytokines IL-7 and IL-18, hence is also involved
in immune cell stimulation [Adachi et al.| 2012]. Many of the neighbors of MGL2,H2-AB1,
H2-EB1, H2-AA and FABP5 are neighbors of the hub genes in the Gaussian graph, whereas
MX1, CCL17 and CCL3 are sparsely connected in the Hurdle network. TAX1BP3 is absent.

4.7.1 Graphical geneset edge enrichment

We consider how well the 700 edges recapitulate known relationships between genes using
the Gene Ontology (GO) annotations. The Gene Ontology Consortium [2015] provides a
directed, acyclic graph of ontologies to which genes may be annotated if they have been
shown experimentally or computationally to be involved in a biological process, component
or function. In the GO annotations for mouse, most genes are members of several categories
(median= 14). We test for enrichment between and within categories under a hypergeometric
model, in which each pair (7, ) of (possibly non-disjoint) GO categories induces a coloring
(1,7) — cof vertices, coloring any vertex belonging to either i or j. Evidence that this color is
interconnected, given 700 total edges, n. of which are between c-colored vertices, is evaluated
using the hypergeometric tail probability ¢(c) = P(N, > n,) in an urn of 4431?/2 possible
edges, of which m,. could possibly join c-colored vertices. The distribution of the smallest

k < 200 order statistics t() across the ~ 16 million dependent tests possible on 39877/2



88

1 d}@zm@?ﬂ“ cngEr
GRS @RSO ch}

& 1
7 g 00 g O8O%s Fow
@ YRR 1A 5P o 1 %IO (&}
a2 ; B o s
O

o) Op Q®> O P@XZ o rAL 5 O
gﬁ ISIGRIBIGRIK gy O T e W‘ s@xmo NW&)
e RBUFB10 B % BN ApEgATI o0

o @sz
wM; O e O@O %ax

B regulated
B activation
O RNA

O chemokine
O defense
B chemotaxis

O Uncategorized

W‘O 1307 C‘QB |

Y2
#‘%m % O‘W G‘ugsv O‘W%L
@Dc'f‘]o OUQ . @% %n ) SW‘“%
g O ’@ Cg 9 °
% cw“’fﬁ@x%sx srrwm O ’s@ r%/\lw.a g Q(% ‘mﬁ& reiyco
% PW MR © O o 582“ NU BI i‘m
DP‘ daﬂ'oﬁ:él Wr? s2@]_00"‘?)“1800 28} wwn@ THDCs ﬁmm@‘m“
" o O g o
5% OQauAWO % & ow G € g 3 ‘3@ e

i g s S %
%SFM B! %’s;‘ DU"
uwISO@ 'L0,0 o Ne O L T7
o v:c‘“%?"t@ PR ‘9' B0 uy o0 D
S . Al DIB H
GO o O;L oy 8° U‘@Wmoowd gwwfb* ‘igow@mdgwﬁ" w©
g‘wléﬁzawAlc OO B Rl OO PEAIB3 T‘MS c‘@O %, O*

N 'ZBﬁL‘O O‘@’ Opsasns e Q RERNEXCLI0 g1
%9 o0 ¥ igg 0w o O"Q{”@'E% ¥ o %ﬁ“ﬁ‘@ 0080
|% SEyNI %‘N2%4 %Né Onna y bginy Om E)UB S:‘—srA w{? ‘@Macﬁ 6227
18 OB ISRIK ‘w O‘ %;

SF@SPZ ; D) o0 OA‘“
’ S WD O OO “” B )PH1
%K%%W.SISW WW@O 0w '”O v oS0 ‘8% Y.?O oé®
u{g S‘WKSLI P X2
PHRIRS OEress B6  R@P! A VoD2 97 0
?@E@‘@ bw w %@5 o % Q%g - @BW
W v o> AcQ‘rﬁ‘V o0 oL@L o0 & MKwO 0@
" gss e ﬁd;f‘ BigO va o i
(2 wél 6 2 SERINCI
% gﬂogﬁ%" %“ oY GO0 oﬁ‘“ﬁ@m% o

a0 O o A PAB
% SWALI & & “Og L Oosl?

B

(€]
o Sk ey e § e
Ty o el =

@ defense

14 7§ B endosome
O e B soaton

@ chemokine

O Uncategorized

Figure 4.5: Networks estimated in LPS-treated mouse dendritic cells under Gaussian and
Hurdle models. Hub genes are shown in red. Vertex colors indicate gene ontology member-

ship.



89

pairs of categories is found under a Erdos-Renyi random graph model, yielding Monte Carlo
p-values p(t()). A color is declared significant if p(t;) < .05 and all colors ranked above it
are also significant at .05 (using the ordering on t(c)), thus controlling the FDR at less than
5%.

In the Gaussian model, more than 100 pairs of categories (colors) are significantly enriched
at an FDR of less than 5%, however in these 100 pairs, only 7 correspond to intra-category en-
richment (ﬁgure. These are: response to salt stress, potassium channel regulator activity,
extracellular space, extracellular exosome and three manually curated genesets containing
genes with significant time-course differential expression in the original experiment. In the
Hurdle model, 14/60 significantly enriched pairs form intra-connections, including defense
response to Gram-negative bacteria, and cell-cell adhesion and several modules involving
extracellular secretion via the Golgi apparatus. Also of particular note, genes annotated to
the activation of innate immune response are directly connected to RNA Polll transcrip-
tion factors, a connection absent in the Gaussian model. This suggests that using the more
parametrically appropriate Hurdle model manages to identify transcription factor-induced
expression changes in these regulated genes, a direct method by which one gene would induce

expression changes in another. No significant enrichment was found in the logistic model.
4.8 Discussion

Graphical models estimated from single cell data are distinct from networks estimating from
bulk data, or even repeated stochastic samples. In simulations, the Hurdle model with
anisometric penalty has much greater sensitivity compared to available methods, while in the
two data sets here, it yields substantially different network estimates compared to Gaussian
and Logistic models on these zero-inflated data. When enrichment of gene ontology categories
is considered between vertices in transcriptome-wide data, the enrichment uncovered with
the Hurdle model is consistent with identifying direct effects of transcription factors on genes
undergoing dynamic regulation due to LPS exposure.

Although measuring transcriptome-wide data allows conditional estimation of direct ef-
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fects between genes, non-mRNA factors may also greatly affect gene expression. In this
sense, important variables have still been marginalized over, and in the case of the Tfh data,
indeed, most of the transcriptome has been marginalized over. Thus, co-expression under
sparsity assumptions is most helpful as a screening procedure. Methods to adapt graph-
ical model variable selection to clustering and/or factor analytic models would extend its

usefulness greatly, and allow greater biological insight with these data sets.
4.9 Supplemental methods

In all models and data sets, the cellular detection rate ;I ~o [Finak et al., 2015] was used
as an unpenalized covariate in Z as described in algorithm [1 In the Tth data, a separate
intercept was fit for donor, as well. For the Gaussian and Hurdle models, positive values
were conditionally centered

B 0 v;; =0

Yij =

Yij — gj;“ else

where gj;-r is the average in a gene over positive values, to make V; and Y; marginally or-
thogonal, which enhanced optimization convergence, and reduced the leverage of zeros in the
Gaussian model.

The mDC data set was thresholded as described previously [Finak et al., |2015], and

filtered for low-expression and cluster-disrupted cells.
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Appendix A
SUPPLEMENTARY DERIVATIONS AND FIGURES

A.1 Empirical Bayes derivation of variance hyper parameters

Suppose there are genes j = 1,...,G. Assume that the precision (inverse variance) for the

continuous component of gene j is distributed
7;|aw, Bo ~ Gamma-rate(a, Bo)
and that i # j = 7, L 75|, Bo. Thus 7;|ap, fp has density
f (7], Bo) = 7507t 550 T ().

Assume that n; cells have non-zero expression vector Y; in gene j under the linear model

E[Y;|X] = Xn, with dim(n) = p, so that
Yilmy,n ~ N(Xn, 7).

This implies that R; = > (y; —7X;)? is sufficient for 7; and that statistic has scale chi-square
distribution with n; — p degrees of freedom, or equivalently, a gamma-rate distribution with
shape o; = (n; — p)/2 and rate 5; = 7;/2. Here 7 is the typical OLS estimator.

The joint distribution of 7;, R;|ay, By has density

F(Rj,ilao, Bo) = 'L exp (—1;8') B5° /T (o) RS P2 (1/2)0 /2 T ((ny — p) /2).

for o/ = ag+ (n; —p)/2 and B’ = By + R;/2. In terms of 7; this density has the kernel of a
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gamma distribution, with aforementioned parameters, so that marginalizing out 7; yields

" Bo (nj—p)/2
f(Rj’a(]a/BO) L(a))fBy° (1/2)7 R(”j*p)/271

I(ao)B T ((n; —p)/2)
D=2t (/2" e
T(ao) (Bo + R;/2)"™ S I'((nj —p)/2)
_ T((n; —p)/2 4+ a0)By° (1/2)(713—17)/2 Rénj—p)ﬂ—l
I'(ao) ' ((n; )/2) "J p/2+a0 +Rj/(250))(nj—p)/2+ao
_ (1/2)("3'*1))/2 Rﬁn]—p)ﬂ 1 "

B ((ny —p)/2,00) 85" "% (1L Ry (26)) "7/
where B is the beta function. This is recognized as the kernel of a (scale) F-distribution.
Since 1 + R; is raised to the — ((n; —p)/2 4+ ap), R; is raised to the (n; — p)/2 — 1 power,
and R; is divided by 28,, we identify the parameters of the scale-F distribution d;,ds, o as

dy +d
12— n — p)/2+
d
O
i
2
o 1/(28o).
Solving this system gives
dy = n; —p
d2 = 20[0
_ Bo(n; —p)
(%)) ’

Working backwards from a F <nj — D, 2q, W) distribution, we would have that

F(R;) = 1 <(n] _m)(n]’—p)/? |:Rj040:| (nj—p)/2—1 [1 s R; :|—(nj—p+2a0)/2 a0
J B (@’ 040) 2a ﬁo(nj — p) (2&0) BO(nj — p)7

which after some algebra verifies to be equivalent to equation [A.T]

Mazximum Likelihood Estimators

Equation can be used as the basis for maximum likelihood estimation of ay, 5y. Dropping

constants that do not depend on the parameters, the log-likelihood and score functions have
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the form

nj—p

L(ao,fo) = —log B((nj —p)/2, ) — log By —log (1 + R;/(280)) ((n; — p)/2 + ap)

Loy = ((nj —p)/2+ ap) — ¥ (a0) —log (1 + R;/(260))

aol; — (nj —p)Po

Ls, = ;
Po Rj,@o + 253

where 1 is the digamma function %&Ex). This likelihood may be maximized numerically, e.g.,

using the optim function in R.

Posterior MLE for T,

Given estimates oy, By derived by MLE, then the posterior distribution of 7; is Gamma-rate
with parameters o' = g + (n; —p)/2 and 8’ = By + R;/2. The log-likelihood and score for

’Tj 1S

L(r) = (o' = 1)log7j — 7%

o —1
£T]' - - B/
7j
which implies that
. ad =1
Tj = ﬁ/
which has an interpretation in terms of pseudo-observations as follows
1/7:: Rj/2+ﬂ0 _ Rj n;—p +@ 20&0
7 ag+(nj—p)/2 nj—pa0+n;—p aa0+n;—p
[\ MLE
= (Tj_ ) A+ 1/m0(1 = N)
noting that (Tj’l)MLE = nl?i'p would be the typical MLE of the variance 7'{1 and that
J

To = /o would be the MLE of 7 using only the prior information. This final formulation
of the shrunken precision as a convex combination of the MLE and the global value 7y is

used in practice.
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A.2 Simulation exploring CDR effects

In order to assess the effect of the including/excluding CDR effects when modeling single-cell
gene expression data, we simulated log, TPM expression matrix with 2500 genes where 100
genes are differentially expressed for sample size of 100 in each of two stimulation conditions.
We tested four scenarios: one with no CDR effect in the simulated data generating process;
and three others with varying levels of confounding between CDR and stimulation effect.
The four scenarios are described in Table[A.I] The parameters in the data generating model
were chosen to mimic the the observed features of the MAIT experiment, as described below.

The results based on 100 replication is summarized by the ROC curves in Figure
showing the importance of controlling for CDR when there is a CDR effect in the data
generating process. This is especially important when there is confounding between the
stimulation and the CDR, as ignoring the CDR effect would typically inflate the type I error
rate. At the same time our results also indicates the robustness of our proposed model for
including CDR even when there is no CDR effect in the data generating process, promoting

the inclusion of CDR as a default model.

A.2.1 Data generating protocol

We set the sample size N = 200, the number of genes J=2500 and defined the stimulation
indicator s as 0 for first 100 cells and 1 for the last 100. Given stimulation indicator s we

generated the data accordingly:

7~ Gamma(ag, by)
CDR; ~ (1 - s;)Beta(ay,b,)+ s;Beta(as, bs)
2;;)|CDR; ~ Bernoulli(logit_l(,u? + a;lsi + B?CDRi))

yij|zija CDRZ ~ Zz]N<,U/§ + Oé;SZ' + 6;CDR“ 1/7']2)

The coefficients p, «, and [ were generated from a Normal distribution with hyper

parameters based on the distribution of these quantities observed in the MAIT experiment.
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We also set o; = 0 for j > 100, since only the first 100 genes are differentially expressed (i.e.

have a non-zero treatment effect). The precision hyperparameters ag and by are set to the

point estimates found in the MAIT experiment. The code with all the simulation details can

be found in AdditionalAnalyses.Rmd.

Table A.1: Hyper parameter settings for CDR generation model.

moderate confounding

no confounding

strong confounding
ay, 4
bs 16
Qg 12
bs 8

A.3 Supplementary figures

6
14
10
10

8
12
8
12
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Figure A.1: Scatter plot of p-values for differential expression from adaptive and fixed thresh-
olding on the A) MAIT and B) mDC data sets, demonstrating robustness to the thresholding
method. Two selected genes from each data set, with large differences in p-values between
fixed and adaptive thresholding in C) MAIT and D) mDC, are genes that exhibit substantial

bimodality and our adaptive thresholding appears preferable.
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CDR calculated for all genes vs CDR calculated for house keeping genes only
Stim Unstim

0.5=

—= Stim
Unstim

CDR_HK

CDR

Figure A.2: Scatter plot of normalized (scaled to unit variance and zero mean) CDR (cellular
detection rate) calculated from all genes vs. the CDR calculated from housekeeping genes ,
for stimulated A) and unstimulated B) MAIT cells. The estimated CDRs are linearly related

within each condition.
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Figure A.3: Amount of variability, measured as percent of null model deviance, attributed

to the CDR effect vs. the treatment effect, in each dataset. The CDR accounts for 5.2% of

the variability in the MAIT and 4.8% of the variability in the mDC data sets for the average

gene. Greater than 9% of the variability is attributed to over 10% of genes in both data sets.

CDR contributes the most variability to the discrete component in both data sets and more

so in the MAIT data than the mDC data.
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no CDR in TRUTH strong confounding moderate confounding no confounding

model
MAST no CDR
— MAST with CDR
—— limma no CDR
limma with CDR

£

strong confounding moderate confounding no confounding

> stimulation
@ V‘ Stim
I3}
©

Z Unstim

' ' ' ' ' ' ' ' '
0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

Figure A.4: Effect of CDR and confounding with treatment using different methods. A)
ROC curve comparing the effect of controlling for CDR in the MAST model. The solid
line is the median and the top and the bottom dashed line represents the 95 and 5 percent
quantile. The result indicates that inclusion of CDR improves the performance when there
is confounding between the CDR and stimulation and performs nearly the same when there
is no confounding or when there is no CDR effect in the data generating model. B) Density
plot of generated CDR values across cells using the three levels of confounding between the

stimulation and the CDR effects.
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correlation between CDR and weights of Shalek et.al.(2014)
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Figure A.5: Comparison of the empirical CDR (centered and scaled) and other correction

al., and RUV and SVA. The CDR and

methods, the cell by gene weights of Shalek et.

Shalek et. al. weights are correlated, in fact generally just shifted by a constant (panel A,

in a random subsample of genes, each in a different color), and the correlation coefficient is

nearly unity (panel B). The location shift between the CDR and Shalek et. al. weights would

be absorbed by the intercept term in the logistic regression. C) Scatterplots of CDR vs. the

first and second SVA and RUV components. Treatment groups are shown in different colors.

The first SVA and second RUV components are associated with CDR. D) In the mDC data,

the first SVA and RUV components are correlated with CDR.
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Figure A.6: Gene Ontology Enrichment Analysis using the GOrilla online tools for the set
of genes not detected as differentially expressed in the MAIT data set when the CDR is
included in the MAST linear model.
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Figure A.7: False discoveries in genes (A) and modules (B) based on numeric permutation

experiments for various methods. The unstimulated MAIT cells were permuted into two

subsets, and were tested for differential expression under the Hurdle model (MAST), Limma,

edgeR, and DEseq. In this scenario, any gene discovered is an a prior: false discovery, so the

number of false discoveries is plotted against the FDR-adjusted significance. We show the

average values from ten permutations.
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Figure A.8: The distribution of —log p-values in permuted datasets is compared to its
expected Exponential(1) distribution in (A) the hurdle model and (B) Normal-theory t-tests
on the same data. In the smaller MAIT dataset (N = 73) the Hurdle is inflated in the tail
of the test statistic, producing an additional .6 rejections per 1,000 tests at o = 1073. The
t-test is deflated, yielding .5 too few rejections per 1,000 tests at o = 1073
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Figure A.9: Proportion of immune-specific GO modules amongst all GO modules enriched
in differentially expressed genes in the MAIT data set. Immune-specific GO modules were
defined to be terms with experimental evidence codes within the Biological Process ontology
that were descendants in the GO graph of the Immune System Process term. Differential
expression of genes was determined at three increasing false discovery rate thresholds, and
then GO enrichment in differentially expressed genes was tested using the hypergeometric
distribution, calling significant enrichment at the 1% FDR level. Inclusion of the CDR in the
model for differential expression increases the rate of detection of immune specific modules
for the MAST and Limma methods. Among models that do not adjust for CDR, SCDE
has highest specificity, but is dominated by MAST under CDR adjustment (SCDE cannot

adjust for covariates, so was omitted from the CDR models).
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set Unstim | Stim
signaling in T cells (IT) (M35.1) 1.23 | 2.10
chaperonin mediated protein folding (I) (M204.0) 0.67 | 1.48
respiratory electron transport chain (mitochondrion) (M238) 0.99 | 1.04
AP-1 transcription factor network (M20) 1.54 | 1.00
proteasome (M226) 1.00 | 1.80
cell cycle and growth arrest (M31) 1.42 | 0.78
chaperonin mediated protein folding (II) (M204.1) 0.81 | 1.60
purine nucleotide biosynthesis (M212) 0.70 | 1.57
spliceosome (M250) 1.10 | 1.30

Table A.2: Standard deviations of module scores for stimulated and non-stimulated MAIT

cells
A B 110000 ¢
010°10°10%10 ao? 10° 10* 10
Unstim Stim 900001 ) © Unstim Stim
] 10° diti Z 100
by 1‘: - ) < cont IIOIII E 0
o “ - § 70000~ | unstim A 10 0.2% | 0.2% 18% | 15%
él = 5 = » stim ‘f 10° -
8 133' - 8
. T—=d 2| © 05 —acameEs e i
8 50000 c %99 0.59% 44%:"“ 39%
v
“ :
30000

010%10*10*10 40? 10° 10* 10
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<G575-A> VA72 FSC.A <R710-A> GZMB

Figure A.10: Post-sort experiments via flow cytometry show that the sorted cell populations
were over 90% pure MAITs ( Figure A), and exhibited a change in cell size upon stimulation
(Figure B) and that up to 44% of stimulated MAITSs did not respond to cytokine stimulation
(Figure C).
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Figure A.11: Gene set enrichment analysis of the mDC data set, LPS stimulated cells using
the BTM (blood transcriptional modules) of Li et. al. Decreased expression for AP-1
transcriptional network genes is observed after LPS stimulation, consistent with previous
findings in the literature |[de Wit et al., |1996]. Type-1 interferon response and antiviral IFN
modules are among the most significantly enriched and are consistent with the findings of

the original publication [Shalek et al., [2014].
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Figure A.12: Number of modules discovered plotted against FDR-adjusted significance of
the module. MAST-based GSEA detects more modules than other methods.
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Figure A.13: Comparison of raw expression values (log, TPM) and coefficients estimates

(Unstimulated as reference) of modules identified as differentially expressed using MAST

GSEA but not with CAMERA. Differences in the expression profile are evident, however

CAMERA failed to detect them. A) Violin plots showing the expression of genes in the

“T-cell surface signature” module. B) Model coefficient estimates for the genes in the ‘T-cell

surface signature module from GSEA, with 95% confidence intervals, from the discrete and

continuous components of the model. C) Violin plots showing the expression of genes in

the “chaperonin mediate protein folding” module. D) Model coefficient estimates for the

genes in the chaperonin mediate protein folding module from GSEA, with 95% confidence

intervals, from the discrete and continuous components of the model.
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Figure A.14: The six stimulated MAIT cells that did not exhibit an expression profile indicative of activation are shown
in comparison to A) other stimulated MAITs and B) unstimulated MAITs. Differentially expressed genes between
these six cells and the stimulated but activated and non-stimulated cells are shown, identified using MAST at a g-value
of 15% and fold change threshold of at least 2. Panel C) shows PCA of the MAITSs based on the differentially expressed

genes. 13 selected genes with largest loadings discriminating between the three classes of cells are shown.
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Figure A.15: PCA of the model residuals of LPS stimulated cells using the genes in the core
antiviral module identified in [Shalek et al.| [2014]. The two “outlier” cells evident at the 1h
timepoint correspond to the “early marcher” precocious cells described previously. These
results show that these cells exhibit coordinated co-expression of genes in the core antiviral

signature at the single-cell level.
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Figure A.16: Co-expression plot for PAM (synthetic mimic of bacterial lipopeptides) stim-

ulated cells of cells in the mDC data. Panel A in each figure shows principal component

analysis (PCA) of the model residuals using the top 100 differentially expressed genes. Cells

are faceted by time, which is correlated with the first principal component. Panel B shows

heatmaps of the pairwise correlations between genes in the model residuals across cells at each

timepoint. The order of genes in the heatmaps is based on clustering at the 6h timepoint.
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Figure A.17: Co-expression plot for PIC (viral-like double-stranded RNA) stimulated cells

of cells in the mDC data. Panel A in each figure shows principal component analysis (PCA)

of the model residuals using the top 100 differentially expressed genes. Cells are faceted by

time, which is correlated with the first principal component. Panel B shows heatmaps of

the pairwise correlations between genes in the model residuals across cells at each timepoint.

The order of genes in the heatmaps is based on clustering at the 6h timepoint.
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