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Discharge summaries are a concise representation of the most important bits of information about a 

patient’s time in the hospital. Converting the free-text into a clinical timeline can facilitate accurate 

assimilation of information by physicians and the structured data can be used to populate knowledge 

bases, in clinical decision support systems, etc. Conventional methods for temporal evaluation of 

discharge summaries employ structured inference and extensive feature engineering. However, they 

also run the risk of overfitting to the training domain and thus, not being efficient in deployment. Novel 

methods of natural language processing leverage semantics from large corpuses and produce results 

with minimum feature engineering. This work explores the use of neural network architectures in 

clinical entity recognition and temporal evaluation. Recurrent neural networks are found to perform at 

par with conditional random field systems in clinical entity recognition, scoring 94.04% on the i2b2 

2012 dataset. Moreover, they perform better for under-represented entity classes like ‘Occurrence’, 

‘Evidential’ and ‘Clinical Department’ in a skewed dataset. The out-of-domain evaluation of 

conditional random fields and neural networks has favorable results on a corpus of ER visit, progress, 

consult and ICU notes from various medical centers. Neural networks are more agreeable to domain 

adaptation. This work also explores the use of convolutional neural nets for extraction of within-

sentence temporal relations. Preliminary results show that convolutional networks might not be well-

suited to the task. 



Extraction of Clinical Timeline from Discharge Summaries using Neural
Networks

1 Introduction

Hospital discharge summaries are a concise free-
text representation of patient’s clinical history and
care plan. Structured data extracted from this free-
text can be useful in several downstream tasks
such as visualization, clinical decision-support
systems, identification of patient phenotype co-
horts, population of knowledge bases etc. A struc-
tured dataset consisting of clinical events, time ex-
pressions and temporal relations can be used to
build clinical timeline of the patient. The i2b2 cen-
ter has released annotated datasets for this prob-
lem and conducted a shared task to accelarate re-
search in this area. Extraction of temporal rela-
tions is composed of three subtasks: (1) Detec-
tion of clinical events (2) Identification of Tempo-
ral Expressions and Normalization (3) Temporal
Relation Extraction.

Event detection from clinical notes is a well
studied problem in biomedical informatics; yet,
it is constantly evolving with novel methods of
named entity recognition (NER). The i2b2 2012
dataset is annotated with six entity classes which
capture most of the events of importance from a
patient’s time spent in hospital. Rule based and
statistical NLP approaches such as Conditional
Random Fields have been used at identifying these
entities. These approaches require extensive do-
main knowledge and feature engineering. (Sun
et al., 2013) Similarly, temporal relation extraction
modules depend on features from several other
NLP modules such as dependency parsing, POS
tagging etc. This also leads to the accumulation
of errors in the final output. More than half of
the temporal relations span across sentences; such
long-term dependencies can not be captured with
syntactic parsing.

In this paper, we explore discretized word em-
beddings as new features in structured inference

and also implement a neural network architec-
ture for clinical entity recognition. We also com-
pare the ease of domain adaptation between struc-
tured inference and recurrent neural networks. We
propose a preliminary architecture for extraction
of temporal relations from candidate events/time-
expressions within sentence with minimum fea-
ture engineering.

2 Related Work

The best performing system for clinical event
detection on the 2010 i2b2 corpus is a semi-
supervised HMM (semi-Markov) model which
scored 0.9244 (partial match F1-score) in the
concept extraction track (Uzuner et al., 2011).
Xu et al. (2012) divided the Treatment category
into Medication and Non-medication concepts,
and trained two separate conditional random field
(CRF) classifiers for sentences with and without
medication. With additional features, this system
scored 0.9166 on event detection track in 2012
i2b2 challenge, taking the top spot. Tang et al.
(2013) built a cascaded CRF system which scored
0.9013 on event detection and came a close sec-
ond. Sun et al. (2013) showed that these sys-
tems found it harder to identify Clinical Depart-
ment, Occurrence and Evidential concepts. With
the surge in deep learning, there have been sev-
eral new approaches to clinical event detection.
Wu et al. (2015) used word embeddings as fea-
tures in a CRF model and noted improvement in
recall for the i2b2 2010 corpus. Chalapathy et al.
(2016) implemented a bi-directional LSTM-CRF
model with generic embeddings and reported no
improvement over the top-performing system in
2010 i2b2 challenge. Jagannatha and Yu (2016a)
tested a bi-directional LSTM framework initial-
ized with pre-trained biomedical embeddings on
an independent dataset and reported improvement



over a CRF baseline. Recent results show that ap-
proximate skip-chain CRFs are more effective at
capturing long-range dependencies in clinical text
than recurrent neural networks (RNN) (Jagannatha
and Yu, 2016b).

The task of identifying temporal expressions in
the clinical domain is not unlike that in the gen-
eral domain. Except for medication dosage fre-
quencies, clinical shorthands and terms like ’post-
operative’, generic rule-based systems like Hei-
delTime (Strötgen and Gertz, 2010) are proficient
at identifying most temporal phrases from clinical
free-text. Sohn et al. (2013) adapted the rules of
HeidelTime for clinical corpus and achieved F1-
score of 0.9003 on i2b2 data. Xu et al. (2013)
used CRF, context-free grammar to tag temporal
expressions and scored 0.9144 (overlap match).
Most other systems for this task have been built
on top of HeidelTime, with additional machine-
learning modules. (Sun et al., 2013)

In the i2b2 corpus, any two events in the dis-
charge summary can be a candidate for valid tem-
poral relation. Further, every event is also tem-
porally related to its section time (admission or
discharge date), and other temporal expressions
within the same sentence. This leads to the in-
evitable partitioning of relation extraction task into
several sub-modules. Tang et al. (2013) developed
three separate TLink candidate generation mod-
ule to detect likely candidates for inter-sentence,
intra-sentence and event/section-time temporal re-
lations. These modules are based on outputs from
dependency trees, co-reference and rules. After
candidate generation, features such as event posi-
tion, POS tags, verb tense, dependency trees, dis-
tance between events, conjunction etc. are used
in a combination of CRF and SVM to classify
the candidate pairs into temporal relations. With
this approach, the system’s F-measure was 0.69.
(Xu et al., 2013) also use Markov Logic Networks
(MLN) to infer those relations which are difficult
to classify with SVM. Various other ML-based
methods such as the MaxEnt model and rule-based
methods also perform competitively. However,
performance of relation extraction module still re-
mains the major bottle-neck in an end-to-end sys-
tem. The state-of-art system for clinical timeline
extraction has F1-score of 0.6278 as its end-to-end
performance. (Sun et al., 2013).

In the generic domain, deep learning methods
have found use in various relation extraction tasks.

(Kumar, 2017) Zeng et al. (2014) showed that a
convolutional neural network (CNN) is efficient
at extracting lexical, sentence-level features and
classifying them into relations with the help of po-
sition embeddings. Position embeddings are ran-
domly initialized distance vectors, with respect to
the distance of current word from both events in
the candidate pair. These methods have been ver-
ified on component-whole, hyponym, hypernym
relationships etc. and on similar tasks in clinical
text as well. (Sahu et al., 2016) Dligach et al.
(2017) showed that encoding of event containers
as xml tags within the input sentence replaces and
outperforms position embeddings in classification
of temporal relations. However, unlike the variety
of temporal relations in i2b2 corpus, this method
has been validated on the ’contains’ relation only.
Peng et al. (2017) have used Graph-LSTMs to ex-
tract inter-sentence relations from PubMed arti-
cles. In the task Clinical TempEval 2017, extrac-
tion of clinical timeline was made even more chal-
lenging by posing it as a problem in domain adap-
tation. (Bethard et al., 2017) Participating sys-
tems were trained on notes from colon cancer pa-
tients and tested on those from brain cancer pa-
tients. Tourille et al. built the best performing sys-
tem and showed that bi-directional recurrent neu-
ral nets (RNN) perform well for extraction of nar-
rative containers. Preventing fine-tuning of pre-
trained word embeddings during network training,
and replacement of randomly selected event enti-
ties with ’unknown’ tokens, were the innovative
training tactics that facilitated domain adaptation
in this system.

We experiment with deep learning methods to
build a system for extraction of clinical timeline
from i2b2 2012 corpus. For entity recognition, we
compare the performance of CRF and RNNs and
combine their merits into a hybrid system. We ex-
amine the performance of both methods on an out-
of-domain dataset. We also develop a neural tem-
poral relation extraction module which goes be-
yond extraction of narrative containers.

3 Methods

3.1 Dataset

The 2012 i2b2 corpus is made of 310 discharge
summaries provided by two medical centers, and
consisting of 178, 000 tokens annotated with clin-
ical events, temporal expressions and temporal re-
lations. The training and test sets contain 190 and



120 documents respectively. Each discharge sum-
mary has sections for clinical history and hospital
course. The number of events, temporal expres-
sions, and TLinks, respectively are 16468, 2368,
33781 in the training set and 13594, 1820, 27736
in the test set. Annotation of clinical events in-
cludes problems, tests, treatments, clinical depart-
ments, occurrences (admission, discharge) and ev-
idences of information (patient denies, tests re-
vealed). The inter-annotator agreement for event
spans is 0.83 for exact match and 0.87 for par-
tial match (Sun et al., 2013). Clinical Department
and Evidential concepts are under-represented in
training set with less than 1000 examples each.
Roughly one-third of the TLinks are between pair
of events or event and time expression, occurring
in the same sentence. The rest are inter-sentence
TLinks of which majority are relations between
event and section time. The annotations consist of
eight temporal classes; however, to enforce transi-
tive closure in the annotations, they are collapsed
into three classes - ’Overlap’, ’Before’ and ’Af-
ter’. In addition, we use the 2010 i2b2 dataset,
which consists of 426 discharge summaries from
the same medical centers as the 2012 i2b2 cor-
pus. These notes have been annotated with clinical
events only, for the classes ’Problem’, ’Test’ and
’Treatment’.

The dataset of medical transcription reports
from MTSamples consists of 102 discharge sum-
maries and 232 others which includes consult
notes, progress notes, ICU, ER visit and physi-
cal exam notes. This corpus contains 15089, 4814
and 5518 events tagged as problem, test and treat-
ment respectively. Unlike the i2b2 dataset, these
notes do not contain explicit information about the
time of admission or discharge. The notes avail-
able from MT Samples are crowd-sourced from
its users. Hence, it is safe to assume that they
are derived from several medical centers, as is evi-
dent from the difference in format. We divide this
dataset into 210 and 124 notes respectively, for the
train and test fold.

3.2 Event Extraction

3.2.1 Baseline

The best performing system in 2012 i2b2 chal-
lenge (Xu et al., 2013) requires additional anno-
tation. So, we choose to replicate the second
best performing system built by Tang et al. (2013)
as our baseline. It is a cascaded CRF classifier,

wherein the first CRF is trained on datasets re-
leased in 2010 & 2012 to classify for problem,
test and treatment. The next CRF is trained on
2012 dataset to extract clinical department, occur-
rence and evidential concepts. This split in classes
is performed to leverage the 2010 dataset which
is annotated for the first three classes only. Preci-
sion, recall and F-measure (exact event span) for
the original system is reported as 93.74%, 86.79%
and 90.13% respectively. Our baseline system is
built with the same cascaded configuration. The
following features are used: N-grams (±2 con-
text window), word-level orthographic informa-
tion, syntactic features using MedPOST (Smith
et al., 2004), discourse information using a statis-
tical section chunker (Tepper et al., 2012) and se-
mantic features from normalized UMLS concepts
(CUIs and semantic types). Tang et al. (2013)
employs several other lexical sources and NLP
systems for additional features, such as MedLEE,
KnowledgeMap and private dictionaries of clini-
cal concepts. For lack of access, they have been
left out of our baseline. We have implemented the
baseline using CRFSuite package (Okazaki, 2007)
and optimum parameters are selected through 5-
fold cross-validation on the training set.

3.2.2 Word Embeddings
We use the publicly available source code of
GloVe (Pennington et al., 2014) to extract word
vectors of dimension 50 for 133,968 words
from MIMIC-III. The MIMIC-III dataset (Johnson
et al., 2016) contains 2,083,180 clinical notes in-
cluding discharge summaries, ECG reports, radi-
ology reports etc. Since we are dealing exclusively
with discharge summaries in our task, GloVe is
run only on the discharge summaries present in
MIMIC. These vectors are unfit for direct use
in structured prediction and are discretized using
methods advocated by Guo et al. (2014).

We also use off-the-shelf biomedical embed-
dings (dimension=200) which have been made
publicly available by Moen and Ananiadou
(2013). These embeddings are extracted from ab-
stract and full-text of nearly 22,792,858 PubMed
and PMC articles, using the word2vec algorithm.
(Mikolov et al., 2013) We experimented with sev-
eral embedding dimensions in the neural network
architecture. To accommodate for values lower
than 200, these embeddings are remapped us-
ing singular value decomposition (SVD), for only
those words which appear in our datasets. Re-



System TP FP FN Precision Recall F1 Score
Baseline 13951 794 2517 94.63 84.71 89.40
Baseline + BinEmb 13982 818 2486 94.47 84.90 89.43
Baseline + ProtoEmb 14006 825 2460 94.43 85.06 89.50
Baseline + Brown Clusters 14129 843 2339 94.38 85.78 89.88
Baseline + Brown Clusters + ProtoEmb 14130 860 2338 94.26 85.78 89.82
RNN + random initialization 12370 3123 4098 79.84 75.12 77.38
RNN + MIMIC Embeddings 14315 1373 2153 91.25 86.93 89.31
CRF + RNN (Hybrid) 14236 936 2232 93.66 86.45 89.91

Table 1: 5-fold cross validation performance of various systems on 2012 i2b2 training set

Entity Class System TP FP FN Precision Recall F1 Score
Problem Baseline + Brown Clusters 4607 194 414 95.96 91.72 93.79

RNN + Embeddings 4429 776 594 85.09 88.17 86.61
Test Baseline + Brown Clusters 2355 100 242 95.93 90.64 93.21

RNN + Embeddings 2182 342 415 86.45 83.98 85.20
Treatment Baseline + Brown Clusters 3469 160 361 95.62 90.57 93.03

RNN + Embeddings 3296 525 534 86.26 86.06 86.16
Occurrence Baseline + Brown Clusters 2030 620 1256 76.60 61.78 68.40

RNN + Embeddings 2042 510 1234 79.51 62.14 70.82
Evidential Baseline + Brown Clusters 456 116 284 79.72 61.62 69.51

RNN + Embeddings 497 134 243 78.76 67.16 72.5
Clinical Department Baseline + Brown Clusters 741 122 256 85.86 74.32 79.68

RNN + Embeddings 813 188 194 79.96 82.05 80.99

Table 2: Entity-level performance of best performing CRF system and RNN on 2012 i2b2 training set

sults show that these reduced-dimension biomed-
ical embeddings outperform MIMIC-embeddings
in clinical entity recognition task. (see Evaluation
Metrics & Results)

3.2.3 Recurrent Neural Networks

The bi-directional LSTM-CRF neural architec-
ture introduced by Lample et al. (2016) has
been shown to excel on multi-lingual NER tasks.
The character embeddings extracted by its bi-
directional network, model word prefixes, suffixes
and shape - features that are critical to NER. The
network is initialized with pre-trained word em-
beddings which are also fine-tuned during train-
ing. Output from the LSTM layer is fed to CRF
for joint inference and final decision on sequence
tagging.

3.2.4 Hybrid Architecture

The current of state-of-art for detecting problem,
test and treatment concepts from clinical text is
based on CRF and it has been hard to improve on
this baseline, even with neural networks. (Chala-

Hyperparameter Value
Hidden layers 1
Word embedding dimension 100
Word hidden layer dimension 100
Character embedding dimension 25
Character hidden layer dimension 50
Dropout 0.5

Table 3: Hyperparameters for RNN architecture

pathy et al., 2016) In the first phase of our work,
we compare CRF with neural networks and per-
form error analysis. To this end, two instances
of RNN are initialized with MIMIC embeddings;
78.96% words are initialized. First instance is
trained to classify problem, test and treatment con-
cepts only and second instance is trained for other
three classes. Results from both the networks are
merged in a combination module for final evalu-
ation of the end-to-end system. Overlaps are re-
solved by placing preference on predictions from
the first instance. The RNN fails to outperform



CRF in overall performance, but cross-validation
results (presented in Table 2) reveal entity-level
differences between CRF and RNN systems. So,
we combine the merits of both approaches to cre-
ate a hybrid end-to-end model. The exact configu-
ration is discussed in the results section.

In later work, we initialize RNN with SVD-
reduced PubMed-PMC embeddings and note 3%
improvement in F1-score for event detection, at
par with the CRF system. Hence, all neural archi-
tectures in further experiments are initialized with
biomedical embeddings.

3.2.5 Domain Adaptation
With the availability of datasets from two differ-
ent sources, we are able to examine out-of-domain
performance of both, CRF and RNN systems.
Since MTSamples notes are annotated for three
clinical entity classes only, we focus on evalua-
tion of those three for this task. CRF system with
the same feature-set as our baseline is also trained
on medical transcriptions from the MTSamples
dataset. Two instances of the RNN are initialized
with biomedical embeddings and trained on the
i2b2 corpus and MTSamples respectively. All sys-
tems are tested with in-domain and out-of-domain
datasets. For the sake of fair comparison, we
present results from i2b2-trained systems on the
test-fold of MTSamples dataset. We also created
a test fold containing only discharge summaries
from MTSamples, but did not find any striking dif-
ference between performance on discharge sum-
maries and other notes. Results are presented in
Table 6.

3.3 Relation Extraction
3.3.1 Closure of Temporal Relations
The temporal relation classes in i2b2 2012 dataset
are ’Before’, ’After’ and ’Overlap’, which can be
easily represented in terms of logical operators ¡,
¿ and =. For example, if event A occurs after
event B, and event B overlaps with event C, this
chain of relations can be expresse as ’A¿B=C’. It
is evident from the logical representation, that the
dataset needs to have transitive closure of relations
in order to be accurate. This means that, the rela-
tion ’A¿C’ also needs to be a part of the dataset.
All inverse relations should also be included in the
dataset so that the classifier does not treat them as
unrelated event/time expression pairs. From our
example, ’B¡A’ should be annotated as a tempo-
ral relation as well. Before performing relation

extraction, we modify the TLink dataset to en-
force transitive closure. In addition, all negative
instances i.e. temporally unrelated event or time
expression pairs, are also explicitly added to the
dataset under the class ’Other.

3.3.2 Convolutional Neural Networks
The convolutional network architecture used in
this work is inspired from Zeng et al. (2014) and
has been modified to suit our task. It is com-
posed of embedding layer, convolutional layer,
max-pooling layer, fully-connected layer and soft-
max layer in that order.

The embedding layer includes position, POS
tag, word and event/time expression type embed-
dings. Except for word embeddings, all others
are randomly intialized before training and fine-
tuned with the network. There are two position
embeddings, one each for representing proximity
the two events. Word embeddings are initialized
with biomedical embeddings. At the word level,
all such embeddings are combined to form one
vector. Further, all such embeddings are concate-
nated at the sentence level before being fed to the
convolutional layer.

The convolutional layer is made of filters of var-
ious sizes. Features from different context window
lengths are captured with varying filter sizes. We
experiment with filters of sizes ranging from 2 to
5 and settle with a combination of filter sizes [2,
3, 4]. The output from this layer varies in dimen-
sion depending on the sentence length. To counter
this variation, the max-pooling layer pools outputs
from all word position along every dimension of
the feature vector and combines them into a one-
dimensional sentence-level vector. This vector is
then relayed to a fully-connected layer, with as
many outputs as there are classes in the relation
classification problem. The final layer in this ar-
chitecure is the softmax layer, which provides pre-
diction probabilities for the task.

We implement this convolutional network ar-
chitecture for extracting temporal relations be-
tween events and/or time-expressions occurring
within the same sentence. It is done in two phases:
1. as a classification task without negative in-
stances 2. as an extraction task with negative in-
stances. The results are presented in Table 7.

4 Evaluation Metrics and Results

We report the micro-averaged precision, recall and
F1-score, for ’overlap’ match of event spans as



System TP FP FN Precision Recall F1 Score
Tang et al. (2013) - - - 93.74 86.79 90.13
Baseline + Brown Clusters 11664 647 1930 94.74 85.80 90.05
Hybrid CRF-RNN 11985 875 1609 93.20 88.16 90.61

Table 4: Performance of best performing CRF and Hybrid CRF-RNN on 2012 i2b2 test set

Entity Class System TP FP FN Precision Recall F1 Score
Occurrence Baseline + Brown Clusters 1509 489 991 75.53 60.36 67.10

Hybrid 1565 563 935 73.54 62.60 67.63
Evidential Baseline + Brown Clusters 370 76 226 82.96 62.08 71.02

Hybrid CRF-RNN 446 177 150 71.59 74.83 73.17
Clinical Department Baseline + Brown Clusters 557 109 176 83.63 75.99 79.63

Hybrid CRF-RNN 657 234 76 73.74 89.63 80.91

Table 5: Entity-level performance of best performing CRF and Hybrid CRF-RNN on 2012 i2b2 test set

per the i2b2 evaluation script. TP, FP, FN counts
of overall performance are calculated for entity
spans, irrespective of entity tag. Systems are
also evaluated for performance in individual en-
tity classes and TP, FP, FN counts are compared
between the CRF and RNN+Embedding systems.
We perform five-fold cross validation for various
configurations of the baseline and RNN systems
on the training set. The results are presented in
Table 1 and Table 2.

The best performing CRF system i.e. Base-
line + Brown Clusters, achieves F1-score of 89.88.
Except for brown clusters, additional features de-
rived from distributional semantics, such as bina-
rized word embeddings (BinEmb), prototype em-
beddings (ProtoEmb) contribute marginally to per-
formance of the system. Pre-trained clinical em-
beddings improve F1 score by 11.93%, over ran-
dom initialization of RNNs. In terms of recall,
the RNN initialized with MIMIC embeddings is
found to perform remarkably well without hand-
engineered features. However, it fails to beat the
CRF system at F1-score. Comparative analysis of
individual entity classes reveals that the RNN im-
proves recall for evidential and clinical department
phrases by 5.44% and 8.32% respectively. It regis-
ters some drop in precision, but improves F1-score
by up to 3%. Based on these results, we build the
hybrid sequence tagger where the best perform-
ing CRF system is combined with RNN. The for-
mer is trained to tag problem, test and treatment
and the latter is trained to tag rest of the three en-
tity classes. The results are merged in a combi-
nation module and overlapping predictions are re-

solved by prioritizing the first three classes. The
hybrid model improves recall by 2.36% and F1-
score by 0.56% over the best-performing CRF sys-
tem, when evaluated on test set.

With biomedical embeddings, we are able to de-
velop a neural network which performs as good as
CRF in within-domain clinical entity recognition
for both, i2b2 and MTSamples datasets. Both CRF
and RNN score beyond 94% and the difference
in F1-score is 0.03%, 0.23% for i2b2 and MT-
Samples datasets respectively. While CRF sys-
tems have better precision, RNN systems achieve
better recall and F1-score. Moreover, CRF sys-
tems are consistently out-performed by RNN sys-
tems in out-of-domain evaluation. CRF trained on
MTSamples data scores 83.02% on i2b2 data. In
a similar setting, RNN scores 1.23% higher than
CRF. In a reverse setting, the CRF system achieves
86.54% F1 score, but is surpassed by more than
4% by the RNN system. The i2b2 dataset is al-
most double the size of MTSamples dataset and is
probably more representative of MTSamples, than
MTSamples is of the former. This could explain
the wider gap in performance when systems are
trained on i2b2 and tested on MTSamples. It is
also eveident that, when semantics are borrowed
from a larger corpus as in pre-trained word embed-
dings, it improves the system’s domain adaptabil-
ity. All the neural network architectures evaluated
for domain adaptation also undergo fine-tuning of
embeddings. If they are to be kept static as sug-
gested by Tourille et al., performance might im-
prove beyond the current results.

For intra-sentence event classification, the con-



System Training set Test set TP FP FN Precision Recall F1 Score
CRF i2b2 i2b2 8912 279 856 96.96 91.24 94.01
RNN 8974 343 794 96.32 91.87 94.04
CRF MTSamples i2b2 7589 923 2179 89.16 77.68 83.02
RNN 7653 724 2115 91.36 78.35 84.35
CRF MTSamples MTSamples 9025 369 747 96.07 92.71 94.36
RNN 9170 582 602 94.03 94.22 94.13
CRF i2b2 MTSamples 5556 713 960 89.61 83.67 86.54
RNN 9058 246 714 88.77 93.10 90.89

Table 6: Results for within-domain and out-of-domain performance of various systems and datasets

Task Relation Class TP FP FN Precision Recall F1 Score
Relation Classification Before 200 207 277 49.14 41.92 45.24

After 97 345 208 21.94 31.80 25.96
Overlap 1248 396 227 75.91 59.31 66.59
Overall 68.45

Table 7: Results for temporal relation classification from i2b2 2012 dataset

Hyperparameter Value
Hidden layers 1
Word embedding dimension 100
Position embedding dimension 5
Type embedding dimension 10
POS tag embedding dimension 5
Filter sizes [2,3,4]
Number of filters 100

Table 8: Hyperparameters for CNN architecture

volutional network architecture scores 68.45%.
Addition of negative instances (almost 40000 in-
stances) makes the training set highly skewed and
ill-suited for relation extraction. Preliminary re-
sults of relation extraction fare well below 50%
for the positive relation classes.

5 Discussion

The hybrid architecture serves as a concept ex-
traction model with a predisposition for higher re-
call of clinical events, as compared to the CRF
system which exhibits better precision in perfor-
mance. On comparing errors, we found the %over-
lap between false negatives of CRF and RNN sys-
tems to be only about 52%. The CRF model is able
to exploit semantic, syntactic and orthographic in-
formation among others, while RNNs are only ini-
tialized with limited semantic information. Auto-
matic learning of syntactic structure and finer se-

mantic correlations is inherent to recurrent neural
architecture. However, this may be somewhat lim-
ited by our small corpus. This situation leads to
subtle disparities in performance of both systems.

The RNN is able to detect clinical departments
(which includes physician names, hospitals names
and clinical departments) with good recall value in
spite of being trained with only 997 data points.
CRF has lowest recall for clinical department,
among all classes that contain more noun phrases.
The RNN confuses higher percentage of Treat-
ment concepts as Occurrence than CRF, mostly
those which are verb phrases like ’excised’, ’intu-
bated’ etc. Instead of initializing all words with
clinical embeddings, the performance of RNN
may be improved by selectively initializing clin-
ical terms only. This can be done by filtering for
certain UMLS semantic groups/types and provid-
ing only those words with a pre-trained word vec-
tor. On the other hand, word embeddings help
the RNN in handling unseen vocabulary effec-
tively. For example, when RNN is trained to
tag ’decreased’ as occurrence, it tags the word
’weaned’ correctly as occurrence in the test set.
Under similar conditions, CRF is unable to make
the correct decision. Word vectors derived from
a larger biomedical corpus may enable the RNN
to make finer semantic distinctions. Unlike RNN,
CRF fails to recognize the occasional long phrases
such as ’normal appearing portal veins and hep-
atic arteries’, even under overlap matching crite-



ria. We expect the LSTM cells in RNN to cap-
ture long-term dependencies from various ranges
within a sentence, and our hypothesis is confirmed
by the test results. The CRF operates within a pre-
specified context window and is limited by its lin-
ear chain framework. With a skip chain CRF, this
situation can be remedied.

The percentage of words initialized by MIMIC
and PubMed-PMC enbeddings is 78.96% and
66.84% respectively. In spite of the coverage be-
ing lower for the latter, it fares better than MIMIC
embeddings. The biomedical embeddings are de-
rived from a corpus that is larger as well as more
inclusive of generic english words. This highlights
the importance of high-quality semantic features
in clinical NER tasks. Structured prediction meth-
ods fail to leverage this information, as we have
seen from the lack of improvement in performance
with addition of binarized or prototype embed-
dings (see Table 1). It also proves as a bottle-neck
in domain adaptation. Not surprisingly, the best
performing team in Clinical TempEval’s domain
adaptation task uses pre-trained embeddings and
neural architectures. (Tourille et al.)

Convolutional networks have been proven to be
efficient at capturing relations from free-text with
minimum feature engineering. However, temporal
relations might need more cues from long-term de-
pendencies than can be captured by convolutional
networks, which could be provided with LSTM
cells. The first step to better performance for rela-
tion extraction is the availability of a less-skewed
dataset, which may be solved with candidate-
generation modules based on binary classifiers.

6 Conclusion & Future Work

In this work, we have performed a comparative
analysis of CRF and RNN systems for clinical en-
tity recognition. It can be concluded that, with
high-quality word embeddings, RNNs achieve
competitive performance and feature engineering
is be minimized as a result. Through error anal-
ysis, we highlight some of the situations where
RNNs fare better such as longer concept length,
unseen clinical terms, semantically similar generic
words, proper nouns etc. RNNs are also better
suited for out-of-domain tasks because they make
inference using semantics from a much larger cor-
pus than the training data. We observe that clini-
cal entity recognition systems trained on discharge
summaries perform almost as well on other notes

too, such as ER visit, progress notes, consult notes
etc.

In future work, more variations in neural archi-
tecture will be explored for the extraction of tem-
poral relations. We will also develop a module for
the detection of temporal expressions from clin-
ical text. Thereafter, it can be combined with the
existing clinical entity recognition and relation ex-
traction modules to form an end-to-end temporal
evaluation system.
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