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The data associated to each patient increases almost linearly as the patient
flows through the continuum of care. Analysis of the data collected during a
patient’s admission to the hospital reveals that it grows vertically as well as
horizontally as a variety of readings are taken for the patient. In general, ma-
chine learning techniques are designed and evaluated to predict clinical events
at one particular time point during this process (on admission to the hospital,
or on discharge). This highlights one of the key challenges of making predictive
solutions applicable to the real world setting, as it limits the interventions that
can be taken while the patient is at the hospital, to avoid undesirable clini-
cal outcomes down the road. To address this challenge, we have proposed a
novel framework of at-admit and sequence based models that predict clinical
outcomes accurately at different time points of a patient’s hospital stay and
perform consistently better than a retrospectively designed solution.

Hospitalizations account for about half of all healthcare expenses, and it has
been estimated that 13% of the inpatients in the United States use more than
half of all hospital resources through repeated admissions [4]. Therefore, the
clinical outcome chosen for this work is predicting thirty day readmissions for
the “all cause” population. We compare our proposed approach to the state of
the art readmission modeling approach of retrospective feature creation, and see
an average improvement of 7% in the area under the curve as well as significant
improvements in precision, accuracy and recall.
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Chapter 1

Introduction

The clinical data available for a person increases almost linearly over the course
of a person’s lifespan. With the introduction of new IoT (internet of things)
devices within and outside of hospitals, there is a rising opportunity as well as a
challenge in the healthcare domain to capture the increasing data meaningfully
[15]. The data grows not only vertically but also horizontally for example when
the patient is in the hospital more readings for the same lab tests are taken
(vertical expansion) as well new lab tests are taken (horizontal expansion). This
increase of data requires predictive models to be more dynamic in feature space
rather than static feature based individual models.

One key challenge in the healthcare domain is the gap between academic
solutions developed everyday and their readiness to be used by clinicians in the
real world setting. We have seen an incredible improvement in results as more
and more sophisticated methods are developed [6]. The question is if those
methods are designed and evaluated on how they will perform if used in a real
clinical setting and whether the performance metrics can hold up as reported
from retrospective evaluation.

The majority of the methods developed for clinical events predictions are
designed to predict an event in the future based on a static set of accumulated
features till a certain time point. In reality, the state of a patient evolves with
every new clinical reading or lab test result, which does not get reflected in such
static models. This growing sequence of data for each patient can be captured
using sequence based features as used in sequence prediction techniques [18] as
inputs to event based predictive models. In this thesis we propose a framework
of sequence based models that capture the transitions of a patient’s health
throughout a hospital stay, as well as an “at-admit” model to predict a clinical
outcome based on a fixed history of data available for the patient.
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1.1 Use Case: Thirty Day Readmissions

Readmissions to hospitals are a huge problem hurting the quality of care and
significantly increasing the costs [1, 12, 10]. Significant work has been done
in building solutions to predict which patients are at a higher risk for hospital
readmission [9, 11, 2]. This risk assessment could be used to help target the
delivery of resource-intensive interventions to the patients at greatest risk [6].
To this end, patients need to be risk stratified while they are admitted in the
hospital, to provide clinically relevant interventions in time well before the dis-
charge. Hospital readmissions also have an impact on cost as the Centers for
Medicare Medicaid Services (CMS) began using readmission rate as a publicly
reported metric, with plans to lower reimbursement to hospitals with excess
risk-standardized readmission rates.

Under the Affordable Care Act, the Readmission Reduction Program (HRRP)
requires CMS to reduce payments to IPPS hospitals with excess readmissions
and one of the ways it is calculated is based on thirty day readmissions [5, 10].
In this work we predict thirty day readmissions as the clinical use case of the
proposed approach. This means that it is a binary classification task where we
predict whether or not the patient will be readmitted to the hospital within 30
days after discharge. The population is “all cause” meaning that the patient
cohort is a “mixed bag” of various conditions. We propose a novel at-admit and
sequence based approach to tackle some of the challenges mentioned above and
build more dynamic and prospective models to predict clinical outcomes.

1.2 Thesis Overview

We will first discuss in detail the dataset used in the thesis and all the pre-
processing steps performed on the data in Chapter 2. We are using Electronic
Health Records (EHR) data from 6 facilities of a major U.S. healthcare provider.
The data components are explained in Table 2.1. There are a total of approx-
imately 92k unique encounters and 65k unique patients in the raw data. We
perform data cleaning on each data component as explained in Section 2.2. Af-
ter cleaning the data we do feature engineering and select the features to be
created which are mentioned in Table 2.2. The data aggregations and transfor-
mations are different for each modeling setup i.e at-admit model and sequence
based models which are discussed in Section 2.4.

After the data processing, we propose our approach to predict hospital read-
missions at different times during the encounter starting with the time of ad-
mission prediction model in Chapter 3. This is the at-admit model designed
similarly to the state of the art readmission models but it only uses data avail-
able for a patient at the time of admission (first admission or readmission).
We compare it with the baseline LACE index score and show that it performs
significantly better in all metrics of evaluation mentioned in Section 3.4.2.

Next we propose a sequence based modeling approach to predict clinical
events like readmissions during the hospital encounter in Chapter 4. We com-
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Figure 1.1: At-Admit Modeling Technique

Figure 1.2: Sequence Based Modeling Technique
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pare it to a retrospective readmission model baseline and predict using both
approaches at each day of a patient’s encounter at the hospital. The results
show that our sequence features based models outperform the baseline in all
metrics.

Finally we show results from the combination of at-admit and sequence based
models and offer our observations and ideas for future work in Chapter 5.
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Chapter 2

Data Pre-processing

2.1 Data Introduction

In this research we predict a patient’s risk of readmission within thirty days of
discharge for the all cause population. This work is based on a major healthcare
provider’s electronic medical records (EMR) from its 6 facilities across the U.S.
It contains two years of data from January, 2014 to January, 2016. Just like
any other clinical datasets it consists of anonymized patient records divided
into various groups of data like diagnoses, lab results, demographics and more.
Real world data is generally not in a shape that can be used for modeling and
experimentation as is. This chapter highlights all the steps taken to transform
and clean the raw data into various input types that are used for training and
testing in the experiments explained in Chapters 3, 4 and 5.

2.1.1 Raw Data

In total the data contains approximately 92k unique encounters and 65k unique
patients to the hospital. An encounter is defined as an admission to the hospital
in the context of this research. The raw data consists of five files representing
the components collected in EMR data. Table 2.1 provides the size of the raw
files as well as the features created from each.

Data Component Size Description
Population 92000 rows Age, Gender, Marital Status etc
Labs 38.8M rows 17 Clinical Readings (Hemoglobin level,

Creatinine level etc.)
Diagnoses 12.5M rows 37 diagnoses (Arrhythmia, Peptic Ulcer,

Fluid Disorder etc.)

Table 2.1: Data components and summary of extracted relevant attributes

We took various steps to capture data in the manner that is needed for our
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two modeling scenarios:

• At-Admit Modeling (Chapter 3)

• Sequence Modeling (Chapter 4)

These steps include tasks like data cleaning, feature extraction and selection,
and data transformations that are described in detail below.

2.2 Data Cleaning

Real world datasets and especially healthcare datasets usually have noise that
can make the experimental results unreliable. Across the three data components
we use in this research, we take different steps of data cleaning to address this
issue.

2.2.1 Population

The population data contains general demographic information for patients as
well as the admission and discharge information for each encounter. For cleaning
the noise in this file, we remove the data that fulfills any one of the following
conditions:

• Rows with bad data in ID fields (facility ID, patient ID, encounter ID)

• Rows with bad data in encounter admission and discharge date fields

• Rows with encounters for which thirty day readmission ground truth can-
not be determined i.e. the encounters where the discharge date is later
than thirty days before the maximum data extraction date

• Columns with unreliable data which were identified by the data provider
administrator (demographics like race and more)

2.2.2 Diagnoses

The diagnoses data contains the ICD-9 and ICD-10 codes associated to a pa-
tient’s appointments in the facilities. The International Classification of Diseases
(ICD) is a system used by physicians and other healthcare providers to classify
and code all diagnoses, symptoms and procedures recorded in conjunction with
hospital care in the United States. This includes diagnoses that happened dur-
ing an in-patient as well as out-patient visit. The association between diagnoses
and population is made using encounter dates and patient IDs. We remove the
data that contains any of the following issues:

• Rows with bad data in ID fields

• Rows with bad data in appointment date fields

• Rows with invalid data in ICD code fields

13



2.2.3 Labs

This file contains the various lab tests and their results for patients. The as-
sociation between lab orders and population data occurs in a similar fashion
as diagnosis. The ID fields along with the mapping of lab order date and en-
counter dates is used to extract lab tests taken during an encounter. We use a
two step process to clean the lab results data. First the data containing any of
the following conditions is removed:

• Rows with bad data in ID fields

• Rows with bad data in lab order field

• Rows with non-numeric data in lab test result field

A second level of cleaning is done to make the lab test names uniform for each
lab test that is used in the features. A total of 17 lab tests were selected to
be of most importance to the risk of readmission problem, a detail of which is
given in Section 2.3 on feature engineering of this chapter. In the data there
is a lot of variation in the names used for recording each of these 17 lab tests.
For example the lab test ‘Glucose’ is named in various different ways like ‘GLU-
COSE,COBAS (19MAR13; upd ur 14OCT15 abs)’,‘GLUCOSE POCT (WRB I-
STAT)12SEP2014’,‘GLUCOSE (WRB-COBAS) 05SEPT2014’ and many other
variations. This noise is due to lack of standardization at the data entry level.
This makes it difficult to extract the maximum amount of data for each of the
17 lab tests while not including incorrect lab tests.

We have tried two methods to deal with this variation noise in the lab test
names. In the first method the following two steps are used to deduplicate lab
test names:

Algorithm

lab tests = [L1, L2, . . . ..L17]
lab test standards = possible min, max values for each Li
for Li in lab tests do

variations[Li] = Search Li sub-string matching in all lab tests names
for vi in variations do
if min or max values in vi are not within lab test standards for Li then

Delete vi from variations
end if

end for
end for

This method of grouping same lab tests together has two major problems. One
is that it requires to know a possible minimum and maximum value for each
lab test. The literature and domain expertise allows to infer the normal range
of values for each lab test but to be able to come up with a definite possible
minimum and maximum for every lab test is not trivial. The reason is that
although the values for any lab test may surround a certain range in general,
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there still might be some patients that are outliers to that range i.e. a very
sick patient. The second problem with this approach is that even if there is a
known minimum and maximum value for a lab test, there might be more lab
tests with a similar name that also have values within those minimum and max-
imum values. Due to these identified issues, we use another method to tackle
de-duplication of lab test names more robustly.

Algorithm

lab tests = [L1, L2, . . . ..L17]
for Li in lab tests do

variations[Li] = Search Li sub-string in all lab test names
standards[Li] = top 3 vi in variations by number of rows and verified by
domain expert
for vi in variations-standards do

variations-ks = Kolmogorov–Smirnov test (vi, standards[Li])
if p-value of variation-ks is less than 0.5 then

Delete vi from variations
end if

end for
end for

In this method the first filter is to get a golden set of lab test names for each
of the 17 lab tests by picking the ones with most records (usually these have
70-80% more rows than the rest of the variations). These extracted standard
lab tests are also verified by a domain expert to be the same tests as the cor-
responding lab test needed. After getting these standard validated lab tests,
the similarity between their probability distribution and that of other varia-
tions is measured using a Kolmogorov–Smirnov test [20]. Any variation below
a threshold of p value 0.5 is discarded. Using this method, a valid comparison
is possible of the data with the standard drawn out of the same data and thus a
good representative of the same population. This also doesn’t bound the values
to be in a particular range but instead only checks the similarity of distributions
between variations and the validated correct labs. This technique gives consid-
erably better results and the variations extracted are renamed in the data to
their corresponding standard lab test name.

2.3 Feature Engineering

Feature engineering is the process of transforming raw attributes to meaningful
features for the purpose of improving the predictive accuracy of machine learning
models built on top of them. These features are created using domain expertise
and literature reviews of previous work [14][16]. The features created from each
data component from Table 2.1 are described in Table 2.2.

The response variable is a binary flag set for thirty day readmission. For
each encounter to the hospital, if the patient got readmitted to the hospital
within thirty days of discharge then the thirty day readmission flag is set to

15



Features Type Usage

Age Integer At-Admit Modeling
Gender Boolean At-Admit Modeling
Prior admission count Integer At-Admit Modeling
Emergency visits in last 6 months Integer At-Admit Modeling
Comorbidity ever diagnosed for
comorbidities in Table 2.4 Boolean At-Admit Modeling
The last time comorbidity
was diagnosed for comorbidities
in Table 2.4 Integer At-Admit Modeling
The number of times comorbidity
was diagnosed for comorbidities
in Table 2.4 Integer At-Admit Modeling
Average lab results for labs
in Table 2.3 Float Sequence Modeling
Thirty day Readmission flag Boolean At-Admit Modeling,

Sequence Modeling

Table 2.2: Summary of features constructed for the machine learning models

1 else it is set to 0. Prior admission count for each encounter of a patient
is the number of encounters the patient had at the hospital before the current
encounter. Similarly the emergency visits count for each encounter is the number
of emergency visits for the patient in the last 6 months before the current
encounter.

Each of these attributes is used in the techniques mentioned alongside. These
techniques are discussed in detail in the Chapter 3 and 4.

2.3.1 Feature Selection

It is important to decrease the feature space to reduce noise for the predic-
tive model. Some modeling techniques are more sensitive to feature noise than
others. As explained in Section 2.2.3, for the selection of relevant labs we incor-
porated information from a literature review [14] and a domain expert’s input
to select a set of 17 lab tests. Similarly, for the selection of relevant diagnoses,
the most significant chronic conditions/comorbidities are considered for the pre-
diction of readmission. The three features created for each diagnosis are based
on a domain expert’s feedback on how to best capture the diagnosis history of
a patient.

2.4 Data Transformation

After feature creation, we shape the data to bring it into the right input format
for each of the modeling techniques from Chapter 3 and 4. The granularity

16



No. Lab tests Top 2 Name Variations
1. Glucose 1) GLUCOSE POCT (WRB I-

STAT)12SEP2014
2) GLUCOSE (WRB-COBAS) 05SEPT2014

2. Hematocrit 1) HCT,DXH (27MAR14)
2) HCT (WRB/QMAIN) 7DEC2014

3. Hemoglobin 1) HGB,DXH (27MAR14)
2) HGBMAMC6AUG2007

4. White Blood Cells 1) WBC,DXH (27MAR14)
2) WBC COUNT (WRB/QMAIN)
29JULY2013

5. Blood Urea Nitrogen 1) UREA NITROGEN,COBAS (4APR13;upd
14OCT15 abs)
2) UREA NITROGEN (C8000)

6. Sodium 1) SODIUM,COBAS (4APR13; upd ur
14OCT15)
2) SODIUM (WRB-COBAS) 16AUG2014

7. Creatinine 1) CREATININE IDMS,COBAS
2) CREATININE (WRB-COBAS)
19JUNE2012

8. Calcium 1) CALCIUM,COBAS (4APR13;upd
ur5AUG15;s/p14OCT15 abs)
2) CALCIUM,COBAS (25FEB16)

9. Protein 1) PROTEIN TOTAL,COBAS (13MAR13; upd
14OCT15 abs)
2) COBAS PROTEIN TOTAL

10. Potassium 1) POTASSIUM,COBAS (19APR13)
2) POTASSIUM,COBAS (11MAR16)

11. Platelets 1) PLT,DXH (27MAR14)
2) PLT

12. INR 1) STA INR MAMC(12/10)
2) INR (STA-COMPACT 03/09)

13. Red blood cells 1) RBC,DXH (27MAR14)
2) RBC

14. Albumin 1) ALBUMIN,COBAS (11MAR13;upd AMR
14OCT15)
2) ALBUMIN (C8000)

15. Alanine Aminotransferase 1) ALANINE AMINOTRANS-
FERASE,COBAS (15MAR13;upd14OCT15’
2) COBAS ALT

16. Aspartate Aminotransferase 1) AST,COBAS (11MAR13;upd 14OCT15 abs)
2) AST (S/P 5600-1)2010MAR01-MJM

17. Bilirubin 1) BILIRUBIN TOTAL,COBAS
(27MAR13;upd 14OCT15 abs)
2) BILIRUBIN TOTAL(S/P 5600-2)

Table 2.3: 17 lab tests extracted for feature creation and their top 2 variations
in names 17



No. Comorbidities

1. Anemia
2. Arrhythmia
3. Asthma
4. Atherosclerosis
5. Cancer
6. Cardio Respiratory Failure Shock
7. CHF
8. Chronic Kidney Disease
9. Cerebrovascular Disease
10. Complicated Diabetes
11. Connect Tissue
12. COPD
13. Acute Coronary Syndrome
14. Dementia
15. Depression
16. Alcohol Abuse
17. Fluid Disorders
18. Gastrointestinal Disorder
19. HIV
20. Other Liver Disease
21. Lung Disorders
22. Malnutrition
23. Myocardial
24. Nephritis
25. Other Heart Disease
26. Paralysis
27. Peptic Ulcer
28. Peripheral Vascular Disease
29. Pneumonia
30. Other Psychiatric Disorder
31. Renal Failure
32. Rheumatic
33. Sepsis
34. Solid Tumor
35. Ulcer
36. Uncomplicated Diabetes
37. Urinary Tract Disorder

Table 2.4: 37 comorbidities extracted for feature creation
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and shape of features varies for each technique. At the time of admission of
patients, only their previous clinical history is available. Retrospective models
are trained on data from the whole encounter which makes them unfit to predict
at the time of admission with no data available from the encounter yet. To
resolve this problem, models can be trained to predict risk of readmission based
on only the clinical history for a patient (see Chapter 3).

During the hospital stay more data comes in, in the form of labs, vitals and
diagnoses for the patient. For each day in an in-patient stay, models can be
built on similar patients who have stayed that long in the hospital to predict
the risk of readmission (see Chapter 4). The details of data transformations
to prepare the data in the format required by each of the modeling techniques
are described in the sections below. Note that these sections correspond to the
methods of Chapter 3 and 4 respectively.

2.4.1 At-Admit Modeling

The goal of this model is to predict the risk of thirty day readmission for patients
at the time of admission. In this scenario there is no knowledge yet of the
future events within the current encounter. Using just the clinical history of the
patient, we can predict which patients are at high risk. The input feature vector
is Xi = xi1, xi2, . . . xin for an encounter i that contains the features mentioned
in Table 2.2. Each row is designed to represent an encounter at the hospital for
every patient. The goal is to predict Y (1/0) if the patient will be readmitted
within thirty days of discharge.

Model Input Vector Xi Output Y i (1/0)

M

X1 : x11, x12, . . . x1n

X2 : x21, x22, . . . x2n

. . . . . .
Xm : xm1, xm2, . . . xmn

Y1

Y2

...
Ym

Table 2.5: Data format for at-admit modeling where m = number of encounters
in the data and n = number of features from Population and Diagnoses as
described in Table 2.2

2.4.2 Sequence Modeling

Sequence prediction is used to predict on outcome when the input data is in the
form of sequential events [13]. A hospital encounter can be thought of a sequence
of events happening to the patient, making it an interesting scenario to use for
sequence prediction. Details of our sequence modeling method are provided in
Chapter 4. For this technique we create an input vector which consists of a
sequence of daily averages of lab test features. The length of the input vector
changes for each length of stay. For the scope of this thesis, the experiments
have been run on lengths of stay between 1 to 10 days. The distribution of the
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Figure 2.1: At-Admit Modeling Technique

length of stays in the data is shown in Figure x. For each of S sequence in Table
2.6, the goal is to predict Y (1/0) if the patient will be readmitted within thirty
days of discharge. The dataset is divided into sets where all encounters within
each set have the same length of stay. Models are trained and tested within
each set.

LOS Models Input Sequence S Output Y (1/0)

1
M1

i=88699

S1 : x11, x12, . . . x1n

S2 : x21, x22, . . . x2n

....
Si : xi1, xi2, . . . xin

Y1

Y2

...
Yi

2
M2

j=79899

S1 : x11, x12, . . . x1m

S2 : x21, x22, . . . x2m

....
Sj : xj1, xj2, . . . xjm

Y1

Y2

...
Yj

.. .... . . . . . . . . . ..

10
M10

k=6193

S1 : x11, x12, . . . x1o

S2 : x21, x22, . . . x2o

....
Sk : xk1, xk2, . . . xko

Y1

Y2

...
Yk

Table 2.6: Data format for sequence modeling where n = 17 lab test features,
m = 2n, ... , o = kn

After performing the above mentioned steps, the data is ready to be con-
sumed for predictive modeling. The next chapters discuss each kind of the
modeling approaches and the experimental results gathered.
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Figure 2.2: Sequence Based Modeling Technique
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Chapter 3

Admission Model

3.1 Readmission Modeling

Most of the work done previously on predicting risk of readmission is based on
retrospective modeling. For example the well known LACE index score [17] [21],
often used as a baseline technique for predicting risk of thirty day readmission, is
a retrospective calculation which requires events from the encounter like length
of stay as well as the diagnoses associated to the encounter. These models are
designed to make predictions at/after discharge of patients from the hospital
to predict their risk of readmission. This limits the interventions that can be
taken to avoid the readmission, because the hospital stay has already come to
an end by the time the prediction is made.

In our solution we combine the retrospective readmission modeling tech-
niques with daily predictive models to provide a framework that can predict
risk of readmission throughout the encounter of a patient at the hospital. In
this chapter we discuss the first component of the framework which is the at-
admit model.

Figure 3.1: At-Admit Modeling Technique
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3.2 Baseline LACE Index Score

The LACE index identifies patients that are at risk for readmission or death
within thirty days of discharge. It incorporates four parameters.

• “L” stands for the length of stay of the index admission.

• “A” stands for the acuity of the admission. Specifically, if the patient is
through the Emergency Department vs. an elective admission.

• “C” stands for comorbidities, incorporating the Charlson Comorbidity
Index.

• “E” stands for the number of Emergency Department visits within the
last 6 months.

LACE scores range from 1-19 and as mentioned above, predicts the rate of
readmission or death within thirty days of discharge. A score of 0 – 4 = Low;
5 – 9 = Moderate; and a score of 10 = High risk of readmission. LACE has
been used extensively as a baseline measure to predict the risk of thirty day
readmission. Multiple studies have evaluated the predictive value of the LACE
index [17][3]. Essentially, of the various tools available, LACE has been studied
most extensively. It has been shown to have a moderate to high predictive value
in identifying those patients at risk for readmission.

3.3 At-Admit Modeling Approach

The at-admit modeling setup is designed similar to retrospective readmission
modeling. The model is trained to predict the risk of thirty day readmission of
a patient at the time of admission using only the clinical history of the patient.

Each row in the data represents an encounter to the hospital. All the features
are generated from previous encounters for the patient. A risk score is predicted
which is the risk of that patient getting readmitted within thirty days of being
discharged from the current encounter.

3.3.1 Features

The features used for training the models are listed in Table 3.1. The lab test
features are not used in the at-admit model because the lab tests are taken
during the encounter and are not available at the time of admission. The Se-
quence based and Till-Day cumulative techniques discussed in Chapter 4 use
the lab test features. Finally the predictions from at-admit model and Till-Day
cumulative model are combined together to arrive at the overall model.

3.3.2 Model

Another very successful technique for building ensembles is boosting [7]. In
boosting, one maintains a vector of weights for the training instances, which
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Group Features Type

Demographics Age Integer
Gender Boolean

Medical Diagnosis For each of 37 comorbidities in Table 2.4
1) If the comorbidity was ever diagnosed Boolean

2) The last time it was diagnosed Integer
3) The number of times it was diagnosed Integer

Others Prior admission count Integer
Emergency visits in last 6 months Integer

Response Variable Thirty Readmission flag Boolean

Table 3.1: Features summary for At-Admit Model

is initialized with uniform weights. Next, one iteratively trains a model on
the weighted examples, and increases the weights of the examples that were
misclassified by this new model. This iterative process continues until the new
model no longer does better than random guessing. Then all trained models are
collected in an ensemble. When classifying new instances, the outputs of the
models are combined with weighted voting. The term boosted decision trees
refers to an ensemble of decision trees constructed through boosted.

We have used stochastic gradient boosting with 50 iterations where at each
iteration of the algorithm, a base learner fits on a sub-sample of the training
set drawn at random without replacement [8]. The sub-sample size is some
constant fraction f of the size of the training set. When f = 1, the algorithm
is deterministic and identical to the one described above. Smaller values of f
introduce randomness into the algorithm and help prevent over-fitting, acting
as a kind of regularization. We have used f = 0.5 meaning that one half of the
training set is used to build each base learner. In our experiments we have used
the R package ‘ada’ for the implementation of boosted decision trees.

3.4 Experimental Results

3.4.1 Dataset

The data used for training and testing is explained in detail in Chapter 2. Data
from Population and Diagnosis files is used to extract features for the model
mentioned in Table 3.1. After cleaning of the data, there are a total of 88699
encounters in the data with 63342 unique patients. The thirty day readmission
rate is 12.3% in the data.

3.4.2 Evaluation Measures

We have used K-Fold cross validation to calculate the results across the dataset
where k = 10. We measure the performance of the algorithms using sensitivity
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(recall), precision, area under the curve (AUC) and accuracy for classification.
For our binary classification task of readmission, the outcome can be positive
or negative. We use the predicted probability and a threshold to assign the
binary label. As readmission is an unbalanced problem, we use a threshold
closer to the mean of the predicted risk scores. All test instances with risk score
above the threshold are labelled as readmission class ‘yes’ (1) and the others as
readmission class ‘no’ (0). The prediction results for each test instance may or
may not match the actual class. Therefore, we get the following results:

• True positive (TP): correctly classified as positive.

• False positive (FP): incorrectly classified as positive.

• True negative (TN): correctly classified as negative.

• False negative (FN): incorrectly classified as negative.

Based on the counts of these four measures, we compute the following evaluation
metrics:

Sensitivity/Recall =
TP

TP + FN
(3.1)

Precision =
TP

TP + FP
(3.2)

Accuracy =
TP + TN

TP + FP + TN + FN
(3.3)

Along with accuracy values we also use area under the curve [Figure ??]. Some
classiers output a probability that an instance belongs to the positive class, and
require the selection of a threshold to turn the probability into a class label. For
example, we might choose to label encounters to have readmission if and only
if the classier says they are going to have readmission with probability at least
.75. Depending on how we choose the threshold (e.g. 0.2, 0.4, 0.6, 0.75, etc.),
the FPR and the TPR will vary. We can test our classier for various choices
of the threshold, and plot the corresponding (FPR,TPR) points. The resulting
curve is called a ROC curve

3.4.3 Results

The results are calculated by using 10-cross validation. We have implemented
the LACE score index as well as the at-admit model based on the data available
at the time of admission . The thresholds for both techniques are set to be
the mean of the predicted values. Every test instance with a risk score greater
or equal than the threshold is labeled 1 (thirty day readmission yes) and every
test instance with risk score less than the threshold is labelled as 0 (thirty day
readmission no). The results are summarized in Table 3.2:

Analyzing the results it is evident that the at-admit model outperforms the
LACE index in catching more high risk patients at admission. The AUC for
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Metric LACE At-Admit Model

Recall 0.4366 (threshold = 1.14) 0.6058 (threshold = 0.12)
Precision 0.2036 (threshold = 1.14) 0.2103 (threshold = 0.12)
Accuracy 0.7200 (threshold = 1.14) 0.6712 (threshold = 0.12)

AUC 0.5982 0.6431

Table 3.2: Metrics Summary for At-Admit Model

1 0
1 4774 6161
0 18671 59093

Table 3.3: Confusion Matrix for LACE at admission

1 0
1 7283 4740
0 27344 58202

Table 3.4: Confusion Matrix for At-Admit Model

LACE at admission is lower than the AUC for the at-admit model. The LACE
index is also less precise in identifying the patients that should be prioritized
by the hospital which will result in additional costs of resources allocated.
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Chapter 4

Sequence Based Modeling

Sequences are a significant type of data which occur frequently in several scien-
tific, medical, security, and other domains [19]. Sequence data mining provides
helpful tools for exploring useful knowledge hidden in large sequence datasets.
Many prediction problems in clinical care settings are inherently sequence pre-
diction problems: given a sequence of events like vital readings or lab tests taken
during an encounter, we wish to predict a future outcome related to it.

Despite the sequence based nature of clinical events, most of the clinical
studies use a retrospective approach in their feature creation and predictive
modeling setup [9]. In Chapter 3 we have presented a modified alternative
to retrospective readmission models to predict at the time of admission. In
this chapter we propose a new sequence based technique to predict a clinical
outcome, like thirty day readmissions, using clinical events of an encounter as
sequence inputs.

4.1 Retrospective Model Baseline

To compare our sequence based model we use the conventional approach of
retrospective modeling for clinical scenarios as the baseline. Since our goal is
to provide a framework solution which is designed for production scenario, this
baseline helps in better validation of the sequence based approach as opposed to
using a less sophisticated approach like a majority baseline or random guessing.
In this baseline approach we use the same attributes from data that we will
use in the sequence model as well as the same machine learning model. The
difference is the design setup of these two approaches.

4.1.1 Features

Among the data components described in Table 2.1, lab data changes during an
encounter of a patient. This is why we use the lab features as elements of our
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Models Input Vector X Output Y (1/0)

M
i = 88699

(number of instances)

X1 : x11, x12, . . . x1n

X2 : x21, x22, . . . x2n

....
Xi : xi1, xi2, . . . xin

Y1

Y2

...
Yi

Table 4.1: Data format for retrospective baseline training with n = 17 lab test
features averaged across the encounter

sequences. Similarly for the baseline we use the same 17 lab tests mentioned in
Table 2.3 averaged across the whole encounter as input features.

4.1.2 Modeling Setup

We use boosted decision trees as the predictive model which are described in
detail in Section 3.3.2. Each input row to train the model is a patient encounter
in the hospital with average lab tests as features.

For comparing the baseline to the sequence based approach, we want to
analyse how it performs when deployed in a clinical setting. When a patient
is in the hospital, the value of the averaged lab tests will be the average value
till the time of prediction. So although the retrospectively trained models are
trained over features calculated over the entire encounter, the prediction is made
based on feature calculation on the data available for the encounter thus far.
This impacts the performance of the retrospective models on predictions made
during the encounter.

For testing the model trained on the setup as described in Table 4.1, the
average of the features is the average until the day of prediction from day 1 to
day 10. The results are compared with the sequence based approach in Section
4.4.

4.2 Sequence Based Modeling

When the patient is admitted to a hospital, the data associated to the patient
expands vertically and horizontally. We have designed a sequence modeling ap-
proach to make predictions on this expanding sequence of events. This approach
helps in addressing the following two challenges of retrospective modeling:

• Inability to capture trends of changing patient state using the growing
data points during the encounter in the features.

• Unsuitability of the model design for prediction during the encounter of
the patient and before the discharge from the hospital.
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4.2.1 Features

We have used the 17 lab tests mentioned in Table 2.3 as features for the sequence
models. For each day of hospital stay a sequence is created of daily average lab
test values for all the 17 lab tests. For example for the Day 3 sequence model,
the input consists of a sequence of average values of the 17 lab tests for day 1, 2
and 3. This sequence is then used to train and test the sequence model for Day
3. The data format for the sequence modeling approach is shown in Table 4.2.

LOS Models Input Sequence S Output Y (1/0)

1
M1

i=88699

S1 : x11, x12, . . . x1n

S2 : x21, x22, . . . x2n

....
Si : xi1, xi2, . . . xin

Y1

Y2

...
Yi

2
M2

j=79899

S1 : x11, x12, . . . x1m

S2 : x21, x22, . . . x2m

....
Sj : xj1, xj2, . . . xjm

Y1

Y2

...
Yj

.. .... . . . . . . . . . ..

10
M10

k=6193

S1 : x11, x12, . . . x1o

S2 : x21, x22, . . . x2o

....
Sk : xk1, xk2, . . . xko

Y1

Y2

...
Yk

Table 4.2: Data format for sequence modeling where n = 17 lab test features
averaged across each day of encounter, m = 2n, ... , o = kn

4.2.2 Model

To make a valid comparison between techniques, we have used boosted decision
trees in the sequence based approach as well. In total there are ten boosted
decision trees predicting for each length of stay between 1-10 using the sequence
of daily lab readings as input. The sequences enable the predictive model to
encapsulate the growing data for a patient and their changing condition over
the encounter till the time of prediction in the boosting iterations. The design
of this approach is shown in Figure 4.1.

4.3 Experimental Results

The evaluation measures mentioned in Section 3.4.2 are used here as well to
compare the sequence based modeling technique to the retrospective baseline.

K-fold cross validation is done with k=10 to calculate metrics for the 10
models. In each fold of cross validation, the same encounters are used for train-
ing and testing the sequence based as well as the baseline model. The number
of encounters available for each of the 10 models are shown in Figure 4.2. This
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Figure 4.1: Sequence Based Modeling Technique

Figure 4.2: Number of input encounters for each model from day 1 to day 10.
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Figure 4.3: AUC comparison between Sequence based models and Retrospective
baseline models where the positive class represents patients who will readmit
within thirty days of discharge

shows the distribution of length of stays of the patients at the hospital in the
dataset.

For Figure 4.4, 4.5 and 4.6 the thresholds to assign the label are set using the
mean value of the predicted risk scores. Analyzing the results we can see that
the sequence based approach outperforms the baseline approach in all metrics.
The AUC comparison shows that the baseline approach performs almost as
good as random guessing while predicting for patients who have length of stays
greater than two days.

Another observation from the accuracy and AUC results of both techniques is
that as the length of stay increases it becomes difficult to accurately differentiate
between patients who are going to be readmitted and the patients who are not
going to be readmitted. This is because the patients staying longer fall under
the sicker population and the differentiation within that population is difficult.
This is also because the number of instances to learn from is lesser as the length
of stay increases as we have seen in the length of stay distribution in Figure 4.2.

The power of sequence based versus accumulated features is reflected in the
trend lines of all metrics as we go from day 1 to day 10. The first day results are
highly similar because the sequence input has the same features as the baseline
technique, however as the sequence grows, the metrics show significantly better
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Figure 4.4: Accuracy comparison between Sequence based models and Retro-
spective baseline models
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Figure 4.5: Recall comparison between Sequence based models and Retrospec-
tive baseline models

results for the sequence based approach.
Through these results we have validated that a sequenced based approach of

handling clinical events like lab readings to predict a future event like thirty day
readmission performs better than cumulative retrospective modeling techniques.
This makes it more suitable for deployment in the hospital system. Using the
Sequence based models in combination with the at-admit model, we have con-
structed a framework that predicts thirty day readmission as a clinical outcome
while encapsulating sensitivity to different times of prediction in a hospital stay
as well as the trends of clinical events.
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Figure 4.6: Precision comparison between Sequence based models and Retro-
spective baseline models
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Chapter 5

Conclusion

In this thesis we have developed a technique for making clinical predictions,
designed for the growing data in the real world setting. In each of the respective
sections and chapters we have reviewed and mentioned the related work found
in literature with an introduction in Chapter 1. The goal of our work was to
propose a solution that effectively utilizes the clinical data that grows for a
patient within and across hospital admissions.

We have used an EHR dataset to create two modeling setups for predicting
thirty day all cause readmissions. The at-admit model predicts significantly
better than the LACE index score for patients at the time of admission to
the hospital (see Chapter 3). The sequence feature based models proposed in
Chapter 4 predict better than a retrospective model baseline when compared
on how they might be used in an operational clinical setting where predictions
are needed everyday to prioritize and target interventions. We use the metrics
of area under the curve (AUC), recall, precision and accuracy to evaluate the
models. The sequence based models perform better in all metrics on all days (1-
10) than the baseline. As the length of stay increases, we see a downward trend
for the accuracy and precision of our models because not only the number of
instances to learn from decreases but also it becomes more difficult to correctly
label outcome in a set of sicker patients.

5.1 Results from At-Admit + Sequence Based
Models

We also ran experiments to combine the predictions from at-admit models (see
Chapter 3) with the sequence based models (see Chapter 4). We take the
predicted score for the same patient from the at-admit model and the sequence
based model and compute an average risk score using these two scores. We
assign the output label based on the threshold in the similar fashion as described
in Section 4.3 and Section 3.4.3 using the mean of the predicted values. The
results are evaluated using AUC, accuracy, recall and precision which are shown
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Figure 5.1: AUC comparison between combination of Sequence based models +
At-Admit models, Sequence based models and Retrospective baseline models

in Tables 5.1,5.2,5.3,5.4 respectively.
Looking at the results from the combination of these two models, we can see

that the sequence based models outperform the combination models (sequence
based + at-admit) in AUC, accuracy and precision. However the combination
models perform better in recall than the sequence based models. It is also
interesting to note that the area under the curve is also very close for these two.
Analyzing this we can say that using at-admit model to predict patient’s risk
at the time of admission and using the sequence based models independently
while the patient is admitted to the hospital will give more accurate and precise
predictions. However, if the goal is to optimize for recall and catch as many
high risk patients as we can, than the combination of these two techniques can
be used to predict risk scores when the patient is admitted to the hospital.

5.2 Summary and Future Work

Using the sequence based models and the at-admit model proposed in this the-
sis, we can predict thirty day readmission at various time points of a patient’s
encounter at the hospital. This solution is sensitive to the time of prediction
during the encounter and is designed and evaluated from the perspective of the
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Figure 5.2: Accuracy comparison between combination of Sequence based mod-
els + At-Admit models, Sequence based models and Retrospective baseline mod-
els
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Figure 5.3: Recall comparison between combination of Sequence based models
+ At-Admit models, Sequence based models and Retrospective baseline models
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Figure 5.4: Precision comparison between combination of Sequence based mod-
els + At-Admit models, Sequence based models and Retrospective baseline mod-
els
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real world setup. Its applicability is by far not limited to the problem of pre-
dicting whether a patient will be readmitted within thirty days after discharge
from the hospital. Indeed, there are many similar problems to be solved in the
healthcare domain that can be addressed using a framework for sequence based
prediction. Some other useful scenarios to which the methods proposed in this
thesis are applicable include:

• Predicting length of stay of the patient for an admission. Knowledge about
the expected length of stay is valuable for better planning of resources,
among other things.

• Identifying patients who are at high risk for developing a surgical site
infection.

• Predicting risk of mortality for patients in the next 6 months of their
hospital admission.

Finally, there are multiple dimensions along which our work can be extended
to improve the solution:

• Feature Space Expansion In our solution we have used lab features for
sequence based models and diagnoses and demographic features for the
at-admit model. These can be expanded to include more clinical features
like vital readings, prescriptions data and socio-demographic features. In-
clusion of these features will aid in capturing the patient state better and
improvement of results.

• Model Expansion We implemented boosted decision trees, support vec-
tor machines, logistic regression and naive bayes for retrospective event
based modeling to predict thirty day readmissions. Boosted decision trees
showed the best results and therefore we have used them in all our tech-
niques to have a valid comparison. However the comparison can be ex-
panded using all of these techniques to show that the sequence based
technique performs better overall.

• Dataset Expansion We have used hospital admissions data from 6 fa-
cilities across U.S for this work. These experiments can be run with more
hospital admissions datasets from more facilities to validate the results
across a variety of samples.
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