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Professor Robyn L. McClelland

Biostatistics

In the modern era, cardiovascular biomarkers are often measured in the presence of

medication use, whereby the observed value is different than the underlying untreated

value for participants on medication. However, for certain problems, the natural history

of the biomarker that would have occurred in the absence of medication use is of greater

interest than the observed value. In observational data, medication use is nonrandom

in that participants on medication tend to have higher underlying biomarker values

than participants off medication. That is to say that medication use is endogenous.

When faced with endogenous medication use, traditional methods such as adjustment

for medication use in linear regression models are inappropriate. The goal of this

dissertation is to develop methods to estimate associations between predictors of interest

and biomarker outcomes in the presence of endogenous medication use.

First, we focus on methods for use in a cross-sectional setting. Heckman’s treatment

effects model, as suggested by its name, has historically been used to estimate the effect

of medication use on a continuous outcome. In this research, we take a definitive de-

parture from the historical use of the model, in that we utilize the Heckman framework

in order to estimate associations between exposures and underlying (off-medication)

outcomes, regarding the effect of medication on the biomarker as a nuisance rather

than a parameter of interest. We show that the treatment effects model is fairly ro-

bust to departures from several of its main assumptions. One assumption to which the



treatment effects model is particularly sensitive, however, is the assumption of uniform

treatment effects. In particular, the expected effect of medication use on the biomarker

is presumed to be constant across participants (an assumption that is often thought

to be unrealistic in practice). We extend the treatment effects model to allow effect

modification, or “subgroup-specific” treatment effects.

The second major aim of this dissertation pertains to developing methodology to

address endogenous medication use when repeated measures are available on subjects

over time. Very little work has been done to address the challenges of endogenous

medication use in longitudinal data. For certain types of probit analyses, existing

methods invoke standard results on M -estimation theory to construct asymptotically

valid estimates of marginal parameters. As cardiovascular biomarkers of interest show

strong within-subject correlation over time, there is much efficiency to be gained by

modeling that correlation. We seek to understand situations in which accounting for

correlation can be advantageous (e.g., in the setting of deterministic covariates), and

elucidate efficiency gains with specification of a working covariance.

These two objectives primarily target bias reduction for the challenge of addressing

endogenous medication use in estimating biomarker associations. Improving estimation

of these associations can help us better understand underlying biological mechanisms

of disease and better motivate future clinical research.
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Chapter 1

INTRODUCTION

Biomarkers can be useful tools for understanding subclinical cardiovascular disease.

They can be used to inform physicians how to optimally treat their patients in order to

prevent clinical cardiovascular disease, and/or to monitor disease progression over time.

They can also be used to help quantify patients’ risk of future adverse cardiovascular

events such as stroke or myocardial infarction. High values of systolic or diastolic blood

pressure (SBP and DBP, respectively), fasting plasma glucose (FPG), and low-density

lipoprotein (LDL), are all indicative of underlying cardiovascular disease. Disease states

are in fact defined by clinicians in terms of these biomarkers using specific cut-off points.

For example, hypertension is typically defined as a SBP of ≥ 140 mmHg or a DBP of

≥ 90 mmHg (Chobanian et al., 2003).

Hypertension and hyperlipidemia are highly prevalent in the United States, at 31.7%

and 29.1%, respectively (Nwankwo et al., 2013; Mozaffarian et al., 2015). Additionally,

diabetes is also common in the United States, at a prevalence of 9.3% in 2012 (National

Diabetes Statistics Report, 2014). A high observed value of any one of these biomarkers

will often prompt some sort of intervention or management strategy in order to reduce

the biomarker value, and in turn, risk of adverse cardiovascular events. Medication

is primarily the strategy used, specifically targeting the biomarker. Thus, in modern

observational studies, many participants are on medication to to reduce their biomarker

value, such that the observed value is different than the underlying value that would

have occurred in the absence of treatment. Medication is taken in a non-random fashion,

in that participants with higher underlying biomarker values tend to be more likely to



2

be on medication than participants with lower underlying biomarker values. That is to

say that medication use is endogenous, and therefore non-ignorable in problems that

seek to use the untreated biomarker values.

For association studies involving certain types of exposures (e.g., single nucleotide

polymorphisms, age, gender, and race category), the natural history of the biomarker

that would have occurred in the absence of medication use is often of greater interest

than the observed value. For example, we might be interested in estimating the differ-

ence in mean SBP values across race categories (Kramer et al., 2004), or the difference

in mean LDL cholesterol values between those with a particular gene mutation and

those without it (Chen et al., 2009). In studies of populations that are heavily treated

(e.g., most modern cohort studies), medication use acts as a contaminant for estimating

the association, such that simple approaches (e.g., ordinary least squares linear regres-

sion) do not characterize the association of interest. Despite this, these approaches are

widely used in the literature. Estimators derived from these sorts of simple approaches

estimate parameters that are heavily dependent on both medication use prevalence in

the sample and the magnitude of the medication’s effect on the biomarker. If our goal

is to better understand underlying biological processes, it is of greater interest to study

the association between these predictors and the biomarker outcomes that would be

observed in the (typically counterfactual) setting in which no participants are on med-

ication. That is to say that we are most interested in what we refer to as the “natural

history association” between the predictor and the biomarker. This parameter is most

useful to us in identifying underlying differences in biomarker values between groups,

or across values of a predictor.

Conclusions regarding whether certain subgroups of patients tend to have riskier

biomarker values can motivate subsequent clinical research, for example, to evaluate

whether prophylactic medication use in certain sub-populations reduces the risk of ad-
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verse cardiovasvular events. Patients with diabetes, for example, are often placed on

hypolipidemic drugs precisely for this reason (Choesterol Treatment Trialists’ Collab-

orators, 2008). Insights surrounding the effectiveness of prophylactic drug use can be

elucidated exclusively with well conducted randomized controlled trials (RCTs). How-

ever, as RCTs are often motivated by results from observational studies, it is of interest

to develop models that provide us with more accurate insights about underlying asso-

ciations in order to reduce the number of misleading results from observational studies

and, in turn, reduce futility rates from clinical research.

For the purposes of illustrating the importance of the natural history associa-

tion, consider our motivating example in which we wish to quantify the difference

in mean LDL between patients with and without a particular gene mutation, using

cross-sectional observational data. Suppose we regress participants’ observed LDL on

their observed allele status (wild-type vs. mutant). Particularly in studies of older par-

ticipants, many are likely to be on lipid-lowering drugs. If the allele type, a primordial

exposure, is associated with the underlying LDL value, this simple regression approach

will mischaracterize the influence of the allele on LDL. Hence, the estimand for this

näıve analysis does not provide insight into whether the allele of interest is, in the most

fundamental sense, associated with higher values of LDL. Instead, it instead estimates

the expected difference in observed LDL between two randomly selected people from

the population differing in their allele status, ignoring the fact that the on-medication

participants would have tended to have a higher LDL value off medication. In order

to understand how a predictor of interest is naturally associated with a biomarker, we

need to somehow obtain information on the underlying, off-medication biomarker value.

Of course, such an outcome measure is not observable for participants on medication,

as it is masked by the effects of medication use. Figure 1.1 illustrates how endogenous

medication use could impact estimation of the difference in means in this example.
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Figure 1.1: A simple illustration of endogenous medication use. In this scenario, any
participant who would have had an underlying biomarker value exceeding 140 was on
medication at the time of observation. The observed data points are shown in blue, and
the (counterfactual) underlying biomarker is in red. The difference in mean observed
biomarkers between groups is approximately 10 units, whereas the difference in the
mean underlying biomarkers between groups is 20 units.

The purpose of this dissertation is to develop methodology in order to account for

endogenous medication use when seeking to estimate the natural history association

using observational data. First, we focus on the commonly encountered setting in which

only cross-sectional data are available. Measurements on certain variables may be taken

exclusively at baseline, for example, if data on those variables are time-consuming,

costly, or inconvenient to obtain. Safety concerns may also preclude the possibility of

ethically obtaining repeated measures. In addition, it may be difficult to obtain follow-

up data on certain populations (e.g., the homeless), such that cross-sectional data are

all that are available. Based on our methodology development in cross-sectional data,

we then wish to extend our models to accommodate settings in which repeated measures

are available on subjects over time.
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Given limitations of the data we collect, we are faced with the challenge of making

potentially untestable assumptions about the data generating mechanism. This is par-

ticularly the case in a cross-sectional setting. Features such as (i) the mechanism by

which on-medication participants differ from off-medication participants, and (ii) the

magnitude/distribution of the effect of the medication are essentially ignored by tradi-

tional approaches. Ordinary least squares (OLS) based approaches such as performing

linear regression only on off-medication participants (excluding those on medication),

or adjusting for medication use as though a confounder, rely on highly unrealistic as-

sumptions about these aspects of medication use. Although the limitations of these

simple approaches have been documented (Tobin et al., 2005), these methods are still

widely used in biomarker association studies.

Modifications to these standard approaches have been proposed in order to handle

medication use in observational data. Tobin et al. (2005) proposed a censored normal

regression approach for cross-sectional data that relies on non-informative censoring,

an assumption unlikely to be met in the scenario we have described. Wang and Fang

(2011) propose an inverse probability-of-treatment weighting (IPTW) approach for use

when two measurements are available on each participant and medication use occurs

after baseline in at least a subset of the participants. This approach could näıively

be modified for use in a cross-sectional approach. While the proposed IPTW approach

does not presume having observed the exact underlying off-medication biomarker value,

it relies on knowledge of a dichotomized version of the underlying biomarker (“high”

or “low”) which is ostensibly unobservable in cross-sectional data, unless, for example,

external information could be obtained (e.g., from self reported status or prior medical

records). Use of information from new medication users to improve propensity score

models has been proposed to handle confounding by indication when estimating treat-

ment effects (Jorgensen et al., 2013). While simple OLS approaches are known to result
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in bias, these slightly more sophisticated approaches also rely on stringent assumptions

about medication use that are likely violated.

Instrumental variable based approaches are also known to be effective in han-

dling endogenous medication use in certain settings (Bowden and Turkington, 1984;

Wooldridge, 2013), and have been applied/suggested for use in pharmacoepidemiologic

studies (Brookhart et al., 2006). Often, such approaches are applied to estimate the

effect of medication use on a biomarker, but these approaches also provide consistent

estimates of the natural history association in the presence of a true instrument. The

standard one-stage and two-stage instrumental variable approaches are appealing due

to straightforward implementation, but they rely on the existence of an instrument

(i.e., a single variable known to be associated with medication use, but not associated

with the biomarker). In randomized trials, one may be able to find such a variable.

For example, if one wants to estimate the effect of an intervention on a continuous

outcome of interest in a setting where some study participants are non-adherent to the

randomized group, one could analytically justify using randomized group as the instru-

ment and believe that such a variable is not associated with the underlying biomarker.

In the setting of observational data, finding a variable with such properties has been

exceedingly difficult. If such a variable exists, consistent estimates of the natural his-

tory association can be obtained, although the average effect of medication use on the

outcome has historically been the parameter of interest.

Heckman (1978), proposed what he referred to as the “hybrid model with struc-

tural shift,” better known as the Treatment Effects Model (TEM). In short, the TEM

jointly models the expected value of the biomarker as a linear function of predictors,

together with an underlying probit model that describes the probability of medica-

tion use (conditional on observable covariates that may be distinct from those in the

biomarker model). As suggested by the name, this model was proposed to estimate the
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population-average effect of an intervention (in this case, medication use) on an out-

come (in this case, a biomarker) when the intervention is endogenous. Just as with the

instrumental variables approach, consistent estimates of the natural history association

can be obtained from this method, despite the fact that this is not the historical use.

In this sense, we regard the treatment effect as a nuisance rather than a parameter

of interest. Hence, it is of interest to evaluate the extent to which Heckman’s TEM

serves as a useful alternative to existing approaches in order to achieve bias reduction

for estimating associations between biomarkers and exposures in a cross-sectional, ob-

servational setting when endogenous medication use is present. As we are taking such

a clear departure from what has been done in the literature, there is an unmet need

to evaluate the sensitivity of the TEM to departures from its assumptions when esti-

mating the natural history association. Moreover, the subsequent model extensions we

develop will seek to address challenges that are motivated from this alternative use of

the model.

Since the TEM was originally designed to estimate a population-average treatment

effect, it relies heavily on the assumption that the effects of medication do not vary

in expectation across covariates. In practice, the expected magnitude of a treatment

effect typically varies with observable covariates such as genetic factors, demographic

variables, medication class, or dose. If certain covariates are known to be associated with

the effects of medication use, Heckman’s TEM systematically over- or under-corrects the

observed biomarker for certain subgroups of on-medication participants. We expect, of

course, that this is most problematic when an effect modifier is an exposure of interest in

the biomarker model. It is, however, unclear how this sort of effect measure modification

impacts estimation of the natural history association when the source of heterogeneity

is related only to the probability of medication use, or when the effect modifiers are

only associated with the effects of medication use. There is hence an unmet need to
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extend Heckman’s TEM to accommodate subgroup-specific effects in order to provide

better estimates of the natural history association using cross-sectional data.

Endogenous medication use also poses challenges when repeated measures are avail-

able on participants over time. In recent years, age-trend modeling of cardiovascular

biomarkers has also received a great deal of attention in the literature in longitudi-

nal data (Singh et al., 2012; Gurven et al., 2012; Carroll et al., 2005; Allen et al.,

2014). However, results from these studies are based on simple approaches similar to

those näıvely used in cross-sectional data. These standard approaches are not sufficient

for estimating the natural history association, as they do not adequately address the

challenges that arise from endogenous medication use. When repeated measures are

available on study subjects, as in the case of studies seeking to evaluate biomarker

age trends, there is no well-documented analogue of the TEM in order to account for

endogeneity. The approach suggested in the literature for similar probit-response type

models in order to accommodate correlation is to first fit the cross-sectional model to the

entire data set (ignoring dependence altogether) to obtain a parameter estimate, and to

then use a cluster-based robust variance-covariance estimator (Wooldridge, 2011). This

is the approach implemented in modern software such as Stata (StataCorp, College

Station, TX), and it is very similar in spirit to the approach of generalized estimating

equations (GEE) with working independence (Liang and Zeger, 1986).

Although this approach provides a valid estimation procedure, there is efficiency

to be gained from exploiting within-subject correlation in the biomarker; for cardio-

vascular biomarkers in particular, the intra-subject correlation over time is often very

high. As will be made apparent, extending the TEM by fully specifying correlation in

the underlying biomarker and in medication use over time is analytically intractable

as it demands a computational approximation to high order integrals. We propose

partial specification of the correlation structure for estimation of associations in longi-
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tudinal data, bypassing the computational challenges associated with full specification

of a covariance model. This approach provides a computationally tractable alterna-

tive to fully parametric likelihood approaches, while still accounting for correlation in

the biomarker. Given the known limitations associated with using working correlation

structures other than independence in marginal models (e.g., generalized estimating

equations) when covariates are time-varying and non-deterministic, specifically focus-

ing attention to settings in which it is appropriate to model correlation in the biomarker

should be exploited is warranted.

The remainder of this dissertation is organized as follows. Chapters 2 through 5

focus specifically on understanding and developing methods for use in cross-sectional

data. Chapters 2 through 4 specifically expand upon details surrounding use of the TEM

for the purposes of estimating the natural history association (elaborating on details

presented by Spieker et al. (2015)). Chapter 5 focuses on accounting for subgroup-

specific effects; a substantive portion of the content is under review (Spieker et al.,

2016). In Chapter 2, we provide background for models which have been previously

used in the setting of nonrandom medication use, and examine analytically why they

are inadequate in our setting. The failure of simple approaches in this setting has

been documented to an extent, but we will explore bias in greater depth (Tobin et

al., 2005). Instrumental variable approaches have been examined thoroughly and have

well understood challenges, particularly in observational data. What has not been

documented as well is the failure of slightly more sophisticated methods that have

been previously presented as addressing nonrandom medication use such as inverse

probability weighting and censored normal regression.

In Chapter 3, we specifically focus on providing background information on Heck-

man’s TEM. Devoting an entire chapter to this one particular model is justified for two

reasons: (i) doing so will set the stage for virtually all of the subsequent methods devel-
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opment in this dissertation, and (ii) the seminal paper Heckman, 1978 focuses almost

entirely on estimation of the population-average treatment effect, in contrast to out

goal of estimating the natural history association. We present the modeling framework

for this alternative purpose, and show how Heckman’s TEM can accommodate depen-

dence of medication use on the underlying biomarker. We also propose a sandwich

based variance-covariance estimator. In Chapter 3, we also empirically compare Heck-

man’s TEM to alternative approaches by simulation in order to elucidate the trade-off

between bias reduction and efficiency cost in the setting of endogenous medication use.

We will further compare Heckman’s TEM to the classic instrumental variables esti-

mator to demonstrate that Heckman’s TEM does not demand that an instrumental

variable exists in order to estimate the natural history association. Bias reduction will

be of primary interest.

In Chapter 4, we aim to better understand the settings in which Heckman’s TEM

performs well, which includes a thorough evaluation of its robustness to departures from

assumptions. We evaluate through several simulation studies how sensitive Heckman’s

TEM is to departures from its main assumptions, including non-normally distributed

errors (distributions with skewness and heavier tails than the normal distributin), non-

differential misclassification of the predictor of interest, probit-model misspecification,

and non-uniform treatment effects. Our finding on sensitivity to departures from the as-

sumption of uniform treatment effects motivates an extension, which will be the subject

of Chapter 5.

In Chapter 5, we extend Heckman’s TEM to allow for subgroup-specific treatment

effects. Similar to Chapter 3, we are interested in comparing this model extension to

alternatives. Parameters that describe effect modification are not the primary focus

of this research, although we do present some results verifying that such parameters

are estimable. Instead, our main goal is to understand which types of effect modifiers
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(e.g., predictors associated with the underlying biomarker, with medication use, or

with neither) are most helpful to accommodate to achieve bias reduction. We view

this modification as a way to correct resulting bias when the assumption of uniform

treatment effects is violated. We will also propose a Wald-based statistic to test for the

presence of effect modification.

At this point, we transition out of the cross-sectional setting and into the setting

where repeated measures are available over time. In Chapter 6, we provide a brief back-

ground of existing models for longitudinal data, including the “working independence”

approach of Wooldridge (2011) for related probit models, in which an approach simi-

lar to GEE is used. We then demonstrate why full specification of a likelihood model

results in a computationally intractable estimation problem, and proceed to devise a

compromise between the working independence approach and fully parametric specifi-

cation. We will proceed to prove a robustness property that allows consistent estimation

of the natural history association even when the correlation structure is not correctly

specified. A number of simulation studies will be conducted to further elucidate the

advantages of modeling correlation where it exists.

In Chapter 7, we illustrate how our developed methods can be used in real data with

a series of examples from the Multi-Ethnic Study of Atherosclerosis (MESA), specifically

focusing on LDL cholesterol (Bild et al., 2002). In keeping with the original objectives

of MESA, we will consider racial differences in subclinical cardiovascular disease as well

as age and gender associations. First, we will utilize the Exam 1 (baseline) data to

compare cross-sectional models as developed in Chapters 1-5. Then, we will present

results from an analysis for estimating age trends in longitudinal data.

Finally, we provide a summary of our findings with in Chapter 8, and include a

discussion of important conclusions and implications of our main results in both the

cross-sectional and longitudinal models. We describe several potential ways these meth-
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ods could be expanded and extended, and discuss directions for future research. We

additionally attach the salient programming code for the main models derived, so that

can be used by those interested in this type of research and/or those who wish to adopt

these methods for application to real data.
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Chapter 2

BACKGROUND: SIMPLE REGRESSION MODELS FOR
CROSS-SECTIONAL DATA

The task of estimating the association between an exposure and a biomarker out-

come can be rather simple in settings where no participants are on medication. Gen-

erally, in this setting, approaches such as OLS linear regression can be sufficient to

estimate linear trends. When medication use is random (for instance, in the setting of

a randomized controlled trial), simple modifications such as adjustment can be suffi-

cient to address medication use. Among the simplest modifications to OLS that have

been applied in observational data include: (i) excluding on-medication participants

from analysis, and (ii) adjusting for medication use as though a confounder. These

OLS approaches together make assumptions that are generally highly unreasonable if

medication use is not random, as it would be in a placebo-controlled experiment. The

adjustment method appears to be most widely used in practice for estimating asso-

ciations between predictors of interest and biomarker outcomes (Brand et al., 2003;

Matsubara et al., 2001; O'Donnell et al., 1998; Schunkert et al., 1998), although ig-

noring (Iwai et al., 2001; Sethi et al., 2003) and excluding on-medication participants

(Rice et al., 2000) are also occasionally implemented in this setting.

Inverse probability weighting (IPW) can be implemented to address certain types

of missing data and can achieve bias reduction when longitudinal data are available

(Hernán et al., 2004; Robins et al., 2000). One might in fact think to apply an IPW-

based technique to modify approaches like excluding on-medication participants or ad-

justing for medication use. We refer to an IPW approach for the former technique as
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“inverse probability of censoring weights” (IPCW) and one for the latter approach as

“inverse probability of treatment weights” (IPTW). The goal with these approaches is

to attempt to “up-weight” participants who are less likely to be observed in the sample.

Although IPW approaches were generally not designed for use in cross-sectional data,

they do on occasion appear in the literature (Huynh et al., 2014). Indeed, advantages

from IPW can also be seen in cross-sectional data when there is strong effect measure

modification (Delaney et al., 2009).

Censored normal (CN) regression is another simple likelihood-based approach that

has also been proposed to address medication use (Tobin et al., 2005). In this model,

the outcome for participants on medication are presumed to be right-censored such

that their true underlying biomarker values are modeled as lying somewhere above the

observed value. The censored normal model is related to the Tobit model (Tobin, 1958;

Amemiya, 1984).

Another method that has been devised to address endogenous medication use is

the instrumental variables approach (Wooldridge, 2013; Bowden and Turkington, 1984;

Brookhart et al., 2006), which relies on the existence of some variable that is associated

with medication use, but not with the outcome of interest. These methods have been

successful when one has access to an instrumental variable, but can be sensitive to

departures from its unverifiable assumptions.

In this chapter, we outline the approaches described above, all of which have been

previously applied in order to estimate associations between risk factors and biomarkers.

We attempt to gain an intuition for the reasons they are inadequate. Specifically,

we will illustrate analytically and heuristically their inappropriateness in the setting

of endogenous medication use. In our discussion, we emphasize the point that bias

from these approaches depends very heavily on characteristics of medication use that

will ultimately need greater consideration in subsequent methods development: the
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magnitude/distribution of the effect of the medication, and the prevalence of medication

use. Other metrics of accuracy such as mean squared error (MSE) will be helpful and

will be addressed empirically and in greater detail in subsequent chapters, particularly

when conducting simulation studies. In turn, this chapter will set the stage for the rest

of the dissertation, in which we will focus on developing methodology under one specific

framework in order to address the unmet needs for estimating associations of interest.

2.1 Notation

Recall that our parameter of interest is the natural history association between some

biomarker outcome and some predictor of interest–that is, the association between the

two variables in the absence of medication use. Since many study participants may be

on medication, we can think of this as a missing data problem, where the underlying off-

medication biomarker value happens not to be observable in on-medication participants.

Throughout this dissertation, let i = 1, . . . , N index study participants, each with

observed medication use status zi, (1 if on medication, and 0 if off medication). Then,

let yi(zi) denote the biomarker of interest under medication use status zi (a potential

outcome). In this case, yi(0) denotes the underlying, off-medication biomarker value

for subject i, and is the outcome of interest to us. Let x i denote a (p + 1)-vector of

predictors of interest (including a 1 to allow for an intercept), and β = (β0, . . . , βp)
T

the corresponding vector of unknown regression coefficients, the parameter of interest

in the following linear regression model: yi(0) = x Ti β + εi. One could fit this with

ordinary least squares if y(0) were observed for all i = 1, . . . , N ; however, yi(0) is not

observable if zi = 1. Let X denote a design matrix of predictors for all participants;

let Z and Y denote the vectors for medication use indicators and observed biomarker

values, respectively.

We do not at this point make distributional assumptions about the error terms:

only that they are independent, of mean zero and finite variance. In this setting,
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y(0) is only observable if zi = 0, so β may not be directly estimated. Instead, yi =

yi(0)(1−zi)+yi(1)zi is observed. Let δ be an unknown real-valued parameter describing

the effect of the medication on y(0). We will make clear the assumptions made about

medication use by each each method. At times in this chapter, we will make the

assumption that yi = yi(0)−δzi for the purposes of demonstration, an assumption that

will actually become necessary in Chapter 3 (but we will subsequently relax later in the

dissertation).

2.2 Least Squares Linear Regression

We outline three basic approaches that one could take that make use of OLS linear

regression based on the observed outcomes. The first is to simply fit the mean model

with the observed biomarker as the outcome and the observed exposures of interest

as the predictors: namely, the mean model E[y|x ] = x Tβ. This approach completely

ignores the medication use and its mechanism (henceforth referred to as the “Ignore”

approach). In this case, β̂Ignore solves the estimating equations:

GN(β) =
N∑
i=1

x i(yi − x Ti β) = 0. (2.1)

In the setting where yi = yi(0) − δzi (specifically, when the effect of the medication is

uniform across participants on medication), the bias can be computed directly:

Bias(β̂Ignore) = EX,Z,Y[β̂OLS]− β

= EX,Z[(XTX)−1XTEY|X,Z[Y]]− β

= EX,Z[(XTX)−1XT (Xβ − δZ)]− β

= −δEX,Z[(XTX)−1XTZ]

= −δEX[(XTX)−1XTE[Z|X]]

= −δEX[(XTX)−1XTP (Z = 1|X)].

(2.2)
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This estimator is consistent for some parameter βIgnore which is not, in general, the

same as β. Since medication use is generally not random, errors may not be of mean

zero, conditional on x . So, trivially sufficient conditions for unbiasedness include one

or both of the following: (1) δ = 0, and (2) zi = 0 for all i. In general, this bias

cannot be assumed to be zero. It is worth noting that the largest problem in this

bias term is the fact that δ is not known. If information on δ were available, one

could apply an approximate bias correction by predicting P (zi = 1|x i) via, say, logistic

regression. However, if δ were thought to be known with great precision, one might

simply impute yi(0) with the observed yi plus the presumed value of δ for all on-

medication participants. The major challenge with this approach, although it has been

considered (Tobin et al., 2005), is that results from randomized trials in which estimates

of δ are obtained may not generalize to the populations studied in cohort studies. Note

that βIgnore has a different interpretation than β: specifically, βk,Ignore can be interpreted

as the difference in expected observed biomarker values for two participants differing in

xk by one unit, but having the same value for all other predictors.

Another approach involving OLS linear regression is to exclude on-medication par-

ticipants from analysis (we refer to this as the “Exclude” method), such that the fitted

mean model is E[y|x , z = 0] = x Tβ. Here, β̂Exclude solves the estimating equations:

GN(β) =
∑
zi=0

x i(yi − x Ti β) = 0, (2.3)

so that we restrict estimation to observations for which zi = 0. Under the assumption

that E[y(0)|x i] = x Ti β, the errors cannot be presumed to be of mean zero conditional

on the predictors of interest if medication use depends upon the underlying biomarker:

E[εi|x i] 6= 0. In short, this creates a problem of selection bias. This estimator described

is consistent for some parameter βExclude, which may be distinctly different from β. Of

note is that if medication use is unrelated to the underlying biomarker, residuals are still
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of mean zero conditional on the exposures. The bias here cannot be computed analyt-

ically without more specific assumptions on the data generating mechanism. However,

we note that the interpretation of the parameter βExclude is yet again different from the

interpretation of β: βk,Exclude can be interpreted as the difference in expected observed

biomarker values for two randomly sampled participants not on medication, differing in

xk by one unit, but having the same value for all other predictors. The target parameter

(namely the natural history association) is such that we do not want to condition on

medication use status.

The second modification of OLS that we consider is to adjust for medication use

as though a confounder (we will call this the “Adjust” approach). Obtaining β̂Adjust

amounts to fitting the mean model E[y|x , z] = x Tβ + δz, so that β̂Adjust solves the

estimating equations

GN(β) =

[
X Z

]T Y−
[
X Z

]β
δ


 = 0. (2.4)

One intuitive way to understand why this model cannot be expected to perform well

is by generalizing directly from the exclusion model. For the purposes of this explana-

tion, consider the hypothetical estimator obtained from only including participants on

medication, β̂Include (which is consistent for some parameter βInclude). The estimating

equations for this hypothetical estimator would be given by:

GN(β) =
∑
zi=1

x i(yi − x Ti β) = 0. (2.5)

This estimator solving these equation will tend to be biased for the same reason that

β̂Exclude is: the errors are no longer of zero mean. The bias of β̂Adjust can be understood

by the following decomposition:
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E[β̂Adjust] = Ez[Ex |z[β̂Adjust]]

= Ez[Ex |z[β̂Exclude1(z = 0) + β̂Include1(z = 1)]]

= Ez[βExclude1(z = 0) + βInclude1(z = 1)]

= P (z = 0)βExclude + P (z = 1)βInclude.

(2.6)

This quantity is, in general, not equal to β since both βExclude and βInclude are biased.

Note that βk,Adjust can be interpreted as the difference in the expected observed outcome

between two randomly sampled participants differing in xk by one unit, but of the same

medication use status and having equal values for all other predictors. If medication

use is influenced by y(0), then medication use does not serve as a confounder for the

association of interest (that between x and y(0)) in the classical sense (Pearl, 2009). In

particular, medication use is not a cause of the underlying biomarker. The OLS linear

regression approaches described generally presume medication use not to be influenced

by the underlying biomarker, an assumption highly unlikely to hold in observational

data. As an illustration of the failure of näıve ordinary least squares approaches, see

Figure 2.1, which is based on a single realization of a data generating mechanism in

which medication use depends upon the underlying biomarker.

Figure 2.2 depicts a directed acyclic graph (DAG) summarizing a reasonable data

generation mechanism for cross-sectional observational data with endogenous medica-

tion use. We acknowledge the existence of some variables associated with medication

use, w (with association α, in a sense that will later be made more explicit, and al-

lowing an intercept). Hence, let W denote a corresponding design matrix of these

covariates. Additionally, we note that the variables x and w may share some common

covariates. Some models (e.g., instrumental variables) do not permit complete overlap,

which will be made apparent shortly. Table 2.1 summarizes the notation of covariates

and parameters defined so far.
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Figure 2.1: Illustration of the failure of näıve OLS linear regression approaches in the
setting of endogenous medication use. Observed values for off-medication participants
are shown as gray circles; on-medication participants are shown in blue. The observed
(◦) and the untreated (×) values are connected with a line segment. The gray line
signifies the true association (β = 2); the blue lines show results from the three näıve
regression models: Ignore (β̂ = 1.01), Exclude (β̂ = 0.55), and Adjust (β̂ = 0.92).

2.3 Inverse Probability Weighting

IPW, along with other propensity score methods, can correct certain types of selection

bias in a longitudinal setting by up-weighting data for observed participants who had a
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Figure 2.2: DAG illustrating relationship between covariates and outcomes. Solid indi-
cates observed variables, dashed indicates partially observed variables. Note that the
covariates of x and w need not be unique, as indicated by the curves lines connecting
them. The arrow between x and y(0) (red) corresponds to the association of interest.

Table 2.1: A summary and description of the notation we will be using throughout this
dissertation.

Description

Covariates
x predictors of the underlying biomarker
w predictors of medication use status
z medication use status (binary)
y(0) underlying biomarker
y vector of observed biomarker values

Parameters
β natural history association between x and y(0)
α association between w and z

low probability of being observed, thus allowing them to represent unobserved partici-

pants. Both on-medication participants with low risk covariates and the off-medication

participants with high risk covariates are least likely to be observed. An approach was

developed by Wang and Fang (2011) to estimate β when pre-treatment values were ob-

servable in study participants. This approach relies on medication use initiation taking

place post-baseline, and also assumes that the underlying biomarker “category” (high
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or low) is observable, even though the underlying biomarker value itself is not. This

approach could näıvely be applied in a cross-sectional setting. In the cross-sectional

setting, IPW can be described by the following two-stage procedure:

• Fit a logistic model using the binary indicator of medication use as the response,

and known predictors of medication use as the predictors; obtain subject-specific

probability-of-medication-use predictions (conditional on covariates).

• Fit a weighted least squares (WLS) linear regression model (choosing from either

the exclude method or adjustment method) with weights given by the inverse of

the predicted probablities of belonging to the observed medication group.

The Exclude approach with the weights as described above is referred to as “inverse

probability of censoring weighting” (IPCW) if we think of yi(0) as being “censored,”

although the assumption that yi(0)−yi ≥ 0 if zi = 1 is not truly invoked in this setting.

Re-weighting the Adjust method is referred to as “inverse probability of treatment

weighting” (IPTW), which makes use of all observed data.

Stabilizing weights according to the unconditional probability of treatment can

sometimes be of value in bias reduction, and so we choose to incorporate this fea-

ture (Cole et al., 2008). One additional important modification to this traditional IPW

procedure is to only include variables that are associated with both medication use and

the biomarker in Stage 1 to generate predicted probabilities. This is understood to

produce better behavior than simply placing all covariates associated with medication

use in the weighting model (Lefebvre et al., 2008). Let W∗ denote the design matrix

W restricting to covariates that also predict the underlying biomarker, and α∗ the

corresponding parameter vector. Then, incorporating these two modifications, IPCW

can be summarized by the following two-stage approach:
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• Solve the following estimating equations for α̂∗:

G1
N(α∗) = WT

∗ (Z− expit(W∗α∗)) = 0, (2.7)

and obtain predictions π̂0i for the conditional probability of medication use. Then,

solve the estimating equations G0
N(α0) = 1T (Z − expit(1α0)) = 0 to obtain

an estimate π̂0 of the unconditional probability of medication use (this is for

stabilization).

• Solve the following (weighted) estimating equations to obtain β̂IPCW:

GN(β|α̂∗, α̂0) =
∑
zi=0

(1− π̂0)x Ti (yi − x Ti β)

1− π̂0i(w i, zi; α̂∗, α̂0)
= 0. (2.8)

For IPTW, the first step of this two-stage model is the same; the estimating equations

for the second stage incorporate information from the on-medication participants as

well. They are given by:

GN(β|α̂∗, α̂0) =
∑
zi=0

(1− π̂0)x Ti (yi − x Ti β)

1− π̂0i(w i, zi; α̂∗, α̂0)
+
∑
zi=1

π̂0x
T
i (yi − x Ti β)

π̂0i(w i, zi; α̂∗, α̂0)
= 0. (2.9)

The greatest apparent challenge of this model as it applies to our estimand of interest

is that the underlying biomarker is unobservable in on-medication participants, and

hence not able to be incorporated in weight generation.

The ability of IPCW to impact bias not only depends on the mechanism of medica-

tion use, but also on violation of the linearity assumption after excluding participants

on medication (that is, E[y|x , z = 0] = x TβExclude for some βExclude). If the conditional

linearity assumption is satisfied, there will be no bias reduction. In IPTW, no bias

reduction will be achieved if, in addition, E[y|x , z = 1] = x TβInclude for some βInclude,

such that linearity holds after exclude all off-medication participants. To see this in the
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IPCW case, let F denote the CDF of x and y(0), conditional on z = 0. It will be useful

to first realize β̂Exclude as a the unique solution to the unbiased estimating equations:

∑
zi=0

x Ti (yi − x Ti β) = 0, (2.10)

which exists under mild regularity conditions even under a misspecified mean model.

Here, we mean “unbiased” for the βExclude, namely the functional T (F ) implicitly de-

fined by the integral equation:

∫
x T (y − x Tβ)dF = 0. (2.11)

Suppose that the conditional linearity assumption is met: E[y|x , z = 0] = x TβExclude.

Then trivially, the IPCW estimating equations (2.6) are unbiased estimating equations

for βExclude. This follows since π̂0i is not a function of yi, conditional on z = 0:

Eyi|x i
[x Ti (yi − x Ti βExclude)] = Eyi|x i

[(
1− π̂0
1− π̂0i

)
x Ti (yi − x Ti βExclude)

]
=

(
1− π̂0
1− π̂0i

)
x Ti Eyi|x i

[
yi − x Ti βExclude

]
=

(
1− π̂0
1− π̂0i

)
x Ti · 0 = 0

(2.12)

Re-weightng may of course still alter efficiency in this setting, which we will explore

empirically in Chapter 3. On the other hand, suppose instead that the conditional

linearity assumption is not met, so that there is no βExclude such that E[y|x , z = 0] =

x TβExclude. Then, the estimating equations of (2.7) need not be unbiased for βExclude.

Instead, β̂IPCW is unbiased for the the functional T̃ (F ) implicitly defined by

∫ (
1− π̂0

1− π̂0x(x )

)
x T (y − x Tβ)dF = 0, (2.13)

which may be distinct from that of T (F ).
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Whether or not the conditional linearity assumption is met depends on the medica-

tion use mechanism. Take the following simple example for the purposes of illustration:

suppose that yi(0) = xi + εi, with εi ∼ N (0, 1), and that medication use is defined by

one of the following rules:

Rule 1: zi = 1(yi(0) < 2),

Rule 2: zi = 1(2xi + yi(0) < 4)

Rule 3: zi = 1(xi + yi(0)/20 < 2)

In the first scenario, medication use depends only on the biomarker. In the second

scenario, medication use depends both on the biomarker and the exposure. In the

third scenario, medication use slightly depends on the biomarker, and the conditional

linearity assumption is nearly met. Figure 2.3 shows the results empirically with a single

realization (N = 10, 000). In the first two scenarios, IPCW performs more poorly than

the Exclude approach. In the third scenario, both estimates are very close to the truth.

This very simple example demonstrates the lack of reliability of inverse probability

weighting to address the challenges of endogenous medication use, particularly when

näıvely exended to cross-sectional data, in which this approach was not intended to

be used. Firstly, weights cannot be generated using the unobservable off-medication

biomarker value, and secondly, the impact of weighting on bias is highly dependent on

some difficult to describe measure of mean-model misspecification induced by excluding

participants. Intuitively, selection based on the outcome alters the solution to the esti-

mating equations: in general, consistency will still hold, but the value for which β̂IPCW

(and in turn, β̂IPTW) will be consistent is altered depending on how badly linearity is

violated after conditioning on medication use. IPCW up-weights the observations for

which medication use is most likely, which in this example up-weights where the model
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Figure 2.3: Empirical demonstration of the importance of conditional linearity in IPCW
estimates. The left plots depict participants on medication in blue, and off-medication
participants in gray. The center plots depict a plot of the residuals as a function of x
with a LOESS smoother. There is a clear lack of mean-model linearity in the first two
scenarios; the residuals for Scenario 3 are nearly of mean zero, conditional on x. The
right plots depict the IPCW weights as a function of x.

is most violated. Hence, IPCW is not a particularly well defined procedure for address-

ing endogeneity in this setting, since it is not guaranteed to upweight observations for

which the mean model is locally closer to that of the mean model of interest (that of
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the underlying biomarker model).

The re-weighting approaches have other known limitations, including the require-

ment of positivity of weights. In the setting of cross-sectional data, we do not have

the advantages of the approach described by Wang and Fang (2011), although their

modeling assumptions, too, have limitations. In longitudinal data, participants are

often on medication at baseline, and we also think of the underlying biomarker as be-

ing the corresponding off-medication biomarker value that would occur at the time of

measurement.

2.4 Censored Normal Regression

Although normality is not a requirement of OLS linear regression, the estimating equa-

tions used to generate estimators arise from, and can be motivated from the score equa-

tions from the normal likelihood. The likelihood function and resulting score equations

are given by:

LX,Y,Z(β, σ2
y) =

N∏
i=1

1

σy
φ

(
yi − x Ti β

σy

)
GN(β;σy) =

∂`(β;σy)

∂β
=

1

σ2
y

N∑
i=1

x i(yi − x Ti β) = 0.

(2.14)

where φ represents the standard normal density function and σ2
y the error variance. The

choice of β that solves the estimating equations GN(β;σy) = 0 is valid irrespective of

σ2
y, and so normality and homoscedasticity are not invoked.

In turn, recognizing that OLS approaches fail to properly account for medication

use, Tobin et al. (2005) modified this normal likelihood model to account for the fact

that yi(0) and yi are not the same if z = 1. In particular, he assumes that yi(0) ≥ yi if

z = 1, integrating the normal likelihood to from the observed value to yi to infinity for

participants on medication:



28

LX,Y,Z(β, σ2
y) =

∏
zi=0

1

σy
φ

(
yi − x Ti β

σy

)∏
zi=1

∫ ∞
yi

1

σy
φ

(
t− x Ti β

σy

)
dt

=
∏
zi=0

1

σy
φ

(
yi − x Ti β

σy

)∏
zi=1

[
1− Φ

(
yi − x Ti β

σy

)]
,

(2.15)

where Φ represents the standard normal cumulative distribution function. The corre-

sponding score equations for estimation of β still depend on the normal density and

cumulative distribution function; the treatment effect is presumed to follow a truncated

normal distribution beyond the observed biomarker. The censored normal model is ap-

pealing for a number of reasons: it is a single-stage approach that uses all participants;

it also uses information in the observed biomarker, which can often be highly infor-

mative about y(0). However, the censored normal model presumes that censoring is

non-informative, an assumption that is almost certainly not satisfied in practice. If the

mechanism that gives rise to medication use depends on the underlying biomarker or

covariates in X, non-informative censoring is violated. Tobin recognizes that the non-

informative censoring assumption is likely not satisfied, but in his motivating example

of blood pressure and genetic exposures, he believes this likelihood model to provide

an adequate approximation to the truth.

To illustrate the impact of informative censoring on estimation, Figure 2.4 presents

results from a data generation mechanism in which the non-informative censoring as-

sumption is violated. Estimation of β shows substantial upward bias. The further the

exposure values deviate from their mean, the higher their leverage. Here, those with

high values of the exposure are most likely to be on medication. Correcting (integrat-

ing) the biomarker has a larger influence in estimating β, hence the upward bias in this

example. If the participants on medication tended to be those with the lower exposure

values, the censored normal model would tend to provide downward-biased estimates.
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Figure 2.4: Demonstration of informative censoring. Gray circles depict off-medication
participants, and on-medication participants are in blue, with (◦) denoting the observed
value and (×) denoting the off-medication value. The true association (β = 2) is given in
gray, and the blue line represents censored normal regression (β̂ = 2.28). The truncated
normal distribution for each participant is denoted as a fading blue line.

If the effect of medication on the biomarker is believed to be somewhat small,

integration to infinity may seem to overcompensate for uncertainty in the underlying

biomarker. If we instead were to integrate to some unknown parameter τ which could

in turn be estimated, and then optimize over β, σy, and τ , we would get exactly the

censored normal solution. This is the case because φ(·) > 0, and hence the integral∫ τ
yi
σ−1y φ[(t− x Ti β)/σy]dt is monotone increasing as τ ↗∞. That is, τ =∞ would be

the optimal choice for any value of β and σy.

In order to allow a parameter in the limit of integration and account for the poten-

tial overcompensation, one might think to utilize a regularization approach to penalize

large values of τ , together with a cross-validation to determine the appropriate amount

of shrinkage. However, it is not clear what criteria should be used to select an optimal

value of τ , or how such a selection could be “guided” by the underlying biomarker value.
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If we use, for example, mean squared error in prediction of the observed biomakrer, we

are still faced with the challenge that yi(0) is unobservable in participants on med-

ication. Moreover, regularization in this way may reduce the impact of overstating

uncertainty, but fundamentally does not address the problem of informative censoring.

It is unclear how the assumption of non-informative censoring could be relaxed without

substantial modifications to the censored normal approach. The challenge of integra-

tion thresholding might be useful in other tangential settings in which censoring is not

informative.

2.5 Instrumental Variables

Instrumental variable (IV) approaches are widely used in econometrics to address en-

dogenous medication use and estimate causal effects. A standard one-stage approach,

described by Wooldridge (2011) can be described as follows. Assume that the observed

biomarker can be written as yi = x Ti β + δzi + εi, so that x i are the (exogenous) predic-

tors of interest, and zi is potentially correlated with εi. A special variable (wi), called

an instrumental variable, is presumed to exist, such that the following properties are

satisfied:

• The instrumental variable variable wi is correlated with zi (medication use).

• The variable wi (the IV) is uncorrelated with εi (the error term); that is to say

that E[wiεi] = 0.

Note that in this case, it is presumed that there is no overlap between x and w. Let

z ′i = (x Ti , zi)
T , so that the biomarker equation can be written more compactly as

yi = (z ′i)
T

β
δ

+ εi. (2.16)



31

Further let w ′i = (x Ti , wi)
T . By the second assumption, together with the fact that x is

a set of exogenous variables, E[w ′iεi] = 0. Multiplying the biomarker equation through

by w ′i, we have that

w ′iyi = w ′i(z
′
i)
Tβ′ + w ′iεi, (2.17)

where β′ = (βT , δ)T . Taking expectations, and invoking the second assumption, we

have

E[w ′iyi] = E[w ′i(z
′
i)
Tβ′] + E[w ′iεi]

= E[w ′i(z
′
i)
Tβ′] + 0

= E[w ′i(z
′
i)
T ]β′

(2.18)

By the first assumption, E[w ′i(z i)
T ] is of full rank, and hence we have that the true

parameter vector β′ can be written as
(
E[w ′(z ′)T ]

)−1 E[w ′y]. By the Weak Law of

Large Numbers, we may estimate those expectations easily to obtain the instrumental

variables estimator of β′:

β̂′IV =

[
1

N

N∑
i=1

w ′i(z
′
i)
T

]−1 [
1

N

N∑
i=1

w ′iyi

]
. (2.19)

Note that the last component of β̂′IV contains an estimate of the treatment effect, δ. IV

approaches can work very well when the conditions listed above are satisfied. In the

setting of a randomized experiments, for example, one may wish to estimate the causal

effect of an intervention on an outcome, where the intervention is not successfully given

to the subjects. In this case, the “intent” to assign can act as the instrument, and by

virtue of the fact that we are in the setting of a randomized trial, the assumptions listed

above are reasonable.

In the setting of observational data, however, identification of such a variable wi can

be challenging since medication use cannot be assumed to be at random (or even close
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to it in most settings). Unfortunately, the IV approach is understood to be sensitive

to departures from the above assumptions (most importantly, the second assumption).

The use of IV approaches in pharmacoepidemiologic studies has been criticized in the

literature (Hernán et al., 2006).

2.6 Discussion

We have presented several easy-to-implement approaches that have previously been

either inappropriately applied in the setting of endogenous medication use (OLS ap-

proaches) or have been presented as a way to address it (IPW, censored normal re-

gression, and instrumental variables). Specifically, we have outlined the assumptions of

each approach and discussed the major sources and mechanisms for bias.

The OLS approaches are most widely used in practice. Many researchers generally

appear to be aware that medication use obscures estimation of the association between

a predictor of interest and a biomarker outcome, so methods such as excluding and

adjusting are more common than simply ignoring medication use altogether. However,

these modifications address medication use in ways that are too simplistic and fail to

appropriately account for endogeneity.

We have also presented two inverse-probability weighting approaches, which are

inappropriate generalizations of the approach proposed by Wang and Fang (2011) in

a longitudinal setting as a means to address endogeneity. Our choice to explore this

method was initially done as an experimentation to evaluate IPW as a potential can-

didate for estimating the natural history association. However, upon exploration, the

shortcomings revealed themselves quickly, prompting this brief exploration of the source

of bias. The first clear limitation of IPW approaches in a cross-sectional setting is that

the underlying biomarker, which we believe is highly correlated with medication use,

is unobservable in participants on medication. However, also concerning is that the

mechanism by which IPW approaches re-weighting participants in a cross-sectional set-
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ting does not necessarily place greater weight on areas where the association between

the predictor of interest and the observed biomarker outcome is closer to that of the

association between the predictor and the underlying biomarker outcome (which is of

interest). Hence, IPW approaches in this setting cannot be expected to solve the prob-

lems associated with endogenous medication use, and are more appropriately restricted

to settings in which longitudinal data are available.

The censored normal model proposed by Tobin et al. (2005) relies on non-informative

censoring, an assumption that is highly unlikely to hold in observational data precisely

due to endogeneity. The assumption of a truncated normal treatment effect can also be

of concern in settings where medication is not effective for every participant. Relaxing

assumptions by expanding limits of integration would be challenging even with regular-

ization approaches since there is no information in the data that could guide selection

of the limits.

The instrumental variables approach can be of great use in estimating the natural

history association if in fact one has an instrument. However, beyond the fact that the

assumption that of identifying an instrument is unlikely to hold, this is inherently an

unverifiable assumption since there is no estimator for the error term; moreover, the

resulting estimator is extremely sensitive to departures from this assumption, particu-

larly if the variable used as an instrument is only weakly associated with medication

(Angrist and Krueger, 2001).

Ultimately, the unmet need this dissertation seeks to address going forward is to

devise a set of approaches that place reasonable assumptions on: (1) the mechanism by

which medication users differ from non-users, and (2) the nature of the effect of medica-

tion use on the underlying biomarker value (in terms of its magnitude and distribution,

either marginally or conditional on observed covariates). When strong assumptions

must be made, we will place emphasis on trying to evaluate sensitivity to departures
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from these assumptions in order to have a richer understanding of the models consid-

ered, so that informed modeling choices can be made when working with cross-sectional

data. Many of the approaches previously considered fall short in that they choose to

condition on medication use. Instead, it is more appropriate to estimate the uncondi-

tional association between x and y(0) that would occur in the absence of medication

use. This will ultimately mean we must understand and model the mechanism by

which medication users differ from non-users, and jointly model medication use with

the underlying biomarker.

We acknowledge the existence of other approaches that could be implemented in

an attempt to address medication use. For example, one could apply fixed or random

addition (adding a constant to the observed biomarker for on-medication participants,

with or without noise). The ability of these approaches to perform well depends very

highly on having a prior understanding of treatment effect magnitude. If that knowledge

is accurate, these approaches will perform well. If knowledge is lacking, they will

not. In keeping with the goal of developing of models that can help us identify new

epidemiologic predictors for biomarkers that may not be well understood, we restrict

our attention to approaches that do not rely on the validity of external information

beyond the constraints of the cross-sectional data available.

Bias has been of major interest to us in our exploration of these six approaches.

Indeed, bias reduction will continue to be the major focus of this dissertation. Our

motivating examples of cardiovascular biomarkers are all such that high values are

undesirable and hence most likely to prompt medication use. Thus, all approaches

except the censored normal model overwhelmingly provide downwardly biased estimates

of associations of interest which can greatly understate their relevance quantitatively.

However, even if fully understanding the magnitude of the association is not of interest,

and one would like to simply test whether or not an association exists, this attenuation
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can still be problematic. If the association is meaningfully attenuated, identification of

important epidemiologic predictors can require a far larger sample size to compensate

for the loss of power to detect an association.

While bias has been of most interest to us in this chapter, an exploration of efficiency

will still be important (we leave this to later chapters). Challenges will be particularly

apparent for the approaches which exclude subsets of the participants (Exclude and

IPCW). If the prevalence of medication use is high in the cohort, a substantial loss of

efficiency will be induced by using these approaches. In the settings of hypertension and

hyperlipidemia, especially, efficiency challenges would be of great concern as medication

use can exceed 50% in some populations.

Regarding estimation of standard errors, Huber-White “sandwich” based standard

error estimates can be used for the least-squares and IPW approaches to accommodate

heteroscedasticity and various forms of model misspecification (White, 1980). For the

censored normal approach, it is straightforward to derive a robust variance estimator

based on the observed information and an empirical “meat” matrix. We will do so more

explicitly in our presentation of Heckman’s TEM in Chapter 3.



36

Chapter 3

BACKGROUND: THE HECKMAN TREATMENT
EFFECTS MODEL

Up until this point, we have focused primarily on analytically arguing the inadequacy

of a number of common approaches to estimate the natural history association between

some predictor and a biomarker when there is endogenous medication use. We focus in

this chapter on providing a framework introduced by James Heckman (1978) to address

challenges surrounding endogeneity. The general approach in this framework involves

simultaneous equation modeling in order to estimate parameters of interest. In general,

the parameter of most interest to Heckman and those working in econometrics in that

time period was the population average treatment effect (δ); many of his motivating

problems involve understanding salary disparities between genders, or the impact of

policy implementation across demographic factors. There is a direct parallel to our

problem in the sense that there are partially observed outcomes; in the example of

salary disparities by gender, for example, the unobservable outcome would be the salary

of a non-working individual. However, this context is more naturally identified with his

sample selection model (Heckman, 1976). Instead, we will focus on what he referred

to as the “hybrid model with structural shift,” better known as the “treatment effects

model” (TEM). As will be made apparent in this chapter, this framework can be used to

consistently estimate the natural history association (β) when applied to the setting of

cardiovascular biomarkers. This is taking a clear departure from the historical context

of these models, in which the effect of the intervention on the outcome of interest has

been the parameter of interest. We instead treat this as a nuisance parameter.
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In this chapter, we will show how Heckman’s TEM provides a framework to explicitly

account for and model the mechanism by which medication users differ from non-users.

Such features are ignored by OLS-based approaches and censored normal regression,

or are greatly oversimplified. As such, we believe Heckman’s TEM corresponds to a

data generation mechanism that we believe much more closely resembles a process that

would give rise to true cross-sectional observational data as compared to many of the

approaches of Chapter 2.

We will describe Heckman’s TEM as it was originally proposed, including a proof of

identifiability of parameters and a presentation of the maximum likelihood estimators.

As we are seeking to utilize this framework as a foundation for estimating the natural

history association, the subsequent modifications we make in this chapter (and in this

dissertation in general) will be geared toward that purpose: we will show that the model

can accommodate explicit dependence of medication use on the underlying biomarker,

and allows for random treatment effects. We then proceed to compare the TEM to the

simple approaches of Chapter 2 through a set of simulation studies. The primary goal

of these studies is to evaluate (i) how large the treatment effect magnitude must be

and (ii) what level of endogeneity must be present in order to observe meaningful gains

from the TEM, which is admittedly more complicated than alternative approaches. We

will characterize gains in terms of both bias and root mean squared error (rMSE) to

confirm the inappropriateness of the alternative approaches in the setting of endogenous

medication use. We will conclude this chapter with a comparison of the TEM to the

IV approach when the presumed “instrument” is, in reality, weakly associated with the

underlying biomarker (violating the major assumption of the IV approach). The goal

of this study is to verify that the TEM does not share the same reliance on an IV that

the IV approach does.
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3.1 Heckman’s TEM, The Principal Assumption, and Identifiability

Recall that X is composed of predictors of interest, and W is composed of predic-

tors of medication use, and these design matrices may overlap. The TEM seeks

to correct endogeneity bias by parametric specification of the mechanism by which

medication users differ from non-users. In its most elementary form, a probit model

P (zi = 1|w i,x i) = Φ(wT
i α) is used to describe this mechanism in addition to the

biomarker model, yi(0) = x Ti β+εi. The probit model can be rewritten as z∗i = wT
i α+γi

for some latent, continuous variable z∗i , where γi follows a normal distribution, and so

that zi = 1(z∗i > 0) is the observed medication use status. Presuming medication use

reduces y(0) by an unknown δ, we have that E[yi|w i,x i, zi] = x Ti β − δzi. Thus, we

have a system of simultaneous equations for the underlying biomarker and medication

use. Figure 3.1 modifies the DAG in Figure 2.2 to incorporate the latent variable.

The simultaneous equations given above are a case of a general simultaneous system

for yi(0) and z∗i , which Heckman (1978) used to introduce and motivate his work in an

attempt to encompass various forms of dependencies that could occur:

yi(0) = x Ti β + δ2zi + λ2z
∗
i + εi

z∗i = wT
i α + δ1zi + λ1yi(0) + γi.

(3.1)

Here, yi(0) is partially observed (differing from the observed yi by some real-valued,

but unknown parameter δ2 in participants on medication). Structural shift (δ1, δ2 6= 0) is

permitted subject to constraints we will soon discuss. The errors εi and γi are presumed

to be i.i.d. and of zero mean; the two error terms are of unknown variances σ2
y and

σ2
γ, respectively, and have common correlation ρ. A semi-reduced form can be written

as follows so that the observed biomarker and the latent medication use variables are

written in terms of observable covariates (for the time being, assume covariates are

allocated to either x or to w , but not to both):
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Figure 3.1: DAG illustrating relationship between covariates and outcomes. This ex-
tends the DAG of Figure 2.2 to accommodate the latent continuous variable z∗, shown
in a gray circle, and its correlation with y(0), represented by a straight line. The arrow
between x and y(0) (red) remains the association of interest.

yi = x Ti π11 + wT
i π12 + π13zi + ε′i

z∗i = x Ti π21 + wT
i π22 + π23zi + γ′i.

(3.2)

The total errors are given by, ε′i = (εi+λ2γi)/(1−λ1λ2), and γ′i = (γi+λ1εi)/(1−λ1λ2),

and the parameters given by:

π11 =
β

1− λ1λ2
, π21 =

λ1β

1− λ1λ2
, π12 =

λ2α

1− λ1λ2
,

π22 =
α

1− λ1λ2
, π13 =

δ2 + λ2δ1
1− λ1λ2

, π23 =
δ1 + λ1δ2
1− λ1λ2

.

(3.3)

Heckman proceeds to prove that the condition π23 = 0 is necessary and sufficient

in order for the parameters of the above model to exist. This condition, called the

“principal assumption,” is equivalent to writing λ1δ2 + δ1 = 0 from the original system

(3.1). The fact that this principal assumption is a necessary condition for the parame-

ters of the model to exist is not obvious, and the proof is provided in the seminal paper

(1978). This assumption places a restriction on the structural shift and the endogeneity;

by rewriting the partially reduced system, Heckman argues that the principal assump-

tion intuitively allows one to uniquely define the probability of zi being either zero or
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one. Since zi is defined to be 1(z∗i > 0) it is sensible to require that z∗i may not depend

on zi, the binary variable it determines.

The classical version of the TEM as implemented in modern software presumes that

λ1 = λ2 = δ1 = 0 so that yi = x Ti β+δ2zi+εi and z∗i = wT
i α+γi. However, another less

restrictive way to satisfy the principal assumption is to choose λ1 = δ1 = 0 and let λ2

be a real-valued, finite, free-varying parameter. Structural shift in the biomarker is still

permitted, and medication use is still permitted to be correlated with the underlying

biomarker value, but this allows systematic dependence of the probability of medication

use on the underlying biomarker value (see Figure 3.2).

Figure 3.2: This DAG extends that of Figure 3.1 to accommodate systematic influence
of y(0) on z∗, represented by an arrow rather than a straight line. The arrow between
x and y(0) (red) remains the association of interest.

For the remainder of this dissertation, we invoke the assumptions that λ1 = δ1 = 0 in

order to satisfy the principal assumption, noting that (1) there are other ways to satisfy

this restriction that give rise to models that may be of interest in other settings, and

(2) this alternative formulation is indeed less restrictive than the models implemented

in modern software in that it accommodates direct influence of yi(0) on z∗i . Now,

for simplicity in notation, let −δ replace δ2 to denote the structural shift in the first

equation, and let λ replace λ1 to denote endogeneity; rewriting (3.1) to accommodate

these imposed constraints, we have the following updated system:
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yi(0) = x Ti β + εi

z∗i = wT
i α + λyi(0) + γi

zi = 1(z∗i > 0)

yi = yi(0)− δzi.

(3.4)

With this updated parameterization, the principal assumption is satisfied, although

the parameters of the second equation are not of interest in our problem (we will show

shortly that they are not identifiable). It turns out that λ need not be estimated. Taking

the second equation from (3.4), and decomposing the term λyi(0) into its systematic

and random components, we have:

z∗i = wT
i α + λyi(0) + γi

= wT
i α + λ(x Ti β + εi) + γi

= wT
i α + λx Ti β + λεi + γi

≡ w̃T
i α̃ + γ̃i.

(3.5)

Here, w̃ i denotes the combined exposures in x and w , and α̃ the corresponding pa-

rameter vector given by:

α̃ =


α for covariates in w only

λβ for covariates in x only

α + λβ for covariates in x and w

. (3.6)

The total error is given by γ̃i = λεi + γi. Thus, we have that the distribution of the

error terms is given by:

εi
γ̃i

 i.i.d.∼

0,

 σ2
y λσ2

y + ρσyσγ

λσ2
y + ρσyσγ λ2σ2

y + σ2
γ


 , (3.7)
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so that Heckman’s TEM as modeled in (3.4) is indeed correctly specified if one simply

places all covariates appearing in X into W. Going forward, we will exploit this useful

fact, but for simplicity of notation, we will use the symbol α rather than α̃ to denote

the parameter vector with covariates of x included; similarly, we will use the notation

γi for the total error, with total variance given by σ2
z = λ2σ2

y + σ2
γ as the total variance

of z∗. Maddala (1983) outlined a procedure in order to determine which parameters

in the model are identifiable; we utilize this framework to show that β, δ, and σy are

identifiable. This proof is trivial when x and w do not overlap, and so we only present

the proof in case where they do.

Theorem: Suppose data are generated according to (3.5) such that the total errors

are i.i.d. of mean 0 and covariance matrix Σ. If we model the data according to (3.4)

with all covariates of X included in W, then β, δ, and σy are identifiable parameters.

Proof : Let A denote a 2 × 2 nonsingular matrix. Let x̃ denote a vector of length

p containing all unique predictors in x and w (each having q1 and q2 predictors, re-

spectively), and partition this complete covariate vector into three total classes: x̃ (1)

denotes predictors in x only; x̃ (2) denotes predictors in w only, and x̃ (3) denotes predic-

tors in both x and w . The parameters β and α can be partitioned accordingly as well.

If o = (y, z∗) denotes the (partially observed) outcome vector, and x̃ ′ = (1, x̃ T , z)T

the covariate vector in the first structural equation, the simultaneous system may be

written as Ao − Γx̃ ′ = (ε, γ)T for a 2 × (p + 2) dimensional matrix of coefficients, Γ,

given in this case by:

Γ =

β0 βT(1) 0T βT(2) δ

α0 0T αT
(1) αT

(2) 0

 (3.8)
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The system can in turn be simplified to o = Πx̃ ′+ (ε′, γ′)T , where Π = A−1Γ, and the

error vector has covariance matrix Ω = A−1ΣA−T . Letting

Λ =

1 0

0 1/σz

 (3.9)

where σ2
z is the total variance on z∗. Maddala (1983) shows that when the structural

equations can be written in this form, parameters appearing in matrices ΛΠ and ΛΩΛT

are identifiable. The result that β, δ, and σy are identifiable follows from setting A to

be the 2× 2 identity matrix. Q.E.D.

The parameters α and ρ are identifiable up to a scale factor of σz. For this reason, it

is computationally convenient to set σz = 1, as is standard in probit analysis (Freedman,

2010). The challenges associated with the fact that endogeneity cannot be parsed

exactly between λ and ρ are bypassed by placing all covariates in X into W and not

estimating λ. Identification of the natural history association relies on the stable unit

treatment value and consistency assumptions. The former states that (yi(0), yi(1)) is

independent of zj for all 1 ≤ i 6= j ≤ N (such that the medication use status of one

individual does not influence the medication use status of another individual). The

latter states that the observed value yi is equal to the potential outcome under the

medication use status absolutely observed, yi(zi).

3.2 The Two-Stage Approach and Maximum Likelihood

Heckman proposed a two-stage approach, or “indirect least squares” for estimation

of parameters. We may standardize the error on z∗i by σ−1z so that parameters are

estimable. Bivariate normal theory can then be used to obtain the conditional distribu-

tion of yi|(zi,x i,w i), for which the error term is normally distributed, and parameters of

interest may be estimated. The specific details of the two-stage approach are discussed
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by Heckman (1978), and in a later paper Heckman, 1979. This approach provides con-

sistent estimates of the parameters β, δ, and σy, but it is not asymptotically efficient.

Note that this approach for estimation is the first time we are invoking parametric as-

sumptions on the errors; it was not necessary to invoke any assumptions about bivariate

normality in order to show identifiability of parameters of interest.

Heckman makes note that although z∗i is latent, the correlation, ρ, between z∗i

and yi(0) is still estimable in the presence of the dichotomous zi. The assumption

of normality provides a means of estimating the the point-biserial correlation, which

estimates the correlation between continuous data and a dichotomous variable; this is

discussed in greater detail by Tate (1954). Similar work has been done by Telser (1964).

Of greater interest to us is a likelihood-based approach in which the errors (εi, γi)

are modeled as bivariate normal with unknown variance parameters σ2
z and σ2

y, and

correlation parameter ρ. In contrast to the two-stage approach, the likelihood approach

is asymptotically efficient. Hence, we consider only the likelihood-based approach in

this dissertation. Heckman (1978) points out that the two-stage estimator can be used

to initialize likelihood estimation. Letting θ = (α,β, σ2
y , ρ, δ), the likelihood function

for the original TEM can be derived as follows:

LW,X,Y,Z(θ) =
N∏
i=1

p(yi|zi)p(zi)

=
∏
zi=0

p(yi|z∗i ≤ 0)p(z∗i ≤ 0)
∏
zi=1

p(yi|z∗i > 0)p(z∗i > 0)

=
∏
zi=0

∫ 0

−∞
p(yi)dFz∗i |yi(z

∗
i )
∏
zi=1

∫ ∞
0

p(yi)dFz∗i |yi(z
∗
i )

=
N∏
i=1

p(yi)
∏
zi=0

∫ 0

−∞
p(z∗i |yi)dz∗i

∏
zi=1

∫ ∞
0

p(z∗i |yi)dz∗i

=
N∏
i=1

1

σy
φ

(
yi − x Ti β + δzi

σy

)
× Φ

(
(−1)1−zi

wT
i α + ρ(yi − x Ti β + δzi)/σy√

1− ρ2

)

(3.10)
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Here, the expressions wT
i α + ρ(yi − x Ti β + δzi)/σy and 1 − ρ2 represent the condi-

tional mean and variance of z∗i |yi, respectively. As we have noted, α and ρ are weakly

identifiable up to a scale factor of σz, and so we set σz = 1 without loss of generality.

All assumptions previously stated for identification of parameters still hold. To

implement a maximum likelihood based approach, one requires a further assumption,

as shown by Heckman (1978). That is, in order for the likelihood function above to

possess an interior maximum, we need that

min
zi=1
{yi} < max

zi=0
{yi} and max

zi=1
{yi} > min

zi=0
{yi}. (3.11)

In other words, the range of observed biomarker values between participants on medi-

cation and participants off medication must have a non-null intersection. If the groups

are completely separated, the log-likelihood function fails to achieve a global maximum

on the interior of the parameter space. This is fairly minor restriction; although there

is always a nonzero probability that (3.11) will not be satisfied, the probability that it

is satisfied converges almost surely to 1 as N ↑ ∞ provided that 0 < p(zi = 1|w i) < 1.

We provide R code for the negative log-likelihood in Appendix A; this function

can be optimized in order to fit Heckman’s TEM. The function is written such that

covariates of X should be manually included into covariates of W.

3.3 Robust Covariance Estimation and Random Treatment Effects

Letting U(θ) ≡ ∂ logL(θ)/∂θ denote the score function for the likelihood of (3.9),

and letting θ̂ denote the solution to the score equations U(θ) = 0, define IN(θ̂) to be

the expected Fisher information matrix at θ̂. Under correct specification, we have a

model-based variance estimator from standard asymptotic theory:

V̂ar(θ̂) ≡ I−1N (θ̂) −→p Var(θ̂). (3.12)
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In practice, though, it would be ideal not to invoke the assumption that the effect of

medication use on the biomarker is a fixed constant; rather, we may assume that a

subject specific effect is given by δi
i.i.d.∼ N (δ, σ2

δ ). We have then, that δi = δ+ϕi, where

ϕi is normally distributed with mean zero and variance σ2
δ :

yi = x Ti β − (δ + ϕi)zi + εi ∼ N (x Ti β, σ
2
y + σ2

δzi). (3.13)

In this setting, heteroscedasticity is introduced as the variance of yi is now σ2
δ greater

for on-medication subjects than that of off-medication subjects. Heteroscedasticity

in the errors may also arise from other sources other than random treatment effects.

The model-based variance estimator is invalid, and hence a robust, heteroscedasticity

consistent estimator should be used in its place.

Let BN(θ̂) =
∑N

i=1 Ui(θ̂)Ui(θ̂)T to be the empirical “meat” matrix. We prefer to

use the observed information IobsN (θ̂) for additional robustness to mean-model misspec-

ification in simulation studies appearing in later chapters, although the mean-model is

still correct under random treatment effects. We have that the following convergence

result holds

V̂ar(θ̂) =
[
IobsN (θ̂)

]−1
BN(θ̂)

[
IobsN (θ̂)

]−T
−→p Var(θ̂). (3.14)

An analogous result holds for the censored normal regression model of Chapter 2.

3.4 Simulation: Gains under Correct Specification

We conduct a simulation study to evaluate the advantages of the TEM over alternative

models when the TEM is correctly specified. We do not present the results from the

IPCW approach in this study, as the relationship between its results and the Exclude

approach is analogous to the relationship between IPTW and the Adjust method.
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Let N = 1000 denote the number of study subjects, and suppose that the predictors

are given by x1i, x2i, and x3i, all i.i.d. N (0, 1). Suppose that the data are generated as

follows:

yi(0) = x1i + x2i + εi

z∗i = x1i + x3i + 0.2yi(0) + γi

= 1.2x1i + 0.2x2i + x3i + 0.2εi + γi

(3.15)

where εi and γi are all i.i.d. N (0, 4). Then, using the results of Section 3.1, we have

that the total errors are bivariate normally distributed with covariance matrix given by

Σ =

 4 0.8

0.8 4.16

 . (3.16)

Further suppose that δi
i.i.d.∼ N (1, 1/6), and yi = yi(0)− δizi is the observed biomarker

value for subject i. We simulate two-thousand replications from this data generation

mechanism and estimate β = (0, 1, 1)T from the Ignore, Exclude, Adjust, IPTW, CN,

and TEM approaches. We also estimate δ from the the Adjust method, CN, and the

TEM. Here, α0 = 0 so that there is an approximate 50% prevalence of medication use

on average. To account for heteroscedasticity, we use the robust variance-covariance

estimator of Section 3.3 for Heckman’s TEM (and its analogue for the CN model) and

the Huber-White sandwich estimator for the least squares and IPTW approaches. We

focus our attention on β1, β2, and δ, as the intercept is rarely of interest in association

studies. In this simulation, the data are generated such that the TEM is correctly

specified for estimation of β and δ, whereas the alternative models are not. Hence, we

expect the TEM to outperform other approaches; the goal of this study is to attempt to

quantify bias reduction as compared to efficiency loss as compared to other approaches

under a reasonable simulation setup. The simulation setup is illustrated in Figure 3.3,

with the parameters noted by the corresponding associations (arrows) they represent.
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Figure 3.3: This DAG represents the simulation setup of Section 3.4. Note that
α2 = λβ2, so that the association of x2 with z∗ is indirect. Red arrows indicate the
associations of primary interest.

Table 3.1 depicts results from this simulation study. As expected, the TEM shows

substantially lower bias than alternative approaches. The root mean squared error

(rMSE) is lowest for the TEM for β and δ; the gains we see in the rMSE are attributable

to bias reduction; this is seen by the fact that the TEM tends to provide estimates with

comparable or greater variance than the alternatives. The failure of CN is striking in

this example, with bias and rMSE greatly exceeding those of the other approaches for

both β1 and β2. The robust variance estimates appear to estimate the true variability

of β̂ and δ̂ well, except perhaps for IPTW in estimation of Var(β̂).

The two major sources that play a role in creating bias for approaches that are not

equipped to address nonrandom medication use are (i) the strength of endogeneity, as

measured by the total correlation on the biomarker/medication use model errors, and

(ii) the magnitude of the treatment effect. It feels natural, then, to ask how strong

endogeneity has to be for Heckman’s TEM to show gains as strong as in Table 3.1, and

to similarly ask how large the treatment effect magnitude has to be.

Consider a simulation mirroring the one described above, in which we vary the

correlation through λ. So that we are varying the total correlation on the errors, but
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Table 3.1: Results from a simulation study comparing six approaches when Heckman’s
TEM is correctly specified. We consider the bias and standard error as estimated from
the simulations, as well as the average of the estimated robust standard errors, and the
root mean squared errors.

Bias SE ×102 ŜE ×102 rMSE ×102

β1 = 1
Ignore -0.223 4.67 4.62 22.8
Exclude -0.085 7.13 7.08 11.1
Adjust -0.084 5.21 5.10 9.82
IPTW -0.083 7.23 5.74 11.0
CN 0.407 6.17 6.10 41.2
Heckman’s TEM 0.000 6.88 6.80 6.88

β2 = 1
Ignore -0.039 4.62 4.64 6.04
Exclude -0.015 6.28 6.34 6.46
Adjust -0.015 4.56 4.57 4.80
IPTW -0.016 5.00 5.59 5.25
CN 0.068 6.03 5.78 9.10
Heckman’s TEM -0.001 4.67 4.66 4.67

δ = 1
Adjust -1.62 10.3 10.2 162
IPTW -1.62 12.4 11.1 162
Heckman’s TEM -0.001 22.8 22.3 22.8

not their respective variances, set the total error σ2
γ = 4.16−4λ2 for λ ranging between 0

and 0.8, so that the total error has variance σ2
z = 4.16 throughout. This choice is done to

mirror the total variance of z∗i of the previous simulation setup: Var(γi)+λ2Var(yi(0)) =

4.16 as in (3.16). All other parameters from the main simulation study are carried

over. Hence, the effective total error correlation ranges between 0 and approximately

0.8. Figure 3.4 displays the bias and rMSE as a function of this effective correlation,

which we refer to as the “endogeneity strength.” The bias and rMSE of Heckman’s

TEM does not appear to depend on endogeneity strength and consistently performs

well; the other approaches are much more sensitive to departures from this assumption,

although the Ignore method never does well. The Exclude, Adjust, and IPTW methods
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all have acceptable performance when endogeneity is low or nonexistent. When the

endogeneity strength is quite low, the adjustment method even outperforms Heckman’s

TEM in terms of MSE, although as endogeneity becomes nontrivial, the price of failing

to adequately account for it becomes very high.

Figure 3.5 depicts the analogous plot for estimation of β2; trends are quite simi-

lar to those of Figure 3.4, with two notable differences: the threshold for substantial

worsening is a bit higher than for β1, and the Ignore method is not biased for β2 when

no endogeneity is present. Recall that x1 is associated with the underlying biomarker

and the probability of medication use, whereas x2 is only directly associated with the

biomarker (and hence weakly associated with the probability of medication use through

λ). Hence, the probability of medication use is not as dependent on x2 as it is on x1.

Now, consider a simulation which mirrors the main simulation, this time varying δ

over a range of values from 0 to 2. All other parameters from the main simulation study

are carried over. Figure 3.6 displays the bias and rMSE as a function of the expected

treatment effect. Just in the previous case in which we varied endogeneity strength, the

TEM performs well, and good performance does not appear to depend on the treatment

effect magnitude. The Exclude, Adjust, and IPTW methods show bias that does not

appear to vary meaningfully with δ. The performance of the Ignore method depends

highly on δ, performing well when there δ = 0 (the underlying biomarker, yi(0) is truly

observed for all subjects in this case), and with bias and rMSE worsening as δ increases.

Although the CN method (not depicted in the figure) improves as δ increases, it is

important to recognize that E[yi(0)|z = 1]− E[yi(0)|z = 0] ≈ 1.5 under this simulation

setup; a medication whose effect is greater than δ = 1.5 reduces the observed biomarker

of on-medication participants below of those who are not on medication, a setting that

does not seem very realistic. Even at an unrealistically large treatment effect of δ = 2.5,

CN provides an estimate of β̂1 = 1.14 (Bias = 0.14).
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Figure 3.4: Bias and root mean squared error for estimation of β1 while varying the en-
dogeneity strength through the effective correlation. Results from the censored normal
model are not included in the figure.
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Figure 3.5: Bias and root mean squared error for estimation of β2 while varying the en-
dogeneity strength through the effective correlation. Results from the censored normal
model are not included in the figure.
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Figure 3.6: Bias and root mean squared error for estimation of β1 while varying the
expected treatment effect magnitude, δ. Results from the censored normal model are
not included in the figure.
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Figure 3.7: Bias and root mean squared error for estimation of β2 while varying the
expected treatment effect magnitude, δ. Results from the censored normal model are
not included in the figure.
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3.5 Absence of a True Instrumental Variable

In Chapter 2, we presented a classical one-stage IV approach when some measured w

is associated with medication use but not the underlying biomarker (see x3 in Figure

3.3). The IV approach does not permit inclusion of w in the biomarker model (it

is not a true instrument if it is associated with the biomarker). However, if w is

believed to be weakly associated with the biomarker, the TEM permits the inclusion

of w in the biomarker model. We seek to evaluate whether Heckman’s TEM provides

valid estimates of the natural history association when the variable believed to be an

instrument in the context of the IV approach is, in reality, weakly associated with the

underlying biomarker. Suppose that the data generation mechanism of Section 3.4

holds with the following modification:

yi(0) = x1i + x2i + β3x3i + εi, (3.17)

where β3 varies over from 0 to 0.5, so that it x3 increases in its association with y(0).

We wish to compare the IV approach to the TEM for estimation of the natural history

association. The IV estimator, as a reminder, is given by

β̂IV =
[
(W′)TZ′

]−1
(W′)TY, (3.18)

where W =

[
1 X1 X2 X3

]
and Z′ =

[
1 X1 X2 Z

]
. Simplifying, the estimator

is given by:

β̂IV =



1T1 1TX1 1TX2 1TZ

XT
1 1 XT

1 X1 XT
1 X2 XT

1 Z

XT
2 1 XT

2 X1 XT
2 X2 XT

2 Z

XT
3 1 XT

3 X1 XT
3 X2 XT

3 Z



−1 

1TY

XT
1 Y

XT
2 Y

XT
3 Y


(3.19)
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If in reality x3 is associated with y(0), failure to specify it in the underlying biomarker

model results in unmeasured confounding. Hence, we compare the above IV estimator

to Heckman’s TEM when x3 included in the biomarker model. Unsurprisingly, näıve

OLS approaches, along with the IPW approaches and CN were all found to perform

poorly in this setting, for estimation of β and δ (where applicable). We do not report

on these results in depth. Of greater interest is the comparison between Heckman’s

TEM and the IV approach.

Figure 3.8 depicts the results comparing the IV approach to the correctly specified

TEM for estimation of of β1 (both bias and rMSE are provided). As expected, the

estimates of β1 from the IV approach remain approximately unbiased when x3 truly is

an instrument (that is, when β3 = 0). The simulated rMSE is greater for the TEM

than that of the IV approach when β3 is small (i.e., when x3 is only weakly associated

with y(0)); this is at least partially attributable to the greater variability associated

with estimating more parameters in the TEM. However, the bias of the IV approach

very clearly shows a steady downward trend as the association between x3 and y(0)

grows, and the advantages in terms of rMSE vanish at around β3 = 0.08. Relative to

the other parameters (β1 = β2 = 1), this is not a very strong association–note that

all three covariates are generated from a standard normal distribution. Importantly,

Heckman’s TEM does not show evidence of meaningful bias across β3.

Figure 3.9 depicts the analogous results for β2. A similar pattern is observed, al-

though the bias in this setting is an order of magnitude lower for the IV approach than

for estimation of β1 (recall that x2 is not as strongly associated with the medication

use). Under this setup, the TEM and the IV approach show comparable levels of rMSE

across a range of β3 values. As β3 increases, IV increases in both bias and rMSE.

Also of interest is to compare estimation of the average treatment effect, δ, between

these two approaches. Figure 3.10 illustrates these results. Indeed, a similar pattern
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Figure 3.8: Bias and root mean squared error for estimation of β1 when x3 is weakly
associated with the underlying biomarker (and accounted for in the biomarker model
of Heckman’s TEM).

Figure 3.9: Bias and root mean squared error for estimation of β2 when x3 is weakly
associated with the underlying biomarker (and accounted for in the biomarker model
of Heckman’s TEM).
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Figure 3.10: Bias and root mean squared error of for estimation of δ when x3 is weakly
associated with the underlying biomarker (and accounted for in the biomarker model
of Heckman’s TEM).

in bias is observed for the two approaches as with the natural history association. The

estimate of the average treatment effect provided by Heckman’s TEM shows larger

variability, as seen by the fact that IV dominates the nearly unbiased Heckman’s TEM

over small values of β3 in terms of rMSE. However, considering β3 values beyond ap-

proximately 0.1, the TEM appears to dominate the IV approach for estimation of δ. If

one believes that x3 is truly an instrument (or close to it), and interested in estimating

the population-average treatment effect, the IV approach would be the optimal choice

on the basis of rMSE; however, in the setting of cross-sectional observational data, jus-

tifying this is difficult since the assumption of having an instrument is untestable, and

the TEM performs well irrespective of this assumption.

Since β is our parameter of interest, and not δ, this finding supports use of Heck-

man’s TEM in the setting where an instrument is not thought to exist. However, note

that Heckman’s TEM was correctly specified in this case, in that we chose to adjust for

it in the biomarker model. The classical one-stage IV approach does not permit this
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modification (otherwise the x3 variable would not be an instrument). In that sense, it

is crucial to adjust for x3 in the biomarker model if it is believed to be even weakly

associated with the biomarker to avoid confounding bias. Failure to specify x3 in the

biomarker model when weakly associated with medication use produces levels of bias

that are similar to those observed from the IV approach in this study. In observational

data, true instruments may be difficult to find (and the assumption of a variable being

an instrument is not testable). Together with the fact that the TEM does not demand

an instrument for estimates of β to outperform the IV estimates, this provides justifica-

tion to be skeptical of the IV approach for estimating the natural history association in

observational data. These findings are consistent with those of Marchenko et al. (2012),

in which a minor modification to the Heckman sample selection model was evaluated

under the setting of no true instrumental variable.

3.6 Discussion

3.6.1 Justification of Parameter Selection

Burton et al. (2006) point out that in the design and implementation of simulation

studies to demonstrate results, careful attention should be paid to how closely the sim-

ulated data sets resemble data that would be observed in the real world. While we will

take measures to do this more elaborately in Chapter 4 by means of perturbing model

assumptions, selection of parameters plays a large role in how realistic the simulation

setup is. Of course, variables can be scaled and shifted, so conditional on a (somewhat

arbitrary) selection of β, α, σy, and σz, careful selection of the endogeneity parameter

and treatment effect is important. As we have noted, the selection of λ = 0.2 yields

an expected difference of approximately 1.5 in the underlying biomarker between par-

ticipants on and off medication. Thus, selection of δ = 1 suggests a medication that

has an is moderately effective in restoring the biomarker values toward those of the
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off-medication counterparts. The simultaneous selection of λ and δ in this way reveals

that λ = 0.2 has the property of being the approximate “breaking point” at which the

advantage of Heckman’s TEM over alternatives becomes apparent.

3.6.2 Interpretation of Results

The primary purpose of the main simulation study was not to show that Heckman’s

TEM provides consistent estimates of β across various parameter values when correctly

specified; this has already been established. Instead, this study was conducted to

evaluate how severe the problem of endogenous medication use had to be in order for

Heckman’s TEM to provide gains that are scientifically relevant (as measured by both

bias and mean squared error) over alternative approaches. The answer to this question

was quite clearly that we see important advantages from Heckman’s TEM even when

dependence of medication use on the underlying biomarker and the treatment effect

magnitude are somewhat small.

What we see in Table 3.1, as well as Figures 3.4 to 3.7 is that Heckman’s TEM

almost completely dominates the alternative approaches in terms of both bias and mean

squared error across a range of λ and δ values. The Adjust method performs well when

endogeneity is not present, and is sufficient. Since it estimates fewer parameters, it is

not surprising that it performs slightly better than Heckman’s TEM when endogeneity

is low. In glancing at Table 3.1, we also note that most of the reduction in mean

squared error comes from a bias reduction. While the variance of parameter estimates

from Heckman’s TEM are indeed slightly higher than those of the simpler approaches

(Ignore, Adjust, and IPTW, in particular), the improvements in bias are substantial

enough that we are willing to sacrifice this small amount of efficiency. This exemplifies

the well know statistical phenomenon of the “bias-variance trade-off” and should be

considered in model selection.
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Importantly, we have also demonstrated how medication use is permitted to directly

depend on the underlying biomarker. As the TEM is typically applied, this feature is

generally not incorporated; however, allowing medication use to depend on the underly-

ing biomarker other than through the error correlation is straightforward to implement:

one simply places all covariates in the biomarker model into the medication use model.

In Chapter 4, we will show that failure to account for the systematic components of the

biomarker model in the medication use model can be problematic.

Econometricians tend to view these types of models in terms of structural equa-

tion modeling, particularly when solving the hybrid model equations via the two-stage

approach. This may also be viewed as an instrumental variables approach because

these exist variables associated with medication use but not the biomarker; however,

since Heckman’s TEM outperforms alternatives in the absence of an instrumental vari-

able, it does not appear to suffer the challenges of classical “instrumental variables”

approaches. We have demonstrated that the TEM does not require the existence of an

IV in order to estimate the natural history association. Identification of the natural

history association without the presence of an IV comes from the principal assumption

and the distributional assumptions on the error terms. In similar models (e.g., the sam-

ple selection model), it has been shown that failure to include an IV in the medication

use model results in an increase of variability of estimates, but not an introduction

of bias (Marchenko et al., 2012). Our results confirmed this in the case of the TEM.

Thus, when an IV is present, it should be accounted for in the medication use model.

Additionally, we also require conditioning each outcome y(0) and z∗ on both x and w

in order to estimate parameters. That is to say, in particular, that any variables in only

W are presumed not to be associated with y(0).
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3.6.3 A Note on Missingness

When viewing Heckman’s TEM through the single-stage likelihood framework, we can

view it as a missing at random model with a simple likelihood-based imputation for the

missing y(0) in on-medication participants. The missing at random component comes

from the fact that Heckman’s model presumes that all predictors of medication use are

known, measured, and included in the model. The imputation comes from correcting

the observed biomarker for the effects of medication use with the likelihood-based δ

(simultaneously estimated with the other parameters). In reality, we recognize that the

true data contain no information about whether missingness is occurring at random or

not at random. Hence, it is important to evaluate how sensitive Heckman’s TEM is to

misspecification of covariates which predict medication use (Chapter 4).

Framing Heckman’s TEM as a likelihood-based imputation problem clearly moti-

vates further study to evaluate the assumption of uniform treatment effects. This will

be discussed in Chapter 4. In Chapter 5, we will further extend Heckman’s TEM to al-

low effect modifiers in the model. Namely, we will expand the “imputation” component

of the model and allow it to borrow information across subjects of nearby covariate

values.

Additionally, framing Heckman’s TEM in this fashion further helps distinguish it

conceptually from inverse probability weighting approaches. Inverse probability weight-

ing does not explicitly correct the off-medication biomarker. As we have seen, inverse

probability weighting based on the exposures fails to change bias. In fact, these ap-

proaches were empirically observed to be less efficient in this setting.
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Chapter 4

SENSITIVITY OF HECKMAN’S TREATMENT EFFECTS
MODEL TO VIOLATIONS OF MODEL ASSUMPTIONS

In Chapter 2, we described why the assumptions of simple approaches are not reason-

able when estimating biomarker associations in a cross-sectional, observational setting

with endogenous medication use. In Chapter 3, we focused primarily on evaluating the

advantages of Heckman’s TEM over alternative approaches when correctly specified. A

important consequence of modeling the underlying medication use model and treatment

effect behavior is that we are forced to make assumptions that are challenging, if not

impossible, to verify without external data or prior knowledge.

In this chapter, we focus on evaluating the sensitivity of Heckman’s TEM to a

variety of departures from its assumptions. We accomplish this by modifying, one by

one, various aspects from the simulation study of Section 3.4 (in which Heckman’s

model was correctly specified) so that the assumptions of the TEM no longer hold. We

evaluate how bias and variability are affected by these modifications. Since the Ignore

approach and the CN method are very poorly behaved and inappropriate for the setting

of nonrandom medication use, we do not give them a great deal of attention in this

chapter. A researcher who is aware of the challenges of medication use is far more likely

to turn to approaches that are more well known such as Excluding and Adjusting; we

focus on comparing to these approaches.

This chapter is organized as follows. We consider first assumptions on the medica-

tion use model, including failure to specify important covariates, and departures from

the underlying probit model. We then proceed to test sensitivity to non-normal er-
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rors on the biomarker model, including right skewed and heavy-tailed error terms. We

then investigate the impact of nondifferental measurement error on observed predictors.

Finally, we consider departures from the assumption of uniform treatment effects by

examining bias under proportionate treatment effects.

Certain forms of misspecification are absolute (e.g., omission of a variable from the

medication use model). Other forms of misspecification have gradation; for instance,

the existence of effect measure modification, or severity of probit misspecification. To

that end, we approach many of these non-absolute categories of misspecification by

examining behavior across a range of severity.

4.1 Failure to Specify Variables in the Medication Use Model

We have demonstrated in Chapter 3 that the TEM can perform well even when a true

instrument does not exist, provided this variable is accounted for in the underlying

biomarker model. However, it is of interest to understand how sensitive the TEM is

when variables associated with medication use are omitted from the medication use

model. Recall that for IPTW, both x1 and x2 appear in the logistic medication use

model on the basis of the fact that they are associated with the biomarker (Lefebvre

et al., 2008). In contrast, the medication use model in the TEM accommodates and

demands variables associated with medication use regardless of their association with

the biomarker; based on the data generating mechanism of our main simulation study,

this suggests inclusion of x1, x2, and x3 in the medication use model.

Suppose that we generate data according to the simulation setup of Section 3.4,

but fail to include x1 in the medication use model. We compare this modification for

both IPTW and the TEM. Results are presented in Table 4.1. Note that this type of

misspecification only applies to IPTW and the TEM among the models considered, as

the other approaches do not model the characteristics of the treatment groups. Results

for other approaches (Ignore, Exclude, and Adjust) are borrowed from Table 3.1 of
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Section 3.4 for the purposes of comparison. The TEM shows sensitivity to this type

of misspecification for estimation of β1, showing substantially more bias and variability

than when x1 was properly included in the medication use model. This is unsurprising

given that this is a problem of unmeasured confounding. In this case, the simpler

approaches perform better in terms of both bias and rMSE. The TEM provides low-

bias estimates of β2 and δ, although with greater variability than when x1 is modeled.

Similar patterns were observed when x2 was not specified in the medication use

model; the induced bias was not as severe. This is not surprising given that x2 is

only associated with z∗ through λ in this setup. This is an important finding, since

inclusion of x2 (directly associated only with y(0)) is the distinguishing feature between

the model that allows z∗ to depend on y(0) and the model that does not.

Table 4.1: Results from a simulation study comparing four approaches when x1 is
incorrectly omitted from medication use models. This type of misspecification only
applies to IPTW and Heckman’s TEM.

Bias SE ×102 ŜE ×102 rMSE ×102

β1 = 1
Ignore† -0.223 4.67 4.62 22.8
Exclude† -0.085 7.13 7.08 11.1
Adjust† -0.084 5.21 5.10 9.82
IPTW -0.084 5.21 6.20 9.85
Heckman’s TEM -0.102 5.30 5.18 11.5

β2 = 1
Ignore† -0.039 4.62 4.64 6.04
Exclude† -0.015 6.28 6.34 6.46
Adjust† -0.015 4.56 4.57 4.80
IPTW -0.015 4.57 5.53 4.80
Heckman’s TEM -0.001 4.70 4.69 4.69

δ = 1
Adjust† -1.62 10.3 10.2 162
IPTW -0.622 10.3 12.4 162
Heckman’s TEM 0.00 24.9 24.2 24.9

† - Results from Table 3.1, Section 3.4



64

Finally, suppose we fail to include x3 in the medication use model in Heckman’s

TEM. This type of misspecification only applies to Heckman’s TEM, as the näıve ap-

proaches do not model the characteristics of the treatment groups, and IPTW does not

include variables that are only associated with medication use but not the biomarker.

Results are presented in Table 4.2. Once again, we utilize estimates from Table 3.1

to compare results from the TEM to those of other approaches (Ignore, Exclude, and

Adjust). It appears that bias in estimation of β1 is not very substantial for this type

of misspecification. However, the variability of all estimates from Heckman’s TEM are

much higher than when x3 is not omitted. For estimation of β1, the alternatives mean-

ingfully outperform Heckman’s TEM in terms of rMSE despite the fact that Heckman’s

TEM provides the lowest bias.

Table 4.2: Results from a simulation study comparing four approaches when x3 is
incorrectly omitted from the medication use model of Heckman’s TEM. This type of
misspecification only applies to Heckman’s TEM.

Bias SE ×102 ŜE ×102 rMSE ×102

β1 = 1
Ignore† -0.223 4.67 4.62 22.8
Exclude† -0.085 7.13 7.08 11.1
Adjust† -0.084 5.21 5.10 9.82
IPTW† -0.083 7.23 5.74 11.0
Heckman’s TEM -0.046 20.2 21.9 20.8

β2 = 1
Ignore† -0.039 4.62 4.64 6.04
Exclude† -0.015 6.28 6.34 6.46
Adjust† -0.015 4.56 4.57 4.80
IPTW† -0.016 5.00 5.59 5.25
Heckman’s TEM -0.009 5.74 6.45 5.81

δ = 1
Adjust† -1.62 10.3 10.2 162
IPTW† -1.62 12.4 11.1 162
Heckman’s TEM -0.21 88.2 94.5 90.6

† - Results from Table 3.1, Section 3.4
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This confirms that instruments, when they exist, should be included in Heckman’s

TEM. The fact that the bias is lower may be a product of the fact that x3 was gener-

ated as a normally distributed variable, and hence becomes absorbed into the error tern

when not specified. In light of this realization, this simulation serves as further con-

firmation that true instrumental variables are not necessary for valid estimation of the

natural history association. This study suggests that conditioning on variables known

to be associated with medication use can greatly reduce variability for estimation of

parameters of interest.

4.2 Misspecification of the Underlying Probit Model

As previously discussed, expressing the probit model in terms of a latent variable with

a normally distributed error term is a convenient way to allow correlation between

the biomarker and medication use errors, and in turn, derive a likelihood from the

assumption of bivariate normality. The bivariate normal model is a convenient modeling

assumption to obtain a tractable expression for the conditional distribution of z∗i |yi(0).

Since yi(0) and z∗i are either completely or partially latent, it is not possible to estimate

the underlying medication use curve based on observed data, and so the assumption of

bivariate normality is not one that is directly testable. Hence, it is of interest to examine

the behavior of Heckman’s TEM when distributional assumptions are not met. First,

we consider other link functions to describe the probability of medication use. We

consider the logistic and complementary log-log (clog-log) links.

Specifically, we compare the TEM to the Exclude, Adjust, and IPTW approaches.

Suppose first that the following logistic model is used to determine the probability of

medication use for each observation, conditional on covariates:

P (z = 1|w , y(0)) =
exp(x1 + x3 + 0.2y(0))

1 + exp(x1 + x3 + 0.2y(0))
(4.1)
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Then, suppose the clog-log link is used:

P (z = 1|w , y(0)) = 1− exp(− exp(x1 + x3 + 0.2y(0))) (4.2)

Figure 4.1: Link functions considered in Section 4.2, holding x2 = 0 and x3 = 0 . For
the logit model, the probability of medication use is given by P (z = 1|x1;x2 = x3 =
0) = exp(1.2x1)/(1 + exp(1.2x1)), and for the clog-log link, the probability is given by
P (z = 1|x1;x2 = x3 = 0) = 1− exp(− exp(1.2x1))

Figure 4.1 illustrates how these three link functions differ from each other. There

are some noted differences. For example, use of the logit link resembles the probit

link in overall shape but has meaningfully heavier tails. The clog-log link maps to the

reverse extreme-value distribution which is asymmetric with a heavier left tail.

Table 4.3 depicts results for when the logit link is used in the data generating

mechanism in place of the probit link, and Table 4.4 depicts results for when the clog-

log link is used. The patterns of bias appear to be quite similar to those observed under

the probit model (i.e., correct specification of the TEM). Heckman’s model outperforms

the alternative approaches in terms of both bias and rMSE. The levels of bias seen in

alternative approaches are mostly consistent with those of Table 3.1.
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Table 4.3: Results from a simulation study comparing four approaches when the med-
ication use model is based on a logit link rather than a probit link.

Bias SE ×102 ŜE ×102 rMSE ×102

β1 = 1
Exclude -0.068 6.90 6.95 9.65
Adjust -0.067 4.97 5.01 8.38
IPTW -0.068 6.58 5.62 9.48
Heckman’s TEM -0.001 7.14 6.90 7.14

β2 = 1
Exclude -0.010 6.25 6.35 6.33
Adjust -0.011 4.51 4.58 4.64
IPTW -0.012 4.89 5.57 5.02
Heckman’s TEM 0.000 4.61 4.66 4.61

δ = 1
Adjust -1.67 9.93 10.0 167
IPTW -1.67 11.4 11.1 167
Heckman’s TEM -0.007 26.0 25.0 26.0

Table 4.4: Results from a simulation study comparing four approaches when the med-
ication use model is based on a complementary log-log link rather than a probit link.

Bias SE ×102 ŜE ×102 rMSE ×102

β1 = 1
Exclude -0.112 7.41 7.31 13.4
Adjust -0.099 5.15 5.20 11.2
IPTW -0.046 8.26 5.73 9.46
Heckman’s TEM 0.001 6.66 6.70 6.66

β2 = 1
Exclude -0.017 6.25 6.34 6.58
Adjust -0.016 4.55 4.56 4.83
IPTW -0.011 5.16 5.59 5.29
Heckman’s TEM 0.001 4.63 4.64 4.63

δ = 1
Adjust -1.58 10.4 10.4 159
IPTW -1.66 14.5 11.1 167
Heckman’s TEM 0.003 20.4 20.4 20.4
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The results of these simulations suggest that Heckman’s TEM is not overly sensitive

to modest departures from the probit model. This result is important given that the

assumption of bivariate normality/correct link function specification is not testable.

4.3 Right-Skewed Errors

In keeping with understanding the sensitivity of the TEM to departures from bivariate

normality, we wish to understand behavior when the errors are right-skewed. Suppose

that the errors for the biomarker model are sampled from an Exponential(λ = 3/5),

and the medication use errors are sampled from an Exponential(λ = 3) distribution

(both shifted to mean zero). Figure 4.2 illustrates how these distributions differ from

the normal distributions of the same mean and variance. Results from this study are

presented in Table 4.5. Patterns in bias and rMSE are similar to those observed in

the main simulation; interestingly, the TEM provides biased estimates of the treatment

effect, but the natural history association appears to be estimated with high accuracy.

This suggests that Heckman’s TEM is robust to right-skewed errors, as far as estimation

of β is concerned.

Figure 4.2: Density functions for a right-skewed shifted Exponential(λ = 3/5) and
Exponential(λ = 3) distributions, centered to mean zero. The corresponding normal
distributions of the same mean and variance is shown.
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Table 4.5: Results from a simulation study comparing four approaches when the errors
are right-skewed, generated from Exponential distributions and shifted to have mean
zero (for the biomarker model, λ = 3/5; for the medication use model, λ = 3). The
simulation setup otherwise mirrors that of Table 3.1.

Bias SE ×102 ŜE ×102 rMSE ×102

β1 = 1
Exclude -0.183 7.53 7.72 19.8
Adjust -0.233 7.04 6.81 24.4
IPTW -0.200 13.7 6.90 24.2
Heckman’s TEM 0.000 7.47 7.18 7.48

β2 = 1
Exclude -0.037 6.14 6.14 7.18
Adjust -0.042 5.26 5.27 6.73
IPTW -0.043 6.11 6.32 7.49
Heckman’s TEM -0.003 5.37 5.35 5.38

δ = 1
Adjust -1.20 14.3 13.7 121
IPTW -1.25 23.4 12.3 127
Heckman’s TEM -0.313 6.50 6.19 32.0

4.4 Heavy-Tailed Errors

Further exploring the sensitivity of the TEM to departures from bivariate normality,

we wish to understand behavior when the errors on the underlying biomarker model

are heavy-tailed. Suppose that the errors are generated from a bivariate t-distribution

with parameters ν = 5 and covariance parameter given by

Σ = 2×

 1 0.3

0.3 1

 . (4.3)

Results are shown in Table 4.6. As was the case in Section 4.3, the TEM proves

low-bias estimates of β, also outperforming other approaches in terms rMSE. However,

there is noted bias in estimating the average treatment effect, δ (although the TEM
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Table 4.6: Results from a simulation study comparing four approaches when the er-
rors are heavy-tailed, generated from a bivariate t-distribution. The simulation setup
otherwise mirrors that of Table 3.1.

Bias SE ×102 ŜE ×102 rMSE ×102

β1 = 1
Exclude -0.24 8.98 8.95 25.5
Adjust -0.24 6.10 6.39 23.4
IPTW -0.24 7.54 6.54 24.7
Heckman’s TEM 0.024 10.4 10.5 10.6

β2 = 1
Exclude -0.041 7.69 7.89 8.69
Adjust -0.039 5.70 5.64 6.89
IPTW -0.039 5.98 6.47 7.13
Heckman’s TEM 0.0038 6.12 6.10 6.12

δ = 1
Adjust -0.86 12.9 12.7 86.9
IPTW -0.86 14.3 12.9 87.1
Heckman’s TEM -0.53 13.4 12.5 55.0

still outperforms the alternative approaches in bias and MSE). Sections 4.3 through

4.5 together suggest that the TEM is not particularly sensitive to moderate departures

from the assumption of bivariate normally distributed error terms in the underlying

biomarker and medication use models. This is particularly true for estimation of our

parameter of interest, β; importantly, bias in estimating δ can occur if distributional

assumptions are violated.

4.5 Measurement Error Considerations

We now investigate the impact of measurement error in the exposures on bias and

variability. Recall that, in the original simulation setup, x1, x2, and x3 are each of

unit variance. First, suppose that (x1, x
observed
1 ) is generated from a bivariate normal

distribution with zero mean and unit variance in each component, with correlation 0.95.

Here x1 denotes the true value of x1 and xobserved1 is the observed value, which has some
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modest (nondifferential) measurement error. Table 4.7 presents results on bias and

rMSE for the näıve approaches, Ignore, Exclude, Adjust, as well as Heckman’s TEM.

Patterns mirror those observed Section 3.4. A modest amount of bias was induced by

this minor measurement error on x1; larger error (e.g., lower correlation between x1 and

xobserved1 in this example) resulted in further attenuation of estimates, consistent with

prior results on nondifferential misclassification of the exposure (Lefebvre et al., 2008).

Similar patterns were observed with measurement error on x2.

Now suppose instead that x3 is observed with the same type of nondifferential mea-

surement error (the pair (x3, x
observed
3 ) is generated from a bivariate normal distribution

with zero mean and unit variance in each component, with correlation 0.95). Table

4.8 presents results on bias and rMSE for the same four approaches. No substantial

changes in bias or variability were observed.

Table 4.7: Results from a simulation study comparing four approaches when there is
modest measurement error on x1.

Bias SE ×102 ŜE ×102 rMSE ×102

β1 = 1
Ignore -0.26 4.83 4.68 26.8
Exclude -0.15 7.41 7.14 17.0
Adjust -0.15 5.38 5.13 16.2
Heckman’s TEM -0.054 6.81 6.76 8.67

β2 = 1
Ignore -0.038 4.74 4.68 6.06
Exclude -0.018 6.47 6.45 6.72
Adjust -0.018 4.70 4.64 5.03
Heckman’s TEM -0.001 4.82 4.74 4.82

δ = 1
Adjust -1.52 10.6 10.3 152
Heckman’s TEM -0.014 22.7 22.9 22.7
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Table 4.8: Results from a simulation study comparing four approaches when there is
modest measurement error on x3.

Bias SE ×102 ŜE ×102 rMSE ×102

β1 = 1
Ignore -0.22 4.60 4.61 22.8
Exclude -0.086 7.15 7.08 11.2
Adjust -0.084 5.15 5.09 9.84
Heckman’s TEM -0.001 7.17 6.99 7.17

β2 = 1
Ignore -0.038 4.62 4.63 5.99
Exclude -0.016 6.10 6.32 6.30
Adjust -0.015 4.59 4.57 4.82
Heckman’s TEM -0.001 4.70 4.66 4.70

δ = 1
Adjust -1.62 10.3 10.2 162
Heckman’s TEM -0.009 23.5 22.5 23.7

4.6 The Assumption of Uniform Treatment Effects: A Motivating Exam-
ple

In Section 3.3, we allowed for a random treatment effect sampled from a normal dis-

tribution of unknown mean and variance rather than a constant unknown parameter.

To account for heteroscedasticity induced, we presented a robust variance-covariance

estimator. This generalization does not allow for treatment effects to systematically

differ with covariates. Hence, it is of interest to examine the sensitivity of the TEM

when effect measure modification is present.

One simple means of evaluating this sensitivity is to evaluate behavior when subgroup-

specific treatment effects are taken to be proportionate to the expected underlying

biomarker value. We conduct a simulation to elucidate this sensitivity. Suppose that

we alter the simulation setup of Section 3.4 such that δi = ψE[yi(0)|x i] = ψ · x Ti β, and

in turn, yi = yi(0)−ψzi ·x Ti β. To ensure that the effects of medication are positive for

virtually all subjects, set β0 = 10; in turn, set σ2
y = 9 in order to increase the difference



73

between E[y(0)|z = 1] and E[y(0)|z = 0]. Then, suppose that ψ = 0.2 so that the

expected effect of medication use on the biomarker is approximately two units rather

than one as in our main simulation of Section 3.4. Table 4.9 presents the results for

Exclude, Adjust, IPTW, and Heckman’s TEM. Heckman’s TEM shows bias in estimat-

ing β1 and β2. In this setting, Heckman’s TEM performs best in terms of rMSE for

estimation of the biomarker associations, but the level of bias is still fairly substantial.

Bias patterns were noted to increase as the proportionality constant ψ increased.

Table 4.9: Results from a simulation study comparing approaches when subject-specific
treatment effects is proportionate to their expected underlying biomarker value.

Bias SE ×102 rMSE ×102

β1 = 1
Exclude -0.35 14.4 38.3
Adjust -0.45 10.3 46.4
IPTW -0.45 11.1 46.6
Heckman’s TEM -0.10 13.9 17.1

β2 = 1
Exclude -0.063 12.8 14.3
Adjust -0.16 8.97 18.4
IPTW -0.16 9.16 18.6
Heckman’s TEM -0.10 9.43 14.0

δ ≈ 2
Adjust -1.62 20.6 163.6
IPTW -1.62 21.4 163.7
Heckman’s TEM -0.004 45.4 45.4

In practice, the effects of medication use on a biomarker may have both additive

and proportionate characteristics. That is, medication may lower the biomarker by a

fixed amount on average for all participants, and then further decrease the biomarker

in a way that is proportionate the the biomarker. It is of interest to determine the

behavior of these models as the we shift treatment effects from being more “uniform”

in nature to being more “proportionate” in nature. In this simulation, let σ2
y = 40
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Figure 4.3: Bias and root mean squared error of for estimation of β1 while varying the
strength of proportionality of treatment effects.

and σ2
γ = 10 to increase the difference between E[y(0)|z = 1] and E[y(0)|z = 0] to

approximately 4. Let δi = ψ0 +ψ1E[yi(0)|x i], and we vary ψ0 and ψ1; we choose ψ0 and

ψ1 so that the marginal treatment effect, E[δi] = 3. Specifically, we let ψ0 range from 3

to 0, and ψ1 = 0.3−0.1ψ0 ranges linearly in ψ0 from 0 to 0.3. ψ1 = 0 indicates that the

treatment effects are entirely additive, and ψ1 = 0.3 indicates that the treatment effects

are entirely proportionate the the expected underlying biomarker value. Figures 4.3-

4.5 present the results for estimation of β1, β2, an δ from the Ignore, Exclude, Adjust

approaches, and Heckman’s TEM.

Is is apparent that Heckman’s TEM performs very well compared to other ap-

proaches in terms of both bias and rMSE for estimation of β1, although the bias is still

moderately high when the treatment effects are entirely proportionate. For estimation

of β2, the level of observed bias is more substantial relative to that of the näıve ap-

proaches. The TEM generally outperforms the alternative approaches when compared

to the other approaches in terms of rMSE, although the gap between the approaches
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Figure 4.4: Bias and root mean squared error of for estimation of β2 while varying the
strength of proportionality of treatment effects.

Figure 4.5: Bias and root mean squared error of for estimation of δ while varying the
strength of proportionality of treatment effects.
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appears to close as proportionality increases. For estimation of δ, the TEM outper-

forms the Adjust approach across levels of proportionality levels, with low bias and

lower rMSE. This result is consistent with prior results (Table 3.1 and Table 4.9). This

suggests that the presence of effect measure modification can have a substantial impact

for estimating β, although the marginal treatment effect, δ, may still be reasonably

well estimated. This pattern appears to be the reverse of those seen in Section 4.3 and

4.4, which pertained to distributional assumptions on the errors.

4.7 Discussion

In this chapter, we have demonstrated that Heckman’s TEM is fairly robust to depar-

tures from several of its main assumptions. In reality, if the errors terms in either the

biomarker model or the medication use model are skewed or heavy-tailed, our estimates

of the natural history association are not meaningfully affected. A similar result is true

if the underlying treatment assignment model is not based on a probit link but rather

from a logistic or complementary log-log link. This is to say that Heckman’s TEM

is fairly robust to departures from the assumption of bivariate normality. However,

follow-up studies did reveal that bias can be induced if the biomarker errors become

more heavily skewed, and challenges with convergence can occur when generating er-

rors from a bivariate t-distribution with fewer than five degrees of freedom. Intuitively,

the fact that there would be bias makes sense since the likelihood incorporates expres-

sions for the the conditional mean and variance of z∗i |yi(0), which under a skewed or

heavy-tailed distribution is no longer guaranteed to be correct.

Although we have previously shown that Heckman’s model performs well even when

there is no true instrumental variable, they must be accounted for in the medication

use model when they exist. Failure to specify important predictors of medication use

can result in large increases in variability even if those variables are not associated

with the underlying biomarker (that is, if they are instruments). This is an important
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limitation of which it is important to be aware. Many times, predictors of medication

use are either not well understood or they are not measured in the study. This makes it

challenging to justify using Heckman’s TEM in those settings. We note of course that

challenges arising from failure to place predictors of interest (x1 and x2, in particular) in

the medication use model can be addressed very easily by simply placing all variables in

the biomarker model in the medication use model. The results of this chapter suggest

that if z∗i is systematically influenced by y(0), making these adjustments can be very

important to obtain consistent estimates. Since researchers may not necessarily think

to collect data on variables associated with medication use only, misspecification of the

x3 class of variables is more concerning and less easy to address in practice. If predictors

of medication use are thought to be well understood, Heckman’s TEM should certainly

be considered as a candidate for estimating biomarker associations.

While the Heckman model remains robust to certain assumptions, unverifiable mis-

specification of the medication use model can be difficult to overcome in settings where

predictors of medication use are not well understood. However, if predictors of medica-

tion use are thought to be known and the effect of medication is to change the biomarker

by a fixed amount on average, the Heckman model should be considered as a means

of correcting bias. Special consideration of endogeneity and the associations of vari-

ables with medication use and biomarkers should inform model selection for estimating

biomarker-to-exposure associations.

We also found that Heckman’s TEM can be somewhat sensitive to departures from

the assumption of uniform treatment effects. In our example simulation, effect modifi-

cation was generated by allowing treatment effects to be proportional to the expected

value of the biomarker conditional on covariates. Heckman’s TEM does not accommo-

date this type of systematic dependence in the effects of medication use. Indeed, effect

modification can arise not just from proportionality of treatment effects, but depen-
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dence on other covariates separate from those in X or even those in W. This type of

effect modification will be explored in much greater depth in Chapter 5 when we extend

Heckman’s TEM to accommodate more general effect modifiers.

Chapters 3 and 4 together confirm the inappropriateness of the alternative ap-

proaches, as they are all sensitive to both the strength of endogeneity and the magni-

tude of treatment effects. Heckman’s TEM still outperforms the alternative approaches

even when there are modest assumption violations.
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Chapter 5

EXTENSION TO ALLOW SUBGROUP SPECIFIC
TREATMENT EFFECTS

Chapters 2 through 4 have primarily focused on identifying and evaluating a model

to account for endogenous medication use when estimating the natural history associ-

ation between a predictor of interest and a biomarker outcome. The TEM is appealing

for this purpose since it provides us with an easy to implement model to characterize

how medication users differ from non-users and allows medication use to be correlated

with the underlying biomarker (that is, it incorporates endogeneity of medication use).

In addition to demonstrating that several simple modifications to OLS linear regression

are not adequate for removing bias when endogeneity is present, we have also evaluated

the robustness of the TEM to departures from several of its main assumptions. We

found that the gains from Heckman’s TEM generally depend upon on the assumption

of uniform treatment effects. In practice, we expect this assumption to be violated

(for example, if a predictor of interest modifies the effect of medication use on the un-

derlying biomarker). Differential efficacy may appear across race categories or genetic

exposures, for example. Hence, there is an unmet need to address the assumption of

uniform treatment effects and account for effect measure modification.

IV approaches have been presented and discussed for estimation of marginal treat-

ment effects when there is heterogeneity is present (Heckman et al., 2006; Wang et al.,

2015). Attention has not been given, however, to understanding how the existence of

treatment effect modifiers impacts estimation of the natural history association, and no

generalizations of the TEM have been made to accommodate this potential challenge.
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This chapter aims to extend Heckman’s TEM to allow for systematic differences in

the expected treatment effect magnitude, based on observable covariates. We will first

propose a model to explicitly accommodate effect modifiers and show identifiability of

parameters. We will present a robust Wald-based procedure to test for the presence of

effect modification across subsets of observable covariates. We will then follow up with

a number of simulation studies in order to elucidate the advantages of accommodating

effect modification when present.

5.1 Accounting for Covariate-Dependent Treatment Effects

As we have previously discussed, Heckman’s TEM can be seen as a likelihood-based

missing-at-random model for the partially missing outcome yi(0). If a predictor of

interest is in fact an effect modifier, then using a single value δ as a correction for all

study subjects serves as a systematic under- or over-correction to the observed value. In

this case, we hypothesize that the resulting estimators of the natural history association

from Heckman’s TEM will not be consistent for the true value. Figure 5.1 depicts the

updated corresponding DAG to allow for different classes of effect modifiers (those

associated with the underlying biomarker, with the probability of medication use, with

the effect of medication use, or any combination of these three).

Let v denote a subgroup-specific vector of covariates that predict the effect of med-

ication use on the biomarker (allowing for an intercept), and let η denote an unknown

parameter vector describing the effect modification. In turn, let V denote theN×(q3+1)

design matrix for covariates that influence the effect of medication use; these covariates

may or may not be distinct from the covariates of X and W. Figure 5.1 depicts the

updated corresponding DAG to allow for effect modifiers. We may assume that

v i = (1 0 0 · · · 0︸ ︷︷ ︸
q3

) (5.1)
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Figure 5.1: DAG illustrating relationship between covariates and outcomes when
subgroup-specific effects are accommodated. Solid indicates observed variables, dashed
indicates partially observed variables. Note that the covariates of x , w , and v need
not be unique, indicated by the curves lines connecting them. The arrow between x
and y(0) (red) corresponds to the association of interest.

if zi = 0, as yi(0) is observed in off-medication participants. This is done because

some potential effect modifiers may only apply to on-medication participants (e.g.,

medication class or dose). Then, rather than modeling the expected treatment effect as

a fixed, unknown scalar δ, we may model the expected treatment effect with a subject-

specific δi given by δi = vTi η, where η is an unknown (q3 × 1)-vector. By modeling

yi(0) = yi + δizi, we borrow information across covariate values for data to determine

an appropriate correction to the observed biomarker at the subgroup-specific level. The

likelihood model for Heckman’s TEM is easily extended as follows:

LV,W,X,Y,Z(θ) =
N∏
i=1

1

σy
φ

(
yi − x Ti β + vTi ηzi

σy

)
× Φ

(
(−1)1−zi

wT
i α + ρ(yi − x Ti β + vTi ηzi)/σy√

1− ρ2

) (5.2)

The result that yi(0) is still permitted to influence z∗i in the data generation mechanism

still holds in this setting, and the result that λ need not be estimated also still holds.
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A robust variance-covariance estimator analogous to the one described in Section 3.3

can be applied to account for random error terms in the treatment effect. We refer to

this extension as the “subgroup-specific effects model” (SSEM).

5.2 Identifiability of Parameters of Interest

We prove that parameters of interest are identifiable. Let Σ denote the covariance

matrix of the error terms.

Theorem: Suppose we have structural equations given by (1) y = x Tβ + vTηzi + εi

and (2) z∗ = wTα + γi, again including all covariates of W in X. Then, β,η, and σy

are identifiable parameters.

Proof : Note that by including all covariates of X in W, we are accommodating depen-

dence of z∗ on y(0), without having to estimate the additional term, λ. Let A denote

a 2 × 2 nonsingular matrix. Let x̃ denote a vector of length p containing all unique

predictors in x , w , and v combined (each having q1, q2, and q3 predictors, respectively).

Partition this complete covariate vector into seven classes, based on which outcomes

or combination of outcomes they predict (the underlying biomarker, the probability of

medication use, or the expected treatment effect magnitude); perform this partition

as in Figure 5.2. The parameters β, α, and η can be partitioned analogously. Let

o = (y, z∗) denote the partially observed outcome vector, and x̃ ′ = (1, x̃ T , vT × z)T

the covariate vector for the first structural equation. Thus, the simultaneous equation

system may be written as Ao −Γx̃ ′ = (ε, γ)T for a 2× (p+ q3 + 1) dimensional matrix

of coefficients, Γ, given in this case by:

Γ =

β0 βT(1) βT(2) 0T βT(3) 0T 0T βT(4) ηT

α0 αT
(1) αT

(2) αT
(3) αT

(4) αT
(5) 0T αT

(6) 0T

 . (5.3)
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The system can then be simplified to o = Πx̃ ′ + (ε′, γ′)T , where Π = A−1Γ, and the

error vector has covariance matrix Ω = A−1ΣA−T . Again letting

Λ =

1 0

0 1/σz

 , (5.4)

where σ2
z is the total variance of z∗, we have that parameter appearing in the matrices

ΛΠ and ΛΩΛT are identifiable (Maddala, 1983). The result that β, η, and σy are

identifiable follows from setting A to be the 2× 2 identity matrix. Q.E.D.

Figure 5.2: Partitioning of exposures into seven classes based on which of the three ma-
jor outcomes they predict: (1) the underlying biomarker y(0), (2) the latent medication
use variable z∗, and (3) the treatment effect magnitude δi.
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5.3 A Robust Wald-Based Procedure to Test for Effect Modification

In practice, one might be unsure of whether or not certain covariates serve as potential

effect modifiers. As a tool to test for evidence of effect modification, a robust Wald

test can be implemented to test the null hypothesis H0 : η = (η0, 0, . . . , 0)T against

H1 : (not H0), for any free-varying real-valued η0. Suppose the parameter vectors α, β,

and η are of dimensions (q1 + 1), (q2 + 1), and (q3 + 1), respectively. Define the matrix

R to identify the effect modifier parameters of interest:

R =

[
0q3×(q1+q2+3) Iq3×q3 0q3×2

]
, (5.5)

where the 0q3×2 matrix in R corresponds to the correlation parameter ρ and the error

variance σ2
y. If θ̂ is the solution to the score equations ∂ logL(θ)/∂θ = 0 (with likeli-

hood as in 5.2), and SN(θ̂) the robust variance estimator evaluated at θ̂, then a Wald

statistic, WN(θ̂), can be defined by

WN(θ̂) = (Rθ̂)T (RSN(θ̂)RT )−1(Rθ̂). (5.6)

Under standard likelihood theory (Wald, 1943), we have that WN −→d χ
2
q3

, so that

WN(θ̂) can be compared to the (1 − α)-quantile of the χ2
q3

in order to test for the

presence of effect modification.

One may also utilize a similar robust Wald test in order to test for effect modification

among a subset of the effect modification parameters. For example, if medication

class and race category were treated as potential effect modifiers, we could test for

effect modification within either one of those variables, or for both jointly. By using

the robust variance estimator SN(θ̂), this testing procedure will be robust to various

forms of model misspecification, including error heteroscedasticity, which is likely to be

encountered in practice.
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5.4 Simulation Scenario 1: Bias Reduction Under Various Forms of Effect
Modification

In the presence of effect modification, the TEM is not correctly specified and may

not provide consistent estimates for β. Analytically computing the finite-sample or

asymptotic bias of the TEM in the presence of effect modification is not tractable, since

the solutions to the score equations of interest do not possess a closed-form expression

and must be obtained through computational approximation. The relative advantages

of accommodating subgroup-specific effects can be more effectively elucidated by means

of simulation studies over a wide range of reasonable parameters. We choose a different

simulation setup in this chapter than our main simulation of Section 3.4, in order to

more effectively parameterize effect modification.

In this simulation setup, let N = 5000 participants, and x1, x2, x3 denote the set

of predictors, all distributed i.i.d. N (0, 1). Further let D ∼ Bernoulli(p = 0.5). We

may choose to think of D as a binary medication “dose” variable that predicts the

magnitude of the treatment effect, but is not a predictor of interest (in this example,

D would be a covariate specific to on-medication participants, but D could also be a

variable measurable in all participants). Suppose the outcomes are generated by:

yi(0) = 50 + x1i + x2i + εi

z∗i = −5 + x1i + x3i + 0.1yi(0) + γi

= 1.1xi1 + 0.1x2i + x3i + 0.1εi + γi

(5.7)

We set σy = σγ = 50, and ρ = 0.5. Thus, the covariance matrix for the total error

terms in the model is given by

Σ =

50 30

30 50.5

 . (5.8)
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Relating to the notation used in Section 5.1, we have that x i = (1, x1i, x2i)
T and

w i = (1, x1i, x2i, x3i)
T , so that β = (50, 1, 1)T and α = (0, 1.1, 0.1, 1)T . This setup yields

an approximate 50% prevalence of medication use at each replication, and additionally,

we have that E[y(0)|zi = 1]−E[y(0)|zi = 0] ≈ 6.5 under this setup. Thus, we select the

parameters in the simulation studies that follow in this chapter such that the expected

marginal treatment effect (that is, Ev [vTi η]) is about 3.75, placing all simulations on a

comparable scale in which medication use is modestly effective in reducing the biomarker

value for participants on medication. Based on this setup, the most general form of the

data generating mechanism for y can be described by:

yi = yi(0)− (η0 + η1x1i + η2x2i + η3x3i + η4Di)zi,

such that v i = (1, x1i, x2i, x3i, Di)
T . We wish to choose parameters to evaluate (a) the

extent of bias that arises from using the TEM when subgroup-specific effects are present,

(b) the circumstances under which the SSEM reduces bias, and (c) the efficiency cost of

using of the SSEM. These results aid us in providing recommendations for when to use

the updated SSEM over the original TEM. We also compare the TEM and SSEM to the

simple approaches (Ignore and Adjust) in order to confirm their inappropriateness when

seeking to estimate the association between x and y(0), and to evaluate the extent to

which TEM can still reduce bias as compared to these approaches when effect modifiers

are present.

In the first scenario, we let η = (2.5, 0.5, 0.5, 0.5, 2.5)T . Under this setup, the effect of

medication use on the biomarker varies with all predictors, as well as the dose variable,

D. Conditional on Di = 0, the distribution of the effects isN (2.5, 0.75), and conditional

on Di = 1, the distribution of the treatment effects is N (5, 0.75). The subject-specific

treatment effect therefore lies between 1 and 6.5 for the vast majority of participants

(and is 3.75 on average, marginally). We conduct two-thousand simulation replicates
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under this setup, and compare the SSEM to the TEM. We also fit the Ignore and Adjust

models to gain insights into how much of the “gain” seen from the TEM is lost when

effect modification is present. Again, we do not present results on estimation of the

intercept, since it is not typically of interest in association studies.

Table 5.1 presents results for estimation of β. Specifically, we present the estimated

bias (averaged across all replicates), the Monte-Carlo standard error (the standard

deviation of all the estimates from each replicate), the robust standard error estimates

(averaged across all replicates), and the simulated rMSE. The SSEM provides low-bias

estimates of β1 and β2 as compared to the other approaches. In particular, estimates

obtained from the Ignore and Adjust approaches are markedly biased, even under this

setting in which the effect of the medication on y(0) is not very large relative to the

difference in mean y(0) between participants on and off medication. As one might hope,

the TEM appears to provide some bias reduction for estimation of β1 relative to the

Ignore and Adjust approaches under this simulation setup, suggesting that some bias

correction can be achieved by using the TEM even when effect modification is present.

Of note is that the bias reduction is not as strong for estimation of β2. Likely, this is a

consequence of the fact that x1 is a strong predictor of medication use, and x2 weakly

predicts medication use (only through the underlying biomarker). Comparing the bias

of the TEM to the SSEM confirms that the TEM can be sensitive to departures from

the assumption of uniform treatment effects.

Estimating the additional effect modifier parameters results in a modest loss of

efficiency for the SSEM. However, the potential for bias reduction in this setting is

objectively large enough to justify the efficiency loss, as seen by comparing the rMSE

across the methods. The improved rMSE was confirmed to be higher in follow-up simu-

lations in which the overall expected treatment effect was higher than 3.75. The robust

standard error estimates adequately estimate the simulation-based standard errors.
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Table 5.1: Results from a simulation study in which effect modification arises from
a variety of sources. This table specifically presents the results for estimation of the
natural history association, β.

Bias SE ×102 ŜE ×102 rMSE ×102

β1 = 1
Ignore -0.46 9.47 9.29 47.3
Adjust -0.61 9.31 9.16 62.0
Heckman’s TEM -0.18 11.3 11.3 21.6
SSEM -0.008 15.2 15.8 15.2

β2 = 1
Ignore -0.27 9.19 9.27 28.6
Adjust -0.28 9.00 9.09 29.8
Heckman’s TEM -0.25 10.5 10.5 26.8
SSEM 0.00 13.6 13.5 13.6

Table 5.2: Results from a simulation study in which effect modification arises from
a variety of sources. This table specifically presents the results for estimation of the
treatment effect δ or the effect modification parameters given in η for the SSEM.

Bias SE ×102 ŜE ×102 rMSE ×102

δ = 3.75
Adjust -1.17 18.3 18.3 117.9
Heckman’s TEM 1.10 72.3 72.3 132.2

η0 = 2.5
SSEM -0.006 125.2 132.0 126.2

η1 = 0.5
SSEM 0.00 18.1 18.0 18.1

η2 = 0.5
SSEM 0.007 17.9 17.8 17.9

η3 = 0.5
SSEM 0.007 14.8 15.1 14.8

η4 = 2.5
SSEM 0.004 25.2 25.2 25.2

Table 5.2 presents results for estimation of the treatment effect parameters. The

effect modifier parameters are neither estimable in the Adjustment approach nor the



89

TEM. To estimate the bias for these approaches, we compare the estimates to the

marginal treatment effect, given by δ = 3.75. The Adjustment approach provides

a downwardly biased estimate of the marginal treatment effect; this is consistent with

results found in prior simulations (e.g., in Section 3.4). Interestingly, the TEM provides

an upwardly biased estimate of the marginal treatment effect, and has an incredibly

high variability associated with estimation. This demonstrates that using the TEM

to estimate marginal treatment effects may not be appropriate when there is effect

modification. The SSEM provides approximately unbiased estimates of all of the effect

modification parameters, although of note is that the intercept is of somewhat high

variability. The following scenarios focus on subgroup-specific effects generated from

each predictor individually, rather than from all predictors simultaneously as in this

example. We divide this into four scenarios, as illustrated in Figure 5.3.

Figure 5.3: Diagram illustrating various setups for simulations seeking to evaluate the
SSEM. Results from Scenario 1 were presented in Section 5.4 and incorporated all such
effect modification. In the studies that follow, we consider one effect modifier at a time.



90

5.5 Simulation Scenarios 2 and 3: Predictors of Interest as Treatment
Effect Modifiers

The purpose of this study is to evaluate bias when the single source of effect modification

is a predictor of interest. Recall that x1 is associated with y(0) and z∗, and that x2 is

associated with y(0) (through λ, x2 is also weakly associated with z∗). In Scenario 2,

we maintain the setup of Scenario 1, except we let η = (3.75, η1, 0, 0, 0), and vary η1

from 0 to 1 (with one-thousand simulation replicates at each value). For the SSEM,

we do not estimate η2, η3, or η4. Increasing η1 does not alter the average effect of the

medication on the biomarker (3.75).

Figure 5.4 illustrates the estimated bias and simulation rMSE for estimation of β1

from each method, considered across the range 0 ≤ η1 ≤ 1. Results for estimation of

β2 are shown in Figure 5.5. For estimation of β1, the SSEM provides approximately

unbiased estimates, as expected. The TEM, on the other hand, provides approximately

unbiased estimates only when η1 ≈ 0. Similar to the results from the first scenario, we

find that the TEM has better performance, both in terms of bias and rMSE, than the

näıve approaches. Also consistent with the previous results is that the rMSE for the

TEM is slightly lower than that of the SSEM when η1 is close to zero. However, η1 does

not have to be very large for the advantage to vanish.

We find that the TEM and SSEM provide low-bias estimates of β2, although the

Ignore and Adjust approaches provide estimates of β2 with markedly more bias. The

bias for the TEM and SSEM are nearly indistinguishable in the left panel of Figure

5.5, likely because x2 is not associated with the effects of the medication. Because x2

is not associated with the effects of medication, it is not very surprising that the bias

does not seem to vary over the choice of β2 for any of the approaches. Interestingly,

the rMSE for estimation of β2 in this case is higher for the SSEM than those of the

other approaches. In a follow-up simulation, we generated the data such that x1 and x2
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Figure 5.4: Results from simulation Scenario 2. The range of values considered for η1
is shown on the x-axis, and the estimated bias (left) and rMSE (right) are shown. Note
that the true parameter value is given by β1 = 1.
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Figure 5.5: Results from simulation Scenario 2. The range of values considered for η1
is shown on the x-axis, and the estimated bias (left) and rMSE (right) are shown. Note
that the true parameter value is given by β2 = 1.
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Figure 5.6: Results from simulation Scenario 3. The range of values considered for η2
is shown on the x-axis, and the estimated bias (left) and rMSE (right) are shown. Note
that the true parameter value is given by β1 = 1.
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Figure 5.7: Results from simulation Scenario 3. The range of values considered for η2
is shown on the x-axis, and the estimated bias (left) and rMSE (right) are shown. Note
that the true parameter value is given by β2 = 1.
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were jointly distributed as bivariate normal, each predictor of unit variance, and with

correlation 0.5. The patterns seen in Figures 5.4 and 5.5 were observed to be similar,

suggesting that the different findings for β1 and β2 are not simply attributable to lack

of correlation between the predictors.

In Scenario 3, we consider x2 to be the sole effect modifier (i.e., we let η =

(3.75, 0, η2, 0, 0)T and let 0 ≤ η2 ≤ 1). The reverse pattern was observed for β1 and β2;

results are depicted in Figures 5.6 and 5.7. Interestingly, the TEM does not provide

as much of an improvement in bias for estimating β2 over the näıve OLS approaches

as we saw in Scenario 2. This may be attributable to the fact that x2 is only weakly

associated with medication use. These two scenarios taken together suggest that if a

predictor of interest is also a treatment effect modifier, it should be accounted for in

the SSEM.

5.6 Simulation Scenario 4: Predictors of Medication Use as Treatment
Effect Modifiers

The purpose of this simulation study is to evaluate bias under a setting in which the

source of effect modification is a single factor associated with medication use only (in

this case, x3). In particular, x3 is not associated with the biomarker. In this scenario,

we let η = (3.75, 0, 0, η3, 0), and we vary η3 over the range 0 ≤ η3 ≤ 1 (with one-

thousand simulation replicates at each value considered). For the SSEM, we do not

estimate η1, η2, or η4. As with η1 and η2, increasing η3 serves only to increase the

overall (marginal) variability of the effects of medication use.

Figures 5.8 and 5.9 illustrate the simulated bias and rMSE from each method for

estimation of β1 and β2 across the range of values for η3. The SSEM provides low-bias

estimates of β1 and β2. The rMSE for estimation of β1 appears to be nearly constant

across η1 values, with the TEM slightly outperforming the SSEM for small values of

η3. The TEM shows bias for estimation of β1 (less so for β2). The Ignore and Adjust
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Figure 5.8: Results from simulation Scenario 4. The range of values considered for η3
is shown on the x-axis, and the estimated bias (left) and rMSE (right) are shown. Note
that the true parameter value is given by β1 = 1.
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Figure 5.9: Results from simulation Scenario 4. The range of values considered for η3
is shown on the x-axis, and the estimated bias (left) and rMSE (right) are shown. Note
that the true parameter value is given by β2 = 1.
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methods perform poorly compared to the other approaches. However, with increasing

η1, the TEM eventually yields higher bias than the näıve approaches.

The two determinants of an individual subject’s expected treatment effect magni-

tude are vTi η and zi = 1(z∗i > 0). Since x3 is associated with both, failure to include

x3 as an effect modifier results in systematic under- or over-correction of the observed

outcome (as in the TEM). This is an important result, as it suggests that we should not

only account for effect modifiers when they are predictors of interest, but also if they

are predictors of medication use only. In either case, bias arises from systematic under-

or over-correction. Indeed, the bias from the TEM is smaller in the latter scenario

because x3. A likely explanation for this difference is that some of the bias observed

in Scenarios 2 and 3 is attributable to misspecification from this Scenario: x3 is not as

strongly associated with z∗ as x1, and indeed, x3 is not associated with y(0) at all.

5.7 Simulation Scenario 5: Treatment Effect Modifiers that are Unrelated
to the Underlying Biomarker and Medication Use Probability

The purpose of this study is to evaluate bias under a setting in which the source of

subgroup-specific effects is the single “dose” factor D only associated with the magni-

tude of the medication’s effect (and in particular, not with the underlying biomarker

y(0) or with medication use, z). In this scenario, we let η = (η0, 0, 0, η4), where η0

ranges from 0 to 5, and η4 = 5.5 − 2η0, so that the marginal effect of medication

use is constantly 3.75. We simulate one-thousand replicates at each pair of η0 and η4

considered. For the SSEM, we do not estimate η1, η2, or η3.

Figures 5.10 and 5.11 illustrate the estimated bias and rMSE from each method for

estimation of β1 and β2, across the range of values for η0. Both the TEM and SSEM

provide low-bias estimates of β1 and β2 in this setting; the Ignore and Adjust methods

provide biased estimates of both parameters. These patterns were confirmed when Di

was generated from a normally distributed rather than as a binary variable. In this
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Figure 5.10: Results from simulation Scenario 5. The range of values considered for η4
is shown on the x-axis, and the estimated bias (left) and rMSE (right) are shown. Note
that the true parameter value is given by β1 = 1.
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Figure 5.11: Results from simulation Scenario 5. The range of values considered for η4
is shown on the x-axis, and the estimated bias (left) and rMSE (right) are shown. Note
that the true parameter value is given by β2 = 1.
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case, this is analogous to allowing δi ∼ N (δ, σ2
δ ), as we have already done in Section

3.3. By generating D to be binary, the total errors are still approximately normally

distributed, and hence it is not all that surprising that the TEM performs well. When

an external treatment effect modifier is generated from, for example, a highly right-

skewed Gamma distribution, the total errors for the TEM are no longer approximately

normal. We followed up with a simulation study in which the external variable was

given by D ∼ Gamma(α = 1, β = 5), and we observed the same patterns as those

in Figures 5.10 and 5.11; this is consistent with the robustness properties observed

previously in Section 4.4.

This study suggests that the TEM is robust to effect modification when the effect

modifier is neither a predictor of interest nor associated with medication use. If the

effect modifier is highly skewed, including it in the SSEM may be advisable in order to

mitigate severe departures from bivariate normality.

5.8 Asymptotically Valid Level for the Robust Wald Test

We conclude this chapter with a simulation study to examine whether the robust Wald

test for presence of effect modification achieves the correct asymptotic level. We utilize

the same simulation setup of this chapter, except we generate the data under the null

hypothesis: η = (3.75, 0, 0, 0, 0)T . We compute the robust Wald statistic as in Section

5.3 at each of one-thousand simulation replicates, for sample sizes ranging from N = 250

to N = 2000. The empirical cumulative distribution function at each sample size was

determined and compared to the theoretical χ2
4 distribution of the test statistic, as

illustrated in Figure 5.12 (left). Note also in the right panel of Figure 5.12 that we have

plotted the empirical level with α = 0.01, 0.05, and 0.1, as compared to the nominal

levels. This study suggests that the robust Wald test proposed is asymptotically valid,

with WN −→d χ
2
q3

appearing to be true. For smaller sample sizes, the Wald test may

reject the null hypothesis of no effect modification at an inappropriately high rates.



98

Figure 5.12: Illustration of the asymptotic validity of the robust Wald test. In the left
panel, we have plotted the true χ2

4 distribution, and the empirical cumulative distribu-
tion function of the χ2

4 test statistic over one-thousand replications for various sample
sizes. In the right panel, we have taken cross-sections of the left panel at an α level of
0.10, 0.05, and 0.01 to show that the level is asymptotically valid for common choices
of significance testing levels.

5.9 Conditioning on Effect Modifiers

In the original TEM, we were required to condition on both x and w in each of the two

simultaneous equations (the biomarker and medication use models). In this setting, we

are required to additionally condition on the effect modifiers. That is to say that the

outcome equations can be written as E[y(0)|x , v ,w ] = x Tβ and P (z = 1|x , v ,w) =

Φ(wTα). For example, if a variables x1 and x2 are associated with y(0) but x1 is also

an effect modifier (e.g., δi = x1i), then x1 should be placed in the biomarker model

regardless of whether or not it is of interest. In particular, the marginal association

between x2 and y(0) is a different parameter than the association between x2 and y(0)

conditional on x1.
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5.10 Discussion

In this chapter, we have derived and evaluated an extension of James Heckman’s orig-

inal treatment effects model in order to accommodate effect measure modification for

estimation of the natural history association between a predictor of interest and a

biomarker outcome in the presence of endogenous medication use. In practice, the

effects of medication use may systematically vary with observable factors such as medi-

cation class/dose, or with the predictors of interest. The TEM (and hence our proposed

SSEM) can be presented as a system of structural equations. The maximum likelihood

approach to estimating parameters of interest allows one to regard the model essentially

as a missing-at-random model, in which y(0) is unobservable in participants on medi-

cation. In the TEM, the appropriate correction (δ) to yi is determined as a single value

for all participants (this is the assumption of uniform effects), estimated simultaneously

with the other parameters. When the effects of medication use vary with predictors of

interest in the biomarker model, substantial bias can arise when using the TEM to esti-

mate associations; this occurs because the single estimate of δ applied to on-medication

participants systematically under- or over-corrects their observed biomarker values for

the effects of medication use. Moreover, if the effect modifier is associated with medica-

tion use only, but not the biomarker, bias is also observed (albeit of lower magnitude in

our simulations). The approach taken in the SSEM is to further condition the effects of

medication use on potential effect modifiers to mitigate these problems with systematic

over- or under-correction.

Viewing the model extension in this way helps explain our finding that the TEM

appears to be robust to misspecification of effect modifiers associated only with the

treatment effects (i.e., when covariates in v do not appear in x or w). In this setting,

the mean models for yi(0) and z∗i are still correctly specified, and the variation in the

effects of medication use across values of the effect modifier becomes absorbed into
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the error term in the biomarker model (which can be accounted for with the robust

standard error estimator). In this sense, the effect modifier would only serve to create

an additional source of error.

This particular extension to Heckman’s TEM is important for two reasons. Firstly,

it achieves the desired goal of reducing bias in estimating biomarker associations when

treatment effect magnitude varies with observable covariates. Secondly, because effect

measure modification is modeled directly, we are provided with a means of understand-

ing how medication use can work in real-world settings. For example, we may wish to

determine whether the effects of medication on a biomarker are different across differ-

ent races. Although this is not our primary focus, our results demonstrated that effect

modifier parameters can be estimated fairly well from the SSEM.

Our simulation results further confirmed the inadequacy of the simpler approaches

(ignoring medication use and adjusting for it) in the setting of endogenous medica-

tion use, and further demonstrated that the TEM can provide biased estimates of the

natural association when predictors in the biomarker model modify the effects of the

medication on the underlying biomarker. The proposed SSEM nearly eliminates this

bias by specifically accommodating the effect modifiers when they are present. Under

the setting of a modest average treatment effect, there is an efficiency loss that is inar-

guably small relative to the large bias reduction achieved, at least when considering

measures such the MSE, although it might be considered a high cost when effect mod-

ification is not thought to be present. The robust Wald-based test might be used to

provide evidence of effect modification.

Our previous work in Chapters 2-4 revealed that failure to account for endogeneity

can result in bias when estimating natural associations between predictors and biomark-

ers. This follow-up work revealed that this improvement may be partially lost if the

predictor of interest modifies the effect of medication use on the biomarker. Therefore,
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this modeling framework can be a useful tool in order to estimate natural associations

when effect modifiers are thought to be well understood.

On the other hand, there are settings in which effect modifiers might not be well

documented. The use of the robust Wald test can be used as a complimentary tool or an

exploratory data analysis procedure to first test for effect modification before applying

the TEM (which presumed uniform treatment effects). Based on the results of this

research, we recommend using the SSEM in conjunction with the TEM framework

in order further reduce bias in estimating associations of interest when endogenous

medication use is present.

When effect modifiers are present but are unrelated to the underlying biomarker or

to medication use, the advantages to accounting for them is not as clear, unless under-

standing differential treatment effect patterns is of interest. More work is underway to

evaluate the potential advantages to using this model as a tool to understand treatment

effect patterns.

This chapter concludes the component of this dissertation handling the development

of methods in cross-sectional data. Beginning in Chapter 6, we turn our attention to

settings where repeated measures are available.
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Chapter 6

ESTIMATING NATURAL HISTORY ASSOCIATIONS IN
LONGITUDINAL DATA

In this chapter, we transition into a setting in which repeated measures are available

on study subjects over time. Specifically, we focus on extending the methodology

developed in prior chapters in order to to estimate the natural history association in

longitudinal data when there is endogenous medication use.

In recent years, age-trend modeling of cardiovascular biomarkers has received a great

deal of attention in the literature (Singh et al., 2012; Gurven et al., 2012; Carroll et al.,

2005; Allen et al., 2014). However, results from these studies are based on analogues of

the simple approaches described in Chapter 2, such as excluding on-medication obser-

vations or ignoring medication use altogether. Just as these standard approaches were

not appropriate in a cross-sectional setting for estimating the natural history associa-

tion, the longitudinal analogues are insufficient as they fail to address the challenges

that arise from endogenous medication use.

McClelland et al. (2008) devise a multiple imputation approach in which informa-

tion is obtained from participants who begin medication use during the course of the

study. However, estimation of parameters of interest under the TEM framework does

not appear to have been adequately addressed or explored when longitudinal data are

available. There is an unmet need to formulate the longitudinal analogues of Heck-

man’s TEM for settings in which data from cross-in participants is either sparse or

unavailable. STATA allows for clustering of observations with its “cluster robust” op-

tion, although the documentation does not make it clear how this procedure is imple-
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mented. Further exploration revealed that the output can be matched by implementing

a procedure similar in spirit to generalized estimating equations (GEE) with working

independence, whereby a marginal model is fit ignoring clustering, and a valid robust

variance estimator is used a posteriori. This sort of working independence approach

has been suggested in the literature for similar probit-response type model in order to

accommodate clustering (Wooldridge, 2011).

Although such a method can provide consistent estimates under correct specifica-

tion, we of course do not truly believe that cardiovascular biomarkers such as LDL

cholesterol are uncorrelated over time, and there is efficiency to be gained by exploiting

within-subject correlation in the biomarker (Diggle et al., 2002). In this chapter, we

explore potential options for handling within-subject correlation in longitudinal set-

tings. As will be made apparent in this chapter, extending the TEM by fully specifying

correlation in the underlying biomarker and in medication use over time is analytically

intractable as it demands the computation of T -fold integrals, where T is the number of

observations within a cluster. We seek to put forth a reasonable set of assumptions re-

garding within-subject correlation and examine the extent to which efficiency is gained

over the working independence model. One model extension that will receive a great

deal of attention is our proposal of partial specification of the correlation structure for

estimation of associations. This approach provides a computationally tractable alter-

native to fully parametric likelihood approaches, while still accounting for correlation

in the biomarker. We will show by simulation that this approach can yield very large

efficiency gains compared to the standard working independence model. Moreover, we

have the important robustness property that the resulting estimators will be consistent

for the natural history association irrespective of the choice of a working correlation

structure.
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6.1 Notation and Näıve Approaches in Longitudinal Data

As has been the case in previous chapters, let i = 1, . . . , N denote the cluster (sub-

ject); now, further let t = 1, . . . , Ti denote the observation number for the ith sub-

ject. Let zit denote the indicator of medication use for subject i at observation t,

and let y i(z) = (yi1(z), . . . , yiTi(z))T denote the vector of potential biomarker values

for subject i under treatment assignment z. The observed biomarker vector for sub-

ject i can be denoted by y i = (y1i, . . . , yiTi)
T , which under the consistency assump-

tion is equivalent to the potential biomarker value under treatment actually received

y i = (yi1(zi1), . . . , yiTi(ziTi))
T . Let x it = (1,x 1,it, . . . ,x p,it)

T be a complete covariate

vector of variables predicting the biomarker for subject i at observation t (allowing

for an intercept). The entire covariate matrix for subject i will be denoted by Xi. If

β = (β0, . . . , βp)
T denotes the corresponding vector of unknown regression coefficients,

the parameter of interest in this longitudinal case in described by the mean model

yit(0) = x Titβ + εit, where the εit are all i.i.d., of mean zero, and variance σ2
y .

Näıve approaches in the cross-sectional setting carry over into the longitudinal set-

ting for marginal modeling. We briefly describe how they could be implemented with

marginal modeling approaches such as GEE. Letting Wi denote some weight matrix

(not to be confused with covariates predicting medication use), we define the näıve

estimator which ignores medication use altogether as the estimate that solves the esti-

mating equations

GN(β; W) =
N∑
i=1

XT
i Wi(y i −Xiβ) = 0 (6.1)

A working independence structure would result in a choice of the identity matrix as the

weight matrix. In other cases, the weight matrix could be estimated from the residuals

of the working independence model, and under some modest regularity conditions and
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√
N -consistency of the estimated weight matrix, could be used to gain a potentially

more efficient estimator (the most efficient choice for the weight matrix is the inverse

of the true covariance matrix).

In the “Exclude” approach, the estimating equations are instead given by

GN(β; W) =
∑

i,t:zit=0

XT
i Wi(y i −Xiβ) = 0, (6.2)

and in the “Adjust” approach, we modify the “Ignore” approach with inclusion of a

covariate zit in the biomarker model. For reasons similar to why these approaches were

inadequate for estimating the natural history association, these approaches are also

inappropriate in the longitudinal setting.

6.2 The Longitudinal Endogeneity Model with Working Independence

We mimic the approach described by Wooldridge (2011) for other probit-response mod-

els in order to construct a valid estimator for β without specification of a covariance

structure. We begin with the original version of the TEM as in Section 3.1, under the

same restrictions satisfying the principal assumption. Now, the structural equations

are given by

yit(0) = x Titβ + εit (6.3)

z∗it = wT
itα + λyit(0) + γit, (6.4)

and as before, z∗it has total variance σ2
z , set equal to 1 due to weak identifiability of α

and ρ, and zit = 1(z∗it > 0) denotes the observed medication use status for subject i

at time t, with yit = yit(0) − δzit. Let θ0 denote the true parameter value in the data

generating mechanism. The likelihood for subject i at observation t is given by

Lit(θ) =
1

σy
φ

(
yit − x Titβ + δzit

σy

)∫
Qit

dFz∗it|yit(z
∗
it), (6.5)
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where Qit = (−∞, 0] if zit = 0 and (0,∞) if zit = 1. Under correct mean-model

specification, standard likelihood theory gives us that θ0 maximizes Eθ[logLit(θ)].

Hence, θ0 must also maximize Eθ

[∑N
i=1

∑Ti
t=1 logLit(θ)

]
. The estimating equations

U(θ) =
∑N

i=1

∑Ti
t=1 ∂ logLit(θ)/∂θ = 0 is merely an M -estimation problem for θ, with

Ti fixed, and asymptotics in N . Hence, θ̂ −→p θ0. In turn, aggregating the individual

likelihoods gives rise to the following estimating equations:

GN(θ) =
N∑
i=1

Ti∑
t=1

∂

∂θ

{
log

1

σy
φ

(
yit − x Titβ + δzit

σy

)
+ log Φ

(
(−1)1−zit

wT
itα + ρ(yit − x Titβ + δzit)/σy√

1− ρ2

)}
= 0.

(6.6)

Estimates of θ can be obtained from Newton-Raphson type procedures. The esti-

mating equations above are not score equations because they are not derived from a

full likelihood; the within-subject covariance structure is not modeled in these estimat-

ing equations, nor must it be known for consistent estimation. We only demand the

assumptions put forth in the cross-sectional version of the model, and consistency is

achieved without any specification of a correlation structure within clusters. Also, we

make no assumptions about exogeneity of z in this approach.

Fisher information-based standard errors are not appropriate, and the likelihood

ratio test is invalid for testing hypotheses regarding θ. A robust variance-covariance

estimator can be used to account for correlation within clusters (White, 1980), from

which Wald based confidence intervals can be constructed for parameters. Letting

HN(θ̂) denote the Hessian ∂U(θ)/∂θ evaluated at θ̂,

V̂ar(θ̂) =
(
HN(θ̂)

)−1 [ N∑
i=1

Ui(θ̂)Ui(θ̂)T

](
HN(θ̂)

)−T
(6.7)

provides a valid covariance for θ̂. This approach for estimating β has advantages of
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computational convenience in the sense that it does not require any modeling within-

subject correlation. We refer to this model for estimation of β as the longitudinal

endogeneity model (LEM) with working independence. Indeed, our extension to allow

for effect modifiers easily generalizes to this model, in which the term δzit would become

vTitηzit. Going forward, we will restrict our discussion to allow for effect modifiers.

6.3 Full Specification of Covariance Structure

The only correlation modeled in the working independence model is the correlation

between yit(0) and z∗it–the biomarker and medication use at corresponding times. We

present an example model in which we fully specify an exchangeable correlation struc-

ture over time. Suppose that Corr(εit, γit) = ρ, Corr(εit, εit′) = ρy, Corr(γit, γit′) = ρz,

and Corr(εit, γit′) = ρy,z. A covariance matrix for subject i is a 2Ti × 2Ti matrix:

Σi =

Σ11
i Σ12

i

Σ21
i Σ22

i

 (6.8)

with Ti × Ti blocks Σ11
i , Σ12

i , Σ21
i , and Σ22

i given by

Σ11
i = σ2

y



1 ρy · · · ρy

ρy 1
. . .

...

...
. . . . . . ρy

ρy · · · ρy 1


, Σ22

i =



1 ρz · · · ρz

ρz 1
. . .

...

...
. . . . . . ρz

ρz · · · ρz 1


, and

Σ12
i = Σ22

i = σy



ρ ρy,z · · · ρy,z

ρy,z ρ
. . .

...

...
. . . . . . ρy,z

ρy,z · · · ρy,z ρ



(6.9)
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The likelihood over for subject i over the observations 1, . . . , Ti is given by:

Li(θ) = p(y i|z i)p(z i) = p(y i|zi1, . . . , ziTi)p(zi1, . . . , ziTi)

= p(y i|z∗i1 ∈ Qi1, . . . , z
∗
iTi
∈ QiTi)p(z

∗
i1 ∈ Qi1, . . . , z

∗
ik ∈ QiTi)

=

∫
QiTi

· · ·
∫
Qi1

p(z ∗i |y i)p(y i)dz∗i1 . . . dz∗iTi ,

(6.10)

where again, Qit = (−∞, 0] if zit = 0 and (0,∞) if zit = 1. Then, the total likelihood

is given by

LV,W,X,Y,Z(θ) =
N∏
i=1

p(y i)

∫
QiTi

· · ·
∫
Qi1

p(z ∗i |y i)dz∗i1 . . . dz∗iTi (6.11)

where p(y i) is the multivariate normal density function with mean parameter given by

µy
i = Xiβ − (Viη) ◦ z i and covariance parameter given by Σ11

i ; additionally, p(z ∗i |y i)

is the conditional multivariate normal density function for z ∗i |y i with mean parameter

given by µz
i = Wiα+ Σ12

i (Σ22
i )−1(y i−Xiβ + Viη) and covariance parameter given by

Σ11
i −Σ12

i (Σ22
i )−1Σ21

i .

As can be seen in in the above expressions for the likelihood, this demands the

computation of Ti-fold integrals, where the range of integration is one of 2Ti possible

hyperoctants in Ti-dimensional real space. The integral of this multivariate density

has no closed form expression, making this approach generally infeasible when there

are more than a couple of observations within clusters. In our example, we chose an

exchangeable correlation structure, although others are possible; generally, only inde-

pendence for Σ22
i and an assumption that ρy,z = 0 will allow the multiple integral to

collapse into a product of single integrals. In any case, fully specifying the correlation

structure is analytically cumbersome in the sense that there are three levels of corre-

lation to consider: (i) the correlation in y i(0) over time, (ii) the correlation in z ∗i over

time, and (iii) the correlation between y i(0) and z ∗i at different times.
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6.4 Partial Specification of Covariance Structure

We now propose a model to account for the correlation in y i over time, but bypass

modeling correlation in z ∗i over time and correlation between y i(0) and z ∗i at different

times. This acts as a compromise between working independence and fully parametric

likelihood specification.

Let Θ denote the true parameter space that defines the data generating mecha-

nism, and θ0 = (α0,β0,η0, σy0, ρ0) ∈ Θ0 ⊂ Θ denote the true parameter value in

the parametric sub-model which is presumed to hold. As an alternative to full spec-

ification of the correlation structure, we propose modifying the independence-based

estimating equations to account for within-subject correlation in the biomarker error

terms. Let θ̃ = (α,β,η, σy, ρ,ρy) denote the set of all parameters in the estimating

equations, where ρy describes a working correlation structure in the biomarker errors.

If Σ11
i = σ2

yRi(ρy) denotes a working covariance model for the biomarker errors, an

individual’s contribution to the estimating function is given by:

Ui(θ̃) =
∂

∂θ̃

{
log pθ̃(y i) +

Ti∑
t=1

log

∫
Qit

dFz∗it|yit(z
∗
it)

}
,

where pθ̃(y i) is the multivariate normal density function with covariance matrix given

by Σ11
i . We have the important robustness property that estimation of θ0 is still valid,

even under misspecification of the correlation structure.

Theorem: Let θ0 ∈ Θ0 ⊂ Θ denote the true parameter in the parameter sub-model

of interest (presumed correct). Then, even under incorrect specification of the work-

ing correlation, the solution to the estimating equations U(θ̃) = 0 is consistent for

θ̃0 = (θ0,ρy0), where θ0 is of interest.
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Proof : We sketch the proof when Ri(ρy) depends on a single parameter ρy (e.g.,

exchangeable, AR-1, or exponential correlation structure). Let θ̃0 denote the solution

to E[U(θ̃)] = 0; our goal is to show that θ̃0 = (θ0,ρy0). It suffices to show that

Eθ0,ρy0 [U(θ̃)] = 0 for some ρy0. Let Si denote the true correlation matrix. We partition

the estimating functions for θ̃.

Uα(θ̃) =
N∑
i=1

Ti∑
t=1

∂

∂α
log

∫
Qit

dFz∗it|yit(z
∗
it),

Uρ(θ̃) =
N∑
i=1

Ti∑
t=1

∂

∂ρ
log

∫
Qit

dFz∗it|yit(z
∗
it),

Uβ(θ̃) =
1

σ2
y

N∑
i=1

XT
i R−1i (y i − µy

i ) +
N∑
i=1

Ti∑
t=1

∂

∂β
log

∫
Qit

dFz∗it|yit(z
∗
it),

Uη(θ̃) = − 1

σ2
y

N∑
i=1

VT
i R−1i (y i − µy

i ) +
N∑
i=1

Ti∑
t=1

∂

∂η
log

∫
Qit

dFz∗it|yit(z
∗
it),

Uσy(θ̃) =
N∑
i=1

{
− 1

σy
+

1

σ3
y

(y i − µy
i )
TR−1i (y i − µy

i )

}
+

N∑
i=1

Ti∑
t=1

∂

∂σy
log

∫
Qit

dFz∗it|yit(z
∗
it),

Uρy(θ̃) =
N∑
i=1

{
1

2σ2
y

(y i − µy
i )
TR−1i

[
∂Ri

∂ρy

]
R−1i (y i − µy

i )

− 1

2|Ri|
× trace

(
adj(Ri)

∂Ri

∂ρy

)}

(6.12)

Here, Uα(θ̃) and Uρ(θ̃) are the same as they are under the working independence

model (in particular, they are independent of ρy). Thus under a valid parametric sub-
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model, Eθ0,ρy [Uρy(θ̃)] = Eθ0,ρy [Uα(θ̃)] = 0 for any ρy, so choose ρy = ρy0. Under working

independence, Ri is the identity matrix; under correct mean model specification, the

expectation of the first (and hence the second) sums in each estimating function Uβ(θ̃)

and Uη(θ̃) are zero at θ0. Hence, Eθ0,ρy [Uβ(θ̃)] = Eθ0,ρy [Uη(θ̃)] = 0 regardless of ρy, so

choose ρy = ρy0. At (θ0, ρy), the expectations of Uσy(θ̃) and Uρy(θ̃) are given by

Eθ0 [Uσy(θ̃)] =
N∑
i=1

trace(Si −R−1i Si)/σy0

Eθ0 [Uρy(θ̃)] =
1

2

N∑
i=1

trace

(
R−1i

∂Ri

∂ρy

(
R−1i Si − I

)) (6.13)

The equations Eθ0 [Uy(θ̃)] = 0 and Eθ̃0
[Uρy ] = 0 share a root in ρy, defining the value

of ρy0. Thus, Eθ0,ρy0 [U(θ̃)] = 0 as desired. Hence, the solution θ̂ to these estimating

equations is consistent for (θ0, ρy0) as desired. Q.E.D.

Once again, we note that the resulting estimating equations are not necessarily

score equations since we have not modeled the correlation in medication use over time,

nor the correlation between medication use and the underlying biomarker at different

times. A robust variance-covariance estimator should therefore still be used for valid

standard errors for parameters of interest. We refer to this model for estimation of β

as the longitudinal endogeneity model (LEM) with the working correlation structure

as indicated. Accounting for correlation in the biomarker terms, as presented by this

model, accounts for a major source of variability in β̂; this proposed model also bypasses

the need to compute Ti-fold integrals.

Diggle et al. (2002) have noted that if the covariates are non-deterministic, consistent

estimation of marginal parameters relies on the following potentially unrealistic “full-

covariate conditional mean” assumption: the expectation of an outcome at a given time

conditional on the covariate vector, x it, is equal to the expectation conditional on the
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entire covariate matrix, Xi. That is, unless one utilizes a working-independence model,

in which the full-covariate conditional mean assumption does not need to be satisfied

for consistent estimation of marginal parameters (Pepe et al., 1994). In examples such

as age-trend modeling, we bypass this issue since age is deterministic. This challenge

can also be avoided when estimating associations with time-stable exposures such as

gender and race. If one has random time-varying covariates in the biomarker model

(i.e., in many situations other than age-trend modeling), it may be advisable to use the

working-independence model instead of our proposed model. In our simulations and

applied examples, we will focus on examples in which covariates are either deterministic,

or in which the full-covariate conditional mean assumption is known to be satisfied.

6.5 Systematic Dependence on Subject History

In the standard cross-sectional version of Heckman’s TEM, modeling the latent med-

ication use variable as explicitly depending on the underlying biomarker (that is, in-

cluding the term λyi(0) in the medication use model) can be handled by simply taking

any and all covariates of X and placing them into W. This can be seen as follows:

z∗ = wTα + λy(0) + γ = wTα + λ(x Tβ + ε) + γ. Regrouping terms gives a larger

covariate vector w̃ in which all covaraites of x are included, and a total error term

γ̃ = λε + γ. In this way, λ need not be estimated. In longitudinal data, the options

are more numerous as we may accommodate dependence of medication use on the

biomarker at the current time, or on past history. The dependence itself can be time-

varying if the criteria for treatment change or as medication use becomes more popular

over time. In this section, we describe a few ways one could model the dependence

of medication use on a subject’s history and how covariates should be specified in the

model to accommodate each type of dependence. We focus on examples depending

on whether or not they are homogeneous or nonhomogeneous, and whether or not the

dependencies correspond only at cross-sections, or if there is a telescope dependence.
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6.5.1 Homogeneous Corresponding Dependencies

In this case, suppose that medication use depends on the underlying biomarker, but

only at the concurrent time. Specifically, suppose that z∗it = wT
itα + λyit(0) + γit. The

dependence is also modeled as homogeneous in that the parameter λ is the same at

each time point, independent of t. This example generalizes the modification proposed

in the cross-sectional version of Heckman’s TEM described by Spieker et al. (2015).

To accommodate this dependence, one places all covariates of x it in w it to create a

new covariate vector w̃ i and a corresponding parameter α̃: z∗it = w̃ itα̃+ γ̃i. Figure 6.1

depicts a DAG summarizing the homogeneous corresponding dependencies model.

6.5.2 Non-homogeneous Corresponding Dependencies

We now consider a case to generalize the previous approach, in which the dependence

of medication use on the corresponding underlying biomarker value is time-varying (in-

cluding the term λtyit(0) in the medication use model at each time point, t). Expanding

out the term, we have that:

z∗it = wT
itα + λtyit(0) + γit

= wT
itα + λt(x

T
itβ + εit) + γit

= wT
itα + x Titαt + γ̃it,

where αt = λtβ, and the λt’s are real-valued and unknown, and may vary freely. This

method is only sensible when the data are true panel data and not irregular. Without

further restrictions on αt, there should be a sufficiently large number of independent

clusters at each time t to provide enough information about αt. Figure 6.1 depicts a

DAG summarizing the non-homogeneous corresponding dependencies model.
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Figure 6.1: Directed Acyclic Graph depicting the setting of homogeneous corresponding
dependencies. The lines connecting y1(0) to z∗1 , y2(0) to z∗2 , and y3(0) to z∗3 can be
presumed to correspond to equivalent parameters. The association between x and y(0)
and between w and z∗, as well as the effect modifiers v are all implied in this figure,
although omitted from the graphic to facilitate clarity.
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Figure 6.2: Directed Acyclic Graph depicting the setting of non-homogeneous corre-
sponding dependencies. The lines connecting y1(0) to z∗1 , y2(0) to z∗2 , and y3(0) to z∗3
are permitted to correspond to different parameters, so λt = λ(t) is time-varying. The
association between x and y(0) and between w and z∗, as well as the effect modifiers
v are all implied in this figure, although omitted from the graphic to facilitate clarity.
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6.5.3 Homogeneous Telescope Dependence

Now suppose that medication use depends on the history of biomarker values rather

than just the biomarker at the corresponding time (that is, z∗it depends not only on

yit(0), but also yi,t−1, . . . , and yi1). In this example, the dependence is assumed to be

homogeneous at each particular time point; expanding the term appropriately, we have

that

z∗it = wT
itα +

t∑
s=1

λsyis(0) + γit

= wT
itα +

t∑
s=1

λsx
T
isβ +

t∑
s=1

λsεis + γit

= wT
itα +

t∑
s=1

x Tisαs + γ̃it,

where αs = λsβ. Under this formulation, the dependence of medication on the

biomarker history is presumed to be homogeneous over time, though the dependence

of observation t on observation t′ may be be time-varying. The medication use model

for subject i at time t should include covariates w it, x i1, . . . , and x it only. Figure 6.3

depicts a DAG summarizing the non-homogeneous telescope dependencies model.

6.5.4 Non-homogeneous Telescope Dependence

Finally, we generalize the previous case so that medication use depends on the history

of underlying biomarker values in a time-dependent fashion:

z∗it = wT
itα +

t∑
s=1

λstyis(0) + γit

= wT
itα +

t∑
s=1

λstx
T
isβ +

t∑
s=1

λstεit + γit

= wT
itα +

t∑
s=1

x Tisαst + γ̃it,
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where αst = λstβ, s = 1, . . . , t. Under this formulation, the medication use model for

subject i at time t should include covariates w it, x i1, . . . , and x it only. As with the

non-homogeneous corresponding dependencies method, this method is only sensible

in true panel data and demands a sufficiently large number of independent clusters

at each time t. Figure 6.4 depicts a DAG in order to summarize the homogeneous

telescope dependencies model. Importantly, we assume in each of these methods that

the treatment effect at each time point is based only the medication use status at that

time, rather than on the entire history of medication use.

6.6 Simulation: Efficiency Gains with Correct Partial Covariance Speci-
fication

We conduct a set of simulation studies to elucidate efficiency gains in accounting for

correlation in the underlying biomarker. For these studies, we consider a study of

N = 1000 independent clusters, each with Ti = 4 observations, under the homoge-

neous corresponding dependencies scenario for the longitudinal endogeneity model. Let

x 1,i,x 2,i,x 3,i each be independent multivariate normal covariates each with mean zero,

common unit variance, and with an exchangeable correlation structure with correlation

0.6 between distinct pairs (where, for example, x 1,i = (x1,i1, . . . , x1,i4)
T ). Suppose that

the data generating mechanism for the underlying biomarker is given by

yit(0) = 10 + x1,it + x2,it + εit (6.14)

z∗it = −0.1 + x1,it + x3,it + λyit(0) + γit (6.15)

= 1.1x1,it + 0.1x2,it + x3,it + (0.1εit + γit). (6.16)

where λ = 0.1, so that β = (10, 1, 1)T and α = (0, 1.1, 0.1, 1). Set the error variance

in the biomarker at σ2
y = 36, and let γit be i.i.d. error terms with unit variance. Let
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Figure 6.3: Directed Acyclic Graph depicting the setting of homogeneous telescope de-
pendencies. Note that in this case, z∗i in influenced by all prior values of the underlying
biomarker, but yit(0) is presumed to influence z∗it′ in the same way for all t′ ≥ t. The
association between x and y(0) and between w and z∗, as well as the effect modifiers
v are all implied in this figure, although omitted from the graphic to facilitate clarity.
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Figure 6.4: Directed Acyclic Graph depicting the setting of non-homogeneous telescope
dependencies. Note that in this case, z∗i in influenced by all prior values of the underly-
ing biomarker, but yit(0) may influence z∗it′ differently for each t′ ≥ t. The association
between x and y(0) and between w and z∗, as well as the effect modifiers v are all
implied in this figure, although omitted from the graphic to facilitate clarity.
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Ci ∼ Bernoulli(p = 0.5) denote a medication class variable, so that

yit = yit(0)− (0.8 + 0.4× Ci)zit. (6.17)

In the first setting, we vary ρy over a range of values from 0.1 to 0.9 under an exchange-

able correlation structure, and fit the longitudinal endogeneity model with working

independence, working exchangeable, and working AR-1 structures, all under the ho-

mogeneous corresponding dependencies model including x1, x2, and x3 in the medication

use model. We compute the bias, Monte-Carlo standard error, and the estimated sand-

wich standard errors for β̂ in each model over two-thousand simulation realizations.

Results are summarized in Figure 6.5 for estimation of β1 and β2. Bias is near zero

across all values of ρy, consistent with the theoretical findings of Section 6.4. As the

correlation increases, the standard errors for β̂1 and β̂2 increase for the working inde-

pendence model, and decrease for the LEM accounting for correlation; the efficiency for

the models accounting for correlation relative to the working independence model im-

proves dramatically with higher ρy. Of the three models fit, the working exchangeable

model (which is correctly specified) is uniformly the most efficient, although the AR-1

model is nearly as efficient. The patterns are the same for estimation of both β1 and

β2. Of note also is that the robust standard error estimators estimate the Monte-Carlo

based standard errors very well in all cases.

Figure 6.6 depicts results when instead the true correlation structure in the biomark-

ers is AR-1. Similar patterns are observed in this case, although with the AR-1 model

providing the most efficiency for estimating β.

6.7 Simulation: Efficiency Loss when Medication Use is Correlated

In the prior setup, the medication use error terms were uncorrelated over time. Our

theoretical results from Section 6.4 suggest that consistent estimates of β can be ob-
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Figure 6.5: Simulation results for estimating β1 (left) and β2 (right) under exchangeable
structure: On the x-axis is the within-subject correlation in the biomarker, and on the
y-axis is bias (top), Monte-Carlo standard error (middle), and efficiency (bottom). In
the middle panel, the robust standard error estimates are shown in dashed lines.
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Figure 6.6: Simulation results for estimating β1 (left) and β2 (right) under AR-1 struc-
ture: On the x-axis is the within-subject correlation in the biomarker, and on the
y-axis is bias (top), Monte-Carlo standard error (middle), and efficiency (bottom). In
the middle panel, the robust standard error estimates are shown in dashed lines.
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tained with the partial specification of correlation structure, even if medication use is

correlated over time. In this scenario, we fix ρy = 0.5 from the previous setup, and alter

the within-subject correlation, ρz, in the medication use model over a range of values

from 0.1 to 0.7 (under an exchangeable structure). Results for estimation of β1 and

β2 under the working independence, working exchangeable, and working AR-1 models

are shown in Figure 6.7 when the biomarker errors in reality have an exchangeable

correlation structure. Consistent with what we would expect, bias is near zero for all

three approaches. The standard errors are lowest in the exchangeable model, which

is consistent with results from the previous study, although for estimation of β1, the

standard errors tend to increase with increasing ρz, whereas the standard errors for β̂2

appear not to be heavily dependent on ρz; this is likely because x2 in this simulation

setup is not a very strong predictor of z∗i . At low values of ρz, there is still a substantial

efficiency gain in accounting for the correlation in the biomarker. That efficiency gain

weakens as ρz increases; the value of ρz must be quite high for efficiency gains from

the working correlation model to be negated. Of note is also that at correlation levels

beyond ρz ≈ 0.8, it is not uncommon to run into convergence issues, although this

result is consistent with prior findings in the cross-sectional setting (Marchenko et al.,

2012).

Figure 6.8 depicts the analogous results when the true biomarker errors are gener-

ated under an AR-1 structure. The major difference in this setting is that there is a

very substantial loss of efficiency in using the exchangeable working correlation struc-

ture for estimation of β1 as ρz increases. At moderately high values of ρz (> 0.55,

approximately), we have that the working independence model performs better than

the working exchangeable model. The robust variance estimator provide estimates that

represent the true repeat-sample variability very well in all cases.
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Figure 6.7: Simulation study results: On the x-axis is the within-subject correlation in
the biomarker, and on the y-axis is bias (left), standard error (center), and efficiency
(right). In the center panel, the robust standard error estimates are shown in dashed
lines, and estimate the Monte-Carlo standard errors well.
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Figure 6.8: Simulation study results: On the x-axis is the within-subject correlation in
the biomarker, and on the y-axis is bias (left), standard error (center), and efficiency
(right). In the center panel, the robust standard error estimates are shown in dashed
lines, and estimate the Monte-Carlo standard errors well.
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Figure 6.9: Simulation study results: Bias and root mean-squared error for estimation
of β1 for each of the six approaches (three näıve: Ignore, Exclude, and Adjust, and
the longitudinal endogeneity model under working independence, exchangeable, and
AR-1).

6.8 Simulation: Comparison of LEM to Näıve Approaches

In this section, we conduct a simulation study to compare three versions of the longitu-

dinal endogeneity model (with working independence, exchangeable, and AR-1 correla-

tion structures) to the näıve approaches outlined in Section 6.1 (Ignore, Exclude, and

Adjust). We take the simulation setup of Section 6.6, fixing the underlying biomarker

correlation, ρy, to be 0.5, under the exchangeable correlation. Figure 6.9 depicts re-

sults for the estimated bias and simulated root mean squared error over one-thousand

simulation replicates.

Consistent with results in Section 6.6, the LEM shows near-zero bias regardless of

the choice of working correlation structure. The näıve approaches show substantial

bias. Although the each version of the LEM was shown to have higher variability than

each of the näıve methods (results not shown), the root mean squared errors for all

versions are still superior to those of the näıve models.
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6.9 Discussion

Just as in the cross-sectional setting, endogenous medication use acts as a contami-

nant when estimating natural history associations between predictors and biomarker

outcomes in longitudinal data. A subject’s natural history of the biomarker value is dis-

torted by the effects of medication use. Since medication users differ from nonusers in

their expected underlying off-medication biomarker value, näıve approaches to account

for this distortion are not appropriate. Utilizing a working independence models is a

simple means of extending the cross-sectional treatment effects model to accommodate

clustering while bypassing computational difficulties. Although valid, such methodol-

ogy misses an opportunity to exploit information gained from within-subject correla-

tion. Indeed, the biomarker values are understood to be correlated within clusters,

as is medication use. In addition, medication use at a given time t can be correlated

with a biomarker at another time t′. Models that fully specify correlation structure are

computationally taxing as they involved multiple integrals that cannot be evaluated

in closed form. We have also considered utilizing an inverse probability weighting ap-

proach, although studies suggested that the data generation mechanism for the TEM

is incompatible with the assumptions of inverse probability weighting.

In this chapter, the model we have given the most attention to can be seen as a com-

promise between the working independence model and fully parametric specification of

a likelihood. We retain the working independence component within the medication use

model, but allow for the biomarker to be correlated within clusters according to some

working correlation structure. Importantly, this model provides consistent parameter

estimates regardless of misspecification of working correlation structure. Simulations in-

deed confirmed consistency of parameter estimates, and also demonstrated that working

correlation structures that are closer to the true data generation mechanism are more

efficient. Generally speaking, choosing to model correlation structure in terms of one
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single parameter is sufficient for most problems, especially when correct specification is

not necessary for consistent estimates.

Medication use may also depend on prior history in a systematic manner. In longi-

tudinal data, there are multiple ways that this may be addressed. We briefly described

different ways one might allow for medication use to systematically depend on the under-

lying biomarker. Non-homogenous dependency is likely only reasonable in the setting

of regular, balanced data in which everyone is observed at the approximately the same

times. One must be judicious in implementation of these more complex models as they

estimate more parameters. A sufficient number of independent subjects should also be

available at each observation time to justify the use of compartmentalizing parameters

in that way, or identifiability can break down. Moreover, if covariates are approximately

time-stable, the simpler homogeneous corresponding dependencies model should gen-

erally be adequate. Since we often believe medication use to explicitly depend on the

underlying biomarker, we recommend this approach over the longitudinal endogeneity

model which only accommodates error correlation and not systematic dependence. This

was reflected in our choice of simulation studies and in our application.

We recommend the use of the longitudinal endogeneity model with a sensible choice

of working correlation when accounting for endogenous medication use in data with

repeated measures over time. Further work is also warranted to increase the flexibility

of this model in terms of dependence on covariate history.

6.9.1 Lagged Treatment Effects

The LEM seeks to exploit within-subject correlation in the underlying biomarker. In

order for this to be appropriate, we are presuming that treatment effects at each time

point are based only on the medication use status at those time points, rather than based

on the entire history of medication use statuses. We conducted a follow-up simulation
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based on our original simulation setup as in Section 6.6 such that a treatment effect

of 0.5 is based on medication use at the concurrent time, and an additional 0.5 is

based on medication use at the prior time. We found that the LEM with working

independence approach provided low-bias estimates, whereas the LEM with working

exchangeable and working AR-1 correlation structures were markedly biased. This

could be a justification for using working independence in settings where the effect of

medication use change based on duration of use. However, this can also potentially be

accounted for by including duration of use as an effect modifier.
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Chapter 7

LDL CHOLESTEROL AND LIPID-LOWERING DRUGS:
AN APPLICATION TO THE MULTI-ETHNIC STUDY OF

ATHEROSCLEROSIS

In this chapter, we illustrate how our methodology can be applied to data from

the Multi-Ethnic Study of Atherosclerosis. We compare the results from the models

we have developed in this dissertation to alternative approaches. The Multi-Ethnic

Study of Atherosclerosis (MESA) is a multi-site cohort study of 6,814 men and women

ages 45-84 years. This study was designed to provide insights regarding the prevalence

and progression of subclinical cardiovascular disease. Subjects were recruited from

six U.S. communities (Baltimore, MD; Chicago, IL; Forsyth County, NC; Los Angeles

County, CA; Northern Manhattan, NY; and St. Paul, MN), and were free of clinical

cardiovascular disease at entry. The demographic breakdown is as follows: 47% men;

38% white, 28% African-American, 22% Hispanic, and 12% Chinese-American. All

subjects provided written informed consent. Subjects were followed for five exams over

10 years. Details of the sampling, recruitment, and data collection have been reported

elsewhere (Bild et al., 2002).

We specifically use our motivating example of LDL cholesterol as the outcome of

interest. First, we consider the Exam 1 data set as an example of a naturally occurring

cross-sectional data set; we consider a simple demographics model to compare several

approaches considered in this dissertation. We then consider an age-trend example in

LDL from Exams 1 through 5, modeled within each race category.
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7.1 A Simple Demographics Model for LDL at Baseline

Using only the Exam 1 data, we consider a demographics model in which we include

age, gender, and race category as predictors of interest. At baseline, the prevalence

of lipid-lowering drug use was 16.1% (1,072/6,658); the majority of drugs used were

statins (988/1,072), but others include fibrates, niacin, and bile-acid resins. Health

insurance status and Framingham Risk Score (FRS) are likely strong predictors of

medication use. Also note that participants with diabetes are often placed on lipid-

lowering drugs (American Diabetes Association, 2004). Differential effects of lipid-

lowering drugs across the races would also be consistent with prior findings (Morris and

Ferdinand, 2009; Yood et al., 2006). We fit the following six models:

1. “Ignore”: OLS linear regression irrespective of medication use.

2. “Exclude”: OLS linear regression excluding participants on any lipid lowering

drugs.

3. “Adjust”: OLS linear regression adjusting for medication use status (binary).

4. “TEM 1”: Treatment effects model with health insurance, FRS, and diabetes

status in the medication use model.

5. “TEM 2”: Treatment effects model, as stated above but also with age, gender,

and race category in the medication use model.

6. “SSEM”: Subgroup-specific effects model, with medication class (statins vs. other),

age, gender, race, and diabetes as potential effect modifiers.

Using a complete-case analysis yields a total of N = 6, 658 subjects. Results for

estimating the association between the predictors of interest and LDL are shown in
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Table 7.1: Results from LDL-demographic example in MESA. Presented are the esti-
mates and 95% confidence intervals for all coefficients in the biomarker model from the
six approaches considered. Results are expressed as “Estimate [95% CI]”.

Ignore Exclude Adjust
Intercept 126.0 [122.9, 129.0] 123.0 [119.8, 126.1] 123.4 [120.4, 126.5]

Age -0.13 [-0.51, 0.24] -0.035 [-0.43, 0.36] -0.051 [-0.43, 0.33]
Female REF REF REF

Male -1.06 [-2.78, 0.66] -0.92 [-2.71, 0.88] -1.05 [-2.75, 0.66]
White REF REF REF
Black -0.65 [-2.58, 1.27] -2.25 [-4.27, -0.22] -0.87 [-2.79, 1.05]

Hispanic 2.35 [0.35, 4.36] 1.07 [-1.01, 3.15] 1.67 [-0.32, 3.66]
Chinese -2.02 [-4.16, 0.12] -2.84 [-5.06, -0.63] -2.59 [-4.71, -0.47]

TEM 1 TEM 2 SSEM
Intercept 130.4 [125.3, 135.6] 117.1 [111.9, 122.2] 118.6 [113.2, 124.0]

Age -0.073 [-0.15, 0.0019] 0.16 [0.083, 0.24] 0.15 [0.065, 0.23]
Female REF REF REF

Male -2.27 [-3.85, -0.69] -1.01 [-2.64, 0.62] -1.15 [-2.89, 0.59]
White REF REF REF
Black -0.19 [-0.21, 1.67] -1.44 [-3.52, 0.65] -2.73 [-4.95, -0.51]

Hispanic 1.62 [0.40, 3.64] -0.096 [-2.30, 2.11] -0.41 [-2.75, 1.93]
Chinese -2.96 [-5.23, -0.70] -4.09 [-6.59, -1.58] -4.48 [-7.13, -1.83]

Table 7.1. First, we note that the age-LDL association is found to show a negative

trend in all näıve approaches, contrary to what we might expect (although none of

them is significantly different from zero). The same is true for the TEM 1 model. The

TEM 2 and SSEM model, on the other hand, show a significant positive association

between age and LDL.

The TEM 1 model is the version in which we only utilize predictors of medication

use in the medication use model, and the TEM 2 model is the way we would fit the

model if we believed that medication use was influenced by underlying values of LDL

directly. If we accept that the TEM 2 and SSEM models provide less biased estimates,

this finding suggests that covariates in the biomarker model should be included in the



133

Table 7.2: Results from LDL-demographic example in MESA. Presented are the es-
timates and 95% confidence intervals for all coefficients estimating treatment effect
parameters from the TEM and SSEM. Results are expressed as “Estimate [95% CI]”.

TEM 1 TEM 2 SSEM
Main Effect 47.2 [43.8, 50.5] 53.9 [50.5, 57.2] 56.1 [40.4, 71.7]

Age × × -0.12 [-0.32, 0.083]
Female × × REF

Male × × -1.23 [-4.91, 2.45]
White × × REF
Black × × -7.76 [-12.3, -3.26]

Hispanic × × -1.26 [-6.73, 4.21]
Chinese × × -1.48 [-7.50, 4.55]

Diabetes × × -0.053 [-4.57, 4.47]
Other LDL Drugs × × REF

Statins × × 9.96 [3.83, 15.4]

medication use model if medication use is thought to be influenced by the underlying

biomarker. Consistent with this discrepancy is that the association between gender

and LDL was only found to be significant in the TEM 1 model, and the difference LDL

between Hispanics and whites was found to be significantly different in the TEM 1, but

not in the TEM 2. As a follow-up to the Adjustment model, we considered an extended

model in which we adjusted for health insurance, FRS, and diabetes and found that

the result were very similar to the original Adjusted model.

Results on the association between LDL and race are otherwise are fairly similar

across the TEM 1, TEM 2, and SSEM, with the following exception: the SSEM shows

a significant difference in mean LDL values between blacks and whites. This is not

suggested by the TEM 1 or TEM 2. If we turn our attention to results on the treatment

effect parameter estimates for the TEM and SSEM models (Table 7.2), we might be

able to account for this discrepancy. Interestingly, the SSEM suggest that the effect of

medication use is very different between whites and Blacks (larger than the difference
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between any two pairs of groups), with greater lipid lowering appearing in whites than in

Blacks. This is the coefficient in the biomarker model that showed the largest difference

from from the otherwise similar TEM 2. This is consistent with the results of our

simulation studies in Chapter 5, in which the estimate of the natural history association

between the predictor and outcome could be misleading if the predictor is also an effect

modifier that is not accounted for.

Note that the TEM only provides a single marginal estimate of the treatment effect

(Table 7.2). Comparing the results from the TEM 1 and TEM 2, the confidence inter-

vals for the marginal treatment effect difference between the two models barely touch,

although we note that the difference in estimates for this particular example is not of

great clinical relevance. The estimated effect is consistent with what has been found in

previous studies, along with the result that statins produce an estimated 9.96 mg/dL

higher-magnitude treatment effect as compared to other drugs such as fibrates, niacin,

bile-acid resins, and cholesterol absorption inhibitors (Safeer and Lacivita, 2000).

The robust Wald test for presence of effect modification yields an overall p-value

of p = 0.002. Testing each individual factor, medication class and race yielded strong

evidence of effect modification (p < 0.001 and p = 0.008, respectively), whereas age,

gender, and diabetes status did not achieve significance.

7.2 LDL Age Trends in Longitudinal Data

We now focus on an example to estimate LDL age trends using the MESA data from

Exams 1 through 5. We will illustrate two major points. First, we wish to confirm

that estimated efficiency gains from modeling correlation structure truly align with

those seen from simulation studies in a real-world applied example. Secondly, we wish

to demonstrate how this modeling framework improves estimation over the current

näıve approaches currently utilized for estimating trends that do not properly address

endogenous medication use.
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We consider the longitudinal endogeneity model, with homogeneous corresponding

dependencies. In the biomarker model, we model the expected LDL with linear and

quadratic age terms, stratifying our analysis by race category. In each case, the medi-

cation use model includes the following variables: age, Framingham risk score, health

insurance status (1 = yes, 0 = no), and presence of diabetes. The medication use in-

dicator was taken to be the use of any lipid lowering drugs, with subgroups defined by

statins or other lipid-lowering drugs (fibrates, niacin, bile-acid resins, etc.). We fit both

the working independence and working exchangeable versions of this model; results are

shown in Table 7.3. The exchangeable correlation structure shows lower standard error

estimates for each coefficient in each model, across all races, with efficiency gains rang-

ing from 37% to 49% within each coefficient (Table 7.4). The level of efficiency gain is

consistent with the levels observed in simulation studies.

Now, we compare the longitudinal endogeneity model using the working exchange-

able structure with three other more traditional approaches: (1) ignoring medication

use altogether and fitting a GEE model with a working exchangeable correlation struc-

ture, but ignoring medication use altogether, and (2) a similar GEE model excluding

any observations from analysis for which participants are on medication, and (3) a

similar GEE model adjusting for medication use status. Note that the setup of the

longitudinal endogeneity model is the same as in the first example. Table 7.5 presents

the results, which are also depicted graphically in Figure 7.1, stratified by race.

This analysis demonstrates why accounting for endogenous medication use is im-

portant when estimating natural biomarker trends in longitudinal data. The analysis

ignoring medication use altogether leads to the conclusion that underlying LDL trends

downward with age. Medication use prevalence increases with age in all races. For ex-

ample, the prevalence of medication use (for lipid lowering drugs in particular) is 10.4%

among those less than 55 years old, 22.9% among those between 55 and 65 years old,
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Table 7.3: Results from LDL age trends example in MESA Exams 1-5. Presented are
the estimates and 95% confidence intervals for the parameters from the longitudinal
endogeneity model under working independence and working exchangeable correlation
structures. Results are expressed as “Estimate [95% CI]”.

Whites Blacks
Independence

Intercept 117.6 [83.9, 151.3] 102.6 [57.9, 147.3]
Age 0.38 [-0.64, 1.40] 0.65 [-0.72, 2.02]

Age2 -0.0034 [-0.011, 0.0044] -0.0052 [-0.016, 0.0054]
Exchangeable

Intercept 118.2 [91.4, 145.0] 77.8 [45.7, 109.9]
Age 0.19 [-0.61, 0.99] 1.38 [0.40, 2.36]

Age2 0.00026 [-0.0058, 0.0063] -0.0096 [-0.017, -0.0020]
Hispanics Chinese

Independence
Intercept 46.5 [2.99, 90.0] 17.0 [-40.4, 74.4]

Age 2.47 [1.14, 3.80] 3.33 [1.57, 5.09]
Age2 -0.019 [-0.029, -0.0088] -0.026 [-0.040, -0.012]

Exchangeable
Intercept 63.4 [30.9, 95.9] 32.9 [-10.8, 76.6]

Age 1.94 [0.94, 2.94] 2.69 [1.32, 4.06]
Age2 -0.014 [-0.0218, -0.0062] -0.019 [-0.030, -0.0084]

Table 7.4: Results from LDL age trends example in MESA Exams 1-5. Presented
are the estimates of the percentage efficiency gain from using the working exchange-
able correlation structure as compared to the working independence structure, in the
longitudinal endogeneity model.

Whites Blacks Hispanics Chinese
Intercept 37% 48% 44% 42%

Age 38% 49% 44% 40%
Age2 40% 48% 41% 39%
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Table 7.5: Results from LDL age trends example in MESA Exams 1-5. Presented
are the estimates and 95% confidence intervals for the parameters from the longitudi-
nal endogeneity model under working exchangeable and the longitudinal “Ignore” and
“Exclude” approaches. Results are expressed as “Estimate [95% CI]”.

Model Whites Blacks
Ignore

Intercept 100.1 [71.9, 128.3] 82.7 [50.2, 115.2]
Age 1.15 [0.29, 2.01] 1.5 [0.50, 2.50]

Age2 -0.014 [-0.020, -0.0075] -0.015 [-0.023, -0.0074]
Exclude

Intercept 58.8 [30.2, 87.4] 43.5 [12.9, 74.1]
Age 2.09 [1.21, 2.97] 2.44 [1.48, 3.40]

Age2 -0.017 [-0.024, -0.010] -0.019 [-0.026, -0.012]
Endogeneity

Intercept 118.2 [91.3, 145.0] 77.8 [45.7, 109.9]
Age 0.19 [-0.61, 0.99] 1.38 [0.40, 2.36]

Age2 0.00026 [-0.0058, 0.0063] -0.0096 [-0.0172, -0.0020]
Hispanics Chinese-American

Ignore
Intercept 62.6 [26.3, 98.9] 36.0 [-10.3, 82.3]

Age 2.37 [1.25, 3.49] 2.96 [1.53, 4.39]
Age2 -0.024 [-0.032, -0.016] -0.027 [-0.038, -0.016]

Exclude
Intercept 24.8 [-8.52, 58.1] -16.6 [-60.50, 27.30]

Age 3.28 [2.24, 4.32] 4.32 [2.93, 5.71]
Age2 -0.027 [-0.035, -0.019] -0.034 [-0.045, -0.023]

Endogeneity
Intercept 63.4 [30.9, 95.9] 32.9 [-10.8, 76.6]

Age 1.94 [0.94, 2.94] 2.69 [1.32, 4.06]
Age2 -0.014 [-0.022, -0.0062] -0.019 [-0.030, -0.0084]
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Figure 7.1: Application to MESA showing quadratic models for age-LDL association,
stratified by race.
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32.5% among those between 65 and 75 years old, 35.1% among those between 75 and

85 years old, and 38.6% among those older than 85 years old. Hence, the finding that

ignoring medication use results in an estimated downward trend is not surprising. Ex-

cluding all observations for which participants are on medication suggest that over the

ages of 50-75, LDL is either slightly increasing or approximately stable, and then takes

a more steep downward decline. Aside from the loss of efficiency incurred by excluding

a sixth to a third of the data from analysis, this is inappropriate since medication use

is not at occurring random.

The longitudinal endogeneity model suggests that underlying LDL values are either

increasing over the ages (in whites) or approximately stable (African-Americans, His-

panics, and Chinese-Americans). The minor drop-off in the latter three groups may

be explainable by a deaths in these groups (where death occurs at a higher rate in

individuals with high underlying LDL). Another possibility is that these three groups

are more prone to experience signs of liver failure at very high ages, in which case LDL

is understood to decrease.

This analysis also suggests that the longitudinal endogeneity model is generally as

efficient as the alternative approaches. This finding is in contrast to the pattern seen

in cross-sectional data, in which the treatment effects model which shows markedly less

efficiency. In longitudinal data, coefficients’ standard errors generally decrease with

increasing within-subject correlation. The näıve estimate of within-subject correla-

tion obtained from ignoring medication use is expected to be an underestimate, since

many participants’ biomarker values are altered by medication throughout the course

of the study, creating more variability in their observed trajectories. Thus, while the

longitudinal endogeneity model estimates more parameters, it provides a higher within-

subject correlation estimate that more accurately reflects correlation in the underlying

biomarker. In the Exclude method, only off-medication observations are considered,
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and so one might expect the within-subject correlation of the observed off-medication

values to be higher than considering all observed values. Hence the loss of efficiency

induced by removing part of the data can be partially balanced out with a higher

within-subject correlation.

As is the case in age-trend analyses, loss to follow up and death fundamentally

changes the estimand; when we talk about the natural history association, we are

forced to restrict our attention to the natural history conditional on having survived to

the observed ages, as opposed to the natural history association is the association that

would have been observed had all participants survived.

Our application to LDL data from MESA provided results that were consistent with

both our simulation studies, and prior results in cross-sectional data. Accounting for

correlation appears to improve efficiency across every parameter, in comparison to the

working independence model. The näıve general linear model approaches show what

we believe to be a severe downward bias; this finding in particular is consistent with a

comparison of the cross-sectional treatment effects model with ordinary least squares

approaches. The fact that the longitudinal endogeneity model provides estimates that

are approximately consistent with prior understood results has important implications

of its potential utility going forward. For instance, in the setting of novel inflammatory

markers that are not fully understood, our model provides a way to target its natural

underlying association with predictors of interest.

7.3 Discussion

Our applications to MESA provides results that are consistent with our simulation

studies: (a) coefficients corresponding to predictors that strongly modify treatment

effect are likely to be the most biased if effect modification is ignored, and (b) the

estimates are ostensibly less biased when endogeneity is adequately accounted for (this

is suggested by the finding LDL was found to have a positive trend with age in the TEM
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and SSEM, whereas the simpler approaches failed to confirm this expected result).

We note that the finding of differential treatment effects in Blacks is not necessary

a result of an inherent biologic characteristic–the models considered are incapable of

providing evidence to support or reject this hypothesis. This result could potentially

be an artifact of lower adherence rates in this subgroup, for example. Although the

source of this difference is unclear, the importance of accounting for race category as

a potential effect modifier is not any less important. If the result is in fact simply an

artifact of lower adherence, then failure to account for effect modification would still

result in systematically over-correcting the biomarker for the effects of medication use

in Black participants–the treatment effect is understood to be smaller if adherence rates

are lower.
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Chapter 8

DISCUSSION AND FUTURE DIRECTIONS

This dissertation has focused on estimation of associations between predictors and

biomarker outcomes in the presence of endogenous medication use. Treating the effect

of medication use on the biomarker as a contaminant, we were able to devise a set

of methodology with a reasonable set of assumptions in order to recover the natural

history of the biomarker that would have been observed in the absence of medication

use.

First, we focused our attention on cross-sectional methodology; there is a wide body

of literature in existence seeking to address this very challenge, although (a) most of

the applied work in the literature appears to ignore this methodology, and (b) even if

applied, these simple modifications to näıve approaches appear to be inadequate. The

TEM, as proposed by James Heckman, provided us with a framework in which we could

estimate the natural history association. We have shown that this model is fairly robust

to departures from several of its main assumptions.

Although the TEM is indeed able to withstand departures from the assumption of

bivariate normal errors for the purpose of estimating the natural history association

(a result that has not been previously understood), the presence of effect modification

can result in biased estimates of the natural history association. We have devoted a

substantial amount of time to addressing this challenge by allowing the effects of med-

ication use to systematically vary in expectation with observed covariates, regardless

whether the effect modifiers are associated with the underlying biomarker, medication

use status, or neither. Indeed, it turns out that the former two cases are the cases
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with the most potential for bias reduction, although identifiability of effect modifier

parameters is a welcome feature of the model.

Methodology to extend the TEM framework to accommodate repeated measures

has been largely unexplored. The sparse literature on related selection models simply

suggests the use of a working-independence type model, which can be very helpful in

settings where the full-covariate conditional mean assumption is not thought to hold.

However, this working-independence model has not been formally presented in the

literature, and efficiency gains can be very substantial by accounting for correlation

in the underlying biomarker when the full-covariate conditional mean assumption is

thought to hold. Our research has focused primarily on addressing the latter of these

two concerns in Chapter 6.

We would additionally like to comment further on the importance of distinguishing

between settings in which the observed biomarker or the natural history of the biomarker

is of interest. For scientific and clinical problems involving prediction of further adverse

cardiac events, the observed biomarker could very well of greater relevance than the

hypothetical off-medication value for treated participants. However, when we seek to

estimate how groups of individuals differing in primordial or long-term predictors (such

as age, race, or a genetic exposure) differ in their biomarker outcomes, consideration of

the natural history is of greater scientific relevance.

Consider, for instance, the setting of cardiovascular biomarkers such as systolic blood

pressure and LDL cholesterol. These are typically the target of reduction in participants

with high underlying values. If the medication taken is effective in (at least partially)

restoring participants’ values to the values of healthy participants, failure to account for

medication use when selecting a model will, in general, result in an attenuated estimate

of the association of interest. If medication use is prevalent and sufficiently effective, one

might even be led to the erroneous conclusion age is not associated with cardiovascular
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biomarkers (as seen in our application to MESA). If the goal of the study is to identify

important predictors of biomarkers, ignoring medication use will hence lead to severely

under-powered study designs.

8.1 Future Directions

In this section, we discuss two future extensions to this research that could be of interest.

8.1.1 Heavy-Tailed Errors

In Chapter 4, we found that the TEM was not very sensitive to heavy tailed errors

for estimating the natural history association (although the estimate of the marginal

treatment effect was fairly sensitive). However, convergence issue arose when the tails

were sufficiently heavy (i.e., when the degrees of freedom was sufficiently low).

Prior work has examined an extension of Heckman’s TEM to allow for heavy tailed

errors by modeling the error terms with a bivariate t-distribution (Marchenko et al.,

2012). This could be worth exploring for the purposes of estimating the natural history

association to evaluate whether the natural history association can be estimated well,

with few convergence issues, if the data have heavier-tailed errors than the bivariate

normal distribution.

8.1.2 Finite Mixture Modeling

Recently, there has been growing interest in understanding age trends when it is believed

that there are multiple trajectory classes from which participants may originate. Specif-

ically, it can be of interest to determine whether a finite number of latent trajectory

classes can be identified and estimated. Moreover, we may wish to determine whether

membership to these classes is associated with observable covariates or risk of subse-

quent adverse events. Nagin (1999) described a latent class mixture modeling (LCMM)

framework that can be used to directly estimate the curves and to select the appro-
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priate number of latent classes, typically by the Bayesian Information Criterion (BIC).

Such an approach is also capable of linking class membership to time-stable covariates.

Additionally, one may also predict subject-specific posterior probability estimates of

belonging to these latent classes. Predicted probability classes may also be used to

associate class membership with risk of subsequent adverse events. Although LCMM

approach has received attention in recent years as an attempt to determine underlying

biomarker trajectories (most notably SBP), the challenge of endogenous medication use

is one that has largely been handled inappropriately or ignored altogether in the liter-

ature (Loucks et al., 2011; de Groot et al., 2014; Allen et al., 2014; Wills et al., 2011).

Nagin motivates his work in understanding developmental trajectory classes with ex-

amples from youth criminal involvement and social behavior. For the data used in the

original literature, it is unlikely that endogenous medication use severely compromises

estimation of associations. Although, given the rise of psychotropic medication use in

children, endogeneity may be a more substantial challenge in this setting for modern

data (Leslie et al., 2010).

If a participant is on medication at certain points in the study, his or her observed

trajectory is either completely unobservable (participants on medication for the entire

study) or distorted (participants who commence and/or cease medication use). The

challenges we discussed regarding endogeneity of medication use and effect modification

extend to this setting. Simple approaches such as adjusting for medication use and

excluding on-medication participants from analysis easily generalize to this setting. Just

as in the cross-sectional setting, endogeneity renders these modifications insufficient for

estimating underlying trajectories in the sense that the trajectories are distorted, and

as a result: (i) the number of underlying curves can be inappropriately selected, (ii)

class membership can fail to be appropriately linked to observable covariates or risk

of subsequent events. Thus, the potential pitfalls of simple approaches for LCMM can
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be more complicated and difficult to characterize than in the cross-sectional setting,

in which bias and efficiency of estimators are the two primary characteristics under

consideration. Of note is that both bias and efficiency are simple enough to characterize

empirically, and sometimes even simple enough to characterize analytically in closed-

form. Describing the distortion of LCMM curves quantitatively can be challenging. It

is of interest to utilize the models developed in the cross-sectional setting in order to

extend the current latent class mixture modeling approach. Such an approach allows

estimation of underlying trajectory curves when there is endogenous medication use in

the population.

8.1.3 Multiple Classes of Medication

In our methodology, we have focused on examples in which medication use zi was taken

to be 1 if on any medication and 0 if not, generally ignoring the fact that many times

participants are on multiple medications simultaneously. In Chapter 5, we were able

to accommodate this by including effect modifier parameters. However, it could be

worthwhile to explore other ways in which multiple classes of medication use may be

accommodated. In the case where there are two classes of medication, one might be

able to use two medication use equations, each with a distinct medication use variable

(z∗1i and z∗2i, for example). Then, the error terms in the biomarker model, together

with those in the latent medication use model could be taken to be a trivariate normal

distribution. One might be concerned in this case about identifiability of parameters,

and perhaps it would be necessary to impose certain restrictions on the total 3 × 3

covariance matrix for each subject in order to achieve identifiability.

Another potential way one might be able to accommodate multiple classes of med-

ication use would be to split up the single latent medication use equation into classes

based on a more flexible (perhaps data-driven) partition of the real line rather than
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the dichotomized version as in the TEM. This might be more appropriate if it is be-

lieved that a higher risk covariate profile is more likely to result in being placed on one

medication over another. Otherwise, a continuous ordering may be inappropriate.

8.1.4 Estimating Natural Quantiles

This dissertation has focused primarily on regression techniques for specific types of

association studies in the presence of endogenous medication use. In practice, we also

could want the natural history of the biomarker for other purposes; for example, we

may wish to establish a normal range of underlying biomarker values, which cannot be

established in a straightforward way with the näıve data. Methods such as LMS regres-

sion (Cole and Green, 1992) can be used to normalize an outcome and perform quantile

regression based on the Box-Cox transformation. It would be of interest to evaluate

whether this technique could be carried over with the likelihood of the treatment effects

model and the extensions we have proposed.

8.2 Concluding Remarks

In this research, we have argued and illustrated through simulation and application

the failure of traditional methods in estimating the natural history association between

predictors and underlying biomarkers in observational data. We have taken the existing

structural equation framework presented by James Heckman in 1978, which has been

historically used for estimating treatment effects, and applied it in a novel setting.

Our findings revealed that when this modeling framework is applied to estimate

natural history associations, there is a high level of robustness to departures from as-

sumptions, including distributional assumptions on the error terms. This is not the

case when the marginal treatment effect is the estimand of interest. The observed sen-

sitivity to departures from the assumption of uniform treatment effects was addressed

by explicitly accounting for effect measure modification. This extension was found to
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achieve substantial bias reduction when there are systematic differences in the expected

treatment effect magnitude across values of the predictor of interest, or predictors of

medication use. Moreover, in the setting where repeated measures are available over

time, we have presented alternative model formulations in order to gain efficiency in

estimating longitudinal biomarker trends.

Throughout this research, we have identified a number of future pathways and

avenues for extending these methods to further improve estimation of associations in

the presence of endogenous medication use.



149

BIBLIOGRAPHY

Allen NB, Siddique J, Wilkins JT, Shay C, Lewis CE, Goff DC, Jacobs DR Jr., Liu

K, Lloyd-Jones D. Blood pressure trajectories in early adulthood and subclinical

atherosclerosis in middle age. The Journal of the American Medical Association

2014; 311(5): 490-497.

Amemiya T. Tobit models: A survey. Journal of Econometrics 1984; 24(1-2): 3-61.

American Diabetes Association (Position Statement). Dyslipidemia management in

adults with diabetes. Diabetes Care 2004; 27: S68–S71.

Angrist JD, Krueger AB. Instrumental variables and the search for identification: from

supply and demand to natural experiments. Journal of Economic Perspectives 2001;

15(4): 69-85.

Bild DE, Bluemke DA, Burke GL, Detrano R, Diez Roux AV, Folsom AR, Greenland

P, Jacobs, Jr. DR, Kronmal R, Liu K, Nelson JC, O’Leary D, Saad MF, Shea S, Szklo

M, Tracy RP. Multi-ethnic study of atherosclerosis: objectives and design. American

Journal of Epidemiology 2002: 156(9): 871–881.

Bowden RJ, Turkington DA. Instrumental Variables. Cambridge: Cambridge Univer-

sity Press; 1984.

Brand E, Wang JG, Herrmann SM, Staessen JA. An epidemiological study of blood

pressure and metabolic phenotypes in relation to the Gbeta3 C825T polymorphism.

Hypertention 2003; 21(4): 729-737.



150

Brookhart MA, Wang PS, Solomon DH, Schneeweiss S. Instrumental variable analysis

of secondary pharmacoepidemiologic data. Epidemiology 2006; 17(4), 373-374.

Brookhart MA, Schneeweiss S, Rothman KJ, Glynn RJ, Avorn J, Stürmer T. Vari-

able selection for propensity score models. American Journal of Epidemiology 2006;

163(12), 1149-1156.

Carroll MD, Lacher DA, Sorlie PD, Clean JI, Gordon DJ, Holz M, Grundy SM, Johnson

CL. Trends in serum lipids and lipoproteins of adults 1960-2002. The Journal of the

American Medical Association 2005; 294(14), 1773–1781.

Chen Y, Chen Y, Li X, Post W, Herrington D, Polak J, Rotter J, Taylor K. The

HMG-CoA reductase gene and lipid and lipoprotein levels: the Multi-Ethnic Study

of Atherosclerosis. Lipids 2009 44(8): 733-743.

Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, Jones DW,

Materson BJ, Oparil S, Write JT Jr., Roccella EJ. Seventh report of the Joint

National Committee on prevention, detection, evaluation, and treatment of high

blood pressure. Hypertension 2003; 42(6): 1206-1252.

Choesterol Treatment Trialists’ Collaborators. Efficacy of cholesterol-lowering therapy

in 18 686 people with diabetes in 14 randomised trials of statins: a meta-analysis.

Lancet 2008; 371(9607): 117-125.

Cole TJ, Green PJ. Smoothing reference centile curves: the LMS method and penalized

likelihood. Statistics in Medicine 1992; 11(10): 1305–1319.

Cole SR, Hernán MA. Constructing inverse probability weights for marginal structural

models. American Journal of Epidemiology 2008; 168(6): 656-664.



151

de Groot S, Post MW, Hoekstra T, Valent LJ, Faber WX, van der Woude LH. Trajec-

tories in the course of body mass index after spinal cord injury. Archives of Physical

Medicine and Rehabilitation 2014; 95(6): 1083-1092.

Delaney JAC, Platt RW, Suissa S. The impact of unmeasured baseline effect modifica-

tion on estimates from an inverse probability of treatment weighted logistic model.

European Journal of Epidemiology 2009; 24(7): 343-349.

Diggle P, Heagerty P, Liang K, Zeger, S. Analysis of longitudinal data. New York:

Oxford University Press.

Freedman DA, Sekhon JS. Endogeneity in probit response models. Political Analysis

2010; 18(2): 138-150.
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Appendix A

R CODE: HECKMAN’S TREATMENT EFFECTS MODEL

## Parameter: theta = (alpha, beta, var.y, rho, delta)

##

## Data

#### W: Design matrix of covariates predicting medication use

#### X: Design matrix of covariates prediction underlying biomarker

#### Y: Observed biomarker outcome

#### Z: Observed medication use status

##

## Comment: Place all variables of X into W to allow z to depend on y(0)

negloglik.heck <- function(theta, W, X, Y, Z) {

## Size of sub-parameters

nw <- dim(W)[2]

nx <- dim(X)[2]

alpha <- theta[1:nw]

beta <- theta[(nw + 1):(nw + nx)]

var.y <- theta[nw + nx + 1]

rho <- theta[nw + nx + 2]

delta <- theta[nw + nx + 3]

## Fitted values

Yhat <- X %*% beta - delta * Z

Zstarhat <- W %*% alpha
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#Likelihood for all subjects

all <- dnorm(Y - Ystarhat, mean = 0, sd = sqrt(var.y))

#Conditional mean and variance

mean.z.y <- W %*% alpha + (rho/sqrt(var.y))*(Yhat)

var.z.y <- 1 - rho^2

#Untreated and Treated Likelihoods

tx <- 1 - pnorm(0, mean = mean.z.y, sd = sqrt(var.z.y))

utx <- pnorm(0, mean = mean.z.y, sd = sqrt(var.z.y))

like <- log(all) + log(utx)

like[Z==1] <- log(all)[Z==1] + log(tx)[Z==1]

negll <- -sum(like)

negll

}
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Appendix B

R CODE: SUBGROUP-SPECIFIC EFFECTS MODEL

## Parameter: theta = (alpha, beta, eta, var.y, rho)

##

## Data

#### V: Design matrix of covariates predicting treatment effect size

#### W: Design matrix of covariates predicting medication use

#### X: Design matrix of covariates prediction underlying biomarker

#### Y: Observed biomarker outcome

#### Z: Observed medication use status

##

## Comment: Place all variables of X into W to allow z to depend on y(0)

negloglik.ssem <- function(theta, V, W, X, Y, Z) {

## Size of sub-parameters

nw <- dim(W)[2]

nx <- dim(X)[2]

nv <- dim(V)[2]

alpha <- theta[1:nw]

beta <- theta[(nw + 1):(nw + nx)]

eta <- theta[(nw + nx + 1):(nw + nx + nv)]

var.y <- theta[nw + nx + nv + 1]

rho <- theta[nw + nx + nv + 2]

## Fitted values
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Yhat <- X %*% beta - V %*% eta * Z

Zstarhat <- W %*% alpha

#Likelihood for all subjects

all <- dnorm(Y - Ystarhat, mean = 0, sd = sqrt(var.y))

#Conditional mean and variance

mean.z.y <- W %*% alpha + (rho/sqrt(var.y))*(Yhat)

var.z.y <- 1 - rho^2

#Untreated and Treated Likelihoods

tx <- 1 - pnorm(0, mean = mean.z.y, sd = sqrt(var.z.y))

utx <- pnorm(0, mean = mean.z.y, sd = sqrt(var.z.y))

like <- log(all) + log(utx)

like[Z==1] <- log(all)[Z==1] + log(tx)[Z==1]

negll <- -sum(like)

negll

}
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Appendix C

R CODE: LONGITUDINAL ENDOGENEITY MODEL

## Parameter: theta = (alpha, beta, eta, rho.y, rho, sd.y)

##

## Data

#### V: Design matrix of covariates predicting treatment effect size

#### W: Design matrix of covariates predicting medication use

#### X: Design matrix of covariates prediction underlying biomarker

#### Y: Observed biomarker outcome

#### Z: Observed medication use status

#### id: Vector of IDs corresponding to observations

#### corstr: String specifying working correlation: "AR1" or "Exchangeable"

##

## Comment: Place X variables in W for homogeneous corresp. dependancies

## Comment: Working independence code equivalent to SSEM

negloglik.lem <- function(theta, V, W, X, Y, Z, id, corstr) {

## Size of sub-parameters

nw <- dim(W)[2]

nx <- dim(X)[2]

nv <- dim(V)[2]

alpha <- theta[1:nw]

beta <- theta[(nw + 1):(nw + nx)]

eta <- theta[(nw + nx + 1):(nw + nx + nz)]

rho.y <- theta[nw + nx + nz + 1]
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rho <- theta[nw + nx + nz + 2]

sd.y <- theta[nw + nx + nz + 3]

atrho <- (atan(rho) + pi/2)/pi

atrho.ep <- (atan(rho.ep) + pi/2)/pi

var.z.y <- 1 - atrho^2

#Records for IDs

numvis <- as.numeric(table(id))

uids <- unique(id)

loglik <- 0

bidx <- 1

for (i in 1:length(uids)) {

eidx <- bidx + numvis[i] - 1

idxs <- bidx:eidx

bidx <- bidx + numvis[i]

Ti <- numvis[i]

if (corstr == "AR1") {exp.mat <- abs(outer(1:Ti, 1:Ti, "-"))}

if (corstr == "Exchangeable") {exp.mat <- matrix(1, nrow = Ti,

ncol = Ti)}

SigmaY <- sd.y^2 * (matrix(rep(c(1, rep(atrho.ep, Ti)),

Ti), nrow = Ti)[1:Ti,1:Ti])^exp.mat

cX <- X[idxs,]

cZ <- Z[idxs]

cY <- Y[idxs]

cV <- V[idxs]

cW <- W[idxs,]

temp <- cY - cX %*% beta + (cV %*% eta) * cZ
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tempmat <- matrix(c(temp), nrow = 1, byrow = TRUE)

SigmaY.inv <- solve(SigmaY)

ldsy <- log(det(matrix(SigmaY, nrow = Ti)))

lpy <- (-Ti/2) * log(2*pi) - ldsy/2 + (-1/2) * diag(tempmat

%*% SigmaY.inv %*% t(tempmat))

mean.z.y <- cW %*% alpha + atrho * temp / sd.y

propz0 <- pnorm(0, mean = mean.z.y, sd = sqrt(var.z.y))

propz1 <- 1 - pnorm(0, mean = mean.z.y, sd = sqrt(var.z.y))

prop <- propz0

prop[cZ == 1] <- propz1[cZ == 1]

lprop <- log(prop)

loglik <- loglik + sum(lprop) + lpy

}

negll <- -1 * loglik

negll

}
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