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Background: The research featured in this dissertation aims to determine the association
between resource factors and adverse health outcomes in a hospital setting. Past
studies have examined this association using patient populations from a single hospital
admission source, such as the emergency or surgical departments. These studies have
employed various statistical methods such as logistic regression, weighted least squares
regression, and Cox proportional hazard modeling. To date, a more holistic approach
that accounts for multiple hospital resource factors (number of beds available, number
of staff available, and daily patient volume) as well as outcomes of readmission and
mortality have not been studied extensively across different patient populations. As
differences can be observed given patient age, admission sources, and existing health
conditions, these patient characteristics are important to consider and model. Few
studies have also accounted for the hierarchical data structures of the unit-patient
relationship and explored how demand for and supply of services and resources, such

as patient to staffing ratios, effect the hierarchical data structures.

Objectives: This research study seeks to identify the influence of controllable hospital re-
source factors on two (2) adverse health outcomes: 1) 30-day readmission and 2) in-

hospital mortality.



Research Aims: The following research aims will be addressed:

e Aum I: Determine the patient risk factors that influence the risk of each adverse

health outcome.

e Aim 2. Determine the hospital resource factors that influence the risk of each

adverse health outcome.

e Aim 3 Determine if the risk-adjusted association between hospital resources and
adverse health outcomes differ by nursing unit. If so, determine if demand:supply
ratio measures, including bed occupancy and staffing ratios, contribute to the

unit-to-unit variation.

Methods: Binomial & LASSO logistic regression methods are used to relate explanatory
variables to patient health outcomes. The explanatory variables included in hospital
resource factors are nurse staffing volume, bed availability, admission volume, discharge
volume, day and time of admission, and day and time of discharge. The adverse
health outcome (response) variables are 30-day readmission and in-hospital mortality.
The model accounts for patient characteristics such as age, severity of illness, risk of
mortality, and admission source. The hospital setting used for this study was the
University of Washington Medical Center. The study population included all patients
who were discharged from the medical center between January 1st, 2012 and July 30th,

2015.

Potential Contribution: Such research can help hospital decision/policy makers deter-
mine resource capacity and healthcare delivery needs in order to mitigate the occur-

rence of adverse patient outcomes.
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Chapter 1

INTRODUCTION

Hospitals are comprised of multiple, complex processes within an overarching healthcare
delivery system that consists of inputs, transforming processes, and outputs [1]. Inputs in-
clude patient demand, providers, purchasers, and suppliers, while outputs consist of a patient
health outcomes, resource utilization, and overall perception [1]. The transforming processes
are comprised of various clinical, management, and ancillary processes required to provide
healthcare services to meet patient demand. These transforming processes occur in different
departments and nursing units where patients receive care including both outpatient (e.g.
emergency department, surgery department) and inpatient (e.g. medical/surgical units, in-
tensive care units) treatment areas. From the patient’s perspective, a patient should receive
quality care in a timely manner with minimal delays [2], however this may not always be
possible due to limited capacity and resource constraints [3]. Imbalances between patient de-
mand and hospital resource factors adversely impact healthcare delivery outcomes, including

cost and quality of care issues [3].

Healthcare Systems Engineering is an interdisciplinary engineering field focused on the
evaluation and design of healthcare delivery systems. Within this discipline, quantitative an-
alytical methods are used to study and unveil healthcare delivery system design alternatives
to improve efficiency and effectiveness. The Hill-Burton Act of 1946 provided universities
funding to collaborate with hospitals on performance improvement projects [4]. Since the
act was in place, interdisciplinary teams consisting of industrial and system engineering
researchers and healthcare administration have developed partnerships aimed at improving
healthcare delivery systems worldwide. Recently, the U.S. Department of Health and Human
Service’s Agency for Healthcare Research and Quality (AHRQ) collaborated with healthcare



and industrial and system engineering experts to identify how industrial and systems engi-
neering methods can be applied to develop an ideal health care delivery system [5]. Within
their final report, participants categorized research agenda items under the following three

main research requirements for industrial and systems engineering knowledge innovation:

e System monitoring: improve system assessment and communication of improved as-

sessments to stakeholders
o System modeling: improve understanding of system components and their interactions

e System modification: improve system efficiency and effectiveness through transforma-

tion

These three research requirements provide direction on future research areas. The ex-
ploratory study presented in this dissertation aims to provide insight on all three require-

ments, mainly centered on systems modeling.

1.1 Adverse Patient Health Outcomes

There are various measures, ranging from financial to clinical quality, that can be considered
patient health outcomes. The standard of clinical care delivered by a health care organi-
zation impacts a hospital’s patient safety standards. Of the 1004+ Agency for Healthcare
Research and Quality (AHRQ) evidence-based quality indicator measures, the Centers for
Medicare/Medicaid (CMS) have focused on 30-day risk-adjusted mortality and readmission
rates for their hospital reimbursement and public reporting programs for Medicare benefi-
ciaries treated for certain conditions, such as heart failure and pneumonia [6].

For this dissertation, 30-day readmission to the same hospital and in-hospital mortality
measures will be the patient health outcome measures of interest. These measures have
been used by researchers as surrogate patient safety measures [7]. Although readmission and
mortality rates are declining [8], these patient health outcomes continue to be important

measures of overall quality of care and patient safety.



In addition to strategies to reduce preventable mortality, hospitals and healthcare agen-
cies have attempted to reduce preventable readmissions due to their association with lower
quality of care [9]. Up to 48% of readmissions may be preventable [10]. In 2011, Medicare
spent an estimated $17Billion on preventable readmissions [11], and there were 3.3Million
readmissions costing US hospitals $41.3Billion [12]. Beginning October 1st, 2012 under the
Affordable Care Act, the Readmissions Reduction Program reduced Medicare reimbursement
to hospitals with excessive readmission rates [13]. Reducing readmission and mortality rates

are beneficial for hospitals, healthcare agencies, and patients.

1.2 Hospital Resource Factors

Access to human, bed, and equipment resources in the hospital setting directly affect the
healthcare delivery timeliness and safety. For instance, when hospital inpatient beds are
filled to capacity with admitted patients, an emergency department (ED) may become over-
crowded, resulting in increased wait times for patients seeking care in the ED as well as
extended ED boarding times for patients who have been admitted and are awaiting an in-
patient bed. In this dissertation, hospital resources include nursing staff, hospital beds, and
equipment. Ideally, when resources are available, patients arriving to the hospital would be
seen by a healthcare provider upon arrival without experiencing delays in care. Similarly,
patients discharged during times when resources are available would receive detailed, easy—
to—follow after care and medication education since nursing staff would have more time to
spend at their patient’s bedside [10]. During weekends and evening shifts, it is possible that
diagnostic equipment and beds are unavailable due to the lack of healthcare providers re-
quired to set up the equipment or bed [14]. In this study, it is hypothesized patients admitted
and discharged during times with limited resource availability will have greater likelihood of

experiencing adverse health outcomes.



1.3 Literature Review

Previous research has found evidence in hospital resource availability and patient health
outcomes for specific patient populations. Resource availability can be divided into three
main categories: staffing levels; resource-related temporal factors; and bed occupancy. The
following summarizes the findings for each hospital resource factor category and adverse

patient health outcome.

1.3.1 Hospital Resource Factors & Mortality
Nurse Staffing € Mortality

Researchers have determined associations between limited staffing resources and increased
risk of mortality. Aiken et al. (2002) found increased mean patient-to-nurse staffing ratios,
regardless of specialty type and shift, were associated with 30-day risk-adjusted mortality
for general, vascular, and orthopedic surgery patients [15]. Needleman et al. (2011) found
increased exposure to shifts where nurse staffing levels fell below target for > 8 hours and
shifts with high patient turnover (e.g. admissions, transfers, and discharges) were associated
with increased risk of in-hospital mortality [16]. For surgery patients aged > 50 years old,
increased nurse workload measured as number of patients divided by number of nurses on
a given unit, was also associate with increased risk of mortality for surgery patients treated
in 300 hospitals across 9 European countries [17]. Increased nursing workload measured as
the ratio of occupied to nursing staffed beds had an association with increased in-hospital
mortality throughout a patients stay for patients treated in an adult intensive-care unit in
the United Kingdom [18].

Similarly, increased staffing levels were found to be associated with decreased mortality
rates. For 3763 US hospitals, in-hospital mortality rates for Medicare patients decreased
as registered nurse staffing per occupied bed increased [19]. Increased staffing levels for
patients aged 20 to 85 years of age who were treated in cardiac surgery post-operative units

in 114 Belgian hospitals had a reduced risk of mortality [7]. For patients > 65 years old



who were admitted through the ED and had a common discharge diagnosis (i.e. acute
myocardial infarction (AMI), congestive heart failure, gastrointestinal bleeding, hip fracture,
pneumonia, or stroke), researchers found increased staffing levels measured as the ratio of

registered nurses to patient-days were associated decreased risk of in-hospital mortality [20].

Resource-Related Temporal Factors € Mortality

Discharge time of the day ([21]; [22]; [23]) and day of the week ([24]) where resources are lim-
ited, such as the night shift and weekends, were found to have associations with increased risk
of mortality compared to regular business hours and weekdays. Researchers found an associa-
tion between after-hours discharges (i.e. discharges between 6pm to 6am) and post-Intensive
Care Unit (ICU) mortality for patients discharged from ICUs included in the Australian and
New Zealand Intensive Care Society Adult Patient Database (ANZICS APD) [21]. Similarly,
for patients featured in the ANZICS APD discharged from and ICU between 6pm to 6am had
both a higher readmission and mortality rate [23]. For adult patients admitted to ICUs in
Calgary Health Region in Alberta, Canada, admissions and discharges at night (from 6:00pm
to 7:59pm) were independently associated with mortality, however weekend admissions and
discharges (that occurred from 12:00am Saturday to 11:59pm Sunday) were not associated
with in-hospital mortality [22]. Regarding day of admission and/or discharge, researchers
found patients admitted to an acute care in hospital California during the weekend (from
12:00am Saturday to 11:59pm Sunday) had an increased risk of in-hospital mortality [24].
Admission outside business hours (i.e. after 4:00pm to before 7:00am Monday through Fri-
day and all day on weekends) was associated with an increased risk of in-hospital and 30-day
mortality for patients > 16 years old who were admitted to all medicine units excluding
pediatric, psychiatric, and surgical departments in all Denmark hospitals [25]. In addition to
the association found between nurse staffing levels and increased risk of mortality, Schilling
et al. (2010) also found an association between weekend admission and admission during
influenza season and in-hospital mortality [20]. Researchers found patients who were expe-

riencing an AMI and were admitted during the weekend had a lower likelihood of receiving



invasive cardiac procedures, a measure of access to care, and an increased likelihood of 30-day
mortality [26]. ICU patients > 16 years old who were discharged from Northern Hospital in
Melbourne during the night shift (i.e. 10:00pm to 7:30am) had an increased risk of mortal-
ity [27]. Similar to the findings of the association between nurse staffing levels and patient
health outcomes, the association between resource-related temporal factors is expected since
limited access adversely affects the timeliness of treatment. Patients requiring immediate
diagnostic or therapeutic tests who are admitted during ”off-hours” may experience longer
wait times compared to similar patients admitted when these service are accessible during
regular business hours.

Although research showed associations between off-hours admission or discharge timing
and increased risk of mortality, some researchers also showed refuting outcomes. Morales
et al. (2003) did not find an association between night admission (i.e. admission after
5:00pm and before 7:00am) for medical ICU patients treated at Saint Mary’s Hospital in
Rochester, MN and increased in-hospital mortality [28]. Similarly, Santamaria et al. (2015)
did not find an association between after-hours discharge (i.e. between 6:00pm to 6:00am) for
patients discharged from 40 ICU’s in Australia and New Zealand and subsequent mortality
[29]. Ensminger et al. (2004) found patients admitted to Mayo Clinic’s ICU did not have
an increased risk of in-hospital mortality [30]. Wunsch et al. (2004) found admission time
of day and day of week was not associated with in-hosptial mortality for patients treated in
ICUs in England, Northern Ireland, and Wales [31]. In summary, the outcomes associated
with temporal factors and mortality are diverse, and this may be related to the study design

and available data.

Bed Availability € Mortality

Researchers have also explored the lack of hospital resources in terms of bed availability and
the influence on mortality. Observational studies have assessed the impact of emergency de-
partment (ED) overcrowding ([32]; [33]; [34]; [35]). Richardson (2006) found patient arrival
to the ED during high ED occupancy was associated with increased risk of 10-day mortality



at Canberra Hospital in Australian [32]. Sprivulis et al. (2006) found an association between
admitted patients who arrived to the ED during both high ED & hospital occupancy and
mortality 2-days and 7-days after arrival [33]. Additionally, researchers found that increased
ED crowding was associated with increased risk of inpatient mortality for patients admitted
through the ED of Californian acute care facilities [34]. Increased delays, measured by the
amount of time admitted ICU patients were held in the emergency department waiting for an
inpatient bed, was associated with in-hospital mortality [36]. Iapichino et al. (2004) found
that increased ICU occupancy was associated with increased mortality for 89 ICUs in hospi-
tals across 12 European countries [37]. Robert et al. (2012) found delayed admission to the
ICU had an association, albeit non-significant, with increased 28-day mortality for patients
treated at 25 ICUs in France [38]. Madsen et al. (2014) found high bed occupancy was
associated with an increased risk of both in-hospital and 30-day readmission [25]. Fisher et
al. (2000) found an association between increased hospital capacity and increased mortality

for Medicare beneficiaries [39].

Similarly, researchers also found reduced bed occupancy was associated with reduced
risk of mortality. Geelhoed & de Klerk (2012) found reduced overcrowding strategies in the
ED resulted in reduced risk of 30-day mortality for patients admitted from the ED within
tertiary hospitals in West Australia [40]. Similarly, Boden et al. (2015) found strategies to
reduce medical unit bed occupancy resulted in reduced mortality for a general hospital in
the United Kingdom [41]. These associations are expected since increased bed occupancy
will reduce the ability for patients from various admission sources, including the emergency
department and the post-anesthesia care unit, to be admitted to a nursing unit where they
would receive the required level of care. Instead of being admitted, these patients are held
in temporary areas unequipped for admitted patient care.

Conversely, Pines et al. (2009) showed that occupancy in terms of high ED waiting
room census was associated with increased risk of mortality for patients with acute coronary
syndrome [42], however an increased number of admitted patients during ED stay and the

delay in transfer to an inpatient bed were not associated with increased mortality. Viccellio



et al. (2009) found no association between patients admitted from the ED who experienced
hospital overcrowding, measured in terms of admitted patients being held in an inpatient unit
hallway until an inpatient bed becomes available, and in-hospital mortality [43]. Iwashyna
et al. (2009) found no association between ICU patients admitted on days with high census
and increased mortality for patients treated at 108 ICUs [44]. In situations where volume is
measured as the number of surgical procedures performed annually, the association between
increased volume and decreased mortality is indicative of increased experience and skill [45].
Researchers have noted that the lack of an association between increased bed capacity and
reduce mortality may be likely due to the lack of available data associated with external
factors related to both bed capacity and mortality [39]. Additionally, when studies are
performed across multiple hospitals such as the Birkmeyer et al. (2002) and Fisher et al.
(2000) study, detailed patient demographic and health condition characteristics may not be

readily available or standardized across all sites ([45]; [39]).

1.8.2 Hospital Resource Factors & Readmission
Nurse Staffing €4 Readmission

Similar to the staffing level effect on mortality, researchers observed an association between
staffing levels and readmission. Increased nurse staffing levels were associated with a reduc-
tion in unplanned readmissions for patients between 20 to 85 years old who received coronary
artery bypass surgery or heart valve procedures at 114 Belgian hospitals [7]. Acute care hospi-
tals in Maryland participating in the Affordable Care Act’s Hospital Readmission Reduction
Program (HRRP), a program penalizing hospitals for excessive readmission rates for Medi-
care beneficiaries, had lower estimated readmission rates when they had higher staffing levels
[46]. For acute myocardial infarction (AMI), heart failure, and pneumonia patients treated
in a California, Pennsylvania, and New Jersey hospital, increased patient to nurse ratio was
associate with increase 30-day readmission rates [47]. For children presenting to the hospital

with common medical-surgical conditions, an increase in nurse-to-patient ratio was associ-



ated with an increased risk of 15-30 day readmission [48]. These associations are expected
since increased staffing levels would reduce the chance of delayed care during the patient’s
hospital visit, allowing the patient to receive appropriate care. It has been hypothesized that
nursing shortages may result in increased readmission because it may adversely affect the
nurses ability to provide adequate after care and medication education prior to the patient
being discharged. Improper education may result in the patient’s health declining after dis-
charge, requiring the patient to be readmitted. In a review of previous studies, Butler et
al. (2011) found that the addition of nursing staff to assist with discharge education did not
result in decreased readmission or mortality for patients [49]. These findings may indicate
that increased overall staffing levels, not only additional discharge nurses, may assist in the

prevention of readmissions.

Resource-Related Temporal Factors € Readmission

Time of day and day of week were also found to have an association with risk of readmission.
ICU patients discharged after-hours (6:00pm-6:00am) were found to have an increased risk of
readmission for patients discharged from an Australian or New Zealand ICU participating in
Australian and New Zealand Intensive Care Society Adult Patient Database (ANZICS APD)
[21]; [23]; [50]). Similar to the study findings regarding the association between resource-
related temporal factors and mortality, it is expected that readmissions would increase if
patients are discharged during time periods where resources cannot be accessed. For instance,
a patient discharged during off-hours may not be able to access specialty care, but a decision
is made to discharge the patient to reduce costs associated with increased length of stay.
Consequently, associations have been found between shortened length of stay for patients in
the ICU and increased likelihood of readmission [51]. In cases of short length of stay and
off-hours discharge, required patient care is commonly inaccessible, possibly explaining the

association with increased readmission.



10

Bed Availability & Readmission

Limited bed capacity were found to have an association with readmission. High patient
turnover, measured as the number of annual patient discharges per bed, was associated with
increased risk of 30-day readmission for patients treated in a psychiatric hospital [52]. Pa-
tients admitted to a neuroscience critical care unit on days with high patient inflow (patient
admissions to the ICU > 10) had an increased risk for unplanned readmission to the ICU
within 72 hours of being transferred to a nursing unit providing lower level of care [53].
Chrusch et al. (2009) found that increased quarterly bed occupancy is associated with both
increased risk of premature deaths and ICU readmissions at a Canadian tertiary teaching
hospital, while Town et al. (2014) found reduced ICU bed availability is associated with in-
creased risk of readmission for patients discharged from a academic medical center ICU ([54];
[55]). Additionally, Blom et al. (2015) found an association between patients discharged dur-
ing times with high inpatient bed occupancy and increased risk of 30-day readmission [56].
Reduced bed availability has the potential to affect patient care throughout the patient’s
stay. Upon admission through the ED during times with high bed occupancy, an admitted
patient may be held in the ED or placed in the hallway until a bed becomes accessible ([57];
[43]). During their hospital stay, high bed occupancy may increase staff workload, which has
been found to have an adverse effect on patient health outcomes ([18]; [58]). Both instances

may adversely affect the care received during the hospital stay, resulting in readmissions.

1.8.3  Controlling for Patient Risk Factors

The aforementioned research studies controlled for variables that are considered risk factors
for their given patient populations. The risk factors controlled in mortality studies were
similar to readmission studies. Controlled patient risk factors include: age; gender; race;
existing health conditions, such as diabetes, stroke, and cancer; socioeconomic factors, such
as marital status and education level; temporal factors, such as season, day of week, and shift;

severity of illness; risk of mortality; admission source; types of diagnostic and therapeutic
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procedures provided; length of stay; diagnosis categories; intensity of treatment; laboratory
test findings; insurance payor; number of previous readmissions; and discharge location. In
addition to studies exploring the associations between limited hospital resource factors and
patient health outcomes, other research assessed the associations between patient risk factors
and mortality and/or readmission. The patient risk factors included in these studies mirrored
the patient risk factors included in the resource factors studies.

Age, sex, pre-existing health conditions/comorbidities ([59]; [60]; [61]; [62]; [63]); ad-
mission through the emergency department [15]; admission type/source ([17]; [30]); elective
surgery [64]; payor type [62]; ICU procedures [36]; and length of stay ([65]; [66]; [67]) have
been included in studies aimed at finding associations between potential patient risk factors
and mortality.

Age, sex, ethnicity ([68]; [69]; [70]; [71]); previous admissions ([68]; [48]); pre-existing
health conditions/comorbidities ([72]; [70]; [73]); severity of illness [74]; and admission source
[50] have been included in studies aimed at finding associations between potential patient
risk factors with readmission.

A portion of studies included unit- and/or hospital-level factors. Nursing-unit factors
include nurse gender; staffing level; education level; and years of experiences. Hospital
factors include staffing level; number of beds; location (ie. urban or rural); annual patient

volume; technology; teaching status; and ownership ([15]; [7]; [75], [16]).

1.3.4 Patient Populations

The patient population featured in adverse health outcome studies generally focused on the
patient health outcomes of the following patient populations: Medicare patients; patients
admitted to or discharged from the ICU; patients admitted from the ED; or patients ad-
mitted after surgery. Few studies have used a hospital’s entire patient population that also
considered difference in age groups, insurance types, and admission sources.

Patient populations that were assessed for mortality studies include surgery patients ([15];

[17]; [7]); acute myocardial infarction (AMI) patients ([62]; [26]); pneumonia patients within
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the ICU [76]; intensive/critical care unit (ICU) patients ([64]; [18]; [21]; [77]; [28]; [23]; [29];
130]; [31]; [78]; [79]; [54]; [80]; [44]; [22]); emergency department admissions ([24]; [36]; [32];
[33]; [34]; [43]; [40]; [42]; [35]; [41]); medicare patients ([45]; [19]; [39]); neonatal [81]; patients
admitted to medicine units [25]; pediatric patients [58]; and AMI, congestive heart failure
(CHF), chronic obstructive pulmonary disease (COPD), pneumonia, and stroke patients [75].

Patient populations that were assessed for readmission include intensive/critical care
patients ([64]; [53]; [54]; [7]; [63]; [82]; [21]; [77]; [23]; [50]; [55]); adult Coronary Artery Bypass
Grafting (CABG) patients [7]; heart failure and pneumonia [83]; medicare beneficiaries ([46];
[47]); and pediatric patients [48].

The selection of AMI, CHF, and pneumonia patient populations may be explained by
the public reporting of hospitals’ patient health outcome performance as well as hospital
reimbursement programs for Medicare beneficiaries with these health conditions ([6]; [13]).
Additionally, pneumonia, CHF, and COPD, and patients who have post-procedure compli-
cations are some of the most common health conditions treated in US hospitals ([62]; [76]).
Focusing on these patient populations addresses health outcomes for the majority of patients
treated in hospitals and would assist hospitals with obtaining the maximum reimbursement.
The intensive/critical care unit patient population may have been of interest, especially for
the readmission studies, due to the higher costs of providing care related to increased resource

consumption for higher acuity patients ([64]).

Although specific patient groups included in the previous literature were selected based
on the patients groups with highest hospital utilization, resource factors may also affect other
patient groups who present to the hospital with less common health conditions or who are
treated in nursing units who typically care for lower acuity patients. Future studies planning
to include all patient populations should include the aforementioned risk factors to account

for the differences in patient health outcomes between the various patient groups.
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1.4 Problem Statement

To date, research has not explored the association between resource factors levels on both
the day of admission and the day of discharge with readmission and mortality for all patients
regardless of age, admission source, nursing unit, and health condition. Assessing associations
for all patients throughout the hospital would provide a better understanding of how hospital
resource factors affect patient health outcomes. Consequently, the patient- and nursing- unit

risk factors for all patients have not been identified.

Depending on data availability and study aim, previous research has focused on resource
factors during each shift ([55]; [18]), during the time of admission ([34]; [38]), or during the
time of discharge [53]. Typically mortality studies assess variables during day of admission,
while readmission studies assess variables during the day of the last discharge. It is hy-
pothesized that dynamic levels of resource factors throughout a patient’s length of stay can
effect patient outcomes. For this reason, resource factors will be assessed on both the day of

admission and day of discharge for each patient.

Supply and demand measures, such as patient to nurse staffing ratios and bed occupancy,
have been included in similar studies, however the supply and demand of hospital service
has not been included in similar studies. Service-mix is defined as the scope and range of
services provided [84]. The scope and range of medical specialties offered by a nursing unit,
also known as service lines, can be used to measure service-mix. Demand for these services
can be measured as the number of patients within a given unit who are treated under a service
line offered by a given unit. Both supply and demand measures have been included in studies
in order to account for the heterogeneity amongst different hospitals [84]. Including both
supply and demand at the unit level accounts for the both the supply of resources available
to patients and the demand of those resources in terms of resource utilization.

Service mix variables include the number of services offered and the number of procedures
performed [84]. The available dataset used for the research described in this dissertation does

not provide data on the number of procedures performed specifically at the patient level,
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however service and service line information is provided in the report. The University Health
System Consortium, a consortium of academic health systems in the US of which UWMC
is a member, has defined a set of services lines as a means to standardize groups of services
across their different health systems. Within UWMC, a service is defined as the primary
specialty service a patient requires during their hospital stay. A patient is classified under a
service based on the medical specialty needs and medical team providing care.

The difference in the association between hospital resource factors and patient health
outcomes between units may be due to the number of resources and /or the variety of services
offered from unit to unit. The number of resources offered by a unit can be measured by
the number of nursing staff and beds. It is hypothesized that an increase in the number
of resources results in a decreased risk of adverse health outcome. It is hypothesized that
more service variety offered on a nursing unit, which could be indicative of nurse workload
complexity, may adversely affect patient health outcomes. Research identifying the hospital
resource factors occurring on the patients day of admission and/or on their day of discharge,
while controlling for supply and demand measures for each unit, can help healthcare providers

determine methods to mitigate the occurrence of readmissions and mortalities.

1.5 Statement of Purpose

This research will focus on the relationship between resource factors on a patient’s day of
admission and discharge and the patient-specific, evidence-based outcome measures of risk-
adjusted 30-day risk adjusted readmission and mortality within the hospital setting.

The resource factors included in the study are as follows:

Registered Nurse (RN) Unit Staffing: The number of registered nursing staff, not in-
cluding other healthcare providers such as physicians and licensed practical /vocational
nurses, on a nursing unit who are scheduled to work during the shift of a patient’s

admission to a unit, discharge from a unit, or death in a unit

RN Unit Vacationing: The number of nursing staff on a nursing unit who are scheduled
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to be on vacation during the shift of a patient’s admission to a unit, discharge from a

unit, or death in a unit

Unit Bed Availability: The number of beds on a nursing unit that are not occupied by
another patient on the day of a patient’s admission to a unit, discharge from a unit, or
death in a unit. This is calculated as the midnight census subtracted from the number

of beds offered by the unit.

Admissions to the Unit (Resource limitation Proxy Measure): The total number
of patients who were admitted to the same nursing unit on the day of a patient’s

admission to a unit, discharge from a unit, or death in a unit

Discharges from the Unit (Resource limitation Proxy Measure): The total num-
ber of patients who were discharged from the same nursing unit on the day of a patient’s

admission to a unit, discharge from a unit, or death in a unit

Weekend (Resource limitation Proxy Measure): A patient’s admission to a unit, dis-

charge from a unit, or death in a unit between 12:00am Saturday to 11:59pm Sunday

Evening Shift (Resource limitation Proxy Measure): A patient’s admission to a unit,

discharge from a unit, or death in a unit between 3:00pm to 10:59pm

Night Shift (Resource limitation Proxy Measure): A patient’s admission to a unit,

discharge from a unit, or death in a unit between 11:00pm to 6:59am

The count of admissions to and discharges from nursing units will serve as proxy measures
for nursing workload, and an association with increased risk of adverse health outcomes is
hypothesized. Evening shift, night shift, and weekend measures will serve as a proxy measures
for the availability of diagnostic and therapeutic services. Patient characteristics, such as age,

gender, sex, and existing health conditions, are factors that may be associated with resource
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factors variables and patient health outcome variables. The various distributions of patients
for each patient characteristic may confound the comparison between system and patient
health outcome variables. For this reason, patient risk factors significantly associated with
each adverse health outcomes will be identified and adjusted accordingly in order to observe
accurate associations for the hospital resource factors. Additionally, unit-level characteristics,
such as service provision complexity, and the demand for these resources and services, may
further confound the association. The following are the definitions of demand and supply
ratio measures, where the demand is measured in terms of census and the supply is measured

in terms of beds, staffing, and services offered:

Census:Bed Ratio: The number of patients occupying a bed divided by the number of
beds offered on the nursing unit at the time of a patient admission to a unit, discharge

from a unit, or death in a unit

Census:Staff Ratio: The number of patients occupying a bed divided by the number of
nursing staff working on the nursing unit at the time of a patient admission to a unit,

discharge from a unit, or death in a unit

Census:Service Ratio: The number of patients occupying a bed divided by the number
of services offered by the unit at the time of a patient admission to a unit, discharge

from a unit, or death in a unit
1.6 Research Questions
The following research questions and hypotheses are to be examined:
Research Question 1 (RQ1): What are the patient risk factors that could potentially in-

fluence the association between resource factors and in-hospital mortality and 30-day read-

mission?
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It is hypothesized that increased risk of 30-day readmission and mortality risk will be signif-
icantly impacted by patient risk factors such as age, sex, existing health conditions, higher
severity of illness, higher risk of mortality, admission source, and length of stay. The inclu-

sion of significant risk factors will result in the risk-adjustment of the models to be examined

in RQ2 and RQ3.

Research Question 2 (RQ2): What are the hospital resource factors that impact in-hospital

mortality and 30-day readmission rates?

Based on the literature, it is hypothesized that each resource factors variable has an in-

dependent association with both adverse health outcome measures.

This RQ will be addressed with crude and risk-adjusted models: 1) 30-day readmission as
a function of significant resource factors variables and 2) in-hospital mortality as a function
of significant resource factors variables. Simple logistic regression models will be developed
to observe the relationship between each isolated resource factors variable and each patient
health outcome to identify the variables with the most significance. Since all patients groups
are included in the study and health outcomes likely vary based on various patient risk fac-
tors, the crude models will need to account for variation introduced by risk factors in order to
compute more accurate resource factors effects. Multiple logistic regression models will then
be developed to observe the influence of the significant resource factors, significant patient

risk factors, and each patient health outcome.

Research Question 8 (RQ3): Does the association between hospital resource factors and
the risk-adjusted 30-day readmission and in-hospital mortality (as defined in RQ2) differ by
nursing unit? If so, do unit-level demand and supply ratio measures explain the unit-to-unit

variation?

It is hypothesized that demand and supply at the unit-level are risk factors that may re-
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sult in differences between the resource factors to patient health outcome associations from
unit-to-unit. The research question will be addressed using both patient- and unit-level risk
adjustment of the models produced in RQ1 and RQ2. To date, service mix measures have
not been included as covariates when studying associations between resource factors and

patient health outcomes.
1.7 Research Implications

The findings made from this research can be used for hospital operations and healthcare
delivery process planning in order to mitigate the risk of readmission and mortality. Poli-
cies can be developed or revised in an attempt to control resource factor levels found to

significantly influence adverse patient health outcomes.
1.8 Organization of the Dissertation

The next four chapters of this dissertation include the methods and data analyses to address
each research question: Chapter 2 goes over RQ1, Chapter 3 goes over RQ2, Chapter 4
goes over RQ3. Chapter 5 uses the overall model developed in Chapter 3 & 4 to develop
prevalent health condition models. Lastly, Chapter 6 provides a summary and discussion
of the contributions and limitations of the proposed study and suggested future work. The
appendices includes a glossary of the variables included in dataset used for this study and

the R programming codes used for the statistical analyses.
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Chapter 2

INFLUENCE OF PATIENT RISK FACTORS ON ADVERSE
HEALTH OUTCOMES

2.1 Introduction

The first research question (RQ1) addresses the potential patient risk factors that influence
the association between resource factors and in-hospital mortality and 30-day readmission.
Based on the literature (Chapter 1), there are several patient risk factors associated with
adverse health outcomes for those treated in an acute care hospital. Demographic informa-
tion such as the patient’s home county, lack of housing status, and primary language spoken;
admission /discharge details such as discharge location (e.g. home or skilled nursing facility);
and health condition information, such as patient receiving palliative and hospice care, have
not been studied for general patient populations.

Previous research showed variables associated with readmission are not necessarily as-
sociated with mortality [64]. Hence, separate models were created for each adverse health
outcome. It is hypothesized 30-day readmission and mortality risk are significantly associ-
ated with age, sex, existing health conditions, severity of illness, risk of mortality, admission

source, and length of stay groups.
2.2 Method

2.2.1 Data Overview

The Human Subjects application 50094 EB “Association among Patient Demographics,
Throughput, and Health Outcomes” was approved by the University of Washington In-
stitutional Review Board (IRB) in Subcommittee EB under Expedited Category 5 meeting
all requirements for approval outlined in 45 CFR 46.111 on September 2nd, 2015.
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Upon IRB approval, a report titled “Patient Detail Report” was provided for this study
from the University of Washington Medical Center (UWMC). This report features patient-
level and unit-level information, such as patient demographics, patient health conditions,
and service(s) provided by the unit, for each individual patient encounter. The UWMC’s
Center for Clinical Excellence’s Clinical Analytics & Amalga Team provided the Patient
Detail Report on December 18th, 2015. Each row of the report corresponds to an individual
patient encounter at the hospital, where a patient encounter is defined as a single patient
visit. The population included in this report were all patients admitted and discharged from
this hospital between January 1st, 2012 to July 30th, 2015. A total of 71959 patient visits
were available for this time frame. The full list of variables included in the report are featured

in Appendix A.

2.2.2 Adverse Health Outcomes Data

The administrative data collected at every discharge includes health outcomes observed
between the time the patient was admitted to the hospital to the time the patient was
discharged for each hospital visit. For this reason, the adverse health outcomes included in
this study are 1) in-hospital mortality and 2) 30-day readmission to UWMC. To identify
in-hospital mortalities, the patient detail report included a variable indicating whether or
not the patient died during their visit; the discharge date and time for patients with a death
code = 1 was used as the mortality date and time. Multiple steps were taken to identify
patients readmitted within 30-days. First, patient account numbers that were featured on
multiple patient encounters were identified. Of these patients, the date and time of the latest
admission was compared with the date and time of the previous discharge; encounters with
a discharge to admission time of < 30days were identified. For these patients, a readmission
code = 1 was given to the encounter associated with the date and time of the previous

discharge.
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2.2.3 Data Segmentation

This current study used an approach similar to Badawi & Breslow (2012), where readmission
and post-discharge death after treatment in the intensive care unit was predicted. A similar
cohort assignment approach for model building (training) and model validation (testing)
purposes is considered in this current study. For this study, each patient visit was randomly
assigned to either a training or testing cohort, where a 2 to 1 assignment ratio was used.
Prior to cohort assignment, the patient visits with missing values for the variables of interest
were removed from the data set. The cohort flow chart (figure 2.1) details the number of
patient visits removed due to missing values, and the number of patient visits assigned to
each cohort. Of a total 71959 patient visits, there were 68209 patient visits featuring values
for every variable of interest in this study within the study time frame of interest. In order
to ensure observation and short stay patients were not included in the study, all patients
with a length of stay less than 24hrs were excluded (n=3193); 65016 patient visits remained
in the dataset. A total of 43344 patient visits were randomly assigned to the training cohort

and 21672 patient visits were assigned to the testing cohort.

2.2.4 Data Analysis
Descriptive Analysis

Descriptive statistics, histograms, and box plots were used to assess distributions of each
discrete variables in the dataset, which includes age and length of stay. To ensure the
variable values are equally distributed across each cohort dataset, descriptive statistics are
summarized and Chi-Squared (y?) tests were performed comparing the training and testing

datasets.

Binomial Logistic Regression

Based on the dichotomous nature of each adverse health outcome variables, binomial logistic

regression modeling was appropriate to assess the association between patient characteristic



factors, as featured in equation 2.1.

T n
log {m} = fo + 321 Bjis

where,

7 = Pr(adverse health outcome)

By = intercept

B; = coefficient for the 4t patient risk factor

x;; = value of the 4 patient risk factor for the i patient encounter
1 = 1...m patient encounters

j = 1..n patient risk factors
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Figure 2.1: Cohort Assignment Flow Chart(a)
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The null and alternative hypothesis for RQ1 is as follows:

HO : Bl?ﬁ% 7ﬁn =0
Hl : 617527 a/Bn 7é 0

Based on the literature, it is hypothesized that age; health conditions; severity of illness;
risk of mortality; admission source; and length of stay are significant risk factors.

The odds ratio (OR), the expected percent change in the odds of the adverse health
outcome y; occurring for every 1-unit increase of a given explanatory variable x; holding all

other explanatory variables fixed, is explained by equation 2.2.

OR = ¢Pi (2.2)

Binomial Logistic Regression Analytical Method
The following are the 4 assumptions of logistic regression models as defined by Stoltzfus
(2011):

1. Independence of errors

2. Linearity in the logit of continuous explanatory variables

3. Absence of influential cases

4. Absence of multicollinearity

Since each patient encounter in the dataset is independent of other patient encounters, the
independence of errors assumption is met. There are no continuous patient risk factors
featured in this study, so assumption 2 cannot be violated. Assumptions 3 & 4 were addressed
as the models were built.

Prior to building the model, the number of cases by nursing unit was assessed to ensure

units included in the study were units where adverse health outcomes occurred, especially
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when studying associations with in-hospital mortality. Next, a y? test was performed to
assess the independence of each patient risk factor for each cohort, indicated by a p-value
> 0.05. The number of events per variable was also assessed to ensure there were at least
10 events per patient risk factor [85]. Next, Cook’s distance plots were used to identify
influential cases (Logistic Regression Assumption 3). Any cases with a Cook’s distance
greater than 1 were removed [86]. A regression was initially performed using the training
dataset for each model. A backwards stepwise approach was used to determine the significant
variables within each model. The full model included all dummy variables and the discrete
variables of age and length of stay. If any of the discrete variables were insignificant, then
these variables were replaced by a dummy-variable representation and their p-value will be
observed for significance. The dummy variable for Age was Age> 65 years old. This value
was selected to correspond with other similar observational studies that included Medicare
beneficiary populations, who are all 65 years of age and older. The dummy variable for the
length of stay was length of stay > 7 days, selected since the average length is approximately
7 days for the patient encounters in the dataset.

Once the significant patient risk factors are identified for the model, the variance inflation
factor (VIF) was calculated for each significant patient risk factor. The VIFs were used to
determine if multicollinearity existed amongst the significant patient risk factors (Logistic
Regression Assumption 4), which is identified when the VIF for a variable is greater than 4
[87]. If the VIF for a variable was greater than 4, the variable was removed from the model.

The stopping condition for the backwards stepwise regression occurs when all variables are
significant with a p-value < 0.05. The coefficient estimate, standard error, odds ratio (OR)
and confidence interval, and the p-value for the significant variables of the final binomial

logistic model are presented.

Lasso Logistic Regression

Each model includes 30 potential risk factors. To counter the possibility of overfitting each

adverse health outcome model, least absolute shrinkage and selection operator (LASSO)
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logistic regression shrinking method was used to fit the model by minimizing a a negative
version of the binomial log-likelihood function, which includes a penalty. The objective

function for the penalized binomial logistic regression is featured in equation 2.3,

N N
_ 1 . .
min — | — i+ (Bo — 27 B) — log(1 + ePo—=i®y | 4 ) i 2.3
min = | ;1 yi - (Bo — z; ) — log( ) ;1 | Bi | (2:3)

where the penalized portion is explained by the term featured in equation 2.4.
N
A) 16| (2.4)
i=1

Lasso Logistic Regression Analytical Method

The penalty parameters of the LASSO logistic regression (LLR) is A. To determine A, a
10-fold cross-validation method was used where the selected A maximized the area under
the receiver operating characteristic curve (AUC). The LLR with the a = 1 and selected A
was used to fit the model. As performed with the binomial logistic regression analysis, the
discrete variables age and length of stay were added to the model first. Additionally, dummy
variable representing the discrete variables were added and assessed for significance. The
model includes the variable(s) that are significant indicated by an OR # 1.

The odds ratio (OR) for the significant variables of the final LLR model are presented. For
LLR models, the confidence interval is not included since the standard errors are difficult
to calculate for LLR models since the LASSO estimate function is non-differentiable and

non-linear [88].

Final Model Selection

Finally, the analytical method—binomial or LASSO logistic regression—resulting in the best
performing model was selected as the final model for each adverse health outcome. After
all the significant variables were added to the model for the training cohort, the model was

validated against the testing cohort. Binary and Lasso regression models were fit to the
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testing cohort data by including only variables significant for the training cohort. The model
performance was measured in terms of discrimination and overall goodness-of-fit.

Discrimination, or concordance, indicates how well the model classifies patients with (true
positive) and without (true negative) the adverse health outcome. The AUC is commonly
used to measure discrimination where the calculated value varies between 0.5 to 1, where 1
indicates absolute discrimination ([89]; [90]).

Once the model was built and validated where only significant explanatory variables
remain in the model, the Hosmer-Lemeshow goodness-of-fit test was performed. Goodness-
of-fit compares the predicted to observed model values. The goodness-of-fit test selected for
this study was the le Cessie-van Houwelingen-Copas-Hosmer unweighted sum of squares test
for global goodness-of-fit because of its performance compared against other goodness-of-fit
tests for logistic regression models [91].

Similar studies have used AUC and Hosmer-Lemeshow goodness-of-fit tests to assess
models predictive performance. An AUC > (.74 has been categorized as ”"adequate” dis-
crimination [20]. Similar studies have found a mortality AUC of 0.74 [20] and readmission
AUC between 0.62 to 0.75 [82]. Therefore an AUC > 0.62 for readmission and AUC > 0.74

for mortality was used as a benchmark for model discrimination performance.

2.3 Results

Unit Selection

Prior to building the binomial and LASSO logistic regression models, the distribution of
patients for each unit was assessed to determine if there are any nursing units to be excluded
from the study. A nursing unit was excluded if there were 0 adverse patient health outcome
cases in either the training or testing cohort. The 30-day readmission cases for each unit is
featured in table 2.1. Nursing units 2SP, 7S, and 8NA had 0 cases in the training cohort
dataset, and 7S and 8NA had 0 cases in the testing cohort. For that reason, these units

were excluded from the dataset used to model 30-day readmission. The in-hospital mortality
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cases for each unit is featured in table 2.2. Nursing Units 2NN, 2SP, 4S, 5S, L&D, 6S, 7N,
7S, 8N, 8NA, NBN, and General had 0 cases in the training cohort dataset. These nursing
units except 8N and General Units also had 0 in-hospital mortality cases. Therefore, these

units were excluded from the dataset used to model in-hospital mortality.
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2.3.1 30-day Readmission

Descriptive Statistics Summary

After removing aforementioned nursing units, a x? test was performed to assess the indepen-
dence of each patient risk factor and the cohorts indicated by a p-value > 0.05. Simulated
p-value was performed to estimate the p-value for age and length of stay discrete variables.
The results of the x? tests are summarized in table 2.3. Of the 30 patient risk factors,
Medicare was the only risk factor with a p-value = 0.01, indicating that random assignment
of patients into each training and testing cohort may not have appropriately distributed
Medicare beneficiaries into each cohort. Patient risk factors ”hospice care” and ”stroke” had
fewer than 10 30-day readmission cases, so they were not included in the model. Since the
other patient risk factors were appropriately distributed between each cohort, modeling with

all patient risk factors was performed with all risk factors.

Next, the age and length of stay distribution for all patients included in the full dataset
was observed for each adverse health outcome. Figure 2.2 illustrates the age distribution for
patients who did and did not have a 30-day readmission. The patients who did not have a
30-day readmission had a average age of 45.26 years, and the patients who were readmitted
within 30-days had an average age of 51.53 years. Based on the box plot, the age distribution
for patients who were readmitted within 30days had less variation than those who were not

readmitted within the same time frame.

Figure 2.3 illustrates a boxplot and histogram of the length of stay for patients who were
and were not readmitted within 30 days. The length of stay for patients who were readmitted
was 7.53 days on average compared with the average length of stay of 6.71 days for patients

who were not readmitted.



Table 2.3: Descriptive Statistics Summary:

30 Day Readmission
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2

x2 (simulated)

Training Cohort Testing Cohort X
(n=7028) (n=3568) p-value p-value

Demographics
Age, years mean (sd) 51.40(16.67) 51.78(17.01) 0.8101
Race/Ethnicity: Black or African American n(%) 580(8.25) 287(8.04) 0.7388
Race/Ethnicity: Hispanic n(%) 294(4.18) 159(4.46) 0.5447
Sex: Male n(%) 3653(51.98) 1884(52.80)  0.4337
Home County: King County n(%) 3091(43.98) 1541(43.19) 0.4498
Lack of Housing n(%) 62(0.88) 22(0.62) 0.1799
Payor Group: Medicare n(%) 2345(33.37) 1279(35.85) 0.0117
Primary Language: English n(%) 6607(94.01) 3374(94.56) 0.2684
Primary Language:Spanish OR Chinese n(%) 183(2.60) 88(2.47) 0.7199
Admission & Discharge Details
Emergency Department Admit n(%) 1877(26.71) 1012(28.36) 0.0742
Discharge Status: Home/Self-care n(%) 5961(84.82) 2994(83.91) 0.2345
Length of Stay (Days) mean(sd) 7.64(9.29) 7.32(8.89) 0.3448
ICU Stay n(%) 1232(17.53) 632(17.71)  0.8360
Discharge during Summer 1836(26.12) 937(26.26) 0.8978
Discharge during Winter 1724(24.53) 860(24.10) 0.6454
Health Condition
Risk of Mortality n(%)

Extreme 371(5.28) 208(5.83)  0.2570

Minor 1808(25.73) 857(24.02)  0.0588
Severity of Illness n(%)

Extreme 1100(15.65) 550(15.41)  0.7722

Minor 722(10.27) 339(9.50)  0.2236
Procedure n(%) 5820(82.81) 2968(83.18) 0.6498
Acute Myocardial Infarction n(%) 38(0.54) 22(0.62) 0.7225
Cancer n(%) 3653(51.98) 1876(52.58)  0.5725
Chronic Obstructive Pulmonary Disease n(%) 31(0.44) 15(0.42) >0.999
Heart Failure n(%) 220(3.13) 115(3.22) 0.8421
Pneumonia n(%) 70(1.00) 39(1.09) 0.7144
Diabetes n(%) 1413(20.11) 766(21.47)  0.1062
Sepsis n(%) 519(7.38) 271(7.60)  0.7257
Stroke n(%) 7(0.10) 9(0.25)  0.0994
Palliative Care n(%) 63(0.90) 38(1.07) 0.4603
Hospice Care n(%) 2(0.03) 1(0.03) >0.999
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Binomial Logistic Regression

The factors that may have an impact were examined prior to creating the binomial and
LASSO logistic regression models with a Cook’s distance plot. Figure 2.4 illustrates the
Cook’s distances, including the three observations with the highest Cook’s distances. Since
none of the observations had a Cook’s distance > 1 indicating influence, none of the obser-

vations were excluded from the dataset.

Cook's distance
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Figure 2.4: Cook’s Distance Plot for 30-day Readmission Model

Next, the backwards stepwise approach was performed. At each step, the explanatory
variable with the highest p-value was removed from the model and the model was rebuilt
until all the variables remaining were significant with p-values< 0.05.

Table 2.4 summarizes the model coefficient estimates and odd ratios (OR) for the signif-

icant variables. An decreased risk of 30-day readmission was indicated with an OR< 1, and
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increased risk of 30-day readmission was indicated with an OR> 1. The residual deviance
was 34343 in comparison to the null deviance of 38421, indicating the null binomial logistic

regression model improved with the addition of the significant patient risk factors.

There were a total of 19 patient risk factors associated with 30-day readmission. There
were 8 patient risk factors associated with a decreased risk of 30-day readmission, which were
re receiving palliative care; being treated in the ICU; being classified as having a minor risk
of mortality; being classified as having a minor severity of illness; being treated for acute
myocardial infarction (AMI); being treated for pneumonia; being classified as having an
extreme risk of mortality; and being a medicare beneficiary. These results correspond with
common knowledge regarding these patient risk factors. Palliative care is provided to those
with serious illness; these patients as well as patients classified as having an extreme risk of
mortality are more likely to pass away than to be readmitted. Those patients classified as
having either minor risk of mortality and/or minor severity of illness should be less likely to
be readmitted. As observed in the literature review, efforts have been taken by hospitals to
reduce readmission rates for ICU patients due to the high costs of treatment and Medicare

beneficiaries due to the reduction in Medicare reimbursement.

The patient risk factors associated with increased risk of 30-day readmission were age;
length of stay; having a procedure; being diagnosed with diabetes; speaking English as a
primary language; self-identifying as being black/African-American ethnicity/race; being
admitted from the ED; being classified as having a extreme severity of illness; being diag-
nosed with heart failure; being discharged home; and being diagnosed with cancer. Age and
length of stay were only slightly associated with an increased risk of 30-day of readmission
with an OR=1.0020[95%C : (1.0002, 1.0038)] and OR=1.0050[95%C'I : (1.0024, 1.0075)], re-
spectively. These variables were included in the model since they have been associated with
30-day readmission in similar previous studies discussed in the literature review. Chronic dis-
eases of diabetes and cancer may require frequent hospital visits, and are therefore expected

to be associated with increased 30-day readmission risk.
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LASSO Logistic Regression

To build the LASSO logistic regression model, a 10-fold cross-validation was used to identify
the value of A that maximized the model discrimination, measured in terms of AUC. Figure

2.5 illustrates the cross-validation curve used to determine the A parameter value.

Cross Validation Curve: 30-day Readmission
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Figure 2.5: Cross Validation Plot for 30-day Readmission

The figure shows the AUC value range for a 10-fold cross validation corresponding to
each of the 60 different values of A. On the y-axis is the AUC; on the lower x-axis are
the log(lambda) values, and on the upper x-axis are the number of significant explanatory
values of the LASSO regression model corresponding to the A value that maximizes the AUC
for the cross-validation. The leftmost vertical dashed line indicates the minimum A value

that maximizes AUC and the rightmost line indicates the A 4 1se value. For this study the
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A + 1se was used to select the patient risk factors included in the model since it produces a
more conservative model. The A + 1se that maximized AUC was A + 1se = 0.0045, which
corresponds to 14-20 significant explanatory variables included in the LASSO model. The
odds ratio for each significant explanatory variable using the training data and the LLR
approach is featured in table 2.5.

There were a total of 14 variables that were significant in the model. There were a total
of 5 patient risk factors associated with an increased risk of 30-day readmission. Similar to
the binomial logistic regression model, receiving palliative care; being classified with a minor
risk of mortality; being classified with an minor risk of severity of illness; and staying in the
ICU during the patients visit were all associated with a decreased risk of readmission. Age as
a discrete variable was not significant in the LASSO regression model, however the dummy
variable of age > 65 years old was significant. Similar to binomial logistic regression results,
due to cost reduction and reimbursement programs, these findings are expected. There were
a total of 9 patient risk factors associated with increased risk of 30-day readmission, which
includes speaking English as their primary language; identifying as black /African-American;
being diagnosed with diabetes; having a length of stay > 7 days; being admitted from the
emergency department (ED); being classified as having an extreme severity of illness; being
diagnosed with heart failure; being discharged home; and being diagnosed /treated for cancer.
Similar to binomial logistic regression results, it is assumed that sicker patients as indicated
by the extreme severity of illness risk factor, being admitted through the ED and being
treated for a chronic disease, increase the patients likelihood of requiring multiple visits to
the hospital. Similar to age, length of stay discrete variable was not significant in the LASSO
regression model, however the dummy variable of length of stay > 7days was significant in

the model.

Binomial € LASSO Logistic Regression Variable Selection Comparison

The binomial and LASSO logistic regression modeling methods produced similar results in

terms of significant patient risk factors associated with 30-day readmission. Binomial logistic
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regression had a total of 19 significant patient risk factors, while LASSO logistic regression
had a total of 14 significant patient risk factors. For decreased risk of readmission, both
models had receiving palliative care, classifications of minor risk of morality and severity of
illness, and ICU stay in common. The age discrete variable was slightly associated with an
increased risk of readmission in the binomial logistic regression model, while the age dummy
variable was associated with a decreased risk of readmission in the LASSO regression model.
In addition to these similarities, binomial regression methods also found receiving treatment
for AMI and pneumonia; being classified as having an extreme risk of mortality, and being
a Medicare beneficiary are associated with 30-day readmission. Both binomial and LASSO
logistic regression methods shared several patient risk factors associated with increased risk
of 30-day readmission including speaking English as a primary language; self-identifying
as black/African-American; being treated for diabetes, heart failure, and cancer; length of
stay; admission from the ED; classification of extreme severity of illness; and being discharged
home. In addition, binomial logistic regression found patient risk factors of age and receiving

a procedure was associated with increased 30-day readmission.

Final 30-day Readmission Logistic Regression Model Selection

The logistic regression model for patient risk factor association with 30-day readmission
was selected based on AUC and goodness-of-fit test p-values. Table 2.6 summarizes the

performance measures as well as the number of significant patient risk factors for each model.

The AUC and confidence intervals (CI) for both regression models were similar, as fea-
tured in table 2.6 and illustrated in figure 2.6. The similar AUC values indicate each model
had the same ability to classify true positives and true negatives. With a p-value = 0.8120,
the binomial logistic regression had a better goodness-of-fit compared against the LASSO
Logistic Regression model. Due to the better performance in terms of goodness-of-fit, the
binomial logistic regression model was selected to model the patient risk factor association

with 30-day readmission.
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Figure 2.6: AUC Plots for Binomial & LASSO Logistic Regression 30-day Readmission
Models

2.3.2  In-hospital Mortality
Descriptive Statistics Summary

A x? test was performed to assess the independence of each patient risk factor and the cohorts
with significance assessed at a«=0.05. Simulated p-value was performed to estimate the p-
value for age and length of stay discrete variables. The results of the x? tests are summarized
in table 2.7. All 30 patient risk factors had a p-value > 0.05, indicating that random assign-
ment of patients into each training and testing cohort appropriately distributed each patient
risk factor into each cohort for in-hospital mortality. Lack of housing, being discharged
home, treatment for Chronic Obstructive Pulmonary Disease (COPD), and treatment for
stroke each had fewer than 10 cases in each cohort, and were therefore removed from the
model.

Next, the age and length of stay distribution for all patients included in the full dataset
was observed for in-hospital mortality. Figure 2.7 illustrates the age distribution for patients

passed away and survived. The patients who survived had a average age of 53.78 years, and
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the patients who passed away had an average age of 59.13 years.

Age & In-hospital Mortality Box Plot
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Figure 2.7: Box Plot of Age & In-hospital Mortality

Figure 2.8 illustrates a box plot and histogram of the length of stay for patients who
passed away and survived. The mean length of stay for patients who passed away was 14.36
days, compared to the mean length of stay of 7.37 days for patients who did not pass away.
The higher mean length of stay for patients who passed away is expected since patients who
stay in the hospital for longer amounts of time are typically sicker and sicker patients are

more likely to pass away.

Binomial Logistic Regression

Prior to building the binomial and LASSO logistic regression models, potentially influential
factors were assessed. To determine if the dataset includes any potentially influential ob-
servations, a Cook’s distance plot was used to assess Cook’s distances for each observation.
Figure 2.9 illustrates the Cook’s distances, including the three observations with the high-

est Cook’s distances. Since none of the observations had a Cook’s distance > 1 indicating
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Figure 2.8: Length of Stay & In-hospital Mortality Box Plot & Histogram

influence, none of the observations were excluded from the dataset.

Next, the backwards stepwise approach was performed. At each step, the explanatory
variable with the highest p-value was removed from the model and the model was rebuilt

until all the variables remaining were significant with p-values< 0.05.

Table 2.8 summarizes the model coefficient estimates and odd ratios (OR) for the signif-
icant variables. A decreased risk of in-hospital mortality was indicated with an OR< 1, and
increased risk of in-hospital mortality was indicated with an OR>. The residual deviance
was 3514.4 in comparison to the null deviance of 8323.4, indicating the null binomial logistic

regression model improved with the addition of the significant patient risk factors.

There were a total of 8 patient risk factors associated with in-hospital mortality. The 2
patient risk factors associated with decreased risk were having a classification of minor risk of
mortality and receiving treatment for heart failure. The 6 patient risk factors associate with
an increased risk were having a classification extreme severity of illness and risk of mortality;
receiving treatment for sepsis and AMI; staying in the ICU; and receiving palliative care.

The results are as expected since it is assumed patient classified with risk of mortality and
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Figure 2.9: Cook’s Distance Plot for In-hospital Mortality

severity of illness are more likely to pass away than patients classified as having minor risk

of mortality.

LASSO Logistic Regression

To build the LASSO logistic regression model, a 10-fold cross-validation was used to identify
the value of A + 1se that maximized the model discrimination, measured in terms of AUC.
Figure 2.10 illustrates the cross-validation curve used to determine the A parameter value.
The X\ + 1se that maximized AUC was A = 0.0038, which corresponds to 5-7 significant
explanatory variables included in the LASSO model. The odds ratio for each significant
explanatory variable using the training data and the LASSO logistic regression modeling

method is featured in table 2.9.
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Cross Validation Curve: In-hospital Mortality Readmission

24 24 24 22 21 156 9 8 7 56 56 5 4 3 1 1 1 1

P
. ‘O'OOOC'........'
: [}
*%
*
L
(3 ®
teel e o T00e

AUC
0.8 0.9
| |

0.7
|

0.6

log(Lambda)

Figure 2.10: Cross-Validation Curve for In-hospital Mortality

There were 5 significant patient risk factors found using LASSO logistic regression, all
of which were associated with an increased risk of in-hospital mortality. Being classified as
having extreme risk of mortality and severity of illness, receiving treatment for sepsis, staying
the ICU during the visit, and receiving palliative care were all associated with an increased

risk of mortality.

Binomial € LASSO Logistic Regression Variable Selection Comparison

Both the binomial and LASSO logistic regression had similar risk factors associated with
increased risk of in-hospital mortality, including being classified as having extreme risk of
mortality and severity of illness, receiving treatment for sepsis, staying in the ICU during

the visit, and receiving palliative care. Additionally, binomial logistic regression included
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receiving treatment for AMI, which was associated with an increased risk of mortality, while
receiving treatment for heart failure and being classified as having a minor risk of mortality

was associated with a decreased risk of mortality.

Final In-hospital Mortality Logistic Regression Model Selection

The logistic regression model for patient risk factor association with in-hospital mortality
was selected based on AUC and goodness-of-fit test results. Table 2.10 summarizes the
performance measures and the number of significant patient risk factors for each model.
The AUC and confidence intervals (CI) for both regression models were similar as featured
in table 2.10 and illustrated in figure 2.11. The similar AUC values indicate each model had
the same ability to classify true positives and true negatives. With a p-value = 0.0.0030,
the binomial logistic regression had a better goodness-of-fit compared against the LASSO
Logistic Regression model, although both had poor fit. Due to the better performance in
terms of goodness-of-fit, the binomial logistic regression model was selected to model the

patient risk factor association with in-hospital mortality.

Binomial Logistic Regression ROC Curve of Predicted Probabilities Lasso Logistic Regression ROC Curve of Predicted Probabilities
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Figure 2.11: AUC Plots for Binomial & LASSO Logistic Regression In-hospital Mortality
Models
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2.4 Discussion

The binomial and LASSO logistic regression methods showed similar AUC results for both
adverse health outcomes in terms of performance measured by AUC and goodness-of-fit. The
binomial logistic regression did have slightly better goodness-of-fit. There were trade-offs
between AUC and goodness-of-fit performance for each adverse health outcome. Logistic
regression models for 30-day readmission included 19 significant patient risk factors, had
poorer discrimination, and better goodness-of-fit, while in-hospital mortality was less com-
plex with 8 significant patient risk factors, better discrimination, and poorer goodness-of-fit.
Ultimately, binomial logistic regression was selected for the slightly better goodness-of-fit in
comparison to LASSO logistic regression methods.

There were few similarities and several differences between the patient risk factors as-
sociated with increased and decreased risk of both adverse health outcomes. Patients who
were classified with a minor risk of mortality had a decreased risk of both adverse health
outcomes, while patients classified with a extreme severity of illness had an increased risk of
both adverse health outcomes. Interestingly, minor severity of illness was not significantly
associated with decreased risk of in-hospital mortality, but was significantly associated with
decreased risk of 30-day readmission. Both age and length of stay were not significantly
associated with in-hospital mortality but were associated with 30-day readmission.

The adverse health outcome models described in this chapter can be used for risk-

adjustment purposes, as performed in chapters 3, 4, and 5 of this dissertation.
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Table 2.4: Patient Risk Factors & 30-day Readmission Binomial Logistic Regression Model

Coefficient Standard Odds Ratio

p-value

Estimate  Error (CI)
(Intercept) -2.332) 0.0889  0.10(0.08, 0.12) <0.0005 ***
Decreased Risk of 30-day Readmission
Palliative Care -1.7584 0.1349 0.17(0.13, 0.22)  <0.0005  ***
Minor Risk of Mortality -0.8353 0.0379 0.43(0.40, 0.47)  <0.0005  ***
Minor Severity of Illness -0.6042 0.0470 0.55(0.50, 0.60)  <0.0005  ***
AMI -0.5066 0.1763 0.60(0.42, 0.84)  0.0041 ok
ICU Stay -0.3468 0.0388 0.71(0.66, 0.76)  <0.0005  ***
Pneumonia -0.3237 0.1388 0.72(0.55, 0.94)  0.0197 *
Extreme Risk of Morality -0.1422 0.0707 0.87(0.75, 1.00)  0.0445 *
Medicare Beneficiary -0.1265 0.0356 0.88(0.82, 0.94) <0.0005 ***
Increased Risk of 30-day Readmission
Age 0.0020 0.0009 1.00(1.00, 1.00)  0.0293 *
Length of Stay 0.0050 0.0013 1.00(1.00, 1.01)  <0.0005  ***
Procedure 0.1175 0.0381 1.12(1.04, 1.21)  0.0021 ok
Diabetes 0.1412 0.0361 1.15(1.07, 1.24)  <0.0005  ***
Primary Language: English 0.2040 0.0567 1.23(1.10, 1.37)  <0.0005  ***
Race/Ethnicity: Black/African-American 0.2467 0.0510 1.28(1.16, 1.41)  <0.0005  ***
Admission from Emergency Department  0.2567 0.0342 1.29(1.21, 1.28)  <0.0005  ***
Extreme Severity of Illness 0.3107 0.0465 1.36(1.25, 1.49)  <0.0005  ***
Heart Failure 0.3801 0.0824 1.46(1.24, 1.72)  <0.0005  ***
Discharge Status: Home/Self-care 0.4491 0.0407 1.57(1.45, 1.70)  <0.0005  ***
Cancer 0.9049 0.0318 2.47(2.32, 2.63) <0.0005  ***

Total 30-day Readmission Cases in Training Dataset = 7028

Null Deviance = 38421
Residual Deviance = 34343




Odds Ratio

(Intercept)

0.1685

Decreased Risk of 30-day Readmission

Palliative Care 0.2693
Minor Risk of Mortality 0.4312
Minor Severity of Illness 0.6081
Age> 65 0.7815
ICU Stay 0.8011
Increased Risk of 30-day Readmission

Primary Language English 1.0317
Race/Ethnicity: Black/African-American 1.0414
Diabetes 1.0748
Length of Stay> 7days 1.0972
Admission from Emergency Department 1.1574
Extreme Severity of Illness 1.1606
Heart Failure 1.2390
Discharge Status: Home/Self-care 1.3597
Cancer 2.3659

Total 30-day Readmission Cases = 7028
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Table 2.5: Patient Risk Factors & 30-day Readmission LASSO Logistic Regression Model



47

Table 2.6: Performance Summary for Binomial & LASSO Logistic Regression 30-day Read-

mission Models

Total Significant Goodness-of-Fit
AUC(CI)
Variables p-value
Binomial Logistic Regression 19 0.74(0.73, 0.75) 0.8120

LASSO Logistic Regression 14 0.74(0.73, 0.75) <0.0005




Table 2.7: Descriptive Statistics Summary: In-Hospital Mortality
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2

x2 (simulated)

Training Cohort Testing Cohort X
(n=917) (n=471) p-value p-value

Demographics
Age, years mean (sd) 58.77(17.63) 59.82(17.20) 0.9900
Race/Ethnicity: Black or African American n(%) 41(4.47) 25(5.31) 0.5752
Race/Ethnicity: Hispanic n(%) 31(3.38) 19(4.03) 0.6409
Sex: Male n(%) 519(56.60) 269(57.11)  0.8996
Home County: King County n(%) 378(41.22) 211(44.80) 0.2227
Lack of Housing n(%) 4(0.44) 2(0.42) >0.999
Payor Group: Medicare n(%) 442(48.20) 222(47.13) 0.7490
Primary Language: English n(%) 845(92.15) 441(93.63) 0.3716
Primary Language:Spanish OR Chinese n(%) 26(2.84) 11(2.34) 0.7103
Admission & Discharge Details
Emergency Department Admit n(%) 327(35.66) 174(36.94) 0.6802
Discharge Status: Home/Self-care n(%) 0 0 NA
Length of Stay (Days) mean(sd) 14.46(19.37) 14.10(17.22) 0.8361
ICU Stay n(%) 668(72.85) 334(70.91)  0.4853
ICU Length of Stay for All patients(Days) mean(sd) 6.81(13.27) 6.08(10.42) 0.8001
ICU Length of Stay for ICU patients(Days) mean(sd) 9.36(14.77) 8.60(11.50) 0.7501
Discharge during Summer 247(26.94) 129(27.39)  0.9077
Discharge during Winter 201(21.92) 124(26.33) 0.0769
Health Condition
Risk of Mortality n(%)

Extreme 420(45.80) 199(42.25) 0.2289

Minor 20(2.18) 10(2.12)  >0.999
Severity of Illness n(%)

Extreme 546(59.54) 284(60.30)  0.8306

Minor 6(0.65) 5(1.06)  0.6237
Procedure n(%) 822(89.64) 424(90.02)  0.8979
Acute Myocardial Infarction n(%) 24(2.62) 11(2.34) 0.8916
Cancer n(%) 432(47.11) 222(47.13)  >0.999
Chronic Obstructive Pulmonary Disease n(%) 9(0.98) 3(0.64) 0.7261
Heart Failure n(%) 45(4.91) 29(6.16) 0.3925
Pneumonia n(%) 23(2.51) 10(2.12) 0.7950
Diabetes n(%) 241(26.28) 122(25.90)  0.9302
Sepsis n(%) 411(44.82) 199(42.25) 0.3919
Stroke n(%) 7(0.76) 4(0.85)  >0.999
Palliative Care n(%) 693(75.57) 358(76.01)  0.9098
Hospice Care n(%) 3(0.33) 1(0.21) >0.999
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Table 2.8: Binomial Logistic Regression Model for Patient Risk Factors & In-hospital Mor-

tality
Coefficient Standard Odds Ratio povalue
Estimate Error (CI)
(Intercept) -5.7159 0.1085 0.00(0.00, 0.00) <0.0005 ***
Decreased risk of In-hospital Mortality
Minor Risk of Mortality -1.5028 0.2459 0.22(0.13, 0.35)  <0.0005 ***
Heart Failure -0.7789 0.2228 0.46(0.29, 0.71)  <0.0005 ***
Increased Risk of In-hospital Mortality
Extreme Severity of Illness 0.3660 0.1200 1.44(1.14, 1.82) 0.0023 **
Extreme Risk of Mortality 0.6415 0.1302 1.90(1.47, 2.45)  <0.0005 ***
Sepsis 0.9776 0.1172 2.66(2.11, 3.34)  <0.0005 ***
AMI 1.0021 0.2934 2.72(1.48, 4.70) 0.0006 ***
ICU Stay 1.5574 0.1055 4.75(3.87, 5.85)  <0.0005 F**
Palliative Care 4.6093 0.1026 100.42(82.31, 123.07) <0.0005 ***

Total In-hospital Mortality Cases in Training Dataset = 917
Null Deviance = 8323.4
Residual Deviance = 3514.4
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Table 2.9: LASSO Logistic Regression Model of Patient Risk Factors & In-hospital Mortality

Odds Ratio
(Intercept) 0.0051
Increased Risk of In-hospital Mortality
Extreme Severity of Illness 1.1591
Extreme Risk of Mortality 2.0157
Sepsis 2.1672
ICU Stay 2.4630
Palliative Care 82.3235

Total In-hospital Mortality Cases in Training Dataset = 917

Table 2.10: Performance Summary for Binomial & LASSO Logistic Regression In-hospital
Mortality Models

Total Significant Goodness-of-Fit
AUC(CI)
Variables p-value
Binomial Logistic Regression 8 0.96(0.95, 0.97) 0.0030

LASSO Logistic Regression 5 0.96(0.95, 0.97) <0.0005
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Chapter 3

THE INFLUENCE OF HOSPITAL RESOURCES AND
ADVERSE HEALTH OUTCOMES

3.1 Introduction

The second research question (RQ2) examines the resource factors variables that impact
in-hospital mortality and 30-day readmission rates. Access to human, bed, and equipment
resources in the hospital setting directly affect healthcare delivery timeliness and safety.
There is extended boarding time and increased wait time for patients seeking care in the ED
when hospital inpatient beds are filled to capacity with admitted patients. Depending on
the arrival rate of patients, overcrowding can become an issue very quickly as well.

Hospital resources include nursing staff, hospital beds, and equipment. Ideally, when re-
sources are available, patients arriving to the hospital would be seen by a healthcare provider
upon arrival and would not experience delays in care. Similarly, patients discharged during
times when resources are available would receive detailed, easy to follow after care and medi-
cation education since nursing staff would have more time to spend at their patient’s bedside
[10]. During weekends, evenings, and night shifts, it is possible that diagnostic equipment
and beds are unavailable due to the lack of qualified healthcare providers required to utilize
the equipment or beds [14].

The objective of this chapter is to assess the association between potential hospital re-
source factors and adverse patient health outcomes. In the last chapter, significant patient
risk factors associated with 30-day readmission were identified using binomial logistic regres-
sion. Each hospital resource variable will be assessed for influence on adverse patient health
outcomes independently to assess the crude association, and then the association will be

adjusted to account for variations of the hospital resource factors across significant patient
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risk factors.

Resource factors include variables related to resource levels as well as proxy measures as
defined in §1.5. The terms "nurse staffing” and "number of nurses scheduled to work” are
used interchangeably throughout this chapter. It is hypothesized increased nurse staffing,
beds, and equipment are associated with an decreased likelihood of experiencing adverse
health outcomes, while proxy measures for increased nursing workload (i.e. number of ad-
missions and discharges to a nursing unit) and reduced access to diagnostic treatment (i.e.
admission during night shift) are associated with increased likelihood of experiencing an

adverse health outcome.

3.2 DMethod

3.2.1 Data Overview

The data came from administrative reports from the University of Washington Medical
Center (UWMC), an urban teaching hospital in Seattle, WA. Administrative data included
individual patient health outcome, demographics, admission and discharge details, and health
condition information. The population included in this study were all patients admitted and
discharged from this hospital between January 1st, 2012 to July 30th, 2015. A total of 71959
patient visits were available for this time frame. Missing values and patients with a length
of stay less than 24 hours were excluded from the dataset, illustrated in figure 2.1 in chapter

2. A total of 65016 patient visits were available for this time frame.

Staffing Data

Registered nurse staffing data was provided by the UWMC Kronos Scheduling Department.
The staffing dataset included data on the number of nurses scheduled to work and to be on
vacation by shift and date. Data prior to August 19th, 2013 could not be accessed through
the Kronos database, so the dataset included staffing variables from August 19th, 2013 to
July 30th, 2015.
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Census Data

A hospital midnight census data report for each unit was provided by the Clinical Analytics
and Amalga Team at the University of Washington. Midnight census is defined as the
number of patients occupying a bed in each nursing unit at midnight. The census data for
each unit was compared to the number of licenses beds on each unit; the census for each unit
subtracted from the number of licensed beds on the unit was the calculation used to find the

number of available beds on the day of admission and discharge.

Daily Admassion and Discharge Count Data

Daily admission and discharge count data for each unit was provided by the Epic Team at

the University of Washington.

3.2.2  Data Merging and Segmentation

Staffing, census, admission, and discharge count data were merged with the patient detail
report. Of the 65016 encounters from the patient detail report, 29493 were removed due to
discharges occurring before August 19th, 2013, 4500 were removed due to missing staffing
data, 4864 were removed due to missing census data, and 22 were removed due to missing
admitting nursing unit information. A total of 26137 patient visits remained in the dataset

3.1.
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Figure 3.1: Cohort Assignment Flow Chart(b)

3.2.8  Data Analysis

Descriptive Analysis

Descriptive analysis was performed on the discrete variables, which includes age and length
of stay, to observe their distributions and identify possible categorization boundaries. His-

tograms and box plots are performed on each discrete variable.
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Binomial Logistic Regression

The binomial logistic regression used in this study builds on the regression model explained
in equation 2.1. Based on the dichotomous nature of each adverse health outcome variables,
binomial logistic regression modeling was appropriate to assess the association between each

individual hospital resource factor, as featured in equation 3.1.

log [ﬁ} = Bo+ By (3.1)

where,

7 = Pr(adverse health outcome)

Bo = intercept

B = coefficient for the k' hospital resource factor

;i = value of the k' hospital resource factor for the i*" patient encounter
1 = 1...m patient encounters

k = 1...p hospital resource factors

To adjust for variability across patient risk factor values, all patient risk factors significant
in chapter 2 will be combined with each individual hospital resource factor, as featured in

equation 3.2.
T n
log {m] = Bo + Bryir + Z Bixij (3.2)
j=1
The null and alternative hypothesis for RQ2 is as follows:
HO :ﬁlvﬁ%“wﬁkzo (33)
Hl : 517527 7ﬁk’ 7é 0
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Based on the literature, it is hypothesized that age; health conditions; severity of illness;

risk of mortality; admission source; and length of stay are significant risk factors.

Binomial Logistic Regression Analytical Method

A regression was performed between each individual hospital resource value and adverse
health outcome to find the crude association. Next, the significant patient risk factors found
in Chapter 2 is used to adjust the association between each hospital resource variable and
adverse health outcome. The odds ratio (OR) and confidence interval for each significant
variable of the final model will be presented.

To ensure that the multicollinearity assumption is not violated, the generalized variation
inflation factor (VIF) will be assessed for each explanatory variable of the model to identify
any variables with a correlation to two or more variables. Of the variables with a VIF>4,
the variable with the highest VIF will be removed from the model and the VIF for the
remaining explanatory variables. This process will be repeated until all variables remaining

have a VIF<A4.

3.3 Results

3.3.1 Unit Selection

Prior to building the models, the distribution of patients for each unit was assessed to
determine if there are any nursing units to be excluded from the study. A nursing unit
was excluded if there were 0 adverse patient health outcome cases in either the training or
testing cohort. Since hospital resources were assessed at both the day of admission and day
of discharge, both the admitting and discharging nursing units were taken into consideration.
The 30-day readmission and in-hospital mortality cases for each admitting and discharging
unit is featured in table 3.1. All admitting and discharging nursing units had > 10 30-day
readmission cases in the dataset. Psychiatry, rehabilitation, ante-partum and mother-baby

admitting nursing units had 0 in-hospital mortality cases, and Psychiatry, Rehabilitation,
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and Post-partum discharging nursing units had 0 in-hospital mortality cases in the dataset.

Therefore, these units were excluded from the dataset used to model in-hospital mortality.

Hospital Resources Descriptive Statistics

Hospital resources featured in this exploratory study included resources levels at the time a
patient is admitted to and discharged from a hospital unit. Box plots were made to assess the
distribution of each hospital resource discrete variable, including number of nurses staffed,
number of nurses vacationing, number of beds available, and number of admissions and

discharges to the admitting and discharging nursing unit.

Figures 3.2 and 3.3 feature number of nurses staffed for each adverse health outcome
on day of admission and day of discharge. For the day of admission, the number of nurses
staffed for patients who were readmitted and who passed away during their hospital stay
were greater than the number of staff for patients who did not experience adverse health
outcomes, as featured in figure 3.2. This was also the case for day of discharge/mortality,
as illustrated in figure 3.3. For those patients who were readmitted, not readmitted, and
survived,the average number of nurses on staff was between 9-10 on their day of admission
and discharge. for those patients who passed away during their stay, there were on average

11-12 nurses on staff at the time of the patient’s death.
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Figure 3.2: Nurses Staffed on Units by Readmission and Mortality Status on Day of Admis-
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Figure 3.3: Nurses Staffed on Units by Readmission and Mortality Status on Day of discharge

Figures 3.4 and 3.5 feature number of nurses on vacation for each adverse health outcome

on day of admission and day of discharge. For the day of admission and discharge, the number
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of nurses on vacation was between 2-3 nurses for all adverse health outcome statuses.
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Figure 3.4: Nurses Vacationing on Units by Readmission and Mortality Status on Day of
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Figures 3.6 and 3.7 feature number of beds available for each adverse health outcome
status on day of admission and day of discharge. For the day of admission and discharge,
the average number of beds available was between 3-4 beds on day of admission and between

2-4 on day of discharge for all adverse health outcome statuses.
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Figure 3.6: Beds Available on Units by Readmission and Mortality Status on Day of Admis-

sion
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Figure 3.7: Beds Available on Units by Readmission and Mortality Status on Day of discharge

Figures 3.8 and 3.9 feature number of patients admitted to a unit for each adverse health
outcome status on day of admission and day of discharge. For the day of admission and
discharge, the average number of patients admitted was between 4-5 admissions on day of

admission and between 3-4 on day of discharge for all adverse health outcome statuses.
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Figure 3.8: Number of Admissions to Units by Readmission and Mortality Status on Day of

Admission
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Figure 3.9: Number of Admissions to Units by Readmission and Mortality Status on Day of
discharge

Figures 3.10 and 3.11 feature number of patients discharged from a unit for each adverse
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health outcome status on day of admission and day of discharge. For the day of admission
and discharge, the average number of patients discharged was lower for those patients who

passed away in comparison to those patients who survived.
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Figure 3.10: Number of Discharges from Units by Readmission and Mortality Status on Day

of Admission



Daily Discharge & 30-day Readmission Box Plot

Discharge_Day
5

5.08

Count_on

o
p

482

Discharge

Readmission

Discharge_Day

Count_on_

Discharge

S

[&)]

Daily Discharge & In-hospital Mortality Box Plot

5.09

3.18

Mortality

64

Figure 3.11: Number of Discharges from Units by Readmission and Mortality Status on Day

of discharge

Descriptive Statistics Summary

Next, the age and length of stay distributions were assessed for patients who were and were

not readmitted within 30-days. Figure 3.12 displays a box plot of readmission status. The

average age for those patients readmitted and not readmitted were 53.84 and 53.18 years

old, respectively. The distribution of length of stay based on readmission status is featured

in figure 3.13. Patients who were and were not readmitted within 30 days appear to have

similar length of stay distributions, peaking at approximately 7 days.
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3.3.2 Hospital Resource Associations with 30-day Readmaission

Each hospital resource factors individual influence on 30-day readmission was assessed on
the day of the patient’s last admission to and day of last discharge from the hospital. Table

3.2 features the odds ratio for each hospital resource variable.

On the day of the last admission to the hospital, the significant hospital resource factors
included number of nurses staffed, number of nurses on vacation, number of beds available
on the unit, being admitted on the weekend, being admitted during the evening shift, and
being admitted during the night shift. The number of nurses staffed, the number of beds
available, being admitted during the weekend, and being admitted during the evening shift
had an association with increased risk of 30-day readmission. Number of nurses vacationing
and being admitted during the night shift had an association with decreased risk of 30-day

readmission.

On the day of the last discharge from the hospital, the significant hospital resource
variables included number of nurses staffed, number of nurses on vacation, number of beds
available, number of discharges from the unit, being discharged during the evening shift, and
being discharged during the night shift. Number of nurses staffed, number of beds available,
and being discharged during the evening shift were all associated with an increased risk of

mortality.

Table 3.3 provides an adjustment for the aforementioned significant hospital resource vari-
ables by accounting for the significant patient risk factors. After adjustment, the significant
hospital resources on day of last admission were number of nurses staffed, number of nurses
on vacation, being discharged during the evening shift and being discharged during the night
shift. Both number of beds available and being admitted during the weekend were no long
significant after adjusting for patient risk factors. Of the significant risk-adjusted hospital
resource factors, number of nurses staffed and being admitted during the evening shift were
associated with increased risk of readmission. The number of nurses on vacation and being

admitted during the night shift were associated with decreased risk of readmission. For the
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day of last discharge, number of nurses scheduled to work, number of beds available, number
of discharges from the unit, being discharged during the evening shift and being discharged
during the night shift were associated with 30-day readmission after adjustment. The num-
ber of nurses staffed, number of beds available, and being discharged during the evening shift
were associated with an increased risk of readmission. Number of discharges from the unit

and discharges during the night shift were associated with decreased of readmission.

3.83.83 Hospital Resource Associations with In-hospital Mortality

Hospital resources related to staffing, bed availability, and time of admission and death are
were studied for potential associations with in-hospital mortality. Table 3.4 summarizes the
individual associations between hospital resource variables and in-hospital mortality.

For the day of admission, number of nurses scheduled to work, number of admissions to
the unit, number of discharges from the unit, being admitted during the weekend, being ad-
mitted during the evening shift, and being admitted during the night shift were significantly
associated with in-hospital mortality. The number of nurses on staff, being admitted during
the weekend, and being admitted during the evening shift were associated with increased
risk of in-hospital mortality. Number of admission to the unit and discharges from the unit,
and admission during the night shift were associated with decreased risk of mortality. For
the day of mortality, the number of nurses scheduled to work, number of nurses scheduled
to be on vacation, number of admissions to the unit, number of discharges from the unit,
and death during the night shift were associated with in-hospital mortality. The number of
nurses scheduled to work, number of nurses scheduled to be on vacation, and death during
night shift were associated with increased risk of mortality, while number of admissions to
the unit and discharges from the unit were associated with decreased risk of mortality.

Table 3.5 provides an adjustment for the significant hospital resource factors by account-
ing for significant patient risk factors associated with mortality. After adjustment, the signif-
icant hospital resources on day of admission were admissions to the unit and being admitted

during the night shift, which both had an association with decreased risk of mortality. For
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day of mortality, number of nurses scheduled to work, number of nurses scheduled to be on
vacation, number of discharges from the unit, and death during the night shift were associ-
ated with in-hospital mortality after adjustment. Except for number of discharges from the

unit, all other hospital resource factors were associated with increased risk of mortality.
3.4 Discussion

In terms of number of nurses scheduled to work and to be on vacation, the findings were con-
trary to expectations. It was expected that reduced staffing and increased staff on vacation
would be associated with increased risk of readmission, however these findings were oppo-
site. This may be explained by assumptions made for data featured in the staffing report.
The assumption of the staffing report is staff actually worked during their scheduled shift,
however it is possible the actual staff who worked varied from the number of staff scheduled
to work. Similar studies on staffing levels and adverse health outcomes used nursing surveys
as opposed to staffing schedules, which would overcome the discrepancy. Additionally, it
was not possible to determine the registered nurses assigned to direct patient care versus as-
signed to administrative duties. It is possible for nursing units with higher readmission rates
to also have higher number of registered nurses performing administrative duties, such as
supervising and case management. Finally, the education level of the nurses providing direct
patient care was not captured in this study. Similar studies have included the education and
experience level of the registered nurses providing care [92].

The association observed between hospital resource factors and adverse health outcomes
may vary from unit-to-unit. Additionally there may be other factors that explain the unit-
to-unit variation. The next chapter will explore associations between select hospital resource

factors for select units, and if demand:supply ratio factors explain the variation.
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Table 3.1: Patient Volume by Admitting & Discharging Unit

30-day Readmission In-hospital Mortality

Admitting Unit  Unit Description Total Patients
n(%) n(%)
ANE Medical /Surgical Unit 2758 308(11.17) 13(0.47)
4SE Medical/Surgical Unit 1838 347(18.88) 19(1.03)
5E Critical Care Unit 2669 332(12.44) 145(5.43)
5NE Medical/Surgical Unit 1470 341(23.20) 32(2.18)
5SE Critical Care Unit 2040 272(13.33) 117(5.74)
6NE Medicine Unit 2631 436(16.57) 100(3.80)
6SE Orthopaedics Unit 3266 573(17.54) 37(1.13)
N Psychiatry Unit 876 45(5.14) 0(0)
TNE Hematology/Oncology Unit 2196 663(30.19) 61(2.78)
7SE Oncology Unit 2643 467(17.67) 65(2.46)
8N Rehabilitation Unit 507 51(10.06) 0(0)
8NE Hematology/Oncology Unit 1520 479(31.51) 93(6.12)
ANTE-P Ante-partum Unit 313 15(4.79) 0(0)
MBU Mother-Baby Unit 1410 28(1.99) 0(0)
Discharging Unit Unit Description Total Patients 30-day Readmission  In-hospital Mortality
n(%) n(%)

4ANE Medical/Surgical Unit 3763 410(10.90) 13(0.35)
ASE Medical /Surgical Unit 2537 470(18.53) 18(0.71)
5E Critical Care Unit 542 36(6.64) 171(31.55)
5NE Medical /Surgical Unit 2865 551(19.23) 23(0.80)
55 Post-partum Unit 1715 45(2.62) 0(0)
5SE Critical Care Unit 308 32(8.04) 136(34.17)
6NE Medicine Unit 3217 540(16.79) 59(1.83)
6SE Orthopaedics Unit 3453 580(16.80) 46(1.33)
N Psychiatry Unit 876 45(5.14) 0(0)
TNE Hematology/Oncology Unit 2040 634(31.08) 34(1.67)
7SE Oncology Unit 2792 502(17.98) 63(2.26)
8N Rehabilitation Unit 507 51(10.06) 0(0)
SNE Hematology/Oncology Unit 1432 461(32.19) 119(8.31)




Table 3.2: Hospital Resources Associated with 30-day Readmission (Crude)
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Resources Variables on Day of Previous Admission Coefficient.  Standard  Odds Ratio Pr(>|z|)
Estimate Error (CI)
RN Unit Staffing on Admission Date & Shift 0.0423 0.0059 1.04(1.03, 1.06)  <0.0005 ***
RN Unit Vacationing on Admission Date & Shift -0.0447 0.0087 0.96(0.94, 0.97)  <0.0005 ***
Unit Bed Availability on Day of Admission 0.0258 0.0053 1.03(1.02, 1.04)  <0.0005 ***
Admissions to the Unit on Day of Admission -0.0056 0.0092 0.99(0.98, 1.01) 0.5380
Discharges from the Unit on Day of Admission -0.0039 0.0078 1.00(0.98, 1.01) 0.6130
Admitted during Weekend 0.1367 0.0536  1.15(1.03, 1.27) 0.0108 *
Admitted during Evening Shift 0.3263 0.0421 1.39(1.28, 1.50)  <0.0005 ***
Admitted during Night Shift -0.5855 0.0480 0.56(0.51, 0.61)  <0.0005 ***
Resources Variables on Day of Previous Discharge Coefficient,  Standard  Odds Ratio Pr(>|z|)
Estimate Error (C1)
RN Unit Staffing on Discharge Date & Shift 0.0657 0.0080 1.07(1.05, 1.08)  <0.0005 ***
RN Unit Vacationing on Discharge Date & Shift -0.0359 0.0091 0.96(0.95, 0.98)  <0.0005 ***
Unit Bed Availability on Day of Discharge 0.0757 0.0057 1.08(1.07, 1.09)  <0.0005 ***
Admissions to the Unit on Day of Discharge -0.0088 0.0091 0.99(0.97, 1.01) 0.3340
Discharges from the Unit on Day of Discharge -0.0492 0.0088 0.95(0.94, 0.97)  <0.0005 ***
Discharged during Weekend -0.0117 0.0476  0.99(0.90, 1.08) 0.8060
Discharged during Evening Shift 0.3199 0.0409 1.38(1.27, 1.49)  <0.0005 ***
Discharged during Night Shift -0.8590 0.2695 0.42(0.24, 0.69) 0.00143 **




Table 3.3: Hospital Resources Associated with 30-day Readmission (Adjusted)
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Resources Variables on Day of Previous Admission Coefficient. - Standard - Odds Ratio Pr(>|z|)
Estimate Error (CI)
RN Unit Staffing on Admission Date & Shift 0.0880 0.0087 1.09(1.07, 1.11)  <0.0005 ***
RN Unit Vacationing on Admission Date & Shift -0.0228 0.0093 0.98(0.96, 1.00) 0.0138 *
Unit Bed Availability on Day of Admission 0.0098 0.0057 1.01(1.00, 1.02) 0.0872
Admitted during Weekend 0.0736 0.0565 1.08(0.96, 1.20) 0.1929
Admitted during Evening Shift 0.1877 0.0454 1.21(1.10, 1.32)  <0.0005 ***
Admitted during Night Shift -0.4603 0.0502 0.63(0.57, 0.70)  <0.0005 ***
Resources Variables on Day of Previous Discharge Coefficient,  Standard  Odds Ratio Pr(>|z|)
Estimate Error (C1)
RN Unit Staffing on Discharge Date & Shift 0.0636 0.0093 1.07(1.05, 1.09)  <0.0005 ***
RN Unit Vacationing on Discharge Date & Shift -0.0142 0.0097  0.99(0.97, 1.00) 0.1421
Unit Bed Availability on Day of Discharge 0.0444 0.0062 1.05(1.03, 1.06)  <0.0005 ***
Discharges from the Unit on Day of Discharge -0.0383 0.0093 0.96(0.94, 0.98)  <0.0005 ***
Discharged during Evening Shift 0.2385 0.0427 1.27(1.17, 1.38)  <0.0005 ***
Discharged during Night Shift -0.6010 0.2818 0.55(0.30, 0.92) 0.0330 *




Table 3.4: Hospital Resources Associated with In-hospital Mortality (Crude)
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Resources Variables on Day of Admission Coefficient - Standard Odds Ratio Pr(>|z|)
Estimate Error (CI1)

RN Unit Staffing on Admission Date & Shift 0.1456 0.0146 1.16(1.12, 1.19)  <0.0005 ***
RN Unit Vacationing on Admission Date & Shift -0.0149 0.0191 0.99(0.95, 1.02) 0.4360

Unit Bed Availability on Day of Admission -0.0013 0.0130 1.00(0.97, 1.02) 0.9190
Admissions to the Unit on Day of Admission -0.1107 0.0230 0.90(0.86, 0.95)  <0.0005 ***
Discharges from the Unit on Day of Admission -0.1691 0.0206 0.84(0.81, 0.88)  <0.0005 ***
Admitted during Weekend 0.5892 0.1094 1.80(1.45, 2.23)  <0.0005 ***
Admitted during Evening Shift 0.8841 0.0954 2.42(2.01, 2.92)  <0.0005 ***
Admitted during Night Shift -0.4377 0.1104 0.65(0.52, 0.80) <0.0005 ***
Resources Variables on Day of Death Coefficient Standard Odds Ratio Pr(>|z|)

Estimate Error (CI)

RN Unit Staffing at Time of Death 0.4002 0.0199 1.49(1.44, 1.55)  <0.0005 ***
RN Unit Vacationing at Time of Death 0.0481 0.0186 1.05(1.01, 1.09) 0.0099 **
Unit Bed Availability at Time of Death -0.0196 0.0150 0.98(0.95, 1.01) 0.1920
Admissions to the Unit on Day of Death -0.0564 0.0216 0.95(0.91, 0.99) 0.0091 **
Discharges from the Unit on Day of Death -0.4859 0.0276 0.62(0.58, 0.65)  <0.0005 ***
Death during Weekend 0.1559 0.1055 1.17(0.95, 1.43) 0.1400
Death during Evening Shift 0.0211 0.0952  1.02(0.85,1.23)  0.8250
Death during Night Shift 4.2394 0.1632  69.37(50.52, 95.90)  <0.0005 ***




Table 3.5: Hospital Resources Associated with In-hospital Mortality (Adjusted)
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Resources Variables on Day of Admission Coefficient Standard Odds Ratio Pr(>|z|)
Estimate Error (CI)
RN Unit Staffing on Admission Date & Shift 0.0244 0.0273 1.02(0.97, 1.08) 0.3724
Admissions to the Unit on Day of Admission -0.0947 0.0350 0.91(0.85, 0.97) 0.0068 **
Discharges from the Unit on Day of Admission 0.0040 0.0323 1.00(0.94, 1.07) 0.9006
Admitted during Weekend 0.1332 0.1728 1.14(0.81, 1.60) 0.4410
Admitted during Evening Shift 0.1913 0.1469 1.21(0.91, 1.61) 0.1930
Admitted during Night Shift -0.4086 0.1669 0.66(0.47, 0.92) 0.0144 *
Resources Variables on Day of Death Coefficient - Standard Odds Ratio Pr(>|z|)
Estimate Error (CI)
RN Unit Staffing at Time of Death 0.2701 0.0301 1.31(1.24, 1.39) <0.0005 **
RN Unit Vacationing at Time of Death 0.0588 0.0275 1.06(1.00, 1.12) 0.0355 *
Admissions to the Unit on Day of Death -0.0394 0.0336 0.96(0.90, 1.03) 0.2399
Discharges from the Unit on Day of Death -0.3372 0.0360 0.71(0.66, 0.77)  <0.0005 ***
Death during Night Shift 4.4128 0.2873 82.50(46.83, 144.63)  <0.0005 ***
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Chapter 4

THE UNIT-TO-UNIT VARIATION OF HOSPITAL RESOURCE
INFLUENCE ON ADVERSE HEALTH OUTCOMES

4.1 Introduction

The third research question (RQ3) examines the association between resource factors and the
risk-adjusted 30-day readmission and in-hospital mortality (as defined in RQ2) and whether
there are differences in association between nursing units. If differences are observed, the
study aims to assess whether or not the differences are due to the demand and supply of

various resource and service measures at the nursing unit level.

In this study, demand for resources and services is measured by census, which is defined as
the number of patients occupying a bed in a nursing unit. It is possible for nursing units that
offer different levels of resources and services (supply) to have a similar number of patients
occupying a bed (demand). For this reason, both the demand and supply will be considered
in this study. The demand:supply measures included in this study are defined at the end of
§1.5.

The level of resources offered by a nursing unit can be measured by the number of nursing
staff and beds. Based on the available data, nursing staff (i.e. the number of nurses scheduled
to work) is a measure available for nursing units at each shift. The number of beds offered by
a nursing unit is fixed. Service mix variables include the number of services offered and the
number of procedures performed [84]. The available dataset used for this research does not
provide data on the number of procedures performed at the patient level, however service
line information is provided in the report. The University Health System Consortium, a
consortium of academic health system in the US of which UWMC is a member, has defined

a set of services lines as a means to standardize groups of services across their different
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health systems. Within UWMC, a service is defined as the primary specialty service a
patient requires during their hospital stay. A patient is classified under a service based on
their medical specialty needs and the medical team providing care. In this study, service mix
is the total number of unique services that provided care to patients admitted on a nursing

unit.

Although supply and demand ratios in terms of patient to nurse staffing and bed oc-
cupancy ratios have been previously considered in predicting adverse health outcomes, the
supply and demand of hospital services has not been explored as extensively. Service-mix is
defined as the scope and range of services provided [84]. The scope and range of specialty
areas, also known as service lines, can be used to measure service-mix. Demand for these
services can be measured as the number of patients within a given unit who are treated
under a service line offered by a given unit. Including both supply and demand measures
have been included in studies in order to account for the heterogeneity amongst different
hospitals [84]. Including both supply and demand at the unit level in a study accounts for
the both the supply of resources available to patients and the demand of those resources in

terms of resource utilization.

If there is a difference in resource and adverse health outcomes between the nursing
units, the difference in the association between resource factors and patient health outcomes

between units may be due to the variety of services and resources offered from unit to unit.

4.2 Method

4.2.1 Data Overview

The dataset described in chapter 3 will also be used for the analyses in this chapter. Similarly,

the units without adverse health outcome cases were excluded from further analyses.
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4.2.2  Data Analysis

Summarized data (counts per admitting unit), box plots and histograms were created to
examine the distribution and skewness of the data. This summarized data helped identify
a subset of units for further exploration. From the data, four admitting units were selected
given the high number of adverse health outcome cases and the variety of services provided.
The four selected units include intensive/critical care, medical/surgical care, orthopedic care,

and hematology/oncology care.

Next, two hospital resource factors, one for the day of admission and one for the day of
discharge, were selected for each adverse health outcome. Before performing any inferential
analysis, the number of events for each significant patient risk factor by adverse health
outcome and unit was examined. Patient risk factors with fewer than 10 cases were removed

from each unit.

4.2.83  Binomial Logistic Regression Models for Fach Unit

The risk-adjusted association between each selected hospital resource factor was examined
for each of the four selected nursing units. To determine if there are differences in associations
between hospital resource factors and adverse health outcomes from unit-to-unit, a logistic
regression model was developed for each unit and compared to the results of chapter 3.
Each unit’s model included selected hospital resource factors discussed in chapter 3 and the
significant patient risk factors discussed in chapter 2. Various demand:supply ratio variables
will be added to the adjusted association between hospital resource factors and adverse
health outcome models for each unit to explore potential changes in direction of association

or signification.
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4.3 Results

4.8.1 Admitting €& Discharging Unit Selection

As noted earlier, the nursing units included were selected by identifying units with the high-
est number of cases that specialize in different types of treatment (e.g. medical/surgical,
intensive/critical, etc.). The number and percent of cases for each unit and adverse health
outcome are shown in Table 4.1. Based on the above criteria, the units selected include:
critical care unit (5E), medical/surgical unit (5NE), orthopedics unit (6SE), and hematolo-
gy/oncology unit (8NE).

4.3.2  30-Day Readmission

Descriptive Statistics

Box plots and histograms was created for each ratio distribution. The average census:staff
ratio at both admission and discharge was similar, ranging from 3-4 patients per nursing staff.
The ratio was slightly lower for patients who were readmitted, indicating that there were
slightly more nurses per patients scheduled to work during shifts when readmitted patients

were originally admitted to and discharged from the nursing units.
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Table 4.1: Patient Volume by Admitting & Discharging Unit

30-day Readmission In-hospital Mortality

Admitting Unit  Unit Description Total Patients
n(%) n(%)
ANE Medical /Surgical Unit 2758 308(11.17) 13(0.47)
4SE Medical/Surgical Unit 1838 347(18.88) 19(1.03)
5E Critical Care Unit 2669 332(12.44) 145(5.43)
5NE Medical/Surgical Unit 1470 341(23.20) 32(2.18)
5SE Critical Care Unit 2040 272(13.33) 117(5.74)
6NE Medicine Unit 2631 436(16.57) 100(3.80)
6SE Orthopaedics Unit 3266 573(17.54) 37(1.13)
N Psychiatry Unit 876 45(5.14) 0(0)
TNE Hematology/Oncology Unit 2196 663(30.19) 61(2.78)
7SE Oncology Unit 2643 467(17.67) 65(2.46)
8N Rehabilitation Unit 507 51(10.06) 0(0)
8NE Hematology/Oncology Unit 1520 479(31.51) 93(6.12)
ANTE-P Ante-partum Unit 313 15(4.79) 0(0)
MBU Mother-Baby Unit 1410 28(1.99) 0(0)
Discharging Unit Unit Description Total Patients 30-day Readmission  In-hospital Mortality
n(%) n(%)

4ANE Medical/Surgical Unit 3763 410(10.90) 13(0.35)
ASE Medical /Surgical Unit 2537 470(18.53) 18(0.71)
5E Critical Care Unit 542 36(6.64) 171(31.55)
5NE Medical /Surgical Unit 2865 551(19.23) 23(0.80)
55 Post-partum Unit 1715 45(2.62) 0(0)
5SE Critical Care Unit 308 32(8.04) 136(34.17)
6NE Medicine Unit 3217 540(16.79) 59(1.83)
6SE Orthopaedics Unit 3453 580(16.80) 46(1.33)
N Psychiatry Unit 876 45(5.14) 0(0)
TNE Hematology/Oncology Unit 2040 634(31.08) 34(1.67)
7SE Oncology Unit 2792 502(17.98) 63(2.26)
8N Rehabilitation Unit 507 51(10.06) 0(0)
SNE Hematology/Oncology Unit 1432 461(32.19) 119(8.31)
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Figure 4.1: Box Plot of Census:Staffing Ratio for 30-day Readmission
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Figure 4.2: Histogram of Census:Staffing Ratio for 30-day Readmission

The average census:service ratio ranged between 0.72 to 1.15 for day of admission and
day of discharge. On day of admission, the average census:service ratio was 0.96 for patients

who were not readmitted, compared to 0.72 for patients who were readmitted within 30-days.



30

Similarly, the average census:service ratio was 1.15 on the day of admission for patients who
were not readmitted, compared to 0.77 of the day of discharge for those readmitted. The
Census:Service ratio for patients who were readmitted was less than for the ratio for patients
who were not readmitted, which could indicate that patients who are readmitted may be
more commonly admitted to and discharged from units that offer more services and provide

more complex care.
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Figure 4.3: Box Plot of Census:Service Ratio for 30-day Readmission
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Figure 4.4: Histogram of Census:Service Ratio for 30-day Readmission

The average census:bed ratio on the day of admission and discharge ranged between
0.86 to 0.94 for patients who were and were not readmitted. Patients who were readmitted

experienced slightly lower census:bed ratio on both the day admission and discharge.
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Figure 4.5: Box Plot of Census:Bed Ratio for 30-day Readmission
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Figure 4.6: Histogram of Census:Bed Ratio for 30-day Readmission

The number of 30-day readmission cases for each significant patient risk factor found in
chapter 2 was assessed by nursing unit. Tables 4.2 and 4.3 feature the number of cases for each
admitting and discharging unit. For both admitting and discharging units, health conditions
including acute myocardial infarction (AMI), heart failure, pneumonia, as well as palliative
care variables with less than 10 30-day readmission cases were removed from risk-adjustment
models. For critical care (5E) discharging unit, race/ethnicity: Black/African-American,
extreme and minor risk of mortality, cancer, and diabetes had fewer than 10 cases and were

therefore excluded from risk adjusted models.
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Table 4.2: Significant Patient Risk Factors associated with 30-day Readmission by Unit

(Admitting Unit)

Patient Risk Factors S5E SNE 6SE SNE
Race/Ethnicity: Black 22(6.63) 45(13.20)  28(4.89)  17(3.55)
Primary Language: English 317(95.48) 330(96.77) 544(94.94) 463(96.66)
Payor Group: Medicare 143(43.07) 160(46.92) 167(29.14) 119(24.84)
Admission from Emergency Department 119(35.84) 104(30.50) 203(35.43) 33(6.89)
Discharge Status: Home/Self-Care 246(74.10) 293(85.92) 474(82.72) 445(92.90)
Extreme Risk of Mortality 76(22.89) 10(2.93) 18(3.14) 17(3.55)
Minor Risk of Mortality 70(21.08)  28(8.21) 124(21.64)  96(20.04)
Extreme Severity of Illness 95(28.61)  37(10.85)  58(10.12) 120(25.05)
Minor Severity of Illness 33(9.94) 13(3.81) 56(9.77)  58(12.11)
Procedure 311(93.67) 248(72.73) 470(82.02) 415(86.64)
AMI 0(0) 3(0.88) 0(0) 0(0)
Cancer 112(33.73)  23(6.74) 328(57.24) 417(87.06)
Heart Failure 6(1.81)  90(26.39) 3(0.52) 0(0)
Pneumonia 2(0.60) 2(0.59) 1(0.17) 15(3.13)
Diabetes 88(26.51) 129(37.83)  87(15.18)  62(12.94)
Palliative Care 3(0.90) 3(0.88) 4(0.70) 2(0.42)
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Table 4.3: Significant Patient Risk Factors associated with 30-day Readmission by Unit (Day

of Discharge)
Discharging Unit 5E 5NE 6SE SNE
Race/Ethnicity: Black 3(8.33)  65(11.80)  32(5.52)  16(3.47)
Primary Language: English 35(97.22) 532(96.55) 554(95.52) 446(96.75)
Payor Group: Medicare 17(47.22) 240(43.56) 174(30.00) 114(24.73)
Admission from Emergency Department 15(41.67) 135(26.32) 213(36.72) 22(4.77)
Discharge Status: Home/Self-Care 27(75.00) 461(83.67) 478(82.41) 435(94.36)
Extreme Risk of Mortality 7(19.44) 40(7.26) 17(2.93) 12(2.60)
Minor Risk of Mortality 9(25.00)  52(9.44) 125(21.55)  90(19.52)
Extreme Severity of Illness 9(25.00) 110(19.96) 54(9.31) 118(25.60)
Minor Severity of Illness 5(13.89) 36(6.53) 53(9.14)  55(11.93)
Procedure 33(91.67) 450(81.67) 4T4(81.72) 399(86.55)
AMI 0(0) 8(1.45) 0(0) 0(0)
Cancer 9(25.00)  26(4.72) 327(56.34) 404(87.64)
Heart Failure 0(0) 137(24.86) 4(0.69) 0(0)
Pneumonia 1278)  2(0.36)  1(0.17)  14(3.04)
Diabetes 4(11.11) 187(33.94)  88(15.17)  59(12.80)
Palliative Care 0(0) 2(0.36) 4(0.69) 2(0.43)

Hospital Resource Factor Associations by Unit

The hospital resource factors selected for this study were staffing on day of admission, admis-
sion count on day of admission, staffing on day of discharge/mortality, and admission count
on day of discharge/mortality. These resources were selected for the various levels of signifi-
cance found in chapter 3. Staffing on day of admission was associated with increased risk of

30-day readmission (adjusted) and was not associated with in-hospital mortality (adjusted),
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while number of admissions to the unit was associated with decreased risk of in-hospital mor-
tality (adjusted) and was not associated with 30-day readmission (crude). Staffing on day of
discharge/mortality was associated with increased risk of readmission and mortality, while
admission count on day of discharge/mortality was not significantly associated readmission

(crude) and was not associated with mortality (adjusted).

After units were selected, the association between hospital resources and 30-day readmis-
sion was assessed for all hospital units as featured in chapter 3 and each selected unit. Table
4.4 summarizes the hospital resource variables and readmission associations by unit. The
number of nurses scheduled to work was only significant for the orthopedic unit and had an
association with increased risk of mortality. Notably, the number of nurses scheduled on day
of admission was associated with decreased risk of mortality as indicated by the coefficient
estimate, however the association was not significant with a p-value= 0.1329. This variable
was not significant for the selected medical/surgical (5NE) and hematology/oncology (8NE)
admitting units. Similar to the results found for the entire hospital, the admission count
on day of admission was not significant across each unit. Critical care unit (5E), medical/-
surgical unit (5NE), and hematology/oncology unit (8NE) had a non-significant association
with increased risk of readmission. For number of nurses scheduled to work on day of dis-
charge, each discharging unit had a non-significant association with decreased risk of 30-day
readmission, although all hospital nurses scheduled on day of discharge was significant and
associated with increased risk of mortality. Admission count on day of discharge for critical
care, medical /surgical, and hematology/oncology discharging units had a non-significant as-
sociation with decreased readmission; for the orthopedics discharging unit, admission count

had a non-significant association with increased risk of readmission.



Table 4.4: Hospital Resource Factors & 30-day Readmission by Selected Units

Coefficient Standard Odds Ratio
Units p-value

Estimate Error (CI)

Staffing on Day of Admission & 30-day Readmission

All Units 0.088 0.0087 1.09(1.07, 1.11) <0.0005 ***
S5E -0.0534 0.0355 0.95(0.88, 1.02) 0.1329

S5NE 0.0452 0.0539 1.05(0.94, 1.16) 0.4014

6SE 0.1682 0.0381 1.18(1.10, 1.28) <0.0005 ***
SNE 0.0177 0.0273 1.02(0.97, 1.07) 0.5165
Admission Count on Day of Admission & 30-Day Readmission
All Units -0.0012 0.0096 1.00(0.98, 1.02) 0.9002

S5E 0.0367 0.0286 1.04(0.98, 1.10) 0.2004

S5NE 0.0125 0.0384 1.10(0.94, 1.09) 0.7452

6SE -0.0192 0.0209 0.98(0.94, 1.02) 0.3569

SNE 0.0489 0.0382 1.05(0.97, 1.13) 0.2009
Staffing on Day of Discharge & 30-day Readmission

All Units 0.0657 0.0080 1.07(1.05, 1.08) <0.0005 ***
S5E -0.1482 0.1151 0.86(0.69, 1.08) 0.1980

S5NE -0.0261 0.0526  0.97(0.88, 1.08) 0.6202

6SE -0.0244 0.0391 0.97(0.91, 1.06) 0.5325

SNE -0.0169 0.0301 0.98(0.93, 1.04) 0.5749

Admission Count on Day of Discharge & 30-Day Readmission

All Units -0.0088 0.0091 0.99(0.97, 1.01) 0.3349
S5E -0.0440 0.0812 0.96(0.81, 1.12) 0.5876
SNE -0.0060 0.0309 0.99(0.94, 1.06) 0.8448
6SE 0.0168 0.0192 1.02(0.98, 1.06) 0.3825
SNE -0.0342 0.0382 0.97(0.90, 1.04) 0.3711

36
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Hospital Resource € Demand:Supply Variable Associations

Tables 4.5, 4.6, 4.7, and 4.8 feature each hospital resource variable adjusted for patient
risk factors as well as demand:supply measures. In table 4.5, the level of significance and
direction of the significance did not change with the addition of demand:supply ratio variables
for the critical care unit. Similarly, in table 4.6, the level of significance and direction of
the significance did not change with the addition of demand:supply ratio variables for the
medical /surgical unit. For the orthopedics unit featured in 4.7, the number of scheduled staff
on day of admission had a significant association with increased risk of readmission with and
without the addition of demand:supply ratio variables. All other variables in 4.7 did not
have an association with readmission. Similar to the critical care and medical /surgical units,
table 4.8 shows the level of significance and direction of the significance did not change with

the addition of demand:supply ratio variables for the hematology/oncology unit.
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4.3.83  In-hospital Mortality

Descriptive Statistics

The distribution of each demand:supply ratio measure was assessed using box plots and
histograms. Note ”at discharge” box plots and histograms indicate ratio levels at the time of
mortality. The average census:staff ratio on days of admission and day of mortality ranged
from 2.6 to 3.33. Average census:staff ratio was less for patients who passed away during
their hospital stay compared to those who survived. This may indicate there are more staff
on nursing units that treat a higher volume of patients classified as having an extreme risk

of mortality and/or severity of illness, which is commonly the case in the intensive/critical

care units.
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Figure 4.7: Box Plot of Census:Staffing Ratio for In-hospital Mortality
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Figure 4.8: Histogram of Census:Staffing Ratio for In-hospital Mortality

The average census:service ratio ranged from 0.62 to 1.1 on day of admission and day of

mortality. The average census:service ratio on day of admission and day mortality for those

patients who passed away during their hospital stay was the same and less than the ratio for

those patients who survived. This may indicate that most in-hospital mortalities occur on

nursing units that offer a several different services.
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Figure 4.9: Box Plot of Census:Service Ratio for In-hospital Mortality
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Figure 4.10: Histogram of Census:Service Ratio for In-hospital Mortality

The average census:bed ratio ranged from 0.86 to 0.93 on day of admission and mortality

for patients who did and did not survive. This ratio was slightly higher for patients who

passed away on their day of admission. The census:bed ratio on day of mortality was similar



95

for patients who did and did not survive.

Census:Bed Ratio (at Admission) & Mortality Census:Bed Ratio (at Discharge) & Mortality
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Figure 4.11: Box Plot of Census:Bed Ratio for In-hospital Mortality
Census:Bed Ratio (at Admission) & Mortality Census:Bed Ratio (at Discharge) & Mortality
E InHospital_Mortality E InHospital_Mortality
1 0 ! 0
200001 ! . ; 200001 . .1
1 1
150001 ! 15000 i
€ i € i
3 . 3 '
O 100001 j © 100004 ,
i i
50001 . 50001 i
1 1
04 T —— 0] =—— 0
05 0.0 05 10 15 0 1 2
Census:Bed Ratio Census:Bed Ratio

Figure 4.12: Histogram of Census:Bed Ratio for In-hospital Mortality

The number of in-hospital mortality cases for each significant patient risk factor found

in chapter 2 was assessed by nursing unit. Table 4.9 features the number of cases for each
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admitting and discharging unit. For both admitting and discharging unit, risk of mortality
and severity of illness classifications as well as treatment for health conditions including acute
myocardial infarction (AMI), heart failure, and sepsis with less than 10 morality cases were

removed from risk-adjustment models.

Table 4.9: Significant Patient Risk Factors associated with In-hospital Mortality by Unit

Unit of Admission S5E S5NE 6SE SNE

Extreme Risk of Mortality ~ 94(64.83)  4(12.50) 15(40.54)  55(59.14)
Minor Risk of Mortality 4(2.76) 2(6.25) 0(0) 2(2.15)
Extreme Severity of Illness 101(69.66) 15(46.88) 23(62.16)  73(78.49)
AMI 000)  1(3.13) 0(0) 0(0)
Heart Failure 1(0.69) 12(37.50) 0(0) 1(1.08)
Sepsis 80(55.17) 15(46.88) 15(40.54)  64(68.82)
Palliative Care 111(76.55) 23(71.88) 30(81.08)  79(84.95)
Unit of Death S5E SNE 6SE S8NE

Extreme Risk of Mortality 117(68.42)  5(21.74) 22(47.83) 60(50.42)
Minor Risk of Mortality 3(1.75) 0(0) 1(2.17) 2(1.68)
Extreme Severity of Illness 121(70.76) 12(52.17) 30(65.22)  86(72.27)
AMI 1058)  1(4.35)  1(2.17) 0(0)
Heart Failure 1(0.58)  5(21.74) 0(0) 1(0.84)
Sepsis 114(66.67  6(26.09) 19(41.30)  84(70.59)
Palliative Care 135(78.95) 17(73.91) 39(84.78) 105(88.24)

Hospital Resource Factor Associations by Unit

Hospital resource factor associations with in-hospital mortality were assessed for each unit
and compared to the entire-hospital associations found in chapter 3. The number of nurses

scheduled to work on the day of admission was only significantly associated with mortality
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for the orthopedic units; this hospital resource factor was associated with a decreased risk
of mortality. The admission count on day of admission was only significantly associated
with mortality for the critical care unit; the variable was associated with a decreased risk
of mortality. Notably, the number of nurses scheduled to work on the day of mortality,
which was significantly associated with increased risk of mortality for all nursing units,
was significantly associated with decrease risk of mortality for the medical/surgical and
hematology /oncology units. The admission count on the day of mortality, which was not
significantly associated with mortality, had a significant association with decreased risk of

mortality for the medical/surgical unit.



Table 4.10: Hospital Resource Factors & In-hospital Mortality by Selected Units

Coefficient Standard Odds Ratio
Units p-value

Estimate Error (CI)

Staffing on Day of Admission & In-hospital Mortality

All Units 0.0244 0.0237 1.02(0.97, 1.08) 0.3274

5K 0.0524 0.0789 1.05(0.90, 1.23) 0.5066

5NE -0.0883 0.2134 0.92(0.61, 1.41) 0.6790

6SE -0.2888 0.1394 0.75(0.57, 0.98) 0.0382 *
SNE 0.0581 0.0948 1.06(0.88, 1.28) 0.5399
Admission Count on Day of Admission & In-hospital Mortality
All Units -0.0947 0.0350 0.91(0.85, 0.97) 0.0068 **
oE -0.1455 0.0655 0.86(0.76, 0.98) 0.0263 *
5NE -0.2018 0.1712  0.82(0.57, 1.12) 0.2385

6SE -0.1878 0.1019 0.83(0.67, 1.01) 0.0654

SNE -0.1643 0.1253 0.85(0.66, 1.08) 0.1900
Staffing on Day of Mortality & In-hospital Mortality

All Units 0.2701 0.0301 1.31(1.24, 1.39) <0.0005 ***
oE -0.0643 0.1199 0.94(0.74, 1.19) 0.5920

S5NE -0.6960 0.2496 0.50(0.31, 0.84) 0.0053 **
6SE -0.1272 0.1510 0.88(0.67, 1.19) 0.3997

SNE -0.3313 0.0836  0.72(0.61, 0.85) 0.0001 ***
Admission Count on Day of Mortality & In-hospital Mortality
All Units -0.0394 0.0335 0.96(0.90, 1.03) 0.2399

oE -0.0372 0.0966 0.96(0.79, 1.16 0.7000

( )

SNE -0.7533 0.2607 0.47(0.27, 0.76) 0.0039 **
6SE 0.0032 0.0900 1.00(0.84, 1.20) 0.9713
SNE -0.1107 0.1217 0.90(0.70, 1.13) 0.3632

98
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Hospital Resource € Demand:Supply Variable Associations

Tables 4.11, 4.12, 4.13, and 4.14 feature each hospital resource variable adjusted for patient
risk factors as well as demand:supply ratio variables. In table 4.11, the significance and
direction of the significance did not change with the addition of demand:supply ratio variables
for the critical care unit. Similarly, in table 4.12; the significance did not change with the
addition of demand:supply ratio variables for the medical/surgical unit, however the direction
of association changed with the addition of the census:staff ratio variable from decreased risk
to increased risk of mortality. This association was not significant. For the orthopedics unit
featured in 4.13, the significance did not change with the addition of demand:supply ratio
variables. The direction of association changed with the addition of the census:staff ratio
variables for admission count on day of mortality, however the association was not significant.
Similar to the critical care unit, table 4.14 shows the level of significance and direction of
the significance did not change with the addition of demand:supply ratio variables for the

hematology /oncology unit.
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4.4 Discussion

This chapter addresses RQ3 by assessing whether the hospital resource and adverse health
outcome association varies between nursing units. It also explores whether the unit to unit
variability can be explained by the demand per supply measures.

For hospital resource variables associated with 30-day readmission, the association did
not vary significantly from unit-to-unit. It should be noted that the expected association
between number of nurses scheduled to work on day of admission for the selected critical
care unit and on day of discharge for all selected units and decreased risk of readmission was
observed, although these associations were not significant. Similarly, the expected associa-
tion between admission count on day of admission (for critical care, medical /surgical, and
hematology /oncology units) and on day of discharge (for the selected orthopedic unit) with
increased risk of readmission was observed, although the association were not significant as
well.

For hospital resource variables associated with in-hospital mortality, there was more unit-
to-unit variation in comparison with 30-day readmission. The number of nurses scheduled
to work on the day of admission had a significant association with decreased mortality
for the orthopedic unit. Further, the number of nurses scheduled to work on the day of
mortality was associated with increased risk of mortality for the entire hospital, however this
staffing measure was associated with decreased risk of mortality for the medical/surgical and
hematology /oncology units selected. The findings of the exploratory study described in this
chapter suggest the associations between hospital resource and risk-adjusted adverse health

outcomes should be studied at the unit-level.
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Chapter 5

THE UNIT-TO-UNIT VARIATION OF HOSPITAL RESOURCE
INFLUENCE ON ADVERSE HEALTH OUTCOMES
STRATIFIED BY PREVALENT HEALTH CONDITIONS

5.1 Introduction

The interactions between health conditions featured in the dataset, including diabetes, can-
cer, and sepsis, were not included in the analysis described in previous chapters of this
dissertation. Patient populations with specific health conditions, such as acute myocardial
infarction ([26]; [62]; [75]) and pneumonia ([76]), were included in similar studies to assess
associations between hospital resource factors and adverse health outcomes. The study fea-
tured in this chapter will assess the associations between selected hospital resource factors
and adverse health outcomes for the most prevalent health conditions and compare the find-
ings to the overall model findings from Chapter 4. Since findings in the previous chapters
suggest associations be assessed at the nursing unit level, the methodology followed in this

chapter is similar to the methodology first introduced in Chapter 4.

5.2 DMethods

5.2.1 Data Overview

First, the three health conditions with the highest prevalence were identified. Prevalence is
calculated as the number of patients with the health condition divided by the total number of
patients admitted and discharged between August 19th, 2013 to July 30th, 2015. Individual

datasets were created for each prevalent health condition.
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5.2.2  Data Analysis
Hospital Resources € Risk-Adjusted Adverse Health Outcomes by Nursing Unit

For each health condition, the total number of patients treated on each unit as well as the
number of adverse health outcome cases were assessed for the admitting and discharging
units; three nursing units were selected based on the volume of patients treated for the given
health condition. The patient risk factors and hospital resources factors were assessed, and
factors with >10 cases for each admitting and discharging unit selected were included in the
model. Similar to Chapter 4, two hospital resource factors—nurse staffing and admission
volume at time of admission and discharge/mortality—were selected as the hospital resource
factors included in this study. A logistic regression model was fit for each nursing unit and
health condition to evaluate associations between the two selected hospital resource factors
and adverse health outcomes. Next, each demand and supply measure was added to the
model to assess changes in association between hospital resource factors and adverse health

outcomes when unit-level demand:supply measures are considered.

5.3 Results

5.83.1 Health Conditions by Prevalence

Table 5.1 shows the health conditions in order of their prevalence for patients treated at
the University of Washington Medical Center (UWMC) between August 19th, 2013 to July
30th, 2015. The three most prevalent health conditions were cancer (prevalence=29.33%),
diabetes (prevalence=16.54%), and sepsis (prevalence=>5.65%).

5.3.2  30-day Readmission

The following describes the findings for cancer, diabetes and sepsis patients who experienced

a 30-day readmission.
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Table 5.1: Health Condition Prevalence

Health Condition n Prevalence
Cancer 19066 29.33%
Diabetes 10756 16.54%
Sepsis 3673 5.65%
Heart Failure 1457 2.24%
Acute Myocardial Infarction 563 0.87%
Pneumonia 563 0.87%
Chronic Obstructive Pulmonary Disease 267 0.41%
Stroke 174 0.27%
Total 65016

Cancer Patients

When all nursing units that provided treatment for cancer patients were considered, staffing
at the time of the cancer patient’s admission was significantly associated with increased
risk of 30-day readmission, which corresponds to findings for the overall model. Admission
volume at the time of the patient’s discharge was significantly associated with decreased
risk of 30-day readmission. Analysis was conducted on those units that had the highest
number of cases for cancer patients, which were critical care (5E), orthopedics (6SE), and
hematology /oncology (8NE) units. Note these units are the not same subsets as the units
included in the overall model described in Chapter 4. Hematology /Oncology unit is observed
in all models described in this chapter, but orthopedics and critical are not. Table 5.2
summarizes the findings. At the unit level, staffing at the time of admission is associated
with increased risk of readmission for patients treated within the orthopedics unit.

Tables 5.3 to 5.5 show critical care, orthopedics, and hematology/oncology, respectively.

For all three models, the associations between staffing and admission volume while accounting
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for the ratio of demand:supply measures are included. For cancer patients treated in the
orthopedics department, census:bed and census:staff ratios accounts for unit-level complexity
for the staffing on day of admission association with increased readmission, as depicted in
table 5.4. This result varies slightly from the overall model, where all three demand:supply
measures accounted for unit-level complexity. There were no other significant associations,

and this is consistent with the overall model.



Table 5.2: Hospital Resource Factors & 30-day Readmission for Cancer Patients

Coeflicient Standard Odds Ratio

Units Pr(> [2])
Estimate Errors (CI)

Staffing on Admission Date & Shift
All Units 0.0967 0.0124 1.10(1.08, 1.13) 0.0000 ***
ok -0.0620 0.0676 0.94(0.82, 1.07) 0.3591
6SE 0.2775 0.0622 1.32(1.17, 1.49) 0.0000 ***
SNE 0.0060 0.0286 1.01(0.95, 1.06) 0.8345
Admission Count on Admission Date & Shift
All Units -0.0050 0.0132  0.99(0.97, 1.02) 0.7028
oE 0.0476 0.0522 1.05(0.95, 1.16) 0.3615
6SE 0.0024 0.0319 1.00(0.94, 1.07) 0.9406
SNE 0.0336 0.0411 1.03(0.95, 1.12) 0.4137
Staffing on Discharge Date & Shift
All Units 0.0141 0.0117 1.01(0.99, 1.04) 0.2262
oE -0.2100 0.2586  0.81(0.49, 1.37) 0.4170
6SE -0.0592 0.0689 0.94(0.82, 1.08) 0.3907
SNE -0.0161 0.0320 0.98(0.92, 1.05) 0.6151
Admission Volume on Discharge Date & Shift
All Units -0.0259 0.0116 0.97(0.95, 1.00) 0.0257 *
5K 0.0482 0.1845 1.05(0.71, 1.50) 0.7941
6SE -0.0008 0.0295 1.00(0.94, 1.06) 0.9776
SNE -0.0345 0.0411 0.97(0.89, 1.05) 0.4011
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Diabetes Patients

For all nursing units that provided treatment for diabetes patients, staffing at the time of
the patient’s admission and discharge were significantly associated with increased risk of 30-
day readmission, which corresponds with the overall model. Further analysis was conducted
on those units that included the highest number of cases, which include critical care (5E),
medicine (6NE), and hematology/oncology (8NE). Table 5.6 summarizes the findings. At
the unit level, the selected hospital resource variables were not significant.

Tables 5.7 to 5.9 show critical care, medicine, and hematology /oncology respectively. For
diabetes patients treated in the hematology/oncology unit, census:bed and census:service
ratios account for unit-level complexity when studying the association between admission
volume on the day of discharge and readmission, as depicted in table 5.9. This varies from
the overall model, which did not find a significant association between admission volume at
the day of discharge and readmission when demand:supply measures were included. There

were no other significant associations, and this is consistent with the overall model.



Table 5.6: Hospital Resource Factors & 30-day Readmission for Diabetes Patients

Coeflicient Standard Odds Ratio

Units Pr(> [2])
Estimate Errors (CI)
RN Unit Staffing on Admission Date & Shift
All Units 0.0640 0.0151 1.07(1.04, 1.10) 0.0000 ***
ok 0.0327 0.0840 1.03(0.88, 1.22) 0.6970
6NE -0.0774 0.0810 0.93(0.79, 1.09) 0.3389
SNE 0.0102 0.0722 1.01(0.88, 1.17) 0.8880
Admission Volume on Admission Date & Shift
All Units -0.0069 0.0168 0.99(0.96, 1.02) 0.6791
oE 0.0806 0.0632 1.08(0.96, 1.23) 0.2020
6NE -0.0231 0.0519 0.98(0.88, 1.08) 0.6558
SNE -0.0777 0.1038 0.93(0.75, 1.13) 0.4540
RN Unit Staffing on Discharge Date & Shift
All Units 0.0461 0.0170 1.05(1.01, 1.08) 0.0067 **
oE 0.0315 0.0933 1.03(0.86, 1.24) 0.7354
6NE 0.0356 0.0986 1.04(0.86, 1.26) 0.7182
SNE -0.0219 0.0830 0.98(0.83, 1.16) 0.7918
Admission Volume on Discharge Date & Shift
All Units -0.0003 0.0168 1.00(0.97, 1.03) 0.9872
5K -0.0004 0.0520 1.00(0.90, 1.11) 0.9931
6NE -0.0287 0.0468 0.97(0.89, 1.06) 0.5395
SNE -0.1950 0.1084 0.82(0.66, 1.01) 0.0721
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Sepsis Patients

For all nursing units that provided treatment for sepsis patients, staffing at the time of the
patient’s discharge was significantly associated with decreased risk of 30-day readmission,
which is opposite from the overall model that found staffing at discharge to be associated
with increased risk of 30-day readmission. Additionally, admission volume on day of admis-
sion had a significant association with increased risk of 30-day readmission. Further analysis
was conducted on medicine (6NE), oncology (7SE), and hematology/oncology (8NE). Table
5.10 summarizes the findings. At the unit level, staffing at time of admission had an as-
sociation with decreased risk of readmission for patients treated within the medicine unit;
admission volume on day of admission had an association with increased risk of readmission
for patients treated withing the hematology/oncology unit; and admission volume on day of
discharge had an association with decreased risk of mortality for patients treated within the
hematology /oncology unit. These associations were not observed in the overall model.
Tables 5.11 to 5.13 show results for medicine, oncology, and hematology/oncology units
respectively. For sepsis patients treated in the medicine unit, census:bed and census:service
ratios account for unit-level complexity when assessing the association between staffing at
time of admission and readmission, as depicted in table 5.11. For sepsis patients treated
within the hematology/oncology unit as featured in table 5.13, census:staff ratio account for
unit level complexity when assessing the association between admission volume on day of
admission and readmission. All three demand:supply ratio measures account for complexity
when assessing the association between admission volume on day discharge and adverse

health outcome. These associations were not observed in the overall model.



Table 5.10: Hospital Resource Factors & 30-day Readmission for Sepsis Patients

Coeflicient Standard Odds Ratio

Units Pr(> [2])
Estimate Errors (CI)

RN Unit Staffing on Admission Date & Shift
All Units -0.0329 0.0213 0.97(0.93, 1.01) 0.1227
6NE -0.2976 0.1277 0.74(0.58, 0.95) 0.0198 *
7SE -0.0041 0.1172 1.00(0.79, 1.25) 0.9720
SNE -0.1368 0.0965 0.87(0.72, 1.05) 0.1565
Admission Volume on Admission Date & Shift
All Units 0.0620 0.0279 1.06(1.01, 1.12) 0.0260 *
6NE -0.0242 0.0848 0.98(0.82, 1.15) 0.7756
7SE 0.0099 0.0770 1.01(0.87, 1.17) 0.8978
SNE 0.2551 0.1276  1.29(1.01, 1.67) 0.0457 *
RN Unit Staffing on Discharge Date & Shift
All Units -0.0888 0.0290 0.91(0.86, 0.97) 0.0022 **
6NE -0.0914 0.1479 0.91(0.68, 1.22) 0.5365
7SE -0.0215 0.1129 0.98(0.78, 1.22) 0.8489
SNE -0.0323 0.1004 0.97(0.79, 1.18) 0.7477
Admission Volume on Discharge Date & Shift
All Units -0.0133 0.0285 0.99(0.93, 1.04) 0.6416
6NE -0.0166 0.0734 0.98(0.85, 1.14) 0.8211
7SE 0.0470 0.0724 1.05(0.91, 1.21) 0.5164
SNE -0.4311 0.1573 0.65(0.47, 0.87) 0.0061 **
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5.3.8  In-hospital Mortality

The following describes the findings for cancer, diabetes, and sepsis patients who passed

away during their hospital visit.

Cancer Patients

For all nursing units that provided treatment for cancer patients, staffing on the day of mor-
tality was associated with increased risk of in-hospital mortality, which corresponds with the
overall model. Further analysis was conducted on those units that included the highest num-
ber of cases, which include critical care (5E), orthopedics (6SE), and hematology/oncology
(8NE). Table 5.14 summarizes the findings. At the unit level, staffing on day of mortality
had an association with decreased risk of mortality for the hematology /oncology unit, which
also corresponds with the overall model.

Tables 5.15 to 5.17 show critical care, orthopedics, and hematology /oncology respectively.
For cancer patients treated in the hematology/oncology unit, census:bed and census:service
ratios account for unit-level complexity when studying the association between staffing at
the time of mortality and in-hospital mortality, as depicted in table 5.17. This varies from
the overall model, which did not find a significant association between staffing and mortality
when demand:supply measures were included. There were no other significant associations,

and this is consistent with the overall model.
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Table 5.14: Hospital Resource Factors & In-hospital Mortality for Cancer Patients

Coeflicient Standard Odds Ratio

Units Pr(> [2])
Estimate Errors (CI)

RN Unit Staffing on Admission Date & Shift

All Units 0.0465 0.0410 1.05(0.97, 1.14) 0.2564
5K 0.2613 0.1578 1.30(0.96, 1.79) 0.0978
6SE -0.2422 0.2157 0.78(0.53, 1.23) 0.2610
SNE 0.0017 0.0961 1.00(0.83, 1.22) 0.9863
Admission Count on Admission Date & Shift

All Units -0.0446 0.0483 0.96(0.87, 1.05) 0.3550
oE -0.0662 0.1174 0.94(0.74, 1.18) 0.5727
6SE -0.0271 0.1266 0.97(0.75, 1.24) 0.8310
SNE -0.1220 0.1307 0.89(0.68, 1.14) 0.3506
RN Unit Staffing on Discharge Date & Shift

All Units 0.2550 0.0406 1.29(1.19, 1.40) 0.0000 ***
oE 0.0489 0.2573 1.05(0.63, 1.76) 0.8493
6SE -0.0645 0.2991 0.94(0.55, 1.74) 0.8294
SNE -0.3205 0.0904 0.73(0.61, 0.87) 0.0004 ***
Admission Count on Discharge Date & Shift

All Units -0.0313 0.0498 0.97(0.88, 1.07) 0.5299
5K 0.1347 0.1868 1.14(0.79, 1.68) 0.4708
6SE 0.0974 0.1360 1.10(0.84, 1.45) 0.4740
SNE -0.1189 0.1326  0.89(0.68, 1.14) 0.3698
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Diabetes Patients

For all nursing units that provided treatment for diabetes patients, staffing on the day of
mortality was associated with increased risk of in-hospital mortality, which corresponds with
the overall model as well as the previous model for cancer patients who passed away during
their hospital visit. Further analysis was conducted on those units that included the highest
number of cases, which include critical care (5E), medicine (6NE), and hematology/oncology
(8NE). Table 5.18 summarizes the findings. At the unit level, the selected hospital resource
variables were not significant.

Tables 5.19 to 5.21 show critical care, medicine, and hematology/oncology respectively.
For diabetes patients treated in these units, there were no significant associations between
the selected hospital resource variable and mortality when accounting for unit-level complex-
ity. A similar result was found for the hematology/oncology unit overall model, however it
contrasts with the critical care overall model that found an association between admission

volume and decreased risk of mortality when all three demand:supply measures are included.
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Table 5.18: Hospital Resource Factors & In-hospital Mortality for Diabetes Patients

Coeflicient Standard Odds Ratio

Units Pr(> [2])
Estimate Errors (CI)

RN Unit Staffing on Admission Date & Shift

All Units 0.0028 0.0451 1.00(0.92, 1.10) 0.9510
ok -0.0670 0.1443 0.94(0.71, 1.25) 0.6427
6NE 0.2823 0.2200 1. 33(0 88, 2.09) 0.1993
SNE 0.1070 0.1728 11(0.81, 1.61) 0.5357
Admission Count on Admission Date & Shift

All Units 0.0062 0.0565 1.01(0.90, 1.12) 0.9130
oE -0.1520 0.1181 0.86(0.67, 1.08) 0.1981
6NE 0.0997 0.1378 1.10(0.84, 1.44) 0.4694
SNE -0.1381 0.2125 0.87(0.56, 1.31) 0.5157
RN Unit Staffing on Discharge Date & Shift

All Units 0.2919 0.0493 1.34(1.22, 1.48) 0.0000 ***
oE 0.3274 0.1903 1.39(0.97, 2.06) 0.0854
6NE -0.0562 0.2486 0.95(0.58, 1.55) 0.8210
SNE -0.1202 0.1814 0.89(0.63, 1.31) 0.5076
Admission Count on Discharge Date & Shift

All Units -0.0008 0.0550 0.99(0.90, 1.11) 0.9880
5K 0.0546 0.1264 1.06(0.82, 1.36) 0.6661
6NE 0.0379 0.1432 1.04(0.78, 1.37) 0.7910
SNE 0.0011 0.2352  1.00(0.61, 1.57) 0.9961
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Sepsis Patients

For all nursing units that provided treatment for sepsis patients, admission volume on day
of admission had an association with decreased risk of in-hospital morality, while staffing
on the day of mortality was associated with increased risk of in-hospital mortality, which
corresponds with the overall model. Further analysis was conducted on those units that
included the highest number of cases, which include medicine (6NE), oncology (7SE), and
hematology /oncology (8NE). Table 5.22 summarizes the findings. At the unit level, the
selected hospital resource variables were not significant.

Tables 5.23 to 5.25 show medicine, oncology, and hematology/oncology respectively. For
sepsis patients treated in these units, there were no significant associations between the
selected hospital resource variable and mortality when accounting for unit-level complexity.

A similar result was found for the hematology/oncology unit overall model.
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Table 5.22: Hospital Resource Factors & In-hospital Mortality for Sepsis Patients

Coeflicient Standard Odds Ratio

Units Pr(> [2])
Estimate Errors (CI)

RN Unit Staffing on Admission Date & Shift

All Units 0.0141 0.0339 1.01(0.95, 1.08) 0.6788
6NE 0.1522 0.1864 1.16(0.81, 1.69) 0.4142
7SE -0.0250 0.2154 0.98(0.63, 1.49) 0.9077
SNE 0.1421 0.1272 1.15(0.90, 1.48) 0.2641
Admission Count on Admission Date & Shift

All Units -0.1460 0.0470 0.86(0.79, 0.95) 0.0019 **
6NE 0.0901 0.1169 1.09(0.87, 1.38) 0.4410
7SE -0.1472 0.1374 0.86(0.64, 1.11) 0.2840
SNE -0.1613 0.1710 0.85(0.60, 1.18) 0.3458
RN Unit Staffing on Discharge Date & Shift

All Units 0.3580 0.0413 1.43(1.32, 1.55) <0.0005 HH*
6NE -0.4459 0.3036 0.64(0.35, 1.17) 0.1418
7SE -0.0826 0.2315 0.92(0.58, 1.46) 0.7212
SNE -0.2470 0.1264 0.78(0.61, 1.00) 0.0507

Admission Count on Discharge Date & Shift

All Units 0.0120 0.0452 1.01(0.93, 1.11) 0.7906
6NE 0.0526 0.1987 1.05(0.71, 1.56) 0.7914
7SE -0.0224 0.1440 0.98(0.73, 1.30) 0.8760
SNE -0.0089 0.1703 0.99(0.70, 1.38) 0.9584
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5.8.4  Discussion

The models described in this chapter had similarities and dissimilarities to the overall model
described in Chapter 4. Similarities for health condition and overall models for 30-day read-
mission include associations between staffing at the time of patient admission with increased
risk of readmission for all patients, cancer patients, and diabetes patients; which is similar
to the overall model. Alternatively, admission volume on the day of admission was associ-
ated with increased risk of readmission for sepsis patients, while admission volume on day
of discharge was associated with a decreased risk of readmission for cancer patients. This
differs from the overall model where admission volume was not significant. When taking
demand:supply measures into account at the unit level, the overall model only found signifi-
cant association between staffing on day of admission and 30-day readmission for all patients
treated in the orthopedic unit. A similar result was observed for cancer patients treated on
the orthopedic units. Based on the similar findings from the overall model and cancer patient
model for patients treated within the orthopedic unit, the association between staffing and
increased readmission risk should be studied further to identify if confounding factors not
studied in this dissertation contribute to an increased number of nurses being staffed and
higher risks of 30-day readmission for all patients treated in the orthopedic unit.

For in-hospital mortality, the only significant hospital resource factor similarities for the
health conditions and overall models were nurse staffing at the time of mortality which had
an association with increased mortality for cancer patients and all patients. At the unit
level, nurse staffing on day of mortality was associated with decreased risk of mortality for
cancer patients treated within the hematology/oncology unit featured in the model, which
was a similar result to the overall model.

The differences observed between the overall model and the health condition models may
suggest that in addition to studying hospital resource associations at the unit-level, the

associations also be studied at the patient-level in terms of health conditions.
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Chapter 6

DISCUSSION

The objective of this dissertation was to identify associations between hospital resource
factors and adverse health outcomes by controlling for significant patient risk factors and by
taking into account variations in association across different nursing units. Since the patient
population included in this study were all patients susceptible to an adverse health outcome,
the findings of these study can be used by healthcare administrators, decision makers, and
policy makers to develop interventions aimed at improving overall patient safety for all

patients treated in the hospital.

The studies presented in this dissertation first identify patient risk factors for all patients
who are more susceptible to experiencing an adverse health outcome. With information
on patient risk factors, susceptible patient can be identified earlier and interventions can
be implemented to mitigate adverse health outcomes for these patients. Next, controllable
hospital resource levels on day of admission and day of discharge that increase likelihood of of
adverse health outcome were identified. Since the hospital resource measures included in this
study can be controlled by hospital administrators, policies can be put into place to change
resource levels, which would improve patient safety. Unlike previous studies that typically
assess resource levels on either day of admission or day of discharge, this study aimed to find
associations on both day of admission and day of discharge/mortality. By assessing both
the day of admission and day of discharge, interventions related to the findings would be
aimed at reducing adverse outcomes from the time the patient enters the hospital to the
time the patient leaves. Finally, the association between hospital resource levels and adverse
health outcomes from unit to unit and the possible effect of demand per supply of resources

and services on these associations were explored. The unit to unit variation was important
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to consider due to the different types of health conditions treated on each unit that could
possibly require unit-level policies to mitigate the occurrence of adverse health outcomes.

Demand and supply of resources and services were explored to assess potential confounding.

Generalizability

The findings described in these studies may not be generalizable across various healthcare
facilities. The University of Washington Medical Center is an urban teaching hospital that
may have a unique patient population and/or resource and service capacity in comparison
to other healthcare facilities. The methodology and findings presented in this dissertation
can assist hospital decision and policy makers identify unique interventions based on the

hospital’s unique patient-level and unit-level characteristics.

Future Work

The 30-day readmission adverse health outcome measure included in this study is a quality
of care measure recognized by healthcare agencies, such as the Centers for Medicare & Med-
icaid Services. In addition to this measure, other readmission measures related to morbidity
and disease or illness progression can be examined. Research has found the majority of pre-
ventable readmission occur within 30-days from discharge [10], however since readmissions
that occur after 30-days may also be preventable, the usefulness of 30-day readmission as
a quality of care measure has been debated [10]. After completing their research on health
outcome effectiveness in 1991, Gornick et al. (as cited in Benbassat & Taragin, 2000) con-
cluded readmissions after discharge ”often indicated...the progression of disease, rather than
discrete outcomes of care...” [10]. Based on this conclusion, future research should account
for disease/illness progression by measuring the time until a readmission, which could be a
more appropriate quality of care measure.

Fluctuations in admission volume, resulting from epidemics, as well as resource utilization
and capacity, resulting from hospital interventions, can impact the results found in this study.

In terms of admission volume, increased patient demand can exceed hospital resources and
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service capacity and potentially increase the occurrence of adverse health outcomes. Pre-
vious studies have found associations between seasonal influenza as it relates to hospital
overcrowding and increased likelihood of in-hospital mortality [20]. Additionally, changes in
available hospital resources, such as opening a new nursing unit, can relieve strained bed ca-
pacity and potentially reduce the occurrence of adverse health outcomes. Researchers found
that after interventions to reduce bed occupancy were implemented, which included com-
missioning additional community hospital beds, in-hospital mortality reduced significantly
[41]. Future studies assessing the association between hospital resources and adverse health
outcomes should account for time periods when patient volume changes due to epidemics
and when resource utilization and capacity changes due to hospital interventions.

Factors external to a hospital, such as insurance-mix of their patient population, can
influence the findings presented in this research. In this study, only Medicare insurance
was considered as a patient risk factor associated with adverse health outcomes. Having
an alternative type of insurance or not having insurance could have a possible association
with adverse health outcomes. Previous studies have found that lack of health insurance has
an association with increased risk of mortality ([93]; [94]). Based on these findings, future
studies should include insurance measures as a potential patient risk factor associated with
adverse health outcomes.

The following sections summarize and discuss the study findings for each research ques-

tion.
6.1 Influence of Patient Risk Factors with Adverse Health Outcomes Findings

To address research question 1 (RQ1), patient risk factors that could potentially influence the
association between hospital resource factors and in-hospital mortality and 30-day readmis-
sions were examined in chapter 2. Binomial logistic regression and LASSO logistic regression
models were both considered to avoid over-fitting the models. Although both methods had
similar discrimination performance as measured by the AUC, the goodness-of-fit showed bet-

ter results for binomial logistic regression. The model showed 19 patient risk factors that
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significantly impacted readmission and 8 patient risk factors associated with mortality. Pa-
tient risk factors associated with decreased risk of readmission included receiving treatment
from the ICU and being a Medicare beneficiary, while risk factors associated with increased
risk of readmission included receiving treatment for cancer and being admitted from the
emergency department (ED). Patient risk factors associated with decreased risk of mortality
included receiving treatment for heart failure. Receiving palliative care and staying in the
ICU significantly increased the risk of mortality. Palliative care was expected to have a
strong association with in-hospital mortality since palliative care is a service aimed at easing
patient symptoms and offering support for the patient’s family members [95]. Patients who
stayed in the ICU have higher risk of mortality and severity of illness, and are therefore more
susceptible to experiencing adverse health outcomes ([64]; [18]; [21]; [77]; [28]; [23]; [29]; [30];
[31]; [78]; [79]; [54]; [80]; [44]; [22]).

The hypothesis of RQ1 was age, sex, chronic health conditions, severity of illness, risk
of mortality, and length of stay would be associated with increased the risk of both adverse
health outcomes. For 30-day readmission, age, chronic health conditions such as cancer
and diabetes, extreme severity of illness, and length of stay were significantly associated
with increased risk of 30-day readmission, corresponding with the hypothesis. In addition
to these patient risk factors, receiving a procedure, identifying as black/African-American,
being admitted through the emergency department, receiving treatment for heart failure;
and being discharged home were also associated with increased risk of 30-day readmission.
These findings correspond with past research that included age, sex, and ethnicity([68]; [69];
[70]; [71]); chronic health conditions, ([72]; [70]; [73]); severity of illness [74]; and admission

source [50] patient risk factors when studying associations with adverse health outcomes.

For in-hospital mortality, both extreme severity of illness and risk of mortality were
associated with increased risk of in-hospital mortality, which corresponded with the hypoth-
esis. Interestingly, age, sex, receiving treatment for chronic health conditions, and length of
stay—patient risk factors that were previously studied for their potential association with

adverse health outcomes ([68]; [69]; [72]; [70]; [73])—were not significantly associated with
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in-hospital mortality when other patient risk factors were included in the model. The possi-
ble reason for the discrepancy could be due to the study design and setting. Similar studies
have included larger patient populations spanning across multiple healthcare facilities. The
study presented in this dissertation included one healthcare facility, so it is possible that the
findings are not as generalizable to patient populations outside the University of Washington
Medical Center.

Hospital policy makers can develop patient safety measures to prevent adverse health out-
comes for susceptible patient groups. Patients who self-identified as black/African-American
as well as patients who were admitted through the emergency department had an increased
likelihood of being readmitted within 30 days, and preventative interventions can help to
mitigate future readmission. A combination of previously studied interventions aimed at re-
ducing 30-day readmission include scheduling outpatient follow-up visits, providing patient-
centered discharge instructions to patients before they are discharged from the hospital, and
providing follow-up phone calls after discharge [96]. These interventions should be imple-
mented to prevent 30-day readmission for the most susceptible patients found in this study,
including patients admitted through the emergency department and those treated for chronic
health conditions, such as cancer and diabetes. To prevent in-hospital mortality, hospitals
should consider establishing medical emergency teams consisting of experienced nurses and
physicians who are dispersed to provide resuscitation procedures when a patient becomes
unstable [97]. Additionally, licensed health care providers can further investigate root causes
by reviewing patient medical records to identify similarities in treatment that may explain
why specific patient groups are more susceptible to adverse health outcomes. Once these

similarities are identified, policies can be developed to prevent adverse health outcomes.

6.2 Influence of Hospital Resource Factors with Adverse Health Outcomes
Findings

The resource variables that influence in-hospital mortality and 30-day readmission rates were

found for all units with readmission and mortality cases in chapter 3. After adjusting for the
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significant patient risk factors found in chapter 2, the hospital resource factors associated with
increased risk of readmission included nursing staff scheduled to work, being admitted during
the evening (3:00pm to 10:59pm) and night (11:00pm to 6:59am) shifts, and being discharged
during the evening shift. After hours discharge was previously identified to increase the risk
of 30-day readmission ([21]; [23]; [50]). The study findings in this research suggest the
limited resources available after-hours on both the time of admission and time of discharge
influence the likelihood of readmission. For mortality, nursing staff scheduled to work and
scheduled to be on vacation on the day of mortality were measures associated with increased
mortality risk. This study introduced the number of nurses vacationing measure, which was

significantly associated with increased mortality risk.

The hypothesis of research question 2 (RQ2) was that all included hospital resource
factors (e.g. number of scheduled registered nurses, number of available beds) and proxy
measures (admission/discharge during the evening shift, admission count to the unit), are
associated with an increased risk of adverse health outcomes. Interestingly, the number of
nursing staff (staffing) who were scheduled to work at the time a patient was admitted and
the time a patient was discharged was associated with increased risk of 30-day readmission,
and staffing at the time when a patient passed away was associated with increased risk of
risk-adjusted in-hospital mortality. The result is contrary to the hypothesis and previous
readmission and mortality research ([7]; [16]), since it is assumed more resources available to
provide care to patients will reduce the likelihood of adverse health outcomes. Similar studies
have included nurse education skill levels and accounted for nurses who provided direct
patient care as opposed to nursing staff who performed administrative duties. Additionally,
the nurse staffing data included in this study does not take into consideration the possibility
that the actual number of nurses who worked during a given shift may differ from the number
of nurses scheduled to work.

The research findings in this study proposed hospital resource measures that can be
controlled in order to reduce the occurrence of adverse health outcomes, which can improve

overall patient care. The research findings propose that after-hour admission to and discharge



145

from the nursing unit when accessibility to resources is more likely to be limited (i.e. during
the evening shift) increases the likelihood to experience readmission. Healthcare decision
makers can put implement policies and programs to either increase the level of resources or
access to equipment during evening and night shifts [26] or limit admission to and discharge
from the nursing units to morning/day shifts when hospital resources are more accessible.
Additionally, the number of registered nurses scheduled to be on vacation was found to
increase the risk of mortality. Staffing policies should be put into place that ensure adequate
staffing levels are maintained during each shift.

Due to the discrepancy in nurse staffing findings presented in this research compared with
previous studies, future studies should consider including nurse staffing measures other than
the number of nurses scheduled to work. It is recommended that nursing surveys, similar
to those used in previous studies [92], are used to capture the actual number of nurses that
worked each shift; the number of nurses who provided direct patient care versus performed
administrative duties, such as supervision and education; the education level of each nurse;
and the experience level of each nurse in terms of amount of time working as a registered

nurse.

6.3 Unit-to-Unit Variation in Hospital Resource Influence on Adverse Health
Outcomes Findings

Finally, the association between resource factors and risk-adjusted 30-day readmission and
mortality were assessed for selected individual units, and demand:supply ratio measures
were assessed to explore if these ratio variables could explain the unit-to-unit variation in
chapter 4. For individual units, selected hospital resource factors did not have different
significance or direction of association with readmission when compared against the whole
hospital associations explored in chapter 3. For mortality, the number of scheduled nursing
staff on the day of admission for the orthopedic unit and the number of scheduled nursing staff
on the day of mortality for the medical/surgical and hematology/oncology units decreased

the risk of mortality, which is a similar association found in previous studies [16]. The
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demand:supply ratio measures selected in this study did not account for the unit-to-unit
variation.

It was hypothesized that demand per supply measures at the unit-level could confound the
association between the resource factors and adverse health outcomes. This study explored
the difference in association of hospital resources variables and adverse health outcomes for
a subset of nursing units at the University of Washington Medical Center. The exploratory
study presented in chapter 4 included 2 of the hospital resource factors studied in chap-
ter 3 and 4 of the 14 nursing units in the hospital. Before policies can be developed and
implemented, more research should be conducted for the remaining units to identify the risk-
adjusted associations between hospital resource factors and adverse health outcomes specific

to each unit and how demand and supply impact these associations.
6.4 Conclusion

The findings presented in this dissertation can be used for hospital operations and healthcare
delivery process planning in order to mitigate the risk of readmission and mortality. At the
University of Washington Medical Center, there is evidence that admission and discharge
during the evening shift is associated with increased risk of adverse health outcomes on the
day of admission and the day of discharge for readmitted patients. In terms of in-hospital
mortality, the number of nurses vacationing is associated with increased risk of mortality.
Additionally, the number of scheduled nurse staffing reduces the risk of mortality in the
orthopedic, medical /surgical, and hematology/oncology units. Policies can be developed or
revised in an attempt to control resource factors found to significantly influence adverse

patient health outcomes.
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Appendix A

VARIABLES INCLUDED IN THE PATIENT DETAIL REPORT
DATASET

The following is a list of the variables featured in the Patient Detail Report and their

definitions.

Acute Myocardial Infarction (AMI) Flag: Indicator variable set to “1” if a patient

had AMI prior to (ie. reason for hospital visit) or during their hospital stay; “0” otherwise

Admit Date: The date a patient was admitted to an inpatient unit for a given encounter

(format: mm/dd/yyyy)

Admit Source: The origin location through which the inpatient arrives to the hospital

Admit Time: The time a patient was admitted to an inpatient unit for a given encounter

(format: hh:mm:ss am/pm)
Admit Type: The manner in which a patient is admitted to the hospital
Age: Patient’s age at the beginning of their encounter

All Patient Refined Diagnosis-Related Group (APR-DRG): A pricing code based on 1)
negotiated rates between the hospital and commercial insurance for a patient’s diagnosis

and 2) the average amount or resources used to treat the patient’s diagnosis

APR-DRG Risk of Mortality (ROM): A classification of a patient’s risk of mortality based
on the patient’s APR-DRG assigned after discharge
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APR-DRG Severity of Illness (SOI): A classification of a patient’s severity of illness based
on the patient’s APR-DRG assigned after discharge

APR-DRG Weight: The average amount of resources required to treat an individual patient

within the given DRG and who has a commercial insurance payor

Cancer Flag: Indicator variable set to “1” if a patient had sepsis prior to (ie. reason for

hospital visit) or during their hospital stay; “0” otherwise

Chronic Obstructive Pulmonary Disease (COPD) Flag: Indicator variable set to “1” if a
patient had COPD prior to (ie. reason for hospital visit) or during their hospital stay; “0”

otherwise

Coronary Artery Bypass Grafting (CABG) Flag: Indicator variable set to “1” if a patient
had a CABG surgical procedure prior to (ie. reason for hospital visit) or during their

hospital stay; “0” otherwise

Days: The number of days a patient receives treatment in the hospital from the admission

date to the discharge date. Also referred to as the length of stay (LOS)

Deaths: An indicator variable set to “1” if the patient passed away during their hospital

visit; “0” otherwise

Diabetes: Indicator variable set to “1” if a patient had diabetes prior to (ie. reason for

hospital visit) or during their hospital stay; “0” otherwise

Diagnosis-related Group (DRG) Code: A code classification assigned to an inpatient during

their encounter for payment purposes based on their diagnosis

Discharge Date: The date a patient was discharged from an inpatient unit for a given

encounter (format: mm/dd/yyyy)



159
Discharge Medical Doctor (MD) Code: The unique code assigned to the physician who
provided care to the patient prior to the patient’s discharge

Discharge Medical Doctor (MD) Name: The name of the physician who provided care to
the patient prior to the patient’s discharge

Discharge Status Code € Name: A description of the location to which the patient was
discharged and its corresponding code number, including expiration, discharge home, and

discharge to a different facility

Discharge Time: The time a patient was discharged from an inpatient unit for a given

encounter (format: mm/dd/yyyy)

DRG Weight: The average amount of resources required to treat an individual patient

within the given DRG

Emergency Department (ED) Admits: Indicator variable set to “1” for when a patient is

admitted to a unit from the Emergency Department; “0” otherwise

Group UWMC' Discharge Medicine (Med) Service: The specialty services the patient

requires during their stay

Group UWMC' Discharge Nursing Unit: The nursing unit from which a patient is discharged

during a given encounter

Heart Failure (HF) Flag: Indicator variable set to “1” if a patient had HF prior to (ie.

reason for hospital visit) or during their hospital stay; “0” otherwise
Home County: The name of the county from which the patient resides

Home ZIP: The zip code from which the patient resides
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Hospice Flag: Indicator variable set to “1” if a patients had received hospice care prior to

their hospital stay; “0” otherwise

Intensive Care Unit (ICU) Days: The number of days a patient receives intensive and/or
critical care treatment in the hospital from the admission date to the discharge date. This

includes ICU days for patients who received treatment in the ICU

Lack of Housing: Indicator variable set to “1” if a patient does not have housing; “0”

otherwise

Length of Stay (LOS): The duration of time the patient stays in the hospital. For admitted

patients, this is the time from admission to external discharge

LOS FEzxpected: The expected length of stay for a patient based on risk models developed
by the University HealthSystem Consortium (UHC). Variables contributing to predictors
of length of stay include age, sex, race, socioeconomic status, admit source, admit status,
severity of illness at the time of admission, co-morbidities present on admission, and other

variables specific to certain patient populations

Medical Record Number (MRN): A unique patient identifier assigned to a patient upon
each new encounter/admission into the hospital. For patients who have multiple UWMC

admissions, the patient is assigned a new medical record number for each encounter

Medicare Fee-for-Service (FFS): An indicator variable set to “1” if the patient participates
in the Medicare FFS plan; “0” otherwise. Patients who have a “1” are 65 or older and
qualify for social security benefits (note: no patient encounter included in the Patient Detail

Report dataset participated in the Medicare FFS program.)

Mortality Fxpected: The probability of mortality calculation for each patient encounter

based on risk models developed by the University Health System Consortium (UHC).
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Variables that contribute to predictors of mortality include age, sex, race, socioeconomic
status, admit source, admit status, risk of mortality at the time of admission, co-morbidities

present on admission, and other variables specific to certain populations

Palliative Care Flag: Indicator variable set to “1” if a patients had received palliative care

prior to their hospital stay; “0” otherwise

Patient Account Number: A patient identifier assigned to a patient upon their first admission
to the hospital. For patients who have multiple UWMC admissions, the patient account

number remains the same for each encounter

Payor Group: The patient’s health insurance company authorized to provide health

insurance for the encounter

Pneumonia (PN) Flag: Indicator variable set to “1” if a patient had PN prior to (ie. reason

for hospital visit) or during their hospital stay; “0” otherwise
Primary (Prim) Language: The primary language the patient speaks

Principal Diagnosis Code: The code assigned to the principal, or main, condition or

diagnosis causing the patient to seek treatment in the hospital

Principal Diagnosis Name: The name of the principal, or main, condition or diagnosis

causing the patient to seek treatment in the hospital

Principal Procedure Code: The code assigned to the principal or main, procedure the patient

received during their hospital visit

Principle (Prin) Procedure Date: The date a patient had a procedure during their hospital
stay
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Principal Procedure Name: The name of the principal or main, procedure the patient

received during their hospital visit

Principle (Prin) Surgeon Code: The unique code assigned to the surgeon who performed a

surgical procedure for a patient who had a procedure during their hospital stay

Principle (Prin) Surgeon Name: The name of the surgeon who performed a surgical

procedure for a patient who had a procedure during their hospital stay
Race: Patient’s self-identified race

Seattle Cancer Care Alliance (SCCA) Encounter: Indicator variable set to “1” for patients

who receive treatment as part of the SCCA; “0” otherwise

Sepsis Flag: Indicator variable set to “1” if a patient had sepsis prior to (ie. reason for

hospital visit) or during their hospital stay; “0” otherwise
Sex: Patient’s self-identified sex

Stroke Flag: Indicator variable set to “1” if a patient had a stroke prior to (ie. reason for

hospital visit) or during their hospital stay; “0” otherwise

Total Direct Cost. The total cost of healthcare resources used to provide treatment to
patients during an encounter. Direct costs include those cost that can be directly attributed

to the care of the patient, such as room charges, lab work, pharmaceuticals, etc

Total Direct Cost Expected: The expected direct cost of care calculated for each patient
encounter, based on risk models developed by the University Health System Consortium
(UHC). Direct costs include those cost that can be directly attributed to the care of the
patient, such as room charges, lab work, pharmaceuticals, etc. Variables that contribute to

predictors of direct cost include age, sex, race, socioeconomic status, admit source, admit
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status, severity of illness at the time of admission, comorbidities present on admission, and

other variables specific to certain populations

University Health System Consortium (UHC) Service Line: A standardized classification of

services provided to the patient based on patient diagnosis or procedures received identified

by UHC



