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This thesis is the summary of an excursion around the topic of reversibility. We start the
journal from a classical mechanical view of the “time reversal symmetry”: we look into the
details to track the movements of all particles at all times and ask whether the entire system
remains the same if both time and momentum flip signs. This description of reversible
process is the exact reflection of classical mechanics with a quadratic kinetic energy which
generates Boltzmann’s equilibrium thermodynamics. Unfortunately, it heavily depends on
the coordinate system the variables reside in and automatically excludes the processes with
dissipation or/and fluctuation from being reversible. A related but slightly more relaxed
scenario is that the dynamics conserve certain quantities. Fortunately, we are able to gen-
eralize thermodynamics to this broader range of systems.

For the discussion of reversibility, however, we veer towards a direction that requires
much less scrutiny, and provides far more generality. We follow Kolmogorov’s footstep-
s and only study the statistics of the variables in question. Reversibility in that realm
dictates that the probability of observing a path forward equals to that of seeing a path
backward. Interestingly though, the aforementioned conservative dynamics are the source
of irreversibility in stationarity. We then realize that the general Markov process can be de-
composed into reversible and irreversible components, each preserving the entire process’
stationary distribution. This realization lets us continue along the path to develop thermo-
dynamic theory for general stochastic processes and confirm the universal ideal behavior
in Orntein-Uhlenbeck processes.

The realization also prompts us to continue our excursion further into applications. On
the modeling side, we discover a way to analyze noise induced phenomena in reaction
diffusion equations. Stability and bifurcation analysis is brought into the stochastic models
through the bridge of “effective dynamics”. We are able to quantitatively explain the onset



of pattern formations introduced by chemical reaction noise.
Looking over to the Bayesian inference side (for the learning of model parameters from

data), we find ourselves in the position of digging into a critical problem: computation
with stochasticity. As the defacto approaches for Bayesian inference, Markov chain Monte
Carlo (MCMC) methods have always been criticized for their slow convergence (mixing
rates) and huge amount of computation required for large data sets (scalability). It has been
discovered that introduction of irreversibility increases the mixing of Markov processes.
Using the decomposition of general Markov processes, we reparametrize the space of vi-
able Markov processes for sampling purpose, so that the search for the correct MCMC
algorithm turns into a game of plug and play with two matrices (or transition probabilities)
to choose from. Irreversibility is automatically incorporated as one of the components to
specify.

Digging even deeper into a new world of scalable Bayesian inference, we start to make
use of stochastic gradient techniques for excessively large data sets. With independent and
identically distributed data, our previous results with continuous Markov process can be
revised and provide a complete recipe to construct new stochastic gradient MCMC algo-
rithms. Within our recipe, we pick some of the nice attributes of the previous methods and
combine them to form an algorithm that excels at learning topics in Wikipedia entries in a
streaming manner. With correlated data, we find a huge void space to explore. As the first
step, we visit time dependent data and harness the memory decay to generalize the stochas-
tic gradient MCMC methods to hidden Markov models. We find our method about 1,000
times faster than the traditional sampling method for an ion channel recording containing
209,634 observations.
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Chapter 1

INTRODUCTION

Mathematics constitutes the most colossal

metaphor imaginable, and must be judged,

aesthetically as well as intellectually in

terms of the success of this metaphor.

Norbert Wiener

Time reversibility has been one of the central concepts for the physics community since
the 19th century. Whether a “scientific law” remains the same with the reversal of time
is indeed fascinating. At the same time, answer to the above question is contingent upon
the very definition of the “scientific laws”. Naively, there seem to be two types of reason-
ing based on different perspectives: In dynamical systems theory, people tend to look for
time reversal symmetries and use that notion as the criteria for reversibility. In stochastic
processes, time reversibility is often studied from the statistical point of view; reversibility
is judged from the statistical indistinguishability between a process and an appropriately
defined reversal. In both cases, a type of invariance under time reversal is introduced.

In 1948, Norbert Wiener started his book of “Cybernetics” by discussing the difference
between the disciplines of astrophysics and atmospheric science [183]. He stated that (in
modern language) the astronomical phenomena inherently possess time reversal symmetry;
while the atmospheric questions are statistical in nature, and does not have this property of
time reversal symmetry. The underlying reasoning behind this distinction is that the as-
tronomical phenomena can be described, with fair accuracy, by Newtonian dynamics of
finitely many point masses, which is a closed mechanical system. Reversing time is e-
quivalent to merely reversing the initial momentum of the system. Objects of atmospheric
science, on the other hand, are measures over the set of possible atmospheres. The in-
evitable introduction of stochasticity and dissipation leads to the breaking of time reversal
symmetry. One observes that dynamics according to Newtonian mechanics with conserva-
tive force, or Hamiltonian dynamics, is in a sense “stationary”. Therefore, an appropriate
notion of reversibility in the stochastic context has to be based on a stationary stochastic
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process.
A broader definition of time reversibility, in the theory of stochastic processes, was giv-

en by Andrey Kolmogorov [79]. This stochastic processes perspective is based on treatment
of observed quantities as stochastic processes, whether they are measurements of celestial
objects or collective quantities like clouds. As a direct generalization of the classical, deter-
ministic dynamical systems, a Markov process takes into account the effect of randomness
in the motion in a wide range of scenarios. By analyzing the change of a distribution
function over time, a statistical description of the quantities of interest can be obtained. A
system with an invariant distribution is defined as statitically “stationary”. Then it is de-
fined that a Markov process is time reversible if the probability of observing a forward path
from one state to another is equal to that of moving backward along the exact same path.

In the following sections, we start by analyzing the notion of time reversal symmetry in
the stochastic context and its relationship with conservation law, a notion mainly developed
in the context of deterministic dynamical systems. We then study their roles in general
stochastic processes with irreversible components.

1.1 Time Reversal Symmetries

Systems following classical mechanics with positions q and momentum p without dissi-
pation have the symmetry: t → −t, q → q, p → −p leaving the system invariant [88].
In other words, when time runs backwards, the whole system becomes a mirror image of
itself in the p (momentum) direction, and hence, leaves the behavior the same. We hasten
to add that when a magnetic field is involved, the time reversal symmtry also stipulates that
B → −B. The Lorentz force then has a time reversal symmetry ~v × ~B → (−~v) × (− ~B),
where ~v is velocity.

In linear systems, time reversal symmetry exists when there is a proper quadratic con-
served quantity, and vice versa. Systems with a conserved quantity φ(x) satisfy:

f(x)T∇φ(x) = 0, (1.1)

which will be discussed in more details below. In nonlinear dynamics, although time re-
versal symmetry and conservation law do not imply each other, having a proper conserved
quantity may lead to other continuous symmetries and provides a recurrence condition.

More importantly, having a proper conserved quantity is the necessary and sufficien-
t condition for constructing a set of “thermodynamic relations” for the dynamical system.
The idea of thermodynamics has not been widely appreciated outside mathematical physic-
s [24]. In an applied mathematical sense, it concerns with the long-time behavior of a re-
current but non-ergodic system, and its parameter dependence, of systems with conserved
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quantities. Boltzmann and Gibbs first provided the 19th century phenomenological thermo-
physics with a classical mechanical foundation through its mechanical energy conservation
[50]. They realized that the conservation law provides a novel point of view that regards
the dynamics on a whole trajectory as a single state of recurrent motion e.g., a thermody-
namic state. This coarse perspective constitutes a global way of describing and identifying
complex dynamical systems, and their parts.

1.1.1 Linear Conservative Flow and General Time Reversal Symmetries

For a linear system with a quadratic conserved quantity φ(x) =
1

2
xTΞ−1x, where Ξ−1 is

symmetric positive definite to ensure that φ(x) is a proper function in Rn, it can always be
written as:

dx
dt

= QΞ−1x. (1.2)

where Q is a skew-symmetric matrix as will be constructively proved in 3.
The dynamics in Eq. 1.2 can be proved as purely cyclic motion (e.g., periodic, or

quasi-periodic on an invariant torus). Because matrix QU has only imaginary eigenvalues
{λ`|1 ≤ ` ≤ n} as will be shown in Proof 4. We can also find real Jordan form of QU :
PJP−1, where J is block diagonal, with 2× 2 skew-symmetric blocks:

Im
[
λ(2i−1)

] 0 1

−1 0


being the ith block on the diagonal. Natural coordinates for the conservative flow Eq. (1.2)
is therefore: y = P−1x.

Poisson bracket {·, ·} can be defined for the linear conservative system as: {ϕ(x), ψ(x)} =

∇ϕ(x)TQ∇ψ(x). Then the conservative flow expressed in terms of its Hamiltonian func-
tion φ(x) is:

ẋi =
{
xi,

1
2
φ(x)

}
. (1.3)

The conservative flow is totally integrable, with the first integrals Ii:

Ii = y2
2i−1 + y2

2i = xTP−T I(2i−1)∼(2i)P
−1x, 1 ≤ i ≤

⌊n
2

⌋
. (1.4)

Here, I(2i−1)∼(2i) denotes the diagonal matrix with 1 on (2i − 1)-th to (2i)-th diagonal
entries, and zero everywhere else. There are

⌊
n
2

⌋
first integrals, but for the given Poisson

bracket, one combination of them is unique, which is the Hamiltonian ϕ that generates the
conservative flow.
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In the y coordinates, it is observable that the system bears the following symmetries:
(t, y2i−1, y2i) −→

(
− t, (−1)kiy2i−1, (−1)ki+1y2i

)
, where {ki} is a sequence of 0 and 1.

Taking {ki} as a sequence of zeros, we recover the time-reversal invariance in classical
mechanics. Hence, for general {ki}, those symmetries are the natural generalizations of
the time-reversal symmetry.

In nonlinear systems, time reversal symmetries and conservation laws do not corre-
spond so well. It can be seen in the next section that conservation laws provide the neces-
sary foundations for a theory of thermodynamics, one that stems from and generalizes the
classical mechanical systems with time reversal symmetries.

1.2 Reversibility of Markov Processes

It is interesting to note, on the other hand, that in Kolmogorov’s theory of Markov process-
es, the dynamics with a conserved quantity are what makes the whole process “irreversible”
in stationary, while the rest part of the dynamics are found to be time reversible [?]. For
time homogeneous processes, definition of reversibility according to Kolmogorov is given
for a stationary Markov process as

p(x|y)π(y) = p(y|x)π(x), (1.5)

where p(y|x) is the transition probability from x to y, and π(x) is the stationary probability
of x, for any x. In terms of trajectories, the Kolmogorov’s criteria asserts that the transition
probability must satisfy the following equality that the probability of observing a forward
trajectory is equal to the probability of seeing a backward trajectory:

p(xT |x1) ·
T−1∏
i=1

p(xi+1|xi) = p(x1|xT ) ·
T−1∏
i=1

p(xi|xi+1), (1.6)

for any finite sequence of random variables x1, . . . ,xT . For nonhomogeneous processes,
the Kolmogorov’s criteria can be extended to the equality of Crook’s and Hatano-Sasa’s
[33, 64]: 〈

P [x̌(τ)]

P [x(τ)]

〉[
x(τ)
] =

∫
D[x(τ)] P [x̌(τ)] = 1, (1.7)

where x̌(τ) = x(T−τ) is the time reversed process of x(τ). We will discuss this definition
in more depth in Sec. 3.2.
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1.3 Implications of Irreversibility

Apart from the fundamental quest, discussion of reversibility incurs greater applied science
and engineering consequences. In Chapter 2, we propose a complete framework to decom-
pose general stochastic process into reversible and irreversible components according to
its stationary distribution. While obtaining a stationary distribution usually is a challenging
task for scientific models; it is actually given a priori in any Monte Carlo sampler. In Chap-
ter 3, we will show that the dynamics with a conserved quantity, the irreversible processes,
laid the foundation for a general thermodynamic theory of complex dynamics, à la Boltz-
mann and Gibbs. We make use of the irreversible part of stochastic dynamics to rebuild
thermodynamics in general stochastic processes. In Chapter 4, we use the decomposition
framework to find the most probable effective dynamics of a stochastic reaction diffusion
system and analyzing the phenomenon of noise induced pattern formation. In Chapters 5
and 6, we discuss the accelerating effect of irreversibility in Markov chain Monte Car-
lo sampling algorithms and use our framework to reparameterize Markov dynamics and
provide a complete recipe of Markov dynamics to choose from for the design of MCMC
methods.
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Chapter 2

DECOMPOSITION OF STOCHASTIC PROCESSES ACCORDING
TO REVERSIBILITY

2.1 Preliminaries

In this section, we review some of the fundamentals of the stochastic processes associated
with general Markov processes.

2.1.1 General Markov Processes and their Diffusion and Jump Operators

Consider a general Markov process in Rd, described by the Chapman-Kolmogorov (CK)
equation:

p(z; t3|x; t1) =

∫
Rd

dyp(z; t3|y; t2)p(y; t2|x; t1), (2.1)

where t1 < t2 < t3 are three arbitrary scalar variables denoting time and x,y, z ∈ Rd.
For succinctness of presentation, in what follows, we write t = t2 − t1 and let p(y|x; t) =

p(y; t2|x; t1) denote the probability of transition from x to y over time t and assume au-
tonomous Markov processes (i.e., with time invariant Markov transition operators). It is
worth noting that the autonomous assumption is not necessary to any of the calculations;
non-autonomous Markov processes bear exactly the same results.

A differential form of (2.1), from which algorithms are more straightforwardly derived,
can be obtained by assuming three mild existence conditions for all ε > 0:

1. lim
∆t→0

p(x|z; ∆t)/∆t = W (x|z) exists uniformly in x and z for |x− z| ≥ ε;

2. lim
∆t→0

1

∆t

∫
|x−z|<ε

dx(xi − zi)p(x|z; ∆t) = fi(z) +O(ε);

3. lim
∆t→0

1

∆t

∫
|x−z|<ε

dx(xi − zi)(xj − zj)p(x|z; ∆t) = 2Dij(z) +O(ε) uniformly in z and ε.



7

The differential CK equation defines an update rule that consists of a diffusion process and
a jump process [51]:

∂

∂t
p(z|y; t) =

d∑
i,j=1

∂2

∂zi∂zj

[
Dij(z)p(z|y; t)

]
−

d∑
i=1

∂

∂zi

[
fi(z)p(z|y; t)

]
+

∫
Rd

dx
[
W (z|x)p(x|y; t)−W (x|z)p(z|y; t)

]
. (2.2)

Here, f : Rd → Rd, W : Rd × Rd → R is a transition probability rate function (which de-
fines the transition kernel in (2.10)), and D is a d×d positive semidefinite matrix. The first
line denotes a continuous Markov process specified by a diffusion operator on p(z|y; t);
the second line is a jump process defined by the transition rate function W (z|x).

We rewrite (2.2) as

∂

∂t
p(z|y; t) = L̂

[
p(z|y; t)

π(z)

]
+ Ĵ

[
p(z|y; t)

π(z)

]
, (2.3)

where L̂[·] is the diffusion operator defined as:

L̂ [ϕ(z)] =
d∑

i,j=1

∂2

∂zi∂zj
[Dij(z)π(z)ϕ(z)]−

n∑
i=1

∂

∂zi
[fi(z)π(z)ϕ(z)] , (2.4)

and Ĵ [·] is a Markov transition operator with kernel W (z|x):

Ĵ [ϕ(z)] =

∫
Rd

dx [W (z|x)π(x)ϕ(x)−W (x|z)π(z)ϕ(z)] . (2.5)

Equation:

∂

∂t
p(z, t) = L̂

[
p(z, t)

π(z)

]
(2.6)

is called the Fokker-Planck equation; and equation:

∂

∂t
p(z, t) = Ĵ

[
p(z, t)

π(z)

]
(2.7)

is called Markov jump process.
This form allows us to do two things straightforwardly: One is to separate our analyses

of the continuous and jump parts; the second is to analyze the reversibility of the processes.

In particular, reversible processes satisfy the algebraic condition that
p(x|y; t)

π(x)
=
p(y|x; t)

π(y)
,
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or as is more commonly written, p(x|y; t)π(y) = p(y|x; t)π(x). When the operators L̂ and
Ĵ on p(z|y; t)/π(z) are self-adjoint (i.e., their adjoint operators in the Hilbert space L2 are
equal to themselves), the Markov process is reversible. Hence, expressing the evolution of
the current probability distribution with respect to the stationary distribution as in (2.3) can
help reveal this structure.

When the stationary distribution π is not strictly positive or when the space for z is not

compact (e.g., the space Rd used here), a proper space for
p(z|y; t)

π(z)
may not be obvious.

A formal way to express the same idea is through the generator of the diffusion process
(corresponding to the Kolmogorov backward equation), where the functions exist in a new
Hilbert space L2

π with inner product defined as 〈f(x), g(x)〉π =
∫
f(x)g(x)π(x)dx. Then

self-adjointness of the generator is equivalent to the reversibility of the continuous Markov
process.

2.1.2 Realization of Markov Processes

In Section 2.1.1, we described the evolution of the distribution p(z|y; t). This evolution pro-
vides insight into the stationary distribution of the process. Here, we present the dynamics
for an individual realization, which will play a critical role in our developed samplers.

One can generate a stochastic process based on another, usually more elementary, s-
tochastic process. In computation Monte Carlo sampling, this is based on the i.i.d. random
numbers provided by a computer: for a continuous-state, continuous-time Markov pro-
cess, it is conveniently based on the standard Brownian motion; and for a discrete-state,
continuous-time jump process, it can be based on the standard Poisson process. After sim-
ulating (usually approximating) the dynamics, a realization of the Markov process can be
obtained.

More specifically, a realization of the continuous Markov process,
∂

∂t
p(z|y; t) = L̂

[
p(z|y; t)

π(z)

]
,

can be generated from the stochastic differential equation (SDE) over a real-valued ran-
dom variable Z : Ω → Rd from the probability space (Ω,F , P ) to the measurable space
(Rd,B(Rd)) with Borel algebra:

dZ = f(Z)dt+
√

2D(Z)dW(t), (2.8)

where
√
D(Z) is defined as a solution to D(Z) such that: D(Z)D(Z)T = D(Z) (which al-

ways exists and is real for symmetric positive semi-definite D(Z)). In practice, to simulate
from (2.8), we consider an ε-discretization:

Zt+1 ← Zt + εtf(Zt) + ηt, ηt ∼ N (0, 2εtD(Zt)) (2.9)
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Although (2.9) is in the form of the Euler–Maruyama method, higher order numerical
schemes can be used for better accuracy [26, 20, 94].

Turning to the Markov jump process, the equation
∂

∂t
p(z|y; t) = Ĵ

[
p(z|y; t)

π(z)

]
is

approximately to the first order in ∆t given by:

p(z|y; t+ ∆t) = ∆t

∫
Rd
W (z|x)p(x|y; t)dx +

[
1−∆t

∫
Rd
W (x|z)dx

]
p(z|y; t).

Although this is an approximation to the original equation, it has the same stationary dis-
tribution. Noting that p(x|y; 0) = δ(z− y), we arise at the transition probability:

p(z|y; ∆t) = ∆tW (z|y) +

[
1−∆t

∫
Rd
W (x|y)dx

]
δ(z− y). (2.10)

Equation (2.10) corresponds to a sampling process as follows. We take ∆t to be the step-
size. Then, with probability ∆tW (z|y), we transit from state y to state z. With probability
1 − ∆t

∫
RdW (x|y)dx, we stay in state y. For fixed ∆t, Eq. (2.10) is equivalent to a

τ -leaping simulation (revised from the Gillespie algorithm) of a Poisson process.

2.2 Idea from Freidlin Wentzell Theory

As described in Sec. 5.1.1, continuous Markov dynamics can be written as a set of stochas-
tic differential equation (SDE) for the random variable Z:

dZ = f(Z)dt+
√

2εD(Z)dW(t). (2.11)

Here we let the dynamics to additionally depend on a small noise parameter ε. Under Itô’s
interpretation, the SDE above describes the time evolution of a probability density function
p(z, t) over the space that Z can take value z according to the Fokker-Planck equation
below [146]:

∂p(z, t)

∂t
= ε

∑
i,j

∂2

∂zi∂zj

(
Dij(z)p(z, t)

)
−
∑
i

∂

∂zi

(
fi(z)p(z, t)

)
. (2.12)

When the stochasticity controlled by ε is small, we can use the WKB ansatz to focus on the
most probable behavior of the system by assuming [137]:

p(z, t) = e
−φ(z, t)

ε
+ φ0(z, t) + εφ1(z, t) +O(ε2)

. (2.13)
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According to Freidlin-Wentzell theory [48], function φ(z, t) on the
1

ε
order characterizes

the behavior around the most probable path [98]:

φ(z, t) = − lim
ε→0

ε ln p(z, t)

= − lim
ε→0

ε

[
ln

∫
Dz(t) exp(−ε−1St[z(t)])− lnZ

]
= inf

z(0)=z0,z(t)=z
St[z(t)],

(2.14)

where for a given regular connecting path z(t) and ε, δ small enough,

P( sup
0≤t≤T

|Z(t)− z(t)| ≤ δ) ≈ exp(−ε−1ST [z(t)]).

And ST [z(t)] is called the large deviation rate functional.
Substituting the WKB ansatz of Eq. (2.13) into Eq. (2.12), we obtain the Hamilton-

Jacobi equation:

∂φ(z, t)

∂t
= −∇φ(z, t)T

(
D(z)∇φ(z, t) + f(z)

)
. (2.15)

Since the Hamilton-Jacobi equation characterizes the the behavior of the stochastic process
around its most probable path, it is independence of how Eq. (6.2) is interpreted, whether
we use Itô’s or Stratonovich’s or other types’ of stochastic integration. When a nontrivial
differentiable stationary solution φs(z) for Eq. (2.15) exists, a conservation law is naturally
implied:

−∇φs(z)T
(
D(z)∇φs(z) + f(z)

)
= 0. (2.16)

When f(z) and ∇φs(z) have the same zeros, we can write

Qφ(z)∇φs(z) = −
(
D(z)∇φs(z, t) + f(z)

)
, (2.17)

where Qφ(z) is skew-symmetric. For example, Qφ(z) can be constructed as [187]:

Qφ(z) =
v(z)∇φs(z)T −∇φs(z)v(z)T

∇φs(z)T∇φs(z)
, v(z) = −

(
D(z)∇φs(z, t) + f(z)

)
. (2.18)

Hence we decompose f as:

f(z) = −(D(z) + Qφ(z))∇φs(z). (2.19)
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It is straightforward to see that φs(z) is a Lyapunov function for the vector field f . Then
Eq. (2.15) becomes:

∂φ(z, t)

∂t
= −∇φ(z, t)TD(z)∇(φ(z, t)− φs(z)) +∇φ(z, t)TQφ(z)∇φs(z)

= −∇φ(z, t)T(D(z) + Qφ(z))∇(φ(z, t)− φs(z)). (2.20)

On the leading order, Eq. (6.2) has most probable behavior according to the following SDE:

dZ = −(D(Z) + Qφ(Z))∇φs(Z)dt+
√

2εD(Z)dW(t). (2.21)

It can be seen that Eq. (2.21) connects the stochastic dynamics with its stationary behavior
and separates into two parts. One part consists of reversible dynamics:

dZ = −D(Z)∇φs(Z)dt+
√

2εD(Z)dW(t). (2.22)

It settles at the stationary probability density function ps(z) ∝ e−φ
s(z)/ε+φs0(z)+εφs1(z)+O(ε2)

dominated by φ(z), and is in a constant state of detailed balance (everything that flows out
has the same probability of flowing in from the same direction, nothing really changes on
the leading O(1) order: p(x, t|y)ps(y) = p(y, t|x)ps(x)).

Another part is an irreversible conservative motion:

dz = −Qφ(z)∇φs(z)dt, (2.23)

where φs(z) is the conserved quantity of Eq. (2.23).
It can be seen that this dominant behavior of the stochastic process has a general con-

servation law in stationarity. The incessant but stationary behavior is still driven by a de-
terministic dynamics, Eq. (2.23), with a conserved quantity φs(z).

2.3 Decomposition Away from Most Probable Path with Itô’s Interpretation

Eq. (2.21) gives a nice form of decomposing the dynamics into a reversible and irreversible
parts. We wish to obtain similar form of the decomposition for finite noise, at the same time
preserve the stationary distribution away from most probable path. This implicitly requires
a resummation of all the terms in Eq. (2.13):

p(z, t) = e
−ϕ(z, t)

ε , ϕ(z, t) = φ(z, t)− εφ0(z, t)− ε2φ1(z, t) +O(ε3). (2.24)
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After the resummation, an equation similar to the reformulated Hamilton-Jacobi equation,
Eq. (2.20), can be written as:

∂ϕ(z, t)

∂t
=−∇ϕ(z, t)T(D(z) + Q(z))∇(ϕ(z, t)− ϕs(z))

+ ε∇T
(

(D(z) + Q(z))∇(ϕ(z, t)− ϕs(z))
)
, (2.25)

where in general, Q(z) 6= Qφ(z). To parallel with Eq. (2.26), Q(z) also has a relationship
with f(z), D(z), and ϕs(z):

f(z) = −(D(z) + Q(z))∇ϕs(z) + εΓ(z), Γi(z) =
d∑
j=1

∂

∂xj
(Dij(z) + Qij(z)). (2.26)

A few comments are in order here.

• First, for finite ε, ϕs(z) in general has better regularity than φs(z). This is due to the cor-
respondence of ϕ(z, t) and ϕs(z) to the generator of diffusion process in Eq. (2.12), and in
turn imparted by the nice properties of its resolvent operators. On the other hand, nontrivial
stationary solution φs(z) to Eq. 2.15 exists if large deviation principle of Freidlin Wentzell
type is satisfied and Eq. (2.16) has nontrivial solution. Even so, solutions to Eq. (2.16) are in
general not unique and not smooth. Hence there are far less constraints to work with ϕ(z, t)

and ϕs(z) than with φ(z, t) and φs(z).

• Second, since we are no longer just focusing on the leading order behavior around the
most probable path, and the stationary probability density function of Eq. (2.29) is exactly:
ps(z) ∝ e−ϕ

s(z)/ε, the results are no longer independent of the way the SDEs are interpreted.
In this section, we take Itô’s interpretation as in the rest of the paper. Then a decomposition
of the SDE Eq. (6.2) exists and has a correction term Γ(Z) on the order of ε in addition to
Eq. (2.21):

dZ = −
(
D(Z) + Q(Z)

)
∇ϕs(Z)dt+ εΓ(Z)dt+

√
2εD(Z)dW(t), (2.27)

• Third, it might be tempting to think that Eq. (2.25) is an expansion of the Fokker-Planck
equation, Eq. (2.12), to one higher order. However, it is worth noting that ϕ(z, t), ϕs(z),
and Q(z) actually contains higher order terms of ε. As a result, Eq. (2.25) is actually exact.
Therefore, one can simply take ε = 1 and obtain:

dZ = −
(
D(Z) + Q(Z)

)
∇ϕs(Z)dt+ Γ(Z)dt+

√
2D(Z)dW(t). (2.28)
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• Fourth, the existence of Q(z) given f(z), D(z), and ϕs(z) is proved in Theorem 1 below.

In other words, Eq. (2.8) can be generally transformed into the following form [102]:

dZ = −
(
D(Z) + Q(Z)

)
∇ϕs(Z)dt+ Γ(Z)dt+

√
2D(Z)dW(t), (2.29)

where the correction term Γ(Z) is:

Γi(Z) =
d∑
j=1

∂

∂Zj

(
Dij(Z) + Qij(Z)

)
. (2.30)

And its Fokker-Planck equation is equivalent to the following form:

∂

∂t
p(z; t) = ∇T ·

([
D(z) + Q(z)

][
p(z; t)∇ϕs(z) +∇p(z; t)

])
. (2.31)

Theorem 1 For the SDE of Eq. (6.2), suppose its stationary probability density function

ps(z) uniquely exists, and that
[
fi(z)ps(z)−

∑n
j=1

∂

∂zj

(
Dij(z)ps(z)

)]
is integrable with

respect to the Lebesgue measure, then there exists a skew-symmetric Q(z) such that E-
q. (2.30) is equivalent to Eq. (6.2).

Proof 1 Comparing Eq. (2.30) with Eq. (6.2), we find that the condition for them to be
equivalent is:

f(z) = −
[
D(z) + Q(z)

]
∇ϕs(z) + Γ(z), (2.32)

for any z ∈ D. Multiplying ps(z) on both sides of Eq. (6.3), and noting that:

ps(z) ∝ exp (−ϕs(z)) , (2.33)

we arrive at:

fi(z)ps(z) =
∑
j

∂

∂zj

((
Dij(z) + Qij(z)

)
ps(z)

)
. (2.34)

The equation for Qij(z) can now be written as:∑
j

∂

∂zj

(
Qij(z)ps(z)

)
= fi(z)ps(z)−

∑
j

∂

∂zj

(
Dij(z)ps(z)

)
. (2.35)
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Recall that the Fokker-Planck equation for the stochastic process, Eq. (6.2), is:

∂p(z, t)

∂t
= −∇T ·

(
f(z)p(z, t)

)
+∇2 :

(
D(z)p(z, t)

)
= −

∑
i

∂

∂zi

{
fi(z)p(z, t)−

∑
j

∂

∂zj

(
Dij(z)p(z, t)

)}
. (2.36)

We can immediately observe that the right hand side of Eq. (2.35) has a divergenceless
property by substituting the stationary probability density function ps(z) into Eq. (2.36):∑

i

∂

∂zi

{
fi(z)ps(z)−

∑
j

∂

∂zj

(
Dij(z)ps(z)

)}
= 0. (2.37)

The nice forms of Eqs. (2.35) and (2.37) imply that the questions can be transformed in-
to a linear algebra problem once we apply a Fourier transform to them. Denote the Fourier

transform of Q(z)ps(z) as Q̂(k); and Fourier transform of fi(z)ps(z)−
∑
j

∂

∂zj

(
Dij(z)ps(z)

)
as F̂i(k), where k = (k1, · · · ,kn)T is the set of the spectral variables. That is:

Q̂ij(k) =

∫
D
Qij(z)ps(z)e−2πi kT zdz;

F̂i(k) =

∫
D

(
fi(z)ps(z)−

∑
j

∂

∂zj

(
Dij(z)ps(z)

))
e−2πi kT zdz.

Then,
∂

∂zj

(
Qij(z)ps(z)

)
is transformed to 2πi Q̂ijkj , and Eq. (2.35) becomes the follow-

ing equivalent form in Fourier space: 2πi Q̂k = F̂

kT F̂ = 0.
(2.38)

Hence, it is clear that matrix Q̂ must be a skew-symmetric projection matrix from the
span of k to the span of F̂, where k and F̂ are always orthogonal to each other. We thereby
construct Q̂ as combination of two rank 1 projection matrices:

Q̂ = (2πi)−1 F̂k
T

kTk
− (2πi)−1kF̂

T

kTk
. (2.39)

We arrive at the final result that matrix Q(z) is equal to ps(z)−1 times the inverse Fourier
transform of Q̂(k):

Qij(z) = ps(z)−1

∫
D

kjF̂i(k)− kiF̂j(k)

(2πi) ·
∑
l

k2
l

e
2πi

∑
l
klzl

dk. (2.40)
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Thus, if

(
fi(z)ps(z)−

∑
j

∂

∂zj

(
Dij(z)ps(z)

))
belongs to the space of L1, then any con-

tinuous time Markov process, Eq. (6.2), can be turned into this new formulation.

To the best of our knowledge, the exact form of Eq. (2.29) was first presented in the sta-
tistical mechanics literature [186, 162]; however, the completeness of the representation
of continuous Markov processes was made only later in [102]. The proof of Theorem 1
is comprised of two sets of ideas stemming from different fields: In studies of continu-
ous Markov processes, earlier works [139, 34, 134, 35, 175, 123] realized that diffusion
processes with stationary probability density function π(z) can be decomposed into a re-
versible part and an irreversible part which preserves π(z) as its invariant measure. In
stochastic models in fluid dynamics and homogenization, earlier works [81] found that di-
vergenceless vector fields can be represented as the divergence of an anti-symmetric matrix
valued potential. Combination of both ideas can lead to the discovery of Eq. (2.31) that
underlies the proof of Theorem 1. Similar structures have also been seen in even earlier
works when one or both of D(z) and Q(z) are constant matrices [70, 87].

An important feature of this decomposition framework in Eq. (2.29) is that it builds a
bridge between the stochastic differential equation:

dZ = −
(
D(Z) + Q(Z)

)
∇ϕs(Z)dt+ Γ(Z)dt+

√
2D(Z)dW(t), (2.41)

and its most probable deterministic dynamics:

dz = −
(
D(z) + Q(z)

)
∇ϕs(z)dt. (2.42)

in the sense that the stationary distribution ps(z) of the stochastic system Eq. (2.29) and
(2.41) corresponds to the Lyapunov function ϕ(z) = − log(ps(z)) of the most probable
deterministic dynamics (2.42):

dϕ(z)

dt
= −∇ϕs(z)T

(
D(z) + Q(z)

)
∇ϕs(z) ≤ 0. (2.43)

In other words, the most probable dynamics directs the system towards states with higher
stationary probability. We will return to this feature in Sec. 4.1 with a reaction diffusion
equation model.
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2.3.1 Corresponding Decomposition for Fokker-Planck equation

From Eq. (2.26), we can see that an alternative form of the Fokker-Planck equation (2.6)

can be written, by plugging in the new form of f , as:
∂

∂t
p(z, t) = L

[
p(z, t)

π(z)

]
, where:

L [ϕ(z)] = ∇T ·
([

D(z) + Q(z)
]

[(∇ϕ(z))π(z)]

)
. (2.44)

The operator L[·] can be decomposed into a symmetric part LS[·], characterizing a re-
versible Markov process, and an anti-symmetric part LA[·], representing an irreversible
process. The symmetric and skew-symmetric operators corresponds to two different kinds
of dynamics.

The symmetric operator is determined solely by the diffusion matrix D since the skew-
symmetric matrix Q cancels out:

LS
[
p(z|y; t)

π(z)

]
=

1

2

(
L
[
p(z|y; t)

π(z)

]
+ L∗

[
p(z|y; t)

π(z)

])
= ∇T ·

(
D(z)

[
∇
(
p(z|y; t)

π(z)

)
π(z)

])

=
d∑

i,j=1

∂2

∂zi∂zj

(
Dij(z)p(z|y; t)

)

+
d∑
i=1

∂

∂zi

([∑
j

Dij(z)
∂H(z)

∂zj
− ΓD

i (z)

]
p(z|y; t)

)
. (2.45)

Here, ΓD
i (z) =

∑d
j=1

∂

∂zj
Dij(z) and L∗[·] denotes the adjoint operator of L[·]. According

to Itô’s convention, the last two lines of (2.45) imply that
∂

∂t
p(z|y; t) = LS

[
p(z|y; t)

π(z)

]
corresponds to reversible Brownian motion in a potential force field on a Riemannian
manifold specified by the diffusion matrix D(z): dz =

[
− D(z)∇H(z) + ΓD(z)

]
dt +√

2D(z)dW(t). This is referred to as Riemannian Langevin dynamics [150]. When D(z)

is positive definite, the reversible Markov dynamics have nice statistical regularity and will
drive the system to converge to the stationary distribution.
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The anti-symmetric operator is dictated solely by Q, as here D cancels out:

LA
[
p(z|y; t)

π(z)

]
=

1

2

(
L
[
p(z|y; t)

π(z)

]
− L∗

[
p(z|y; t)

π(z)

])
=∇T ·

(
Q(z)

[
∇
(
p(z|y; t)

π(z)

)
π(z)

])

=∇T ·

([
Q(z)∇H(z)− ΓQ(z)

]
p(z|y; t)

)
. (2.46)

Here, ΓQ
i (z) =

∑d
j=1

∂

∂zj
Qij(z). The last line of (2.46) demonstrates that

∂

∂t
p(z|y; t) =

LA
[
p(z|y; t)

π(z)

]
is a Liouville equation, which describes the density evolution of p(z|y; t)

according to conserved, deterministic dynamics: dz/dt = −Q(z)∇H(z) + ΓQ(z), with
π(z) its invariant measure.

2.4 Decomposition for Markov Jump Processes

We now turn our attention to the jump operator Ĵ [·] of (2.5). As with the continuous
dynamic operator L̂[·], we consider an equivalent representation that separates the Markov
jump process into symmetric and anti-symmetric components for more ready analysis of
the properties of the process. The alternative representation J [·] that we consider is defined
in terms of two kernel functions S and A. A simple set of constraints on S and A ensures

the equivalence between
∂p(z|y; t)

∂t
= J

[
p(z|y; t)

π(z)

]
and

∂p(z|y; t)

∂t
= Ĵ

[
p(z|y; t)

π(z)

]
where π(z) is the stationary distribution of the jump process.

In particular, we consider

J [ϕ(z)] =

∫
Rd

dx
[(
S(x, z) + A(x, z)

)
ϕ(x)− S(x, z)ϕ(z)

]
, (2.47)

where S is a symmetric kernel and A is an anti-symmetric kernel. Based on the form of
(2.47), we simply have to satisfy the following constraints in order to ensure that π(z) is
the stationary distribution:

1.
∫
Rd S(x, z)π−1(x)dx and

∫
Rd A(x, z)π−1(x)dx exist

2. S(x, z) + A(x, z) > 0

3.
∫
Rd A(x, z)dx = 0.
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Proof 2 The reasoning is straightforward by introducing a symmetric kernel function S(x, z) =

S(z,x) =
1

2

(
W (z|x)π(x) + W (x|z)π(z)

)
, and an anti-symmetric kernel A(x, z) =

−A(z,x) =
1

2

(
W (z|x)π(x)−W (x|z)π(z)

)
, we arrive at a different form of J [·]:

J [ϕ(z)] =

∫
Rd

dx [S(x, z)ϕ(x)− S(x, z)ϕ(z) + A(x, z)ϕ(x)] . (2.48)

Hence we can obtain the new formulation of the Markov jump process as:
∂p(z|y; t)

∂t
= J

[
p(z|y; t)

π(z)

]
=

∫
Rd

dx
[
S(x, z)

p(x|y; t)

π(x)
− S(x, z)

p(z|y; t)

π(z)
+ A(x, z)

p(x|y; t)

π(x)

]
. (2.49)

Plugging the stationary solution: p(z|y; t) = π(z) into the above equation, we find the

constraint on the anti-symmetric kernel:
∫
Rd A(x, z)dx = 0. Since

S(x, z) + A(x, z)

π(x)
de-

notes a transition probability, S(x, z) + A(x, z) > 0 for any x and z. We thereby notice
that the requirement that π(z) is a stationary distribution of the jump process is trans-
lated into simpler constraints:

∫
Rd S(x, z)π−1(x)dx and

∫
Rd A(x, z)π−1(x)dx exists, with

S(x, z) + A(x, z) > 0, and
∫
Rd A(x, z)dx = 0.

Following (2.10), the transition probability implied by the operator of (2.47) assuming
a ∆t-discretization is given by:

p(z|y; ∆t) =
∆t

π(y)

(
S(y, z) + A(y, z)

)
+

[
1− ∆t

π(y)

∫
Rd
S(y,x)dx

]
δ(z− y). (2.50)

2.4.1 Reversible and Irreversible Dynamics of J [·]

Similar to operatorL[·], operatorJ [·] can also be decomposed into a symmetric (reversible)
part J S[·] and anti-symmetric (irreversible) part J A[·]:

J S [ϕ(z)] =
1

2
(J [ϕ(z)] + J ∗ [ϕ(z)]) =

∫
Rd

dx [S(x, z)ϕ(x)− S(x, z)ϕ(z)] ; (2.51)

J A [ϕ(z)] =
1

2
(J [ϕ(z)]− J ∗ [ϕ(z)]) =

∫
Rd

dx [A(x, z)ϕ(x)] . (2.52)

Here, J ∗[·] is the adjoint operator of J [·]. We see that A fully determines the irreversible
dynamics whereas S defines the reversible part. We can further derive from (2.50) that A
is the difference between the probability of a forward path and the backward path:

A(x, z) =
1

2∆t

(
π(y)p(z|y; ∆t)− π(z)p(y|z; ∆t)

)
. (2.53)
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Chapter 3

GENERALIZING THERMODYNAMICS IN STOCHASTIC
PROCESSES

Traditionally, thermodynamics has been defined for high dimensional Hamiltonian sys-
tems to capture the global behaviors of them. It is one of the goals of this thesis to extend
it to general stochastic processes.

In this chapter, we first examine the traditional theory of Boltzmann and Gibbs with
a direct generalization of it to systems with conservation laws to see that their theory is
contingent upon the systems possessing a conserved quantity. In Sec. 3.1, we will see
that thermodynamics can be naturally defined for the Lotka-Volterra (LV) equations and
provide new vocabularies to describe ecological systems from a global point of view. As
a non-Hamiltonian system, the LV equations bring in richer structure to the formulation
of the thermodynamic theory. Invariant measure of the system plays a central role in the
new conservation laws. More importantly, the ecological systems possess a crucial feature,
absent in the classical mechanics, a natural stochastic population dynamic formulation of
which the deterministic equation (e.g., the LV equation studied) is the infinite population
limit. Studies of the stochastic dynamics with finite populations show the LV equation
as the robust, fast cyclic underlying behavior. Hence the thermodynamic theory can be
directly introduced into stochastic systems.

We then discuss this thermodynamic theory with general irreversible stochastic sys-
tems. When a natural separation of time scale is not present, decomposition from Sec. 2.3
can be used. In Sec. 3.2, we revisit the Ornstein-Uhlenbeck (OU) process as the funda-
mental mathematical description of linear irreversible phenomena, with fluctuations, near
equilibrium. We formulate the thermodynamic theory again through identifying the under-
lying circulating dynamics in a stationary process as the natural generalization of classical
conservative mechanics. A bridge between a family of OU processes with equilibrium
fluctuations and thermodynamics is thus established through the celebrated Helmholtz the-
orem. The Helmholtz theorem provides the emergent macroscopic “equation of state” of
the entire system, which exhibits a universal ideal thermodynamic behavior, parallel to that
of ideal gas. Fluctuating macroscopic quantities are studied from the stochastic thermody-
namic point of view and a non-equilibrium work relation is obtained in the macroscopic
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picture, which may facilitate experimental study and application of the equalities due to
Jarzynski, Crooks, and Hatano and Sasa.

3.1 Thermodynamics from Conservation Laws

In the modern days’ language, Boltzmann and Gibbs tried to characterize the global behav-
iors of a Hamiltonian dynamical system as a function of parameters and initial conditions.
The central idea is to use the fact that given a certain initial condition x0 and parameter
α, all the states of the system is aligned on a single level set of φ(x, α) = E. Then giv-
en a certain upper bound of energy level, all the states are confined inside a compact set
S(E,α) = {x|φ(x, α) ≤ E}, assuming that function φ(x, α) is proper in the space of x.
A characterization of the geometry of the set S reflects the overall behavior of an entire
trajectory (or class of trajectories) as a non-constant but steady state. In classical mechan-
ics, the “Boltzmann-Gibbs entropy” is defined as the log of the volume of S to quantify its
geometry:

σB(E,α) = ln

(∫
φ(x,α)≤E

dµ(x)

)
,

where measure dµ(x) can be taken as either Lebesgue measure according to Boltzmann
and Gibbs’ original construction, or the system’s invariant measure to quantify the effective
phase space volume that the trajectories of the system would explore. With σB(E,α) an
increasing function ofE, let’s further assume that the implicit function theorem applies and
write:

E = E(σB, α).

In differential form,

dE = θ(E,α)dσB − Fα(E,α)dα

=

(
∂σB
∂E

)−1

dσ −
(
∂σB
∂α

)(
∂σB
∂E

)−1

dα. (3.1)

The above equation is called the Helmholtz theorem. The two conjugate variables, θ and
Fα, correspond to the macroscopic quantities in classical thermodynamics as temperature
and force. The force here should be understood as Onsager’s thermodynamic force: corre-
sponding to a spatial displacement is a mechanical force; to a change in number of particles
is Gibbs’ chemical potential; to a variation in a parameter through a Maxwell demon then
is an informatic force [168, 106].

The thermodynamic conjugate variable of α, the α-force:

Fα = θ ·
(
∂σB(E,α)

∂α

)
E

. (3.2)
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A mathematical relation between α, Fα, and θ is called an equation of state in classical
thermodynamics. It is important to note that the above arguments holds for any system
with a conservative quantity.

In this section, we take the celebrated Lotka-Volterra equation as a motivating exam-
ple and analyze its thermodynamics. It is particularly suitable in that it is a system with
conserved dynamics, and at the same time not a Hamiltonian system. Furthermore, stud-
ies of the stochastic dynamics with finite populations show the Lotka-Volterra equation
as the robust, fast cyclic underlying behavior, which paves the way for our study of the
thermodynamics in general stochastic dynamics.

3.1.1 Lotka-Volterra equation and population dynamics

Among ecological models, the Lotka-Volterra (LV) equation for predator-prey system has
played an important pedagogical role [109, 83, 100], even though it is certainly not a realis-
tic model for any engineering applications. We choose this population system in the present
work because its mathematics tractability, and its stochastic counterpart in terms of a birth
and death process [3, 59]. It can be rigorously shown that a smooth solution to the Lotka-
Volterra differential equation is the law of large numbers for the stochastic process [86]. In
biochemistry, the birth-death process for discrete, stochastic reactions corresponding to the
mass-action kinetics has been called a Delbrück-Gillespie process [133].

In its non-dimensionalized form, the Lotka-Volterra equation reads [109]:

dx
dt

= x(1− y) = f(x, y),
dy
dt

= αy(x− 1) = g(x, y;α), (3.3)

in which x(t) and y(t) represent the populations of a prey and its predator, each normalized
with respect to its time-averaged mean populations. The xy term in f(x, y) stands for the
rate of consumption of the prey by the predator, and the αyx term in g(x, y;α) stands for
the rate of prey-dependent predator growth.

It is easy to check that the solutions to (3.3) in phase space are level curves of a scalar
function [109]

H(x, y) = αx+ y − ln
(
xαy
)
. (3.4)

We shall use ΓH=h to denote the solution curve H(x, y) = h, and Dh(α) to denote the
domain encircled by the ΓH=h. Fig. 4.1 shows the contours of H(x, y) with α = 1 and
H(x, y) = 2.61 with different α’s.

Let τ be the period of the cyclic dynamics. Then it is easy to show that [109]

1

τ

∫ τ

0

x(t)dt =
1

τ

∫ τ

0

y(t)dt = 1. (3.5)
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Figure 3.1: Left panel: with α = 1 and H(x, y) = 3.40, 2.61, 2.19, and 2.01. Right panel: with

α = 0.5, 0.6, 0.8, and 1.2, from outside inward, all with H(x, y) = 2.61. We see that the larger the

α, the smaller the temporal variations in the prey population, relative to that of predator.

Furthermore (see Appendix A),

1

τ

∫ τ

0

(
x(t)− 1

)2dt =
Â
ατ
, (3.6)

1

τ

∫ τ

0

(
y(t)− 1

)2dt =
αÂ
τ
, (3.7)

in which Â is the area of Dh(α), encircled by ΓH=h, using Lebesgue measure in the xy-
plane. The appropriate measure for computing the area will be further discussed in Sec.
3.1.2. The parameter α represents the relative temporal variations, or dynamic ranges, in
the two populations: the larger the α, the greater the temporal variations and range in the
predator population, and the smaller in the prey population.

3.1.2 The Helmholtz theorem

Eq. (3.3) is not a Hamiltonian system, nor is it divergence-free

∂f(x, y)

∂x
+
∂g(x, y;α)

∂y
6= 0.
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It can be expressed, however, as dx/dt

dy/dt

 =

 0 −G(x, y)

G(x, y) 0

∇φ(x, y)non− df. (3.8)

with a scalar factor G(x, y) = xy. One can in fact understand this scalar factor as a “local
change of measure”, or time dt̂ ≡ G

(
x(t), y(t)

)
dt [134]:

x(t) = x̂
(
t̂(t)
)
, y(t) = ŷ

(
t̂(t)
)
, (3.9)

for

t̂(t) = t̂0 +

∫ t

t0

G
(
x(s), y(s)

)
ds,

where (x̂, ŷ) satisfies the corresponding Hamiltonian system. In Sec. 3.1.3 and 3.1.4 be-
low, we shall show that G−1(x, y) is an invariant density of the Liouville equation for the
deterministic dynamics (3.3), and more importantly the invariant density of the Fokker-
Planck equation for the corresponding stochastic dynamics. As will be demonstrated in
Sec. 3.1.2 and 3.1.2, statistical average of quantities according to the invariant measure
G−1(x, y)dxdy can be calculated through time average of those quantities along the sys-
tem’s instantaneous dynamics. Knowledge about the system’s long term distribution is not
needed during the calculation. These facts make the G−1(x, y) the natural measure for
computing area A.

Any function of H(x, y), ρ(H) is conserved under the dynamics, as is guaranteed by
the orthogonality between the vector field of (3.3) and gradient∇ρ [?]:

dρ
(
H(x, y)

)
dt

= f(x, y)
∂

∂x
ρ
(
H(x, y)

)
+ g(x, y;α)

∂

∂y
ρ
(
H(x, y)

)
= ρ′(H)

(
x(1− y)α

(
1− 1

x

)
+ αy(x− 1)

(
1− 1

y

))
= 0. (3.10)

This is analogous to the “conservation law” observed in Hamiltonian systems.

Extending the conservation law

The nonlinear dynamics in (3.3), therefore, introduces a “conservative relation” between
the populations of predator and prey according to (3.4). If we call the value H(x, y) an
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“energy”, then the phase portrait in the left panel of Fig. 4.1 suggests that the entire phase
space of the dynamical system is organized according to the value of H . The deep insight
contained in the work of Helmholtz and Boltzmann [49, 25] is that such an energy-based
organization can be further extended for different values of α: Therefore, the energy-based
organization is no longer limited to a single orbit, nor a single dynamical system; but rather
for the entire class of parametric dynamical systems. In the classical physics of Newto-
nian mechanical energy conservation, this yields the mechanical basis of the Fundamental
Thermodynamic Relation as a form of the First Law, which extends the notion of energy
conservation far beyond mechanical systems [126, 122].

More specifically, we see that the area A in Fig. 4.1, or in fact any geometric quan-
tification of a closed orbit, is completely determined by the parameter α and initial energy
value h = H

(
x(0), y(0), α

)
. Therefore, there must exist a bivariate functionA = A(h, α),

Assuming the implicit function theorem applies, then one has

h = h(A, α). (3.11)

Note that in terms of the Eq. (3.11), a “state” of the ecological system is not a single point
(x, y) which is continuously varying with time; rather it reflects the geometry of an entire
orbit. Then Eq. (3.11) implies that any such ecological state has an “h-energy”, if one
recognizes a geometric, state variable A.

Eq. (3.11) can be written in a differential form

dh =

(
∂h

∂A

)
α

dA+

(
∂h

∂α

)
A

dα, (3.12)

in which one first introduces the h-energy for an ecological system with fixed α via the
factor (∂h/∂A). Then, holding A constant, one introduces an “α-force” corresponding to
the parameter α. In classical thermodynamics, the latter is known as an “adiabatic” process.

The Helmholtz theorem expresses the two partial derivatives in (3.12) in terms of the
dynamics in Eq. (3.3).

Projected invariant measure

For canonical Hamiltonian systems, Lebesgue measure is an invariant measure in the whole
phase space. On the level set ΓH=h, the projection of the Lebesgue measure, called the
Liouville measure, also defines an invariant measure on the sub-manifold. If the dynamics
on the invariant sub-manifold ΓH=h is ergodic, the average with respect to the Liouville
measure is equal to the time average along the trajectory starting from any initial condition
(x0, y0) satisfying H(x0, y0) = h.
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As we shall show below, the invariant measure for the LV system (3.3) in the whole
phase space is dA = G−1(x, y)dxdy. Projection of this invariant measure onto the level set
ΓH=h can be found by changing (x, y) to intrinsic coordinates (h, `):

dA = G−1(x, y) dxdy = G−1(x, y)
(
dx, dy

)T · n d`, (3.13)

where

n =

(
∂H(x, y)/∂x

||∇H(x, y)||
,
∂H(x, y)/∂y

||∇H(x, y)||

)T
(x,y)∈ΓH=h

(3.14)

is the unit normal vector of the the level set ΓH=h; and d` =
√

dx2 + dy2. Noting that:

dh =
∂H(x, y)

∂x
dx+

∂H(x, y)

∂y
dy, (3.15)

we have

(
dx, dy

)T · n =
dh

||∇H(x, y)||
. (3.16)

That is:

dA = dµ dh, (3.17)

where

dµ =
G−1(x, y)

||∇H(x, y)||
d` (3.18)

is the projected invariant measure of the Lotka-Volterra system on the level set ΓH=h.

It is worth noting that dµ = dt on the level set ΓH=h. Since dynamics on ΓH=h is
ergodic, the average of any function ψ(x, y) under the projected invariant measure on ΓH=h

is equal to its time average over a period:

〈ψ〉ΓH=h ,

∮
ΓH=h

ψ
(
x, y
)
dµ∮

ΓH=h

dµ

=
1

τ

∫ τ

0

ψ
(
x(t), y(t)

)
dt , 〈ψ〉t (3.19)
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Functional relation between lnA, α, and h

Under the invariant measure G−1(x, y), the area A encircled by the level curve ΓH=h is:

ADh(α) =

∫∫
Dh(α)

G−1(x, y)dxdy

=

∫∫
Dh(α)

d lnx d ln y (3.20)

Using Green’s theorem the area ADh(α) can be simplified as

ADh(α) =

∫ τ(h,α)

0

ln y

(
∂H

∂ ln y

)
dt

=

∫ τ(h,α)

0

lnx

(
∂H

∂ lnx

)
dt, (3.21)

where τ(h, α) is the time period for the cyclic motion. Furthermore,

∂ADh(α)

∂h
=

∂

∂h

∫∫
Dh(α)

G−1(x, y) dxdy

=

∫ τ(h,α)

0

dt = τ(h, α). (3.22)

That is (
∂ lnADh(α)

∂h

)−1

=

〈
lnx

(
∂H

∂ lnx

)〉t
=

〈
ln y

(
∂H

∂ ln y

)〉t
, (3.23)

in which 〈· · · 〉t is the time average, or phase space average according to the invariant mea-
sure. We can also find the derivative of the area ADh(α) encircled by the level curve ΓH=h

with respect to the parameter of the system α as:

∂ADh(α)

∂α
=

∂

∂α

∫∫
Dh(α)

G−1(x, y) dxdy

= −
∫ τ(h,α)

0

(
x(t)− lnx(t)

)
dt. (3.24)

In this setting, the Helmholtz theorem reads

dh =

dA−
(
∂A
∂α

)
h

dα(
∂A
∂h

)
α

= θ(h, α) d lnA− Fα(h, α)dα, (3.25)
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in which

θ(h, α) = ADh(α)

(
∂A
∂h

)−1

α

=

〈
lnx

(
∂H

∂ lnx

)〉t
=

〈
ln y

(
∂H

∂ ln y

)〉t
. (3.26)

The factor θ(h, α) here is the mean lnx(∂H/∂ lnx), or ln y(∂H/∂ ln y), precisely like
the mean kinetic energy as the notion of temperature in classical physics, and the virial
theorem. The α-force is then defined as

Fα(h, α) =

(
∂A
∂α

)
h

(
∂A
∂h

)−1

α

= −
〈
∂H(x, y, α)

∂α

〉t
. (3.27)

It is important to note that the definition of Fα given in the right-hand-side of (3.27)
is completely independent of the notion of A, even though the relation (3.25) explicitly
involves the latter. Fα(h, α) is a function of both h and α, however. Therefore, the value
of α-work Fα(h, α)dα depends on how h is constrained: There are iso-h processes, iso-θ
processes, etc. [136]

Equation of state

The notion of an equation of state first appeared in classic thermodynamics [126, 122].
From a modern dynamical systems standpoint, a fixed point as a function usually is con-
tinuously dependent upon the parameters in a mathematical model, except at bifurcation
points. Let (x∗1, x

∗
2, · · · , x∗n) be a globally asymptotically attractive fixed point, and α be a

parameter, then the function x∗1(α) constitutes an equation of state for the long-time “equi-
librium” behavior of the dynamical system.

If a system has a globally asymptotically attractive limit set that is not a simple fixed
point, then every geometric characteristic of the invariant manifold, say g∗, will be a func-
tion of α. In this case, g∗(α) could well be considered as an equation of state. An “equilib-
rium state” in this case is the entire invariant manifold.

The situation for a conservative dynamical system with center manifolds is quite d-
ifferent. In this case, the long-time behavior of the dynamical system, the foremost, is
dependent upon its initial data. An equation of state therefore is a functional relation a-
mong (i) geometric characteristics of a center manifold g∗, (ii) parameter α, and (iii) a new
quantity, or quantities, that identifies a specific center manifold, h. This is the fundamental
insight of the Helmholtz theorem.

In ecological terms, area under the invariant measure: A, gives a sense of total variation
in both the predator’s and the prey’s populations. Therefore, lnA measures population
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range of both populations as a whole. The parameter α, on the other hand, is the proportion
of predators’ over preys’ population ranges of time variations:

α2 =

∫ τ(h,α)

0

(
y(t)− 1

)2dt∫ τ(h,α)

0

(
x(t)− 1

)2dt
=
〈(y − 1)2〉t

〈(x− 1)2〉t
. (3.28)

The new quantity θ can be viewed as a measure of the mean ecological “activeness”:

θ = 〈α(x− 1) lnx〉t = 〈(y − 1) ln y〉t . (3.29)

It is the mean of “distance” from the prey’s and predator’s populations x and y, to the fixed
populations in equilibrium (1, 1). For population dynamic variable u, Eq. 3.29 suggests a
norm ‖u‖ ≡ u ln(u + 1). Then, θ = 〈α‖x− 1‖〉t = 〈‖y − 1‖〉t; and an averaged norm of
per capita growth rates in the two species:

θ =

〈
α

∥∥∥∥ 1

α

d ln y

dt

∥∥∥∥〉t =

〈∥∥∥∥−d lnx

dt

∥∥∥∥〉t . (3.30)

And finally,

Fα = −
〈
∂H(x, y, α)

∂α

〉t
= −〈x− lnx〉t (3.31)

is the “ecological force” one needs to counteract in order to change α. In other words,
when |Fα| is greater, more h-energy change is needed to vary α. It is also worth noting
that |Fα| is positively related to the prey’s average population range. In fact we can define
another “distance” of the prey’s population x to 1 as: ‖u‖F = u − ln(u + 1), then Fα =

−
〈
‖x− 1‖F

〉t − 1. Note that for very small u: ‖u‖ ≈ u2 ≈ 2‖u‖F
Fig. 4.2 shows various forms of “the equation of state”, e.g., relationships among the

triplets
(
α, |Fα| = −Fα, h

)
,
(
|Fα|, θ, h

)
, and

(
α, θ, h

)
in the first row; among the triplet(

α, |Fα|, θ
)

in the second row; and among the triplet
(
A, θ, α

)
in the third row. The second

row shows that the relation among
(
α, |Fα|, θ

)
is just like that among

(
V, P, T

)
in ideal gas

model: Mean ecological activeness θ increases nearly linearly with the ecological force
|Fα| for constant α, and with the proportion α of the predator’s population range over the
prey’s, for constant |Fα|; Ecological force |Fα| and the proportion α of population ranges
are inversely related under constant mean activeness θ. And when θ = 0, α(Fα + 1) = 0.
Other features can be observed by looking into the details of each column.

The first column of Fig. 4.2 demonstrates that as the proportion α of population ranges
increases, the ecological force |Fα| is alleviated (for given h-energy or ecological active-
ness θ). This is due to the positive relationship between the ecological force |Fα| and the
prey’s population range (as shown in Eq. 3.31). Since α is the proportion of the predator’s
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Figure 3.2: Various functional relationships, e.g., “the equation of state”, among
(
|F |, α, h

)
,(

|F |, θ, h
)
, and

(
θ, α, h

)
in the top row, different views among

(
|F |, θ, α

)
in the second row, and

among
(

ln(A), θ, α
)

in the third row.

population range over the prey’s, |Fα| and α would be inversely related when any resource,
h-energy, or activity, θ, remains constant. This fact means that on an iso-h or iso-θ curve,
when the proportion α is large, relatively less h-energy change is needed to reduce it. The
first column also demonstrates an inverse relationship between α and the total population
range lnA for any given θ, which reflects the fact that as the proportion of the predator’s
population range over the prey’s increase, the total population range of the two species
would actually decrease.

The second column of Fig. 4.2 demonstrates that: the ecological force |Fα| and the
total population range lnA increases with the mean activeness θ (with given h-energy or
α). This observation means that it would also take more h-energy to change the proportion
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α of the predator’s population range over the prey’s, if mean ecological activeness rises,
and that more population range would be explored with more ecological activeness θ.

The third column about the relation between θ and α is interesting: Under constant
h-energy, as the proportion α of population ranges increases, the ecological activeness θ
decreases, in accordance with the drop in the total population range lnA as shown in Fig
4.1. But when the total population range lnA or the ecological force Fα is to remain
constant, ecological activeness θ actually increases with α. This means that under constant
resource (h-energy), the proportion α of the predator’s population range over the prey’s
restricts mean ecological activeness. But if we fix the ecological force or total population
range (supplying more h-energy), an increase in predator’s population range over prey’s
can increase ecological activeness.

3.1.3 Liouville description in phase space

Nonlinear dynamics described by Eq. (3.3) has a linear, first-order partial differential equa-
tion (PDE) representation

∂u(x, y, t)

∂t
= − ∂

∂x

(
f(x, y)u(x, y, t)

)
− ∂

∂y

(
g(x, y;α)u(x, y, t)

)
. (3.32)

A solution to (3.32) can be obtained via the method of characteristics, exactly via (3.3).
Eq. (3.32) sometime is called the Liouville equation for the ordinary differential equations
(3.3). It also has an adjoint:

∂v(x, y, t)

∂t
= f(x, y)

∂v(x, y, t)

∂x
+ g(x, y;α)

∂v(x, y, t)

∂y
. (3.33)

Note that while the orthogonality in Eq. (3.10) indicates that ρ
(
H(x, y)

)
is a stationary

solution to Eq. (3.33), it is not a stationary invariant density to (3.32).
This is due to the fact that vector field (f, g) is not divergence free, but rather as in

(??) the scalar factor G(x, y) = xy. Then it is easy to verify that G−1(x, y)ρ(H(x, y)) is a
stationary solution to (3.32):

∂

∂x

(
f(x, y)

ρ(H(x, y))

G(x, y)

)
+

∂

∂y

(
g(x, y)

ρ(H(x, y))

G(x, y)

)
= 0. (3.34)

Entropy dynamics in phase space

It is widely known that a volume-preserving, divergence-free conservative dynamics has a
conserved entropy S[u(x, t)] = −

∫
R u(x, t) lnu(x, t)dx [7]. For conservative system like
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(3.3) which contains the scalar factor G(x, y), the Shannon entropy should be replaced by
the relative entropy with respect to G−1(x, y) (see Appendix B for detailed calculation):

d
dt

∫
R2

u(x, y, t) ln

(
u(x, y, t)

G−1(x, y)

)
dxdy = 0. (3.35)

Such systems are called canonical conservative with respect to G−1(x, y) in [134]. In
classical statistical physics, the term

∫
R u ln

(
u/G−1

)
dx is called free energy [188]; in in-

formation theory, Kullback-Leibler divergence.

We can in fact show a stronger result, with arbitrary differentiable Ψ(·) and ρ(·) over
an arbitrary domain D (see Appendix B):

d
dt

∫
D

u(x, y, t)Ψ

(
u(x, y, t)

G−1(x, y)ρ(H(x, y))

)
dxdy

=

∫
∂D

{
u(x, y, t)Ψ

(
u(x, y, t)

G−1(x, y)ρ(H)

)(
f, g
)}
× (dx, dy). (3.36)

Therefore, if D = Dh, then ∂D = ΓH=h, and the integral on the right-hand-side of (3.36) is
always zero. In other words, in conservative dynamics like (3.3), it is the support D ⊂ R2

on which u(x, y, t) is observed that determines whether a system is invariant; not the initial
data u(x, y, 0) [?].

Relation between A, Shannon entropy, and relative entropy

Since a “state” is defined as an entire orbit, it is natural to change the coordinates from
(x, y) to (h, s) according to the solution curve to (3.3), where we use s to denote time,
0 ≤ s ≤ τ(h, α). We have(

∂x

∂t

)
H=h

= x(1− y),

(
∂y

∂t

)
H=h

= αy(x− 1); (3.37)

(
∂x

∂h

)
s

(
α− α

x

)
+

(
∂y

∂h

)
s

(
1− 1

y

)
= 1. (3.38)

Therefore:

det

[
D(x, y)

D(h, s)

]
= xy = G(x, y). (3.39)
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Then, the generalized relative entropy can be expressed as∫
Dh

u(x, y, t)Ψ

(
u(x, y, t)

G−1(x, y)ρ(H(x, y))

)
dxdy

=

∫ h

hmin

dη
∫ τ(η,α)

0

u
(
x(s), y(s), t

)
G−1

(
x(s), y(s)

)Ψ

(
u
(
x(s), y(s), t

)
G−1

(
x(s), y(s)

)
ρ(η)

)
ds

=

∫ h

hmin

ρ(η)dη
∫ τ(η,α)

0

ũ
(
x(s), y(s), t; η

)
Ψ
(
ũ
(
x(s), y(s), t; η

))
ds

=

∫ h

hmin

ΩB(η)ρ(η)dη, (3.40)

in which

ũ(x, y, t;h) =
u
(
x, y, t

)
G−1

(
x, y
)
ρ(h)

.

and
ΩB(h) =

∮
ΓH=h

ũ
(
x, y, 0;h

)
Ψ
(
ũ
(
x, y, 0;h

))
d`. (3.41)

ΩB(h) is known as Boltzmann’s entropy in classical statistical mechanics. We see that the
A introduced in Sec. 3.1.2 is the simplest case of the generalized relative entropy in (3.36)
with ρ = Ψ = 1, and u(x, y, 0) = G−1(x, y). Then ΩB(h) = dADh/dh. Gibbs’ canonical
ensemble chooses ρ(h) = e−h/θ.

The dynamics (3.3) is not ergodic in the xy-plane; it does not have a unique invariant
measure, as indicated by the arbitrary ρ(H) in Eq. (3.34). However, the function G(x, y),
as indicated in Eqs. (3.10) and (3.39), is the unique invariant measure on each ergodic
invariant submanifold ΓH=h. It is non-uniform with respect to Lebesgue measure. On
the ergodic invariant manifold ΓH=h: G(x, y)dt ↔ d`. To see the difference between
the Lebesgue-based average and invariant-measure based average, consider a simple time-
varying exponentially growing population: du(t)

dt = r(t)u(t). The regular time average of
the per capita growth rate is

1

τ

∫ τ

0

1

u(t)

du
dt

dt =
1

τ
ln

(
u(τ)

u(0)

)
=

1

τ

∫ τ

0

r(t)dt.

The Lebesgue-based average is an “average growth rate per average capita”∫ τ

0

1

u(t)

du
dt

u(t)dt∫ τ

0

u(t)dt
=

∫ τ

0

r(t)u(t)dt∫ τ

0

u(t)dt
.
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In cyclic population dynamics, this latter quantity corresponds to the G
(
x(t), y(t)

)
weight-

ed per capita growth rate or “kinetic energy”∫ τ(h,α)

0

(
d ln(y)

dt

)
G
(
x(t), y(t)

)
dt∫ τ(h,α)

0

G
(
x(t), y(t)

)
dt

=

∫ τ(h,α)

0

−
(

d ln(x)

dt

)
G
(
x(t), y(t)

)
dt∫ τ(h,α)

0

G
(
x(t), y(t)

)
dt

=

∫ τ(h,α)

0

x

(
∂H

∂x

)
G
(
x(t), y(t)

)
dt∫ τ(h,α)

0

G
(
x(t), y(t)

)
dt

=

∫ τ(h,α)

0

y

(
∂H

∂y

)
G
(
x(t), y(t)

)
dt∫ τ(h,α)

0

G
(
x(t), y(t)

)
dt

. (3.42)

3.1.4 Stochastic description of finite populations

In this section, we show that the conservative dynamics in (3.3) is an emergent caricature
of a robust stochastic population dynamics. This material can be found in many texts, e.g.,
[86]. But for completeness, we shall give a brief summary.

Assume the populations of the prey and the predator, M(t) and N(t), reside in a spatial
region of size Ω. The discrete stochastic population dynamics follows a two-dimensional,
continuous time birth-death process with transition probability rate

Pr
{
M(t+ ∆t) = k,N(t+ ∆t) = `

∣∣∣M(t) = m,N(t) = n
}

=

(
mδk,m+1 +

1

Ω
mnδk,m−1 +

α

Ω
nmδ`,n+1 + αnδ`,n−1

)
∆t+ o(∆t). (3.43)

The discrete stochastic dynamics has an invariant measure:

Prss
{
M = m,N = n

}
=

1

mn
. (3.44)

Then

pm,n(t+ ∆t) = pm,n(t)

[
1−

(
m+

1

Ω
mn+

α

Ω
nm+ αn

)
∆t

]
+ pm−1,n(t)

[
(m− 1)∆t

]
+ pm+1,n(t)

[
1

Ω
(m+ 1)n∆t

]
+ pm,n−1(t)

[α
Ω

(n− 1)m∆t
]

+ pm,n+1(t)
[
α(n+ 1)∆t

]
.
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That is

pm,n(t+ ∆t)− pm,n(t)

∆t
= −m

[
pm,n(t)− pm−1,n(t)

]
− pm−1,n(t)

+
1

Ω
mn
[
pm+1,n(t)− pm,n(t)

]
+

1

Ω
npm+1,n(t)

− α

Ω
nm
[
pm,n(t)− pm,n−1(t)

]
− α

Ω
mpm,n−1(t)

+ αn
[
pm,n+1(t)− pm,n(t)

]
+ αpm,n+1(t). (3.45)

For a very large Ω, the population densities at time t can be approximated by continuous
random variables as X(t) = Ω−1M(t) and Y (t) = Ω−1N(t). Then Eq. (3.45) becomes a
partial differential equation by setting x = m/Ω, y = n/Ω, and u(x, y, t) = pm,n(t)/Ω:

∂u

∂t
= −x∂u

∂x
+

1

2
Ω−1x

∂2u

∂x2
− u+ Ω−1∂u

∂x

+ xy
∂u

∂x
+

1

2
Ω−1xy

∂2u

∂x2
+ yu+ Ω−1y

∂u

∂x

− αxy
∂u

∂y
+
α

2
Ω−1xy

∂2u

∂y2
− αxu+ αΩ−1x

∂u

∂y

+ αy
∂u

∂y
+
α

2
Ω−1y

∂2u

∂y2
+ αu+ αΩ−1∂u

∂y
+ o(Ω−1).

Rearranging the terms and writing ε = Ω−1, we can perform the Kramers-Moyal expansion
to obtain:

∂u(x, y, t)

∂t
= ∇ ·

(
εD(x, y)∇u− F(x, y)u

)
+
ε

2

(
(y + 1)

∂u

∂x
+ α(x+ 1)

∂u

∂y

)
+ o(ε)

= ε
∑
ξ=x,y

∑
ζ=x,y

∂2

∂ξ∂ζ
Dξζ(x, y)u(x, y, t)−∇ ·

(
F(x, y) u

)
, (3.46)

with drift F(x, y) =
(
f(x, y), g(x, y;α)

)T and symmetric diffusion matrix

D(x, y) =

 Dxx(x, y) Dxy(x, y)

Dyx(x, y) Dyy(x, y)

 =
1

2

 x(1 + y) 0

0 αy(x+ 1)

 .

Eq. (3.46) should be interpreted as a Fokker-Plank equation for the probability density
function u(x, y, t)dxdy = Pr

{
x < X(t) ≤ x + dx, y < Y (t) ≤ y + dy

}
. It represents a
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continuous stochastic process
(
X(t), Y (t)

)
following Itô integral [3, 59, 86]:

dX(t) = X(1− Y )dt+ ε
1
2

√
X(1 + Y ) dW1(t)

(3.47)
dY (t) = αY (X − 1)dt+ ε

1
2

√
αY (X + 1) dW2(t)

It is important to recognize that in the limit of ε → 0, the dynamics described by Eq.
(3.46) is reduced to that in Eq. (3.32), which is equivalent to Eq. (3.3) via the method of
characteristics.

Potential-current decomposition

It can be verified that the stationary solution to Eq. (3.46) is actually G−1(x, y) = (xy)−1,
which is consistent with the discrete case (cf. Eq. 3.44), and also a stationary solution to
the Liouville equation Eq. (3.32).

As suggested in [177, ?], the right-hand-side of Eq. (3.46) has a natural decomposition:

∇ ·
(
εD(x, y)∇u− F(x, y)u

)
+
ε

2

(
(y + 1)

∂u

∂x
+ α(x+ 1)

∂u

∂y

)
= ∇ ·

[
εD(x, y)∇u−

(
F(x, y)− εD(x, y)∇ lnG(x, y)

)
u
]

= ∇ ·
[
εD
(
u∇ lnu+ u∇ lnG

)
− Fu

]
= ε∇ ·Du∇

(
ln
(
G u
))
−∇ ·

(
F u
)

(3.48)

in which the first term is a self-adjoint differential operator and the second is skew-symmetric
[134]. The equation from the first line to the second uses the fact ∇ lnG = −

(
x−1, y−1

)
,

thus D∇ lnG = −1
2

(
(y + 1), α(x+ 1)

)
. In terms of the stochastic differential equation in

divergence form, this decomposition corresponds to: dX

dY

 = −εD∇ lnG+G

 −Hy

Hx

+ ε
1
2

√
2D

 dW1(t)

dW2(t)

 . (3.49)

Under this non-Itô interpretation of the stochastic differential equation, the finite popula-
tion with fluctuations (i.e., ε 6= 0) is unstable when x, y > 0. The system behaves as an
unstable focus as shown in Fig. 4.3. The eigenvalues at the fixed point

(
1 + ε, 1 − ε

)
are

±i
√
α + 1

2
ε(α + 1), corresponding to the unstable nature of the stochastic system.

On the other hand, the potential-current decomposition reveals that the system (3.3)
will be structurally stable in terms of the stochastic model: Any perturbation of the mod-
el system will yield corresponding conserved dynamics close to (3.3). The conservative
ecology is a robust emergent phenomenon.
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Figure 3.3: With fluctuation (ε = 0.1), the deterministic part of system (3.49). Streamlines denote

phase flow and arrows with different sizes denote the strength of the vector field.

Equations such as (3.47) and (3.49) are not mathematically well-defined until an precise
meaning of integration

X(t) =

∫ t

0

b
(
W (t)

)
dW (t) (3.50)

is prescribed. This yields different stochastic processes X(t) whose corresponding prob-
ability density function fX(t)(x, t) follow different linear partial differential equations.
The fundamental solution to any partial differential equation (PDE), however, provides
a Markov transition probability; there is no ambiguity at the PDE level. On the other hand,
the only interpretation of (3.50) that provides a Markovian stochastic process that is non-
anticipating is that of Itô’s [51]. The differences in the interpretations of (3.50) become
significant only in the modeling context, when one’s intuition expects that E

[
X(t)

]
= 0

even for interpretations other then Itō’s.



37

The slowly fluctuatingHt = H
(
X(t), Y (t)

)
With the

(
X(t), Y (t)

)
defined in (3.46) and (3.47), let us now consider the stochastic func-

tional

dH
(
X(t), Y (t)

)
= α

(
1− 1

X

)
dX +

(
1− 1

Y

)
dY +

1

2

(
(dX)2

X2
+

(dY )2

Y 2

)
= αε

1
2

(
(X − 1)2(1 + Y )

X
+

(Y − 1)2(X + 1)

Y

) 1
2

dW (t)

+
ε

2

(
(1 + Y )

X
+
α(X + 1)

Y

)
dt (3.51)

Therefore, for very large populations, i.e., small ε, this suggests a separation of time scales
between the cyclic motion on ΓH=h and slow, stochastic level crossing Ht. The method of
averaging is applicable here [48, 190]:

dHt = εb(Ht)dt+ ε
1
2A(Ht)dW (t), (3.52)

with

b(h) =
1

2

〈
(1 + y)

x
+
α(x+ 1)

y

〉ΓH=h

, (3.53)

A(h) = α

〈(
(x− 1)2(1 + y)

x
+

(y − 1)2(x+ 1)

y

) 1
2

〉ΓH=h

, (3.54)

where 〈ψ(x, y)〉ΓH=h = 〈ψ(x, y)〉t denotes the average of ψ(x, y) on the level set ΓH=h.
Then, using the Itô integral, the distribution of Ht follows a Fokker-Planck equation:

∂p(H, t)

∂t
= −ε ∂

∂H

(
b(H)p

)
+
ε

2

∂2

∂H

(
A2(H)p

)
. (3.55)

And the stationary solution for Eq. (3.55) is:

pss(H) =
1

A2(H)
exp

(
2

∫ H

H0

b(h)

A2(h)
dh
)
. (3.56)

The steady state distributions of H under different α’s are shown in Fig. 3.4. The steady
state distribution pss(H) does not depend on the volume size Ω = ε−1.

WhenH is big enough, pss(H) increases withH without bound, since b(H) is a positive
increasing function. Hence, pss(H) is not normalizable on the entire R, reflecting the
unstable nature of the system. The fluctuation A(H) approaches zero when H approaches
α+ 1. Consequently, the absorbing effect at H = α+ 1 makes pss(α+ 1) another possible
local maximum.
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Figure 3.4: Under different values of α, the steady state distribution pss(H) with respect to H in

logarithmic scale. The slowly fluctuating “energy” H ranges from α+ 1 to infinity. Its steady state

distribution pss(H) eventually increases without bound as H increases.

3.1.5 Discussion

It is usually an obligatory step in understanding an ODE ẋ = f(x;α, β) to analyze the
dependence of a steady state x∗ as an implicit function of the parameters (α, β) [109]. One
of the important phenomena in this regard is the Thom-Zeeman catastrophe [109, 141].
From this broad perspective, the analysis developed by Helmholtz and Boltzmann in 1884
is an analysis of the geometry of a “non-constant but steady solution”, as a function of its
parameter(s) and initial conditions. In the context of LV equation (3.3), the geometry is
characterized by the area encircled by a periodic solution, ΓH=h, where h is specified by
the the initial data: A

(
Dh

)
= A

(
h, α

)
. The celebrated Helmholtz theorem [49, 25] then

becomes our Eq. (3.25)

dh =

dA−
(
∂A
∂α

)
h

dα(
∂A
∂h

)
α

= θ(h, α) d lnA− Fα(h, α)dα. (3.57)



39

Since Eq. (3.3) has a conserved quantity H , Eq. (3.57) can, and should be, interpreted
as an extended H conservation law, beyond the dynamics along a single trajectory, that
includes both variations in α and in h. The partial derivatives in (3.57) can be shown as time
averages of ecological activeness 〈lnx(∂H/∂ lnx)〉t or 〈ln y(∂H/∂ ln y)〉t, and variation
in the prey’s population 〈x− lnx〉t. Those conjugate variables, along with parameter α,
conserved quantity H , and encompassed area lnA constitutes a set of “state variables”
describing the state of an ecological system in its stationary, cyclic state. This is one of the
essences of Boltzmann’s statistical mechanics [49].

For the monocyclic Lotka-Volterra system, the dynamics are relatively simple. Hence,
the state variables have monotonic relationships, the same as that observed in ideal gas
models. When the system’s dynamics become more complex (e.g. have more than one
attractor, Hopf bifurcation), relations among the state variables will reflect that complexity
(e.g. develop a cusp, exhibiting a phase transition in accordance [141]).

When the populations of predator and prey are finite, the stochastic predator-prey dy-
namics is unstable. This fact is reflected in the non-normalizable steady state distribution
G−1(x, y) on R2+, and the destabilizing effect of the gradient dynamics in the potential-
current decomposition. This is particular to the LV model we use; it is not a problem for
the general theory if we study a more realistic model as in [185]. Despite the unstable
dynamics, the stochastic model system is structurally stable: its dynamics persists under
sufficiently small perturbations. This implies conservative dynamical systems like (3.3) are
meaningful mathematical models, when interpreted correctly, for ecological realities.

Indeed, all ecological population dynamics can be represented by birth-death stochastic
processes [86]. Except for systems with detailed balance, which rarely holds true, almost
all such dynamics have underlying cyclic, stationary conservative dynamics. The present
work shows that a hidden conservative ecological dynamics can be revealed through math-
ematical analyses. To recognize such a conservative ecology, however, several novel quan-
tities need to be defined, developed, and becoming a part of ecological vocabulary. This is
the intellectual legacy of Helmholtz’s and Boltzmann’s mechanical theory of heat [50].

3.2 Thermodynamics for General Stochastic Systems

We now turn our attention to the Gaussian fluctuation theory, one of the most successful
branches of equilibrium statistical mechanics [90, 24], to develop a general thermodynam-
ic theory. Since the work of Onsager and Machlup [117, 116], the Ornstein-Uhlenbeck
process (OUP) has become the stochastic, mathematical description of dynamic, linear
irreversible phenomena [180]. It has been extensively discussed in the literature in the
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past [32, 91, 92, 47]. Several recent papers studied particularly the OUP without detailed
balance [131, 87]. In recent years, taking stochastic process rigorously developed by Kol-
mogorov as the mathematical representation, stochastic thermodynamics has emerged as
the finite-time thermodynamic theory of mesoscopic systems, near and far from equi-
librium [158, 173, 4]. The fundamental aspects of this new development are the math-
ematical notion of stochastic entropy production [142, 157, 52], novel thermodynamic
relationships collectively known as nonequilibrium work equalities, and fluctuation the-
orems [74, 85, 33, 93, 64], and the mathematical concept of non-equilibrium steady-state
[76, 189, 54].

Fundamental to all these advances is the notion of time reversal. Newtonian dynamic
equation, in Hamiltonian form:

dxi
dt

=
∂H(xi, yi)

∂yi
,

dyi
dt

= −∂H(xi, yi)

∂xi
, (3.58)

is a canonical example of dynamics with time-reversal symmetry [88]: Under transfor-
mation (t, xi, yi) −→ (−t, xi,−yi), Eq. (3.58) is invariant. This invariance requires that
H(xi, yi) = H(xi,−yi): H is usually a function of y2

i and terms like ~B · ~y, where ~B

changes sign upon time reversal such as a magnetic field with a Lorentz force. Adopting
this definition to linear stochastic processes, one has a novel definition for time reversibility
that is distinctly different from that of Kolmogorov’s, as we shall show below.

Consider the linear stochastic differential equation

dX(t) = −M(α)X(t)dt+ εΓdBt, (3.59)

which is an OUP with parameters α and ε; M and Γ are two n × n constant matrices, Bt

is standard Brownian motion. We further assume that all the eigenvalues of M are strictly
positive and Γ is non-singular. According to the concept of detailed balance, Eq. (3.59)
can be uniquely written as [174, 146, 9, ?]

dX(t) = −D
{

Ξ−1 +
(
D−1M − Ξ−1

)}
Xdt+ εΓdBt, (3.60a)

where D and Ξ(α) are positive definite matrices: D = 1
2
ΓΓT and MΞ + ΞMT = 2D. If

one identifies the two terms inside {· · · } as dissipative (transient) and conservative (per-
petuate) motions, respectively, then a time reversible process should be defined as a sta-
tistical equivalence between the probability density of a finite path {X(t0) = x0,X(t1) =

x1, · · · ,X(tn) = xn} in which t0 < t1 · · · < tn:

f
(
x0, x1, · · · , xn

)
,
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and the probability density

fX†(tn)X†(2tn−tn−1)···X†(2tn−t0)

(
xn, xn−1, · · · , x0

)
in which the X†(t) follows the adjoint stochastic differential equation [?, 136]

dX†(t) = −D
{

Ξ−1 −
(
D−1M − Ξ−1

)}
X†dt+ εΓdBt, (3.60b)

with initial distribution for X†(tn) identical to that of X(tn).

Recognizing the underlying circulating, conservative dynamics in Eqs. (3.60a) and
(3.60b) allows us to connect a Hamiltonian structure with linear stochastic processes, and
consequently develop a Helmholtz theorem, which historically has served as the funda-
mental mathematical link between classical Newtonian mechanics and thermodynamics.
For high dimensional stochastic processes, variables in the Helmholtz theorem provide the
systems’ underlying dynamics with a macroscopic picture. An ideal gas-like relation be-
tween a set of new, macroscopic variables emerges, confirming the simplicity of the OUP.
A work-free energy equality in terms of the macroscopic thermodynamic variables, which
are fluctuating with the underlying dynamics, captures the nature of the fluctuation in the
underlying stochastic processes. We emphasize that even though the mathematical deriva-
tions are essentially the same, the physical meaning of the work relation is closer to the
classical thermodynamics.

The subsections are structured as follows. In Sec. 3.2.1, we first provide the necessary
preliminaries on the OUP. Sec. 3.2.1 introduces the conservative dynamics as a part of the
stationary behavior of the OUP. Sec. 3.2.1 then discusses a long neglected issue of zero
energy reference. Secs. 3.2.2 and 3.2.2 introduces the stationary free energy function and
the dynamic free energy functional. Sec. 3.2.2 studies the novel object of equation of state.
It is shown that the OUP has a simply, universal ideal thermodynamic behavior. In Sec.
3.2.3, we turn to the circulating dynamics and its relation to classical mechanics as well as
stochastic dynamics. Sec. 3.2.3 focuses on the simplicity of the circulating dynamics as
being totally integrable. Sec. 3.2.3 contains a proof that the stationary probability density
of OUP, conditioned on an invariant torus of the underlying conservative dynamics, anal-
ogous to a microcanonical ensemble, is an invariant measure of the latter. If the dynamics
on an invariant torus is ergodic, then the conditional probability is the only, natural invari-
ant measure on the torus. Work equalities and fluctuation theorems are discussed in Sec.
3.2.4. Using a macroscopic presentation of the Jarzynski equality, its relation to Helmholtz
theorem is revealed in Sec. 3.2.4. This section concludes with discussions in Sec. 3.2.5.
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3.2.1 Preliminaries

Stationary Gaussian density and underlying conservative dynamics

The OUP in Eq. (3.60a) satisfies the important fluctuation-dissipation relation: 2DΞ−1 =

ε2
(
ΓΓT

)
× covariance matrix of the stationary OUP. In fact, it has a stationary Gaussian

distribution Z−1(α)e−ϕ(x;α)/ε2 in which Z(α) is a normalization factor and ϕ(x;α) =

xTΞ−1(α)x. In addition, there is an underlying circulating dynamics

dx
dt

= −
(
M(α)−DΞ−1(α)

)
x, (3.61)

where the scalar ϕ(x;α) is conserved [87]:

d
dt
ϕ
(
x(t);α

)
= −2xTΞ−1

(
M −DΞ−1

)
x = −xT

(
Ξ−1M −MTΞ−1

)
x = 0. (3.62)

In fact, this conservative dynamics can be expressed as [?]:

dx
dt

= −1

2

(
MΞ−D

)
∇xϕ(x;α), (3.63)

where

ϕ(x;α) = xTΞ−1(α)x; (3.64)

and Q =
(
M(α)Ξ−D

)
is skew-symmetric. This can be proved constructively as follows:

Proof 3 For a linear system
dx
dt

= Ux, since φ(x) =
1

2
xTΞ−1x is a conserved quantity,

(∇φ(x))TUx = xTΞ−1Ux = 0.
Since Ξ−1 is positive definite, we have (Ξ−1x)TUΞ(Ξ−1x) = 0, which means that

Q = UΞ is skew symmetric and the dynamics can be written in terms of positive definite

Ξ−1 and skew-symmetric Q as:
dx
dt

= QΞ−1x.

It is of paramount importance to recall that for a Markov process without detailed bal-
ance, its stationary dynamics is quantified by two mathematical objects: a stationary prob-
ability density and a stationary circulation [76, 177] characterized as a divergence-free,
conservative vector field. In general, the latter accounts for the complexity arising from the
system’s dynamics [101]: how many integrals of motion does it have; whether the conser-
vative dynamics is ergodic on an invariant set; etc. Many of the characteristics persist in
the stationary stochastic process, and can be used to classify long time, complex behaviors
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in high dimensional systems. On the other hand, the dissipative (transient) dynamics plus
noise drive the system towards the stationary distribution while characterizing “energy”
fluctuations.

For the OUP in Eq. (3.60a), the conservative dynamics will be shown to be totally
integrable. That is, symmetries would be implied through bn/2c first integrals of motions,
which are the natural generalizations of the time-reversal symmetries. The remaining part,
dX(t) = −1

2
D∇xϕ(x;α)dt+ εΓdBt, has a stationary dynamics that is detailed balanced.

It is worth noting that any ϕ̃(x;α) = ϕ(x;α) +C(α) is also a valid substitution for the
ϕ(x;α) in Eq. (3.64). As far as the stochastic dynamical system Eq. (3.60a) is concerned,
there is no unique ϕ̃(x;α) as a function of both dynamic variable x and parameter α.

Zero energy reference: A hidden assumption in classical physics

The central object that connects classical Newtonian mechanics with equilibrium thermo-
dynamics is the entropy function S(E, V,N), with V and N being the volume and the
number of particles of a classical mechanical system in a container, and E its total mechan-
ical energy which is conserved according to Newton’s Second Law of motion. In Hamil-
ton’s formulation Eq. (3.58), E is simply the initial value of the Hamiltonian function
H
(
{xi}, {yi}

)
in which xi and yi are the position and momentum of ith particle, respec-

tively, 1 ≤ i ≤ N .
We recognize that in the classical theory of mechanical motions, replacing H with

H̃
(
{xi}, {yi}

)
= H

(
{xi}, {yi}

)
+ C, where C is a constant, has absolutely no conse-

quence to the mathematical theory. Therefore, with parameters contained in the Hamiltoni-
an function, such as V andN ,H

(
{xi}, {yi};V,N

)
andH

(
{xi}, {yi};V,N

)
+C(V,N) are

equivalent. In other words, classical mechanics only uniquely determines a Hamiltonian
function up to an arbitrary function of all the non-dynamic parameters.

However, an additive function C(V,N) would cause non-uniqueness in the thermody-
namic forces in the relation:

dS(E, V,N) =

(
∂S

∂E

)
V,N

[
dE + pdV − µdN

]
, (3.65)

in which

p =

(
∂S

∂V

)
E,N(

∂S

∂E

)
V,N

= −
(
∂E

∂V

)
S,N

, µ =

(
∂E

∂N

)
S,V

. (3.66)
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Corresponding to H̃ = H+C(V,N) one has, forE as the initial values ofH
(
{xi}, {yi};V,N

)
,

and Ẽ as the initial values of H̃
(
{xi}, {yi};V,N

)
:

p̃ = −

(
∂Ẽ

∂V

)
S,N

= p−
(
∂C

∂V

)
N

, µ̃ = µ+

(
∂C

∂N

)
V

. (3.67)

Since pressure p has a mechanical interpretation, one can, by physical principle, uniquely
determine the form of p as a function of V . The situation for µ is much less clear: Since
there is not an independent mechanical interpretation of the chemical potential other than
the thermodynamic one given in Eq. (3.65), the non-uniqueness is inherent in the mathe-
matical, as well as the physico-chemical theory. The problem has the same origin as Gibbs’
paradox [114, 53].

In classical chemical thermodynamics, the Hamiltonian function as a function of vary-
ing number of particles N , H(x1, · · · , xN , y1, · · · , yN) = 1

2

∑N
i miy

2
i +V (x1, · · · , xN), is

uniquely determined via a Kirkwood charging process [125]:

V
(
x1, · · · , xN , xN+1

)
= V

(
x1, · · · , xN

)
+

N∑
j=1

Uj,N+1

(
xj, xN+1

)
, (3.68)

where
lim

|x−y|→∞
U(x, y) = 0. (3.69)

With this convention, the Hamiltonian for a molecular system is uniquely determined in
chemical thermodynamics, which yields a consistent chemical potential µ. How to gener-
alize this chemical approach to Hamiltonian dynamics Eq. (3.58) with no clear separation
between kinetic and potential parts, however, is unclear.

The problem of uniqueness of Hamiltonian function H̃ is intimately related to the u-
niqueness of ϕ̃(x;α) in Sec. 3.2.1. As we shall show in the rest of this section, the zero
energy reference has deep implications to the theory of stochastic thermodynamics. The
resolution to the problem will be discussed in Sec. 3.2.3.

3.2.2 Free energy functions and functional

As the notion of entropy, the definition of free energy is widely varied in the literature.1

The most general features of free energy, perhaps, are: it is the difference between “internal

1It has become increasingly clear that the Boltzmann’s entropy for a Hamiltonian dynamics is not unique: There
are different geometric characterizations of the level sets of the Hamiltonian that can be acceptable choices. Neither
is Shannon’s entropy in stochastic dynamics unique: other convex functions such as Tsallis’ entropy can also be
found in the literature.
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energy” and entropy; it is the entropy under a “natural invariant measure”. In this section,
we shall present two different types of free energies associated with the OU dynamics in
Eq. (3.60a):

(i) Thermodynamic free energy of a stationary dynamics, as a function of mean internal
energy E and parameter α: A(E,α). We identify a “thermodynamic state” as a state of
sustained motion, either for a deterministic conservative dynamics Eq. (3.61), or for a
stochastic stationary process defined by Eq. (3.60a).

(ii) Dynamic free energy functional, Ψ[f(x, t)], for an instantaneous probability distri-
bution f(x, t).

Thermodynamic free energy functions A(E,α)

With a particular given ϕ(x;α), we now introduce two different free energy functions. The
first one is defined following the microcanonical ensemble approach; definition of the sec-
ond one follows Gibb’s canonical ensemble approach. While the second one is frequently
being used in the work-free energy relation (discussed in Sec. 5), the two definitions agree
perfectly in the large dimension limit.

The first thermodynamic free energy function, A1(E,α), associated with the conser-
vative deterministic motion of Eq. (3.61) on the surface of ϕ(x;α) = E, is obtained
following the microcanonical ensemble approach through Boltzmann’s entropy function.
Letting σB(E,α) correspond to the entropy S and Θ−1(E,α) correspond to

(
∂S
∂E

)
in Eq.

(3.65), we can define:

σB(E,α) = ln

(∫
ϕ(x;α)≤E

dx
)

=
n

2
lnE +

1

2
ln det Ξ(α) + lnVn, (3.70a)

Θ−1(E,α) =

(
∂σB
∂E

)
α

=
n

2E
, (3.70b)

A1(E,α) = E −ΘσB

=
2E

n

{
−n

2
lnE − 1

2
ln det Ξ(α)− n

2
ln(π) + ln Γ

(n
2

+ 1
)

+
n

2

}
,

(3.70c)

where Vn = πn/2
(
Γ
(
n
2

+ 1
))−1 is the volume of an n-dimensional Euclidean ball with

radius 1. Γ(·) is gamma function. n is the dimension of the OUP in Eq. (3.60a).
The second one, A2(E,α), follows Gibbs’ canonical ensemble approach via the “parti-
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tion function” Z(α):

Z(α) =

∫
Rn
e−ϕ(x;α)/ε2dx =

((
πε2
)n

det Ξ(α)
) 1

2
, (3.71a)

A2(E,α) = −ε2 lnZ(α)

=
2E

n

{
−n

2
lnE − 1

2
ln det Ξ(α)− n

2
ln(π) +

n

2
ln
(n

2

)}
, (3.71b)

in which mean internal energy

E =
1

Z(α)

∫
Rn
ϕ(x;α)e−ϕ(x;α)/ε2dx =

1

2
nε2. (3.71c)

The two free energy functionsA1 in Eq. (3.70c) andA2 in Eq. (3.71b) are different only
by a function of n inside the {· · · }. For large n, ln Γ(n

2
+ 1) ≈ n

2
ln
(
n
2

)
− n

2
. Therefore,

A1 and A2 agree perfectly in the limit of n→∞.

Dynamic free energy functional Ψ[fα(x, t)]

The thermodynamic free energy A2(E,α) in Sec. 3.2.2 sets a universal energy reference
point for the entire family of stochastic dynamics in Eq. (3.60a) with different α. For a
given α, the time-dependent probability density function fα(x, t) follows the partial differ-
ential equation

∂fα(x, t)

∂t
= ∇x ·

(
ε2D∇xfα(x, t) +M(α)xfα(x, t)

)
. (3.72)

The fα(x, t) represents an instantaneous “state” of the probabilistic system, which has a
free energy functional

Ψ
[
fα(x, t)

]
=

∫
Rn
ϕ(x;α)fα(x, t) dx−

(
−ε2

∫
Rn
fα(x, t) ln fα(x, t) dx

)
= ε2

∫
Rn
fα(x, t) ln

(
fα(x, t)

Z−1(α)e−ϕ(x;α)/ε2

)
dx + A2(α). (3.73)

This is a dynamic generalization of the free energy functions in Sec. 3.2.2. It has two
important properties. First,

lim
t→∞

Ψ
[
fα(x, t)

]
= A2(α). (3.74)

Second [?, 136],
d
dt

Ψ
[
fα(x, t)

]
≤ 0, (3.75)
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in which the equality holds if and only if fα(x, t) reaches its stationary distributionZ−1(α)e−ϕ(x;α)/ε2 .
The negated rate of change in the dynamic free energy functional, −dΨ/dt, is widely rec-
ognized as non-adiabatic entropy production rate.

The entropy production rate also has a finite time, stochastic counterpart in terms of the
logarithm of the likelihood ratio:

− d
dt

Ψ
[
fα(x, t)

]
= lim

s→t
EP

[
1

|s− t|
ln

(
f
(
X(τ)|t ≤ τ ≤ s

)
fX†
(
X̂(τ)|t ≤ τ ≤ s

))] , (3.76)

where X̂(τ) = X(s− τ + t), and the expectation EP
[
· · ·
]

is carried out over the diffusion
process defined by Eq. (3.60a) and the corresponding Eq. (3.72):

f
(
X(τ)|t ≤ τ ≤ s

)
∝ exp

[
−2

∫ s

t

(
Ẋ(τ) +MX(τ)

)T
D
(
Ẋ(τ) +MX(τ)

)
dτ
]
.

(3.77)

Universal equation of state of OU process

With the introduction of the internal energy E and the parameter α, the thermodynamic
relation Eq. (3.65) - known as the Helmholtz theorem - for the OUP model can be expressed
by σB, α and their conjugate variables. We notice that α enters Eq. (3.70) only through
det Ξ(α). If one measures α through α̃ = det Ξ(α), then the Helmholtz theorem writes:

dE = Θ(E, α̃)dσB − Fα̃(E, α̃)dα̃

=

(
∂σB
∂E

)−1

dσ −
(
∂σB
∂α̃

)(
∂σB
∂E

)−1

dα̃. (3.78)

The two conjugate variables, Θ and Fα̃, correspond to the macroscopic quantities in classi-
cal thermodynamics as temperature and force.2

Following either Boltzmann’s microcanonical or Gibbs’ canonical approach, Sec. 3.2.2
revealed that E = 1

2
nΘ in which θ = 1

2n
Θ could be interpreted as an “absolute tempera-

ture”. Since the absolute temperature θ is a fluctuating quantity with respect to E and α̃, it
may, in general, not bear a simple relationship with the noise strength ε2. But here in OUP,
by comparing the microcanonical approach with the canonical one, we note that the mean
absolute temperature θ̄ = ε2

2n
.

2The force here should be understood as Onsager’s thermodynamic force: corresponding to a spatial displacement
is a mechanical force; to a change in number of particles is Gibbs’ chemical potential; to a variation in a parameter
through a Maxwell demon then is an informatic force [168, 106].
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The thermodynamic conjugate variable of α̃, the α̃-force:

Fα̃ = Θ

(
∂σB(E, α̃)

∂α̃

)
E

=
nθ

α̃
. (3.79)

A mathematical relation between α̃, Fα̃, and θ is called an equation of state in classical
thermodynamics.

The “internal energy” E being a sole function of temperature θ, and the product of
thermodynamic conjugate variables, α̃Fα̃, equaling to nθ, are hallmarks of thermodynamic
behavior of ideal gas and ideal solution. We thus conclude that the OUP has a universal
ideal thermodynamic behavior.

3.2.3 Circulating conservative flow and its invariant measures

After discussing the energy function and stationary probability, we now focus on the dy-
namic complexity of the system and study the circulating, conservative dynamics. The
universal ideal thermodynamic behavior reveals one aspect of the simplicity in OUP; an-
other is reflected in the divergence-free motions. For the linear conservative dynamics, Eq.
(3.61), its structure is known to be simple: the vector field is integrable.

The conservative dynamics in Eq. (3.61) can be proved to be purely cyclic (e.g., pe-
riodic, or quasi-periodic on an invariant torus). Because matrix Q = MΞ − D is skew-
symmetric and hence (M − DΞ−1) = QΞ−1 has only pairs of imaginary eigenvalues
{λ`|1 ≤ ` ≤ n}.

Proof 4 SinceU is positive definite, we can write its eigendecomposition as: U = VUΛUV
∗
U ,

where ΛU is a diagonal matrix with only positive terms on diagonal; and since Q is skew-
symmetric, it is also unitarily diagonalizable: Q = VQΛQV

∗
Q.

Take x̂ =
√

ΛU V
∗
U x, and write Ṽ = V ∗U VQ, then:

dx̂
dt

=
√

ΛU V
∗
U

dx
dt

=
√

ΛU V
∗
U QUx =

(√
ΛU Ṽ

)
ΛQ

(
Ṽ ∗
√

ΛU

)
x̂ = A x̂. (3.80)

Since ΛU is a diagonal matrix with only positive terms on diagonal,
√

ΛU is a real diagonal
matrix:

(√
ΛU

)∗
=
√

ΛU ,
(
Ṽ ∗
√

ΛU

)
=
(√

ΛU Ṽ
)∗

.

Hence, QU is similar to the matrix A =
(√

ΛU Ṽ
)

ΛQ

(√
ΛU Ṽ

)∗
. Note that:

A∗ =
(√

ΛU Ṽ
)

Λ∗Q

(√
ΛU Ṽ

)∗
= −

(√
ΛU Ṽ

)
ΛQ

(√
ΛU Ṽ

)∗
= −A. (3.81)

Therefore, A is skew-Hermitian, having purely imaginary eigenvalues. Matrix QU is simi-
lar to A. Hence QU have only imaginary eigenvalues. Therefore, the motion described by
Eq. 1.2 is purely cyclic on an invariant torus.
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We can also find real Jordan form of (M − DΞ−1): PJP−1, where J is block diagonal,
with 2× 2 skew-symmetric blocks:

Im
[
λ(2i−1)

] 0 1

−1 0


being the ith block on the diagonal. Natural coordinates for the conservative flow Eq.
(3.61) is therefore: y = P−1x.

The conservative flow and general time reversal symmetries

Poisson bracket {·, ·} can be defined for the linear conservative system as: {ϕ(x), ψ(x)} =

∇ϕ(x)T (M −DΞ−1)∇ψ(x). Then the conservative flow expressed in terms of its Hamil-
tonian function ϕ(x) is:

ẋi =
{
xi,

1

2
ϕ(x)

}
. (3.82)

First integrals Ii of the conservative flow are:

Ii = y2
2i−1 + y2

2i = xTP−T I(2i−1)∼(2i)P
−1x, 1 ≤ i ≤

⌊n
2

⌋
. (3.83)

Here, I(2i−1)∼(2i) denotes the diagonal matrix with 1 on (2i − 1)-th to (2i)-th diagonal
entries, and zero everywhere else.

The conservative flow is totally integrable, and can be written in canonical action-angle
variables. Angular coordinates θi accompanying Ii can be found as:

θi = Im
[
λ2i−1

]−1 · arctan

(
y2i−1

y2i

)
, 1 ≤ i ≤

⌊n
2

⌋
. (3.84)

Hence, in the canonical action-angle variables, ϕ =
bn/2c∑
i=1

Ii,


θ′i =

∂ϕ

∂Ii
= 1

I ′i = −∂ϕ
∂θi

= 0.

(3.85)

There are
⌊
n
2

⌋
first integrals, but for the given Poisson bracket, one combination of them is

unique, which is the Hamiltonian ϕ that connects to the stationary distribution and gener-
ates the conservative flow.
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In the action-angle variables, it is observable that the system bears the following sym-
metries: (t, θi, Ii) −→

(
− t,−θi, (−1)kiIi

)
, where {ki} is a sequence of 0 and 1. Taking

{ki} as a sequence of zeros, we recover the time-reversal invariance in Eq. (3.58). Hence,
for general {ki}, those symmetries are the natural generalizations of the time-reversal sym-
metry, as displayed in classical Hamiltonian systems.

Conditional probability measure as invariant measure of the conservative flow

The OUP yields an equilibrium probability density function for X:

f eqX (x;α) = Z−1(α)e−ϕ(x;α)/ε2 .

In this section, we calculate the conditional probability density for X restricted on an equal
energy surface Dϕ=E =

{
x|x ∈ Rn, ϕ(x;α) = E

}
and prove it to be an invariant measure

of the conservative dynamics, Eq. (3.61), restricted on Dϕ=E . Therefore, in the absence
of fluctuation and dissipation, our definition of “equilibrium free energy” (Eq. (3.70c)) in
stochastic thermodynamics retreats to the Boltzmann’s microcanonical ensemble approach
in classical mechanics.

One can obtain a conditional probability density for X restricted on an equal energy
surface Dϕ=E =

{
x|x ∈ Rn, ϕ(x;α) = E

}
as:

Z(α) =

∫
Rn
e−ϕ(x;α)/ε2dx =

∫ ∞
ϕmin(α)

exp

(
−E
ε2

+ S(E,α)

)
dE, (3.86)

in which [72]

S(E,α) = ln

(
∂

∂E

∫
ϕ(x;α)≤E

dx
)
α

= ln

(∮
ϕ(x;α)=E

dΣn−1

‖∇xϕ(x;α)‖

)
. (3.87)

The conditional probability density at x ∈ Dϕ=E is:

e−S(E,α)

‖∇xϕ(x;α)‖
=

1

n
2
VnE

n
2
−1
(

det Ξ
)− 1

2‖Ξ−1x‖
. (3.88)

Note this conditional probability is one of the invariant measures of the conservative dy-
namics Eq. (3.61) restricted in Dϕ=E .

To prove this fact, define the dynamics of the conservative part as: St, mapping a
measurable set A→ St(A). Then measure of a set A ⊆ Dϕ=E under

dµ = e−S(E,α)‖∇xϕ(x;α)‖−1dΣn−1
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is: ∫
A

e−S(E,α)

‖∇xϕ(x;α)‖
dΣn−1 = e−S(E,α)

∫
A

δ(E − ϕ(x))dx

= e−S(E,α)

∫
S−1
t (A)

δ(E − ϕ(x))dx

=

∫
S−1
t (A)

e−S(E,α)

‖∇xϕ(x;α)‖
dΣn−1, (3.89)

since S−1
t (A) ⊆ Dϕ=E and St is volume preserving. In general, if the dynamics is er-

godic on the entire Dϕ=E , then its invariant measure µ is the physical measure: µ-average
equals time average along a trajectory; if there are other first integrals for the conservative
dynamics, then µ can be projected further to lower dimensional invariant sets.

Resolutions to the energy reference problem

Up to now, there are clearly several possibilities to uniquely determine the free additive
function C(V,N) in the Hamiltonian H

(
{xi}, {yi};V,N

)
discussed in Introduction.

(1) C(V,N) is chosen such that the global minimum of H = 0 for each and every V
and N . This is widely used, implicitly, in application practices, as in our Eq. (3.64).

(2) C(V,N) is chosen according to the “equilibrium free energy”:

−ε2 ln

∫
e−E/ε

2+S(E,V,N)dE = 0. (3.90)

Note that this is precisely the “energy function” in Hatano and Sasa [64].
(3) Extra information concerning the fluctuations in V , such as in an isobaric ensemble,

and fluctuations in N in grand ensemble, provides an empirically determined basis for the
free energy scale.

In terms of the theory of probability, choice (2) uniquely determines the energy ref-
erence point according to a conditional probability, and in choice (3) it is uniquely de-
termined according to a marginal distribution. How to normalize a probability, which has
always been considered non-consequential in statistical physics, seems to be a fundamental
problem in the physics of complex systems.

3.2.4 Work equalities and fluctuation theorems

The previous discussions suggest that while a great deal of complexity of a detailed, meso-
scopic stationary dynamics is captured by the circulating conservative dynamics, OUP also
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has a macroscopic state of motion that is defined by the internal energy E, or equivalently
the level sets of ϕ(x),Dϕ=E ⊂ Rn. Thus, from the macroscopic point of view, a stochastic
system could be studied through the one-dimensional (1-D) time sequence of fluctuating
internal energy E, as a function of t, or the change in E due to changes in the parameter α.

The celebrated Jarzynski equality connects the mesoscopic fluctuating force with the
change in free energy. We present this result through a projection from n-D phase space to
1-D functionE(t) that facilitates experimental verification of the work-free energy relation.
This approach reveals a close connection between the Jarzynski equality and the Helmholtz
theorem. We start with stating the Jarzynski and Crooks’ equalities, with the mathematical
proofs collected here. We then demonstrate the novel formulation of the Jarzynski equality
in the projected space.

We have shown that A2(α) is uniquely determined only up to a particular ϕ(x;α). As
shown below, the existence of anA2(α) has a paramount importance in the theories of work
equalities, in which the notion of a common energy for a family of stochastic dynamical
systems with different α has to be given a priori [159].

The Jarzynski equality

The macroscopic α-force in the Helmholtz theorem, as a function of E and α, is defined
through Boltzmann’s entropy σB. The Jarzynski equality, on the other hand, concerns with
a mesoscopic α-force,

Fα(x;α) = −
(
∂ϕ(x;α)

∂α

)
x

, (3.91)

and the statistical behavior of its corresponding stochastic work

W [X(τ), α(τ)] =

∫ t

0

Fα
(
X(τ);α(τ)

)(dα(τ)

dτ

)
dτ. (3.92)

The Jarzynski equality dictates that if the initial distribution of X(τ) follows the equilibri-
um distribution, then [74]〈

e−
1
ε2
W [X(τ),α(τ)]

〉[
X(τ),α(τ)

] = e−
1
ε2

∆A2(α), (3.93)

where the average of a functional over the ensemble of paths is defined as:〈
G[X(τ), α(τ)]

〉[
X(τ),α(τ)

] =

∫
G[X(τ), α(τ)]P [X(τ), α(τ)]D[X(τ)], (3.94)

in which P [X(τ), α(τ)]D[X(τ)], is an infinite-dimensional probability distribution for the
entire paths [X(τ)].
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Proof 5 (Jarzynski equality) The basic idea for the derivation is as follows: We first rep-
resent a path X(t) by a discrete version with N steps and write the path probability in
terms of the product of N transition probabilities given by the

∏N
i=0(· · · ) in Eq. (3.95).

Then the mean-exponential of negative work〈
e−

1
ε2
W [X(τ),α(τ)]

〉[
X(τ),α(τ)

]
is [64]: 〈

e−
1
ε2
W [X0,··· ,XN ;α0,··· ,αN ]

〉[
X0,··· ,XN ;α0,··· ,αN

]
=

∫
· · ·
∫ N∏

i=0

dXi exp

(
− 1

ε2

N∑
i=1

(
ϕ(Xi;αi)− ϕ(Xi;αi−1)

))

×
N∏
i=1

P
(
Xi|Xi−1;αi−1

)
p
(
X0, t0;α0

)
, (3.95)

in which the work from state (Xi;αi) to state (Xi+1;αi+1) is defined as the difference in
the global ϕ(x;α) with a common zero reference. This is a consequence of the First Law
of Thermodynamics. Since equilibrium is attained at t0, p(x0; t0) = f eqX (x0;α0). With the
global ϕ(x;α) = −ε2 ln f eqX (x;α)− ε2 lnZ(α), we have:〈

e−
1
ε2
W [X0,··· ,XN ;α0,··· ,αN ]

〉[
XN ,··· ,X0;αN ,··· ,α0

]
=

∫
· · ·
∫ N∏

i=0

dXi

N∏
i=1

f eqX (Xi;αi)Z(αi)

f eqX (Xi;αi−1)Z(αi−1)
·
N∏
i=1

P (Xi|Xi−1;αi−1)f eqX (X0;α0)

=
Z(αn)

Z(α0)

∫
· · ·
∫ N∏

i=0

dXi

N∏
i=1

P (Xi|Xi−1;αi−1)
N∏
i=1

f eqX (Xi−1;αi−1)

/
N∏
i=1

f eqX (Xi;αi−1)

=
Z(αn)

Z(α0)
. (3.96)

Since we have defined in Sec. 3.2.2 the free energy as: A2(α) = −ε2 lnZ(α), thus we
obtain the Jarzynski equality:〈

e−
1
ε2
W [X(τ),α(τ)]

〉[
X(τ),α(τ)

] = e−
1
ε2

∆A2 . (3.97)

In a very similar vein, for the macroscopic thermodynamic variables (E, α̃), one defines
the work done to the system by the external environment through controlling α̃(t) with rate
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˙̃α:

W
[
E(τ), α̃(τ)

]
= −

∫ t

0

F̃α̃(E, α̃) ˙̃αdτ. (3.98)

Write ϕτ (α̃) = E(τ, α̃). Then the discretized
〈
e−

1
ε2
W [E(τ),α̃(τ)]

〉[
E(τ),α̃(τ)

] is:

〈
e−

1
ε2
W [E0,··· ,EN ;α̃0,··· ,α̃N ]

〉[
E0,··· ,EN ;α̃0,··· ,α̃N

]
=

∫
· · ·
∫ N∏

i=0

dEi
N∏
i=1

P (Ei|Ei−1; α̃i−1)p(E0, t0; α̃0)×

exp

(
−

N∑
i=1

ϕi(α̃i)− ϕi(α̃i−1)

ε2
+ S(Ei, α̃i)− S(Ei, α̃i−1)

)
, (3.99)

where S(E, α̃) is defined in Eq. (3.119). On the other hand, equilibrium probability density
function of E at (Ei, α̃i) is:

f eqE (Ei, α̃i) =
1

Z(α̃i)

∮
ϕ(x;α̃)=Ei

e−ϕ(x;α̃i)/ε
2 dΣn−1

||∇xϕ(x; α̃i)||

= Z−1(α̃i) exp

(
−ϕi(α̃i)

ε2
+ S(Ei, α̃i)

)
. (3.100)

Hence, we have〈
e−

1
ε2
W [E0,··· ,EN ;α̃0,··· ,α̃N ]

〉[
E0,··· ,EN ;α̃0,··· ,α̃N

]
=

∫
· · ·
∫ N∏

i=0

dEi
N∏
i=1

f eqE (Ei, α̃i)Z(α̃i)

f eqE (Ei, α̃i−1)Z(α̃i−1)

(
N∏
i=1

P (Ei|Ei−1, α̃i−1)f eqE (E0, α̃0)

)

=
Z(α̃n)

Z(α̃0)

∫
· · ·
∫ N∏

i=0

dEi
N∏
i=1

P (Ei|Ei−1, α̃i−1)
N∏
i=1

f eqE (Ei−1, α̃i−1)

/
N∏
i=1

f eqE (Ei, α̃i−1)

=
Z(α̃n)

Z(α̃0)
= e−

1
ε2

∆A2(α). (3.101)

Therefore, the log-mean exponential of minus work is equal to the minus of free energy
difference.

It is clear from the proof above that the Jarzynski equality is general for Markov pro-
cesses with or without detailed balance.
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Crooks’ approach

G. E. Crooks’ approach, when applied to processes without detailed balance [64], con-
siders the probability functional of a backward path P [X̌(t)|X̌(0); α̌(t)] over a forward
one P [X(t)|X(0);α(t)], where both the initial and final distribution of X(τ) follows the
equilibrium distribution:

P [X̌(τ), α̌(τ)]

P [X(τ), α(τ)]
= exp

(
Q[X(τ), α(τ)]−Qhk[X(τ), α(τ)]−∆ϕ+ ∆A2

ε2

)
= exp

(
−W [X(τ), α(τ)]−Qhk[X(τ), α(τ)] + ∆A2

ε2

)
, (3.102)

where X̌(τ) = X(t− τ), α̌(τ) = α(t− τ); and

Q[X(τ), α(τ)] =

∫ t

0

∂ϕ

∂X
Ẋ dτ,

Qhk[X(τ), α(τ)] = −2

∫ t

0

ẊTD(α)−1
(
M(α)−D(α)Ξ−1(α)

)
X dτ (3.103)

are the heat dissipation and the house-keeping heat respectively.
If a process describes a physical system in equilibrium, which is expected to be “mi-

croscopic reversible” in [33], then〈
P [X̌(τ), α̌(τ)]

P [X(τ), α(τ)]

〉[
X(τ),α(τ)

] =

∫
D[X(τ), α(τ)] P [X̌(τ), α̌(τ)] = 1. (3.104)

On the other hand, if the system is in detailed balance for each and every α, M(α) −
D(α)Ξ−1(α) = 0, then the house-keeping heat Qhk[X(τ), α(τ)] ≡ 0. Therefore, path-
ensemble average of Eq. (3.102) gives:

1 = e∆A2/ε2
〈
e−W [X(τ),α(τ)]/ε2−Qhk[X(τ),α(τ)]/ε2

〉[
X(τ),α(τ)

]
= e∆A2/ε2

〈
e−W [X(τ),α(τ)]/ε2

〉[
X(τ),α(τ)

] . (3.105)

This is Hatano-Sasa’s result [64]. For systems without detailed balance, Qhk[X(τ), α(τ)]

measures the magnitude of the divergence-free vector field, or the extent to which the sys-
tem is away from detailed balance, even when stationary distribution is attained. At the
same time, 〈

P [X̌(τ), α̌(τ)]

P [X(τ), α(τ)]

〉[
X(τ),α(τ)

]
measures how much on average the behavior of backward paths is statistically different
from forward ones.
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Proof 6 (Crooks’ approach) Instead of introducing stochastic work functional, G. E. Crook-
s’ approach recognizes the important role of time reversal trajectory X̌(t), and the deep
relationship between work, energy, and dissipation, e.g., entropy production. Let us con-
sider the path probability of a backward trajectory P [X̌(τ)|X̌(0); α̌(τ)] against a for-
ward one P [X(τ)|X(0);α(τ)], in which

(
X̌(τ); α̌(τ)

)
= (X(t− τ);α(t− τ)), where

the initial and final distribution of X(τ) follow the equilibrium distribution. We solve
for P [X(τ)|X(0);α(τ)] from the probability of a Brownian motion whose increments are
multivariate Gaussian:

1

ε
Γ(αi)

−1
(
Xi+1 −Xi −M(αi)Xi∆τ

)
= Bti+1

−Bti . (3.106)

Hence, the probability density functional of a path
[
X0, · · · ,XN |X0;α0, · · · , αN

]
is:

P
[
X0, · · · ,XN |X0;α0, · · · , αN

]
=

N−1∏
i=0

P
(
Xi+1|Xi;αi

)
=

N−1∏
i=0

1

(π∆τ)n/2
e−

1
ε2∆τ

(Γ(αi)
−1(Xi+1−Xi)−Γ(αi)

−1M(αi)Xi∆τ)
2

. (3.107)

Here
(
v(X, α)

)2 ≡
(
v(X, α)

)T (
v(X, α)

)
. Then the probability density functional of the

inverse path
[
XN , · · · ,X0|XN ;αN , · · · , α0

]
is:

P
[
XN , · · · ,X0|XN ;αN , · · · , α0

]
=

N∏
i=1

P
(
Xi−1|Xi;αi

)
=

N∏
i=1

1

(π∆τ)n/2
e−

1
ε2∆τ

(Γ(αi)
−1(Xi−1−Xi)−Γ(αi)

−1M(αi)Xi∆τ)
2

. (3.108)

Therefore, offsetting by a normalization factor, an infinite-dimensional functional integral,

P
[
X(τ)|X(0);α(τ)

]
∝ exp

[
− 1

ε2

∫ t

0

(
Γ(α)−1dX/

√
dτ − Γ(α)−1M(α)X

√
dτ
)2
]

= exp

[
− 1

ε2

∫ t

0

(
Γ(α)−1Ẋ− Γ(α)−1M(α)X

)2

dτ
]
. (3.109)

Probability of the backward path can be found by substituting τ with t− τ :

P
[
X̌(τ)|X̌(0); α̌(τ)

]
∝ exp

[
− 1

ε2

∫ t

0

(
−Γ(α)−1Ẋ− Γ(α)−1M(α)X

)2

dτ
]
. (3.110)
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Therefore, we have an equality for heat dissipation:

P [X̌(τ)|X̌(0); α̌(τ)]

P [X(τ)|X(0);α(τ)]

= exp

[
2

ε2

∫ t

0

(
ẊT (Γ(α)Γ(α)T )−1M(α)X + XTM(α)T (Γ(α)Γ(α)T )−1Ẋ

)
dτ
]

= exp

[
2

ε2

∫ t

0

(
ẊTD−1(α)M(α)X

)
dτ
]

= exp

[
2

ε2

∫ t

0

ẊTΞ−1(α)X dτ +
2

ε2

∫ t

0

ẊT
(
D−1(α)M(α)− Ξ−1(α)

)
X dτ

]
= exp

{
Q
[
X(τ), α(τ)

]
ε2

+
Qhk

[
X(τ), α(τ)

]
ε2

}
. (3.111)

Hatano and Sasa, following Oono and Paniconi, called the term

Qhk

[
X(τ), α(τ)

]
= −2

∫ t

0

ẊT
(
D−1(α)M(α)− Ξ−1(α)

)
Xdτ (3.112)

house-keeping heat [64].
Since we start and end with equilibrium distributions with the corresponding α̃,

p
(
X0;α0

)
= f eqX (X0;α0) =

1

Z(α0)
exp

[
−XT

0U(α0)X0

ε2

]
;

p
(
XN ;αN

)
= f eqX (XN ;αN) =

1

Z(αN)
exp

[
−XT

NU(αN)XN

ε2

]
. (3.113)

Therefore,

P [X̌(τ), α̌(τ)]

P [X(τ), α(τ)]
=
P [X̌(τ)|X̌(0); α̌(τ)]p(XN ;αN)

P [X(τ)|X(0);α(τ)]p(X0;α0)

= exp

(
Q[X(τ), α(τ)]−Qhk[X(τ), α(τ)]−∆ϕ+ ∆A2

ε2

)
= exp

(
−W [X(τ), α(τ)]−Qhk[X(τ), α(τ)] + ∆A2

ε2

)
. (3.114)

Now taking ensemble average of the trajectories [X(τ), α(τ)] over
P [X̌(τ), α̌(τ)]

P [X(τ), α(τ)]
gives:

∫
D[X(τ), α(τ)] P [X̌(τ), α̌(τ)] =

〈
P [X̌(τ), α̌(τ)]

P [X(τ), α(τ)]

〉
[X(τ),α(τ)]

= e∆A2

〈
e−W [X(τ),α(τ)]−Qhk[X(τ),α(τ)]

〉[
X(τ),α(τ)

]. (3.115)
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When the system is in detailed balance, Crooks’ approach recovers the Jarzynski equality.
If one chooses the global energy ϕ with zero reference for each own equilibrium, i.e.,
∆A2 = 0 for all α, then it recovers the Hatano-Sasa equality.

Crooks’ approach through adjoint processes Jarzynski’s approach is based on a meso-
scopic α-force; while Crooks’ approach concerns with the stochastic entropy production
rate which reflects “heat dissipation”. Therefore, for systems with detailed balance, they
are essentially the same result according to the First Law of thermodynamics. For systems
without detailed balance, one can again obtained a Jarzynski-like equality from the proba-
bility P of the forward path over the adjoint probability P † of the backward one, according
to the notion of time reversal in Eq. (3.60b):

P †(X(τ)|X(τ + dτ);α(τ)) =P (X(τ + dτ)|X(τ);α(τ))

×
(

f eqX (X(τ);α(τ))

f eqX (X(τ + dτ);α(τ))

)
. (3.116)

Thus, whether a system is in detailed balance or not, one has the Hatano-Sasa equality [64]:

1 =

〈
P [X(τ), α(τ)]

P†[X̌(τ), α̌(τ)]

〉[
X(τ),α(τ)

] = e∆A2/ε2
〈
e−W [X(τ),α(τ)]/ε2

〉[
X(τ),α(τ)

] . (3.117)

Macroscopic work equalities

We are now in the position to study the work-free energy relation from a macroscopic view.
Essentially, we will consider the stochastic, fluctuating (E(t), α̃(t)) instead of (X(t);α(t))

directly. In doing so, we are observing the evolution in the probability distribution of E
through a projection from (X;α) to (E, α̃). With the projection of the n-dimensional phase
space to the one-dimensional time series E(t), the stationary probability density function
f ssE (E, α̃) of E with α̃ is also a projection of the original stationary probability density
function f ssX (x; α̃) in Euclidean space (as discussed in Sec. 3.2.3):

f ssE (E, α̃) =

∮
ϕ(x;α̃)=E

f ssX (x; α̃) dΣn−1

||∇xϕ(x; α̃)||

=
1

Z(α̃)
exp

(
−E
ε2

+ S(E, α̃)

)
, (3.118)

in which

S(E, α̃) = ln

(∮
ϕ(x;α̃)=E

dΣn−1

||∇xϕ(x; α̃)||

)
. (3.119)
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For the process of (E(t), α̃(t)), the total internal energy is no longer E itself. But rather,
it would include the “entropic effect”, S(E, α̃), caused by the curved space structure, and
become A (E, α̃).

A (E, α̃) = E − ε2S(E, α̃). (3.120)

The Helmholtz theorem for the new (E(t), α̃(t)) process reads:

dA = Θ̃(E, α̃)dσ − F̃α̃(E, α̃)dα̃

=

((
∂σ

∂E

)−1

− ε2∂S
∂σ

)
dσ −

((
∂σ

∂α̃

)(
∂σ

∂E

)−1

+ ε2
∂S

∂α̃

)
dα̃. (3.121)

Hence, the total force that does the work in this new coordinate is:

F̃α̃(E, α̃) = −∂A (E, α̃)

∂α̃
=

1

n
· E
α̃

+ ε2
∂S(E, α̃)

∂α̃
, (3.122)

where ε2
(
∂S(E, α̃)/∂α̃

)
is what chemists called an “entropic force”.

Now we define the work that external environment has done to the system through the
controlled change of α̃(t) as:

W [E(τ), α̃(τ)] = −
∫ t

0

F̃α̃(E, α̃) ˙̃αdτ. (3.123)

Then the work-free energy relation in macroscopic variables is:〈
e−W [E(τ),α̃(τ)]

〉[
E(τ),α̃(τ)

] =
Z
(
α̃(t)

)
Z
(
α̃(0)

) = exp

(
−∆A2(α)

ε2

)
. (3.124)

Therefore, the averaged minus exponential of work is equal to the minus exponential of
free energy difference. Here, we notice that the free energy stays the same through the
change of free variables, as a result of Eq. (3.86):

Z(α) =

∫
Rn
e−ϕ(x;α)/ε2dx =

∫ ∞
ϕmin(α)

exp

(
−E
ε2

+ S(E,α)

)
dE.

3.2.5 Discussion

In the present work, using the OUP as an example, we have illustrated a possible method
of deriving emergent, macroscopic descriptions of a complex stochastic dynamics from its
mesoscopic law of motion. In recent years, there is a growing awareness of the role of
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probabilistic reasoning as the logic of science [75, 129]. In this framework, prior infor-
mation, data, and probabilistic deduction are three pillars of a scientific theory. In fields
with very complex dynamics, statistical inferences focus on the latter two aspects starting
with data. In physical sciences that includes chemistry, and cellular biology, the prior plays
a fundamental role as a feasible “mechanism” which enters a scientific model based on
“established knowledge” — no biochemical phenomena should violate the physical laws
of mechanics and thermodynamics. Indeed, many priors have been rigorously formalized
in terms of mathematical theories. Unfortunately, most of these theories are expressed
in terms of deterministic mathematics for very simple individual “particles”; obtaining a
meaningful probabilistic prior for a realistic, macroscopic-level system requires a computa-
tional task that is neither feasible nor meaningful [6, 141]. Nonlinear stochastic dynamical
study is the mathematical deductive process that formulates probabilistic prior based on a
given mechanism.

Open systems, when represented in terms of Markov processes, are ubiquitously non-
symmetric processes according to Kolmogorov’s terminology. This is one of the lessons
we learned from the open-chemical systems theory. The non-symmetricity can be quanti-
fied by entropy production [76]. For discrete-state Markov processes, symmetric processes
are equivalent to Kolmogorov’s cycle condition [78]. Interestingly, concepts such as cycle
condition, detailed balance, dissipation and irreversible entropy production had all been
independently discovered in chemistry: Wegscheider’s relation in 1901 [181], detailed bal-
ance by G.N. Lewis in 1925 [97], Onsager’s dissipation function in 1931 [115], and the
formulation of entropy production in the 1940s [130, 166].

A non-symmetric Markov process implies circulating dynamics in phase space. Such
dynamics is not necessarily dissipative, as exemplified by harmonic oscillators in classical
mechanics. One of us has recently pointed out the important distinction between over-
damped thermodynamics and underdamped thermodynamics [?]. The current section is a
study of OUP in terms of the latter perspective, in which we have identified the unbal-
anced circulation as a conservative dynamics, a hallmark of the generalized underdamped
thermodynamics [136]. In terms of this conservative dynamics, Boltzmann’s entropy func-
tion naturally enters stochastic thermodynamics, and we discover a relation between the
Helmholtz theorem [104] and the various work relations.

In the past, studies on stochastic thermodynamics with underdamped mechanical mo-
tions have always required an explicit identification of even and odd variables. See [?] and
the references cited within. One of us has introduced a more general stochastic formulation
of “underdamped” dynamics, with thermodynamics, in which circulating motion can be
a part of a conservative motion [?] without dissipation. The present work is an in-depth
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study of the OUP within this new framework. It seems to us that even the term “nonequi-
librium” in the literature has two rather different meanings: From a classical mechanical
standpoint, any system with a stationary current is “nonequilibrium”, even though it can be
non-dissipative. From a statistical mechanics stand point, on the other hand, “nonequilib-
rium”, “irreversible”, and “dissipative” are almost all synonymous.

Absolute information theory and interpretive information theories

We now discuss two rather different perspectives on the nature of information theory, or
theories [80, 75].

First, in the framework of classical physics in terms of Newtonian mechanics, Boltz-
mann’s law, and Gibbs’ theory of chemical potential, there is a universal First Law of Ther-
modynamics based on the function S(E, V,N, α) where S is the Boltzmann’s entropy of
a conservative dynamical system at total energy E, e.g., Hamiltonian H

(
{xi}, {yi}

)
= E,

with V andN = (n1, n2, · · · , nm) being the volume and numbers of particles in the chemo-
mechanical system, and α = (α1, α2, · · · , αν) represents controllable parameters of the
system. Then one has

dE =

(
∂S

∂E

)−1

V,N,α

dS − pdV + µdN −
(
∂S

∂E

)−1

V,N,α

(
∂S

∂α

)
E,V,N

dα, (3.125)

in which (∂S/∂E)−1
V,N,α is absolute temperature. p and µ are pressure and chemical poten-

tial, they are the corresponding thermodynamic forces for changing volume V and number
of particles N , respectively. It is natural to suggest that if an agent is able to manipulate a
classical system through changing α while holding S, V , and N constant, then he or she is
providing to, or extracting from, the classical system non-mechanical, non-chemical work.
It will be the origin of a Maxwell’s demon [106].

For an isothermal system, one can introduce Helmholtz’s free energy function A =

E − TS, then Eq. (3.125) becomes

dA = µdN − SdT − pdV + Fαdα. (3.126)

And for an isothermal, isobaric information manipulation process without chemical reac-
tions, one has Gibbs function G = E−TS+ pV and dG = µdN −SdT +V dp+Fαdα =

Fαdα. Note that while the first three terms contain “extensive” quantities N , S, and V , the
last term usually does not. It is nanothermodynamic [65]. Note also that for a feedback
system that controls Fα, one has Θ = G− Fαα and dΘ = −αdFα.

Just as µ is a function of temperature T in general, so is Fα: It has an entropic part
[138, 132]. This is where the “information” in Maxwell’s demon enters thermodynamics.
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Eqs. (3.125) and (3.126), thus, are a grander First Law which now includes feedback
information as a part of the conservation [168] with “informatic energy” Fαdα, on a par
with heat energy TdS, mechanical energy pdV , and Gibbs’ chemical energy µdN . Eq.
(3.125) is the theory of absolute information in connection to controlling α.

In engineering and biological research on complex systems, however, the notion of in-
formation often has a more subjective meaning, or meanings, usually hidden in the form
of a statistical prior [128, 127]. One of the best examples, perhaps, is in current cellu-
lar biology: Many key biochemical processes inside a living cell are said to be “carrying
out cellular signal transduction”. Various biochemical activities and changing molecular
concentrations are “interpreted” as “intracellular signals” that instruct a cell to respond to
its environment. Here, two very different, but complementary, mathematical theories are
equally valid: Since nearly all cellular biochemical reactions can be considered at constant
temperature and volume, one describes the stochastic biochemical dynamics in terms of
Gibbs’ theory based on the µ in Eq. (3.126). On the other hand, the same stochastic bio-
chemical dynamics described in term of the probability theory can also be represented as
an information processing machine with communication channels and transmissions of bits
of information, carrying out a myriad of biological functions such as sensing, proofread-
ing, timing, adaptation, and amplifications of signal magnitude, detection sensitivity, and
response specificity [62]. The information flow narratives provide bioscientists a higher
level of abstraction of a physicochemical reality [140].

Such an interpretive information theory, however, will lack the fundamental character
of Eqs. (3.125) and (3.126). Still, as a multi-scale, coarse grained theory, some inequalities
can be established [154, 41]. It is also noted that changing α can always be mechanis-
tically further represented in terms of changing geometric quantities such as volume and
particle numbers via chemical reactions: The ultimate physical bases of information and
its manipulation have to be matters and known forces.

We believe this dual possibility has a fundamental reason, rooted in Kolmogorov’s rig-
orous theory of probability: A probability space is an abstract object associated with which
many different random variables, as measurements, are possible. At this point, it is inter-
esting to read the preface of [75] written by E. T. Jaynes, who is considered by many as one
of the greatest information theorists since Shannon: “From many years of experience with
its applications in hundreds of real problems, our views on the foundations of probability
theory have evolved into something quite complex, which cannot be described in any such
simplistic terms as ‘pro-this’ or ‘anti-that’. For example, our system of probability could
hardly be more different from that of Kolmogorov, in style, philosophy, and purpose. What
we consider to be fully half of probability theory as it is needed in current applications —
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the principles for assigning probabilities by logical analysis of incomplete information —
is not present at all in the Kolmogorov system.”

Then in an amazing candidness, Jaynes goes on: “Yet, when all is said and done, we
find ourselves, to our own surprise, in agreement with Kolmogorov and in disagreement
with its critics, on nearly all technical issues.”
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Chapter 4

ANALYZING NOISE INDUCED PHENOMENA THROUGH
REVERSIBILITY

The decomposition framework in Sec. 2.3 of the general Markov processes with respect
to reversibility can have a wide range of applications. Those applications can be oriented
towards statistical methods, such as proposing Markov processes with the desired station-
ary distributions to generate samples in Monte Carlo algorithms (as will be discussed in
Chapters 5 and 6). They can also be directed towards modelling. In particular, the decom-
position can be used to analyze the dynamics of models when noise is taken into account.
It builds up a bridge between the noisy system and its most probable dynamics in the sense
that the most probable dynamics follow the landscape of the stationary distribution. Hence
we can analyze the stability and bifurcation behaviors of this most probable effective dy-
namics to understand the stochastic system.

In this chapter, we will focus on this perspective. We are especially interested in the
change of dynamical behaviors in a reaction diffusion system after noise is taken into ac-
count in the model. In particular, we study the stochastic reaction diffusion models where
the original deterministic model is the infinite population limit of it. The inclusion of chem-
ical reaction noise (with finite population size) induces pattern formation not present in the
deterministic (inifite population) counterpart. Since one would usually assume the role of
fluctuation and noise to be destructive to the organized patterns, the phenomenon of chem-
ical reaction niose to play an organizing role has attracted much attention. Initial efforts
are made to discover and categorize the observations. Later, some of the works start to use
renormalization group theory to analyze the models one by one. With our framework in
Sec. 2.3, however, we can start analyzing the effective dynamics (its stability and bifurca-
tion) of the noisy system following its stationary distribution. In Sec. 4.1, we use this idea
to analyze the Gray-Scott model and found that taking chemical reaction noise into account
does cause the effective dynamics to become less stable and eventually Turing unstable.
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4.1 Chemical Reaction Noise Induced Phenomena in Gray Scott Model: Change in
Dynamics and Pattern Formation

Recent success of reaction diffusion models in digit patterning [144], oogenesis [118, 163],
and etc. has aroused much interest on patterns generated by simple reaction diffusion sys-
tems [171, 167]. Much of the modeling effort has been done using deterministic systems.
Those models describes the scenarios where size of the whole system takes infinite limit.
In reality, however, the system size is often finite and stochasticity need to be taken into
account. Specifically, behaviors of most biological and chemical systems are affected by
the intrinsic chemical reaction noise. It has also been previously observed that noise has an
important role in shaping the patterns formed in the reaction diffusion systems [95, 108].

Some previous works have simulated reaction diffusion systems with and without noise
through numerically experiments, and have observed different behaviors. But the exact role
of noise and its mechanism of changing the systems’ behaviors remains unclear as the pow-
erful tools like stability and bifurcation analysis are not present in the stochastic systems.
One of the obstacles for applying these quantitative and qualitative tools in stochastic dy-
namics is that it’s not previously known exactly what’s the “effective” dynamics that caused
the systems’ behavioral difference, since every sample of the solutions is different.

Since the formation of complex patterns discussed are caused by the systems’ stationary
behaviors, the effective dynamics should correspond to the equilibrium distribution of the
stochastic dynamics. In this work, we adopt the framework in [103, 102] and Sec. 2.3 to
calculate effective dynamics for a quantitative analysis on pattern formation induced by
chemical reaction noise. The effective dynamics is naturally consistent with the systems’
long term distribution.

We focus on the Gray-Scott model [124], a classical model with rich behaviors of pat-
tern formation. We derived the form of fluctuation from the reaction part of the model. It
is found that under some parameter choice, the system behaves vastly different between
cases where noise is present or not. The first example in this paper shows the organizing
role of the noise, that pattern begins to form in the presence of noise. The second exam-
ple shows that the pattern changes when noise is introduced. Analysis on the effective
dynamics reveals the changes in stability that leads to the differences in complex patterns.
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4.1.1 Gray-Scott Model with Chemical Reaction Noise

The Gray-Scott model describes a nonlinear chemical reaction system with two reactions
and two components, U and V :

A+ 2B
1−→ 3B, B

k−→ P. (4.1)

Without losee of generality, one can assume that the rate constant for the first reaction to
be unity.

There are currently two main approches to study the macroscopic limit of a stochastic
reaction diffusion system, such as that in (4.1), with the molecular species also undergo
spatial diffusion. One follows the celebrated work of Guo, Papanicolaou, and Varadhan
(GPV) in terms of the empirical measure of the stochastic system [60, 44], and another
[155].

We consider the following setup: A three dimensional system has a spatical inhomo-
geneity in the xy two-dimension but rapidly stirred in the x dimension. The xy plane
is discretized into lattice sites {xi} with l2-sized “voxes”, and associated with each vox
a column with height H . We use Û(xi) and V̂ (xi) to represent the numbers of A and
B in the column located at xi ∈ R2. Then the numbers of A and B per unit area are
U(xi) = Û(xi)/l

2 and V (xi) = V̂ (xi)/l
2, and the three dimensional number density at xi

is u(xi) = U(xi)/H and v(xi) = V (xi)/H .

Thermodynamic limit is defined as U(xi), V (xi), H → ∞ while u(xi) = U(xi)/H

and v(xi) = H(xi)/H becomes continous functions on 2-dimensional discrete lattice.
Hydrodynamic limit, on the other hand, is defined as the `→ 0 and u(xi) and v(xi) become
continuous functions u(x) and v(x) of continuous space variable x ∈ R2.

Deterministic limit of the reaction dynamics. First, let us assume the molecules in a
single vox column are rapidly mixed but do not move into the neighboring columns. Then
in the limit of H → ∞, according to T. G. Kurtz’s theorem, the law of mass action arises
with a set of differential equations at each and every lattice point xi:


du = −uv2dt,

dv = (uv2 − kv)dt.
(4.2)
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Stochastic chemical reaction. For a finite H , a chemical master equation characterizes
the probability distribution of the finite population of chemical species within each colume

dP (µ, ν)

dt
= −P (µ, ν)

(
µν2

H2
+ kν

)
+ P (µ, ν + 1)k(ν + 1)

+P (µ+ 1, ν − 1)
(µ+ 1)(ν − 1)2

H2
, (4.3)

in which P (µ, ν) = Pr{U = µ, V = ν} is the probability of observing µ number of U
molecules and ν number of V molecules in a vox column of height H . We use Kramers
Moyal expansion [104, 86] of Eq. (4.3) with respect to θ = 1/Ω and write p(u, v) =

P (U, V ). Through Itô’s convention, the Fokker-Planck equation for the reaction system
can be written as [3, 59]:

∂p

∂t
=θ∇2 :

(
D(u, v)p

)
−∇T ·

(
Fr(u, v)p

)
, (4.4)

where

D(u, v) =
1

2

 uv2 −uv2

−uv2 uv2 + kv

 ; (4.5)

Fr(u, v) =

 −uv2

uv2 − kv

 . (4.6)

Under Itô’s interpretation, the Fokker-Planck equation represents the evolution of proba-
bility density function of the following stochastic differential equation (SDE): du

dv

 = Fr(u, v)dt+ θ
1
2σ(u, v)dW(t), (4.7)

where

σ(u, v) =

 µ(η−k)+ν(k+η)

2
√

2η

uv(ν−µ)√
2η

uv(ν−µ)√
2η

ν(η−k)+(k+η)µ

2
√

2η

 , σ(u, v)σT (u, v) = 2D(u, v), (4.8)

with η =
√
k2 + 4u2v2, µ =

√
v (k + 2uv + η), ν =

√
v (k + 2uv − η).

It is worth noting that when we take θ → 0, Eq. reduces to Eq. (law of mass action).
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Spatial diffusion and environmental input Apart from the chemical reaction at each
site, the Gray-Scott model also include two terms: one diffusive term, M(u, v), over phys-
ical space x, describing diffusion of chemical components through the space over reaction
sites; and an deterministic input term, Fn(u, v), accounting for the feed for U and drain for
both U and V . Hence, the complete SDE in the physical space x is:

∂u(x, t)

∂t

∂v(x, t)

∂t

 = M(u, v) + F(u, v) + θ
1
2σ(u, v)ξ(x, t), (4.9)

where

M(u, v) =

 Mu Mx u

Mv Mx v

 , (4.10)

F(u, v) = Fr(u, v) + Fn(u, v) =

 −uv2 + f(1− u)

uv2 − (f + k)v

 , (4.11)

〈
ξ(x, t)ξT (x′, t′)

〉
= δ(x− x′)δ(t− t′)I. (4.12)

In this work, we consider slow diffusion relative to the speed of reaction. We take Mu =

4 × 10−5, and Mv = 2 × 10−5. And for this reason, we solely focus on the intrinsic
noise generated by the reaction part of the system, without taking into account the space-
correlated noise caused by the diffusion effect.

4.1.2 Noise Induced Phenomena in Pattern Formation

It has been observed that noise can affect pattern formation. We hereby demonstrate and
study two examples that noise can induce or change patterns. In the first example, we
take f = 0.053, k = 0.06. When noise is not present, no spatial pattern is generated by
the system; and when noise is present (by the intensity of θ = 2 × 10−3), the dot-like
patterns are generated. In the second example, we choose f = 0.0483, k = 0.06, so that
the dot-like patterns are generated when noise is not present. Then we find that the dot-like
patterns change to strip-like when noise is introduced to the system with an intensity of
θ = 3× 10−3.
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Figure 4.1: Left panel. Long time behavior of the Gray-Scott model without noise (f = 0.053,

k = 0.06, Mu = 4 × 10−5, Mv = 2 × 10−5); Right panel. Long time behavior of the Gray-Scott

model with noise (noise strength θ = 2× 10−3).

Taking θ equal to zero, Eq. (4.9) reduces to the classical Gray-Scott equation of reaction
diffusion system: 

∂u(x, t)

∂t

∂v(x, t)

∂t

 = M(u, v) + F(u, v). (4.13)

Then we simulate Eq. (4.13) (in the deterministic case) and Eq. (4.9) (in the stochastic
case) using the same initial conditions as used in [124], that the center 0.2 × 0.2 region
takes initial value of U = 1/2, V = 1/4, on the background of U = 1, V = 0. These
conditions are then perturbed with ±1% random noise to break the square symmetry.

Noise Induced Pattern Formation For the first example, we take the parameters f and k
as: f = 0.053, k = 0.06. The system does not display the phenomenon of pattern formation
without noise (as shown in the left panel of Fig. 4.1). When noise is present with a strength
of θ = 2×10−3 (under the current choice of the parameters and initial conditions), however,
the system forms the dot emerging pattern (shown in the right panel of Fig. (4.1)). The red
dots emerges from blue background, similar to the ι patterns observed in the paper [124].

Noise Induced Pattern Change For the second example, we take the parameters f and k
as: f = 0.0483, k = 0.06. Without noise, the system displays the patterns of dot emergence
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Figure 4.2: Left panel. Long time behavior of the Gray-Scott model without noise (f = 0.0483,

k = 0.06, Mu = 4 × 10−5, Mv = 2 × 10−5); Right panel. Long time behavior of the Gray-Scott

model with noise (noise strength θ = 3× 10−3).

(as shown in the left panel of Fig. 4.2), like the ones observed in the right panel of Fig.
(4.1). When noise is present with a strength of θ = 3 × 10−3, the patterns become more
connected, forming stripes-like structures as the red state becomes more prevalent (shown
in the right panel of Fig. 4.2).

4.1.3 Effective Dynamics

In this paper, we are only concerned with fluctuation from chemical reaction. Noise does
not influence the diffusion part of the dynamics. Hence we only need to study the effect
of noise on the local reaction dynamics F(u, v) of Eq. (4.9). For the stochastic reaction
dynamics:  du

dv

 = F(u, v)dt+ θ
1
2σ(u, v)dW(t), (4.14)

a Fokker-Planck equation can be written for the evolution of distribution in reactants’ den-
sity (u, v) at each site:

∂tp(u, v, t) = L[p(u, v, t)]

= −∇T ·
(
F(u, v)p(u, v, t)

)
+ θ∇2 :

(
D(u, v)p(u, v, t)

)
. (4.15)
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The long-time behavior of the stochastic system as Eq. (4.15) can be characterized by it-
s stationary distribution ps(u, v). And yet the deterministic vector field F(u, v) does not
correspond to the stationary behavior. A major discrepancy between the original stochastic
dynamics Eq. (4.14) and the vector field F is that the most frequently visited states of the
stochastic reaction dynamics are different from the stable attractors of F. This discrep-
ancy can be resolved by focusing on the stochastic dynamics evolving towards stationary
behavior.

To focus on the evolution of distribution function p(u, v, t) towards the stationary dis-
tribution, we can follow [103] and rewrite Eq. (4.15) as:

∂tp(u, v, t) = L̃
[
p(u, v, t)

ps(u, v)

]
, (4.16)

where operator L̃ is:

L̃[ϕ(u, v)] = θ∇T ·
((

D(u, v) + Q(u, v)
)
∇ϕ(u, v) · ps(u, v)

)
, (4.17)

where Q(u, v) is a skew-symmetric matrix. Because of the existence of large deviation
rate function for the system of Eq. (4.15), we can write p(u, v, t) = e−φ(u,v,t)/θ; ps(u, v) =

e−φ
s(u,v)/θ and have φ(u, v, t) exists even when θ → 0. In terms of φ(u, v, t), we have:

∂φ(u, v, t)

∂t
=− (∇φ)T

(
D(u, v) + Q(u, v)

)
∇
(
φ(u, v, t)− φs(u, v)

)
+ θ∇T

((
D(u, v) + Q(u, v)

)
∇
(
φ(u, v, t)− φs(u, v)

))
(4.18)

The first term on the right hand side of Eq. (4.18) is of order O(1) and the second term is
of order O(θ).

It might be tempting to think that Eq. (4.18) is an expansion result following large
deviation theory. However, we should recall that the solution p(u, v, t) to Eq. (4.15) (as
long as matrix Q(u, v)) depends on θ and such that φ(u, v, t) and φs(u, v) actually contain
higher order terms of θ. In fact, if we use the WKB ansatz:

p(u, v, t) = e−θ
−1φ(u, v, t) + ψ0(u, v, t) + θ ψ1(u, v, t) + · · · (4.19)

to expand Eq. (4.15), we can see that Eq. (4.18) is a resummation of all the higher order
terms into the first two orders. As a result, Eq. (4.18) is exact and when φ(u, v, t) →
φs(u, v), every term in Eq. (4.18) approaches 0 uniformly. When θ → 0, the second term
on the right hand side of Eq. (4.18) approaches zero and the first term approaches the large
deviation rate function for Eq. (4.15).
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Most probable trajectory (u∗(t), v∗(t)) of Eq. (4.18) for small θ can be found by focus-
ing on the first term on the right hand side of Eq. (4.18) and considering a local minimum
of the function φ(u∗(t), v∗(t), t) located at (u(t), v(t)) = (u∗(t), v∗(t)):

0 =
d
dt
(
∇φ(u∗(t), v∗(t), t)

)
=

∂∇φ(u, v, t)

∂t
+ H(φ(u, v, t))

 du
dt
dv
dt




(u(t),v(t))=(u∗(t),v∗(t))

, (4.20)

where H(φ(u, v, t)) is the Hessian matrix of φ(u, v, t) over (u, v). Then the most probable
trajectories follow the following ODE: du∗

dt
dv∗

dt

 = −
[
H−1(φ(u, v, t))

∂∇φ(u, v, t)

∂t

]
(u(t),v(t))=(u∗(t),v∗(t))

= −
(
D(u∗, v∗) + Q(u∗, v∗)

)
∇φs(u∗, v∗). (4.21)

Therefore, the long term effect dynamics follows the vector field:

F̃(u, v) = − (D(u, v) + Q(u, v))∇φs(u, v) (4.22)

The structure of the effective dynamics F̃(u, v) in Eq. (4.22) ensures that φs(u, v) is the
Lyapunov function for F̃(u, v) and that the effective dynamics is always attracted to the
mostly distributed states, the same as the long term behavior of the stochastic dynamics.
The discrepancy between F̃(u, v) and the deterministic vector field F(u, v) is:

∆Fi(u, v) = Fi(u, v)− F̃i(u, v)

= θ
∑
j=1,2

∂j (Dij(u, v) + Qij(u, v)) . (4.23)

Although The stationary distribution ps(u, v) is not normalizable and hard to calculate

in this case, matrix Q(u, v) =

 0 −q(u, v)

q(u, v) 0

 can still be calculated by noting

that:

∇× (D(u, v) + Q(u, v))−1 F(u, v) = 0. (4.24)
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An expansion solution for q(u, v) in the interval of (0, 1)× (0, 1) can be obtained:

q(u, v) ∼ 1

2

fk

f + k
− 1

2

fk

f + k
u+

1

2

(−f 3 − 2f 2k)

(f + k)2(3f + 2k)
v +

1

2

f(f + 2k)

(f + k)2
uv

+
1

2

(−9f 5k + 2f 5 − 39f 4k2 + 8f 4k − 58f 3k3 + 8f 3k2 − 36f 2k4 − 8fk5)

k(4f + 3k) (3f 2 + 5fk + 2k2)2 v2

+ · · · . (4.25)

Hence, the effective dynamics F̃(u, v) can be solved as:

F̃(u, v) = F(u, v)−∆F(u, v). (4.26)

We find that the effective dynamics is actually closer to the bifurcation point. Simula-
tion of the effective deterministic dynamics with diffusion term D(u, v) demonstrates that
emerging patterns are developed over time.

4.1.4 Noise Induced Dynamic Change

We are now in a position of comparing the dynamic stability of the deterministic reac-
tion diffusion dynamics: M(u, v) + F(u, v) and the effective reaction diffusion dynamics:
M(u, v) + F̃(u, v), respectively. We explicitly demonstrate the analysis for the determin-
istic dynamics M(u, v) + F(u, v), and use the same procedure for M(u, v) + F̃(u, v).

Linear Stability We can first observe that the uniform solution,
(
u(x), v(x)

)
= (u0, v0),

where F(u0, v0) = 0 is a stationary solution for the system:
∂u(x, t)

∂t

∂v(x, t)

∂t

 = M(u, v) + F(u, v). (4.27)

Then we can analyze the linear stability of the system under constant perturbations: (u(t), v(t)) =

(u0 + εu1, v0 + εv1), which boils down to the eigenvalues of the Jacobi matrix:

J
(
F(u0, v0)

)
=


∂F1(u, v)

∂u

∂F1(u, v)

∂v

∂F2(u, v)

∂u

∂F2(u, v)

∂v


(u,v)=(u0,v0)

=

 −v2
0 + f −2u0v0

v2
0 2u0v0 − (f + k)

 . (4.28)
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When f > 4(f + k)2, a linearly stable uniform solution exists:

(u0, v0) =

(
f −

√
f 2 − 4f(f + k)2

2f
,
f +

√
f 2 − 4f(f + k)2

2(f + k)

)
. (4.29)

Turing Stability To analyze the stripe patterns generated from the system, we can fur-
ther analyze Turing stability of the stable uniform solution. A plane wave perturbation:
(u(t), v(t)) = (u0 + ũk(t), v0 + ṽk(t)) =

(
u0 + εũ(t)eik

T ·x, v0 + εṽ(t)eik
T ·x
)

can be ap-
plied to the system, which boils down to the eigenvalue problem of the following system:

∂ũk(t)

∂t

∂ṽk(t)

∂t

 = −kTk

 Muũk(t)

Mvṽk(t)

+ J
(
F(u0, v0)

) ũk(t)

ṽk(t)

 . (4.30)

When one of the eigenvalues of the following matrix, J̃k:

J̃k = J
(
F(u0, v0)

)
− kTk

 Mu 0

0 Mv

 (4.31)

is positive, then the uniform solution is unstable under plane wave perturbation and the
stripe patterns would emerge.

Noise Induced Dot Patterns In the first case, we analyze the behavior of the determin-
istic dynamics and effective dynamics respectively and find that the effective dynamics
is closer to the saddle-node bifurcation and that the linearly stable fixed point, “blue s-
tate”, becomes less stable (real part of the eigenvalues changes from −8.97498 × 10−3 to
−5.56142× 10−3, losing 40% of the original stability), rendering the dynamics within the
regime of causing the localized dot patterns. Although the effective dynamics is still Turing
stable (from plan wave perturbations), using techniques discussed in detail in [30] one can
find that it is unstable from local perturbations. We also simulate the effective dynamics
and compared it against the noisy system. It can be seen from Fig. 4.3 that the effective
system’s prevailing behaviors is constant dot emergence, the same as the noisy system.

Noise Induced Pattern Change In the second case, we discover that similar to the first
case, the effective dynamics is closer to the saddle-node bifurcation and that the the lin-
early stable fixed point, “blue state”, becomes even less stable (real part of the eigenvalues
changes from −3.99391 × 10−3 to −5.84034 × 10−4). More importantly, the “blue state”
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Figure 4.3: Left panel. Dynamics of the Gray-Scott model with noise; Right panel. Long time

behavior of the Gray-Scott model under effective dynamics M + F̃ (f = 0.053, k = 0.06, Mu =

4× 10−5, Mv = 2× 10−5).

Figure 4.4: Left panel. Dynamics of the Gray-Scott model with noise; Right panel. Long time

behavior of the Gray-Scott model under effective dynamics M + F̃ (f = 0.0483, k = 0.06,

Mu = 4× 10−5, Mv = 2× 10−5).



76

Figure 4.5: Upper panels: Behavior of the stochastic Gray-Scott model over time; Lower panels:

Behavior of the Gray-Scott model simulated with the effective deterministic dynamics. Snapshots

are taken at the same time for lower and upper panels.

becomes Turing unstable under the effective dynamics, changing the localized dot patterns
into continuous stripe patterns. The plane wave perturbations that make the “blue state”
unstable have wave numbers ranging from 25 to 45, which is consistent with the width of
the stripes simulated in the noisy system. It can be seen from Fig. 4.4 that simulation of
the effective dynamics further corroborates with the analytical result.

4.1.5 Discussion

It can be observed from Fig. (4.5) that the behavior of the stochastic Gray-Scott model
corresponds to the behavior simulated with the effective deterministic dynamics. Since the
behavioral change induced by noise is accounted for by the effective deterministic dynam-
ics, the remaining differences between the stochastic model and the effective deterministic
model is caused purely by fluctuation.

The fluctuation here plays two roles through time: one is the constant breaking of
spatial symmetry, facilitating the development of complex patterns. The corresponding
observation is: patterns develop earlier when in the stochastic model than the effective
deterministic model. Another is the destruction of the already developed patterns. The
constant perturbation in the concentration field makes large, organized patterns harder to
exist (as shown in Fig. (4.3) and Fig. (4.5)).
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Chapter 5

A UNIFYING FRAMEWORK FOR DEVISING EFFICIENT AND
IRREVERSIBLE MCMC SAMPLERS

Markov chain Monte Carlo (MCMC) methods are the defacto tools for inference in
Bayesian models [99, 149]. There are two primary approaches to developing and imple-
menting such MCMC algorithms. One is the traditional Metropolis-Hastings type of ap-
proach, where one defines a jump process through an accept-reject procedure. This popular
class of methods utilizes global information of the target distribution. Another approach
relies on the local (gradient) information of the target distribution and designs a contin-
uous dynamical process with the target distribution as its stationary distribution; samples
are proposed according to the integrated trajectories of the continuous dynamics. Impor-
tant examples of such samplers include Hamiltonian Monte Carlo methods [38, 113] and
samplers using Langevin dynamics [150, 184, 182, 121].

For both approaches, a major challenge is devising a sampler with good mixing rates
(i.e., the speed at which an initial distribution converges to the target distribution). In the
world of jump-process-based MCMC techniques, a focus has been on developing clever
proposals [165, 73, 99], but these methods are often strongly coupled to a specific chal-
lenge setting, like multimodal targets [165] or heavy tailed distributions [73]. In practice,
one often does not know the structure of the target distribution, which might additionally
exhibit a combination of these factors. In the world of continuous-dynamic-based sam-
plers, methods using second order information, like Riemannian Hamiltonian Monte Carlo
[57], can be helpful. However, it is non-trivial to devise these modifications and prove that
the dynamics maintain the right stationary distribution.

In this paper, we propose a unifying framework for these two approaches that enables a
more user-friendly method for devising efficient and general-purpose MCMC procedures.
We start by examining continuous dynamic samplers. We present a stochastic differential
equation (SDE) based framework in which to define all such valid samplers based on spec-
ifying two matrices: a positive semidefinite diffusion matrix and a skew-symmetric curl
matrix. These matrices define symmetric (reversible) and anti-symmetric (irreversible)
operators, respectively. Based on this framework, we prove that for any choice of these
matrices, the sampler will have the target distribution as the stationary distribution. We
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likewise prove that any continuous dynamic sampler with the correct stationary distribu-
tion has a representation in this framework. As such, we call this framework complete. We
cast a number of past methods in our proposed representation, and also show how it can be
used to devise new samplers with improved mixing rates. An initial version of this work
appeared in [102].

In [102], jump processes were specifically excluded from the analysis. However, jump
processes represent a potentially attractive approach to MCMC since, in theory, samples
generated from jump processes can decorrelate rapidly. In practice, it is challenging to de-
fine transition kernels that enable this efficient exploration while maintaining a reasonably
high acceptance rate. The challenge partially stems from the fact that attention has typical-
ly been restricted to reversible jump processes. Such samplers are straightforward to derive
and implement, but the reversibility restriction hinders the mixing rates and efficiency of
the proposed algorithms [112, 36, 29, 27]. Unfortunately, devising irreversible samplers is
a non-trivial task, and often results in computationally complex algorithms.

Leveraging our insights from the operator decomposition for continuous dynamic pro-
cesses, we show that a similar framework can enable the development of efficient irre-
versible jump process samplers based on the specification of two kernel functions. We
decompose the jump operator into symmetric (reversible) and anti-symmetric (irreversible)
operators, paralleling the continuous-dynamic sampler framework. Using this decomposi-
tion and parameterization, we arise at a straightforward set of constraints on the transition
kernels that ensures that the target distribution is the stationary distribution. The resulting
sampler implementation has the ease and efficiency of Metropolis-Hastings; in fact, the im-
plementation directly parallels that of standard Metropolis-Hastings. In terms of runtime,
our proposed method significantly outperform previous approaches [107, 63], in addition
to providing fast mixing rates in a range of scenarios, from heavy-tailed to multimodal tar-
gets. We demonstrate these performance gains against existing approaches in a variety of
sampling tasks.

There are many ways we can think of combining our continuous dynamic and jump
process frameworks. One is to use the continuous dynamic sampler and jump process
sampler iteratively, i.e., use one (possibly for multiple iterations) and then the other, just as
in Hamiltonian Monte Carlo. Another approach is to use the continuous dynamic sampler
for some variables (e.g., real-valued variables) and the jump process sampler for others
(e.g., discrete-valued variables). It is straightforward to combine our approaches in these
manners since each process maintains the correct stationary distribution, so these types
of compositions will likewise result in the correct stationary distribution under some mild
conditions at stationary. The strategy of alternating between continuous dynamics and jump
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processes is similar to what was recently proposed in the bouncy particle [21] and Zig-Zag
[17, 16] samplers. These samplers iterate between deterministic continuous dynamics and
Poisson jump processes. However, the algorithms associated with these methods are quite
involved and deviate significantly from classical MCMC tools.

Alternatively, as we show, we are able to use a discretization of the continuous dy-
namics as a proposal distribution in our jump process accept-reject scheme, even when the
continuous dynamics are not reversible. Here, the transition kernel is defined according
to the SDE representation of the continuous dynamics. Importantly, the simplicity of the
Metropolis-Hastings algorithm is inherited. We can view the benefits of this approach from
two angles: (i) the SDE can provide an efficient proposal distribution for our irreversible
Markov jump process or (ii) the accept-reject scheme allows us to correct for the bias in-
troduced by sampling the continuous dynamics via a discretized SDE. This accept-reject
scheme is a direct generalization of the Metropolis-adjusted Langevin algorithm (MALA)
[150] to irreversible SDEs. This opens up the possibility to combine, for example, the
benefits of Langevin diffusion with Hamiltonian dynamics. As we see, combining our
frameworks for continuous dynamic processes and Markov jump processes yields a unified
and complete framework for devising efficient and general purpose MCMC samplers with
the correct stationary distribution.

We conclude with a discussion on how to scale our continuous and jump frameworks
to perform Bayesian inference in large datasets.

5.1 Backgrounds and Standard Approach

We start with the standard MCMC goal of drawing samples from a target distribution π(z).
The idea behind MCMC is to translate the task of sampling from the posterior distribution
to simulating from a Markov process. One can then discuss the evolution of the distribution
on z at time t, p(z; t), under this stochastic process and analyze its stationary distribution,
ps(z). If the stochastic process is ergodic and its stationary distribution is equal to the
target distribution π(z), then simulating the stationary stochastic dynamics equates with
providing samples from the posterior distribution.

In this section, we review some of the fundamentals of the stochastic processes asso-
ciated with general Markov processes, and how we can use these processes to construct
samplers.
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5.1.1 Backgrounds on Constructing Samplers from Continuous and Jump Markov Pro-

cesses

In Section 2.1.2, we described that the realization of the continuous Markov process can be
generated from the stochastic differential equation (SDE):

dz = f(z)dt+
√

2D(z)dW(t). (5.1)

With an abuse of notation, in this and the following chapter, we follow conventions in the
classical MCMC literature and use the same boldfaced lowercase letter (e.g., z) to denote
both a random vector and its possible value in Rd. In practice, an ε-discretization is used to
simulate from (5.1):

zt+1 ← zt + εtf(zt) + ηt, ηt ∼ N (0, 2εtD(zt)) (5.2)

Although (5.2) is in the form of the Euler–Maruyama method, higher order numerical
schemes can be used for better accuracy [26, 20, 94]. The challenge here is to select f
and D such that the simulation from (5.1) leads to the right stationary distribution. Note
that relying on a sample path from the discretized system of (5.2) typically leads to the
introduction of bias due to discretization error. In these cases, the samples only provide
unbiased estimates in the limit as εt → 0 unless further corrections are introduced. In Sec-
tion 5.2, using the decomposition idea from Sec. 2.3, we propose a reparameterization of
(5.1) from which it is trivial to ensure the SDE has the desired stationary distribution. Then,
in Section 5.4, we return to the idea of correcting for any potential discretization error if no
bias can be tolerated.

Turning to the Markov jump process, a realization of it (as discussed in Sec. 2.1.2) can
be implemented by using the following transition probability:

p(z|y; ∆t) = ∆tW (z|y) +

[
1−∆t

∫
Rd
W (x|y)dx

]
δ(z− y). (5.3)

Equation (5.3) corresponds to a sampling process as follows. We take ∆t to be the stepsize.
Then, with probability ∆tW (z|y), we transit from state y to state z. With probability
1−∆t

∫
RdW (x|y)dx, we stay in state y.

Analogously to the challenge of selecting f and D, the challenge here is to select the
kernelW (z|x) that leads to the stationary distribution being equal to the target distribution,
π(z). This requires that the positive transition kernel W satisfies∫

Rd
dx [W (z|x)π(x)−W (x|z)π(z)] = 0.

Additionally, even if such aW can be defined, it might not define a distribution from which
we can straightforwardly sample nor compute the necessary integral.
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5.1.2 Standard Metropolis Hastings (MH) Algorithm

Instead, in practice one typically resorts to implementing jump process samplers through
the Metropolis-Hastings (MH) accept-reject scheme [107, 63]. In MH (Algorithm 1), one
samples from a specified proposal distribution q(z|y) and accepts the proposed value z

with probability

α(y, z) = min

(
1,
π(z)q(y|z)

π(y)q(z|y)

)
. (5.4)

In the form of (2.10), we have [31]:

p(z|y; ∆t) = q(z|y)α(y, z) +

[
1−

∫
Rd
q(x|y)α(y,x)dx

]
δ(z− y). (5.5)

When in state y at time t, we propose to jump to state z at t+∆twith conditional probability
q(z|y), realized via a random number generator that has a distribution according to q(z|y);
we accept this proposal with probability α(y, z) to ensure that the target distribution will
be preserved under this procedure. Hence, the total probability of transiting from state y to
z is q(z|y)α(y, z). Otherwise, we stay in state y.

Comparing (5.5) to (5.3), we see that MH restricts our attention to W (z|y) satis-
fying ∆tW (z|y) = q(z|y)α(y, z). We further see that the acceptance rate α(y, z) is
specifically designed so that W (z|x)π(x) = W (x|z)π(z), a condition much stronger than∫
Rd dx [W (z|x)π(x)−W (x|z)π(z)] = 0, in order to ensure that π(z) is the stationary dis-

tribution. However, this form restricts our attention solely to reversible processes. Instead,
just as in the continuous Markov process case, in Section 5.3 we consider a reparameteri-
zation in terms of two kernel functions with straightforward-to-satisfy constraints. In that
form, not only do we ensure the right stationary distribution, but we are able to devise a
sampling algorithm for irreversible processes that has the same simplicity of implementa-
tion as MH.

As we will show in Sections 5.2 and 5.3, via a reparameterization of the continuous and
jump Markov processes (Eq. (5.1) and (5.3)), we transform the problem of devising contin-
uous and jump samplers with the right stationary distribution to one of simply specifying
two matrices and two modestly constrained kernel functions. We can compose these two
processes in various ways and still ensure that the overall sampler has the correct stationary
distribution as is discussed in Section 5.4.
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Algorithm 1: Metropolis-Hastings Algorithm

for t = 0, 1, 2 · · ·Niter do
sample u ∼ U[0,1]

propose z(∗) ∼ q(z(∗)|z(t))

α
(
z(t), z(∗)

)
= min

{
1,
π (z(∗)) q(z(t)|z(∗))
π (z(t)) q(z(∗)|z(t))

}
if u < α (z(t), z(∗)), z(t+ 1) = z(∗)

else z(t+ 1) = z(t)

end

5.2 Continuous Markov Process Based Samplers

As proposed in Sec. 2.3, Eq. (5.1) can be reparameterized in the following form:

dz =
[
−
(
D(z) + Q(z)

)
∇H(z) + Γ(z)

]
dt+

√
2D(z)dW(t), (5.6)

where H(z) = − log(π(z)) and Γi(z) =
∑d

j=1

∂

∂zj

(
Dij(z) + Qij(z)

)
. For any positive

semi-definite D and skew-symmetric Q matrices, invariant distribution of Eq. (5.6) is the
desired target distribution π(z). The problem of finding the correct Markov dynamics has
just been translated to choosing from all possible matrices D and Q. Furthermore, because
any continuous Markov process has a representation in the form of Eq. (5.6), the recipe
parameterized by D and Q is complete.

Following (2.9), we can simulate from the SDE in Eq. (5.6) using the following ε-
discretization:

zt+1 ← zt − εt
[(
D(zt) + Q(zt)

)
∇H(zt) + Γ(zt)

]
+ ηt, ηt ∼ N (0, 2εtD(zt)). (5.7)

Again, higher-order numerical schemes can be used in place of the first-order integrator
above [26, 20, 94]. The resulting algorithm is outlined in Algorithm 2. (Recall that bias is
introduced via the discretization, i.e., setting εt finite. We will return to this in Section 5.4.)

5.2.1 Previous MCMC Algorithms as Special Cases

We explicitly state how some previous continuous dynamics used in the MCMC methods
fit within the proposed framework based on specific choices of D(z), Q(z) and H(z). We
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show how our framework can be used to “reinvent” the samplers by guiding their construc-
tion and avoiding potential mistakes or inefficiencies caused by naı̈ve implementations.

Hamiltonian Monte Carlo (HMC) The key ingredient in HMC [38, 113] is Hamiltonian
dynamics, which models the physical motion of an object with position θ, momentum r,
and mass M on an frictionless surface following the potential well U(θ) = − log π(θ) as
follows:  dθ = M−1rdt

dr = −∇U(θt)dt.
(5.8)

Equation (6.8) is a special case of the proposed framework with z = (θ, r), H(θ, r) =

U(θ) + 1
2
rTM−1r, Q(θ, r) =

 0 −I

I 0

 and D(θ, r) = 0. When M is taken to be

adaptive (in particular, to approximate the Hessian of the target distribution), the method is
called Riemannian HMC [57].

Langevin Dynamics The Langevin dynamics sampler [150, 182] proposes to use the
following first order (no momentum) Langevin dynamics to generate samples

dθ = −D∇U(θt)dt+
√

2D dW(t), (5.9)

This algorithm corresponds to taking z = θ with H(θ) = U(θ) = − log π(θ), D(θ) = D,
and Q(θ) = 0.

Riemannian Langevin Dynamics The Langevin dynamics sampler can be generalized
to use an adaptive diffusion matrix D(θ). Specifically, it is interesting to take D(θ) =

G−1(θ), where G(θ) is the Fisher information metric [184, 121]. The sampler iterates

dθ = −[G(θ)−1∇U(θ) + Γ(θ)]dt+
√

2G(θ)−1 dW(t). (5.10)

We can cast this Riemannian Langevin dynamics sampler [121] into our framework tak-
ing D(θ) = G(θ)−1, and Q(θ) = 0. From our framework, we know that here Γi(θ) =∑
j

∂Dij(θ)

∂θj
. Interestingly, in earlier literature [57], Γi(θ) was taken to be

2 |G(θ)|−1/2
∑
j

∂

∂θj

(
G−1
ij (θ)|G(θ)|1/2

)
.
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Algorithm 2: Continuous Markov Process Sampling Algorithm
initialize z0

for t = 0, 1, 2 · · ·Niter do

for i = 1 · · ·n do

Γi(z) =
∑

j

∂

∂zj
(Dij(z) + Qij(z))

end

sample ηt ∼ N (0, 2εtD(zt))

zt+1 ← zt − εt
[(
D(zt) + Q(zt)

)
∇H(zt) + Γ(zt)

]
+ ηt

end

More recently, it was found that this correction term corresponds to the distribution function
with respect to a non-Lebesgue measure [150]. For the Lebesgue measure, the revised Γi(θ)

was as determined by our framework [150]. This is an example of how our theory provides
guidance in devising correct samplers.

Summary of past samplers In our framework, the Langevin dynamic based samplers
take Q(z) = 0 and instead stress the design of the diffusion matrix D(z). The standard
Langevin dynamic sampler uses a constant D(z), whereas the Riemannian variant uses an
adaptive, z-dependent diffusion matrix to better account for the geometry of the space be-
ing explored. On the other hand, HMC takes D(z) = 0 and focuses on the curl matrix
Q(z). As we see, our method is a generalization of the dynamics underlying Hamiltonian
Monte Carlo (and Riemannian Hamiltonian Monte Carlo) methods, extending the sym-
plectic structure to be non-constant. That is, considering general skew-symmetric matrices

instead of just Q(z) =

 0 −I

I 0

 as in [170, 42]. The generalized Hamiltonian dy-

namics can explore the state space rapidly, and are guaranteed to preserve the stationary
distribution once it is achieved.

Examination of the past methods provides us with the insight that D(z) can enable
diffusive exploration across local modes. And just as in HMC, Q(z) drives the sampler
to walk along contours of equal probability allowing it to rapidly traverse regions of low-
er probability, especially when state adaptation is incorporated. Importantly, through our
(D(z),Q(z)) parameterization, we can readily examine which parts of the product space
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D(z) × Q(z)—representing the space of all possible samplers—have been covered. We
see that a majority of possible samplers have not yet been considered. For ways in which
to use our framework to construct new samplers, see [102].

5.3 Markov Jump Process Based Samplers

Similar to the continuous-dynamic-based MCMC methods, the form of (5.3) specified by
the generic kernelW (x|z) poses challenges to determining the choices ofW (x|z) that lead
to a jump process with the correct stationary distribution. Even if one can construct such
a W , it can be challenging to use W to sample a realization of the jump process; instead,
often one restricts attention to reversible processes and uses MH (see Section 5.1.1). We
instead turn to Sec. 2.4 for the following equivalent but alternative representation defined
in terms of the two kernels S and A:

∂p(z|y; t)

∂t
=

∫
Rd

dx
[(
S(x, z) + A(x, z)

)
ϕ(x)− S(x, z)ϕ(z)

]
, (5.11)

where S is a symmetric kernel and A is an anti-symmetric kernel. Based on the form of
(5.11), we notice that the requirement that π(z) is a stationary distribution of the jump pro-
cess is translated into simpler constraints:

∫
Rd S(x, z)π−1(x)dx and

∫
Rd A(x, z)π−1(x)dx

exists, with S(x, z) + A(x, z) > 0, and
∫
Rd A(x, z)dx = 0. This enables more ready

analysis of the properties of the process, and the development of efficient irreversible jump
process samplers.

Following (5.3), the transition probability implied by Eq. (5.11) assuming a ∆t-discretization
is given by:

p(z|y; ∆t) =
∆t

π(y)

(
S(y, z) + A(y, z)

)
+

[
1− ∆t

π(y)

∫
Rd
S(y,x)dx

]
δ(z− y). (5.12)

5.3.1 Previous Samplers as Special Cases

As with past continuous-dynamic-based samplers, we now cast a set of past jump-process-
based samplers into our framework.

Direct resampling Methods that sample directly from π(z) take S(y, z) =
1

∆t
π(y)π(z)

and A(y, z) = 0. We can verify this by substituting into (2.50).
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Metropolis-Hastings The very popular MH algorithm falls into our framework taking
A(y, z) = 0 and

S(y, z) =
1

∆t
min

(
π(y)q(z|y), π(z)q(y|z)

)
. (5.13)

To see this, we refer to Section 5.1.1. The specified form for S and A above arises from
comparing the transition probability of (5.5) with that of (5.12).

Summary of past samplers In the previously mentioned algorithms, and a majority of
those used in practice, only reversible Markov jump processes (A(z,y) = 0) are consid-
ered. In Section 5.3.2, we explore the case where the process is irreversible, i.e., A(z,y) 6=
0.

5.3.2 Irreversible Jump Sampler

Analogous to the discussion of Section 5.1.1, there are two issues of designing samplers
with Markov jump processes. One is the construction of transition kernels, a task that has
been alleviated in part by the new formulation of (5.12) in terms of S(y, z) andA(y, z) with
simple constraints, though we still have to construct such kernels. Another is simulating
the Markov process of (5.12). In all but the simplest cases, we might not be able to sample
from the transition probability ∆t · (S(y, z) + A(y, z))/π(y). These two issues are often
intertwined posing challenges to the design of samplers. As mentioned in Section 5.1.1,
the MH algorithm is often resorted to due to its ease of implementation. It separates the
process of proposing a sample into two simple steps: (1) proposing a candidate according
to a known conditional probability distribution q(z|y) and (2) accepting or rejecting the
candidate according to a certain probability. An important drawback of the vanilla MH
sampler, however, is that the reversibility of the jump process being designed can greatly
restrict possible ways to increase the mixing of the Markov chain.

There have been previous efforts to break the restriction of reversibility in different
cases. For example, the non-reversible MH algorithm adds a vorticity function to the MH
procedure [15] while the lifting method makes two replica of the original state space with
a skew detailed balance condition to facilitate irreversibility [172, 176]. The authors have
shown examples of sampling special distributions, but it is unclear how to generalize these
past methods to handle a broad set of target distributions. See Section 5.5 for a detailed
discussion of these and other methods. Here, we show how we can devise a practical
and efficient irreversible jump process algorithm analogous to MH that can be applied to
general targets; this procedure implicitly defines valid kernels S(y, z) and A(y, z). In
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particular, just as MH corresponds to restricting the class of kernels W (z|y), our algorithm
also focuses in on particular instances of A(y, z), but importantly allows A(y, z) 6= 0 (i.e.,
irreversible processes). The value of this in practice is demonstrated in the experiments of
Section 5.3.3.

A naı̈ve approach A straightforward approach to revise the MH algorithm to make anti-
symmetric kernelA(y, z) nonzero, resulting in an irreversible sampler, is to utilize different
proposal distributions f(z|y) and g(z|y), instead of a single q(z|y). That is, the transition
kernel of the MH algorithm in (5.13) is changed to

F (y, z) = S(y, z) + A(y, z) =
1

∆t
min

(
π(y)f(z|y), π(z)g(y|z)

)
. (5.14)

Here we are considering jump processes with A(y, z) =
1

2

(
F (y, z) − F (z,y)

)
6= 0, in

contrast to what we saw for MH. By adjusting f and g, faster mixing rates can possibly be
attained while maintaining a simple sampling procedure akin to that of MH (see Algorith-
m 1, but with f in place of q in the numerator and g in place of q in the denominator in the
α calculation). The more f and g differ, the more irreversibility effect is incorporated in the
design of the sampler. Functions f and g can even be selected to have non-symmetric sup-
port in the state space (as is chosen in our experiments), so that new proposals are guided in
certain directions until being rejected, encouraging the algorithm to explore farther states.
The primary issue with this construction is that

∫
Rd A(y, z)dy 6= 0 in general, rendering

the stationary distribution not the π(z) that we desire. The question is how to design the
anti-symmetric kernel A(y, z), such that

∫
Rd A(y, z)dy = 0.

Lifting for sampling when d = 1 A simple modified approach is to follow an adjoint
Markov process after being rejected by the original one. This is inspired by the lifting
idea in discrete spaces [172, 176]. Importantly, this approach has π(z) as the stationary
distribution.

Algorithmically, this process introduces a one-dimensional, uniformly distributed dis-
crete auxiliary variable yp ∈ {−1, 1}. We then define

f̃(z, zp|y,yp) =
(
H(yp)f(z|y) +H(−yp)g(z|y)

)
g̃(z, zp|y,yp) =

(
H(−yp)f(z|y) +H(yp)g(z|y)

)
, (5.15)

where f(z|y) and g(z|y) are different conditional probability distributions, and H is the
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Algorithm 3: One-Dimensional Irreversible Jump Sampler
randomly pick zp from {1,−1} with equal probability

for t = 0, 1, 2 · · ·Niter do
sample u ∼ U[0,1]

if zp > 0 then
sample z(∗) ∼ f (z(∗)|z(t))

α (z(t), z(∗)) = min

{
1,
π (z(∗)) g (z(t)|z(∗))
π (z(t)) f (z(∗)|z(t))

}
end

else
sample z(∗) ∼ g (z(∗)|z(t))

α (z(t), z(∗)) = min

{
1,
π (z(∗)) f (z(t)|z(∗))
π (z(t)) g (z(∗)|z(t))

}
end

if u < α (z(t), z(∗)), z(t+ 1) = z(∗); zp(t+ 1) = zp(t)

else z(t+ 1) = z(t); zp(t+ 1) = −zp(t)
end

Heaviside function:

H(yp) =

 1 yp ≥ 0

0 yp < 0.

We modify the MH algorithm as described in Algorithm 3, where we update state y

and the auxiliary variable yp according to the following transition probability (as in our
recipe of (2.50)):

p(z, zp|y,yp; ∆t) =
∆t

π(y)π(yp)
δ(zp − yp) · F(y,yp, z, zp)

+ δ(zp + yp)δ(z− y)

(
1− ∆t

π(y)π(yp)

∫
Rd

F(y,yp,x,−zp)dx
)
,

(5.16)

in which F(y,yp, z, zp) is defined using f̃ and g̃:

F(y,yp, z, zp) = min
(
π(y)π(yp)f̃(z, zp|y,yp), π(z)π(zp)g̃(y,yp|z, zp)

)
.
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This update rule can be understood as follows. With probability F(y,yp, z, zp)/(π(y)π(yp)),
state y becomes state z while the auxiliary state yp remains the same. Alternatively, with
probability[
1− 1

π(y)π(yp)

∫
Rd

F(y,yp,x,−zp)dx
]

, no new state (x,yp) is accepted conditioning on

currently being at state (y,yp). Instead, state (y,yp) is directly changed to state (y,−yp),
leading to a different jump process in y. An illustration of the update rule is shown in
Fig. 5.1.

From (2.53), we see that this proposed algorithm takes the anti-symmetric kernelA(y,yp, z, zp)

to be

A(y,yp, z, zp) =
1

2∆t

(
π(y)π(yp)p(z, zp|y,yp; ∆t)− π(z)π(zp)p(y,yp|z, zp; ∆t)

)
(5.17)

with p(z, zp|y,yp; ∆t) as in (5.16). To ensure correctness of the sampler, we prove that
A(y,yp, z, zp) must satisfy (condition 3):∫

Rd+1

A(y,yp, z, zp) dy dyp = 0.

Proof 7 ∫
Rd+dp

A(x,xp, z, zp) dx dxp

=
1

2

∫
Rd

(
F(y, zp, z, zp)− F(z, zp,y, zp)

)
dy

−1

2

∫
Rd

(
F(z,−zp,x,−zp)− F(z, zp,x, zp)

)
dx.

One can check that in (5.19) and (5.15), f̃(z, · |y,−yp) = g̃(z, · |y,yp). Hence,

F(y,−yp, z,−zp) = F(z, zp,y,yp).

Therefore ∫
Rd+dp

A(x,xp, z, zp) dx dxp (5.18)

=
1

2

∫
Rd

(
F(z,−zp,y,−zp)− F(z, zp,y, zp)

)
dy

−1

2

∫
Rd

(
F(z,−zp,x,−zp)− F(z, zp,x, zp)

)
dx

=0.
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Figure 5.1: Update rule starting from state (y,yp). Left: Several possible states (z∗, zp) that the

algorithm could visit in the next step. Without resampling the auxiliary variables, zp can only be

yp or −yp. Right: Assuming the algorithm visits (z1,y
p) as the next state to (y,yp) (indicated by

the green arrow), a sample trajectory of states generated.

The intuition is that the jump in the auxiliary variable introduces a circulative behavior
to the whole process (see Fig. 5.1 for illustration). This circulation of probability flux is
exactly balanced with the jumps in the original variable and the auxiliary variable. We also
see in Fig. 5.1 that irreversibility introduces a directional effect (just like HMC introduces
a direction of rotation). This algorithm is a generalization of the guided walk Metropolis
method [61] and works well in one dimension, as we demonstrate in Section 5.3.3. In what
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follows, we generalize this idea to higher dimensions d > 1.

Moving to higher dimensions An irreversible sampler in Rd can be constructed as fol-
lows. We expand the state space by introducing a dp-dimensional auxiliary variable yp ∈
Rdp in the new state space (y,yp). The total probability can be designated as: π(y,yp) =

π(y)π(yp). We further impose symmetry on the auxiliary variables such that π(yp) =

π(−yp), and let

f̃(z, zp|y,yp) =
dp∏
i=1

(
H(ypi )fi(z|y,y

p
i ) +H(−ypi )gi(z|y,−y

p
i )
)
;

g̃(z, zp|y,yp) =
dp∏
i=1

(
H(−ypi )fi(z|y,−y

p
i ) +H(ypi )gi(z|y,y

p
i )
)
, (5.19)

where fi(z|y,ypi ) and gi(z|y,ypi ) are conditional probability distributions defined by the
value of ypi .

This definition of f̃ and g̃ is a direct generalization of the definition of (5.15) in the one
dimensional case. Fitting this definition into the transition probability p(z, zp|y,yp; ∆t)

in (5.16), the generalized update rule is defined and described in Algorithm 4. Again, we
have the anti-symmetric kernel A(y,yp, z, zp) as in (5.17). We can prove—exactly the
same as Proof 7—that this construction has

∫
Rd+dp A(y,yp, z, zp) dy dyp = 0 even with

our dp-dimensional continuous auxiliary variables.
In summary, we can use (5.16) to devise a practical algorithm for sampling (Algorith-

m 4). In particular, if we define fi(z|y,ypi ) and gi(z|y,ypi ) that are easy to sample from,
then we can use the definitions of f̃ and g̃ in (5.19) to propose samples in the same way as
the MH algorithm. After multiple rejections in y, we resample yp according to π(yp) for a
faster-mixing Markov chain in y.

In multiple dimensions, a favorable direction of exploration is often not clear. Hence we
suggest to take dp = d as used in our experiment, so that zp has the same dimension as z.
Thus all directions can be explored by resampling the auxiliary variable zp after multiple
rejections. This setting also helps to avoid the possibility of the resulting Markov chain
being reducible. Also, when dp = d, fi and gi can be designed as: fi(z|y) = fi(zi|yi),
and gi(z|y) = gi(zi|yi), depending only on zi and yi. Sample values in each dimension
can thus be independently generated according to fi(zi|yi) or gi(zi|yi). When a favorable
direction of exploration can be determined (e.g., in the irreversible MALA algorithm in
Section 5.4.3), we can take dp = 1. Then zp belongs to a binary set {−1, 1}, rendering
Algorithm 4 the same as the simpler version, Algorithm 3, which is the continuous state
space generalization of the lifting method [172, 176].
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Algorithm 4: Monte Carlo Algorithm from Irreversible Jump Process

for t = 0, 1, 2 · · ·Niter do
optionally, periodically resample auxiliary variable zp as zp(t) ∼ π(zp)

sample u ∼ U[0,1]

sample z(∗) ∼ f̃ (z(∗), zp(∗)|z(t), zp(t))

α (z(t), zp(t), z(∗), zp(∗)) = min

{
1,
π (z(∗))π (zp(∗)) g̃ (z(t), zp(t)|z(∗), zp(∗))
π (z(t))π (zp(t)) f̃ (z(∗), zp(∗)|z(t), zp(t))

}
if u < α (z(t), zp(t), z(∗), zp(∗)), (z(t+ 1), zp(t+ 1)) = (z(∗), zp(t))

else (z(t+ 1), zp(t+ 1)) = (z(t),−zp(t))
end

In the experiments of Section 5.3.3, we take dp = d, fi (z(∗)|z(t), zp(t)) as (zi(∗) −
zi(t))/z

p
i (t) ∼ Γ(α, β); gi (z(∗)|z(t), zp(t)) as (zi(t) − zi(∗))/zpi (t) ∼ Γ(α, β) and let

π(zp) to be a restricted uniform distribution on the set
{
zp
∣∣∣∣ 1

N
|zp|1 = 1

}
. Here f̃ and g̃

are designed to have no overlap in their support, maximizing the irreversibility effect. The
norm of zp is set to be constant to ensure that zp contributes to the exploration of direction,
instead of the expected distance of jump. It is worth noting that the accept-reject step in the
current setting is the same as in random-walk MH.

5.3.3 Synthetic Experiments for Irreversible Jump Sampler

To examine the correctness and attributes of our irreversible jump sampler (Algorithm 4),
we consider various simulated scenarios, including the challenging cases of heavy tailed,
multimodal, and correlated distributions. As mentioned in Section 5.3.2, we take fi (z(∗)|z(t), zp(t))

according to zi(∗) = zi(t) + γzpi (t); gi (z(∗)|z(t), zp(t)) according to zi(∗) = zi(t) −
γzpi (t), where γ ∼ Γ(α, β) and let π(zp) to be a restricted uniform distribution on the set{
zp
∣∣∣∣ 1

N
|zp|1 = 1

}
.

The hyperparameters α and β are chosen using a generic procedure without fine-tuning
to the target. We take the gamma shape parameter to be α = 1.1, and change the rate
parameter β approximately as β ∝

√
V (V is the volume of the region we would like to

explore).
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1D Heavy-tailed Distribution

We start by considering the task of sampling from 1D normal and log-normal distributions,
the latter of which is a heavy-tailed distribution. The motivation for considering the simple
1D normal distribution is to validate the correctness of the sampler and to serve as a compar-
ison relative to the heavy-tailed setting. We compare performance to a MH algorithm with
normal proposals centered at the previous state. The results are shown in Fig. 5.2. Some
may argue that the main possible benefit of our sampler arises from the gamma proposal
distribution. To test this idea, we also compare against an MH algorithm using a sym-

metrized gamma proposal distribution: (z(∗)− z(t)) ∼ 1

2
(f (z(∗)|z(t)) + g (z(∗)|z(t))).

We found that the irreversible jump sampler with the gamma proposals has better per-
formance. In particular, the method can decrease autocorrelation without increasing the
rejection rate (the rejection rate of all three methods are similar). The MH algorithm with
symmetrized gamma proposals, on the other hand, leads to even higher autocorrelation than
the vanilla MH algorithm. Intuitively, this result can be understood from Fig. 5.1: the irre-
versible algorithm leads to further exploration in one direction before circling back. (Also,
see Fig. 5.9.)

For the heavy-tailed distribution, similar behavior is observed: the irreversible jump
sampler converges to the desired distribution faster because its samples decorrelate more
rapidly as a function of run time.

Multimodal Distributions

2D Bimodal distributions We use our irreversible jump sampler to sample increasing-
ly challenging bimodal distributions in 2D, π(z1, z2) = 2(z2

1 − τ)2 − 0.2z1 − 5z2
1 + 5z2

2 ,
displayed in Fig. 5.3. Based on the results of Section 5.3.3, we simply compare against
MH with random walk normal proposals and drop the symmetrized gamma proposal case.
In Fig. 5.3 we see that the irreversible jump sampler significantly outperforms the random
walk MH algorithm. Intuitively, this is facilitated by the greater traversing ability of the
irreversible sampler, so that with the same acceptance rate, the irreversible sampler can ex-
plore more possible states than the reversible sampler, and have greater chance of transiting
into another mode.

One way to capture this difference in the bimodal case is in terms of escape time from
local modes, which we summarize in Table 5.1. We see that the irreversible jump sampler
has escape times orders of magnitude lower. Furthermore, these escape times increase at
a much smaller rate as the local modes become more concentrated, indicating much more
rapid mixing between modes.
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Figure 5.2: Top row: (Left) Normal and log-normal target distributions, and (right) zoom in of the

tail distributions. Middle row: Results for normal target in terms of log total variation distance (T-V

distance) vs. log run time (left) and ACF vs. lag in run time (right). Bottom row: Analogous plots

for log normal target. Comparisons are made among the irreversible jump sampler of Algorithm 4

(Gamma Irreversible), random walk MH algorithm with Gaussian proposals (Gauss RW MH), and

random walk MH algorithm with symmetrized gamma proposals (Gamma RW MH). Run time is

measured in seconds.
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Figure 5.3: (Left) Bimodal targets, π(z1, z2) = 2(z2
1 − τ)2 − 0.2z1 − 5z2

1 + 5z2
2 , for various values

of τ . Here we demonstrate a 1D cross section of the 2D distribution. (Middle) Sample state

trajectories for MH and (right) irreversible jump sampler for the τ = 1 case.
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Figure 5.4: Total variational distance vs. log run time (left) and ACF vs. lag in run time (right), for

the case of τ = 0.5.
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Figure 5.5: Total variational distance vs. log run time (left) and ACF vs. lag in run time (right), for

the case of τ = 1.
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Figure 5.6: Total variational distance vs. log run time (left) and ACF vs. lag in run time (right), for

the case of τ = 1.5.
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τ Avg. Escape Time for Irr. Sampler Avg. Escape Time for MH Sampler

0.5 1.94× 102 1.06× 103

1 4.64× 102 2.47× 104

1.5 9.06× 102 7.89× 105

2 2.41× 103 N/A

Table 5.1: Comparison of average escape time from one local mode to another between the ir-

reversible jump sampler and random walk MH. The distribution in 2D is more challenging with

bigger values of τ (plotted in Fig. 5.3). “N/A” in the last entry means that the escape time is so

long that an accurate estimate of it is not available.

2D Multimodal distributions We also tested our method against a recently considered
multimodal setting [165]. In the first setting considered, the target distribution is highly
multimodal in 2D with unevenly distributed modes. Furthermore, the high mass modes
have smaller radii of variation. In the second setting considered, these modes are highly
concentrated and well separated, which is an extremely challenging setting for most sam-
plers. See Figs. 5.7 and 5.8. In [165], a repulsive-attractive Metropolis (RAM) sampler was
proposed with a structure specifically designed to efficiently handle these types of multi-
modal distributions. We use this as a gold-standard comparison, since this method was
already shown to outperform parallel tempering and alternatives [84] in this setting.

We focus our performance analysis on the decay speed of the autocorrelation function
(ACF). This can be understood by taking the Gaussian random walk MH algorithm as an
example: Although the Gaussian random walk MH algorithm seems to perform well in
terms of convergence of total variation distance, this effect is based on exploring one mode
really well in a short period of time, instead of making more distant moves to explore other
modes. In contrast, the ACF better characterizes the exploration of the samples through the
whole space.

Our results are summarized in Figs. 5.7 and 5.8 for each of the two simulated mul-
timodal scenarios. In the first scenario, our sampler outperforms both MH and RAM. In
the second scenario, where we have highly concentrated and separated modes, the RAM
method tailored to this scenario slightly outperforms our approach. Overall, however, the
irreversible jump sampler provides surprisingly good performance in these scenarios de-
spite not having been designed specifically for this setting.
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Figure 5.7: Top row: (Left) Contour plot of a challenging multimodal probability density func-

tion; (middle) T-V distance and ACF comparisons among Gauss RW MH algorithm, Gamma Irre-

versible, and the recently proposed repulsive-attractive Metropolis (RAM) sampler. Bottom row:

A sample run of all three samplers, respectively.

5.4 Irreversible Metropolis Adjusted Langevin Algorithm

As discussed in Section 5, there are various ways to combine the continuous dynamics with
jump processes to propose new samplers. Since the Markov processes constructed in Sec-
tion 5.2 and 5.3 can all be non-autonomous (resulting in time dependent matrices D, Q and
kernel functions S, A) as long as the stationary processes converge to the target distribu-
tion, one can iteratively follow continuous dynamics and jump processes to propose sam-
ples. With ergodicity, averages with respect to the sample values converge to averages with
respect to the distribution. This is what is done in HMC: The complete dynamics include
(i) a continuous Hamiltonian system with Q equal to the symplectic matrix, and (ii) a jump
process in the auxiliary variable r with the symmetric kernel S(ry, rz) = π(ry)π(rz)/∆t;
the latter corresponds to the resampling of r. Alternating between the two processes pro-
vides the HMC method with exploration across the target distribution and ergodicity. (Note
that an important consequence of the momentum reversal and resampling, however, is that
the resulting HMC dynamics are reversible. In contrast, alternating between our proposed
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Figure 5.8: Plots as in Fig. 5.7, but for an even more challenging multimodal case where the

modes are very concentrated and well separated.

continuous and jump processes can still lead to irreversible dynamics.) Another straightfor-
ward way of combining our continuous and jump processes is to use the continuous dynam-
ic sampler for some variables (e.g., real-valued variables) and the jump process sampler for
others (e.g., discrete-valued variables).

In addition to the aforementioned means of combining continuous dynamics with jump
processes for sampling, in this section we discuss how to use the continuous dynamics as a
proposal distribution in our irreversible jump process accept-reject scheme of Algorithm 3,
even when the continuous dynamics are not reversible. Previously, similar methods, such as
the Metropolis-adjusted Langevin diffusion (MALA) and Riemannian Metropolis-adjusted
Langevin diffusion (RMALA) [150, 184, 57], have only been proposed for reversible pro-
cesses. These methods use one step integration of reversible SDEs to propose samples
within a MH algorithm that accepts or rejects the proposal. In this section, we extend these
methods to include proposals from any SDE in the form of (5.6) (any SDE with a mild
integrability condition), without the requirement of reversibility.

In Sec. 5.4.1, we introduced the MALA algorithm. In Sec. 5.4.2, we discussed how
one can use the continuous Markov process for proposal distributions in the irreversible
jump sampler and get acceptance rate equal to 1 when the continuous Markov process is
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simulated exactly. In Sec. 5.4.3, we use a one step simulation of the continuous Markov
process for the proposal distribution of the irreversible jump sampler to construct a practical
and easy to use algorithm. In Section 5.6, we show that this combination can generate better
results in terms of rapid and efficient exploration of a distribution.

5.4.1 Metropolis Adjusted Langevin Algorithm (MALA)

Since MALA algorithm is a special case of the RMALA algorithm (with D matrix taken
to be constant), we will simply introduce RMALA in this section. The RMALA algorith-
m takes z = θ and constructs the proposal distributions q(z(∗)|z(t)) in the MH step (in
Algorithm 1) according to the discretized Riemannian Langevin Dynamics:

z(∗)← z(t)−∆t · [G(z(t))−1∇U(z(t)) + ΓD(z(t))]+η(t), (5.20)

η(t) ∼ N (0, 2∆tG(z(t))−1).

Therefore, the transition probability q(z(∗)|z(t)) in the MH Algorithm 1 is:

q(z(∗)|z(t)) ∼ N
{
z(∗)

∣∣µ(z(t),∆t), 2∆tG(z(t))−1
}
, (5.21)

where
µ(z(t),∆t) = z(t)−∆t · [G(z(t))−1∇U(z(t)) + ΓD(z(t))].

This algorithm provides a sampling procedure to exactly simulate the reversible continu-
ous Markov dynamics. And in doing so, gradient information is used to help the sampler
efficiently explore the target distribution.

But just as the HMC algorithm, use of the MH procedure inevitably restricts the sampler
to be reversible. It can be observed here that only reversible Langevin dynamics are used
in the update step of MALA algorithm Eq. (5.20). Although irreversible dynamics can be
used in Eq. (5.20), as will be discussed in the Sec. 5.4.2, the acceptance rate would decrease
with the increase of irreversibility.

5.4.2 General SDE Proposals under Small Step Size Limit

Our ultimate goal is to use the stochastic dynamics of (5.6) to propose samples in the
framework of Algorithm 3. In practice, we need to simulate from the discretized SDE of
(5.7). Before analyzing this case, we first examine what would happen if we could exactly
simulate the SDE of (5.6).
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Here, we take f(z|y,yp) in (5.19) to be a Markov transition kernel P
(
z|y; dt

)
defined

via an infinitesimal step dt in the SDE:

dz =
[
−
(
D(z) + Q(z)

)
∇H(z) + Γ(z)

]
dt+

√
2D(z)dW(t), (5.22)

where Γi(z) =
∑

j

∂

∂zj
(Dij(z) + Qij(z)).

For the reverse proposal g(z|y,yp) in (5.19), we use the adjoint process P †
(
z|y; dt

)
,

inverting the irreversible dynamics via Q(z)→ −Q(z) [105]:

dz =
[
−
(
D(z)−Q(z)

)
∇H(z) + Γ̃(z)

]
dt+

√
2D(z)dW(t), (5.23)

where Γ̃i(z) =
∑

j

∂

∂zj
(Dij(z)−Qij(z)).

Theorem 2 For the Markov processes P (z(T )|z(t); (T − t)) and P † (z(T )|z(t); (T − t))
defined by the SDEs of (5.22) and (5.23) through Itô integral, the following equality holds:

P (z(T )|z(t); (T − t))
P † (z(t)|z(T ); (T − t))

=
π (z(T ))

π (z(t))
. (5.24)

Proof 8 We first prove that for the infinitesimal generators, the backward probability tran-
sition kernel following the adjoint process and the forward probability transition kernel are
related as:

π(y)P
(
z, t+ dt|y, t

)
= π(z)P †

(
y, t+ dt|z, t

)
.

Taking path integrals with respect to the infinitesimal generators leads to the conclusion.
As is standard, we use two arbitrary smooth test functions ψ(y) and φ(z). Then∫ ∫

dydz ψ(y)φ(z)
P
(
z, t+ dt|y, t

)
π(z)

=

∫ ∫
dydz ψ(y)

φ(z)

π(z)

(
P
(
z, t|y, t

)
+
∂P
(
z, t|y, t

)
∂t

dt

)

=

∫ ∫
dydz ψ(y)

φ(z)

π(z)

(
P
(
z, t|y, t

)
+ Lz

[
P
(
z, t|y, t

)
π(z)

]
dt

)
,

whereLz[ϕ(z)] = ∇T ·
(

[D(z) + Q(z)] [∇ϕ(z)π(z)]
)

leads to the Fokker-Planck equation
of the SDE. It can be checked using (2.45) and (2.46) thatL†z[ϕ(z)] = LSz [ϕ(z)]−LAz [ϕ(z)].
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For P †
(
y, t+ dt|z, t

)
,∫ ∫

dydz ψ(y)φ(z)
P †
(
y, t+ dt|z, t

)
π(y)

=

∫ ∫
dydz

ψ(y)

π(y)
φ(z)

(
P †
(
y, t|z, t

)
+ L†y

[
P †
(
y, t|z, t

)
π(y)

]
dt

)
.

Noting that P
(
z, t|y, t

)
and P †

(
y, t|z, t

)
equal to δ(z− y), the zeroth order terms:∫ ∫

dydz ψ(y)φ(z)
P
(
z, t|y, t

)
π(z)

=

∫ ∫
dydz ψ(y)φ(z)

P †
(
y, t|z, t

)
π(y)

.

Then for the first order terms,∫ ∫
dydz ψ(y)

φ(z)

π(z)
Lz

[
P
(
z, t|y, t

)
π(z)

]

=

∫ ∫
dydz ψ(y) L†z

[
φ(z)

π(z)

]
P
(
z, t|y, t

)
π(z)

=

∫
dz

ψ(z)

π(z)
L†z
[
φ(z)

π(z)

]
=

∫
dz Lz

[
ψ(z)

π(z)

]
φ(z)

π(z)

=

∫ ∫
dydz Ly

[
ψ(y)

π(y)

]
φ(z)

P †
(
y, t|z, t

)
π(y)

=

∫ ∫
dydz

ψ(y)

π(y)
φ(z) L†y

[
P †
(
y, t|z, t

)
π(y)

]
.

Hence, ∫ ∫
dydz ψ(y)φ(z)

P
(
z, t+ dt|y, t

)
π(z)

=

∫ ∫
dydz ψ(y)

φ(z)

π(z)

(
P
(
z, t|y, t

)
+ Lz

[
P
(
z, t|y, t

)
π(z)

]
dt

)

=

∫ ∫
dydz

ψ(y)

π(y)
φ(z)

(
P †
(
y, t|z, t

)
+ L†y

[
P †
(
y, t|z, t

)
π(y)

]
dt

)

=

∫ ∫
dydz ψ(y)φ(z)

P †
(
y, t+ dt|z, t

)
π(y)

.
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Therefore, to the first order,

π(y)P
(
z, t+ dt|y, t

)
= π(z)P †

(
y, t+ dt|z, t

)
.

Using the Markov properties,

P (zN , tN |z0, t0) =

∫
· · ·
∫ N−1∏

i=1

dzi
N−1∏
i=0

P (zi+1, ti+1|zi, ti);

and

P †(z0, tN |zN , t0) =

∫
· · ·
∫ N−1∏

i=1

dzi
N−1∏
i=0

P †(zi, ti+1|zi+1, ti)

=

∫
· · ·
∫ N−1∏

i=1

dzi
N−1∏
i=0

π(zi)

π(zi+1)
P (zi+1, ti+1|zi, ti)

=

∫
· · ·
∫ N−1∏

i=1

dzi
N−1∏
i=0

π(zi)

π(zi+1)
P (zi+1, ti+1|zi, ti)

=
π(z0)

π(zN)
P (zN , tN |z0, t0).

Taking the time interval between ti and ti+1 to be infinitesimal, we obtain that

P (z(T ), T |z(t), t)

P †(z(t), T |z(T ), t)
=
π(z(T ))

π(z(t))
.

Analysis on the semigroups etL and etL
†

generated by L and L† can also lead to this con-
clusion.

Using Theorem 2, we have

α (z(t), z(∗)) = min

{
1,
π (z(∗))P † (z(t)|z(∗))
π (z(t))P (z(∗)|z(t))

}
= 1. (5.25)

Even though in Section 5.2 we saw that SDEs of the form in (5.6) have π(z) as the invariant
distribution, it is not immediately obvious that using this SDE as a proposal in Algorithm 3
would lead to an acceptance rate of 1. In fact, if we simply use the forward (or backward)
transition kernel P (z|y; dt) in the MH algorithm, then the acceptance rate:

αMH (z(t), z(∗)) = min

{
1,
π (z(∗))P (z(t)|z(∗))
π (z(t))P (z(∗)|z(t))

}
6= 1.
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And the more irreversibility is introduced, the less the acceptance rate αMH will be in the
MH algorithm. This gap of αMH to 1 has been first discovered in statistical mechanics
literatures and related to the “house keeping heat” by Crooks and Hatano and Sasa [33, 64,
105] (See Sec. 3.2.4 for a detailed discussion).

Eq. (5.25) also gives us insight into the fact that using more accurate numerical integra-
tors could lead to higher acceptance rates. In Section 5.4.3, we analyze the accept-reject
scheme for the simple first-order integration of (5.7) with finite step size ∆t.

5.4.3 Irreversible MALA via Irreversible Jump Correction

Since in practice we rely on finite step sizes ∆t > 0, there will be numerical error and
P (z(∗)|z(t); ∆t)

P † (z(t)|z(∗); ∆t)
can differ from

π (z(∗))
π (z(t))

. We now propose an irreversible generalization

of the MALA algorithm to correct for these errors. We make use of Algorithm 3 and take a
general SDE and its adjoint process defined in Section 5.4.2 to propose samples using a one-
step numerical integration (as in MALA). Because we have the local gradient information
in the SDEs to guide us, the direction of the exploration is determined. So, we simply use a
1-dimensional discrete auxiliary variable yp, and thus the use of Algorithm 3 instead of the
more general Algorithm 4. We call the resulting algorithm the irreversible MALA method.

Assuming a one-step numerical integration uses a ∆t period of time, then the discretiza-
tion of the SDE of (5.22) leads to

P (z|y; ∆t) ∼ N
{
z|µ(y,∆t), 2∆t ·D(y)

}
, (5.26)

where

µ(y,∆t) = y+
[
−
(
D(y)+Q(y)

)
∇H(y)+Γ(y)

]
∆t,Γi(z) =

∑
j

∂

∂zj
(Dij(z) + Qij(z)) .

Importantly, this allows us to compute f (z(∗)|z(t)) = P (z(∗)|z(t); ∆t) in Algorithm 3.
The corresponding calculation for the adjoint process with the SDE in (5.23) is:

P †(z|y; ∆t) ∼ N
{
z|µ†(y,∆t), 2∆t ·D(y)

}
, (5.27)

where

µ†(y,∆t) = y+
[
−
(
D(y)−Q(y)

)
∇H(y)+Γ̃(y)

]
∆t, Γ̃i(z) =

∑
j

∂

∂zj
(Dij(z)−Qij(z)) .

This allows us to compute g (z(∗)|z(t)) = P †(z(∗)|z(t); ∆t). The resulting irreversible
MALA algorithm is summarized in Algorithm 5.
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Algorithm 5: Irreversible MALA
randomly pick zp from {1,−1} with equal probability

for t = 0, 1, 2 · · ·Niter do
optionally, periodically resample auxiliary variable zp ∼ U{1,−1}

sample u ∼ U[0,1]

if zp > 0 then
sample ηt ∼ N (0, 2εtD(zt))

z(∗)← zt − εt
[(
D(zt) + Q(zt)

)
∇H(zt) + Γ(zt)

]
+ ηt

α (z(t), z(∗)) = min

{
1,
π (z(∗))P †(z(t)|z(∗); ∆t)

π (z(t))P (z(∗)|z(t); ∆t)

}
end

else
sample ηt ∼ N (0, 2εtD(zt))

z(∗)← zt − εt
[(
D(zt)−Q(zt)

)
∇H(zt) + Γ̃(zt)

]
+ ηt

α (z(t), z(∗)) = min

{
1,
π (z(∗))P (z(t)|z(∗); ∆t)

π (z(t))P †(z(∗)|z(t); ∆t)

}
end

if u < α (z(t), z(∗)), z(t+ 1) = z(∗); zp(t+ 1) = zp(t)

else z(t+ 1) = z(t); zp(t+ 1) = −zp(t)
end

We know from Section 5.4.2 that in the small ∆t limit,

α (z(t), z(∗)) = min

{
1,
P † (z(t)|z(∗))
P (z(∗)|z(t))

· π (z(∗))
π (z(t))

}
→ 1. (5.28)

From this result, we see that there seems to be a step-size/acceptance-rate tradeoff. As
mentioned in Section 5.4.2, a higher-order numerical scheme could potentially increase the
acceptance rate with the same step size [26, 20, 94]. We leave this as a direction for future
research.
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5.5 Related Work

There have been previous efforts to construct irreversible Markov processes for sampling.
One example is using continuous dynamics to achieve this goal, which has been studied
extensively. One can make use of Hamiltonian or generalized Hamiltonian dynamics to
introduce irreversibility into the sampling procedure [70, 71, 145, 39, 119]. There have
been other samplers that utilize irreversible continuous dynamics such as underdamped
Langevin [68, 28] and Nosé-Hoover [37, 161] dynamics, although irreversibility was not
the emphasis in these works. As described in Section 5.2, any dynamic process that has a
nonzero Q matrix can be used to devise an irreversible sampler within our framework. As
mentioned in Sec. 6.1.1, the problem is that simulating the continuous Markov processes
using the discretized system typically leads to the introduction of bias due to discretization
error. And if MH procedure is introduced, the whole process becomes reversible again.

We have also discussed using jump processes for sampling tasks. However, only recent-
ly have researchers constructed irreversible jump processes that form valid sampling pro-
cedures. In the non-reversible MH algorithm [15], a vorticity function (or matrix) is added
to the MH procedure. Hence, the difficulty of construction is translated to defining a valid
vorticity function, similar to the difficulty of defining the antisymmetric kernel A(y, z).
For the multivariate Gaussian distribution, the author discretized an irreversible Ornstein-
Uhlenbeck process to obtain a suitable vorticity function. The lifting method [172, 176]
makes a replica of the original state space (Rd × {−1, 1}) to facilitate irreversibility in the
sampling procedure. A skew detailed balance condition is imposed to ensure a valid anti-
symmetric kernel A(y, z) in the expanded state space. The authors showed an example of
applying the method to spin models. For both the non-reversible MH and lifting methods,
it has not been clear how to come up with a practical, easy-to-construct algorithm to handle
a broad set of target distributions. Our irreversible jump sampler can be seen as a combi-
nation of both ideas which generalizes to arbitrary target distributions. The ideas of lifting
the state space (to Rd × Rdp) and using an irreversible accept-reject procedure similar to
the non-reversible MH algorithm are incorporated into one simple procedure.

Recently, the combined approach of using both continuous dynamics and jump process-
es has been proposed for constructing irreversible samplers. The bouncy particle [21] and
Zig-Zag [17, 16] samplers use deterministic dynamics (irreversible in nature) combined
with a Poisson process to create valid MCMC procedures. These two methods alternate
between continuous dynamics and a Poisson jump process with an inhomogeneous rate (or
intensity) to ensure the invariance of the target distribution. Our irreversible MALA algo-
rithm avoids the difficulty of sampling from a Poisson process. Additionally, we end up



107

50
St

ep
s

10
00

St
ep

s

MH Irreversible Jump Irreversible MALA

Figure 5.9: Top row: Trajectory of first 50 steps of (left) MH algorithm using Gaussian random

walk proposals, (middle) irreversible jump algorithm with gamma proposals and (right) irreversible

MALA algorithm. Bottom row: Similarly for the first 1000 steps of the algorithms.

with an algorithm that is a simple modification of vanilla MH, making it straightforward to
use and plug in to existing algorithmic frameworks.

5.6 Experiments

In this section, we explore the irreversible MALA algorithm and compare it against the
MH, irreversible jump, MALA, and HMC.

5.6.1 Visual Comparison of Samplers

We first perform a qualitative comparison between the MH algorithm, our irreversible jump
sampler (with gamma proposals), and the irreversible MALA algorithm to provide insights
into their differences. It is demonstrated in Fig. 5.9 that the standard MH sampler jumps
around randomly, but does so within a local region of the previous sample and irrespec-
tive of previous (directions of) jumps, leading to slow exploration of the distribution. In
contrast, our irreversible counterpart (using gamma proposals) more rapidly traverses the
distribution by following the direction of the previous jump, until being rejected. Finally,
the irreversible MALA algorithm provides an even smoother trajectory by using continuous
dynamics in place of independent gamma proposals.
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Having visually examined the differences between the samplers to gain intuition, in
what follows we provide a more quantitative analysis of convergence speed in the case of a
correlated synthetic distribution. We then compare different methods in a Bayesian logistic
regression model and a stochastic volatility model.

5.6.2 Synthetic Example

We also test the correctness and attributes of our algorithm on a highly correlated (moon-
shaped) target distribution, where π(z1, z2) = z4

1/10 + (4(z2 + 1.2) − z2
1)2/2. In terms of

number of iterations, the irreversible jump sampler with gamma proposals decorrelates and
converges to the posterior distribution faster. However, in terms of run time, irreversible
jump sampler does not perform as well as random walk MH algorithm, as explored in
Fig. 5.11. The reason is that the correlated distribution has complex geometry. Faster
exploration in random directions, as provided by our irreversible sampler with independent
proposals, only marginally increases the mixing effect in each step relative to the reversible
independent proposals of MH. Since the calculation of the distribution is not demanding
in this case, the small overhead of the irreversible sampler (keeping track of the number
of rejections and resample the direction of exploration after multiple rejections) actually
makes a difference and thus results in our sampler with gamma proposals providing slightly
worse performance in terms of runtime.

To improve the performance of our irreversible sampler further in this correlated tar-
get case, it would be appealing to take the geometric information about the level sets—
including the higher mass regions—into account. Indeed, we are able to do this by re-
placing the independent gamma proposals with proposals from our continuous dynamics
sampler, as described in Section 5.4. To demonstrate the effect of irreversibility, we choose

D(z) =

 2 0

0 2

 and Q(z) =

 0 −2

2 0

 in Eqs. (5.22), (5.23), (5.26), and (5.27).

In this case, our irreversible MALA algorithm (Algorithm 5) significantly outperforms the
Gaussian random walk MH, as well as HMC [113] and the standard reversible MALA algo-
rithm [150]. Because the target distribution has complex geometry, the continuous dynam-
ics can provide guidance on locating the higher mass regions and exploring the contours
rapidly with the gradient information. HMC and MALA algorithms exploit this effect, but
we additionally see gains from the irreversibility of the sampler.

This experiment demonstrates the gains that are possible by combining our continuous
dynamics and jump process frameworks, beyond what either can provide individually.
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Figure 5.10: Top row: Correlated distribution with complex geometry in 2D, π(z1, z2) = z4
1/10 +

(4(z2 + 1.2)− z2
1)2/2 (left) and ACF vs. lag in run time of Gamma Irreversible algorithm against

Gauss RW MH (right). Bottom row: T-V distance vs. log run time. Comparisons are made between

Gauss RW MH and Gamma Irreversible (left), and Gauss RW MH, Irreversible MALA, HMC, and

MALA (right).

5.6.3 Bayesian Logistic Regression

In this section, we demonstrate results from sampling a Bayesian logistic regression model.
Similar to the setting in [57], we consider anN×D design matrix X comprisingN samples
each withD covariates and a binary response variable t ∈ {0, 1}N . If we denote the logistic
link function by s(·), a Bayesian logistic regression model of the binary response [55, 99]
is obtained by the introduction of regression coefficients β ∈ RD with an appropriate prior,
which for illustration is given as β ∼ N (0, αI) where α is given.

We make use of three data sets available at the STATLOG project1. The first two are

1Link to the project can be found at: https://archive.ics.uci.edu/ml/machine-learning-databases/statlog/
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Data Set \Methods MH Irreversible Jump MALA Irreversible MALA HMC

Australian Credit 4.30 10.51 9.05 15.95 10.96

German Credit 2.82 2.88 3.67 4.47 3.73

Heart 22.92 24.14 29.26 41.23 30.83

Table 5.2: Comparison of ESS/sec of the samplers.

datasets describing the connections between credit card approval and various attributes of
the applicants in Australian and German. The third dataset is about the connection between
the absence or presence of heart disease and various patient information.

Performance of the samplers is measured by the per second effective sample size (ES-
S/runtime), where ESS [99, 149, 8, 111] is calculated through number of steps N divided

by the integrated autocorrelation time τint: ESS =
N

τint
. In [57], τint is estimated through

the initial positive sequence estimator [56]: τint = 1 + 2
∑

k γ(k), where γ(k) is the k-
lagged autocorrelations and sum is over the K monotone sample autocorrelations. The
initial positive sequence estimator possesses better consistency but assumes the Markov
chain to be reversible. We are concerned that this may underestimate the integrated auto-
correlation time for irreversible chains. Hence we use the original window estimator [56]
for the integrated autocorrelation time τint, so that:

ESS =
N

τint
=

N

1 + 2
∑M

k=1

(
1− k

M

)
γ(k)

, (5.29)

where M is a large number (taken to be 3000 in the experiments).

Optimal hyperparameters are found for the methods from a grid search. For MH, we
corroborate that the optimal hyperparameters are indeed obtained by tuning the acceptance
rate between 20% and 40% at stationary. For HMC, we found that using 10 leap-frog
steps to generate a sample is most efficient in terms of ESS/runtime (as opposed to the
commonly used 50 to 100 steps). For MALA, acceptance rate between 40% and 60%

generates best ESS/runtime. For the irreversible MALA algorithm, we simply take D = I,

and Q(z) =

 0 −Id×d
Id×d 0

 for the first d = bD/2c variables.
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5.7 Scaling Up the Sampling Algorithms for Large Datasets

We wish to scale up the previously discussed sampling algorithms to cases where our target
distribution is a posterior distribution in a Bayesian model, and we are faced with a huge
number of observations S. In this case, the likelihood, or its gradient, can be computation-
ally prohibitive to compute. In the cases of i.i.d. data, we write our target distribution as
π(θ) = p(S|θ) p(θ) =

∏
s∈S p(s|θ) p(θ). For the samplers designed from continuous dy-

namics (Section 5.2), we can use stochastic gradients, in place of the full data gradient as
elaborated in [102] and outlined below. For samplers using jump processes (Section 2.4),
we discuss a generalization of the subsampling-within-MH ideas in [82, 11, 12].

Stochastic Gradient Samplers For samplers using continuous dynamics (5.6), the com-
putationally intensive component in the update rule of (5.7) is the computation of∇H(θ) =

−∇ log π(θ) = −
∑

s∈S ∇ log p(s|θ)−∇ log p(θ). One idea for avoiding this per iteration
cost is to use stochastic gradients instead [148]. Here, a noisy gradient based on a data
subsample or minibatch, is used as an unbiased estimator of the full data gradient. More
formally, we examine independently sampled minibatches S̃ ⊂ S . The corresponding
log-posterior for these data is

H̃(θ) = −|S|
|S̃|

∑
s∈S̃

log p(s|θ)− log p(θ); S̃ ⊂ S. (5.30)

The specific form of (6.22) implies that H̃(θ) is an unbiased estimator ofH(θ), thus∇H̃(θ)

is an unbiased estimator of ∇H(θ). The key question in many of the existing stochastic
gradient MCMC algorithms is whether the noise injected by the stochastic gradient∇H̃(θ)

adversely affects the stationary distribution of the modified dynamics. One way to analyze
the impact of the stochastic gradient is to assume the central limit theorem holds: ∇H̃(θ) =

∇H(θ) + N (0,V(θ)). Simply plugging in ∇H̃(θ) in place of ∇H(θ) in (5.7) results in
dynamics with an additional noise term (D(θt) + Q(θt)

)
[N (0,V(θt))]

T . In our earlier
work [102], we studied the influence of this noise and showed that one may counteract it
by assuming an estimate B̂t of the noise variance and following:

zt+1 ← zt − εt
[(
D(zt) + Q(zt)

)
∇H̃(zt) + Γ(zt)

]
+N (0, εt(2D(zt)− εtB̂t)). (5.31)

In the limit of εt going to zero, the stationary distribution is preserved. For finite εt, a
bias exists. The same bias-speed tradeoff was used in past stochastic gradient sampling
methods [182, 28, 37, 161]. In [102], we also devise methods for defining new samplers
using existing D and Q matrices as building blocks. We will discuss this topic in more
depth in Sec. 6.1.
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Subsampling of Irreversible Sampler from Jump Processes For the irreversible jump
sampler (Algorithm 4), we can directly generalize the subsampling idea for the MH al-
gorithms [82] and its adaptive and proxy method variations [11, 12]. In Algorithm 4, the
computational bottleneck is at the step where we decide to accept or reject the propos-
al from f̃ (θ(∗), θp(∗)|θ(t), θp(t)), since we need to calculate π(θ(∗))/π(θ(t)), requiring
evaluation of the entire likelihood.

The accept-reject step is then implemented by sampling a uniform random variable u ∼
U[0,1] and accepting the proposal if and only if u < α (θ(t), θp(t), θ(∗), θp(∗)). Following
[82, 11], we can rewrite this condition as:

ΛS(θ(t), θ(∗)) > ΘS(u, θ(t), θ(∗), θp(t), θp(∗)), (5.32)

where

ΛS(θ(t), θ(∗)) =
1

|S|
∑
s∈S

log

[
p(s|θ(∗))
p(s|θ(t))

]
,

ΘS(u, θ(t), θ(∗), θp(t), θp(∗)) =
1

|S|
log

[
u
π (θp(t)) f̃ (θ(∗), θp(∗)|θ(t), θp(t))
π (θp(∗)) g̃ (θ(t), θp(t)|θ(∗), θp(∗))

]
.

For the computationally intractable ΛS(θ(t), θ(∗)), we can use a subset of data to approxi-
mate it via:

Λ∗S̃(θ(t), θ(∗)) =
1

|S̃|

∑
s∈S̃

log

[
p(s|θ(∗))
p(s|θ(t))

]
≈ ΛS(θ(t), θ(∗)); S̃ ⊂ S.

Importantly, |ΛS(θ(t), θ(∗))−Λ∗S̃(θ(t), θ(∗))| can be bounded probabilistically [11]. Hence,
a speed-bias tradeoff can be quantified through the probabilistic bounds when we use
Λ∗S̃(θ(t), θ(∗)) instead of ΛS(θ(t), θ(∗)). In some cases, more data can be used to tight-
en or approximate the bound on |ΛS(θ(t), θ(∗))−Λ∗S̃(θ(t), θ(∗))|, so that inequality (5.32)
can always be verified. Then the above procedure still yields an exact sampler. In many
cases, however, so much data has to be used that the computation gains of subsampling are
negligible. As such, we typically view this scheme as one with quantifiable bias. See [12]
for further discussions and developments.

Overall, due to the similarities between our irreversible jump sampler and the MH algo-
rithm, many methods developed specifically for MH can be applied in our context, which
is quite appealing. For example, as discussed above, we have directly applied the sub-
sampling approach designed for scaling MH to our approach. We can also combine our
irreversible jump sampler with the RAM algorithm to further improve exploration in the
case of multimodal targets.
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5.8 Conclusion

In this chapter, we proposed frameworks for MCMC algorithms with both continuous dy-
namics and jump processes. We analyzed each of these components separately, and then
showed how to combine them. For each component, we decomposed the dynamics into
reversible and irreversible processes, and with a parameterization that was easy to specify
while ensuring the correct stationary distribution.

First, we found that any continuous Markov process (with a mild integrability condi-
tion) can always be parameterized by its stationary distribution (i.e. the target distribution)
π(z), a positive semi-definite diffusion matrix D(z), and a skew-symmetric curl matrix
Q(z). We analyzed the properties of the process in terms of D(z) and Q(z). In the con-
text of Bayesian analysis with large datasets, we further discussed scalable methods using
stochastic gradients.

Second, we turned to jump processes and considered a parameterization in terms of
a symmetric kernel function S(y, z) and an anti-symmetric kernel function A(y, z). We
showed that when

∫
y
A(y, z)dy = 0, the jump process has the target distribution π(z) as

its stationary distribution. When A(y, z) 6= 0, the jump process is irreversible. Facilitated
by the framework, we constructed a new class of irreversible sampling algorithms that can
be implemented similarly to the MH algorithm while directly satisfying

∫
y
A(y, z)dy = 0.

Our experiments demonstrate that our proposed irreversible jump sampler is more efficient
than the traditional reversible ones across a broad range of target distributions. We further
discussed how a scalable variant is possible using the same subsampling idea as proposed
for MH samplers.

Finally, we developed a technique to combine the continuous and jump processes by us-
ing the continuous dynamics as a proposal in the irreversible jump sampler. The directional
effect of the continuous dynamics can facilitate better exploration of the target distribution
than a simple proposal distribution. Likewise, one can also think of this framework as en-
abling a large step size to be taken in the continuous dynamic simulations while correcting
for discretization error. We demonstrated that such a sampler can outperform samplers with
independent proposals, samplers with continuous dynamics alone, or reversible versions of
the combined approach (i.e., MALA).

The proposed framework requires a few critical choices to be made. For the continuous
dynamics, we must specify D(z) and Q(z). For the jump processes, the specific algorithm
we proposed requires selecting proposal distributions f̃(z, zp|y,yp) and g̃(z, zp|y,yp), and
specifying the domain of the auxiliary variables yp. Our experiments have simply demon-
strated that for certain choices of these matrices and parameters, we can achieve state-of-
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the-art performance in a variety of sampling tasks. An important direction for future work
is to devise methods to analyze and explore the choices of these algorithmic parameter-
s. For example, in higher dimensions, tuning the hyperparameters so that the irreversible
jump sampler explores all dimensions efficiently is an interesting topic for further discus-
sion and quantification. Also, in the irreversible MALA algorithm, we only used constant
D(z) and Q(z), but using adaptive D(z) and Q(z) could potentially result in more efficient
sampling algorithms [57, 102]. Another area of research is to examine using a higher order
integration scheme in our irreversible MALA algorithm.

5.9 Future Directions

In this chapter, we proposed a reparametrization of the Markov processes that encoded
the space of all correct samplers into matrices and transition kernels with straightforward
conditions. Naturally, the next question is: for a given target distribution, is there an optimal
choice of such parameters leading to the greatest mixing rate? This question is even harder
than proposing a recipe that grants the correct stationary distribution, since the latter only
concerns the eigenfunction corresponding to the greatest eigenvalue, the former asks about
the gap between the first and the second eigenvalue. Calculating the spectral gap for a given
Markov process can already be a very hard problem.

On another note, this chapter is mainly focused on the choice of Markov dynamics for
MCMC algorithms. A very important step from Markov dynamics to practical sampling
algorithms is the simulation of such dynamics. For example, different numerical schemes
for the same continuous Markov dynamics can lead to vastly different performance in the
resulting algorithm (from not even stable to accurate and efficient). This issue in the numer-
ical analysis realm poses another area of exploration. In particular, traditional numerical
analysis studies focus on constructing discretization schemes with more stability and ac-
curacy. MCMC algorithms, on the other hand, is more concerned with the mixing rate
than accuracy, since an accept-reject step can be applied. How to incorporate tools from
numerical methods to MCMC algorithm is a novel and interesting question.
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Figure 5.11: Comparison of the autocorrelation functions between different methods.
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Chapter 6

SCALABLE BAYESIAN INFERENCE THROUGH STOCHASTIC
GRADIENT MCMC

Many recent Markov chain Monte Carlo (MCMC) samplers leverage continuous dy-
namics to define a transition kernel that efficiently explores a target distribution. In tandem,
a focus has been on devising scalable variants that subsample the data and use stochastic
gradients in place of full-data gradients in the dynamic simulations. However, such stochas-
tic gradient MCMC samplers have lagged behind their full-data counterparts in terms of
the complexity of dynamics considered since proving convergence in the presence of the
stochastic gradient noise is non-trivial. Even with simple dynamics, significant physical
intuition is often required to modify the dynamical system to account for the stochastic
gradient noise. In Sec. 6.1, we make use of results from Sec. 2.3 and 5.2 to provide a
complete recipe for constructing stochastic gradient MCMC samplers based on continu-
ous Markov processes specified via two matrices. Any continuous Markov process that
provides samples from the target distribution can be written in our framework. We show
how previous continuous-dynamic samplers can be trivially “reinvented” in our framework,
avoiding the complicated sampler-specific proofs. We likewise use our recipe to straight-
forwardly propose a new state-adaptive sampler: stochastic gradient Riemann Hamiltonian
Monte Carlo (SGRHMC). Our experiments on simulated data and a streaming Wikipedia
analysis demonstrate that the proposed SGRHMC sampler inherits the benefits of Riemann
HMC, with the scalability of stochastic gradient methods.

With stochastic gradient MCMC (SG-MCMC) algorithms successfully applied in Bayesian
inference with large datasets with i.i.d data in Sec. 6.1, we further develop an SG-MCMC
algorithm to learn the parameters of hidden Markov models (HMMs) for time-dependent
data in Sec. 6.2. The challenge in applying SG-MCMC to dependent data is the need to
break the dependencies when considering minibatches of observations. We propose an
algorithm that harnesses the inherent memory decay of the process. We demonstrate the
effectiveness of our algorithm on synthetic experiments and on an ion channel recording
dataset. In terms of runtime, our algorithm significantly outperforms the corresponding
batch MCMC algorithm.



117

6.1 A Complete Recipe for Stochastic Gradient MCMC

Recently, stochastic gradient variants of the continuous-dynamic-based samplers discussed
in Sec. 5.2 have proven quite useful in scaling the methods to large datasets [182, 1, 28, 2,
37]. At each iteration, these samplers use data subsamples—or minibatches—rather than
the full dataset. Stochastic gradient Langevin dynamics (SGLD) [182] innovated in this
area by connecting stochastic optimization with a first-order Langevin dynamic MCMC
technique, showing that adding the “right amount” of noise to stochastic gradient ascent
iterates leads to samples from the target posterior as the step size is annealed. Stochastic
gradient Hamiltonian Monte Carlo (SGHMC) [28] builds on this idea, but importantly
incorporates the efficient exploration provided by the HMC momentum term. A key insight
in that paper was that the naı̈ve stochastic gradient variant of HMC actually leads to an
incorrect stationary distribution (also see [14]); instead a modification to the dynamics
underlying HMC is needed to account for the stochastic gradient noise. Variants of both
SGLD and SGHMC with further modifications to improve efficiency have also recently
been proposed [1, 121, 37].

In the plethora of past MCMC methods that explicitly leverage continuous dynamics—
including HMC, Riemann manifold HMC, and the stochastic gradient methods—the focus
has been on showing that the intricate dynamics leave the target posterior distribution in-
variant. Innovating in this arena requires constructing novel dynamics and simultaneously
ensuring that the target distribution is the stationary distribution. This can be quite chal-
lenging, and often requires significant physical and geometrical intuition [28, 121, 37]. A
natural question, then, is whether there exists a general recipe for devising such continuous-
dynamic MCMC methods that naturally lead to invariance of the target distribution. In this
section, we use results from Sec. 2.3 and 5.2 to answer this question to the affirmative. Fur-
thermore, because any continuous Markov process admits a representation in the form of
Eq. (5.6), we propose a complete recipe for stochastic gradient MCMC. That is, any valid
stochastic gradient MCMC method can be cast within our framework, including SGLD,
SGHMC, their recent variants, and any future developments in this area. Our method pro-
vides a unifying framework of past algorithms, as well as a practical tool for devising new
samplers and testing the correctness of proposed samplers.

The same as in Sec. 5.2, the recipe involves defining a (stochastic) system parameter-
ized by two matrices: a positive semidefinite diffusion matrix, D(z), and a skew-symmetric
curl matrix, Q(z), where z = (θ, r) with θ our model parameters of interest and r a set of
auxiliary variables. The dynamics are then written explicitly in terms of the target station-
ary distribution and these two matrices. By varying the choices of D(z) and Q(z), we



118

explore the space of MCMC methods that maintain the correct invariant distribution.
For any given D(z), Q(z), and target distribution, we provide practical algorithms for

implementing either full-data or minibatch-based variants of the sampler. In Sec. 6.1.2,
we cast many previous continuous-dynamic samplers in our framework, finding their D(z)

and Q(z). We then show how these existing D(z) and Q(z) building blocks can be used
to devise new samplers. In Sec. 6.1.2 we demonstrate our ability to construct new and
relevant samplers by proposing stochastic gradient Riemann Hamiltonian Monte Carlo,
the existence of which was previously only speculated. We demonstrate the utility of this
sampler on synthetic data and in a streaming Wikipedia analysis using latent Dirichlet
allocation [19].

6.1.1 Complete Stochastic Gradient MCMC Framework

We start with the standard MCMC goal of drawing samples from a target distribution,
which we take to be the posterior p(θ|S) of model parameters θ ∈ Rd given an ob-
served dataset S. Throughout, we assume i.i.d. data x ∼ p(x|θ). We write p(θ|S) ∝
exp(−U(θ)), with potential function U(θ) = −

∑
x∈S log p(x|θ) − log p(θ). Algorithms

like HMC [113, 57] further augment the space of interest with auxiliary variables r and
sample from p(z|S) ∝ exp(−H(z)), with Hamiltonian

H(z) = H(θ, r) = U(θ) + g(θ, r), such that
∫

exp(−g(θ, r))dr = constant. (6.1)

Marginalizing the auxiliary variables gives us the desired distribution on θ. In this section,
we generically consider z as the samples we seek to draw; z could represent θ itself, or an
augmented state space in which case we simply discard the auxiliary variables to perform
the desired marginalization.

As in HMC, the idea is to translate the task of sampling from the posterior distribution to
simulating from a continuous dynamical system which is used to define a Markov transition
kernel. That is, over any interval h, the differential equation defines a mapping from the
state at time t to the state at time t+h. One can then discuss the evolution of the distribution
p(z, t) under the dynamics, as characterized by the Fokker-Planck equation for stochastic
dynamics [147] or the Liouville equation for deterministic dynamics [191]. This evolution
can be used to analyze the invariant distribution of the dynamics, ps(z). When considering
deterministic dynamics, as in HMC, a jump process must be added to ensure ergodicity. If
the resulting stationary distribution is equal to the target posterior, then simulating from the
process can be equated with drawing samples from the posterior.
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If the stationary distribution is not the target distribution, a Metropolis-Hastings (MH)
correction can often be applied. Unfortunately, such correction steps require a costly com-
putation on the entire dataset. Even if one can compute the MH correction, if the dynamics
do not nearly lead to the correct stationary distribution, then the rejection rate can be high
even for short simulation periods h. Furthermore, for many stochastic gradient MCM-
C samplers, computing the probability of the reverse path is infeasible, obviating the use
of MH. As such, a focus in the literature is on defining dynamics with the right target
distribution, especially in large-data scenarios where MH corrections are computationally
burdensome or infeasible.

Devising SDEs with a Specified Target Stationary Distribution

Generically, all continuous Markov processes that one might consider for sampling can be
written as a stochastic differential equation (SDE) of the form:

dz = f(z)dt+
√

2D(z)dW(t), (6.2)

where f(z) denotes the deterministic drift and often relates to the gradient of H(z), W(t)

is a d-dimensional Wiener process, and D(z) is a positive semidefinite diffusion matrix.
Clearly, however, not all choices of f(z) and D(z) yield the stationary distribution ps(z) ∝
exp(−H(z)).

When D(z) = 0, as in HMC, the dynamics of Eq. (6.2) become deterministic. Our
exposition focuses on SDEs, but our analysis applies to deterministic dynamics as well.
In this case, our framework—using the Liouville equation in place of Fokker-Planck—
ensures that the deterministic dynamics leave the target distribution invariant. For ergod-
icity, a jump process must be added, which is not considered in our recipe, but tends to be
straightforward (e.g., momentum resampling in HMC).

To devise a recipe for constructing SDEs with the correct stationary distribution, we
make use of the results in Sec. 2.3 and 5.2 and propose writing f(z) directly in terms of the
target distribution:

f(z) = −
[
D(z) + Q(z)

]
∇H(z) + Γ(z), Γi(z) =

d∑
j=1

∂

∂zj

(
Dij(z) + Qij(z)

)
. (6.3)

Here, Q(z) is a skew-symmetric curl matrix representing the deterministic traversing ef-
fects seen in HMC procedures. In contrast, the diffusion matrix D(z) determines the
strength of the Wiener-process-driven diffusion. Matrices D(z) and Q(z) can be adjusted
to attain faster convergence to the posterior distribution.
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Importantly, as discussed in Sec. 2.3 and 5.2, sampling the stochastic dynamics of E-
q. (6.2) (according to Itô integral) with f(z) as in Eq. (6.3) leads to the desired posterior
distribution as the stationary distribution: ps(z) ∝ exp(−H(z)), for any choice of positive
semidefinite D(z) and skew-symmetric Q(z) assuming the process is ergodic. Also, for
any continuous Markov process with the desired stationary distribution, ps(z), there exists
an SDE as in Eq. (6.2) with f(z) as in Eq. (6.3).

A Practical Algorithm

In practice, simulation relies on an ε-discretization of the SDE, leading to a full-data update
rule

zt+1 ← zt − εt
[(
D(zt) + Q(zt)

)
∇H(zt) + Γ(zt)

]
+N (0, 2εtD(zt)). (6.4)

Calculating the gradient of H(z) involves evaluating the gradient of U(θ). For a stochastic
gradient method, the assumption is that U(θ) is too computationally intensive to compute
as it relies on a sum over all data points (see Sec. 6.1.1). Instead, such stochastic gradient
algorithms examine independently sampled data subsets S̃ ⊂ S and the corresponding
potential for these data:

Ũ(θ) = −|S|
|S̃|

∑
x∈S̃

log p(x|θ)− log p(θ); S̃ ⊂ S. (6.5)

The specific form of Eq. (6.22) implies that Ũ(θ) is an unbiased estimator of U(θ). As
such, a gradient computed based on Ũ(θ)—called a stochastic gradient [148]—is a noisy,
but unbiased estimator of the full-data gradient. The key question in many of the existing
stochastic gradient MCMC algorithms is whether the noise injected by the stochastic gra-
dient adversely affects the stationary distribution of the modified dynamics (using ∇Ũ(θ)

in place of ∇U(θ)). One way to analyze the impact of the stochastic gradient is to make
use of the central limit theorem and assume

∇Ũ(θ) = ∇U(θ) +N (0,V(θ)), (6.6)

resulting in a noisy Hamiltonian gradient ∇H̃(z) = ∇H(z) + [N (0,V(θ)),0]T . Simply
plugging in ∇H̃(z) in place of ∇H(z) in Eq. (6.4) results in dynamics with an addition-
al noise term (D(zt) + Q(zt)

)
[N (0,V(θ)),0]T . To counteract this, assume we have an

estimate B̂t of the variance of this additional noise satisfying 2D(zt) − εtB̂t � 0 (i.e.,
positive semidefinite). With small ε, this is always true since the stochastic gradient noise
scales down faster than the added noise. Then, we can attempt to account for the stochastic
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gradient noise by simulating

zt+1 ← zt − εt
[(
D(zt) + Q(zt)

)
∇H̃(zt) + Γ(zt)

]
+N (0, εt(2D(zt)− εtB̂t)). (6.7)

This provides our stochastic gradient—or minibatch— variant of the sampler. In E-
q. (6.24), the noise introduced by the stochastic gradient is multiplied by εt (and the com-
pensation by ε2t ), implying that the discrepancy between these dynamics and those of E-
q. (6.4) approaches zero as εt goes to zero. As such, in this infinitesimal step size limit,
since Eq. (6.4) yields the correct invariant distribution, so does Eq. (6.24). This avoids the
need for a costly or potentially intractable MH correction. However, having to decrease εt
to zero comes at the cost of increasingly small updates. We can also use a finite, small step
size in practice, resulting in a biased (but faster) sampler. A similar bias-speed tradeoff
was used in [82, 11] to construct MH samplers, in addition to being used in SGLD and
SGHMC.

6.1.2 Applying the Theory to Construct Samplers

Casting Previous MCMC Algorithms within the Proposed Framework

We explicitly state how some recently developed MCMC methods fall within the proposed
framework based on specific choices of D(z), Q(z) and H(z) in Eq. (6.2) and (6.3). For
the stochastic gradient methods, we show how our framework can be used to “reinvent”
the samplers by guiding their construction and avoiding potential mistakes or inefficiencies
caused by naı̈ve implementations.

Hamiltonian Monte Carlo (HMC) The key ingredient in HMC [38, 113] is Hamiltonian
dynamics, which simulate the physical motion of an object with position θ, momentum r,
and mass M on an frictionless surface as follows (typically, a leapfrog step is used instead
of the Euler-Maruyama integral shown in Eq. (6.4)): rt+1/2 ← rt − εt∇U(θt)/2θt+1 ← θt + εtM

−1rt

rt+1 ← rt+1/2 − εt∇U(θt)/2.
(6.8)

Eq. (6.8) is a special case of the proposed framework with z = (θ, r), H(θ, r) = U(θ) +

1
2
rTM−1r, Q(θ, r) =

 0 −I

I 0

 and D(θ, r) = 0.
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Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) As discussed in [28], sim-
ply replacing∇U(θ) by the stochastic gradient∇Ũ(θ) in Eq. (6.8) results in the following
updates:

Naive :

 θt+1 ← θt + εtM
−1rt

rt+1 ← rt − εt∇Ũ(θt) ≈ rt − εt∇U(θt) +N (0, ε2tV(θt)),
(6.9)

where the≈ arises from the approximation of Eq. (6.23). Careful study shows that Eq. (6.9)
cannot be rewritten into our proposed framework, which hints that such a naı̈ve stochastic
gradient version of HMC is not correct. Interestingly, the authors of [28] proved that this
naı̈ve version indeed does not have the correct stationary distribution. In our framework,
we see that the noise term N (0, 2εtD(z)) is paired with a D(z)∇H(z) term, hinting that

such a term should be added to Eq. (6.9). Here, D(θ, r) =

 0 0

0 εV(θ)

, which means

we need to add D(z)∇H(z) = εV(θ)∇rH(θ, r) = εV(θ)M−1r. Interestingly, this is the
correction strategy proposed in [28], but through a physical interpretation of the dynamics.
In particular, the term εV(θ)M−1r (or, generically, CM−1r where C � εV(θ)) has an
interpretation as friction and leads to second order Langevin dynamics: θt+1 ← θt + εtM

−1rt

rt+1 ← rt − εt∇Ũ(θt)− εtCM−1rt +N (0, εt(2C− εtB̂t)).
(6.10)

Here, B̂t is an estimate of V(θt). This method now fits into our framework with H(θ, r)

and Q(θ, r) as in HMC, but with D(θ, r) =

 0 0

0 C

. This example shows how our

theory can be used to identify invalid samplers and provide guidance on how to effortlessly
correct the mistakes; this is crucial when physical intuition is not available. Once the
proposed sampler is cast in our framework with a specific D(z) and Q(z), there is no need
for sampler-specific proofs, such as those of [28].

Stochastic Gradient Langevin Dynamics (SGLD) SGLD [182] proposes to use the fol-
lowing first order (no momentum) Langevin dynamics to generate samples

θt+1 ← θt − εtD∇Ũ(θt) +N (0, 2εtD). (6.11)

This algorithm corresponds to taking z = θ with H(θ) = U(θ), D(θ) = D, Q(θ) = 0,
and B̂t = 0. As motivated by Eq. (6.24) of our framework, the variance of the stochastic
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gradient can be subtracted from the sampler injected noise to make the finite stepsize sim-
ulation more accurate. This variant of SGLD leads to the stochastic gradient Fisher scoring
algorithm [1].

Stochastic Gradient Riemannian Langevin Dynamics (SGRLD) SGLD can be gen-
eralized to use an adaptive diffusion matrix D(θ). Specifically, it is interesting to take
D(θ) = G−1(θ), where G(θ) is the Fisher information metric. The sampler dynamics are
given by

θt+1 ← θt − εt[G(θt)
−1∇Ũ(θt) + Γ(θt)] +N (0, 2εtG(θt)

−1). (6.12)

Taking D(θ) = G(θ)−1, Q(θ) = 0, and B̂t = 0, this SGRLD [121] method falls into

our framework with correction term Γi(θ) =
∑
j

∂Dij(θ)

∂θj
. It is interesting to note that in

earlier literature [?], Γi(θ) was taken to be 2 |G(θ)|−1/2
∑
j

∂

∂θj

(
G−1
ij (θ)|G(θ)|1/2

)
. More

recently, it was found that this correction term corresponds to the distribution function with
respect to a non-Lebesgue measure [150]; for the Lebesgue measure, the revised Γi(θ) was
as determined by our framework [150]. Again, we have an example of our theory providing
guidance in devising correct samplers.

Stochastic Gradient Nosé-Hoover Thermostat (SGNHT) Finally, the SGNHT [37]
method incorporates ideas from thermodynamics to further increase adaptivity by augment-
ing the SGHMC system with an additional scalar auxiliary variable, ξ. The algorithm uses
the following dynamics:

θt+1 ← θt + εtrt

rt+1 ← rt − εt∇Ũ(θt)− εtξtrt +N (0, εt(2A− εtB̂t))

ξt+1 ← ξt + εt

(
1

d
rTt rt − 1

)
.

(6.13)

We can take z = (θ, r, ξ),H(θ, r, ξ) = U(θ)+
1

2
rT r+

1

2d
(ξ−A)2, D(θ, r, ξ) =

(
0 0 0

0 A · I 0

0 0 0

)
,

and Q(θ, r, ξ) =

(
0 −I 0

I 0 r/d

0 −rT /d 0

)
to place these dynamics within our framework.

Summary In our framework, SGLD and SGRLD take Q(z) = 0 and instead stress the
design of the diffusion matrix D(z), with SGLD using a constant D(z) and SGRLD an
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adaptive, θ-dependent diffusion matrix to better account for the geometry of the space being
explored. On the other hand, HMC takes D(z) = 0 and focuses on the curl matrix Q(z).
SGHMC combines SGLD with HMC through non-zero D(θ) and Q(θ) matrices. SGNHT
then extends SGHMC by taking Q(z) to be state dependent. The relationships between
these methods are depicted in the Supplement, which likewise contains a discussion of the
tradeoffs between these two matrices. In short, D(z) can guide escaping from local modes
while Q(z) can enable rapid traversing of low-probability regions, especially when state
adaptation is incorporated. We readily see that most of the product space D(z) × Q(z),
defining the space of all possible samplers, has yet to be filled.

A lot of choices of D(z) and Q(z) could potentially result in faster convergence of the
samplers than those previously explored. For example, D(z) determines how much noise is
introduced. Hence, an adaptive diffusion matrix D(z) can facilitate a faster escape from a
local mode if ||D(z)|| is larger in regions of low probability, and can increase accuracy near
the global mode if ||D(z)|| is smaller in regions of high probability. Motivated by the fact
that a majority of the parameter space is covered by low probability mass regions where
less accuracy is often needed, one might want to traverse these regions quickly. As such,
an adaptive curl matrix Q(z) with 2-norm growing with the level set of the distribution
can facilitate a more efficient sampler. We explore an example of this in the gSGRHMC
algorithm of the synthetic experiments (see Sec. 6.1.3).

Stochastic Gradient Riemann Hamiltonian Monte Carlo

In Sec. 6.1.2, we have shown how our framework unifies existing samplers. In this section,
we now use our framework to guide the development of a new sampler. While SGHM-
C [28] inherits the momentum term of HMC, making it easier to traverse the space of
parameters, the underlying geometry of the target distribution is still not utilized. Such in-
formation can usually be represented by the Fisher information metric [?] or local Hessian
information, denoted as G(θ), which can be used to precondition the dynamics. For our
proposed system, we consider H(θ, r) = U(θ) + 1

2
rT r, as in HMC/SGHMC methods, and

modify the D(θ, r) and Q(θ, r) of SGHMC to account for the geometry as follows:

D(θ, r) =

 0 0

0 G(θ)−1

 ; Q(θ, r) =

 0 −G(θ)−1/2

G(θ)−1/2 0

 .

We refer to this algorithm as stochastic gradient Riemann Hamiltonian Monte Carlo (SGRHMC).
Our theory holds for any positive definite G(θ), yielding a generalized SGRHMC (gSGRHMC)
algorithm, which can be helpful when the Fisher information metric is hard to compute.
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Algorithm 6: Generalized Stochastic Gradient Riemann Hamiltonian Monte Carlo
initialize (θ0, r0)

for t = 0, 1, 2 · · · do
optionally, periodically resample momentum r as r(t) ∼ N (0, I)

θt+1 ← θt + εtG(θt)
−1/2rt, Σt ← εt(2G(θt)

−1 − εtB̂t)

rt+1 ← rt − εtG(θt)
−1/2∇θŨ(θt) + εt∇θ(G(θt)

−1/2)− εtG(θt)
−1rt +N

(
0,Σt

)
end

A naı̈ve implementation of a state-dependent SGHMC algorithm might simply (i) pre-
condition the HMC update, (ii) replace ∇U(θ) by ∇Ũ(θ), and (iii) add a state-dependent
friction term on the order of the diffusion matrix to counterbalance the noise as in SGHMC,
resulting in:

Naive :

 θt+1 ← θt + εtG(θt)
−1/2rt

rt+1 ← rt − εtG(θt)
−1/2∇θŨ(θt)− εtG(θt)

−1rt +N (0, εt(2G(θt)
−1 − εtB̂t)).

(6.14)

However, as we show in Sec. 6.1.3, samples from these dynamics do not converge to the
desired distribution. Indeed, this system cannot be written within our framework. Instead,
we can simply follow our framework and, as indicated by Eq. (6.24), consider the following
update rule: θt+1 ← θt + εtG(θt)

−1/2rt

rt+1 ← rt − εt[G(θ)−1/2∇θŨ(θt) +∇θ
(
G(θt)

−1/2
)
−G(θt)

−1rt] +N (0, εt(2G(θt)
−1 − εtB̂t)),

(6.15)

which includes a correction term∇θ

(
G(θ)−1/2

)
, with i-th component

∑
j

∂

∂θj

(
G(θ)−1/2

)
ij

.

The practical implementation of gSGRHMC is outlined in Algorithm 6.

6.1.3 Experiments

In Sec. 6.1.3, we show that gSGRHMC can excel at rapidly exploring distributions with
complex landscapes. We then apply SGRHMC to sampling in a latent Dirichlet allocation
(LDA) model on a large Wikipedia dataset in Sec. 6.1.3.
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Figure 6.1: For two simulated 1D distributions (black) defined by U(θ) = θ2/2 (left) and

U(θ) = θ4 − 2θ2 (right), comparison of SGLD, SGHMC, the naı̈ve SGRHMC of Eq. (6.14), and

the gSGRHMC of Eq. (6.15).
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Figure 6.2: Left: For two simulated 1D distributions defined by U(θ) = θ2/2 (one peak) and U(θ) =

θ4 − 2θ2 (two peaks), we compare the KL divergence of methods: SGLD, SGHMC, the naı̈ve SGRHMC of

Eq. (6.14), and the gSGRHMC of Eq. (6.15) relative to the true distribution in each scenario (left and right bars

labeled by 1 and 2). Right: For a correlated 2D distribution withU(θ1, θ2) = θ4
1/10+(4·(θ2+1.2)−θ2

1)2/2,

we see that our gSGRHMC most rapidly explores the space relative to SGHMC and SGLD. Contour plots of

the distribution along with paths of the first 10 sampled points are shown for each method.

Synthetic Experiments

In this section we aim to empirically (i) validate the correctness of our recipe and (ii) assess
the effectiveness of gSGRHMC. In Fig. 6.5(left), we consider two univariate distributions
(shown in the Supplement) and compare SGLD, SGHMC, the naı̈ve state-adaptive SGHM-
C of Eq. (6.14), and our proposed gSGRHMC of Eq. (6.15). We specifically consider
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Figure 6.3: Upper Left: Expanded mean parameterization of the LDA model. Lower Left: Average runtime

per 100 Wikipedia entries for all methods. Right: Perplexity versus number of Wikipedia entries processed.

G(θ)−1 = D

√
|Ũ(θ) + C|. The constant C ensures that Ũ(θ) + C is positive in most cas-

es so that the fluctuation is indeed smaller when the probability density function is higher.
Note that we define G(θ) in terms of Ũ(θ) to avoid a costly full-data computation. We
choose D = 1.5 and C = 0.5 in the experiments. The design of G is motivated by the
discussion in Sec. 6.1.2, taking Q(θ) to have 2-norm growing with the level sets of the
potential function can lead to faster exploration of the posterior.

As expected, the naı̈ve implementation does not converge to the target distribution. In
contrast, the gSGRHMC algorithm obtained via our recipe indeed has the correct invariant
distribution and efficiently explores the distributions. In the second experiment, we sample
a bivariate distribution with strong correlation. The results are shown in Fig. 6.5(right).
The comparison between SGLD, SGHMC, and our gSGRHMC method shows that both a
state-dependent preconditioner and Hamiltonian dynamics help to make the sampler more
efficient than either element on its own.

Online Latent Dirichlet Allocation

We also applied SGRHMC (with G(θ) = diag(θ)−1, the Fisher information metric) to an
online latent Dirichlet allocation (LDA) [19] analysis of topics present in Wikipedia entries.
In LDA, each topic is associated with a distribution over words, with βkw the probability
of word w under topic k. Each document is comprised of a mixture of topics, with π(d)

k
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the probability of topic k in document d. Documents are generated by first selecting a
topic z(d)

j ∼ π(d) for the jth word and then drawing the specific word from the topic as
x

(d)
j ∼ β

z
(d)
j

. Typically, π(d) and βk are given Dirichlet priors.
The goal of our analysis here is inference of the corpus-wide topic distributions βk.

Since the Wikipedia dataset is large and continually growing with new articles, it is not
practical to carry out this task over the whole dataset. Instead, we scrape the corpus from
Wikipedia in a streaming manner and sample parameters based on minibatches of data. Fol-
lowing the approach in [121], we first analytically marginalize the document distributions
π(d) and, to resolve the boundary issue posed by the Dirichlet posterior of βk defined on the
probability simplex, use an expanded mean parameterization shown in Figure 6.3(upper
left). Under this parameterization, we then compute ∇ log p(θ|x) and, in our implemen-
tation, use boundary reflection to ensure the positivity of parameters θkw. The necessary
expectation over word-specific topic indicators z(d)

j is approximated using Gibbs sampling
separately on each document, as in [121].

We used minibatches of 50 documents and K = 50 topics. Similar to [121], the s-
tochastic gradient of the log posterior of the parameter θ on a minibatch S̃ is calculated as

∂ log p(θ|x, α, γ)

∂θkw
≈ α− 1

θkw
− 1 +

|S|
|S̃|

∑
d∈S̃

Ez(d)|x(d),θ,γ

[
ndkw
θkw
− ndk·

θk·

]
, (6.16)

where α is the hyper-parameter for the Gamma prior of per-topic word distributions, and γ
for the per-document topic distributions. Here, ndkw is the count of how many times word
w is assigned to topic k in document d (via z(d)

j = k for xj = w). The · notation indicates
ndk· =

∑
w ndkw. To calculate the expectation of the latent topic assignment counts ndkw,

Gibbs sampling is used on the topic assignments in each document separately, using the
conditional distributions

p(z
(d)
j = k|x(d), θ, γ) =

(
γ + n

\j
dk·

)
θ
kx

(d)
j∑

k

(
γ + n

\j
dk·

)
θ
kx

(d)
j

, (6.17)

where \j represents a count excluding the topic assignment variable z(d)
j being updated.

See [121] for further details.
We follow the experimental settings in [121] for Riemmanian samplers (SGRLD and S-

GRHMC), taking the hyper-parameters of Dirichlet priors to be γ = 0.01 and α = 0.0001.
Since the non-Riemmanian samplers (SGLD and SGHMC) do not handle distributions
with mass concentrated over small regions as well as the Riemmanian samplers, we found
γ = 0.1 and α = 0.01 to be optimal hyper-parameters for them and use these instead for S-
GLD and SGHMC. In doing so, we are modifying the posterior being sampled, but wished
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to provide as good of performance as possible for these baseline methods for a fair com-

parison. For the SGRLD method, we keep the stepsize schedule of εt =

(
a ·
(

1 +
t

b

))−c
and corresponding optimal parameters a, b, c used in the experiment of [121]. For the other
methods, we use a constant stepsize because it was easier to tune. (A constant stepsize for
SGRLD performed worse than the schedule described above, so again we are trying to be as
fair to baseline methods as possible when using non-constant stepsize for SGRLD.) A grid
search is performed to find εt = 0.02 for the SGRHMC method; εt = 0.01, D = I (corre-
sponding to Eq. (6.11)) for the SGLD method; and εt = 0.1, C = M = I (corresponding
to Eq. (6.10)) for the SGHMC method.

For a randomly selected subset of topics, in Table 6.1 we show the top seven most
heavily weighted words in the topic learned with the SGRHMC sampler.

“ENGINES” speed product introduced designs fuel quality

“ROYAL” britain queen sir earl died house

“ARMY” commander forces war general military colonel

“STUDY” analysis space program user research developed

“PARTY” act office judge justice legal vote

“DESIGN” size glass device memory engine cost

“PUBLIC” report health community industry conference congress

“CHURCH” prayers communion religious faith historical doctrine

“COMPANY” design production produced management market primary

“PRESIDENT” national minister trial states policy council

“SCORE” goals team club league clubs years

Table 6.1: The top seven most heavily weighted words (columns) associated with each of a ran-

domly selected set of 11 topics (rows) learned with the SGRHMC sampler from 10,000 documents

(about 0.3% of the articles in Wikipedia). The capitalized words in the first column represent the

most heavily weighted word in each topic, and are used as the topic labels.

For all the methods, we report results of three random runs. When sampling distri-
butions with mass concentrated over small regions, as in this application, it is importan-
t to incorporate geometric information via a Riemannian sampler [121]. The results in
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Fig. 6.3(right) indeed demonstrate the importance of Riemannian variants of the stochastic
gradient samplers. However, there also appears to be some benefits gained from the incor-
poration of the HMC term for both the Riemmannian and non-Reimannian samplers. The
average runtime for the different methods are similar (see Fig. 6.3(lower left)) since the
main computational bottleneck is the gradient evaluation. Overall, this application serves
as an important example of where our newly proposed sampler can have impact.

6.1.4 Conclusion

We presented a general recipe for devising MCMC samplers based on continuous Markov
processes. Our framework constructs an SDE specified by two matrices, a positive semidef-
inite D(z) and a skew-symmetric Q(z). We prove that for any D(z) and Q(z), we can
devise a continuous Markov process with a specified stationary distribution. We also prove
that for any continuous Markov process with the target stationary distribution, there ex-
ists a D(z) and Q(z) that cast the process in our framework. Our recipe is particularly
useful in the more challenging case of devising stochastic gradient MCMC samplers. We
demonstrate the utility of our recipe in “reinventing” previous stochastic gradient MCMC
samplers, and in proposing our SGRHMC method. The efficiency and scalability of the
SGRHMC method was shown on simulated data and a streaming Wikipedia analysis.

6.2 Stochastic Gradient MCMC Methods for Hidden Markov Models

Stochastic gradient based algorithms have proven crucial in numerous areas for scaling
algorithms to large datasets. The key idea is to employ noisy estimates of the gradient
based on minibatches of data, avoiding a costly gradient computation using the full dataset
[148]. Assuming the data are i.i.d., the stochastic gradient is an unbiased estimate of the
true gradient. In the context of Bayesian inference, such approaches have proven useful
in scaling variational inference [67, 23, 22, 45] and Markov chain Monte Carlo (MCM-
C) [182, 121, 28, 37, 161]. For the latter, a primary focus has been on the influence of the
stochastic gradient noise on the MCMC iterates; in contrast to many optimization-based
procedures, it is non-trivial to show that the underlying (stochastic) dynamics maintain the
correct stationary distribution in the presence of such noise. Significant headway has been
made in developing such correct SG-MCMC procedures. For example, recently a recipe
was proposed that translates the challenging problem of constructing efficient SG-MCMC
algorithms into one of simply selecting two matrices [102]. Collectively, these algorithms
have also shown great practical benefits and have gained significant traction.
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A separate challenge, however, is the important and often overlooked question of whether
such stochastic gradient techniques can be applied to massive amounts of sequential or
otherwise non-i.i.d. data. In such cases, crucial dependencies must be broken to form the
necessary minibatches. This question received some attention in the stochastic variational
inference (SVI) algorithm of [45] for hidden Markov models (HMMs). In this work, we al-
so focus in on HMMs as a simple example of a sequential data model, but turn our attention
to SG-MCMC algorithms.

There are many existing algorithm to perform inference of the model parameters of an
HMM including Monte Carlo methods [156], expectation-maximization [18], and varia-
tional algorithms [13]. All of these ideas operate by iterating between a local update for
the latent states, followed by a global update of the model parameters. The local update is
usually performed using the forward-backward algorithm that allows computation of any
marginal, or pair-wise marginal distribution in time linear in the length of the sequence.

In the variational context, recent work has focused on scaling these local-global in-
ference schemes to settings with a large number of replicates of short sequences [77, 69].
These methods utilize the fact that independent replicates of the observation sequence can
be used to compute unbiased gradient estimates [77], and can be used to incrementally
update sufficient statistics [69]. In contrast, the SVI algorithm of [45] examines how to
deal with extremely long observation sequences. The algorithm heuristically breaks the
dependence between observations and performs local updates on short subsequences of
observations using a limited forward-backward algorithm. These existing methods suffer
from a number of drawbacks. The variational approaches must use an approximate poste-
rior distribution for both the state- and model-parameters, which may not be representative
of the true distributions. The methods are also limited to conjugate prior distributions over
the parameters, which can severely limit the expressiveness of the model. Finally, all of
the methods discussed thus far are susceptible to becoming trapped in local modes during
inference.

Unfortunately, existing SG-MCMC approaches cannot be adapted to HMMs by simply
deploying the ideas of [45] within the MCMC context. The first challenge is that SG-
MCMC methods rely on sampling continuous-valued parameter representations, where-
as the HMM learning objective is typically specified in terms of the discrete-valued s-
tate sequence (local variables). To address this challenge, we consider an alternative ap-
proach to performing parameter inference for HMMs. Specifically, we work directly with
the marginal likelihood of the observations sequence. Our algorithm then evaluates the
marginal likelihood on a subsequence of observations.

The second challenge is in handling the dependencies between subsequences, in par-
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ticular: i) the error introduced at the endpoints of a subsequence when considering the
subsequence alone, and ii) the fact that subsequences are mutually correlated. We address
both of these challenges by capitalizing on the memory decay of the Markovian structure
underlying the data generating process. As in [45], we introduce short buffers around sub-
sequences of observations that mitigate the error incurred. However, in contrast to the
heuristic buffering schemes proposed for SVI-HMM, we provide a theoretically justified
approach that estimates the buffer length. We also enforce that subsequences are separated
by a minimum gap that ensures computations with them are uncorrelated. Collectively,
the contributions of this paper make a sizable step towards general purpose SG-MCMC
algorithms for sequential data.

Our synthetic data experiments investigate the impact of errors introduced via consid-
ering subchains naively, and how our buffering scheme can alleviate these issues. We then
explore the benefits of our method over SVI-HMM. Finally, we provide an exploration of
the computational gains over batch MCMC methods in an ion channel segmentation task.
Here, our SG-MCMC algorithm provides good performance in segmenting the ion channel
data about 1, 000 times faster than the batch MCMC method.

6.2.1 Background

Hidden Markov Models

Hidden Markov models (HMMs) are a class of discrete-time stochastic processes consist-
ing of (i) latent discrte-valued observations xt ∈ {1, . . . , K} generated by a Markov chain
and (ii) corresponding observations yt generated from distributions determined by the la-
tent states xt. Specifically, for an observation sequence y = (y1, · · · , yT ) and latent state
sequence x = (x0, · · · , xT ), the joint distribution factorizes as

p(x,y) = π0(x0)
T∏
t=1

p(xt|xt−1, A) · p(yt|xt, φ), (6.18)

where A is the Markov transition matrix such that Ai,j = Pr(xt = i|xt−1 = j), {φk}Kk=1

are the emission parameters, and π0 = p(x0) is the initial state distribution. We denote the
parameters of an HMM as θ = {A, φ} and do not focus on performing inference on π0.

Traditionally, expectation-maximization, variational inference, and Markov chain Monte
Carlo are used to perform inference over θ [156, 13]. These algorithms rely on the well-
known forward-backward algorithm to compute the marginal, p(xt|y1:T ), and pairwise-
marginal, p(xt, xt+1|y1:T ), distributions. The algorithm works by recursively computing
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a sequence of forward messages αt(xt) = p(xt|y1:t) and backwards messages βt(xt) =

p(yt+1:T |xt) which can then be used to compute the necessary marginals [13]. These
marginals are then used to update or sample from the distribution of the model parame-
ters.

These past algorithms have found wide-spread use in statistics and machine learning.
However, as discussed in Sec. 5, an alternative formulation of the HMM can provide
greater utility in developing an SG-MCMC approach. Marginalizing over x, we obtain
the marginal likelihood of an observed sequence:

p(y|θ) = 1T P (yT )A · · ·P (y1)A π0, (6.19)

where P (yT ) is a diagonal matrix with Pi,i(yt) = p(yt|xt = i, φi); 1T is a row vector of K
ones; and (π0)i = π0(x0 = i). The posterior distribution of θ given y = y1:T is then:

p(θ|y) ∝ p(y|θ)p(θ). (6.20)

Working with the marginal likelihood and posterior alleviates the need to compute the
marginals and pairwise marginals of xt. As such, only the forward pass of the forward-
backward algorithm is performed. Indeed, performing the matrix multiplications in E-
q. (6.19) from right to left corresponds to computing the normalizing constants of the for-
ward messages. Similarly, performing the matrix multiplies from left to right corresponds
to unnormalized messages in belief propagation, [46]. Perhaps most importantly for the
development of our SG-MCMC algorithm, the marginal likelihood does not involve alter-
nately updating the local state variables, xt, and the global model parameters θ. Instead, we
need only explore a continuous space which will allow us to leverage gradient information
to develop a computationally and statistically efficient algorithm. The major impediment
to directly using Eq. (6.19) for SG-MCMC is mitigating the error introduced when only
dealing with subsequences.

Stochastic Gradient MCMC for i.i.d. Data

We leverage the SG-MCMC framework of [102, 103] which found that any sampler using
continuous Markov dynamics can be represented as follows. If we define the potential
function U(θ) ∝ − ln p(θ|y) as the negative log posterior, then any such sampler that
preserves the posterior distribution has an update rule:

θ(t+1) ←θ(t) − εt
[(
D(θ(t)) + Q(θ(t))

)
∇U(θ(t)) + Γ(θ(t))

]
+N (0, εt(2D(θ(t)))), (6.21)
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where Γi(θ) =
∑d

j=1

∂

∂θj
(Di,j(θ) + Qi,j(θ)), D(θ(t)) is any positive-definite matrix and

Q(θ(t)) is any skew-symmetric matrix.
For i.i.d. data, the posterior distribution can be written as p(θ|y) ∝

∏
y∈S p(y|θ) · p(θ)

and the potential as U(θ) = −
∑

y∈S ln p(y|θ) − log p(θ). Stochastic gradient algorithms
examine independently sampled data subsets S̃ ⊂ S resulting in a noisy estimate of the
potential function:

Ũ(θ) = −|S|
|S̃|

∑
y∈S̃

log p(y|θ)− log p(θ); S̃ ⊂ S. (6.22)

The specific form of Eq. (6.22) implies that Ũ(θ) is an unbiased estimator of U(θ). As such,
a gradient computed based on Ũ(θ)—called a stochastic gradient—is a noisy, but unbiased
estimator of the full-data gradient. The key question in many of the existing stochastic
gradient MCMC algorithms is whether the noise injected by the stochastic gradient ad-
versely affects the stationary distribution of the modified dynamics (using ∇Ũ(θ) in place
of ∇U(θ)). One way to analyze the impact of the stochastic gradient is to make use of the
central limit theorem and assume

∇Ũ(θ) = ∇U(θ) +N (0,V(θ)). (6.23)

Simply using ∇Ũ(θ) in place of ∇U(θ) results in an additional noise term: (D(θ) +

Q(θ)
)
N (0,V(θ))T . Assuming we have an estimate B̂ of the variance of this addition-

al noise satisfying 2D(θ) − εB̂ � 0 (i.e., positive semidefinite), then we can attempt to
account for the stochastic gradient noise by simulating

θ(t+1) ←θ(t) − εt
[(
D(θ(t)) + Q(θ(t))

)
∇Ũ(θ(t)) + Γ(θ(t))

]
+N (0, εt(2D(θ(t))− εtB̂(t))). (6.24)

This is the stochastic gradient MCMC algorithm for i.i.d. data proposed by [102, 103].
See Alg. 8.

6.2.2 Stochastic gradient MCMC for HMMs

In order to apply the SG-MCMC methodology to HMMs we must address three problem-
s. First, we must be able to compute the gradient of the marginal likelihood efficiently
for large data sets. Instead of using minibatches of individual observations as in standard
SG-MCMC, we take the minibatches to be subsequences of consecutive observations. The
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Algorithm 7: SG-MCMC

initialize θ0 for t = 0, 1, 2 · · · , Niter do

for i = 1 · · ·n do

Γi(θ) =
∑

j

∂

∂θj
(Dij(θ) + Qij(θ))

end

sample η(t) ∼ N (0, 2εtD(θ(t))− ε2t B̂(t))

θ(t+1) ← θ(t) + η(t) − εt
[(
D(θ(t)) + Q(θ(t))

)
∇Ũ(θ(t)) + Γ(θ(t))

]
end

second problem is mitigating the error introduced by breaking dependencies at the end-
points of the subsequences. Finally, we show that SG-MCMC admits the desired stationary
distribution when using subsequences of observations.

Recall from Sec. 6.2.1 that the posterior under an HMM is given by Eqs. (6.19) and
(6.20) as:

p(θ|y) ∝ 1T P (yT )A · · ·P (y1)A π0 · p(θ), (6.25)

and that the potential function U(θ) ∝ − ln p(θ|y). Both evaluating and computing gradi-
ents of Eq. (6.19) is computationally expensive when T is massive, for instance in problems
arising in genomics. Instead, we propose only performing computations on a small sub-
sequence of the observations. Define the subsequence with half-width L centered at time
τ ∈ {L+ 1, . . . , T −L− 1} as yτ,L = (yτ−L, . . . , yτ , . . . , yτ+L). The overall subsequence
length is 2L+ 1. The contribution to the likelihood of yτ,L is denoted

P (yτ,L) = P (yτ+L)A · · ·P (yτ−L)A. (6.26)

In fact, given a partition of y1:T into non-overlapping subchains, S = {yτ,L}, we rewrite
Eq. (6.25) as

p(θ|y) ∝ 1T
∏

yτ,L∈S

P (yτ,L) · π0 · p(θ)

= qτ+L+1P (yτ,L)πτ−L−1 · p(θ) (6.27)

where qτ+L+1 = p(yτ+L+1|xτ+L) is the likelihood of the observations that occur after yτ,L
given the value of the latent state at τ , and πτ−L−1 = p(xτ−L|y1:τ−L−1) is the predictive



136

distribution of the latent state at τ given the observations that occur before yτ,L. Notice that
we do not actually need to instantiate the latent state variables xτ−L and xτ+L+1 as qτ+L+1

and πτ−L−1 can be computed (in theory) via the forward-backward algorithm [143, 156].
The gradient of the log-posterior from Eq. (6.27) is then given by

∂U(θ)

∂θi
= −∂ ln p(y|θ)

∂θi
− ∂p(θ)

∂θi
(6.28)

= −
∑

yτ,L∈S

qT
τ+L+1

∂P (yτ )

∂θi
πτ−L−1

qT
τ+L+1P (yτ )πτ−L−1

− ∂ ln p(θ)

∂θi
,

where the equality follows from the product rule (see the Supplement for complete deriva-
tion).

We could imagine using ∇U(θ) from Eq. (6.28) in the update rule of Eq. (6.21) to
generate sample values of θ. However, Eq. (6.28) is expensive to compute as qτ+L+1 and
πτ−L−1 require touching all T observations. This is prohibitive when T is massive. We
instead propose to compute noisy estimates of Eq. (6.28) using only individual or small
collections of subsequences, akin to the stochastic gradient updates of Eqs. (6.22)-(6.24),
but for our non-i.i.d. scenario.

Stochastic Gradient Calculation

In order to use subsequences to reduce the amount of computation when computing∇U(θ),
we inevitably introduce error at the boundaries of the subsequences where dependencies
between observations are broken, as shown in Fig. 6.4. In terms of Eq. (6.28), we do not
have the exact values of qτ+L+1 and πτ−L−1, which would be prohibitively expensive to
compute, so we instead approximate these terms.

Gradient Computation with Subsequences Inspired by recent work on stochastic vari-
ational inference for HMMs [45], we introduce a buffer of length B on either end of each
subsequence (yLB,yτ,L,yRB) where

yLB = (yτ−L−B, . . . , yτ−L−1),

and
yRB = (yτ+L+1, . . . , yτ+L+B).

See Fig. 6.4 for a figurative demonstration. For an irreducible and aperiodic Markov chain,
the buffer regions will render the observations within yτ and those outside the buffers



137

B 𝐵 2𝐿 + 1 

Minimum Gap: 𝜈 

Marginalize  𝐱  

B 𝐵 2𝐿 + 1 

yLB yRB 

y1:T 

𝐱 

𝐲 
yτ 

Figure 6.4: Diagram of subsequences, buffers, and subsequence sampling from full observation

sequence. Left: The SVI method of [45] approximates stochastic gradients using subchains of

length 2L + 1 using the forward-backward algorithm performed on both the subchains and the

associated buffer chains of length B. Right: Our propsoed SG-MCMC method uses a similar

subsampling approach, however, i) the latent chain is never instantiated and ii) a minimum gap

between consecutive subchains, yτ,L, is used to ensure nearly uncorrelated subsequences. The thick

black lines through the observables y represent all pairwise correlations between observations due

to marginalization of x. Correlation decays with distance enabling the segmentation of the of the

chain into subsequences.
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approximately independent. This lets us approximate the boundary terms in Eq. (6.28) as

πτ−L−1 ≈ π̃τ−L−1 = p(yτ−L−1)A · · ·P (yτ−L−B)A︸ ︷︷ ︸
P (yLB)

π0

qT
τ+L+1 ≈ q̃T

τ+L+1 = 1T P (yτ+L+B)A · · ·P (yτ+L+1)︸ ︷︷ ︸
P (yRB)

.
(6.29)

Notice that we plug in π0 and 1T as the initial conditions for the buffers in Eq. (6.29).
Though this introduces errors into the computations of P (yLB) and P (yRB), these errors
will be nearly forgotten when processing observations in the subchain of interest yτ due to
the mixing of the underlying Markov chain. We rewrite each term in Eq. (6.28) as

1TP (yRB)
∂P (yτ,L)

∂θ
P (yLB)π0

1TP (yRB)P (yτ,L)P (yLB)π0

. (6.30)

In order to estimate ∇U(θ) efficiently, we sample a collection of subsequences, S̃ =

{yτ,L} where |S̃| denotes the number of subchains. The τs are drawn randomly from
{L+ 1, . . . , T − L− 1}. We then use the following estimator of the full gradient

∂Ũ(θ)

∂θi
= − 1

p(S̃)

∑
yτ,L∈S̃

1TP (yRB)
∂P (yτ,L)

∂θi
P (yLB)π0

1TP (yRB)P (yτ,L)P (yLB)π0

− ∂ ln p(θ)

∂θi
, (6.31)

where if we sample yτ uniformly from S, p(S̃) =
|S̃|L
T

, so that E
[
∇Ũ(θ)

]
= ∇U(θ) [58].

We note that Eq. (6.31) is computed in time O(|S̃|LK2). When |S̃|L � T this results in
significant computational speedups over batch inference algorithms.

A critical question that needs to be answered is how long the buffers should be? Though
raised in previous work, only a heuristic solution was suggested [45]. We propose estimat-
ing the buffer length using the Lyapunov exponent of the random dynamical system spec-
ified by A and P (yt). The Lyapunov exponent L measures the evolution of the distance
between vectors after applying the operator (P (yt)A)[·] [10]. By generalizing the Perron–
Frobenius theorem, all of the eigenvalues of the operator (P (yt)A)[·] are less than 0, which
implies that L ≤ 0 [160]. The greater the absolute value of L, the faster the errors at the
boundaries of the buffers decay, and the shorter the buffers need to be. Given an estimate

of L, we set the buffer length as B =

⌈
1

L
ln

(
δ

δ0

)⌉
where δ ≤ δ0 are error tolerances. The

method of calculating L is described in the Supplement. Forthcoming work in the applied
probability literature formalizes the validity of this approach.
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Approximately Independent Minibatches When the subsequences used to estimate E-
q. (6.31) are sampled naively, they will often overlap which diminishes the statistical effi-
ciency of the estimator, requiring more subsequences to obtain accurate estimates. If we
assume that the Markov chain of the latent state sequence is in equilibrium — a realistic
assumption if T is huge — then we can leverage the memory decay of the Markov chain to
encourage independent subsequences for use in the gradient estimator.

The mixing time of a Markov chain, denoted ν, is the number of steps needed until the
chain is “close” to its stationary distribution π0 [160]. This implies that for |t− t′| > ν, the
corresponding xt and xt′ are approximately independent. Consequently, when t < τ−L−B
or t > τ +L+B, then yt is approximately independent of yLB, yτ,L, and yRB. Therefore,
we can increase the statistical efficiency of∇Ũ(θ) by sampling the yτ,Ls such that they are
at least 2(L + B) + ν time steps apart. Enforcing this non-overlapping structure results in

p(S̃) =
∑R−1

n=0

L

T − n(L+ 2B + 2L)
used in Eq. (6.31) to estimate ∇θU(θ). We estimate

the mixing time ν = (1 − λ̂2)−1 where λ̂2 is the second largest eigenvalue of the current
transition parameter iterate, A(t).

When sampling subsequences adhering to the mixing-time-dependent gap, each term in
Eq. (6.31) is rendered approximately independent. Appealing to the central limit theorem
we then have that

∂Ũ(θ)

∂θi
≈ ∂U(θ)

∂θi
+N (0, Vi(θ)). (6.32)

As such, we can use the stationarity results from [102] and [103] to show that the proposed
SG-MCMC for HMMs has the right stationary distribution in the small εt limit.

Incorporating Geometric Information

Eq. (6.21) serves as a general purpose algorithm that theoretically attains the correct sta-
tionary distribution for any D and Q matrices when the step size εt approaches zero. But in
practice, we need to take into account numerical stability during numerical integrals. For
example, when we are sampling from the probability simplex, previous work has shown
that taking the curvature of the parameter space into account is important [182, 102]. Since
our transition parameters live on the simplex, we likewise incorporate the geometry of the
parameter space by constructing a stochastic-gradient Riemannian MCMC (SG-RMCMC)
algorithm.

SG-RLD for transition parameters In order to sample the transition matrix A we note
that the columns of A are constrained to lie on the probability simplex. To address these
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constraints, we use the expanded mean parametrization: A =
|Âi,j|∑
i |Âi,j|

, similar to what

[121] used for topic modeling. Evaluating ∇U(θ) in Eq. (6.28) for θ = Âi,j , using E-
q. (6.26) yields:

∂Ũ(θ)

∂Âi,j
= − 1

p(S̃)

∑
yτ,L∈S̃

τ+L∑
t=τ−L

(q̃τ+L+1)i Pi,i(yt) (π̃τ−L−1)j

q̃T
τ+LP (yt)Âπ̃τ−L

. (6.33)

Here, π̃τ−L−1 and q̃τ+L+1 are computed on the left and right buffers, respectively, accord-
ing to Eq. (6.29). The terms inside the sum in Eq. (6.33) are analogous to the pairwise
marginals of the latent state in traditional HMM inference algorithms. A detailed deriva-
tion of this gradient can be found in the Supplement.

By leveraging the flexible SG-MCMC update rule of Eq. (6.24), we remove the depen-
dency on Âi,j from the denominator of Eq. (6.33) by selecting D = Â and Q = 0. This
yields the following update:

Â
(t+1)
i,j ← Â

(t)
i,j − εt

[
Â

(t)
i,j∇Ũ(Â

(t)
i,j , φ) + I

]
+N

(
0, εt

(
2Â

(t)
i,j − εtB̂

(t)
i,j

))
(6.34)

where φ denotes all other model parameters. We note that this pre-conditioned gradient
takes advantage of the local geometry of the parameter space by pre-multiplying by a metric
tensor that arises from Eq. (6.24).

SG-RLD for emission parameters Similarly to the transition parameters, we sample the
emission parameters {φk : k = 1, . . . , K}, by evaluating ∇Ũ(θ) in Eq. (6.28) for θ = φk
Using Eq. (6.26). This results in the gradient:

∂Ũ(θ)

∂φk
= − 1

p(S̃)

∑
yτ,L∈S̃

τ+L∑
t=τ−L

(q̃τ+L+1)k Pk,k(yt) (π̃τ−L−1)k
q̃T
τ+L+1P (yt)Aπ̃τ−L−1

· ∂ lnPk,k(yt)

∂φk
. (6.35)

Again, π̃τ−L−1 and q̃τ+L+1 are computed on the left and right buffers, respectively, accord-
ing to Eq. (6.29). Similarly to the transition parameters, we account for the geometry of the
parameter space by specifying an appropriate D and Q in Eq. (6.24) which in general de-
pends on the form of p(yt|φ). For exponential family emission distributions we recommend
using the inverse of the Fisher information matrix as D [5].

In this paper we will focus on Gaussian emission distributions in which case we have

∂ lnPk,k(yt)

∂µk
= Σ−1

k (µk − yt) (6.36)
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Algorithm 8: SG-MCMC for HMM

initialize A(0) and φ(0)
k for n = 0, 1, 2 · · · , Niter do

Periodically estimate the buffer length B and the minimum subchain gap ν according to

Sec. 6.2.2. Sample subchains S̃ of length L from p(S̃). for s = 1 · · ·Nsteps do
Update Â(s) according to Eq. (6.33) and (6.34)

end

Calculate Â = 1
Nsteps

∑Nsteps

s=1 Â(s). Set Ai,j ← |Âi,j|
/∑

i |Âi,j| for s = 1 · · ·Nsteps do
update φ(s) according to Eqs. (6.35)– (6.39)

end

Set φ = 1
Nsteps

∑Nsteps

s=1 φ(s).

end

∂ lnPk,k(yt)

∂Σk

=
1

2
Σ−1
k

(
Σk − (µk − yt)(µk − yt)T

)
Σ−1
k . (6.37)

We plug these values into the SG-MCMC update of Eq. (6.24) using D = Σ to account for
the geometry of the parameter space and Q = 0. This leads to the update equations:

µ
(t+1)
k ← µ

(t)
k − εt

[
Σ

(t)
k ∇µkŨ(A, φ

(t)
k )
]

+N (0, εt(2Σ
(t)
k − εtB̂t)). (6.38)

Σ
(t+1)
k ← Σ

(t)
k − εt

[
Σ

(t)
k ∇µkŨ(A, φ

(t)
k )Σ

(t)
k + Σ

(t)
k

]
+N (0, εt(2Σ

(t)
k ⊗ Σ

(t)
k − εtB̂

(t))). (6.39)

It is possible when using Eq. (6.39) to obtain a Σ(t+1) that is not positive definite. In this
case we reject the update and set Σ(t+1) = Σ(t).

We have presented a full SG-MCMC algorithm to perform inference in HMMs for
massive sequences of data. In particular, we only require computations on collections of
small subsequences and attain the desired stationary distribution by mitigating the errors
incurred by these approximations. Finally, we have shown how to incorporate geometric
information about the parameter space in order to increase the numerical robustness of the
algorithm.
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6.2.3 Experiments

We evaluate the performance of our proposed SG-MCMC algorithm for HMMs on both
synthetic and real data. In the first two synthetic experiments, we recover two hard-to-
capture dynamics and illustrate the trade off between the subchain length L and the number
of subchains per minibatch |S̃|. We also illustrate the importance of the buffers. In the last
synthetic experiment, we demonstrate the flexibility of our approach by comparing our SG-
MCMC algorithm on HMM models using i) non-conjugate log-normal emissions, and ii)
conjugate Gaussian emissions. (Recall that SVI-HMM only handles conjugate models.)

6.2.4 Synthetic Data

We first design two synthetic experiments in order to illustrate the trade off between the
choice of subchain length L and the number of subchains per minibatch |S̃|. We also
demonstrate the importance of the buffer in these two experiments. We fix the total number
of observations used by the algorithm to (L + B) · |S̃| while varying L and |S̃| and show
how the performance of the algorithm is affected. Following [45], we create two synthetic
datasets both with T = 20 million observations and K = 8 latent states.

The first data set, diagonally dominant (DD), illustrates the potential benefit of large
|S̃|, the number of subchains per minibatch. The Markov chain heavily self-transitions
so that most subchains contain redundant information with observations generated from
the same latent state. Although transitions are rarely observed, the emission means are
set to be distinct so that this example is likelihood-dominated and highly identifiable. See
Fig. 6.5 (top left). Thus, with a fixed computational budget defined by L + B and |S̃|, we
expect large |S̃| to be preferable to large L, covering more of the observation sequence and
avoiding poor local modes arising from redundant information.

The second dataset we consider contains two reversed cycles (RC): the Markov chain
strongly transitions from states 1 → 2 → 3 → 1 and 5 → 7 → 6 → 5 with a small
probability of transition between cycles via bridge states 4 and 8. See Fig. 6.5 (top right).
The emission means for the two cycles are very similar but occur in reverse order with
respect to the transitions. The emission variance is larger, making states 1 and 5, 2 and
6, 3 and 7 undiscernible by themselves. Transition information in observing long enough
dynamics is thus crucial to identify between states 1, 2, 3 and 5, 6, 7; therefore, we expect
a large L to be imperative. See the the Supplement for details on generating both synthetic
datasets.

We use a non-conjugate flat prior to demonstrate the flexibility of our algorithm. We
initialize with a short run of k-means clustering to ensure that different states have different
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Figure 6.5: Synthetic experiments with hard-to-capture dynamics. Diagonally dominant (DD)

(left) and reversed cycles (RC) (right) experiments. First Row: The emission distributions corre-

sponding to 8 different states. Arrows in the RC case indicate the Markov transition structure with

transition between bridge states as dashed arrows. Second Row: Loglog plot of error in transition

parameter estimation versus iteration. Third Row: Comparison of SG-RLD with and without the

buffers.
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Figure 6.6: Synthetic experiment with log-normal emission. We use the non-conjugate emission

model on the synthetic data (Top Left) with two hidden states and log-normal emission and compare

it against the conjugate model. We show the difference in convergence speed (Top Right) and log

held out probability ln p(ytest|ytrain) on 2, 000 test data (Right).

emission parameters. In Fig. 6.5, we compare ||A − Atrue||F , where Atrue is the true
transition matrix and A the mean estimate of the transition matrix under SG-MCMC with
a specific setting of (L + B)|S̃|. We see trends one would expect: the small L, large |S̃|
settings achieve better performance for the DD example, but the opposite holds for RC,
with L = 2 significantly underperforming.

As shown in the last row of Fig. 6.5, we examine the effect of using the buffer. We
compare error in the estimate of the transition matrix after 100 and 200 iterations (for
DD and RC experiments, respectively) with and without the buffer chain. Apart from
the theoretical need for the buffers to derive the stochastic gradient MCMC algorithms,
we see in practice the implications of the errors incurred at the edges of the subchains
when they are not buffered. Long subsequences seem to mitigate the impact of these edge
errors; however, as illustrated in the DD example, we prefer using many short subchains in
persistent state examples, which are commonplace in real-world applications.

Non-conjugate emission distributions

We next demonstrate the benefit of our SG-RMCMC algorithm in being able to handle
non-conjugate emissions. We simulate 2 × 105 observations from a 2 state HMM with
log-normal emissions. Details of the parameter settings used to generate the data are in the
Supplement. We evaluate the ability of two different HMM models in terms of parameter
estimation and model selection accuracy.

The first HMM we consider uses log-normal emissions with non-conjugate normal pri-
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Figure 6.7: Inference of ion channel data Top: SG-RLD segmentation at runtimes: 44.05, 138.51,

and 466.82 (sec). Bottom: Batch-RLD segmentation at runtimes: 716.19, 2124.43, and 7245.14

(sec). Right: Error decay of transition matrix estimates for SG-RLD and batch-RLD methods in

original (top) and loglog (bottom) scales. Acvg denotes the estimated transition parameters A after

convergence. SG-RLD obtains plausible segmenations and accurate estimates of the transition

matrix in a fraction of the time as a batch algorithm.

ors. The second model uses Gaussian emissions with a conjugate normal-inverse-Wishart
prior. In Fig. 6.6 we show that the non-conjugate model obtains accurate estimates of
the transition matrix in substantially fewer iterations than the conjugate model. Next, we
demonstrate that efficiently handling non-conjugate models leads to improved model se-
lection. Specificallly, we use SG-RLD to fit both the conjugate and non-conjugate HMMs
described above with K = 1, 2, 3, 4 states and compute the marginal likelihood of the ob-
servations under each model. In the table of Fig. 6.6 we see that the non-conjugate model
selects the right number of states (2), whereas the conjugate model selects a model with
more states (4). The ability to use non-conjugate HMMs for truly massive data sets has not
been feasible until this point and this experiment demonstrates its utility.

Ion Channel Recordings

We investigate the behavior of the SG-RLD sampler on ion channel recording data. In par-
ticular, we consider a 1MHz recording from [151] of a single alamethicin channel. This
data was previously investigated in [120] and [169] using a complicated Bayesian nonpara-
metric HMM. In that work, the authors downsample the data by a factor of 100 and only
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used 10, 000 and 2, 000 observations respectively due to the challenge of scaling compu-
tations to the full sequence. We subsample the time series by a factor of 50, resulting in
209, 634 observations, to reduce the strong autocorrelations present in the observations that
are not captured well by a vanilla HMM. However, our algorithm would have no difficulty
handling the full dataset. We further log-transform and normalize the observations to use
Gaussian emission distributions.

We use a non-informative flat prior to analyze the ion channel data. In Fig. 6.7 we see
that before the batch-RLD algorithm finishes a single iteration, the SG-RLD algorithm has
already converged and generated a reasonable segmentation. With the converged estimation
of the transition parameters A as reference, we calculated the speed of convergence of SG-
RLD and batch-RLD algorithms and found that the SG-RLD is approximately 1, 000 times
faster.

6.3 Discussion

We have developed an SG-MCMC algorithm to perform inference in HMM for massive ob-
servation sequences. The algorithm can be used with non-conjugate emission distributions
and is thus applicable to modeling a variety of data. Also, the algorithm exactly samples
from the posterior as opposed to variational approaches.

Developing the algorithm relied on three ingredients. First, we derived an efficient
approach to estimate the gradient of the marginal likelihood of the HMM from only small
subchains. Second, we developed a principled approach using buffers to mitigate the errors
introduced when breaking the dependencies at the boundaries of the subchains. Unlike
previous heuristic buffering schemes, our approach is theoretically justified using random
dynamical systems. Last, we utilize sampling scheme based on the mixing time of the
HMM to ensure subchains are approximately independent.

In future work we will extend these ideas to other models of dependent data, such as
Markov random fields. Also, the ideas presented here are not limited to MCMC and could
be used to develop more principled variational inference algorithms for dependent data.
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