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This dissertation explores defining, extracting, and applying clinical events in three stud-

ies of applied clinical natural language processing (NLP)—pneumonia report classification,

acquired lung injury (ALI) report classification, and critical follow-up recommendation sen-

tence identification. The goals of the research are to: (1) define a set of events for the

clinical domain, (2) develop a clinical corpus of event annotations, (3) extract event repre-

sentations from clinical records, and (4) apply event representations to multiple NLP tasks in

the clinical domain. In order to repeat processes and adapt general research methodologies

to the specific requirements of each study, a framework is created for event analysis, corpus

development, event detection, and event-based feature extraction.

The pneumonia report classification study introduces a sub-corpus of rationale text snip-

pets extracted from a corpus of X-ray reports, labeled for suspicion of pneumonia (PNA) and

Cardio Pulmonary Infection Score (CPIS), and annotated for change-of-state and diagnosis

events. Events are realized as dependency trees in the annotation and a three-stage event

detection process is developed to extract events: (1) rationale snippet prediction by max-

imum entropy-based text classification, (2) conditional random fields (CRF) named entity

recognition (NER), and (3) relation extraction (RE) by dependency parsing. Event-based



features are generated from the change-of-state and diagnosis event dependency trees and

their performance, alone and in combination with baseline n-gram features, is evaluated

in pneumonia report classification experiments. In final experimental results, incorporating

χ2-ranked feature selection and an optimal feature selection threshold, event-based features

in combination with baseline n-gram features perform best for both PNA (F-score +.5) and

CPIS (F-score +2.0) labels.

To explore the adaptability of the change-of-state and diagnosis events to other disease

detection tasks, the second study applies the three-stage event detection process and mod-

ules from the pneumonia report classification study to the task of ALI report classification.

In final experimental results, incorporating χ2-ranked feature selection and an optimal fea-

ture selection threshold, change-of-state and diagnosis event-based features, alone and in

combination with baseline n-gram features, do not improve the overall performance over the

baseline (F-score -.6).

In the third and final study, an alternate, non-dependency tree-based model for event

representation is explored for critical follow-up recommendation sentence identification. A

corpus of 8,000 radiology reports from multiple institutions and across twelve modalities,

is annotated for: (1) critical recommendation sentences, (2) entities that provide a reason

for the recommendation, a suggested follow-up test, and a recommended timeframe for the

follow-up test, as well as (3) a four-label category of criticality and importance. To improve

the performance of recommendation sentence categorization, a template of report proper-

ties, metadata, named entities, and default computed values is aggregated into an event

structure for feature extraction and compared against and in combination with baseline n-

gram features in classification experiments. In final experimental results, select event-based

features in combination with baseline n-gram features, incorporating χ2-ranked feature se-

lection and an optimal feature selection threshold, perform best (F-score +2.0) in critical

recommendation classification experiments.



The research in this dissertation demonstrates that event-based features, when combined

with other types of features, such as n-grams, can improve the performance of applied clinical

NLP classification tasks. Simple models for events, such as the dependency tree structures for

change-of-state and diagnosis events described in this study, make the annotation of events

and event detection with off-the-shelf open-source tools easy to explain and straightforward

to implement. The release to the Web of a general research framework, an annotated corpus

for change-of-state and diagnosis events, an annotation schema and guidelines, and event

detection modules based on open source software, provides opportunity for other researchers

to extend and adapt the research presented in this study.
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ABBREVIATIONS AND TERMS USED IN RESULTS TABLES

Abbr Term Description

S System Total items generated by system

G Gold Total items in gold standard

Θ Threshold Threshold value used for feature selection

TP True Positive # of items classified as true by both the system and the gold standard

TN True Negative # of items classified as false by both the system and the gold standard

FP False Positive # of items classified as true by the system and false by the gold standard

FN False Negative # of items classified as false by the system and true by the gold standard

P Precision % of true system results that are true items in the gold standard: i.e., TP/(TP

+ FP)

R Recall % of true items in the gold standard that are true system results: i.e., TP/(TP

+ FN)

F1 F-score F-score with β of 1 where F-β = (1+β2)∗ (P ∗R)/(β2+P +R) or more simply

2 * ((P*R)/(P+R))

Acc Accuracy The percentage of correct system results (TP + TN)/(TP+TN+FP+FN) or

TP/N when no TN are calculated (N is total items)

Macro Macro-averaged Depending on type of experiment, an average of multiple types and/or an

average of averages across folds

Micro Micro-averaged Depending on type of experiment, results of multiple type and/or fold experi-

ments calculated with total TP, FN, and FP values

Table 1: Common abbreviations and terms featured in performance and evaluation results

tables
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Chapter 1

INTRODUCTION

The electronic health record (EHR) is the primary repository of patient information in

modern healthcare systems and contains both structured and semi-or-unstructured data.

While structured data, such as instrument readings and test results, come to mind as the

most common type of data in a patient’s record, it is actually semi-or-unstructured data,

in the form of narrative free-text reports, that makes up the largest portion of patient data

in the EHR (Chapman and Cohen, 2009). The shift to digital records, over the last ten

years, has transformed clinical informatics and created a new branch of biomedical natural

language processing (bioNLP), clinical NLP, focused on the EHR and applied tasks in the

clinical domain.

In the general domain,1 statistical NLP systems have had a long history of harnessing

the linguistic features of text to accomplish applied tasks. Tools such as tokenizers, part-

of-speech taggers, and phrase structure parsers have contributed basic linguistic information

and features to solving text processing challenges for decades. One of the most simple

features, the word unigram, can be extracted from text with an off-the-shelf tokenizer or

word segmenter, and is useful, because of its simplicity, for creating baseline results across

tasks, domains, and genres. As EHR management systems integrate NLP components, it

is now possible to encode into clinical narrative corpora deeper layers of both syntactic and

semantic information and create systems to extract comprehensive clinical information from

1In this study, the term general domain refers to a genre- or task-neutral domain of language, for example,
English or Chinese. It it used to differentiate NLP tools and approaches designed to apply broadly to any
text in English as opposed to those designed for specific domains and tasks such as biomedical literature
or clinical text.
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them (Albright et al., 2013). Deeper linguistic structures, native to the domain or genre,

can add to a better understanding of the entities and relations contained within the body

of clinical text and empower a layer of semantic annotation beyond shallow features such as

the word unigram.

My research is motivated by clinical events, which are important actions or observations

of patient state, documented in the narrative medical record. Admission notes, discharge

summaries, and progress reports are examples of clinical records that document important

events such as admission, medication, discharge, drug interaction, diagnosis, and change of

state. Marking events in clinical records as entities connected by relations—directed, labeled

arcs—communicates more meaningful and more connected information about a patient’s

state over time than traditional bag-of-words or bag-of-concepts approaches. In this study,

I explore research questions about events in clinical text and measure the impact of features

extracted from clinical events on the performance of systems applied to three NLP tasks in

the clinical domain: (1) pneumonia report classification, (2) acute lung injury (ALI) report

classification, and (3) critical follow-up recommendation identification.

I begin this chapter by exploring three studies (see Table 1.1) that motivate the research

questions and goals of my dissertation in Section 1.1. In Section 1.2, I pose two fundamental

research questions concerning clinical events and discuss how I will address those research

questions by setting four overall research goals in Section 1.3. In Section 1.4, I briefly outline

my overall research methodology and in Section 1.5, I discuss the potential contribution

and significance of my research and conclude with a description of the overall structure and

organization of my dissertation.

1.1 Background

The focus of my research—defining, extracting, and applying events to clinical NLP tasks—is

motivated by the potential to improve the performance of feature-based classification systems

described in three studies, each of which introduced a corpus of annotated radiology reports

and a clinical NLP system that used supervised machine learning to classify and label clinical
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text in the context of an applied task. In all three studies, after extracting different types of

features, such as syntactic features from part-of-speech tagging or medical vocabularies, the

authors found n-gram features the highest ranked by feature selection and best performing

in their experiments. See Table 1.1 for a listing of the three clinical NLP applied tasks and

related studies.

Clinical NLP Task Related Research

Acute lung injury (ALI)

report classification

Yetisgen-Yildiz et al. (2011), Xia and

Yetisgen-Yildiz (2012), and Yetisgen-Yildiz et

al. (2013b)

Pneumonia report

classification

Xia and Yetisgen-Yildiz (2012), Bejan et al.

(2012), Bejan et al. (2013b), Tepper et al.

(2013), Bejan et al. (2013a), and Vanderwende

et al. (2013)

Critical follow-up

recommendation

identification

Yetisgen-Yildiz et al. (2013a)

Table 1.1: A listing of applied clinical NLP tasks and related studies that motivate clinical

event research

1.1.1 Pneumonia report classification

Xia and Yetisgen-Yildiz (2012) introduced a corpus and an NLP system to detect patients

with ventilator-associated pneumonia (VAP) from radiology reports drawn from the EHR

system of the University of Washington Harborview Medical Center. The system was de-

veloped as a component of a future VAP phenotype detection project. VAP results when a

patient acquires pneumonia while supported with mechanical ventilation. The early stage

detection of VAP is difficult due to non-specific symptoms, subjective assessment criteria,

and the lack of a single test to conclusively diagnose the disease (Zilberberg and Shorr, 2010).

Clinicians must continually monitor and weigh multiple pieces of patient data at multiple
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points of time to make their diagnosis. An automated NLP-based system, as described in Xia

and Yetisgen-Yildiz (2012), can integrate text-based information sources, such as radiology

reports, into an overall disease surveillance system and result in early detection.

The corpus introduced by Xia and Yetisgen-Yildiz (2012) is made up of narrative chest

X-ray reports annotated by medical experts for suspicion of pneumonia (PNA) and Clinical

Pulmonary Infection Score (CPIS)2 (Zilberberg and Shorr, 2010). See Table 4.1 for the CPIS

and PNA labels used to annotate the pneumonia report classification corpus. Tepper et al.

(2013) extended the corpus by asking medical expert annotators to try to identify, within

each report, one or more text snippets that provided a concise rationale for the report’s

CPIS and PNA category labels. They called the highlighted spans of text rationale snippets.

In the majority of reports, a single snippet provides the rationale for both a CPIS and a

PNA label. Using the snippet annotations and a supervised machine learning approach, they

trained and tested a snippet prediction module, for both CPIS and PNA label categories,

that automatically identified and extracted snippets from X-ray reports. They called these

automatically extracted text spans predicted rationale snippets.

To evaluate the information value of rationale text snippets in the pneumonia report

classification task they conducted a series of experiments, for both CPIS and PNA, where

they extracted a common set of feature types from the text of: (1) an entire X-ray report,

(2) the gold standard rationale snippet annotations in an X-ray report, (3) the predicted

rationale snippets in an X-ray report, and (4) the combination of a snippet type and an

entire X-ray report (Tepper et al., 2013). The results of the pneumonia report classification

experiments for CPIS and PNA demonstrated that features extracted from the text of ra-

tionale snippets alone, both oracle (2) and predicted (3), out-performed the baseline (1) and

all other configurations (4). See Section 4.2.1 for detailed results.

Error analysis in Tepper et al. (2013) revealed that there are limitations when experiments

are based exclusively on shallow text features, such as unigrams. For the snippet, The

2http://www.surgicalcriticalcare.net/Resources/CPIS.php
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previously noted right upper lobe opacity consistent with right upper lobe collapse has resolved,

the system made an error and mislabeled the snippet because it supported one category

entirely up to but not including the crucial words has resolved (Tepper et al., 2013). The

system’s basic word unigram feature set only provided words and their frequencies to the

classifier and did not convey the semantic importance of the words has resolved to the

meaning of the sentence. An annotation structure capable of explicitly linking and describing

the relationship between the words has resolved and the observations that precede it in the

example sentence could provide the system with the correct information that previously

observed symptoms of disease, lung opacity and collapse, have resolved. In Section 1.1.2, I

discuss the work of Vanderwende et al. (2013) who proposed a structure, the change-of-state

event tuple, to address the limitations of n-gram models in describing complex events.

Bejan et al. (2013a) explored using a novel unit of classification based on time to detect

pneumonia in clinical reports. They introduced an annotated corpus of 1040 intensive care

unit (ICU) reports, including admit notes, ICU input records, and discharge summaries, for

a patient cohort of 100 over a timeline of eight days. Each labeled instance for pneumonia

prediction, positive or negative, was defined as a a collection of reports from a specific day

on the eight-day timeline and a look-back period of n days. Features were extracted from

the set of reports defined by timeline parameters.

Bejan et al. (2013a)’s novel approach to feature extraction, expanded on in Bejan et

al. (2013b), was based on assertion classification. They related Unified Medical Language

System (UMLS)3 concepts embedded in expressions to assertion categories assigned to the

expression by an assertion classifier. These semantically-motivated assertion features were

then used in the pneumonia detection experiments and improved performance overall by F-

score +5.75 when compared to baseline features in a configuration where the look-back period

was set to 1 day (Bejan et al., 2013a). The results demonstrated that semantically-motivated

feature types, such as assertion classification features, can improve the performance of pneu-

3https://www.nlm.nih.gov/research/umls/
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monia detection tasks when integrated with other feature types, such as n-grams.

1.1.2 The change-of-state event

Vanderwende et al. (2013) reviewed the results of experiments and error analysis in Tepper

et al. (2013) and concluded that the majority of text in rationale snippets described observa-

tions of change in a patient’s state (for example, minimal patchy atelectasis in the right lung

is seen, mildly improved since the prior study). Also, rationale snippets frequently included

diagnostic statements based on an interpretation of observations of change (for example,

Bilateral patchy pulmonary opacities may be secondary to pneumonia or edema). Obser-

vations of change-of-state appeared more often in snippet text than in non-snippet text.4

This insight motivated Vanderwende et al. (2013) to propose a change-of-state event. Previ-

ous change-of-state analyses, for example Sun et al. (2013) and Saurı et al. (2006), focused

on an analysis where events are expressed as verbs. In the pneumonia report classification

chest X-ray corpus, report sentences can drop subject or object arguments, and even the

verb itself, partially due to a terse style. More often than not, change-of-state events are

expressed as nouns and adjectives that imply a missing verb or other syntactic constituent

that would make the sentence fragment more complete. Examples from the X-ray corpus

include: interval increase, stable, decreasing, no change, and persistent.

To implement their model of a change-of-state event, Vanderwende et al. (2013) intro-

duced a change-of-state event tuple. See Figure 1.1 for an example of a change-of-state

n-tuple and Section 4.2.2 for a detailed explanation of each n-tuple slot and its relation to

the original text of the rationale snippet.

4Taking a random sample of 100 snippets, the researchers found that 83/100 included some signal for
change of state, while a random sample of 100 non-snippet sentences included only 61/100 mentions of
change-of-state.
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Figure 1.1: An example of an event tuple

In summary, Vanderwende et al. (2013) proposed a new type of annotation for the pneu-

monia report classification corpus, a change-of-state event, which is modeled as an n-tuple

of five fields: Cos, Attr, Val, Loc, and Ref. The motivation for this new annotation was to

address the gap of meaning between the language of the radiology reports and the pneu-

monia report classification system described in Tepper et al. (2013). For the first study in

my dissertation, I introduce an alternate model to the change-of-state n-tuple based on a

dependency tree structure.

1.1.3 Adapting change-of-state events to a new applied NLP task

In the first study of my dissertation, pneumonia report classification, I define change-of-state

and diagnosis events based on an analysis of rationale snippets extracted from a corpus anno-

tated with PNA and CPIS labels for VAP phenotype detection. To explore the adaptability

of the change-of-state and diagnosis event extraction modules and feature types to other

similar disease report classification tasks, I select a corpus and clinical NLP system for ALI

detection as described in Yetisgen-Yildiz et al. (2013a). ALI is a critical illness consisting

of acute hypoxemic respiratory failure with bilateral pulmonary infiltrates that is associated

with pulmonary and non-pulmonary risk factors (Rubenfeld et al., 2005).

Yetisgen-Yildiz et al. (2013a) introduced an annotated corpus and developed a statistical

NLP system for ALI report classification. Three Critical Care Medicine specialists annotated

1748 chest X-ray reports, generated for 629 patients from the Harborview Medical Center,
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with labels consistent (positive) or non-consistent (negative) with ALI. The corpus was used

to test and train a maximum entropy (MaxEnt) classification system with the MALLET5

(McCallum, 2002) machine learning toolkit and an n-gram-based feature set. See Section

5.2 for performance results and a more detailed description of the study.

I compared the description of VAP and ALI in biomedical literature (Ware and Matthay,

2000; Zilberberg and Shorr, 2010) and determined, based on the similarity of the language

used in the clinical narrative and a shared domain-specific vocabulary, the ALI and pneu-

monia report classification corpus have common linguistic features. For the second study of

my dissertation, I apply change-of-state and diagnosis events, defined and developed on the

pneumonia report classification corpus, to the ALI report classification corpus.

In order to evaluate the adaptability of my pneumonia report classification corpus-trained

change-of-state and diagnosis event definitions and detection modules to the ALI task, I

extract rationale snippets and change-of-state and diagnosis events from the ALI reports,

generate event-based features, and integrate them into new ALI report classification exper-

iments. I compare the results with my replicated baseline experiments and evaluate the

adaptability of my snippet, named entity recognition (NER), and relation extraction (RE)

modules trained on pneumonia report classification data to the ALI task.

1.1.4 Critical follow-up recommendation events

In the last decade, the use of imaging in patient care has dramatically increased, providing

more diagnostic and screening opportunities for radiologists (Hendee et al., 2010). Given the

rise in volume of imaging, the radiologist is challenged with reporting clinical information

in an optimal way, avoiding communicating unimportant observations and interpretations

of what they see in imaging that would be obvious to the ordering provider. At risk is

the timely reporting of incidental findings and critical follow-up recommendations that may

significantly impact the health of the patient in the short or medium term (Berland et al.,

5http://mallet.cs.umass.edu/
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2010).

Yetisgen-Yildiz et al. (2011) introduced an annotated radiology imaging report corpus and

NLP system to identify critical follow-up recommendations in radiology reports. Their goal

was to integrate an NLP module into an overall EHR system to assist in the communication

of important incidental findings between radiologist and clinician. In a subsequent study,

Yetisgen-Yildiz et al. (2013b) annotated a small corpus of radiology reports and developed a

gold standard to train and test a critical follow-up recommendation sentence identification

application. See Section 6.2 for performance results and a more detailed description of the

previous study.

For the third study in my disssertation, I explore representing a critical follow-up rec-

ommendation as an event. Unlike the change-of-state and diagnosis events I define for the

pneumonia report classification corpus, I propose the structure of a critical follow-up recom-

mendation event as a template of properties, rather than entities connected to one another

with labeled arcs in a dependency tree structure.

1.2 Research questions

The change-of-state, diagnosis, and critical recommendation events that I propose in this

dissertation are examples of task-specific events in the clinical domain that convey speaker

meaning specific to the dialogue between radiologist and clinician. As opposed to event

analysis in general linguistics, my exploration of events is constrained to the clinical narra-

tive and a task-oriented focus—exploring a semantics of speaker meaning rather than the

semantics of sentence meaning (Bender et al., 2015).
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Two questions frame the research in my dissertation:

1. What are the components and constraints of a semantic representation that can de-

scribe speaker-meaning in a task-specific analysis of events in the clinical domain?

2. How does the analysis contribute to applied NLP tasks in the clinical domain such

as classifying radiology reports to detect disease or critical follow-up recommendation

identification?

In this study, entities, relations, and schema rules are examples of the components and

constraints of a semantic representation I use to describe clinical event structures. By speaker

meaning, I am describing the communication between a radiologist and a clinician or ordering

provider concerning the radiologist’s observations and interpretations of imaging data. By

task specific, I am referring to an analysis of events constrained to a specific clinical task or

domain, for example, pneumonia report classification.

1.3 Research goals

The goals of my research are to:

1. Define a set of events for the clinical domain—I analyze corpora and NLP

systems for three clinical NLP tasks to define and mark events in clinical text that

capture semantic information unique and valuable to the task.

2. Develop a clinical corpus of event annotations—I develop, in collaboration with

NLP research annotators, a corpus of event annotations to test and train event extrac-

tion modules and apply them to NLP classification tasks.

3. Extract event representations from clinical records—I develop, train, test, and

evaluate statistical NLP system modules that automatically extract event representa-

tions, based on task-specific definitions, from clinical records.
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4. Apply event representations to multiple NLP tasks in the clinical domain—I

use the extracted representations of events, the results of goals 1 through 3, as a source

of features for three applied tasks: (1) pneumonia report classification, (2) ALI report

classification, and (3) critical follow-up recommendation identification.

1.4 Overview of research methods

In this section, I briefly summarize the research methodology I used in my dissertation. A

more thorough exposition of these research methods can be found in Chapter 3.

Each of the three applied NLP task studies in my dissertation has an unique goal, but

all share common aspects: a corpus of radiology narrative reports, event representation and

detection processes, and event-based feature extraction for classification. I applied a subset

of the overall research methods I describe in this section to each task, adapting a more

general framework to the specific needs of each study. See Table 1.2 for an overview of the

major stages and steps in the framework.

1.5 Significance of the study

Clinical NLP applications benefit from extracting features for applied tasks from a deeper

analysis of linguistic structure and semantics than basic features, such as n-grams, generated

and extracted with general domain NLP tools (Albright et al., 2013). Current research in

event extraction in the clinical domain mostly concerns the identification and relation of

concepts and named entities from monolithic domain specific ontologies such as the National

Institutes of Health (NIH)’s UMLS or the European GALEN Common Reference Model.6

For example, the 2014 Sem-Eval Shared Task for clinical text7 required participating teams

to submit combined supervised and unsupervised systems that mapped entities and their

relations to UMLS Concept Unique Identifier (CUI)s.

6http://www.opengalen.org/

7http://alt.qcri.org/semeval2014/task7/
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Research Stage Research Steps and Sub-steps

Event
analysis 1. build or replicate a baseline system

2. repeat experiments
3. analyze the errors from replicated experiments
4. design a preliminary model for events in consultation with

domain experts

Corpus
development 1. Corpus preparation

(a) prepare corpus
(b) identify annotators
(c) amend institutional review board (IRB) agreement
(d) identify annotation tool
(e) design annotation schema

2. Corpus annotation (multiple rounds)

(a) create annotation guidelines
(b) train annotators
(c) annotate corpus
(d) measure inter-annotator agreement (IAA)

3. Corpus finalization

(a) finalize gold standard
(b) publish annotations

Event
detection 1. develop event detection modules

2. evaluate modules

Event-based
feature extraction 1. extract features

2. build classifiers

Table 1.2: Overview of research methodology

The event analysis in this study is less concerned with identifying named entities and

concepts in the domain but rather their intersection with the clinical language in reports

concerning changes in state, the diagnosis of a disease or symptom, or a critical incidental
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finding in a radiology image that requires immediate follow-up.

The research in this study contributes a potential framework for modeling similar types

of events across genres. For example, does a change-of-state event differ when the report

corpus describes a different disease? If so, can the change-of-state analysis be easily adapted

for another disease detection task? Can the models of change-of-state and diagnosis, which

were developed and trained on pulmonary X-ray report corpora, be applied to different types

of reports outside of the domain of imaging?

In this study, I adapt a single general framework of research methods for all three applied

tasks in order to reduce the start-up time for each task and increase the opportunity to reuse

strategies, tools, and software components across tasks. This research framework may be

adaptable to other NLP research in the clinical domain and provide a template/framework

for conducting new studies and experiments.

There are a small number of annotated clinical text corpora available that are de-identified

and free of licensing or legal restrictions. The scarcity of available annotated corpora in the

clinical domain hampers progress in the field. I intend to release the annotated pneumonia

report classification rationale snippet corpus I describe in this study to the Web for other

researchers to access and use in their own research.

To summarize, in this chapter I began with the exploration of previous research that

motivates my research questions and goals (Section 1.1). I then posed the two fundamental

research questions of my study in Section 1.2, and described the four research goals I used

to structure my research in Section, 1.3. In Section 1.4, I briefly described and explained

the set of research methods I use to structure my research and how they generalize across

the approaches I have taken to the three applied NLP tasks I defined in my research goals.

I then addressed the potential contribution and significance of my research in Section, 1.5.

The rest of the dissertation is organized as follows. Chapter 2 reviews related literature

and previous research on events in the clinical domain, using the four phases of the research

framework I introduce in Section 1.4 as a organizing structure. Chapter 3 describes the four

phase research framework and provides a more in-depth exposition of each phase. Chapter 4
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contains a study of the development of change-of-state and diagnosis events in the context of

the pneumonia report classification applied task. In Chapter 5, I study the adaptability of

change-of-state and diagnosis event models and tools to the task of ALI report classification

and in Chapter 6, I review my study of the development of a critical follow-up recommen-

dation event and the classification system created to detect and identify critical follow-up

recommendation in the narrative of imaging reports. Chapter 7 discusses the results of all

three studies and the final chapter, Chapter 8 provides a summary and conclusion of the

dissertation.
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Chapter 2

LITERATURE REVIEW

In this chapter, I organize my literature review around the four research framework phases

I introduced in Section 1.4 and later describe in detail in Chapter 3:

1. event analysis

2. corpus development

3. event detection

4. event-based feature extraction

In Section 2.1, I examine different approaches to representing events and provide an

overview of previous research that motivates my decision to model change-of-state and di-

agnosis events as dependency trees. In Section 2.2, I review both traditional approaches

to NLP corpus development as well as characteristics and considerations of creating and

distributing NLP corpora in the clinical domain. Section 2.3 describes state-of-the-art event

detection for both biomedical literature and clinical narratives and in Section 2.4, I discuss

how event-based features have been applied in clinical NLP studies.

2.1 Event analysis

In general domain NLP, events are represented in many ways: they can be realized as

collections of simple entity pairs connected by a single binary relation, an n-tuple of slots

for named entities or trigger words, a narrative multi-sentence summary, a topical cluster of

documents, or a hierarchy of relations and connected entities represented as a graph (Luo

et al., 2016). In the biomedical NLP (bioNLP) or clinical NLP domain, events can be

complex phenomena, such as the interaction of molecules and genes in biomedical literature,
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or important actions and interactions in the clinical narrative, such as the diagnosis of a

patient or an adverse drug effect. Luo et al. (2016) argued that events and relations discussed

in biomedical literature and clinical narratives, are part of a continuum of descriptions of

semantic structure from its simplest form, a binary relation between two named entities, to its

most complex, a graph of nested event relations involving many entities and labeled relations,

arranged in a hierarchical structure. The more structure an event has along this continuum,

the more informative it is about the underlying semantics of the words it describes.

Luo et al. (2016) provided a comprehensive overview of the last decade of innovation

in bioNLP and clinical NLP relation extraction and state-of-the-art NLP systems for both

biomedical literature and clinical narratives. Shared tasks in biomedical literature NLP,

such as BioNLP’09, served as a catalyst for the development of NLP systems to detect

and extract events. The events in BioNLP’09 were defined as bio-molecular interactions in

scientific literature and were characterized as bio-events (Kim et al., 2009). For evaluation,

the structure of the bio-event was defined as a n-tuple relation of two or more entity-based

fields or slots. At a very high level, event detection in bioNLP is a combined named entity

recognition (NER) and relation extraction (RE) task. For BioNLP’09, participating teams

were given the same collection of identified named entities at the start of the shared task to

focus on relation extraction rather than both NER and RE in the same task.

Although bio-events in the BioNLP’09 Shared Task were represented as n-tuples for eval-

uation, many of the highest scoring participating teams incorporated graph representation

of events in their actual systems. Luo et al. (2016) argued that the graph representation

of events is the most generalized and that almost all state-of-the-art methods for extracting

events or relations are graph-based.

Vanderwende et al. (2013) introduced change-of-state as an event n-tuple, similar in

structure to the BioNLP09 Shared Task bio-event (Kim et al., 2009). In my pneumonia report

classification study, I introduce an alternate dependency tree representation of one or more

change-of-state and diagnosis events. An algorithm converts between the two representations:

One or more change-of-state or diagnosis events can be represented as a dependency tree of
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entities and relations (directed, labeled arcs) or one or more n-tuples as illustrated in Section

1.1.2. In my critical follow-up recommendation identification study, the event is a collection

or template of properties and not a dependency tree. See Section 6.4.2 for a listing of the

properties that make up the critical follow-up recommendation template.

2.2 Corpus development

In the clinical domain, corpora consist of electronic health record (EHR) artifacts selected

for a cohort of patients. A patient’s EHR is made up of medical information, including

both structured data, such as laboratory results and vital signs, and unstructured narrative

clinical text, such as discharge summaries, radiology notes, and progress reports.

Clinical text makes up the largest portion of patient information in an EHR (Chapman

and Cohen, 2009) and in the last ten years, to improve access to the information captured

in clinical text, there has been an increase in interest in NLP systems designed to work

with EHRs. However, the clinical domain poses challenges for general domain NLP tools

and approaches (Demner-Fushman et al., 2009). Clinical text is comprised of notes, reports,

and summaries that are often meant only for communication between medical professionals.

Reports can be technical in nature, exhibiting a varied level of grammaticality and employing

short fragmentary telegraphic phrases. Templates used to assist in the generation of free-text

reports lead to repeated cut-and-paste terms and phrases. Technologies like speech-to-text,

used to make reports and notes easier to create, add their own noise and errors to documents.

Most importantly, whereas innovation and progress in general domain NLP was spurred on by

open and accessible articles, journals, annotated corpora, and tools, the inherent limitations

on access to these types of publications and research data in the clinical domain has made

it much more difficult for researchers to work on shared tasks and corpora. Clinical text

is usually governed by strong privacy policies and the legal requirement to protect patient

information. In the United States, patient information is protected by laws such as the
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Health Insurance Portability and Accountability Act (HIPAA).1 Annotated clinical corpora

are typically only available to sanctioned institutional researchers.

Manually annotating clinical text corpora is an expensive and time consuming yet im-

portant process if progress is to be made by clinical NLP researchers in the clinical domain.

Xia and Yetisgen-Yildiz (2012) summarized the rationale for manual annotation discussed in

Roberts et al. (2009): (1) creating annotation schema serves to focus and clarify the infor-

mation requirements of the text processing task and the domain of interest, (2) annotated

data serves as a gold standard to assess the performance of text processing systems, and (3)

annotated data serves as a resource for developing rule-based systems or creating statistical

models by the application of machine learning approaches.

2.2.1 An overview of biomedical and clinical corpora

Corpora in the biomedical domain are divided into two genres, biomedical literature and

clinical text. Examples of corpora of the first genre, biomedical literature, include the GENIA

corpus (Kim et al., 2003), PennBioIE corpus (Kulick et al., 2004), Yapex corpus (Franzén

et al., 2002), and GENETAG (Tanabe et al., 2005). Corpora representative of the second

genre, clinical text, is typically institutional and governed by privacy and legal policies

that limit open access. To overcome the challenge of conducting open, shared research on

clinical narrative corpora, groups such as the US National Institutes of Health (NIH) Clinical

and Translational Science Awards (CTSA)2 and Informatics for Integrating Biology and the

Bedside (i2b2)3 provide de-identified corpora and hosted shared tasks to promote research on

clinical text. Each NLP challenge hosted by i2b2 contributes a corpus of de-identified clinical

records. See Table 2.1 for a description of i2b2 Shared Tasks and related publications.

1http://www.hhs.gov/hipaa/for-individuals/guidance-materials-for-consumers/index.html

2https://www.ctsacentral.org

3https://www.i2b2.org/
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Year Shared Task Task Description Citation

2006 De-identification and Smoking

Challenge

De-identification of clinical

records and smoking history

(Uzuner et al., 2008)

2008 Obesity Challenge Obesity and co-morbidities (Uzuner, 2009)

2009 Medication Challenge Medication named entity extrac-

tion

(Uzuner et al., 2010)

2010 Relations Challenge Assertion and relation extraction (Uzuner et al., 2011)

2011 Co-reference Challenge Co-reference resolution (Uzuner et al., 2012)

2012 Temporal Relations Challenge Temporal relations (Sun et al., 2013)

2014 De-identification and Heart Dis-

ease Risk Factors Challenge

De-identification and heart dis-

ease risk factors

(Stubbs et al., 2015)

2015 No task issued - -

2016 De-identification and RDoC

Classification Challenge

De-identification and psychiatric

symptom severity

-

Table 2.1: i2b2 Shared Tasks

2.2.2 Three approaches to corpus development

The traditional approach to annotating corpora for NLP research involves a team of guide-

line designers, professional annotators, language or domain experts, and technical support

staff and can take years to complete (Xia and Yetisgen-Yildiz, 2012). Examples of corpora

developed with a traditional annotation approach include the Prague Dependency Treebank

(Bejček et al., 2013), the English/Chinese/Arabic Penn Treebank (Marcus et al., 1993; Xia

et al., 2000; Maamouri and Bies, 2004), the English PropBank (Palmer et al., 2005), and the

Penn Discourse Treebank (Miltsakaki et al., 2004).

Other approaches to corpus development have emerged in recent years in response to the

long development time and costs of the traditional approach. They have developed as a result

of modern global communication systems, enabling annotators to collaborate in real-time

over geographic distances, and open source software, which reduces the cost of developing
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a custom annotation tool for each project. Two of these new approaches are crowd-sourced

annotation, for example named-entity extraction tasks in the biomedical domain (Yetisgen-

Yildiz et al., 2010), and community-based annotation, such as the evaluation corpus used in

the 2009 i2b2 medication challenge (Uzuner et al., 2010), and the Groningen Meaning Bank

(Basile et al., 2012) online.4 Crowd-sourced annotation projects take advantage of global

online knowledge work marketplaces, such as Amazon’s Mechanical Turk (AMT) where tasks

and workers are matched in a simple Web-based interface. Community-based annotation

projects harness the expertise and knowledge of a research community where there is no

opportunity to create a centralized, trained group of core annotators in one location.

The traditional annotation process is limited by cost, time, and the need for expert

annotators or domain experts. Crowd-sourcing works well when the annotation does not

require domain expertise and can be quickly applied without extensive training (Yetisgen-

Yildiz et al., 2010). Community-based annotation is typically distributed over geography and

time and requires strong coordination and communication systems as well as the enthusiastic

support of the research community (Uzuner et al., 2010).

2.2.3 Challenges of the clinical domain

Xia and Yetisgen-Yildiz (2012) adapt the traditional annotation process to accommodate

the unique constraints of the clinical domain. They discuss three challenges of annotation

projects in the clinical domain:

1. the need for medical expert annotators

2. privacy issues

3. legal considerations

4http://gmb.let.rug.nl/
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They suggest strategies to adapt the traditional annotation process in the face of these

challenges by:

1. change the role of the NLP researcher by transitioning responsibilities to medical expert

annotators

2. involve the medical expert annotators in the development of annotation guidelines,

training annotators, and anticipating legal considerations and privacy issues

3. structure time commitments from expert annotators

4. involve NLP researcher early in the process

I integrate the strategies from Xia and Yetisgen-Yildiz (2012) with a traditional annotation

process for corpus development in my critical follow-up recommendation identification study.

I involve the medical expert annotators early in the discussion of the critical follow-up rec-

ommendation event annotation model and give them the responsibility of defining categories

and labels. I also simplify and streamline the annotation process to maximize the impact of

their limited time commitment.

2.3 Event detection

BioNLP shared tasks on event mining,5 BioCreative shared tasks on PPI creation,6 and

DDIExtraction challenges on DDI extraction7 have encouraged progress and innovation in

event detection for biomedical literature over the last ten years. Of the top performing

teams in these community shared tasks challenges, the majority have embraced graph-based

methodologies (Luo et al., 2016). In the following subsection, I highlight state-of-the-art

graph-based approaches to event detection developed and evaluated on the BioNLP ’09

Shared Task and data previously discussed in Section 2.1.

5http://www.nactem.ac.uk/tsujii/GENIA/SharedTask/

6http://biocreative.sourceforge.net/

7http://labda.inf.uc3m.es/DDIExtraction2011/index.html
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2.3.1 BioNLP ’09 shared task

Events in BioNLP’09 were defined as bio-molecular interactions in scientific literature and

were characterized as bio-events (Kim et al., 2009). For evaluation, the structure of the

bio-event was defined as a n-tuple relation of two or more entity-based fields or slots. Par-

ticipating teams were provided with a collection of named entities and expected to extract

relations between entities in the form of event-tuples from a shared corpus.

The best performing system from the BioNLP ’09 Shared Task, submitted by the Univer-

sity of Turku, relied on a multi-stage process, combining state-of-the-art machine learning

techniques, features based on a full dependency analysis of each sentence, and rule-based

post-processing (Björne et al., 2009). Their novel insight was that grammatical relations

output by the Stanford dependency parser had a strong structural relation to the semantic

labels and edges of bio-events. This motivated event trigger and edge detection as a two-stage

classification task utilizing multiclass SVM and a rich set of features from the dependency

parse. The resulting semantic graphs were normalized in a rule-based post-processing step

to deal with abnormalities in argument generation (zero or too many). Björne et al. (2010)

applied the same system with improvements to generalized event extraction of un-annotated

text at scale against a 1% representative sample of the PubMed database. Miwa et al.

(2010) developed a similar system, based on the same pipeline architecture as the Turku

system, but treating all three stages as machine learning classification tasks. They also used

deep parsing technologies based on the HPSG formalism to leverage new types of structural

features—Predicate Argument Structure (PAS)—similar to but different than the grammat-

ical relations of the Stanford dependencies. Their system outperformed Björne et al. (2009)

when applied to the BioNLP ’09 Shared Tasks and data.
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Another notable and well-performing submission of BioNLP ’09 was Riedel et al. (2009).

Their system was notable for integrating three approaches:

1. A joint discriminative model which identities the complete event structure for a sen-

tence in one pass.

2. Markov Logic, which leverages a statistical relational learning language enabling a

declarative global model.

3. The representation of events as relational structures over tokens of a sentence rather

than abstract entities.

The system submitted by Riedel et al. (2009) placed 4th overall on Task 1 and 1st overall

on Task 2. Poon and Vanderwende (2010), who also implemented a joint approach with

Markov Logic, improved on results of Riedel et al. (2009) and were able to achieve state-

of-the-art on the BioNLP ’09 tasks by expanding the scope of joint inference to include

individual argument edges.

In McClosky et al. (2011) an alternate joint approach to event extraction is described

with competitive results on BioNLP ’09 tasks and data. The strength of their approach is

its generalizability across domains and genres. The process of transforming the bio-events in

the BioNLP ’09 data into dependency trees for training a dependency parser is a simple and

straightforward task. It enabled their system to match state-of-the-art performance with

very little additional domain-specific tuning. Their system is premised on the insight that

the BioNLP ’09 n-tuple-based representation of bio-events can be realized as a semantically-

labeled dependency tree and used to train any dependency parser to extract bio-events.

Entities (proteins pre-identified for the task) and event anchors (defined by the task) are

mapped from the bio-event representation to a dependency tree with a virtual root node.

Edges are then constructed based on the semantic arguments of the event anchor, which are

identified by the labeled slots of the bio-event n-tuple. Only the words that participate in the

event are labeled in the dependency tree. A dependency parser is trained on the annotated

corpus of semantically-labeled dependency trees and its results are re-ranked to determine
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the best final representation.

The BioNLP ’09 Shared Task was a catalyst for the development of state-of-the-art ap-

proaches to event detection and extraction for biomedical literature NLP. The majority of

the state-of-the-art systems evaluated and compared based on BioNLP ’09 Shared Task data,

are graph-based (Luo et al., 2016). Of those systems discussed in this section, McClosky

et al. (2011) stands out as an example of an approach that performs very well when eval-

uated against BioNLP ’09 data and is straightforward to train and evaluate using existing

dependency parsers and evaluation tools.

2.3.2 Event extraction in the clinical domain

In the clinical domain, event detection and extraction tasks can be more specific and limited

in scope than in the biomedical literature domain. This is largely due to the differences

between target corpora as discussed in Section 2.2. Clinical text consists of a mixture of

many common words for describing observations and patient state and complex domain-

specific medical terms. Event detection in this context is focused on entity and relation

extraction tasks with a narrow focus, for example, the detection of a specific disease or drug

interaction. Systems developed for the clinical domain share common approaches (Luo et

al., 2016) and a state-of-the-art configuration of a two-stage statistical NLP system for event

detection and extraction might include a Conditional Random Fields (CRF)-based entity

detection module for concepts and other types of controlled vocabulary and a Support Vector

Machine (SVM)-based classification module to extract relations between entities based on

patterns or ontology mappings.

In recent years, groups such as i2b2 and the NIHs Shared Annotated Resources (ShARe)

project have put together shared tasks including event extraction to promote the development

of shared resources and evaluation frameworks. The following paragraphs highlight i2b2

shared tasks and corpora.
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The 2009 i2b2 Medication Extraction Challenge8 (Uzuner et al., 2010) was organized

around the extraction of medication-related information from narrative patient records. The

corpus of discharge summaries offered as a resource to participants was not annotated, but

annotation guidelines and sample annotated records were provided. Participants were en-

couraged to submit either supervised or unsupervised systems. Of the top 10 systems, six

were self-described as rule-based and the other four systems, as hybrid approaches. Super-

vised machine learning approaches included CRF for named entity recognition and SVM

classification for relation extraction. The University of Sydney combined CRF, SVM, and

rules to attain the best performance.

The 2010 i2b2/VA Challenges in Natural Language Processing for Clinical Data9(Uzuner

et al., 2011) shared task included three tasks:

1. extraction of medical problems, tests, and treatments

2. classification of assertions made on medical problems

3. relations of medical problems, tests, and treatments

The data for the challenge was made up of de-identified discharge summaries and progress

notes from multiple institutions. All of the patient records were manually annotated for

concept, assertion, and relation information. Similar to the 2009 medication challenge,

CRF-based systems performed best at concept identification and SVM-based classification

systems for assertion and relation tasks. There were some novel approaches, including a

semi-supervised CRF solution that used distributional semantics features (Jonnalagadda

and Gonzalez, 2010) and multiple systems that used ensemble approaches.

8https://www.i2b2.org/NLP/Medication/

9https://www.i2b2.org/NLP/Relations/
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The 2012 i2b2 Temporal Relations Challenge10 (Sun et al., 2012) focused on temporal

relations in clinical narratives. The task was broken down into three subtasks:

1. clinically significant events

2. temporal expressions

3. temporal relations between clinical events and temporal expressions

The corpus was made up of discharge summaries annotated with two types of annotations:

1. events and temporal expressions

2. temporal relations

For the first subtask, event detection, statistical machine learning approaches performed

best. Similar to previous years, span-based events were best identified with CRF-based ap-

proaches, and event attributes best identified with SVM-based classification approaches. The

system with the best performance in event detection was a collaboration between Beihang

University, Microsoft Research Asia, Beijing, and Tsinghua University (Xu et al., 2013).

The ShARe/CLEF eHealth 2013 Shared Task11 included two information extraction

tasks:

1. identifying disorder mention spans and associating them with relevant UMLS CUIs

2. identifying acronym/abbreviation spans and associating them with relevant UMLS

CUIs

The overviews of these tasks describe high performing systems, but neither detail the specific

approaches of those teams (Pradhan et al., 2013; Murtola et al., 2013).

10https://www.i2b2.org/NLP/TemporalRelations/Main.php

11https://sites.google.com/site/shareclefehealth/
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The event detection method I implement to extract the graph structure of change-of-

state and diagnosis event dependency trees is based on a two-stage supervised learning

approach. In the first stage, change-of-state and diagnosis event entities are annotated within

the sentence boundaries of unique rationale snippets and used to train a CRF-based NER

module. In the second stage, directed labeled arcs (relations) are drawn between entities

labeled by the NER module in the first stage and one or more dependency trees are created.

The dependency trees are used to train a dependency parser, MaltParser, to automatically

extract events from entity-labeled rationale snippet sentences.

Although my approach uses a dependency parser and a graph representation, it does

not use syntactic dependency information to construct the graph. The dependency parser is

simply used as a graph parser trained on domain-specific entities and directed, labeled arcs.

It does not use any of the complex dependency and relation disambiguation or graph pattern

matching that typifies state-of-the-art approaches to event-based relation extraction, such

as McClosky et al. (2011) and Björne and Salakoski (2011), and other systems discussed in

(Luo et al., 2016). I represent change-of-state and diagnosis events as graphs and extract

the event graphs with a dependency parser, but my approach, using domain-specific entities

and relations, is a basic supervised learning task. Unlike McClosky et al. (2011) and Björne

and Salakoski (2011), I do not need to map an n-tuple representation to a dependency tree

because the annotators in the VAP project explicitly label unique rationale snippets with

the entities and relations of the change-of-state and diagnosis events.

2.4 Event-based feature extraction

In this dissertation, I explore integrating event-based features in applied NLP classification

tasks and evaluating their impact on the performance when compared to and combined with

baseline n-gram experiments replicated from previous studies. In the pneumonia report

classification and ALI studies, event-based features are extracted from the semantic repre-

sentations of change-of-state and diagnosis events which have been annotated by medical

experts or event detection modules trained on pneumonia report classification annotations.
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Unlike word ngrams, which are constructed based on surface strings using general domain

NLP tools, event-based features in this study are generated from the semantic labels of

event structures using tools trained on pneumonia report classification change-of-state and

diagnosis events annotations.

In the clinical informatics literature, there are few examples of features extracted from

semantic representations. Cai et al. (2016) present a comprehensive survey of NLP in research

and clinical applications and find that n-gram-based features are the most common source

for features in statistical machine learning approaches to clinical NLP tasks. They do,

however, highlight two semantic features types especially important to clinical narrative

NLP—chronicity and location—which have been extracted from temporal and anatomic

location relations in recent studies of radiology reports (Yu et al., 2014; Chapman et al.,

2011). Bejan et al. (2013a) extract features from intensive care unit (ICU) reports based on

a patient timeline in order to predict the point on the timeline where the patient is positive

for pneumonia. The timeline was designed on an eight-day scale, and a data instance, used

in their pneumonia prediction experiments, was made up of reports for a specific day on the

timeline and a look-back period of n days. Features were then extracted from the reports

bound by the timeline parameters to create a feature vector for each patient in the pneumonia

prediction experiments.

One of the benefits of graph-based event detection comes in the latter stages of the NLP

processing pipeline when downstream components can mine the event graph for semantically

enriched features for applied tasks (Luo et al., 2016). In my pneumonia report classification

and ALI report classification studies I mine the event dependency graphs for features that

I integrate into my experiments. These include patterns of relations between Cos, Dhead,

Attr, Val, Loc, and Ref entities and their values. I have included in oracle experiments

the attributes of Cos and Dhead entities, which are boolean values generalizing change-of-

state and diagnosis values, such as increased, changed, and hedge. I use the negation and

coordination entities at the appropriate scope in the hierarchy of relations in the event graph

to negate and combine the values of entity and relation-driven feature types. See Appendix
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A for a complete listing and description of all entities, relations, and attributes in the change-

of-state and diagnosis event and diagnosis event schemas.

2.5 Summary

In this chapter, I described previous research and the state-of-the-art in bioNLP and clinical

NLP by presenting a literature review organized around the four phases of my research

framework I initially described in Section 1.4 and detail in Chapter 3:

1. event analysis (Section 2.1)

2. corpus development (Section 2.2)

3. event detection (Section 2.3)

4. event-based feature extraction (Section 2.4)

Section 2.1 reviewed how events are represented in the clinical domain and concluded

that current state-of-the-art systems implement graph-based approaches to represent in-

terconnected entities and relations as events. Section 2.2 discussed efforts to develop and

distribute clinical NLP corpora, concluding with strategies for corpus development in the

clinical domain. Section 2.3 surveyed approaches to event extraction in both the general and

clinical domain, highlighting systems participating in the series of BioNLP Shared Tasks on

event extraction that represent current state-of-the-art. Section 2.4 discussed the limited use

of event-based features in clinical NLP studies and how I propose to implement event-based

features in my applied task experiments. The next chapter presents the general research

framework I implemented to address the methodology requirements of the three applied

NLP tasks I address in my dissertation.
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Chapter 3

RESEARCH METHODS

In Section 1.4, I introduced the overall methodology framework I use to structure the

research in my dissertation and in Table 1.2, I provided a high-level overview of its four

phases. In this Chapter, I describe the three applied tasks I target in my research and then

present in detail each phase of my research framework, beginning with an overview in Section

3.2, and followed by a description of event analysis in Section 3.3, corpus development in

Section 3.4, and event detection in Section 3.5. I conclude by discussing event-based feature

extraction in Section 3.6. Each section outlines how each phase of the research framework

addresses the methodology requirements of the three applied tasks.

3.1 Overview of the three applied tasks

In this dissertation, I create event-based NLP applications for three applied tasks: (1) pneu-

monia report classification, (2) acute lung injury (ALI) report classification, and (3) critical

follow-up recommendation identification. All three tasks use features extracted from text

and supervised learning to train classification models that categorize text components of

radiology reports. See Table 1.1 for a list of publications and previous research related to

the three tasks and Table 3.1 for a detailed description of each task.
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Task Description

Pneumonia

report

classification

Ventilator-associated pneumonia (VAP) is a pneumonia acquired by patients

when they are connected to mechanical ventilation systems in a healthcare

setting. The pneumonia report classification study classifies the narrative X-

ray report text of a radiology corpus in order to detect disease. Supervised

learning is used to train and test an NLP report classification system that

labels reports with pneumonia (PNA) and Clinical Pulmonary Infection Score

(CPIS) labels.

ALI

report

classification

Acute lung injury (ALI) is a disease of the lungs where they become acutely

hypoxemic and a patient can suffer respiratory failure (Yetisgen-Yildiz et al.,

2013a). . The ALI report classification study classifies the narrative X-ray

reports of a cohort of patients to detect evidence consistent with a diagnosis of

ALI. The study uses supervised learning to test and train an NLP system that

labels patients with a negative or positive diagnosis of ALI.

Critical

follow-up

recommendation

identification

A critical follow-up recommendation is a sentence in a narrative X-ray report

that reflects a statement made by a radiologist in a radiology report to ad-

vise the referring clinician to further evaluate an imaging finding by either

other tests or further imaging (Xia and Yetisgen-Yildiz, 2012). The critical

follow-up recommendation study classifies the sentences in a range of radiology

reports across modalities to identify critical follow-up recommendation. The

study uses supervised learning to test and train an NLP system that labels

sentences as critical follow-up recommendations. Additionally, it categorizes

the recommendation sentence as being one of four types.

Table 3.1: Descriptions of the three applied NLP tasks
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3.2 Introduction of a general research framework

In this study, I integrate event-based features into classification experiments by:

1. defining event models

2. adding event-based annotations to corpora

3. training and testing event detection modules

4. extracting event-based features for classification experiments

To accomplish these steps, I adapted a general framework of research methods to the

specific needs of each study. The four basic phases in my general framework are: (1) event

analysis, (2) corpus development, (3) event detection, and (4) event-based feature extraction.

These phases are intended to be executed in sequential order and are further elaborated in

Figure 3.1 and Figure 3.2.

Figure 3.1: Overview of the major stages of the general research framework for developing

event-based features
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Figure 3.2: Methodology overview

The four stages in Figure 3.1 are described in more detail in Figure 3.2. Not depicted

in the diagram is how the event-based features were integrated into a series of classification

experiments specific to each NLP applied task. In all three studies, baseline n-gram and

event-based features were each evaluated separately in a series of experiments and then
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added together as a joint set of features for comparison.

3.3 Event analysis

Figure 3.3: Event analysis workflow diagram

In the clinical NLP literature, events are represented in numerous ways—as dependency

trees, tuples, slotted templates, or as simply a bag of properties. During the event analysis

phase, previous studies, experimental results, error analysis, and domain experts contribute

to the definition of events for specific applied clinical NLP tasks. The first step in defining

events is gaining access to corpora, feature sets, software modules, and experiment settings

of previous studies. In most cases this requires replicating, to some extent, the NLP system

described in the original study. The original papers and articles of the three studies I describe
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in this dissertation provided the necessary detail required to replicate results, including

comprehensive descriptions of software, configuration files, and corpora.

Event analysis defines the logical event models that are translated into machine readable

formats in subsequent phases of the framework. The main tasks of event analysis are:

1. Build or replicate a baseline system All corpora, NLP application modules, experi-

ment settings, and dependencies on third party software packages for the three applied

tasks in my study were well described in Tepper et al. (2013) for pneumonia report

classification, Yetisgen-Yildiz et al. (2013b) for critical follow-up recommendation iden-

tification, and Yetisgen-Yildiz et al. (2013a) for ALI report classification.

2. Repeat experiments Using the system developed in the previous step I was able to

recreate the configuration and settings from previous studies and replicate experiments

for all three applied tasks. I used the replicated experimental results as a baseline to

evaluate the impact of event-based features on classification performance.

3. Analyze the errors from replicated experiments Examining experimental results,

especially detailed error analysis, such as an inventory of values and frequencies for false

positives and false negatives, helps uncover events and their properties. I leveraged the

analysis of classification errors in pneumonia report classification experiments described

by Tepper et al. (2013) and Vanderwende et al. (2013) in order to define graph-based

models for change-of-state and diagnosis events.

4. Design a preliminary model for events in consultation with domain experts A

strong logical representation of an event model with documentation and examples

translates into machine-readable representations for annotation and system process-

ing. Previous research, annotation guidelines and early discussions with annotators

and domain experts informed the change-of-state and critical follow-up recommenda-

tion event models I developed during the preliminary phase of each study.
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Xia and Yetisgen-Yildiz (2012) documented the challenges of integrating medical ex-

perts into the annotation process. Domain expertise was especially impactful on the

critical follow-up recommendation identification study. The medical expert annotators

contributed a complex set of four category labels for the critical follow-up recommen-

dation identification task that reflected their deep understanding of the domain.

See Figure 3.3 for a depiction of the interdependency and sequence of the event analysis

methods. A description of these methods and how they relate to specific events is explored

in the methodology sections of the individual studies detailed in Chapters 4 - 6.

3.4 Corpus development

In my research, two of the the three studies, pneumonia report classification and critical

follow-up recommendation identification, required a corpus development phase. The third

study, ALI report classification, explored the adaptability of change-of-state and diagnosis

events defined for the pneumonia report classification task to a similar disease detection task.

A corpus development phase was not required for the ALI task and therefore no additional

annotations were created for this study.

The corpora developed for the pneumonia report classification and critical follow-up rec-

ommendation identification tasks each required an unique development process modified

from the more general framework described in this section. The critical follow-up recom-

mendation corpus was new and it was necessary to implement a complete end-to-end process

involving medical expert annotators whereas the pneumonia report classification corpus was

labeled by medical expert annotators in a previous study and for my research, a single NLP

researcher alone annotated the pneumonia report classification rationale snippet sub-corpus

for change-of-state and diagnosis events.1

1I performed the role of the single NLP researcher in the final round of annotation.
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There are three stages of corpus development in the general research framework:

1. preparation

2. annotation

3. finalization

The following sections detail the three corpus development stages.

3.4.1 Corpus preparation

Figure 3.4: Corpus preparation workflow diagram
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The corpus preparation stage consists of five main tasks:

1. Prepare corpus The original files and annotation data for pre-existing corpora can be

stored in many different types of formats and infrastructure. Preparing the corpus for

a new annotation environment or storage infrastructure requires pre-processing and

conversion.

The pneumonia report classification corpus was originally annotated for CPIS and

PNA labels and rationale snippets in the GATE2 (Cunningham et al., 2011) integrated

development environment (IDE) for NLP. GATE stores annotations as mark-up islands

in an XML file based on their own XML schema for annotation. I converted these

files into two separate files types, a plain text file for the original report text, and

a .ann annotation file formatted for the BRAT3 (Stenetorp et al., 2012) annotation

environment. A subsequent conversion utility was required to import and export the

BRAT report and annotation files to and from a Microsoft SQL ServerR⃝ database.

2. Identify annotators Selecting medical expert annotators requires matching domain

knowledge with task and corpus. The original annotation process and medical expert

annotator profiles for pneumonia report classification and ALI task were described in

Xia and Yetisgen-Yildiz (2012), Tepper et al. (2013), and Yetisgen-Yildiz et al. (2013a).

No additional medical expert annotators contributed to my pneumonia report classifi-

cation and ALI studies.

3. Amend institutional review board (IRB) agreement Adding new members to a

clinical informatics project may also require an amendment to the IRB agreement.

All medical expert annotators for the critical follow-up recommendation identification

study were recruited from the University of Washington Medical school and hospital

2https://gate.ac.uk/

3http://brat.nlplab.org/index.html
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system. They were all approved to participate by the human subjects committee (HSC)

of the IRB.

4. Identify annotation tool Selection of an annotation tool should emphasize annotation

format, usability, portability between operating systems, and ease of installation/con-

figuration. I selected the BRAT4 (Stenetorp et al., 2012) web-based annotation tool

for all annotation development in this study.

5. Design annotation schema Annotation tools that are extensible for user-designed an-

notation schemas provide formats to describe schemas. BRAT uses a simple format of

character offsets and labels to represent entities (text spans) and relations (labeled, di-

rected arcs between entities). See Appendix B for detailed listings of multiple versions

of the pneumonia report classification and critical follow-up recommendation BRAT

schemas.

4http://brat.nlplab.org/index.html
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3.4.2 Corpus annotation (multiple rounds)

Figure 3.5: Corpus annotation workflow diagram

The corpus annotation stage consists of four main tasks:

1. Create annotation guidelines I followed the traditional annotation process with adap-

tations for the medical domain as described in Xia and Yetisgen-Yildiz (2012). Guide-

lines were integrated into the process from the beginning of event analysis and revised

and edited after each inter-annotator agreement (IAA) round until finalized. In the

critical follow-up recommendation study, the medical expert annotators owned the cat-

egories and labels for critical follow-up recommendations. Based on the findings of Xia

and Yetisgen-Yildiz (2012), annotation guidelines are an important support document

for the annotation process. In the critical follow-up recommendation identification
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study, reports were annotated in short bursts of activity over extended periods of time

due to the time commitment constraints of the medical expert annotators. The guide-

lines assisted the annotators in maintaining consistency, especially given the subtle

differences in the critical follow-up recommendation category labels.

2. Train annotators Annotators were trained using a combination of training materials

developed to document the computing infrastructure required to host the annotation

tool as well as training materials bundled with the annotation tool itself. All annotators

initially worked one-on-one with an NLP researcher to familiarize themselves with the

computing infrastructure, annotation tool, and annotation guidelines.

3. Annotate corpus Annotators annotated the corpus in the BRAT annotation environ-

ment. It could be accessed either through a virtual desktop or, when the corpus access

was not constrained by privacy or legal reasons, on the annotator’s local system.

4. Measure IAA To finalize guidelines and develop a consensus on how annotations should

be applied, two or three annotators annotated a small sampling of the overall corpus

in one or more rounds of double or triple annotation. An IAA measure was selected to

determine the reliability of the annotations after each round. In this study, two IAA

measures were used to compare annotators pairwise after each round: (1) a precision,

recall, and F-score for the two annotation sets, one acting as system, the other as gold,

and (2) Cohen’s Kappa. After each round of annotation and IAA, NLP researchers

reviewed the annotation schema and guidelines with annotators and made changes

when required.
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3.4.3 Corpus finalization

Figure 3.6: Corpus finalization workflow diagram

After the annotation guidelines are complete, annotators finish annotating the remaining

unlabeled portion of the corpus. Typically, the work of annotating an entire corpus is

divided up among multiple annotators. Each annotator is solely responsible for annotating

an assigned section of the remaining unlabeled corpus. The final stage of annotation creates

the gold standard or final version, which is used to train, test, and evaluate systems that

generate or extract the same annotations.

The corpus finalization stage consists of two main tasks:

1. Finalize gold standard Finalizing the annotation guidelines does not guarantee that

annotators will be consistent in their annotation tasks. Additional rounds of double or
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triple annotation on randomly selected portions of the corpus can improve the quality

of the gold standard. Similar to IAA comparison rounds that shape the annotation

guidelines and schema, comparison of annotations when creating the gold standard can

help clarify how to apply annotation consistently among annotators and update the

annotation guidelines.

2. Publish annotations Clinical corpora require additional treatment before they are re-

leased. Privacy and legal considerations require vetting the release with the IRB and

ensuring all clinical records are de-identified so that no patient information is revealed.

I plan to release the pneumonia report classification unique rationale snippet corpus of

1008 text snippets annotated with change-of-state and diagnosis events to the Web at

the conclusion of this study.
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3.5 Event detection

Figure 3.7: Event detection workflow diagram

Once an event model has been defined and translated into an annotation schema, it can be

used to annotate a corpus, which is then used to train and test event detection modules using

statistical NLP tools. The approach to event detection depends on the structure of the event.

The pneumonia report classification and ALI studies both represented events as dependency

trees, where as the critical follow-up recommendation identification study defined an event

as a template of properties. Event detection was handled differently in each case.

The main tasks of creating an event detection system are to:

1. Develop event detection modules In the pneumonia report classification study, change-

of-state and diagnosis events were represented as dependency trees. To extract a de-

pendency tree from a text file, a two-stage process was used. The first stage identified

change-of-state and diagnosis events entities in text using a named entity recognition
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(NER) module, while the second stage used a graph-aware dependency parser to create

graph structures over the named entities identified in the first stage.

In the critical follow-up recommendation study, critical follow-up recommendations

were identified in a multi-stage process:

1. Sentences were identified as critical follow-up recommendation using a maximum

entropy (MaxEnt) sentence classifier trained on the gold standard recommenda-

tion sentences.

2. A conditional random fields (CRF) NER module trained on Reason, Time, and

Test annotations extracted named entities from the recommendation sentence.

3. A rule-based module generated the computed values default recommended follow

up test and default recommended follow timeframe.

4. A MaxEnt classifier trained on the above properties plus report text features and

metadata, assigned one of four critical recommendation labels to the event.

2. Evaluate modules All experiments designed to evaluate NER and relation extraction

(RE) modules developed for both the pneumonia report classification and critical

follow-up recommendation studies incorporated 5-fold cross-validation in order to train,

test, and measure the performance of event detection components.

The performance of the pneumonia report classification and critical follow-up recom-

mendation identification named entity recognizer was measured by precision, recall,

and F-score based on the exact match of BIO labeled words in the system output to

BIO labeled words from the gold standard. BIO labeling prefixes a word’s label with

either B if it is the beginning word in a named entity sequence, or I for a word inside a

named entity sequence, and O for all words outside of a named entity labeled sequence.

In both pneumonia report classification and critical follow-up recommendation studies,

NER was evaluated at the word (token) and entity (BIO) level.

Pneumonia report classification dependency parsing results were evaluated using the
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evaluation tool, MaltEval, which reports: (1) Labeled Attachment Score (LAS), calcu-

lating the accuracy of both a dependency label and its attachment in the dependency

graph, (2) Unlabeled Attachment Score (UAS), calculating the accuracy of a depen-

dency node and its attachment in the dependency tree without respect to its label,

and, (3) Label Accuracy (LA), calculating the accuracy of all labels in the dependency

graph including leaf-level entities. The critical follow-up recommendation identification

category classification task was evaluated on exact match and reports precision, recall,

and F-score.

3.6 Event-based feature extraction

Figure 3.8: Event feature extraction workflow diagram

The event-based feature extraction phase has two tasks:

1. Extract features For pneumonia report classification and ALI experiments, event-based

features were extracted from the entity, attribute, and relation annotations and their
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values in the generated output from the event detection module. The remaining types

of event-based features were created from combinations of tuple fields extracted from

the tuple representation of the event, which was derived algorithmically from the event

tree. For critical recommendation events, features were extracted from the critical

follow-up recommendation sentence and report metadata. In all three applied tasks,

event-based features were evaluated in combination with all other features in χ2 feature

selection. The best performing features, based on threshold values, were integrated into

applied task experiments.

2. Build classifiers I used supervised statistical machine learning approaches for classifi-

cation in all three applied tasks. Feature sets were generated with a common software

library and the MALLET5 (McCallum, 2002) machine learning tool kit was used for

training and testing MaxEnt models. All features were represented in MALLET-style

feature vectors. I used χ2 statistical feature selection and threshold values to select

the optimal number of best performing features for experiments. See Sections 4.4, 5.4,

and 6.4 for detailed descriptions of my approach for each task.

3.7 Summary

In this chapter, I described the general framework of research methods I adapted to the three

applied clinical NLP tasks in my dissertation. In Section 3.3, I described my approach for

defining and analyzing events and in Section 3.4, I documented my approach to creating cor-

pora in the clinical domain. In Section 3.5, I reviewed how I adapted information extraction

techniques to the task of event identification and detection based on the the structure and

representation of an event and in 3.6, I described how I extracted features from event repre-

sentations and applied those features to NLP tasks. In Sections 4.3, 5.3, and 6.3 I detail how

I adapt the general research framework described in this chapter to each individual applied

task.

5http://mallet.cs.umass.edu/
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Chapter 4

PNEUMONIA REPORT CLASSIFICATION

In my literature review, I discussed previous work targeting disease detection with NLP

methods (Vanderwende et al., 2013; Yetisgen-Yildiz et al., 2013a; Tepper et al., 2013). A

common goal of disease detection studies in clinical NLP is to integrate with larger insti-

tutional systems to provide realtime feedback and monitoring of patients’ state for early

warning of critical illness. Integrated surveillance systems for disease detection and pre-

vention are an important component of long range planning for next generation healthcare

platforms (Shortliffe and Blois, 2006). Given that narrative free-text reports represent the

largest portion of data in the electronic health record (EHR), disease surveillance systems

of the future will require applications that meaningfully process natural language in order

to unlock all of the information about a patient’s state. Albright et al. (2013) go further,

suggesting the subtleties of natural language in clinical narratives require a comprehensive

syntactic and semantic approach in order to capture difficult aspects of meaning, such as

the agent or patient of a clinical event, the level of certainty about events, and references to

an event before and after an event’s occurrence in text. Vanderwende et al. (2013) propose

an event-based disease detection system that, by monitoring a patient’s state over time in

the clinical narrative of the EHR, can prompt physicians with early warning and improve

patient healthcare.

In this chapter, I implement a system for pneumonia report classification by using NLP

and supervised learning techniques to extract event-based features from text and train a

maximum entropy (MaxEnt) machine learning classifier. Section 4.1 describes the applied

task I explore in this case study, classifying an X-ray report corpus labeled for suspicion
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of pneumonia (PNA) and Cardio Pulmonary Infection Score (CPIS)1 to support the larger

goal of ventilator-associated pneumonia (VAP) phenotype detection. Section 4.2 details

previous research, including annotated corpora and NLP systems developed for pneumonia

report classification. In Section 4.3, I discuss how I adapt my general research framework

to the specific goals of the case study and in Section 4.4, I outline how I implement system

components and experiments to support my research into the applied task. In Section

4.5, I report the results of my component evaluations and pneumonia report classification

experiments, and in Section 4.6, I discuss my results. I present my conclusions in the final

section of the chapter, Section 4.7.

4.1 Task overview

VAP is a type of pneumonia that occurs in hospital to patients that are placed on mechanical

ventilation due to critical illness or traumatic injury. The early detection and treatment of

VAP is important as it is the most common healthcare-associated infection in critically

ill patients and even short-term delays in appropriate treatment for patients with VAP

are associated with high mortality rates, longer-term mechanical ventilation, and excessive

hospital costs (Zilberberg and Shorr, 2010).

The presence of VAP in a patient cannot be established by a single test and diagnosis

is often complicated by other co-occurring symptoms due to the critical illness or traumatic

injury that is the primary cause of mechanical ventilation. Diagnosing VAP involves weighing

many different types of evidence, such as chest X-rays, blood work, or respiratory secretions,

at multiple points in time (Zilberberg and Shorr, 2010). Of the various types of evidence

that contribute to a diagnosis, the narrative chest X-ray report is a core test for suspicion

of VAP. It is used to monitor the change in health of patients over time and the progress of

disease at a detailed level (See Figure 4.1 for an example of a chest X-ray). In addition to

providing information about a patient’s state at a particular point in time, clinical reports

1CPIS is used to predict which patients will benefit from the invasive, and preferably avoidable procedure
to obtain pulmonary cultures.
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make explicit or implicit references to previous reports and form chains of information about

the state of the patient at many points of time. Capturing this level of detail, and connecting

it to other information in a patients’ EHR, is critical for the detection of diseases such as

pneumonia.

Figure 4.1: A sample chest X-ray report

In my case study, I implement a pneumonia report classification system that classifies X-

ray reports for pneumonia using supervised machine learning methods and features extracted

from change-of-state and diagnosis events. The long term goal of the system is to integrate

with a larger VAP phenotype detection system as described in Xia and Yetisgen-Yildiz (2012)

and Tepper et al. (2013).

4.2 Previous research

Xia and Yetisgen-Yildiz (2012) developed an annotated corpus of 1344 pulmonary chest

X-ray reports from the University of Washington Harborview Medical Center to train and

test a pneumonia report classification system as a component of an overall VAP phenotype

detection system. To develop the corpus, medical expert annotators labeled pulmonary X-

ray reports with two categories of labels: (1) PNA and (2) CPIS. See Table 4.1 for the PNA

and CPIS category labels.
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VAP Category VAP Category Label

CPIS

1A (no infiltrate)

1B (diffuse infiltrate or atelectasis)

1C (local infiltrate)

PNA

2A (no suspicion of PNA)

2B (suspicion of PNA)

2C (probable PNA)

Table 4.1: VAP category labels for PNA and CPIS

4.2.1 Rationale snippets

Tepper et al. (2013) extended the work of Xia and Yetisgen-Yildiz (2012) by asking the same

medical expert annotators who participated in the original labeling task to highlight one or

more text spans in the X-ray reports that provided concise rationale for the report’s PNA

and CPIS labels. They called these text spans rationale snippets. In similar work, Zaidan et

al. (2007) and Zaidan and Eisner (2008) used annotator rationale to improve performance in

classification tasks for the general domain, and Yu et al. (2011) in the clinical domain. For

Tepper et al. (2013), rationale snippets indicate passages within narrative clinical reports

that are relevant for pneumonia report classification.

The system in Tepper et al. (2013) performs two related and cascaded tasks for classifying

X-ray reports, (1) rationale snippet prediction, and (2) pneumonia report classification.

In their study, they observed that annotations for rationale snippets align with sentence

boundaries at a rate of over 95%, and because of this, they modeled the first task in their

cascaded approach, rationale snippet prediction, as a two-stage sentence classification and

sequence labeling task. They trained a sentence classifier and sequence labeler to predict the

locations of CPIS and PNA rationale snippets in X-ray reports using an inside, outside tag-

set for annotation, a MaxEnt model for classifying candidate rationale sentences, and a beam

search for inside, outside sequence labeling of the candidate sentences. See Section 4.5.1 for
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their results.

For the second task in their cascaded report classification system, Tepper et al. (2013)

trained and evaluated, using 5-fold cross-validation, two SVM classifiers, one for CPIS and

the other for PNA. Multiple sets of classification experiments were run with features extracted

from four different scenarios:

1. the whole document

2. gold standard annotated oracle rationale snippets

3. system-predicted rationale snippets

4. combinations of the whole document with an oracle or predicted rationale snippet

The same feature sets were used and compared for all experiments:

• unigrams and bigrams filtered for stop words, digits, and punctuation

• UMLS concepts

• alternate proposing conjunctions (versus, or, vs, etc.)

Tepper et al. (2013) reported that extracting features from rationale snippets alone per-

formed better than extracting features from the whole document or the whole document

in combination with predicted snippets, and that word unigrams, filtered for stop words,

digits, and punctuation, in combination with alternate proposing conjunctions were the best

performing types of features to extract. See Section 4.5.1 for results.

Error analysis in Tepper et al. (2013) revealed the limitations of using only basic features

in the pneumonia report classification experiments. A good example can be seen in the

X-ray corpus rationale snippet, The previously noted right upper lobe opacity consistent with

right upper lobe collapse has resolved. The system made an error and mislabeled this snippet

because the snippet supports one category entirely up to but not including the crucial words

has resolved. The classification system’s basic word unigram feature set only provides words

and their frequencies to the classifier. It does not capture the importance of the words
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has resolved to the meaning of the sentence, and their long distance relationship to the

observation, right upper lobe opacity.

Another example of a similar type of error can be seen in the X-ray corpus rationale

snippet in Figure 4.2.

No change in diffuse lung disease consistent with edema.

Patchy bilateral lung consolidation has diminished.

No new focal abnormalities

Figure 4.2: A sample chest X-ray report snippet

The rationale snippet belongs to a chest X-ray report labeled in the gold standard as 2B

(suspicion of PNA). The pneumonia report classification system mislabeled this report as

2A (no suspicion of PNA), because the system uses a simple n-gram approach, which in

this case puts more emphasis on the occurrence of negating word unigrams, such as no and

diminished, rather than the more meaningful complete statement No change in diffuse lung

disease. As stated in Section 1.1.2, these types of errors motivated the change-of-state event

proposal in Vanderwende et al. (2013).

4.2.2 Change-of-state events

Vanderwende et al. (2013) reviewed the results of experiments and error analysis in Tepper et

al. (2013) and concluded that the majority of text in rationale snippets described observations

of change in a patient’s state (for example, minimal patchy atelectasis in the right lung is

seen, mildly improved since the prior study) which they defined as a change-of-state event.

In order to capture and label a change-of-state event in text, they proposed an n-tuple

annotation model, based on the bio-event tuple described in Kim et al. (2008).

The n-tuple consisted of five fields, Loc, Attr, Val, Cos, and Ref. Figure 4.3 is an example

of a change-of-state n-tuple with values for all five fields: Loc is the anatomical location (e.g.,
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right lung ), Attr is an attribute of the location that the event is about (e.g., atelectasis),

Val is a possible value for the attribute (e.g., minimal patchy), Cos indicates the change

of state for the attribute value compared to some previous reports (e.g., mildly improved),

and Ref is a link to the report(s) that the change of state is compared to (e.g., since the

prior study) (Vanderwende et al., 2013). Not all tuples have values for all five fields. A field

can be unspecified and inferred from the context of the surrounding snippet text or from

the collection of snippets that have been extracted from the sequence of a patient’s X-ray

reports.

Figure 4.3: An example of an event tuple

In Figure 4.4 the fields of the event tuple are represented as labeled entities in the anno-

tation of the snippet text. Annotators labeled unique snippets using the Web-based BRAT2

(Stenetorp et al., 2012) annotation tool.

Figure 4.4: A snippet featuring the annotation of change-of-state event n-tuple fields as

entities in BRAT

2http://brat.nlplab.org/index.html
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4.3 Methodoloy

Figure 4.5: Pneumonia report classification methodology
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I approached the pneumonia report classification; task by adapting the four phases of my

proposed research framework, described in Chapter 3. The four phases are:

1) Event analysis—analyze the task and related previous research to define events

2) Corpus development—develop corpora by annotating events

3) Event detection—build systems for automatic event detection

4) Event-based feature extraction—extract event-based features for classification

Figure 4.5 provides a view of the four phases of the framework adapted for the study of

pneumonia report classification.

4.3.1 Event analysis

During the initial phase of research, event analysis, I defined change-of-state and diagnosis

events. Two of the four main tasks of event analysis adapted from the general framework

are applicable to the change-of-state and diagnosis event study:

1. analyze results of previous research or replicate system and repeat experiments

2. define a preliminary model for events

In this study, I replicated the two-stage cascaded snippet prediction and pneumonia report

classification system of Tepper et al. (2013) in order to establish a baseline set of n-gram

experiments. The baseline experimental results and error reports informed my extensions

to the original change-of-state n-tuple proposed in Vanderwende et al. (2013). I introduced

a preliminary directed acyclic graph (DAG) model for the change-of-state event in order

to connect labeled entities in an overarching event structure that can link descriptions of

change of state with observations that precede or follow it in a sentence. The new event

structure addressed the limitations of the n-gram feature model described in Tepper et al.

(2013) and Vanderwende et al. (2013) and its graph structure simplified event annotation

and extraction.
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4.3.2 Corpus development

I adapted the list of corpus development tasks to the needs and requirements of this study.

My adapted corpus development process consists of the following steps:

Corpus preparation In the corpus preparation stage of the corpus development phase,

both the X-ray corpus annotated for PNA and CPIS labels and the unique ratio-

nale snippet corpus were imported into the system database and converted into table

columns and rows based on a relational model. Additional tasks during this stage

included:

1. identifying and selecting an annotation tool

2. developing a new schema to support the change-of-state and diagnosis event mod-

els

Corpus annotation (multiple rounds) The annotation stage of the corpus development

phase occurred over two rounds. In the first round, three NLP researchers annotated

the unique rationale snippet corpus with BRAT entities and relations based on an initial

design of the change-of-state event model. A Diagnosis entity was also included in the

annotation scheme to label phrases in the snippet that propose or suggest a diagnosis.

The second round of annotation used an extended model which added coordination

and negation entities to the change-of-state events and decomposed the previously

annotated Diagnosis text span into the entities and labeled arcs of a diagnosis event

model. After each round, inter-annotator agreement (IAA) measures were calculated

and the annotators met to discuss differences in annotation and update guidelines.

A single NLP researcher added all second stage annotations to the unique rationale

snippet corpus.
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The following steps were adapted from the canonical methodology discussed in Chapter 3:

1. create an initial set of annotation guidelines and a small dictionary of special

terms to guide annotators

2. train annotators and update annotation guidelines based on their feedback

3. annotate a small sample of rationale snippets in triplicate over two rounds

4. compare annotations using inter-annotator agreement measures

5. review results of IAA with annotators and finalize guidelines

6. apply the final annotation guidelines to the entire corpus of unique rationale

snippets

Corpus finalization In Vanderwende et al. (2013) a change-of-state n-tuple represented a

single event. In my study, a change-of-state and diagnosis event structure includes one

or more events. In order to generate individual event features it is necessary to extract

n-tuples from the change-of-state and diagnosis event tree. I created an algorithm to

extract one or more n-tuples from the change-of-state and diagnosis event dependency

tree representation created during the event annotation stage and used the same algo-

rithm to extract tuple-based features for pneumonia report classification experiments.

In the final step of corpus development, I released the gold standard version of the

unique snippet rationale corpus and accompanying change-of-state and diagnosis event

annotation guidelines to theWeb at http://depts.washington.edu/bionlp/datasets.htm.

In addition to the annotated corpus and guidelines, I also bundled the snippet predic-

tion and change-of-state and diagnosis event extraction modules as standalone NLP

tools.
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The two steps of the general research framework that I applied to the pneumonia report

classification study were:

1. develop an algorithm to derive event tuples from the change-of-state and diagnosis

event annotations

2. release annotated unique rationale snippet corpus and BRAT schemas to the Web

4.3.3 Event detection

In the event detection phase, I followed the general framework by designing and evaluating

modules for a two-stage event detection process, the first stage consisting of a named entity

recognition (NER) module, and the second, a relation extraction (RE) module based on de-

pendency parsing. For evaluation, I conducted 5-fold cross-validation experiments using the

change-of-state and diagnosis event annotations developed for the unique snippet rationale

corpus in the corpus development phase.

4.3.4 Event-based feature extraction

In the final phase of my research framework, I extracted event-based features and integrated

those features into pneumonia report classification experiments. I defined six types of event-

based features and created modules to extract and integrate the event-based features into

the replicated baseline pneumonia report classification system.

4.4 Implementation

The implementation section details the components developed during the four phases of

research. Table 4.2 describes the individual components I implemented and the evaluation

metrics I used to measure their performance. Figure 4.6 provides a system diagram of all of

the components and their interaction in the final application implemented for the pneumonia

report classification task.
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Research Phase Impl. Step Description Evaluation

Event Analysis

Baseline
system

Replicate the two-task cascaded
snippet prediction and pneumo-
nia report classification system
as described in Tepper et al.
(2013)

Snippet sentence matching per-
formance measure and replica-
tion of baseline pneumonia re-
port classification results from
original study

Event
models

Model the change-of-state event,
introduce a diagnosis event and
entities for negation and coordi-
nation

Lossless transformation between
dependency tree and n-tuple rep-
resentations

Corpus annotation

Annotation Annotate the unique rationale
snippet corpus with change-of-
state and diagnosis events, in-
cluding negation and coordina-
tion entities

IAA measures including by to-
ken, entity, and event tuple

Event Detection

Named en-
tity
recognition
(NER)
module

Train and test an NER module
to identify and label named enti-
ties in the unique rationale snip-
pet corpus

P,R, and F1 measures of NER la-
beling by entity and token

Relation
extraction
(RE) depen-
dency
parser
module

Train and test RE module based
on dependency parsing

CoNLL Shared Task on De-
pendency Parsing measures
(LA, UAS, LAS). Merge algo-
rithm for aligning entity-only
system-generated NER/depen-
dency parsing results with gold
standard.

Event Extraction

N -Tuple
generation
algorithm

Algorithm for lossless transfor-
mation of dependency tree rep-
resentations to n-tuple represen-
tations of change-of-state and di-
agnosis events

Selectively test and manually
evaluate against n-tuple gold
standard

Feature
extraction
module

Implement methods for extract-
ing event-based features

Selectively test and manually
evaluate against ad-hoc gold
standard

Pneumonia
report
classification
system

Run CPIS and PNA pneumonia
report classification experiments
using baseline features, event-
only features, and all features,
with and without χ2 feature se-
lection

P, R, and F1 measured and eval-
uated for whole document, ora-
cle snippet, and predicted snip-
pet. Compared against base-
line results generated using sys-
tem replicated from descriptions
in Tepper et al. (2013).

Table 4.2: A breakdown of the overall task into steps and evaluation metrics
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Figure 4.6: Pneumonia report classification system diagram
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4.4.1 Baseline system

In order to replicate the pneumonia report classification experiments described in Tepper et

al. (2013), I recreated the classification system and snippet prediction module and imported

the X-ray report corpus, annotated with both PNA and CPIS labels, and the unique rationale

snippet corpus, into my system database environment.

The classification experiments were conducted in three scenarios:

1. whole document (the text of an entire report)

2. a report’s oracle rationale snippets only

3. a report’s predicted rationale snippets only (generated by the snippet prediction mod-

ule)

Whole document boundaries are the complete text of one report in the overall X-ray corpus,

the oracle rationale snippet boundaries are the complete text of all of the unique rationale

snippets that can be traced back to one report, and the predicted rationale snippet boundaries

are the complete text of one or more predicted snippets generated by the snippet prediction

module for one report.

To obtain (1) and (2) described in the preceding paragraph, I imported existing versions

of the pneumonia report classification X-ray corpus and unique rationale snippet corpus into

my system database. There are 1344 X-ray reports and 1065 snippets in the X-ray report

corpus. As noted in the original study, due to annotator error, CPIS and PNA labeling was

not applied to every report in the corpus. There are 3 reports where no CPIS label has been

applied and 1 report where no PNA label has been applied, resulting in a total set of 1341

and 1343 reports for CPIS and PNA, respectively (Tepper et al., 2013). Table 4.3 details

the distribution of labels across the X-ray corpus.
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Tepper et al. (2013) described a sub-corpus of 10653 unique rationale snippets extracted

from the chest X-ray corpus as a de-duplicated collection of all of the embedded rationale

snippets throughout the X-ray corpus, irrespective of CPIS and PNA labels. By normalizing

spaces and line endings in snippets, I further reduced the unique snippet sub-corpus to 1008

snippets. Each unique snippet is associated with one or more traces back to the original

reports. Most of the report files contain two snippets, one for PNA and one for CPIS, which

share the same text. Other reports feature only one PNA snippet or one CPIS snippet with

different text, and a small number of reports have no snippet at all. It is possible for a report

to have more than one rationale snippet for both PNA and CPIS, but it is rare in the overall

corpus.

Label Category Number (%) of

reports

Number (%) of

reports with

rationale snippets

CPIS 1A no infiltrate 178 (13%) 25 (2%)

1B diffuse infiltrate... 1011 (75%) 1004 (75%)

1C local infiltrate 152 (11%) 152 (11%)

Total 1341 (100%) 1181 (88%)

PNA 2A no suspicion PNA 856 (64%) 362 (27%)

2B suspicion of PNA 294 (22%) 290 (22%)

2C probable PNA 193 (14%) 192 (14%)

Total 1343 (100%) 844 (63%)

Table 4.3: Statistics of the X-ray report corpus as reported in Tepper et al. (2013)

3I further reduced the number of unique snippets to 1008 by eliminating line breaks and extra whitespace
in the original snippet text.
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In order to replicate all of the baseline experiments in Tepper et al. (2013), I created a

new snippet prediction module based on the description in the original study. I trained and

tested the snippet prediction module and used χ2 to select the top 250 word unigram and

alternate conjunction features for experiments. This set of feature types I called the baseline

set. See Table 4.15 for the results of the snippet prediction experiments. Table 4.4 lists the

overall total reports and unique snippets in the X-ray corpus and Table 4.4 summarizes the

statistics for reports by label.

X-Ray corpus reports 1344

Unique rationale snippet corpus snippets 1008

Table 4.4: X-ray corpus and unique rationale snippet corpus totals

CPIS PNA

Reports with valid categories 1341 1343

Reports with rationale snippets 1181 844

Table 4.5: X-ray corpus rationale snippet statistics by label

Once the snippet prediction module was completed and the unique rationale snippet

annotations were merged with the 5-folds of X-ray reports for both CPIS and PNA, I repli-

cated the baseline experiments described in Tepper et al. (2013). I used the machine learning

toolkit MALLET4 (McCallum, 2002) instead of the LIBSVM Java API5 (Chang and Lin,

2011) used in the original study. I chose to use maximum entropy (MaxEnt) in the MALLET

package because I preferred the transparency of MALLET’s models for feature engineering

and MaxEnt has comparable performance to LIBSVM’s support vector machine (SVM) al-

gorithm for multiple label classification tasks. See Table 4.20 for a comparison of results

4http://mallet.cs.umass.edu/

5http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
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published in Tepper et al. (2013) and the results from experiments run from my replicated

baseline system.

4.4.2 Event models

Once the baseline feature set experiments were replicated, I extended the n-tuple change-of-

state event model proposed in (Vanderwende et al., 2013). I developed graph-based models

for change-of-state and diagnosis events over two stages of analysis and multiple rounds of

annotation. To model a change-of-state event in the first stage of analysis, I defined it as a

tuple of five fields or slots: ⟨Cos, Attr, Loc, Val, Ref⟩. See Section 4.2 for an example of

a tuple and how each field is mapped to its value in Figure 4.3.

As a sentence can contain multiple events, I grouped the fields of an event together in a

cohesive, separate structure. I used directed, labeled arcs to link two fields. There are four

arc labels:

1. Label State connects a Cos entity with an Attr or a Loc entity

2. Label Location connects an Attr entity with a Loc entity

3. Label Value connects an Attr or Loc entity with a Val entity

4. Label ReferencedBy connects a Cos or an Attr entity with a Ref entity

I defined a total order between fields, Cos ≺ Attr≺ Loc ≺ Val ≺ Ref and required that,

in an arc A → B, A must precede B according to the total order. As a result, the annotation

of an change-of-state event is a directed acyclic graph (DAG), as shown in Figure 4.7.

Figure 4.7: A snippet featuring the annotation of a change-of-state event
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I also defined a phrase level entity Diagnosis which labels statements in the snippet

that remark on change-of-state events. Diagnosis is a separate entity and not part of the

change-of-state DAG.

During the first stage of annotation, three annotators applied the initial change-of-state

and diagnosis entity model in two rounds of annotation. Their annotations were compared

with IAA measures and differences between annotators were resolved. The feedback from

these comparison rounds was incorporated into the annotation guidelines. A single NLP

researcher completed the annotation of the entire unique rationale snippet corpus based

on the guidelines and the first version of the annotated change-of-state pneumonia report

classification corpus was used to test and train prototype event detection modules.

4.4.2.1 Extending the annotation schema

In the second stage of analysis, I extended the model by expanding the Diagnosis entity into

an event DAG similar to change-of-state. In addition, I added coordination and negation

entities which, when applied to the annotations from the first stage of analysis, transformed

the original DAG structure into a dependency tree.

The diagnosis event

Rationale text snippets can include statements (e.g., likely right pleural effusion), which

indicate a possible or likely diagnosis of a previously mentioned change-of-state. Because

such a statement has the potential to be an important cue for disease detection, I extended

my event analysis by expanding the definition of the previously defined entity Diagnosis

to mark it with a new event type called diagnosis. The diagnosis event is very similar to a

change-of-state event except that the Cos field is replaced by a new field called Dhead which

is the head of a diagnosis statement (e.g., likely in likely right pleural effusion). The Dhead

can contain words of possibility, conditional terms, modal verbs, and hedging language, such

as, likely, possibly, could, and might. In addition to Dhead, the tuple for a diagnosis event

may include the four fields (i.e., Attr, Loc, Val, and Ref); an example is given in Figure 4.8.
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I also created a new arc label, Diag, that connects Dhead with Attr.

Figure 4.8: Annotation of a diagnosis event

Coordination and negation entities

Coordination and negation are common in snippets. Adding features in the schema for

negation and coordination improved the representation in three ways:

1. Connecting entities together in a coordinated structure disambiguates how properties

and values are distributed.

2. The single-headed constraint of a dependency tree can be realized when multiple con-

nected entities are treated as a single entity.

3. Negation can be explicitly placed within the tree to address its intended scope over

connected entities.

For example, in Figure 4.9, the three Attr fields are connected by conjunction words or and

and; the Cos field change is negated by the word No.

Figure 4.9: An example that includes both coordination and negation
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In order to add coordination and negation to the change-of-state and diagnosis event

model, additional labeled text spans and labeled arcs, or entities and relations as defined in

the BRAT schema language, were added to the schema. To annotate coordination, I marked

conjunctions such as and, or, and but as Conj and words such as versus and vs. as Versus. I

distinguished five types of coordination, as illustrated in Figure 4.10, and used arc labels such

as combine and exclude to indicate different relations between the conjuncts. Distinguishing

the type of coordination could be important for disease detection; for instance, coordination

with multiple Alternate arcs could indicate hedging in a diagnosis event. Not all of the

labeled Conj entities in the corpus are strictly English syntax conjuncts or coordinators, for

example the preposition without in the last example in Figure 4.10. I have allowed other parts

of speech, such as the prepositions with and without to be labeled as Conj when the intent of

the report author is to describe a semantic inclusion or exclusion relationship between two

or more entities.

Figure 4.10: Five types of Coordination
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I used the arc label Negate to link a negation word (Negation) with the word it negates.

See Section 4.4.5 for an explanation of how the addition of coordination and negation entities

to the model helped transform the representation from a DAG to a dependency tree.

The new annotation schema marks nine entity types: six as fields in a change-of-state or a

diagnosis event (Cos, Attr, Loc, Val, Ref, and Dhead), two for coordination (Conj and Versus),

and one for negation (Negation for negation words). The arc label set has 12 members: five

for arcs connecting two event fields (State, Location, Value, ReferencedBy, and Diag), six for

arcs connecting a conjunction and a conjunct (Combine, Alternate, Contrast, Exclude, For,

and Against), and one for arcs connecting a negation word and a field (Negate).

The model also includes binary attributes6 that can be applied to the head entities

Cos and Dhead to generalize the specific text value of the entity. For example, there are 8

attributes that can be used to indicate a more general change-of-state, such as Increased,

Decreased, Improved, Worsened, New, Stable, Persistent, and Changed. A Hedge attribute

can be applied to the Dhead entity to indicate that it uses hedging language in its description

of a diagnosis. There are no actual constraints in the annotation schema to limit the number

of attributes that can be applied to an entity, however, some of the attributes are logically

mutually exclusive, such as Increased versus Decreased and are not expected to be applied

to the same entity. For a complete description of the model and its translation into a event

tree schema for the BRAT annotation environment, please see Appendix A and the corpus

development discussion in the next section.

4.4.3 Annotation

The original report annotations described in Tepper et al. (2013) were created using the

GATE7 (Cunningham et al., 2013) annotation environment and exported as XML docu-

ments based on the default GATE schema for annotation. The original rationale snippet

6These attributes are BRAT name and value pairs that can be applied in the annotation tool, they are
not related to the semantic entity label, Attr in the actual change-of-state model.

7https://gate.ac.uk/
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annotations were XML element text spans embedded as data islands within the report XML

document. The change-of-state event and diagnosis annotations were represented as a DAG

in the first round of annotation and as a dependency tree in the second. Although GATE

enables hierarchical XML annotation, it does so in a limited and indirect way, requiring an

ontology-based schema (OWL) for hierarchical relations between annotation elements. The

tool I selected for the annotation task, BRAT, allows direct hierarchical relations to be drawn

between entities and does so in a simple way, see Appendix B for BRAT schemas used in the

pneumonia report classification study. I chose the BRAT tool over continuing to annotate in

GATE for this specific reason. Additional contributing factors were its ease of deployment,

simple web-based user interface, user documentation and training, and bundled examples.

BRAT uses a very concise and straightforward format: source documents are plain text

files that are associated with a annotation file with the same name but different suffix (.ann).

The annotation file uses an unique id, label, and character offsets to indicate the id, name,

and start and end of text span entities in the original plain text source file. Relations, or

labeled arcs, are listed as a label associated with an Arg1 and Arg2, which point to the

unique ids of the associated entities.

A BRAT schema uses a limited syntax to describe the meta-rules for how its four essential

elements should interact in the annotation environment. The four elements in the BRAT

schema are:

1) entity a labeled text span

2) relation a labeled arc between two entities

3) attribute a name/value pair which can be applied to an entity8

4) note an extensible mechanism for inserting arbitrary notes and metadata into annota-

tions

8The BRAT attribute is a type of schema element/rule and does not refer to the Attr entity in the
change-of-state and diagnosis event schema.
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The possible labels for these elements and the named relations between them are described

in the BRAT schema file annotation.conf, which resides in a local or parent directory of

the associated BRAT plain text and annotation files. I converted the logical model described

in the event analysis phase and an initial version of the annotation guidelines into a BRAT

schema for the change-of-state and diagnosis event models. See Appendix A for a complete

description of the change-of-state and diagnosis model and Appendix B for versions of the

BRAT schema developed during the course of the study.

To convert GATE-based XML documents to BRAT-friendly documents, I created a Java

library of conversion utilities. Included in the Java library are BRAT to GATE readers and

writers, BRAT source and annotation file readers and writers, an evaluation library for IAA

based on the BRAT format, and sorting and filtering methods to extract custom subsets of

BRAT annotations based on annotation properties, types, names, and custom search strings.

4.4.3.1 Annotation guidelines

The annotation guidelines provided annotators with instructions on how to install BRAT

and some sample annotations to learn how to manipulate the user interface (e.g., adding,

deleting, and editing annotations). In the first round of annotation, to use BRAT to annotate

a change-of-state tuple, annotators marked five types of entities, corresponding to the five

fields in an event tuple, Cos, Attr, Val, Loc, and Ref. An additional entity, not linked to

the change-of-state tuple, called Diagnosis, labels any text span outside of an event tuple

that contains a diagnostic phrase. See Figure 4.11 for an example of an annotated rationale

snippet featuring an event tuple with all five fields.

Figure 4.11: A rationale snippet featuring a change of state event annotation connecting all

five fields of the change-of-state tuple
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In the change-of-state model, some fields are shared by multiple event tuples, which in

the graph-based model, are represented by directed, labeled arcs linking multiple entities.

Once the entities in a snippet are connected to one another by labeled arcs, one or more

connected, directed graphs are formed by these arcs. From the graph, event tuples can

be derived algorithmically. Figure 4.12 shows the event tuple generated from the graph

previously illustrated in Figure 4.11.

Figure 4.12: A derived event tuple.

A change-of-state and diagnosis event n-tuple represents a single event. The change-of-state

and diagnosis event graph-based model can contain one-or-more event n-tuple events in a

single connected dependency tree. In order to extract features for individual change-of-state

and diagnosis events, one or more n-tuple representations are algorithmically extracted from

the change-of-state and diagnosis event dependency tree.

Note that in the first stage of annotation, events can share entities between them and

entities can have multiple parent entities. The graph in Figure 4.13 features two child Attr

entities connected to a single, parent Cos entity. An event tuple is generated from the graph

for each of the Attr entities and both tuples feature the same shared Cos entity.

In the second stage of annotation, the addition of new entities for the diagnosis event,

negation, and coordination transformed the original DAG structure of the model into a

dependency tree. The more constrained dependency tree structure of the revised change-

of-state and diagnosis event model enables it to be parsed by a dependency parser. See
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Section 4.4.5 for an explanation of the change-of-state and diagnosis event as dependency

tree analysis.

Figure 4.13: A snippet featuring shared entities between events.

A single NLP researcher adapted the annotation guidelines for the extended schema,

providing additional documentation, explanations for new entities and labeled arcs, as well

as screen captures from the annotation environment to provide concrete examples of all

new features, including negation and coordination. The same researcher performed the

final editing pass on the unique snippet corpus, ensuring all snippets conformed to the new

change-of-state and diagnosis model described in the annotation guidelines.

The final versions of the annotation guidelines and BRAT schemas for change-of-state

and diagnosis events represent the final form of the model. The two stages of annotation

completed for this study would be unnecessary if a new corpus was targeted for annotation

with change-of-state and diagnosis events.

4.4.3.2 Inter-annotator annotation process

In order to train annotators, calculate IAA, and finalize the annotation guidelines, 100 snip-

pets were selected at random from the sub-corpus of 1008 unique text snippets. The snippets

were annotated in two passes by three annotators. In the first pass, the annotators read the

annotation guidelines, learned to use the annotation tools, and then annotated the first 20

snippets. IAA was measured at the word, entity, and event tuple level. The annotators then

met and compared annotations, and the feedback from this discussion was used to revise and

finalize the annotation guidelines. In the second pass, the annotators revised their annota-

tion of the first twenty snippets following the revised guidelines, and completed annotating
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the remaining 80 snippets. Again, IAA was calculated and the annotators reconvened to

review their annotations and finalize the annotation guidelines. See Section 4.4.3.4 for the

results of the two rounds of IAA measurement and a discussion of the results.

Once the initial guidelines were finalized in the first round of the annotation process,

and after the IAA process was complete, a single annotator applied the new guidelines to

the entire corpus. See Table 4.6 for corpus statistics of the entities before and after schema

extensions, Table 4.7 for corpus statistics of labeled arcs before and after schema extensions,

and Table 4.8 for attribute corpus statistics.

Entity

Annotation

Stage 1

(Before

Extensions)

Annotation

Stage 2

(After

Extensions)

Cos 1020 1067

Attr 1633 2404

Val 855 937

Loc 1657 1996

Ref 181 179

Dhead 0 517

Diagnosis 439 0

Conj 0 671

Versus 0 39

Negation 0 253

Total 5785 8063

Table 4.6: Corpus change-of-state and diagnosis event entity statistics before extensions

(annotation stage one with six entity types) and after extensions (annotation stage two with

nine entity types)
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Labeled Arc

Annotation

Stage 1

(Before

Extensions)

Annotation

Stage 2

(After

Extensions)

State 1203 1074

Value 852 996

Location 1648 1829

Referenced-by 253 166

Diag 0 526

For 0 39

Alternate 0 430

Against 0 39

Combine 0 986

Contrast 0 17

Exclude 0 11

Negate 0 253

Total 3956 6366

Table 4.7: Corpus change-of-state and diagnosis event labeled arc statistics before extensions

(annotation stage one with four labeled arc types) and after extensions (annotation stage

two with twelve labeled arc types)
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Attribute Count

Changed 567

Decreased 37

Hedge 198

Improved 78

Increased 118

New 98

Persistent 231

Slash Delimited 90

Stable 56

Worsened 65

Total 1538

Table 4.8: Corpus change-of-state and diagnosis event head-attribute (Cos and Dhead) statis-

tics after extensions (annotation stage two with ten attribute types)

4.4.3.3 IAA agreement measures

Three agreement measures were used in the IAA process:

At word level To compare annotation at the word level, a standard BIO scheme to obtain

word-level labels from entity annotations was used: If a text span is labeled as an

entity of type X, the word-level label of the first word in the span is B-X, the label of

other words in the span is I-X, and words that do not appear in any entity are labeled

O. With the word-level labels, precision, recall, and F1-scores of B-X and I-X labels

are calculated in a pairwise comparison of three annotators for both the first 20 and

final 100 snippets. The results for the first 20 and the final 100 are listed in Table 4.9.

At entity level To compare annotations at the entity level, an exact match of entities is

defined—two entities match exactly if their text spans are exactly the same and their

entity types are identical. Table 4.9 show precision, recall, and F1-score in a pairwise

comparison of three annotators for both the first 20 and final 100 snippets.
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At event level From the labeled graph (See Figures 4.11 and 4.13), an algorithm (See

Section 4.4.5.2) implemented as a Java module, extracts event n-tuples as described

in Vanderwende et al. (2013). Two event tuples are considered an exact match if they

have the same fields and the entity labels and values for those fields match exactly.

This is the strictest measure among the three, because two events do not match if

one field in one event does not exactly match the same field in the other event. See

Table 4.9 which shows precision, recall, and F1-score in a pairwise comparison of three

annotators for both the first 20 and final 100 snippets.

4.4.3.4 IAA results

In the first stage, annotations were compared pairwise amongst the three annotators after

each of the two rounds of annotation. As discussed in the previous section, the first stage of

annotation occurred before the schema was extended by the addition of a diagnosis event,

and negation and coordination entities. Table 4.9 lists all of the pairwise IAA scores and

averages for each type of measurement: word, entity, and event tuple and both rounds of

comparison: the first 20 snippets, and all 100 snippets. Table 4.10 lists the pairwise and

average Kappa scores for both rounds of comparison.

A/B A/C B/C Averages

P R F1 P R F1 P R F1 P R F1

Word
20 86.1 84.3 85.2 85.3 85.8 85.6 78.6 83.3 80.9 83.3 84.5 83.9

100 81.8 83.7 82.7 85.3 85.8 85.6 79.8 79.1 79.5 82.3 82.9 82.6

Entity
20 90.4 89.2 89.7 79.3 81.3 80.1 82.4 85.6 83.8 84.0 85.4 84.5

100 87.3 88.5 87.9 81.9 83.2 82.5 84.5 84.5 84.5 84.6 85.4 84.9

Tuple
20 68.3 68.3 68.3 56.1 53.5 54.8 61.0 58.1 59.5 61.8 60.0 60.9

100 68.00 69.4 68.7 72.4 70.7 71.5 76.4 73.1 74.7 72.3 71.0 71.6

Table 4.9: Macro-averaged IAA F-score at the word, entity, and event level for the first 20

and final 100 snippets comparing annotators A, B, and C.
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A/B A/C B/C Avg.

Word
20 92.5 89.0 92.0 91.2

100 90.0 88.3 86.6 88.3

Entity
20 94.9 92.0 95.3 94.1

100 91.6 90.9 88.0 90.2

Tuple
20 36.6 09.6 19.1 21.8

100 37.3 43.1 49.4 43.3

Table 4.10: IAA Kappa at the word, entity, and event level for the first 20 and final 100

snippets comparing annotators A, B, and C.

The average results at the word and entity level are good. The annotators IAA F-scores

are between 82-85 for both the first 20 and the final 100 snippets, suggesting that labeling

entities is relatively easy. Lower scores for the final 100 entities is due to the occurrence

of new ambiguous words not seen in the initial 20 snippets. Examples include words such

as parenchymal, labeled as part of a Val entity rather than a Loc entity, or airspace disease

labeled as an Attr or broken into a Loc (airspace) and Attr (disease). Differences in text

span offsets boundaries lead to general rules for labeling Val entities as individual text spans

and Loc entities as multi-word spans. For example, the words minimal patchy are separated

into two Val entity text spans whereas upper right lobe is combined into a single Loc text

span.

Similarly, the final 100 snippets contain some unseen ambiguous text spans, which con-

tributed to a minimal improvement in IAA F-scores. Examples of unseen ambiguous text

spans in the final 100 include coordination constructions such as consolidation versus atelec-

tasis and atelectasis, effusions, or consolidation, which annotators either treat as a single

text span or label each entity as an individual text span and did not include the coordinating

conjunctions versus and or as part of the entity. Many of these issues resolved in the second

stage of annotation, when the extended schema was introduced, which includes explicit Conj

entities for coordination.
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Agreement at the event level is lower than the other levels due to its exact match re-

quirement: two event tuples match only if all entity fields match. However, the event tuple

agreement for the final 100 snippets is higher than the first 20 because the discussion in the

first stage helped to clarify for annotators how to annotate events. One issue addressed in

discussions was where to attach ambiguous entities to the graph, such as Ref, which could

either attach to the overall change-of-state entity or its child attribute entities.

In this section, I described the development of a change-of-state and diagnosis event

event model and annotation scheme over two stages of annotation. I reviewed the annotation

process, highlighting IAA measures and unique snippet corpus statistics and concluded the

section with a discussion of IAA results.

4.4.4 NER module

NER is the first stage of a two-stage event extraction process I developed for change-of-state

and diagnosis events. In this section, I describe how I implemented an entity detection

module trained and tested on the entity annotations of the unique rationale snippet sub-

corpus described in Section 4.3.2.

After consideration of state-of-the-art Open Source NER systems, I selected version 3.5.2

of the CRF-based Stanford Named Entity Recognizer9 (Finkel et al., 2005). The Stanford

CRF-NER application is a Java-based general implementation of (arbitrary order) linear

chain conditional random field (CRF) sequence models. For training and testing, I used

the recommended default settings for the NE Recognizer10 and for evaluation, I used the

evaluation methods integrated into the Stanford CRF NER package. See Appendix C for

default settings for the Stanford NE Recognizer.

The annotated labeled entity text spans in BRAT format, created during the two rounds

of change-of-state and diagnosis event annotation were used to train and test an NER mod-

ule in Java. In the first round the entity set was made up of Cos, Attr, Val, Loc, Ref, and

9http://nlp.stanford.edu/software/CRF-NER.shtml

10http://nlp.stanford.edu/software/crf-faq.shtml#a
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Diagnosis entities, and in the second round, Cos, Attr, Val, Loc, Ref, Dhead, Conj, Versus,

and Negation entities. The fold configurations for training and evaluating the entity detec-

tion module were created by decomposing the sub-corpus of unique rationale snippets into

five randomly sampled folds based on snippet. Each snippet in the unique snippet corpus

can contain one or more sentences of arbitrary token length. To simplify the distribution of

training and test data across folds in the 5-fold cross-validation process, folds were allowed

to vary in token size and sentence count in order to maintain the integrity of a uniform unit

of information—the snippet.

To train and test the NER module with the Stanford CRF NE Recognizer, all snippets

were converted into token-per-line format, with an empty line representing sentence bound-

aries, and with the following features associated with each token: (1) the entity assigned by

annotation (i.e. Cos, Val, etc.) or O if no entity label was assigned to the token; (2) a B, I,

or O label depending if the token was the beginning of an entity, inside an entity, or outside

an entity; and (3) a lemma11 for the token. See Listing C.1 for complete list of properties

(the default set) used to train and test NER models for the entity detector. See Section 4.5.2

for the results of the two rounds of NER training and testing.

4.4.5 RE dependency parsing module

As mentioned in the previous section, I approached change-of-state and diagnosis event

detection as a two-stage process: (1) NER, and (2) (RE) as dependency parsing. After

the first stage of annotation, while developing a strategy for extracting relations from the

annotated corpus, I observed that the first-stage DAG representations of change-of-states

were similar to natural language dependency trees output by a dependency parser. Nivre

(2006) provides canonical definitions for dependency trees and summarizes in a simple list,

the constraints commonly associate with dependency trees in the literature:

11Lemma were preprocessed using the edu.stanford.nlp.process.Morphology class.
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1. each token in a sentence is represented by a node in the dependency graph with addition

of a special node 0, which is the ROOT of the graph

2. all nodes in the graph are connected

3. every node has at most one head

4. the graph is acyclic

5. the graph is projective12

Given the definition of change-of-state and diagnosis event DAGs in Section 4.4.2, the addi-

tional constraints of items 1 and 3 in the above list transform the event DAGs into depen-

dency trees.

Based on the description of event extraction as dependency parsing in McClosky et al.

(2011), I randomly selected six annotated change-of-state snippets from the unique rationale

corpus and observed that entities such as Cos, Dhead, and Attr form head-like dependency

relations when they are attached to Val, Loc, or Ref entities. This is due to the way change-

of-state and diagnosis events are bound by the syntax of natural language. To determine the

level of effort required to treat event extraction as a dependency parsing task, I extracted

labeled entities in sequence from the six randomly selected change-of-state event annotations

in the BRAT format, ignoring non-labeled words and punctuation, and manually mapped the

labeled arcs in the BRAT annotations to the CoNLL 2007 dependency format for representing

dependency graphs. I then trained a small model with the MALT parser and tested with

the same file. The parser was able to reproduce all six graphs with correct labels.

I revisited the original schema for change-of-state events to determine if all annotations

in the corpus could be represented as dependency trees and found that the exceptions were

change-of-state events where specific labeled arcs did not adhere to dependency tree con-

straints. For example, in Figure 4.14, the coordinating conjunctions, versus and or, are

not explicitly part of the model, and the annotator must create multiple parent connections

12Approximately 20% of change-of-state and diagnosis event event trees in the unique snippet corpus are
non-projective but valid dependency trees based on the canonical definitions listed in Nivre (2006).
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between the Ref entity Again seen and its Attr parent entities, atelectasis, pneumonia, and

aspiration.

Figure 4.14: A first stage version of a change-of-state event that is a DAG but does not

conform to the constraints of a dependency tree

Adding an explicit entity for coordination and labeled arcs for connecting coordinating

conjunctions and the entities they coordinate allowed the DAG representation to be trans-

formed into a dependency tree. See Figure 4.15 for a version of the same change-of-state

event annotation updated using the second stage schema. In the updated example, the Ref

entity Again seen, has only one parent or head, the Versus entity versus. The coordination

entities, Versus with value versus and Conj with value or disambiguate the way the Attr

entities, atelectasis, pneumonia, and aspiration are coordinated in the sentence and constrain

these relations to be single-headed.

Figure 4.15: A second stage version of a change-of-state event that conforms to the con-

straints of a dependency tree
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1 1 lungs lung Loc Loc T545 5 Location _ _

2 increased increase Cos Cos T546 0 ROOT _ _

3 3 bibasilar bibasilar Loc Loc T547 4 DEP _ _

4 pulmonary pulmonary Loc Loc T547 5 Location _ _

5 5 opacities opacity Attr Attr T548 2 State _ _

6 likely likely Dhead Dhead T781 7 DEP _ _

7 7 representing represent Dhead Dhead T781 0 ROOT _ _

8 atelectasis atelectasis Attr Attr T785 10 Combine _ _

9 9 aspiration aspiration Attr Attr T784 10 Combine _ _

10 or or Conj Conj T782 7 Diag _ _

11 11 infection infection Attr Attr T783 10 Combine _ _

Listing 4.1: Example of a rationale snippet in CoNLL 2007 format

By adding a diagnosis event and entities for coordination and negation, I was able to

convert all of the BRAT entities and relations from the unique rationale snippet corpus

into CoNLL 2007 dependency format. See 4.1 for an example of an unique rationale text

snippet converted to CoNLL 2007 format. See Appendix D for a brief description of the

CoNLL 2007 format. Converting the DAG structures of the first round of annotation into

dependency trees by adding additional entities for negation and coordination to the change-

of-state schema was the primary reason for a second round of annotation. I maintained the

two sets of annotation in order to evaluate the cost or benefit of additional entities to the

performance of the NER extraction module.

I then trained and tested dependency parsing models based on the annotated pneumonia

report classification corpus of 1008 unique rationale snippets, one version with all tokens and

punctuation included in the token sequence and another version using only the sequence of

entity tokens, and all other tokens and punctuation removed. I treated these experiments as

oracle snippet experiments, where the named entities are not extracted by the NER module,

but rather from the gold standard.
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I also trained and tested a separate collection of dependency models based on the system-

generated named entities extracted by my NER module. Similar to the oracle snippet ex-

periments, these experiments have two versions, one, where all tokens and punctuation in

the sequence are included in the model and output files, and a version where only system-

generated entities are included in the model and output files. Due to the possibility that

the system-generated named entities used in the entity-only experiments may not share the

same token sequences as the gold standard, a merge algorithm re-integrates the entity-only

token sequence back into a canonical sequence, including all tokens and punctuation, for

evaluation purposes.

I used the 2.7.2 version of the MALT dependency parser13 (Nivre et al., 2007), with

default configuration properties, for training and testing dependency trees. I used MaltEval14

(Nilsson and Nivre, 2008) for evaluation. MaltEval is a standalone Java application created

to provide the dependency parsing community a new quantitative and qualitative tool to

evaluate the performance of dependency parsers and analyze errors in place of the Perl script,

eval07.pl, used for evaluation in the original CoNLL 2007 Shared Task on Dependency

Parsing. The version of MaltEval I used for evaluation was released October, 2014.

For the conversion to CoNLL 2007 dependency format, I made non-final words of an

entity depend on the final word with a dummy arc label DEP. Furthermore, the head of

the entity at the root of an event tree depends on a dummy node with arc label ROOT. For

instance, given a sentence w1 w2 w3 w4 w5, assume that w1 w2 and w4 w5 are two entities

and the first entity depends on the second entity with the label REL. After the conversion,

w1 will depend on w2 with a DEP label, and the same is true for w4 and w5 ; w2 will depend

on w5 with label REL and w5 on a dummy word with label ROOT; w3 is ignored since it is

not part of any entity.

13http://www.maltparser.org/

14http://www.maltparser.org/malteval.html
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1 1 2 3 4 5 6 7 8 9 10

1 minimal _ Val Val _ 2 DEP _ _

3 2 patchy _ Val Val _ 3 REL_1 _ _

3 edema _ Attr Attr _ 4 DEP _ _

5 4 improved _ Cos Cos _ 0 ROOT _ _

Listing 4.2: Example of a rationale snippet converted to CoNLL 2007 format

A rationale snippet can contain multiple sentences and a sentence can in turn contain

multiple event trees. In the unique snippet corpus, there are 1008 unique snippets, 1268

sentences, and 1743 ROOT arcs (one for each event tree).

4.4.5.1 Measuring performance with MaltEval

The default measurements of performance in MaltEval, described in the list below, compare

CoNLL-formatted system-generated and gold-standard parses by token. MaltEval considers

a token to be the collection of properties described by the ten fields in a single row of a file in

the CoNLL format. MaltEval default token counts concern the values of two of the columns

in the format, HEAD in column 7 and DEPREL in column 8. HEAD, identifies the head of a

token by its ID column or, if the token is the root of the dependency relation, it is assigned

0. DEPREL contains the label of the dependency relation. If the HEAD value of the token

is 0, and it is indeed the head of the dependency tree, its DEPREL will be labeled ROOT. A

multi-word token, such as a named entity, can be described by labeling its non-head tokens

with the dependency relation DEP and its HEAD value the ID of its head token. See Listing

4.2 for an example of a simple change-of-state event represented in the CoNLL format.

MaltEval offers additional types of measurements for dependency parsing, however, the

measurements of performance used in my experiments are based only on counts of token

properties. Three measures count and compare tokens by values in the HEAD and/or DEPREL

columns and report an overall accuracy with no detailed breakdown of calculations:



86

Label attachment score (LAS) measures both HEAD and DEPREL values. If both are the

same in system generated and gold standard tokens, the system token is considered a

correct LAS match.

Unlabeled attachment score (UAS) measures only HEAD values. If system generated

and gold standard tokens have the same HEAD value, the system token is considered a

correct UAS match.

Labeled accuracy (LA) measures only DEPREL values. If system generated and gold stan-

dard tokens have the same DEPREL value, the system token is considered a correct LA

match.

These three measures were developed for CoNLL 2006 and 2007 Shared Tasks on Dependency

Parsing and have become a standard way to compare parsing performance. See Listing C.2

in Appendix C for an example of a MaltEval configuration file.

I reported LA, LAS, and UAS two ways, including DEP and ROOT relations, and without.

DEP and ROOT relations are common to all dependency schemas and reporting the results

two ways allows for a measure of labeling with only the labels from the change-of-state and

diagnosis event schemas applied. I also included in the reports, a breakdown of the label

accuracy (LA) calculations by dependency relation (DEPREL), reporting precision, recall, and

F-score. See Table 4.27 for a complete evaluation report of dependency parsing for snippets

with oracle NER entities including all tokens and punctuation, Table 4.28 for a report with

oracle snippets and entities only, Table 4.29 for dependency parses based on system-generated

named entities including all tokens and punctuation, and Table 4.30 for system-generated

named entities only, merged with all tokens and punctuation for evaluation.
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4.4.5.2 N-Tuple generation algorithm

Creating tuple representations from the change-of-state and diagnosis event graph demon-

strates fidelity to the original event structure proposed by Vanderwende et al. (2013) and

simplifies the creation of event-based features as described in Section 4.4.6. The change-of-

state and diagnosis event n-tuple represents a single event whereas the change-of-state and

diagnosis event dependency tree graph contains one or more events or n-tuples. The algo-

rithm used to derive event tuples from the dependency tree graph created by the entities and

their labeled arcs in change-of-state and diagnosis events is a simple recursive graph traversal

from the root entity to the terminal nodes of the graph. Tuple slots are filled as the graph is

traversed and if a new entity is found and its slot is filled, a new tuple is created using all of

the original tuples values with the new entity filling the slot position of its similarly named

entity in the previous step. All combinations of slots and entities are created with regard

to duplication (duplicate tuples by entity id are removed in final step). See Figure 4.11 and

Figure 4.12 for an example of a dependency tree and a derived change-of-state and diagnosis

event tuple.

4.4.6 Event-based feature extraction

I introduce six types of event-based features that I integrated into the feature sets for pneu-

monia report classification experiments. Table 4.11 provides a description of the new event-

based features and Table 4.12 describes the feature type membership in the canonical features

sets used in my pneumonia report classification experiments.
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Feature Description

Entity Name and value pair of a event-based named entity annotation

Pattern: {Entity Type} = {Entity Value}

Example: VAL=CLEAR

Attribute Attribute of an event-based named entity annotation (only used

in oracle experiments—no extractor was developed to label at-

tributes, the annotations only exist in the gold standard)

Pattern: { Attribute Value}

Example: INCREASED

Tuple N -Tuple extracted from a change-of-state or diagnosis event

Pattern:

[{Cos Value},{Attr Value},{Val Value},{Loc Value},{Ref Value}]

Example:

[NEW NEG,ABNORMALITIES,FOCAL,LUNG,AS PER LAST EXAM]

Change-of-

state

Specific Cos value replaced with a generic COS. Val fields in the

n-tuple are normalized with an underscore if they are multi-word,

and prefix the Attr value. Loc entities are added as a suffix to

the Attr value with an @ symbol.

Pattern: COS→{Val Value} {Attr Value} @ {Loc Value}

Example: COS→PATCHY EDEMA @ LEFT LUNG

Diagnosis Specific Dhead value replaced with a generic DIAGNOSIS, Val

and Loc fields follow same pattern as Change-of-state feature

above.

Pattern: DIAGNOSIS→{Val Value} {Attr Value} @ {Loc Value}

Example: DIAGNOSIS→PNEUMONIA @ RIGHT LUNG

Observation Specific Attr value replaced with a generic OBS (for observation),

Val and Loc fields follow same pattern as Change-of-state feature

above.

Pattern: OBS→{Val Value} {Attr Value} @ {Loc Value}

Example: OBS→PATCHY ATELECTASIS @ LUNGS

Table 4.11: A description and example of event-based features generated from change-of-state

and diagnosis event dependency trees
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4.4.7 Pneumonia report classification experiments

In the final stage of the pneumonia report classification study, I integrated the event-based

features I defined in the previous section, into the baseline experiments I replicated from

Tepper et al. (2013). Table 4.12 describes the three sets of feature types that I used in my

experiments.

Feature Baseline Event-only All

Word Unigram X X

Alternating Conjunction X X

Entity Attribute Name & Value X X

Entity Name & Value X X

Event Tuple X X

Change-of-state X X

Diagnosis X X

Observation X X

Table 4.12: A table comparing the features that make up the three types of feature sets used

in pneumonia report classification experiments

The results of the pneumonia report classification experiments, discussed in Section 4.5.4,

suggested that the addition of event-based features to the baseline n-gram features and the

use of a feature threshold of 250 improved the performance of the pneumonia report classifier

for both categories, CPIS and PNA, when applied to the whole text of the report. Results

for predicted and oracle snippets were mixed, however, with improvement over the baseline

for the CPIS category but not for PNA. To explore the effect of feature selection across the

feature sets, feature threshold experiments were run using increasing increments of features

up to the maximum number of significant features ranked by χ2. See Section 4.5.4.1 for the

results of the feature threshold experiments for whole documents and Appendix E for the

results of feature threshold experiments for predicted and oracle snippets.
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4.5 Results

In this section, I detail the results of pneumonia report classification experiments and eval-

uation measures for corpus annotation and snippet prediction, NER, and RE module devel-

opment. Table 4.13 describe the subsections of the results Section.

Section Description

Baseline for

snippet prediction

Rationale snippet prediction experiments and baseline VAP report

classification experiments replicated from descriptions in Tepper

et al. (2013)

Inter-annotator

agreement

Two rounds of annotations by three NLP researchers during the

first stage of change of state annotation of the unique rationale

snippet corpus

NER NER experiments on the unique rationale snippet corpus as a

result of the two stages of annotation

Event detection Event detection experiments using a dependency parser to draw

labeled arcs between NER annotated entities from sentences in

the unique rationale snippets corpus

Event-based

classification

Pneumonia report classification experiments integrating features

extracted from event annotations

Table 4.13: Results section overview

All experiments in this study were limited by the amount of data available for training

and testing and implemented 5-fold cross-validation. Each of the five folds was broken down

into a 80%/20% split of training and testing data. There was no data overlap between testing

and training splits, and each fold’s test split did not overlap with any other fold’s test split.

See Table 1 in the dissertation frontmatter for a list of the abbreviations and terms used in

the result tables headers.



91

4.5.1 Baseline results

In this section, I report snippet prediction module performance and pneumonia report clas-

sification results generated by the baseline system I replicated from the system described in

Tepper et al. (2013). See Section 4.4.1 for a detailed review of the baseline system imple-

mentation phase.

4.5.1.1 Snippet prediction results

Table 4.14 lists the results of snippet prediction in Tepper et al. (2013) using measures of

sentence overlap and snippet overlap. I implemented an exact match sentence label score

which is similar, but not exactly the same, as sentence overlap. I treated the snippet pre-

diction task as a binary sentence labeling task and normalized the labels of all sentences in

the corpus before training and testing. The label boundaries match the sentences exactly,

so there is no overlap of a label across sentences. My measure is simply an exact sentence

label to sentence label comparison, where a sentence can either be labeled Inside a snippet or

Outside a snippet. Contiguous Inside sentences are considered part of a single multi-sentence

snippet. The results of my replicated snippet prediction module are listed in Table 4.15.

My snippet prediction module is a binary sentence classifier, and its trained on reports

with snippets only version performed with an F-score of 88.3 for CPIS, and 70.2 for PNA,

compared to Tepper et al. (2013)’s snippet prediction module with no prevTag feature (equiv-

alent to a binary classifier), trained on reports with snippets only, which performed with an

F-score of 88.4 for CPIS, and 70.4 for PNA. The performance of the snippet prediction mod-

ules for both CPIS and PNA are very similar and suggest the exact match sentence label to

sentence label measure I used to evaluate the performance of my snippet prediction module

is equivalent to the sentence overlap measure used in Tepper et al. (2013).

Another observation regarding Table 4.15 is that a snippet prediction module trained on

reports with snippets only does not outperform a snippet prediction module trained on all

reports when compared using the exact sentence label match measure. The module trained
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on all reports has a slightly higher F-score, however, for both CPIS and PNA, the trained

on reports with snippets only module has higher recall. The higher recall leads to more false

positive snippets predicted, but this in turn helps improve F-score performance for both

CPIS and PNA report classification as demonstrated by the results in Table 4.16. Based on

these results, I trained my snippet prediction module on reports with snippets only, because

higher recall is preferred over precision for this task.

Type Feature Model
Sentence Overlap Snippet Overlap

P R F1 P R F1

CPIS
w/prevTag feature 91.1 84.0 87.4 95.6 89.9 92.7

no prevTag feature 86.6 90.4 88.4 91.6 96.3 93.9

PNA
w/prevTag feature 61.2 88.9 72.5 67.6 94.2 78.7

no prevTag feature 62.8 80.2 70.4 66.8 94.0 78.1

Table 4.14: Performance results for snippet prediction trained on reports with snippets only

originally published in Tepper et al. (2013)

Type Trained On S G Θ TP TN FP FN P R F1 Acc

CPIS
reports with snippets only 1735 1648 250 1494 11653 241 154 86.1 90.7 88.3 97.1

All reports 1622 1648 250 1448 11720 174 200 89.3 87.9 88.6 97.3

PNA
reports with snippets only 1422 1135 250 898 11921 524 237 63.2 79.1 70.2 94.4

All reports 858 1135 250 635 12222 223 500 74.0 55.9 63.7 94.7

Table 4.15: Performance results by exact sentence match (similar to sentence overlap mea-

sure) for replicated snippet prediction module trained on all reports or reports with snippets

only
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Type Trained On S G Θ TP FP FN P R F1 Acc

CPIS
Snippets only 1341 1341 0 1155 186 186 76.9 72.4 74.2 86.1

All reports 1341 1341 0 1144 197 197 74.3 71.9 72.3 85.3

PNA
Snippets only 1343 1343 0 1093 250 250 74.4 72.2 72.4 81.4

All reports 1343 1343 0 1083 260 260 73.9 71.3 71.7 80.6

Table 4.16: Baseline pneumonia report classification results for predicted snippets trained

on reports with snippets only compared to trained on all reports.

As in the original system described in Tepper et al. (2013), a feature selection threshold

(θ) of 250 χ2 feature selection approach was used for all replicated CPIS and PNA snippet

prediction experiments. Table 4.17 lists the top 10 word unigram features for both labels.

The list contains word unigrams one would expect for the domain.

CPIS PNA

ATELECTASIS ATELECTASIS

OPACITIES PNEUMONIA

LUNG OPACITIES

DIFFUSE LUNG

PNEUMONIA DIFFUSE

EDEMA EDEMA

LOBE PATCHY

PATCHY LOBE

FOCAL CONSISTENT

BIBASILAR LOWER

Table 4.17: Top 10 word unigram features (all feature values converted to uppercase for case

insensitive ranking) ranked by χ2 feature selection for replicated CPIS and PNA snippet

prediction experiments
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4.5.1.2 Baseline pneumonia report classification results

Table 4.18 lists the results of Tepper et al. (2013)’s baseline pneumonia report classification

experiments for CPIS and PNA, with whole reports, oracle snippets, and predicted snippets

using the baseline feature set (unigrams and alternating conjunctions). Table 4.19 lists the

results of the same experiments run on the replicated baseline system including additional

experiments incorporating χ2 feature selection with a threshold (θ) of 250 features.

Unit of Classification S G Θ TP FP FN P R F1 Acc

CPIS

Whole Document 1341 1341 0 1150 191 191 79.3 66.9 72.6 85.8

Predicted Snippets 1341 1341 0 1168 173 173 78.9 75.0 76.9 87.1

Oracle Snippets 1341 1341 0 1232 109 109 88.0 83.9 85.9 91.9

PNA

Whole 1343 1343 0 1054 289 289 70.2 66.6 68.4 78.5

Predicted Snippets 1343 1343 0 1103 240 240 75.4 72.6 74.0 82.1

Oracle Snippets 1343 1343 0 1137 206 206 79.3 75.8 77.5 84.3

Table 4.18: Pneumonia report classification results from Tepper et al. (2013) with baseline

features
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Unit of Classification S G Θ TP FP FN P R F1 Acc

CPIS

Whole
1341 1341 0 1134 207 207 74.3 68.9 71.3 84.6

1341 1341 250 1153 188 188 77.0 71.1 73.4 86.0

Predicted Snippets
1341 1341 0 1155 186 186 76.9 72.4 74.2 86.1

1341 1341 250 1154 187 187 77.6 71.1 73.4 86.1

Oracle Snippets
1341 1341 0 1217 124 124 85.6 81.0 83.0 90.8

1341 1341 250 1224 117 117 87.3 81.3 83.4 91.3

PNA

Whole
1343 1343 0 1047 296 296 70.1 68.8 69.3 80.0

1343 1343 250 1085 258 258 74.1 71.7 72.5 80.8

Predicted Snippets
1343 1343 0 1093 250 250 74.4 72.2 72.4 81.4

1343 1343 250 1119 224 224 77.5 74.4 75.1 83.3

Oracle Snippets
1343 1343 0 1139 204 204 78.6 77.1 77.6 84.8

1343 1343 250 1147 196 196 79.3 77.8 78.3 85.4

Table 4.19: Replicated baseline pneumonia report classification results with baseline features.
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Table 4.20 compares, side by side the results of experiments with baseline features in

Tepper et al. (2013) (System A) and the replicated system, with feature selection (System

B*), and without feature selection (System B).

Text Boundary Type System θ P R F1 Acc

Whole Document

CPIS

A 0 79.3 66.9 72.6 85.8

B 0 74.3 68.9 71.3 84.6

B* 250 77.0 71.1 73.4 86.0

PNA

A 0 70.2 66.6 68.4 78.5

B 0 70.1 68.8 69.3 80.0

B* 250 74.1 71.7 72.5 80.8

Predicted Snippet

CPIS

A 0 78.9 75.0 76.9 87.1

B 0 76.9 72.4 74.2 86.1

B* 250 77.6 71.1 73.4 86.1

PNA

A 0 75.4 72.6 74.0 82.1

B 0 74.4 72.2 72.4 81.4

B* 250 77.5 74.4 75.1 83.3

Oracle Snippet

CPIS
A 0 88.0 83.9 85.9 91.9

B 0 85.6 81.0 83.0 90.8

B* 250 87.3 81.3 83.4 91.3

PNA

A 0 79.3 75.8 77.5 84.3

B 0 78.6 77.1 77.6 84.8

B* 250 79.3 77.8 78.3 85.4

Table 4.20: Comparison of pneumonia report classification experiments with baseline features

The charts in Figures 4.16 and 4.17 present a visual comparison of the three systems

and demonstrate that although there is differences in performance, the systems all follow

a similar pattern when features are extracted from whole reports, predicted snippets, and

oracle snippets.
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Figure 4.16: Comparison of F1 score in CPIS classification experiments with baseline fea-

tures: Tepper et al. (2013) (System A), replicated baseline (System B), and replicated

baseline with feature selection Θ=250 (System B*)

Figure 4.17: Comparison of F1 score in PNA classification experiments with baseline features:

Tepper et al. (2013) (System A), replicated baseline (System B), and replicated baseline with

feature selection Θ=250 (System B*)
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Although the results of the replicated system (Systems B and B*) do not match the

performance results published in Tepper et al. (2013), they do follow a similar pattern, both

with and without feature selection, of improved performance when features are extracted

from predicted and oracle snippets over features extracted from the entire report. For my

pneumonia report classification experiments, I want to determine if event-based features can

improve the performance of the pneumonia report classifier, and if so, by how much. There-

fore, Tables 4.21 and 4.22 are the baseline F-scores I target in my experiments integrating

event-based features, with and without feature selection.

Text Boundary Type F1

Whole Document
CPIS 71.3

PNA 69.3

Predicted Snippet
CPIS 74.2

PNA 72.4

Oracle Snippet
CPIS 83.0

PNA 77.6

Table 4.21: Performance of the replicated pneumonia report classification system (System

B) with baseline features
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Text Boundary Type F1

Whole Document
CPIS 73.4

PNA 72.5

Predicted Snippet
CPIS 73.4

PNA 75.1

Oracle Snippet
CPIS 83.4

PNA 78.3

Table 4.22: Performance of the replicated pneumonia report classification system (System

B*) with baseline features, feature selection, and a feature threshold θ=250

4.5.2 NER results

The results of the NER performance evaluation, performed after both the first and second

stage of annotation, are listed at the entity level for round one in Table 4.23, at the token

level for round one in Table 4.24, at the entity level for round two in Table 4.25, and at the

word level for round two in Table 4.26. The NER module depends on the Stanford CRF-NE

Recognizer, version 3.5.2, for training models and labeling test files.

In general, the system performs very well after both stages. For the first stage of an-

notation, six named entities are included in the evaluation: Cos, Attr, Val, Loc, Ref, and

Diagnosis. In the second stage, The lowest performing entities, Dhead and Ref, are the

ones in the set that were most likely to contain general and productive non-domain spe-

cific language, such as terms of likelihood and possibility in the case of Dhead, and general

descriptions of previous reports, conditions, or patient state in the case of Ref.

The improvement of performance with the addition of entities in the second round is

unexpected. Additional entities add more complexity to the task, but may also, as the

results demonstrate, restrict the tokens in the string that are labeled O. This may reduce the

ambiguity of tokens representing non-change-of-state event entities such as the additional

entities for coordination and negation.
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Entity type S G TP FP FN P R F1

Attr 1616 1633 1527 89 106 94.5 93.5 94.0

Cos 1021 1020 935 86 85 91.6 91.7 91.6

Val 814 855 734 80 121 90.2 85.9 88.0

Loc 1651 1657 1529 122 128 92.6 92.3 92.4

Ref 174 181 138 36 43 79.3 76.2 77.8

Diagnosis 451 439 375 76 64 83.2 85.4 84.3

Totals 5727 5785 5238 489 547

macro average 88.6 87.5 88.0

micro average 91.5 90.5 91.0

Table 4.23: Performance of Stanford CRF-NER on the unique rationale snippet corpus, at

the entity level, after the first stage of annotation.

Entity type S G TP FP FN P R F1

Attr 1670 1704 1592 78 112 95.3 93.4 94.4

Cos 1548 1559 1467 81 92 94.8 94.1 94.4

Val 1113 1182 1036 77 146 93.1 87.7 90.3

Loc 2921 2948 2792 129 156 95.6 94.7 95.1

Ref 462 470 423 39 47 91.6 90.0 90.8

Diagnosis 2759 2626 2436 323 190 88.3 92.8 90.5

Totals 10473 10489 9746 727 743

macro average 93.1 92.1 92.6

micro average 93.1 92.9 93.0

Table 4.24: Performance of Stanford CRF-NER on the unique rationale snippet corpus, at

the token level, after the first stage of annotation.
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For the second stage, nine entities are included in the evaluation: Cos, Val, Attr, Val,

Loc, Ref,Conj, Versus, and Negation.

Entity type S G TP FP FN P R F1

Attr 2414 2404 2346 68 58 97.2 97.6 97.4

Cos 1067 1067 1011 56 56 94.8 94.8 94.8

Dhead 510 517 454 56 63 89.0 87.8 88.4

Loc 2004 1996 1899 105 97 94.8 95.1 95.0

Ref 176 179 155 21 24 88.1 86.6 87.3

Val 908 937 837 71 100 92.2 89.3 90.7

Conj 678 671 636 42 35 93.8 94.8 94.3

Versus 35 39 34 1 5 97.1 87.2 91.9

Negation 252 253 244 8 9 96.8 96.4 96.6

Total 8044 8063 7616 428 447

macro average 93.7 92.2 92.9

micro average 94.7 94.5 94.6

Table 4.25: Performance of Stanford CRF-NER on the unique rationale snippet corpus, at

the entity level, after the second stage of annotation.
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Entity type S G TP FP FN P R F1

Attr 2492 2499 2444 48 55 98.1 97.8 98.0

Cos 1293 1306 1240 53 66 95.9 95.0 95.4

Dhead 1037 1026 962 75 64 92.8 93.8 93.2

Loc 3240 3249 3164 76 85 97.7 97.4 97.5

Ref 495 466 438 57 28 88.5 94.0 91.2

Val 1132 1160 1056 76 104 93.8 91.0 92.2

Conj 696 697 654 42 43 94.0 93.8 93.9

Versus 35 40 34 1 6 97.1 85.0 90.7

Negation 255 262 246 9 16 96.5 93.9 95.2

Total 10675 10705 10238 437 467

macro average 94.9 93.5 94.1

micro average 95.9 95.6 95.8

Table 4.26: Performance of Stanford CRF-NER on the unique rationale snippet corpus, at

the token level, after the second stage of annotation.

4.5.3 Oracle and predicted event extraction results

Event extraction for the unique rationale snippet is a dependency parsing task. The labeled

arcs used to create connections between entities in the first stage annotation schema did not

support the creation of true dependency trees for all change-of-state and diagnosis events

in the unique rationale snippet corpus. After the second stage of annotation, the addition

of a diagnosis event, and explicit coordination and negation entities, enabled annotators to

create dependency trees with the labeled arcs available in the schema. There are twelve

labeled arc types included in the performance evaluation of the dependency parsing module,

not including the two special cases: ROOT and DEP, which describe the special node 0, char-

acteristic of a dependency tree, and the dependent relation, DEP, which describes a non-head

token’s relation to its head in a dependent dependency relation. Token nodes are connected

in the dependency tree with either head relations, which are the names of labeled arcs in

the annotation scheme, or dependent relations, which are named DEP, and only occur in the
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dependency tree (they are the the tokens in the entity annotation text span to the left of

the head token).

Version 2.7.2 of the MALT parser was used to train models and parse the NE annotated

unique rationale snippet corpus output by the NER module. MaltEval was used to evaluate

the output dependency trees in the CoNLL 2007 Shared Task for Dependency Parsing format.

The event extraction process was evaluated in four scenarios:

1) Oracle NER entities with all text and punctuation Unique rationale snippets with

gold standard named entities and labeled arcs, created during the second stage of an-

notation were used to train and test. All non-entity tokens and punctuation were

included in the annotated sentences used to test and train. See Table 4.27 for detailed,

per dependency label, Label Accuracy (LA) results for this scenario.

2) Oracle NER entities with only entities The same snippets with gold standard named

entities and labeled arcs, created during the second stage of annotation, were used to

train and test. Only tokens that participated in a dependency relation were included

in the sentences used to train and test. See Table 4.28 for detailed, per dependency

label, Label Accuracy (LA) results for this scenario.

3) System-generated NER entities with all text and punctuation The same snip-

pets with gold standard named entities and labeled arcs, created during the second

stage of annotation were used to train the models. Snippet sentences with only system-

generated NER entities were used to test the models. The testing sentences included

all punctuation and non-entity tokens in the original sentence string. See Table 4.29

for detailed, per dependency label, Label Accuracy (LA) results for this scenario.

4) System-generated NER entities with only entities The same snippets with gold

standard named entities and labeled arcs, created during the second stage of annotation

were used to train the models. Snippet sentences with only system-generated NER

entities were used to test the models. The testing sentences included only tokens that

participated in dependency relations. An algorithm using trace metadata in column 7
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of the CoNLL 2007 dependency format was used to merge the entity-only token string

with the original complete sentence token string in the gold standards to evaluate. This

was done to accommodate the scenario in which the tokens that participated in the

entity-only test output differed from the tokens in the original string that participated

in dependency relations. The merge algorithm ensures that there is a token-to-token

mapping between strings for evaluation. See Table 4.30 for detailed, per dependency

label, Label Accuracy (LA) results for this scenario.

The strategy of removing the non-participating tokens in the sentence string before train-

ing or testing improved both precision and recall as demonstrated in the comparison of results

in all four tables below as well as summary accuracy scores in Table 4.31.
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Arc label System Gold TP FP FN P R F1

Diag 417 526 398 19 128 95.4 75.7 84.4

Location 1443 1828 1395 48 433 96.7 76.3 85.3

ReferencedBy 102 166 101 1 65 99.0 60.8 75.4

State 602 1072 559 43 513 92.9 52.1 66.8

Value 926 994 898 28 96 97.0 90.3 93.5

Alternate 355 430 340 15 90 95.8 79.1 86.6

Against 38 38 34 4 4 89.5 89.5 89.5

Combine 809 984 718 91 266 88.8 73.0 80.1

Contrast 0 17 0 0 17 0.0

Exclude 8 11 7 1 4 87.5 63.6 73.7

For 37 39 34 3 5 91.9 87.2 89.5

Negate 249 252 244 5 8 98.0 96.8 97.4

Subtotal 4986 6357 4728 258 1629

macro average 86.0 70.4 76.9

micro average 94.8 74.4 83.4

ROOT 3159 1769 1741 1418 28 55.1 98.4 70.7

DEP 2560 2579 2546 14 33 99.5 98.7 99.1

Total 10705 10705 9015 1690 1690

macro average 84.8 74.4 78.0

micro average 84.2 84.2 84.2

Table 4.27: Performance of dependency parsing of oracle named entities from unique ratio-

nale snippets including all tokens and punctuation
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Arc label System Gold TP FP FN P R F1

Diag 501 526 470 31 56 93.8 89.4 91.5

Location 1748 1817 1672 76 145 95.7 92.0 93.8

ReferencedBy 159 166 157 2 9 98.7 94.6 96.6

State 1000 1066 919 81 147 91.9 86.2 89.0

Value 985 987 962 23 25 97.7 97.5 97.6

Alternate 433 430 410 23 20 94.7 95.3 95.0

Against 37 38 32 5 6 86.5 84.2 85.3

Combine 884 984 781 103 203 88.3 79.4 83.6

Contrast 9 17 1 8 16 11.1 5.9 7.7

Exclude 6 11 6 0 5 100.0 54.5 70.6

For 40 39 34 6 5 85.0 87.2 86.1

Negate 252 252 247 5 5 98.0 98.0 98.0

Subtotal/ 6054 6333 5691 363 642

macro average 86.8 80.4 82.9

micro average 94.0 89.9 91.9

ROOT 2019 1745 1675 344 70 83.0 96.0 89.0

DEP 2584 2579 2538 46 41 98.2 98.4 98.3

Total 10657 10657 9904 753 753

macro average 87.3 82.8 84.4

micro average 92.9 92.9 92.9

Table 4.28: Performance of dependency parsing of oracle named entities from unique ratio-

nale snippets including entities only
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Arc label System Gold TP FP FN P R F1

Diag 428 526 391 37 135 91.4 74.3 82.0

Location 1445 1828 1367 78 461 94.6 74.8 83.5

ReferencedBy 95 166 92 3 74 96.8 55.4 70.5

State 581 1072 536 45 536 92.3 50.0 64.9

Value 893 994 830 63 164 92.9 83.5 88.0

Alternate 357 430 338 19 92 94.7 78.6 85.9

Against 35 38 31 4 7 88.6 81.6 84.9

Combine 831 984 678 153 306 81.6 68.9 74.7

Contrast 1 17 0 1 17 0.0 0.0

Exclude 8 11 4 4 7 50.0 36.4 42.1

For 34 39 32 2 7 94.1 82.1 87.7

Negate 249 252 241 8 11 96.8 95.6 96.2

Subtotal 4957 6357 4540 417 1817

macro average 81.2 65.1 71.7

micro average 91.6 71.4 80.3

ROOT 3156 1769 1662 1494 107 52.7 94.0 67.5

DEP 2562 2579 2354 208 225 91.9 91.3 91.6

Total 10675 10705 8556 2119 2149

macro average 79.9 69.0 72.8

micro average 80.1 79.9 80.0

Table 4.29: Performance of dependency parsing of system-generated named entities from

unique rationale snippets including all tokens and punctuation
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Arc label System Gold TP FP FN P R F1

Diag 504 526 453 51 73 89.9 86.1 88.0

Location 1758 1828 1636 122 192 93.1 89.5 91.2

ReferencedBy 154 166 142 12 24 92.2 85.5 88.8

State 1000 1072 895 105 177 89.5 83.5 86.4

Value 948 994 890 58 104 93.9 89.5 91.7

Alternate 430 430 407 23 23 94.7 94.7 94.7

Against 35 38 30 5 8 85.7 78.9 82.2

Combine 865 984 737 128 247 85.2 74.9 79.7

Contrast 6 17 0 6 17 0.0 0.0

Exclude 7 11 7 0 4 100.0 63.6 77.8

For 34 39 31 3 8 91.2 79.5 84.9

Negate 253 252 240 13 12 94.9 95.2 95.0

Subtotal 5994 6357 5468 526 889

macro average 84.2 76.7 80.0

micro average 91.2 86.0 88.5

ROOT 2028 1769 1640 388 129 80.9 92.7 86.4

DEP 2493 2579 2407 86 172 96.6 93.3 94.9

Total 10515 10705 9515 1000 1190

macro average 84.8 79.1 81.6

micro average 90.5 88.9 89.7

Table 4.30: Performance of dependency parsing of system-generated named entities from

unique rationale snippets including entities only
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Table 4.31 lists the summary Label Accuracy (LA) (head and dependency label), Unla-

beled Attachment Score (UAS) (head only), and Label Attachment Score (LAS) (dependency

label only) for the four scenarios described in tables above. Each row scenario lists the results

when ROOT and DEP arcs and included in the evaluation, and when they are not. These

are the standard scores used to compare dependency parsing systems and are based on the

format of the results used in the CoNLL 2007 Shared Task on Dependency Parsing.

ROOT

and

DEP arcs

LA UAS LAS

Oracle NER with all tokens and punc-

tuation

w/o 94.8 94.6 93.6

w 84.2 84.1 83.6

Oracle NER with entities only
w/o 94.0 93.3 92.2

w 92.9 92.4 91.7

System-generated NER with all tokens

and punctuation

w/o 91.6 91.5 89.9

w 80.0 80.0 78.4

System-generated NER with entities

only

w/o 91.1 90.6 88.8

w 89.8 88.8 87.5

Table 4.31: Performance of dependency parsing of NER, measured by labeled accuracy (LA),

unlabeled attached score (UAS), and labeled attachment score (LAS).

Figure 4.18 compares all four scenarios for training and testing dependency parsing: (1)

oracle all tokens, (2) oracle entity-only, (3) system-generated all tokens, and (4) system-

generated entity-only. When the entity-only approach is taken, the recall improves signifi-

cantly in both oracle and system-generated tests. The merge algorithm guarantees that the

original token sequence can be rebuilt from the CoNLL 2007 dependency representation, so

there are no negative effects to the overall processing pipeline for entity-only parsing.
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Figure 4.18: A comparison of dependency parsing approaches, all tokens versus entity-only

4.5.4 Pneumonia report classification final results

In this section, I present the final performance results for integrating event-based features

into pneumonia report classification experiments. The predicted snippets referred to below

are generated by the snippet prediction module, the whole document represents the text of

the entire X-ray report from the pneumonia report classification chest X-ray corpus, and the

oracle snippets are the annotated unique snippets traced back to the original report files in

which they were originally identified—only text from the oracle snippets in a report (there

can be more than one) are used for the classification task.

Table 4.32 represents the results of extracting event-only features from the whole docu-

ment, predicted, and oracle snippets, while Table 4.33 lists the results where all features were

used. Tables 4.34-4.36 list all summary results by whole document, predicted, and oracle

snippet.
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Text Boundary N TP FP FN P R F1 Acc

CPIS

Whole
0 1143 198 198 76.2 68.9 71.6 85.2

250 1162 179 179 79.6 70.4 73.0 86.7

Predicted Snippets
0 1152 189 189 77.6 70.4 72.7 85.9

250 1151 190 190 79.7 67.7 71.8 85.8

Oracle Snippets
0 1205 136 136 85.0 78.4 81.0 89.9

250 1203 138 138 85.4 77.8 81.0 89.7

PNA

Whole
0 1049 294 294 71.0 67.5 68.9 78.1

250 1081 262 262 73.2 69.2 70.2 80.5

Predicted Snippets
0 1075 268 268 74.1 70.0 71.5 80.0

250 1093 250 250 75.2 71.0 72.2 81.4

Oracle Snippets
0 1096 247 247 74.5 72.2 73.2 81.6

250 1126 217 217 77.6 75.8 76.6 83.8

Table 4.32: Final pneumonia report classification results with event-only features.

Text Boundary N TP FP FN P R F1 Acc

CPIS

Whole
0 1150 191 191 76.7 70.3 72.8 85.8

250 1175 166 166 79.7 75.5 77.2 87.6

Predicted Snippets
0 1159 182 182 78.2 71.8 74.1 86.4

250 1172 169 169 80.9 73.3 76.1 87.4

Oracle Snippets
0 1225 116 116 87.1 81.8 84.0 91.3

250 1225 116 116 87.0 82.0 84.2 91.3

PNA

Whole
0 1057 286 286 71.3 69.3 70.1 78.7

250 1093 250 250 75.1 72.7 73.5 81.4

Predicted Snippets
0 1077 266 266 73.6 70.9 71.8 80.2

250 1099 244 244 75.6 73.2 73.8 81.8

Oracle Snippets
0 1114 229 229 75.9 74.8 75.3 82.9

250 1123 220 220 76.8 75.5 75.9 83.6

Table 4.33: Final pneumonia report classification results with all features.
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Table 4.34 compares the final results for whole document feature extraction with the

baseline systems, System B, with feature selection, and System B*, with feature selection

θ = 250. The best F-score performance values for both CPIS and PNA are highlighted in

bold.

Text Boundary Type System Features θ P R F1 Acc

Whole Document

CPIS

B

baseline 0 74.3 68.9 71.3 84.6

event-only 0 76.2 68.9 71.6 85.2

all features 0 76.7 70.3 72.8 85.8

B*

baseline 250 77.0 71.1 73.4 86.0

event-only 250 79.6 70.4 73.0 86.7

all features 250 79.7 75.5 77.2 87.6

PNA

B

baseline 0 70.1 68.8 69.3 80.0

event-only 0 71.0 67.5 68.9 78.1

all features 0 71.3 69.3 70.1 78.7

B*

baseline 250 74.1 71.7 72.5 80.8

event-only 250 73.2 69.2 70.2 80.5

all features 250 75.1 72.7 73.5 81.4

Table 4.34: Comparison of the performance of baseline systems with feature selection (System

B*) and without (System B) and final system with event-only or all feature sets over the

whole document

Table 4.35 compares the final results for predicted snippet feature extraction with the

baseline systems, System B, no feature selection, and System B*, with feature selection θ =

250. The best F-score performance values for both CPIS and PNA are highlighted in bold.
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Text Boundary Type System Features θ P R F1 Acc

Predicted snippets

CPIS

B

baseline 0 76.9 72.4 74.2 86.1

event-only 0 77.6 70.4 72.7 85.9

all features 0 78.2 71.8 74.1 86.4

B*

baseline 250 77.6 71.1 73.4 86.1

event-only 250 79.7 67.7 71.8 85.8

all features 250 80.9 73.3 76.1 87.4

PNA

B

baseline 0 74.4 72.2 72.4 81.4

event-only 0 74.1 70.0 71.5 80.0

all features 0 73.6 70.9 71.8 80.2

B*

baseline 250 77.5 74.4 75.1 83.3

event-only 250 75.2 71.0 72.2 81.4

all features 250 75.6 73.2 73.8 81.8

Table 4.35: Comparison of the performance of baseline systems with feature selection (System

B*) and without (System B) and final system with event-only or all feature sets over the

predicted snippets

Table 4.36 compares the final results for predicted snippet feature extraction with the

baseline systems, System B, no feature selection, and System B*, with feature selection θ =

250. The best F-score performance values for both CPIS and PNA are highlighted in bold.
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Text Boundary Type System Features θ P R F1 Acc

Oracle snippets

CPIS

B

baseline 0 85.6 81.0 83.0 90.8

event-only 0 85.0 78.4 81.0 89.9

all features 0 87.1 81.8 84.0 91.3

B*

baseline 250 87.3 81.3 83.4 91.3

event-only 250 85.4 77.8 81.0 89.7

all features 250 87.0 82.0 84.2 91.3

PNA

B

baseline 0 78.6 77.1 77.6 84.8

event-only 0 74.5 72.2 73.2 81.6

all features 0 75.9 74.8 75.3 82.9

B*

baseline 250 79.3 77.8 78.3 85.4

event-only 250 77.6 75.8 76.6 83.8

all features 250 76.8 75.5 75.9 83.6

Table 4.36: Comparison of the performance of baseline systems with feature selection (System

B*) and without (System B) and final system with event-only or all feature sets over oracle

snippets

The results are mixed across all three tables, for CPIS and PNA. The highlighted F-

score values in Table 4.34 for the whole document are higher than the predicted snippet

results, and indicate that when event-based features are added to the feature set for whole

documents, especially when feature selection is used, there can be a significant performance

improvement over baseline. For CPIS classification, System B* had an F-score of 77.2 for all

features with feature selection compared to the baseline System B no feature selection which

had an F-score of 71.3 and for PNA classification, System B* had an F-score of 73.5 for all

features with feature selection compared to the baseline System B no feature selection which

had an F-score of 69.3. However, in all three tables, event-features alone never outperform

unigram-based features, and it is clear that feature selection is the main catalyst to improved

performance. In all three tables, regardless of feature set, feature selection is seen to improve
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performance, if even only marginally in the case of oracle snippets.

4.5.4.1 Feature threshold experiments

In this section, I explore the effect of feature selection thresholds on the performance of the

pneumonia report classifier for both the CPIS and PNA categories. Three sets of experiments

for unit of classification: (1) whole document, (2) oracle snippet, and (3) predicted snippet

were run. Whole document results are listed and discussed in this section and oracle and

predicted snippets results are listed in Appendix E. The whole document experiments were

further grouped into sets for baseline features, event-only features, and all features. Each set

based on feature type included one or more experiments for a specific feature threshold. The

same increments of feature threshold were applied across all experiment sets. The standard

feature threshold increments for CPIS and PNA labels on whole documents were: 50, 100,

150, 200, 250, 500, 750, 1000, 1500, and 2500. Three other factors influenced the number

of feature threshold experiments run for each experiment set: (1) if the maximum number

of χ2 significant features was less than one of the standard feature threshold increments,

experiments were not run for thresholds greater than the maximum (e.g., there are only

519 significant features for CPIS experiments on whole documents, so the maximum feature

threshold experiment for this set was 750), (2) if the maximum number of average features

per fold in the MaxEnt model with no feature selection was less than a feature threshold,

no experiments are run for feature threshold increments with a greater value, and (3) the

F-scores for the larger feature threshold increments demonstrate a pattern of diminishing

performance. The row at the top of each table with a hyphen as its value for θ represents

an experiment with no feature selection.

The series of Tables 4.37 - 4.49 list the results of pneumonia report classification experi-

ments for the CPIS category on whole documents for baseline, event-only, and all features.

The Table 4.40 lists the highest performing experiment across the three feature sets.
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θ S G TP FP FN P R F1 Acc

- 1341 1341 1134 207 207 74.3 68.9 71.3 84.6

750 1341 1341 1153 188 188 76.3 70.3 72.4 86.0

500 1341 1341 1144 197 197 74.8 69.1 71.0 85.3

250 1341 1341 1153 188 188 77.0 71.1 73.4 86.0

200 1341 1341 1163 178 178 78.5 72.4 74.7 86.7

150 1341 1341 1171 170 170 79.9 72.6 75.2 87.3

100 1341 1341 1168 173 173 79.2 72.2 74.7 87.1

50 1341 1341 1148 193 193 74.4 70.0 71.2 85.6

Table 4.37: CPIS feature threshold experiments, baseline features on whole document

(Average number of features across folds in model with no feature selection = 1653/Number

of significant χ2 ranked features = 510)

θ S G TP FP FN P R F1 Acc

- 1341 1341 1143 198 198 76.2 68.9 71.6 85.2

2500 1341 1341 1150 191 191 80.1 66.0 69.3 85.8

1500 1341 1341 1154 187 187 78.7 68.6 70.8 86.1

1000 1341 1341 1153 188 188 77.8 69.1 71.2 86.0

750 1341 1341 1151 190 190 76.8 69.8 71.8 85.8

500 1341 1341 1156 185 185 77.3 71.2 73.1 86.2

250 1341 1341 1162 179 179 79.7 70.2 72.9 86.7

200 1341 1341 1164 177 177 79.4 71.4 73.8 86.8

150 1341 1341 1163 178 178 78.5 72.4 74.3 86.7

100 1341 1341 1159 182 182 78.5 71.8 74.2 86.4

50 1341 1341 1111 230 230 73.2 66.5 67.9 82.8

Table 4.38: CPIS feature threshold experiments, event-based features onwhole document

(Average number of features across folds in model with no feature selection = 10,544/Number

of significant χ2 ranked features = 2500)
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θ S G TP FP FN P R F1 Acc

- 1341 1341 1150 191 191 76.7 70.3 72.8 85.8

2500 1341 1341 1165 176 176 80.8 69.2 72.2 86.9

1500 1341 1341 1166 175 175 79.5 70.6 73.4 87.0

1000 1341 1341 1168 173 173 79.6 71.7 74.4 87.1

750 1341 1341 1165 176 176 78.8 72.0 74.6 86.9

500 1341 1341 1174 167 167 79.4 74.5 76.4 87.5

250 1341 1341 1175 166 166 79.7 75.5 77.2 87.6

200 1341 1341 1172 169 169 79.0 74.9 76.5 87.4

150 1341 1341 1167 174 174 78.0 73.0 74.7 87.0

100 1341 1341 1167 174 174 78.0 73.2 74.7 87.0

50 1341 1341 1167 174 174 78.1 72.2 74.0 87.0

Table 4.39: CPIS feature threshold experiments, all features on whole document (Average

number of features across folds in model with no feature selection =12,197 /Number of

significant χ2 ranked features = 2500)

Features θ S G TP FP FN P R F1 Acc

baseline 150 1341 1341 1171 170 170 79.9 72.6 75.2 87.3

event-only 150 1341 1341 1163 178 178 78.5 72.4 74.3 86.7

all 250 1341 1341 1175 166 166 79.7 75.5 77.2 87.6

Table 4.40: The highest performing feature threshold experiments for the CPIS category

The feature threshold experiments for the CPIS category, summarized in Table 4.40,

demonstrate a smaller margin of improvement of performance than the final classification

experiments summarized in Section 4.5.4. The best baseline features experiment, with

θ=150, had an F-score of 75.2 and the best all features experiment, with θ=250, had an F-

score of 77.2. The difference between them was 2.0, with all features outperforming baseline

features. The final classification experiments’ best baseline experiment, with θ=250, had an
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F-score of 73.4 and the best all features experiment, with θ=250, had an F-score of 77.2. The

difference between them was 3.8, with all features outperforming baseline features. Further-

more, the difference in true positives was only 4 reports, which explains the .3 difference in

accuracy, which for multi-category classification is the same as the micro-averaged F-score.

The series of Tables 4.41 - 4.49 list the results of pneumonia report classification exper-

iments for the PNA category on whole documents for baseline, event-only, and all features.

Table 4.44 lists the highest performing experiment across the three feature sets.

θ S G TP FP FN P R F1 Acc

- 1343 1343 1047 296 296 70.1 68.8 69.3 78.0

500 1343 1343 1081 262 262 73.5 71.4 72.1 80.5

250 1343 1343 1085 258 258 74.1 71.7 72.5 80.8

200 1343 1343 1088 255 255 74.0 72.1 72.6 81.0

150 1343 1343 1100 243 243 75.6 73.1 73.8 81.9

100 1343 1343 1097 246 246 75.0 72.1 73.0 81.7

50 1343 1343 1090 253 253 73.8 70.0 71.1 81.2

Table 4.41: PNA feature threshold experiments, baseline features on whole document

(Average number of features across folds in model with no feature selection = 1653/Number

of significant χ2 ranked features = 306)
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θ S G TP FP FN P R F1 Acc

- 1343 1343 1049 294 294 71.0 67.5 68.9 78.1

1000 1343 1343 1097 246 246 76.0 72.5 73.6 81.7

750 1343 1343 1090 253 253 75.1 72.1 73.0 81.2

500 1343 1343 1095 248 248 75.4 72.3 73.2 81.5

250 1343 1343 1081 262 262 73.2 69.2 70.2 80.5

200 1343 1343 1085 258 258 74.6 70.5 71.7 80.8

150 1343 1343 1079 264 264 73.7 69.6 70.7 80.3

100 1343 1343 1082 261 261 74.6 69.9 71.1 80.6

50 1343 1343 1078 265 265 74.4 68.5 70.2 80.3

Table 4.42: PNA feature threshold experiments, event-based features onwhole document

(Average number of features across folds in model with no feature selection = 10,584/Number

of significant χ2 ranked features = 928)

θ S G TP FP FN P R F1 Acc

- 1343 1343 1057 286 286 71.3 69.3 70.1 78.7

1500 1343 1343 1082 261 261 74.4 72.6 73.3 80.6

1000 1343 1343 1084 259 259 74.1 72.6 73.1 80.7

750 1343 1343 1086 257 257 74.6 72.7 73.5 80.9

500 1343 1343 1084 259 259 74.5 72.5 73.3 80.7

250 1343 1343 1093 250 250 75.1 72.7 73.5 81.4

200 1343 1343 1100 243 243 76.0 73.4 74.3 81.9

150 1343 1343 1095 248 248 74.9 72.2 72.8 81.5

100 1343 1343 1089 254 254 74.3 70.7 71.7 81.1

50 1343 1343 1079 264 264 71.8 67.2 68.8 80.3

Table 4.43: PNA feature threshold experiments, all features on whole document (Average

number of features across folds in model with no feature selection = 12,238/Number of

significant χ2 ranked features = 1234)
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Features θ S G TP FP FN P R F1 Acc

baseline 150 1343 1343 1100 243 243 75.6 73.1 73.8 81.9

event-only 1000 1343 1343 1097 246 246 76.0 72.5 73.6 81.7

all 200 1343 1343 1100 243 243 76.0 73.4 74.3 81.9

Table 4.44: The highest performing feature threshold experiments for the PNA category

The feature threshold experiments for the PNA category (see Table 4.44) demonstrate

a smaller margin of improvement of F-score performance than the final classification exper-

iments summarized in Section 4.5.4. The best baseline features experiment, with θ=150,

had an F-score of 73.8, and the best all features experiment, with θ=200, had an F-score of

74.3. The difference between them was only .5, with all features outperforming the baseline

features. The final experiments’ baseline features experiment, with θ=250, had an F-score

of 72.5 and the best all features experiment, with θ=250 had an F-score of 73.5. There is

only a difference of 1.0 between them. The difference in true positives is 0 reports, which

explains the exact same accuracy score of 81.9.

4.6 Discussion

In this section I discuss results and observations of the different phases of my research

framework and follow the same section heading and organization structure for discussion as

my methodology and results sections:

1) Event analysis—analyze the task and related previous research to define events

2) Corpus development—develop corpora by annotating events

3) Event detection—build systems for automatic event detection

4) Event-based feature extraction—extract event-based features for classification
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4.6.1 Event analysis

In the event analysis phase, I replicated the rationale snippet prediction module and pneu-

monia report classification experiments described in Tepper et al. (2013). In this section, I

discuss the results of the snippet prediction module evaluation and replicated baseline feature

experiments.

4.6.1.1 Snippet prediction module evaluation

My snippet prediction module’s design differs Tepper et al. (2013) in three ways:

Classification model Tepper et al. (2013) achieved their best snippet prediction perfor-

mance for CPIS and PNA with two different approaches. The two approaches were:

(1) a MaxEnt model for binary classification and a beam search for sequence decoding ,

and (2) a no prevTag setting for the MaxEnt model trainer which excludes the previous

sentence label tag from the feature set and separates the beam search sequence decod-

ing from the binary sentence classifier. (1) performs best for the PNA class (but does

so marginally, 72.5 F-score over 70.4 F-score) and has no positive effect on the CPIS

class. (2) performs best for CPIS (93.9 F-score for snippet overlap) but not PNA. Given

the performance difference between CPIS and PNA, and the small difference between

PNA with and without prevTag, for simplicity, I implement a MaxEnt binary classifier

(inside and outside snippet sentence categories) with no beam search. The choice to

constrain snippet prediction to a binary classification task has a minimal effect on the

performance of both PNA and CPIS snippet prediction in my experiments.

Evaluation measure The snippet overlap and sentence overlap measures in the original

study are not a strict measure of sentence to sentence matches between the system

and gold standard labels. I implemented a stricter, but simpler, binary classification

evaluation per sentence for my snippet prediction performance. The performance of

my snippet predictor using my measure is similar to the sentence overlap reported in
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the original study, F-score of 88.3 vs 88.4 for CPIS, and an F-score of 70.2 vs 70.4

for PNA, but cannot be compared directly because it is based on exact label matches

per sentence and not character offset overlap. See Table 4.14 for original sentence

overlap results from Tepper et al. (2013), and Table 4.15 for performance results of

the replicated snippet prediction module using the alternate sentence label to sentence

label evaluation measure. In the design of my experiments, my goal was to measure

the impact of event-based features on pneumonia report classification. Similar, but

not exactly the same performance of the snippet prediction module in my evaluation

versus that published in Tepper et al. (2013) did not effect the comparison of the overall

patterns of performance between baseline and event-based feature selection in the final

set of pneumonia report classification experiments.

Training folds In the original study, the snippet prediction model was trained on folds

comprised only of reports with snippets, and tested on testing folds that included all

reports. The folds that did not include a snippet are considered in the negative class

automatically, and they are distributed evenly amongst the test folds. The approach

was taken to reduce the imbalance of positive to negative sentences and improve recall.

No performance results were provided in the original study to show the differences

between these two approaches to training. I used both strategies to train and evaluate

models for training. I compared the results in Table 4.15. After this comparison, the

approach chosen by Tepper et al. (2013), training with reports with snippets-only, was

proven to improve recall and resulted in higher classification results (see a comparison

of the training folds’ configuration on classification results in Table 4.16).

4.6.1.2 Replicated baseline experiments

The two baseline systems, System B and System B*, listed in the result tables in Section

4.5.1.2 do not match the performance of Tepper et al. (2013)’s System A in Table 4.14,

however the numbers do follow a similar pattern, as seen in the charts in Figures 4.16 and
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4.17. I chose to use System B and B* as my baseline results, to compare with final pneumonia

report classification experimental results, because they demonstrated a similar performance

pattern as System A in oracle, predicted, and whole document scenarios. The main goal

of the case study was to measure the impact of event-based features on performance of

pneumonia report classification in various configurations not to match the results of the

original system in Tepper et al. (2013).

4.6.2 Corpus development

The results of the IAA measures during the first stage of annotation helped clarify basic rules

for annotating the Cos entities and revealed the task as fairly easy for the annotators. In

particular, discussions about how to mark up Val, where each token is labeled as a individual

entity, and Loc, where multiple tokens are labeled with a single span, helped to improve IAA

scores in the second round of annotation.

The second stage of annotation, after extensions were made to the schema for coordination

and negation, was considerably more complicated. Additional rounds of IAA could have

helped clarify model issues earlier on in the second stage, rather than relying solely on a

single NLP researcher to apply all of the negation, coordination, and diagnosis event labeling.

The single second stage annotator made several passes of annotation editing and revising

the unique rationale snippet corpus, without the benefit of an IAA review or discussion with

fellow annotators.

Maintaining the single-headed constraint of a dependency tree in the second stage of

annotation was not supported by the annotation environment and had to be maintained by

the human annotator. There were many cases where the scope of coordination and negation

were interpreted by the annotator based on the context of the surrounding sentence, and not

on a strict set of rules. In a small number of cases, where the dependency tree graph may

have been constructed in a way that would lead to non-projectivity, the human annotator

preferred a projective analysis to ensure that as many annotations in the corpus conformed

to the constraints of a projective dependency tree. There remain a number of non-projective
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dependency trees within the unique snippet corpus. See Figure 4.19 for an example.

Figure 4.19: An example of a non-projective dependency in the unique snippet corpus

In the figure above, Figure 4.19, there are two reasons for non-projective arcs to exist in

the dependency tree. The first reason is a symptom of the complexity of natural language

itself. There is a change-of-state event bipolar opacities persist with head persist, and two di-

agnosis events, most consistent with atelectasis, headed by with, and aspiration/infection also

possible consideration, with head consideration. The two diagnosis events are coordinated

by the conjunction although. The projections for the events cross, causing non-projective

arcs. The second reason is that the special node, ROOT, which provides the root of depen-

dency tree itself, needs to be linearized when added to the tree and its arc crosses into the

events to connect to their heads. Both reasons for non-projection are acceptable based on

the constraints of non-projective dependency trees described in Nivre (2006).

4.6.3 Event detection

Both NER and RE with dependency parsing performed well in evaluation. The two-stage

approach was simple and easy to implement with off-the-shelf tools, given the dependency

tree constraints applied during the second stage of annotation. Without dependency con-

straints, the graph is much less predictable in its shape, and is more difficult to parse with a

general solution, as was the case after the first stage of annotation, where the change-of-state

event was represented simply as a DAG.

Parsing entity-only token strings in the dependency parser, ignoring non-entity labeled
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tokens and punctuation, proved a good strategy, improving overall F-score, especially recall,

for both oracle and system generated named entity configurations. Tracking the token iden-

tity and order in the original token sequence in the feature column (column 6) of the CoNLL

2007 dependency format allowed the original token sequence to be reconstructed or merged

with the canonical gold standard trees for evaluation.

An analysis of the projectivity of the event trees in the unique snippet corpus and running

experiments with the covington non-projective algorithm enabled in the Malt parser might

improve the performance of the dependency parsing phase of the two-stage event detection

process. In a preliminary analysis, approximately 13% of the arcs in the corpus are currently

non-projective. Many of these arcs are ROOT arcs that are added by transformation to the

CoNLL 2007 format, but a number of examples, like Figure 4.19, contain non-projective arcs

for actual change-of-state and diagnosis events.

4.6.4 Event-based feature extraction

Table 4.45 compares the top 10 features selected by χ2 ranking for baseline and all feature

sets in the pneumonia report classification experiments configured for the whole document.

The list represents only a small number of the total features selected in experiments, where

the feature selection threshold is set to 250, but they do represent the highest ranking features

by χ2 value. The word unigram values in the baseline feature list, in the left column, are

also found as the main value in the event-based feature constructions for the all features

set, in the right column. For example, the clinical observation construct, OBS→OPACITY,

and clinical attribute value pair, ATTR=OPACITY, rank above, but are clustered with, the

word unigram OPACITY, which is the highest ranking word unigram in the baseline feature

set. The same pattern repeats with the second ranking value in the baseline feature set,

ATELECTASIS. Similar to OPACITY, it also is found as the value of a cluster of event-based

feature constructions in the all features set. The pattern suggests that a number of event-

based features are simply reinforcing the effect of existing n-gram features in the MaxEnt

model, weighted by their distribution in corpus. Simple event features, such as entity value
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pairs, do not add any novel predictive value to the experiments, but rather help to boost the

weights of existing n-gram features. The more structured event features, such as a change-

of-state and diagnosis event tuple with all fields populated, occur more infrequently than the

less structured event features, but contribute more information as a feature.

Baseline Feature Set All Feature Sets

OPACITY OBS→OPACITY

ATELECTASIS ATTR=OPACITY

OPACITIES OPACITY

LOBE ATELECTASIS

CONSOLIDATION COS→OPACITY

DIFFUSE OBS→ATELECTASIS

ASPIRATION ATTR=ATELECTASIS

UPPER OPACITIES

ABNORMALITIES LOBE

TUBES ATTR=CONSOLIDATION

Table 4.45: Top 10 features per feature set used in CPIS whole document experiments

A closer look at the 250 features selected in experiments for the all features feature set in

whole document, predicted snippet, and oracle snippet configurations reveals that some of

the more structural event-based features, such as a generalized change-of-state with attached

value prefix and location suffix, do not rank high in the overall feature set. Table 4.46 lists

a selection of ranked event-based features from the 250 all features set. The first structured

event-based feature occurs at position 20 for CPIS and the first tuple with more than two

slots occurs at rank 87.
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Rank Feature

20 EV COS=NEG COS→FOCAL ABNORMALITIES

...

55 EV OBS=OBS→OPACITY @ RIGHT LOWER LOBE

...

81 EV COS=NEG COS->DIFFUSE OPACITIES @ LUNG

...

87 EV TP=[CHANGE NEG,OPACITIES,DIFFUSE,LUNG,-]

Table 4.46: Ranked event features from combined all features feature set

The size of the overall dataset and the sparsity of event-based features in the χ2 ranking

is a limitation when determining if the features benefit an applied clinical NLP classification

task. Expanding the corpus with additional reports and annotations could contribute more

event-based structured features to the feature ranking and selection process. Expanding

the scope of annotation also addresses the assumption that change-of-state and diagnosis

events are unique to rationale snippets. Whole document experiments show that in reports

with no snippets, which are automatically labeled negative in the snippet-only experiments,

change-of-state and diagnosis events can be extracted. Expanding the annotation of change-

of-state and diagnosis events to address the entire report, not only the rationale snippets,

could contribute more to the negative class models for CPIS.

4.6.5 Pneumonia report classification error analysis

The distribution of reports across CPIS and PNA labels in the pneumonia report classi-

fication corpus is imbalanced as discussed in Tepper et al. (2013). Table 4.47 illustrates

the characteristics of each category. The number of reports for the negative class 1A no

infiltrate of CPIS is small compared to the positive classes and only contributes 25 reports

with rationale snippets to the model. Of the two positive classes, the number of reports for

the 1B diffuse infiltrate or atelectasis label greatly outnumbers 1C local infiltrate. Many of
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the signature features of the dominant class 1B diffuse infiltrate or atelectasis, such as the

ngrams atelectasis and opacity, are also words that occur frequently in reports labeled 1C

local infiltrate. This is a source of ambiguity between the two positive classes and is reflected

in the poor results for label 1C local infiltrate, as seen in examples of the detailed results of

whole document CPIS experiments in Table 4.48 and Table 4.49. There is a similar imbal-

ance in the distribution of reports across PNA labels, but instead of an under-represented

negative class, the PNA negative class is the largest of the three label classes and has the

most reports that contain a rationale snippet.

Label Category Number (%) of

reports

Number (%) of

reports with

rationale snippets

CPIS 1A no infiltrate 178 (13%) 25 (2%)

1B diffuse infiltrate... 1011 (75%) 1004 (75%)

1C local infiltrate 152 (11%) 152 (11%)

Total 1341 (100%) 1181 (88%)

PNA 2A no suspicion PNA 856 (64%) 362 (27%)

2B suspicion of PNA 294 (22%) 290 (22%)

2C probable PNA 193 (14%) 192 (14%)

Total 1343 (100%) 844 (63%)

Table 4.47: Statistics of the X-ray report corpus as reported in Tepper et al. (2013)

4.6.5.1 Classification performance across category labels

When event-based features are added to the baseline feature set in whole document experi-

ments for CPIS, there is a slight improvement in F-score across labels as can be seen in the

comparison of results in Table 4.48 and Table 4.49. However, where labels 1A no infiltrate

and 1B diffuse infiltrate or atelectasis see an increase in true positives, label 1C local infiltrate

sees its improvement mostly from a decrease in false positives. The pattern of low F-scores
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for label 1C local infiltrate repeats itself in all detailed experiment results for CPIS.

CPIS Label TP FP FN P R F1

1A 132 26 46 83.5 74.2 78.6

1B 942 123 69 88.5 93.2 90.8

1C 60 58 92 50.8 39.5 44.4

Total 1134 207 207 74.3 68.9 71.3

Table 4.48: Detailed results of CPIS whole document experiment with baseline features and

no feature selection

CPIS Label TP FP FN P R F1

1A 140 29 38 82.8 78.7 80.7

1B 952 121 59 88.7 94.2 91.4

1C 58 41 94 58.6 38.2 46.2

Total 1150 191 191 76.7 70.3 72.8

Table 4.49: Detailed results of CPIS whole document experiment with all features and no

feature selection

The same tables from the PNA experiment sets shows a different imbalance in the corpus.

See Table 4.50 and Table 4.51 below and compare with the results in Table 4.48 and Table

4.49
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PNA Label TP FP FN P R F1

2A 781 124 75 86.3 91.2 88.7

2B 127 118 167 51.8 43.2 47.1

2C 139 54 54 72.0 72.0 72.0

Total 1047 296 296 70.1 68.8 69.3

Table 4.50: Detailed results of PNA whole document experiment with baseline features and

no feature selection

PNA Label TP FP FN P R F1

2A 791 128 65 86.1 92.4 89.1

2B 125 110 169 53.2 42.5 47.3

2C 141 48 52 74.6 73.1 73.8

Total 1057 286 286 71.3 69.3 70.1

Table 4.51: Detailed results of PNA whole document experiment with all features and no

feature selection

The distribution of reports across labels for PNA, similar to CPIS, is also imbalanced

based on the negative class, but for a different reason. For PNA, the largest, dominant class

is the negative class 2A no suspicion of pneumonia. Again, similar to CPIS, it is one of the

positive classes, 2B suspicion of pneumonia that has the poorest classification performance.

4.6.5.2 Examples of the negative class

How the CPIS and PNA models classify individual instances of the negative class based

on their imbalanced distribution is almost exactly opposite. Report 11 is an example of a

report that is labeled as the negative class for both PNA and CPIS categories.

For CPIS, the label applied to Report 11 by the medical expert annotators during the
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annotation phase is the negative class 1A no infiltrate. The snippet they select as rationale for

the label is Lung volumes are lower on today‘s examination increasing perihilar haziness and

vascular congestion which may reflect volume status. Without specific medical knowledge

and access to the remainder of the report text, this appears to be an ambiguous snippet given

its assigned category. Phrases such as lung volumes are lower, increasing perihilar haziness,

and vascular congestion, especially when decomposed into n-gram features suggest one of

the two positive labels rather than the negative class. In fact, in baseline feature experiments

using only the report’s oracle snippet to classify and no feature selection, the model ranks

label probability as: 1B 35.7%, 1C 51.2%, and 1A 13.1%. With the same settings and the

addition of event-features the classifier again does not assign the correct label probabilities:

1B 69.7%, 1C 24.4%, and 1A 5.9%.

Predicted snippet experiments assign the correct label to Report 11, however, not due to

model features. The snippet prediction module does not predict a rationale snippet for the

report and it is assigned the negative class by default in experiments.

The only experimental settings for the classifier that correctly predict the label for Re-

port 11, are whole document experiments with all features, both baseline and event-based,

without feature selection. The model generates the following label probabilities for the re-

port: 1A 70.8%, 1B 29.0%, and 1C .2%. Extracting additional events and event-based

features from the complete report text, not just the rationale snippet, results in the correct

label for Report 11. The number of whole document event-based features generated for

Report 11 exceeds the number of n-gram features generated, and in this specific example,

produces the correct result. Experiments using feature selection, for example, CPIS with

a 250 feature threshold on whole document with all features predicts the incorrect label

probabilities: 1B 52.9%, 1A 39.9%, and 1C 7.2%.

The PNA category is more balanced than CPIS and has a much larger number of nega-

tive class reports that contain one or more rationale snippets (362). A PNA baseline feature

experiment with oracle snippets and no feature threshold results in the correct label for

Report 11, 2A no suspicion of pneumonia 57.4%, 2B suspicion of pneumonia 40.3%, and
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2C probable pneumonia 2.2%. Using the same oracle and baseline settings with no feature

selection and the addition of event-based features, the classifier performs even better 2A no

suspicion of pneumonia 71.0%, 2B suspicion of pneumonia 27.2%, and 2C probable pneumo-

nia 1.8%. The strongest support for the correct label comes from the PNA whole document

experiments with all features and no feature selection, 2A no suspicion of pneumonia 85.4%,

2B suspicion of pneumonia 14.2%, and 2C probable pneumonia .4%. Like CPIS, no ratio-

nale snippet is predicted when the snippet prediction module is run on Report 11, so it

is automatically assigned the negative class in the classification experiments for predicted

snippets.

4.6.5.3 MaxEnt model feature ranking vs χ2 ranking

I used χ2 for statistical feature selection in my experiments. The value of χ2 for each feature

in all feature types was calculated in a preprocessing stage. Significant features, those whose

χ2 value was greater than the critical value for p = .05 and 2 degrees of freedom, 5.99, were

ranked and stored in the system database. These values were calculated for each feature

globally across the entire corpus. The MaxEnt models I trained with MALLET in a 5-fold

configuration for cross-validation, rank and weight features based on their distribution across

training folds. I average the feature weights across folds and only rank the features that occur

in all five test folds. Table 4.52, 4.53, 4.54, and 4.55 list the top 10 χ2 ranked features and

top 10 MaxEnt model ranked features for CPIS and PNA in order to evaluate whether the χ2

rankings were similar to the MaxEnt model rankings, and how event-based features ranked

when combined with baseline features.
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MaxEnt ranked (label) χ2 ranked

U O N v ATELECTASIS (1B) U O N v OPACITY

U O N v DIFFUSE (1B) U O N v ATELECTASIS

U O N v CONSOLIDATION (1C) U O N v OPACITIES

U O N v OPACITY (1C) U O N v LOBE

U O N v PNEUMONIA (1C) U O N v CONSOLIDATION

U O N v BIBASILAR (1B) U O N v DIFFUSE

U O N v OPACITIES (1B) U O N v ASPIRATION

U O N v PATCHY (1B) U O N v UPPER

U O N v BILATERAL (1B) U O N v ABNORMALITIES

U O N v INFECTION (1C) U O N v TUBES

Table 4.52: Top 10 CPIS MaxEnt model ranked baseline features (by label) compared with

Top 10 χ2 ranked baseline features

MaxEnt ranked (label) χ2 ranked

U O N v ATELECTASIS (1B) EV OBS=OBS→OPACITY

U O N v BILATERAL (1B) EV EN ATTR=OPACITY

U O N v DIFFUSE (1B) U O N v OPACITY

EV OBS=OBS→ATELECTASIS (1B) U O N v ATELECTASIS

EV EN ATTR=ATELECTASIS (1B) EV COS=COS→OPACITY

U O N v OPACITY (1C) EV OBS=OBS→ATELECTASIS

EV EN VAL=DIFFUSE (1B) EV EN ATTR=ATELECTASIS

U O N v PNEUMONIA (1C) U O N v OPACITIES

U O N v OPACITIES (1B) U O N v LOBE

U O N v BIBASILAR (1B) EV EN ATTR=CONSOLIDATION

Table 4.53: Top 10 CPIS MaxEnt model ranked baseline and event features (by label)

compared with Top 10 χ2 ranked baseline and event features
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MaxEnt ranked (label) χ2 ranked

U O N v PNEUMONIA (2C) U O N v PNEUMONIA

U O N v INFECTION (2C) U O N v INFECTION

U O N v CONSOLIDATION (2B) U O N v ASPIRATION

U O N v ASPIRATION (2B) U O N v EXPECTED

U O N v INFECTION (2B) U O N v CONSOLIDATION

U O N v PNEUMONIA (2B) U O N v PATCHY

U O N v EXTUBATED (2B) U O N v SHOW

U O N v CLEAR (2A) U O N v ABNORMALITIES

U O N v CATHETER (2A) U O N v FOCAL

U O N v OPACIFICATION (2B) U O N v MAY

Table 4.54: Top 10 PNA MaxEnt model ranked baseline features (by label) compared with

Top 10 χ2 ranked baseline features

MaxEnt ranked (label) χ2 ranked

U O N v PNEUMONIA (2C) U O N v PNEUMONIA

EV DIAG=DIAGNOSIS→PNEUMONIA (2C) EV OBS=OBS→ATELECTASIS/PNEUMONIA

EV OBS=OBS→PNEUMONIA (2C) EV OBS=OBS→PATCHY ATELECTASIS/PNEUMONIA

EV DIAG=DIAGNOSIS→INFECTION (2C) EV OBS=OBS→PNEUMONIA

EV EN ATTR=PNEUMONIA (2C) EV EN ATTR=PNEUMONIA

U O N v INFECTION (2C) EV DIAG=DIAGNOSIS→PNEUMONIA

U O N v PNEUMONIA (2B) EV TP=[-,EXPECTED,-,-,-]

U O N v INFECTION (2B) EV EN ATTR=EDEMA/PNEUMONIA

EV OBS=OBS→INFECTION (2C) EV DIAG=DIAGNOSIS→EDEMA/PNEUMONIA

EV EN ATTR=INFECTION (2C) EV OBS=OBS→EDEMA/PNEUMONIA

Table 4.55: Top 10 PNA MaxEnt model ranked baseline and event features (by label)

compared with Top 10 χ2 ranked baseline and event features
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Tables 4.52 and 4.54 compare the list of χ2 and MaxEnt model ranked features for the

baseline n-gram feature set. Although the lists do not match exactly, or rank features in the

same order, they do show that similar terms from the domain, such as atelectasis, pneumonia,

opacities, and infection are shared by both lists. Tables 4.53 and 4.55 compare the lists of

χ2 and MaxEnt model ranked features for all features (baseline n-gram and event-based

features combined). Again, the lists do not match exactly, but do demonstrate a common

set of terms from the domain. One difference between the χ2 and MaxEnt ranking for all

features is that more event-based features are ranked in the top 10 for χ2 for both CPIS and

PNA labels.

4.6.5.4 Pneumonia report classification errors

In this section, I review the results for the poorest performing labels for both CPIS and

PNA, and how event-based features and optimal feature threshold experiments effected their

performance. Both labels are one of the two positive classes for their category.

Table 4.56 lists the detailed results for CPIS label 1C local infiltrate in the best performing

optimal feature threshold experiments for whole documents. The addition of event-based

features improves the results of the 1C local infiltrate class, specifically by increasing the

number of true positives and reducing the number of false negatives for the class. The

confusion tables featured in the series Table 4.57 - 4.59, show the breakdown of how false

positives and false negatives breakdown for each row of Table 4.56. In the best performing

configuration for CPIS, all features with θ = 250, mislabeling of the poorest performing label,

1C is reduced.
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Features θ TP FP FN P R F1

baseline 150 60 33 92 64.5 39.5 49.0

event-only 1000 61 31 91 66.3 40.1 50.0

all 200 72 41 80 63.7 47.4 54.3

Table 4.56: Performance of CPIS Label 1C local infiltrate in feature threshold experiments

1A 1B 1C

1A 148 27 3

1B 18 963 30

1C 7 85 60

Table 4.57: Confusion matrix for CPIS whole document baseline experiments with optimal

feature selection threshold of θ=150

1A 1B 1C

1A 147 29 11

1B 27 955 29

1C 11 80 61

Table 4.58: Confusion matrix for CPIS whole document event-only experiments with opti-

mal feature selection threshold of θ=150
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1A 1B 1C

1A 151 23 4

1B 22 952 37

1C 5 75 72

Table 4.59: Confusion matrix for CPIS whole document all feature experiments with optimal

feature selection threshold of θ=250

Table 4.60 lists the detailed results for PNA label 2B suspicion of PNA in the best

performing optimal feature threshold experiments for whole documents. The addition of

event-based features marginally improves the results of the 2B suspicion of PNA class, with

a small increase in the number of true positives and small reduction in the number of false

negatives for the class. The confusion tables featured in the series Table 4.61 - 4.63, show

the breakdown of how false positives and false negatives breakdown for each row of Table

4.60. In the best performing configuration for PNA, all features with θ = 200, mislabeling

of the poorest performing label, 2B is reduced.

Features θ TP FP FN P R F1

baseline 150 137 79 157 63.4 46.6 53.7

event-only 1000 131 73 163 64.2 44.6 52.6

all 200 139 84 155 62.3 47.3 53.8

Table 4.60: Performance of PNA Label 2B suspicion of PNA in feature threshold experiments



138

2A 2B 2C

2A 813 39 4

2B 113 137 44

2C 3 40 150

Table 4.61: Confusion matrix for PNA whole document baseline experiments with optimal

feature selection threshold of θ=150

2A 2B 2C

2A 816 37 3

2B 122 131 41

2C 7 36 150

Table 4.62: Confusion matrix for PNA whole document event-only experiments with opti-

mal feature selection threshold of θ=1000

2A 2B 2C

2A 810 44 2

2B 115 139 40

2C 2 40 151

Table 4.63: Confusion matrix for PNA whole document all feature experiments with optimal

feature selection threshold of θ=200

4.7 Summary

In this study, I tried to answer the question, do event-based features impact the performance

of a clinical NLP disease detection report classification task?. I selected as a case study

pneumonia report classification, and used a pre-existing corpus and the description of an
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implemented system (Xia and Yetisgen-Yildiz, 2012; Tepper et al., 2013; Vanderwende et

al., 2013) to create baseline results for n-gram feature-based experiments. I introduced a new

model for annotating change-of-state and diagnosis events, including entities for negation and

coordination, and constrained the model’s graph representation to a dependency tree. I anno-

tated a corpus of 1008 unique rationale snippets with a schema based on the change-of-state

and diagnosis event event model in the BRAT annotation tool and developed a two-stage

event detection system integrating off-the-shelf NER and dependency parsing tools. I intro-

duced six event-based features that I integrated into pneumonia report classification tasks,

and measured and compared the performance of a pneumonia report classifier trained on

feature sets that included event-based features alone, baseline features alone (word unigram

and alternating conjunctions), and a combination of all features. The pneumonia report

classification experiments were run for both CPIS and PNA labels.

In conclusion, the pneumonia report classification experiments returned mixed results.

CPIS experiments in oracle, predicted, and whole document configurations all improved

when event-based features were added to the feature sets. Feature selection and feature

selection threshold experiments demonstrated that this pattern held even when optimal

threshold values were implemented for each feature set. Table 4.64 lists the best performing

configuration of features and optimal feature threshold for each classification configuration:

whole document, oracle snippet, and predicted snippet.

Config. Features θ S G TP FP FN P R F1 Acc

oracle all 500 1341 1341 1228 113 113 87.4 82.2 84.4 91.6

predicted all 150 1341 1341 1175 166 166 80.6 74.3 76.6 87.6

whole all 250 1341 1341 1175 166 166 79.7 75.5 77.2 87.6

Table 4.64: The highest performing experiments for the CPIS category in oracle snippet,

predicted snippet, and whole document configurations
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For PNA, event-based features only boosted performance in the whole document config-

uration. In oracle and predicted snippet experiments, event-based features lowered perfor-

mance when used both as a standalone feature set and in combination with n-gram features.

In PNA predicted snippet experiments, feature selection caused a decrease in performance

with baseline and event-only configurations. The poor performance of event-features and

feature selection itself could be due to the mismatch of event-based feature ranking between

the MaxEnt model and the external χ2 feature ranking system for PNA, as described in

Section 4.6.5.3.

Config. Features θ S G TP FP FN P R F1 Acc

oracle baseline 100 1343 1343 1147 196 196 79.3 77.8 78.3 85.4

predicted baseline 150 1343 1343 1119 224 224 77.5 74.4 75.1 83.3

whole all 200 1343 1343 1100 243 243 76.0 73.4 74.3 81.9

Table 4.65: The highest performing experiments for the PNA category in oracle snippet,

predicted snippet, and whole document configurations

Event-only experiments, even with feature selection, did not exceed baseline experiments

in most of the experiment scenarios. As discussed in the previous section, event-based

features appear to boost performance when combined with the baseline n-gram model, but

do not outperform it when used as a standalone feature set.

Event attributes were added to the change-of-state and diagnosis event schema to gen-

eralize the language of change in change-of-state events and hedging in diagnosis events.

Full description of the attributes and their values can be found in Section A.1.3.1 and Sec-

tion A.1.3.2. Examples of change of state attribute include increase, decrease, persist, and

change. I did not develop an attribute extractor during the course of the study and therefore

attributes were only used in oracle experiments. There are, however, attributes that rank

within the top 250 χ2 feature rankings for oracle snippets and this potential predictive value

suggests that creating an extractor for attribute event features in future experiments would
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be helpful, especially given that attributes generalize over specific terms relating to change,

which are already captured in the n-gram model.

Running the snippet prediction, NER, and RE modules against the text of the whole doc-

ument reveals that change-of-state and diagnosis events exist outside of snippet boundaries

in reports. It also emphasizes that even though non-snippet reports do not contain pre-

dicted rationale snippets, they can contain change-of-state and diagnosis events. Extending

the annotation process for change-of-state to the complete corpus will add more examples of

change-of-state to the existing modules and possibly contribute to improving the model for

the negative class.
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Chapter 5

ACQUIRED LUNG INJURY (ALI)

In the previous Chapter, I described my study of an NLP radiology report classification

system to detect evidence of pneumonia in chest X-ray reports by integrating features ex-

tracted from change-of-state and diagnosis events. The system identified change-of-state and

diagnosis events in clinical reports by using a three-stage process: (1) predicting rationale

text snippets for pneumonia detection, (2) labeling named entities in rationale snippet sen-

tences, and (3) creating a dependency tree by connecting entities to one another with labeled

arcs. How constrained are these components by the language of the report classification task

they were trained on and the relatively small set of reports and rationale snippets in the

pneumonia report classification chest X-ray corpus?

In this study, I explore the adaptability of the NLP components I developed to detect

pneumonia in chest X-ray reports to other disease scenarios and I evaluate whether modules

trained on a corpus annotated for suspicion of pneumonia (PNA) and Clinical Pulmonary

Infection Score (CPIS) can be applied to similar diseases and related corpora. In Section

5.1, I provide an overview of a report classification task for acute lung injury (ALI), similar

to the pneumonia report classification task I explored in Chapter 4, and describe why it

is a candidate for demonstrating the adaptability of the pneumonia report classification

NLP components to a related disease report classification task. In Section 5.2, I review the

previous research of Yetisgen-Yildiz et al. (2013a) and their development of an ALI patient

classification system and annotated corpus. I then describe the methodology I will use to

replicate the patient classification system and experiments described in Yetisgen-Yildiz et al.

(2013a) in Section 5.3, and detail my implementation of snippet prediction and change-of-

state and diagnosis event components for ALI report classification in Section 5.4. I compare
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the ALI report classification experimental results after integrating event-based features with

the baseline results I generate with the replicated system in Section 5.5, and discuss the

outcome of my experiments and my conclusions in Section 5.6.

5.1 Task overview

ALI and acute respiratory distress syndrome (ARDS) are critical lung illnesses that together

represent 7% of intensive care admissions (Rubenfeld et al., 2005). Early detection is im-

portant given that the appropriate treatment, lung protective ventilation (LPV), is often

applied too late or not at all, increasing the chance the patient will not recover (Ferguson

et al., 2005; Rubenfeld et al., 2004). The identification of ALI requires recognition of a

precipitating cause, either due to direct lung injury from trauma or pneumonia or secondary

to another insult such as sepsis, transfusion, or pancreatitis. The consensus criteria for ALI

include the presence of bilateral pulmonary infiltrates on chest radiograph, representing non-

cardiac pulmonary edema as evidenced by the absence of left atrial hypertension (Pulmonary

Capillary Wedge Pressure < 18 mmHg (2.4 kPa)) or absence of clinical evidence of congestive

heart failure, and oxygenation impairment as defined by an arterial versus inspired oxygen

level ratio (PaO2/FiO2) < 300 mmHg (40 kPa)) (Articas et al., 1998; Dushianthan et al.,

2011; ARDS Task Force, 2012).

Yetisgen-Yildiz et al. (2013a) annotated a corpus of chest X-ray reports and developed an

NLP-based patient classification system to identify patients with lung injury by classifying a

patient’s X-ray reports as being consistent or non-consistent with a diagnosis of ALI. They

selected X-ray reports that represent a cohort of patients who meet the minimum oxygena-

tion criteria for ALI, and extracted an n-gram feature set to train and test a maximum

entropy (MaxEnt)-based classification system that used χ2 feature selection and assertion

classification to optimize performance through feature space reduction. In their study, they

addressed the limitations of their n-gram approach by suggesting that a richer set of fea-

tures, based on the semantics of change-of-state as described in Vanderwende et al. (2013)

may improve the performance of their classifier.
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The chest X-ray reports I developed into an annotated unique rationale snippet corpus

for change-of-state and diagnosis events in the previous chapter are from the same institution

and electronic health record (EHR) system, Harborview Medical Center, as the reports used

to develop an ALI extractor in Yetisgen-Yildiz et al. (2013a). Although the exact disease

description for ALI and pneumonia differ, a random sampling of the report text reveals

similar observations and findings are used to develop consensus diagnosis by radiologists and

clinicians. Table 5.1 compares side-by-side, the top 15 unigram features, ranked by χ2 score,

in the ALI and pneumonia report classification corpus. Although not exactly the same, many

of the listed terms come from the same domain—lung injury or disease.

ALI Unigram Features VAP Unigram Features

DIFFUSE OPACITY

ATELECTASIS ATELECTASIS

PULMONARY OPACITIES

EDEMA LOBE

OPACITIES CONSOLIDATION

CONSISTENT DIFFUSE

ALVEOLAR ASPIRATION

DAMAGE UPPER

BILATERAL ABNORMALITIES

DISEASE TUBES

WORSENING LEFT

LUNG RADIOLOGISTS

SEVERE ADVERSE

CLEAR RIGHT

PHYSICIANS FOCAL

Table 5.1: A comparison of the top 15 unigram features from the ALI and pneumonia report

classification corpora, measured by χ2
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In order to explore the adaptability of the pneumonia report classification rationale snip-

pet prediction module and change-of-state and diagnosis event named entity recognition

(NER) and relation extraction (RE) event detection modules, I applied them as a case

study to the task of ALI report classification in the chest X-ray report corpora annotated

by Yetisgen-Yildiz et al. (2013a). I pivoted the data from the ALI database to reshape the

classification task as report-based rather than patient-based to align more with the original

pneumonia report classification task.

5.2 Previous research

Yetisgen-Yildiz et al. (2013a) developed an ALI extractor, which identified patients with ALI

symptoms from an annotated corpus comprised of 1748 chest x-ray reports. The corpus was

generated for 629 patients (average number of reports=2.78, min=1, max=3) and annotated

by three medical expert annotators. The 629 subjects were selected from a cohort of intensive

care unit (ICU) patients at Harborview Medical Center, previously described in Glavan et

al. (2011), who met the oxygenation criteria for ALI (PaO2/FiO2<300 mmHg). Three

Critical Care Medicine specialists reviewed the chest radiograph images for each patient and

annotated the radiographs as consistent (positive) or not-consistent (negative) with ALI.

Yetisgen-Yildiz et al. (2013a) assigned ALI status for each subject based on the number of

physician raters calling the chest radiographs consistent or not. 254 patients were assigned

to the positive set (2 or more physicians agreeing on ALI positive) and 375 patients to the

negative set (2 or more physicians agreeing on ALI negative). See Table 5.2 for a summary

of agreement counts between annotators.

Yetisgen-Yildiz et al. (2013a) used a MaxEnt classifier in the MALLET1 (McCallum,

2002) machine learning package to classify ALI patients and evaluated performance using

10-fold cross-validation on the corpus of 1748 X-ray reports. Three types of experiments

were performed: (1) n-gram experiments using different combinations of n-gram features,

1http://mallet.cs.umass.edu/
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(2) feature selection experiments using different thresholds of n-gram features ranked by χ2

statistical feature selection, and (3) assertion analysis experiments using assertion classes

as described in (Bejan et al., 2013b). Their best performing system was an n-gram model

of combined unigram, bigram, and trigrams, with a feature selection threshold of θ = 800

features. They reported system performance of 81.7 precision, 75.6 recall, and an F-score of

78.5.

Based on error analysis and a close examination of the language of false negative and false

positive reports, Yetisgen-Yildiz et al. (2013a) suggested in the conclusion of their study that

additional semantic information, such as the change-of-state and diagnosis events proposed

in Vanderwende et al. (2013) may contribute to better performance in classification.

Annotation Agreement Patient Count

ALI positive patients 3 147

2 107

ALI negative patients 3 205

2 170

Table 5.2: Agreement levels between medical expert annotators on ALI status
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5.3 Methodology

Figure 5.1: ALI methodology

In Chapter 3, I propose four phases to structure my research into clinical events:

1) Event analysis—analyze the task and related previous research to define events

2) Corpus development—develop corpora by annotating events

3) Event detection—build systems for automatic event detection

4) Event-based feature extraction—extract event-based features for classification

In this section I adapt my general research framework to the study of the adaptability of

change-of-state and diagnosis event events and extraction tools trained on the pneumonia re-

port classification corpus, to an alternate disease report classification task, ALI. The research

framework is dramatically simplified—there are no annotation or event detection phases.
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5.3.1 Event analysis

In the event analysis phase, I replicate the ALI NLP system and experiments described in

Yetisgen-Yildiz et al. (2013a). I randomly distribute reports from the 1748 X-ray report

corpus into five folds for 5-fold cross-validation.

5.3.2 Corpus development

I made no changes to the existing ALI corpus, with the exception of file and format changes

importing the ALI corpus from a text-based MySQL bulk export to a table-based repre-

sentation in the system database. The corpus contains only ALI labels used in the report

classification task. I do not add any additional annotation to the corpus—all named entities,

events, and rationale snippets are extracted using components trained on the pneumonia

report classification corpus.

5.3.3 Event extraction

I used the pneumonia report classification NER and dependency extraction modules, trained

on the pneumonia report classification unique snippet corpus to extract events as CoNLL

2007 Shared Task on Dependency Parsing formatted files. I parsed the dependency trees in

these files with a Java-based import tool and converted them to a table-based representation

in the system database. A final Java-based conversion tool, extracted tuples and event-based

features as feature vector strings from the system database to create feature vector strings

for training in MALLET.

5.3.4 ALI classification applied task

Table 5.3 briefly summaries the event-based features generated by the pneumonia report

classification tuple and feature extraction module. The only event type previously included in

the pneumonia report classification task but not the in the ALI experiments, is the Attribute

event type, which was only used in oracle experiments for pneumonia report classification.
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Feature Description

Entity Name and value pair of a event-based named entity annotation

Pattern: {Entity Type} = {Entity Value}

Example: VAL=CLEAR

Tuple N -Tuple extracted from a change-of-state or diagnosis event

Pattern:

[{Cos Value},{Attr Value},{Val Value},{Loc Value},{Ref Value}]

Example:

[NEW NEG,ABNORMALITIES,FOCAL,LUNG,AS PER LAST EXAM]

Change-of-

state

Specific Cos value replaced with a generic COS. Val fields in the

n-tuple are normalized with an underscore if they are multi-word,

and prefix the Attr value. Loc entities are added as a suffix to

the Attr value with an @ symbol.

Pattern: COS→{Val Value} {Attr Value} @ {Loc Value}

Example: COS→PATCHY EDEMA @ LEFT LUNG

Diagnosis Specific Dhead value replaced with a generic DIAGNOSIS, Val

and Loc fields follow same pattern as Change-of-state feature

above.

Pattern: DIAGNOSIS→{Val Value} {Attr Value} @ {Loc Value}

Example: DIAGNOSIS→PNEUMONIA @ RIGHT LUNG

Observation Specific Attr value replaced with a generic OBS (for observation),

Val and Loc fields follow same pattern as Change-of-state feature

above.

Pattern: OBS→{Val Value} {Attr Value} @ {Loc Value}

Example: OBS→PATCHY ATELECTASIS @ LUNGS

Table 5.3: A description and example of event-based features generated from change-of-state

and diagnosis event dependency trees
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5.4 Implementation

To measure the impact of change-of-state and diagnosis event features on the performance of

ALI report classification, I replicated the NLP system and experiments described in Yetisgen-

Yildiz et al. (2013a) to establish a baseline for comparison and a system to implement new

experiments. I used four extraction modules and their associated models trained on the

pneumonia report classification corpus to extract event-based features. See Table 5.4 for a

summary of the modules, models, and the description of the task and Table 5.5 for a descrip-

tion of change-of-state and diagnosis event features. Figure 5.2 provides an diagrammatic

view of the overall system and data flow.
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Module Model Task Description

Snippet

Prediction

CPIS/PNA

snippet

Predict rationale snippets with the pneumonia report

classification snippet prediction module using models

trained on CPIS and PNA labels snippets from the

pneumonia report classification corpus

NER Unique

snippet

corpus

Extract named entities from predicted snippets and

whole reports from the ALI corpus using the pneu-

monia report classification NER module and mod-

els trained on the change-of-state and diagnosis enti-

ties annotated in the pneumonia report classification

unique rationale snippet corpus

Dependency Unique

snippet

corpus

Extract change-of-state and diagnosis dependency

trees from predicted snippets and whole reports from

the ALI corpus based on the named entities output

by the pneumonia report classification NER module,

and models trained on the pneumonia report classi-

fication unique rationale snippet corpus.

Tuple and

Event

Feature

[Rule-based] Extract change-of-state and diagnosis event features

from the tuples output by the pneumonia report clas-

sification tuple extraction module.

Table 5.4: Pneumonia report classification modules and models used in ALI report classifi-

cation study
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Figure 5.2: ALI system diagram
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Feature Baseline Event-only All

Word unigram

and bigram

X X

Entity attribute

name & value

X X

Entity name &

value

X X

Event tuple X X

Change of state X X

Diagnosis X X

Observation X X

Table 5.5: ALI report classification feature sets

I integrated the extracted event-based features into feature sets for new ALI report clas-

sification experiments and measured the performance of the classifier with the evaluation

measures precision, recall, F-score, and accuracy.

5.5 Results

In this section, I review results for the final ALI report classification experiments for whole

document, CPIS and PNA predicted snippets. I also discuss additional feature selection

threshold experiments I conducted to explore the impact of feature selection on the perfor-

mance of the report classifier.

5.5.1 ALI report classification results

Table 7.5 lists the results from the original study in Yetisgen-Yildiz et al. (2013a). The

study emphasized feature selection as the approach with the most impact of the different

approaches they explored in their study. An important aspect of their classification task

that differs from mine is that they pivoted their classification task on the patient. The
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classification feature vector is a roll-up of all features in all the reports associated with the

same patient id. Because categorical information for each report, positive or negative for

ALI, was reverse engineered from the patient classifications in the database, and my snippet

prediction module was trained on reports, I chose to use this information to change the task

to report classification instead of patient classification.

Table 5.7 lists the results of my baseline experiments with default features (unigram plus

bigram plus trigram), Table 5.8 lists experiments with event-based features only, and Table

5.9 with all features.

Feature Type θ TP TN FP FN P R F1 Acc

Uni+Bi+Tri 0 470 783 220 275 68.1 63.1 65.5 71.7

Uni+Bi+Tri 800 494 833 170 251 74.4 66.3 70.1 75.9

Table 5.6: Baseline n-gram results from replicated system (evaluated by report)

Textual Unit θ TP TN FP FN P R F1 Acc

Whole 0 470 783 220 275 68.1 63.1 65.5 71.7

Document 800 494 833 170 251 74.4 66.3 70.1 75.9

CPIS 0 463 796 207 282 69.1 62.1 65.4 72.0

Predicted Snippets 800 455 833 170 290 72.8 61.1 66.4 73.7

PNA 0 480 807 196 265 71.0 64.4 67.5 73.6

Predicted Snippets 800 469 836 167 276 73.7 63.0 67.9 74.6

Table 5.7: Final ALI report classification results with baseline features.
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Textual Unit θ TP TN FP FN P R F1 Acc

Whole 0 469 770 233 276 66.8 63.0 64.8 70.9

Document 800 496 845 158 249 75.8 66.6 70.9 76.7

CPIS 0 465 796 207 280 69.2 62.4 65.6 72.1

Predicted Snippets 800 465 832 171 280 73.1 62.4 67.3 74.2

PNA 0 459 792 211 286 68.5 61.6 64.9 71.2

Predicted Snippets 800 446 830 173 299 72.1 59.9 65.4 73.0

Table 5.8: Final ALI report classification results with event-only features.

Textual Unit θ TP TN FP FN P R F1 Acc

Whole 0 471 781 222 274 68.0 63.2 65.5 71.6

Document 800 490 839 164 255 74.9 65.8 70.1 76.0

CPIS 0 467 788 215 278 68.5 62.7 65.4 71.8

Predicted Snippets 800 469 836 167 276 73.7 63.0 67.9 74.7

PNA 0 480 805 198 265 70.8 64.4 67.4 73.5

Predicted Snippets 800 471 841 162 274 74.4 63.2 68.4 75.1

Table 5.9: Final ALI report classification results with all features.

The impact of event-based features on the results of the ALI report classification ex-

periments are mixed and inconclusive. Experiments with all baseline and event features

extracted from oracle snippets and whole documents benefit from feature selection, with

whole document extraction demonstrating the most improvement in F-score. Extracting

features from predicted snippets does not benefit ALI classification when snippets are pre-

dicted using a CPIS-snippet trained model, but do benefit when snippets are predicted using

a PNA-snippet trained model. Again, as mentioned in the discussion in Chapter 4, this may

be influenced by the distribution of reports across PNA and CPIS label in the original corpus

on which the snippet prediction module was trained. The best performing ALI classification
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system, the only system to marginally beat the baseline of F-score 70.1 with an F-score of

70.9, is with event features-only, in whole document configuration, with a feature threshold

of 800.

5.5.2 ALI feature selection threshold results

In this section, I explore the effect of feature selection thresholds on the performance of

the ALI report classifier. A set of experiments for whole documents were run and are

listed and discussed in this section. No additional feature selection threshold experiments

were run for predicted CPIS and PNA snippets. The whole document experiments were

grouped into sets for baseline features, event-only features, and all features. Each set based

on feature type included one or more experiments for a specific feature threshold. The

same increments of feature threshold were applied across all experiment sets. The standard

feature threshold increments for whole documents were: 50, 100, 150, 200, 250, 500, 750,

1000, 1500, 2500, 5000, 7500, 10000, and 15000. Three other factors influenced the number

of feature threshold experiments run for each experiment set: (1) if the maximum number

of χ2 significant features was less than one of the standard feature threshold increments,

experiments were not run for thresholds greater than the maximum, (2) if the maximum

number of average features per fold in the MaxEnt model with no feature selection was less

than a feature threshold, no experiments were run for feature threshold with a greater value,

and (3) the F-scores for the larger feature threshold increments demonstrated a pattern of

diminishing performance. The row at the top of each table with a hyphen as its value for θ

represents an experiment with no feature selection.

The series of Tables 5.10 - 5.12 list the results of ALI report classification experiments

for on whole documents for baseline, event-only, and all features. The Table 5.13 lists the

highest performing experiment across the three feature sets.
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θ S G TP TN FP FN P R F1 Acc

- 1748 1748 470 783 220 275 68.1 63.1 65.5 71.7

10000 1748 1748 488 873 130 257 79.0 65.5 71.6 77.9

7500 1748 1748 504 869 134 241 79.0 67.7 72.9 78.5

5000 1748 1748 516 871 132 229 79.6 69.3 74.1 79.3

2500 1748 1748 527 868 135 218 79.6 70.7 74.9 79.8

1500 1748 1748 516 849 154 229 77.0 69.3 72.9 78.1

1000 1748 1748 504 852 151 241 76.9 67.7 72.0 77.6

750 1748 1748 509 839 164 236 75.6 68.3 71.8 77.1

500 1748 1748 493 837 166 252 74.8 66.2 70.2 76.1

250 1748 1748 484 839 164 261 74.7 65.0 69.5 75.7

150 1748 1748 490 849 154 255 76.1 65.8 70.6 76.6

100 1748 1748 469 839 164 276 74.1 63.0 68.1 74.8

50 1748 1748 456 836 167 289 73.2 61.2 66.7 73.9

Table 5.10: Baseline features (unigram, bigram, and trigram) on whole document (Average

number of features across folds in model with no feature selection = 23,483/Number of

significant χ2 ranked features = 8500
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θ S G TP TN FP FN P R F1 Acc

- 1748 1748 469 770 233 276 66.8 63.0 64.8 70.9

15000 1748 1748 469 770 233 276 66.8 63.0 64.8 70.9

10000 1748 1748 475 853 150 270 76.0 63.8 69.3 76.0

7500 1748 1748 472 862 141 273 77.0 63.4 69.5 76.3

5000 1748 1748 478 862 141 267 77.2 64.2 70.1 76.7

2500 1748 1748 505 851 152 240 76.9 67.8 72.0 77.6

1500 1748 1748 513 850 153 232 77.0 68.9 72.7 78.0

1000 1748 1748 506 850 153 239 76.8 67.9 72.1 77.6

750 1748 1748 495 845 158 250 75.8 66.4 70.8 76.7

500 1748 1748 484 841 162 261 74.9 65.0 69.6 75.8

250 1748 1748 475 846 157 270 75.2 63.8 69.0 75.6

150 1748 1748 453 831 172 292 72.5 60.8 66.1 73.5

100 1748 1748 437 851 152 308 74.2 58.7 65.5 73.7

50 1748 1748 425 834 169 320 71.5 57.0 63.5 72.0

Table 5.11: Event-based features only on whole document (Average number of features

across folds in model with no feature selection = 13,297/Number of significant χ2 ranked

features = 14,100)
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θ S G TP TN FP FN P R F1 Acc

- 1748 1748 471 781 222 274 68.0 63.2 65.5 71.6

15000 1748 1748 492 878 125 253 79.7 66.0 72.2 78.4

10000 1748 1748 502 877 126 243 79.9 67.4 73.1 78.9

7500 1748 1748 511 868 135 234 79.1 68.6 73.5 78.9

5000 1748 1748 516 875 128 229 80.1 69.3 74.3 79.6

2500 1748 1748 508 845 158 237 76.3 68.2 72.0 77.4

1500 1748 1748 499 837 166 246 75.0 67.0 70.8 76.4

1000 1748 1748 492 840 163 253 75.1 66.0 70.3 76.2

750 1748 1748 492 841 162 253 75.2 66.0 70.3 76.3

500 1748 1748 488 837 166 257 74.6 65.5 69.8 75.8

250 1748 1748 471 837 166 274 73.9 63.2 68.2 74.8

150 1748 1748 454 845 158 291 74.2 60.9 66.9 74.3

100 1748 1748 455 847 156 290 74.5 61.1 67.1 74.5

50 1748 1748 433 831 172 312 71.6 58.1 64.1 72.3

Table 5.12: All features on whole document (Average number of features across folds in

model with no feature selection = 36,780/Number of significant χ2 ranked features = 15,000)

Features θ S G TP TN FP FN P R F1 Acc

baseline 2500 1748 1748 527 868 135 218 79.6 70.7 74.9 79.8

event-only 1500 1748 1748 513 850 153 232 77.0 68.9 72.7 78.0

all 5000 1748 1748 516 875 128 229 80.1 69.3 74.3 79.6

Table 5.13: The highest performing feature threshold experiments for whole document

5.6 Summary

In this study, I focused on adapting the components I developed for pneumonia report

classification in Chapter 4 to the task of ALI report classification. The language of the

radiology reports for ALI and VAP are close in regards to the anatomical locations, clinical
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attributes, diagnosis, and change-of-state terms and phrases that are used by radiologists to

describe imaging. I applied the pneumonia report classification snippet prediction modules

for both CPIS and PNA to the ALI corpus, and ran the pneumonia report classification

NER module and dependency parsing RE module on the snippets and whole document. I

extracted five of the six event-based features defined in the pneumonia report classification

study and applied those features to the ALI report classification task. I compared my results

to the n-gram-based results published in Yetisgen-Yildiz et al. (2013a) with and without

feature selection.

Although the language of ALI diagnosis is similar to pneumonia, there are a number of

terms unique to ALI. Using the current pneumonia report-trained snippet prediction module

to extract candidate ALI rationale snippets, and then vetting those candidate rationale snip-

pets for ALI diagnosis could provide additional positive examples to retrain the pneumonia

report classification snippet prediction module. Given the improvement in performance of

pneumonia report classification based on the snippet prediction module in the pneumonia

study, an ALI-trained snippet prediction module would likely produce better results than a

pneumonia-trained model.

Integrating event-based features into the ALI report classification task matched but did

not improve the performance of the report classifier trained on baseline n-gram features.

The best performing configuration for optimal feature selection threshold was with baseline

features and θ=2500 (see Table 5.13). Additional experiments, exploring feature selection

threshold values improved the performance of alls classifier models, but did not demonstrate

an increase of performance when event-based features were added to the feature set.

Although the results of the ALI experiments with event-based features did not demon-

strate dramatic improvements in performance, they were able to identify snippets and extract

change-of-state and diagnosis event trees from the ALI corpus. Given the simplicity of the

change-of-state and diagnosis event annotation scheme, selecting a collection of candidate

snippets from the ALI corpus and annotating them with change-of-state and diagnosis events

annotations, adding these annotations to the pneumonia report classification corpus used to
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train the original models, and then training new models, could demonstrate how to adapt

the NER and RE extraction modules to the ALI report classification task.
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Chapter 6

CRITICAL RECOMMENDATIONS

In Chapter 4, I developed a dependency tree-based event model for change-of-state and

diagnosis events as an extension of the n-tuple representation proposed in Vanderwende et

al. (2013). In this chapter, I explore an alternate structure for representing clinical events by

modeling a critical follow-up recommendation event as a template of properties rather than

an n-tuple or a dependency tree. Yetisgen-Yildiz et al. (2013b) defined a critical follow-up

recommendation as a sentence in a radiology report that communicates an important and

critical follow-up recommendation to clinicians or other ordering providers. In this study,

I define a critical recommendation event as a critical recommendation sentence associated

with a number of additional properties including:

• the text of the critical follow-up recommendation sentence

• Reason, Test, and Time entities found in the recommendation sentence (See Table 6.5

for definitions)

• the index exam described in the exam description metadata field of its radiology report

• the diagnosis in the diagnosis summary metadata field of its radiology report

• a default recommended follow-up test and default follow-up timeframe computed from

information extracted from report text and metadata and based on rules prescribed by

the radiologist

A critical follow-up recommendation sentence can co-occur with other critical follow-up

recommendation sentences within the same radiology report. It does not necessarily share

the same level of criticality and importance as the other critical follow-up recommendation

sentences in the same report. Criticality and importance is a four label category I devel-
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oped in collaboration with domain experts—an internal medicine specialist, radiologist, and

attending neurologist—during the initial phase of corpus development (see Table 6.4 for

definitions of the labels in the criticality and importance category). We defined and estab-

lished annotation guidelines for identifying and labeling critical follow-up recommendation

sentences with the four labels of criticality and importance. I developed a model for critical

follow-up recommendation events through this process and created a classification system

that automatically detects, extracts, and labels critical follow-up recommendation events

from the text of radiology reports.

Figure 6.1: A radiology report containing a critical follow-up recommendation sentence

Figure 6.1 is an example of a report that contains a critical follow-up recommendation

sentence. The reason for the imaging test, prostate surveillance, is listed on line 03. Lines

11 and 12 record a radiologist’s incidental finding of a nodule in the lung. Line 24 features

the critical follow-up recommendation sentence: Follow-up chest CT is recommended in 6

months.
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In Section 6.1, I provide an overview of the critical follow-up recommendation sentence

identification task and the annotation of collections of candidate critical follow-up recommen-

dation sentences with labels of criticality and importance. In Section 6.2, I review previous

research—a radiology critical follow-up recommendation study that introduced a new cor-

pus and a preliminary approach to critical follow-up recommendation sentence identification

(Yetisgen-Yildiz et al., 2013a). In Section 6.3, I describe how I adapt my general research

methodology to the Yetisgen-Yildiz et al. (2013a) critical follow-up recommendation study

and, in Section 6.4, I detail my implementation of a critical follow-up recommendation an-

notation process, event analysis, sentence identification and event classification system. In

Section 6.5, I review the results of my experiments and component evaluations and, in Sec-

tion 6.6, I discuss the outcomes of my experiments and component evaluations. I present

the conclusions of my study in Section 6.7.

6.1 Task overview

In the last ten years, radiologists and clinicians have benefited greatly from advances in

imaging technologies and their increased availability, giving rise to previously unavailable

diagnostic and screening capabilities (Hendee et al., 2010). However, the growth in the

amount of reports and images that require review and comment demands that radiologists

optimize their use of clinical information without adding unnecessary noise to the signal

between radiologist and ordering provider. They are called on not only to answer questions

posed by ordering providers, but also called on to identify unexpected incidental findings

that might pose a significant health risk to patients in the short or medium term (Berland

et al., 2010). Automated systems that integrate with the electronic health record (EHR) are

necessary to support the radiologist in tracking and identifying both critical test results and

unexpected findings.

Yetisgen-Yildiz et al. (2013b) defined a critical follow-up recommendation sentence as a

statement made by a radiologist in a given radiology report to advise the referring clinician to

further evaluate an imaging finding by either other tests or further imaging. A critical follow-
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up recommendation sentence may contain the same or similar text as other critical follow-up

recommendation sentences, but it might differ from the other sentences in its importance and

criticality. The difference between the two sentences, one being an important and critical

recommendation and the other not, lies in the context of surrounding information in the

report, its metadata, and subtle differences in wording.

Yetisgen-Yildiz et al. (2013b) stated their long term goal was to identify clinically impor-

tant and critical recommendations so that the reports can be flagged visually and electroni-

cally. Separate workflow processes can then be initiated to reduce the chance that important

test and follow-up exams suggested in the report are not missed by clinicians. To accomplish

this goal, they designed a text processing approach based on NLP and supervised machine

learning to identify sentences that contain clinically important recommendation informa-

tion. In their study, they introduced a corpus of 800 randomly-sampled radiology reports,

annotated by two medical experts for critical follow-up recommendation sentences.

In this study, I define a critical follow-up recommendation event model and develop a

system to extract and label critical follow-up recommendation events by their importance

and criticality. I build upon the previous research in Yetisgen-Yildiz et al. (2013b), and

work with medical expert annotators to annotate critical follow-up recommendation events

in randomly selected collections of imaging reports from a new multi-institutional corpus.

6.2 Previous research

In order to develop and evaluate a system to identify critical recommendations, Yetisgen-

Yildiz et al. (2013b) created a corpus of radiology reports composed of 800 randomly selected

and de-identified radiology reports, across 12 imaging modalities (See Table 6.1), extracted

from the Harborview Medical Center radiology information system (Yetisgen-Yildiz et al.,

2013b). The reports were generated by a reporting system that offers radiologists multiple

modes in one user interface for recording their observations:
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• a microphone-enabled voice recognition feature for speech-to-text translation

• a mouse-based, menu-driven controlled vocabulary and structured text template entry

feature

• a keyboard-based feature for adding freely typed text and editing previously translated

speech-to-text and menu-selected entries

Imaging modality Frequency

Computer tomography (CT) 486

Radiograph 259

Magnetic resonance imaging (MRI) 45

Ultrasound 10

Table 6.1: Distribution of corpus radiology reports across imaging modalities from Yetisgen

et. al., (2013)

Two annotators, a radiologist and a clinician, evaluated each sentence in the corpus, and

identified critical follow-up recommendation sentences in two rounds of annotation. The

annotations were compared by inter-annotator agreement (IAA) measures and differences

in annotation were resolved via consensus. See Table 6.2 for the IAA comparison of the

two annotators. The high Kappa scores for the second round of annotations suggest the

definition of a follow-up recommendation was easy to understand and apply for the medical

expert annotators. At the end of the process, the annotators identified 113 critical follow-up

recommendations as gold standard and finalized the annotation guidelines (Yetisgen-Yildiz

et al., 2013b).
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Round Annotator 1 Annotator 2 Agreed P R F1 Kappa

1st 110 109 83 75.5 76.1 75.8 75.7

2nd 114 118 113 99.1 95.8 97.4 97.4

Table 6.2: IAA measures for corpus annotation from Yetisgen et. al., (2013)

The 113 annotated recommendation sentences in the gold standard were used to train a

maximum entropy (MaxEnt) model with MALLET1 (McCallum, 2002) incorporating four

types of features:

1. word n-gram

2. syntactic and temporal

3. knowledge-based

4. structural

Features were ranked by χ2 value and experiments were run with different feature count

thresholds. Due to the number of positive sentences (113) being much smaller than negative

sentences (18,364), data balancing was used to identify an optimal ratio of positive to negative

sentences (Yetisgen-Yildiz et al., 2013b). They experimented with feature selection, feature

types, and data balancing over 165 partitions, and achieved the highest F-score of 75.8 at k

= 9 (precision = 66.2, recall = 88.5) where the ratio of positive to negative sentences in the

training data was 1 to 9 (k is the number of partitions of negative sentences that are used

in the data-balanced fold configurations).

6.3 Methodology

I organize my study into an adapted form of the four-phase research framework I described

in Chapter 3. The four phases are:

1http://mallet.cs.umass.edu/
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1) Event analysis—analyze the task and related previous research to define events

2) Corpus development—develop corpora by annotating events

3) Event detection—build systems for automatic event detection

4) Event-based feature extraction—extract event-based features for classification

Figure 6.2 provides a visual representation of the flow of research-related tasks in the

adapted critical follow-up recommendation methodology framework. In this study, the crit-

ical follow-up recommendation event classification task is new and not an extension of the

previous study’s approach. Critical follow-up recommendation sentence identification, as

described in Yetisgen-Yildiz et al. (2013b), is used as a preliminary step in critical follow-up

recommendation event classification, but no error analysis contributes to the critical follow-

up recommendation event model. That step is removed from the general framework in this

study. Another difference between the general research framework and the research method-

ology for this study, is the removal of the corpus gold standard publishing step. The corpus

used in this study is not available for release.

6.3.1 Event analysis

In the first phase of research, the general framework was adapted for two basic tasks:

1. design a critical follow-up recommendation event model in consultation with domain

experts

2. replicate the system from Yetisgen-Yildiz et al. (2013b) and repeat critical follow-up

recommendation sentence identification data-balancing experiments

The event model for a critical follow-up recommendation is a template of properties that

includes the original critical follow-up recommendation sentence but also other information,

such as relevant report metadata, Time, Test, and Reason entities, etc. In this phase, I

defined the properties of the event model (see Section 6.4.2 for details of the implementation).
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Figure 6.2: Critical follow-up recommendation methodology overview

To replicate the data-balancing experiments from Yetisgen-Yildiz et al. (2013b), I created

a series of high-recall/low-precision critical follow-up recommendation sentence identification

models and selected the most appropriate for the task of identifying candidate sentences
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in the multi-institutional corpus. Once the model was trained, candidate sentences were

identified and added to a new sub-corpus. The sub-corpus was annotated by medical expert

annotators for labels of criticality and importance and by medical students for the entities

Reason, Test, and Time.

6.3.2 Corpus development

There were three stages in the corpus development phase:

Corpus preparation To prepare the corpus, I exported a collection of multi-institutional

radiology reports from the EHR into the system database. Only reports that met the

modality requirements of the study, contained the required metadata fields, and had

report text, were selected and organized into randomly sampled collections of 1000.

The critical follow-up recommendation sentence identifier was run on eight collections

of 1000 reports, and the same medical expert annotators from the Yetisgen-Yildiz et

al. (2013b) study participated in the validation of system-generated candidate critical

follow-up recommendation sentences. Three additional annotators joined the study and

were added to the institutional review board (IRB) agreement. A new annotation tool,

BRAT2 (Stenetorp et al., 2012), was selected, and a BRAT schema for annotation was

designed with the help of medical expert annotators. See Section 6.4 for implementation

details. Tasks adapted from the general framework include:

1. identify annotators

2. amend IRB

3. prepare corpus

4. identify annotation tool

5. design schema

2http://brat.nlplab.org/index.html
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Corpus annotation The corpus annotation phase occurred at three levels: (1) the binary

classification level, where medical expert annotators validated system-generated critical

follow-up recommendation sentences, (2) the sentence labeling level, where medical

expert annotators applied a label of criticality and importance to the valid sentences,

and (3) at the entity level, where medical student annotators identified Reason, Test,

and Time entities in the sentence text. The tasks of validating system-generated critical

follow-up recommendation sentences and applying labels of criticality and importance

to the identified sentences required the expertise of medical experts, while entity level

annotation was concerned only with Reason, Test, and Time entities, and therefore a

task appropriate for medical student annotators. Sentence level classification was a

difficult task for the medical expert annotators, with little consensus throughout the

project. It was much easier to get consensus on label definitions at the entity level.

The following tasks were adapted from the general framework for this phase:

1. create annotation guidelines

2. train annotators

3. annotate corpus

4. measure IAA

Corpus finalization For the sentence level annotation tasks, finalizing the gold standard

required additional meetings due to the difficulty of establishing final guidelines con-

cerning the labels of importance and criticality.

6.3.3 Event detection and feature extraction

Event detection for critical follow-up recommendations is the process of extracting features

from template properties. Entities are one of the properties of a critical follow-up recom-

mendation event and require the design and evaluation of a named entity recognition (NER)

module to extract Reason, Test, and Time entities. See Section 6.4.5 for implementation

details and Section 6.5.2 for NER module evaluation results.
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The final versions of the binary critical follow-up recommendation sentence identifier, the

NER module, the template-filling aggregation module for critical follow-up recommendation

events, and the critical follow-up recommendation event criticality and importance classi-

fication system, were run on the remaining unlabeled collections of the multi-institutional

corpus to calculate statistics for a future study. See Section 6.5 for results of running these

tools on the entire multi-institutional corpus.

The baseline critical follow-up recommendation event classification experiments in this

study were based on combinations of n-gram features (unigram, bigram, and trigram) ex-

tracted from the text of critical follow-up recommendation sentences and their report meta-

data. See Section 6.4.8 for implementation details and Section 6.5.4 for classification results.

6.4 Implementation

Table 6.3 breaks down the overall system development effort into individual components

that were implemented during the four research phases of the study. The table also provides

descriptions of each component and evaluation measures used to measure their performance.

Figure 6.3 presents a diagrammatic view of the overall system and how information flows

between major components.
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Impl.
Step

Research
Phase

Description Evaluation

Event
Analysis

Baseline
system

Replicate the data-balanced crit-
ical follow-up recommendation
sentence identification system
described in Yetisgen-Yildiz et
al. (2013b)

Achieve high-recall/low-
precision data-balanced results
to select a model for criti-
cal follow-up recommendation
identification

Event
model

Model the critical follow-up rec-
ommendation event, defining all
properties for the template

Ensure all properties can be ex-
tracted for any critical follow-up
recommendation

Corpus
annotation

Annotation

Annotate reports by vetting
system-generated critical follow-
up recommendation, add labels
for importance and criticality,
and entities Reason, Test,and
Time

IAA measures by label for sen-
tence and entity level

Event
Detection

NER
module

Train and test an NER module
to identify and label named en-
tities in critical follow-up recom-
mendation

P,R, and F1 measures of NER la-
beling by entity and token

Feature
Extraction

Template
Extractor

Module to extract all proper-
ties of a critical follow-up rec-
ommendation event for classifi-
cation and feature extraction

Manual ad-hoc testing

Critical
follow-up
recommendation
identification
classification
system

Classify critical follow-up recom-
mendation events by importance
and criticality
Identify candidate sentences over
entire corpus

P, R, and F1 measured and eval-
uated against gold standard la-
bels in multi-institutional corpus
for 753 identified sentences in
sub-corpus. Evaluation of 1000
randomly selected reports from
the overall corpus.

Table 6.3: A breakdown of the overall critical follow-up recommendation task into steps and

evaluation metrics
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Figure 6.3: Critical follow-up recommendation system
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6.4.1 Replicated baseline system and experiments

To prepare a corpus of candidate recommendation sentences for the first round of annotation

I created a high-recall/low-precision model for binary recommendation sentence classification

by training a classifier on the annotated corpus of 800 randomly sampled radiology reports

from the Harborview Medical Center radiology information system described in Yetisgen-

Yildiz et al. (2013b). I imported the data into the system database and used the same

feature set, unigrams and syntactic features, in k-partition data-balancing experiments to

select an appropriate high-recall/low-precision model for sentence identification. See Table

6.18 for a sampling of the k-partition table used to select a high-recall (90.2)/low-precision

(35.1) model.

The high-recall/low-precision binary sentence classifier identified many false positives.

Even though annotators had to vet many false positives, the filtering of reports using the

high-recall/low-precision model reduced the number of overall reports they needed to review,

which expedited the annotation process.

6.4.2 Event model

The medical expert annotators who annotated recommendation sentences and participated

in creating the annotation guidelines in the previous study proposed a four-label category to

differentiate between types of critical follow-up recommendations and to indicate their level

of importance and criticality. The final list of four recommendation types were: (1) Non-

contingent clinically important recommendation—an advisory statement that could result in

mortality or significant morbidity if appropriate clinical assessment, diagnostic or therapeu-

tic follow-up steps are not followed, (2) Contingent clinically important recommendation—

similar to (1), but the statement is contingent on the presence of a clinical condition, (3)

Clinically important recommendation likely reported—similar to (1) and (2), but consid-

ered to be unlikely not to be reported in communication between radiologist and clinician,

and, (4) Clinically unimportant recommendation—an advisory statement that is unlikely to
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result in mortality or significant morbidity if appropriate clinical assessment, diagnostic or

therapeutic follow-up steps are not followed. See Table 6.4 for detailed description of each

label and both case and recommendation sentence examples.
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Name Description Case

example

Recommendation

example

Non-

contingent

clinically

important

recommen-

dation

An advisory statement that

could result in mortality or sig-

nificant morbidity if appropriate

clinical assessment, diagnostic or

therapeutic follow-up steps are

not followed.

Incidental lung mass sus-

picious for malignancy on

a trauma CT of the ab-

domen.

CT chest is recom-

mended to further

evaluate the lung

mass.

Contingent

clinically

important

recommen-

dation

Similar to non-contingent clin-

ically important recommenda-

tion, but the statement is contin-

gent on the presence of a clinical

condition.

Adrenal mass identified on

a CT of the abdomen and

pelvis for appendicitis.

If the patient has a

history of malignancy,

consider bio-chemical

testing and an adrenal

mass protocol CT for

further evaluation.

Clinically

important

recom-

mendation

likely re-

ported

(miss un-

likely)

Similar to non-contingent and

contingent clinically important

recommendation, but considered

to be unlikely not to be reported

in communication between radi-

ologist and clinician.

A distal radius fracture

was identified on a pre-

vious week’s x-ray of pa-

tients hand. A follow-up

x-ray of the hand is re-

quested to rule out pos-

sible additional scaphoid

fracture.

L distal radius fracture

x 1 week, please also

follow-up to rule out

scaphoid fracture com-

pared with last week’s

x-rays.

Clinically

unim-

portant

recommen-

dation

An advisory statement that is

unlikely to result in mortality or

significant morbidity if appropri-

ate clinical assessment, diagnos-

tic or therapeutic follow-up steps

are not followed, and/or a low

probability that the recommen-

dation would be overlooked.

Following trauma, a ra-

diograph demonstrates a

probable non-displaced

fracture of the mid ulna.

Consider an MRI of

the forearm if diagnos-

tic certainty is desired

Table 6.4: Labels of criticality and importance for critical follow-up recommendation sen-

tences and events
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The medical expert annotators also defined three optional and repeatable entities, Reason,

Test, and Time, which are found within a critical follow-up recommendation sentence.

Entity Description

Reason Reason for the critical follow-up recommendation,

for example an observation, finding, or diagnosis in

the text of the sentence

Test The imaging test or clinical exam that is recom-

mended for follow-up

Time The recommended timeframe for the recommended

follow-up test or exam

Table 6.5: Critical follow-up recommendation entities: Reason, Test, and Time

I defined an event model for critical follow-up recommendations in radiology reports as

a template of properties made up of:

• the text of the critical follow-up recommendation sentence

• Reason, Test, and Time entities found in the recommendation sentence (See Table 6.5

for definitions)

• the index exam described in the exam description metadata field of its radiology report

• the diagnosis in the diagnosis summary metadata field of its radiology report

• a default recommended follow-up test and default follow-up timeframe computed from

information extracted from report text and metadata and based on rules prescribed by

the radiologist

The values for default recommended follow-up test and default recommended follow-up

timeframe were based on a set of rules prescribed by the radiologist annotator in this study.

They represent a set of heuristics used in the radiology department to determine a default test

or timeframe and are used when no explicit test or timeframe is recommended in the radiology
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report. These values are calculated with the expectation they will be part of the metadata

provided to the end user of a future critical follow-up recommendation identification system

integrated with an EHR.

I developed a template extractor for critical follow-up recommendation events including

a rules engine for calculating default test and timeframe. See Section 6.4.6 for details on the

implementation.

6.4.3 Annotation

The goal of the first round of annotation was to have medical expert annotators vet system-

generated candidate critical follow-up recommendation sentences from a sub-corpus of 8,000

reports randomly selected from the much larger multi-institutional corpus. The sub-corpus

was created because manual annotation is a time-consuming and labor-intensive process. The

annotators assigned to the project were limited in the time they had available for annotation.

The first step was to import the multi-institutional corpus of X-ray reports from the EHR

systems of three different institutions including a university medical center, a trauma center,

and a cancer care hospital into the system database. The corpus was made up of 745,077

radiology reports representing all imaging modalities with the exception of Mammography

(MG), of which another 37,754 reports were stored in the database but were excluded from

the study because a specific follow-up and alert system already exists to manage recommen-

dations for that modality. See Table 6.6 for a distribution of reports across modalities.
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Code Imaging modality # of reports

CR Computed Radiography 413,889

CT Computed Tomography 146,181

DF Digital Fluoroscopy 12

DX Digital Radiography 1,626

MR Magnetic Resonance Imaging 52,127

NM Nuclear Medicine 12,895

OT Portable Radiography 6,166

PT Portable Radiography 4,121

RF Fluoroscopy 27,239

US Ultrasound 68,999

XA Angio-Interventional 11,803

- No Category 19

Total 745,077

Table 6.6: Distribution of radiology reports by standard modality code in multi-institutional

radiology corpus.

A high-recall/low-precision model for the binary sentence classifier described in Section

6.4.1 was used to identify 1086 candidate critical follow-up recommendation sentences from

the 140,044 sentences that make up the 8,000 report multi-institutional sub-corpus. The

percentage of candidate sentences identified was approximately .8%. The number of re-

ports with system-identified recommendation sentences was 818 out of a total of 8,000, or

approximately 10.2%.

Figure 6.4 provides a diagrammatic view of the flow of data through the entire system

and how annotations created during the corpus development phase factor into the eventual

identification and labeling of critical follow-up recommendation sentences and events.
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Figure 6.4: Overall system data flow diagram for the corpus development process

131 reports were identified as having system-identified candidate recommendation sen-

tences in the first collection of 1000 randomly selected reports that made up the 8,000 report

sub-corpus. To measure IAA, the first 50 of these reports were annotated by three med-

ical expert annotators. After measuring IAA and discussing the results, the annotation

guidelines were updated and two of the three annotators completed another round of an-

notation, reviewing an additional 81 reports from the same collection of 131 reports with

system-identified recommendations. A second IAA measure was calculated and discussed by

the annotators, leading to the finalization of the annotation guidelines. The two annotators

completed the annotation of the 8 collections of 1000 reports, vetting the 1086 candidate

sentences identified by the high-recall/low-precision classifier, and creating a final annotated
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corpus of 753 critical follow-up recommendation sentences in 567 reports, each labeled with

one of the four labels of criticality and importance.

The annotation interface displayed the full text of each report to the annotators and

highlighted by color-coded labeling the candidate recommendation sentences. The anno-

tators could then label the sentence as Incorrect if they believed the system had wrongly

identified a recommendation sentence. They could also label a new recommendation sen-

tence if they believed it had not been identified by the system. If they introduced a new

recommendation and the other annotators did not also identify the same sentence, the label

for the annotation was considered to be None for the other annotators for IAA measures.

Although each annotator added one or two additional sentences per collection, there was no

agreement and therefore no annotator-labeled sentences were added to the final gold stan-

dard collection. See Table 6.7 for sentence statistics of the annotated sub-corpus of 8,000

reports, Table 6.8 for report statistics, and Section 6.4.4 for IAA results at the sentence level.

Collection All

Sent.

Sys.

Rec.

Sent.

1 2 3 4 Final

Rec

Sent.

1 17,146 188 9 38 29 46 122

2 17,463 154 8 30 23 18 79

3 17,714 163 14 36 30 23 103

4 18,136 173 8 35 31 30 104

5 17,900 95 19 21 27 12 79

6 17,513 110 12 30 23 20 85

7 17,420 96 13 42 17 13 85

8 16,752 107 7 35 42 12 96

Totals 140044 1086 90 267 222 174 753

Table 6.7: Critical follow-up recommendation sentence sub-corpus statistics (categories: (1)

IMP COND, (2) IMP, (3) IMP M UN, and (4) UN IMP)
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Collection Reports

w/Sys.

Rec.

Reports

w/Rec.

1 132 87

2 116 56

3 122 82

4 125 84

5 75 60

6 86 65

7 80 64

8 82 69

Totals 818 567

Table 6.8: Critical follow-up recommendation sub-corpus statistics for recommendations in

reports

The vetting, categorization, and annotation of system-identified critical follow-up rec-

ommendation sentences by medical expert annotators took place at the same time medical

student annotators were being trained to annotate Reason, Test, and Time entities. Be-

cause the medical expert annotators were annotating the multi-institutional corpus, and

their annotations needed to be final before entities could be added, entity annotation train-

ing, guideline development, and IAA was applied to the smaller 800 report corpus from the

Yetisgen-Yildiz et al. (2013b) study. One medical expert annotator and one medical school

student annotator annotated 112 critical follow-up recommendation sentences in 89 reports

that contained a critical follow-up recommendation sentence, in two rounds of annotation.

Due to differences in sentence normalization between the data in the previous study, and its

imported representation in the system database, the number of recommendation sentences

was 112 in this study, rather than the 113 reported in Yetisgen-Yildiz et al. (2013b). Once

the annotators completed two rounds of IAA on the corpus from the Yetisgen-Yildiz et al.
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(2013b) study, they completed the annotation of the 753 critical follow-up recommendation

sentences in the multi-institutional sub-corpus. See Section 6.4.4 for IAA measures at the

entity level. Table 6.9 gives the final entity statistics of the multi-institutional sub-corpus.

Collection Reason Test Time Totals

1 92 129 36 341

2 72 88 16 235

3 87 103 15 283

4 101 116 29 337

5 81 81 14 239

6 76 90 24 241

7 66 93 28 236

8 93 106 16 292

Totals 668 806 178 2204

Table 6.9: Critical recommendation corpus statistics for entities Reason, Test, and Time

6.4.4 IAA measures

Table 6.10 summarizes the first round of IAA for critical follow-up recommendation sen-

tence category labeling, pairwise for three medical expert annotators: an internal medicine

specialist, radiologist, and attending neurology clinician. The results of the comparison of

annotators reveals the difficult discussions and challenge to achieve consensus on labels for

critical follow-up recommendation sentences. Given the poor agreement between all three

annotators, the pair with the highest agreement continued to the next round of annotation.

Agreement was still difficult to achieve, and the results for the second round in Table 6.11

reflect that. The IAA scores for sentence classification based on the labels of criticality

and importance are much lower than the binary sentence identification IAA scores from the

previous study (Yetisgen-Yildiz et al., 2013b), suggesting that identifying a general critical

follow-up recommendation sentence is much easier and more straightforward than deciding
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on its level of importance and criticality.

Annotator

pairwise

P R F1 Acc Kappa

A/B 35.2 24.0 28.5 35.5 20.4

A/C 51.7 69.1 59.1 63.6 49.5

B/C 42.9 36.8 39.3 46.2 33.1

AVG 43.3 43.1 42.3 48.4 34.3

Table 6.10: First round of critical follow-up recommendation annotation (first 50 reports

with system-identified critical follow-up recommendation sentences)

Annotator

pairwise

P R F1 Acc

A/C 59.8 58.7 59.2 54.5

Table 6.11: Second round of critical follow-up recommendation annotation (remaining 81

reports with system-identified critical follow-up recommendation sentences in collection of

131 reports for the first 1000 reports)

Table 6.12 and Table 6.13 list the results for the first and second round of named entity

annotation on the corpus of 89 reports with 112 gold standard critical follow-up recommen-

dation sentences from Yetisgen-Yildiz et al. (2013b). The results of the two rounds of entity

annotation are better than the critical follow-up recommendation sentence classification IAA

results. The task of identifying Reason, Test, and Time is easier than applying a criticality

and importance label to a critical follow-up recommendation sentence.
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TP FP FN P R F1

Reason 516 298 433 63.4 54.4 58.5

Time 43 8 10 84.3 81.1 82.7

Test 248 38 86 86.7 74.3 80.0

F-micro 807 344 529 70.1 60.4 64.9

F-macro 73.7

Kappa 17.4

Table 6.12: Round one IAA per token results for critical follow-up recommendation named

entities

TP FP FN P R F1

Reason 694 169 218 80.4 76.1 78.2

Time 46 15 3 75.4 93.9 83.6

Test 302 24 57 92.6 84.1 88.2

F-micro 1042 208 278 83.4 78.9 81.1

F-macro 83.3

Kappa 46.3

Table 6.13: Round two IAA per token results for critical follow-up recommendation named

entities

6.4.5 NER module

The 2204 annotations of Reason, Test, and Time entities in the multi-institutional sub-corpus

of 753 critical follow-up recommendation sentences were used to train and test an NER

module. The module integrated version 3.5.2 of the conditional random fields (CRF)-based

Stanford Named Entity Recognizer3 (Finkel et al., 2005) for training and decoding NE se-

3http://nlp.stanford.edu/software/CRF-NER.shtml
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quences in critical follow-up recommendation sentences. The NER module was evaluated

using 5-fold cross-validation in a number of configurations, including:

• all entities

• each entity on its own

• phrasal versus word-based entities (Reason vs Test and Time)

The results of the evaluation of the NER module are presented in Section 6.5.2. The

module was used to extract Reason, Test, and Time entities from the entire multi-institutional

corpus. See Section 6.5.3 NER results on the entire corpus.

6.4.6 Template extractor module

The template extractor module extracts all of the properties of a critical follow-up recom-

mendation event and converts the properties into a typed feature vector for testing and

training the critical follow-up recommendation event classification module using the MAL-

LET machine learning toolkit. Table 6.16 describes how critical follow-up recommendation

event properties are converted into features. Tables 6.14 and 6.15 list the rules that are

used to compute the default recommended follow-up test and default recommended follow-up

timeframe.
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The default recommended follow-up test and default recommended follow-up timeframe

are also available in a report form for each critical follow-up recommendation sentence, for

example:

RECOMMENDATION(IMPT_CONTINGENT_REC):

The examination should be ordered as a low dose nodule follow-up chest CT.

Date: 2011-03-31 Test/Exam:

RECOMMENDED FOLLOW-UP: low dose nodule follow-up chest CT + CT, CT-PET, or MRI

RECOMMENDED TIMEFRAME: TARGET: 2011-04-30 RANGE: 2011-04-20 - 2011-05-10

The report form is generated in anticipation of integrating with a future EHR reporting

system for critical follow-up recommendations.

Location Index Exam Body Region Test Rec Test

Emergency x Chest - x + CT

Emergency x Abdomen - x + CT

Emergency -/x Chest y y + CT

Emergency -/x Abdomen y y + CT

All x Chest - x + CT

All -/x Chest y y + CT

All x Abdomen - x + CT, CT-PET, or MRI

All -/x Abdomen y y + CT, CT-PET, or MRI

All x All - x

All -/x All y y

All - Chest - CT

All - Abdomen - CT

All - Pelvis - CT

Table 6.14: Rules for default recommended follow-up test. The symbol x represents the value

of an index exam and y, the value of the recommended Test entity present in the sentence.

The symbol - indicates the value is missing. Rules are listed by precedence
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Location Body Region Time Rec Time Rec Time Start Rec Time End

All All x x x - 1/3 x + 1/3

Emergency Spine - 0-3 days 0 days 4 days

Emergency Bone - 0-10 days 0 days 10 days

Emergency Trauma Series - 0-1 day 0 days 1 day

Emergency Chest - 0-2 months 0 days 2 months

Emergency Abdominal - 0-2 months 0 days 2 months

In/Out Lung Lesions - 3 months 2 months 4 months

All Thyroid - 6 months 4 months 8 months

All All - 30 days 20 days 40 days

Table 6.15: Rules for default recommended follow-up timeframe. The symbol x represents

the value of a Time entity present in the sentence. The rules are listed by precedence.
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Feature Feature Description Feature Example

Report and

sentence text

Unigrams of tokenized

text from report or

sentence

unigram=FOLLOW-UP

unigram=EXAM

Named

entities

Reason, Test, and Time

entities from within the

boundaries of the criti-

cal follow-up recommen-

dation sentence

test=FOLLOW-UP MRI

time=3 WEEKS

Index exam Unigram sequence of

tokenized index exam

description from report

metadata. Root type is

first token in array

index test=MRI unigram=MRI

unigram=CHEST

Diagnosis Unigram sequence of tok-

enized diagnosis summary

from report metadata

unigram=TRAUMATIC

unigram=LUNG unigram=INJURY

Default

recommended

follow-up test

a default recommended

follow-up test or exam, de-

rived from rules and ex-

tracted information in the

report and its metadata

default test=MRI

Default

recommended

follow-up

timeframe

a default follow-up time-

frame for the test or exam,

derived from rules and ex-

tracted information in the

report and its metadata

default timeframe=3 WEEKS

Table 6.16: Features derived from the properties of the critical follow-up recommendation

event
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6.4.7 Critical follow-up recommendation sentence identification system

The critical follow-up recommendation sentence and Reason, Test, and Time entity annota-

tions created for the multi-institutional sub-corpus were used to create a new binary sen-

tence classifier and NER module to run against the entire multi-institutional corpus. See

Section 6.5.3 for the results of running these modules against the 737,077 reports in the

multi-institutional corpus (minus the 8,000 reports in the sub-corpus).

6.4.8 Critical follow-up recommendation classification system

In the event analysis phase, I defined a critical follow-up recommendation event as a template

of properties and in Section 6.4.6, I described how I created a template properties extractor to

extract them from critical follow-up recommendation sentences, report text, and metadata.

See Table 6.16 for a description of each of the template properties and how they are extracted

in the template extractor. In this section I describe how the feature vectors from the extractor

are used in a classification system for labeling critical follow-up recommendation sentences.

I used the MALLET machine learning toolkit and its MaxEnt classifier to train and test,

in 5-fold cross-validation, a critical follow-up recommendation sentence classification system

using the 753 gold standard critical follow-up recommendation sentences from 567 reports in

the multi-institutional sub-corpus. To determine the impact on performance of using critical

follow-up recommendation event-based features, I ran baseline word unigram, unigram plus

bigram, and unigram plus bigram and trigram experiments. I then ran experiments using

the critical follow-up recommendation event-based features alone and in combination with

the baseline. See Section 6.5.4 for results of the critical follow-up recommendation sentence

classification experiments.
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6.5 Results

Section Description

Data-balancing K partition data-balancing experiments trained and tested on an-

notated previous study data

NER

evaluation

NER experiments on the multi-institutional sub-corpus for

Reason, Test, and Time

Sentence

identification

& NER statistics

(entire corpus)

Results of binary critical follow-up recommendation sentence iden-

tification and NER module to entire multi-institutional corpus.

Event classification Critical follow-up recommendation event classification experi-

ments integrating features extracted from event templates

Table 6.17: Results section overview

All experiments in this study are limited by the amount of data available for training and

testing. In all studies, unless otherwise noted, 5-fold cross-validation is used. Each of the

five folds is broken down into a 80%/20% split of training and testing data. There is no data

overlap between testing and training splits, and each fold’s test split does not overlap with

any other fold’s test split. See Table 1 for a list of the abbreviations and terms used in the

result tables headers.

6.5.1 Data-balancing experiments

Table 6.18 lists a select number of the rows of k-partition data-balancing experiments repli-

cated with data from the corpus of 800 radiology reports described in Yetisgen-Yildiz et

al. (2013b). The number of sentences, both negative and positive, differed from the original

study, due to line ending interpretation and sentence normalization after import into the sys-

tem database. In the original study, the k-partition data-balancing experiments were run on
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113 positive sentences and 18,634 negative sentences, for a ratio of 1:165 (165 k partitions).

For this study, 112 positive and 20,887 negative sentences with a ratio of 1:186 (186 k par-

titions) were used to run data-balancing experiments and select a high-recall/low-precision

model. The k partition 5 was selected because it closest to a threshold of 90.0 recall and had

a higher precision and F-score than k partition 4.

K TP FP TN FN P R F1 TOTAL

1 106 461 20314 6 18.7 94.6 31.2 20887

2 103 310 20465 9 24.9 92.0 39.2 20887

3 102 259 20516 10 28.3 91.1 43.1 20887

4 101 209 20566 11 32.6 90.2 47.9 20887

5 101 187 20588 11 35.1 90.2 50.5 20887

6 100 174 20601 12 36.5 89.3 51.8 20887

7 98 126 20649 14 43.8 87.5 58.3 20887

8 98 104 20671 14 48.5 87.5 62.4 20887

9 96 95 20680 16 50.3 85.7 63.4 20887

10 94 84 20691 18 52.8 83.9 64.8 20887

186 59 15 20760 53 79.7 52.7 63.4 20887

Table 6.18: Replicated data-balancing experiments on the imported previous study corpus,

highlighting the row, partition k = 5, which came closest to the target threshold of a 90.0%

recall

6.5.2 NER evaluation results

Table 6.19 and Table 6.20 list the results of the critical follow-up recommendation NER

module, trained and tested with the NE annotations created on the 753 critical follow-up

recommendation sentences identified in the multi-institutional sub-corpus of 8,000 randomly

selected reports. In the first two tables in this section, all entities were trained and tested

in the same pass. Table 6.19 measures the exact entity match and Table 6.20 exact token
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match. Tables 6.21 and 6.21 list the exact entity and token match result for only Test

and Time decoded in the same pass, and Table 6.23 and 6.24 list the results of Reason, an

entity that is more phrasal in nature than a traditional entity, decoded alone. The results

for training and testing word-based entities, Time and Test, and phrasal entities, Reason,

separately, did not significantly improve performance.

Entity TP FP FN P R F1

Reason 460 155 158 74.8 74.4 74.6

Test 622 140 184 81.6 77.2 79.3

Time 147 11 31 93.0 82.6 87.5

Totals 1229 306 373 80.1 76.7 78.4

Table 6.19: Performance of NER (all entities) with exact match of entities including multi-

word

Entity TP FP FN P R F1

Reason 2900 516 471 84.9 86.0 85.5

Test 2334 227 328 91.1 87.7 89.4

Time 298 8 65 97.4 82.1 89.1

Totals 5532 751 864 88.1 86.5 87.3

Table 6.20: Performance of NER (all entities) wth exact match of tokens in all entities

Entity TP FP FN P R F1

Test 609 129 197 82.5 75.6 78.9

Time 146 9 32 94.2 82.0 87.7

Totals 755 138 229 84.6 76.7 80.5

Table 6.21: Performance of NER (Time and Test entities only) entity exact match
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Entity TP FP FN P R F1

Test 2275 158 387 93.5 85.5 89.3

Time 292 5 71 98.3 80.4 88.5

Totals 2567 163 458 94.0 84.9 89.2

Table 6.22: Performance of NER (Time and Test entities only) token exact match

Entity TP FP FN P R F1

Reason 461 129 157 78.1 74.6 76.3

Table 6.23: Performance of NER (Reason entity only) entity exact match

Entity TP FP FN P R F1

Reason 2807 328 564 89.5 83.3 86.3

Table 6.24: Performance of NER (Reason entity only) token exact match

6.5.3 Critical follow-up recommendation sentence identification

Table 6.25 lists the results of k partition data-balancing experiments trained on the sub-

corpus of 8,000 annotated reports, and applied to the remaining 737,077 reports of the

multi-institutional corpus. There are 753 positive sentences to 140,046 negative sentences,

which is a 1:184 ratio, resulting in 184 k partitions. Three results are highlighted, the model

with high-recall/low-precision (with at least a 70.0 threshold precision) at K=15, a balanced

model (where the delta between precision and recall is lowest: .1) K = 67, and the complete

model, where K=184. In the tables that follow, results for all three models are shown

for critical follow-up recommendation sentences identified in the overall multi-institutional

corpus.
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K TP TN FP Total FN Prec Rec Delta F1 Acc

1 748 136971 2322 5 140046 24.4 99.3 74.9 39.2 98.3

2 743 137958 1335 10 140046 35.8 98.7 62.9 52.5 99.0

3 736 138308 985 17 140046 42.8 97.7 54.9 59.5 99.3

4 735 138506 787 18 140046 48.4 97.6 49.2 64.7 99.4

5 730 138619 674 23 140046 52.1 96.9 44.9 67.7 99.5

6 727 138706 587 26 140046 55.3 96.5 41.2 70.3 99.6

7 725 138762 531 28 140046 57.7 96.3 38.5 72.2 99.6

8 722 138822 471 31 140046 60.6 95.9 35.3 74.2 99.6

9 719 138852 441 34 140046 62.0 95.5 33.5 75.2 99.7

10 719 138888 405 34 140046 64.0 95.5 31.5 76.6 99.7

11 718 138913 380 35 140046 65.4 95.4 29.9 77.6 99.7

12 717 138936 357 36 140046 66.8 95.2 28.4 78.5 99.7

13 717 138955 338 36 140046 68.0 95.2 27.3 79.3 99.7

14 715 138975 318 38 140046 69.2 95.0 25.7 80.1 99.7

15 713 138993 300 40 140046 70.4 94.7 24.3 80.8 99.8

16 709 139004 289 44 140046 71.1 94.2 23.1 81.0 99.8

17 708 139019 274 45 140046 72.1 94.0 21.9 81.6 99.8

18 707 139026 267 46 140046 72.6 93.9 21.2 81.9 99.8

19 705 139038 255 48 140046 73.5 93.6 20.1 82.3 99.8

20 704 139052 241 49 140046 74.6 93.5 18.9 82.9 99.8

...

65 654 139186 107 99 140046 86.0 86.9 0.9 86.4 99.9

66 655 139190 103 98 140046 86.5 87.0 0.5 86.7 99.9

67 655 139194 99 98 140046 86.9 87.0 0.1 86.9 99.9

68 653 139194 99 100 140046 86.9 86.7 0.2 86.8 99.9

69 653 139196 97 100 140046 87.1 86.7 0.4 86.9 99.9

...

184 617 139246 47 136 140046 92.9 81.9 11.0 87.1 99.9

Table 6.25: K partition data-balancing experiments using n-gram features and the annotated

multi-institutional sub-corpus (Accuracy = TP/N)
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Table 6.26 lists the number of critical follow-up recommendation sentences identified in

the overall multi-institutional corpus by data-balanced k partition model.

Total Reports Total Sentences K=15 K=67 K=184

737,077 12,732,812 87,179 63,167 53,943

0.685% 0.496% 0.424%

Table 6.26: Total critical follow-up recommendation sentences identified by model in overall

multi-institutional corpus

Table 6.27 lists the number of reports by modality for reports with 1 or more critical

follow-up recommendation sentences in the multi-institutional corpus.

Total K=15 K=67 K=184

Reports High-Recall Balanced Complete

No category 18 3 2 2

CR 409,411 15,658 11,460 9,943

CT 144,626 22,096 17,615 15,563

DF 11 6 - -

DX 1,603 50 15 12

MR 51,573 6,655 5,203 4,535

NM 12,736 1,532 1,032 859

OT 6,110 94 30 26

PT 4,086 1,681 1,410 1,272

RF 26,936 963 567 469

US 68,280 12,249 8,879 7,954

XA 11,687 1,765 969 639

Total 737,077 62,752 47,182 41,274

8.514% 6.401% 5.600%

Table 6.27: Modality by Report with 1 or more Recommendations
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Table 6.28, Table 6.29, and Table 6.30 list the number of entities per modality for the

multi-institutional corpus.

Modality Abbrev. Time Test Reason Total

No Category - - 2 2 4

Computed Radiography CR 695 16,653 17,035 34,383

Computed Tomography CT 4,085 29,830 26,382 60,297

Digital Fluoroscopy DF - - 12 12

Digital Radiography DX 1 17 52 70

Magnetic Resonance Imaging MR 4,526 12,621 7,028 24,175

Nuclear Medicine NM 100 1,852 1,608 3,560

Portable Radiography OT 10 54 91 155

Portable Radiography PT 83 3,247 2,360 5,690

Fluoroscopy RF 31 941 1,007 1,979

Ultrasound US 4,851 15,328 9,452 29,631

Angio-Interventional XA 912 1,479 1,707 4,098

Totals 15,294 82,024 66,736 164,054

Table 6.28: Number of Entities per Modality: High-Recall K = 15
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Modality Abbrev. Time Test Reason Total

No Category 4 - 2 1 3

Computed Radiography CR 578 12,623 13,814 27,015

Computed Tomography CT 3,724 24,398 21,705 49,827

Digital Fluoroscopy DF - - - -

Digital Radiography DX 1 13 21 35

Magnetic Resonance Imaging MR 3,714 9,761 5,373 18,848

Nuclear Medicine NM 55 1,353 1,217 2,625

Portable Radiography OT 10 38 39 87

Portable Radiography PT 72 2,726 2,034 4,832

Fluoroscopy RF 23 595 655 1,273

Ultrasound US 3,112 11,364 7,044 21,520

Angio-Interventional XA 542 924 919 2,385

Totals 11,831 63,797 52,822 128,450

Table 6.29: Number of Entities per Modality: Balanced K = 67
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Modality Abbrev. Time Test Reason Total

No Category - 2 1 3

Computed Radiography CR 539 11,105 12,625 24,269

Computed Tomography CT 3,484 21,393 19,655 44,532

Digital Fluoroscopy DF - - - -

Digital Radiography DX - 11 18 29

Magnetic Resonance Imaging MR 3,496 8,926 4,944 17,366

Nuclear Medicine NM 46 1,131 1,071 2,248

Portable Radiography OT 10 34 35 79

Portable Radiography PT 71 2,367 1,878 4,316

Fluoroscopy RF 21 501 561 1,083

Ultrasound US 2,879 10,286 6,365 19,530

Angio-Interventional XA 404 643 703 1,750

Totals 10,950 56,399 47,856 115,205

Table 6.30: Number of Entities per Modality: Complete K= 184

Table 6.31 and Table 6.32 list the final evaluation results for 100 randomly selected reports

from the multi-institutional corpus. Critical follow-up recommendation sentences and named

entities were evaluated by a NLP researcher after the critical follow-up recommendation sen-

tence identification and NER module were run against the entirety of the multi-institutional

corpus. An NLP researcher completed the final review of categories and entity labels due to

the original medical expert annotators being no longer available to the project.

S G TP FP FN P R F1

183 172 169 14 3 92.3 98.3 95.2

Table 6.31: Final evaluation of 100 randomly sampled reports from entire multi-institutional

corpus
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Entity S G TP FP FN P R F1

Reason 115 121 114 1 7 99.1 94.2 96.6

Test 162 168 157 5 11 96.9 93.5 95.2

Time 50 54 50 0 4 100.0 92.6 96.2

Total 327 343 321 6 22 98.2 93.6 95.8

Table 6.32: Final evaluation of named entities automatically identified from 100 randomly

sampled reports from entire multi-institutional corpus

6.5.4 Critical follow-up recommendation event classification experiments

Table 6.33 lists the results of preliminary baseline n-gram experiments for critical follow-

up recommendation event classification with no feature selection. The feature set for these

experiments were n-grams created from the text of the 753 critical follow-up recommendation

sentences in the gold standard.

Feature Type TP FP FN P R F1

Unigram 458 295 295 58.1 57.1 57.5

Unigram + Bigram 457 296 296 59.2 57.6 58.2

Unigram + Bigram + Trigram 458 295 295 59.3 56.9 57.7

Table 6.33: Baseline n-gram experiments for critical follow-up recommendation classification

6.5.4.1 Feature selection threshold experiments

In this section, I explore the effect of feature selection thresholds on the performance of the

critical follow-up recommendation event classifier. Five sets of experiments based on different

combinations of feature types were run. Each set based on feature type included one or more

experiments for a specific feature threshold. The same increments of feature threshold were

applied across all experiment sets. The standard feature threshold increments for CPIS and
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PNA labels on whole documents were: 50, 100, 150, 200, 250, 500, 750, 1000, 1500, and

2500. Three other factors influence the number of feature threshold experiments run for

each experiment set: (1) if the maximum number of χ2 significant features is less than one

of the standard feature threshold increments, experiments are not run for thresholds greater

than the maximum, (2) if the maximum number of average features per fold in the MaxEnt

model with no feature selection is less than a feature threshold, no experiments are run for

feature threshold with a greater value, and (3) the F-scores for the larger feature threshold

increments demonstrate a pattern of diminishing performance. The row at the top of each

table with a hyphen as its value for θ represents an experiment with no feature selection.

Tables 6.34-6.38 list a series of critical follow-up recommendation classification exper-

iments using different combinations of baseline and event-based feature types and feature

selection thresholds. The best performing result is listed in Table 6.38, which used a reduced

feature set of unigram plus bigram plus metadata location and diagnosis with a feature

threshold of 500. The ambiguous boundaries of the four label category for criticality and

importance make it difficult to create a well-categorized corpus, especially given the small

number of sentences per category in the gold standard. However, the use of metadata from

the event properties template and feature selection improved the performance of the classifier.
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θ S G TP FP FN P R F1 Acc

- 753 753 469 284 284 63.0 58.1 59.8 62.3

1500 753 753 485 268 268 64.1 61.0 62.2 64.4

1000 753 753 489 264 264 64.8 61.6 62.8 64.9

750 753 753 463 290 290 62.6 58.7 60.1 61.5

500 753 753 459 294 294 62.2 58.7 60.0 61.0

250 753 753 450 303 303 61.3 58.3 59.4 59.8

150 753 753 403 350 350 56.9 50.7 52.6 53.5

100 753 753 397 356 356 57.1 48.9 49.7 52.7

50 753 753 397 356 356 56.6 49.0 49.7 52.7

Table 6.34: Baseline feature experiments with unigram, bigram, and trigram features

extracted from sentence and report metadata text (Average number of features across folds

in model with no feature selection = 15,698/Number of significant χ2 ranked features =

1202)

θ S G TP FP FN P R F1 Acc

- 753 753 423 330 330 55.7 50.1 51.2 56.2

500 753 753 435 318 318 60.9 51.8 53.3 57.8

250 753 753 436 317 317 60.4 51.6 53.0 57.9

150 753 753 434 319 319 62.1 51.4 53.0 57.6

100 753 753 425 328 328 58.0 49.9 51.2 56.4

50 753 753 386 367 367 50.8 44.5 45.1 51.3

Table 6.35: Event-only features experiments with entities, computed values, and

structured metadata (Average number of features across folds in model with no feature

selection = 3,510/Number of significant χ2 ranked features = 361)
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θ S G TP FP FN P R F1 Acc

- 753 753 465 288 288 63.1 57.6 59.4 61.8

1500 753 753 484 269 269 63.8 60.7 61.9 64.3

1000 753 753 477 276 276 63.9 60.8 62.0 63.3

750 753 753 460 293 293 62.0 58.8 60.0 61.1

500 753 753 453 300 300 60.6 57.8 58.9 60.2

250 753 753 446 307 307 61.1 57.4 58.7 59.2

150 753 753 395 358 358 55.7 49.0 49.6 52.5

100 753 753 391 362 362 54.7 48.0 48.6 51.9

50 753 753 388 365 365 54.2 48.0 48.5 51.5

Table 6.36: All features experiments with unigram, bigram, and trigram features ex-

tracted from sentence and report metadata text and entities, computed values, and

structured metadata (Average number of features across folds in model with no feature

selection = 19,208/Number of significant χ2 ranked features = 1563)

θ S G TP FP FN P R F1 Acc

- 753 753 475 278 278 62.7 59.0 60.3 63.1

750 753 753 497 256 256 65.4 62.2 63.4 66.0

500 753 753 490 263 263 65.0 61.0 62.4 65.1

250 753 753 449 304 304 61.4 58.2 59.5 59.6

150 753 753 401 352 352 56.8 50.0 51.6 53.3

100 753 753 390 363 363 56.2 47.9 47.7 51.8

50 753 753 393 360 360 56.2 48.1 47.9 52.2

Table 6.37: Reduced all features experiments with unigrams, bigrams, and trigrams

extracted from sentence text and entities, computed values, and structured metadata

(Average number of features across folds in model with no feature selection = 10,246/Number

of significant χ2 ranked features = 727)
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θ S G TP FP FN P R F1 Acc

- 753 753 483 270 270 62.9 59.8 60.9 64.1

750 753 753 506 247 247 66.2 63.6 64.6 67.2

500 753 753 508 245 245 66.4 63.8 64.8 67.5

250 753 753 471 282 282 65.1 59.9 61.7 62.5

150 753 753 429 324 324 59.4 54.4 56.0 57.0

100 753 753 393 360 360 57.0 49.2 50.7 52.2

50 753 753 397 356 356 57.6 48.5 48.1 52.7

Table 6.38: Reduced all features experiments with unigram and bigrams extracted from

sentence text and two fields of structured metadata: (1) diagnosis, and (2) location

(Average number of features across folds in model with no feature selection = 6,422/Number

of significant χ2 ranked features = 509)

6.6 Discussion

In this section I discuss results and observations of the different phases of my research

framework and follow the same section heading and organization structure for discussion as

my methodology and results sections.

1) Event analysis—analyze the task and related previous research to define events

2) Corpus development—develop corpora by annotating events

3) Event detection—build systems for automatic event detection

4) Event-based feature extraction—extract event-based features for classification

6.6.1 Event analysis

The original data from Yetisgen-Yildiz et al. (2013b) was imported from a MySQL batch

script into a Microsoft SQL Server database. Meta-characters and line-endings were incor-

rectly mapped from one encoding to another and the result was a difference in how sentences
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were normalized in the system database. The mapping from sentences to categories was

close enough that the final set of gold standard sentences numbered 112 rather than 113.

Manual review of the gold standard sentences in the previous study data and the table in

the database verified that the all of the text in the original 113 sentences was represented

in the 112 sentences in the database. The data error did not impact the development of the

high-recall/low-precision model developed for sentence identification.

6.6.2 Corpus development

Creating the four label criticality and importance category for critical follow-up recommenda-

tion sentences proved to be the biggest challenge in the study. In initial discussions with the

two medical expert annotators, both of whom participated in the original (Yetisgen-Yildiz et

al., 2013b) study, a seven-label, hierarchical category for critical follow-up recommendation

was suggested. The seven-label category was difficult to agree on and apply to examples

of critical follow-up recommendation sentences identified by the binary classifier. The task

was further complicated by the difference in interpretation of recommendation language by

a clinician and a radiologist. The addition of a third medical expert voice, an attending

physician in neurology, helped to clarify some of the subtle differences in interpretation

and adjudicate decisions regarding what constitutes a critical follow-up recommendation.

Eventually, we were able to constrain the original seven label category for critical follow-up

recommendation to the current four label category.

Due to the subtle differences between category labels in our four label critical follow-

up recommendation classification scheme, several follow-up meetings and measurements of

agreement were made after the guidelines were finalized and annotation of the corpus proper

had begun. This is not typical of a traditional annotation process (Xia and Yetisgen-Yildiz,

2012). We continued to use double annotation for the first three sets of 1000 reports, compar-

ing annotations and reaching consensus on not only the final definitions of the four category

labels, but on a set of heuristics for applying the labels based on actual report content. An-

other reason for the follow-up IAA measures and discussions was the length of time between
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annotation sessions. All of the medical experts in our study were fully employed and working

the long hours of the healthcare professional. Finding time in their schedule to dedicate to

manual annotation was difficult.

The named entities in the multi-institutional corpus were annotated by two annotators.

Initial NER IAA results and a review of annotations uncovered a number of annotation errors

and inconsistencies.

Errors included:

• inclusion of punctuation in non-sentence text spans

• errors generated in the annotation environment, such as starting a text span with a

space

• overlapping text spans where they are not allowed by the schema

• additional words or spaces added to the text span

Inconsistencies included:

• repeated phrases or expressions within a recommendation sentence were not annotated

consistently across reports

• words were not included in a repeated phrasal text span, such as Reason, whereas the

same words were repeated in other reports

• the annotator overlooked recommendation sentences that should have been annotated

for entities but were not

All of these errors and inconsistencies were resolved in follow-up meetings and addressed

explicitly in the annotation guidelines.

6.6.3 Event detection and event feature extraction

In the event detection phase of the study, I created a three-stage process for detecting critical

follow-up recommendation events:
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1) Binary critical follow-up recommendation classification Binary classification mod-

els were trained on sentences in the annotated corpus. A high-recall/low-precision

classifier was selected and run against unseen radiology reports and candidate critical

follow-up recommendation sentences were extracted.

2) Named Entity Recognition A named entity recognition module, trained on critical

follow-up recommendation sentences annotated with Reason, Test, and Time entities in

the annotated corpus, was run against the candidate critical follow-up recommendation

sentences output from the previous stage.

3) Critical follow-up recommendation event classification A critical follow-up rec-

ommendation event MaxEnt classifier was trained on vetted, labeled candidate sen-

tences and named entities from stage (1) and (2), as well as other extracted properties,

and run on candidate critical follow-up recommendation sentences from the previous

two stages.

6.6.4 Critical follow-up recommendation event classification error analysis

The distribution of critical follow-up recommendation sentences across the importance and

criticality category labels was fairly balanced (See Table 6.39 for a summary of sentences to

labels) with the exception of the contingent clinically important class, which was represented

by only 90 sentences.
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Number Abbrev Label # of sentences

1 IMP Non-contingent clinically

important recommenda-

tion

267

2 IMP COND Contingent clinically im-

portant recommendation

90

3 IMP M UN Clinically important rec-

ommendation likely re-

ported (miss unlikely)

222

4 UN IMP Clinically unimportant

recommendation

174

Table 6.39: Number of sentences per critical follow-up recommendation important and crit-

icality labels

The performance of the classifier varied per label. Tables 6.40 and 6.41 provide examples

of detailed results by class. Table 6.42 lists the label per class distribution of sentences for

the best performing experimental settings.

Label TP FP FN P R F1

1 IMP 198 113 69 63.7 74.2 68.5

2 IMP COND 34 28 56 54.8 37.8 44.7

3 IMP M UN 126 119 96 51.4 56.8 54.0

4 UN IMP 111 24 63 82.2 63.8 71.8

Total 469 284 284 63.0 58.1 59.8

Table 6.40: Detailed per label results for baseline feature experiments with no feature

selection threshold
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Label TP FP FN P R F1

1 IMP 208 98 59 68.0 77.9 72.6

2 IMP COND 42 28 48 60.0 46.7 52.5

3 IMP M UN 126 102 96 55.3 56.8 56.0

4 UN IMP 113 36 61 75.8 64.9 70.0

Total 489 264 264 64.8 61.6 62.8

Table 6.41: Detailed per label results for baseline feature experiments where feature se-

lection threshold=1000

Label TP FP FN P R F1

1 IMP 211 85 56 71.3 79 75

2 IMP COND 42 33 48 56 46.7 50.9

3 IMP M UN 137 97 85 58.5 61.7 60.1

4 UN IMP 118 30 56 79.7 67.8 73.3

Total 508 245 245 66.4 63.8 64.8

Table 6.42: Detailed per label results for reduced all feature experiments with unigram

and bigram features extracted from the sentence and structured metadata for diagnosis

and location and where feature selection threshold=500

The 2 IMP COND and 3 IMP M UN labels consistently underperformed in classification

when compared to the 1 IMP and 4 UN IMP labels. They were also the most difficult to

get annotators to agree on during the annotation phase. With a limited amount of training

data, common place conditional phrases may not be classified correctly. For example, in

the baseline experiment, the sentences: In a high risk patient, follow-up CT is suggested in

6-12 months for further evaluation and Correlation with MRI is recommended for further

evaluation as clinically warranted which are IMP COND sentences were mislabeled as IMP.

Label 3 is particularly difficult to pattern. The same version of the classifier labeled the
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following IMP M UN sentence: BI-RADS category 4. Given the low probability of accurately

localizing this finding with ultrasound, an MR guided biopsy is recommended at this time. and

IMP.

The confusion matrices in Tables 6.43 - 6.41 provide an insight into class labeling errors

in the corpus.

1 IMP 2 IMP COND 3 IMP M UN 4 UN IMP

1 IMP 198 9 50 10

2 IMP COND 22 34 33 1

3 IMP M UN 66 17 126 13

4 UN IMP 25 2 36 111

Table 6.43: Confusion matrix for baseline experiments with no feature selection

1 IMP 2 IMP COND 3 IMP M UN 4 UN IMP

1 IMP 208 11 39 9

2 IMP COND 17 42 26 5

3 IMP M UN 59 15 126 22

4 UN IMP 22 2 37 113

Table 6.44: Confusion matrix for baseline experiments with optimal feature selection

of 1000
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1 IMP 2 IMP COND 3 IMP M UN 4 UN IMP

1 IMP 211 11 37 8

2 IMP COND 15 42 28 5

3 IMP M UN 51 17 137 17

4 UN IMP 19 5 32 118

Table 6.45: Confusion matrix for reduced all feature experiments with unigram and

bigram features extracted from the sentence and structured metadata for diagnosis

and location and where feature selection threshold=500

6.7 Summary

In previous Chapters, I introduced a new model for clinical events as dependency trees and

developed a pipeline of modules to identify and extract them. My goal was to measure

the impact of event-based features on two applied clinical NLP tasks: pneumonia and ALI

report classification. In this study, I expanded my previous definition of clinical events and

introduced a different type of event, one based on a template of properties, with a sentence

at its core. I created an annotation schema, guidelines, and a process for annotating a multi-

institutional sub-corpus of 8,000 radiology reports across 12 imaging modalities with category

labels for critical follow-up recommendation sentences and named entities for Reason, Test,

and Time entities. I used the annotations to train and test a binary sentence classifier to

identify critical follow-up recommendation sentences, an NER module for critical follow-up

recommendation named entities, and an event classification module to classify critical follow-

up recommendation events. I applied the binary sentence classifier and NER module against

the remaining unlabeled 737,077 reports in the greater multi-institutional corpus to generate

statistics for a future study.



213

Conf. θ S G TP FP FN P R F1 Acc

baseline 1000 753 753 489 264 264 64.8 61.6 62.8 64.9

event-only 500 753 753 435 318 318 60.9 51.8 53.3 57.8

all 1000 753 753 477 276 276 63.9 60.8 62.0 63.3

reduced all I 750 753 753 497 256 256 65.4 62.2 63.4 66.0

reduced all II 500 753 753 508 245 245 66.4 63.8 64.8 67.5

Table 6.46: Comparison of optimal feature selection experiments for critical follow-up rec-

ommendation event classification

In conclusion, for critical follow-up recommendation event classification, a selection of

event-based (diagnosis and location metadata) and baseline n-gram (unigram and bigram)

features combined had the highest F-score, 64.8, in feature selection threshold experiments,

beating a baseline n-gram (unigram, bigram, and trigram) F-score of 62.8 (see Table 6.46).

The binary sentence identification and NER module performed reasonably well. The iden-

tification of 62,752 reports with candidate critical follow-up recommendation sentences and

87,179 candidate critical follow-up recommendation sentences, establishes a potential source

of new annotations and additions to the existing sub-corpus of 753 identified recommendation

sentences.
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Chapter 7

DISCUSSION

In this chapter, I summarize the results of my experiments in Section 7.1, and discuss the

outcomes of my research into three applied NLP classification tasks within the context of

the four phases of my research: event analysis in Section 7.2, corpus development in Section

7.3, event detection in Section 7.4, and event-based feature extraction for classification tasks

in Section 7.5.

7.1 Summary of results

In my dissertation I explored applying event-based features in three clinical NLP classification

tasks:

1. Pneumonia report classification

2. ALI report classification

3. Critical follow-up recommendation event classification

7.1.1 Pneumonia report classification

Ventilator-associated pneumonia (VAP) is a pneumonia acquired in a hospital setting by

patients who are on mechanical ventilation. It is a difficult disease to diagnosis early due to

patients with VAP also demonstrating symptoms of either an established critical illness or a

traumatic injury that has led them to be admitted to the hospital. In previous research, Xia

and Yetisgen-Yildiz (2012), Tepper et al. (2013), and Vanderwende et al. (2013) introduced

an annotated corpus, clinical NLP classification system, rationale snippet prediction module,

and change-of-state event n-tuple to predict the presence of VAP by classifying reports by

Clinical Pulmonary Infection Score (CPIS) and suspicion for pneumonia (PNA) labels. I
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replicated their systems and baseline experiments, implemented a new dependency tree-

based model for change-of-state and diagnosis events, developed event detection modules,

and extracted event-based features to extend the experiments in the original study, and

demonstrated a small improvement in performance when compared to the n-gram baseline

results I replicated from the descriptions of experiments in their studies.

Table 7.1 lists the best performing final experiments on whole documents with baseline,

event-only, and all features. The threshold was set to 250 for all experiments with feature

selection. In this scenario, for both CPIS and PNA, all features with feature selection

performed best.

Text Boundary Type Features θ P R F1 Acc

Whole Document

CPIS
baseline 250 77.0 71.1 73.4 86.0

event-only 250 79.6 70.4 73.0 86.7

all 250 79.7 75.5 77.2 87.6

PNA
baseline 250 74.1 71.7 72.5 80.8

event-only 250 73.2 69.2 70.2 80.5

all 250 75.1 72.7 73.5 81.4

Table 7.1: Comparison of the best performing final systems for baseline, event-only, and all

features on whole documents

Table 7.2 lists the best performing final predicted snippet experiments which compared

baseline, event-only, and all features. The threshold was set to 250 for all experiments with

feature selection. In this scenario, for CPIS, all features, combining baseline and event-based,

with feature selection performed best. For PNA, baseline features with feature selection

performed best.
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Text Boundary Type Features θ P R F1 Acc

Predicted Snippet

CPIS
baseline 0 76.9 72.4 74.2 86.1

event-only 0 77.6 70.4 72.7 85.9

all 250 80.9 73.3 76.1 87.4

PNA
baseline 250 77.5 74.4 75.1 83.3

event-only 250 75.2 71.0 72.2 86.1

all 250 75.6 73.2 73.8 83.3

Table 7.2: Comparison of the performance of baseline systems with feature selection and

without and final system with event-only or all feature sets over the predicted snippets

After conducting feature selection threshold experiments to explore the optimal number

of features to select based on feature type for whole documents, the margin of performance

gain over the baseline systems narrowed for both CPIS and PNA. Tables 7.3 and 7.4 below

list the final classification results using optimal feature selection thresholds to maximize

performance.

Features θ S G TP FP FN P R F1 Acc

baseline 150 1341 1341 1171 170 170 79.9 72.6 75.2 87.3

event-only 150 1341 1341 1163 178 178 78.5 72.4 74.3 86.7

all 250 1341 1341 1175 166 166 79.7 75.5 77.2 87.6

Table 7.3: The highest performing feature threshold experiments for the CPIS category on

whole documents
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Features θ S G TP FP FN P R F1 Acc

baseline 150 1343 1343 1100 243 243 75.6 73.1 73.8 81.9

event-only 1000 1343 1343 1097 246 246 76.0 72.5 73.6 81.7

all 200 1343 1343 1100 243 243 76.0 73.4 74.3 81.9

Table 7.4: The highest performing feature threshold experiments for the PNA category on

whole documents

7.1.2 ALI report classification

ALI is a critical illness of the lung. Yetisgen-Yildiz et al. (2013a) introduced an annotated

corpus and clinical NLP classification system to detect ALI in patient’s radiology reports. I

replicated their system and baseline experiments, in order to apply the snippet prediction,

NER, and dependency parser-based RE modules I trained in the previous pneumonia report

classification study in order to extract event-based features and integrate them with repli-

cated n-gram baseline ALI experiments. My goal was to demonstrate the adaptability of

the tools trained on the annotated pneumonia report classification corpus, to other similar

genres of disease.

Feature Type θ TP TN FP FN P R F1 Acc

Uni+Bi+Tri 800 494 833 170 251 74.4 66.3 70.1 75.9

Event-only

(whole document)

800 496 845 158 249 75.8 66.6 70.9 76.7

Table 7.5: Baseline n-gram results from replicated system (evaluated by report) on whole

document feature extraction

I conducted additional feature selection threshold experiments, similar to the previous

pneumonia report classification study and the updated performance results were close to the
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same value but no longer beat the experimental results with baseline features. Table 7.6 lists

the performance results from the feature selection threshold experiments.

Features θ S G TP FP FN P R F1 Acc

baseline 2500 1748 1748 527 868 135 218 79.6 70.7 74.9 79.8

event-only 1500 1748 1748 513 850 153 232 77.0 68.9 72.7 78.0

all 5000 1748 1748 516 875 128 229 80.1 69.3 74.3 79.6

Table 7.6: The highest performing feature threshold experiments for whole document

7.1.3 Critical follow-up recommendation event classification

A critical follow-up recommendation is a statement made by a radiologist in a given radiology

report to advise the referring clinician to further evaluate an imaging finding by either other

tests or further imaging (Yetisgen-Yildiz et al., 2013b). In my case study, I introduced a

new model for a critical follow-up recommendation event, composed of the recommendation

sentence itself and a template of properties that include computed values for default test and

timeframe, Reason, Test, and Time entities, and metadata. I created a three-stage critical

follow-up recommendation event detection process:

1) Binary critical follow-up recommendation classification Binary classification mod-

els were trained on sentences in the annotated corpus. A high-recall/low-precision

classifier was selected and run against unseen radiology reports and candidate critical

follow-up recommendation sentences were extracted.

2) Named Entity Recognition A named entity recognition module, trained on critical

follow-up recommendation sentences annotated with Reason, Test, and Time entities

were run against the candidate critical follow-up recommendation sentences output

from the previous stage.

3) Critical follow-up recommendation event classification A critical follow-up rec-

ommendation event MaxEnt classifier was trained on vetted, labeled candidate sen-
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tences and named entities from stage (1) and (2), as well as other extracted properties,

and run on candidate critical follow-up recommendation sentences from the previous

two stages.

I conducted a series of experiments evaluating the final stage of the event detection

process. I demonstrated that the integration of event-based metadata properties and feature

selection can improve the performance of the event classification task. Table 7.7 lists the

baseline of unigram, bigram, and trigram and the best performing system, unigram plus

bigram, plus metadata location and diagnosis features.

Feature Types θ TP FP FN P R F1

Baseline: Unigram + Bigram + Trigram 1000 489 264 264 64.8 61.6 62.8

uni +bi + Loc + Diag 500 508 245 245 66.4 63.8 64.8

Table 7.7: Critical follow-up recommendation event classification experiments with combi-

nations of feature types and feature selection thresholds

7.1.4 Summary of results

Results across the three applied tasks were mixed, however, there were a few general conclu-

sions that could be made:

Feature selection In most cases, feature selection improved the performance of the clas-

sifier. In the rare cases, such as PNA predicted snippet classification for pneumonia

report classification, feature selection caused performance to decrease. The pneumonia

report classification experiments were run with the same fixed feature selection thresh-

old of 250 in order to compare the results of all feature type sets (baseline, event-only,

and all features). Later, feature selection threshold experiments were run to deter-

mine the optimal feature selection threshold for all feature types sets. The comparison

of the lists of features ranked by χ2 and features ranked by the MaxEnt classifier in
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the pneumonia report classification study, reveal that for combined PNA baseline and

event experiments, there were more event features ranked in the χ2 feature list. A more

detailed comparison of the entire list of ranked features for both the MaxEnt model

internal to the classifier and the external χ2 ranking might reveal an mismatch that

impacted feature selection experiments for PNA.

Snippet prediction Snippet prediction worked well for pneumonia report classification

baseline feature sets, but did not translate into the ALI genre. Although the list of

common terms for pneumonia and ALI radiology reports was similar when analyzed

for top 10 or 25 terms, the ALI experiment results suggest the language of observations

and diagnosis for ALI did not translate at the rationale snippet level.

Event-based features Event features, with the exception of a minute improvement of .8

hundreds of a percent in the ALI whole document experiments, did not perform well

when used alone. Event-features worked best when integrated with the baseline n-gram

features. This pattern repeated across all three studies. The lists of ranked features

in the pneumonia report classification study reveal that many of the highest ranked

event features are entity name and value pairs and simple COS and OBS constructs

that contain a surface text string. Because of this, they cluster with unigram features

when ranked in combined experiments and serve to boost the weight of the unigram

representation in the models.

7.2 Event analysis

The replication of baseline systems and experiments was a component of all three applied

tasks. Each replicated system was successful in reproducing the experiments described in

previous research, but none were able to replicate performance numbers exactly. Given the

goal of comparing the performance of event-based features to baseline n-gram feature sets,

matching the exact results of the previous study was less important than reproducing similar

patterns in the results, such as the continuum of improvement from whole, to predicted

snippet, to oracle snippet in the pneumonia report classification task experiments.
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The translation of the change-of-state n-tuple into a dependency tree structure bene-

fited both the annotation process and the event extraction process. Annotators were able

to use labeled arcs to connect entities in hierarchical relationships within the BRAT an-

notation tools. The process was much easier for them than filling out slots in an external

tuple structure, trying to normalize shared slots between multiple connected change-of-state

events on their own. Representing connected change-of-state and diagnosis events as graphs

makes it much easier to extract algorithmically. By constraining the graph to a dependency

tree, extraction is simplified even further—any off-the-shelf dependency parser can parse the

representation.

7.3 Corpus development

The corpus development phase in the pneumonia report classification and critical follow-up

recommendation studies represented challenges. While the pneumonia report classification

unique snippet corpus was annotated by a single NLP researcher, which made the task easier

because it did not rely on anyone else’s availability, it did not benefit from the collaboration

and sharing of opinions about annotation choices that was so much a part of annotating the

critical follow-up recommendation corpus. The annotation of the critical follow-up recom-

mendation corpus benefited from many different opinions and feedback on both the criticality

and importance category of labels as well as the entities Reason, Test, and Time. However,

scheduling meetings, annotators’ availability, and long periods of inactivity impacted the

quality and consistency of the actual annotations.

7.3.1 Annotation process and tools

The annotation process, adapted for the clinical domain based on recommendations in Xia

and Yetisgen-Yildiz (2012), worked well as a repeatable process across the pneumonia report

classification and critical follow-up recommendation applied tasks. The BRAT1 (Stenetorp

1http://brat.nlplab.org/index.html
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et al., 2012) annotation tool and file format was easy to install, configure, and customize.

The annotators for both the pneumonia report classification and critical follow-up recom-

mendation applied tasks were able to quickly get started and be productive because of the

tool’s simple interface. The only drawback to using BRAT was its inability to integrate

with a database system without extensive customization and because of that, maintaining a

separate identity protocol for entities and labeled arcs in the file-based BRAT environment

and other identities for the same entities and labeled arcs in the system database proved a

difficult platform management issue.

7.3.2 Inter-annotator agreement

The IAA scores reported in the pneumonia report classification and critical follow-up recom-

mendation studies were predictive of issues and challenges with the annotation process. In

the first rounds of IAA for entities, in both studies, annotators did not pay close attention

to text span boundaries, words or punctuation being accidentally included in an entity, or

whether to create multiple entities for a phrase or capture the entire multi-word expression

in a single label. Lower IAA scores helped bring attention to differences and encouraged

discussion amongst annotators.

The four-label category for criticality and importance used to label critical follow-up rec-

ommendation types was problematic throughout the project. Many conversations and efforts

to create exemplars and better guidelines did not improve IAA. Post-guidelines and well into

annotation, additional rounds of double annotation were conducted to review the consis-

tency of annotation, and the IAA scores consistently predicted lack of consensus between

the annotators.

7.4 Event detection

The two-stage process for event extraction developed in the pneumonia report classification

study, was straightforward to implement and demonstrated the benefit of off-the-shelf state-

of-the-art Open Source NLP software. The combination of BRAT, Stanford CRF-NER, and
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the Malt dependency parser, facilitated a simple pipeline with straightforward format and

representation conversions.

7.5 Event-based feature extraction

Extracting change-of-state and diagnosis events n-tuple instances from the change-of-state

and diagnosis events dependency tree representations involved the creation of a simple graph

traversal. The six types of event-based features I developed for the pneumonia report classi-

fication and ALI report classification studies were basic manipulations of the n-tuple slots, as

well as simple name and value pairs (entities). Linking change-of-state and diagnosis events

events across sentences in reports or across reports themselves could be a way of enriching

the representation and capturing more explicit information about a patient’s changes in state

as well as a clinician’s evolving diagnosis and observations.
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Chapter 8

CONCLUSION

In the introduction to this dissertation I posed two fundamental research questions:

1. What are the components and constraints of a semantic representation that can de-

scribe speaker-meaning in a task-specific analysis of events in the clinical domain?

2. How does the analysis contribute to applied NLP tasks in the clinical domain such

as classifying radiology reports to detect disease or critical follow-up recommendation

identification?

In this study, entities, relations, and schema rules are examples of the components and

constraints of a semantic representation I used to describe clinical event structures. By

speaker meaning, I am describing the communication between a radiologist and a clinician

or ordering provider concerning the radiologist’s observations and interpretations of imaging

data. By task specific, I am referring to an analysis of events constrained to a specific clinical

task or domain, for example, pneumonia report classification.

To address my research questions I pursued four goals:

1. Define a set of events for the clinical domain—I analyzed corpora and NLP

systems for three clinical NLP tasks and defined and marked events in clinical text

that captured semantic information unique and valuable to the task.

2. Develop a clinical corpus of event annotations—I developed, in collaboration

with NLP research and medical expert annotators, corpora of event annotations and

category labels for event classification that I used to train and test event extraction

modules.
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3. Extract event representations from clinical records—I developed, trained, tested,

and evaluated statistical NLP system modules that automatically extract event repre-

sentations, based on task-specific definitions, from clinical records.

4. Apply event representations to multiple NLP tasks in the clinical domain—I

used the extracted representations of events as a source of features for three applied

tasks: (1) pneumonia report classification, (2) acute lung injury (ALI) report classifi-

cation, and (3) critical follow-up recommendation identification.

In summary, I analyzed corpora and the experimental results of systems for three clinical

NLP tasks and defined three events: (1) change-of-state, (2) diagnosis, and (3) critical follow-

up recommendation. Two of the three types, change-of-state and diagnosis events, were

designed to describe patient state and radiologists’s observations and diagnostic statements

in rationale snippets for a pneumonia report classification task. The third event type, critical

follow-up recommendations, were designed to describe a critical follow-up recommendation

sentence and its associated report properties, such as metadata fields and named entities.

Collectively, the sentence and its report properties, are aggregated as an event in order to

classify critical follow-up recommendation events by labels of criticality and importance.

I introduced a preliminary directed acyclic graph (DAG) model for the change-of-state

event in order to connect labeled entities in an overarching event structure and link descrip-

tions of change of state with observations that precede or follow it in a sentence. The new

event structure addressed the challenges of applying the n-tuple model described by Tep-

per et al. (2013) and Vanderwende et al. (2013) to the annotation task. By using a graph

structure instead of a tuple structure, I simplified event annotation and extraction.

I extended the change-of-state event model by decomposing the Diagnosis entity into

an event tree which was made up of the same entities as the change-of-state event with

the exception of its head entity, Dhead. I added entities for negation and coordination to

constrain the change-of-state and diagnosis event DAG to a dependency tree representation.

Realizing the event as a dependency tree made it into a well-known and well-formed structure
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that could be easily represented and extracted by off-the-shelf Open Source NLP software.

In the critical follow-up recommendation study, a recommendation and non-recommendation

sentence can be very similar. In order to determine which sentence is truly a critical follow-up

recommendation, I developed an event structure of related properties that could be mined

for features in classification experiments to help differentiate types of critical follow-up rec-

ommendation sentences based on their importance and criticality. Unlike the change-of-

state and diagnosis event I defined in the pneumonia report classification study, the critical

follow-up recommendation event is a collection of properties defined within the context of

the metadata of a single EHR.

All three event types try to represent a clinical event as more than just the text of a snip-

pet or a sentence. The change-of-state and diagnosis events consist of a layer of semantic

labels attached to words in a rationale snippet and connected by labeled arcs, which form

relations understood by the human reader but are not necessarily expressed by the words in

the snippet by themselves. The critical follow-up recommendation is associated with prop-

erties in metadata and labeled entities that help disambiguate its criticality and importance

from other, non-critical follow-up recommendation sentences with similar wording.

I developed, in collaboration with NLP researcher, medical expert, and medical student

annotators, two clinical corpora that include event-based annotations: (1) The pneumonia

report classification unique rationale snippet corpus, and (2) The critical follow-up rec-

ommendation corpus of multi-institutional radiologist reports across 12 modalities. The

two annotated event corpora were used to train and evaluate event detection modules for

change-of-state, diagnosis, and critical follow-up recommendation events.

The event detection modules were used in a pipeline to extract event-based features for

radiology report classification tasks. I conducted a series of experiments for pneumonia and

ALI report classification, using change-of-state and diagnosis event event detection modules

to compare the performance of baseline n-grams alone, event-based features alone, and a

combined set of all features in the classification task. I performed similar experiments for

the task of critical follow-up recommendation sentence identification. The pneumonia report
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classification (CPIS F-score +2.0 and PNA F-score +.5) and critical follow-up recommen-

dation (F-score +2.0) experimental results indicated an improvement in the performance

of report classification when event-based features were included with baseline features. In

the ALI report classification task, adding event-based features to the baseline n-gram fea-

tures for the classification task did not improve the performance of the classifier (F-score

-.6), however, these experiments were based on the application of a pipeline of snippet and

event detection modules that were trained on snippet and change-of-state and diagnosis

event event annotations from the pneumonia report classification unique snippet corpus. An

event-based annotation of ALI reports could potentially adapt and improve the pneumonia

report classification modules for the specific vocabulary of the ALI task.

8.1 Contribution

In this dissertation, I have demonstrated that event-based features, when combined with

other types of features, such as n-grams, can improve the performance of classification ex-

periments on radiology reports. The simple models for events and the tools and processes

I introduce to implement them are extensible and adaptable to other applied NLP tasks.

Specifically, the introduction of a dependency-tree structure for change-of-state and diagno-

sis events and a template of report properties for critical follow-up recommendation events

contributes concrete examples of clinical events applied to NLP tasks in the clinical domain.

Other researchers can leverage the existing event structures for their own experiments on

clinical text or adapt and extend the event schemas for different applied NLP tasks.

8.1.1 Event-based annotated corpora

The final version of the pneumonia report classification unique rationale snippet corpus

annotated for change-of-state and diagnosis events is a collection of 1008 rationale snippets

in the BRAT1 (Stenetorp et al., 2012) annotation format. I will be releasing the annotated

1http://brat.nlplab.org/index.html
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corpus, along with annotation guidelines, event-based research framework documentation,

and BRAT schema, to the Web2 after the publication of my dissertation.

The goal of releasing these resources to the Web is to enable other researchers in clinical

NLP to extend the change-of-state and diagnosis event structures and apply them to other

types of clinical records. The corpus and annotation guidelines can be used to apply change-

of-state and diagnosis event events to other clinical text corpora and the schema and research

framework documentation can be used to create new event structures based on the analysis

of other types of clinical reports.

8.1.2 Event detection tools

The change-of-state and diagnosis event detection tools were written in Java and integrated

NLP features of five open-source tools: (1) MALLET version 2.0.73 (McCallum, 2002) for

maximum entropy (MaxEnt) classification, (2) Stanford CoreNLP version 3.5.24 (Manning

et al., 2014) for tokenization, lemmatization, and part-of-speech tagging, (3) Stanford con-

ditional random fields (CRF)-based named entity (NE) Recognizer5 (Finkel et al., 2005) for

named entity recognition, (4) MALT dependency parser version 2.7.26 (Nivre et al., 2007)

for dependency parsing, and (5) MaltEval7 (Nilsson and Nivre, 2008) for evaluating depen-

dency parses. I plan to release a Java-based package of my NER and dependency parsing

change-of-state and diagnosis event detection and extraction tools bundled with the above

listed dependencies under an open-source license for other researchers to use, adapt, and

extend. I will include models trained on the existing change-of-state and diagnosis event

unique rationale snippet corpus for each tool. Using the corpus and annotation guidelines

2See the University of Washington BioNLP Lab’s website at http://depts.washington.edu/bionlp for
download instructions.

3http://mallet.cs.umass.edu/

4http://stanfordnlp.github.io/CoreNLP/

5http://nlp.stanford.edu/software/CRF-NER.shtml

6http://www.maltparser.org/

7http://www.maltparser.org/malteval.html
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for change-of-state and diagnosis event, researchers can annotate their own clinical text and

train and test the event-detection tools for their own research tasks.

8.1.3 Research framework for events

In Chapter 3, I provided an overview of a general research framework for integrating events

and event-based features into applied NLP classification tasks for the clinical domain. The

methodology was broken down into four phases. Each phase was further decomposed into a

number of steps that detailed the tasks required to complete the phase. A visual diagram

organized the phases and steps into a canonical work flow that can be adapted to a specific

task and event analysis. Chapters 4, 5, and 6 each contained a methodology section that

described how the general framework was adapted to the individual tasks of each study.

I believe the general framework can be used by other researchers as a simple guide and

organizing tool for their own event-based NLP research. I will bundle a simple version of

the framework with the release of the change-of-state and diagnosis event annotated corpus,

providing instruction for other researchers to use the framework, annotation schema, and

suggested tools to adapt the change-of-state and diagnosis event approach to their own

studies.

8.2 Future work

There are both specific and general next steps that I would like to pursue for future research.

In the following paragraphs, I address specific next steps relating to one or more of the three

case studies in my dissertation or a general theme of all three.

The ALI pneumonia classification experiments showed that using the snippet prediction

and event detection modules for the ALI task, which were trained on labeled reports from the

pneumonia report classification unique rationale snippet corpus, did not generate features

that improved performance. Annotating ALI reports for rationale snippets and change-of-

state and diagnosis events and retraining the modules in the event detection pipeline could

potentially improve performance. This approach to adaptation of the tools could also apply
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to many other types of phenotype or disease detection tasks. An analysis of the vocabulary

of change-of-state and diagnosis events across genres or domains could also determine the

common vocabulary of change-of-state and diagnosis events and which words and phrases

are domain or genre specific.

Bejan et al. (2013a) explored using timeline parameters to define units of classification for

pneumonia detection for a cohort of patients, as well as integrating semantically-motivated

assertion classification features into their experiments. Change-of-state and diagnosis events

express patient state over time. Integrating change-of-state and diagnosis events into patient-

centered, timeline-structured experiments for pneumonia report classification, similar to the

configuration described in Bejan et al. (2013a) and in combination with assertion classifica-

tion features, could help evaluate the impact of event-based features on pneumonia detection

over time as suggested in (Vanderwende et al., 2013).

The multi-institutional corpus annotated for critical follow-up recommendation sentences,

named entities, and criticality and importance is made up of a small number of reports

(8,000) when compared to the overall multi-institutional corpus ( 745,000). The process of

using the binary critical follow-up recommendation sentence identifier to select candidate

sentences, having medical expert validate and label the sentences for criticality and impor-

tance, and medical student annotators annotate the candidate sentences as for entities, as

described in Chapter 6, should be repeated for additional collections in the larger overall

multi-institutional corpus. Each new collection of reports will contribute to a better un-

derstanding of what constitutes a critical follow-up recommendation and the distribution of

reports across the four categories of criticality and importance.

The three studies in this dissertation demonstrated that task-specific events can con-

tribute to the description of patient state in clinical reports and improve the performance

of applied NLP disease surveillance tasks, such as report classification and critical recom-

mendation sentence identification. The contribution of clinical events to the performance of

NLP applications underscores the importance of creating annotated resources that encode

the knowledge of radiologists and the meaning of their communication with clinicians. A
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layer of semantic annotation that captures this important information can help systems bet-

ter analyze and understand the condition of the patient over time. Exploring other types

of reports in the EHR that contribute to disease surveillance, and defining new semantic

structures that contribute information concerning patient state are next steps that I expect

to extend my research presented in this dissertation.
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Prague dependency treebank 3.0.

[Bender et al.2015] Emily M Bender, Dan Flickinger, Stephan Oepen, Woodley Packard, and
Ann Copestake. 2015. Layers of interpretation: On grammar and compositionality. In
Proceedings of the 11th International Conference on Computational Semantics (IWCS
2015), pages 239–249.

[Berland et al.2010] Lincoln L Berland, Stuart G Silverman, Richard M Gore, William W
Mayo-Smith, Alec J Megibow, Judy Yee, James A Brink, Mark E Baker, Michael P



233

Federle, W Dennis Foley, et al. 2010. Managing incidental findings on abdominal ct:
white paper of the acr incidental findings committee. Journal of the American College
of Radiology, 7(10):754–773.

[Björne and Salakoski2011] Jari Björne and Tapio Salakoski. 2011. Generalizing biomedical
event extraction. In Proceedings of the BioNLP Shared Task 2011 Workshop, pages 183–
191. Association for Computational Linguistics.

[Björne et al.2009] Jari Björne, Juho Heimonen, Filip Ginter, Antti Airola, Tapio Pahikkala,
and Tapio Salakoski. 2009. Extracting Complex Biological Events with Rich Graph-
based Feature Sets. In Proceedings of the Workshop on Current Trends in Biomedical
Natural Language Processing: Shared Task, BioNLP ’09, pages 10–18, Stroudsburg, PA,
USA. Association for Computational Linguistics.

[Björne et al.2010] Jari Björne, Filip Ginter, Sampo Pyysalo, Jun’ichi Tsujii, and Tapio
Salakoski. 2010. Complex event extraction at PubMed scale. Bioinformatics,
26(12):i382–i390.

[Cai et al.2016] Tianrun Cai, Andreas A Giannopoulos, Sheng Yu, Tatiana Kelil, Beth Rip-
ley, Kanako K Kumamaru, Frank J Rybicki, and Dimitrios Mitsouras. 2016. Natural
language processing technologies in radiology research and clinical applications. Radio-
Graphics, 36(1):176–191.

[Chang and Lin2011] Chih-Chung Chang and Chih-Jen Lin. 2011. Libsvm: a library for sup-
port vector machines. ACM Transactions on Intelligent Systems and Technology (TIST),
2(3):27.

[Chapman and Cohen2009] Wendy W Chapman and K Bretonnel Cohen. 2009. Current
issues in biomedical text mining and natural language processing. Journal of biomedical
informatics, 42(5):757–759.

[Chapman et al.2011] Brian E Chapman, Sean Lee, Hyunseok Peter Kang, and Wendy W
Chapman. 2011. Document-level classification of ct pulmonary angiography reports
based on an extension of the context algorithm. Journal of biomedical informatics,
44(5):728–737.

[Cunningham et al.2011] Hamish Cunningham, Diana Maynard, Kalina Bontcheva, Valentin
Tablan, Niraj Aswani, Ian Roberts, Genevieve Gorrell, Adam Funk, Angus Roberts, Dan-
ica Damljanovic, Thomas Heitz, Mark A. Greenwood, Horacio Saggion, Johann Petrak,
Yaoyong Li, and Wim Peters. 2011. Text Processing with GATE (Version 6).



234

[Cunningham et al.2013] Hamish Cunningham, Valentin Tablan, Angus Roberts, and Kalina
Bontcheva. 2013. Getting more out of biomedical documents with gate’s full lifecycle
open source text analytics. PLoS computational biology, 9(2):e1002854.

[Demner-Fushman et al.2009] Dina Demner-Fushman, Wendy W Chapman, and Clement J
McDonald. 2009. What can natural language processing do for clinical decision support?
Journal of biomedical informatics, 42(5):760–772.

[Finkel et al.2005] Jenny Rose Finkel, Trond Grenager, and Christopher Manning. 2005. In-
corporating non-local information into information extraction systems by gibbs sampling.
In Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics
(ACL ’05), pages 363–370, Ann Arbor, Michigan, June. Association for Computational
Linguistics.

[Franzén et al.2002] Kristofer Franzén, Gunnar Eriksson, Fredrik Olsson, Lars Asker, Per
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Appendix A

CHANGE-OF-STATE, CLINICAL ATTRIBUTE, AND
DIAGNOSIS EVENTS FOR CLINICAL RECORDS

In this appendix, I include a modified final version of the annotation guidelines provided

to annotators annotating change-of-state and diagnosis events for the pneumonia report

classification rationale snippet corpus. The guidelines provide a comprehensive definition

of change-of-state and diagnosis events discussed in Section 2.4, Section 4.4.2, and Section

4.4.3.

A.1 Introduction

These guidelines describe a tree-based model, implemented in the BRAT annotation envi-

ronment, consisting of entities (labeled text spans), attributes (properties of entities), and

relations (labeled, directed arcs between entities) for change-of-state, clinical attribute, and

diagnosis events in narrative X-ray reports.

The model consists of two types of clinical events: change-of-state and diagnosis. Both

are composed of clinical attributes. A clinical attribute is an aspect or characteristic of a

patient’s condition or disease that has a measurable value and an anatomical location. It

can also be the condition or disease itself when referred to within a diagnosis event. A

clinical attribute can also stand alone in a snippet and not be contained within the context

of a change-of-state or diagnosis event. When a clinical attribute is not contained within a

change-of-state or diagnosis event, it is still annotated but its relation to a change-of-state

or a diagnosis is unknown and must be inferred based on context.

A change-of-state event describes change in one or more clinical attributes, whereas a

diagnosis event relates a diagnosis of a change-of-state event to one or more clinical attributes.
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A.1.1 Clinical event tuples

An individual change-of-state or diagnosis event can be represented as a tuple composed of

five named, ordered elements or fields, for example a change-of-state tuple consists of the

fields Cos, Attr, Val, Loc, and Ref, and a diagnosis tuple consists of the fields Dhead, Attr,

Val, Loc, and Ref. Every field is optional and can contain a null value, but all clinical event

tuples should contain a value for either its Cos or Dhead field or its Attr field. There are rare

exceptions when an abbreviated clinical attribute occurs in a sentence in a snippet without a

Cos, Dhead, or Attr field. An example is the sentence, The lungs are clear. In this sentence,

only a Loc entity, lungs, and its value, clear, make up the tuple.

The fields of a clinical event tuple are defined as follows:

Cos change-of-state compared to the state of a clinical attribute in previous reports for

the same patient (e.g., increased, decreased, worsened, unchanged) or a previously

mentioned clinical attribute in a preceding sentence within the snippet.

Dhead the head of a diagnosis statement typically indicating a possible or likely diagnosis of

a previously mentioned change-of-state. (e.g. likely edema or atelectasis).

Attr something doctors are measuring or observing (e.g., volume, opacity) including symp-

toms or diseases (e.g., edema).

Val a possible value for an Attr (e.g., clear, low, patchy, diffuse).

Loc anatomical location (e.g., lung).

Ref a link to the mention of a previous report(s) or observation that the change-of-state is

being compared to (e.g., prior examination)

A.1.2 Clinical event entities and relations

Clinical event tuples are automatically generated from a clinical event annotation tree. A

clinical event annotation tree consists of event annotations, which are labeled text spans

(entities) connected by directed labeled arcs (relations) and composed into a connected hier-

archical annotation tree. The names of the labeled text spans (entities) in our clinical event
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annotations correspond to the labels defined in our event tuple definitions: Cos, Dhead, Loc,

Attr, Val, and Ref. Additional entities, Conj, Versus, and Negation, are used to coordi-

nate multiple entities or negate individual entities when connecting entities in an overarching

annotation tree.

A.1.3 Entity annotations

The change-of-state and diagnosis event annotation trees have an entity at their root: Cos

for change-of-state and Dhead for diagnosis. The following sections provide definitions for

Cos and Dhead entities.
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Entity Description

Cos A text span of one or more words that describe a change-of-state event. Typical Cos

entities are past tense forms of verbs like increased or decreased (e.g. consolidation

increased), verbal nouns such as increase (e.g. an increase in), or verbal adjectives

such as increased (e.g. increased consolidation of), and finally as adverbs such as

the word increasingly (e.g. increasingly high consolidation). Cos values can also be

temporal terms such as now (e.g. now demonstrates patchy edema) or words that

relate to changes over time such as new (e.g. No new focal abnormalities). If Cos

is modified, include the modifying word, for example, the word slight in the phrase

slight increase in.

When selecting text for the Cos text span, articles such as the, an, a (e.g. an increase),

copula verbs such as be and existential there (e.g. there is an increase), are not

included in the text span.

Dhead A text span of one or more words that suggest a diagnosis of or interpretation of

the previously mentioned change-of-state. Typical Dhead entities are adverbials of

possibility, such as possibly, likely (e.g. likely edema or atelectasis).

When selecting text for the Dhead text span, copula verbs such as be and existential

there I (e.g. there is an increase), are not included in the text span. However, words

that modify the Dhead should be included (e.g. possibly a combination of).

The Dhead has an optional attribute in the annotation tool that indicates whether the

diagnosis statement is a hedge. Include this optional attribute if the language of the

dhead is ambiguous and/or the clinical attributes are connected by or conjunctions.

Table A.1: Description of the entities Cos and Dhead

A.1.3.1 Cos attributes

There are 8 attributes that can be applied to a Cos entity. Although some of the attributes

are logically mutually exclusive (increased vs decreased), there are no constraints in the

annotation tool to express this constraint. Annotators need to ensure they are applied the

attributes correctly not to introduce contradictions. Some of the attributes may be used

in combination and may imply an additional value. For example, a Cos entity may have
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a changed attribute indicating that a Attr value has changed as well. This implies that

the change may also warrant an attribute (e.g. edema improved both a changed and an

improved attribute).

Attribute Description

Increased Implies Changed attribute

Decreased Implies Changed attribute

Improved Implies Changed attribute

Worsened Implies Changed attribute

New Implies Changed attribute

Stable Implies No Changed attribute

Persistent Implies No Changed attribute

Changed Does not require any other additional attribute but typically accompanied by an

additional attribute from list above describing the type of change

Table A.2: Descriptions of attributes for entities Cos and Dhead

A.1.3.2 Dhead attributes

The Dhead has one possible attribute, Hedge. It should be applied to a Dhead if the diagnosis

event it heads is ambiguous.

Attribute Description

Hedge Not required. Usually applied if alternate or contrasting conjunctions connect diag-

nosis event entities.

Table A.3: Description of entity Dhead attributes

A.1.4 Clinical attribute

The clinical attribute is composed of three entities: Attr, Val, and Loc. The Attr entity is

the root of a clinical attribute and includes one or more Val and Loc entities.
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Attribute Description

Attr A clinical condition or disease (e.g. edema, atelectasis, pneumonia). Also includes

more abstract or general terms referring to symptoms such as consolidation or opac-

ities. Attr entities can demonstrate a change in state or value. They can also be the

main subjects of a diagnosis.

Val A value of a clinical attribute (Attr), typically terms that describe a change over time

or a measure (e.g. low, high). They can also be more general terms that describe the

state of a clinical attribute (e.g. patchy, diffuse, focal, clear).

Loc An anatomical location where a clinical attribute is observed. Loc entities can be

very general (e.g. lungs) or very specific (partial bilateral lower lobe).

Table A.4: Description of the clinical attribute entities, Attr, Val, and Loc

A.1.5 Reference entity

The Ref entity can be attached to any change-of-state, diagnosis, or clinical attribute entity,

however, it is usually attached to the root of the event annotation tree, a Cos in the case of a

change-of-state event, a Dhead for diagnosis, and an Attr for a standalone clinical attribute.

Attribute Description

Ref A reference to a previous patient report, incident, test, or mentioned condition (e.g.

since the prior examination). It can also be a more general reference to a past obser-

vation such as again or as before.

Table A.5: Description of entity Ref

A.1.6 Connector entities

The coordinating connector entities that link entities in the event annotation tree are Conj,

a conjugation entity that can have four different types of relations: Combine, Alternate,

Contrast, and Exclude. These represent the basic types of coordination between similar
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entities, and are typically expressed in natural language as and, or, but, and except. Another

connector for linking entities is Versus, which links an entity that is preferred over another.

The relations are For and Against. This connector is often used in diagnosis statements.

Attribute Description

Conj A conjunction in natural language that links one or more entities. The relations that

are available to a Conj entity are: Combine (and), Alternate (inclusive or), Contrast

(exclusive or), and Exclude (except).

Versus A connector between two entities that prefers one over another. The relations available

to this entity are For and Against.

Table A.6: Description of connector entities Conj and Versus

A.1.7 Negation

A Negation entity can attach to any other entity and represents a negation of the entities

it has scope over.

Attribute Description

Negation An entity that indicates a negation over one or more entities in an annotation tree

(e.g. no, without, cannot)

Table A.7: Description of a Negation entity

A.1.8 Global attributes

The Slash Delimited attribute can be applied to all entities and it indicates that the entity

contains two values that are not explicitly separate in the text and are instead contained

within a single slash delimited string (e.g. edema/pneumonia, and/or). This attribute is for

processing applications only.



248

Attribute Description

Slash Delimited Indicates the entities values are in a single slash delimited string (e.g. edema/pneu-

monia, and/or).

Table A.8: Description of the Slash Delimited attribute
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A.2 Relations

In our annotation trees, entities are connected by relations, which are labeled directed arcs.

The arcs between entities form a connected tree structure which describes a clinical attribute,

change-of-state event, or diagnosis event.

A.2.1 Clinical attribute relations

The Attr, Loc, and Val entities which make up clinical attribute annotation trees, participate

in two basic relations: Value and Location

Attribute Description Argument One Argument Two

Value

(Attr/Loc, Val)

A directed link between

two entities where Arg 1

represents the entity that

has a value and Arg 2 the

Val entity that contains

a string representing the

value.

Arg 1 in a fully formed

clinical attribute is an

Attr. In abbreviated form

it can also be Loc. Conj

and Versus can also be

Arg 1 if they coordinate

one or more Attr and Loc

entities.

Arg 2 is a Val entity

except when a Conj or

Versus entity coordinates

one or more Val entities.

Location

(Attr, Loc)

A directed link between

two entities where Arg 1

represents the source en-

tity and Arg 2 its anatom-

ical location.

Arg 1 in a fully formed

clinical attribute is an

Attr. In an abbreviated

form of a change of event,

Conj and Versus can also

be Arg 1 if they coordi-

nate one or more Attr or

Cos entities

Arg 2 is a Loc entity

except when a Conj or

Versus entity coordinates

one or more Loc entities.

Table A.9: Description of clinical attribute attributes.
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A.2.2 Change-of-state relations

In a complete change-of-state event, the Cos entity participates in one important relation,

the State relation. In abbreviated forms, a Cos entity can also participate in the Loc relation

if the clinical attribute is in abbreviated form and has no Attr.

Attribute Description Argument One Argument Two

State

(Cos, Attr/Loc)

A directed link between

two entities where Arg 1

represents an entity that

describes a state (Cos)

and an Attr or Loc the

state describes.

Arg 1 is always a Cos en-

tity or a Conj or Versus

entity if they coordinate

one or more Cos entities.

Arg 2 in a fully formed

change-of-state event is

an Attr entity. When

a change-of-state event

includes an abbreviated

clinical attribute, it can

also be Loc. Conj or

Versus can be in the role

of Arg 2 when they coor-

dinate one or more Attr

or Loc entities.

Table A.10: Descriptions of State relation
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A.2.3 Diagnosis relations

In a complete diagnosis event, the Dhead entity participates in one important relation, the

Diag (diagnosis) relation.

Attribute Description Argument One Argument Two

Diag

(Dhead, Attr)

A directed link between

two entities where Arg 1

represents an entity that

heads a diagnosis state-

ment (Dhead) and one or

more Attr entities.

Arg 1 is always a Dhead

entity or a Conj or Versus

entity if they coordinate

one or more Dhead enti-

ties.

Arg 2 in a fully formed di-

agnosis event is an Attr

entity. Conj and Versus

can be in the role of Arg 2

when they coordinate one

or more Attr entities.

Table A.11: Description of Diag relation

A.2.4 Global relations

The Referenced-by relation can attach to any entity in a clinical attribute, change-of-state

event or diagnosis event on one side and a Ref entity on the other.

Attribute Description Argument One Argument Two

Referenced-by

(Cos/Dhead/Attr/

Loc/Val, Ref)

A directed link between

two entities where Arg 1

represents an entity that

participates in a clinical

attribute or event and

Arg 2 represents a refer-

ence to a previous report

or attribute.

Arg 1 can be any entity

that participates in a clin-

ical attribute, change-of-

state or diagnosis event.

Arg 2 is a Ref entity.

Table A.12: Description of referenced-by relation
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A.2.5 Connecting/coordinating relations

The Conj and Versus entities provide connecting and coordinating relations between entities.

Connecting and coordinating relations generalize Combine (add), Alternate (inclusive or),

and Contrast (exclusive or) between one or more entities and the Conj entity. Versus

participates in a bi-directional relation of one entity preferred (For) over another entity

(Against relation).
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Attribute Description Argument One Argument Two

Combine

A and B

Combine(and, A)

Combine(and, B)

A directed link between

two entities establishing a

logical and connection.

Arg 1 is a Conj entity. Arg 2 can be any entity in

clinical event structures.

Alternate

A or B

Alternate(or, A)

Alternate(or, B)

A directed link between

two entities establishing a

logical inclusive or connec-

tion.

Arg 1 is a Conj entity. Arg 2 can be any entity in

clinical event structures.

Contrast

A but B

Contrast(but, A)

Contrast(but, B)

A directed link between

two entities establishing a

logical exclusive or con-

nection.

Arg 1 is a Conj entity. Arg 2 can be any entity in

clinical event structures.

Exclude

A except B

Combine(except, A)

Exclude(except, B)

A directed link between

two entities establishing a

logical except connection.

Arg 1 is a Conj entity. Arg 2 can be any entity in

clinical event structures.

For

A vs. B

For(vs., A)

Against(vs. B)

A directed link between

two entities establishing a

preference of the target of

the For connection.

Arg 1 is a Versus entity. Arg 2 can be any entity in

clinical event structures.

Against A directed link between

two entities establishing a

disfavor for the target of

the Against connection.

Arg 1 is a Versus entity. Arg 2 can be any entity in

clinical event structures.

Table A.13: Description of connecting relations
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A.2.6 Negation relations

A Negation entity can participate in Negate relations with all entities in the clinical at-

tribute, change-of-state, and diagnosis event annotation trees.

Attribute Description Argument One Argument Two

Negate

(negation, *)

A directed link between

two entities where Arg 1

represents an entity that

negates any entity in

Arg 2.

Arg 1 is always a

Negation entity.

Arg 2 can be any entity in

all events structures: clin-

ical attributes, change-of-

state and diagnosis events.

Table A.14: Description of Negation relation

A.2.7 Clinical event annotation trees

There are three basic types of clinical event annotation trees: a standalone clinical attribute,

a change-of-state event, and a diagnosis event. A clinical attribute may appear in a snippet

without being contained within a change-of-state or diagnosis event. In these cases, it can

usually be interpreted as being part of an change-of-state event with an unknown Cos entity.

A change-of-state or diagnosis event annotation tree usually contain one or more clinical

attribute annotation trees, however, this can include abbreviated forms of clinical attributes

that may only include a connected Loc and Val entity—the Attr entity is missing and must

be inferred from the surrounding context of the snippet or the report overall.
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A.2.8 Clinical attribute annotation tree

Figure A.1: An example of a complete standalone clinical attribute annotation tree without

a top level change-of-state or diagnosis entity

In Figure A.1, the rationale snippet contains a single clinical attribute with no related change-

of-state or diagnosis entity. It can be automatically transformed into the tuple below:

[Cos: -, Attr: volumes, Val: low, Loc: lung, Ref: As before]

A.2.9 Change-of-state event tree

A change-of-state event tree is a connected tree of one Cos, and zero or more Attr, Loc, Val,

and Ref entities that describe a change-of-state in one or more Attr or Loc entities.

Figure A.2: A change-of-state event
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In Figure A.2, the change-of-state event connects a root Cos entity to a clinical attribute

headed by an Attr entity. A Ref entity is attached to the Cos entity. Unseen in the

visualization is the fact that the Cos entity has two attributes: changed and increased. The

tuple generated from this changed of state event is:

[Cos: increased (changed, increased), Attr: opacity, Val: -,

Loc: right basilar, Ref: from prior examination]

A.2.10 Diagnosis event

Very often a report will include a diagnosis statement made by physicians; they will often,

but not always, give differential diagnoses. Such information is very useful for phenotype

detection. The statement may include a hedge or other assertion types. In Stage 1, labels

are marked text spans similar to change-of-state events, but headed by a diagnosis head

(Dhead) instead of a Cos entity. Diagnosis event tuples can be generated in similar way to

the change-of-state, but instead of a Cos field, a diagnosis tuple has a Dhead field.

Figure A.3: A diagnosis event
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Figure A.4: a clinical attribute with no Val entity

In Figure A.3, the rationale snippet contains a diagnosis event only. The diagnosis event

tuple automatically generated from the diagnosis event tree is:

[Dhead: likely, Attr: effusion, Val: -, Loc: right pleural, Ref: similar to prior]

A.3 Examples

Below are some examples of clinical attribute, change-of-state and diagnosis event annotation

trees and their corresponding tuples.

A.3.1 Clinical attribute abbreviated forms

In Figure A.4, the clinical attribute is in an abbreviated form, it has no Val entity, only

connected Attr and Loc entities. The tuple generated from this clinical attribute is:

[Cos: -, Attr: consolidation, Val: -, Loc: right lower lobe, Ref: -]

Figure A.5: A clinical attribute with no root level Attr entity
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In Figure A.5, the clinical attribute is in abbreviated form, it has no root Attr value,

only connected Loc and Val entities. The tuple generated from this clinical attribute is:

[Cos: -, Attr: -, Val: clear, Loc: Lungs, Ref: -]

A.3.2 Change of state abbreviated forms

Figure A.6: A change-of-state in abbreviated form

In Figure A.6, the change state event is in abbreviated form. In only includes a Loc and Ref

entity, No Attr or Val entities. The tuple generated from this change-of-state event is:

[Cos: slightly worse (changed, worsened), attr:-, Val: -, Loc: right,

ref: compared to prior]
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A.3.3 Entities and relations

Figure A.7: Conj Combine relation

Figure A.7 is an example of the Conj entity and the Combine relation. In this example, the

Combine relation between the Loc entities results in a logical and connector being inserted

into the Loc field. The higher level Combine relation between the Attr entities, results in

two discrete tuples for how the Cos relates to each Attr. The tuples generated from this

snippet are:

[Cos: persist, Attr: -, Val: airspace disease,

loc: right mid \_and\_ lower lung, Ref: -]

[Cos: persist, Attr: -, Val: effusion, Loc: pleural, Ref: -]

Figure A.8: Conj Alternate relation
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Figure A.8 is an example of the Conj entity and the Alternate relation. Because the

Alternate relation is between two Attr entities, the result is two discrete tuples for each

relation between the Dhead and the Attr entities. The tuples generated from this snippet

are:

[Cos: -, Attr: opacities, Val: -, Loc: perihilar, Ref: -]

[Dhead: could represent, Attr: edema, Val: -, Loc: pulmonary, Ref: -]

[Dhead: could represent, Attr: pneumonia, Val: -, loc:, Ref: -]

Figure A.9: Conj Alternate relation with more than two entities

Figure A.9 is an example of an Alternate relation with more than two participating

entities. Six tuples are generated for this snippet due to the Conj entity aggregating three

Attr entities and relating them to two locations. The tuples generated from this snippet

are:

[Cos: unchanged, Attr: atelectasis, val:-, Loc: Lungs, Ref: -]

[Cos: unchanged, Attr: effusions, val:-, Loc: Lungs, Ref: -]

[Cos: unchanged, Attr: consolidation, val:-, Loc: Lungs, Ref: -]

[Cos: unchanged, Attr: atelectasis, val:-, Loc: Bibasilar, Ref: -]
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[Cos: unchanged, Attr: effusions, val:-, Loc: Bibasilar ref: -]

[Cos: unchanged, Attr: consolidation, val:-, Loc: Bibasilar ref: -]

Figure A.10: Conj Contrast relation

Figure A.10 is an example of a Contrast relation between two diagnosis events. Although

the Contrast relation adds information to the annotation tree, it results in discrete tuples

and the contrastive aspect is lost in tuple generation. The tuples generated form this snippet

are:

[Cos: -, Attr: opacity, Val: -, Loc: right base, Ref: -]

[Dhead: probably, Attr: atelectasis, Val: -, Loc: -, Ref: -]

[Dhead: could also be present, Attr: fluid, Val: -, Loc: -, Ref: -]

Figure A.11: Conj Exclude relation



262

Figure A.11 is an example of an Exclude relation. Although the Exclude relation adds

information to the annotation tree, it only results in a discrete tuple in the generated tuple.

The exception information is not part of the tuple. The tuples generated from this snippet

are:

[Cos: persistent (persistent), Attr: atelectasis, Val: -, Loc: bibasil, Ref: -]

[Cos: persistent (persistent), Attr: effusions, Val: definite, Loc: pleural, Ref: -]

Figure A.12: Complex Conj relations

Figure A.12 is an example of a combination of Conj relations in a single snippet. In the

translation to a tuple representation, the Negate relation adds a x prefix to the Cos entity

in each tuple and the combination of Conj entities results in multiple discrete tuples. The

Alternation aspect is not differentiated from the Combination aspect of coordination in tuple

generated. Tuples generated by this snippet are:

[Cos: x_change, Attr: consolidations, Val: -, Loc: bilateral lower lung, Ref: -]

[Cos: x_change, Attr: atelectasis, Val: -, Loc: bilateral lower lung, Ref: -]

[Cos: x_change), Attr: pneumonia, Val: -, Loc: bilateral lower lung, Ref: -]
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Figure A.13: Versus entity and For and Against relation

Figure A.13 is an example of a Versus relation. Although the versus aspect of the relation

is not captured between the entities, two discrete tuples are generated:

[Cos: stable (stable), Attr: edema, Val: -, Loc: pulmonary, Ref: -]

[Cos: stable (stable), Attr: infection, Val: -, Loc: pulmonary, Ref: -]

Figure A.14: Negation

Figure A.14 is an example of Negation. An x prefix is added to the Cos entity in tuple

generation. The tuple generated from this snippet is:

[Cos: x_new (changed, new), Attr: abnormalities, Val: focal, Loc: -, Ref: -]
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Figure A.15: A slash delimited entity

Figure A.15 is an example of a slash delimited entity. When tuples are generated they

are generated for each value in the slash delimited entity. Tuples generated from this snippet

are:

[Cos: x_change (changed), Attr: edema, Val: mild, Loc: -, Ref: -]

[Cos: x_change (changed), Attr: atelectasis, Val: patchy, Loc: -, Ref: -]

[Cos: x_change (changed), Attr: pneumonia, Val: patchy, Loc: -, Ref: -]
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A.3.4 Hedging

Figure A.16: A Hedge

Figure A.16 is an example of a Hedge. Each Alternate relation results in a discrete diagnosis

tuple. Tuples generated from this snippet include:

[Cos: persistent, Attr: opacity, Val: -, Loc: right upper lobe, Ref: -]

[Dhead: which may represent, Attr: pneumonia, Val: -, Loc: -, Ref: -]

[Dhead: which may represent, Attr: atelectasis, Val: -, Loc: -, Ref: -]

[Dhead: which may represent, Attr: infiltrate, Val: -, Loc: -, Ref: -]
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Appendix B

BRAT SCHEMAS

In this appendix, I include three listings of versions of the BRAT schema used to anno-

tate the change-of-state and diagnosis events in the pneumonia report classification rationale

snippet corpus. The listings are referred to in Section 3.4.1 and Section 4.4.3.

1 # August , 2014

# Original schema for PNA report classification unique rationale snippet

corpus

3

[entities]

5

Loc

7 Attr

Val

9 Cos

Ref

11 Diagnosis

13 [relations]

15 Value Arg1:Attr|Loc , Arg2:Val

Location Arg1:Attr|Loc , Arg2:Loc

17 Referenced -by Arg1:Attr|Cos , Arg2:Ref

State Arg1:Cos , Arg2:Attr|Loc|Val

Listing B.1: Original schema for PNA report classification unique rationale snippet corpus
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# January , 2015

2 # First revision of schema for PNA report classification unique rationale

snippet corpus

4 [entities]

6 Snippet

Loc

8 Attr

Val

10 Cos

Ref

12 Diagnosis

Duplicate

14 Dhead

Conj

16

[relations]

18

Value Arg1:Attr|Loc , Arg2:Val|Conj

20 Location Arg1:Attr|Loc|Val , Arg2:Loc|Conj

Referenced -by Arg1:Attr|Cos|Dhead , Arg2:Ref

22 State Arg1:Cos , Arg2:Attr|Loc|Val|Conj

Diag Arg1:Dhead , Arg2:Attr|Loc|Conj

24 Combine Arg1:Conj , Arg2:Attr|Loc|Val|Dhead|Cos|Conj|Ref

Extend Arg1:Val , Arg2:Attr

26

<OVERLAP > Arg1:<ANY >, Arg2:Snippet , <OVL -TYPE >: contain

28 <OVERLAP > Arg1:<ANY >, Arg2:Diagnosis , <OVL -TYPE >: contain

Listing B.2: First revision of schema for PNA report classification unique rationale snippet

corpus
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# March 2016

2 # Final version of schema for PNA report classification unique rationale

snippet corpus

4 [entities]

6 # Sentences

Snippet

8 Duplicate

10 # clinical attributes <ATT >

12 Attr

Loc

14 Val

16 # clinical event heads <HEAD >

18 Cos

Dhead

20

# reference

22

Ref

24

# connectors <CON >

26

Conj

28 Versus

30 # negation

32 Negation
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34 [relations]

36 <HEAD >=Cos|Dhead

<ATT >=Attr|Loc|Val

38 <CON >=Conj|Versus

<ALL >=<HEAD >|<ATT >|<CON >

40

Value Arg1:Attr|Loc|<CON >, Arg2:Val|<CON >| Negation

42 Location Arg1:<ATT >|<CON >, Arg2:Loc|<CON >| Negation

Referenced -by Arg1:<ALL >, Arg2:Ref

44 State Arg1:Cos|<CON >, Arg2:<ATT >|<CON >| Negation

Diag Arg1:Dhead , Arg2:<ATT >|<CON >| Negation

46 Combine Arg1:Conj , Arg2:<ANY >

Contrast Arg1:Conj , Arg2:<ANY >

48 Alternate Arg1:Conj , Arg2:<ANY >

Negate Arg1:Negation , Arg2:<ANY >

50 Negated Arg1:<ANY >, Arg2:Negation

For Arg1:Versus , Arg2:<ANY >

52 Against Arg1:Versus , Arg2:<ANY >

Exclude Arg1:Conj , Arg2:<ANY >

54

<OVERLAP > Arg1:<ANY >, Arg2:Snippet , <OVL -TYPE >: contain

56 <OVERLAP > Arg1:<ANY >, Arg2:Diagnosis , <OVL -TYPE >: contain

58 [attributes]

60 Increased Arg:Cos

Decreased Arg:Cos

62 Improved Arg:Cos

Worsened Arg:Cos

64

Stable Arg:Cos
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66 New Arg:Cos

Persistent Arg:Cos

68

Changed Arg:Cos

70 Slash\_Delimited Arg:<ANY >

Hedge Arg:Dhead

Listing B.3: Final version of schema for PNA report classification unique rationale snippet

corpus
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Appendix C

SYSTEM SETTINGS

In this appendix, I provide the default settings for the Stanford CRF-NE Recognizer

as discussed in Section 4.4.4 and the configuration settings for the Malt evaluation tool as

discussed in Section 4.4.5.
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1 map word=0,answer=1,chunk=2,lemma=3,tag=4,docID=5,BEGIN\_POS=6,END\_POS=7,

goldAnswer =8

useTypeSeqs2 true

3 maxLeft 1

usePrevSequences true

5 useWord true

wordShape chris2useLC

7 usePrev true

useDisjunctive true

9 useTypeSeqs true

useTypeySequences true

11 noMidNGrams true

useNext true

13 useSequences true

maxNGramLeng 6

15 useNGrams true

useClassFeature true

Listing C.1: Stanford CRF NER Settings

The recommended default settings for the Stanford CRF-NE Recognizer are listed in

Listing C.1. See Section 4.4.4 for a description of the NER module developed for the VAP

report classification study.
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<evaluation >

2 <parameter name=" Metric">

<value >LAS </value >

4 <value >UAS </value >

<value >LA </value >

6 </parameter >

<parameter name=" GroupBy">

8 <value >Token </value >

<value format ="all">Deprel </value >

10 </parameter >

<parameter name=" ExcludeDeprels">

12 <value >DEP|ROOT </value >

</parameter >

14 <formatting argument =" pattern" format ="0.00%"/ >

<formatting argument ="micro -average" format ="1" />

16 </evaluation >

Listing C.2: A MaltEval configuration file including DEPREL exclusions and micro-average

setting

The configuration file for for MaltEval evaluations of VAP change-of-state and diagnosis

events as dependency trees is listed in Listing C.2. See Section 4.4.5 for how the MaltEval

evaluation tool is used to evaluate VAP change-of-state and diagnosis events in the VAP

report classification study.
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Appendix D

CONLL 2007 FORMAT DESCRIPTION

In this Appendix, I provide a brief description of the CoNLL 2007 Shared Task on De-

pendency Parsing format for representing dependency trees as discussed in Section 4.4.5.

The CoNLL 2007 format requires that:

1. Data files contain sentences separated by a blank line.

2. A sentence consists of one or tokens, each one starting on a new line.

3. A token consists of ten fields described in the table below. Fields are separated by a

single tab character. Space/blank characters are not allowed in within fields

4. All data files will contains these ten fields, although only the ID, FORM, CPOSTAG,

POSTAG, HEAD and DEPREL columns are guaranteed to contain non-dummy (i.e.

non-underscore) values for all languages.

5. Data files are UTF-8 encoded (Unicode).

See Table D.11

1http://nextens.uvt.nl/depparse-wiki/DataFormat
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# Name Description

1 ID Token counter, starting at 1 for each new sentence.

2 FORM Word form or punctuation symbol.

3 LEMMA Lemma or stem (depending on particular data set) of word form, or an

underscore if not available.

4 CPOSTAG Coarse-grained part-of-speech tag, where tagset depends on the lan-

guage.

5 POSTAG Fine-grained part-of-speech tag, where the tagset depends on the lan-

guage, or identical to the coarse-grained part-of-speech tag if not avail-

able.

6 FEATS Unordered set of syntactic and/or morphological features (depending on

the particular language), separated by a vertical bar (—), or an under-

score if not available.

7 HEAD Head of the current token, which is either a value of ID or zero (0).

Note that depending on the original treebank annotation, there may be

multiple tokens with an ID of zero.

8 DEPREL Dependency relation to the HEAD. The set of dependency relations de-

pends on the particular language. Note that depending on the original

treebank annotation, the dependency relation may be meaningful or sim-

ply ‘ROOT’.

9 PHEAD Projective head of current token, which is either a value of ID or zero

(‘0’), or an underscore if not available. Note that depending on the

original treebank annotation, there may be multiple tokens an with ID

of zero. The dependency structure resulting from the PHEAD column

is guaranteed to be projective (but is not available for all languages),

whereas the structures resulting from the HEAD column will be non-

projective for some sentences of some languages (but is always available).

10 PDEPREL Dependency relation to the PHEAD, or an underscore if not available.

The set of dependency relations depends on the particular language.

Note that depending on the original treebank annotation, the depen-

dency relation may be meaningful or simply ‘ROOT’.

Table D.1: A description of CoNLL format
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Appendix E

FEATURE THRESHOLD EXPERIMENTS

In this appendix, I list the experimental results of feature selection threshold experiments

for pneumonia report classification on predicted and oracle snippets that were not included

in the reporting of results in Section 4.4.6 and the discussion of results in Section 4.5.4.1.

θ S G TP FP FN P R F1 Acc

- 1341 1341 1217 124 124 85.6 81.0 83.0 90.8

200 1341 1341 1224 117 117 87.3 81.3 83.9 91.3

150 1341 1341 1224 117 117 87.3 81.3 83.9 91.3

100 1341 1341 1225 116 116 87.0 82.1 84.2 91.3

50 1341 1341 1224 117 117 87.0 82.2 84.3 91.3

Table E.1: CPIS feature threshold experiments, with baseline features, on oracle snippets

(Average number of features across folds in model with no feature selection = 485/Number

of significant χ2 ranked features = 165)
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θ S G TP FP FN P R F1 Acc

- 1341 1341 1205 136 136 85.0 78.4 81.0 89.9

1500 1341 1341 1193 148 148 86.1 73.2 77.2 89.0

1000 1341 1341 1195 146 146 86.4 73.6 77.7 89.1

750 1341 1341 1195 146 146 86.0 74.0 78.0 89.1

500 1341 1341 1195 146 146 85.1 75.1 78.8 89.1

250 1341 1341 1203 138 138 85.4 77.8 81.0 89.7

200 1341 1341 1204 137 137 85.7 77.8 81.1 89.8

150 1341 1341 1198 143 143 85.0 76.3 79.8 89.3

100 1341 1341 1177 164 164 82.3 71.0 74.6 87.8

50 1341 1341 1170 171 171 81.0 68.9 72.2 87.2

Table E.2: CPIS feature threshold experiments, with event-only features, on oracle snippets

(Average number of features across folds in model with no feature selection = 4330/Number

of significant χ2 ranked features = 1075)
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θ S G TP FP FN P R F1 Acc

- 1341 1341 1225 116 116 87.1 81.8 84.0 91.3

1500 1341 1341 1223 118 118 87.9 79.7 82.7 91.2

1000 1341 1341 1223 118 118 87.9 79.7 82.7 91.2

750 1341 1341 1223 118 118 87.6 80.1 83.0 91.2

500 1341 1341 1228 113 113 87.4 82.2 84.4 91.6

250 1341 1341 1225 116 116 87.0 82.0 84.2 91.3

200 1341 1341 1219 122 122 86.5 81.0 83.4 90.9

150 1341 1341 1208 133 133 85.2 79.0 81.7 90.1

100 1341 1341 1194 147 147 84.5 75.4 79.0 89.0

50 1341 1341 1197 144 144 84.9 75.8 79.3 89.3

Table E.3: CPIS feature threshold experiments, with all features, on oracle snippets (Average

number of features across folds in model with no feature selection = 4800/Number of

significant χ2 ranked features = 1210)

θ S G TP FP FN P R F1 Acc

- 1341 1341 1155 186 186 76.9 72.4 74.2 86.1

200 1341 1341 1154 187 187 77.6 71.1 73.4 86.1

150 1341 1341 1154 187 187 77.6 71.1 73.4 86.1

100 1341 1341 1154 187 187 77.6 71.1 73.4 86.1

50 1341 1341 1162 179 179 78.9 72.0 74.4 86.7

Table E.4: CPIS feature threshold experiments, with baseline features, on predicted snippets

(Average number of features across folds in model with no feature selection = 475/Number

of significant χ2 ranked features = 160)



279

θ S G TP FP FN P R F1 Acc

- 1341 1341 1152 189 189 77.6 70.4 72.7 85.9

1500 1341 1341 1157 184 184 83.3 66.3 70.1 86.3

1000 1341 1341 1159 182 182 83.3 67.2 71.3 86.4

750 1341 1341 1158 183 183 81.4 67.9 71.8 86.4

500 1341 1341 1159 182 182 80.0 69.9 73.5 86.4

250 1341 1341 1152 189 189 80.0 67.7 71.9 85.9

200 1341 1341 1152 189 189 79.9 67.9 71.9 85.9

150 1341 1341 1154 187 187 80.1 68.2 72.2 86.1

100 1341 1341 1154 187 187 79.8 68.5 72.2 86.1

50 1341 1341 1149 192 192 78.8 67.2 70.8 85.7

Table E.5: CPIS feature threshold experiments, with event-only features, on predicted

snippets (Average number of features across folds in model with no feature selection =

4150/Number of significant χ2 ranked features = 1190)
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θ S G TP FP FN P R F1 Acc

- 1341 1341 1159 182 182 78.2 71.8 74.1 86.4

1500 1341 1341 1163 178 178 83.0 68.4 71.9 86.7

1000 1341 1341 1163 178 178 81.9 69.3 72.8 86.7

750 1341 1341 1166 175 175 80.8 71.1 74.3 87.0

500 1341 1341 1174 167 167 81.3 73.5 76.4 87.5

250 1341 1341 1172 169 169 80.9 73.3 76.1 87.4

200 1341 1341 1174 167 167 80.9 73.7 76.3 87.5

150 1341 1341 1175 166 166 80.6 74.3 76.6 87.6

100 1341 1341 1170 171 171 79.8 73.1 75.2 87.2

50 1341 1341 1145 196 196 77.8 66.8 70.3 85.4

Table E.6: CPIS feature threshold experiments, with all features, on predicted snippets

(Average number of features across folds in model with no feature selection = 4675/Number

of significant χ2 ranked features = 1350)

θ S G TP FP FN P R F1 Acc

- 1343 1343 1139 204 204 78.6 77.1 77.6 84.8

100 1343 1343 1147 196 196 79.3 77.8 78.3 85.4

50 1343 1343 1120 223 223 76.2 73.8 74.7 83.4

Table E.7: PNA feature threshold experiments, with baseline features, on oracle snippets

(Average number of features across folds in model with no feature selection = 480/Number

of significant χ2 ranked features = 90)
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θ S G TP FP FN P R F1 Acc

- 1343 1343 1096 247 247 74.5 72.2 73.2 81.6

500 1343 1343 1128 215 215 78.0 75.9 76.8 84.0

250 1343 1343 1124 219 219 77.3 75.5 76.3 83.7

200 1343 1343 1123 220 220 77.3 75.8 76.4 83.6

150 1343 1343 1108 235 235 76.0 73.8 74.8 82.5

100 1343 1343 1095 248 248 74.8 71.9 73.1 81.5

50 1343 1343 1082 261 261 73.2 68.5 70.0 80.6

Table E.8: PNA feature threshold experiments, with event-only features, on oracle snippets

(Average number of features across folds in model with no feature selection = 3565/Number

of significant χ2 ranked features = 265)

θ S G TP FP FN P R F1 Acc

- 1343 1343 1114 229 229 75.9 74.8 75.3 82.9

500 1343 1343 1139 204 204 78.6 77.3 77.9 84.8

250 1343 1343 1123 220 220 76.8 75.5 75.9 83.6

200 1343 1343 1117 226 226 75.7 74.8 75.1 83.2

150 1343 1343 1112 231 231 75.7 74.0 74.8 82.8

100 1343 1343 1125 218 218 77.0 74.9 75.8 83.8

50 1343 1343 1087 256 256 72.3 67.8 69.3 80.9

Table E.9: PNA feature threshold experiments, with all features, on oracle snippets (Average

number of features across folds in model with no feature selection = 4010/Number of

significant χ2 ranked features = 380)
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θ S G TP FP FN P R F1 Acc

- 1343 1343 1093 250 250 74.4 72.2 72.4 81.4

150 1343 1343 1119 224 224 77.5 74.4 75.1 83.3

100 1343 1343 1116 227 227 77.1 74.3 74.9 83.1

50 1343 1343 1113 230 230 77.0 73.4 73.7 82.9

Table E.10: PNA feature threshold experiments, with baseline features, on predicted snippets

(Average number of features across folds in model with no feature selection = 490/Number

of significant χ2 ranked features = 125)

θ S G TP FP FN P R F1 Acc

- 1343 1343 1075 268 268 74.1 70.0 71.5 80.0

500 1343 1343 1108 235 235 76.7 72.5 73.9 82.5

250 1343 1343 1093 250 250 75.2 71.0 72.2 81.4

200 1343 1343 1098 245 245 76.0 71.4 72.8 81.8

150 1343 1343 1102 241 241 76.5 71.9 73.1 82.1

100 1343 1343 1090 253 253 75.6 70.0 71.6 81.2

50 1343 1343 1097 246 246 77.6 70.3 71.9 81.7

Table E.11: PNA feature threshold experiments, with event-only features, on predicted

snippets (Average number of features across folds in model with no feature selection =

4200/Number of significant χ2 ranked features = 460)
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θ S G TP FP FN P R F1 Acc

- 1343 1343 1077 266 266 73.6 70.9 71.8 80.2

750 1343 1343 1103 240 240 75.4 73.3 73.8 82.1

500 1343 1343 1105 238 238 75.8 73.5 74.2 82.3

250 1343 1343 1099 244 244 75.6 73.2 73.8 81.8

200 1343 1343 1111 232 232 76.8 74.1 74.8 82.7

150 1343 1343 1103 240 240 76.1 72.7 73.7 82.1

100 1343 1343 1104 239 239 76.3 72.3 73.5 82.2

50 1343 1343 1105 238 238 75.8 71.7 72.8 82.3

Table E.12: PNA feature threshold experiments, with all features, on predicted snippets

(Average number of features across folds in model with no feature selection = 4690/Number

of significant χ2 ranked features = 585)
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