
c©Copyright 2016

Caleb Horst

Communication and Round Balanced Oblivious FSM Evaluation

Caleb Horst

A thesis
submitted in partial fulfillment of the

requirements for the degree of

Master of Science

University of Washington

2016

Reading Committee:

Anderson Nascimento, Chair

Martine De Cock

Program Authorized to Offer Degree:
Computer Science and Systems

University of Washington

Abstract

Communication and Round Balanced Oblivious FSM Evaluation

Caleb Horst

Chair of the Supervisory Committee:
Assistant Professor Anderson Nascimento

Institute of Technology

Privacy is a major issue in the age of the Internet. Many advances are being made in

Cryptography regarding performing computations over private data, both in homomorphic

encryption, multi-party computation, and applications that put these to use. Herein we

present a multiparty protocol for the private evaluation of a finite state machine. We motivate

this by noting that many features can be extracted from text using the finite state transducer,

an easy extension of the general FSM. For example, this protocol could be used as the feature

extraction phase of an end-to-end private machine learning algorithm over text inputs.

Our protocol(s) build on those previously developed by offering a different balance be-

tween communication, computation and rounds. Notably, we offer a 2-round protocol with

fairly low communication. The previous constant round protocol had higher communication,

and the previous low communication protocol had rounds proportional to the input size. A

very computation efficient version is provided if a third party is available who is not trusted

beyond non-collusion. And a more computationally intensive version removes the need for

this helper.

TABLE OF CONTENTS

Page

List of Figures . iii

List of Tables . iv

Chapter 1: Introduction . 1

1.1 Contribution . 2

1.2 Organization . 3

Chapter 2: Preliminaries . 4

2.1 Cryptographic Concepts . 4

2.2 Notation . 8

Chapter 3: Oblivious FSM . 10

3.1 Related Work . 10

3.2 Improved Protocol . 13

3.3 Two Party Variant . 17

3.4 Output and Transducing . 17

3.5 A Security Note . 20

3.6 Security Proofs . 21

3.7 Complexity Analysis and Comparison . 25

Chapter 4: OFSM Experiments . 28

4.1 Implementation . 28

4.2 Performance Results . 29

4.3 Application Notes . 29

Chapter 5: Conclusions and Future Work . 33

i

Bibliography . 34

ii

LIST OF FIGURES

Figure Number Page

2.1 The simulator S interfacing with the adversary A 7

2.2 The adversary A running the real protocol with other players. 8

4.1 Computation times for 3 party (Top) and single server (Bottom) variants with
n = 5, |Σ| = 32, and |Q| varying from 100 to 1000. Vertical axis is runtime in
milliseconds, horizontal axis is |Q|. 30

4.2 Computation times for 3 party (Top) and single server (Bottom) variants with
n = 5, |Σ| varying from 10 to 100, and |Q| = 200. Vertical axis is runtime in
milliseconds, horizontal axis is |Σ|. 31

iii

LIST OF TABLES

Table Number Page

3.1 Complexities of basic FSM evaluation . 27

iv

1

Chapter 1

INTRODUCTION

Advances in data availability and data mining techniques make questions of privacy and

security more salient than ever. To address, or potentially avoid, the ethical and moral

dichotomy of leveraging Big Data for the betterment of society against the infringement on

personal privacy, subfields of cryptography are being explored that allow for computations

on data in ways that restrict how much information about that data is leaked.

Conceptually, this is a very powerful and intriguing possibility. Imagine a world where

you could have all the benefits of modern Internet based tools, such as the vocal recognition

and question answering offered by Apple’s Siri, Microsoft’s Cortana, Amazon’s Alexa, and

similar services, but with the promise that these service providers were not actually able to

view your data. Or imagine that you are able to complete transactions in such a way that

your information is never decrypted, guaranteeing the privacy of your financial data.

Such programs are currently too complex and our solutions to this problem too inefficient

to be feasibly applied to this extent, but smaller applications may pave the way for more

practical applications. The auction in [6], where a large number of independent Danish sugar

beet farmers and the purchasers were able to calculate the optimal market price and amounts

to be produced without any intermediate information leaking that might have negatively

influenced negotiations for any parties, demonstrates that these cryptographic protocols can

be applied in real world scenarios.

Finite state machines are a basic, but useful computational model. The ability to evaluate

a finite state machine in a private setting, allows for some interesting use cases.

Finite state transducers, which are easily extended from automata, can be used to count

occurrences of multiple strings or string types in an input text. This allows for uses such

2

as preprocessing text for machine learning algorithms by extracting linguistic features (e.g.

LIWC *cite), or comparing an input text against some certain text of interest. Many of the

previous works on oblivious FSM evaluation have been targeted at the application of DNA

sequence matching.

1.1 Contribution

Herein we present a pair of protocols that allow two parties, one holding a private finite state

machine and the other a private input string, to determine the outputs of that finite state

machine on the input string while revealing minimal information, namely the sizes, about

the private inputs.

Our protocols are an improvement on previous protocols that achieve a better balance

of round complexity and communication overhead for the input string holder as the input

alphabet grows in size.

Specifically, two of the best previous protocols offer significant complexity tradeoffs. One

[9] features a low constant, 1.5 or 2, round complexity and easy computations at the cost of

nO(|Σ||Q|) communication complexity. The other [5] has very low communication, poten-

tially as low as nO(log2
2(|Q||Σ|) at the cost of n rounds and very heavy computation. Our

proposition is a 2-round protocol that has communication nO(|Σ| + |Q|). Computation is

heavy with only two players, but with the assistance of a third party, a non-colluding but

otherwise untrusted cryptographic helper, computation is very light.

The asymptotic communication complexity reduction means that the protocol is more

efficient than the previous protocols that inspired it as the input alphabet grows in length.

This means for applications where the alphabet is significant, such as text input processing

where the alphabet could easily be 62 characters or larger (26 letters in lower and upper case

along with 10 numeric digits), the communication is significantly improved.

3

1.2 Organization

This thesis is organized as follows. We begin by presenting some necessary concepts and

notation, then proceed to present the previous protocols and our improved protocols. We

next include full proofs of security and lastly experimental timing results and suggestions for

efficient implementation.

4

Chapter 2

PRELIMINARIES

Herein we will detail some cryptographic concepts that we directly use or draw heavily on

for inspiration, and specify the notation we will use throughout. Each of these cryptographic

tools has been the subject of much study and here we will only briefly describe them.

2.1 Cryptographic Concepts

Cryptographic Assumptions Much of cryptography is built off of reductions. Proto-

cols or schemes are reduced to problems that are either provably impossible (information

theoretically secure) or have no known, and no readily promising, computationally feasible

solutions (computationally secure). One such assumption we will use is the Random Oracle

Assumption , or Random Oracle Model[4], where we assume for the purposes of reduction

that a Hash function behaves like a truly random function. Meaning that for every input

the output is uncorrelated and completely random.

Oblivious Transfer and PIR Basic Oblivious Transfer (OT)[19] has a few formulations.

These formulations have been shown to be equivalent[7], and the more readily applicable

definition is that OT is a protocol where one party holds two pieces of data, x0 and x1 and

a second party wants to retrieve xb, but party one should not learn b, and party two should

not learn x1−b. This is the case of 1-out-of-2 OT, but 1-out-of-n OT can be constructed by

invoking multiple instances of 1-out-of-2 OT.

Oblivious Transfer has been studied extensively, due to its incredible power. It has been

shown that OT can be used for secure two party computation of any function, commitments

and zero-knowledge proofs [13]. Furthermore, OT can be made very efficient by using OT

5

extension [3], a technique where k OTs are used to perform a practically arbitrarily large

number of OTs using symmetric functions instead of additional public key operations.

A closely related field is that of Private Information Retrieval (PIR). In PIR, the server

should not know what is being queried, but the client may receive additional information.

Generally, a requirement of PIR is also that it requires less communication than simply

sending the entire database. PIR also extends to the case where the data may be split among

multiple servers to allow for cheaper retrieval. Computational PIR (cPIR), such as [1, 8, 24],

relies on the hardness of cryptographic assumptions to achieve PIR for computationally

bounded servers. Symmetric PIR is a PIR scheme where the user is also guaranteed to not

learn extra information about the server’s input and is effectively equivalent to OT.

Homomorphic Encryption Homomorphic encryption (HE) is a field of much study right

now. HE allows one to compute functions on encrypted data that will be reflected in the

decryption, e.g. E(x) ∗ E(y) = E(x + y). Based on basic Boolean algebra, the ability to

calculate both the addition and multiplication operation in this way allows any function to be

computed on encrypted data. A seminal paper [11] showed that this is possible, and numerous

improvements have been made since. However, these fully homomorphic schemes are still

prohibitively expensive for sizeable calculations. Herein we will rely only on a somewhat

homomorphic encryption (SHE) scheme which allows for the addition of enciphered values.

The somewhat homomorphic scheme we will consider is Paillier’s scheme[18], which is

additively homomorphic, based on the hardness of the composite residuosity problem, and

allows for multiplication by plaintext constants. There are also other additively homomor-

phic schemes, based on other computational hardness assumptions, but many of these have

drawbacks such as costly decryption or limited homomorphic operations that are not present

in Paillier.

We require that the SHE scheme satisfies CPA security. Like other encryption schemes,

HE and SHE schemes are considered CPA secure if for adversaries restricted to polynomial

time the encryptions of messages reveal absolutely no information about those messages. This

6

is sometimes posed as a game. Given two known messages m0 and m1 and an encryption of

one of them, Enc(mb), it must be shown that even with access to a polynomial number of

chosen message/ciphertext pairs, there is still only negligibly better than a 1/2 probability

of guessing b correctly.

Formally, for any polynomial time algorithm A and any messages m0,m1 with a random

b ∈ {0, 1}

P [AEnc(·)(m0,m1, Enc(mb)) = b] ≤ 1

2
+ ε

We note that Paillier encryption is CPA secure so long as hardness of the underlying com-

putational problems holds.

Secret Sharing In secret sharing, a secret value is split into parts x → (x1, ..., xn) called

shares given to some number of parties P1 through Pn (for n ≥ 2). These shares are chosen

such that it is impossible to recover x, or any partial information about x, from any subset of

t shares, for 1 < t < n. One basic secret sharing scheme is the additive secret sharing, where

x =
∑

i xi, which has t = n− 1. In cases where only a subset of shareholders should also be

allowed to recover the secret, Shamir’s secret sharing scheme [22], which uses polynomials of

degree t, allows t+ 1 out of n players to recover the secret.

Computations can be done upon these shares in such a way that allows for both addition

and multiplication of the shared values (if the parties interact), hence allowing the parties

to compute arbitrary functions together in such a way that nobody can recover the shared

values until a threshold of parties working together.

Garbled Circuits A major breakthrough in multi-party computation came when Yao

proposed the garbled circuit [28]. In essence, the desired function to compute is expressed

as a Boolean circuit, then ”garbled”. Every wire is given a k0 and k1 for the values of 0 and

1 on that wire. Then the output of each gate is encrypted using these keys, e.g. for an AND

gate, having k1 for both inputs would allow you to decrypt the k1 output key, but having

k0 for either input would cause you to decrypt k0 for that wire. OT is used to retrieve the

7

Figure 2.1: The simulator S interfacing with the adversary A .

correct keys for the input of the person receiving the circuit. Much work has been done to

formalize the security of, and dramatically improve the performance of the garbled circuit

technique.

Security in garbled circuits intuitively is that the recipient of the circuit is unable to

attain any of the keys, or knowledge of which keys he has, except those in the degarbling

path based on his inputs.

Simulation Security Proofs To prove the security of the protocols, we present an ideal

functionality that achieves the same outputs as our protocol but with indisputable security,

modeled generally as the usage of a perfectly trusted third party. We then show that any

information seen by a corrupt party in the protocol, provided only one is corrupt, can be

generated in this ideal case. Specifically, that for an adversaryA and simulator program S , S

with the ideal function F can generate a view for A that is computationally indistinguishable

from the output of the protocol π. More formally, for all A there exists an interface S such

that

VIEWA(π)
COMP≡ VIEWA(S(F))

8

Figure 2.2: The adversary A running the real protocol with other players.

where the VIEWA is all the inputs and outputs seen by A and X0
COMP≡ X1 iff for all

polynomial time algorithms D:

P [D(Xb) = b] ≤ 1

2
+ ε

for a value of ε that can be made arbitrarily small.

Intuitively, security can be envisioned using Figures 2.1 and 2.2 where we see two sce-

narios, one with A directly interacting with the other players, and one where A interacts

with S and S with F . If these two scenarios appear the exact same to A , since S only has

access to the input of A and the output A should receive from F , A must not be able to

learn anything during the protocol he is not supposed to learn.

2.2 Notation

Generally deterministic finite automata (DFAs) are represented as tuples:

M = (Q, q0, δ,Σ, Qaccept)

Where Q is the set of states, q0 is the initial state, δ is a transition rule of the form δ :

Q×Σ 7→ Q, Σ is the input alphabet, and Qaccept ⊂ Q is the set of accept states. The output

9

of the FSM is 1 if the execution ends in an accept state and 0 if the execution ends in any

other state.

To mathematically represent δ, a matrix ∆ is often used. ∆ is a |Q| × |Σ| matrix where

each entry is log2 |Q| bits representing the state transitioned to for each input/state pair.

In the case of transducers, the Qaccept parameter is replaced by Γ, an output alphabet

(usually Z/mZ for some m) and λ, an output rule.

The two common FST models are Moore machines and Mealy machines. In a Moore

machine, we have λ : Q 7→ Γρ, and in a Mealy machine λ : Q× Σ 7→ Γρ, where ρ represents

the number of output variables. We can represent this readily as a matrix Λ of either

dimension 1 × |Q| or |Σ| × |Q|, respectively, where each entry is ρ log2 |Γ| bits in size. This

can also be represented by appending the outputs to the entries of ∆, however doing so will

result in redundancy in a Moore machine.

Our protocols use either three or two parties. We will refer to them based on their input

to the protocol. The Client provides an input string to be run through the FSM provided by

the Server. To achieve a higher efficiency, we allow for a third Helper party that is expected

to not collude with either of the other two parties, but is not trusted to see either’s input.

10

Chapter 3

OBLIVIOUS FSM

In this chapter we provide the previous work on oblivious evaluating FSMs, then our

proposed protocol. We include a description of the two variants, how one would extend it to

transducers from automata, along with security and complexity analyses.

3.1 Related Work

Several protocols have been previously developed to address the secure evaluation of finite

state machines. Other protocols also exist for secure subsequence matching, a weaker task,

but one of the potential uses for finite state machines.

Tronosco-Pastoriza et al. in [23] are believed to be the first to publish a paper developing

the idea of oblivious FSMs, they specifically targeted the application of DNA sequence

matching. It uses basic secret sharing and somewhat HE and/or OT to evaluate the FSM

one input symbol at a time.

They considered evaluation being split between two parties, a server and a client. The

client holding x̄ ∈ Σn and the server holding an FSM. At each point in the evaluation, each

party holds an additive share of qi ∈ Q, i ∈ {1...n}, the ith state.

To retrieve shares of the next state, the server masks all the entries of his matrices with a

round-specific random value r, then rotates the entire transition matrix and output matrix

by his share of the previous state. The client uses an Additively Homomorphic Encryp-

tion scheme (e.g. Paillier) to encrypt a vector < v1, ...v|Q| > as a unary encoding, that is

vi = Enc(0) except for the index of his state share, which is Enc(1). The server multiplies

his matrix (using the multiplication by constant and ciphertext addition homomorphic prop-

erties) by this vector and attains a vector representing the transition function for the current

11

state. The server and client then execute a 1-out-of-|Σ| OT protocol to retrieve the xi’th

element. The client can decrypt this to learn his share of the next state, while the server

can keep r as his share. This is repeated until the entire input x̄ is processed. They note

that the order can be switched, by working on the transpose of the matrix, encrypting the

input as a vector, and then doing a 1-out-of-|Q| OT, depending on which is more efficient.

Furthermore, they provide the basic extension to transducers. For Moore type machines, by

repeating the rotation and vector multiplication on the vector of state outputs, the encrypted

outputs can be retrieved. For Mealy type machines, the rotation, vector multiplication and

OT against the matrix of outputs must all be performed.

Blanton and Aliasgard in [5] slightly build on this framework to use only OT/cPIR for

better communication complexity, as well as demonstrating how evaluation can be outsourced

to one proxy each, or an arbitrary number of servers, to offload the computational costs from

the input and FSM holders.

Instead of using SHE to capture the correct vector then doing OT on the vector, they

suggest doing OT on the entire matrix by representing it as a vector then fetching the proper

index (as in 2D array indexing). This incurs a 1-out-of-|Σ||Q| OT per round instead of |Σ|

Paillier and 1-out-of|Q| OT (or 1-out-of-|Σ| OT and |Q| Paillier).

By also using a more bandwidth optimized cPIR than trivial 1HE, such as the one in

[24] this approach can achieve the lowest communication complexity per round of any of the

options presented here, at the cost of being the most computationally expensive.

Due to the security of the SHE, OT, or cPIR, these schemes protect the user’s input

string from the server, and the random rotation of the transition matrix and shared state

prevent either party from knowing what state transitions are occurring, protecting the FSM

from the client. The corresponding papers include more in depth analyses of the correctness

and complexities.

The downside of both of these protocols is that they all suffer from a heavy computa-

tional load do to the large amount of SHE or OT called for, commonly requiring modular

exponentiations over a large modulus, and are restricted to running in no fewer than n

12

rounds.

A second approach was presented by Frikken in [9]. He generalizes the idea behind garbled

circuits to require only two rounds of communication, at the unfortunate cost of a substantial

communication burden, as the entire FSM is sent in garbled form n times. Computationally,

however, this technique requires only a few OTs, and is otherwise composed entirely of fast

symmetric key operations. Mohassel’s protocol in [17] is very similar, but reformats the FSM

as using binary inputs, and claims better efficiency than [9]. Their scheme appears to be

almost identical however, except the binary restriction, and if it is extended to a nonbinary

alphabet, should have equivalent complexity. They do, however, provide a proof of security

which is briefly argued but not fully proven by Frikken, and suggest the use of OT extension

to reduce the asymmetric operations to a constant instead of being tied to the input length.

The approach posed to solve the problem of the high round counts and heavy computation

in the sequential protocols, this protocol builds on basic garbled circuit techniques.

The transition matrix is garbled n times, once for each input character. First, a per-

mutation (rotation) is applied to the set of next states to hide order. Then, for each state

and input, the next state is encoded in such a manner that it can be uncovered only using

the key for that current state (gained as the FSM is evaluated) and the key for that input

(retrieved using OT at the start of the evaluation). You could think of this garbling function

generally as

δi(σ, q) = Enckiσ ,kiq(∆σ,q||ki+1
∆σ,q

)

To complete evaluation, the data holder uses 1-out-of-|Σ| OT to retrieve the keys for each

symbol in his input and the FSM holder sends the garbled FSM to the data holder. From

the initial state (which can be made public due to the garbling) and the input keys, the data

holder evaluates the FSM by ungarbling the correct entry for the current state and input to

determine the next state and next state key until the final state is reached.

The advantages of this scheme over the sequential schemes is that the number of rounds

and the number of public key operations are very low. The disadvantage is that n times the

entire transition matrix is transferred, which creates a high communication overhead.

13

Frikken noted a few potential optimizations. Even suggesting the use of PIR to avoid

sending the whole table, however it appeared that he did not consider selecting entire

columns, as he claimed using PIR would increase the round complexity to O(n). We will

demonstrate in Chapter 3 that a more judicious application of PIR yields better results.

We note that any FSM with alphabet Σ can be expressed as a binary FSM (for the

protocol of [17]), where each input is encoded as a sequence of log2 |Σ| bits, at the cost of

increasing the number of states by a factor of |Σ| − 2 and the input length by a factor of

log2 |Σ|. This new binary FSM may be reducible using known algorithms for state machine

optimization, however doing so shouldn’t reduce the size of |Q′| below |Q| and the input

length will remain n log2 |Σ|. Which generally results in larger communication complexities

than if an FSM with the original |Σ| can be used.

Laud and Willemsen in [14] utilizes an arithmetic black box, an abstraction of distributed

computation, such as secret sharing, and a polynomial representation of the transition func-

tion to achieve quite low ‘online’ communication complexity, however the round complexity

is still tied to the length of the input, and the preprocessing still requires a large amount of

communication. They also address the evaluation of NFAs, however the benefits of NFAs

are unlikely to outweigh the additional costs in the proposed setting of this paper.

Other works further use additional permutations and matrix multiplication to complete

DFA and NFA evaluations [25, 27, 21], sometimes even working over encrypted inputs. In

general these protocols are less efficient due to heavier security guarantees or harder tasks.

There are other protocols for sequence matching, even counting the occurrences of sub-

sequences, but they are not expected to be more efficient and private in the setting where a

large number of sequences are sought, or a number of sequences might need to map to the

same output, i.e. multiple words contributing to a count of “happy” words.

3.2 Improved Protocol

By utilizing a garbled FSM scheme and PIR, we can make the |Σ| and |Q| communication

factors additive instead of multiplicative while keeping the round count constant. The pro-

14

tocol is described with a basic cPIR/PIR scheme for simplicity, and to keep computation

minimal.

Garbling Similarly to [9, 17], we will garble the state transition matrix, ∆, n times. This

garbling consists of permutation and symmetric encryption. The suggested permutation is

adding a random mask value modulo |Q|. We will use ri for these rotation values, and forgo

including the modular reduction notation.

The server chooses n · |Q| random keys denoted k, one for each state in all n matrices,

and encrypts the state transitions as such:

Let q′ = q − ri, the true state

∀i ∈ {1, . . . , n}, q ∈ {1, . . . , |Q|}, σ ∈ {1, . . . , |Σ|}

Gfsm(δ(q, σ), i) := Enckiq(∆q′,σ + ri+1, k
i+1
∆q′,σ+ri+1

)

This garbled form is an encryption of the next permuted state for the given permuted state

and input, along with the corresponding key so that it can be decrypted to continue the

evaluation. Note that this garbling does not require keys based on the input string, as in

previous variants, we will shortly show how coupling this with PIR/OT does not break the

security.

This encryption function is a generalization, however. While we could use any CPA-

secure symmetric encryption, here we will leverage the Random Oracle Assumption and use

a hash function, H : {0, 1}n+|Σ| 7→ {0, 1}κ+|Q|, and encrypt as

Gfsm(δ(q, σ), i) := H(kqi ||σ)⊕ (∆q′,σ + ri+1||ki+1
∆q′,σ+ri+1

)

Given the current state’s key, it is clear that you can decrypt the permuted state to transition

to and the requisite key.

We will address more thoroughly how the output can be included in the garbled FSM,

for now, we simply replace the final transition values with the value 1 + r if the final state

is accepted and r otherwise.

15

That is

Gfsm(δ(q, σ), n− 1) :=

 Enckn−1
q

(r) δ(q′, σ) /∈ Qaccept

Enckn−1
q

(r + 1) δ(q′, σ) ∈ Qaccept

recalling that q′ represents q − ri modulo |Q|, the ‘true’ state.

Next the client executes a PIR/OT subprotocol, fetching only the necessary columns,

those corresponding to the client’s input. We use PIR/OT interchangeably from here on,

because while our subprotocol is not asymptotically better than the trivial solution (treating

|Σ| as a constant), it can leverage a second server, something common in PIR, but not in

OT. We first present a PIR/OT with Helper protocol, and in the next section address how

this could be altered in the case where no semi-trusted helper is available.

PIR with Helper The server shares the garbled matrices with the helper. This will not

compromise security as the garbled entries will be pseudorandom, as we will prove in section

3.6. This sharing can happen during the protocol execution or at any time in an offline

phase between only the server and helper. We further assume that the server and helper

share a common random string, likely instantiated as a shared seed for a PRNG, and we will

henceforth refer to it as another pseudorandom function G.

The client then generates a bitwise secret sharing of one-hot-encodings for each of his

inputs, that is a unary encoding of each symbol in his input string, x. Each symbol xi

is encoded as the shares x̄i = x̄0
i ⊕ x̄1

i for x̄bi ∈ {0, 1}|Σ| and i ∈ {0, . . . , n − 1} such that

x̄0
i,j ⊕ x̄1

i,j = 1 iff j = xi and is zero otherwise. randomly chosen. He then sends one of these

shares to the helper and the other to the server. They then take the bitwise inner product

of these vectors with the bits of every row of the transition matrix mask them with the next

bits of the shared random string, or the output of the PRNG. Mathematically,

⊕
σ∈Σ

(
{x̄bi,σ}κ+log2 |Q| ∧ [H(kiq||σ)⊕ (∆q′,σ + ri+1||ki+1

∆q′,σ+ri+1
)]⊕G(q, σ, i)

)
for b ∈ {0, 1}, q ∈ Q and i ∈ {0, . . . , n− 1}.

16

This generates a bitwise sharing of the columns corresponding to the clients input string,

garbled versions of δ̄(·, xi).

The server and helper send these vectors back to the client. Upon recombination, the

masks, G(q, σ, i), will cancel out and the garbled column will be revealed.

To enable the client to evaluate the FSM, the server supplies the client with the key for

the initial state, k0
q0

.

Algorithm 1 Garbled OFSM With 3-Party PIR

Inputs: Server has a FSM M, Client has a string x ∈ Σn, Helper has no input. Operations

happen over a public finite field F , |Q| is also public

1. Server garbles M and sends a copy of the garbled M to the Helper along with n

random seed values.

2. Client generates n length |Σ| vectors of bitwise secret sharings for each character of x,

such that the xi element of vector i is 1, and all other elements are 0.

3. Client sends one set of vectors to the Server and one to the Helper.

4. Server and Helper both take the bitwise inner product of each row of the garbled

matrices with the corresponding vectors

5. Helper and Server mask the n resultant vectors with the output of a pseudorandom

number generator on the n seeds and return these masked vectors to the Client.

6. Client recombines the garbled transition vectors and ungarbles the first state transition

using the given key.

7. Client evaluates FSM by ungarbling the entry of the next vector given in the previous

vector using the key from the previous transition key.

17

3.3 Two Party Variant

If we assume that there is no available semi-trusted third party to act as a helper, we have

to rework the PIR phase. Note that doing so will the use of additional computational

assumptions.

Any symmetric cPIR or OT method can be used to fetch the encrypted columns, some

at lower communication or computation complexity than what is suggested here. We use

this instantiation of OT mostly to match more closely the previous implementation of [23].

We make this choice considering that since the n|Q| factor of the data being fetched will

generally dominate over the query cost, reducing it at the cost of additional computation

seems generally like a poor tradeoff. We do acknowledge that depending on the application,

a different cPIR may be more practical. The protocol is summarized in Algorithm 2 and

described below.

The client initiates basic cPIR by sending one hot encodings of his input x = x1, · · · , xn
using an additively homomorphic scheme such as Paillier. That is, for xi he sends <

Enc(b1), . . . , Enc(b|Σ|) > where bxi = 1 and all other bk = 0.

The server computes the matrix product with each the garbled matrix to find the en-

crypted garbled transition function Enc{δ̄i(xi, ·)} in terms of the previous state. These

encrypted columns are then sent back to the client, as well as the initial key k0
q0

.

This selection is similar to what happens in the original sequential protocol, [23], however

all column selections occur at once and are sent at once, as opposed to completing each state

selection before proceeding to the next round. The client is then able to decrypt the garbled

entries and use these to evaluate the FSM and retrieve the output.

3.4 Output and Transducing

To generate output, we can consider two ways to incorporate the output function into the

garbling scheme. The first being the one stated above, which applies only to the basic finite

state automaton. On the last state transition, we replace the next state value with the

18

Algorithm 2 Garbled OFSM with cPIR

Inputs: Server has a FSM M, Client has a string x ∈ Σn, |Q| is public

1. Server garbles M.

2. Client generates n length |Σ| vectors of encryptions for each character of x, such that

the xi element of vector i is Enc(1), and all other elements are Enc(0).

3. Client sends the vectors to the Server.

4. Server takes the inner product of each row of the garbled matrices with the correspond-

ing vectors and returns the resulting column vectors, along with the initial state key,

to the Client.

5. Client decrypts the first garbled transition vector and ungarbles the first state transition

using the given key.

6. Client evaluates FSM by decrypting and ungarbling the entry of the next vector given

in the previous vector using the ungarbled key.

19

acceptance value 0/1 (masked with a random r).

Gfsm(δ(q, σ), n− 1) :=

 Enckn−1
q

(r) δ(q′, σ) /∈ Qaccept

Enckn−1
q

(r + 1) δ(q′, σ) ∈ Qaccept

Note that this can be readily extended to non-zero outputs,

Gfsm(δ(q, σ), n− 1) := Enckn−1
q

(r + λ(δ(q′, σ)))

Furthermore, we can extend the protocol to transducers by adding this into the transitions

rules, now using separate random masks for each i ∈ {0, . . . , n− 1} given as zi.

Gfsm(δ(q, σ), i) := Enckiq(zi + λ(δ(q′, σ)))

even if if the output function λ outputs a number of separate outputs, e.g. λ : (Q,Σ) 7→ Γρ

for some number of outputs ρ. In our given encryption function we would have to require

that the output of H has a sufficient bitlength to mask the next key, next permuted state,

and all the outputs.

These work well for the Mealy type FSM, where the output depends on both the state

and the input symbol. In the Moore type FSM where the outputs depend only on the states

and not on the inputs, we can cut the communication slightly, as the masked outputs all have

to be included in each garbled entry, which would increase communication by nρ|Q| log2 |Γ|.

We can encrypt the outputs for each state using the state keys, then let the client use PIR

to retrieve the ones corresponding to his input with either the 3 or 2 party variant or send

them all along with the garbled transition vectors. In that case, we would have

Goutput(λ(q), i) = H ′(kq)⊕ (λ(q′) + zi)

for all i ∈ {0, . . . , n − 1} and q ∈ Q.The helper in the three party case would be unable to

learn anything from these, because the kq values will never be reused in the lists and are

never used by themselves in the garbled transition functions, and the pseudorandom (hash)

20

function H ′ need not even be the same as H. If the client is sent all the entries, he is also

only able to decrypt the one he has a key for.

Sending the client all the entries only gives a small computation reduction for the server

(and helper) since they don’t need to perform the selection operation on the extra bits,

but using PIR reduces the communication at the cost of an extra two rounds. For the more

optimal 3-party version, it would specifically take 2nQ bits sent by the client and 2nρ log2 |Γ|

bits returned as opposed to the aforementioned nρ|Q| log2 |Γ| cost.

One advantage to these transducer approaches, beyond the practical uses offered by the

increased output versatility, is the ability to use an arbitrary number of garbled matrices.

While the basic output requires n to be known initially so that the final matrix can incorpo-

rate the outputs, here the outputs are incorporated in every matrix (or in closely associated

lists) which allows for a long “chain” of matrices to be generated in the offline phase, and

shared with the helper if necessary, well before protocol execution begins. When a client

wants to evaluate a string, the server and client use the next n matrices, and the server may

have to provide r0 along with the key, since all the matrices will be randomly rotated except

the ‘first’ in the chain.

3.5 A Security Note

Before giving constructions of oblivious finite state machines we would likely to briefly men-

tion that just because the order of states and the transitions are hidden throughout the

protocol execution, this does not guarantee the security of the FSM. It is possible to learn

an equivalent DFA given only enough strings and their acceptance values.

See e.g. [20] for protocols to derive the internals of a FSM given only the ability to query

the machine on specific strings (akin to a chosen plaintext attack).

The DNA sequence matching applications given in most previous works would be vul-

nerable to this, due to the result being directly opened to the user. Whether or not it is a

reasonable concern is dependent on the size of the machine and number of queries permitted.

However, any concern can potentially be avoided several ways.

21

One is by using Nondeterministic Finite Automata (NFAs). It can be shown that learning

NFAs can be as hard as breaking public key cryptosystems [2, 12] While an equivalent DFA

can be learned, these DFAs can be exponentially larger than their NFA counterparts. This

is not guaranteed, however, as DFAs are a subset of the NFAs.

A second option is the use of transducers. As opposed to DFAs, which only have an

accept/reject output based on the final state, transducers have outputs at every state or

transition. In certain cases this could potentially be easier to learn than DFAs, but when

coupled with the next fix, the extra complexity should add a layer of security over DFAs.

The safest fix, which works poorly in the DNA matching setting of many previous works,

is to leave the output (or outputs) shared in preparation for another protocol. The security

added by this naturally is determined the following functions.

3.6 Security Proofs

To prove the security of the protocol and it’s two-party variant, we will demonstrate how a

simulator in an idealized protocol could generate output that is statistically indistinguishable

from what would be seen by a corrupted player in our protocol. We will assume a single,

statically corrupted party. That is, one party will be the adversary A , and which party

is corrupted is constant throughout the protocol. We allow for A to only be honest-but-

curious (also known as passive or semi-honest), meaning that he must follow the protocol

specifications, and we require that all communications happen synchronously over secure

channels. Recall that we also rely on the Random Oracle Assumption for our proofs.

We first describe the ideal functionality FFSM , then how the simulator, S , run and give

a thorough proof sketch of why the view generated for A by S is indistinguishable from what

A would see during a real protocol execution.

Main Protocol

Ideal Functionality We consider FFSM to be a black-box which takes as input an FSM,

M, and a value, r from the Server, an input string, x ∈ Σn, from the Client and an input,

22

(help), from the Helper. Once all three inputs are received, it outputs r + 1 to the Client if

x is accepted on M, and r otherwise.

Helper Corrupted The first input the Helper, A , receives is the garbled FSM and

random seed data. S thus must generate these for the Helper. S picks the random keys

kσ,q∀σ ∈ Σ, q ∈ Q and the n PRNG seeds. S garbles the dummy FSM where every state

returns to itself on every input using the generated keys and S sends this along with the

seeds to the Helper. S then generates n random bitwise secret sharings of length |Σ| and

sends these to the Helper as the shares of the Client’s inputs. S receives back from the

Helper the masked matrix product and inputs (help)to FFSM .

To show that this fake garbled matrix is indistinguishable from any other matrix we use a

hybrid argument. We consider a set of distributions D0 . . . Dt where D0 is the distribution we

get for garbling the fake FSM and Dt is the distribution of a truly random set of n matrices.

We start with D0 and replace one column at a time with a truly random data. There are

n·|Σ| columns, and we note that each one is assigned a unique random key with overwhelming

probability (given the 2κ keyspace). The value H(k|x) will also be unique with overwhelming

probability, and also is indistinguishable from randomly uniform under the Random Oracle

Assumption. We therefore conclude that the encrypted values in each column also appear

uniformly random, by information theory, and any distinguisher breaks the Random Oracle

Assumption for the given H. Since each column appears uniformly random, as we replace

them we get indistinguishable distributions and the entire garbled FSM is indistinguishable

from uniform randomness. Furthermore, since this was independent of the specific garbled

matrix we chose, we can extend this to say that every garbled FSM is indistinguishable from

any other and S has provided the Helper something it cannot discern from what it receives

in the real protocol.

The seeds are simply random data in both cases, and the simulated secret shares are

indistinguishable from real secret shares unless the Helper colludes with the Server or Client.

FFSM also should properly complete execution with the correct result, since S provides

23

(help)as required, so if the Helper is corrupted, we have perfectly simulated the real world

protocol execution for A and we conclude that the protocol is as secure as the ideal func-

tionality.

Server Corrupted The Server, A , initially outputs the garbled FSM and random seeds,

which S will hold. S produces the n random length |Σ| binary vectors to represent the

client’s inputs and passes them to A . At this point A will do the matrix products and

return the masked vectors along with the initial state key. This allows S to decrypt the

entire FSM, extract the value of r from the last garbled matrix, and input these to FFSM .

It is well-known that for this secret sharing scheme shares are indistinguishable from

random unless the players collude, and FFSM receives and returns the proper inputs and

outputs so we conclude that the real world protocol can be perfectly simulated by S and the

protocol is as strong as FFSM .

Client Corrupted The Client, A , will provide the bitwise secret sharing vectors repre-

senting his input which S will take and recombine to retrieve the input string x. S inputs x

to FFSM and receives back r′ either r or r + 1 depending on x’s acceptance on M.

S picks the random keys kσ,q∀σ ∈ Σ, q ∈ Q and the n PRNG seeds, then garbles the

dummy FSM where every state returns to itself on every input using the generated keys. As

the output of the FSM on x (and every string), S places r′.

S multiplies the garbled dummy FSM by the two shares of x, x0 = x0
0x

0
1 . . . x

0
n−1 and

x1 = x1
0x

1
1 . . . x

1
n−1 and masks them with the outputs of the PRNG,then returns the results

to A along with the initial state key. Formally, A receives⊕
σ∈Σ

(
{xbi}κ+log2 |Q| ∧ [H(kiq||σ)⊕ (∆q′,σ + ri+1||ki+1

∆q′,σ+ri+1
)]⊕G(q, σ, i)

)
For b ∈ {0, 1}, i ∈ {0, . . . , n− 1}, and all q ∈ Q. Recall that G is the seeded pseudorandom

number generator that only the Server and Helper share.

To prove the security, we have to show that A cannot distinguish these dummy returned

vectors from the vectors returned in the real protocol. First, note that without recombining

24

the shares properly every entry is masked with a different pseudorandom number, G(q, σ, i).

This holds for both the real and simulated vectors. The only way to combine them that will

not be the combination of two meaningless random masks is the proper pairwise recombina-

tions, which will yield⊕
σ∈Σ

(
{x0

i ⊕ x1
i }κ+log2 |Q| ∧ [H(kiq||σ)⊕ (∆q′,σ + ri+1||ki+1

∆q′,σ+ri+1
)]
)

= H(kiq||xi)⊕ (∆q′,xi + ri+1||ki+1
∆q′,xi

+ri+1
)

For all q ∈ Q. This shows that all columns except those pertaining to the xi’s could be

replaced by S with truly random data with a negligible chance of A distinguishing. In the

columns recoverable by A , every kiq is unique with overwhelming probability, given the 2κ

domain size, and unless that key is known, H(kiq||xi) is pseudorandom.

Once A decrypts the proper transitions, he uncovers the next key and permuted state.

Since the states are permuted randomly and the keys are randomly generated in both the

real protocol and by S , we conclude that the two views during the evaluation are indis-

tinguishable, including the final output of r or r + 1 based on the acceptance of x on M.

Furthermore, since every phase of the real protocol is simulated by S with FFSM in a manner

that A cannot distinguish from the protocol, we have shown that the protocol is secure.

Two-Party Protocol

Ideal Functionality The two party ideal functionality, FFSM , differs only in that we no

longer a third party to input (help). FFSM still receives M and r from the Server and x

from the Client, then outputs r to the Client if x is rejected onM and r+ 1 if it is accepted.

Client Corrupted S sends x the input of A to FFSM and receives back the result r′.

S then produces a garbled FSM that evaluates to r′ on x and 0 on any other input, and

accepts the encrypted input vectors fromA . S performs the matrix multiplications, selection

operations, as in the protocol, on his dummy FSM and returns the result toA . A can decrypt

and evaluate the FSM to achieve the proper result of r′.

25

Server Corrupted S sendsMand r to FFSM and receives no output in return. S gener-

ates n vectors of |Σ| encryption of 0 using the Client’s public key and sends these vectors to

A as the protocol dictates. After A completes the multiplications and returns the encrypted

columns to S the simulation is complete. For any semantically secure SHE scheme, A cannot

distinguish these dummy input encryptions from the proper encryptions of x and the view

of A is indistinguishable with S and FFSM from the view in the real protocol.

3.7 Complexity Analysis and Comparison

For a visual comparison of the complexities, refer to Table 3.1 Our analyses are based on the

protocols and suggested instantiations. Usage of a different PIR/OT in the two-party case

for example would alter the amounts of computation and communication.

Computation:

Three Party This requires the same computation to garble the OFSM as previous

works, nO(|Q||Σ|), then both the Server and Helper have to perform nO(|Q||Σ|(κ+log2 |Q|))

binary multiplications and additions to complete the selection and masking. Similarly the

Client only has to generate the vectors, recombine the necessary elements, and ungarble

suggesting nO(|Σ|) total work, all of which is easy operations. Furthermore, the protocol

requires no asymmetric operations such as the OT or somewhat homomorphic encryption

called for in most previous solutions.

Single Server This protocol has nO(|Q||Σ|) asymmetric and symmetric operations for

the server. However, instead of each exponentiation being to a power of log2 |Q| as in the

original work [23] each exponentiation is to a power of at least κ+ log2 |Q|. If the exponen-

tiation takes a time dependent on the size of the exponent, this will be substantially slower.

The Client also has to encrypt n|Σ| and decrypt at least n entries. This is therefore sub-

stantially more computationally costly than the previous results that require no or minimal

asymmetric computation ([9, 17, 14]).

26

Communication:

Three Party The client sends 2n|Σ| bits combined to the client and server. The query

responses are of expected to have a combined size of 2n|Q|(κ+log2 |Q|) along with an extra κ

bits in the first state key. This is asymptotically reduced from the previous garbling schemes

which would require an expected n|Q||Σ|(κ+ log2 |Q|) bits to be received, not counting the

data necessary for the OT protocols. It is not as low as [5], especially paired with the cPIR

of [24], but boasts only 2 rounds instead of n and massively reduced computational costs.

The server has to send the entire garbled matrices, but as mentioned, this does not affect

the client and can happen prior to the client entering the protocol.

Single Server With this variant, the client has to send n|Σ|2κ+ if we use assume the

use of Paillier (where ciphertexts have length 2κ+). At most n|Q|2κ+ is sent to the client

and Paillier should allow us to pack multiple entries into each ciphertext by appending them

before performing the homomorphic multiplications. Doing this would allow the commu-

nication to be reduced to roughly n|Q|2(κs + log2 |Q|). Again, this protocol has a higher

communication complexity over the most communication efficient previous results, but has

slightly lower computation and runs in 2 rounds instead of n. Further note that the incoming

communication cost is expected to be slightly higher if |Σ| < 4 over just garbling, so this

protocol should not be used for very small alphabets.

27

Client Server Client Server Helper Rounds

Mod Exp Mod Exp Sends Sends Sends

Tronosco[23] nO(|Σ|+ |Q|) nO(|Σ||Q|) nO(|Σ|+ |Q|) nO(|Q|)? N/A n

Blanton[5] 1 nO(log |Σ||Q|) nO(|Σ||Q|) nO(log2 |Σ||Q|) nO(log2 |Σ||Q|) N/A n

Frikken[9] nO(|Σ|) nO(|Σ|) nO(|Σ|) nO(|Σ||Q|) N/A O(1)

Laud [14] 0 0 nO(log |Σ||Q|) nO(log |Σ||Q|) nO(log |Σ||Q|) n

2 Party nO(|Σ|) nO(|Σ||Q|) nO(|Σ|) nO(|Q|) N/A O(1)

w/Helper 0 0 nO(|Σ|) nO(|Q|+ |Σ||Q|) nO(|Q|) O(1)

Table 3.1: Complexities of basic FSM evaluation

28

Chapter 4

OFSM EXPERIMENTS

In this chapter we detail our proof-of-concept implementation, give basic runtime results

and analysis, and make some important notes regarding the application of the protocol.

4.1 Implementation

For proof of concept, we implemented our three- and two-party protocols in Java. We used

SHA-256 as our hash function, and a basic implementation of Paillier using Java’s BigIntegers

using 2048 bit keys. 1

The three parties were run on a single computer using 3 separate Threads, and Java

ObjectStreams were used to pass data between them via Sockets, to be easily extended to

actual over-the-Internet implementation.

In the two party protocol, after the server performs the column select operation and

returns the encrypted column, we only decrypt the single entry needed for evaluation to

avoid unnecessary decryption overhead. Furthermore we exploit the fact that the Paillier

selection operation calls for multiple exponentiations of the same base (the ciphertexts)

to different powers (the garbled entries) and interweave the modular exponentiations by

squaring to avoid repeatedly calculating the powers. Furthermore the calculations are highly

parallelizable, but we do not exploit this, to give a better baseline of how the protocols

compare.

In the three party protocol, we use the basic and non-cryptographically secure build in

Random object for the G(q, σ, i) pseudorandom number generator, seeding it with the same

value for Helper and Server and then using the same outputs.

1adapted from http://www.csee.umbc.edu/ kunliu1/research/Paillier.html

29

We do not include the timings of the output phase, only the state transitions, for better

comparison with previous work. The communication time is not included either, however we

know that only two sets of sequential messages are required for the primary protocol between

the Client and Server/Helper. The setup time, between Server and Helper, is also excluded,

but was trivial without any network delay.

4.2 Performance Results

Experiments were run on a laptop computer with an Intel core i7 6700HQ @ 2.6 GHz nominal

and 16 GB DDR4 ram. Trials were run 3 to 10 times and results averaged. The basic

performance results as |Q| and |Σ| are varied are presented in Figures 4.1 and 4.2.

Execution time for the three party protocol was very short. In fact, it was sufficiently

short that the two-round Internet delay could be the performance bottleneck in practice,

and the garbling was by far the most costly operation in the experiment. Comparatively, the

performance of the two party protocol was very slow. Over 3 orders of magnitude slower. The

primary bottleneck is shifted from the garbling and anticipated network delay to the selection

and input encryption phases. Notice that as |Σ| is increased we see a larger computational

burden on the Client in the form of the input encryption.

Unsurprisingly all computations appear to scale effectively linearly. We would expect a

slightly nonlinear curve if we used κ+ log2 |Q| bits instead of the full SHA-256 output of 2κ

bits.

4.3 Application Notes

While we have provided the evaluation protocol, we have not made any note of how to

generate good FSMs for text processing. There does not seem to be a large quantity of

research on this topic, likely because it is fairly simple. First create the small FSMs that

recognize each word of interest, then merge these FSMs, via a union and state reduction, until

you attain the full FSM desired. This basic algorithm does not fully exploit the capabilities

of the FSM, but works as a baseline to work from.

30

Figure 4.1: Computation times for 3 party (Top) and single server (Bottom) variants with
n = 5, |Σ| = 32, and |Q| varying from 100 to 1000. Vertical axis is runtime in milliseconds,
horizontal axis is |Q|.

31

Figure 4.2: Computation times for 3 party (Top) and single server (Bottom) variants with
n = 5, |Σ| varying from 10 to 100, and |Q| = 200. Vertical axis is runtime in milliseconds,
horizontal axis is |Σ|.

32

As a candidate application for this protocol, let us consider the ”spambase” dataset

available from UC Irvine [15]. It contains a variety of features extracted from a sample of

e-mail texts. From the documentation:

“48 continuous real [0,100] attributes of type word freq WORD = percentage of

words in the e-mail that match WORD, i.e. 100 * (number of times the WORD

appears in the e-mail) / total number of words in e-mail. A ”word” in this case is

any string of alphanumeric characters bounded by non-alphanumeric characters

or end-of-string.

6 continuous real [0,100] attributes of type char freq CHAR] = percentage of

characters in the e-mail that match CHAR, i.e. 100 * (number of CHAR oc-

curences) / total characters in e-mail

1 continuous real [1,...] attribute of type capital run length average = average

length of uninterrupted sequences of capital letters

1 continuous integer [1,...] attribute of type capital run length longest = length

of longest uninterrupted sequence of capital letters

1 continuous integer [1,...] attribute of type capital run length total = sum of

length of uninterrupted sequences of capital letters = total number of capital

letters in the e-mail ...”

As shown above, it is not difficult to create the FSM that recognizes, and subsequently is

used to count, occurrences of words and characters (we can then convert the results to a fixed

point expression obliviously during a Scaling Phase). We can also, use an FSM to find the

final variable, “capital run length total”, simply outputting a 1 for this counter every time a

capital character occurs. This is a fairly easy extension. The remaining two features, average

and longest run length, are not generally within the set of regular languages recognizable by

FSAs. We could emulate it given a maximum length, but doing so requires something akin

to embedding memory into the FSM, which would be quite costly in terms of states.

33

Chapter 5

CONCLUSIONS AND FUTURE WORK

Here we have presented an improved protocol for obliviously evaluating finite state ma-

chines. As a motivation, we suggested using this as a preprocessing phase for a machine

learning protocol, that is, using it to extract relevant features from a sample of text and

using those features in a decision tree or other model. It would be a logical next step to

develop such an application that actually utilizes this protocol in that manner.

Also, given the dramatic improvements that have been made in the size of binary garbled

circuit since their proposal, it seems possible that the size of the garbled FSM might be

reducible somewhat. Current garbled circuits have been reduced to roughly half their initial

size, and although it is not immediately apparent if any of these techniques can be applied

to the garbled FSM, it could merit further investigation, if this protocol were to be used in

an application where communication efficiency was essential.

Furthermore, note that while these security proofs assumed the relatively weak passive

adversarial model, the proofs are easily extended to the case of the malicious Client using a

very similar proof to [17], so long as we posit that |Q| be a power of two.

34

BIBLIOGRAPHY

[1] Carlos Aguilar-Melchor, Joris Barrier, Laurent Fousse, and Marc-Olivier Killijian. Xpir:
Private information retrieval for everyone. Proceedings on Privacy Enhancing Technolo-
gies, 2016(2):155–174, 2015.

[2] Dana Angluin and Michael Kharitonov. When won’t membership queries help? In
Proceedings of the twenty-third annual ACM symposium on Theory of computing, pages
444–454. ACM, 1991.

[3] Donald Beaver. Correlated pseudorandomness and the complexity of private compu-
tations. In Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing, pages 479–488. ACM, 1996.

[4] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In Proceedings of the 1st ACM conference on Computer
and communications security, pages 62–73. ACM, 1993.

[5] Marina Blanton and Mehrdad Aliasgari. Secure Outsourcing of DNA Searching via
Finite Automata, pages 49–64. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[6] Peter Bogetoft, Dan Lund Christensen, Ivan Damg̊ard, Martin Geisler, Thomas Jakob-
sen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt Nielsen, Jakob
Pagter, et al. Secure multiparty computation goes live. In International Conference on
Financial Cryptography and Data Security, pages 325–343. Springer, 2009.

[7] Claude Crépeau. Equivalence Between Two Flavours of Oblivious Transfers, pages 350–
354. Springer Berlin Heidelberg, Berlin, Heidelberg, 1988.

[8] Yarkın Doröz, Berk Sunar, and Ghaith Hammouri. Bandwidth efficient pir from ntru. In
International Conference on Financial Cryptography and Data Security, pages 195–207.
Springer, 2014.

[9] Keith B Frikken. Practical private dna string searching and matching through efficient
oblivious automata evaluation. In IFIP Annual Conference on Data and Applications
Security and Privacy, pages 81–94. Springer, 2009.

35

[10] Rosario Gennaro, Carmit Hazay, and Jeffrey S Sorensen. Text search protocols with
simulation based security. In International Workshop on Public Key Cryptography, pages
332–350. Springer, 2010.

[11] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University,
2009.

[12] Michael Kearns and Leslie Valiant. Cryptographic limitations on learning boolean for-
mulae and finite automata. Journal of the ACM (JACM), 41(1):67–95, 1994.

[13] Joe Kilian. Founding cryptography on oblivious transfer. In Proceedings of the Twentieth
Annual ACM Symposium on Theory of Computing, STOC ’88, pages 20–31, New York,
NY, USA, 1988. ACM.

[14] Peeter Laud and Jan Willemson. Universally composable privacy preserving finite
automata execution with low online and offline complexity. IACR Cryptology ePrint
Archive, 2013:678, 2013.

[15] M. Lichman. UCI machine learning repository, 2013.

[16] Yehuda Lindell and Benny Pinkas. A proof of security of yaos protocol for two-party
computation. Journal of Cryptology, 22(2):161–188, 2009.

[17] Payman Mohassel, Salman Niksefat, Saeed Sadeghian, and Babak Sadeghiyan. An Effi-
cient Protocol for Oblivious DFA Evaluation and Applications, pages 398–415. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012.

[18] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In International Conference on the Theory and Applications of Cryptographic Tech-
niques, pages 223–238. Springer, 1999.

[19] M. O Rabin. How to exchange secrets with oblivious transfer. Technical report, Aiken
Computation Lab, Harvard University, 1981.

[20] Dana Ron. Automata learning and its applications. PhD thesis, Hebrew University,
1995.

[21] Hirohito Sasakawa, Hiroki Harada, David duVerle, Hiroki Arimura, Koji Tsuda, and Jun
Sakuma. Oblivious evaluation of non-deterministic finite automata with application to
privacy-preserving virus genome detection. In Proceedings of the 13th Workshop on
Privacy in the Electronic Society, WPES ’14, pages 21–30, New York, NY, USA, 2014.
ACM.

36

[22] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

[23] Juan Ramón Troncoso-Pastoriza, Stefan Katzenbeisser, and Mehmet Celik. Privacy
preserving error resilient dna searching through oblivious automata. In Proceedings of
the 14th ACM conference on Computer and communications security, pages 519–528.
ACM, 2007.

[24] Ecem Ünal and Erkay Savaş. Bandwidth-optimized parallel private information re-
trieval. In Proceedings of the 7th International Conference on Security of Information
and Networks, page 197. ACM, 2014.

[25] Lei Wei and Michael K. Reiter. Third-Party Private DFA Evaluation on Encrypted Files
in the Cloud, pages 523–540. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[26] Lei Wei and Michael K Reiter. Third-party private dfa evaluation on encrypted files in
the cloud. In European Symposium on Research in Computer Security, pages 523–540.
Springer, 2012.

[27] Lei Wei and Michael K. Reiter. Toward practical encrypted email that supports private,
regular-expression searches. International Journal of Information Security, 14(5):397–
416, 2015.

[28] Andrew Chi-Chih Yao. How to generate and exchange secrets. In Foundations of
Computer Science, 1986., 27th Annual Symposium on, pages 162–167. IEEE, 1986.

