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Interest in using biomarkers for prognosis, diagnosis, and screening continues to grow in

many clinical areas. However, most biomarkers have only modest predictive capacity and

therefore are not clinically useful. As the cost of measuring individual biomarkers declines,

investigators are increasingly interested in combining biomarkers to create tools that are

clinically useful. Creating such tools involves constructing a combination of a set of bio-

markers and evaluating its predictive capacity; in some settings where a large number of

biomarkers are available, combination selection may be necessary. In this dissertation, we

consider particular challenges that may arise in the construction, evaluation, and selection of

biomarker combinations and propose methods to address these challenges. We first propose

a distribution-free method to construct biomarker combinations by maximizing the true po-

sitive rate while constraining the false positive rate at some clinically acceptable level. We

also consider the potential role of multilevel outcomes in combination construction and se-

lection when there is interest in predicting a particular level of the outcome due to its clinical

importance. Finally, we address issues related to the use of biomarker data from multiple

centers. We describe the potential role of center in these studies, demonstrate problems

with currently used methods for constructing biomarker combinations, present appropriate

likelihood-based methods for constructing combinations, and consider how to correctly eva-



luate the performance of combinations in this setting. We then move beyond the maximum

likelihood framework and propose a method that directly maximizes a center-adjusted me-

asure of performance while allowing for penalization of variability in performance across

centers. This research provides investigators with novel insights and methods that will faci-

litate the development of biomarker combinations for diagnosis, prognosis, and screening.
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Chapter 1

OVERVIEW

There is great interest in using biomarkers for diagnosis, prognosis, and screening in many

clinical areas. Examples include using biomarkers to diagnose various types of cancer (Bünger

et al., 2011), to predict risk of a future cardiac event (Blankenberg et al., 2010), or to allow

early identification of certain chromosomal abnormalities, such as those related to Down

syndrome, through prenatal screening (Pennings et al., 2009). In many applications, the

capacity of a single biomarker to identify individuals who have or will experience the clinical

outcome, i.e., the “predictive capacity” of a biomarker, is inadequate for clinical use. As a

result, there is a great deal of interest in using biomarker combinations to achieve adequate

predictive capacity, yielding clinical tools that can be used to inform patients about their

likelihood of having a disease or their risk of experiencing an outcome (e.g., Gruenewald

et al. (2006); Zethelius et al. (2008)). In this dissertation, we discuss current approaches and

propose novel statistical methods related to the development of biomarker combinations for

diagnosis, prognosis, and screening.

A related area of research is the use of biomarkers to predict therapeutic response, often

called “predictive biomarkers.” We do not consider such biomarkers here, and the use of

the term “predictive” herein relates only to the performance of biomarkers in the context of

diagnosis, prognosis, and screening.

There are several steps that must be taken before a biomarker combination can be adopted

clinically. The combination must be constructed. In other words, a rule or procedure for

combining multiple biomarker measurements into one result must be developed. This is

often done by maximizing a logistic likelihood. Having been constructed, the biomarker
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combination must be evaluated; that is, its predictive capacity must be assessed. We focus

on the ability of a biomarker combination to discriminate between individuals who have or

will experience some clinical outcome and those who do not have or will not experience the

outcome. If, in addition, a large number of biomarkers is available, combination selection

may be necessary. We consider methods related to these three components of biomarker

combination development.

In Chapter 2, we propose a method to construct biomarker combinations by maximizing

the true positive rate while constraining the false positive rate at some clinically acceptable

level. The true and false positive rates are clinically useful measures of biomarker perfor-

mance, and are related to the idea of discrimination described above. The acceptable false

positive rate is generally low, but will vary with the setting (i.e., diagnosis, prognosis, or

screening) and clinical context. Our proposal utilizes smooth approximations to the empiri-

cal true and false positive rates to provide computational feasibility. By targeting measures of

predictive capacity in the construction of biomarker combinations, the resulting combination

may demonstrate improved performance.

Most often, diagnosis, prognosis, and screening are considered in the context of a binary

outcome. However, clinical outcomes can be multilevel, but in many settings, there is interest

in predicting a particular level of the outcome. In this situation, it is common practice to

dichotomize the outcome and proceed as though it were truly binary. In Chapter 3, we

consider leveraging the additional information present in multilevel outcomes to yield better

combinations. In particular, we evaluate whether regression methods for multilevel outcomes

should be preferred to the commonly used binary logistic regression in the construction of

biomarker combinations. Additionally, we propose an algorithm for selecting a biomarker

combination based on the ability of the candidate combinations to discriminate between

multiple levels of the outcome, as opposed to relying solely on their ability to narrowly

predict the targeted level of the outcome.

In Chapters 4 and 5, we consider some issues related to using multicenter data to construct

and evaluate biomarker combinations. In Chapter 4, we discuss the role that center can play



3

in multicenter biomarker studies and we consider likelihood-based approaches to constructing

biomarker combinations in this setting. Existing approaches include ignoring center and

using a logistic regression model to construct the combination or accounting for center via

random intercept logistic regression. We establish the shortcomings of these approaches

and propose instead using fixed intercept logistic regression. Furthermore, we illustrate the

problems that can arise when center is ignored in the evaluation of biomarker combinations

and recommend instead using center-adjusted measures of predictive capacity to evaluate

biomarker combinations in the presence of multicenter data.

In Chapter 5, we move beyond the maximum likelihood framework and propose methods

to construct biomarker combinations by maximizing a center-adjusted measure of perfor-

mance. Similar to Chapter 2, we accomplish this by using a smooth approximation to this

center-adjusted measure of performance, maintaining computational feasibility even when

the number of biomarkers is large. While this method was developed for the multicenter

setting, it can be applied to any situation where there is a discrete covariate and there is

interest in optimizing covariate-adjusted performance. This method also allows for penali-

zation of the variability in center-specific performance, which provides some assurance that

when we apply the combination we have constructed to a new center, its performance will

be closer to the overall performance previously observed. Again, this method is generally

applicable to situations where there is a discrete nuisance covariate.

This dissertation research was motivated in large part by challenges encountered in the

analysis of data from the Translational Research Investigating Biomarker Endpoints in Acute

Kidney Injury (TRIBE-AKI) study, a study of acute kidney injury (AKI) following cardiac

surgery (Parikh et al., 2011). The study involves more than 1200 adults at six medical centers

in North America. The aims of the study include using biomarkers measured in blood and

urine to provide an earlier diagnosis of AKI, which is thought to occur during the surgery but

is currently not diagnosed until several days after the surgery (Parikh et al., 2011). While the

outcome of severe AKI is generally of greatest interest due to the associated morbidity and

mortality (Coca et al., 2012), patients can also experience mild AKI (Parikh et al., 2011),
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giving an outcome with three levels. We use data from the TRIBE-AKI study to illustrate

methods in Chapters 3-5.

We close in Chapter 6 by summarizing the work and discussing future research directions,

including extensions of the methods we have proposed and ways in which these methods could

be used to address related problems.
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Chapter 2

COMBINING BIOMARKERS BY MAXIMIZING THE TRUE
POSITIVE RATE FOR A FIXED FALSE POSITIVE RATE

Abstract

Biomarkers abound in many areas of clinical research, and often investiga-

tors are interested in combining them for diagnosis, prognosis and screening.

In many applications, the true positive rate for a biomarker combination at

a prespecified, clinically acceptable false positive rate is the most relevant

measure of predictive capacity. We propose a distribution-free method for

constructing biomarker combinations by maximizing the true positive rate

while constraining the false positive rate. Theoretical results demonstrate

good operating characteristics for the resulting combination. In simulations,

the biomarker combination provided by our method demonstrated improved

operating characteristics in a variety of scenarios when compared with more

traditional methods for constructing combinations.

2.1 Introduction

As the number of available biomarkers has grown, so has the interest in combining them for

the purposes of diagnosis, prognosis, and screening. In the past decade, much work has been

done to construct biomarker combinations by targeting measures of performance, including

those related to the receiver operating characteristic, or ROC, curve. This is in contrast to

more traditional methods that construct biomarker combinations by optimizing global fit

criteria, such as the maximum likelihood approach. While methods to construct both linear

and nonlinear combinations have been proposed, linear biomarker combinations are more



6

commonly used than nonlinear combinations, primarily due to their greater interpretability

and ease of construction (Hsu and Hsueh, 2013; Wang and Chang, 2011).

Although the area under the ROC curve, the AUC, is arguably the most popular way to

summarize the ROC curve, there is often interest in identifying biomarker combinations with

maximum true positive rate, the proportion of correctly classified diseased individuals, while

setting the false positive rate, the proportion of incorrectly classified nondiseased individuals,

at some clinically acceptable level. It is common practice among applied researchers to

construct linear biomarker combinations using logistic regression, and then calculate the

true positive rate for the prespecified false positive rate, e.g., Moore et al. (2008). While

much work has been done to construct biomarker combinations by maximizing the AUC or

the partial AUC, none of these methods directly target the true positive rate for a specified

false positive rate.

We propose a distribution-free method for constructing linear biomarker combinations by

maximizing the true positive rate while constraining the false positive rate. We demonstrate

desirable theoretical properties of the resulting combination, and provide empirical evidence

of good small-sample performance through simulations. To illustrate the use of our method,

we consider data from a prospective study of diabetes mellitus in 532 adult women with Pima

Indian heritage (Smith et al., 1988). Several variables were measured for each participant,

and criteria from the World Health Organization were used to identify women with diabetes.

A primary goal of the study was to predict the onset of diabetes within five years.

2.2 Background

2.2.1 ROC Curve and Related Measures

The ROC curve provides a means to evaluate the ability of a biomarker or, equivalently,

a biomarker combination Z to identify individuals who have or will experience a binary

outcome D. For example, in the diagnostic setting, D may denote the presence or absence

of disease and Z may be used to identify individuals with the disease. The ROC curve
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provides information about how well the biomarker discriminates between individuals who

have or will experience the outcome, that is, the cases, and individuals who do not have or

will not experience the outcome, that is, the controls (Pepe, 2003). Mathematically, if larger

values of Z are more indicative of having or experiencing the outcome, for each threshold

δ we can define the true positive rate as P (Z > δ | D = 1) and the false positive rate as

P (Z > δ | D = 0) (Pepe, 2003). For a given δ, the true positive rate is also referred to as

the sensitivity, and 1-specificity equals the false positive rate (Pepe, 2003). The ROC curve

is a plot of the true positive rate versus the false positive rate as δ ranges over all possible

values; as such, it is non-decreasing and takes values in the unit square (Pepe, 2003). A

perfect biomarker has an ROC curve that reaches the upper left corner of the unit square,

and a useless biomarker has an ROC curve on the 45-degree line (Pepe, 2003).

The most common summary of the ROC curve is the AUC, the area under the ROC

curve. The AUC ranges between 0.5 for a useless biomarker and 1 for a perfect biomar-

ker (Pepe, 2003). The AUC has a probabilistic interpretation: it is the probability that

the biomarker value for a randomly chosen case is larger than that for a randomly chosen

control, assuming that higher biomarker values are more indicative of having or experiencing

the outcome (Pepe, 2003). Both the ROC curve and the AUC are invariant to monotone

transformations of the biomarker Z (Pepe, 2003).

The AUC summarizes the entire ROC curve, but in many situations, it may be more

appropriate to only consider certain false positive rate values. For example, screening tests

require a very low false positive rate, while diagnostic tests for fatal diseases may allow for a

slightly higher false positive rate if the corresponding true positive rate is very high (Hsu and

Hsueh, 2013). This consideration led to the development of the partial AUC, the area under

the ROC curve over some range of false positive rate values, (t0, t1) (Pepe, 2003). Rather

than considering a range of false positive rate values, there may be interest in fixing the false

positive rate at a single value, determining the corresponding threshold δ, and evaluating

the true positive rate for that threshold, which may have more clinical relevance than the

AUC or the partial AUC. Additionally, in contrast to the AUC and the partial AUC, this
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method returns a single classifier, or decision rule, which may be appealing to researchers

seeking a tool for clinical decision-making.

2.2.2 Biomarker Combinations

Many methods to combine biomarkers have been proposed, and they can generally be divided

into two categories. The first includes indirect methods that seek to optimize a measure other

than the performance measure of interest, while the second category includes direct methods

that optimize the target performance measure. We focus on the latter.

Targeting the entire ROC curve, that is, constructing a combination that produces an

ROC curve that dominates the ROC curve for all other linear combinations at all points,

is very challenging and can generally only be done under special circumstances. Su and Liu

(1993) demonstrated that when the vector of p biomarkers X has a multivariate normal

distribution conditional on D with proportional covariance matrices, it is possible to identify

the linear combination that maximizes the true positive rate uniformly over the entire range

of false positive rates (Su and Liu, 1993). If the D-specific covariance matrices are equal,

this optimal linear combination dominates not just every other linear combination, but also

every nonlinear combination. This follows from the fact that in this case, the linear logistic

model stipulating that logit{P (D = 1|X)} = θ>X holds for some p-dimensional θ (McIntosh

and Pepe, 2002). If the covariance matrices are proportional but not equal, the likelihood

ratio is a nonlinear function of the biomarkers, as shown in Appendix A.1.1 for the setting

where p = 2, and the optimal biomarker combination with respect to the ROC curve will be

nonlinear (McIntosh and Pepe, 2002).

In general, there is no linear combination that dominates all others in terms of the true

positive rate over the entire range of false positive rates (Anderson and Bahadur, 1962; Su and

Liu, 1993). Thus, methods to optimize the AUC have been proposed. When the biomarkers

are conditionally multivariate normal with nonproportional covariance matrices, Su and Liu

(1993) gave an explicit form for the best linear combination with respect to the AUC. Others

have targeted the AUC without any assumption on the distribution of the biomarkers; many
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of these methods rely on smooth approximations to the empirical AUC, which involves

indicator functions (Fong et al., 2016; Lin et al., 2011; Ma and Huang, 2007).

Acknowledging that often only a range of false positive rate values is of interest clini-

cally, methods have been proposed to target the partial AUC for some false positive rate

range, (t0, t1). Some methods make parametric assumptions about the joint distribution of

the biomarkers (Hsu and Hsueh, 2013; Yu and Park, 2015) while others make no such as-

sumptions (Komori and Eguchi, 2010; Wang and Chang, 2011). The latter group of methods

generally use a smooth approximation to the partial AUC, similar to some of the methods

that aim to maximize the AUC (Komori and Eguchi, 2010; Wang and Chang, 2011). One

challenge faced by partial AUC maximization is that for narrow intervals, that is, when

t0 is close to t1, the partial AUC is often very close to 0, which can make optimization

difficult (Hsu and Hsueh, 2013).

In recent years, the AUC has been heavily criticized because it does not measure the

clinical impact of using the biomarker or biomarker combination: while the AUC can be

interpreted probabilistically in terms of case-control pairs, patients do not present to clini-

cians in randomly selected case-control pairs (Pepe and Janes, 2013). Moreover, the AUC

includes, and may in fact be dominated by, regions of the ROC curve that are not clinically

relevant (Pepe and Janes, 2013). Measures such as the partial AUC were proposed to ad-

dress this shortcoming, but the partial AUC does not directly correspond to a decision rule,

making clinical implementation challenging. Thus, there is growing interest in evaluating

biomarkers and biomarker combinations by considering the true positive rate at a fixed,

clinically acceptable false positive rate.

Some work in constructing biomarker combinations by maximizing the true positive rate

has been done for conditionally multivariate normal biomarkers. In this setting, procedures

for constructing a linear combination that maximizes the true positive rate for a fixed false

positive rate have been considered (Anderson and Bahadur, 1962; Gao et al., 2008). Methods

have also been proposed to construct linear combinations by maximizing the true positive

rate for a range of false positive rate values (Liu et al., 2005). The major disadvantage of this
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approach is that the range of false positive rate values over which the fitted combination is

optimal may depend on the combination itself; that is, the range of false positive rate values

may be determined by the combination and so may not be fixed in advance (Liu et al.,

2005). Baker (2000) proposed a flexible nonparametric method for combining biomarkers

by optimizing the ROC curve over a narrow target region of false positive rate values, but

this method is not well-suited to situations in which more than a few biomarkers are to be

combined.

An important benefit of constructing linear biomarker combinations by targeting the

performance measure of interest is that the performance of the combination will be at least

as good as the performance of the individual biomarkers (Pepe et al., 2006). Indeed, several

authors have recommended matching the objective function to the performance measure;

in other words, constructing biomarker combinations by optimizing the relevant measure of

performance (Hwang et al., 2013; Liu et al., 2005; Ricamato and Tortorella, 2011; Wang and

Chang, 2011). To that end, we propose a distribution-free method to construct biomarker

combinations by maximizing the true positive rate for a given false positive rate.

2.3 Methodology

2.3.1 Description

We will assume a non-trivial disease prevalence, P (D = 1) ∈ (0, 1), throughout. Cases will

be denoted by either D = 1 or the subscript D, and controls will be denoted by either D = 0

or the subscript D̄.

We propose constructing a linear biomarker combination of the form θ>X for a p-

dimensional X by maximizing the true positive rate when the false positive rate is below

some prespecified, clinically acceptable value t. We define the true and false positive rates

for a given X as a function of θ and δ:

TPR(θ, δ) = P (θ>X > δ|D = 1), FPR(θ, δ) = P (θ>X > δ|D = 0).
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Since the true positive rate and false positive rate for a given combination θ and threshold δ

are invariant to scaling of the parameters (θ, δ), we must constrain (θ, δ) to ensure identifi-

ability. Specifically, we constrain ||θ|| = 1 as in (Fong et al., 2016). For any fixed t ∈ (0, 1),

we can consider

(θt,0, δt,0) = arg max
(θ,δ)∈Ωt,0

TPR(θ, δ),

where Ωt,0 = {θ ∈ Rp, δ ∈ R : ||θ|| = 1, FPR(θ, δ) ≤ t}. This provides the optimal

combination, θt,0, and the optimal threshold, δt,0.

Of course, in practice, the true and false positive rates are unknown and so θ̂t,0 and δ̂t,0

cannot be computed. We can replace these unknowns by their empirical estimates,

ˆTPRnD(θ, δ) =
1

nD

nD∑
i=1

1(θ>XDi > δ), ˆFPRnD̄
(θ, δ) =

1

nD̄

nD̄∑
j=1

1(θ>XD̄j > δ),

where nD is the number of cases and nD̄ is the number of controls, giving the total sample

size n = nD + nD̄. We can then define

(θ̂t, δ̂t) = arg max
(θ,δ)∈Ω′

t,nD̄

ˆTPRnD(θ, δ)

where Ω′t,nD̄ = {θ ∈ Rp, δ ∈ R : ||θ|| = 1, ˆFPRnD̄
(θ, δ) ≤ t}. It is possible to conduct

a grid search over (θ, δ) to perform this constrained optimization, though this becomes

computationally demanding when combining more than two biomarkers.

Furthermore, since the objective function involves indicator functions, it is not a smooth

function of the parameters (θ, δ). Derivative-based methods therefore cannot be readily used.

However, smooth approximations to indicator functions exist and have been used for AUC

maximization (Fong et al., 2016; Lin et al., 2011; Ma and Huang, 2007). One such smooth

approximation is 1(w > 0) ≈ Φ(w/h), where Φ is the standard normal distribution function

and h is a tuning parameter representing the trade-off between approximation accuracy

and estimation feasibility such that h → 0 as n → ∞ (Lin et al., 2011). We can use
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this smooth approximation to implement the method described above, writing the smooth

approximations to the empirical true and false positive rates as

˜TPRnD(θ, δ) =
1

nD

nD∑
i=1

Φ

(
θ>XDi − δ

h

)
, ˜FPRnD̄

(θ, δ) =
1

nD̄

nD̄∑
j=1

Φ

(
θ>XD̄j − δ

h

)
.

Thus, we propose to compute

(θ̂t, δ̂t) = arg max
(θ,δ)∈Ωt,nD̄

˜TPRnD(θ, δ), (2.1)

where Ωt,nD̄
= {θ ∈ Rp, δ ∈ R : ||θ|| = 1, ˜FPRnD̄

(θ, δ) ≤ t}. We can obtain (θ̂t, δ̂t) by

applying gradient-based methods that incorporate the constraints imposed by Ωt,nD̄
using,

for example, Lagrange multipliers. Estimation can be accomplished with existing software,

such as the Rsolnp package in R. The choice of tuning parameter h is discussed below.

2.3.2 Asymptotic Properties

We present a theorem which concludes that under certain conditions, the combination obtai-

ned by maximizing the smooth approximation to the empirical true positive rate while con-

straining the smooth approximation to the empirical false positive rate has desirable opera-

ting characteristics. In particular, its false positive rate is bounded in probability in large

samples by the acceptable level t. In addition, its true positive rate tends in probability to

the true positive rate of the combination obtained by maximizing the true positive rate while

constraining the false positive rate.

Before stating the theorem, we give the following conditions. Some of these conditions

may be affected by the use of certain sampling schemes (e.g., cohort sampling) or the presence

of discrete or collinear biomarkers. Let XDi denote the vector of biomarkers for the ith case,

and let XD̄j denote the vector of biomarkers for the jth control.

(A1) The observations are randomly sampled conditional on D, nD + nD̄ → ∞ and
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nD/nD̄ → ρ ∈ (0, 1).

(A2) The observations XDi, i = 1, ..., nD, are independent and identically distributed p-

dimensional random vectors with distribution function FD, and the observations XD̄j,

j = 1, ..., nD̄, are independent and identically distributed p-vector random variables

with distribution function FD̄.

(A3) For each d ∈ {0, 1}, there exists no proper linear subspace S of Rp such that P (X ∈

S | D = d) = 1.

(A4) max(θ,δ)∈Ωt,0 TPR(θ, δ), max(θ,δ)∈Ωt,nD̄
TPR(θ, δ), and max(θ,δ)∈Ωt,nD̄

˜TPRnD(θ, δ) ex-

ist.

(A5) For each d ∈ {0, 1}, the distribution function of (θ>X|D = d) and its inverse are

Lipschitz for all θ ∈ {θ ∈ Rp : ||θ|| = 1}.

(A6) For every (θ, δ) ∈ Ω = {θ ∈ Rp, δ ∈ R : ||θ|| = 1}, TPR(θ, δ) is Lipschitz with

respect to (θ, δ).

Theorem 2.1. Under conditions (A1)-(A6), we have that for every fixed t ∈ (0, 1),

FPR(θ̂t, δ̂t) ≤ t+ op(1)

and ∣∣∣∣ max
(θ,δ)∈Ωt,0

TPR(θ, δ)− TPR(θ̂t, δ̂t)

∣∣∣∣→ 0 w.p. 1.

The proof of Theorem 2.1 is given in Appendix A.1.4. The proof relies on two lemmas,

which are stated and proved in Appendices A.1.2 and A.1.3. Lemma 2.1 demonstrates

almost sure convergence to zero of the difference between the maximum of a function over a

fixed set and the maximum of the function over a stochastic set that converges to the fixed

set in an appropriate sense. Lemma 2.2 establishes the almost sure uniform convergence

to zero of the difference between the false positive rate and the smooth approximation to

the empirical false positive rate and the difference between the true positive rate and the
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smooth approximation to the empirical true positive rate. The proof of Theorem 2.1 then

demonstrates that Lemma A1 holds for the relevant function and sets, relying in part on

the conclusions of Lemma 2.2. The conclusions of Lemmas 2.1 and 2.2 are then used to

demonstrate the claims of Theorem 2.1.

2.3.3 Implementation Details

In order to implement these methods, certain considerations must first be addressed, inclu-

ding the choice of tuning parameter h and starting values (θ̃, δ̃) for the optimization routine.

In using similar methods to maximize the AUC, Lin et al. (2011) proposed using h = σ̃n−1/3,

where σ̃ is the sample standard error of θ̃
>
X. In simulations, we considered both h = σ̃n−1/3

and h = σ̃n−1/2 and found the latter to yield a slightly better approximation with no impact

on the convergence of the optimization routine. Thus, we use h = σ̃n−1/2. We must also

identify initial values (θ̃, δ̃) for our procedure. As done in Fong et al. (2016), for θ̃, we

use normalized estimates from robust logistic regression, which is described in greater detail

below. Based on this initial value θ̃, we choose δ̃ such that ˜FPRnD̄
(θ̃, δ̃) = t, where R’s

root-finding function uniroot can be used to find δ̃.

Finally, we have also found that when ˜FPRnD̄
is bounded by t, the performance of the

optimization routine is poor. Thus, we introduce another tuning parameter, α, which allows

for a small amount of relaxation in the constraint on the smooth approximation to the

empirical false positive rate, such that

˜FPRnD̄
(θ, δ) ≤ t+ α.

Since the effective sample size for the smooth approximation to the empirical false positive

rate is nD̄, we chose to scale α with nD̄, and have found α = 1/(2nD̄) to work well in

simulations. Other values of α may give combinations with better performance and could

be considered.

Our method does not require limiting the number of biomarkers considered, although the
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risk of overfitting is expected to grow as the number of biomarkers increases relative to the

sample size; this may require pre-selecting biomarkers or incorporating a penalty term to

encourage selection. In addition, our method does not impose constraints on the distribution

of the biomarkers that can be included, except for weak conditions that allow us to establish

its large-sample properties. An R package including code to implement our method, maxTPR,

will be publicly available.

2.4 Simulations

Fong et al. (2016) suggest that the presence of outliers may lead to diminished performance of

likelihood-based methods, while AUC-based methods may be less affected since the AUC is a

rank-based measure. This feature would be expected to extend to the true and false positive

rates, which are also rank-based measures. We consider simulations with and without outliers

in the data-generating model, and simulate data under a model similar to that used by Fong

et al. (2016). We consider two biomarkers X1 and X2 constructed as

 X1

X2

 = (1−∆)× Z0 + ∆× Z1

and (D | X1, X2) ∼ Bernoulli [f {β0 + 4X1 − 3X2 − 0.8(X1 −X2)3}] , where ∆ ∼ Bernoulli(π),

π = 0.05 when outliers are simulated and π = 0 otherwise,

Z0 ∼ N

0, 0.2×

 1 0.9

0.9 1

 , Z1 ∼ N

0, 2×

 1 0

0 1

 ,

and ∆, Z0, and Z1 are independent. We consider two f functions: f1(v) = expit(v) =

ev/(1 + ev) and a piecewise logistic function,

f2(v) = 1(v < 0)× 1

1 + e−v/3
+ 1(v ≥ 0)× 1

1 + e−3v
.
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We vary β0 to reflect varying prevalences, with a prevalence of approximately 50–60% for

β0 = 0, 16–18% for β0 < 0, and 77–82% for β0 > 0. We considered t = 0.05, 0.1, and 0.2. A

plot illustrating the data-generating distribution with f(v) = f1(v) ≡ expit(v), β0 = 0, with

and without outliers is given in Figure 2.1.

Figure 2.1: Datasets with f(v) = f1(v) ≡ expit(v), β0 = 0, without (left plot) and with
outliers (right plot). Cases are represented by red circles, and controls are represented by
blue triangles. The plot with outliers also includes an ellipse (dashed black line) indicating
the 99% confidence region for the distribution of (X1, X2) without outliers.

The proposed method was used to estimate the combination and threshold using training

data with 200, 400, or 800 observations. We evaluated the fitted combination in a large test

set with 106 observations from the same population giving rise to the training data. We

compared the fitted combination from the proposed method to those based on robust logistic

regression and standard logistic regression. The robust logistic regression method used here

is that of Bianco and Yohai (1996), an estimation method that is designed to have some

robustness against so-called anomalous data, including, for example, the normal mixture

model defined above. In short, each of the three methods is used to fit a linear combination

of the biomarkers. Both standard and robust logistic regression use the logit link to model

the data, while the proposed method does not depend on the specification of a link function.

Standard and robust logistic regression differ in how they fit the logistic model; in particular,
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standard logistic regression maximizes a likelihood, while robust logistic regression minimizes

a loss function designed to limit the influence of individual observations.

We evaluated the true positive rate in the test data for a false positive rate of t in the

test data. In other words, for each combination, the threshold used to calculate the true

positive rate in the test data was chosen such that the false positive rate in the test data

was equal to t. We evaluated the false positive rate in the test data using the thresholds

estimated in the training data. For standard and robust logistic regression, this threshold

is the (1− t)th quantile of the fitted biomarker combination among controls in the training

data. For the proposed method, two thresholds are considered: the threshold estimated

directly by the proposed method, as defined in Equation (2.1), and the (1 − t)th quantile

of the fitted biomarker combination among controls in the training data. While the true

and false positive rates in the test data are empirical estimates, the test set is so large that

the estimates will be very close to the true and false positive rates. The simulations were

repeated 1000 times.

Table 2.1 summarizes the results for the logit link, f1, with moderate prevalence. The

performance of the proposed method is generally similar to robust logistic regression and is

similar to or better than standard logistic regression in terms of the true positive rate, though

the false positive rate for the proposed method tends to be slightly higher than t when both

t and the training dataset are small. There are some benefits in terms of the precision of the

true positive rate for standard logistic regression and, when outliers are not present, robust

logistic regression, relative to the proposed method. Improvements are generally seen for

the proposed method when the threshold δ is recalculated in the training data based on the

fitted combination, as opposed to estimated directly.

Table 2.2 presents the results for the piecewise logistic function, f2, with moderate preva-

lence. When there are no outliers, the performance of the proposed method in terms of the

true positive rate is generally comparable to standard and robust logistic regression, though

there tends to be less variability in performance for standard and robust logistic regression.

When there are outliers, the proposed method tends to perform better than both standard
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Table 2.1: Mean true and false positive rates and standard deviation (in parentheses) for
f(v) = f1(v) ≡ expit(v) = ev/(1 + ev) and β0 = 0 across 1000 simulations. n is the size of
the training dataset, t is the acceptable false positive rate, “GLM” denotes standard logistic
regression, “rGLM” denotes robust logistic regression, “sTPR” denotes the proposed method
with the threshold estimated directly, and “sTPR(re)” denotes the proposed method with
the threshold recalculated based on quantiles of the fitted combination. All numbers are
percentages.

Outliers n True positive rate False positive rate
GLM rGLM sTPR GLM rGLM sTPR sTPR(re)

t = 0.05
Yes 200 12.2 (2.1) 13.6 (2.6) 13.4 (2.7) 5.7 (2.2) 5.9 (2.3) 6.8 (2.5) 6.4 (2.4)

400 12.1 (1.7) 14.1 (2.3) 13.9 (2.4) 5.4 (1.6) 5.4 (1.6) 6.0 (1.7) 5.9 (1.7)
800 11.8 (1.2) 14.4 (2.2) 14.4 (2.3) 5.1 (1.1) 5.2 (1.1) 5.5 (1.2) 5.5 (1.2)

No 200 18.3 (0.6) 18.3 (0.6) 17.8 (1.8) 5.5 (2.2) 5.5 (2.2) 6.8 (2.5) 6.2 (2.4)
400 18.5 (0.3) 18.5 (0.3) 18.1 (1.6) 5.3 (1.5) 5.3 (1.5) 5.9 (1.7) 5.7 (1.6)
800 18.6 (0.2) 18.6 (0.2) 18.4 (1.2) 5.2 (1.1) 5.2 (1.1) 5.6 (1.2) 5.5 (1.2)

t = 0.10
Yes 200 22.5 (3.8) 24.6 (4.3) 24.6 (4.2) 10.9 (3.1) 11.1 (3.0) 12.0 (3.2) 11.7 (3.2)

400 21.8 (2.8) 25.1 (4.0) 25.2 (4.0) 10.4 (2.0) 10.5 (2.1) 11.1 (2.1) 11.0 (2.1)
800 21.4 (2.0) 25.7 (3.6) 25.8 (3.6) 10.1 (1.5) 10.1 (1.5) 10.5 (1.5) 10.5 (1.5)

No 200 29.4 (0.8) 29.5 (0.8) 28.9 (2.2) 10.5 (3.1) 10.5 (3.1) 11.8 (3.3) 11.4 (3.2)
400 29.8 (0.4) 29.8 (0.4) 29.5 (1.3) 10.4 (2.1) 10.4 (2.1) 11.1 (2.3) 10.9 (2.2)
800 29.9 (0.2) 29.9 (0.2) 29.7 (1.5) 10.2 (1.5) 10.2 (1.5) 10.6 (1.7) 10.6 (1.5)

t = 0.20
Yes 200 38.0 (5.1) 40.8 (5.8) 41.0 (5.7) 20.9 (4.0) 21.1 (4.0) 22.0 (4.0) 21.8 (4.0)

400 37.4 (3.9) 41.7 (5.3) 41.9 (5.2) 20.5 (2.8) 20.6 (2.9) 21.2 (2.9) 21.1 (2.9)
800 36.9 (2.9) 42.4 (4.6) 43.0 (4.4) 20.2 (2.0) 20.4 (2.0) 20.7 (1.9) 20.7 (2.0)

No 200 46.1 (0.9) 46.1 (0.9) 45.7 (1.5) 20.7 (4.1) 20.8 (4.1) 22.1 (4.2) 21.7 (4.2)
400 46.4 (0.5) 46.4 (0.5) 46.2 (0.8) 20.3 (2.8) 20.3 (2.8) 21.1 (2.8) 21.0 (2.8)
800 46.5 (0.2) 46.5 (0.3) 46.4 (0.6) 20.1 (2.0) 20.1 (2.0) 20.6 (2.0) 20.5 (2.0)
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Table 2.2: Mean true and false positive rates and standard deviation (in parentheses) for
f(v) = f2(v) ≡ 1(v < 0) × (1 + e−v/3)−1 + 1(v ≥ 0) × (1 + e−3v)−1 and β0 = 0 across
1000 simulations. n is the size of the training dataset, t is the acceptable false positive
rate, “GLM” denotes standard logistic regression, “rGLM” denotes robust logistic regression,
“sTPR” denotes the proposed method with the threshold estimated directly, and “sTPR(re)”
denotes the proposed method with the threshold recalculated based on quantiles of the fitted
combination. All numbers are percentages.

Outliers n True positive rate False positive rate
GLM rGLM sTPR GLM rGLM sTPR sTPR(re)

t = 0.05
Yes 200 20.2 (7.3) 26.4 (9.1) 27.7 (9.2) 5.9 (2.6) 6.0 (2.6) 6.9 (2.8) 6.5 (2.8)

400 19.0 (5.9) 27.6 (8.5) 29.3 (8.2) 5.5 (1.8) 5.5 (1.7) 6.0 (1.8) 5.8 (1.8)
800 17.9 (4.1) 29.4 (7.5) 30.8 (7.3) 5.3 (1.3) 5.3 (1.2) 5.6 (1.3) 5.5 (1.3)

No 200 37.9 (1.7) 37.8 (1.9) 37.5 (3.1) 5.8 (2.7) 5.7 (2.7) 7.3 (2.9) 6.5 (2.9)
400 38.6 (0.9) 38.5 (1.0) 38.3 (2.1) 5.3 (1.8) 5.3 (1.8) 6.1 (1.8) 5.8 (1.8)
800 38.9 (0.4) 38.9 (0.5) 38.6 (2.2) 5.2 (1.3) 5.2 (1.3) 5.6 (1.3) 5.5 (1.3)

t = 0.10
Yes 200 31.1 (8.9) 37.4 (10.8) 39.3 (11.0) 11.0 (3.5) 11.3 (3.6) 12.0 (3.7) 12.0 (3.6)

400 30.3 (7.1) 39.9 (9.8) 41.5 (9.6) 10.5 (2.5) 10.7 (2.4) 11.0 (2.5) 11.0 (2.5)
800 28.9 (5.0) 41.1 (8.9) 43.1 (8.6) 10.1 (1.7) 10.3 (1.7) 10.5 (1.8) 10.6 (1.8)

No 200 48.2 (1.8) 48.0 (1.9) 48.2 (2.0) 10.9 (3.5) 10.9 (3.5) 12.3 (3.5) 11.7 (3.6)
400 48.8 (0.9) 48.7 (1.0) 48.7 (1.1) 10.4 (2.4) 10.4 (2.4) 11.2 (2.4) 10.9 (2.5)
800 49.2 (0.4) 49.1 (0.5) 49.0 (0.6) 10.2 (1.7) 10.2 (1.7) 10.7 (1.7) 10.7 (1.8)

t = 0.20
Yes 200 45.0 (8.1) 50.4 (9.8) 51.9 (9.7) 21.2 (4.6) 21.5 (4.7) 22.1 (4.8) 22.0 (4.8)

400 44.4 (6.3) 52.8 (8.6) 54.0 (8.5) 20.4 (3.2) 20.8 (3.3) 21.2 (3.3) 21.2 (3.4)
800 44.1 (4.8) 54.8 (7.3) 56.5 (6.6) 20.2 (2.3) 20.3 (2.3) 20.6 (2.2) 20.7 (2.3)

No 200 59.5 (1.3) 59.4 (1.4) 59.3 (1.8) 21.1 (4.6) 21.1 (4.6) 22.6 (4.6) 22.1 (4.7)
400 60.0 (0.6) 59.9 (0.7) 59.8 (0.9) 20.5 (3.4) 20.6 (3.4) 21.3 (3.3) 21.2 (3.4)
800 60.2 (0.4) 60.1 (0.4) 60.1 (0.5) 20.3 (2.2) 20.3 (2.2) 20.7 (2.3) 20.7 (2.3)

and robust logistic regression in terms of the true positive rate. Whether or not there are

outliers, the false positive rate for the proposed method tends to be slightly higher than t

when both t and the training dataset are small. In most cases, improvements are seen for

the proposed method when the threshold δ is recalculated.

The results for low and high prevalence are presented in Appendix B.1. The results are

generally similar to those presented in Tables 2.1 and 2.2, though there are some differences.

When the prevalence is low and outliers are present, the differences between the methods
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are smaller than in Tables 2.1 and 2.2. When the prevalence is low and there are no outliers,

the differences in terms of the false positive rate are smaller than in Tables 2.1 and 2.2.

When the prevalence is high, the differences in terms of the false positive rate are slightly

larger than in Tables 2.1 and 2.2. Furthermore, when t is small, the prevalence is high, and

the sample size is small, all of the methods have difficulty maintaining the acceptable false

positive rate, as might be expected. For f1, when the prevalence is high, the differences in

the true positive rate are smaller than was seen in Table 2.1 when outliers are present and

are slightly larger when outliers are not present.

For some data-generating models, the gains offered by the proposed method over robust

logistic regression are quite substantial. For example, we considered a scenario with f = f2,

true combination β0 + 4X1− 3X2− 0.6(X1−X2)3, a training set size of 800, t = 0.2, outliers

in the data-generating model, and β0 = 1.5, giving a prevalence of approximately 93%. The

fitted combinations were evaluated as described above. Across 1000 simulations, the mean

(standard deviation) true positive rate, as a percentage, was 55.3 (8.4) for standard logistic

regression, 61.9 (14.2) for robust logistic regression, and 70.1 (15.4) for the proposed method.

Likewise, the mean (standard deviation) false positive rate, as a percentage, was 21.3 (5.1)

for standard logistic regression, 21.4 (5.1) for robust logistic regression, 23.0 (5.9) for the

proposed method with the threshold estimated directly, and 22.5 (5.3) for the proposed

method with the threshold recalculated based on quantiles of the fitted combination.

In addition to the data-generating model described above, we considered conditionally

bivariate normal biomarkers with non-proportional covariance matrices. We simulated D ∼

Bernoulli(0.7) and

 X1

X2

∣∣∣∣∣∣D = 1

 ∼ N

 µX1

µX2

 , 0.25×

 1 0.9

0.9 1

 ,
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with µX1 = 21/2Φ−1{AUCX1} and µX2 = 21/2Φ−1{AUCX2}, where AUCX1 = 0.6 is the

marginal AUC for X1 and AUCX2 = 0.8 is the marginal AUC for X2. This data-generating

model corresponds to a situation in which the biomarkers are highly correlated in cases,

but essentially constitute noise in controls. Under this data-generating model, the optimal

combination in terms of the ROC curve is of the form β0 +β1X1 +β2X2 +β3X1X2 +β4X
2
1 +

β5X
2
2 . We considered a maximum acceptable false positive rate, t, of 0.10 and a training

set size of 800. The fitted combinations were evaluated as described above. Across 1000

simulations, the mean (standard deviation) true positive rate, as a percentage, was 32.1

(3.6) for standard logistic regression, 24.6 (6.6) for robust logistic regression, and 32.0 (8.4)

for the proposed method. Likewise, the mean (standard deviation) false positive rate, as

a percentage, was 10.4 (2.0) for standard logistic regression, 10.4 (2.0) for robust logistic

regression, 10.8 (2.9) for the proposed method with the threshold estimated directly, and

11.0 (2.0) for the proposed method with the threshold recalculated based on quantiles of the

fitted combination. Thus, in this scenario, the proposed method was comparable to standard

logistic regression in terms of the true positive rate but offered substantial improvements over

robust logistic regression while maintaining control of the false positive rate near t.

In most simulation settings, convergence of the proposed method was achieved in more

than 96% of simulations. For f1 with β0 = 1.75, convergence failed in up to 7.3% of si-

mulations. Thus, caution may be warranted in more extreme scenarios, such as when the

prevalence is very high, particularly if the sample size and/or t are small. In addition, when

simulating with outliers, the true biomarker combination was occasionally so large that it

returned a non-value for the outcome D; for example, with f1(v) = expit(v), this occurs in

R when v > 800. These observations had to be removed from the simulated dataset, though

this affected an extremely small fraction of observations.

2.5 Application to Diabetes Data

We apply the method we have developed to the study of diabetes in women with Pima

Indian heritage. We consider seven predictors measured in this study: number of pregnancies,
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plasma glucose concentration, diastolic blood pressure, triceps skin fold thickness, body mass

index, diabetes pedigree function, and age. The diabetes pedigree function is a measure of

family history of diabetes (Smith et al., 1988). We used 332 observations as training data

and reserved the remaining 200 observations for testing. The training and test datasets had

109 and 68 diabetes cases, respectively. We scaled the variables to have equal variance. The

distributions of the predictors are depicted in Figure 2.2.

Figure 2.2: Stratified distributions of the scaled predictors measured in the diabetes study
for the observations in the training data. The predictors are number of pregnancies, plasma
glucose concentration, diastolic blood pressure, triceps skin fold thickness, body mass index,
diabetes pedigree function, and age. The predictor values are shown on the x-axis of each
plot. The red solid line represents the distribution among diabetes cases and the blue dotted
line represents the distribution among controls.

The combinations were fitted using the training data and evaluated using the test data.

We fixed the acceptable false positive rate at t = 0.10. We used standard logistic regression,

robust logistic regression, and the proposed method to construct the combinations, giving

the results in Table 2.3, where the fitted combinations from standard and robust logistic
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Table 2.3: Fitted combinations of the scaled predictors in the diabetes study. “GLM” denotes
standard logistic regression, “rGLM” denotes robust logistic regression, and “sTPR” denotes
the proposed method with t = 0.10.

Predictor GLM rGLM sTPR

Number of pregnancies 0.321 0.320 0.403
Plasma glucose 0.793 0.792 0.627
Blood pressure −0.077 −0.073 −0.026
Skin fold thickness 0.089 0.090 −0.146
Body mass index 0.399 0.400 0.609
Diabetes pedigree 0.280 0.281 0.191
Age 0.133 0.134 0.123

regression have been normalized to aid in comparison.

Using thresholds based on FPR = 0.10 in the test data, the estimated true positive

rate in the test data was 0.544 for both standard and robust logistic regression, and 0.559

for the proposed method. When the thresholds estimated in the training data were used,

the estimated false positive rate in the test data was 0.182 for both standard and robust

logistic regression, 0.258 for the proposed method using the threshold estimated directly,

and 0.265 for the proposed method using the threshold recalculated in the training data

based on the fitted combination. The estimated false positive rate in the test data exceeded

the target value for all the methods considered, indicating potentially important differences

in the controls between the training and test data.

2.6 Discussion

The proposed method could be adapted to minimize the false positive rate while controlling

the true positive rate to be above some acceptable level. Since the true positive rate and

false positive rate are invariant to disease prevalence, the proposed method can be used with

case-control data. In the presence of matching, however, it becomes necessary to consider

the covariate-adjusted ROC curve and corresponding covariate-adjusted summaries, and thus
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the methods presented here are not immediately applicable (Janes and Pepe, 2008).

As our smooth approximation function is non-convex, the choice of starting values should

be considered further. Extensions of convex methods, such as the ramp function method

proposed by Fong et al. (2016) for the AUC, could also be considered. Research into methods

for evaluating the true and false positive rates of biomarker combinations after estimation,

for example, sample-splitting, bootstrapping, or k-fold cross-validation, is needed.
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Chapter 3

USING MULTILEVEL OUTCOMES TO DEVELOP AND
SELECT BIOMARKER COMBINATIONS FOR

SINGLE-LEVEL PREDICTION

Abstract

Biomarker studies may involve multilevel outcomes, such as no, mild, or

severe disease, yet there is often interest in diagnosing or predicting one

particular level of the outcome due to its clinical significance. The standard

approach to constructing biomarker combinations in this context involves

dichotomizing the outcome and using standard binary regression methods.

We assessed whether information can be usefully gained from instead using

multilevel regression methods to construct biomarker combinations for the

purpose of predicting a single level of the outcome. Furthermore, when

more than a few biomarkers are available, it is often necessary to select

among several candidate biomarker combinations. Generally this selection

is done on the basis of the ability of each candidate combination to predict

the outcome level of interest. We propose an algorithm that more fully

uses the multilevel outcome to inform combination selection. We apply this

algorithm to data from a study of acute kidney injury after cardiac surgery,

where the kidney injury may be absent, mild or severe.

3.1 Introduction

In some clinical settings, a patient can experience one of several outcomes. For example, a

patient can have no, mild, or severe disease. In the setting of cancer diagnosis, a patient can

be disease-free, have a benign mass, or have a malignancy. However, there is often greatest
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clinical interest in predicting one level of the outcome in particular, typically the level that

poses the greatest threat in terms of morbidity and mortality. In the examples just given,

this may be severe disease or the presence of a malignant tumor. Thus, investigators are

interested in “single-level prediction,” but a multilevel outcome is available. The question

becomes whether and how the information from the multilevel outcome can be leveraged to

improve prediction of the outcome level of interest.

In addition, it is becoming increasingly common for several biomarkers to be measured

in each participant in a study. Often the goal of such studies is to identify a combination

of biomarkers (or a subset of the available biomarkers) that can be used diagnose disease or

predict some clinical outcome. In the presence of a multilevel outcome, particular challenges

emerge; we consider two such challenges.

The first challenge relates to the construction of biomarker combinations, specifically,

how the biomarkers should be combined when a multilevel outcome is available but there is

interest in single-level prediction. The most common approach is to dichotomize the outcome

and fit a single logistic regression model. Of course, this discards some information present

in the multilevel outcome. We will evaluate the potential benefits of using other regression

methods for constructing biomarker combinations in the presence of multilevel outcomes.

The second challenge is how biomarker combinations should be selected. In many studies,

the number of biomarkers measured is quite large and a combination of only a few biomarkers

is sought. Typically, investigators consider, for example, all possible pairs of biomarkers,

and choose the pair with the best performance in terms of single-level prediction. As with

combination construction, it may be possible to leverage the additional information in the

multilevel outcome to aid in combination selection. We propose an algorithm for doing so,

and provide examples of scenarios where this method is beneficial.

In addition, we illustrate the application of this combination selection method to data

from the Translational Research Investigating Biomarker Endpoints in Acute Kidney Injury

(TRIBE-AKI), a study of acute kidney injury after cardiac surgery (Parikh et al., 2011).

This study aims to use biomarkers measured immediately after surgery to provide an earlier
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diagnosis of AKI. Clinical definitions of AKI include both mild and severe types, though

severe AKI is often of greatest clinical interest due to its impact on long-term morbidity and

mortality (Coca et al., 2012). As a result, there is interest in using biomarkers to diagnose

severe AKI.

3.2 Background

3.2.1 Constructing Combinations

We focus on “clinically ordinal” multilevel outcomes, that is, outcomes whose levels can be

ordered by, for example, their clinical significance. We anticipate that such ordering may

allow information about one level of the outcome to be gleaned from the others.

Binary Logistic Models

When an outcome variable D has K levels, it is common for investigators to dichotomize

the outcome and fitting either one binary logistic regression model or a series of such mo-

dels (Armstrong and Sloan, 1989; Bartfay et al., 1999; Maas et al., 2010; Risselada et al.,

2010; Steyerberg, 2008). These include:

1. Single regression model. A single binary logistic model based on dichotomizing D at

some clinically relevant outcome level, k′: logit {P (D ≤ k′|x)} = α+βTx (Manor et al.,

2000; McHugh et al., 2010; Norris et al., 2006; Roozenbeek et al., 2011; Scott et al.,

1997).

2. Each level vs. others. K binary logistic models comparing each outcome to the combi-

nation of the other outcomes: logit {P (D = k|x)} = αk+βTk x, k = 1, ..., K (Biesheuvel

et al., 2008; Roukema et al., 2008).

3. Each level vs. reference. (K − 1) binary logistic models comparing each outcome to

a reference level k′: log P (D=k|x)
P (D=k′|x)

= αk + βTk x, k 6= k′ (Begg and Gray, 1984; Bull and

Donner, 1993).
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4. Sequential models. (K − 1) sequential binary logistic models where each outcome

level k is compared to the combination of the levels above it: logit {P (D = 1|x)} =

α1 + βT1 x, logit {P (D = 2|D > 1,x)} = α2 + βT2 x, etc. (Roukema et al., 2008).

If k′ = 1 in (3), the resulting K − 1 models together are equivalent to the baseline-category

logit model (defined below), though the resulting estimates are expected to differ in terms

of efficiency (Lunt, 2005). Approaches that compare only two levels at a time, such as (3),

may be preferable as other models “lump” several potentially heterogeneous outcome levels

together (van Calster et al., 2010).

Models for Ordinal Outcomes

Several models are available that fully model D (i.e., do not collapse different levels of the

outcome together) while utilizing the ordered nature of D. Using one of these models to

incorporate the ordering in the outcome could lead to greater parsimony and efficiency (Ag-

resti, 2013). Ordinal methods do not assume equal spacing between the levels of D; they

simply use the ordering of D (Harrell, 2013). We will consider the cumulative logit model,

the continuation-ratio logit model, the adjacent-category logit model, and the stereotype

model (Agresti, 2013). These models account for both the categorical nature of the outcome

and the ordering (Risselada et al., 2010).

Cumulative Logit Model The cumulative logit model considers (Agresti, 2013)

logit {P (D ≤ k|x)} , k = 1, ..., K − 1.

Thus, for each value of k, this is equivalent to a binary logistic regression model (Agresti,

2013; Harrell, 2013). The cumulative logit model is one way to simultaneously use all (K−1)

cumulative logits in a single model (Agresti, 2013):

logit {P (D ≤ k|x)} = αk + βTx, k = 1, ..., K − 1. (3.1)
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The model includes separate intercepts αk for each level of the outcome (these intercepts are

increasing in k), and uses a single parameter vector β to capture the relationship between

the predictors and the levels of the outcome (Agresti, 2013). The resulting odds ratios,

exp [logit {P (D ≤ k|x1)} − logit {P (D ≤ k|x2)}] ,

are often called the cumulative odds ratios (Agresti, 2013). Under model (3.1), the log

cumulative odds ratio is proportional to the distance between the predictor values being

compared, and the proportionality constant does not depend on k: (Agresti, 2013)

logit {P (D ≤ k|x1)} − logit {P (D ≤ k|x2)} = βT (x1 − x2).

As a result of this proportionality (sometimes referred to as the parallel slopes assumption),

the model given in (3.1) is also called the proportional odds model (Agresti, 2013). The

proportional odds property can also be described as follows: the model considers each possible

dichotomization of the outcome, assuming that the odds ratio for a higher versus lower value

of D is the same wherever the outcome is dichotomized (Maas et al., 2010). When there

is interest in estimating the risk of the highest level of D relative to the other levels, the

cumulative logit may be a reasonable choice (Ananth and Kleinbaum, 1997).

The cumulative logit model can be motivated by considering a latent variable: suppose

there exists a latent variable D∗, and the αk are the cutpoints defining the value of D based

on D∗ (Agresti, 2013). When the distribution of the errors ε in the model D∗ = βTx + ε is

standard logistic, the cumulative logit model follows; the only difference from (3.1) is that

the linear predictor is αk − βTx (Agresti, 2013). The negative sign in front of β resulting

from the latent variable model formulation gives the coefficients their usual interpretation in

terms of direction: when βj > 0 and the model is parameterized as αk−βTx, D is larger for

larger values of xj (Agresti, 2013; Liu and Agresti, 2005). This latent variable interpretation

is not necessary for the model to be useful (Armstrong and Sloan, 1989).
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It is straightforward to generalize the model in (3.1) to include separate effects (i.e., a

separate β vector, βk, for each value of k), which may be useful for assessing the assumption

of proportional odds (Agresti, 2013; Ananth and Kleinbaum, 1997; Armstrong and Sloan,

1989; Liu and Agresti, 2005). In general, allowing separate effects should be done with care

as it could lead to crossing of cumulative probability curves for some values of the predic-

tors, violating the ordering of the cumulative probabilities (Agresti, 2013; Liu and Agresti,

2005). In addition, allowing separate effects comes at the expense of parsimony (Agresti,

2013). More flexible models, such as the partial proportional odds model, could be used,

though this requires specification of the predictors for which proportionality should not be

assumed (Agresti, 2013). It is possible to compare the estimates from binary models for each

possible dichotomization of the outcome to those from the cumulative logit model to assess

whether the assumption of proportional odds is reasonable (Steyerberg, 2008). Even when

the proportional odds assumption does not hold, the model can be useful and powerful (Har-

rell, 2013). In particular, the odds ratio estimate obtained from the cumulative logit model

can be conceptualized as a summary odds ratio over the different binary splits of the out-

come, though the estimates arise through different likelihoods (Armstrong and Sloan, 1989;

Maas et al., 2010; Strömberg, 1996). Under case-control sampling, the estimates provided by

the cumulative logit model may be biased since they are affected by the sampling fractions

of the outcome levels; such bias may affect the resulting predicted probabilities (Scott et al.,

1997; Strömberg, 1996).

Adjacent-Category Logit Model The adjacent-category logit model can be written

as (Agresti, 2013):

logit {P (D = k|D = k or D = k + 1,x)} = αk + βTx.

The set of logits produced by the adjacent-category logit model are equivalent to those

produced by the baseline-category logit model (defined below), except that the adjacent-
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category logit model assumes a common β (Agresti, 2013). Thus, the adjacent-category

logit model takes advantage of the ordinal outcome to achieve parsimony, without involving

cumulative probabilities (Agresti, 2013; Liu and Agresti, 2005). The adjacent-category logit

is more natural when there is interest in describing the effect of the predictor in terms of

odds relating to particular response categories (Liu and Agresti, 2005).

Importantly, the issue discussed above for the cumulative logit model with separate effects

βk, namely, that this model could lead to crossing of the cumulative probability curves, viola-

ting the ordering of the cumulative probabilities, is not a problem for the adjacent-category

logit model with separate effects (since this model is equivalent to the baseline-category

logit model and does not involve cumulative probabilities) (Agresti, 2013). Furthermore,

the adjacent-category logit model can be used with data from case-control studies (Agresti,

2013).

Continuation-Ratio Logit Model The continuation-ratio logit model may be useful

when a sequential mechanism determines the outcome, i.e., when individuals have to “pass

through” one level of the outcome to get to the next (Agresti, 2013; Harrell, 2013). The

model can be written as follows(Agresti, 2013):

logit {P (D = k|D ≥ k,x)} = αk + βTx, k = 1, ..., K − 1.

The continuation-ratio logit model considers conditional probabilities as opposed to cumula-

tive probabilities (Harrell, 2013). As with the cumulative logit model, the continuation-ratio

logit model restricts the regression coefficients to be the same for all k and the αk are ordered

in k (Ananth and Kleinbaum, 1997; Feldmann and Steudel, 2000; Harrell, 2013). The requi-

rement that β be the same for each k can be relaxed; such relaxation gives the sequential

binary approach described earlier (Armstrong and Sloan, 1989; Harrell, 2013). As with the

cumulative logit model, the estimates provided by the continuation-ratio logit model may be

biased under case-control sampling (Scott et al., 1997).
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Each of the three models described above involve comparisons between different subsets of

levels of D: the cumulative logit model compares D ≤ k to D > k, the adjacent-category

logit model compares D = k to D = k + 1, and the continuation-ratio logit model compares

D = k to D > k. In the context of estimating associations, the choice of model will depend

upon the scientific question (Ananth and Kleinbaum, 1997). For example, if individuals are

classified as having no, mild, or severe disease (K = 3), the continuation ratio logit would

compare those with severe disease to those with mild disease, and those with mild disease to

those with no disease. The cumulative logit model, on the other hand, would compare those

with severe disease to those with no or mild disease, and those with mild or severe disease to

those with no disease. In the prediction setting, the predicted probabilities based on these

models have the same interpretation regardless of which model is used, and the choice of

model is essentially a question of model fit.

Stereotype Model The stereotype model was proposed by Anderson (1984) as a sort

of compromise between models that incorporate the ordinality of the outcome and more

flexible models (i.e., the baseline-category logit model defined below). The stereotype model

actually includes a “hierarchy” of models that vary in flexibility, as defined by the dimension

of the model (Anderson, 1984). The dimension of the model can range from one (the model

typically thought of as the stereotype model), to the maximum dimension d, which is related

to the number of predictors p and outcome levels K (Anderson, 1984). A stereotype model

of maximum dimension is a reparameterization of the baseline-category logit model (defined

below) (Lunt, 2005). Anderson (1984) recommended choosing the dimension empirically,

although the term “stereotype model” is generally reserved for the one-dimensional model

and we focus on that model here. The one-dimensional model can be written (Anderson,

1984)

log {P (D = k|x)/P (D = K|x)} = αk + φkβ
Tx, k = 1, ..., K − 1. (3.2)
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Thus, in this model, the βk are restricted in the sense that βk = φkβ, which may be

reasonable in a variety of settings (Anderson, 1984).

Identifiability constraints must be imposed on the φk; typically, these are φ1 = 0, φK =

1 (Anderson, 1984). The definition of the stereotype model also typically includes the as-

sumption that φ1 < φ2 < ... < φK ; when this holds, the one-dimensional model given in (3.2)

is an ordered model (Anderson, 1984). In his examples, Anderson (1984) did not assume

ordering among the φ; rather, he fit the one-dimensional model and evaluated whether the

estimates φ̂ were ordered. Indeed, most statistical packages that fit stereotype models do

not make this ordering assumption (e.g., R and STATA) and others have noted that this

ordering does not need to be specified a priori (Armstrong and Sloan, 1989; Lunt, 2005).

Thus, Anderson (1984) recommended fitting a fairly flexible model and assessing whether

the data suggest ordering. In other words, the model allows users to judge whether the out-

come levels are totally ordered or not, giving a data-driven analysis of ordering (Feldmann

and Steudel, 2000). The stereotype model may be particularly useful for ordered outcomes

that are not grouped continuous variables since this model does not involve comparisons

between subsets of the levels of D, but rather compares each level of D to a reference level,

and so may provide a better fit in this setting (Guisan and Harrell, 2000). In addition, the

stereotype model can be used with case-control data (Scott et al., 1997).

Models for Nominal Outcomes

The baseline-category logit model is a very flexible approach that does not incorporate the

ordered nature of D (Agresti, 2013). This model simultaneously describes the log odds for

all

 K

2

 pairs of categories (Agresti, 2013; Steyerberg, 2008). The baseline-category logit

model treats the outcome D as a multinomial variable with probabilities (π1(x), ..., πK(x))

and can be written as follows (Agresti, 2013):

log {P (D = k|x)/P (D = K|x)} = αk + βTk x, k = 1, ..., K − 1.
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The left-hand side can be interpreted as the logit of the conditional probability P (D = k|D =

k or D = K|x) (Agresti, 2013). The baseline-category logit model allows the effect of the

predictors to vary with the level of the outcome (Agresti, 2013). In addition, these logits can

be used to derive the logit for the comparison of any two response categories (Agresti, 2013).

When the baseline-category logit model is applied to an ordinal outcome, the model does

not make use of the ordering of the outcome (Bender and Grouven, 1998). Essentially, the

baseline-category logit model considers the categorical nature of the outcome, but ignores

any ordering (Risselada et al., 2010).

Models for Continuous Outcomes

When the number of outcome levels K is large, linear regression models may be appea-

ling (Guisan and Harrell, 2000; Risselada et al., 2010; Scott et al., 1997). These models

consider the ordering of the outcome but ignore the categorized nature of the outcome (Ris-

selada et al., 2010). In other words, these models are only strictly valid if the intervals

between consecutive outcome levels are considered equivalent (Armstrong and Sloan, 1989).

Other problems may arise, including predictions beyond the reasonable range (Guisan and

Harrell, 2000). Furthermore, the categorical nature of the outcome could give misleading

results, depending upon how the ordinal outcome is quantified (Scott et al., 1997). As a

result of these issues, we do not consider this approach further.

Comparing Modeling Approaches

A good deal of research has been done to compare the models described above, often in

terms of efficiency. Indeed, in many settings, the parameter estimates and/or predicted pro-

babilities provided by several models are similar (Manor et al., 2000; Norris et al., 2006;

Scott et al., 1997) and so the focus is often on the efficiency of these estimates. The effi-

ciency of parameter estimates and predicted probabilities may influence the precision of the

corresponding estimates of performance, and so may be informative when deciding which

modeling approach to use.
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Begg and Gray compared the efficiency of parameter estimates and predicted probabili-

ties from the baseline-category logit model to those from binary logistic models comparing

each outcome level to a reference level (Begg and Gray, 1984). These two models are pa-

rametrically equivalent if the reference level is K, and return parameter estimates that are

asymptotically equivalent except for their asymptotic variance matrix (Begg and Gray, 1984).

In the scenarios considered by Begg and Gray (1984), the efficiency of the separate logistic

models was quite good for the parameter estimates and predicted probabilities (efficiencies

above 90% in most cases), though there were some instances where the efficiency was 60−70%

for the predicted probabilities. The efficiency depended upon the prevalence of the baseline

level, the number of outcome levels and the number of predictors (Begg and Gray, 1984).

Notably, Begg and Gray’s work was motivated in part by the limited computing resources of

the era; modern computers and software can accommodate the baseline-category logit model

with ease.

Bull and Donner (1993) followed up on the work of Begg and Gray (1984) by considering

variations in the true parameter vectors for each level of the outcome. Specifically, they

considered “collinear” coefficient vectors (e.g., the same predictor is useful for all levels, while

another predictor is not useful for any level) and “orthogonal” coefficient vectors (e.g., one

predictor is useful for some levels, while another predictor is useful for the other levels) (Bull

and Donner, 1993). They derived expressions for the relative efficiency when the predictors

are multivariate normal and found the relative efficiency to be much lower when the coefficient

vectors were collinear (as low as 20% for coefficient estimates) compared to when they were

orthogonal (above 70%) (Bull and Donner, 1993). All coefficient vectors can be considered

to fall between these two extremes; thus, the results presented by Bull and Donner (1993)

represent bounds on the efficiency. These results indicate that the baseline-category logit

model is more efficient than separate binary logistic models due to the baseline-category logit

model’s ability to use information from other levels when estimating the parameters for one

level (Bull and Donner, 1993). Thus, given current computing capabilities, there seems to be

little reason to pursue the each level vs. reference binary logistic strategy instead of fitting
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a baseline-category logit model.

Armstrong and Sloan (1989) demonstrated that in the situation where there is one binary

predictor, a single binary logistic regression model can have more than 75% of the efficiency

of the cumulative logit model, but only if the dichotomization used in the binary model is

close to the optimal point. In general, they found that efficiency depended upon the number

of outcome levels and how the outcome was dichotomized (Armstrong and Sloan, 1989).

If the outcome was dichotomized such that the number of observations above and below

the cutpoint was approximately equal, the efficiency of the binary logistic regression model

relative to the cumulative logit model was 75-80% but if the cutpoint was not optimized, the

efficiency could be as low as 30% (Armstrong and Sloan, 1989). Armstrong and Sloan (1989)

note that “conventionally used” cutpoints may be far from optimal. Likewise, McHugh

et al. (2010) compared the cumulative logit model to a single binary logistic regression

model and found substantial efficiency gains for the cumulative logit model. These findings

are supported by the work of Strömberg (1996), who advised caution when dichotomizing,

and in particular warned against extreme cutpoints. These results indicate that collapsing

a multilevel outcome into a single binary outcome generally lowers efficiency due to the

inherent loss of information, and in some situations the effect could be severe (Maas et al.,

2010; McHugh et al., 2010). Some studies have found that a single binary logistic model

and a model that does not dichotomize the outcome provide similar results in individual

datasets (Manor et al., 2000), but in general such dichotomization is expected to reduce

efficiency, sometimes substantially.

Campbell and Donner (1989) focused on the classification efficiency of the baseline-

category logit model and the stereotype model. They noted that if the outcome is ordinal,

incorporating the ordinality of the outcome should be expected to improve classification

performance; however, if the outcome is indeed ordinal, this would be evident by the pa-

rameter estimates provided by an unordered (i.e., nominal) model (Campbell and Donner,

1989). Thus, they evaluated whether incorporating ordinality affects classification perfor-

mance (Campbell and Donner, 1989). Efficiency was measured in terms of the asymptotic
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rate of excess classification errors due to estimation of the parameters, where classification

was done on the basis of optimal classification boundaries between the outcome levels (Camp-

bell and Donner, 1989). Relative efficiency was defined as the classification efficiency of the

baseline-category logit model relative to the stereotype model (ratio of errors under the ste-

reotype model to the errors under the baseline-category logit model) (Campbell and Donner,

1989). The stereotype model was found to be more efficient (relative efficiency of less than

75% for most clinically interesting scenarios), and the relative efficiency decreased as the

number of levels K increased, the distance separating the response populations decreased,

or the number of predictors increased (Campbell and Donner, 1989).

Armstrong and Sloan (1989) conclude that in general, if the order of categories can be

specified with confidence, models making this ordering a strong assumption are preferable

to more flexible models. In other words, it is reasonable to expect that when the outcome

is ordinal, information is gained when this ordinality is used by the model (Scott et al.,

1997). Harrell et al. (1998) note that models can exhibit lack of fit for some predictors and

yet still provide quite accurate predicted probabilities. On the other hand, it has been

noted that ordinal models become “increasingly unrealistic” as the number of outcome levels

and/or predictors increases (Campbell and Donner, 1989; McHugh et al., 2010).

Applications in Risk Prediction

Previous research has considered the use of multilevel outcomes in the context of diagnostic

and prognostic modelling. Multilevel outcomes are frequently encountered in this area, and

it is common practice to dichotomize the outcome at some accepted cutpoint and fit a binary

logistic regression model (Biesheuvel et al., 2008; Risselada et al., 2010; Steyerberg, 2008; van

Calster et al., 2010). We will focus on the existing work in the context of fitting models for

diagnosis and prognosis with a multilevel outcome, and then using these models for single-

level prediction. It is important to keep in mind that several of the models described above

compare different levels of the outcome. For example, the baseline-category logit model,

the adjacent-category logits model, the stereotype model, and the binary logistic model
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(3) compare two levels of the outcome; the cumulative logit model and the binary logistic

models (1) and (2) consider all of the outcome levels; and the continuation-ratio logit and the

binary logistic model (4) compare between two and K outcome levels. Thus, the parameter

estimates from these models will often not be comparable (Armstrong and Sloan, 1989).

However, for prediction research, the predicted probabilities are the chief consideration. In

light of this, we emphasize the results of previous research in terms of differences in these

predicted probabilities and related performance measures.

We focus on the area under the receiver operating characteristic (ROC) curve (AUC) as

a measure of predictive capacity. The AUC assesses the ability of a model to discriminate

between individuals who have or will experience the outcome of interest and those who do

not have or will not experience the outcome of interest; the AUC for a model that is able to

perfectly separate these groups is 1, while the AUC for a useless model is 0.5 (Pepe, 2003).

In the context of a multilevel outcome where there is interest in single-level prediction, it is

important to carefully define the group “without the outcome of interest”; depending upon

the scientific question and clinical setting, this could be individuals with some reference level

of the outcome, or it could be all the individuals without the targeted outcome level.

Although these investigations have considered the use of multilevel outcomes in prediction

research, they have primarily involved individual datasets and/or have not focused on the

setting where the goal is single-level prediction.

There have been several empirical comparisons of modeling strategies for multilevel out-

comes in the setting of diagnostic and prognostic research using individual datasets, but

there has not yet been a systematic evaluation of these approaches in the context of single-

level prediction. For example, Biesheuvel et al. (2008) compared a baseline-category logit

model to the sequential binary logistic strategy. They estimated the performance of the

resulting models in terms of the AUC comparing each outcome level with the other levels

combined (Biesheuvel et al., 2008). They found fairly similar estimates of the odds ratios

and AUCs for both modeling approaches (Biesheuvel et al., 2008). In addition, they found

good agreement among the predicted probabilities provided by the two modeling methods,
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though the agreement was somewhat lower for the least common outcome (the AUCs for this

outcome were also slightly different for the two methods) (Biesheuvel et al., 2008). Roukema

et al. (2008) fit diagnostic models using the baseline-category logit model, the sequential

binary logistic strategy, and the each level vs. others binary logistic strategy. Each model

was evaluated by considering the AUC for each outcome level versus the combination of

the other outcome levels (Roukema et al., 2008). They found similar discriminatory power

for all three modeling strategies (Roukema et al., 2008). However, Roukema et al. (2008)

employed variable selection procedures for all of the models, making comparisons difficult.

The baseline-category logit model can accommodate the use of different variables to pre-

dict different levels of the outcome by constraining certain coefficients; this has been termed

the “relaxed” baseline-category logit model (Bull and Donner, 1993). Thus, although se-

parate binary logistic regressions may be preferred on the basis of the ability to perform

variable selection for each level of the outcome, this is not necessarily a limitation of the

baseline-category logit model (Begg and Gray, 1984).

Schuit et al. (2012) fit a baseline-category logit model and calculated an AUC for

each outcome level relative to the reference level used in the baseline-category logit model,

while Steyerberg et al. (2008) used a cumulative logit model to fit a prognostic model, and

then calculated the AUCs for two clinically relevant cutpoints of the outcome. van Calster

et al. (2010) used the baseline-category logit model and a series of binary logistic regression

models for each level of the outcome versus each of the other levels individually. The AUC

for each pair of levels was evaluated; these were not presented for the baseline-category logit

model, though other measures of performance that were reported were slightly better for

the separate binary models (van Calster et al., 2010). Importantly, van Calster et al. (2010)

allowed for different variable selection in each of the binary logistic regression models, ma-

king the comparisons of the fitted models challenging, and the authors indicate that this

added flexibility may have contributed to the improved performance of the separate binary

models. Risselada et al. (2010) considered using cumulative logits instead of a single binary

logistic model, and argued that inaccuracies due to mild violations of the proportional odds
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assumption are expected to be less severe than would be due to arbitrary dichotomization

of an ordinal outcome, since dichotomization involves a greater loss of information than

restricting β to be the same for all levels of the outcome.

Begg and Gray (1984) noted that in the context of discrimination it is important to

compare the predicted probabilities provided by different methods. Thus, their results on the

relative efficiency of predicted probabilities are an important consideration in the prediction

setting, and provide some insight into the expected behavior of measures of discrimination

(i.e., AUC) for predicted probabilities based on models for multilevel outcomes.

3.2.2 Combination Selection

When there is interest in constructing a biomarker combination using a subset of the available

biomarkers, some form of selection is required. This is motivated not only by logistical and

financial concerns, but often also biologically: it is common for a few biomarkers to have

strong predictive effects, while a large number have weak or modest effects. In the context

of regression models, investigators often use an automated variable selection procedure, such

as forward, backward, or stepwise selection (Harrell, 2013). These procedures generally use

p-values to decide which biomarkers should be included in the combination, and thus are a

form of model selection. When the goal is to use biomarker combinations for risk prediction,

it seems appropriate to use a different criterion for model selection. For a binary outcome,

one possibility is to use the AUC for model selection (e.g., (Gevaert et al., 2006)). That is,

for each candidate combination, the AUC for the fitted combination is estimated, and the

fitted combination with the highest AUC is chosen. For example, one strategy could be to

consider each possible pair of biomarkers, fit each combination using logistic regression, and

select the combination with the highest AUC.

Two challenges arise in utilizing such an approach. The first is that when the same data

are used to construct a biomarker combination and estimate the AUC for that combination,

the resulting AUC estimate will be optimistically biased because the same data were used

to estimate and evaluate the combination; we refer to this as “resubstitution bias” (Kerr
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et al., 2015). Methods such as bootstrapping can be used to estimate the optimism due to

resubstitution bias and correct the apparent AUC estimate (Harrell, 2013).

An additional challenge applies to model selection in general. When a model is selected

on the basis of its estimated performance, that estimated performance will be optimistically

biased due to the model selection since the same data were used to evaluate and select the

combination. This has been studied in the bioinformatics/machine learning literature, where

cross-validated (CV) estimates of the classification error rate are often used as the basis for

model selection. Although cross-validation can be used to address resubstitution bias, as

a result of model selection bias, the estimated CV error rate for the model selected on the

basis of its favorable CV error rate will be optimistic relative to the model’s true error rate in

independent data (Bernau et al., 2013; Boulesteix and Strobl, 2009; Cawley and Talbot, 2010;

Chatfield, 1995; Ding et al., 2014; Jelizarow et al., 2010; Varma and Simon, 2006). Cawley

and Talbot (2010) call this issue “overfitting the model selection criterion.” Previous papers

have found that this bias in the CV error estimates can be quite large, (Bernau et al.,

2013; Cawley and Talbot, 2010; Dupuy and Simon, 2007; Jelizarow et al., 2010; Varma and

Simon, 2006) and is related to sample size and the number of competing models (Cawley

and Talbot, 2010; Chatfield, 1995; Ding et al., 2014; Jelizarow et al., 2010). This bias is

due in part to variability in the estimate of performance, as low variability in the estimate

of performance ensures that the optimum of the estimated selection criterion is an honest

estimate of the optimum of the true performance of the models considered (Cawley and

Talbot, 2010). As Varma and Simon (2006) note, the fact that this bias is due to variability

in the estimate means that bias should be expected to occur with other, non-CV resampling

procedures, though its magnitude may differ. Although this issue has not yet been fully

characterized in the clinical risk prediction setting, where AUC is generally preferred over

classification error, the problem is expected to persist. In general, when some form of model

selection is done and the performance of the chosen model is evaluated without accounting

for model selection, that is, treating the model as though it were pre-specified, optimistic

bias is expected (Chatfield, 1995; Harrell, 2013; Lukacs et al., 2010; Steyerberg et al., 2003;
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Ye, 1998).

3.3 Methods

Without loss of generality, we will suppose that for an outcome D with K levels, “single-level

prediction” relates to predicting D = K.

3.3.1 Constructing Combinations

We have described several options for constructing biomarker combinations under the re-

gression framework (i.e., estimating the linear predictor). In particular, we can dichotomize

the outcome and use one of the four binary logistic model strategies, we can treat the out-

come as ordered and use one of the four ordinal logistic models, or we can use the more

flexible baseline-category logit model. Using a binary logistic modeling strategy requires

either combining several levels of the outcome into one “control” group, or fitting several

models to subsets of the data. Likewise, the ordinal models require restricting the nature of

the relationship between the biomarkers and the outcome so as to achieve parsimony. The

baseline-category logit model, on the other hand, imposes no such restrictions and includes

all of the data in a single model; of course, this comes at a cost of having to estimate additi-

onal parameters. We will consider the impact of these modeling choices on the performance

of the resulting combinations in a variety of scenarios via simulation. The key question is

whether more sophisticated modeling approaches can offer improvements in performance in

terms of single-level prediction over the näıve approach, that is, fitting a single binary logistic

regression.

Since we are interested in predicting D = K, we considered k′ = K − 1 in the context

of the single logistic regression model strategy. Furthermore, for the purposes of predicting

D = K, the single logistic regression model strategy and the each level vs. others binary

logistic strategy are identical, and so the latter was not considered further. Finally, as

the baseline-category logit model is a reparameterization of the each level vs. reference

binary logistic models, and the former is generally more efficient than the latter, we did not
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include the each level vs. reference binary logistic strategy in our investigation. Thus, we

considered seven different modeling strategies: the single logistic regression model approach

(“SingleLR”), the sequential binary logistic strategy (“LRSeq”), the cumulative logit model

(“CumLogit”), the adjacent-category logit model (“AdjCatLogit”), the continuation-ratio

logit model (“ContRatLogit”), the stereotype model (“Stereo”), and the baseline-category

logit model (“BaselineCat”).

We considered two broad simulation scenarios. In the first scenario, the biomarkers

were simulated such that the assumption of proportional odds did not hold; in the second

scenario, the data were simulated under the cumulative logit model where the assumption

of proportional odds held. In both scenarios, we considered two biomarkers, X1 and X2. We

considered outcomes with either 3 or 5 levels, that is, K = 3 or K = 5. The combinations

were constructed using training data with 200, 400, 800 or 1600 observations and evaluated

in test data with 104 observations. We simulated data such that P (D = 1) = 0.1 or 0.5 and

P (D = K) = 0.05 or 0.3; when K = 5, P (D = 2) = P (D = 3) = P (D = 4).

We used each of the modeling strategies to fit a linear combination of the predictors X in

the training data, yielding the estimates (α̂, β̂). We then applied these estimates to the test

data to determine P̂ (D = K|X, α̂, β̂). Finally, we assessed the ability of P̂ (D = K|X, β̂)

to discriminate between (D = K) and (D < K) in the test data via the AUC. The AUC

comparing other levels of the outcome (i.e., D = K vs. D = 1) may be useful in certain

clinical settings, but the AUC for D = K vs. D < K is often the most relevant measure in

the context of single-level prediction.

In the simulations where the assumption of proportional odds did not hold (the first

scenario mentioned above), the biomarkers had bivariate normal distributions, conditional

on D. In particular, for K = 3, we considered X1

X2

∣∣∣∣D = 1

 ∼ N (0,Σi,1) ,

 X1

X2

∣∣∣∣D = 2

 ∼ N (µ,Σi,2) ,

 X1

X2

∣∣∣∣D = 3

 ∼ N (2,Σi,3) ,
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where µ ∈ {−1,0, ...,2,3} and i = 1, 2, 3, 4, corresponding to four different possibilities for

the set of covariance matrices ΣX . In particular, ΣX = Σi, i = 1, 2, 3, 4 where

Σ1 : Σ1,j = 2

 1 0

0 1

 , j = 1, 2, 3

Σ2 : Σ2,j =

 2 1

1 2

 , j = 1, 2, 3

Σ3 : Σ3,1 = 2

 1 0

0 1

 ,Σ3,2 = Σ3,3 = 2

 1 0.8

0.8 1


Σ4 : Σ4,1 = Σ4,2 = 2

 1 0

0 1

 , Σ4,3 = 2

 1 0.8

0.8 1

 .

For K = 5, we considered

 X1

X2

∣∣∣∣D = 1

 ∼ N (0,Σi,1) ,

 X1

X2

∣∣∣∣D = 2

 ∼ N (0.5,Σi,2) ,

 X1

X2

∣∣∣∣D = 3

 ∼ N (1,Σi,3) ,

 X1

X2

∣∣∣∣D = 4

 ∼ N (µ,Σi,4) ,

 X1

X2

∣∣∣∣D = 5

 ∼ N (2,Σi,5) ,
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where µ ∈ {−1,0, ...,2,3}, i = 1, 2, 3, 4 and

Σ1 : Σ1,j = 2

 1 0

0 1

 , j = 1, 2, 3, 4, 5

Σ2 : Σ2,j =

 2 1

1 2

 , j = 1, 2, 3, 4, 5

Σ3 : Σ3,1 = Σ3,2 = Σ3,3 = 2

 1 0

0 1

 , Σ3,4 = Σ3,5 = 2

 1 0.8

0.8 1

 ,

Σ4 : Σ4,1 = Σ4,2 = Σ4,3 = Σ4,4 = 2

 1 0

0 1

 , Σ4,5 = 2

 1 0.8

0.8 1

 .

If the biomarkers are conditionally bivariate normal with equal covariance matrices, the

baseline-category logit model holds and can be used to characterize P (D = k|X), k =

1, ..., K.

To evaluate data under the cumulative logit model with proportional odds (second sce-

nario), we simulated bivariate normal biomarkers

 X1

X2

 ∼ N

1,

 0.25 0

0 0.25

 .

Then the outcome was simulated as a multinomial random variable, where the success pro-

babilities of the K levels were determined by β0k+β>X such that the cumulative logit model

held. Three sets of coefficients β were considered (β = (1, 2), (1, 1.5), (1,−1)) and the values

of β0k were chosen such that the desired prevalences (given above) were achieved in a large

dataset.

The simulations were repeated 1000 times.
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3.3.2 Combination Selection

As with combination construction, it may be possible to leverage multilevel outcome data in

selecting biomarker combinations. In particular, when a modest number of biomarkers (e.g.,

20-30) are available, and there is interest in using a subset of these biomarkers for single-level

prediction, different approaches to combination selection can be considered.

We consider a setting where several candidate combinations exist. A candidate combi-

nation is taken to be a set of biomarkers. One strategy is to dichotomize the outcome, fit

each candidate biomarker combination using binary logistic regression, estimate the AUC for

D = K vs. D < K (including correcting for optimism due to resubstitution bias), and select

the combination with the highest estimated AUC. Of course, this optimal estimated AUC

will be optimistic relative to the AUC for the same fitted combination in independent data

due to model selection bias. We propose an alternative strategy where combination selection

is done on the basis of not only the D = K vs. D < K AUC, but also the D = K − 1 vs.

D < K − 1 AUC, the D = K − 1 vs. D < K − 2 AUC, and so on. We anticipate that in

some settings, the estimated D = K vs. D < K AUC for the combination selected in this

way will have less optimism due to model selection bias and so may be preferred. In par-

ticular, if some of the same biomarkers are associated with multiple levels of the outcome,

our proposed method could offer improvements over the standard approach. Conversely,

our approach may not be suitable in settings where different biomarkers are predictive of

different levels of the outcome. In addition, we expect our approach to be useful when,

as described above, many biomarkers have modest associations with the outcome, and the

candidate combinations include subsets of these biomarkers.

More precisely, for K = 3, we define our algorithm as follows.

1. In the training data, fit all candidate biomarker combinations via binary logistic regres-

sion comparing D = 3 to D < 3.

2. Based on the combinations fit in (1), estimate (i) the apparent AUC for D = 3 vs. D < 3

and (ii) the apparent AUC for D = 2 vs. D = 1 in the training data.
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3. Estimate the optimistic bias due to resubstitution: generate B bootstrap samples from

the training data.

(a) In each bootstrap sample, fit all candidate biomarker combinations via binary logistic

regression comparing D = 3 to D < 3.

(b) For each of the fitted combinations from (a), estimate (i) the AUC for D = 3 vs.

D < 3 and (ii) the AUC for D = 2 vs. D = 1 in both the bootstrap data and the

training data.

(c) Estimate the optimism as the average difference in the AUCs in the bootstrap data

and the training data.

4. Correct the apparent AUCs from (2) using the optimism estimated in (3).

5. Determine the ranks for the two optimism-corrected AUCs from (4) across all candidate

biomarker combinations. The “standard” approach involves choosing the biomarker

combination with the best AUC for D = 3 vs. D < 3. The “new” approach involves

choosing the biomarker combination with the best sum of ranks for the two AUCs.

6. Apply the chosen combinations to test data and estimate the AUC for D = 3 vs. D < 3.

Estimate the optimism as the difference between the AUC in the test data and the

optimism-corrected estimate for the D = 3 vs. D < 3 AUC from the training data.

In practice, test data may not be available, so it may not be possible to complete step (6). An

R package including code to implement this method, multiselect, will be publicly available.

This approach could also be applied to the setting where the candidate combinations are a set

of fitted combinations, removing the need for model fitting and correcting for resubstitution

bias in our algorithm.

We used simulations to investigate the potential benefit of the proposed method. We

considered five examples as a proof of concept; these are not intended to be exhaustive. In

the first two examples, the cumulative logit model with proportional odds held, and in the

other three, it did not. Throughout the simulations, there were p = 30 biomarkers and we

considered the set of candidate combinations to be all possible pairs of these biomarkers. We
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used B = 50 bootstrap replicates, a training set of 400 observations, and a test set of 104

observations. We repeated the simulations 500 times.

In Example 1, we had

X ∼ N(1, 2Σ),

where X was a vector of dimension 30, and Σ was a 30 × 30 matrix where the diagonal

elements were 1 and the off-diagonal elements were 0.3. The linear predictor was then β>X,

where β1 = 1, β2 = 2, β3 = ... = β16 = 0.5, β17 = ... = β30 = 0.1. The outcome was

simulated under the cumulative logit model such that P (D = 1) = 0.6, P (D = 2) = 0.3,

and P (D = 3) = 0.1 in a large dataset. Example 2 was identical to Example 1, except that

P (D = 2) = 0.335 and P (D = 3) = 0.065.

In Example 3, we had P (D = 1) = 0.6, P (D = 2) = 0.335, and P (D = 3) = 0.065.

Additionally,

(X|D = 1) ∼ N(0, 2Σ)

(X|D = 2) ∼ N(β1, 2Σ)

(X|D = 3) ∼ N(β2, 2Σ),

where X was a vector of dimension 30, Σ was as defined above for Example 1, and

β1,1 = 1.5, β1,2 = 1, β1,3 = ... = β1,16 = 0.5, β1,17 = ... = β1,30 = 0.1

β2,1 = 2, β2,2 = 2, β2,3 = ... = β2,16 = 0.8, β2,17 = ... = β2,30 = 0.1.

Example 4 was identical to Example 3, except that

β1,1 = 1, β1,2 = 1, β1,3 = ... = β1,16 = 0.5, β1,17 = ... = β1,30 = 0.1

β2,1 = 2, β2,2 = 2, β2,3 = ... = β2,16 = 0.8, β2,17 = ... = β2,30 = 0.2.
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Finally, Example 5 was identical to Example 3, except that

β1,1 = 1, β1,2 = 1, β1,3 = ... = β1,16 = 0.5, β1,17 = ... = β1,30 = 0

β2,1 = 2, β2,2 = 2, β2,3 = ... = β2,16 = 0.8, β2,17 = ... = β2,30 = 0.2.

3.4 Results

3.4.1 Constructing Combinations

First we consider the scenario where the cumulative logit model does not hold. We present

the results for a training set size of 400; the results for the other sample sizes were generally

similar. We focus on the results Σ1 and Σ3; the results for Σ2 and Σ4 show largely similar

patterns and are presented in Appendix B.2.1.

Figures 3.1–3.4 present the results for K = 3. Figures 3.1 and 3.3 give the results in

the scenario where the outcome D = 3 is rare (P (D = 3) = 0.05). Here we see that when

µ = 2, the standard approach (the single binary logistic regression model) may do slightly

worse than some of the ordinal approaches. However, when µ = −1, µ = 0, or µ = 1, the

standard approach is comparable to or better than the other approaches. When µ = 3, the

performance of the standard method relative to the other methods depends heavily on the

prevalence of D = 1, i.e., P (D = 1) = 0.1 vs. P (D = 1) = 0.5.

Figures 3.2 and 3.4 present the results for the scenario where the outcome D = 3 is

common (P (D = 3) = 0.3). In this setting, the performance of the methods is quite similar

for µ = −1, µ = 0, and µ = 1. When µ = 2 and P (D = 1) = 0.1, the performance of the

standard approach is very slightly worse than some of the ordinal approaches. As before,

when µ = 3, the performance of the standard method relative to the other methods depends

heavily on P (D = 1).

Figures 3.5–3.8 present the results for K = 5. Figures 3.5 and 3.7 give the results for the

scenario where the outcome D = 5 is rare (P (D = 5) = 0.05). Here we see that when µ = 2,

the standard approach (the single binary logistic regression model) may do slightly worse
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than some of the ordinal approaches. However, when µ = −1, µ = 0 or µ = 1, the standard

approach is comparable to or better than the other logistic or ordinal approaches. When

µ = 3, the standard method does not do as well as some of the alternative approaches.

Figures 3.6 and 3.8 present the results for the scenario where the outcome D = 5 is

common (P (D = 5) = 0.3). In this setting, the performance of the methods is comparable for

µ = 0, µ = 1, and µ = 2, though there are some small gains for the sequential binary logistic

approach in some scenarios. For µ = −1, the standard method is comparable to or better

than the sequential binary logistic approach and some of the ordinal approaches, though some

very small gains are seen for the sequential binary logistic approach when P (D = 1) = 0.5

and ΣX = Σ3. When µ = 3, the standard method is consistently outperformed by the

sequential binary logistic approach, the stereotype model, and the baseline-category logit

model.

Taken together, the results in Figures 3.1–3.8 indicate that when the cumulative logit

model does not hold, if there is some ordering in the outcome by the biomarkers (that is,

µ is not extreme), the standard approach does reasonably well in general, but when µ is

extreme, another approach can perform better in some situations. In particular, when µ = 2,

some of the ordinal approaches offered improvements over the standard approach, though

these were typically small. When µ = 3, the performance of the standard approach was

quite poor relative to some of the other approaches, including the sequential binary logistic

approach, the stereotype model, and the baseline-category logit model. It seems likely that

these extreme values of µ (i.e., µ = 2 and µ = 3) had more of an effect on performance than

values of µ that were extreme in the other direction (that is, µ = −1 or µ = 0) because we

considered only the prediction of D = K, and higher values of µ have the effect of making

D = 2 (when K = 3) or D = 3 (when K = 5) more similar to D = K, to the detriment of

the ability of the standard approach to predict D = K. Thus, it seems that in some settings,

more sophisticated modeling can offer improvements over the standard approach, but very

often, the standard approach does well.
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Figure 3.1: Simulation results for K = 3 when the cumulative logit model does not hold,
P (D = 3) = 0.05 and ΣX = Σ1. Each plot presents the median and interquartile range of the
AUCs for D = K vs. D < K in the test data for the combinations fitted by each strategy,
which are given on the x-axis. The results are presented by P (D = 1) (columns) and µ
(rows). The “standard” approach is the single binary logistic regression model (“SingleLR”)
and is indicated by a slightly thicker line and larger point.
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Figure 3.2: Simulation results for K = 3 when the cumulative logit model does not hold,
P (D = 3) = 0.3 and ΣX = Σ1. Each plot presents the median and interquartile range of the
AUCs for D = K vs. D < K in the test data for the combinations fitted by each strategy,
which are given on the x-axis. The results are presented by P (D = 1) (columns) and µ
(rows). The “standard” approach is the single binary logistic regression model (“SingleLR”)
and is indicated by a slightly thicker line and larger point.
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Figure 3.3: Simulation results for K = 3 when the cumulative logit model does not hold,
P (D = 3) = 0.05 and ΣX = Σ3. Each plot presents the median and interquartile range of the
AUCs for D = K vs. D < K in the test data for the combinations fitted by each strategy,
which are given on the x-axis. The results are presented by P (D = 1) (columns) and µ
(rows). The “standard” approach is the single binary logistic regression model (“SingleLR”)
and is indicated by a slightly thicker line and larger point.
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Figure 3.4: Simulation results for K = 3 when the cumulative logit model does not hold,
P (D = 3) = 0.3 and ΣX = Σ3. Each plot presents the median and interquartile range of the
AUCs for D = K vs. D < K in the test data for the combinations fitted by each strategy,
which are given on the x-axis. The results are presented by P (D = 1) (columns) and µ
(rows). The “standard” approach is the single binary logistic regression model (“SingleLR”)
and is indicated by a slightly thicker line and larger point.
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Figure 3.5: Simulation results for K = 5 when the cumulative logit model does not hold,
P (D = 5) = 0.05 and ΣX = Σ1. Each plot presents the median and interquartile range of the
AUCs for D = K vs. D < K in the test data for the combinations fitted by each strategy,
which are given on the x-axis. The results are presented by P (D = 1) (columns) and µ
(rows). The “standard” approach is the single binary logistic regression model (“SingleLR”)
and is indicated by a slightly thicker line and larger point.
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Figure 3.6: Simulation results for K = 5 when the cumulative logit model does not hold,
P (D = 5) = 0.3 and ΣX = Σ1. Each plot presents the median and interquartile range of the
AUCs for D = K vs. D < K in the test data for the combinations fitted by each strategy,
which are given on the x-axis. The results are presented by P (D = 1) (columns) and µ
(rows). The “standard” approach is the single binary logistic regression model (“SingleLR”)
and is indicated by a slightly thicker line and larger point.
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Figure 3.7: Simulation results for K = 5 when the cumulative logit model does not hold,
P (D = 5) = 0.05 and ΣX = Σ3. Each plot presents the median and interquartile range of the
AUCs for D = K vs. D < K in the test data for the combinations fitted by each strategy,
which are given on the x-axis. The results are presented by P (D = 1) (columns) and µ
(rows). The “standard” approach is the single binary logistic regression model (“SingleLR”)
and is indicated by a slightly thicker line and larger point.
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Figure 3.8: Simulation results for K = 5 when the cumulative logit model does not hold,
P (D = 5) = 0.3 and ΣX = Σ3. Each plot presents the median and interquartile range of the
AUCs for D = K vs. D < K in the test data for the combinations fitted by each strategy,
which are given on the x-axis. The results are presented by P (D = 1) (columns) and µ
(rows). The “standard” approach is the single binary logistic regression model (“SingleLR”)
and is indicated by a slightly thicker line and larger point.

Now we consider data where the cumulative logit model with proportional odds holds.

Again, we present the results for a training set size of 400 and note that the results for

the other sample sizes were generally similar. The results for P (D = K) = 0.05 are given

below, while the results for P (D = K) = 0.3, which showed similar performance across the

approaches considered, are presented in Appendix B.2.1.

Figure 3.9 presents the results for K = 3. Here we see that although the ordinal mo-

deling approaches offer some gains, as would be expected, the performance of the “standard”

method is generally comparable, with differences in the median AUC of less than 0.01. Fi-

gure 3.10 presents the results for K = 5, and we see similar patterns. Thus, even when the
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data are generated by an ordinal model, the standard approach offers similar results in terms

of predictive capacity.

Figure 3.9: Simulation results for K = 3 when the cumulative logit model with proportional
odds holds and P (D = 3) = 0.05. Each plot presents the median and interquartile range of
the AUCs for D = K vs. D < K in the test data for the combinations fitted by each strategy,
which are given on the x-axis. The results are presented by P (D = 1) (columns) and β
(rows). The “standard” approach is the single binary logistic regression model (“SingleLR”)
and is indicated by a slightly thicker line and larger point.

For small to moderate sample sizes, several of the approaches had issues with convergence.

When the training set had 200 observations, the single binary logistic model approach failed

to converge in up to 3.1% of simulations, the sequential binary logistic approach failed to

converge in up to 38% of simulations, the stereotype model failed to converge in up to 2.6%

of simulations, and the baseline-category logit model failed to converge in up to 1.4% of

simulations. For training data with 400 observations, the sequential binary logistic approach

failed to converge in up to 7% of simulations. The proportion of convergence failures was
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below 0.2% for larger sample sizes.

Figure 3.10: Simulation results for K = 5 when the cumulative logit model with proportional
odds holds and P (D = 5) = 0.05. Each plot presents the median and interquartile range of
the AUCs for D = K vs. D < K in the test data for the combinations fitted by each strategy,
which are given on the x-axis. The results are presented by P (D = 1) (columns) and β
(rows). The “standard” approach is the single binary logistic regression model (“SingleLR”)
and is indicated by a slightly thicker line and larger point.

3.4.2 Combination Selection

Simulations

Figures 3.11 and 3.12 present the results for Example 1 and Example 4, respectively, for the

proposed combination selection method. The results for Examples 2, 3, and 5 show similar

patterns and are presented in Appendix B.2.2. The results in Figures 11 and 12 demonstrate

some benefit to using the additional information available in a multilevel outcome to select
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a biomarker combination for single-level prediction, both in terms of the degree of model

selection bias (the optimism), and the ability of the chosen combination to discriminate

D = 3 from D < 3 in test data.

There were no issues with the logistic regression model failing to converge in Example

1, eight simulations (out of 500) with convergence issues in Example 2, and one simulation

with convergence issues in each of Examples 3, 4, and 5.

Figure 3.11: Results for the proposed combination selection method for simulation Example
1, where the cumulative logit model with proportional odds holds. The plots give the results
for the standard approach, that is, choosing the combination based on the estimated AUC
(corrected for optimism due to resubstitution bias) for D = 3 vs. D < 3, and the results for
the new approach, that is, choosing the combination based on the AUC for D = 3 vs. D < 3
and the AUC for D = 2 vs. D = 1. The plot on the left gives the median and interquartile
range for the estimated optimism due to model selection bias (the difference between the
estimated AUC, corrected for optimism due to resubstitution bias, and the AUC in test
data) for the selected combinations and the difference in the estimated optimism between
the two approaches. The plot on the right gives the D = 3 vs. D < 3 AUC in test data for
the combinations selected by the two approaches.
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Figure 3.12: Results for the proposed combination selection method for simulation Example
4, where the cumulative logit model with proportional odds does not hold. The plots give the
results for the standard approach, that is, choosing the combination based on the estimated
AUC (corrected for optimism due to resubstitution bias) for D = 3 vs. D < 3, and the
results for the new approach, that is, choosing the combination based on the AUC for
D = 3 vs. D < 3 and the AUC for D = 2 vs. D = 1. The plot on the left gives the
median and interquartile range for the estimated optimism due to model selection bias (the
difference between the estimated AUC, corrected for optimism due to resubstitution bias,
and the AUC in test data) for the selected combinations and the difference in the estimated
optimism between the two approaches. The plot on the right gives the D = 3 vs. D < 3
AUC in test data for the combinations selected by the two approaches.

Application to TRIBE-AKI

We applied our proposed method for combination selection to data from the TRIBE-AKI

study, which also served as the motivation to develop this method. As noted above, the

outcome of greatest interest in the TRIBE-AKI study, acute kidney injury, is a multilevel

outcome, as patients may be diagnosed with no, mild, or severe AKI. Furthermore, nearly

two dozen biomarkers were measured in the study, though it is believed that only a subset

are likely to be useful for early diagnosis. In particular, there was interest in considering all

possible pairs of biomarkers, as it was thought that using additional biomarkers would offer



63

only modest gains. Thus, we applied our combination selection method to this problem.

The TRIBE-AKI study is a multicenter study, but we will restrict attention to the largest

center in order to avoid issues related to center differences. We considered 14 biomarkers

measured immediately after surgery, and removed observations missing any of these mea-

surements. This left 465 observations (61 with mild AKI, 30 with severe AKI). We also

log-transformed the biomarker measurements. As in the simulations, we applied our propo-

sed method with 50 bootstrap replications.

The results for the ten best combinations in terms of the AUC for severe vs. no or mild

AKI are given in Table 3.1. The combination with the highest AUC for severe vs. no/mild

AKI, which would be selected by the “standard” approach, includes urine IL-18 and plasma

PRO-BNP. The estimated AUCs (corrected for optimism due to resubstitution bias) for this

combination were 0.8575 for severe vs. no/mild AKI and 0.6125 for mild vs. no AKI. The

combination with the highest combined rank for the severe vs. no/mild AKI AUC and the

mild vs. no AKI AUC, which would be selected by our proposed method, included plasma

h-FABP and plasma IL6. The estimated AUCs (corrected for optimism due to resubstitution

bias) for this combination were 0.8365 for severe vs. no/mild AKI and 0.6757 for mild vs.

no AKI. Thus, the AUC for severe AKI for this second combination is slightly lower, but the

AUC for mild AKI is substantially higher. It may be reasonable to expect that the estimated

severe AKI AUC for the second combination (0.8365) is less affected by model selection bias

than is the estimated severe AKI AUC for the first combination (0.8575), which may motivate

choosing to validate the second combination in independent data instead of the first.

3.5 Discussion

When there is interest in using biomarker combinations for single-level prediction and a

multilevel outcome is available, common practice is to dichotomize the outcome for both

combination construction and selection. We have considered whether the information in a

multilevel outcome variable could be more fully leveraged in the construction and selection

of biomarker combinations.



64

Table 3.1: The ten best biomarker pairs in the TRIBE-AKI study as measured by the AUC
for severe AKI vs. no/mild AKI. The AUC for severe AKI vs. no/mild AKI and the AUC
for mild AKI vs. no AKI are presented. Both estimates are corrected for optimism due to
resubstitution bias.

Biomarkers AUC (Severe) AUC (Mild)

Urine IL-18 Plasma PRO-BNP 0.8575 0.6125
Plasma h-FABP Urine IL-18 0.8495 0.6394
Plasma h-FABP Plasma BNP 0.8464 0.6403
Plasma h-FABP Plasma PRO-BNP 0.8459 0.6329
Urine IL-18 Plasma BNP 0.8414 0.6168
Plasma h-FABP Urine KIM-1 0.8410 0.6400
Plasma h-FABP Plasma IL6 0.8365 0.6757
Plasma h-FABP Plasma IL10 0.8342 0.6405
Plasma h-FABP Plasma CKMB 0.8271 0.6558
Urine KIM-1 Plasma TNTHS 0.8253 0.6005

In the context of constructing biomarker combinations, we used simulations to compare

seven regression-based approaches: two binary logistic regression approaches, four ordinal

regression approaches, and one nominal regression approach. We considered a variety of data-

generating scenarios and found that when some separation in the biomarker distributions for

D = K and D < K exits (i.e., µ < 2 in our first simulation scenario) or when the cumulative

logit model with proportional odds holds, the standard approach based on dichotomizing the

outcome tends to work fairly well in terms of the ability of the resulting combinations to

predict D = K. More sophisticated regression methods had the most potential to improve

over the standard approach when the separation in the biomarker distributions for D = K

and D < K was reduced.

When many candidate biomarker combinations exist and there is interest in single-level

prediction, we have proposed a method that utilizes the multilevel nature of the outcome

in selecting a combination, as opposed to selecting a combination based on its ability to

narrowly predict the targeted level. Simulations provide evidence that the proposed method

may lead to less model selection bias and potentially result in selection of combinations with
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greater predictive capacity. We applied this method to data from the TRIBE-AKI study,

where we demonstrated how the method could be used to select a combination from among

all possible pairs of 14 biomarkers. This method is expected to be most useful when there

is some ordering in the biomarkers by the levels of D. It is important to study this method

further in order to fully elucidate the settings in which it could be beneficial.

In using this method for selection, it is generally informative to look at the results for the

candidate combinations, as we have done in Table 3.1 for the top ten pairs in the TRIBE-

AKI study. If there is a clear “winner” in terms of the AUC for D = 3 vs. D < 3, that is,

if this AUC is substantially higher for one candidate combination, it is probably reasonable

to select that combination, regardless of the AUC for D = 2 vs. D = 1. This is because it

is unlikely that such a markedly higher AUC is due to model selection bias. On the other

hand, if several combinations have fairly similar performance in terms of AUC for D = 3 vs.

D < 3, it may be worth using the AUC for D = 2 vs. D = 1 to aid in selection. One possible

extension of this method could involve using a weighted average of ranks for the two AUCs,

rather than the sum; additionally, using a weighted average of the AUC values themselves

(as opposed to their ranks) could be considered. Moving beyond the likelihood framework,

it may be possible to use a multilevel outcome to simultaneously construct and select a

combination by optimizing a weighted sum of multiple AUCs while penalizing complexity.

When a multilevel outcome is available and there is interest in using biomarker combi-

nations to predict a single level of the outcome, the common approach of dichotomizing the

outcome necessarily discards some information. We have described when and how this in-

formation might be usefully recovered to advance the goal of single-level prediction, thereby

providing insight into how best to use the data at hand.
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Chapter 4

BIOMARKER COMBINATIONS FOR RISK PREDICTION IN
MULTICENTER STUDIES: PRINCIPLES AND METHODS

Abstract

Many investigators are interested in combining biomarkers to predict an out-

come of interest or detect underlying disease. This endeavor is complicated

by the fact that many biomarker studies involve data from multiple centers.

Depending upon the relationship between center, biomarkers, and the target

of prediction, care must be taken when constructing and evaluating com-

binations of biomarkers. We introduce a taxonomy to describe the role of

center, and consider how the biomarker combination should be constructed

and evaluated. We show that ignoring center, which is frequently done by

clinical researchers, is often not appropriate. The limited statistical litera-

ture proposes using random intercept logistic models, which we demonstrate

is often inadequate or misleading. We instead propose using fixed intercept

logistic regression, which appropriately accounts for center without relying

on untenable assumptions. After constructing the biomarker combination,

we recommend using performance measures that account for the multicen-

ter nature of the data, namely the center-adjusted area under the receiver

operating characteristic curve. We apply these methods to data from a mul-

ticenter study of acute kidney injury after cardiac surgery. Appropriately

accounting for center, both in construction and evaluation, may increase the

likelihood of identifying clinically useful biomarker combinations.
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4.1 Introduction

Biomedical investigations are often conducted in multiple centers (e.g., hospitals, clinics,

providers). For etiologic and therapeutic studies, there is a substantial literature on the

challenges of a multicenter study design. These challenges include correlations among ob-

servations from the same center and the impact of differences across centers (Localio et al.,

2001). The literature on multicenter studies is especially extensive for randomized trials,

where the need for careful design and analysis of multicenter studies is widely acknowled-

ged (Localio et al., 2001).

Multicenter biomarker studies are increasingly common as investigators seek to increase

power and generalizability (e.g., Degos et al. (2010); Feldstein et al. (2009); Nickolas et al.

(2012)). However, in contrast to randomized trials, the literature on multicenter biomarker

studies, where interest is often in using biomarkers for diagnosis and prognosis, is small. As a

cause or consequence of this, the challenges and issues posed by a multicenter design appear

not to be widely appreciated among biomarker researchers. Furthermore, most biomarker

studies measure many biomarkers. Since biomarkers often have only modest individual

performance, investigators are usually interested in constructing biomarker combinations to

aid in diagnosis or prognosis. A multicenter study design can have implications for both the

construction of biomarker combinations and their evaluation.

Center plays a unique role in biomarker studies, where the goal is generally classification

(diagnostic setting) or prediction (prognostic setting). Center may be associated with the

outcome one wants to predict, yet it cannot be used as a predictor. The reason is that center

does not generalize to patients from centers not in the study, so a prediction instrument that

used center as a predictor would not be broadly applicable. Recognizing this situation, it

seems many biomarker investigators decide to simply ignore the fact that their data come

from multiple centers. However, as we will demonstrate, ignoring center can produce mis-

leading or undesirable results. Although center cannot be used as a predictor, it generally

must be accounted for.
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We will consider the role that center can play in multicenter biomarker studies, including

proposing a taxonomy that distinguishes different ways that center can be important and

providing guidance to researchers on identifying the role center plays in their studies. We

assess the impact of ignoring center and evaluate existing approaches for accounting for

center in biomarker studies. Finally, we propose methods for constructing and evaluating

biomarker combinations when data come from a multicenter study. We restrict attention to

biomarkers that will be used to identify individuals likely to have (in a diagnostic setting)

or develop (in a prognostic setting) some clinical outcome; such biomarkers are sometimes

referred to as “prognostic” or “diagnostic” biomarkers, as opposed to biomarkers used to

predict response to treatment, which are often called “predictive” biomarkers.

As an example of a multicenter biomarker study, we consider the Translational Rese-

arch Investigating Biomarker Endpoints in Acute Kidney Injury (TRIBE-AKI) study. The

TRIBE-AKI study involves 1219 cardiac surgery patients at six centers in North America (Pa-

rikh et al., 2011). The participants were followed for diagnosis of post-operative acute kidney

injury (AKI). For each patient, blood and urine were collected at multiple time points pre-

and post-operatively, and about two dozen biomarkers were measured at each time point.

AKI is typically diagnosed via changes in serum creatinine but these changes often do not

happen until several days after the injury (Parikh et al., 2011). One goal of the study is to

identify combinations of post-operative biomarkers that can provide an earlier diagnosis of

AKI.

4.2 Background

We first introduce several general concepts and methods which we will use throughout this

paper. These include the idea of omitted variable bias, random intercept logistic regression,

fixed intercept logistic regression, issues related to asymptotics and risk prediction in cluste-

red data, conditional methods for evaluating predictive capacity, and some of the challenges

associated with developing biomarker combinations for diagnosis and prognosis in general.

These concepts will provide context for the rest of the paper, which will draw on the concepts
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introduced below to provide novel insights and propose appropriate methods for constructing

and evaluating biomarker combinations for diagnosis and prognosis using data from multiple

centers.

4.2.1 Omitted Variables

The problem of omitted variable bias in logistic regression has been considered extensively

in both the statistics and econometrics literatures (Begg and Lagakos, 1990; Cramer, 2005;

Gail et al., 1984; Lee, 1982; Mood, 2010; Neuhaus and Jewell, 1993). In the case of linear

regression, bias will not occur if the omitted variable is independent of the included predictor.

However, for the logit link, if a variable orthogonal to the included predictor is omitted, bias

in the estimate of the included predictor may result (Lee, 1982).

Suppose the true model can be written as

logit {P (D = 1|X,Z)} = θ0 + θXX + θ>ZZ, (4.1)

where θZ is (k−1)-dimensional and Z is a collection of (k−1) dummy variables, representing

a discrete variable Z with k levels. If X and Z are independent conditional on D, the

estimated coefficient for X will be consistent for θX even if Z is omitted (Lee, 1982). This

is related to the concept of collapsibility: essentially, for general (possibly multidimensional)

X and discrete Z, if model (4.1) holds, θX is collapsible if (i) the marginal logistic regression

logit {P (D = 1|X)} = θ∗0 + θ∗XX holds and (ii) θX = θ∗X (Guo and Geng, 1995). Guo and

Geng (1995) prove that θX is collapsible if (i) Z ⊥ X|D or (ii) Z ⊥ D|X. The second

condition follows directly from the fact that if Z ⊥ D|X, θZ = 0; in this case, θ0 and θX are

both correctly estimated even if Z is excluded. In general, θ∗X may differ from θX and the

marginal logit, logit {P (D = 1|X)}, may not be linear.

The issue of omitted variables comes up frequently, often related to discussions of “unob-

served heterogeneity” (Cramer, 2005; Dieleman and Templin, 2014; Gardiner et al., 2009),

random intercept models (Brumback et al., 2010; Gardiner et al., 2009; Heagerty, 1999; Her-
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nan et al., 2011; Hu et al., 1998; Localio et al., 2001; Neuhaus and Jewell, 1993; Neuhaus

and Kalbfleisch, 1998; Neuhaus et al., 1991, 2014; Seaman et al., 2014; Ten Have et al., 1995)

and exogeneity/endogeneity (Antonakis et al., 2010; Skrondal and Rabe-Hesketh, 2014).

4.2.2 Random Intercept Logistic Regression

Random effects models have been studied extensively in a number of literatures (e.g., sta-

tistics, econometrics, epidemiology and sociology). Here we will focus on random intercept

logistic regression (RILR).

Random effects models are often used when there is some sort of clustering of the data.

The standard notation for clustered data uses i to index clusters, i = 1, ...,m, and j to index

observation within a cluster, j = 1, ..., ni, where ni is the number of observations in the ith

cluster. We will consider Dij to be an indicator of a binary outcome of interest and Xij a

vector of predictors. When considering the collection of observations within cluster i, we

will write Di and Xi. We will often differentiate between predictors that are constant for

all observations in a cluster (often called cluster-level, cluster-constant, or between-cluster

predictors) and those that vary across observations in a cluster (called cluster-varying or

within-cluster predictors).

The RILR model can be written as follows:

logit {P (Dij = 1|Xij, bi)} = bi + β0 + β>Xij, bi
iid∼ F, (4.2)

where bi, the random intercept for cluster i, has distribution F . Typically, it is assumed that

bi ∼ N(0, σ2); if we assume bi ∼ N(0, σ2), σ2 is an additional parameter in this model. If we

view the random intercept bi as σzi, where zi ∼ N(0, 1), σ is the regression coefficient for this

standardized omitted (cluster-level) predictor (Heagerty and Zeger, 2000). In that sense, bi is

generally “interpreted as the combined effects of omitted cluster-level predictors” (Skrondal

and Rabe-Hesketh, 2014). In the model formulation given above, bi + β0 can be thought of

as the center-specific offset.
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RILR has been used extensively by researchers and is intuitively appealing: the notion

of a random intercept corresponds to the idea that the clusters under observation are a

sample from some larger population of clusters. However, as noted by Localio et al. (2001),

these models are “attractive but challenging,” and we will explore some of these difficulties.

Despite challenges, these models remain popular in epidemiology and other health-related

fields.

Assumptions

The assumptions made by RILR are not always fully appreciated by practitioners, though

they can have an impact on the estimates produced by the model. The key assumptions

typically made by the RILR model given in equation (4.2) are (Gardiner et al., 2009; Seaman

et al., 2014):

(A1) bi ⊥ Xi

(A2) bi
iid∼ N(0, σ2)

(A3) Conditional on (Xi, bi), the Di1, ...Dini are independent

Assumptions (A1) and (A3) can be extended to include cluster size ni (Seaman et al.,

2014); however, we will not consider the role of cluster size here. Assumption (A2) is not

strictly necessary, but is generally assumed (it is required, though, that E(bi) be a known

constant if the fixed intercept β0 is also included) (Kahan, 2014; Seaman et al., 2014). The

model formulation given in equation (4.2) and the assumptions given above imply that any

dependence of Dij on the values of (cluster-varying) predictors for other cluster members

must be through a cluster-level summary of these values, and the effect of this summary

must be constant for all members of the cluster and captured by bi (Seaman et al., 2014).

Furthermore, the random intercept model implies a compound symmetric covariance struc-

ture for the responses Di within a cluster; thus, negative correlations among outcomes in
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a cluster cannot be accommodated by this model (Hu et al., 1998; Ten Have et al., 1995).

However, in many cases of interest, it is reasonable to assume a positive correlation.

Assumption (A1) can be written as f(bi|Xi) = f(bi), which is a fairly strong assumption in

the non-randomized setting (Heagerty and Zeger, 2000). This assumption is often implausible

when the distribution of the predictors varies by cluster. Also, implicit in assumption (A2)

is the assertion that σ is constant (Heagerty and Kurland, 2001; Heagerty and Zeger, 2000).

Violations of these assumptions are discussed below.

Estimates

It is important to distinguish between marginal and conditional estimation approaches: the

conditional (or cluster-specific) approach involves modeling the probability distribution of

D as a function of predictors and cluster-specific parameters (e.g., random cluster-specific

intercepts), while the marginal (or population-averaged) approach involves modeling the

marginal expectation of D as a function of predictors (Neuhaus et al., 1991). RILR is

an example of a conditional approach. Due to the inclusion of cluster-specific parameters,

parameter interpretation under the conditional approach is with respect to cluster (Neuhaus

et al., 1991). For cluster-varying predictors, conditional approaches are often more relevant

than marginal approaches, such as generalized estimating equations (GEE) (Neuhaus et al.,

1991).

Predictors frequently have both a between- and within-cluster component; that is, they

vary both within and between clusters (Neuhaus and Kalbfleisch, 1998). Estimates obtained

via conditional approaches are generally interpreted as estimates of the within-cluster as-

sociation, i.e., the association within each cluster, averaged across clusters; this is typically

what researchers are trying to estimate when they use these approaches with predictors that

vary within clusters (Gunasekara et al., 2014; Localio et al., 2001; Ten Have et al., 1995).

This is often of interest since the within-cluster association is unaffected by all (unmeasu-

red) cluster-constant confounders (Gunasekara et al., 2014). However, as discussed below,

estimated coefficients obtained from RILR may not actually represent the within-cluster
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association: depending upon the nature of the data, the resulting estimates are often a com-

bination of within- and between-cluster comparisons (Gunasekara et al., 2014; Hu et al.,

1998; Localio et al., 2001; Neuhaus and Kalbfleisch, 1998; Neuhaus et al., 1991; Neuhaus and

McCulloch, 2006; Seaman et al., 2014; Ten Have et al., 1996). Between-cluster effects are

sometimes called “contextual effects” (Greenland, 2002; Rabe-Hesketh and Skrondal, 2010)

and are likely to include the effects of cluster-constant confounders (Gunasekara et al., 2014).

Violations of Assumptions

First we will consider (A1); specifically, we will consider violations of the assumption bi ⊥ Xi.

In the context of a randomized multicenter clinical trial, the assumption holds if randomi-

zation is stratified, i.e., done within each center, since in this situation the distribution of

treatment is the same across centers (Localio et al., 2001; Neuhaus and Kalbfleisch, 1998).

However, as noted above, it is generally the case that the distribution of a cluster-varying

predictor varies across clusters; in other words, most predictors are not purely within-cluster

and have both a between-cluster component and a within-cluster component (Berlin et al.,

1999; McCulloch and Neuhaus, 2011; Neuhaus and Kalbfleisch, 1998). When such predic-

tors are included in a RILR model, the assumption that bi ⊥ Xi may not hold, leading to

distortions of the association of interest (Berlin et al., 1999; Neuhaus and Kalbfleisch, 1998).

As a concrete example, suppose the following model holds for the cluster-varying predictor

x:

logit {P (Dij = 1|xij, b′i)} = b′i + γ0 + γ1h(Xi) + γ2(xij − h(Xi))

= b′i + γ0 + (γ1 − γ2)h(Xi) + γ2xij, (4.3)

where h(·) is some cluster-level summary of Xi such that xij−h(Xi) has the same distribution

across clusters and b′i ∼ N(0, σ2). Here, xij −h(Xi) represents the within-cluster component

of x and h(Xi) represents the between-cluster component of x. If the distribution of the

predictor x is the same across clusters, then (γ1−γ2)h(Xi) will be constant in large samples,
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and can be combined with the fixed intercept γ0. However, if the distribution of the predictor

varies across clusters such that h(Xi) varies and the RILR model given in equation (4.2) is

fit to the data, bi = b′i + (γ1 − γ2)h(Xi) 6⊥ Xi if γ1 6= γ2, violating assumption (A1).

When model (4.3) holds, and model (4.2) is fit to the data, the cluster-level variable h(Xi)

is omitted. As described by Greenland et al. (1999), omitting h(Xi) leads to correlation

between bi and Xi, which has the effect of confounding γ2. In particular, confounders are

“now covariates that ‘explain’ the correlation between” bi and Xi; in particular, this includes

h(Xi) (Greenland et al., 1999). Others have referred to this as between-cluster confounding,

since it is caused by omission of cluster-level variables that are correlated with the included

variables (Skrondal and Rabe-Hesketh, 2014). Results from research on omitted variable bias

reveal that when (4.3) holds, and (4.2) is fit to the data, γ̂2 will generally be a combination

of the within- and between-effects (Neuhaus and Kalbfleisch, 1998). Thus, in general, the

RILR model given in equation (4.2) may not be appropriate if cluster-varying predictors

have different distributions across clusters.

Importantly, the effect that is estimated by this misspecified RILR model, that is, the

combination of within- and between-effects, is not of substantive interest and in general

lacks clinical relevance (Localio et al., 2001; Neuhaus and Kalbfleisch, 1998). Even in situ-

ations where it is thought that the between- and within-cluster effects are reasonably close

to one another, there is the potential for differential confounding at the between- versus

within-cluster level; thus, using both within- and between-cluster comparisons to estimate

the within-cluster effect is generally problematic (Gunasekara et al., 2014; Schildcrout and

Heagerty, 2008).

This issue arises very frequently in practice; in particular, Graubard and Korn note

that cluster-varying predictors that are balanced across clusters are “difficult to find in

observational studies” (Graubard and Korn, 1994). If cluster-level factors are associated

with predictors, as is often the case in observational studies, the distribution of the predictors

is likely to vary across clusters, which may in turn lead to correlation between the random

intercepts and predictors (Neuhaus and McCulloch, 2006; Skrondal and Rabe-Hesketh, 2014).
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Many papers in the statistical literature have warned that assumption (A1) may not hold

outside of the randomized trial setting (Berlin et al., 1999; Dieleman and Templin, 2014;

Gardiner et al., 2009; Graubard and Korn, 1994; Greenland et al., 1999; McCulloch and

Neuhaus, 2011; Rabe-Hesketh and Skrondal, 2010; Schildcrout and Heagerty, 2008; Seaman

et al., 2014; Ten Have et al., 1995, 1996). However, the fact that this assumption is often

untenable is frequently overlooked by investigators, who generally implicitly assume bi ⊥ Xi

when implementing RILR models (Berlin et al., 1999; Graubard and Korn, 1994; Neuhaus

and Kalbfleisch, 1998; Skrondal and Rabe-Hesketh, 2014).

This problem is often called “confounding by cluster” since the within-cluster association,

γ2, is distorted by the between-cluster association, γ1 (Berlin et al., 1999; Localio et al., 2002,

2001; Pavlou et al., 2015; Seaman et al., 2014); in the econometrics literature, it is called the

“endogenous covariates problem” (Skrondal and Rabe-Hesketh, 2014). As described above,

the inclusion of the cluster-level variable(s) responsible for this distortion (h(Xi) in the

example above) allows estimation of the effect of interest, i.e., the within-cluster effect; thus,

by the somewhat tautological definition of confounding given by Hernan et al. (2011), since

including these cluster-level variables eliminates the confounding of the within-cluster effect,

these variables can be considered to be confounders of this effect. In general, the inclusion

of cluster-level factors may reduce the potential for confounding by cluster (Localio et al.,

2002). Purely cluster-varying predictors, which have no between-cluster effect, are orthogonal

to all cluster-level variables, including random intercepts, and thus are not susceptible to

confounding by cluster (Heagerty and Zeger, 2000; Localio et al., 2002).

Consider assumption (A2): bi
iid∼ N(0, σ2). This requires that the random cluster-specific

intercepts be independently and identically distributed according to a normal distribution

with mean zero and variance σ2; this is the “mixture distribution.” Violations of RILR model

assumptions, including normality and homoscedasticity of bi (and bi ⊥ Xi), can generally

be cast as misspecifications of the mixture distribution (Neuhaus and McCulloch, 2006).

Broadly speaking, misspecifications of the random intercept distribution, including non-

normality or heteroscedasticity, may lead to bias in the estimate of the fixed intercept but
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typically do not have a large effect on the estimates for cluster-varying predictors (Heagerty

and Kurland, 2001; Heagerty and Zeger, 2000; McCulloch and Neuhaus, 2011; Neuhaus et al.,

1992). Such misspecifications may also lead to biased estimates of the variance of the random

intercept (Lukociene and Vermunt, 2008).

Decomposing Predictors

One solution that has been proposed to address violations of assumption (A1) is to decom-

pose the cluster-varying predictor(s) into a between-cluster component and a within-cluster

component (Begg and Parides, 2003; Brumback et al., 2012; Heagerty and Zeger, 2000;

McCulloch and Neuhaus, 2011; Neuhaus and Kalbfleisch, 1998; Neuhaus and McCulloch,

2006; Schildcrout and Heagerty, 2008; Seaman et al., 2014; Ten Have et al., 1996). In the

context of the model given in equation (4.3), this would mean fitting a model with h(Xi) and

xij as predictors. This method has been used in settings where there is a single predictor,

often when the predictor is binary; this simplifies the choice of h(·), and the cluster mean is

commonly used (Neuhaus and Kalbfleisch, 1998). When h(Xi) = X̄i, the method is called

the “poor man’s” method (Neuhaus and Kalbfleisch, 1998). However, using the cluster mean

may be overly simplistic as it only addresses confounding by cluster when the cluster mean

fully captures all the unmeasured cluster-level characteristics responsible for the confoun-

ding (Berlin et al., 1999). More flexible methods have been proposed based on modeling

bi as a function of Xi (Brumback et al., 2010). Of course, these methods require that the

model for bi be correctly specified (Brumback et al., 2010, 2012; Neuhaus and McCulloch,

2006). Thus, the idea of decomposing predictors typically replaces one set of assumptions

with another (Brumback et al., 2012).

Efficiency

RILR is often touted as being more efficient than alternative methods. This efficiency arises

in part from assuming some (parametric) distribution for the random intercepts (Neuhaus

and Lesperance, 1996; Ten Have et al., 1995). In addition, RILR uses both between- and
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within-cluster comparisons to estimate the effect of predictors that vary within and between

clusters, which allows it to use more information in estimating these effects (Kahan, 2014;

Seaman et al., 2014; Ten Have et al., 1995). Thus, under the full assumptions of RILR, the

resulting estimates are efficient relative to common alternatives (Gardiner et al., 2009). If a

variant of RILR that does not assume equal between- and within-cluster effects is used (e.g.,

the poor man’s method), and the model is correctly specified, estimates may be more efficient

than those obtained from non-RILR methods (Seaman et al., 2014). Some studies have found

reduced efficiency when the distribution of the random intercept is not normal (Lukociene

and Vermunt, 2008).

4.2.3 Fixed Intercept Logistic Regression

Fixed intercept models are a special case of generalized linear models, where a fixed intercept

for each cluster is used to model clustered data. We consider two variants of fixed intercept

logistic regression (FILR): conditional (cFILR) and unconditional (uFILR). Both cFILR and

uFILR have the same form:

logit {P (Dij = 1|Xij)} = β0i + β>Xij, (4.4)

where β0i represents a cluster-specific intercept. cFILR and uFILR differ in their approach

to estimation: uFILR relies on the full likelihood, while cFILR uses a conditional likelihood,

conditioning on the number of cases in each cluster (
∑

j Dij). The development of cFILR

was motivated by the “incidental parameters problem,” which occurs when the number of

parameters grows with the sample size (Neyman and Scott, 1948).

The use of FILR has been advocated as a reasonable (and often preferred) alternative to

other models for clustered data (Brumback et al., 2012; Gardiner et al., 2009; Gunasekara

et al., 2014; Heagerty and Zeger, 2000; Localio et al., 2001; Neuhaus and McCulloch, 2006;

Neuhaus et al., 2014; Skrondal and Rabe-Hesketh, 2008, 2014; Whittemore and Halpern,

2003). Here we discuss FILR and provide some comparisons with RILR.
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Assumptions

In the econometrics literature, the distinction between RILR and FILR is based not on

whether the cluster-specific intercepts are fixed or random, but whether they are independent

of the predictors (Gardiner et al., 2009). Thus, the key assumption for FILR is (Gardiner

et al., 2009; Seaman et al., 2014):

(B1) Conditional on Xi, the Di1, ...Dini are independent

If assumption (B1) holds, cFILR will yield consistent estimates of β. If, additionally, the

cluster size increases faster than the number of clusters, uFILR will yield consistent estimates

of β (Ten Have et al., 1995). If the β0i are random, then (B1) must also condition on β0i

and the β0i must be independent across clusters (Gardiner et al., 2009; Seaman et al., 2014).

When there is reason to suspect that the predictors are associated with bi, FILR is generally

recommended over RILR (Gardiner et al., 2009).

Estimates

FILR consistently estimates the within-cluster effect of predictors that vary within clusters,

provided (B1) is satisfied and (4.4) holds (Berlin et al., 1999; Hu et al., 1998; Neuhaus and

Kalbfleisch, 1998). Thus, this method avoids the issue of confounding by cluster; in fact, the

resulting estimates are not affected by confounding from any unmeasured cluster-constant

variables (Berlin et al., 1999; Gunasekara et al., 2014). This is because the cluster-specific

intercepts that are included in the FILR model need not be independent of Xi and so can

include the effect of any cluster-constant variables, such as h(Xi) in the example given above.

As noted above, uFILR maximizes the full data likelihood to obtain parameter estimates,

while cFILR maximizes the conditional likelihood. For both methods, since only within-

cluster comparisons are used to estimate the parameters, clusters for which all observations

have D = 1 or all observations have D = 0 (what we will call “concordant clusters”) do not

contribute any information to the estimation of the within-cluster effect (without additional

assumptions) and thus are not used in estimation (Gardiner et al., 2009; Ten Have et al.,
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1995). This is also true of clusters that are concordant on the predictors, though this situation

is generally unlikely in when there are multiple and/or continuous predictors.

Efficiency

Many investigators are hesitant to use FILR since the exclusion of concordant clusters could

reduce efficiency (Neuhaus and Kalbfleisch, 1998). Indeed, the efficiency of estimates from

cFILR relative to those from RILR improves as the probability of concordance decreases,

indicating the role of concordance in considerations of efficiency (Neuhaus and Lesperance,

1996; Ten Have et al., 1995). However, previous research has shown that cFILR provides

estimates that are efficient relative to RILR for predictors that predominantly vary within-

clusters (Neuhaus et al., 2014; Schildcrout and Heagerty, 2008). Indeed, as pointed out

by Neuhaus and Kalbfleisch (1998), for predictors with between- and within-cluster compo-

nents, the increased efficiency of estimates from RILR that is sometimes observed (particu-

larly when the clusters are not very small) is often largely due to the assumption of common

within- and between-cluster effects.

If these effects are indeed equal, there will be some efficiency gain from using RILR since

this method uses both within- and between-cluster variations to estimate the predictor ef-

fect (Schildcrout and Heagerty, 2008). However, using both types of variation in estimation is

generally not recommended due to the potential for differential confounding (Schildcrout and

Heagerty, 2008). Importantly, concordant clusters contribute to the between-cluster varia-

tion and often exhibit strong between-cluster effects; these can heavily distort the estimated

effect for within-cluster predictors if RILR is used when the within- and between-cluster

effects are not equal (Hu et al., 1998; Ten Have et al., 1996). Furthermore, if there is no

between-cluster variation in the predictor (that is, the distribution of the predictor is the

same in each cluster), RILR ignores concordant clusters (Localio et al., 2001). When the

random intercept is associated with predictors, and this association is correctly modeled via

RILR with a modified mixture distribution, the resulting estimates are only slightly more ef-

ficient than estimates from cFILR (even with fairly small clusters) (Neuhaus and McCulloch,
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2006).

4.2.4 Asymptotics for Clustered Data

When the number of clusters is fixed, but the cluster size is increasing, the estimates from

uFILR and cFILR are asymptotically equal (Hauck, 1984). However, when the number

of clusters is growing, uFILR is susceptible to the incidental parameters problem (Hauck,

1984). On the other hand, the estimates from cFILR will be consistent in this setting. For

RILR, asymptotic results generally correspond to the setting where the number of clusters

is growing (Huang, 2009). If bi 6⊥ Xi, estimates from RILR are expected be consistent when

the cluster size is growing if the within-cluster variation of the predictors is sufficiently large

since in this situation, within-cluster comparisons will dominate between-cluster comparisons

asymptotically (Brumback et al., 2010, 2012; Gunasekara et al., 2014; Skrondal and Rabe-

Hesketh, 2014).

4.2.5 Risk Prediction and Clustered Data

In the risk prediction setting, the focus is not on the estimate of a single parameter, as in

the etiologic and therapeutic settings, but rather on the combination of several parameter

estimates and corresponding predictor values (Bouwmeester et al., 2013). When clustered

data are used to develop combinations of biomarkers for diagnosis or prognosis, additional

challenges emerge. First, a decision must be made regarding whether interest is in conditio-

nal or marginal estimates; often this choice will be dictated by the nature of the clustering

variable. For example, if the clusters are centers, researchers are typically interested in the

conditional association because allowing center to be predictive limits generalizability and

interpretability. Challenges also arise in the application of biomarker combinations for diag-

nosis or prognosis in the clustered data setting. In order to generate conditional predicted

probabilities, an estimate of the cluster-specific intercept must be available. This will ge-

nerally not be the case for clusters not used in constructing the combination (Bouwmeester

et al., 2013; Wynants et al., 2015).
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4.2.6 Evaluating Performance

Suppose we have a generic predictor Z and are interested in evaluating its performance. In

the context of risk prediction, interest generally centers on evaluating discrimination and

calibration. Although both aspects of performance are essential to determining whether a

risk prediction instrument should be used clinically, we will primarily focus on discrimination,

since determining the discriminative ability of a predictor is often the first step in developing

a clinically useful diagnostic or prognostic tool. Discrimination is the ability of Z to separate

cases (individuals who have or will experience the outcome, D = 1) and controls (individuals

who do not have or will not experience the outcome, D = 0) and is most commonly assessed

via the area under the receiver operating characteristic (ROC) curve (AUC). The ROC

curve plots the true positive rate, the proportion of correctly classified cases, versus the

false positive rate, the proportion of incorrectly classified controls, over the range of possible

thresholds for Z; thus, it exists on the unit square (Pepe, 2003). The ROC curve for a useless

predictor lies on the 45-degree line, and the corresponding AUC is 0.5 (Pepe, 2003). The

ROC curve for a perfect predictor reaches the upper left-hand corner of the unit square, and

the AUC for such a predictor is 1 (Pepe, 2003). The AUC has a probabilistic interpretation:

it is the probability that, for a randomly chosen case-control pair, the value of Z for the

case is higher than the value of Z for the control, assuming that higher values of Z are more

indicative of D (Pepe, 2003).

As described above in the context of constructing combinations, when data come from

multiple centers, it is generally important to avoid allowing center to be predictive, so conditi-

onal approaches to constructing combinations are appropriate. Likewise, in order to prevent

center from contributing to the assessment of the discriminatory ability of Z, the center-

adjusted AUC, a conditional measure, should generally be used to evaluate performance;

this is analogous to the center-adjusted odds ratio in multicenter association studies (Janes

and Pepe, 2008).

The center-adjusted ROC (aROC) and corresponding center-adjusted AUC (aAUC),
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proposed by Janes and Pepe (2009) for general covariate adjustment, can be written as

aROCZ(t) and aAUCZ , respectively, where

aAUCZ =

∫ 1

0

aROCZ(t)dt

=

∫ 1

0

∫
ROCZ|C=c(t)dPD(c)dt

=
∑
c

wcAUCZ|C=c, (4.5)

where t is the false positive rate, ROCZ|C=c and AUCZ|C=c are the center-specific ROC and

AUC, respectively, and PD(c) is the distribution of center among cases. When the center-

specific AUC is constant across centers, the adjusted AUC is simply that center-specific

AUC; in general, the aAUC is a weighted average of the center-specific AUCs, where the

weights correspond to the proportion of cases in each center (Janes et al., 2009; Janes and

Pepe, 2009).

When the ROC curve varies by a covariate (a type of effect modification), it is generally

recommended that a separate ROC curve be estimated for each value of the covariate (Janes

et al., 2009). In the case of center, where only a fraction of the existing centers are observed,

this is not possible. However, it is reasonable to assess the heterogeneity in the center-

specific AUCs, as this provides some indication of how the predictor may perform in a new

center (Bouwmeester et al., 2013).

The marginal AUC (the AUC calculated without regard to center) would be appropriate

if between-center heterogeneity were to be used in making decisions, which is not typically

the case (van Klaveren et al., 2014). The marginal AUC can be thought of as a summary

of the data at hand; that is, the ability of Z to discriminate between cases and controls in a

particular set of centers (Janes and Pepe, 2008; van Oirbeek and Lesaffre, 2010). In general,

some summary of the conditional, or center-specific, AUCs should be used to avoid allowing

center to contribute to the discriminatory ability of the predictor. However, different authors

have proposed different means of combining the center-specific AUCs into an overall center-
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adjusted measure. Several authors have proposed using a simple average of center-specific

AUCs (Bouwmeester et al., 2013; van Oirbeek and Lesaffre, 2010; Wynants et al., 2015) or

fixed- and random-effects meta-analysis methods (Riley et al., 2015; Snell et al., 2016; van

Klaveren et al., 2014).

The measure defined in equation (4.5) is compelling because it corresponds to the area

under the ROC curve given by the weighted average of center-specific true-positive rates,

holding the center-specific false-positive rates constant (Janes and Pepe, 2009):

aROCZ(t) = P
(
Z > g(t|c)

∣∣∣D = 1
)
,

where g(t|c) is the center-specific threshold giving a false positive rate of t in each center.

In other words, the center-adjusted ROC curve, on which the aAUC is based, is the ROC

curve corresponding to the true and false positive rates based on center-specific thresholds;

these center-specific thresholds are chosen such that the false positive rate is the same in

each center (Janes and Pepe, 2009). When other weights are used, this interpretation of

aROC does not apply.

Previous work has considered the relationship between the marginal ROC, ROCZ , and

the conditional ROC for a covariate C, ROCZ|C (Kerr and Pepe, 2011). If the distribution

of X among controls varies across values of C, but C is independent of the outcome, ROCZ

will be attenuated relative to ROCZ|C (Janes et al., 2009; Janes and Pepe, 2008). In this

situation, C is said to “calibrate” Z (Janes and Pepe, 2008; Kerr and Pepe, 2011). In

general, if C is associated with Z and the outcome, ROCZ will differ from ROCZ|C since

ROCZ includes part of the discriminatory ability of C (Janes and Pepe, 2008).

When the same data are used to construct a combination and evaluate its performance,

the resulting estimate of performance is optimistic (Copas and Corbett, 2002). This type

of optimistic bias is often called “resubstitution bias” (Kerr et al., 2015). Typically, when

the data are not clustered, this is addressed by using a bootstrapping procedure to estimate

the degree of optimism (Copas and Corbett, 2002; Harrell, 2013). Bootstrapping assumes
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exchangeability of the observations, which may not hold in the multicenter setting due to

the correlation among observations in the same center (Bouwmeester et al., 2013). Thus,

it is often recommended that bootstrapping preserve the effect of clustering by resampling

by center (Janes et al., 2009; Localio et al., 2001; van Oirbeek and Lesaffre, 2010). Howe-

ver, Bouwmeester et al. (2013) found similar results for the average of cluster-specific AUC

estimates whether resampling was done on clusters or individual observations.

4.2.7 Biomarker Combinations

Many biomarker assays are now capable of measuring multiple biomarkers, and the cost of

biomarker assays in general continues to decline. As a result, it is becoming increasingly

common to collect data on an array of biomarkers and, consequently, there is great interest

in constructing combinations of these biomarkers for diagnosis or prognosis.

For a collection of biomarkers X, the risk score, P (D = 1|X), is optimal in terms of

maximizing the true positive rate at each false positive rate among all possible combinations

of the biomarkers X (McIntosh and Pepe, 2002). Thus, to the extent that the linear logistic

model P (D = 1|X) = expit(β>X) holds, the combination β>X will be optimal. As the

linear logistic model may not hold, methods have been developed to optimize the AUC

within the class of linear combinations β>X without relying on this model (Pepe et al.,

2006). However, logistic regression is quite robust and, although there are no guarantees, in

many cases will provide a reasonably good fit to the data, and so is often used to construct

biomarker combinations (Fong et al., 2016; Lin et al., 2011; Ma and Huang, 2007; Pepe

et al., 2006). Likewise, including biomarkers as linear terms may not reflect the underlying

data-generating distribution (Pepe and Thompson, 2000), but it is often a reasonable choice

and has intuitive appeal for clinical collaborators.

Methods have also been developed to identify combinations of biomarkers that maximize

AUC while accommodating covariates (Liu and Zhou, 2013; Schisterman et al., 2004). Ho-

wever, the method proposed by Liu and Zhou (2013) is computationally challenging when

there are more than two biomarkers to be combined, and the method proposed by Schister-
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man et al. (2004) relies on an assumption of multivariate normality of the biomarkers and

specification of the relationship between the covariates (e.g., center) and the biomarkers.

Previous research has found that combining biomarkers does not always result in better

performance (Bansal and Pepe, 2013). In general, when considering biomarker combinations,

it is recommended that the performance of the combinations be evaluated, rather than

deciding which biomarkers to combine based on marginal performance and/or correlation

among biomarkers (Bansal and Pepe, 2013).

4.3 Methods

When the data come from a single center, common practice is to first construct a (linear)

combination of the biomarkers, often using logistic regression, and evaluate its performance

using measures such as the AUC. With more than one center, it is important to consider how

to appropriately accommodate center in both the construction and evaluation of biomarker

combinations. As with the center-adjusted odds ratio in multicenter etiologic studies or the

center-adjusted treatment effect in multicenter randomized trials, we propose using conditi-

onal approaches in the construction and evaluation of biomarker combinations, in particular,

using FILR to construct combinations and the center-adjusted AUC to evaluate them.

Throughout, we focus on constructing a single biomarker combination, as opposed to

fitting center-specific combinations; that is, we do not allow the relationship between the

biomarkers and the outcome to vary across centers. In the clinical trial setting, assessing

treatment-by-center interactions is usually not part of the primary analysis (Kahan, 2014).

Analogously, in the risk prediction setting, it is preferable to give a single combination that

is not center-specific, as this would make development highly localized. Of course, this may

mean that we do not identify the combination that is “optimal” in every center. However,

our primary goal is to identify a single combination and evaluate its performance across

centers, though as we discuss below, it is generally informative to assess the degree of hete-

rogeneity in performance across centers for a given biomarker combination. In this section

and the simulations that follow, we consider situations where there is no effect modification
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by center (either in terms of the “true” biomarker combination or its performance); we then

examine the potential impact of effect modification by center in the Discussion. We focus

on constructing linear combinations via the logistic regression framework. While this may

seem restrictive, Pepe et al. (2006) noted that the class of linear combinations is actually

quite large (taking into consideration possible biomarker transformations and interactions)

and, as mentioned above, the logistic form is fairly robust.

We consider a setting where we have data from m centers (where the population consists

of M ∈ [m,∞] centers) with nc (c = 1, ...,m) observations in each, a p-dimensional vector of

biomarkers X, and a binary outcome D. In general, let X denote the vector of biomarkers

for an arbitrary individual. Let C indicate center and D denote the binary outcome, where

D = 1 or the subscript D indicate cases, and D = 0 or the subscript D̄ indicate controls. In

each center there are ncD cases and nc
D̄

controls, and there are nD total cases and nD̄ total

controls. Throughout, we will assume a non-trivial center-specific disease prevalence; that

is, P (D = 1|C = c) := γc ∈ [1/V, 1− 1/V ], c = 1, ...,M , for V ∈ (2,∞).

4.3.1 The Role of Center

As indicated above, biomarkers may be either diagnostic or prognostic: diagnostic biomar-

kers represent some underlying disease or disease process (i.e., D → X), while prognostic

biomarkers cause some future outcome (that is, X→ D).

We consider the role of center in the context of two sets of characteristics:

1. Characteristics affecting the prevalence of D: differences in the populations served by

each center could affect the prevalence of D.

2. Characteristics affecting biomarker measurements: center-level factors, including storage

and handling of specimens and hospital-level practices, could lead to variations in bio-

marker measurements unrelated to D.

In other words, we consider two ways in which center differences may arise: (1) through

differences in prevalence and (2) through differences in biomarker measurements unrelated



87

to D. Others have similarly noted the potential for center differences to arise through

differences in the patients at each center and/or through differences in the centers themselves

(for example, differences in protocols and practices) (Janes and Pepe, 2008; Kahan, 2014).

We focus on three possibilities for the role of center. We call center a confounder when

center separately affects both the prevalence of D and biomarker measurements, a case

mix variable when center affects only the prevalence of D, and a calibration variable when

center affects only the biomarker measurements, separate from D. This taxonomy helps

researchers to understand and communicate the role of center in their studies, highlights

the possible causes of center differences, and provides insight into the potential impact of

different decisions made during data analysis.

In the TRIBE-AKI study, where the goal is to use biomarkers to diagnose AKI, it may be

the case that certain centers serve particularly unhealthy communities and that this results in

differences in biomarker levels; however, these differences may simply reflect true underlying

biology. If factors such as storage and handling of biomarkers and surgical practices are

standardized, such that the distribution of biomarkers is similar across centers, conditional

on case status, center would be a case mix variable. If, however, these factors vary across

centers (e.g., in some centers surgeons use different protocols for fluid administration) in

addition to variability in disease prevalence, center would be a confounder. On the other

hand, if the populations served by each center are relatively similar in terms of underlying

AKI risk, but factors such as surgical protocols vary across centers and lead to variations in

biomarker measurements, center would be a calibration variable.

We can also consider an example with prognostic biomarkers. Suppose carotid intima-

media thickness is used to predict which patients will experience stroke. If certain centers

tend to serve less healthy populations (i.e., those at greater risk for stroke), but practices for

measuring carotid intima-media thickness are standardized across centers, center would be a

case mix variable. If the make-up of patients in terms of underlying risk of stroke is similar

across centers, but different protocols or imaging tools are used at different centers such that

the distribution of intima-media thickness measurements varies across centers, center would
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be a calibration variable. If both the composition of patients and intima-media thickness

measurement practices vary across centers, center would be a confounder.

In Figure 4.1, we present graphical and probabilistic depictions of center as a case mix

variable, a calibration variable, and a confounder for a set of diagnostic biomarkers X.

Likewise, in Figure 4.2, we present graphical and probabilistic depictions of center as a case

mix variable, a calibration variable, and a confounder for a set of prognostic biomarkers X.

While the graphical depictions for prognostic biomarkers are complementary to those for

diagnostic markers, the probabilistic depictions include important differences. We make a

distinction between diagnostic and prognostic biomarkers (and invoke causality in discussing

them) because this allows application of probabilistic notions of dependence, which will

in turn provide insights into the role of center and the repercussions of applying different

methods to multicenter data.

D X

C
Case Mix
Variable

Graphical Depiction

C ⊥ X|D

Probabilistic Depiction

D X

C
Calibration

Variable C ⊥ D

D X

C

Confounder
C 6⊥ X|D,
C 6⊥ D

Figure 4.1: Select potential roles of center in studies of diagnostic markers.

It is important to distinguish center as a confounder, as described above and defined in

Figures 4.1 and 4.2, from “confounding by cluster” in the context of a RILR model. The
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Figure 4.2: Select potential roles of center in studies of prognostic markers.

definition of “confounding” in Figures 4.1 and 4.2 is in line with standard epidemiological

notions of confounding. The idea of “confounding by cluster” for RILR models, on the

other hand, is specific to the RILR framework: “confounding by cluster” occurs when the

random intercepts and the predictor(s) are not independent, leading to an omitted cluster-

level covariate that is associated with the predictor(s). In order to address violations of

assumption (A1), and in so doing resolve the distortion of the within-cluster effect caused by

this omitted covariate, the covariate must be included in the RILR model. As we will see,

when the biomarkers are diagnostic and center is either a case mix variable or a calibration

variable, the random intercepts and the biomarkers may not be independent, so in the context

of the RILR model, we are susceptible to “confounding by cluster,” even though center is

not a confounder by the definition in Figure 4.1.
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4.3.2 Ignoring Center

Clinical researchers frequently ignore center in the construction and/or evaluation of diag-

nostic or prognostic biomarker combinations (e.g., Shapiro et al. (2009); Vuilleumier et al.

(2008)). This is likely due to the fact that investigators acknowledge the unique role center

can play, in the sense that it could be predictive of the outcome yet should not näıvely be

included as a predictor, but are not familiar with methods for accommodating center or the

repercussions of ignoring it. In general, attention must be paid to role of center in both the

construction and evaluation of biomarker combinations for diagnosis or prognosis.

Construction

Suppose the linear-logistic model holds:

logit {P (D = 1|X, C = c)} = βc0 + β>X. (4.6)

Such a model could arise from the following data-generating model for two biomarkers,

X = (X1, X2):

 X1

X2

∣∣∣∣∣∣D = d, C = c

 ∼ N

 fX1(c) + µX1d

fX2(c) + µX2d

 ,

 1 ρ

ρ 1

 (4.7)

where µX1 and µX2 are related to the AUC for each marker (µX1 =
√

2Φ−1(AUCX1|C) and

µX2 =
√

2Φ−1(AUCX2|C)). We consider constant center-specific AUCs for the individual

markers, and thus allow for center effects on biomarker levels via conditional mean shifts.

Equation (4.7) gives

logit {P (D = 1|X, C = c)} = βc0 + β1X1 + β2X2.
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where βc0 is a center-specific offset and, as shown in Appendix A.2.1,

βc0 =
−µ2

X1
− µ2

X2

2(1− ρ2)
+
ρµX1µX2 + ρµX1fX2(c) + ρµX2fX1(c)

1− ρ2

− {µX1fX1(c) + µX2fX2(c)}
1− ρ2

+ log

(
γc

1− γc

)
,

and

β1 =
µX1 − ρµX2

1− ρ2
, β2 =

µX2 − ρµX1

1− ρ2
.

Thus, the risk score P (D = 1|X, C) can be written in linear-logistic form where center

is included as a nominal adjustment (stratification) variable. This conditional distribution

leads to a biomarker combination (β1X1 + β2X2) that is the same across centers.

Returning to the general linear-logistic model given in (4.6), suppose that the model

holds, but βc0 is not allowed to vary across centers. That is, suppose we fit the following

(potentially misspecified) model to the data pooled across centers:

logit {P (D = 1|X)} = α0 + α>X. (4.8)

Based on results for misspecified regression models, (α0,α) minimize the Kullback-Leibler

divergence between the marginal model (4.8) and the true data-generating model (Akaike,

1998). That is, the estimates (α̂0, α̂) obtained from equation (4.8) will converge to the

values (α0,α) that minimize the Kullback-Leibler divergence. When C ⊥ D|X or C ⊥ X|D,

and model (4.6) holds, we have collapsibility (Guo and Geng, 1995). This means that

the conditional and marginal coefficients are the same (α = β) and the marginal logit,

logit{P (D = 1|X)}, is still linear. Therefore, in these situations, the relationship between

the biomarkers and the outcome is the same whether we condition on center or marginalize

over it. Furthermore, in model (4.6), when C ⊥ D|X, βc0 will not vary across centers, so

α0 = βc0. This means that for a calibration variable in the prognostic setting, there is no

impact of ignoring center on any of the parameters (i.e., the intercept and the biomarker
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coefficients) under model (4.6). Thus, under model (4.6), the biomarker coefficients will not

be affected by ignoring center in some special situations.

However, when 4.6 holds, C 6⊥ D|X, and C 6⊥ X|D, center may not be able to be

ignored even if we are only interested in the biomarker coefficients, as will be seen below.

Furthermore, the linear-logistic model (4.6) may not hold, in which case the collapsibility

results will no longer be expected to apply. More generally, ignoring center in the construction

of the biomarker combination potentially allows center to be predictive; that is, part of the

effect of center may be included in the estimates of the biomarker coefficients when center

is omitted. As noted above, allowing center to be predictive limits generalizability and

interpretability.

Evaluation

We focus on evaluating the discrimination of biomarker combinations; that is, how well

the combination separates cases and controls. This is because we view our methods as

most applicable in the early stages of biomarker combination development, where interest

is in identifying promising combinations of biomarkers for further study and refinement,

including modifying assays and practices related to sample collection and storage with the

goal of reducing or eliminating center differences. Specifically, we focus on the AUC as a

measure of discrimination.

As with biomarker combination construction, center is often ignored in the evaluation of

combinations (Janes and Pepe, 2008). Suppose we have two biomarkers, X1 and X2, and

we have a linear combination: Lθ(X) = θ>X = θ1X1 + θ2X2. Lθ(X) can be thought of as

a “super marker.” When center is ignored in the evaluation of Lθ(X), the data are pooled

across centers. This gives the marginal AUC, AUC(θ) = P (Lθ(XD) > Lθ(XD̄)), where XD

is the vector of biomarkers for an arbitrary case and XD̄ is the vector of biomarkers for an
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arbitrary control. In practice, AUC(θ) is estimated empirically:

ˆAUC(θ) =

∑
i:Di=1,j:Dj=0

1(θ1X1i + θ2X2i > θ1X1j + θ2X2j)

nDnD̄
,

where Di is the outcome for the ith observation, X1i is the value of X1 for the ith case and

X1j is the value of X1 for the jth control, and X2i and X2j are defined analogously. When

the biomarkers X are associated with center such that Lθ(X) is also associated with center,

the marginal AUC includes part of the discriminatory accuracy of center, even if center is

taken into account when constructing the combination (Janes and Pepe, 2008).

This is in contrast to the conditional, or center-specific, AUC, AUCc. This corresponds

to evaluating combinations by stratifying by center and is written AUCc(θ) = P (Lθ(Xc
D) >

Lθ(Xc
D̄)), where Xc

D is the vector of biomarkers for an arbitrary case in center c and Xc
D̄

is the vector of biomarkers for an arbitrary control in center c. Of course, it is possible for

AUCc(θ) of a given combination to vary across centers. In practice, AUCc(θ) is estimated

empirically:

ˆAUCc(θ) =

∑
i:Dci=1,j:Dcj=0

1(θ1X
c
1i + θ2X

c
2i > θ1X

c
1j + θ2X

c
2j)

ncDn
c
D̄

,

where Dc
i is the outcome for the ith subject in center c, Xc

1i is the value of X1 for the ith

case in center c and Xc
1j is the value of X1 for the jth control in center c, and Xc

2i and Xc
2j

are defined analogously. Note that AUCc can only be estimated in discordant centers (those

with at least one case and one control).

4.3.3 Accounting for Center

Often, multicenter studies of association account for center in some way, typically by esti-

mating a center-adjusted measure of association. In multicenter randomized trials, rando-

mization is often stratified by center and the target of estimation is then the center-adjusted

treatment effect (Kahan, 2014). This idea can be extended to the construction and evaluation
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of biomarker combinations for diagnosis and prognosis.

Indeed, the limited statistical literature related to center effects in risk prediction gene-

rally recognizes that ignoring center is problematic. That is, when the goal is to apply biomar-

ker combinations to individuals from new centers, it is important to stratify by center when

constructing the combination (i.e., the combination should be constructed conditional on

center) and evaluating the combination (using a summary of conditional performance) (Bou-

wmeester et al., 2013; van Klaveren et al., 2014). Therefore, we focus on methods that

stratify (condition) on center for both construction and evaluation. As a consequence of

focusing on conditional AUC, we do not need an estimate of the intercept in each center to

evaluate the combination, as the center-specific AUC is a rank-based measure and so would

be unaffected by such estimates.

Construction

We can accommodate center in the construction of biomarker combinations by stratifying

by center. In the standard regression framework, this means that center will be included in

the model with the biomarkers in some form. If the goal is to construct a single biomarker

combination, there are two main ways the logistic regression framework could be used:

1. Random intercept model (including the “poor man’s” method)

2. Fixed intercept model (including conditional regression methods)

Specifically, we will consider RILR and FILR; for FILR, we will consider both cFILR and

uFILR. For concreteness, we consider p = 2 biomarkers in the discussion below. In discussing

RILR and FILR, we suppress some of the subscript notation used above in introducing these

models. Recall that X is used to denote the vector of biomarkers for an arbitrary individual.

Construction: RILR

To the limited extent that the literature has acknowledged the potential role of center in the

prediction setting, RILR models are often the chosen method for estimation (Bouwmeester
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et al., 2013). This model can be written as

logit {P (D = 1|X, bc)} = bc + τ0 + τ1X1 + τ2X2,

bc
iid∼ F (0, σ2), (4.9)

where the distribution of the random center-specific intercepts, F , is typically assumed to be

normal. The model makes three key assumptions, (A1)-(A3). Assumption (A1) is satisfied

if C ⊥ X. In general, when the distribution of X1 or X2 varies by center, assumption (A1)

may not hold and the corresponding estimates (τ̂0, τ̂1, τ̂2) may not be meaningful.

For biomarkers measured in multiple centers, it is generally unreasonable to expect the

distribution of the biomarkers to be the same across centers. The “poor man’s” method may

be useful in addressing violations of (A1), and can be written

logit {P (D = 1|X1, X2, b
∗
c)} = b∗c + τ ∗0 + τW1 (X1 − X̄1c) + τW2 (X2 − X̄2c)

+ τB1 X̄1c + τB2 X̄2c,

b∗c ∼F (0, σ∗2),

where X̄1c and X̄2c are the center-specific means of X1 and X2, respectively, b∗c and τ ∗0

represent the random center-specific and overall (fixed) intercepts, respectively, τW1 and τW2

represent the within-center effects of the biomarkers, and τB1 and τB2 represent the between-

center effects of the biomarkers. This method has been proposed for the case where there

is one predictor and may not fully address violations of (A1) in the multivariable setting.

Importantly, this method relies on a RILR model, so assumptions (A1)-(A3) are still required.

If the differences in the distribution of biomarkers across center are captured by mean shifts,

b∗c and (X1 − X̄1c, X1 − X̄1c) would be independent in large samples.
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Construction: FILR

An option that has been discussed at length in the literature on multicenter randomized trials,

but has been largely (if not entirely) neglected in the prediction literature is FILR (Berlin

et al., 1999; Localio et al., 2001; Neuhaus and Kalbfleisch, 1998). We propose using uFILR

when the number of centers is modest, and cFILR when the number of centers is large. The

FILR model can be written as

logit {P (D = 1|X, C = c)} = βc0 + β1X1 + β2X2.

If the βc0 are not random, this model relies on assumption (B1). When the number of centers

is large relative to the total sample size or the number of centers is expected to grow with the

total sample size, cFILR is preferred to uFILR in order to avoid the incidental parameters

problem.

RILR vs. FILR in Diagnostic and Prognostic Research

Random intercept models are, at first glance, appealing for data from multicenter studies in

the context of prediction: these models are thought to represent a situation where there exists

a large population of centers, and the data at hand constitute a random draw of centers from

that population. This intuition may make investigators more comfortable with generalizing

their results to centers not included in their data, typically the goal of prediction research, and

thus more likely to use RILR. However, since the key distinction between random and fixed

intercept models is not necessarily whether the center-specific intercepts are random or fixed,

but rather whether they are associated with the biomarkers, thinking about center-specific

intercepts as random as opposed to fixed generally offers little meaningful benefit (Gardiner

et al., 2009).

Researchers may also be drawn to RILR since it gives an estimate of the overall intercept

τ0 and the center-specific intercepts bc are typically assumed to be normally distributed with

mean 0; this leads researchers to believe that they can provide predicted probabilities for
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patients in new centers not used in model fitting via τ̂0 + τ̂1X1 + τ̂2X2. However, assuming

bc = 0 in new centers generally leads to poor calibration; that is, it does not provide useful

estimates of risk (Pavlou et al., 2015). Even if a valid estimate of bc for a new center

is available, the estimate of τ0 from RILR can be badly biased if the random intercept

distribution is misspecified. Thus, the fact that RILR seemingly provides a way to estimate

predicted probabilities does not justify its use.

The “poor man’s” method has been proposed as an alternative to standard RILR. Even

if the distributions of the mean-centered predictors are the same across centers (which would

help to address violations of assumption (A1)), this method is not particularly compelling

in the prediction setting since application of the model to new centers requires estimates of

the center-specific biomarker means; such reliance on information from the new center to

update the model makes external validation and clinical application more challenging. In

addition, since the “poor man’s” method relies on a RILR model, the estimate of the fixed

intercept will potentially face the same challenges as the standard RILR model, discussed

above. Thus, the “poor man’s” method will often not provide useful predicted probabilities.

The idea behind the poor man’s method is that subtracting the center-specific mean

transforms the biomarkers into predictors that have the same distribution across centers (or

are at least independent of bc). Essentially, this is an attempt to force the model to estimate

the within-center effect of the biomarkers, as opposed to a combination of the within- and

between-center effects. However, FILR estimates this effect with no further assumptions

or transformations of the data. It is important to estimate the within-center effect of the

biomarkers in order to avoid allowing center to be predictive: in the presence of between-

center differences in the biomarkers, where the between- and within-center effects of the

biomarkers differ, RILR may allow center to be predictive since the fitted combination will in

part reflect the between-center comparisons. Thus, the use of FILR in multicenter biomarker

studies is compelling as estimates of biomarker associations that are unaffected by center

differences are most useful in identifying promising combinations for further development.

Conversely, an obvious criticism of uFILR is that it does not allow predicted probabilities
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to be estimated in new centers, since it only provides estimates of the intercepts for the

centers used in construction. In addition, due to the form of the likelihood, cFILR cannot

provide estimates of the center-specific intercepts for the centers used in construction, nor

can it provide such estimates for new centers. We agree that these are limitations of FILR;

however, as discussed above, RILR does not necessarily solve this problem. Furthermore, the

biomarker combination can still be useful without intercept estimates, for example, to stratify

patients within each center according to likelihood of having or developing the outcome. In

addition, the center-adjusted performance of combinations (in terms of discrimination) can

be evaluated without an intercept, allowing for identification of promising combinations of

biomarkers for further development.

Evaluation: Center-Adjusted ROC and AUC

One way to account for center in the evaluation of a biomarker combination is via the center-

adjusted AUC. As described earlier, the center-adjusted AUC (aAUC) is a stratified measure

of performance (Janes and Pepe, 2008) and can be written as aAUC(θ) =
∑M

c=1AUCc(θ)wc

for a given combination θ>X. The empirical aAUC estimate can be written as

ˆaAUC(θ) =
m∑
c=1

ŵc ˆAUCc(θ),

where ŵc is the fraction of observed cases in center c and is the empirical estimate of the

weight wc, that is, ŵc =
ncD∑m
c=1 n

c
D

. If a study involves outcome-dependent sampling, care must

be taken to ensure that ŵc is a valid estimate the distribution of cases across centers. If ŵc

is not a valid estimate of P (C = c|D = 1), ˆaAUC(θ) will still correspond to an adjusted

measure of performance, but it will no longer estimate aAUC(θ) as defined above.
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Asymptotic Properties

Our proposal involves constructing linear combinations of biomarkers by estimating θ and

evaluating the performance of these combinations with the aAUC. We would like to de-

monstrate consistency of this estimate of performance; that is, ˆaAUC(θ̂)
p−→ aAUC(θ0) if

θ̂
p−→ θ0. This is shown by Lemmas 4.1 and 4.2 and Theorem 4.1 below; the proofs of these

results can be found in Appendices A.2.3, A.2.3, and A.2.5. Lemma 4.1 provides uniform

convergence in probability of ˆAUCc(θ) to AUCc(θ). Lemma 4.2 provides uniform conver-

gence in probability of ˆaAUCc(θ) to aAUCc(θ) and Theorem 4.1 provides convergence in

probability of ˆaAUCc(θ̂) to aAUCc(θ0) if θ̂ converges in probability to θ0. First, we describe

the conditions required for these results to hold. Let Xc
i denote the vector of biomarkers

for the ith individual in center c and let Xc denote the vector of biomarkers for an arbitrary

individual in center c.

(C1) The m centers are randomly sampled from the population of M centers, and nc

observations are randomly sampled from center c, c = 1, ...,m.

(C2)
∑m

c=1 |E(ŵc)− wc| → 0 as nc → ∞, c = 1, ...,m, and m → M such that
√
nc/m →

∞.

(C3) The centers are independent and within each center, the observations Oc
i = (Dc

i ,X
c
i),

i = 1, ..., nc, are independent and identically distributed (p+ 1)-dimensional random

vectors with distribution function Fc such that there exists at least one component

of Xc, Xc
k for some k ∈ {1, ..., p}, with distribution that has everywhere positive

Lebesgue density, conditional on the other Xc components.

(C4) The support of Xc, c = 1, ...,M , is not contained in any proper linear subspace of

Rp.

(C5) AUCc(θ) is differentiable at θ0 and ||AUC ′c(θ0)|| ≤ T <∞, c = 1, ...,m.

(C6) θ̂,θ0 ∈ B = {θ ∈ Rp : ||θ|| = 1, |θk| > 0}
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Lemma 4.1. Suppose conditions (C1), (C3), and (C4) hold for a given center c. Then

supθ∈B

∣∣∣ ˆAUCc(θ)− AUCc(θ)
∣∣∣ = op(1) as nc →∞, where B = {θ ∈ Rp : ||θ|| = 1, |θk| > 0}.

Lemma 4.2. Suppose conditions (C1)-(C4) hold. Then for B = {θ ∈ Rp : ||θ|| = 1, |θk| >

0},

sup
θ∈B

∣∣∣ ˆaAUC(θ)− aAUC(θ)
∣∣∣ p−→ 0

and
m∑
c=1

|ŵc − wc| = op(1)

as nc →∞, c = 1, ...,m, and m→M such that
√
nc/m→∞.

Theorem 4.1. Suppose θ̂
p−→ θ0 as nc →∞, c = 1, ...,m, and m→M such that

√
nc/m→

∞. Further suppose that conditions (C1)-(C6) hold. Then ˆaAUC(θ̂)
p−→ aAUC(θ0) as

nc →∞, c = 1, ...,m, and m→M such that
√
nc/m→∞.

The proof of Lemma 4.1 relies heavily on the proof of a similar result for a statistic related

to ˆAUCc given by Han (1987). The proof of Lemma 4.2 uses Lemma 4.1 to demonstrate the

first claim and a Taylor approximation to ŵc to demonstrate the second. Finally, the proof

of Theorem 4.1 relies on Lemma 4.2 and a Taylor approximation.

In Lemma 4.1, Lemma 4.2, and Theorem 4.1, we restrict the combinations to have ||θ|| =

1 for mathematical ease; since AUCc is invariant to monotone transformations, this is not

restrictive in a practical sense.

4.3.4 Combining Construction and Evaluation

When considering constructing and evaluating biomarker combinations, there are two binary

decisions to make with regard to center, giving four possibilities (using the notation of models

(4.6) and (4.8)):

1. Pooling the data across centers for both construction and evaluation, giving AUC(α)

2. Pooling the data across centers for construction, but stratifying by center for evaluation,

giving AUCc(α)



101

3. Stratifying by center for construction, but pooling across centers for evaluation, giving

AUC(β)

4. Stratifying by center for both construction and evaluation, giving AUCc(β)

In the discussion below we consider only the true parameter values, rather than the estimates.

We will address small-sample variability via simulations.

The two results given below follow directly from Pepe (2003). In particular, they show

that the marginal and center-adjusted AUCs of a combination based on some θ are equivalent

if C ⊥ Lθ(X)|D̄. Note that C ⊥ X|D implies C ⊥ Lθ(X)|D̄. Thus, if model (4.6) holds

and C ⊥ X|D, then AUC(β) = aAUC(β) = aAUC(α) = AUC(α), since α = β by

collapsibility.

Proposition 4.1. Suppose C ⊥ Lθ(X)|D̄ for a combination based on some θ such that

Lθ(X) has common support among cases and controls. Then AUC(θ) = aAUC(θ).

This proposition is presented without proof; the result follows directly from Result 6.2 in

((Pepe, 2003)).

When the prevalence and center-specific AUC do not vary with center and the center-

specific ROC curves are concave, the center-specific AUC for a given biomarker combination

will be at least as large as the marginal AUC. This is given by Proposition 4.2, stated below.

In general, the center-specific ROC curves will be concave if, in each center, increasing Lθ(X)

increases the likelihood that D = 1 (Copas and Corbett, 2002).

Proposition 4.2. Suppose C ⊥ D and for a combination based on some θ, AUCc(θ) =

AUC∗(θ), c = 1, ...,M and ROCc(θ) is concave for c = 1, ...,M . Then AUCc(θ) ≥

AUC(θ), c = 1, ...,M .

This proposition is presented without proof, as the result follows directly from Result 6.1

in Pepe (2003), but here we have a linear combination Lθ(X) instead of a single marker.

When model (4.6) holds, optimality of the risk score P (D = 1|X, C) implies that the

combination based on β is optimal within each center, in terms of maximizing center-specific
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AUC (Pepe, 2003). Thus, under this model,

AUCc(β) ≥ AUCc(θ),

for any θ. Furthermore, by the collapsibility results discussed above, when model (4.6) holds

and C ⊥ D|X, α = β, giving

AUC(α) = AUC(β)

AUCc(α) = AUCc(β).

Thus, ignoring center may not affect the results in some special cases. Outside of these,

however, ignoring center can give misleading results or yield biomarker combinations with

diminished performance.

4.3.5 Identifying the Role of Center

When biomarker data from multiple centers are available, graphical displays and other data

summaries may be useful for identifying whether center is a case mix variable, calibration

variable, or confounder. We therefore propose investigating:

1. The distribution of the biomarkers across center (to assess whether C ⊥ X)

2. The distribution of the biomarkers across center stratified by the outcome (to assess

whether C ⊥ X|D)

3. The prevalence of the outcome across centers (to assess whether C ⊥ D)

4. The prevalence of the outcome across centers, stratified by biomarker categories (to assess

whether C ⊥ D|X)

Not all of these tools will be useful in all settings; for example, in the case of diagnostic

biomarkers, items (2) and (3) will be most useful, while items (1) and (4) will be most
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useful for prognostic markers. Also, implementing item (4) may be challenging as it requires

the designation of biomarker categories, which necessarily results in a loss of information.

Alternatively, this relationship is could be assessed with a regression model. Some of these

suggestions are similar in spirit to those made by Berlin et al. (1999) in the case of a single

binary predictor.

It is important to keep in mind that there are no “rules” for interpreting the results of

the data summaries we have proposed above. Rather, they should be used as a guide, in

conjunction with knowledge about the design and conduct of the study, to assess the role of

center.

4.4 Simulations

4.4.1 Ignoring Center

We considered the impact of ignoring center in the construction and/or evaluation of biomar-

ker combinations. We considered diagnostic markers, and allowed center to be a case mix

variable, a calibration variable, or a confounder. The two biomarkers X1 and X2 were distri-

buted as described in equation (4.7) with ρ = 0.5, and AUCX1|C = 0.6 and AUCX2|C = 0.65

in all centers.

Throughout, the center-specific mean offsets in the biomarkers were equal; that is,

fX1(c) = fX2(c) = f(c). When center was a case mix variable, logit(γc) ∼ N(0, σ2
γc) and

f(c) = 0. When center was a calibration variable, γc = 0.5 and f(c) ∼ N(0, σ2
f(c)). Finally,

when center was a confounder, logit(γc)

f(c)

 ∼ N

 0

0

 ,

 σ2
γc δσγcσf(c)

δσγcσf(c) σ2
f(c)


We considered σ2

γc = 1, σ2
f(c) = 5, and δ ∈ {−0.75, 0.75}.

The combinations were constructed in a training dataset consisting of either 6 centers

with 200 observations each or 500 centers with 20 observations each. The first scenario is
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intended to be representative of a large cohort study similar to the TRIBE-AKI study, while

the second scenario is intended to be representative of a study of small clinics or individual

physicians. The combinations were constructed in the training data via logistic regression,

where center was either ignored or incorporated using uFILR (in the case of 6 centers) or

cFILR (in the case of 500 centers). These estimates correspond to α and β as defined in

equations (4.8) and (4.6), respectively, and were used to construct two combinations:

Lβ̂(X1, X2) = β̂1X1 + β̂2X2,

Lα̂(X1, X2) = α̂1X1 + α̂2X2.

We evaluated the fitted combinations via the conditional AUC, AUCc(·), in a large test

dataset with a single center, and the marginal AUC, AUC(·), in a large test dataset with

multiple centers. Because the conditional AUC is constant across centers under our data-

generating model (see Appendix A.2.2), AUCc(·) = aAUC(·). The test set used to evaluate

the conditional AUC consisted of a single center with 200,000 observations while the test

set used to evaluate the marginal AUC included either 6 centers with 30,000 observations

each or 500 centers with 400 observations each, depending on the structure of the training

data. The observations in the test data represent subjects from new centers, i.e., not the

same centers as used in the training data. The coefficients β = (β1, β2) and AUCc(β) were

determined analytically for comparison. The simulations were repeated 500 times.

Figure 4.3 presents the results of the simulations with 6 centers. These simulations sup-

port the results presented above: that is, when center is a case mix variable, the AUC is

not affected by ignoring center in construction and/or evaluation. Likewise, the simulation

results when center is a calibration variable support the conclusions given above, that is,

AUCc(β̂) ≥ AUCc(α̂), AUCc(β̂) ≥ AUC(β̂) and AUCc(α̂) ≥ AUC(α̂). Thus, when center

is a calibration variable, ignoring center during construction can lead to a biomarker combi-

nation with reduced predictive capacity in new centers, and ignoring center during evaluation

yields a measure of performance that is lower than the performance of the combination in a



105

new center.

Figure 4.3: Simulation results for training data with 6 centers. The first column is the
marginal AUC based on the combination constructed by ignoring center, AUC(α̂), the second
column is the conditional AUC based on the combination constructed by ignoring center,
AUCc(α̂), the third column is the marginal AUC based on the combination constructed
by stratifying by center, AUC(β̂), and the fourth column is the conditional AUC based on
the combination constructed by stratifying by center, AUCc(β̂). For each, the median and
middle 90% of the distribution across simulations are shown. Different colors and shapes
correspond to different roles for center: blue circles indicate center is a case mix variable,
red squares indicate center is a calibration variable, purple triangles indicate center is a
confounder with positive correlation (0.75) between logit(γc) and f(c), and green diamonds
indicate center is a confounder with negative correlation (-0.75) between logit(γc) and f(c).
The gray horizontal line represents AUCc(β) as determined analytically.

When center is a confounder and logit(γc) and f(c) are positively correlated, ignoring

center during evaluation yields measures of performance that are somewhat higher than the

performance of the combination in a new center (AUC(α̂) versus AUCc(α̂) and AUC(β̂)

versus AUCc(β̂)). When center is a confounder and logit(γc) and f(c) are negatively cor-

related, ignoring center during evaluation yields a measure of performance that is higher or

lower than the performance of the combination in a new center, depending upon whether
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center was also ignored in the construction of the combination. In particular, if center is

ignored during construction (yielding α̂), then ignoring center during evaluation tends to

give a measure of performance that is higher than the actual performance in a new center

(i.e., AUC(α̂) is generally larger than AUCc(α̂)). On the other hand, if center is included

in construction (yielding β̂), ignoring center during evaluation tends to give a measure of

performance that is lower than the performance of the combination in a new center; that is,

AUC(β̂) tends to be smaller than than AUCc(β̂). As expected, regardless of the correlation

between logit(γc) and f(c), ignoring center during construction generally results in a combi-

nation with worse performance in new centers than if center were included in construction

(AUCc(α̂) vs. AUCc(β̂)).

These results indicate that when center is a calibration variable or a confounder, ignoring

center during construction could lead to a combination with worse performance in a new

center (AUCc(α̂) vs. AUCc(β̂)) and ignoring center during evaluation could yield a measure

of performance that does not reflect the performance of the combination in a new center

(AUC(·) vs. AUCc(·)). The results were similar when the training data included 500 centers

(Figure 4.4). The full results are given in Appendix B.3.1. Notably, those results indicate

that α̂ and β̂ are quite different when center is a calibration variable or a confounder, as

would be expected given the results presented above.

4.4.2 Including Center

We conducted simulations to compare combinations constructed by RILR to those con-

structed by FILR. Both methods were used to construct linear combinations. The set-up

of these simulations is similar to those conducted above. We again consider two diagnostic

markers X1 and X2, and allow center to be a case mix variable, a calibration variable, or a

confounder. Thus, C 6⊥ X for all three scenarios. The two biomarkers were distributed as

described by equation (4.7) with ρ = 0.5 and AUCX1|C = 0.6 and AUCX2|C = 0.65 in all

centers.

As before, the center-specific mean offsets in the biomarkers were equal; that is, fX1(c) =
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Figure 4.4: Simulation results for training data with 500 centers. The first column is the
marginal AUC based on the combination constructed by ignoring center, AUC(α̂), the second
column is the conditional AUC based on the combination constructed by ignoring center,
AUCc(α̂), the third column is the marginal AUC based on the combination constructed
by stratifying by center, AUC(β̂), and the fourth column is the conditional AUC based on
the combination constructed by stratifying by center, AUCc(β̂). For each, the median and
middle 90% of the distribution across simulations are shown. Different colors and shapes
correspond to different roles for center: blue circles indicate center is a case mix variable,
red squares indicate center is a calibration variable, purple triangles indicate center is a
confounder with positive correlation (0.75) between logit(γc), and f(c) and green diamonds
indicate center is a confounder with negative correlation (-0.75) between logit(γc) and f(c).
The gray horizontal line represents AUCc(β) as determined analytically.

fX2(c) = f(c). When center was a case mix variable, logit(γc) ∼ F with mean 0 and variance

σ2
γc and f(c) = 0. When center was a calibration variable, γc = 0.5 or 0.1 and f(c) ∼ F with

mean 0 and variance σ2
f(c). Finally, when center was a confounder, logit(γc) ∼ F with mean

0 and variance σ2
γc , f(c) ∼ F with mean 0 and variance σ2

f(c), and Corr(logit(γc), f(c)) = δ.

We varied F , σ2
γc , σ

2
f(c) and δ as described in Table 4.1.

The combinations were constructed in training data and evaluated in a large test dataset.

For the training data, two scenarios were considered: 6 centers with 200 observations each
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Table 4.1: Simulation parameters.

Simulation Parameter Scenarios Considered

F Normal, Gumbel, Laplace, Uniform
σ2
γc 0.5, 1, 3, (0.5, 1.5), (1, 5)
σ2
f(c) 1, 5, (2, 8)

δ -0.5, 0, 0.5

and 500 centers with 20 observations each. The combinations were constructed in the training

data via logistic regression, where center was either (i) incorporated using RILR assuming

bc ∼ N(0, σ2) or (ii) incorporated using uFILR (in the case of 6 centers) or cFILR (in the case

of 500 centers). The fitted biomarker combinations based on these models were evaluated in

the test dataset, which consisted of a single new center with 10,000 observations; that is, in

all scenarios, we evaluated AUCc(·). In large samples, this is expected to equal the center-

adjusted AUC, aAUC(·), as our simulation set-up yields constant center-specific AUCs.

We considered some settings where the variances of logit(γc) and/or f(c) were not con-

stant (those pairs of values in parentheses in Table 4.1); in these scenarios, half of the centers

were assigned one value of σ2
γc (or σ2

f(c)) and the remainder were assigned the other (the single

center in the test data was assigned the lower of the two values). When center was a cali-

bration variable, γc = 0.5 in most simulations. To study the impact of concordant centers,

we also considered simulations where center was a calibration variable and γc = 0.1. This

was also the motivation for including σ2
γc = 3 and σ2

γc = (1,5).

The true coefficients β = (β1, β2) and AUCc(β) were determined analytically. These

simulations were repeated 500 times. In Figure 4.5, we present the results for m = 500

centers with F = Normal, σ2
γc = 1, σ2

f(c) = 5, prevalence of 0.5 when center was a calibration

variable, and δ = −0.5 when center was a confounder. In all scenarios, the results from

FILR are close to the truth. The differences in the parameter estimates when RILR is used

are clear, particularly when center is a calibration variable or a confounder. This leads

to substantially different conditional AUC values, particularly when center is a calibration
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variable. The differences in AUC are small when center is a case mix variable; in this setting,

the differences in the coefficient estimates are not as large, and the AUC, which is a rank-

based measure, can overcome these more modest perturbations. Furthermore, the difference

in AUC is much larger when center is a calibration variable than when it is a confounder

(the same is true of the difference in the coefficient estimates). The full results are given in

Appendix B.3.2. In general, we see that the differences between RILR and FILR tend to be

smaller when there are fewer centers (m = 6), σ2
f(c) is small, or σ2

γc is large.

Figure 4.5: Simulation results comparing random and fixed intercept logistic regression for
m = 500 in the training data, where F = Normal, σ2

γc = 1, σ2
f(c) = 5, γc = 0.5 when

center was a calibration variable, and δ = −0.5 when center was a confounder. The median
and interquartile ranges across the 500 simulations are reported. The columns in each plot
correspond to different roles for center. The results based on FILR are displayed as blue
triangles and the results based on RILR are displayed as red circles. The results for the
biomarker coefficients are shown in the first two plots, and the results for the (conditional)
AUC are shown in the third plot. In each plot, the dashed horizontal line indicates the true
value.

The improved performance of FILR persisted even when we considered situations where

there were 500 centers and, on average, 7-12% were concordant (induced via large variability

in logit(γc) when center was a case mix variable or a confounder, or low γc when center was

a calibration variable). This is supported by the results given in Appendix B.3.2, which

show almost no benefit for RILR, even in the presence of concordant centers. In simulations

not designed specifically to have high concordance, up to 2% of centers were concordant, on
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average.

Finally, we evaluated the degree of bias in the estimate of the overall fixed intercept

provided by RILR (i.e., τ0 in equation (4.9)) that would need to be used to generate predicted

probabilities. We found that in many scenarios, this estimate was substantially biased, i.e.,

absolute biases of more than 20% (Appendix B.3.2).

4.5 Application to the TRIBE-AKI Study

We applied the methods we have discussed to data from the TRIBE-AKI study. Recall

that this is a study of 1219 adults undergoing cardiac surgery, and there is interest in using

biomarkers to provide an earlier diagnosis of post-operative AKI. We consider three bio-

markers: urine NGAL, h-FABP, and plasma TNI. After removing observations with mis-

sing values for any of these biomarkers, 962 observations remained. The three biomarkers

were log-transformed and we considered the measurements taken immediately after surgery.

Thus, we are in the setting of diagnostic biomarkers, since the biomarkers are measured post-

operatively and the injury to the kidney occurs during surgery; as a result, these biomarkers

are thought to reflect the underlying disease (AKI) process.

First we consider the role of center in this study. Since we are considering diagnostic

biomarkers, we evaluated the distribution of the biomarkers in each center among AKI

controls and the prevalence of AKI across centers. The biomarker distributions are given in

Figure 4.6. There is evidence that the distribution of the biomarker measurements varies

across centers among controls. We also see in Table 4.2 that the prevalence of AKI varies

quite substantially across centers. Thus, there is evidence that center is a confounder in this

study.

In light of these findings, we sought to construct a diagnostic biomarker combination

while accounting for center by fitting a FILR model. We evaluated this combination by

estimating the center-adjusted AUC. We then corrected this estimate for resubstitution bias

by bootstrapping the individual observations to quantify the degree of optimistic bias. This

provides an honest assessment of the performance of the combination in the centers used in



111

Figure 4.6: Distribution of log urine NGAL, log plasma h-FABP, and log plasma TNI in the
TRIBE-AKI study among controls. The biomarker distributions are stratified by center.

Table 4.2: Center-specific AKI prevalence in the TRIBE-AKI study.

Center (n) AKI Prevalence (95% CI)

1 (103) 7.8% (3.4%-14.7%)
2 (53) 17.0% (8.1%-29.8%)
3 (70) 22.9% (13.7%-34.4%)
4 (483) 19.5% (16.0%-23.3%)
5 (27) 22.2% (8.6%-42.3%)
6 (226) 11.1% (7.3%-15.9%)

the TRIBE-AKI study. We compared the combination fitted by FILR to the combinations

fitted by RILR and by marginalizing over (i.e., ignoring) center.

The biomarker combination estimated by FILR was

0.025 ∗ log(NGAL) + 1.103 ∗ log(h-FABP)− 0.065 ∗ log(TNI).

The optimism-corrected center-adjusted AUC for this combination was 0.6823. In contrast,

the combination estimated by RILR was

0.054 ∗ log(NGAL) + 1.096 ∗ log(h-FABP)− 0.065 ∗ log(TNI).
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The optimism-corrected center-adjusted AUC for this combination was 0.6806. When center

was ignored during construction, the estimated combination was

0.081 ∗ log(NGAL) + 1.103 ∗ log(h-FABP)− 0.094 ∗ log(TNI),

and the optimism-corrected center-adjusted AUC for this combination was 0.6811.

Thus, in these data, the three fitted combinations were quite similar, and, correspon-

dingly, the gains offered by FILR in terms of the center-adjusted AUC were very modest.

The estimate of the adjusted AUC was driven in large part by center 4, which had 59% of

the AKI cases. There is some indication of effect modification of associations between the

biomarkers and AKI across center: the center-specific coefficient estimates ranged between

−0.235 and 0.797 for NGAL, −0.013 and 1.382 for h-FABP, and −0.430 and 0.448 for TNI.

The three fitted combinations presented above are essentially weighted averages of these

center-specific combinations. For the combination estimated by FILR the center-specific

AUCs (unadjusted for optimism) were between 0.639 and 0.716, while for the combination

estimated by RILR, they were between 0.628 and 0.716, and when center was ignored, they

ranged between 0.617 and 0.729.

4.6 Discussion

We have created a unified framework for constructing and evaluating biomarker combinati-

ons in multicenter studies, including a taxonomy to differentiate several roles center might

play, tools for identifying the role of center, and methods for constructing biomarker com-

binations and evaluating their performance. Essentially, by conditioning on center in both

the construction and evaluation of biomarker combinations, we obtain combinations and

measures of performance that are unaffected by center differences; given that these center

differences are often not scientifically relevant and are expected to vary in magnitude from

center to center, using conditional approaches to construction and evaluation of biomarker

combinations is more likely to yield useful combinations. The concepts and methods we des-
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cribe apply to biomarker combinations, and also to combinations of biomarkers and clinical

or demographic variables.

As discussed above, an important limitation of using FILR to construct a biomarker

combination is that an estimate of the center-specific intercept in new centers is not avai-

lable. If we do not have an estimate of the center-specific intercept, it is not possible to

generate predicted probabilities; in such situations, the biomarker combination is a tool for

risk stratification within each center rather than a risk prediction model.

It may be that the center-specific AUC is not the same across centers; in this situation, it

is generally informative to evaluate the variability in the center-specific AUCs across center,

as we did in the illustration with data from the TRIBE-AKI study. This may provide some

indication of how the biomarker combination might be expected to perform in a new center,

if the centers included in the evaluation are “similar” to the new centers. However, when

evaluating the center-specific AUCs, it is important to keep in mind that AUC estimates

from centers with fewer observations may be less reliable.

In general, the performance of a given biomarker combination could differ in a new center

due to effect modification of the performance of the biomarker combination by center and/or

effect modification of the association of the biomarkers with the outcome by center. Since we

are interested in developing a single biomarker combination, when there is effect modification

of the combination itself (via effect modification of the biomarker associations), we estimate

a weighted averaged of the center-specific combinations. In the event that the center-specific

combinations differ and are each optimal in terms of the center-specific AUC, the resulting

weighted-average combination is unlikely to be optimal in terms of the center-specific AUC in

each center. Additionally, if the center-specific combinations vary but have the same center-

specific AUC, the performance of the weighted-average combination may vary across centers.

Thus, while the approach of estimating a single biomarker combination is still reasonable in

the presence of effect modification of the biomarker associations since our goal is to provide

a single fitted combination, doing so could affect the performance of the weighted-average

combination, the degree of variability in center-specific performance of the weighted-average
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combination, and, potentially, generalizability (if the centers used for construction are not

representative of the centers to which we wish to apply the combination).

As we have noted, if the center-specific AUC varies, different sampling schemes could

affect the estimated weights ŵc, which could in turn affect the the estimated center-adjusted

AUC. The center-specific AUC itself is unaffected by case-control sampling within each

center (Pepe et al., 2006) and the center-adjusted AUC is unaffected by center-dependent

sampling among controls (Janes and Pepe, 2009), though the asymptotic results we have

provided may be affected by certain sampling schemes. If a study involves matching, care

must be taken to adjust the AUC for the matching as well as for center (Janes and Pepe,

2008).

Multicenter biomarker studies will continue to grow in popularity, and the possibility of

using these data to construct combinations of prognostic or diagnostic biomarkers will be

appealing to many investigators. However, as we have demonstrated, using inappropriate

methods to construct and/or evaluate biomarker combinations can provide unfavorable or

misleading results. These methods include random intercept logistic regression and ignoring

center entirely; such approaches will only provide useful results in special cases. In particular,

when biomarker distributions vary by center, as will often happen, there is little reason to

expect random intercept logistic regression to provide useful biomarker combinations, that

is, fitted combinations not influenced by center differences. Constructing combinations of

center-specific placement values may be a viable approach. Placement values constitute a

transformation of the data, wherein for each observation, the value of each biomarker is

replaced by the proportion of controls in the same center that have a larger value of the

biomarker (Pepe, 2003). Of course, this requires knowing the distribution of each biomar-

ker among controls in each center, making application of the combination to a new center

challenging.

Future research will include methods for other performance measures, including the true

positive rate for a specific false positive rate and the partial AUC for a range of false positive

rates. It will also be important to consider approaches that do not rely on empirical estima-
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tes of the AUC, perhaps by modeling the combination parametrically (e.g., using a model to

relate the combination to center among controls); such an approach may be beneficial when

there are a large number of very small centers, as might happen when the “centers” are cli-

nicians. In these settings, the empirical AUC estimate may be unreliable, and an alternative

estimate may be preferable.

An important contribution of this work is that it demonstrates that methods often applied

to multicenter data are generally not appropriate. Biomarkers hold great potential in the

risk prediction setting, but have for the most part been relatively disappointing thus far as

very few have been adopted clinically. Much of the problem has been blamed on “validation

failures”; that is, biomarkers that are found to be quite promising initially, but are never

used in clinical practice due to disappointing results in follow-up studies (Ioannidis, 2013).

Thus, to the extent possible, it is important to recognize aspects of study design, conduct, and

analysis that require special attention when developing biomarker combinations for diagnosis

and prognosis. Carefully addressing these issues can increase the likelihood of identifying

clinically useful combinations, leading to better patient care.
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Chapter 5

DEVELOPING BIOMARKER COMBINATIONS IN
MULTICENTER STUDIES VIA DIRECT MAXIMIZATION

AND PENALIZATION

Abstract

When biomarker studies involve patients at multiple centers and the goal

is to develop biomarker combinations for diagnosis, prognosis, or screen-

ing, the predictive capacity of a given combination is typically evaluated by

estimating the center-adjusted AUC (aAUC), a summary of conditional per-

formance. Rather than using a general method to construct the biomarker

combination, such as logistic regression, we propose estimating the combi-

nation by directly maximizing the aAUC. Furthermore, it may be desirable

to have a biomarker combination with similar predictive capacity across cen-

ters. To that end, we incorporate a penalty for variability in center-specific

performance. We demonstrate good theoretical properties of the resulting

combinations. Simulations provide small-sample evidence that maximizing

the aAUC can lead to combinations with greater predictive capacity than

combinations constructed via logistic regression. Simulated datasets also

illustrate the utility of constructing combinations by maximizing the aAUC

while penalizing variability. We apply these methods to data from a study

of acute kidney injury after cardiac surgery.

5.1 Introduction

Multicenter studies, where centers could be hospitals, clinics, or providers, have long been

used in the therapeutic setting as a way to increase power and improve generalizability, and
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are increasingly common in studies of biomarkers (e.g., Degos et al. (2010); Feldstein et al.

(2009); Nickolas et al. (2012)). Additionally, it is now feasible to measure many biomarkers

on each participant. As the individual performance of these biomarkers is often modest, there

is interest in using combinations of biomarkers for prognosis, diagnosis, and screening. When

studies of multiple biomarkers also involve multiple centers, the central question becomes

how such biomarker combinations should be constructed.

One such study is the Translational Research Investigating Biomarker Endpoints in Acute

Kidney Injury (TRIBE-AKI) study. The TRIBE-AKI study involves data from 1219 cardiac

surgery patients at six centers in North America (Parikh et al., 2011). The participants were

followed for diagnosis of acute kidney injury (AKI) during hospitalization. For each patient,

blood and urine were collected at multiple time points pre- and postoperatively, and about

two dozen biomarkers were measured at each time point. AKI is typically diagnosed via

changes in serum creatinine but these changes often do not happen until several days after

the injury. The goal of the study is to identify combinations of biomarkers that can be used

to provide an earlier diagnosis of AKI.

Methods to construct biomarker combinations by maximizing the area under the receiver

operating characteristic (ROC) curve (AUC) have been proposed. However, in a multicenter

setting, there is generally interest in summaries of the conditional, or center-specific, per-

formance. One such summary measure is the center-adjusted AUC (aAUC). We propose

a method to construct linear biomarker combinations by targeting the aAUC. In addition,

our method can be used to construct biomarker combinations with good overall performance

and more homogeneous performance across centers by maximizing the aAUC while penalizing

variability in center-specific performance.

5.2 Background

Let D be a binary outcome, where “cases” have or will experience the outcome (denoted by

D = 1 or the subscript D) and “controls” do not have or will not experience the outcome

(denoted by D = 0 or the subscript D̄).
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5.2.1 Center-adjusted AUC

The ROC curve for a biomarker or biomarker combination Z plots the true positive rate

versus the false positive rate over the range of possible thresholds for Z; thus, it exists in the

unit square (Pepe, 2003). The predictive capacity of biomarkers and biomarker combinations

is often summarized via the AUC, a measure of the ability of Z to discriminate between cases

and controls. The ROC curve for a useless biomarker or combination lies on the 45-degree

line, and the corresponding AUC is 0.5 (Pepe, 2003). The ROC curve for a perfect biomarker

or combination reaches the upper left-hand corner of the unit square, and its AUC is 1 (Pepe,

2003). The AUC can also be interpreted as the probability that Z for a randomly chosen case

is larger than Z for a randomly chosen control, assuming that higher values of Z are more

indicative ofD (Pepe, 2003). The AUC is invariant with respect to monotone transformations

of Z (Pepe, 2003).

In the multicenter setting, a biomarker combination Z can be evaluated marginally, by

considering the AUC for Z pooled across centers, or conditionally, by summarizing center-

specific AUCs. If we consider a marginal measure of performance (i.e., the AUC for Z

pooled across centers), we are potentially allowing center to be predictive, severely restricting

interpretability and generalizability (Janes and Pepe, 2008). Instead, the performance should

be assessed conditionally and then summarized across centers; this is analogous to the center-

adjusted odds ratio in the etiologic setting and the center-adjusted treatment effect in the

therapeutic setting (Janes and Pepe, 2008; Kahan, 2014). One such summary measure is the

center-adjusted AUC (aAUC).

The center-adjusted ROC (aROC) and corresponding aAUC, proposed by Janes and Pepe

(2009), can be written as

aAUCZ =

∫ 1

0

aROCZ(t)dt =

∫ 1

0

∫
ROCZ|C=c(t)dPD(c)dt

=
∑
c

AUCZ|C=cP (C = c|D = 1) =
∑
c

wcAUCZ|C=c, (5.1)
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where C indicates center, ROCZ|C=c is the center-specific ROC curve, AUCZ|C=c is the

center-specific AUC, t is the false positive rate, and PD(c) is the distribution of center among

cases. When the center-specific AUCs, AUCZ|C=c, are constant across centers, the adjusted

AUC is simply that center-specific AUC (Janes et al., 2009). More generally, the aAUC is

a weighted average of the center-specific AUCs where the center-specific AUCs are weighted

by the proportion of cases in each center (Janes et al., 2009). Weighting by the proportion

of cases is appealing because centers with more cases generally estimate the AUC with more

precision than centers with fewer cases (Pepe, 2003). The aAUC is a summary of the accuracy

of Z within each center (Janes and Pepe, 2008). For a given biomarker combination, the

aAUC provides an estimate of the performance of the biomarker combination in new centers,

to the extent that the new centers are similar to those used to evaluate the combination.

The expression for the aAUC given in equation (5.1) corresponds to the area under the

ROC curve given by the weighted average of the true positive rates in each center, holding

the false positive rates in each center constant (Janes and Pepe, 2009). In other words,

the aROC curve corresponds to using center-specific thresholds, chosen such that the false

positive rate is constant across centers, to determine the true positive rate (Janes et al.,

2009; Janes and Pepe, 2009):

aROCZ(t) =
∑
c

ROCZ|C=c(t)P (C = c|D = 1)

= P
(
Z > g(t|c)

∣∣∣D = 1
)
,

where g(t|c) gives a false positive rate of t in center c. The adjusted ROC curve defined here

represents one way of combining the center-specific ROC curves, that is, by averaging the

curves vertically; these curves could be combined in other ways (Janes and Pepe, 2009).

When the same data are used to construct a biomarker combination and evaluate its

performance (with the aAUC, for example), the resulting estimate of performance is opti-

mistically biased (Copas and Corbett, 2002). That is, if the same combination were applied
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to independent data, the performance is expected to be diminished. This optimistic bias,

which we refer to as “resubstitution bias” (Kerr et al., 2015), can be addressed by using

a bootstrapping procedure to estimate the optimism and correct the apparent performance

estimate (Copas and Corbett, 2002; Harrell, 2013). Bootstrapping assumes the observations

are exchangeable, but in the context of a multicenter study, observations from the same

center may be correlated; thus, bootstrap resampling by center, as opposed to resampling

observations, has been suggested (Bouwmeester et al., 2013; Janes et al., 2009; Localio et al.,

2001; van Oirbeek and Lesaffre, 2010). However, similar results in terms of bias have been

found for the average of cluster-specific AUC estimates (where in our case, ‘cluster’ is cen-

ter) whether resampling was done on clusters or individual observations (Bouwmeester et al.,

2013).

5.2.2 Biomarker Combinations

Many biomarker assays are now relatively affordable and/or can be used to measure multiple

biomarkers at once. This has increased investigators’ ability to measure many biomarkers

in each individual, leading to growing interest in developing biomarker combinations for

diagnosis, prognosis, or screening. We will consider linear biomarker combinations, as they

are often a reasonable choice and have intuitive appeal for clinical collaborators.

For a collection of biomarkers X, the risk score, P (D = 1|X), is optimal in terms of

maximizing the true positive rate at each false positive rate (McIntosh and Pepe, 2002).

Thus, to the extent that the linear logistic model holds, that is, P (D = 1|X) = expit(θ>X),

the combination θ>X is optimal. As the linear logistic model may not hold, methods have

been developed to optimize the AUC among linear combinations of biomarkers without

relying on this model (Pepe et al., 2006).

Methods have also been developed to identify combinations of biomarkers that maximize

the AUC while accommodating covariates (Liu and Zhou, 2013; Schisterman et al., 2004).

However, implementation of the method proposed by Liu and Zhou (2013) is computationally

challenging with more than two biomarkers. The method proposed by Schisterman et al.
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(2004) assumes that the biomarkers have a multivariate normal distribution and requires

specification of the relationship between the covariates (i.e., center) and the biomarkers.

5.2.3 Smooth AUC Approximations

As alluded to above, an appealing alternative to logistic regression is to construct biomarker

combinations by directly maximizing the AUC. Methods for fitting logistic regression models

use the logistic likelihood as the objective function. However, we are interested in using fitted

combinations for diagnosis, prognosis, or screening (Pepe et al., 2006; Pepe and Thompson,

2000), which motivates maximizing measures of predictive capacity, i.e., matching the ob-

jective function to the measure of interest. A benefit of directly maximizing the AUC is

that the resulting combination is reasonable regardless of whether the linear logistic model

holds (Pepe et al., 2006). Furthermore, the AUC of a combination constructed by targeting

the AUC will be at least as large as the AUC for the individual biomarkers; this may not be

true when the combination is constructed by optimizing another objective function (Pepe

and Thompson, 2000).

For any given vector of coefficients θ, since the true AUC is unknown, we are limited to

maximizing an estimate of the AUC. The empirical AUC,

ˆAUC(θ) =
1

nDnD̄

∑
i:Di=1,j:Dj=0

1(θ>Xi > θ>Xj),

where Xi denotes the biomarker vector for the ith case and Xj denotes the biomarker vector

for the jth control, involves indicator functions, making direct maximization challenging.

However, smooth approximations to the empirical AUC estimate have been proposed. Lin

et al. (2011) used the probit approximation to estimate θ:

θ̂ = arg max
θ∈Θ

Rn(θ) = arg max
θ∈Θ

 1

nDnD̄

∑
i:Di=1,j:Dj=0

Φ
{
θ>(Xi −Xj)/h

} ,
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where Θ = {θ ∈ Rp : ||θ||2 = 1}, Φ is the standard normal distribution function and h

is a tuning parameter. The function Φ(v/h) serves as an approximation to the indicator

function I(v > 0), and the tuning parameter h represents the trade-off between approxi-

mation accuracy and estimation feasibility (Lin et al., 2011). The tuning parameter h is

actually a sequence of numbers such that limn→∞ h = 0 (Lin et al., 2011). Lin et al. (2011)

note that if h is too small, estimation will be unstable, and propose choosing the tuning

parameter to be h = σ̃n−1/3 where σ̃ is the sample standard error of θ̃
>
X for the starting

value θ̃. The constraint ||θ||2 = 1 in Θ is required for identifiability. Other identifiability

constraints have been proposed. Ma and Huang (2007) suggested fixing the coefficient for

the first parameter, though Lin et al. (2011) point out that, in practice, it is difficult to know

whether the first biomarker has a non-zero coefficient. Lin et al. (2011) suggest constraining

||θ||1 = 1, while Fong et al. (2016) argue that instead constraining ||θ||2 = 1 allows for a

more uniformly accurate approximation to the AUC across the parameter space.

Due to the smoothness of Rn, gradient-based methods can be used to estimate θ. Ho-

wever, since Rn is not convex, convergence to a global maximum is not guaranteed. Other

approximations have been proposed, including the logistic function (Ma and Huang, 2007)

and the ramp function (Fong et al., 2016). The probit function approximation tends to be

more accurate and stable than the logistic function approximation (Lin et al., 2011) and

implementation is more straightforward than for the ramp function approximation.

5.3 Methods

Suppose we have a p-dimensional biomarker vector X, a binary outcome D, and data from m

centers with nc (c = 1, ...,m) observations in each, where the total sample size is n =
∑m

c=1 nc.

In each center there are ncD cases and nc
D̄

controls (nc = ncD + nc
D̄

). There are nD total cases

and nD̄ total controls (nD =
∑m

c=1 n
c
D, nD̄ =

∑m
c=1 n

c
D̄

). The biomarkers in for an arbitrary

observation in center c are denoted Xc; those for an arbitrary case in center c are denoted

Xc
D and those for an arbitrary control in center c are denoted Xc

D̄. We are interested in the
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center-adjusted AUC (aAUC) for a combination of the biomarkers defined by θ:

aAUC(θ) =
M∑
c=1

wcAUCc(θ)

AUCc(θ) = P (θ>Xc
D > θ>Xc

D̄),

where M is the number of centers in the population (where M ∈ [m,∞]) and wc = P (C =

c|D = 1). The empirical aAUC, ˆaAUC, is based on empirical estimates of the center-specific

AUCs, ˆAUCc, and empirical estimates of the weights, ŵc:

ˆaAUC(θ) =
m∑
c=1

ŵc ˆAUCc(θ)

ˆAUCc(θ) =
1

ncDn
c
D̄

∑
i:Dci=1,j:Dcj=0

1(θ>Xc
i > θ>Xc

j)

ŵc =
ncD∑m
c=1 n

c
D

,

where Dc
i denotes the outcome for observation i in center c, Xc

i denotes the biomarkers for

the ith case in center c, and Xc
j denotes the biomarkers for the jth control in center c.

5.3.1 Direct Maximization

Previous research has considered methods to construct biomarker combinations by directly

maximizing smooth approximations to the AUC as an alternative to logistic regression. We

propose a distribution-free method that extends this idea to the center-adjusted AUC.

We can consider

θ0 = arg max
θ∈Θ

aAUC(θ) = arg max
θ∈Θ

M∑
c=1

wcAUCc(θ).

As with the unadjusted AUC, we are limited to maximizing the empirical estimate, ˆaAUC,

in practice. Of course, ˆaAUC is a function of ˆAUCc, which involves indicator functions,
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making direct maximization challenging. However, we can use a smooth approximation to

ˆAUCc, which in turn provides a smooth approximation to ˆaAUC.

As described above, several smooth approximations to ˆAUC have been proposed, and

these can be applied to ˆAUCc. We use the probit function approximation in light of its

accuracy, stability, and ease of implementation. In particular, we propose the following

SaAUC estimate:

θ̂ = arg max
θ∈Θ

aRn(θ), (5.2)

where

aRn(θ) =
m∑
c=1

ŵcR
c
nc(θ)

Rc
nc(θ) =

1

ncDn
c
D̄

∑
i:Dci=1,j:Dcj=0

Φ
{
θ>(Xc

i −Xc
j)/hc

}
ŵc =

ncD∑m
c=1 n

c
D

,

and hc is a tuning parameter such that hc → 0 as nc →∞.

In the above definition, each center has its own tuning parameter hc. We propose choosing

these tuning parameters to be hc = σ̃cn
−1/3
c , where σ̃c is the sample standard error of θ̃

>
Xc for

the starting value θ̃. The objective function defined in (5.2) is a sum of smooth functions, and

is therefore also smooth. In order to incorporate the ||θ||2 = 1 constraint suggested by Fong

et al. (2016), we use Lagrange multipliers. Existing software can be used to estimate θ (e.g.,

the Rsolnp package in R). Asymptotic results for this method are given in Section 5.3.2.
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5.3.2 Penalization

In practice, it is unlikely that a given combination will have the same AUC in each center.

This could be due to heterogeneity in the biomarker associations and/or heterogeneity in

performance due to, for example, differences in patient characteristics that affect discrimi-

nation. It may be desirable to construct a biomarker combination that has relatively similar

performance across centers. In particular, it may be worth sacrificing a small amount of the

overall performance (in terms of the aAUC) for less variability in the center-specific AUCs.

To accomplish this, we propose the following:

θ̂λ = arg max
θ∈Θ


m∑
c=1

ŵcR
c
nc(θ)− λ

m∑
c=1

ŵc

(
Rc
nc(θ)−

m∑
c=1

ŵcR
c
nc(θ)

)2


= arg max
θ∈Θ

{
aRn(θ)− λ

m∑
c=1

ŵc
(
Rc
nc(θ)− aRn(θ)

)2

}
,

where λ is a fixed penalty parameter, λ ≥ 0. Using the `2-norm in the penalty function allows

for some variation in performance across centers; that is, small deviations around aRn(θ)

will be made smaller by squaring, reducing their contribution to the size of the penalty

term,
∑m

c=1 ŵc
(
Rc
nc(θ)− aRn(θ)

)2
. The goal of this penalized method is to construct a

combination whose performance in a new center will be similar to what has been observed in

previous centers. Of course, the notion of “similar” depends upon the degree of underlying

variability across the population of centers, as well as the centers that have been sampled

and can be used to estimate θλ.

Since

aRn(θ)− λ
m∑
c=1

ŵc
(
Rc
nc(θ)− aRn(θ)

)2

is the difference of two smooth functions, it can be maximized using gradient-based methods.

In order to incorporate the ||θ||2 = 1 constraint, we use Lagrange multipliers.

In the theorem below, we demonstrate good operating characteristics for the combination

θ̂λ in large samples. By setting λ = 0, we can obtain asymptotic results for the maximiza-
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tion of aRn without penalization. We have previously demonstrated (Lemmas 4.1 and 4.2)

that, under certain conditions, ˆAUCc(θ) converges uniformly in probability to AUCc(θ) and

ˆaAUC(θ) converges uniformly in probability to aAUC(θ), and we use these results in the

proof of the theorem. Throughout, we will assume that the center-specific disease prevalence

is non-trivial; that is, P (D = 1|C = c) ∈ (0, 1), c = 1, ...,M . Let

Q̃n(θ;λ) = aRn(θ)− λ
m∑
c=1

ŵc
(
Rc
nc(θ)− aRn(θ)

)2

Q(θ;λ) = aAUC(θ)− λ
M∑
c=1

wc (AUCc(θ)− aAUC(θ))2 ,

and let Xc
i denote the collection of biomarkers for the ith observation in center c. We first

present several conditions necessary for the theorem.

(A1) The m centers are randomly sampled from the population of M centers, and nc

observations are randomly sampled from center c, c = 1, ...,m.

(A2)
∑m

c=1 |E(ŵc)− wc| → 0 as nc → ∞, c = 1, ...,m, and m → M such that
√
nc/m →

∞.

(A3) The centers are independent and within each center, the observations Oc
i = (Dc

i ,X
c
i),

i = 1, ..., nc are independent and identically distributed (p+ 1)-dimensional random

vectors with distribution function Fc such that there exists at least one component

of Xc, Xc
k for some k ∈ {1, ..., p}, with distribution that has everywhere positive

Lebesgue density, conditional on the other Xc components.

(A4) The support of Xc, c = 1, ...,M , is not contained in any proper linear subspace of

Rp.

(A5) Both the maximum of Q̃n(θ;λ) and the maximum of Q(θ;λ) over B = {θ ∈ Rp :

||θ||2 = 1, |θk| > 0} are attained.
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Theorem 5.1. Fix λ ≥ 0 and suppose conditions (A1)-(A5) hold. Then maxθ∈B Q(θ;λ) =

Q(θ̂λ;λ) + op(1) as nc →∞, c = 1, ...,m, and m→M such that
√
nc/m→∞.

The proof of the theorem is given in Appendix A.3.1. The proof of the theorem de-

monstrates uniform convergence in probability of the difference between Q(θ;λ) and the

empirical analogue of Q̃n(θ;λ) (that is, with ˆAUCc in place of Rc
nc) to zero using results

from Chapter 4. The proof then uses previous results for Rn (Ma and Huang, 2007) to

demonstrate uniform convergence in probability of the difference between Q̃n(θ;λ) and the

empirical analogue of Q̃n(θ;λ) to zero. Combining these results gives the desired conclusion.

Choosing λ

In other penalized estimation procedures, such as ridge regression or lasso, the penalty

parameter λ is typically chosen via cross-validation, where the value of λ that gives the best

cross-validated performance is selected. The motivation for cross-validation is that apparent

measures of performance (that is, measures of performance for a model that are based on

the same data used to fit the model) will tend to be optimistic (Hastie et al., 2016). Thus,

selecting a value of λ based on apparent performance may result in substantially diminished

performance in new data. Cross-validation is one method for avoiding this problem.

For our penalized estimation method, we can extend the ideas behind cross-validation to

the multicenter setting. As just described, the goal of cross-validation in general is to get an

idea of the performance in new observations. In the case of data from multiple centers, we

would like to get an idea of the performance in new centers. To that end, we propose the

following procedure, which we call “leave one center out cross-validation” (LOCOCV):

1. Choose a sequence of λ values: {λ1, λ2, ..., λr}

2. For each value of λ:

(a) For i = 1, ...,m, estimate the biomarker combination using the data from all but the ith

center.
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(b) Estimate the AUC of the fitted combination from (a) using the data from the ith center.

3. Plot the m center-specific AUCs from (2b), the corresponding center-adjusted AUC, and

the variability in the center-specific AUCs around the center-adjusted AUC (i) in the cross-

validation “training” centers and (ii) in the cross-validation “test” centers as a function of

λ.

4. Choose an appropriate value of λ, and use this value to estimate the biomarker combination

using the data from all m centers.

It is difficult to define “appropriate” when choosing a value of λ. In some situations,

it may be preferable to sacrifice a small amount in terms of overall performance (aAUC)

in return for substantial decrease in the variability of the center-specific AUCs. In other

situations, any decline in overall performance may be very undesirable. Thus, we recom-

mend using the cross-validation plot described above to choose λ, rather than proposing an

automated procedure, as the trade-offs involved in using a larger or smaller value of λ may

depend on the individual investigator and/or the specific context. As with any resampling

procedure, the LOCOCV procedure we propose will be most useful when the centers avai-

lable for estimation are in some sense representative of the population of centers we wish to

consider.

An R package including code to implement these methods, maxadjAUC, will be publicly

available.

5.4 Results

5.4.1 Direct Maximization

We used simulations to investigate the performance of the proposed direct maximization

method in a variety of situations. These simulations were based in large part on the set-up

used by Fong et al. (2016).
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In each simulation, we generated a population of centers and individuals, and obtained

training data by sampling from this population. In particular, we first sampled m centers

from the population of M centers. Then, within each of the m sampled centers, we sampled

nc observations of the Nc observations available in each center (where Nc and nc did not vary

across centers). These observations formed the training data, in which the combinations were

constructed. The fitted combinations were then evaluated in independent test data, which

consisted of the Nc observations in each of the M −m centers not used in the training data.

We considered the following settings:

1. M = 50, Nc = 5, 000,m = 6, nc = 200 (“m=6”)

2. M = 500, Nc = 500,m = 50, nc = 50 (“m=50”)

3. M = 5000, Nc = 200,m = 500, nc = 20 (“m=500”)

Fong et al. (2016) note that the presence of outliers may lead to diminished performance

of logistic regression and similar methods, while methods based on maximizing the AUC may

be less affected since the AUC is a rank-based measure. Thus, we considered simulations

with and without outliers in the data-generating model. We focused on the setting of two

biomarkers X1 and X2 and considered four scenarios.

• Scenario I:  X1

X2

∣∣∣∣∣∣C
 = {(1−∆)× Z0}+ {∆× Z1}

(D|X1, X2, C) ∼ Bernoulli
[
expit{θC0 + 4X1 − 3X2 − (X1 −X2)3}

]
θC0 ∼ Uniform(−1, 1)
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• Scenario II:  X1

X2

∣∣∣∣∣∣C
 = {(1−∆)× Z0}+ {∆× Z1}+ νC

νC ∼ Uniform(−0.1, 0.1)

(D|X1, X2, C) ∼ Bernoulli
[
expit{θC0 + 4X1 − 3X2 − (X1 −X2)3}

]
θC0 ∼ Uniform(−1, 1)

• Scenario III: X1

X2

∣∣∣∣∣∣C
 = {(1−∆)× Z0}+ {∆× Z1}+ νC

νC ∼ Uniform(−0.1, 0.1)

(D|X1, X2, C) ∼ Bernoulli
[
expit{θC0 + 4ωCX1 − 3X2 − (ωCX1 −X2)3}

]
θC0 ∼ Uniform(−1, 1)

ωC ∼ Uniform(0.75, 1)

• Scenario IV: X1

X2

∣∣∣∣∣∣C
 = {(1−∆)× Z0}+ {∆× Z1}+ νC

νC ∼ Uniform(−0.1, 0.1)

(D|X1, X2, C) ∼ Bernoulli
[
expit{θC0 + 4ωCX1 − 3X2 − (ωCX1 −X2)3}

]
θC0 ∼ Uniform(−1, 1)

ωC ∼ Uniform(1, 1.1)
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In each scenario,

Z0 ∼ N

0, 0.2×

 1 0.9

0.9 1


Z1 ∼ N

0, 2×

 1 0

0 1

 ,

where Z0 and Z1 were independent and ∆ ∼ Bernoulli(π), where π = 0.05 when outliers

were simulated and π = 0 otherwise (independent of Z0 and Z1).

When m = 6, estimates from robust logistic regression were used as the starting values,

and the proposed SaAUC method was compared to robust logistic regression and standard

unconditional logistic regression, both with fixed center-specific intercepts. In particular,

we used the robust logistic regression method proposed by Bianco and Yohai (1996). This

method uses a deviance function that limits the influence individual observations have on

the model fit, making it more robust to outliers than standard (likelihood-based) logistic

regression. When m = 50 or m = 500, we also used conditional logistic regression both to

provide starting values for and to compare with the SaAUC method. For all methods, a

linear combination was fitted. The simulations were repeated 1000 times.

We present some key results in the plots below; the full results are given in Appen-

dix B.4.1. Figure 5.1 shows the results for m = 6 under Scenario I with outliers. Clearly, the

proposed method outperformed both standard and robust logistic regression, both in terms

of the center-adjusted AUC and the center-specific AUCs. The performance of the combi-

nation estimated by robust logistic regression was also considerably more variable than the

performance of the combinations estimated by standard logistic regression or the proposed

SaAUC method. Figure 5.2 shows the results for the same scenario with m = 50; here,

estimates from robust logistic regression were used as starting values (in general, we found

that this gave very similar results as when estimates from conditional logistic regression were

used). Again, we see that the proposed method clearly outperformed both forms of logistic
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regression. Finally, we see similar results in Figure 5.3, which presents the results for the

same scenario with m = 500. As was observed in Fong et al. (2016) for the AUC, when

outliers are not present, all three approaches yielded similar results (Appendix B.4.1).

Figure 5.1: Simulation results for training data with 6 centers, under Scenario I with outliers.
The starting values for the SaAUC maximization routine were the robust logistic regression
estimates. This plot shows the median and middle 90% of the distribution (across simula-
tions) of the center-adjusted AUC and the minimum and maximum center-specific AUCs,
calculated in test data.

The proposed SaAUC method had excellent convergence rates (less than 0.03% of simu-

lations failed). Robust logistic regression failed to converge in up to 3% of simulations for

m = 50 and up to 15% for m = 500; when this happened, standard unconditional logistic re-

gression was used to obtain starting values. In addition, when simulating data with outliers,

in some instances the true biomarker combination was so large that it returned a non-value

for the outcome D (in R, this occurs for expit(x) when x > 800). These observations had

to be removed from the simulated dataset, though this happened for less than 0.01% of

observations. Finally, for m = 500, some of the training centers were concordant and were

removed from the analysis. Up to 11% of simulations had one or two concordant training
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Figure 5.2: Simulation results for training data with 50 centers, under Scenario I with
outliers. The starting values for the SaAUC maximization routine were the robust logistic
regression estimates. This plot shows the median and middle 90% of the distribution (across
simulations) of the center-adjusted AUC and the minimum and maximum center-specific
AUCs, calculated in test data.

centers.

5.4.2 Penalized Estimation

We explored our proposed penalized estimation procedure via simulated datasets. In parti-

cular, we used individual datasets generated under a variety of models to explore how the

method may perform in practice. Essentially, our goal was to establish “proof of principle.”

As was done in the earlier simulations, we first generated a population of centers and

individuals, and obtained training data by sampling from this population. In particular,

we first sampled m = 6 centers from a population of M = 50 centers with Nc = 5, 000

observations in each. Then, within each of the m sampled centers, we sampled nc = 200

observations. These observations formed the training data, in which the combinations were

constructed. The fitted combinations were then evaluated in independent test data, which
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Figure 5.3: Simulation results for training data with 500 centers, under Scenario I with
outliers. The starting values for the SaAUC maximization routine were the robust logistic
regression estimates. This plot shows the median and middle 90% of the distribution (across
simulations) of the center-adjusted AUC and the minimum and maximum center-specific
AUCs, calculated in test data.

consisted of the Nc = 5, 000 observations in each of the M −m = 44 centers not used in the

training data.

We considered nearly 400 individual datasets; different data-generating mechanisms were

used and included variations on the link function, the distribution of the biomarkers across

centers, and the degree of heterogeneity in the true biomarker combination across centers.

We simulated four independent normally distributed biomarkers with equal variance and

throughout, the true biomarker combination in each center was linear. Estimates from robust

logistic regression were used as starting values for the penalized estimation procedure. For

each simulation, we applied the LOCOCV procedure described above.

We present a handful of examples here, and include several more in Appendix B.4.2. In

these examples, we considered 50 values of λ equally-spaced (on the log scale) between 0.1

and 200. This range of values was chosen somewhat arbitrarily. In other penalized estimation
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procedures, it is common to choose the maximum value of λ to be the value that returns

coefficient estimates of 0. The analogous requirement in the current setting would be the

value of λ that gives center-specific AUCs of 0.5 in all centers. This is only expected to occur

when all of the biomarker coefficients are 0, which cannot happen due to the constraint

||θ|| = 1 in the penalized estimation method. The key point is that the range of λ values

used here is meant to be illustrative, not prescriptive.

All of the plots we present have the same layout: the left plot gives the training data

results, the middle plot gives the results of the LOCOCV procedure, and the right plot gives

the test data results. In each plot, log10λ is presented on the x-axis, and there are two y-axes.

The y-axis on the left side plots the AUC, and corresponds to the gray lines (center-specific

AUCs for the penalized estimation procedure) and the black lines (center-adjusted AUCs

for the penalized estimation procedure, robust logistic regression (“rGLM”), and standard

logistic regression (“GLM”)). The y-axis on the right side plots the variability on the standard

deviation scale and corresponds to the red lines (variability relative to the aAUC estimate

in the training centers) and blue lines (variability relative to the aAUC estimate in the test

centers). For example, in the test data, for a combination θ̂ estimated in the training data,

we would have

Variability relative to training:
M−m∑
c=1

wc

(
AUCc(θ̂)− ˆaAUC(θ̂)

)2

Variability relative to test:
M−m∑
c=1

wc

(
AUCc(θ̂)− aAUC(θ̂)

)2

,

where wc are the weights in the test centers, ˆaAUC denotes the estimated aAUC in training,

and aAUC and AUCc denote the aAUC and AUCc, respectively, in the test data (where the

centers in the test data are assumed to be so large that these are close to the population

values). Finally in the training and test data results, the dashed lines represent the standard

logistic regression results, and the dot-dashed lines represent the robust logistic regression

results.
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One example is presented in Figure 5.4. We consider each of the three plots individually.

• Training data: The results in the training data indicate that the center-specific AUCs

based on the penalized estimation method (that is, based on the combination fitted by the

penalized estimation method; gray lines) are approaching a common value as λ increases:

the “low” center-specific AUC curves are increasing, and the “high” center-specific AUC

curves are decreasing. Thus, we see a drop in the variability of the center-specific AUCs

based on the penalized estimation method (red solid line) as λ increases. Since for larger

values of λ the “high” center-specific AUCs decrease more rapidly than the “low” center-

specific AUCs increase, there is a drop in the center-adjusted AUC based on the penalized

estimation method (black solid line) for λ > 10. For all values of λ, the variability in the

center-specific AUCs based on the penalized estimation method (red solid line) is lower

than for standard and robust logistic regression (red dashed and dot-dashed lines). For

small values of λ, the adjusted AUC based on the penalized estimation method (black solid

line) is slightly higher than the adjusted AUCs for standard and robust logistic regression

(black dashed and dot-dashed lines). For larger values of λ, the adjusted AUC based on

the penalized estimation method dips below those based on standard and robust logistic

regression.

• LOCOCV: This plot only includes the results for the penalized estimation procedure.

Here we see a pattern that mimics what was observed in the training data, with some

differences. As λ increases, the center-specific AUCs (gray lines) become more similar,

resulting in a decrease in variability in center-specific AUCs relative to both the adjusted

AUC estimated in the “training” centers (the centers used by the LOCOCV procedure

for estimation; red line) and the adjusted AUC in the “test” centers (the centers held

out by the LOCOCV procedure for evaluation; blue line). This decrease in variability

is seen for λ < 101.25, beyond which there is a small increase in variability due to the

continued decrease in the center-specific AUCs in two centers. Likewise, we see that the

center-adjusted AUC is relatively flat for λ < 101.25. This plot might lead us to choose
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λ ≈ 10− 101.25.

• Test data: These results generally mirror the patterns observed in both the training data

and the LOCOCV results. The center-specific AUCs based on the penalized estimation

method (gray lines) become more similar and the center-adjusted AUC based on the

penalized estimation method (black solid line) is relatively flat for λ < 10. The variability

in center-specific AUCs relative to the adjusted AUC in both training (red solid line)

and test (blue solid line) for the penalized estimation method are decreasing for λ <

101.25. For standard and robust logistic regression, the variability in center-specific AUCs

relative to both the adjusted AUC in the training centers (red dashed and dot-dashed

lines) and the adjusted AUC in the test centers (blue dashed and dot-dashed lines) is

higher than the corresponding variability for the penalized estimation method (red and

blue solid lines). On the other hand, the adjusted AUCs for standard and robust logistic

regression (black dashed and dot-dashed lines) are similar to the adjusted AUC based on

the penalized estimation method for λ < 100.5, beyond which the adjusted AUC for the

penalized estimation method begins to decrease. Thus, the test data, which would not be

observable in practice, support the choice of λ ≈ 10 − 101.25. For λ values in this range,

we see a decrease in the center-adjusted AUC from approximately 0.725 to 0.705 and a

decrease in variability of more than 50%.

Figures 5.5 and 5.6 present examples where the LOCOCV procedure does a particularly

nice job of mimicking the patterns in the test data. Figure 5.7 presents an example where we

see a clear benefit to penalization in terms of a substantial reduction in variability in center-

specific performance, with little decrease in overall (center-adjusted) performance. Figure

5.8 provides an example where the LOCOCV procedure gives results that are inconclusive

or difficult to interpret. When this occurs, it may be best to err on the side of caution and

choose smaller values of λ or not penalize at all.

We encountered some datasets where the penalized estimation procedure did not work

as well. For instance, Figure 5.9 presents an example where the center-adjusted AUC decre-
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ased more quickly with increasing λ in the test data than was suggested by the LOCOCV

procedure and the training data. This could lead to a choice of λ that gives slightly worse

overall performance than anticipated, although the problem is not severe. Figure 5.10 pre-

sents another example where the penalized estimation procedure did not work as well. Here,

the variance increases with increasing λ in test data, despite the patterns seen in the training

data and the LOCOCV results. In this situation, a value of λ may be chosen that results in

a fitted combination with worse overall performance and more variability in center-specific

performance than would be obtained without penalization. However, in this example, the

drop in overall performance is not large, and the increase in variability is fairly small.

Problems with convergence were not common in our simulations. Out of nearly 400

examples considered and 50 values of λ, fewer than 6% of the examples encountered any

convergence issues. This generally only occurred with the more extreme examples we consi-

dered. The issues with convergence were primarily convergence failures in the cross-validation

procedure. In practice, this may require modification of the range of λ values considered.

None of the results included here had any convergence failures.
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Table 5.1: Center-specific AKI prevalence in the TRIBE-AKI study.

Center (n) AKI Prevalence (95% CI)

1 (103) 7.8% (3.4%-14.7%)
2 (53) 17.0% (8.1%-29.8%)
3 (70) 22.9% (13.7%-34.4%)
4 (483) 19.5% (16.0%-23.3%)
5 (27) 22.2% (8.6%-42.3%)
6 (226) 11.1% (7.3%-15.9%)

5.4.3 TRIBE-AKI Data

To illustrate the methods we have developed, we applied them to data from the TRIBE-AKI

study and constructed combinations of three biomarkers measured immediately after surgery:

urine NGAL, plasma h-FABP, and plasma TNI. We removed observations with missing

values for any of these three biomarkers, leaving 962 observations, and log-transformed the

biomarker values. The biomarker distributions among AKI controls (stratified by center) are

given in Figure 5.11. Table 5.1 shows the center-specific prevalences of AKI.

Figure 5.11: Distribution of log urine NGAL, log plasma h-FABP, and log plasma TNI in
the TRIBE-AKI study among controls. The biomarker distributions are stratified by center.
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We applied standard logistic regression (“GLM”), robust logistic regression (“rGLM”),

and the proposed SaAUC method to the TRIBE-AKI study data, after scaling the three

biomarkers to have equal variance. The fitted combinations (with normalized coefficients)

for the three methods were:

GLM: 0.0720 ∗ log(NGAL) + 0.9917 ∗ log(h-FABP)− 0.1068 ∗ log(TNI)

rGLM: 0.0720 ∗ log(NGAL) + 0.9917 ∗ log(h-FABP)− 0.1068 ∗ log(TNI)

SaAUC: 0.0107 ∗ log(NGAL) + 0.9585 ∗ log(h-FABP)− 0.2849 ∗ log(TNI).

These combinations had apparent center-adjusted AUCs of 0.6878, 0.6878 and 0.6918, re-

spectively. After optimism correction, the AUC estimates were 0.6819, 0.6820 and 0.6825.

Thus, it seems that in these data, there is little difference in the performance of the combina-

tions (though there are clear differences in the fitted combinations themselves). Furthermore,

there appears to be more optimism in the apparent adjusted AUC estimate for the combi-

nation fitted by the SaAUC method, which might be expected in general since the SaAUC

method seeks to optimize a smooth approximation to this estimate.

Finally, we applied the proposed penalized estimation method to the TRIBE-AKI study

data, again using the scaled biomarkers (Figure 5.12). The results from the LOCOCV

procedure support choosing λ ≈ 101.5, which is expected to give a reduction in variability

in center-specific performance of about 25-30%, with essentially no loss in overall (center-

adjusted) performance. In particular, the LOCOCV results indicate that when λ ≈ 0.1,

the center-specific AUC estimates were between 0.6042 and 0.7250, but when λ = 101.5, the

center-specific AUC estimates were between 0.6270 and 0.6986. Using λ = 101.5 to fit the

combination in the full TRIBE-AKI study dataset yielded the combination

−0.1067 ∗ log(NGAL) + 0.9911 ∗ log(h-FABP) + 0.0798 ∗ log(TNI).



145

Figure 5.12: Penalized estimation procedure applied to the TRIBE-AKI study data. The
results from the LOCOCV procedure support choosing λ ≈ 101.5, which is expected to give
a reduction in variability in center-specific performance of about 25-30%.

5.5 Discussion

We have developed a method to estimate biomarker combinations by maximizing the center-

adjusted AUC (aAUC). This method is directly applicable to the covariate-adjusted AUC for

any discrete covariate, and so could be applied beyond the multicenter setting. Furthermore,

our method includes a penalty term that can be used to encourage similarity in performance

across centers. This penalized estimation approach could be useful in other settings with

discrete nuisance covariates, such as batch. We used data from a study of biomarker me-

asurements taken after cardiac surgery to construct diagnostic biomarker combinations for

acute kidney injury, demonstrating the feasibility of our methods.

An important limitation of the methods we have proposed is that they cannot be used

to generate predicted probabilities, as they do not relate the biomarkers to the probability

of D = 1. As a result, a fitted biomarker combination provided by our method is a tool

for risk stratification within each center rather than a risk prediction model. In addition, in

multicenter studies, different sampling schemes could be used (e.g., case-control or stratified

case-control sampling). The estimated weights ŵc would potentially be affected by different
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sampling procedures, and may not reflect P (C = c|D = 1). This would in turn affect

the interpretation of the center-adjusted AUC, though it would still be a summary of the

conditional performance. Our methods would then be optimizing this summary of conditional

performance. The sampling scheme used could also affect the validity of the asymptotic

results we have provided. Finally, if a study involves matching, our methods would need

to be modified to adjust the AUC for the matching in addition to center (Janes and Pepe,

2008).

The adjusted AUC is a reasonable estimand even when the center-specific AUCs of a

given combination are not the same across centers, though it is helpful to consider the

degree of heterogeneity in the center-specific AUCs, as this provides some insight into how

the combination can be expected to perform in a new center. In addition, differences in

performance across centers may be scientifically meaningful and merit further investigation.

However, when assessing the center-specific AUCs, it is important to also consider the sizes

of the centers, as estimates of center-specific AUCs from small centers may be unreliable.

One feature of our penalization approach is the use of the weights ŵc in the penalty function,

which reflect the proportion of cases in each center and so will tend to give less weight to

small centers. Furthermore, the optimal combination (in terms of the center-specific AUC)

may be different for each center. Importantly, however, our aim is not to identify the optimal

combination in every center; instead, we are interested in constructing a single combination

that performs well across centers. One benefit of direct maximization of the aAUC is that

if a single optimal combination exists in the sense of maximizing the center-specific AUC

in each center, our method will identify it (in large samples) and if there is no such single

optimal combination, we will still succeed in identifying a combination with the optimal

aAUC (again, in large samples).

Since our smooth approximation function is not convex, further research is needed on the

choice of starting values. It may also be possible to extend the method proposed by Fong

et al. (2016), which optimizes the convex ramp function approximation to the AUC, to the

center-adjusted AUC. This may lead to further improvements in performance over logistic
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regression, as was seen in Fong et al. (2016) for the unadjusted AUC. When the centers

are very small, as when “centers” are clinicians, the empirical center-specific AUC will be

unreliable. Research is needed into using other (possibly parametric) methods to estimate

the center-specific AUC by borrowing information across centers, which may be useful when

the centers are small. Extensions of the methods we have proposed to other center-adjusted

measures of performance, such as the partial AUC or the true positive rate for a fixed false

positive rate, could also be explored.
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Chapter 6

CONCLUSION

This dissertation has addressed challenges related to constructing, evaluating, and se-

lecting biomarker combinations. For constructing combinations, this included methods both

within and beyond the traditional maximum likelihood framework. In particular, when a

multilevel outcome is available and there is interest in single-level prediction, we explored

whether using regression methods for multilevel outcomes to construct biomarker combina-

tions offered improvements over the traditional approach of binary logistic regression. We

also considered methods for constructing combinations in the multicenter setting; specifi-

cally, we assessed the implications of constructing combinations by (i) ignoring center by

fitting a marginal logistic regression model, or (ii) accounting for center by using random

intercept logistic regression. We illustrated problems with these standard approaches, and

proposed using fixed intercept logistic regression to accommodate center in the construction

of biomarker combinations. Likelihood-based methods are appealing as they are typically

well-understood, well-developed, and broadly accessible.

Outside of the maximum likelihood framework, we proposed a novel method to construct

biomarker combinations by directly maximizing a smooth approximation to the empirical

true positive rate while constraining a smooth approximation to the empirical false positive

rate. In the context of multicenter data, we developed a method for constructing biomar-

ker combinations by directly maximizing a smooth approximation to the empirical center-

adjusted AUC; indeed, this method can be applied to maximize the covariate-adjusted AUC

for any discrete covariate. Furthermore, this method allows for penalization of variability

in the covariate-specific AUC, which may be useful for discrete nuisance covariates beyond

center. These maximization methods may be preferable to likelihood-based methods since
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they directly target a measure of predictive capacity, and so may provide combinations with

better performance.

For evaluating biomarker combinations, we considered the impact of ignoring center in

the evaluation of biomarker combinations when the data come from multiple centers. In

particular, we discussed the importance of using conditional, rather than marginal, measures

of performance in the context of multicenter data, and demonstrated the repercussions of

ignoring center during evaluation.

We also considered the issue of combination selection in the setting where a multilevel

outcome is available and there is interest in single-level prediction. We proposed an algorithm

for combination selection that leverages the additional information available in the multilevel

outcome, and showed that this procedure may be preferable to the standard approach of

selecting combinations on the basis of the candidate combinations’ ability to narrowly predict

the target outcome level.

There are many possible extensions to the work we have done. Perhaps most pressing is

the extension of these methods to the high-dimensional setting. As the number of biomarkers

available in a given dataset continues to increase, it will be important to incorporate bio-

marker selection into combination construction. This has been considered in the context of

maximizing the AUC, where methods have been proposed that include an `1 penalty function

to encourage biomarker selection concurrent with combination construction (Ma and Huang,

2005). A similar approach could be taken to extend our direct maximization methods to the

high-dimensional setting.

Likewise, it would be straightforward to build on the work we have already done to

develop a method that directly maximizes the covariate-adjusted true positive rate while

constraining each of the covariate-specific false positive rates at some clinically acceptable

level. In particular, the methods we proposed to directly maximize the true positive rate

while constraining the false positive rate and those we have proposed to directly maximize the

covariate-adjusted AUC could be extended to the covariate-adjusted true and false positive

rates for a discrete covariate. It may also be possible to allow for penalization when the
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covariate is a nuisance variable, as we did with the center-adjusted AUC.

It would also be possible to apply the ideas we have discussed to related, but distinct,

questions. For instance, decision analytic measures of performance, such as the net benefit,

are gaining in popularity (Vickers and Elkin, 2006). The net benefit combines true and

false positives, weighted by the benefits and harms of an intervention. If the assumptions of

the framework hold, this measure is useful for deciding whether a particular model or test

should be used, and can also be used to evaluate the performance of a biomarker for treatment

selection. Since the true and false positive rates are components of the net benefit, it may

be possible to extend the methods we have developed for maximizing the true positive rate

while constraining the false positive rate to the net benefit, yielding a method that constructs

biomarker combinations by maximizing the net benefit.

In this dissertation, we have considered current approaches to and proposed novel met-

hods for constructing, evaluating, and selecting biomarker combinations for diagnosis, prog-

nosis, and screening. All of the methods we have developed are available as R packages,

facilitating their application. We expect widespread interest in biomarkers to continue, com-

mensurate with continued emphasis on developing new and better tools to inform patients

about their risks of having or experiencing some clinical outcome. Furthermore, as the fea-

sibility of measuring large numbers of biomarkers continues to increase, and the associated

costs continue to decrease, interest in developing biomarker combinations will grow. This

work provides novel insights and rigorous methods to aid researchers in developing biomar-

kers combinations for diagnosis, prognosis, and screening.
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Appendix A

THEORETICAL RESULTS

A.1 Chapter 2

A.1.1 Optimal Combination for Conditionally Bivariate Normal Biomarkers with Propor-

tional Covariance Matrices

Claim: If the biomarkers (X1, X2) are conditionally multivariate normal with proportional

covariance matrices, that is,

(X1, X2 | D = 0) ∼ N(µ0,Σ), (X1, X2 | D = 1) ∼ N(µ1, σ
2Σ),

then the optimal biomarker combination in the sense of the ROC curve is of the form

β0 + β1X1 + β2X2 + β3X1X2 + β4X
2
1 + β5X

2
2

for some vector (β0, β1, β2, β3, β4, β5) ∈ R5.

Proof. It is known that the optimal combination of (X1, X2) in terms of the ROC curve

is the likelihood ratio, f(X1, X2 | D = 1)/f(X1, X2 | D = 0), or a monotone increasing

function thereof (McIntosh and Pepe, 2002). Let M = (X1, X2). Without loss of generality,



168

let µ0 = 0 and let µ1 = µ = (µX1 , µX2). Then

f(M | D = 1)

f(M | D = 0)
=
|σ2Σ|−1/2exp

{
−1

2
(M− µ)>(σ2Σ)−1(M− µ)

}
|Σ|−1/2exp

{
−1

2
M>(Σ)−1M

}
=

exp
{
−1

2
(M− µ)>(σ2Σ)−1(M− µ)

}
σ2exp

{
−1

2
M>(Σ)−1M

}
=

1

σ2
exp

{
−(M− µ)>(Σ)−1(M− µ)

2σ2
+

M>(Σ)−1M

2

}
.

Denote the entries of (Σ)−1 by

(Σ)−1 =

 S11 S12

S21 S22

 .

Then

− 1

2σ2
(M− µ)>(Σ)−1(M− µ) +

1

2
M>(Σ)−1M

=
1

2

[
1

σ2

{
−S11(X2

1 − 2X1µX1 + µ2
X1

)− S21(X1X2 −X2µX1 −X1µX2 + µX1µX2)

−S12(X1X2 −X1µX2 −X2µX1 + µX1µX2)− S22(X2
2 − 2X2µX2 + µ2

X2
)
}

+ S11X
2
1 + S21X1X2 + S12X1X2 + S22X

2
2

]
=

1

2

{(
S11 −

S11

σ2

)
X2

1 +

(
S22 −

S22

σ2

)
X2

2 +

(
S12 + S21 −

S12

σ2
− S21

σ2

)
X1X2

+

(
2S11µX1 + S21µX2 + S12µX2

σ2

)
X1 +

(
S21µX1 + S12µX1 + 2S22µX2

σ2

)
X2

+
−S11µ

2
X1
− S21µX1µX2 − S12µX1µX2 − S22µ

2
X2

σ2

}
=β0 + β1X1 + β2X2 + β3X1X2 + β4X

2
1 + β5X

2
2 ,
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as claimed, where

β0 =
−S11µ

2
X1
− S21µX1µX2 − S12µX1µX2 − S22µ

2
X2

σ2

β1 =

(
2S11µX1 + S21µX2 + S12µX2

σ2

)
β2 =

(
S21µX1 + S12µX1 + 2S22µX2

σ2

)
β3 =

(
S12 + S21 −

S12

σ2
− S21

σ2

)
β4 =

(
S11 −

S11

σ2

)
β5 =

(
S22 −

S22

σ2

)
.
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A.1.2 Lemma 2.1

Lemma 2.1. For a given function f : Rd → R, define ωn ∈ Ωn and ω0 ∈ Ω0 such that

f(ωn) = max
ω∈Ωn

f(ω), f(ω0) = max
ω∈Ω0

f(ω),

for two sets Ωn ⊆ Rd and Ω0 ⊆ Rd. Further, define

dn := sup
ω∈Ωn

inf
ω̃∈Ω0

d(ω, ω̃), en := sup
ω∈Ω0

inf
ω̃∈Ωn

d(ω, ω̃),

where d is the Euclidean distance. If dn, en → 0 w.p. 1 and f is Lipschitz with constant

K > 0, then |f(ω0)− f(ωn)| → 0 w.p. 1.

Proof. We prove this by contradiction. Suppose dn, en → 0 w.p. 1 and f is Lipschitz with

constant K > 0, yet for some ε > 0, there exists a subsequence {ni} ⊆ N such that

P

(
lim inf
ni→∞

|f(ωni)− f(ω0)| > ε

)
> 0.

Then, there exists nε ∈ N, {ω0,n} ⊆ Ωn, and {ωn,0} ⊆ Ω0 such that for every n ≥ nε,

d(ω0,n, ω0) ≤ ε

2K
, d(ωn,0, ωn) ≤ ε

2K
w.p. 1.

Then for n ≥ nε,

|f(ω0,n)− f(ω0)| ≤ ε/2 w.p. 1

and

|f(ωn,0)− f(ωn)| ≤ ε/2 w.p. 1,

so

f(ω0) ≤ f(ω0,n) + ε/2, f(ωn) ≤ f(ωn,0) + ε/2 w.p. 1.
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Since {ω0,n} ⊆ Ωn,

f(ω0,n) + ε/2 ≤ f(ωn) + ε/2,

and since {ωn,0} ⊆ Ω0,

f(ωn,0) + ε/2 ≤ f(ω0) + ε/2.

Thus, |f(ω0)− f(ωn)| ≤ ε/2 for all n ≥ nε w.p. 1, giving a contradiction.
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A.1.3 Lemma 2.2

Lemma 2.2. Under conditions (A1)-(A6) in Section 2.3.2, we have that

sup
(θ,δ)∈Ω

∣∣∣ ˜FPRnD̄
(θ, δ)− FPR(θ, δ)

∣∣∣→ 0 w.p. 1

sup
(θ,δ)∈Ω

∣∣∣ ˜TPRnD(θ, δ)− TPR(θ, δ)
∣∣∣→ 0 w.p. 1

where Ω = {θ ∈ Rp, δ ∈ R : ||θ|| = 1}.

Proof. We prove the claim for the false positive rate; the proof for the true positive rate is

analogous. We can write

sup
(θ,δ)∈Ω

∣∣∣ ˜FPRnD̄
(θ, δ)− FPR(θ, δ)

∣∣∣ ≤ sup
(θ,δ)∈Ω

∣∣∣ ˜FPRnD̄
(θ, δ)− E{ ˜FPRnD̄

(θ, δ)}
∣∣∣

+ sup
(θ,δ)∈Ω

∣∣∣E{ ˜FPRnD̄
(θ, δ)} − FPR(θ, δ)

∣∣∣ .
First we consider ˜FPRnD̄

(θ, δ)− E{ ˜FPRnD̄
(θ, δ)}. We can write this as

˜FPRnD̄
(θ, δ)− E{ ˜FPRnD̄

(θ, δ)} =
1

nD̄

nD̄∑
j=1

Φ

(
θ>XD̄j − δ

h

)
−
∫

Φ

(
θ>x− δ

h

)
dFD̄(x).

The class of functions G1 = {(θ, δ) 7→ θ>x − δ : θ ∈ Rp, δ ∈ R,x ∈ Rp} is a Vapnik–

Chervonenkis class, and, since Φ (·/h) , h > 0, is monotone, the class of functions G2 =

{(θ, δ) 7→ Φ
{

(θ>x− δ)/h
}

: θ ∈ Rp, δ ∈ R,x ∈ Rp, h > 0} is Vapnik–Chervonenkis (Kosorok,

2008; Van der Vaart, 2000; van der Vaart and Wellner, 2000). Since the constant 1 is an ap-

plicable envelope function for this class, G2 is FD̄-Glivenko–Cantelli, giving (Kosorok, 2008;

van der Vaart and Wellner, 2000)

sup
(θ,δ)∈Ω

∣∣∣ ˜FPRnD̄
(θ, δ)− E{ ˜FPRnD̄

(θ, δ)}
∣∣∣→ 0 w.p. 1.
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Next we consider E{ ˜FPRnD̄
(θ, δ)} − FPR(θ, δ). We can write this as

E{ ˜FPRnD̄
(θ, δ)} − FPR(θ, δ) =

∫
Φ

(
θ>x− δ

h

)
dFD̄(x)− P (θ>X > δ | D = 0).

For a general random variable V with distribution function F where F is Lipschitz, consider

E

{
Φ

(
s− v
h

)}
=

∫
Φ

(
s− v
h

)
dF (v) = h

∫
Φ(u)f(s− hu)du,

where u = (s − v)/h. Using integration by parts and Lemma 2.1 from Winter (1979), this

becomes

h

∫
Φ(u)f(s− hu)du =

∫
φ(u)F (s− hu)du.

As in Winter (1979), let M ∈ R such that for all v, t ∈ R, |F (v − t)− F (v)| ≤M |t|. Then∣∣∣∣E {Φ

(
s− v
h

)}
− F (s)

∣∣∣∣ =

∣∣∣∣∫ φ(u)F (s− hu)du− F (s)

∣∣∣∣ ≤ ∫ |F (s− hu)− F (s)|φ(u)du

≤M

∫
|hu|φ(u)du = Mh

(
2

π

)1/2

.

Since h is a function of n such that h→ 0 as n→∞, this gives

sup
s

∣∣∣∣E {Φ

(
s− v
h

)}
− F (s)

∣∣∣∣ = o(1).

Returning now to θ>X: consider the case where p = 2, so θ>X = θ1X1 + θ2X2. Let

Y1 = θ1X1 + θ2X2, Y2 = θ2X2. Then fY1,Y2(y1, y2) = fX1,X2(x1, x2)|θ1θ2|−1. Thus, for any

s ∈ R, we have

∫
Φ

(
s− θ>x

h

)
fX(x)dx =

∫
Φ

(
s− y1

h

)
fY(y)dy =

∫
Φ

(
s− y1

h

)
fY1(y1)dy1.
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Since P (θ>X ≤ δ | D = 0) = P (Y1 ≤ δ | D = 0), we can write

sup
(θ,δ)∈Ω

∣∣∣∣∫ Φ

(
θ>x− δ

h

)
dFD̄(x)− P (θ>X > δ | D = 0)

∣∣∣∣
= sup

δ∈R

∣∣∣∣∫ Φ

(
y1 − δ
h

)
fY1|D̄(y1)dy1 − P (Y1 > δ | D = 0)

∣∣∣∣
= sup

δ∈R

∣∣∣∣∫ Φ

(
δ − y1

h

)
fY1|D̄(y1)dy1 − P (Y1 ≤ δ | D = 0)

∣∣∣∣ ,
giving, by condition (A5) in Section 2.3.2 and the results above,

sup
(θ,δ)∈Ω

∣∣∣∣∫ Φ

(
θ>x− δ

h

)
dFD̄(x)− P (θ>X > δ | D = 0)

∣∣∣∣ = o(1).

The result for p > 2 can be proved analogously.

Combining these results, we have sup(θ,δ)∈Ω

∣∣∣ ˜FPRnD̄
(θ, δ)− FPR(θ, δ)

∣∣∣ → 0 w.p. 1 as

claimed.
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A.1.4 Proof of Theorem 2.1

Proof. First consider the claim FPR(θ̂t, δ̂t) ≤ t+ op(1). By Lemma 2.2, we have

sup
(θ,δ)∈Ω

∣∣∣ ˜FPRnD̄
(θ, δ)− FPR(θ, δ)

∣∣∣→ 0 w.p.1.

In particular,

FPR(θ̂t, δ̂t) = ˜FPRnD̄
(θ̂t, δ̂t) +

[
FPR(θ̂t, δ̂t)− ˜FPRnD̄

(θ̂t, δ̂t)
]

≤ ˜FPRnD̄
(θ̂t, δ̂t) +

∣∣∣FPR(θ̂t, δ̂t)− ˜FPRnD̄
(θ̂t, δ̂t)

∣∣∣
≤ ˜FPRnD̄

(θ̂t, δ̂t) + sup
(θ,δ)∈Ω

∣∣∣FPR(θ, δ)− ˜FPRnD̄
(θ, δ)

∣∣∣
≤ t+ sup

(θ,δ)∈Ω

∣∣∣FPR(θ, δ)− ˜FPRnD̄
(θ, δ)

∣∣∣
= t+ op(1),

giving the desired result.

Now consider the claim∣∣∣∣ max
(θ,δ)∈Ωt,0

TPR(θ, δ)− TPR(θ̂t, δ̂t)

∣∣∣∣→ 0 w.p. 1.

Let ω = (θ, δ). We first demonstrate that Lemma 2.1 holds for

f(ω) := TPR(θ, δ)

Ωn := Ωt,nD̄

Ω0 := Ωt,0.

By condition (A4) in Section 2.3.2, ωn ∈ Ωt,nD̄
such that f(ωn) = maxω∈Ωt,nD̄

f(ω) and

ω0 ∈ Ωt,0 such that f(ω0) = maxω∈Ωt,0 f(ω) exist. By condition (A6) in Section 2.3.2, f(ω)
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is Lipschitz. Thus, we must show dnD̄ , enD̄ → 0 w.p. 1, where, as in Lemma 2.1,

dnD̄ := sup
ω∈Ωt,nD̄

inf
ω̃∈Ωt,0

d(ω, ω̃), enD̄ := sup
ω∈Ωt,0

inf
ω̃∈Ωt,nD̄

d(ω, ω̃),

and d is the Euclidean distance.

Consider dnD̄ . Suppose for some κ > 0,

sup
ω∈Ωt,nD̄

| ˜FPRnD̄
(ω)− FPR(ω)| ≤ κ,

where we abuse notation somewhat to allow FPR(ω) = FPR(θ, δ) and ˜FPRnD̄
(ω) =

˜FPRnD̄
(θ, δ). Then

κ ≥ sup
ω∈Ωt,nD̄

| ˜FPRnD̄
(ω)− FPR(ω)| ≥

∣∣∣∣∣ sup
ω∈Ωt,nD̄

˜FPRnD̄
(ω)− sup

ω∈Ωt,nD̄

FPR(ω)

∣∣∣∣∣ ,
so supω∈Ωt,nD̄

FPR(ω) ≤ κ+ t.

For every ω ∈ Ωt,nD̄
, we have ˜FPRnD̄

(ω) ≤ t and FPR(ω) ≤ κ + t. Then for any given

ω = (θ, δ) ∈ Ωt,nD̄
, we can write

FPR(ω) = P (θ>X > δ|D = 0) = t2 ≤ κ+ t.

If t2 > t (so ω 6∈ Ωt,0), there exists δ̃ such that

P (θ>X > δ̃|D = 0) = t,

namely, δ̃ = G−1(1− t), where G(·) is the distribution function of (θ>X|D = 0). This gives

ω̃ = (θ, δ̃) ∈ Ωt,0. Then since G−1(·) is Lipschitz with constant C by condition (A5) in

Section 2.3.2, we have

d(ω, ω̃) = |δ − δ̃| = |G−1(1− t2)−G−1(1− t)| ≤ C|t− t2| ≤ Cκ.



177

Thus, for any given ω ∈ Ωt,nD̄
,

inf
ω̃∈Ωt,0

d(ω, ω̃) ≤ Cκ,

so dnD̄ ≤ Cκ. Therefore, if dnD̄ > ε for some ε > 0, then

sup
ω∈Ωt,nD̄

| ˜FPRnD̄
(ω)− FPR(ω)| > κε = ε/C.

This gives

P

(
sup
m≥nD̄

dm > ε

)
≤ P

(
sup
m≥nD̄

sup
ω∈Ωt,m

| ˜FPRm(ω)− FPR(ω)| > κε

)
→ 0

since Lemma 2.2 and Ωt,nD̄
⊆ Ω give supω∈Ωt,nD̄

| ˜FPRnD̄
(ω)− FPR(ω)| → 0 w.p. 1.

Now consider enD̄ . Suppose for some κ ∈ (0, t)

sup
ω∈Ωt,0

| ˜FPRnD̄
(ω)− FPR(ω)| ≤ κ.

Then

κ ≥ sup
ω∈Ωt,0

| ˜FPRnD̄
(ω)− FPR(ω)| ≥

∣∣∣∣∣ sup
ω∈Ωt,0

˜FPRnD̄
(ω)− sup

ω∈Ωt,0

FPR(ω)

∣∣∣∣∣ ,
so supω∈Ωt,0

˜FPRnD̄
(ω) ≤ κ + t. Thus, for a given ω = (θ, δ) ∈ Ωt,0, FPR(ω) ≤ t

and ˜FPRnD̄
(ω) ≤ t + κ. Suppose ω 6∈ Ωt,nD̄

, so t < ˜FPRnD̄
(ω) ≤ t + κ. Since κ ≥

supω∈Ωt,0 | ˜FPRnD̄
(ω)− FPR(ω)|, FPR(ω) > t− κ. Then

H−1(1 + κ− t) > δ ≥ H−1(1− t),

where H is the distribution function of (θ>X|D = 0). Let δ̃ = H−1(1+κ− t) and ω̃ = (θ, δ̃).

Since

κ ≥ sup
ω∈Ωt,0

| ˜FPRnD̄
(ω)− FPR(ω)|,
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and FPR(ω̃) = t − κ (so ω̃ ∈ Ωt,0), we have ˜FPRnD̄
(ω̃) ≤ t, giving ω̃ ∈ Ωt,nD̄

. Then since

H−1(·) is Lipschitz with constant B by condition (A5) in Section 2.3.2,

d(ω, ω̃) = |δ − δ̃| ≤ |H−1(1− t)−H−1(1 + κ− t)| ≤ Bκ.

Thus, for any given ω ∈ Ωt,0,

inf
ω̃∈Ωt,nD̄

d(ω, ω̃) ≤ Bκ,

and enD̄ ≤ Bκ. Therefore, if enD̄ > ε for some ε > 0, then

sup
ω∈Ωt,0

| ˜FPRnD̄
(ω)− FPR(ω)| > κε = ε/B.

We then have

P

(
sup
m≥nD̄

em > ε

)
≤ P

(
sup
m≥nD̄

sup
ω∈Ωt,0

| ˜FPRm(ω)− FPR(ω)| > κε

)
→ 0

since Lemma 2.2 and Ωt,0 ⊆ Ω give supω∈Ωt,0 | ˜FPRnD̄
(ω)− FPR(ω)| → 0 w.p. 1.

By Lemma 2.1, we now have∣∣∣∣∣ sup
(θ,δ)∈Ωt,0

TPR(θ, δ)− sup
(θ,δ)∈Ωt,nD̄

TPR(θ, δ)

∣∣∣∣∣→ 0 w.p. 1.
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Then by Lemmas 2.1 and 2.2,∣∣∣∣ sup
(θ,δ)∈Ωt,0

TPR(θ, δ) − sup
(θ,δ)∈Ωt,nD̄

˜TPRnD(θ, δ)

∣∣∣∣
≤

∣∣∣∣∣ sup
(θ,δ)∈Ωt,0

TPR(θ, δ)− sup
(θ,δ)∈Ωt,nD̄

TPR(θ, δ)

∣∣∣∣∣
+

∣∣∣∣∣ sup
(θ,δ)∈Ωt,nD̄

TPR(θ, δ)− sup
(θ,δ)∈Ωt,nD̄

˜TPRnD(θ, δ)

∣∣∣∣∣
≤

∣∣∣∣∣ sup
(θ,δ)∈Ωt,0

TPR(θ, δ)− sup
(θ,δ)∈Ωt,nD̄

TPR(θ, δ)

∣∣∣∣∣
+ sup

(θ,δ)∈Ωt,nD̄

∣∣∣TPR(θ, δ)− ˜TPRnD(θ, δ)
∣∣∣

→ 0 w.p. 1.

By Lemma 2.2,

∣∣∣TPR(θ̂t, δ̂t)− ˜TPRnD(θ̂t, δ̂t)
∣∣∣ ≤ sup

(θ,δ)∈Ω

∣∣∣TPR(θ, δ)− ˜TPRnD(θ, δ)
∣∣∣→ 0 w.p. 1,

and by condition (A4) in Section 2.3.2 and equation (2.1), max(θ,δ)∈Ωt,nD̄
˜TPRnD(θ, δ) =

˜TPRnD(θ̂t, δ̂t), giving∣∣∣∣∣ sup
(θ,δ)∈Ωt,0

TPR(θ, δ)− TPR(θ̂t, δ̂t)

∣∣∣∣∣ ≤
∣∣∣∣∣ sup
(θ,δ)∈Ωt,0

TPR(θ, δ)− sup
(θ,δ)∈Ωt,nD̄

˜TPRnD(θ, δ)

∣∣∣∣∣
+

∣∣∣∣∣ sup
(θ,δ)∈Ωt,nD̄

˜TPRnD(θ, δ)− TPR(θ̂t, δ̂t)

∣∣∣∣∣
=

∣∣∣∣∣ sup
(θ,δ)∈Ωt,0

TPR(θ, δ)− sup
(θ,δ)∈Ωt,nD̄

˜TPRnD(θ, δ)

∣∣∣∣∣
+
∣∣∣ ˜TPRnD(θ̂t, δ̂t)− TPR(θ̂t, δ̂t)

∣∣∣
→ 0 w.p. 1,
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completing the proof.
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A.2 Chapter 4

A.2.1 Risk Function for Conditionally Bivariate Normal Biomarkers

Claim: If the biomarkers X1 and X2 have the conditional distribution given by (4.7), the

true risk function is given by

logit {P (D = 1|X1, X2, C = c)} = βc0 + β1X1 + β2X2,

where

βc0 =
−µ2

X1
− µ2

X2

2(1− ρ2)
+
ρµX1µX2 + ρµX1fX2(c) + ρµX2fX1(c)− µX1fX1(c)− µX2fX2(c)

1− ρ2

+ log

(
γc

1− γc

)
β1 =

µX1 − ρµX2

1− ρ2

β2 =
µX2 − ρµX1

1− ρ2
.

Proof. We can demonstrate this as follows:

P (D = 1|X1, X2, C = c) =
f(X1, X2|D = 1, C = c)γc

f(X1, X2|D = 1, C = c)γc + f(X1, X2|D = 0, C = c)(1− γc)

=
1

1 +B/A
,

where A = f(X1, X2|D = 1, C = c)γc and B = f(X1, X2|D = 0, C = c)(1− γc). We have
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B

A
=
f(X1, X2|D = 0, C = c)(1− γc)
f(X1, X2|D = 1, C = c)γc

= exp

(
1

2(1− ρ2)

[
{X1 − µX1 − fX1(c)}2 − {X1 − fX1(c)}2

− 2ρ{X1 − µX1 − fX1(c)}{X2 − µX2 − fX2(c)}

+ 2ρ{X1 − fX1(c)}{X2 − fX2(c)}

+ {X2 − µX2 − fX2(c)}2 − {X2 − fX2(c)}2
])

×
(

1− γc
γc

)

= exp

{
1

2(1− ρ2)

(
µ2
X1
− 2µX1{X1 − fX1(c)}+ 2ρ[−µX1µX2 + µX1{X2 − fX2(c)}+

µX2{X1 − fX1(c)}] + µ2
X2
− 2µX2{X2 − fX2(c)}

)
+ log

(
1− γc
γc

)}
.

If P (D = 1|X1, X2, C = c) =
1

1 + exp(?)
then P (D = 1|X1, X2, C = c) = expit(−?), so

P (D = 1|X1, X2,C = c)

= expit

{
−1

2(1− ρ2)

(
µ2
X1
− 2µX1 {X1 − fX1(c)}

+ 2ρ[−µX1µX2 + µX1 {X2 − fX2(c)}+ µX2 {X1 − fX1(c)}]

+ µ2
X2
− 2µX2{X2 − fX2(c)}

)
− log

(
1− γc
γc

)}

= expit

{
−µ2

X1
− µ2

X2

2(1− ρ2)
+ log

(
γc

1− γc

)
+
µX1 − ρµX2

1− ρ2
X1 +

µX2 − ρµX1

1− ρ2
X2

+
ρµX1µX2 + ρµX1fX2(c) + ρµX2fX1(c)− µX1fX1(c)− µX2fX2(c)

1− ρ2

}
= expit(βc0 + β1X1 + β2X2).
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A.2.2 Center-Specific AUC for Conditionally Bivariate Normal Biomarkers

Claim: If the biomarkers X1 and X2 have the conditional distribution given by (4.7),

AUCc(θ) for a generic combinations θ does not vary with c and the center-specific ROC

curves for θ>X are concave.

Proof. Let X1D denote X1 for an arbitrary case and X1D̄ denote X1 for an arbitrary control

(and define X2D and X2D̄ analogously). The AUCc(θ) for a generic θ can be written as:

AUCc(θ) = P (θ1X1D + θ2X2D > θ1X1D̄ + θ2X2D̄C = c)

= P


 θ1

θ2

> X1D −X1D̄

X2D −X2D̄

 > 0

∣∣∣∣∣∣∣C = c

 ,

where the distribution of

 X1D −X1D̄

X2D −X2D̄

∣∣∣∣∣∣C = c

 is constant across centers under (4.7).

Since θ1X1D+θ2X2D and θ1X1D̄+θ2X2D̄ are independently normally distributed (conditional

on C = c) with

(θ1X1D + θ2X2D|C = c) ∼ N(θ1{µX1 + fX1(c)}+ θ2{µX2 + fX2(c)}, θ2
1 + θ2

2 + 2ρθ1θ2)

(θ1X1D̄ + θ2X2D̄|C = c) ∼ N(θ1fX1(c) + θ2fX2(c), θ2
1 + θ2

2 + 2ρθ1θ2),

the center-specific AUC is a function of the variances of (θ1X1D+θ2X2D|C = c) and (θ1X1D̄+

θ2X2D̄|C = c) and the difference in the means of (θ1X1D + θ2X2D|C = c) and (θ1X1D̄ +

θ2X2D̄|C = c) (Pepe, 2003). The difference in the means is θ1µX1 + θ2µX2 , and the variances

also do not depend on center. Thus, AUCc(θ) does not vary with c. Furthermore, since

within each center center, the distribution of the combination given D is normally distributed

with equal variance for cases and controls, the center-specific ROC curves for the combination

are concave (Pepe, 2003).
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A.2.3 Proof of Lemma 4.1

Proof. Previous work by Han (1987) proved a similar claim for a related statistic. Consi-

der a single center with n total observations, nD cases, and nD̄ controls. Let Xi denote

the biomarker vector for observation i. Han considered the statistic hij(θ):.for any pair of

observations (i, j), let

hij(θ) = 1(Di > Dj)1(θ>Xi > θ>Xj) + 1(Di < Dj)1(θ>Xi < θ>Xj).

Then

∑
κ

hij(θ) =
∑
i<j

hij(θ)

=
1

2

∑
i 6=j

1{(Di −Dj)(θ
>Xi − θ>Xj) > 0}

=
∑
i 6=j

1(Di > Dj)1(θ>Xi > θ>Xj)

=
∑

i:Di=1,j:Dj=0

1(θ>Xi > θ>Xj),

where κ denotes the collection of all possible pairs of distinct elements (regardless of D).

Also, for any i 6= j,

P (θ>Xi < θ>Xj, Di < Dj) +P (θ>Xi > θ>Xj, Di > Dj)

= P (θ>Xi < θ>Xj|Di < Dj)P (Di < Dj)

+ P (θ>Xi > θ>Xj|Di > Dj)P (Di > Dj)

= P (θ>Xi < θ>Xj|Di < Dj)γ(1− γ)

+ P (θ>Xi > θ>Xj|Di > Dj)γ(1− γ)

= 2γ(1− γ)AUC(θ),
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where γ is the prevalence.

We can consider

Sn(θ) =
2

n(n− 1)

∑
κ

hij(θ)

ˆAUC(θ) =
1

nDnD̄

∑
i:Di=1,j:Dj=0

1(θ>Xi > θ>Xj),

where Sn is a one-sample U-statistic and ˆAUC is a two-sample U-statistic. We would like to

be able to study the asymptotic behavior of Sn; in particular, we would like to say that if

sup
θ∈B
|Sn(θ)− 2γ(1− γ)AUC(θ)| = op(1)

then supθ∈B

∣∣∣ ˆAUC(θ)− AUC(θ)
∣∣∣ = op(1).

If supθ∈B |Sn(θ)− 2γ(1− γ)AUC(θ)| = op(1), then

sup
θ∈B

∣∣∣∣ Sn(θ)

2γ(1− γ)
− AUC(θ)

∣∣∣∣ = op(1).

We would then have

sup
θ∈B

∣∣∣ ˆAUC(θ)− AUC(θ)
∣∣∣ ≤ sup

θ∈B

∣∣∣∣ ˆAUC(θ)− Sn(θ)

2γ(1− γ)

∣∣∣∣+ sup
θ∈B

∣∣∣∣ Sn(θ)

2γ(1− γ)
− AUC(θ)

∣∣∣∣
= sup

θ∈B

∣∣∣∣ ˆAUC(θ)− Sn(θ)

2γ(1− γ)

∣∣∣∣+ op(1)

≤ sup
θ∈B

∣∣∣∣ ˆAUC(θ)− Sn(θ)n2

2nDnD̄

∣∣∣∣+ sup
θ∈B

∣∣∣∣Sn(θ)n2

2nDnD̄
− Sn(θ)

2γ(1− γ)

∣∣∣∣+ op(1)

=

∣∣∣∣1− n2

n(n− 1)

∣∣∣∣ sup
θ∈B

ˆAUC(θ) + sup
θ∈B

∣∣∣∣Sn(θ)n2

2nDnD̄
− Sn(θ)

2γ(1− γ)

∣∣∣∣+ op(1)

≤ o(1) +

∣∣∣∣ n2

2nDnD̄
− 1

2γ(1− γ)

∣∣∣∣+ op(1)

= op(1),
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where the last inequality follows from the fact that Sn(θ), ˆAUC(θ) ≤ 1 and the last equality

follows from the Weak Law of Large Numbers, the continuous mapping theorem and Slutsky’s

theorem. Thus, to demonstrate uniform convergence of ˆAUC(θ), we can consider Sn(θ).

The following is taken nearly verbatim (with very minor variations) from part of the

proof given in Han (1987). Let

h(θ) = E{hij(θ)} ≡ 2γ(1− γ)AUC(θ)

ḡij(θ, δ) = sup
b∈Dδ(θ)

{hij(b)− h(b)}

g
ij

(θ, δ) = inf
b∈Dδ(θ)

{hij(b)− h(b)}

ḡ(θ, δ) = E{ḡij(θ, δ)}

g(θ, δ) = E{g
ij

(θ, δ)}

where Dδ(θ) = {b : b ∈ B, ||b− θ|| < δ}.

It can be seen that hij(θ) is a step function uniformly bounded in (i, j) and θ. By

condition (C3) in Section 4.3.3, hij(θ) is continuous in θ ∈ B uniformly across (i, j) almost

surely. Thus, h(θ) is uniformly bounded and continuous in θ ∈ B.

Note also that ḡij(θ, δ) is measurable for all θ ∈ B and δ > 0 since B is separable and

for any θ ∈ B there exists a sequence {θt} in a countable dense subset of B such that

lim
t→∞

hij(θt) = hij(θ), lim
t→∞

h(θt) = h(θ).

Also, ḡij(θ, δ) is uniformly bounded in θ and

lim
δ→0

ḡij(θ, δ) = hij(θ)− h(θ) almost surely.

Thus, it follows that limδ→0 ḡ(θ, δ) = 0 for all θ ∈ B. A similar argument can be made for

g(θ, δ), giving limδ→0 g(θ, δ) = 0 for all θ ∈ B.
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To show convergence of Sn(θ) to h(θ) uniformly in θ, we have for a given ε > 0,

P

(
sup
θ∈B
|Sn(θ)− h(θ)| > ε

)
≤P

(∣∣∣∣∣ 2

n(n− 1)

∑
κ

sup
θ∈B
{hij(θ)− h(θ)}

∣∣∣∣∣ > ε

)

+ P

(∣∣∣∣∣ 2

n(n− 1)

∑
κ

inf
θ∈B
{hij(θ)− h(θ)}

∣∣∣∣∣ > ε

)
.

Since B is compact, there exists a finite set of coverings {Dδl(θl)}, l = 1, ..., L, such that

B ⊂
L⋃
l=1

Dδl(θl) and ḡ(θl, δl), g(θl, δl) > ε/2.

Thus,

P

(
sup
θ∈B
|Sn(θ)− h(θ)| > ε

)
≤

L∑
l=1

P

(∣∣∣∣∣ 2

n(n− 1)

∑
κ

ḡij(θl, δl)− ḡ(θl, δl)

∣∣∣∣∣ ≥ ε/2

)

+
L∑
l=1

P

(∣∣∣∣∣ 2

n(n− 1)

∑
κ

g
ij

(θl, δl)− g(θl, δl)

∣∣∣∣∣ ≥ ε/2

)
.

However, note that for each l, 2
n(n−1)

∑
κ ḡij(θl, δl) is a one-sample U-statistic with kernel

ḡij(θl, δl) = sup
b∈Dδl (θl)

{hij(b)− h(b)} .

Since E{ḡij(θl, δl)}2 ≤ E(1) <∞, we have

2

n(n− 1)

∑
κ

ḡij(θl, δl)
p−→ ḡ(θl, δl).
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These arguments also apply to g
ij

(θl, δl), giving

2

n(n− 1)

∑
κ

ḡij(θl, δl)
p−→ ḡ(θl, δl), l = 1, ..., L

2

n(n− 1)

∑
κ

g
ij

(θl, δl)
p−→ g(θl, δl), l = 1, ..., L.

Thus, we have

P

(
sup
θ∈B
|Sn(θ)− h(θ)| > ε

)
→ 0,

so supθ∈B | ˆAUC(θ)−AUC(θ)| p−→ 0. Since this holds for any center c, we have demonstrated

supθ∈B | ˆAUCc(θ)− AUCc(θ)| p−→ 0 as nc →∞.
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A.2.4 Proof of Lemma 4.2

Proof. We can write this claim as follows:

sup
θ∈B
| ˆaAUC(θ)− aAUC(θ)| = sup

θ∈B

∣∣∣∣∣
m∑
c=1

ŵc ˆAUCc(θ)−
M∑
c=1

wcAUCc(θ)

∣∣∣∣∣ p−→ 0.

We can write

sup
θ∈B

∣∣∣∣∣
m∑
c=1

ŵc ˆAUCc(θ)−
M∑
c=1

wcAUCc(θ)

∣∣∣∣∣
= sup

θ∈B

∣∣∣∣∣
m∑
c=1

ŵc ˆAUCc(θ)−
m∑
c=1

wcAUCc(θ)−
M∑

c=m+1

wcAUCc(θ)

∣∣∣∣∣
= sup

θ∈B

∣∣∣∣∣
m∑
c=1

(
ŵc ˆAUCc(θ)− wcAUCc(θ)

)
−

M∑
c=m+1

wcAUCc(θ)

∣∣∣∣∣
≤ sup

θ∈B

∣∣∣∣∣
m∑
c=1

(
ŵc ˆAUCc(θ)− wcAUCc(θ)

)∣∣∣∣∣+
M∑

c=m+1

sup
θ∈B
|wcAUCc(θ)|

= sup
θ∈B

∣∣∣∣∣
m∑
c=1

(
ŵc ˆAUCc(θ)− wcAUCc(θ)

)∣∣∣∣∣+ o(1)

as m→M .



190

Then

sup
θ∈B

∣∣∣∣∣
m∑
c=1

(
ŵc ˆAUCc(θ)− wcAUCc(θ)

)∣∣∣∣∣
= sup

θ∈B

∣∣∣∣∣
m∑
c=1

{
ŵc

(
ˆAUCc(θ)− AUCc(θ)

)
+ ŵcAUCc(θ)− wcAUCc(θ)

}∣∣∣∣∣
≤ sup

θ∈B

∣∣∣∣∣
m∑
c=1

ŵc

(
ˆAUCc(θ)− AUCc(θ)

)∣∣∣∣∣+ sup
θ∈B

∣∣∣∣∣
m∑
c=1

(ŵc − wc)AUCc(θ)

∣∣∣∣∣
≤

m∑
c=1

sup
θ∈B

∣∣∣ŵc ( ˆAUCc(θ)− AUCc(θ)
)∣∣∣+

m∑
c=1

sup
θ∈B
|(ŵc − wc)AUCc(θ)|

=
m∑
c=1

ŵc sup
θ∈B

∣∣∣ ˆAUCc(θ)− AUCc(θ)
∣∣∣+

m∑
c=1

|ŵc − wc| sup
θ∈B

AUCc(θ)

=
m∑
c=1

ŵcop(1) +
m∑
c=1

|ŵc − wc| sup
θ∈B

AUCc(θ)

= op(1) +
m∑
c=1

|ŵc − wc| sup
θ∈B

AUCc(θ)

≤ op(1) +
m∑
c=1

|ŵc − wc| ,

where the second to last equality follows from the fact that supθ∈B

∣∣∣ ˆAUCc(θ)− AUCc(θ)
∣∣∣ =

op(1) by Lemma 4.1, the last equality follows from the fact that
∑m

c=1 ŵc = 1 for every m,

and the last inequality follows from AUCc(θ) ≤ 1.

Now we must show that
m∑
c=1

|ŵc − wc| = op(1).

Equivalently, we must prove that for every ε > 0,

P

(
m∑
c=1

|ŵc − wc| > ε

)
→ 0

as nc →∞, c = 1, ...,m, and m→M such that
√
nc/m→∞.
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We have

P

(
m∑
c=1

|ŵc − wc| > ε

)
≤ E(

∑m
c=1 |ŵc − wc|)

ε
=

∑m
c=1 E|ŵc − wc|

ε

≤
∑m

c=1E |ŵc − E(ŵc)|
ε

+

∑m
c=1 |E(ŵc)− wc|

ε

≤
∑m

c=1

√
V ar(ŵc)

ε
+ o(1),

where the first inequality follows from Markov’s inequality and the third inequality follows

from Jensen’s inequality and the fact that
∑m

c=1 |E(ŵc)− wc| = o(1) by condition (C2) in

Section 4.3.3.

Let f(R, S) = R/S and ν = (E(R), E(S)). Then we can use a first-order Taylor approx-

imation to write

f(R, S) ≈ f(ν) + f ′R(ν)(R− E(R)) + f ′S(ν)(S − E(S)),

where f ′R(ν) = ∂f(R,S)
∂R
|ν and f ′S(ν) is defined analogously. This gives E[f(R, S)] ≈ f(ν). We

can also write

V ar[f(R, S)] ≈ E
[
{f(R, S)− f(ν)}2] ≈ [ 1

{E(S)}2

]
V ar(R) +

[
{E(R)}2

{E(S)}4

]
V ar(S)

− 2

[
E(R)

{E(S)}3

]
Cov(R, S).

In our case, we have ŵc = ncD/nD, giving R = ncD, S = nD, so E(R) = ncγc, V ar(R) =

ncγc(1−γc), E(S) =
∑m

c=1 ncγc, V ar(S) =
∑m

c=1 ncγc(1−γc), and Cov(R, S) = ncγc(1−γc).

Then

V ar(ŵc) = V ar

(
ncD
nD

)
≈
(

ncγc∑m
c=1 ncγc

)2{
1− γc
ncγc

− 2
1− γc∑m
c=1 ncγc

+

∑m
c=1 ncγc(1− γc)
(
∑m

c=1 ncγc)
2

}
≤ 1− γc

ncγc
+

∑m
c=1 ncγc(1− γc)
(
∑m

c=1 ncγc)
2

.
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By Hölder’s inequality
m∑
c=1

√
V ar(ŵc) ≤

√
mA,

where

A =
m∑
c=1

{
1− γc
ncγc

+

∑m
c=1 ncγc(1− γc)
(
∑m

c=1 ncγc)
2

}
.

We can write

A =
m∑
c=1

1− γc
ncγc

+m

{∑m
c=1 ncγc(1− γc)
(
∑m

c=1 ncγc)
2

}
≤ 1

minc nc

m∑
c=1

(1/γc) +
m∑m

c=1 ncγc
.

Furthermore, we have 1/γc ≤ V <∞. Then

A ≤ mV

minc nc
+

m

minc nc
∑m

c=1 γc
≤ (m+ 1)V

minc nc
≈ 2mV

minc nc
.

Then
∑m

c=1

√
V ar(ŵc) → 0 if nc → ∞, c = 1, ...,m, and m → M such that

√
minc nc
m

→ ∞.

This holds if nc → ∞, c = 1, ...,m, and m → M such that
√
nc/m → ∞. This then gives

P (
∑m

c=1 |ŵc − wc| > ε)→ 0, completing the proof.
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A.2.5 Proof of Theorem 4.1

Proof. We can write this claim as

∣∣∣ ˆaAUC(θ̂)− aAUC(θ0)
∣∣∣ =

∣∣∣ ˆaAUC(θ̂)− aAUC(θ̂) + aAUC(θ̂)− aAUC(θ0)
∣∣∣ = op(1).

Then

∣∣∣ ˆaAUC(θ̂)− aAUC(θ0)
∣∣∣ ≤ ∣∣∣ ˆaAUC(θ̂)− aAUC(θ̂)

∣∣∣+
∣∣∣aAUC(θ̂)− aAUC(θ0)

∣∣∣ .
By the uniform convergence of ˆaAUC(θ) (Lemma 4.2),

∣∣∣ ˆaAUC(θ̂)− aAUC(θ̂)
∣∣∣ ≤ sup

θ∈B

∣∣∣ ˆaAUC(θ)− aAUC(θ)
∣∣∣ = op(1).

Next, we can write

∣∣∣aAUC(θ̂)− aAUC(θ0)
∣∣∣ =

∣∣∣∣∣
M∑
c=1

wc(AUCc(θ̂)− AUCc(θ0))

∣∣∣∣∣
≤

M∑
c=1

wc

∣∣∣AUCc(θ̂)− AUCc(θ0)
∣∣∣

Then we can apply Taylor’s theorem to AUCc(θ̂) − AUCc(θ0) using condition (C5) in

Section 4.3.3. This gives

AUCc(θ̂)− AUCc(θ0) ≈

(
∂

∂t
AUCc(t)

∣∣∣∣
t=θ0

)>
(θ̂ − θ0).
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Then

M∑
c=1

wc

∣∣∣AUCc(θ̂)− AUCc(θ0)
∣∣∣ ≈ M∑

c=1

wc

∣∣∣AUC ′c(θ0)>(θ̂ − θ0)
∣∣∣

≤ √p× T × ||θ̂ − θ0|| ×
M∑
c=1

wc = op(1),

by condition (C5) in Section 4.3.3, the Cauchy-Schwarz inequality, the convergence of θ̂, the

continuous mapping theorem, and the fact that
∑M

c=1 wc = 1.
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A.3 Chapter 5

A.3.1 Proof of Theorem 5.1

Proof. First we will show

sup
θ∈B

∣∣∣Q̃n(θ;λ)−Q(θ;λ)
∣∣∣ = op(1).

Let

Qn(θ;λ) = ˆaAUC(θ)− λ
m∑
c=1

ŵc

(
ˆAUCc(θ)− ˆaAUC(θ)

)2

.

We can write

sup
θ∈B

∣∣∣Q̃n(θ;λ)−Q(θ;λ)
∣∣∣ ≤ sup

θ∈B

∣∣∣Q̃n(θ;λ)−Qn(θ;λ)
∣∣∣+ sup

θ∈B
|Qn(θ;λ)−Q(θ;λ)| .

Under conditions (A1)-(A4) in Section 5.3.2, we have shown (Lemmas 4.1 and 4.2)

sup
θ∈B

∣∣∣ ˆaAUC(θ)− aAUC(θ)
∣∣∣ = op(1)

sup
θ∈B

∣∣∣ ˆAUCc(θ)− AUCc(θ)
∣∣∣ = op(1), c = 1, ...,M.
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We can write

sup
θ∈B
|Qn(θ;λ)−Q(θ;λ)|

≤ sup
θ∈B

∣∣∣ ˆaAUC(θ)− aAUC(θ)
∣∣∣

+ λ sup
θ∈B

∣∣∣∣∣
M∑
c=1

wc(AUCc(θ)− aAUC(θ))2 −
m∑
c=1

ŵc( ˆAUCc(θ)− ˆaAUC(θ))2

∣∣∣∣∣
≤ sup

θ∈B

∣∣∣ ˆaAUC(θ)− aAUC(θ)
∣∣∣

+ λ
M∑

c=m+1

sup
θ∈B

∣∣wc(AUCc(θ)− aAUC(θ))2
∣∣

+ λ sup
θ∈B

∣∣∣∣∣
m∑
c=1

{
wc(AUCc(θ)− aAUC(θ))2 − ŵc( ˆAUCc(θ)− ˆaAUC(θ))2

}∣∣∣∣∣ ,
where

∑M
c=m+1 supθ∈B |wc(AUCc(θ)− aAUC(θ))2| = o(1) as m→M . Then by Lemma 4.2,

sup
θ∈B
|Qn(θ;λ)−Q(θ;λ)| ≤ op(1) + o(1) + λ

m∑
c=1

sup
θ∈B

∣∣wcY c
1 (θ)2 − ŵc(Y c

2 (θ) + Y c
1 (θ) + Y3(θ))2

∣∣ ,
where

Y c
1 (θ) = AUCc(θ)− aAUC(θ)

Y c
2 (θ) = ˆAUCc(θ)− AUCc(θ)

Y3(θ) = aAUC(θ)− ˆaAUC(θ);
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note that |Y c
1 (θ)| ≤ 1, |Y c

2 (θ)| ≤ 1 and |Y3(θ)| ≤ 1. Then

sup
θ∈B
|Qn(θ;λ)−Q(θ;λ)|

≤ op(1) + o(1) + λ
m∑
c=1

sup
θ∈B

∣∣(wc − ŵc)Y c
1 (θ)2

−ŵc
{
Y c

2 (θ)2 + Y3(θ)2 + 2Y c
1 (θ)Y c

2 (θ) + 2Y c
1 (θ)Y3(θ) + 2Y c

2 (θ)Y3(θ)
}∣∣

≤ op(1) + o(1) + λ
m∑
c=1

sup
θ∈B

∣∣(wc − ŵc)Y c
1 (θ)2

∣∣+ λ
m∑
c=1

sup
θ∈B

∣∣−ŵcY c
2 (θ)2

∣∣
+ λ

m∑
c=1

sup
θ∈B

∣∣−ŵcY3(θ)2
∣∣+ λ

m∑
c=1

sup
θ∈B
|−2ŵcY

c
1 (θ)Y c

2 (θ)|

+ λ
m∑
c=1

sup
θ∈B
|−2ŵcY

c
1 (θ)Y3(θ)|+ λ

m∑
c=1

sup
θ∈B
|−2ŵcY

c
2 (θ)Y3(θ)| .

We have (by Lemmas 4.1 and 4.2)

sup
θ∈B
|Y c

2 (θ)| = op(1), c = 1, ...,M

sup
θ∈B
|Y3(θ)| = op(1).

This gives

sup
θ∈B

∣∣(wc − ŵc) [Y c
1 (θ)]2

∣∣ = |wc − ŵc| sup
θ∈B

[Y c
1 (θ)]2 ≤ |wc − ŵc|

sup
θ∈B

∣∣−ŵc [Y c
2 (θ)]2

∣∣ = ŵc sup
θ∈B

[Y c
2 (θ)]2 ≤ ŵc sup

θ∈B
|Y c

2 (θ)| = ŵcop(1)

sup
θ∈B

∣∣−ŵc [Y3(θ)]2
∣∣ = ŵc sup

θ∈B
[Y3(θ)]2 ≤ ŵc sup

θ∈B
|Y3(θ)| = ŵcop(1)

sup
θ∈B
|−2ŵcY

c
1 (θ)Y c

2 (θ)| = ŵcop(1)

sup
θ∈B
|−2ŵcY

c
1 (θ)Y3(θ)| = ŵcop(1)

sup
θ∈B
|−2ŵcY

c
2 (θ)Y3(θ)| = ŵcop(1).
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Since
∑m

c=1 ŵc = 1 for every m,

sup
θ∈B
|Qn(θ;λ)−Q(θ;λ)| ≤ op(1) + o(1) + λ

m∑
c=1

|wc − ŵc| .

Furthermore, we have previously shown (Lemma 4.2) that
∑m

c=1 |wc − ŵc| = op(1) as nc →

∞, c = 1, ...,m, and m→M such that
√
nc/m→∞. Thus,

sup
θ∈B
|Qn(θ;λ)−Q(θ;λ)| = op(1).

Now consider supθ∈B

∣∣∣Q̃n(θ;λ)−Qn(θ;λ)
∣∣∣. We will first show

sup
θ∈B

∣∣∣aRn(θ)− ˆaAUC(θ)
∣∣∣ = op(1).

Ma and Huang (2007) demonstrated that supθ∈B

∣∣∣Rc
nc(θ)− ˆAUCc(θ)

∣∣∣ = op(1) as nc →∞.

We can write

sup
θ∈B

∣∣∣aRn(θ)− ˆaAUC(θ)
∣∣∣ ≤ m∑

c=1

ŵc sup
θ∈B

∣∣∣Rc
nc(θ)− ˆAUCc(θ)

∣∣∣ ≤ m∑
c=1

ŵcop(1) = op(1)

since
∑m

c=1 ŵc = 1 for every m.

Now consider supθ∈B

∣∣∣Q̃n(θ;λ)−Qn(θ;λ)
∣∣∣. We can write

sup
θ∈B

∣∣∣Q̃n(θ;λ)−Qn(θ;λ)
∣∣∣

≤ sup
θ∈B

∣∣∣aRn(θ)− ˆaAUC(θ)
∣∣∣

+ λ sup
θ∈B

∣∣∣∣∣
m∑
c=1

{
ŵc( ˆAUCc(θ)− ˆaAUC(θ))2 − ŵc(Rc

nc(θ)− aRn(θ))2
}∣∣∣∣∣

≤ op(1) + λ
m∑
c=1

sup
θ∈B

∣∣ŵcZc
1(θ)2 − ŵc(Zc

2(θ) + Zc
1(θ) + Z3(θ))2

∣∣ ,
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where

Zc
1(θ) = ˆAUCc(θ)− ˆaAUC(θ)

Zc
2(θ) = Rc

nc(θ)− ˆAUCc(θ)

Z3(θ) = ˆaAUC(θ)− aRn(θ);

note that |Zc
1(θ)| ≤ 1, |Zc

2(θ)| ≤ 1 and |Z3(θ)| ≤ 1. This gives

sup
θ∈B

∣∣∣Q̃n(θ;λ)−Qn(θ;λ)
∣∣∣ ≤ op(1) + λ

m∑
c=1

sup
θ∈B

∣∣−ŵcZc
2(θ)2

∣∣
+ λ

m∑
c=1

sup
θ∈B

∣∣−ŵcZ3(θ)2
∣∣+ λ

m∑
c=1

sup
θ∈B
|−2ŵcZ

c
1(θ)Zc

2(θ)|

+ λ
m∑
c=1

sup
θ∈B
|−2ŵcZ

c
1(θ)Z3(θ)|+ λ

m∑
c=1

sup
θ∈B
|−2ŵcZ

c
2(θ)Z3(θ)| .

We have that

sup
θ∈B
|Zc

2(θ)| = op(1), c = 1, ...,M

sup
θ∈B
|Z3(θ)| = op(1).

This gives

sup
θ∈B

∣∣−ŵc [Zc
2(θ)]2

∣∣ = ŵc sup
θ∈B

[Zc
2(θ)]2 ≤ ŵcop(1)

sup
θ∈B

∣∣−ŵc [Z3(θ)]2
∣∣ = ŵc sup

θ∈B
[Z3(θ)]2 ≤ ŵcop(1)

sup
θ∈B
|−2ŵcZ

c
1(θ)Zc

2(θ)| = ŵcop(1)

sup
θ∈B
|−2ŵcZ

c
1(θ)Z3(θ)| = ŵcop(1)

sup
θ∈B
|−2ŵcZ

c
2(θ)Z3(θ)| = ŵcop(1).
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Since
∑m

c=1 ŵc = 1 for every m, we have

sup
θ∈B

∣∣∣Q̃n(θ;λ)−Qn(θ;λ)
∣∣∣ = op(1).

Combining these results, we have

sup
θ∈B

∣∣∣Q̃n(θ;λ)−Q(θ;λ)
∣∣∣ = op(1).

Then∣∣∣∣Q(θ̂λ;λ)− sup
θ∈B

Q(θ;λ)

∣∣∣∣ ≤ ∣∣∣∣sup
θ∈B

Q(θ;λ)− sup
θ∈B

Q̃n(θ;λ)

∣∣∣∣+

∣∣∣∣sup
θ∈B

Q̃n(θ;λ)−Q(θ̂λ;λ)

∣∣∣∣
≤ sup

θ∈B

∣∣∣Q(θ;λ)− Q̃n(θ;λ)
∣∣∣+
∣∣∣Q̃n(θ̂λ;λ)−Q(θ̂λ;λ)

∣∣∣
≤ op(1) + sup

θ∈B

∣∣∣Q̃n(θ;λ)−Q(θ;λ)
∣∣∣ = op(1),

giving supθ∈B Q(θ;λ) = Q(θ̂λ;λ) + op(1) as nc → ∞, c = 1, ...,m, and m → M such that
√
nc/m→∞.
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Appendix B

ADDITIONAL SIMULATION RESULTS

B.1 Chapter 2

The tables below present additional results related to the simulations described in Section

2.4; that is, data with and without outliers in the setting of high and low disease prevalences.

In each table, we report (i) the mean and standard deviation of the true positive rate in the

test data using the threshold corresponding to a false positive rate of t in the test data and

(ii) the mean and standard deviation of the false positive rate in the test data corresponding

to the thresholds estimated in the training data.
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Table B.1: Mean true positive rate and false positive rate and corresponding standard devi-
ation (in parentheses) for f(v) = f1(v) ≡ expit(v) = ev/(1 + ev) and β0 = −1.75 across 1000
simulations. n is the size of the training dataset, t is the acceptable false positive rate, “GLM”
denotes standard logistic regression, “rGLM” denotes robust logistic regression, “sTPR” de-
notes the proposed method with the threshold estimated directly, and “sTPR(re)” denotes
the proposed method with the threshold recalculated based on quantiles of the fitted com-
bination. All numbers are percentages.

Outliers n True positive rate False positive rate
GLM rGLM sTPR GLM rGLM sTPR sTPR(re)

t = 0.05
Yes 200 13.0 (2.8) 13.4 (3.4) 13.5 (3.4) 5.3 (1.7) 5.4 (1.7) 5.8 (1.9) 5.7 (1.8)

400 12.7 (1.9) 13.4 (2.7) 13.6 (2.9) 5.2 (1.2) 5.2 (1.2) 5.4 (1.3) 5.4 (1.2)
800 12.5 (1.3) 13.2 (2.1) 13.6 (2.5) 5.1 (0.8) 5.2 (0.8) 5.3 (0.9) 5.2 (0.9)

No 200 18.1 (1.0) 18.1 (1.1) 17.5 (2.2) 5.5 (1.8) 5.5 (1.8) 6.1 (1.9) 5.9 (1.8)
400 18.5 (0.6) 18.5 (0.6) 18.2 (1.6) 5.1 (1.2) 5.2 (1.2) 5.5 (1.3) 5.4 (1.3)
800 18.7 (0.3) 18.7 (0.3) 18.5 (1.1) 5.1 (0.9) 5.1 (0.9) 5.3 (0.9) 5.3 (0.9)

t = 0.10
Yes 200 22.1 (4.5) 22.7 (5.3) 23.1 (5.3) 10.4 (2.4) 10.5 (2.4) 10.8 (2.5) 10.8 (2.4)

400 21.9 (3.6) 22.8 (4.7) 23.4 (4.8) 10.1 (1.7) 10.2 (1.7) 10.4 (1.8) 10.4 (1.8)
800 21.4 (2.3) 22.3 (3.4) 23.3 (4.3) 10.1 (1.2) 10.1 (1.2) 10.2 (1.4) 10.3 (1.2)

No 200 29.5 (1.3) 29.4 (1.3) 28.8 (2.5) 10.3 (2.3) 10.4 (2.3) 11.1 (2.3) 10.9 (2.3)
400 29.8 (0.7) 29.8 (0.7) 29.5 (1.5) 10.2 (1.7) 10.2 (1.7) 10.7 (1.7) 10.6 (1.7)
800 30.1 (0.4) 30.1 (0.4) 29.8 (1.1) 10.1 (1.1) 10.1 (1.1) 10.4 (1.1) 10.3 (1.1)

t = 0.20
Yes 200 36.4 (6.6) 37.2 (7.8) 38.1 (7.4) 20.5 (3.2) 20.6 (3.1) 20.9 (3.5) 21.0 (3.2)

400 36.2 (4.7) 37.3 (6.2) 38.5 (6.4) 20.1 (2.2) 20.2 (2.3) 20.4 (2.2) 20.4 (2.2)
800 35.7 (3.0) 37.0 (4.6) 38.8 (5.7) 20.2 (1.5) 20.2 (1.5) 20.3 (1.7) 20.4 (1.5)

No 200 46.1 (1.7) 46.1 (1.7) 45.5 (2.6) 20.4 (3.1) 20.5 (3.2) 21.1 (3.1) 21.0 (3.2)
400 46.7 (0.8) 46.7 (0.8) 46.4 (1.3) 20.1 (2.1) 20.2 (2.1) 20.5 (2.1) 20.5 (2.1)
800 47.0 (0.4) 47.0 (0.4) 46.8 (0.7) 20.0 (1.6) 20.0 (1.6) 20.3 (1.5) 20.2 (1.6)
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Table B.2: Mean true positive rate and false positive rate and corresponding standard devi-
ation (in parentheses) for f(v) = f1(v) ≡ expit(v) = ev/(1 + ev) and β0 = 1.75 across 1000
simulations. n is the size of the training dataset, t is the acceptable false positive rate, “GLM”
denotes standard logistic regression, “rGLM” denotes robust logistic regression, “sTPR” de-
notes the proposed method with the threshold estimated directly, and “sTPR(re)” denotes
the proposed method with the threshold recalculated based on quantiles of the fitted com-
bination. All numbers are percentages.

Outliers n True positive rate False positive rate
GLM rGLM sTPR GLM rGLM sTPR sTPR(re)

t = 0.05
Yes 200 8.4 (1.2) 8.4 (1.4) 8.2 (1.8) 7.3 (4.0) 6.9 (3.9) 9.2 (5.6) 7.7 (4.6)

400 8.6 (0.9) 8.5 (1.1) 8.3 (1.6) 6.3 (2.7) 6.3 (2.7) 7.2 (3.6) 6.7 (2.9)
800 8.7 (0.6) 8.6 (0.7) 8.5 (1.5) 5.8 (1.8) 5.8 (1.8) 6.2 (2.5) 6.1 (2.0)

No 200 18.7 (1.0) 18.7 (1.0) 17.2 (3.5) 6.3 (4.1) 6.1 (4.0) 9.3 (5.9) 7.4 (4.5)
400 19.0 (0.5) 19.0 (0.6) 17.9 (2.9) 5.7 (2.7) 5.6 (2.7) 7.1 (3.7) 6.4 (3.0)
800 19.2 (0.3) 19.2 (0.3) 18.3 (2.9) 5.3 (1.9) 5.3 (1.9) 6.1 (2.5) 5.9 (2.0)

t = 0.10
Yes 200 18.6 (3.9) 19.1 (4.7) 19.4 (4.8) 12.4 (5.1) 12.4 (5.0) 15.0 (6.2) 13.5 (5.4)

400 18.6 (2.5) 19.2 (3.5) 19.8 (3.8) 11.1 (3.4) 11.1 (3.5) 12.6 (4.2) 12.0 (3.7)
800 18.4 (1.4) 19.2 (2.6) 19.8 (3.4) 10.8 (2.6) 10.8 (2.6) 11.4 (3.1) 11.3 (2.7)

No 200 29.9 (1.3) 29.9 (1.3) 28.7 (3.6) 11.7 (5.2) 11.5 (5.2) 14.7 (6.7) 13.1 (5.6)
400 30.4 (0.6) 30.3 (0.7) 29.4 (3.4) 10.7 (3.6) 10.6 (3.6) 12.4 (4.5) 11.7 (3.8)
800 30.6 (0.3) 30.6 (0.3) 30.2 (2.0) 10.4 (2.5) 10.4 (2.5) 11.4 (2.8) 11.1 (2.5)

t = 0.20
Yes 200 34.2 (6.4) 34.9 (7.7) 35.9 (7.1) 22.5 (6.5) 22.7 (6.3) 25.0 (7.4) 24.0 (6.7)

400 34.2 (4.3) 35.0 (5.6) 36.3 (5.9) 21.4 (4.7) 21.5 (4.7) 22.9 (5.2) 22.4 (4.8)
800 33.9 (2.8) 35.0 (4.4) 36.2 (5.0) 20.6 (3.3) 20.7 (3.3) 21.5 (3.5) 21.3 (3.4)

No 200 46.4 (1.6) 46.4 (1.6) 45.6 (3.3) 22.2 (7.0) 22.0 (7.0) 25.6 (7.8) 23.9 (7.1)
400 47.0 (0.8) 47.0 (0.8) 46.5 (2.2) 20.8 (5.0) 20.7 (4.9) 22.8 (5.1) 22.0 (5.0)
800 47.2 (0.4) 47.2 (0.4) 46.9 (1.9) 20.6 (3.4) 20.6 (3.4) 21.6 (3.8) 21.4 (3.5)
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Table B.3: Mean true positive rate and false positive rate and corresponding standard devia-
tion (in parentheses) for f(v) = f2(v) ≡ 1(v < 0)× (1/(1+e−v/3))+1(v ≥ 0)× (1/(1+e−3v))
and β0 = −5.25 across 1000 simulations. n is the size of the training dataset, t is the accepta-
ble false positive rate, “GLM” denotes standard logistic regression, “rGLM” denotes robust
logistic regression, “sTPR” denotes the proposed method with the threshold estimated di-
rectly, and “sTPR(re)” denotes the proposed method with the threshold recalculated based
on quantiles of the fitted combination. All numbers are percentages.

Outliers n True positive rate False positive rate
GLM rGLM sTPR GLM rGLM sTPR sTPR(re)

t = 0.05
Yes 200 7.1 (1.1) 7.1 (1.1) 7.1 (1.1) 5.7 (1.8) 5.7 (1.8) 6.0 (2.0) 5.9 (1.9)

400 7.4 (1.0) 7.3 (0.9) 7.3 (1.0) 5.3 (1.2) 5.4 (1.2) 5.5 (1.3) 5.5 (1.2)
800 7.6 (0.8) 7.5 (0.8) 7.5 (0.9) 5.1 (0.8) 5.2 (0.8) 5.2 (1.0) 5.2 (0.9)

No 200 7.3 (1.4) 7.3 (1.4) 7.2 (1.4) 5.5 (1.7) 5.6 (1.7) 6.0 (1.9) 5.9 (1.8)
400 7.8 (0.9) 7.8 (1.0) 7.7 (1.1) 5.2 (1.2) 5.2 (1.1) 5.5 (1.4) 5.4 (1.2)
800 8.1 (0.4) 8.1 (0.4) 8.0 (0.7) 5.1 (0.9) 5.1 (0.9) 5.2 (1.1) 5.2 (0.9)

t = 0.10
Yes 200 12.4 (2.0) 12.3 (2.0) 12.4 (2.0) 10.6 (2.3) 10.6 (2.3) 10.7 (2.9) 10.9 (2.4)

400 12.6 (1.7) 12.4 (1.7) 12.6 (1.8) 10.4 (1.7) 10.4 (1.7) 10.5 (2.1) 10.6 (1.7)
800 12.8 (1.5) 12.5 (1.5) 12.7 (1.6) 10.2 (1.2) 10.2 (1.1) 10.3 (1.5) 10.3 (1.2)

No 200 13.9 (2.2) 13.9 (2.2) 13.6 (2.3) 10.7 (2.3) 10.8 (2.3) 11.2 (2.7) 11.2 (2.4)
400 14.5 (1.5) 14.5 (1.5) 14.4 (1.6) 10.2 (1.6) 10.2 (1.6) 10.5 (1.9) 10.5 (1.6)
800 15.0 (0.8) 15.0 (0.8) 14.9 (1.0) 10.2 (1.2) 10.2 (1.2) 10.4 (1.3) 10.4 (1.2)

t = 0.20
Yes 200 22.4 (3.6) 22.2 (3.7) 22.5 (3.7) 20.9 (3.1) 20.9 (3.2) 21.1 (4.0) 21.3 (3.2)

400 22.6 (3.3) 22.3 (3.3) 22.7 (3.3) 20.6 (2.2) 20.6 (2.2) 20.7 (2.8) 20.9 (2.2)
800 22.8 (2.7) 22.3 (2.8) 22.8 (2.8) 20.2 (1.5) 20.2 (1.6) 20.2 (2.1) 20.4 (1.6)

No 200 25.8 (3.5) 25.7 (3.5) 25.5 (3.6) 20.9 (3.1) 20.9 (3.1) 21.4 (3.7) 21.4 (3.1)
400 26.9 (2.3) 26.9 (2.3) 26.8 (2.3) 20.5 (2.1) 20.5 (2.1) 20.8 (2.3) 20.8 (2.1)
800 27.7 (1.1) 27.7 (1.1) 27.5 (1.3) 20.3 (1.6) 20.3 (1.6) 20.5 (1.7) 20.5 (1.6)
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Table B.4: Mean true positive rate and false positive rate and corresponding standard devia-
tion (in parentheses) for f(v) = f2(v) ≡ 1(v < 0)× (1/(1+e−v/3))+1(v ≥ 0)× (1/(1+e−3v))
and β0 = 0.6 across 1000 simulations. n is the size of the training dataset, t is the accepta-
ble false positive rate, “GLM” denotes standard logistic regression, “rGLM” denotes robust
logistic regression, “sTPR” denotes the proposed method with the threshold estimated di-
rectly, and “sTPR(re)” denotes the proposed method with the threshold recalculated based
on quantiles of the fitted combination. All numbers are percentages.

Outliers n True positive rate False positive rate
GLM rGLM sTPR GLM rGLM sTPR sTPR(re)

t = 0.05
Yes 200 23.0 (8.6) 30.5 (10.9) 31.9 (10.8) 6.4 (3.3) 6.3 (3.4) 8.2 (3.8) 6.8 (3.7)
Yes 400 21.5 (6.9) 31.8 (10.5) 33.5 (10.1) 5.8 (2.3) 5.8 (2.4) 6.7 (2.7) 6.2 (2.6)
Yes 800 20.0 (4.4) 34.6 (9.2) 35.8 (8.5) 5.4 (1.6) 5.3 (1.6) 5.9 (1.8) 5.7 (1.7)
No 200 49.7 (1.5) 49.5 (1.7) 48.6 (4.4) 6.0 (3.5) 5.9 (3.5) 8.6 (4.1) 6.8 (3.7)
No 400 50.3 (0.7) 50.1 (0.8) 49.7 (2.3) 5.5 (2.5) 5.4 (2.5) 6.8 (2.6) 6.1 (2.6)
No 800 50.5 (0.4) 50.5 (0.5) 50.1 (2.0) 5.2 (1.6) 5.2 (1.6) 6.0 (1.7) 5.6 (1.7)

t = 0.10
Yes 200 37.3 (11.0) 45.7 (13.7) 48.4 (13.2) 11.5 (4.5) 11.6 (4.5) 13.2 (4.6) 12.4 (4.6)
Yes 400 35.2 (8.5) 47.5 (12.9) 50.6 (12.1) 10.8 (3.1) 10.9 (3.2) 11.7 (3.3) 11.4 (3.3)
Yes 800 34.5 (6.6) 51.3 (10.7) 53.6 (10.2) 10.4 (2.2) 10.4 (2.2) 10.8 (2.4) 10.8 (2.3)
No 200 61.3 (1.4) 61.1 (1.6) 60.7 (3.2) 10.9 (4.5) 10.9 (4.5) 13.4 (4.7) 12.1 (4.7)
No 400 61.8 (0.7) 61.6 (0.8) 61.4 (1.2) 10.6 (3.2) 10.6 (3.2) 12.0 (3.3) 11.4 (3.3)
No 800 62.0 (0.4) 62.0 (0.4) 61.8 (0.8) 10.3 (2.3) 10.3 (2.3) 11.1 (2.3) 10.9 (2.4)

t = 0.20
Yes 200 53.2 (10.6) 60.9 (13.0) 64.2 (12.3) 21.2 (5.9) 21.8 (6.0) 23.1 (6.1) 22.8 (6.0)
Yes 400 52.0 (8.5) 63.5 (11.8) 65.4 (11.3) 20.7 (4.1) 21.1 (4.2) 21.9 (3.9) 21.7 (4.1)
Yes 800 51.1 (6.0) 66.3 (9.7) 68.6 (8.2) 20.4 (3.0) 20.6 (3.0) 21.1 (2.8) 21.1 (3.0)
No 200 73.3 (1.1) 73.1 (1.3) 73.0 (1.5) 21.4 (6.4) 21.4 (6.4) 23.5 (6.1) 22.5 (6.3)
No 400 73.6 (0.6) 73.5 (0.7) 73.5 (0.8) 20.7 (4.4) 20.7 (4.4) 22.0 (4.3) 21.6 (4.4)
No 800 73.8 (0.3) 73.8 (0.4) 73.8 (0.4) 20.4 (3.0) 20.4 (3.0) 21.2 (3.0) 21.0 (3.0)
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B.2 Chapter 3

B.2.1 Constructing Combinations

Cumulative Logit Model Does Not Hold: Results for ΣX = Σ2 and ΣX = Σ4

Figure B.1: Simulation results for K = 3 when the cumulative logit model does not hold,
P (D = 3) = 0.05 and ΣX = Σ2. Each plot presents the median and interquartile range of the
AUCs for D = K vs. D < K in the test data for the combinations fitted by each strategy,
which are given on the x-axis. The results are presented by P (D = 1) (columns) and µ
(rows). The “standard” approach is the single binary logistic regression model (“SingleLR”)
and is indicated by a slightly thicker line and larger point.
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Figure B.2: Simulation results for K = 3 when the cumulative logit model does not hold,
P (D = 3) = 0.3 and ΣX = Σ2. Each plot presents the median and interquartile range of the
AUCs for D = K vs. D < K in the test data for the combinations fitted by each strategy,
which are given on the x-axis. The results are presented by P (D = 1) (columns) and µ
(rows). The “standard” approach is the single binary logistic regression model (“SingleLR”)
and is indicated by a slightly thicker line and larger point.
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Figure B.3: Simulation results for K = 3 when the cumulative logit model does not hold,
P (D = 3) = 0.05 and ΣX = Σ4. Each plot presents the median and interquartile range of the
AUCs for D = K vs. D < K in the test data for the combinations fitted by each strategy,
which are given on the x-axis. The results are presented by P (D = 1) (columns) and µ
(rows). The “standard” approach is the single binary logistic regression model (“SingleLR”)
and is indicated by a slightly thicker line and larger point.
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Figure B.4: Simulation results for K = 3 when the cumulative logit model does not hold,
P (D = 3) = 0.3 and ΣX = Σ4. Each plot presents the median and interquartile range of the
AUCs for D = K vs. D < K in the test data for the combinations fitted by each strategy,
which are given on the x-axis. The results are presented by P (D = 1) (columns) and µ
(rows). The “standard” approach is the single binary logistic regression model (“SingleLR”)
and is indicated by a slightly thicker line and larger point.
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Figure B.5: Simulation results for K = 5 when the cumulative logit model does not hold,
P (D = 5) = 0.05 and ΣX = Σ2. Each plot presents the median and interquartile range of the
AUCs for D = K vs. D < K in the test data for the combinations fitted by each strategy,
which are given on the x-axis. The results are presented by P (D = 1) (columns) and µ
(rows). The “standard” approach is the single binary logistic regression model (“SingleLR”)
and is indicated by a slightly thicker line and larger point.
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Figure B.6: Simulation results for K = 5 when the cumulative logit model does not hold,
P (D = 5) = 0.3 and ΣX = Σ2. Each plot presents the median and interquartile range of the
AUCs for D = K vs. D < K in the test data for the combinations fitted by each strategy,
which are given on the x-axis. The results are presented by P (D = 1) (columns) and µ
(rows). The “standard” approach is the single binary logistic regression model (“SingleLR”)
and is indicated by a slightly thicker line and larger point.
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Figure B.7: Simulation results for K = 5 when the cumulative logit model does not hold,
P (D = 5) = 0.05 and ΣX = Σ4. Each plot presents the median and interquartile range of the
AUCs for D = K vs. D < K in the test data for the combinations fitted by each strategy,
which are given on the x-axis. The results are presented by P (D = 1) (columns) and µ
(rows). The “standard” approach is the single binary logistic regression model (“SingleLR”)
and is indicated by a slightly thicker line and larger point.
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Figure B.8: Simulation results for K = 5 when the cumulative logit model does not hold,
P (D = 5) = 0.3 and ΣX = Σ4. Each plot presents the median and interquartile range of the
AUCs for D = K vs. D < K in the test data for the combinations fitted by each strategy,
which are given on the x-axis. The results are presented by P (D = 1) (columns) and µ
(rows). The “standard” approach is the single binary logistic regression model (“SingleLR”)
and is indicated by a slightly thicker line and larger point.



214

Cumulative Logit Model Holds: Results for P (D = K) = 0.3

Figure B.9: Simulation results for K = 3 when the cumulative logit model with proportional
odds holds and P (D = 3) = 0.3. Each plot presents the median and interquartile range of the
AUCs for D = K vs. D < K in the test data for the combinations fitted by each strategy,
which are given on the x-axis. The results are presented by P (D = 1) (columns) and β
(rows). The “standard” approach is the single binary logistic regression model (“SingleLR”)
and is indicated by a slightly thicker line and larger point.
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Figure B.10: Simulation results for K = 5 when the cumulative logit model with proportional
odds holds and P (D = 5) = 0.3. Each plot presents the median and interquartile range of the
AUCs for D = K vs. D < K in the test data for the combinations fitted by each strategy,
which are given on the x-axis. The results are presented by P (D = 1) (columns) and β
(rows). The “standard” approach is the single binary logistic regression model (“SingleLR”)
and is indicated by a slightly thicker line and larger point.
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B.2.2 Combination Selection

Figure B.11: Results for the proposed combination selection method for simulation Example
2, where the cumulative logit model with proportional odds holds. The plots give the results
for the standard approach, that is, choosing the combination based on the estimated AUC
(corrected for optimism due to resubstitution bias) for D = 3 vs. D < 3, and the results for
the new approach, that is, choosing the combination based on the AUC for D = 3 vs. D < 3
and the AUC for D = 2 vs. D = 1. The plot on the left gives the median and interquartile
range for the estimated optimism due to model selection bias (the difference between the
estimated AUC, corrected for optimism due to resubstitution bias, and the AUC in test
data) for the selected combinations and the difference in the estimated optimism between
the two approaches. The plot on the right gives the D = 3 vs. D < 3 AUC in test data for
the combinations selected by the two approaches.
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Figure B.12: Results for the proposed combination selection method for simulation Example
3, where the cumulative logit model with proportional odds does not hold. The plots give the
results for the standard approach, that is, choosing the combination based on the estimated
AUC (corrected for optimism due to resubstitution bias) for D = 3 vs. D < 3, and the
results for the new approach, that is, choosing the combination based on the AUC for
D = 3 vs. D < 3 and the AUC for D = 2 vs. D = 1. The plot on the left gives the
median and interquartile range for the estimated optimism due to model selection bias (the
difference between the estimated AUC, corrected for optimism due to resubstitution bias,
and the AUC in test data) for the selected combinations and the difference in the estimated
optimism between the two approaches. The plot on the right gives the D = 3 vs. D < 3
AUC in test data for the combinations selected by the two approaches.
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Figure B.13: Results for the proposed combination selection method for simulation Example
5, where the cumulative logit model with proportional odds does not hold. The plots give the
results for the standard approach, that is, choosing the combination based on the estimated
AUC (corrected for optimism due to resubstitution bias) for D = 3 vs. D < 3, and the
results for the new approach, that is, choosing the combination based on the AUC for
D = 3 vs. D < 3 and the AUC for D = 2 vs. D = 1. The plot on the left gives the
median and interquartile range for the estimated optimism due to model selection bias (the
difference between the estimated AUC, corrected for optimism due to resubstitution bias,
and the AUC in test data) for the selected combinations and the difference in the estimated
optimism between the two approaches. The plot on the right gives the D = 3 vs. D < 3
AUC in test data for the combinations selected by the two approaches.
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B.3 Chapter 4

B.3.1 Ignoring Center

The tables below present the full results for the simulations reported in Section 4.4.1. In

each table, we present the average across simulations of the coefficient estimates and AUCs,

the percent bias, and the mean squared error (MSE). The percent bias and MSE for α̂1

and β̂1 are relative to β1, the percent bias and MSE for α̂2 and β̂2 are relative to β2, and

the percent bias and MSE for AUC(α̂), AUCc(α̂), AUC(β̂), and AUCc(β̂) are relative

to AUCc(β). We have multiplied the MSE by 104. The label “Confounder (+)” refers

to the setting of positive correlation between logit(γc) and f(c), while “Confounder (-)”

refers to the setting of negative correlation between logit(γc) and f(c). Although we refer

to the differences between the parameter estimates (α̂ and β̂) and β and between the AUC

values (AUC(α̂), AUCc(α̂), AUC(β̂), and AUCc(β̂)) and AUCc(β) as “bias”, α and β

reflect different population parameters (in general), as do AUC(α), AUCc(α), AUC(β),

and AUCc(β).
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B.3.2 RILR vs. FILR

The tables below present the full results for the simulations reported in Section 4.4.2. The

results are separated by the role of center (i.e., case mix variable, calibration variable, or

confounder with negative, no, or positive correlation between f(c) and logit(γc)) and the

distribution of logit(γc) and/or f(c), F (i.e., normal, Gumbel, Laplace, or uniform). In the

first table we report the mean, percent bias, and mean squared error (MSE) for the coefficient

estimates based on RILR (τ̂1, τ̂2) and FILR (β̂1, β̂2) relative to (β1, β2), as well as the average,

percent bias and MSE for the conditional AUCs based on these coefficients (AUCc(τ̂ ) and

AUCc(β̂), respectively) relative to AUCc(β). In the second table we report the average,

percent bias and MSE for the overall (fixed) intercept estimate provided by RILR (τ̂0). In

the setting where center is a calibration variable, asterisks indicate the results for γc = 0.1;

the other calibration variable results are for γc = 0.5. Again, we have multiplied the MSE

by 104. As noted above, the “bias” is calculated as the difference between the parameter

estimates and β and between the AUC values and AUCc(β); it is not exactly accurate to

call these differences biases, as they arise because (in the case of τ̂ and AUCc(τ̂ )) they

correspond to different population parameters.
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B.4 Chapter 5

B.4.1 Direct Maximization of aAUC

Robust Logistic Regression

The tables below present the full results for the simulations reported in Section 5.4.1, where

robust logistic regression estimates were used as the starting values for the SaAUC method.
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Conditional Logistic Regression

The tables below present the full results for the simulations reported in Section 5.4.1, where

conditional logistic regression estimates were used both as the starting values for the SaAUC

method and for comparison with the SaAUC method.

Table B.50: Mean (standard deviation) of the aAUC in test data and mean (standard de-
viation) of the minimum and maximum center-specific AUCs (AUCc) across the centers in
the test data based on combinations fitted by conditional logistic regression (θ̂GLM) and the
SaAUC method (θ̂SaAUC) for m = 50. Conditional logistic regression estimates were used as
the starting values for the SaAUC method.

Outliers aAUC(θ̂GLM ) AUCc(θ̂GLM ) aAUC(θ̂SaAUC) AUCc(θ̂SaAUC)
Min Max Min Max

Scenario I

Yes
0.6233
(0.008)

0.5444
(0.014)

0.6992
(0.012)

0.6824
(0.004)

0.6062
(0.011)

0.7547
(0.009)

No
0.7036
(0.001)

0.6301
(0.009)

0.7731
(0.008)

0.7035
(0.001)

0.6299
(0.010)

0.7730
(0.008)

Scenario II

Yes
0.6236
(0.008)

0.5450
(0.013)

0.6995
(0.012)

0.6823
(0.004)

0.6054
(0.011)

0.7544
(0.009)

No
0.7036
(0.001)

0.6298
(0.010)

0.7727
(0.008)

0.7034
(0.001)

0.6296
(0.010)

0.7725
(0.008)

Scenario III

Yes
0.5909
(0.015)

0.4834
(0.019)

0.6940
(0.017)

0.6596
(0.003)

0.5688
(0.013)

0.7440
(0.010)

No
0.6734
(0.002)

0.5851
(0.011)

0.7553
(0.010)

0.6732
(0.002)

0.5846
(0.011)

0.7554
(0.010)

Scenario IV

Yes
0.6376
(0.007)

0.5540
(0.013)

0.7171
(0.012)

0.6920
(0.004)

0.6130
(0.011)

0.7663
(0.009)

No
0.7162
(0.001)

0.6397
(0.010)

0.7876
(0.008)

0.7160
(0.001)

0.6394
(0.010)

0.7876
(0.008)
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Table B.51: Mean (standard deviation) of the aAUC in test data and mean (standard de-
viation) of the minimum and maximum center-specific AUCs (AUCc) across the centers in
the test data based on combinations fitted by conditional logistic regression (θ̂GLM) and the
SaAUC method (θ̂SaAUC) for m = 500. Conditional logistic regression estimates were used
as the starting values for the SaAUC method.

Outliers aAUC(θ̂GLM ) AUCc(θ̂GLM ) aAUC(θ̂SaAUC) AUCc(θ̂SaAUC)
Min Max Min Max

Scenario I

Yes
0.6221
(0.004)

0.4684
(0.015)

0.7659
(0.013)

0.6764
(0.003)

0.5253
(0.015)

0.8128
(0.012)

No
0.7038
(0.001)

0.5574
(0.014)

0.8330
(0.010)

0.7037
(0.001)

0.5573
(0.014)

0.8329
(0.010)

Scenario II

Yes
0.6221
(0.004)

0.4680
(0.014)

0.7656
(0.012)

0.6763
(0.003)

0.5248
(0.015)

0.8122
(0.011)

No
0.7039
(0.001)

0.5580
(0.014)

0.8336
(0.010)

0.7037
(0.001)

0.5578
(0.014)

0.8334
(0.010)

Scenario III

Yes
0.5884
(0.008)

0.4076
(0.017)

0.7560
(0.014)

0.6580
(0.003)

0.4921
(0.016)

0.8065
(0.012)

No
0.6737
(0.001)

0.5135
(0.014)

0.8168
(0.012)

0.6736
(0.001)

0.5129
(0.014)

0.8171
(0.012)

Scenario IV

Yes
0.6370
(0.003)

0.4792
(0.015)

0.7818
(0.013)

0.6853
(0.003)

0.5318
(0.015)

0.8222
(0.011)

No
0.7164
(0.001)

0.5690
(0.014)

0.8447
(0.010)

0.7162
(0.001)

0.5686
(0.014)

0.8446
(0.010)
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B.4.2 Penalized Estimation Examples

The figures below include several additional examples of the penalized estimation method

described in Section 5.4.2. The layout of these figures is the same as described in Section

5.4.2.
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