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Mechanical Engineering

This dissertation presents the capability of GPU-based parallel computing to support inter-

active editing of solids represented by interpolated grids of signed distance values. The basic

format of values on a grid is consistent with the format of an image stack that would be

obtained from a volumetric imaging system such as magnetic resonance, positron emission

tomography (PET), etc. or sent to a variety of 3D printing technology involving digital

light projection (DLP) system or Powder bed and inkjet head 3D printing. Thus, this work

represents another step toward the goal of a workflow from 3D scan to edit, analyse and

fabricate all based on a uniform and robust data format.

While interactive viewing of Signed Distance Field representation(SDF-rep) models has

been previously demonstrated, here we present modeling operations that can be achieved in

real or near-real time by taking advantage of GPU-based parallelism. Particular operations

presented here include importing objects into the SDF-rep modeler, applying Boolean op-

erations, sweeping cut as well as sweeping construction, manipulating the signed distance

field by offsetting SDF-rep models (i.e. uniformly manipulating signed distance field to make

the original SDF-rep models thinner or fatter without compromising the model integrity).

Several applications integrated with those operations above give rise to the capability of

modeling a shell version of solids with scaffold structure wrapped inside, which could be

essential when printing bio-compatible scaffold material for implanting usage.



In addition, this dissertation also presents a pipeline of computing discrete geometric

skeletons from SDF-rep models, editing skeletal data, and refleshing (i.e. computing the

distance grid, i.e. solving the eikonal equation, given partial information such as the skeletal

data). I further illustrate(and present timings for) the skeletal editing procedures by provid-

ing the example of bending a knuckle joint meanwhile adjusting the thickness of fingers on

a hand model. Finally, we discuss the essentials of GPU-based parallel implementation and

present the report about the efficiency of different options for memory management.

Furthermore, in the body of work, the modeler system is capable for designing multi-

material or continuous graded material models by applying user defined material-function

on SDF-rep models for image-stack based 3D printing technology. Therefore, continuous

gradation material property decoupled from geometry models is realized beyond the limi-

tations of traditional boundary-rep based CAD software. Moreover, examples of creating

a spatially controlled materials of various geometries are presented to help understand the

whole pipeline.

Last but not least, an approach for reconstructing 3D signed distance field (SDF) model

based on surface scanned point cloud data, is introduced here in order to enable the voxel

modeler more versatile. Instead of only compatible with volumetric data or image stacks

data, the 3D SDF reconstruction is desired for directly importing surface scanned point cloud

and creating the signed distance field version of the imported model. This 3D reconstruction

method is also discussed in terms of efficiency when employing different amounts of cloud of

points or grid sizes. A further discussion about the limitations of our 3D SDF reconstruction

is presented to show the robustness of dealing with a few noisy outlier vertexes as well as

the failure when importing the non-enclosed surface points data.
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Chapter 1

INTRODUCTION

This dissertation presents a new system for solid modeling and computer-aided design

(CAD) formulated to fully support the key advances in fabrication capabilities made available

by advances in additive manufacturing (AM), also commonly referred to as three-dimensional

printing (3DP). The particular advances provided by AM are: (1) low cost of geometric com-

plexity, (2) mass customization, and (3) continuous gradation of materials and/or properties

throughout the interior of the part. To fully support the capabilities offered by AM, a solid

modeling system is needed that can: (1) match the resolution of the AM system, (2) readily

import scanner data to create digitized objects to which a full set of modeling operations can

be applied, and (3) describe variations in properties throughout the interior of an object.

Solid modeling and CAD systems currently available have generally arisen during an era

when computer graphics and computer numerical control (CNC) machining were dominant

technologies, and both of these technologies focus on surfaces. Computer graphics is driven

by simulating how light interacts with the surfaces of objects in a scene. CNC machining

involves traditional material removal processes where a blank piece of typically homogeneous

stock is fixtured in the machine, and a cutting tool removes material from the blank until it

reaches the surface specified by a CAD model of the desired part. In both cases, the focus

is on the boundaries of an object, and this focus leads to the boundary-representation or

b-rep models composed of a connected collection of surface patches that currently dominate

the CAD marketplace. Such b-rep models have several shortcomings when considered in the

context of AM: (1) The fundamental function of a solid modeling system is point membership

classification (PMC); i.e. distinguishing points that lie in the interior of a model from those

that lie exterior to the model. There are significant concerns regarding robustness of PMC
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based on b-rep, and very careful bookkeeping is required maintain validity during modeling

operations based on b-rep. There are no inherent guarantees that the results of an operation

will result is a description of the closed surface of a solid object. (2) While there have

been some nominal attempts at describing inhomogeneous objects as a collection of b-rep

or describing property variations over the surface, b-rep are simply not designed to describe

variations of materials and/or properties through the interior of an object. (3) Import

of scanner data to create b-rep of digitized objects remains problematic for both surface

scanners and volumetric scanners such computed tomography (CT), magnetic resonance

(MR), positron emission tomography (PET), and ultrasound.

To overcome the limitation of b-rep, we have taken an alternative approach based on

implicit solid models also known as function-based models or f-rep. The basic idea of f-rep

modeling is to define a function over the ambient modeling space that has negative values in

the interior region and positive values in the exterior region. An f-rep then provides robust

PMC by evaluating the function at a point and classifying the point according to the sign of

the resulting function value. Moreover, f-rep of inhomogeneous solids can be readily created

by appending additional functions that implicitly define gradations of materials, properties,

or processing parameters.

While an f-rep uniquely specifies an object, an object does not have a unique f-rep.

Numerous choices are available, and we pursue a particularly useful class of f-rep called signed

distance function representations or SDF-rep. In this special class of f-rep models, evaluating

the implicit function at a point returns a value whose sign classifies the point (interior vs.

exterior) and whose magnitude specifies the distance to surface. Signed distance functions

possess several useful properties, and those of particular interest involve the gradient of the

SDF which points toward the closest surface point. Wherever the SDF gradient exists, it has

unit magnitude; we will see that this is useful for completing partial SDF data. At points

where the SDF does not have a well-defined gradient, there is more than one nearest surface

point which is indicative of membership in the geometric skeleton or medial axis. We will

show that access to the geometric skeleton supports a new and useful set of modeling tools.
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We will further present ways to exploit the useful properties of signed distance functions

to achieve efficient visualization, preservation of the signed distance property during editing

operations, and a practical set of editing tools based on geometric skeletons.

Another major consideration involves dealing with the reality that both scanning systems

and AM systems have finite resolution. Thus we choose to employ a finite resolution version

of an SDF-rep. Inspired by volumetric imaging systems that produce a stack of 2D images

(which can alternatively be considered as a 3D voxel data set), we choose a representation

called a discrete signed distance function representation (discrete SDF-rep) consisting of a

set of voxel data corresponding to the values of an SDF sampled on a regular grid together

with an interpolation method for computing values between grid points.

The description so far involves a discrete, implicit representation of the geometry of

a homogeneous solid. We also present the implementation of a straightforward extension

of discrete SDF-rep to model inhomogeneous solids that have graded or spatially varying

composition and/or properties. We demonstrate the construction of inhomogeneous discrete

SDF-rep models by appending to the discrete SDF-rep additional functions (or grids of

function values) that define gradations of materials, properties, or processing parameters;

and we demonstrate the effectiveness of the modeling approach by presenting test results on

graded parts produced via additive manufacturing.

Note that discrete SDF-rep (including the inhomogeneous version) involve image stacks

or voxel sets that are not only the native output format for volumetric scanners, but also

the native input data required for AM systems such as powder-bed binding and vat pho-

topolymerization where a part is formed (by binding powder particles or solidifying resin)

by printing or illuminating a sequence of images. Thus, discrete SDF-rep provide a unified

format to support the workflow from 3D scan, to model and edit, to fabrication, and finally

to inspection.

This dissertation presents the range of capabilities needed to implement a fully interactive

discrete SDF-rep modeling system. It is worth noting that real-time interactivity with large

voxel data sets depends on parallelizing intensive computations, and we employ CUDA [2]
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to implement parallel computations on the graphics computing unit (GPU) and achieve the

desired level of real-time interactivity.

Chapter 2 describes how primitive objects can be created in or imported into the discrete

SDF-rep modeler. All the major sources of models are supported including b-rep, SDF-rep,

and digitization by volumetric or surface scanning. More specifically, our voxel modeler

addresses import of point cloud data typically produced by surface scans. (Segmented volu-

metric scan data imports naturally into the discrete SDF-rep modeler, continuous SDF-rep

can be sampled on a grid to create discrete SDF-rep, and b-rep models can be imported

by computing a grid of signed distance values relative to the collection of surface patches;

so this represents the significant missing case for importing digitized objects.) We present

a straightforward method for computing good approximations of discrete-SDF reps for an

object rom a collection of surface points sampled with sufficient density. For clarity, the

algorithm is presented along with a 2D example; then results are presented for an actual

scan data collected from a 3D object.

Chapter 3 describes how real-time interactivity is achieved by leveraging both the prop-

erties of signed distance functions and the power of GPU-based parallel computing.

Chapter 4 presents the basic functions of a discrete SDF-rep modeler including per-

forming the basic Boolean operations (union, intersection, and difference). Since Boolean

operations do not fully preserve the signed distance property, methods are presented for

repairing discrete SDF-rep by re-computing SDF values in regions damaged by Boolean op-

erations. The basic Boolean operations are then extended to include sequences of geometric

transformations to produce SDF-rep models of swept solids.

Chapter 5 presents the classes of geometric operations for creating new geometry with

the discrete SDF-rep modeler. In addition to the traditional unary operations (scale, rotate,

translate) and binary boolean operations (union, intersection, difference), efficient and robust

methods are presented for offset solids, swept solids, and a useful set of operations based on

computing and editing a discrete version of the geometric skeleton.

Chapter 6 introduces discrete SDF-rep for inhomogeneous objects create by appending
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to the grid of SDF values that define the geometry one or more additional grids describing

local variation of materials, properties, or parameters. The chapter concludes with a detailed

description of design, fabrication, and testing of octet truss unit cells with graded material

properties.

Chapter 7 summarizes the results and presents conclusions that identify the novel and

significant contributions presented in this dissertation.
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Chapter 2

CREATING AND IMPORTING PRIMITIVE OBJECTS

A significant goal of the discrete SDF-rep modeler is to provide an environment that

supports efficient interactions between digital parts designed in a CAD system and parts

digitized from scan data. With b-rep modeling technology currently available in the market-

place, these interactions are problematic. Constructing a b-rep from segmented volumetric

scan data typically involves marching cubes or related algorithms [3]. Marching cubes pro-

duces a large triangle set that definitely sacrifices the ability to represent smooth surfaces and

cannot guarantee a result that corresponds to a valid b-rep model of a solid. Constructing a

b-rep from surface scan data is also problematic. The clouds typically include a large num-

ber of points (tens or hundreds of thousands), and determining how to connect the points

to create a triangulation is a combinatorial problem that involves significant computational

expense and again sacrifices any chance of representing smooth surfaces. Motivated by the

very real need for an environment where digital and digitized parts can interact effectively

(“digital” refers objects created in a CAD system while “digitized’ refers to objects obtained

by scanning”). Therefore, we demonstrate how digital and digitized parts can be imported

into the discrete SDF-rep modeler where they can readily interact.

2.1 Discretization of Closed Form f-rep

We consider models created by writing closed-form expressions for SDF-rep. If we start with

the simple formula for the Euclidean distance from the origin, d(x, y, z) =
√

(x2 + y2 + z2),

we note that simply choosing a value d(x, y, z) = r, or alternatively d(x, y, z)−r = 0, provides

an SDF-rep for a sphere of radius r centered at the origin. The sphere is imported to the

discrete SDF-rep modeler by choosing a grid of points covering a region of space containing
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the sphere and evaluating the function f sphere(x, y, z; r) =
√

(x2 + y2 + z2)−r on the grid

of points. Note that evaluating a given function on a grid of points is readily parallelizable so

that conversion of SDF-rep to discrete SDF-rep is very fast even for the largest possible grids

that can be stored in GPU memory (on the order of 1-10 GBytes). While creating other

closed-form SDF-rep is a non-trivial endeavor, a number of SDF-rep models are available

in the literature [4] including slabs, blocks, cylinders, capsules, and tori all of which import

directly to the discrete SDF-rep modeler by parallel evaluation on a grid. Fig. 2.1 shows

a visualization of a discrete-SDF rep of some simple geometries derived from a closed-form

SDF-rep model.

Figure 2.1: 3D signed distance primitives: (a) discrete signed distance cone, (b) discrete signed distance

block, (c) discrete signed distance cylinder, (d) discrete signed distance sphere, (e) discrete signed distance

torus, (f) discrete signed distance capsule,
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2.2 Importing b-rep

Any b-rep modeler that supports point membership classification (PMC) and a surface dis-

tance function enables import into the discrete SDF-rep modeler. By placing a uniform grid

over the desired object and computing the distance to the surface of the b-rep at each grid

point produces a grid of unsigned distance values. Changing the sign at each internal grid

point (as determined by PMC) produces the desired discrete SDF-rep model. For polyhe-

dra, the computation involves a sequence of point-to-polygon distance tests which allows

parallelization (Ben Wesis’s code from 3D printing lab of University of Washington [5]).

This approach enables import of the many polygonal b-rep files (STL, PLY, etc.) that are

available from numerous sources online like “Thingiverse”.

2.3 Import from Volumetric Scans

The first essential step to capturing an object from a volumetric scan involves segmentation

[6]; i.e. identifying the voxels in the volumetric scan that belong to the desired object.

Segmentation that returns binary (in/out) values produces “old school” or “sugar cube” voxel

models that are unsatisfactory because they are incapable of properly capturing information

about surface normal direction and curvature. However, segmentation algorithms are now

available that provide more refined information. For example, Multirigid [7] implements a

two-step approach. The first step uses graph cuts to generate an initial segmentation result.

That initial result is smoothed and refined using during an ensuing level set computation that

actually computes an estimate of signed distance for voxel centers near the boundary of the

object. While the traditional workflow applies marching cubes [3] to produce a triangulation

of the zero-distance level set that approximates the boundary, our approach focuses instead

on the signed distance values. Since the level set computation provides the signed distance

values only in the vicinity of the boundary of the object, the remaining task is to estimate

the signed distance values over the remainder of a chosen region of interest.

Fig. 2.2 (a) shows a talus and calcaneous (in the red circle) from CT scanner. Fig.
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2.2 (b) shows a segmented talus and calcaneous (in the red circle) among all the other

bones with some segmentation algorithm [8, 9], while Fig. 2.2 (c) shows the rendered talus

and calcaneous in our discrete signed distance voxel modeler after importing the segmented

volumetric data.

Figure 2.2: CT segmented talus and calcaneous: (a) a talus and a calcaneous are shown in the red circle

in the CT scanned image, (b) a segmented talus and a calcaneous are shown in the red circle, (c) a rendered

talus and calcaneous in our discrete signed distance voxel modeler after importing the segmented volumetric

data

Computing a full SDF grid from values at voxel centers near the boundary brings us to

the first instance of completing a partial grid of signed distance values and also the first

opportunity of make significant use of the special properties of the signed distance functions.

Wherever the gradient of a signed distance function f exists, it has unit magnitude. Thus,

the signed distance function satisfies the eikonal equation |∇f | = 1.

2.3.1 GPU Version of Upwind Differencing for Recovering Signed Distance Field

Our voxel modeler adopts the upwind differencing scheme to solve the eikonal equiaton [10] in

Eq. 2.1 in order to create or correct the incomplete signe distance field. Currently, there are

three popular approaches for numerically solving eikonal equations, which are fast marching

method[11], fast iterative method[12] and fast sweeping method[13, 14, 15], which are essen-

tial in many applications including but not limited to medical image segmentation[16, 17],
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3D objects reconstruction[18], path planning[19], interface tracking[20, 21]. The eikonal

equation, with the relevant boundary conditions, are defined in Eq. 2.1:

|∇u(x)| = 1, x ∈ Ω ⊂ Rn

u(x) = g(x), x ∈ Γ ⊂ Ω
(2.1)

where u is the unknown value, in our case, replaced by distance value, and f is a given inverse

velocity field. g is the value of u at an irregular interface Γ, which could be the enclosed 3D

surface or skeleton. There are also varieties of explorations for solving the eikonal equation

with algorithm above using serial computing architecture [22, 23, 24]. Here, we report using

GPU parallel scheme for solving eikonal equaiotn.

The approach described in this dissertation is based on a parallel fast sweeping method

with a nonlinear upwind difference scheme over the entire domain until convergence, which

is robust and straightforward to implement. Furthermore, a higher accuracy third order fast

marching method for eikonal equation is presented recently[23, 24].

For convenience, the 2D scheme is taken as example here, which is intuitive to extend to

3D space as well [25]. The fast sweeping method employs a Godunov upwind differencing

scheme on the updating nodes [26]:

[(unew
i,j − uxmin)+]2 + [(unew

i,j − uymin)+]2 = f 2
i,j h

2

i = 2, ..., I − 1, j = 2, ..., J − 1

uxmin = min(ui−1,j, ui+1,j), uymin = min(ui,j+1, ui,j−1)

(2.2)

Where i and j are the index along and two orthogonal directions respectively, and h is

the grid spacing. The algorithm works by sweeping all the grid points and assigning a new

value to u based on Eq. (2.2) replacing previous value if and only if the new value is smaller

than previous one. Fortunately, with GPU, threads can be launched parallel, which enables

to update each grid point by a single thread without alternatively switching the propagation

direction and serial sweeping each grid point within each quarter. Therefore, we can run the

parallel upwind-differencing scheme and update the entire grid in less time than you have
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for each display update (about 1/60 sec).

In numerically computing world, the detail of solving the Eq. (2.2), is discussed as

followed, where at least one of uxmin , and uymin, exists or stay active (not equal to infinite

value).

1. Compare uxmin and uymin, then determine the smaller neighbor point usmaller as well

as ubigger.

2. Solve Eq. (2.2), only considering the contribution term involved with usmaller which

could be either the first term or the second term in Eq. (2.2), and get the first trial

solution utrial .

3. Compare utrial with ubigger , if utrial is smaller than ubigger , which indicates the ubigger

term does not contribute to solving Eq. (2.2). Then, utrial is the final solution to Eq.

(2.2).

4. If utrial is bigger than ubigger, then solve Eq. (2.2), considering both terms involved

with usmaller as well as ubigger to get the second trial solution utrial2 , which indicates

that term ubigger does contribute to solve Eq. (2.2). Then, utrial2 is the final solution

to Eq. (2.2).

The algorithm above is for solving 2D eikonal equation, but extends directly for completion

of 3D signed distance grids.

2.4 Import Point Cloud Data from Surface Range Scan

Having already explained how to create discrete SDF-rep models from closed-form SDF-rep,

b-rep, and segmented volumetric scan data, we now address creation of discrete SDF-rep

models from surface range scan data. The ultimate goal is to realize a system where digital

and digitized objects are readily accommodated as illustrated in Fig. 2.3 (discussed in the

next section), which shows capability of our voxel modeler for creating SDF-rep models from
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various data source. Once we get the capability of dealing with various kinds of data set, it is

interesting and worthy showing that the system actually can import, represent, manipulate

and even edit on those different data set at the same time. Fig. 2.3 (a) shows a tooth of STL

file, which basically is a b-rep model; (b) shows a talus model from segmented volumetric

scan data; (c) shows a head model acquired from point cloud, which is the range scan data;

(d) shows the union operation (will be discussed in next chapter) is applied between above

three models and a torus directly defined with the signed distance function.

Figure 2.3: the voxel modeler is capable of dealing with different kinds of data set of 3D models: (a) a

tooth model converted from STL file, (b) a talus model converted from CT scan, (c) a head model converted

from point cloud, (d) applying union operation between previous three models with different data format

and a torus directly defined with signed distance function.

This section describes a methodology for importing point clouds and converting them

into signed distance field models. A point cloud consists of coordinate values for a set of un-

connected cloud points that are assumed to lie close to the surface of an object. File formats

for storing point cloud data of scanned objects include XYZ, PCD, etc [27]. Point cloud

data is typically acquired from range scanning systems, but for the purposes of constructing

examples, the vertices from a polyhedral or mesh model can be extracted using tools such

as Meshlab [28]. Since, point clouds themselves are insufficient for the purposes of solid

modeling because they do not support a point membership classification for distinguishing
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between points that are inside or outside the object. It is desirable to convert the point

cloud into a solid model. The traditional workflow for producing a solid model from a point

cloud involves determining the topology; i.e. connecting the points to create polygons that

collectively form a boundary representation of the corresponding object. This traditional

polygonization approach is problematic in two significant ways:

1. Polygonization is expensive in that connecting points into a set of polygons is a combi-

natorial process that can be computationally costly. If the scanned object consists of

multiple disjoint components, additional processing such as K-means algorithm [29] are

necessary to cluster the cloud into point sets corresponding to each disjoint component.

2. Polygonization is unreliable in the sense that the resulting set of polygons does not

necessarily make up a valid boundary for a solid object.

Here we propose an alternative approach that constructs a discrete signed distance model

from a point cloud. As described previously, a discrete signed distance model consists of

function values on a uniformly spaced set of grid points. The algorithm involves the following

steps:

1. Compute the “cloud distance” grid; i.e. for each grid point compute the distance to

the closest cloud point.

2. Determine a distance threshold so that grid points with cloud distance below the thresh-

old create a zone of barrier points that separates regions of internal and external grid

points.

3. a) Consider the grid as a graph and, starting from a point on the boundary of the

grid, perform a breadth-first search to identify the set of exterior grid points (This step

is equivalent to identifying a morphological component in an image); b) Optionally,

identify the remaining grid points as internal grid points.
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4. Starting with the values on an identified set of grid points (i.e. the cloud distance

values on the external points or the negative of the cloud distance values on the internal

points), complete the signed distance grid using the upwind differencing scheme (will

be discussed in the next section).

5. Optionally, average the two results, apply a smoothing filter, or perform other desired

post-processing algorithms.

The algorithm is designed to take advantage of GPU-based parallel computing using

CUDA. A significant portion of the computation takes place in steps 1 and 5 which are

parallelized as follows:

1. A computational grid was launched with each thread corresponding to a grid point.

Each thread computes the distance from its geometric grid point to each of the cloud

points and returns the minimum of those distances (In other words, each thread com-

putes the “cloud distance” for a grid point).

2. The signed distance values are stored in CUDA surface memory. Each computational

thread updates the signed distance based on neighboring values using the upwind-

differencing scheme. It is noticed that the number of iterations is limited by the

number of gird points along a coordinate direction, and hundreds of iterations can be

executed in a short amount of time.

2.4.1 Computing A Signed Distance Grid From A Point Cloud in 2D

Fig. 2.4(a) shows a cloud of 30 points non-uniformly sampled on the boundary of a “Pacman”

region in the plane, and we present figures to illustrate each step in the algorithm for this

example. Fig. 2.4b shows the result of Step 1 that computes the cloud distance or unsigned

distance field (USDF) for points on the 2D grid.
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Figure 2.4: 2D data points sampled on the boundary of a “Pacman” region, and its corresponding cloud

distance (unsigned distance filed): (a) 30 data points sampled on a 2D “Pacman” boundary, (b) plot of

computed unsigned distance field (cloud distance).

Once the cloud distance or unsigned distance field is obtained, we need to determine a

distance threshold so that grid points with cloud distance below the threshold create a zone

of barrier points that separates regions of internal and external grid points. The initial guess

of the distance threshold is the grid spacing, in our 2D case: 0.05. All the grid points whose

distance value is below the distance threshold will be classified into a barrier zone, therefore,

with distance threshold increasing, the barrier zone is getting thicker. The distance threshold

will be increased until the barrier zone is thick enough to separate the internal region from

the external region. Fig. 2.5a-c show the zone of the grid where the cloud distance value

is below a trial threshold value. Note that in Fig. 2.5 (a) the trial threshold value of 0.05

(grid spacing) is too small to produce an effective barrier zone as shown in corresponding

Fig. 2.5 (d), where the external region is still connected with external region. Therefore, the

barrier balls’ radius keep increasing, as shown in Fig. 2.5 (b), where the distance threshold

(or the barrier balls’ radius) of 0.10 still can not bridge all the gaps among the cloud points,

thus the corresponding Fig. 2.5 (e) indicates the thicker barrier zone does not separate

the external region from the internal region yet. After doubling the distance threshold (or

barrier balls’ radius) again, the next larger threshold values successfully produce a barrier

zone as shown in Figures Fig. 2.5(c) with radius of 0.15. Combined with Fig. 2.5 (f), it is
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clearly seen that there are three morphology components in the 2D image, indicating that

the barrier zone with distance threshold of 0.15 does its job to split the external region from

the internal region. Based on establishment of a barrier zone incrementally, we complete

Step 2 by choosing a threshold value of 0.15 (shown as Fig. 2.5(c) and (f)) for identification

of grid regions.
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Figure 2.5: Expanded barrier zone on each sampled data point until connected: (a) 30 barrier balls with

radius of 0.05 (grid spacing) are located on all sampled data points on its boundary, not connected though,

(b) Barrier zone with radius of 0.10 are located on all sampled data points on its boundary, still not connected

to separate the internal region from external region, (c) Barrier zone with radius of 0.15 are located on all

sampled data points on its boundary, just connected and separate the external region from the internal

region, (d) plot of the space with two different morphology components: barrier zone with radius of 0.05 and

the rest region (external region is connected with internal region) corresponding to (b), (e) plot of the space

with two different morphology components: barrier zone with radius of 0.05 and the rest region (external

region is connected with internal region) corresponding to (b), (f) plot of the space with three different

morphology components: barrier zone with radius of 0.15, separated external region and internal region

corresponding to (c).

Fig. 2.6(a) illustrates the result of Step 4 by showing a plot of the signed distance values

for the internal grid points. (Alternatively, Fig. 2.6 (d) shows a plot of the signed distance
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values for the external grid points) Fig. 2.6 illustrates Step 4 of the algorithm. Fig. 2.6

(a) shows the initially incomplete signed distance grid with large negative values inserted

at external and barrier points. Fig. 2.6 (b) shows the partially completed signed distance

grid after 4000 of kernel executions, and Fig. 2.6 (c) shows a plot of the completed signed

distance grid(Similarly, Fig. 2.6 d-f show the analogous process starting with known values

in the external).

Figure 2.6: Reconstruct signed distance field from internal grid points and external grid points: (a) the

top figure shows the original cloud distance of the internal region, (b) shows the partially completed signed

distance field based on the initial internal cloud distance, (c) the bottom figure shows the whole reconstructed

signed distance field from the inner region, (b) the top figure shows the original distance field of outer region,

the bottom figure shows the whole reconstructed signed distance field from the outer region.

Finally, Fig. 2.7(a) shows a plot of the average recovered signed distance field based

on the completed internal and external signed distance grids. While Fig. 2.7 (b) shows the
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binary picture of a “Pacman”, where the grid points are painted as white if they are negative,

vice versa.

Figure 2.7: the final averaged signed distance field of a circle: (a) the reconstructed 2D circle patch based

on the sign, (b) the average of two reconstructed signed distance fields from inner region and outer region

above.

2.4.2 Computing A Signed Distance Grid From A Point Cloud in 3D

We now present an example to show how the same idea extends to creating signed distance

solid models from 3D point clouds. Similarly, we start by computing the cloud distance

first and then adjust the distance threshold to separate the external region from the internal

region. The upwind differencing scheme is adopted for recovering the 3D discrete SDF-rep

models. it is noticed that this approach produces a solid model without explicitly determining

topological connectivity between points in the cloud. A 3D example for showing the idea

of thickening barrier is presented in Fig. 2.8. You can imagine there existing a big hole

in the point cloud as shown in Fig. 2.8 (a), in order words, there is not any surface point

data scanned within that hole. Therefore, just as shown in the cut-away view of Fig. 2.8

(b), it is clearly that, current shell or the barrier zone (the blue one) is not thick enough to

form a enclosed region, which further indicates that the barrier zone itself does not succeed

to separate the external region from the internal region. As discussed in the previous 2D

example, we adjust the distance threshold to thicken the shell or the barrier zone as shown
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in Fig. 2.8 (c), however, still not enclosing the internal region. Therefore, we keep thickening

the barrier zone until the hole is just filled in Fig. 2.8 (d) and (e). Apparently, although

there is a indentation can be seen from outside in Fig. 2.8 (e), it is enough for separating

the internal region from the external region. Similarly, the rest is just applying upwind

differencing method to recover the whole signed distance field based on the input data of

either external region or internal region.
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Figure 2.8: increase the distance threshold to thicken the barrier zone: (a) a head model with a big hole on

it, (b) a cut through view of the head model, the blue indicates the barrier zone, (c) increasing the distance

value to thick the barrier zone, makes the hole smaller, (d) keep increasing the threshold until the hole is

filled, (e) a barrier zone, which succeed to separate the internal region from external region, is formed.

Once the 3D signed distance field is separated into external and internal regions, there

are two approaches available for recovering SDF-rep models: by choosing either the external

region or the internal region as input for repairing the whole signed distance model. Fig. 2.9

shows the images of discrete SDF-rep models for a head recovered from point cloud data.

Fig. 2.9 (a) and (b) show the models based on external and internal grid points, and Fig.
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2.9 (c) shows the model obtained by averaging the results based on internal and external

grid points.

picture (a) is the recovered signed distance head based on the input of external region;

(b) is the recovered signed distance head based on the input of internal region; (c) is the

average version of previous two recovered versions.

Figure 2.9: 3D signed distance heads: (a)recovered discrete signed distance head from external region

(input),(b)recovered discrete signed distance head from internal region (input), (c)averaged discrete signed

distance head.

It is interesting to see scalability of our algorithm, since it is important to see whether

it is efficient or not when dealing with large data set. The experiments below discuss the

efficiencies when dealing with different resolutions of input surface points data as well as

voxel grid sizes. The first experiment conducted is to time the whole 3D reconstruction

procedure with different voxel grid sizes from 32*32*32, to 64*64*64 and even 128*128*128,

while keeping the same amount of surface data points as 85442. However, it does not

mean we should always use the large voxel grid size since it might be really computational

intensive. And the timing experiment result shown in the Table 2.1 indicates that the

3D reconstruction procedure consists of three parts: we first compute the cloud distance

or unsigned distance field (USDF) without classifying the points membership, thus all the

distance values is positive at this stage; then, we use the distance threshold adjustment trick

to expand the barrier zone until it successfully separate internal region from external region
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(point membership classification). During this step, we start with one fifth of grid spacing

as initial distance threshold, and keep doubling it until the threshold can form a barrier zone

separating the external region from internal region. Finally, the upwind differencing method

is applied on the data from the internal or external region to complete the signed distance

field. Among those three parts, USDF computing and SDF repairing are executed in parallel

on GPU, while point classification by adjusting the distance threshold to form a barrier zone,

involves a CPU-based serial implementation (naive serial depth first search adopted here).

From the Table 2.1, we can see that with number of grid points increasing, the USDF

computing and point classification parts take longer time, which contributes to increasing

total time. Besides, it is noticed that the points classification part takes most of the total

time, usually weighting around 77% in the total time during 3 steps of 3D reconstruction

(USDF computing (parallelized), points membership classification (serialized), recovering the

SDF (parallelized)).

Table 2.1: Performance of reconstructing the 3D tooth from 85442 surface data points with

different voxel grid sizes: 323, 643, 1283 respectively.

Voxel grid size USDF computing Point classification SDF fixing Total time

323 475.8 ms 782.5 ms 2.0 ms 1259.8 ms

643 2168.7 ms 6660.3 ms 8.3 ms 8837.5 ms

1283 16495.7 ms 57183.2 ms 71.1 ms 73750.2 ms

Instead of increasing the voxel grid size for representing the signed distance field 3D

model, it is equally interesting to have a look at the performance when we dealing with dif-

ferent amounts of surface data points. The second experiment conducted is to check the per-

formance of 3D reconstruction procedure based on different amounts of surface data points,

from 42721 to 85442, and 170882, while keeping the same voxel grid size of 128*128*128.

Similarly, the timing experiment result shown in the Table 2.2 indicates that with the

number of surface data points increasing, the cloud distance or USDF computing time in-
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creases correspondingly from 8237.7 ms to 16495.7 ms, 33061.9 ms , but the point classifica-

tion part takes almost the same amount of time as 57189.6 ms, 57183.2 ms and 58766.4 ms.

From the Table 2.2, it is further shows that increasing the amount of surface data points

only has small effect of increasing the total computing time for 3D reconstruction compared

with increasing the the number of grid points. Because the surface data points are only used

during the unsigned distance field (USDF) computing in parallel, where a very nearly linear

relation between the number of cloud points and time for computing partial SDF can be

seen in the Table 2.2 that the first column of USDF computing time: 8237.7 ms, 16495.7

ms, 33061.9 ms is increasing correspondingly to the increasing number of surface data points

from 42721, to 85442 and 170882. Nevertheless, the increased USDF computing time does

not affect the total time dramatically since point classification is always the bottleneck of

this algorithm. Therefore, the time complexity of our algorithm is always O(N) in terms

of number of input data points, instead of O(N*N) compared with the time complexity of

Crust algorithm [30], figuring out topology generation among all pairs of points and poles.

Table 2.2: Performance of reconstructing the 3D tooth from 42721, 85442, 170882 surface

data points respectively, all represented by voxel grid size of 1283.

Num. of points USDF computing Point classification SDF fixing Total time

42721 8237.7 ms 57189.6 ms 71.4 ms 65498.1 ms

85442 16495.7 ms 57183.2 ms 71.7 ms 73750.2 ms

170882 33061.9 ms 58766.4 ms 70.1 ms 91898 .9 ms

2.4.3 Limitations of The Signed Distance Filed 3D Reconstruction Algorithm

It is interesting to test some boundary cases of our SDF 3D SDF-rep models reconstruction

algorithm. The first scenario is what happens if there is a big hole on point cloud (not a

closed surface). In order to conduct the experiment, a STL file of a dinosaur is shown in

Fig. 2.10 (a), where it is seen that there is not any triangle mesh or vertex on the bottom
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Figure 2.10: An example of 3D dinosaur reconstruction from the non-enclosed surface point cloud data:

(a) is STL model of the non-enclosed dinosaur, (b) shows the reconstructed signed distance field shell.

part, which contributes to the black color in STL visualization. With our 3D reconstruction

algorithm, all the vertexes are imported as surface point cloud data. After keeping increase

the distance threshold, our system reconstruct the 3D SDF-rep model shown in Fig. 2.10

(b), where, it produces a shell (not a enclosed surface) instead of an enclosed solid model.

Another interesting topic is: what if the inner regions are not connected or there are

multiple disconnected inner regions. For clearer explanation, a simple example of three

disconnected spheres are shown in Fig. 2.11. Fig. 2.11 (a) shows an example involving a

scan of a region containing three disconnected objects: a torus, a hand and a cone capsule.

The result of applying the SDF-rep import algorithm is shown in Fig. 2.11(b). Note that a

model consisting of the union of the scanned objects is obtained without the need to cluster

data points into connected components.

To investigate the effect of outlier points, we added two outlier points to the scan data for

a set of three disjoint spheres as shown within red circle in Fig. 2.12. While the outlier points

affect the cloud distance values for nearby grid points, all such points are external to the

solid. Thus the SDF-rep obtained by completion of the data associated with the internal grid

points is free of artifacts due to the outlier scan points.In the worst case scenario of outliers

both external and internal to the object, discrepancies between the completed SDF-rep based

on intenal and external data identify regions for possible user intervention.
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Figure 2.11: An example of reconstructing three disconnected spheres: (a) shows the surface point cloud

data of three disconnected objects, (b) shows the separate reconstructed SDF objects.

Successful SDF-rep import of the model of three spheres despite the presence of outliers

in the scan is illustrated in Fig. 2.12 (b) and (c). Although, the outlier vertexes affect

the cloud distance values for nearby grid points, causing some voxels possessing different

distance value to the outliers instead of the closest surface points. However, we can easily

rule the outliers out by simply applying the upwind differencing for repairing the whole

signed distance field: firstly, we recover internal distance data using partially correct external

distance data. The correctness of internal signed distance data is ensured due to the fact

that merely outliers nearby grid points are affected, while the voxels close to the surface

(used as boundary condition to recover the internal distance data) keep the correct distance

value; Then, we run the SDF repairing algorithm, using the internal distance data as input

to repair external voxels, where the outliers can be ruled out. After running our 3D SDF

reconstruction algorithm, the outliers are not visualized in our SDF modeler as shown in Fig.

2.12 (b). However, visualization might be misleading sometimes due to resolution, therefore,

in order to further check the reconstructed 3d signed distance field, we further check the

image stacks output by our system, shown as the Fig. 2.12 (c). It is clearly seen that there

is not any internal voxel or voxel close to boundary mis-classified around the location of

previous outliers, which further proves that a few outliers will not affect our reconstructed

3D signed distance field.
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Figure 2.12: An example of impact of having several outlier vertexes on our SDF 3D reconstruction result

of three spheres: (a) shows the two manually added outlier vertexes, (b) is our reconstructed 3D three spheres

without the effect caused by the outlier vertexes, (c) shows the image stack our system eventually outputs

for image friendly 3D printing.
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Chapter 3

BASIC SDF-REP MODELS INTERACTIONS AND
VISUALIZATION

This chapter describes how real-time interactivity is achieved by leveraging both the

properties of signed distance functions and the power of GPU-based parallel computing.

3.1 CUDA Graphics Interoperability

Realization of a fully interactive SDF-rep modeler depends on being able to compute, modify,

and visualize signed distance data sets of non-trivial ( 1GB) size at interactive rates (on the

order of 60 frames per second). The goal of interactive SDF-rep modeling depends on both

large computing throughput and rapid availability of results for display. We achieve those

dual criteria by taking advantage of the interoperability between CUDA and OpenGL, often

abbreviated as “CUDA/OpenGL interop”. CUDA [2] is NVIDIA’s combined hardware/soft-

ware platform for parallel computing on the GPU, and OpenGL is a standard application

programming interface (API) for computer graphics. CUDA/OpenGL interop enables allo-

cation of memory on the GPU that can be readily mapped back and forth between CUDA

(which computes results to be displayed and stores them in the allocated memory) and

OpenGL (which displays the results in a graphics window and provides support for basic

user interactions).

Generally speaking, there are three steps for setting up compute/graphics interoperabil-

ity: (1) setup the objects in the graphics context, (2) register objects with the compute

context, (3)map/unmap the objects from the compute context.

CUDA/OpenGL interop eliminates the need for memory transfers for purposes of display.

When the memory is mapped to CUDA, computational results can be stored as usual for
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global memory on the GPU. When mapped to OpenGL, the same data is used as the basis

for display in a graphics window. The specifics of implementing CUDA/OpenGL interop

involves the following function calls: (1) cudaGLRegisterBufferObject(GLuintbuffOjb)

is called to register a buffer with CUDA (used for transfer data to OpenGL later); (2)

cudaGLMapBufferObject(void∗∗devPtr,GLuintbuffObj) is called to map the buffer ob-

ject to memory, which actually returns an address in previously registered global memory

buffer [31]; (3) a cuda kernel is launched to process the buffer (determine what color should

be displayed on each pixel); (4) unmapping the buffer object prior to use by OpenGL for ren-

dering later with the function cudaGLUnmapBufferObject(GLuintbuffObj); (5) finally,

the buffer object is used by OpenGL code for display.

Once the basic code is in place to display an array of shading values on the screen using

CUDA/openGL interop [32], developers can focus on programming the kernel to perform

parallel computation of desired shading values. In our voxel modeler, the computation is

divided into a 2D computational grid in which each thread is responsible for computing the

shading value for a pixel in the image to be displayed. The sections below will talk in detail

about how we actually determine the color for each pixel on a 2D window. In addition to

rendering, our discrete SDF-rep modeler, like all CAD systems, needs to support interactions

with the user. While OpenGL enables handling user input, we use GLUI [33] to build the

user interface and to specify the actions associated with input from mouse and keyboard.

Basically, GLUT is an OpenGL Utility Toolkit [34] and GLUI is a GLUT based C++

user interface library which provides controls such as buttons, check box, radio button and

spinners to OpenGL applications. Features of the GLUI user interface Library include (from

GLUI manual by Paul Rademacher [35]):

1. Complete integration with GLUT toolkit

2. Simple creation of a new user interface window with a single line of code

3. Controls can generate callbacks when their values change
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4. Variables can be linked to controls and automatically updated when the value of the

control change (live variables)

5. Controls can be automatically synchronized to reflect changes in live variables

6. Controls can trigger GLUT redisplay events when their values change

Fig. 3.1 shows the user interface of our voxel modeler created with GLUI library. The

window visualizing SDF-rep models appears on the left, and the user controls appear in the

panel on the right.

Figure 3.1: GLUI user interface: the window visualizing SDF-rep models appears on the left, and the user

controls appear in the panel on the right.

Besides, GLUI provides users with the capability to interact with the system with key-

board and mouse commands. It detects the key users press and hold and then triggers the
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callback function to control the system. Similarly, with the capability of keeping track of

the mouse movement, GLUI enables the users to transform the models by just clicking and

dragging in the designated direction.

3.2 Ray Casting Render of Discrete SDF-rep Models on The Desired Level
of Real-time Interactivity

Essentially, all the visualization issues are related to the problem of root-finding, for instance,

in polygonal objects visualization, the root finding of any defining function with respect to the

spatial coordinates is achieved through looking for nearby point on the surface of objects.

Here, it is indicated that the visualization of signed distance solids with root-finding is

more efficient and convenient using an alternative approach called ray-casting. A similar

volumetric rendering scheme was reported[36] and with GPU CUDA parallel scheme[37].

Basically, ray-casting inverts the real world physics of vision by merely back tracing those

lights does get into the eyes from the source, as a result, we avoid computing those lights

from the source but never ever get into the eyes of viewer. The procedure of root finding

based on ray-casting in signed distance field is straightforward by sampling the step size,

the step size equals the signed distance value sampled or interpolated among certain grid

points. Besides, ray casting method not only provides the way to find roots on the surface

of objects, but also offers a simple and practical approach for getting shading intensity by

computing the angle between the ray direction and the outward surface normal.

The ray intersection follows the procedure in detail: A parametric ray shooting from the

viewpoint in 3D space is determined by associating the “eyes” position with the corresponding

pixel position on the view port window, which is located between the 3D objects and the

“eyes”. The 3D signed distance solids are scaled in a bounding box centered at origin in the

world coordinate. Instead of directly computing the intersection with the signed distance

objects, the algorithm first returns the parameter of the ray intersecting with the bounding

box since it can scale down the problem without further considering the rays which even

never intersects with the bounding box. On the other hand, the ray intersecting with the
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box still may or may not intersect with the objects. Therefore, the ray casting approach

needs to check whether it is hitting the objects. With the method of sampling distance value

as step size, the root finding is efficient compared with taking constant step size. Along

the ray casting direction, once the sampled distance value is within certain threshold away

from the zero set surface of the objects, the ray is determined as intersecting with objects.

Then the shading intensity is computed based on the angle between this ray direction and

the outward surface normal. In addition, the threshold adjusting can provide us a way to

achieve rendering the signed distance field representation based objects on different sets of

surface in users’ interactively real time. What is more, with our signed distance modeling

system. This capability of adjusting the offsetting surface can be extended to make SDF

models thinner or fatter compared with the zero set surface models, which, however, could

be slow or even problematic for traditional polygonal modeling system.

For convenience, a 2D example is provided here in detail, whose concept, however, is

straightforward to extent to 3D objects as well. In the 2D example of a disk, the contour

plot indicates the distance away from the boundary of the 2D SDF circle as shown in Fig.

3.2(a). If the view point is o, and the ray oa is not even interesting with the square bounding

box, then this ray is abandoned for further consideration of intersecting with the disk. Only

those rays which intersects with the square box, are considered as potential rays further

intersecting the disk. As shown in the Fig. 3.2(a), the red points of ray oc and ob indicate

the location of each step, and the distance value sampled by the red points on their location

are considered as the next step size, which is actually numerically equivalent to the Euclidean

distance from the red point location to the closest boundary of the disk. Eventually, the

ray ob takes five steps until it leaves the domain without intersecting with the 2D disk in

the middle since none of the distance values sampled by those five red points falls within

the threshold considered as intersecting the circle’s boundary. Up to this point, it is more

interesting to observe that the ray oc is interesting with the disk. In this case, each step

size it takes is roughly the real distance away from sample location to the boundary of the

disk, thus only two steps need to take before hitting the disk, which contributes to an much
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more efficient marching procedure to find intersections between the ray and the object’s

boundary, compared with solving implicit equations to find the roots for the mesh objects.

As shown in Fig. 3.2(b), to help understand how big the step size it needs to take whenever

marching along the ray at different locations, the 3D plot of 2D signed distance disk is

provided corresponding to the contour plot, where, the z axis indicates the distance value or

the step size sampled on each grid points.

Figure 3.2: 2D signed distance disk visualization rendering: (a) contour plot of 2D example of a signed

distance disk, (b) 3D plot of 2D signed distance disk.

For 3D signed distance objects rendering, it also shares the same mechanism as 2D ex-

ample presented above. Even though for 3D signed distance field with more grid points, we

can still achieve the root-finding within reasonable amount of steps taken for rendering the

signed distance objects. Taking the example of a signed distance sphere with radii of 30 in

a bounding box with side length of 128, as shown in Fig. 3.3(a), the shading is based on

the angle between the ray direction and surface normal direction. In addition, for further

explanation about efficiency when marching along ray, the Fig. 3.3(b) associates the bright-

ness with the amount of steps each ray needs to take. Basically, those rays not intersecting

with the bounding box contributes to the pixels outside the box, which are always green.

However, inside the bounding box, it is shown that there is different brightness distributed,

where, darker black indicates fewer steps before it hitting the sphere or penetrating bounding

box without hitting anything, while brighter white indicates more steps no matter whether
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it hits the sphere. The range of steps in this figure is 0 to 15 steps, which illustrates efficient

root finding for intersections. Only those rays closely passing by the sphere but not really

hitting the sphere march more than 15 steps, thus, in the Fig. 3.3(b), rending the tiny area

around the sphere as bright white. Those rays marching with relatively many steps actually

can be easily limited by setting maximum steps. This tiny bright area around the circle

makes sense since those rays passing by the boundary sample the tiny distance value as their

step size, however, marching in the direction which would never intersect with the sphere,

therefore, those rays contribute to many small steps, which are rendered as bright white

area.

Figure 3.3: 3D signed distance object rendering: (a) ray-casting rendering for the signed distance sphere

with radii of 30, shaded by the angle between ray direction and surface normal direction, (b) the same sphere

shaded by the scale of actual steps over 15.

It is worthy noticing that in the 3D case, we need to deal with transformation applied

on the 3D models. Instead of transform each voxel to a new position after applying the

transformation matrix, we choose a more efficient way for rendering. Basically, we apply the

inverse matrix on the view point and ray for casting, which is equivalent to transform the

whole models in terms of rendering.
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3.3 Some Special Rendering Modes: Collision Alert, Cut through view and
Skeleton Data Visualization

The first example showed here is to alert users whenever there is collision detected. Collision

detection might be difficult in b-rep system since it is struggling to classify a point’s mem-

bership for different meshed objects in the real time. However, in our voxel modeler, it is

straightforward to check whether a voxel is inside an object or not by sampling the distance

value from original signed distance object on the global grid. Once we obtain the sampled

distance value from object A and B respectively, it is easy to determine whether there is

collision by checking whether both sampled value is negative, indicating this voxel sitting

inside both of objects. Once there is any voxel detected as collision voxels, the background is

changed from gray to red. As Fig. 3.4 shows: (a) shows two disjoint cubes, while (b) renders

the background as red, indicating those two cubes have some voxels overlapped inside both

of the cubes.

Figure 3.4: collision detection between two SDF-rep cubes: (a) two disjoint cubes without detection, the

background is gray (b) two cubes have some part overlapped, thus collision detected, making the background

red.

Another interesting viewing mode is the cut through viewing. This mode attracts the

users when there is material function applied inside the objects, where you can see the

material distribution throughout the whole objects. In this mode, besides taking the ray
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which does hit the surface of the objects, we further consider those rays getting inside of the

objects, and further hit the virtual cutting plane. Of course, the color or material distribution

inside the objects is dependent on our material functions. For example, in Fig. 3.5 (b), there

is single material dominating the whole talus, thus only the yellow color can be seen. While,

Fig. 3.5 (c) shows a special material function applied: the blue color indicates deeper position

inside the objects, while yellow color indicates the position close to the surface. Finally, the

Fig. 3.5 (d) shows a coordinates based material distribution, where green material dominates

the voxels having large z coordinate value.

Figure 3.5: apply different material functions on a single SDF model: (a) a SDF-rep talus render at the

zero offset of surface, (b) a cut through view of the talus with single material, (c) a cut through view of

the talus with the material function: blue color indicates the large distance inside the object, yellow color

indicates the small distance inside the object, (d) a cut through view of the talus with the material function:

green color indicates the rear side of the bone, red color indicates the front side of the bone (coordinate

based).

Last but not least, our voxel system has the capability to render the skeleton data of a

SDF-rep model. Basically, all the skeleton data is a grid point whose gradient value is off

1 by certain threshold. Once we obtain those grid points, we assign virtual spheres with

radius of 1 on those grid points. Instead of shooting ray to look for the intersection among

those spheres, we directly use parametric rays and spheres to describe the problem and get
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the analytic solution whether there is any intersection between the rays and spheres, which

is much more efficient compared with root finding like before. Fig. 3.6 (a) shows a original

SDF-rep hand model, while Fig. 3.6 indicates the blue skeleton data of the hand model,

where the shading is dependent on the angle between the ray direction and surface normal

direction of spheres.

Figure 3.6: skeleton rendering for a SDF-rep hand model: (a) original rendering mode for a SDF-rep hand

model, (b) skeleton render mode for the skeleton data of a SDF-rep hand model.
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Chapter 4

GEOMETRIC OPERATIONS FOR CREATING, COMBINING,
AND EDITING DISCRETE SDF-REP OBJECTS

In this chapter, we present several classes of geometric modeling operations including

unary operations (that involve a single SDF-rep input), binary operations (including the

usual Boolean operations), sweeping operations. The operations presented include offsetting

and sweeping operations that are problematic with traditional b-rep modelers.

4.1 Unary Operation: Offsetting the Surface of Discrete SDF-rep Models

The usual operations of scaling, translating, rotating, and shearing are readily supported

in the discrete SDF-rep environment. For rigid body transformations, distances are (by

definition) preserved and such operations can be implemented by appending a transformation

matrix to the model and applying the transformation to coordinate values to obtain grid

coordinates for evaluation of the discrete SDF-rep. Alternatively, the user can choose to

compute and store a new grid of signed distance values by applying the transformation to

the full grid and storing the signed distance values obtained by interpolating the values in

the original grid.

The significant unary operation supported by discrete SDF is offsetting which may alter-

natively be referred to as thickening and thinning or dilation and erosion. The offset surfaces

of the surface of any object are the level sets of its distance function. Thus, SDF inherently

include the description of their offsets. Eq. 4.1 describes how the dilation (or thickening) of

a solid with SDF-rep f by distance d is achieved by simply adding d to the function value

(or to each value on the grid for a discrete SDF-rep). Alternatively, the SDF-rep or stored

signed distance grid can be left unchanged, and d can be specified as the new threshold value
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in the PMC test.

Ω = {(x, y, z)|f(x, y, z) < 0} (4.1a)

Dil(Ω, d) = {(x, y, z)|f(x, y, z)− d < 0} = {(x, y, z)|f(x, y, z) < d} (4.1b)
(4.1)

The original toy head, in a box with the side length of 128 as shown in Fig. 4.1(b), is

offsetted by minus 5 (grid spacing), making the new signed distance toy head thinner as

shown in Fig. 4.1(b). Similarly, in Fig. 4.1(c) shwo, by adding positive 5 to the original

signed distance field, a fatter toy head is created in real time straightforward without re-

constructing polygonise approximation for meshes objects[38, 39, 40], compared with the

polygonal modeler employed in most of commercial software currently.

Figure 4.1: Making objects thinner or fatter by adjusting the offset value: (a) discrete signed distance toy

head with negative offset, (b) discrete signed distance toy head with original zero offset, (c) discrete signed

distance toy head with positive offset.

An interesting application of integrating the boolean operations (to be discussed in the

next section) and surface offsetting is to create a shell version of 3D object. From users’

perspective, we need to take the absolute value to define a thin surface shell and then offset

a shell of the desired thickness. Here, the first step of creating a shell is discussed in detail

below. Firstly, it is necessary to access to the original 3D objects and its offset version,

either “thinner” or “fatter”. Then, what we need to do is to apply the difference operation
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on those two objects without referring to complicated CSG tree, in other words, merely

applying max(modeloriginal,−modeloffset) to get the shell version modelshell = modeloriginal−

modeloffset. For clearer explanation, the procedure of creating shell version of objects is

illustrated by the example of signed distance tooth shown in Fig. 4.2. The original signed

distance tooth is shown in Fig. 4.2(a) as blue, while the green one in Fig. 4.2(b) indicates

the offset tooth, thinner than the original tooth. Fig. 4.2(c) shows a cross section view of

the shell version of signed distance tooth after applying the difference operation of (a)− (b).

The shell version could be potentially used to make tight container of fragile products or

even make customized tightly fit suits, gloves or masks.

Figure 4.2: Creating shell version of signed distance tooth: (a) the original signed distance tooth, (b) the

offset signed distance tooth, (c) the shell version of tooth after the difference operation (a)-(b).

4.2 Binary Operations: Boolean Operation

There are several methods to apply boolean operations on implicit solids defined by f1

and f2 in Fig. 4.3[41, 42, 43]. Among them, using Max or Min function is the simplest

approach [4]. For instance, the function based union operation f1 ∪ f2 can be realized by

min(f1, f2) function. Correspondingly, the Fig. 4.3 shows the new distance fdotted after union

operation applied on two original distance functions f1 and f2. In Fig. 4.3(a), instead of

obtaining the correct output interval for union operation as fsolid, the fdotted actually offers
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the interval only with correct external part but distorted internal part, waiting to be fixed by

upwind differencing method to solve eikonal equation. Eventually, the fast sweeping method

recovers the correct signed distance function for two overlapping intervals, presented here

as a black solid line or fsolid. While, Fig. 4.3(b) and Fig. 4.3(c) show the correctness of

fdotted representing the new signed distance field after applying the union operation on the

contained intervals and disjoint intervals respectively.

Figure 4.3: Union operation for two signed distance function f1 (red) and f2(blue): (a) Min for union of

overlapping intervals, (b) Min for union with contained intervals, (c) Min for union of disjoint intervals.

Similarly, the formula representation of intersection operation and difference operation on

signed distance solids can be obtained straightforward as Eq. (4.2) below, where, a followed

step of applying upwind differencing scheme to solve eikonal equation is used to fix the

destroyed signed distance field if needed.

f1 ∩ f2 = max(f1, f2)

f1 ∪ f2 = min(f1, f2)

f1 − f2 = max(f1,−f2)

(4.2)

The same conclusions for all situations presented above in 1D scenario still persist when

we move to higher dimensional objects. The simple example in Fig. 4.4 provides intuitive

sense of applying the boolean operations on the 3D signed distance tooth (converted from



42

STL mesh model), a bear head (converted from point cloud scanned data) and a sphere

(directly defined by a signed distance function). Fig. 4.4(a) is showing the the result after

applying union operation on a tooth and a toy head. Fig. 4.4(b) shows the difference result

between a bear head mask and a human head model, in other words, the picture is showing

the result of bear head model minus the human head model. Fig. 4.4(c) indicates the

intersection result between a sphere and the toy head model.

Note that the user may re-position objects prior to specifying a Boolean operation, so the

grids of points specifying the input models may not be coincident. The approach implemented

in the modeler is to resample the discrete SDF-rep inputs on a common grid where function

value comparisons can be readily performed to produce a grid of values to define a discrete

f-rep for the output solid. Resampling is performed by invoking the interpolation scheme

specified for the inputs and, while we often specify wavelet-based interpolation methods to

have control over the smoothness of the interpolation, for resampling operations a multi-

linear interpolation often produces satisfactory results more efficiently. Once we re-sample

both model A and model B on the common global grid points, or just resample on one of

the existing grid for reducing the amount of resampling required. the max and min function

can be applied to achieve the boolean operations as discussed above.

For each Boolean operation, Ensz [4] identified regions (specifically the interior or exterior

of the resulting solid) where the signed distance property is preserved. In some cases, the

signed distance property is preserved globally, and the result is immediately an SDF-rep.

In other cases the signed distance is preserved in either the interior or exterior region; the

signed distance values in that region are valid and an upwind-differencing computation is

applied to complete to compute the signed distance values on the reminder of the grid. Note

that there is no Booelan operation that fails to preserve the signed distance property in

both the interior and exterior regions. Fig. 4.5 illustrates the union of two discrete SDF-rep

cubes. Fig. 4.5 (a) shows two cubes with the same dimensions that are defined directly as

discrete sampling of closed-form signed distance functions. Fig. 4.5 (b) shows the cubes

positioned in a overlapping configuration, and Fig. 4.5 (c) shows a cut-away view of the
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Figure 4.4: 3D signed distance objects bool operation: (a) is showing the the result after applying union

operation on tooth and a toy head. (b) shows the difference result between a bear head mask and human

head model, in other words, the picture is showing the result of bear head model minus the human head

model. (c) indicates the intersection result between a sphere and the toy head model.

interpolation of the grid of function values obtained by taking the minimum of the input

values; i.e. min(f1, f2). While min(f1, f2) correctly defines the geometry of the union, there

is a bright region in the center of Fig. 4.5 (b) where vertical displacement, which changes

the distance to the surface does not change the function value. Thus min(f1, f2) does not

define a signed distance function throughout the interior of the union, However, min(f1, f2)

does define a signed distance function on the exterior of the union. The discrete SDF-rep

for the union of cubes is obtained as the valid exterior values together with interior values

computed by upwind differencing, and a cut-away view is shown in Fig. 4.5 (d).

4.2.1 Example Application: Design of Lattice Structures for 3D Printing

To illustrate the robustness of Boolean operations on discrete SDF-rep models, we consider

the design of lattice structures for 3D printing. In particular, we consider tetrahedral lattices

which can be thought of as the dilation of the edges of tetrahedral meshes such as those

produced by software packages such as Tetgen [44] that are used to create tetrahedral meshes

of polyhedral. An example of a lattice structure, corresponding to the tetrahedral mesh

generated for polyhedral teddy bear, is shown in Fig. 4.6. In a polygonal b-rep modeler, such
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Figure 4.5: upwind differencing repairs the signed distance field after union operation: (a) two cubes with

the same dimensions are defined directly by the signed distance function, (b) push one cube toward the other

until there is collision detected, (c) apply the union operation on those two cubes without using upwind

differencing to repair the distorted distance field, (d) apply the union operation on those two cubes, using

upwind differencing to repair the distorted distance field.

a lattice structure would be created as the union of large numbers of polygonized cylinders

and, if pairs of cylinders are nearly co-axial, computations associated with intersecting and

trimming the bounding polygons become numerically sensitive. In fact, several efforts to

construct such models with commercial CAD packages were unsuccessful.

4.3 Modeling SDF-rep Solids with Combination of Boolean Operations

Sweeping operations involve operations on the classification of points with respect to a solid

undergoing a continuous family of kinematic transformations. Typically the continuous fam-

ily of kinematic transformations is approximated by a discrete sequence of near-identity rigid

body transformations and, as in the case of lattice structures considered above, b-rep mod-

elers tend to run into difficulties involving numerical sensitivity of computing intersections

of nearly parallel boundary entities [Insert references]. To compute swept discrete SDF-rep

solids, we also approximate the kinematics as a discrete sequence of near-identity rigid body

transformations, but we avoid the problems associated with computing boundary intersec-
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Figure 4.6: tetrahedron bear: (a) tetrahedron bear in our SDF-rep CAD system, (b) printed tetrahedron

bear by vat polymerization.

tions. A sweep operation is accomplished as a sequence of Boolean operations, and the

parallel implementation of function evaluations, value comparisons, and rendering results in

a formulation that supports real-time interactivity. Note that a discrete f-rep suffices during

the interactive sweep, and completion of the grid to re-establish the signed distance property

globally only needs to be done once at the end of the sweep construction.

4.3.1 Sweep Cut or Sculpturing

Sculpturing or sweeping cut is an interesting feature for designers since it mimics material

removal processes such as milling, drilling, and turning during which the material removed

from a piece of stock corresponds to its intersection with a tool of fixed geometry. In Fig.

4.7, I present an example in which a discrete SDF-rep tool is used to carve a virtual model

that is then fabricated by 3D printing.
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Fig. 4.7(a) shows that the spherical tool being used to carve the letter “U” into a plate.

Fig. 4.7 (b) - (d) show the letters “W”, “D”, and “Z” being carved into the plate using

spherical cutting tools of varying size. Sculpturing or sweep-cutting in the discrete SDF-rep

modeler is straightforward and supports a variety of tools and tool sizes. The procedure

is realized in real time at the frequency of 67 frames per second with Tesla K20 GPU for

parallel computing and GeForce GT 620 for displaying. The physical object resulting from

3D printing the sweep-cut model is shown in Fig. 4.8.

Figure 4.7: Sculpturing patterns on a virtual plate: (a) a sphere chisel is used to carve an U, (b) a larger

sphere chisel is used to carve an U, (c) a hexagon chisel is used to carve an U, (d) a triangle chisel is used

to carve an U.

4.3.2 Sweeping Construction

Just as a sweep-cut was realized as a sequence of difference operations in the previous section,

we now present an example that constructs a swept solid as a sequence of union operations.
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Figure 4.8: Real 3D printed sculptured plate with designed pattern.

Again, a discrete f-rep suffices during the interactive construction and completion of the grid

by upwind differencing is performed once after the sweeping transformations are done.

Fig. 4.9(a) shows, a discrete SDF-rep model of a talus, a bone in the ankle, derived from

segmented CT scanner data. In this example, we apply a sequence of small transformations

corresponding to the talus revolving along a circular path while simultaneously doing one full

rotation about the direction of motion. Fig. 4.9(b) and Fig. 4.9(c) show the talus sweeping

through the first quarter and the first three quarters of motion respectively. The continuous

sweeping motion is approximated as a sequence of 300 discrete rigid body transformations

which suffies to produce a model without apparent artifacts as shown in Fig. 4.9(d).

Fig. 4.10 (a) shows four regulary spaced key frames of the sweep, and Fig. 4.10 (b) shows

an exploded view of the key frame tali along with the partial swept solids that connect them

to form the complete swept solid shown in Fig. 4.10 (c). Fig. 4.11 (a) and (b) show the

corresponding physical objects fabricated by 3D printing on a powder-bed binding system,

and discretization artifacts cannot be readily detected by either visual or tactile inspection.
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Figure 4.9: Sweeping mobius strip for talus: (a) a single talus bone waiting for sweeping construction, (b)

the first quarter of the talus mobius strip, (c) three quarters of the talus mobius strip, (d) fully constructed

talus mobius strip.

Figure 4.10: Modeling swept volumetrically-digitized solids: (a) four copies of volumetrically digitized

talus as key frames in a double rotational sweep, (b) exploded view of key positions and interstitial swept

solids, (c) digital model of swep digitized solids
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Figure 4.11: Real 3D printed swept talus: (a) fully swept version of talus by applying union operation on

a single SDF talue model with 300 different configurations, (b) a explode figure of the swept SDF talus with

four key positions and four separate swept sections.
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Chapter 5

DEFORMING SDF-REP MODELS BY DISCRETE
GEOMETRIC SKELETONS

While skeletal editing tools have been proposed for b-rep models [45], significant efforts

by numerous researchers have yet to provide robust skeletonization of b-reps [46]. Thus

the current state of affairs is that skeletal editing methods would support useful modeling

operations including dilation, erosion, and thickness determination, but such operations are

not generally available in current CAD systems. In this chapter, we demonstrate that discrete

SDF-rep models support a discrete version of the geometric skeleton that can be efficiently

computed and readily edited. Moreover, we show that the upwind differencing scheme (used

earlier for completing SDF grids for import of digitized objects or re-establishing the signed

distance property after Boolean operations) can be used to compute the SDF grid from the

skeletal values to effectively ”reflesh” a solid after skeletal editing.

Our method for identifying skeletal grid points exploits the fact that a signed distance

function satisfies the eikonal equation |∇f | = 1 wherever the gradient exists. The singular

points of the SDF correspond to the skeleton, and we obtain a discrete approximation by

computing the components of the gradient by applying a finite difference or wavelet con-

nection coefficient vector as a stencil on the SDF grid and then selecting points where the

magnitude of the gradient differs from unity by more than a specified threshold value. The

skeletal data consists of the skeletal points along with a radius for the associated (approxi-

mately) maximal sphere which is given simply by the magnitude of the SDF at the skeletal

point. The sections below present two applications of skeletal editing of signed distance

solids, creating a custom-fit mask and re-configuring a model of a human hand.
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5.1 Manipulating Skeletal data and “Refleshing” SDF-rep Models

In this section, two application examples are presented: one involves designing customized

masks or helmets, the other focuses on the human part 3D model deformation. Both examples

are implemented by transforming the internal skeleton to a new configuration and refleshing

the full discrete SDF-rep by reconstructing the signed distance field. In both cases, a 2D

version is presented for simplicity of exposition followed by a full 3D version.

5.1.1 Customized helmets or masks

A bear head contour is prepared for further editing as shown in Fig. 5.1(a). As discussed

above, the geometric discrete skeleton is extracted wherever the gradient of distance field

at certain grid point is off 1 by the manually set threshold. Fig. 5.1(b) illustrates the

internal distance field with brighter shading indicating great internal distance. Note that

the shading value increases moving inward from the wall until a central bright region is

reached. Beyond that point, a new nearest surface point becomes relevant and the shading

value again decreases. The central brightest region corresponds to the skeleton. Fig. 5.1 (c)

shows the skeletal points identified as described above: compute the gradient of the SDF by

correlation with a central difference or wavelet connection coefficient stencil, and select points

where the magnitude of the gradient differs from unity by more than a threshold value. Fig.

5.1 (d) illustrates a simple case of skeletal editing where the portion of the skeleton in the

mouth region is selected and re-positioned, but each skeletal point retains its radius value.

Fig. 5.1 (e) is shaded according to distance to illustrate the SDF obtained by employing an

upwind differencing scheme to construct the discrete SDF-rep of the edited bear head. The

refleshed version of the edited head is shown in Fig. 5.1 (f).

We now consider the design of a face-fitting mask or helmet to demonstrate that the

skeletal editing method described above extends directly to 3D. We start by importing a 3D

bear’s head model, shown in Fig. 5.2(a), into the discrete SDF-rep modeler. The skeletal grid

points of the model are determined as above except for the need to compute 3 components
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Figure 5.1: 2D signed distance object manipulation: (a) original 2D signed distance bear head contour, (b)

original magnitude of distance field of the head contour, (c) extracted geometric discrete skeleton of original

bear head contour, (d) edited geometric discrete skeleton, (e) “refleshed” gradient field of signed distance

space based on the edited skeleton, (f) “refleshed” bear head contour.

of the gradient. The skeletal points are illustrated in Fig. 5.2(b), and the bear head model

and its skeletal points are shown together in Fig. 5.2(c). Once again, the skeletal editing

involves selecting the skeletal points of the mouth and repositioning them as shown in Fig.

5.2 (d), which shows the head with its skeletal points. After the editing of original geometric

discrete skeleton, the new skeletal configuration is shown in Fig. 5.2(e). Eventually, the

deformed signed distance bear head masks is “refleshed” by the upwind differencing scheme

in Fig. 5.2(f).

The example demonstrated above shows the convenience of deforming customized objects

by editing the discrete geometric skeletons. This approach provides a real time interaction

between users and software, which simplifies the 3D signed distance model deforming through
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Figure 5.2: 3D signed distance object manipulation: (a) original signed distance bear head mask, (b)

original geometric discrete skeletal of the original bear mask, (c) chosen skeleton data (blue) and the rest

skeleton data (purple) of the original bear head mask (red), (d) edited chosen skeleton data (blue) and the

rest skeleton data (purple) of the edited bear head mask (red), (e) edited geometric discrete skeleton data,

(f) deformed bear head mask reconstructed from those edited skeletal.

lower dimensional skeletal points editing.

5.1.2 Reconfiguring A Model of The Human Hand

Here, we present a 3D human hand model which can be customized by easily editing its

discrete geometric skeleton. To illustrate the idea clearly, we start with a 2D example of

deforming a finger, where the original finger model is shown in Fig. 5.3(a). Extracting

discrete geometric skeleton is achieved by computing the distance gradient field, and the

magnitude of distance value is shown in Fig. 5.3(b), where, the bright central region contains

the skeleton. The skeletal grid points are again identified as points where the magnitude of
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the gradient of the signed distance differs from unity by more than a threshold value. The

discrete skeleton points are visualized in Fig. 5.3(c), that also shows a red dot labeled Pivot A

which the user has designated as a pivot point or joint of the finger. To edit the skeleton, the

user selects a set of skeletal points (in this case, the points in the region from the chosen joint

position to the skeletal “fingertip”) and applies a transformation (here a rotation about the

axis normal to the page through the pivot) to relocate the selected points. Any transformed

skeletal points, which do not lie on the grid, are rounded to the closest adjacent grid points.

Eventually, the signed distance field is reconstructed or “refleshed”. The internal signed

distance field computed from the edited skeletal data is shown in Fig. 5.3(e), and the edited

finger model is shown in Fig. 5.3(f). Note that performing such an operation by applying a

transformation to boundary patches of a b-rep model would require dealing with gaps and

self-intersections that would need to be trimmed and stitched, such issues do not arise here

due to the implicit nature of the modeling representation.

Now we move on to consider a 3D model of a partial hand (distal palm with 4 fingers)

to show that the skeletal editing approach described above extends directly to 3D. The only

significant difference is that a full 3D specification is required for the rotation axis. (In 2D,

specification of a joint location fully specifies the ration axis which must pass through that

point and be normal to the plane.) In this example, we also demonstrate editing the full

skeletal data; i.e. not only relocating skeletal points, but also changing the signed distance

values (and associated sphere radii) at selected skeletal points. The original 3D signed

distance hand is shown in Fig. 5.4(a). After computing the gradient of the whole signed

distance field, the points identified as skeletal points are shown in Fig. 5.4(b), where, the

red dots indicate the set of skeletal points the use has selected for relocation. The edited

skeletal points are shown in Fig. 5.4(c), and the edited hand model obtained by re-fleshing

the edited skeletal data is shown in Fig. 5.4(d).

An interesting and desired capability of our voxel modeler system is automatically de-

tecting the joints. The challenge is to detect the knuckle joints, and more importantly, the

pivot direction, about which, the finger rotate. The method described below exploits the
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Figure 5.3: 2D signed distance object finger manipulation: (a) original 2D signed distance finger contour,

(b) original magnitude of distance field of the finger contour, (c) extracted geometric discrete skeleton of

original finger contour, (d) edited geometric discrete skeleton, (e) “refleshed” gradient field of signed distance

space based on the edited skeleton, (f) “refleshed” finger contour.

exoskeleton data (skeletal data at points external to the model) to achieve computer-aided

identification of joint locations and axes of rotation for models imported in a configuration

in which the joints of interest are flexed.

Fig. 5.5(a) shows the hand model in its original configuration as imported into the

discrete SDF-rep modeler. Fig. 5.5(b) shows the skeletal data points including the internal

skeletal points (shown in blue) and the external skeletal points which are segmented into

groups of neighboring points (shown in green and red). Based on the visual appearance,

we will refer to these groups of exoskeletal points as “sheets”. Note that in addition to

the green exoskeletal sheets between adjacent fingers, there is also a red exoskeletal sheet

associated with each bent knuckle in the fingers. The system identifies the interior skeletal
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Figure 5.4: 3D signed distance object hand manipulation: (a) original signed distance hand, (b) internal

discrete skeleton, blue one is internal skeleton, red one indicates for selected partial skeleton needs to be

manipulated later, (c) bent internal discrete skeleton, the red parts of the finger is bent to right angle

compared with the one in (c), (d) reconstructed 3D signed distance hand model with bent finger.

point closest to each exoskeletal sheet as a knuckle joint location. Each knuckle in the fingers

is treated as a revolute joint, and the system automatically determines the rotation axis by

computing the cross product of the following 2 vectors: (1) the normal vector to a best-fit

plane through the points in the exoskeletal sheet, and (2) the displacement vector from the

joint location to the estimated centroid of the exoskeletal sheet. Fig. 5.5(b) illustrates the

situation after the user has selected an exoskeletal sheet (associated with the proximal joint

of the third finger from the left) to obtain the joint location and axis and then selected the

portion of the finger skeleton from that joint to the skeletal fingertip. The skeletal data,

the spheres centered at the skeletal points with radii corresonding to distance magnitudes,

is illustrated with Fig. 5.5(c) with the selected skeletal spheres shown in red. Fig. 5.5(d)

illustrates the edited skeletal data after the selected portion of the skeleton has been rotated

about the aoutomatically identified joint rotation axis, and Fig. 5.5(e) shows the re-fleshed

model of the edited hand. Note that, as in 2D, nothing special needs to be done to deal with

“self intersections” associated with the editing operation; the discrete SDF-rep automatically

retains validity as a solid model. Finally, Fig. 5.5(f) shows the edited model obtained after
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re-fleshing from edited skeletal data that includes increasing the radius of the skeletal spheres

to dilate the selected portion of the finger.

Figure 5.5: 3D signed distance object hand manipulation: (a) original signed distance hand, (b) internal

discrete skeleton, blue one is internal skeleton, red one indicates for selected joint by making use of the

external skeleton and predict the position of the joint as well as the pivot direction, (c) selected part of

middle finger rendered as red and the rest rendered as blue, (d) rotated middle finger about the selected

joint, (e) reconstructed signed distance hand without modifying local radius of middle finger, (f) reconstructed

signed distance hand with modified local radius of middle finger.
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Chapter 6

INHOMOGENEOUS SOLIDS AND ADDITIVE
MANUFACTURING WITH GRADED PROPERTIES

As mentioned in the introduction, one of the primary motivations for creating a discrete

SDF-rep modeling system is to fully support the new capabilities provided by developments in

additive manufacturing/3D printing. In previous chapters we established that discrete SDF-

rep models provide a unified format for workflow from digitization by scanning (volumetric

or surface) to editing, and now we are ready to address issues associated with fabrication.

The first thing to note is that we can, at any point in the process, invoke marching cubes

to convert a discrete SDF-rep model back to a surface polygonization (e.g. an STL file)

that would provide a standard input format for that vast majority of additive manufacturing

systems. However, we want to pay special attention to AM systems based on powder-bed

binding and vat polymerization where the fabrication system literally prints or projects a

sequence of images to build a physical part. By applying an occupancy function (which

returns 1 at interior voxels and 0 at exterior voxels) to the discrete SDF-rep, we produce a

stack of binary (black and white) images suitable for fabricating the desired geometry. (Note

that it may be desirable to rescale the image stack/voxel set to match the printer resolution

and layer thickness, but such image resampling is a straightforward and readily parallelizable

exercise in interpolating the grid values.)

Now we come to the question of describing and fabricating inhomogeneous objects whose

composition, properties, or process parameters vary within the interior of the object. Phrases

used to describe such objects include graded, spatially varying, and locally controlled proper-

ties. The number of descriptions that have been created indicates the desire for such fabrica-

tion capabilities; however, the availability of fabrication systems to perform such fabrication
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tasks is extremely limited, and that may be associated with the lack of modelers to describe

graded objects. That said, there are ways in which some existing AM systems can be hacked

to produce graded properties. While powder bed binding systems typically require polygo-

nized b-rep input in STL format, a script that prints a sequence of test images has been used

for direct printing of image stacks enabling fabrication of objects digitized from CT scans

that are free of polygonization artifacts.

Here we focus on vat polymerization systems. Again, the presumed input format is

polygonized b-rep in STL format which serves as input to slicing software that produces the

stack of images to be projected into the polymer vat. Following slicing of a dummy STL

file, the images produced by the slicing software can be replaced with a stack of images from

the discrete SDF-rep modeler to produce parts without having to convert the desired part

to STL format. With this capability in hand, we are ready to proceed to creation of graded

discrete SDF-rep models.

6.1 Defining Multi-Material Function on Graded SDF-rep Models

The geometry of a discrete SDF-rep object is described by a set of signed distance values

on a grid (along with a means interpolating when necessary to determine values between

grid points). The approach to describing auxiliary properties is straightforward: simply

append an auxiliary grid of values (or an auxiliary function that can be evaluated on the

grid points) to specify the property value. Wherever the value of the signed distance (that

defines the geometry) is negative (indicating an interior voxel), the auxiliary function value

at the corresponding grid point specifies the property of interest. Fig. 6.1 shows a collection

of graded discrete SDF-rep objects designed for a scenario in which the lighter shading

indicates higher modulus but more costly material compared to the material with darker

shading. Fig. 6.1 (c) shows an inhomogeneous I-beam with higher modulus material at the

flanges to optimize moment of inertia about the neutral axis (and resistance to a vertical

bending load). Fig. 6.1 (d) shows an inhomogeneous pipe with higher modulus material at

the outer edge to optimize polar moment of inertia (and resistance to a torsional load). Fig.
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6.1 (a) shows a model of a tooth with modulus decreasing with distance from the surface.

Figure 6.1: (a) chocolate-cream cake with chocolate dominates on the surface and cream dominates inside

the object, (b) cost effective two materials tooth with harder, expensive material close to surface and soft,

cheap material inside, (c) cost effective two materials i-beam with harder, expensive material on top and

bottom plates and soft, cheap material for middle connecting plate, (d) cost effective two materials pipe with

harder, expensive material close to outer surface, cheap material close to inner surface.

6.2 Graded Boolean Operations

In Chapter 4 we described how discrete SDF-rep geometry is combined via Boolean opera-

tions that compare local values of the signed distance for the operand objects. Now we arrive

at the question of how to combine the auxiliary function values when objects are combined.

The auxiliary function provides an additional degree of freedom that supports creation of

new families of binary operations [47] on graded discrete SDF. Here we present a few of the

possibilities choices.

A first approach can be thought of in terms of inheriting properties from the input operand

objects. The geometry of the object is determined according to operations described in earlier

chapters, and the property value at each point in the operand is determined as a function of

the property values at the corresponding point in the operand objects. For example, a binary
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operation can be defined so that points in the output object that belong to a single input

object inherit the property value from that input object, while points in the intersection of

the input objects are assigned a property value that is a function of the property values of

the two input property values of the input objects at that point. One possibility is to declare

one input to be dominant, so that the output object inherits the property value from the

dominant input in the intersection region. Alternatively, the output property value in the

intersection region may be some blended function of the property values of the input objects

at the point.

Fig. 6.2 shows a configuration of a pair of discrete SDF-rep objects with an auxiliary

property: a dark (blue) sphere and a light (yellow) block. Fig. 6.2 (b)-(d) show cut-away

views of the inhomogeneous discrete SDF-reps resulting when the property values in the

intersection region are specified by (b) the value from the dominant block, (c) the value

from the dominant sphere, and (d) interpolating between the input property values with a

weighting derived from the distance values.

Note that new property blending operations can be defined by combining any of the

previous geometric operations with a specification for output property values specified as

a function of input property values, spatial coordinates, or other desired parameters. For

example, we used sequences of near-identity Boolean operations to define the geometry of a

swept solid, so we can apply a blended union of inhomogeneous discrete SDF-rep objects to

define an inhomogeneous discrete SDF-rep swept solid as illustrated in Fig. 6.3. Fig. 6.3 (a)

shows an inhomogeneous version of the talus (the same one that was used to create a swept

homogeneous discrete SDF-rep solid in Chapter 4) with property value varying linearly along

a coordinate axis. The sequence of transformations is again applied, but now with a union

that blends property values with the talus in its most recent configuration as the dominant

input. Partial sweeps are shown in Fig. 6.3 (b) and (c), and the full-circle inhomogeous

discrete SDF-rep object is shown in Fig. 6.3 (d).
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Figure 6.2: Apply union operation on objects with different material property: (a) apply union operation

between one cube with material A (yellow) and one sphere with material B (blue), (b) a cut through view

of union result: using material A (yellow) to dominate those overlapped voxels, (c) a cut through view of

union result: using material B (blue) to dominate those overlapped voxels, (d) a cut through view of union

result: using distance based blending function between material A (yellow) and material B (blue) for those

overlapped voxels.

6.3 Designing Multi-material Human Nose

3D printing is not a new concept, but until recently, it is rarely seen the reports about printing

any human centric part like organs, which brings lots of interesting possibilities and broadens

the applications in this field. Not long ago, researchers in Princeton University and Johns

Hopkins University explored 3D printing human ears via 3D printing a cell seeded hydrogel

matrix in the anatomic geometry of human ears[48], biopolymer tissue scaffolds[49, 50, 51],

multi-polymer microstereolithography for hybrid opto-MEMS[52], where, they achieved 3D

interweave biological tissue for enhancing the functionality of matrices tissue. The model of

the ear can be obtained by 3D reconstruction from scanning a real person’s ear or directly

drawing an ear in CAD system. Here, in our example, we present a 3D human nose model

which can be customized by editing its discrete geometric skeleton. This approach is worth

considering when someone who lost the nose due to injury or other accidents, thus, needs
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Figure 6.3: Graded swept structure: (a) a single graded signed distance bone, (b) the first quarter of

sweeping construction, (c) the first two quarters of sweeping construction, (d) the whole graded swept signed

distance bone structure.

a new nose which can be reshaped based on the requirements from users. The generic

nose model is shown in Fig.6.4(a). Extracting discrete geometric skeleton is followed by

computing and capturing singularity points in this signed distance field, and the skeleton

points are visualized in Fig.6.4(b). For specifically editing certain skeleton points, we need

to select those skeleton points which are rendered as blue in Fig.6.4(b). Having chosen

the potential discrete geometric skeleton points need to be edited, we can edit the skeleton

points by transforming, and in our case, we aim to making the new nose high-arched shown

in Fig.6.4(d)., compared with original one shown in Fig.6.4(a).

Now, let’s move on to the key procedure of this example, which is to create inner porous

scaffold nose with thin shell. The scaffold structure in tissue engineering is desirable for

cell culture in vitro. Therefore, firstly, a scaffold structure needs to be defined as shown in
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Figure 6.4: (a) original signed distance nose, (b) original discrete geometric skeletal of the original nose,

(c) edited discrete geometric skeletal of nose, (d) high-arched nose reconstructed from the edited skeletal

points.

Fig.6.5(a). The scallfold structure is downloaded from “Thingiverse” as mesh file and then

converted to SDF-rep model. Then, a negative offset nose(“thinner version of the original

nose”) in Fig.6.5(b) is used with scaffold structure for the intersection operation, shown

in Fig.6.5(c). Therefore, a scaffold negative offset nose is created in Fig.6.5(d). Fig.6.5(e)

shows the inverted scaffold nose which is subtracting the scaffold negative offset nose in

Fig.6.5(d) from the original negative offset nose Fig.6.5(b). Eventually, the inner porous

structure nose with thin shell derives by subtracting the inverted scaffold nose in Fig.6.5(e)

from the original non-offset high-arched nose Fig.6.5(d). With this method, the inner scaffold

structure is preserved as the same as previous scaffold negative offset nose, and combined

with thin shell as shown in Fig.6.5(f). Besides, our graded material distribution, shown in

Fig.6.5(f) as blue and yellow, is described to design the nose, which is motivated from tissue

engineering that the material of the core of scaffold network can be stiffer (indicated as blue)

to support the whole structure, while the other softer material (indicated as yellow) is used

to cover on the surface of core structure [48].



65

Figure 6.5: (a) scaffold structure, (b) negative offset nose, (c) intersection operation on scaffold structure

and the negative offset nose, (d) scaffold negative offset nose, (e) inverted scaffold nose, (f) final nose model

with inner porous structure and thin shell.

6.4 Truss Structures with Graded Material Properties

In this section, we describe the results of using a vat polymerization AM system to fabri-

cate objects designed as inhomogeneous discrete SDF-reps. The vat poymerization system

uses light projected from a digital light projection (DLP) device to build objects by curing

photopolymer contained in a vat. By projecting gray scale images, we achieved control of

spatial variation of light intensity, degree of polymerization, and elastic modulus of the cured

material. Interactions with colleagues who are interested in the properties of materials with

periodic substructures led us to choose graded versions of the unit cell of an octet truss as

the desired output.

The pipeline of using our implicit function description for different geometries combined
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with material function applied on each voxel is illustrated in Fig. 6.6. First, the continuous

signed distance function description for a capsule is presented in the system, as the pure

yellow capped cylinder shown. Then, a continuous material property function is coupled

with the geometry function to generate the graded material cylinder, as the mix of blue

and yellow cylinder shown. The specific property function illustrated in Fig. 6.6 varies

linearly with the axial distance from the center of capped cylinder. Union operation is

non-trivial, usually causing crash in commercial CAD systems. But we can achieve it by

applying the methods presented earlier for truss structures like the T-bear in Chapter 4.

Then, a calibration step is experimentally measured from light intensity to elastic modulus,

and the calibration was employed in computing the property (light intensity) values for the

inhomogeneous capsule model. From the pictures of real print below, it is seen that lower

light intensity not only affected the material property, but also produced a geometric artifact

corresponding to reduction of the capsule cross section. Finally, we got a printed truss as

shown below, and it is noticeable that lower gray scale value contributes to incomplete

polymerization, thus the smaller radius than the desired one. Thus, our next task below is

to address this artifact.

Fig. 6.7 [1] shows additional examples of inhomogeneous octet truss unit cells. The

spatially varying property is a processing parameter, the gray scale value to be projected

for the pixels in each slice as the truss cell is printed (which in turn controls the degree of

polymerization and the elastic modulus). For purposes of illustration, the gray scales are

converted to color values with low intensity (70 lx) show in dark blue and high intensity (200

lx) shown in light yellow. For the model shown in Fig. 6.7 (a), each capsule is homogeneous,

but those in the mid-plane receive higher illumination, while Fig. 6.7 (b) shows a unit cell

where each capsule is inhomogeneous with illumination decreasing with distance from the

closest vertex. Fig. 6.7 (c) shows a photograph of the result of printing these models, and

the unit cell on the right again clearly shows the artifact of reduced thickness in the center

of the capsules where the illumination is low.

To deal with this artifact, cylinders were printed at different illuminations, and their



67

Figure 6.6: The pipeline of generating the whole truss structure consisting of combination of implicit

geometry function and material function based graded cylinder bars.

dimensions were measured to determine how to adjust the thickness of the model to maintain

the desired output geometry despite variations in light intensity. Since the intensity is

designed to vary linearly with distance from the center of the connections between vertices,

the connecting capsules were replaced by a union of two cones with spherical end caps. The

property function specifying the light intensity remains a linear function of the distance from

the mid-plane bisecting the vertices and decreasing from 200 lx at the mid-plane to 70 lx at

each vertex. The resulting inhomogeneous discrete SDF-rep model of a connecting element

is illustrated in Fig. 6.8.

The octet truss unit cell model is constructed by placing such a capped cone connecting

element between each pair of connected vertices and performing a union where the geometry
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Figure 6.7: (a) homogeneous truss structure with 70 lx (blue) intensity, (b) Heterogeneous truss structure

with gradation from intensity of 200 lx (yellow) to 70 lx (blue), while keep the radius the same, (c) real

printed two truss, left one corresponding to (a) and right one corresponding to (b). [1]

grid values at each grid point correspond to the minimum of the input values and the property

values correspond to the average of the input property values. The intensity-compensated

model of the octet truss unit cell is illustrated in Fig. 6.9, and close inspection reveals subtle

decreases in thickness at the middle of the connecting elements.

Fig. 6.10 (b) shows the compensated design above the physical output shown on the

right side of Fig. Fig. 6.10 (c). The model with intensity-compensated geometry succeed in

producing a physical part with connector thickness error of less that 0.5

The newly achieved modeling and fabrication capabilities to design and produce octet

truss unit cells with spatially controlled property gradation enables experimental of the

mechanical behavior of such structures. Fig. 6.11 [1] show the results of initial testing of 5

versions of the octet truss unit cell. Two of the octet truss cells were homogeneous with light
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Figure 6.8: Modified signed distance field of two-cone cylinder with various material property.[1]

Figure 6.9: Truss structure consists of two-cone cylinders with graded material property.[1]

intensities of 200 lx and 80 lx respectively. The other three truss were inhomogenous (with

intensity-compensated geometry) corresponding to: (a) increased intensity in the middle of

each connector, (b) increased intensity in the middle of each connector, and (c) low intensity

throughout the truss cell except for connectors in the horizontal mid-plane. Fig. 6.11 (b)

shows the stress-strain curves measure during Instron compression testing. The first thing to

note is that the stress-strain curves differ significantly, so varying the light intensity during

the build did produce significant differences in mechanical properties. When looking at the

individual curves, it is not surprising that the truss unit cell with uniform high intensity

exposure (200 lx indicated by the black curve) supported the highest level of engineering

stress. The unit cell with uniform low intensity exposure (80 lx indicated by the red curve)
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Figure 6.10: (a) homogeneous truss structure with 70 lx (blue) intensity, (b) Heterogeneous truss structure

with gradation from intensity of 100 lx (yellow) to 70 lx (blue), and make the radius at both ends of the

cylinder larger for radius compensation, (c) real printed two truss, left one corresponds to (a) and right one

corresponds to (b). [1]

supported a significantly lower engineering stress, but failed at approximately the same level

of engineering strain. Of the graded truss unit cells, case (b) (low intensity in the middle of

the connections) showed behavior very similar to the cell with uniform low intensity exposure.

Cases (a) and (c), however showed behavior that was significantly different from that of the

homogeneous truss cells, and in both cases selective reduction of exposure enabled a trade off

between the stress the truss cell can support and the strain it can withstand before failure.

This example serves as proof of concept for inhomogeneous discrete SDF-rep models as

the basis for additive manufacturing of parts with spatially controlled, continuously graded

properties that significantly affect the large scale mechanical properties of the manufactured

part.
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Figure 6.11: (a) Models of the graded and heterogeneous truss structure designs, (b) representative engi-

neering stress/strain curves for all trusses. [1]
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Chapter 7

CONCLUSIONS

The significance of data sets involving image stacks or voxel sets is growing due largely to

increasing use of 3D imaging systems and 3D printing systems such as powder bed binding

and vat photopolymerization. This dissertation describes a research effort to realize a solid

modeling system that supports a voxel-based workflow from scan to edit to print. We refer

to the basis of the modeling approach as discrete signed distance function representations or

discrete SDF which comprise a discrete version of the specific case of implicit or function-

based modeling that employs signed distance functions. The underlying data sets are uniform

grids of signed distance values that, with an appropriate interpolation method, implicitly

define the geometry of solid objects.

Implicit models and, in particular, signed distance function representations have been

proposed previously, and discretized versions have also been considered. However, the work

described here represents the first implementation of a discrete SDF-rep modeler that sup-

ports full interactivity. Moreover, the modeler achieves ground-breaking tools for interactive

skeletal editing and modeling of inhomogeneous solids with graded materials, properties, or

parameters.

Voxel data sets can be sizeable (a 512 x 512 x 512 grid of 32-bit numbers occupies 0.5

Gigabyte of memory), and there are computational challenges to overcome when trying to

interact with large data sets in real time. The discrete SDF-rep modeler addresses these chal-

lenges by accelerating all computations using the CUDA system for GPU-based parallelism.

High-end computation-oriented GPUs are already available that provide teraflops of com-

pute power and sufficient memory to store dozens of voxel models. The parallel computing

power is deployed by the modeler in two significant ways. Two-dimensional computational
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grids are launched to support interactive visualization of discrete SDF-rep models. Each

parallel computing thread computes the shading for a pixel, and interoperability between

CUDA and the OpenGL programming interface for interactive graphics applications enables

both real-time display and user interactivity via keyboard, mouse, and menus. For modeling

operations, three-dimensional computational grids are launched. Each thread updates the

value at a point on the 3D geometric grid, and the local nature of the data interactions (op-

erations typically depend on values at a grid point and possible its neighboring grid points)

allows for very effective parallelization. In some cases, special CUDA memory functionalities

(shared memories, texture objects, and surface objects) are used to enhance efficiency.

The CUDA-accelerated discrete SDF-rep modeler was found to enable real-time inter-

actions with multiple discrete SDF-rep models and real-time implementations of traditional

modeling operations such as rigid body and Boolean operations. As described in Chap-

ter 2, both digitized and digital objects interact readily in the discrete SDF-rep modeler.

Demonstrations were provided of importing objects digitized both by volumetric scan (e.g.,

segmented CT data) and range scan (e.g., point clouds). Digital objects created in a CAD

system were imported by exporting STL files and computing grids of signed distance values,

and digital SDF were imported by direct function evaluation on a geometric grid.

The discrete SDF-rep modeler implements novel capabilities for creating swept solids by

implementing sequences of near-identity rigid body transformations coupled with Boolean

operations. Capabilities were realized for real-time sculpting and computation of swept

volumes associated with motions of an anatomical structure imported from segmented CT

scan data.

The discrete SDF-rep modeler provides interactive computation and visualization of a

discrete version of the geometric skeleton. It also includes the first suite of tools for interactive

skeleton-based editing and computation of full signed distance grids from skeletal data.

Perhaps the most significant advance achieved by the discrete SDF-rep modeler involves

modeling inhomogeneous objects with graded composition or properties. Inhomogeneous

discrete SDF-rep models were achieved by appending an auxiliary grid of values specifying
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the graded property, and an extended class of Boolean operators were created to combine

property values as well as geometry. The novel inhomogeneous modeling capabilities were

employed to create models of the unit cell of an octet truss with different patterns of graded

properties. The truss structures were fabricated by photo-curing resin in a vat polymerization

system using a DLP projector. The mechanism for producing graded properties was to locally

control the degree of polymerization through variations in light intensity. The discrete SDF-

rep modeler was used to produce the sequences of grayscale images to be used for curing

the layers of the truss structures. The truss structures were fabricated to enable mechanical

testing, and measurable effect on the loading response of the truss cells were observed. In

summary, by exploiting the parallel computing capabilities or modern GPUs the discrete

SDF-rep modeler succeeds in supporting an interactive, unified, voxel-based workflow for

3D digital object capture, computer-aided design, and additive manufacturing of objects

including heterogeneous objects with graded properties.
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[88] E Müller, Č Drašar, J Schilz, and WA Kaysser. Functionally graded materials for
sensor and energy applications. Materials Science and Engineering: A, 362(1):17–39,
2003.

[89] B Kieback, A Neubrand, and H Riedel. Processing techniques for functionally graded
materials. Materials Science and Engineering: A, 362(1):81–106, 2003.

[90] Ali Miserez, Todd Schneberk, Chengjun Sun, Frank W Zok, and J Herbert Waite. The
transition from stiff to compliant materials in squid beaks. Science, 319(5871):1816–
1819, 2008.

[91] Wikipedia. Additive manufacturing file format — wikipedia, the free encyclopedia,
2015. [Online; accessed 30-November-2015].

[92] Peter H Ernst. Boolean set operations with solid models.

[93] Vibeke Skytt. Challenges in surface-surface intersections. In Computational methods
for algebraic spline surfaces, pages 11–26. Springer, 2005.

[94] MY Zhou, JT Xi, and JQ Yan. Modeling and processing of functionally graded materi-
als for rapid prototyping. Journal of Materials Processing Technology, 146(3):396–402,
2004.

[95] H Liu, T Maekawa, NM Patrikalakis, EM Sachs, and W Cho. Methods for feature-based
design of heterogeneous solids. Computer-Aided Design, 36(12):1141–1159, 2004.
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Appendix A

RELATED BACKGROUND

A.1 Overview of Traditional Modelers and Motivation for Adopting Distance
Fields

Currently, there are many modeling systems available in the market, but the market share

is dominated by boundary representation or b-rep modelers that describe a solid object in

terms of a collection of surface patches that connect to form the boundary of the solid vol-

ume. The b-rep category includes polyhedral models whose boundaries can be decomposed

into a triangle mesh. Triangle mesh models are convenient because they can be stored and

rendered very efficiently; consumer graphics hardware has been created and optimized for the

purpose of rendering triangle meshes. While triangle meshes can be rendered with shading

or texturing to appear smooth, the triangles in the mesh are flat and cannot really represent

surfaces with smooth, contoured surfaces. In the context of 3D printing or additive manu-

facturing, tactile inspection of parts reveals the polygonization artifacts regardless of surface

shading or texture. One approach to achieving models with smooth surfaces is to use b-

reps with more complicated parametric surface patch descriptions. Options include bicubic,

bezier, and non-uniform rational b-splines (NURBS) which currently hold a significant mar-

ket share. These parametric methods store model boundaries in a memory efficient fashion

and generally offer good flexibility and precision. However, higher order parametric surface

representation might be inefficient in terms of computational complexity when rendering or

doing boolean operations, and it is challenging to import digitized objects (obtained by range

scan or volumetric scan) into a b-rep modeler. Moreover, since even smooth b-rep models

generally get polygonized before export to an AM system, obtaining physical realizations of

smooth b-rep models is still problematic. The other issue in the AM context is that b-rep
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models are really designed to describe the surfaces that bound a solid; such models are not

really designed to describe internal variations of properties and materials that AM systems

are capable of producing. Thus, the motivation to consider alternative representations such

as discrete SDF-reps consists of 3 main components: (1) to create an environment where

digital CAD models can readily interact with digitized or scanned objects; (2) to provide

support for models surfaces that are smooth, at least to the resolution of an AM system;

and (3) to support representation of smooth gradations of internal materials and properties.

In light of the motivating factors listed above, implicit or function-based (f-rep) models

are an attractive alternative to b-rep models. An f-rep model consists of a mathematical

expression that can be evaluated at a given point in the 3D modeling domain to classify the

point as interior or exterior. We employ the sign convention that negative function values

identify interior points. The boundary of an f-rep solid is the zero level set of the function

and, since it is well known how to write mathematical functions with at least piece wise

smooth level sets, f-reps can readily model objects with smooth, contoured surfaces. Since

f-reps involve a function defined throughout the modeling domain, not just on the surface

of an object, they also offer excellent prospects for representing properties throughout the

interior of a solid. Thus f-reps offer immediate promise for achieving 2 of the 3 motivating

factors, but it is not so obvious that they are suited to the goal of supporting import of

digitized objects.

The specific version of f-reps that we pursue is a discretized version where the function

is specified by a set of values on a regular geometric grid along with an interpolant for

computing values at points not belonging to the grid. We also focus on the specific case

fo signed distance functions where the magnitude of the function value gives the distance

between the evaluation point and the nearest point on the boundary of the object (while

the sign of the function value classifies the point). As discussed in Ch. 2, this discrete

signed distance function representation (discrete SDF-rep) successfully supports import of

objects based on continuous f-rep models, b-rep models, surface scan point clouds, and

segmented volumetric imaging. It has been reported that rendering and construction of
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signed distance field based representation is possible for complicated geomteryies and relevant

classes of solid shapes[104, 123]. Some researches report using signed distance functions for

real time collision detection[139], either rigid solids[140] or soft bodies[138]. Surface offsetting

operation is easily done by manipulating distance fields[134, 135]. Signed distance fields

approach is also suitable and straightforward to perform boolean operation efficiently[137,

105] without CSG (constructive solid geometry) operations on b-rep models, and apply

complicated 3D texturing[104]. adopt a discrete approach and evaluate the signed distance

function on a 3D grid, so the data set resembles an image stack or a voxel set. Unlike

traditional voxel models where entire voxels are classified and the surface is only known to

lie within a set of unclassified voxels with axis aligned faces, this voxel data can take on

continuous values that are interpolated to implicitly define boundaries for which the surface

normal vector and curvature properties (determined by the rate of change of the normal

vector) are well-defined and readily computable. As discussed in Ch. 6, a similar approach

to handling property specifications by interpolation a grid of values supports modeling solids

with locally-controlled, continuously-graded materials, properties, or processing parameters.

To import 3D models from other sources (b-reps, surface scans, and volumetric scans),

we need to classify points and compute surface distance values on a grid. Computing signed

distance values for a polygonal mesh can be computationally expensive if both the number of

polygons and the number of grid points is large. An alternative approach to obtain the signed

distance field of a 3D object involves volumetric digitization using a scanning method such

as CT. The CT scanner gives the intensity of radiation, but does not directly provide point

membership classification. Therefore, a further segmentation step is required to identify

the voxels inside the models. A method for obtaining high resolution model of 3D objects

based on volumetric information has been reported by using wavelets to interpolate SDF

models[105]. Furthermore, to make the SDF modeler promising, several studies using signed

distance functions for procedural modeling and simple geometries achieved in real time have

been recently presented[100, 101, 102].

There are actually several other voxel based softwares available in the market, including 2
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worthy of special attention: (1) myVGL [58], is a volume graphics viewer for volumetric data

from CT scanner. While myVGL provides some segmentation capabilities, it is intended as

a viewer, and the companion software VGStudio is required to get access to a limited set

of basic modeling operations. (2) monolith [56] is a voxel modeler with a very original

user interface and that offers a reasonable set of modeling operations including boolean

operations and sweeping constructions. However, monolith does not attempt to support

models imported from other sources and appears to have resolution limitations associated

with memory usage.

A.2 Overview of Approaches about 3D Model Reconstruction from Point
Cloud

It is useful to people, who wants to reversely reconstruct the 3D model [54] from surface

scanned data, or point cloud. Currently, there are four main ideas [55] in the graphics lit-

erature about 3D reconstructing the surface of objects: signed distance estimation, voronoi-

based reconstruction, implicit surface fitting and moving least squares surfaces. Challenges

faced by all of these methods include reconstructing models without surface normals; recon-

structing small or sharp features, and dealing with noisy data and outlier points..

The surface scanned point cloud is one type of input data set for 3D reconstruction pro-

cess, which basically only stores the coordinates of all the points. However, reconstructing a

3D model from the unstructured input data set is difficult without the mesh topology among

all the points, and it is hard to guarantee that the reconstructed surface matches the original

shape of the objects since there is no information provided regarding the correct connec-

tivity of the sample points [68, 81, 80], expecially when it comes to dealing with the curve

net (a network representing the curved surface) construction as well as surface fitting [79].

Therefore, the first step is always figuring out the correct connectivity among all the cloud

points. Basically, there are two different types of surface representation: explicit surface and

implicit surface. Explicit surface like B-spline surface [77, 76] or NURBS surface (parametric

surfaces) [75] describes the location of a surface [78] using formulas, while the triangulated
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surfaces is kind of approximation of original surface of objects. However, the triangulated

surfaces approache needs to figure out the mesh topology or connectivity among the cloud

points, usually by forming nearest neighbor connections[74, 73, 72]. While, for implicit sur-

face, sometimes also called volumetric representation or function based representation, it

represents the surface as a special iso-contour of a scalar function [129]. The signed distance

function, radial basis function, moving least square [70] are those techniques most used for

implicit forms [71].

A.3 3D Skeleton Capturing, And Manipulating

Recent developments in solid modeling have frequently focused on local and global free-form

skeleton-based deformation approach due to its capabilities of offering a simpler and more

intuitive interface to users. The skeletal data, a lower dimensional geometric abstraction for

performing geometric operations on solid models[108], offers a method for solid representation

based on skeletal data consisting of skeletal points and their associated maximal sphere radii.

Reported methods for computing geometric skeletons include applying medial geodesic

function[111], extracting skeletons from distance maps[121] based on level sets[122], or pre-

sampling the mesh model into a volumetric representation [103], using graphics hardware

for skeletonization[106]. Another recently reported approach applies Laplacian smoothing

to contract the boundary of a volume onto its skeleton [109]. Afterwards, a variety of meth-

ods can be applied on the meshed or polygonal models for deformations by editing the

skeleton data. Once skeleton computation is available, skeletal modeling operations can be

supported. Skeleton-based algorithms have been proposed for: level of detail control, hexa-

hedral mesh generation, shape interpolation and morphing, shape synthesis[108] to achieve

stretching, bending, rounding as well as editing maximal sphere radii of the models based on

the continuous skeleton[110]. For real time deformation applications, skeleton-based linear

blend skinning, also known as skeletal subspace deformation remains standard for character

animation[120], shape interpolation as well as skeleton-driven deformation[112, 107, 123]. In

terms of mesh models deformation, compared with the method of fixing the location of an ar-
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bitrary vertex to locate the deformed mesh relative to the skeleton, a better solution reported

is to incorporate a translation term in the error energy function to determine the deformed

mesh configuration[46]. A recent report proposed a new scheme for free-form skeleton-driven

mesh deformations[45] where the voronoi-based skeletal mesh is extracted from the original

mesh, then deformed skeletal meshes contribute to a desired global shape deformation.

A.4 Multi-material 3D printing

Objects with multi-material or graded-material heterogeneously distributed spatially

throughout the whole body is ubiquitous in nature. For instance, common graded ma-

terial includes the teeth, bones, and squid beaks [61, 90], where the material transits

from soft to hard spatially. Besides, interesting objects with various material property

like reflectance is presented [154, 155]. Mimicking these graded-material property holds

great potential for development of medical material or other engineer material for beams

or truss structures [62, 87, 88, 145]. However, unfortunately, synthesis of bulk multi-

material or graded material using traditional material-removal manufacturing requires te-

dious extra steps and still heavily limited by geometries [89]. Therefore, an efficient man-

ner for development of multi-material or graded material products holds tremendous future

both on design and manufacturing sides. 3D printing, also called additive manufactur-

ing, attracts lots of interests due to the nature of building product from ground layer by

layer, versatile for specifying certain material composition for different parts in the objects

spatially[146, 148]. Thus, 3D printing is ideal for developing those nature mimicking graded

material products[86, 63, 64, 65, 85, 66, 67, 82, 83], various texture[143], or Bi-scale appear-

ance fabrication[153, 156]. MIT researchers presented a work enables to construct multiscale

synthetic material[144]. And similar ideas have extends to micro scale 3D printing as well

using stereography[150, 151], deposition of fine powders through hopper nozzles[152].

With traditional polygon based CAD system, it lacks the capability of specifying graded

material throughout the b-rep models, which needs to decouple the material function from

the geometry itself. Here, we present a voxel based SDF-rep CAD system which naturally
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matches well with the additive manufacturing in terms of the fact that both of them specify

and build for each voxel(in 3D) or pixel(in 2D) during the process. However, the huge amount

of voxles of 108 poses an enormous computational challenge, and until recently the General

Purpose GPU card available for parallel computing makes it doable in our life time.

Most of the 3D printing machines in the market use only one single material at a time,

there are still several 3D printers (e.g., Object Connex series [114, 149]) enabling users

to print emerging multi-material but only with certain mixed ratio without gradation. In

terms of the software, until recently, 3D printing has been using uniform material definition

to produce objects based on boundary representation (polygon based) CAD system with

unstructured meshes of the surfaces. Although various companies have establised their own

formats[114, 149, 159] to accomplish 3D multi-material or graded material printing capability,

the common methods of assigning a single material property to each point of b-rep models

always contributes to the limitations of designing spatial material property decoupled with

geometry (multi-material information needs to be in separated STL files). In addition, some

work has reported that sub-division spatially on mesh data structures can achieve local high

resolution result[98]. Although, the Additive Manufacturing File Format (AMF) standard

[91] decouples the material information from geometry, it is still handling with b-rep models,

thus slicing procedure from mesh models is inevitable (which takes the most of the time

when exporting the models file to machine instructions).

The advantage of designing multi-material function or graded material function decou-

pled from models’ geometry is that we can get different desired material compositions and

thus mechanical properties for different geometries. For example, we can print an “I” beam

with two kinds of materials, the stronger one can be applied on bottom and top parts for

bearing the bending stress, while the less strong material can be applied to the middle part

used to connect two functioning parts (top and bottom parts). Of course, the analysis

requires the FEM (finite element method) under certain situation or specific boundary con-

dition [126] for compensation of deformation[142, 147] due to the stress, heat effect and so

on. Nevertheless, the manufacturing process needs a suitable CAD system for specifying and
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precisely manipulating the material functions so that the fabricated objects can possess de-

sired functionalities. Kumar reported a method to describe material composition throughout

the objects spatially by subdividing volumes into sub-volumes, where local material inter-

polation is based on coordinates[128, 141]. Recently, the procedural material assignment

representations is presented to describe material composition for solid models[97]. Even

more, a programmable pipeline for describing material composition precisely and conve-

niently throughout a 3D objects is published[96]. A further exploration [125, 160, 161, 162]

works on integrating self-calibrated printheads, 3D scanning, and close feedback loop for

printing correction multi-material 3D printing platform with high resolution and low cost.

Due to the difficulties in modeling multi-material or graded material objects in tradi-

tional b-rep CAD system, prior work explored the possibility and efficiency of volumetric

representations based on voxels [98, 127]. Furthermore, some work reported that a 2D or

3D dithering methods can be used to define anisotropic fluid material using inkjet printing

[95, 94, 157, 158]. And one of those important prior works also used a signed distance filed

to represent geometry of objects while using composition function for specifying material

property throughout the objects spatially. Based on these amazing works, we push the voxel

modeler to a higher level, where we can not only define material function on voxel based

discrete signed distance field, but also using the graded geometries to build more complex

structures like sweeping single graded object to get a swept graded union object. Besides,

our voxel modeler is compatible with digital light projection system 3D printing since we

directly editing voxel information (or pixel in 2D), therefore, directly outputting images layer

by layer without any extra slicing effort.

A.5 Overview of GPU Architecture and Programmable Graphics Hardware

Over the past decade, semiconductor industry designing follows two main directions. The

first one is multicore trajectory, for example the recent Intel Core i7, which using multiple

cores to execute sequential programs. These multi processors are implemented with the X86

instruction set, designed to optimize the the execution speed of sequential programs. Instead
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of focusing on maximizing execution speed on sequential programs, the other approach, called

many -thread trajectory adopts the idea of maximizing the throughput. The many-threads

approach needs lots of threads, in our case, we have maximum of 2147483647*65535*65535

threads for Tesla K20 GPU cards from the manul. In 2012, the ratio of peak floating point

calculation throughput between many thread GPUs and multicore CPUs is about 10[124].

This ratio makes GPU parallel computing promising on the well parallel-able computing

intensive applications. Actually, GPU usually serves as co-processor with CPU, called het-

erogeneous architecture. CPU and GPU are physically separated and communicate with

each other through PCI express bus, while the GPU holds its own memory (DRAM) as well

as lots of multiprocessors consisting of processor and its on-chip memory (registers, shared

memory and caches)[36].

All processors shared in the same multiprocessor execute the same instruction at the

same time within the single multiprocessor. Different processors can communicate with each

via shared memory, while multiprocessors can communicate with each other via DRAM.

Since the bandwidth of the PCI express bus is much smaller than that between the GPU

multiprocessors and GPU DRAM, the efficient strategy should copy data from CPU side to

GPU DRAM and using the shared memory, register, constant memory or texture memory

to optimize the execution to maximize the throughout of parallel applications.

Since some computation requires to access the neighborhood data, we need to pack the

data on the GPU memory in a certain way so that we have access to the memory as coalesced

as possible. There are several approaches achieving the coalesced data, for instance com-

pacting data from sparse array format or rearranging array of structure (AOS) to structure

of array (SOA). Here, instead of using shared memory, which is only readable within the

same block, or constant memory, which cannot be allocated dynamically, we employ texture

memory on the GPU which enables to sample the voxel information on an arbitrary location

efficiently. However, CUDA texture objects are read only, which is not desirable for our

updating scheme. Thus, another similar architecture with 3D space neighborhood coalesced

memory called surface memory, which is not only readable but also writable, is adopted in
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our algorithm. The initial boundary adopted here could be either the enclosed surface when

it comes to the Boolean operations, or the skeleton data when it comes to “refleshing” from

the skeleton data. In detail, the GPU fast sweeping method first stores all the 3D voxel

signed distance field into a surface memory with tagging the boundary value points as fixed

while tagging other voxels as changeable, meanwhile assigning all the initial inactive grid

points with an infinite vale. During each update, before it is convergent to a threshold, the

GPU fast sweeping method algorithm keeps updating both unknown grid points(if it is an

infinite value) as well as those points already explored but with changeable tags. During

each iteration, the updated 3D grid data from one surface memory needs to be saved to

another surface memory for next round update. An example below shows the performance

comparison when using CPU and GPU, along with different memory types in GPU card.

A.5.1 Comparison of CPU and GPU when Computing the Gradient

Instead of adopting CPU serial version, here, we implement GPU parallel version to calculate

the gradient of the given signed distance field. Essentially, for each grid point, the gradient is

estimated by the central difference scheme along all three principle axis. Instead of adopting

CPU scheme with a few cores optimized for sequential serial processing, our GPU scheme

has a massively parallel architecture consisting of thousands cores designed for handling

multiple tasks simultaneously, which contributes to hiding latency by using more threads

per multiprocessor. Therefore, in users’ perspective, GPU parallel version is usually faster

than the CPU serial version especially when the data set is huge enough and the application

is parallel-able well. Below, is an experiment conducted to compute gradient for the grids of

64∗64∗64, 128∗128∗128, and 256∗256∗256 respectively on CPU (Intel core i5-3330 3.00GHZ)

as well as on GPU (Tesla K20c). The Table A.1 records the timing of CPU serial version and

GPU parallel version with texture memory to computing gradient on those three different

grids.

From the Table A.1, it is clearly seen that the GPU parallel version is more efficient

and faster to get all the gradient computing done for all the grid points. Besides, it is also
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Table A.1: Time taken for computing gradient of distance field by CPU and GPU

Grid dimension CPU time GPU time CPU/GPU

64∗64∗64 11.0 ms 1.0 ms 11

128∗128∗128 91.0 ms 2.7 ms 33.7

256∗256∗256 683.0 ms 18.0 ms 37.9

interesting to observe the fact that with the grid dimension increasing, more advantage we

can take by using GPU parallel version with the help of texture memroy compared with

CPU serial version, concluded from the column of CPU time over GPU time in Table A.1.

A.5.2 Optimization of memory fetching

Furthermore, there are several different memory types available on GPU parallel version,

for example, share memory, global memory, texture memory and constant memory. Only

when using the appropriate memory type under the certain circumstance, the application

can be accelerated to the maximum degree. Since all these three scenarios are parallelized,

the efficiency difference actually results from the cache hitting. Therefore, the sections below

are to explore different memory types in terms of cache hitting rate and try to explain the

strategy we adopted in our applications.

Global memory Global memory is also called device memory, which resides in device

DRAM, for transferring the data between the host and device as well as for the data input

to and output from kernels. In terms of memory coalesce, once we are fetching certain data

stored as an array in global memory, several other data whose physical location in memory

close to that specific data are also fetched and stored together in the cache. Therefore, next

time whenever we need fetch the data whose physical location in memory locality close to

the pre-fetched data, the system will directly get data from the cache instead of reading from

global memory again, which accelerates the application and is called cache hit. Another thing
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needs to be noticed is that the cache hit rate is depressed in our 3D space for computing

gradient. Because we need to get the central difference in three orthogonal axis, and among

those six adjacent neighbor grid points in 3D space, only three of them are actually linearly

offset locality to each other, indicating only two of them might hit the cache. Therefore, we

desire a different kind of memory type which could cache the coalesced data in 2D and 3D

space locality.

Shared memory Now, it is time to explore the shared memory, which is on chip mem-

ory, closer to the processor compared with global memory. Thus, the shared memory is

much faster than global memory, roughly 100x lower than un-cached global memory latency.

Therefore, loading data directly from shared memory definitely will be faster than fetching

from global memory. The only problem is that we need to store all the data from global

memory into the shared memory at the very beginning as initialization. This step could

be extra time-wasting if the data is only used once in each block later, or time-saving if

each data in the shared memory is repeatedly used in each block. Therefore, unless fully

taking advantage of the low latency of shared memory when computing gradient, it will not

help a lot. Another subtle issue for the shared memory when computing the gradients is

that it needs to deal with the special situation when computing the gradient on the block

boundaries, where the neighbor stencils have to be fetched from another block or the global

memory. What is worse, there has to be the if-else statement to deal with the boundary

conditions which also contributes to the multi-branching problems, depressing the parallel

scheme. Besides, the limited share memory on chip makes it inappropriate in our modeling

system since we need to store large data set, 128*128*128 gird, which can not be handled

by share memory.

Texture memory Due to the slower data fetching of global memory and limited share

memory, we further explore the texture memory, which has advantages over previous two

memory types. Texture memory, a read only memory, is for general purpose computing the
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data need to be fetched in 2D or 3D stencil pattern. Texture memory is also cached on chip

like shared memory. Therefore, similar to constant memory, it will provide higher effective

bandwidth by reducing memory requests to off-chip DRAM. More specifically, texture mem-

ory is designed for graphics applications where memory access patterns exhibit 2D or even

3D spatial locality, which can never be achieved by global memory caching(linear locality in

1D). In this work, we stick to employ the texture memory cache to fetch all the spatial local-

ity data and pre-store them in texture objects. However, when we use upwind differencing

scheme to recover the signed distance field, the texture memory can not rewrite the update

distance value on grid points. Fortunately, there is a writable surface memory similar to

texture memory, in terms of fetching the 3D spatial locality data, used for recovering signed

distance field.
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