Effects of traffic-derived Cu pollution and climate change on arboreal
CollemboLa in Western Washington, USA

Sean Callahan

A thesis
Submitted in partial fulfillment of the
Requirements for the degree of

Master of Science

University of Washington
2017

Reading Committee:
Patrick Tobin
David Butman
Thomas DeLuca
John Marzluff

Program Authorized to Offer Degree:
School of Environmental and Forest Sciences
University of Washington

Abstract

Effects of traffic-derived Cu pollution and climate change on arboreal Collembola in Western Washington, USA

Sean Callahan

Chair of the Supervisory Committee:
Dr. Patrick C. Tobin

Increased demand for travel in the Pacific Northwest has lead to higher inputs of heavy metal pollutants in the region, many of which have been shown to increase in toxicity for various organisms at higher temperatures. I investigated the effects of Cu and supraoptimal temperatures on a moss-dwelling and soil-dwelling species of Collembola. I reared *Folsomia candida* Willem under laboratory conditions and collected *Choreutinula americana* sp. nov. from two sites representing high (Seattle) and low (Hoh Rainforest) background Cu levels in Western Washington. I first exposed Collembola to aqueous Cu solutions ranging from 0.1 to 10,000 ppm to establish LC$_{25}$ and LC$_{50}$ values. I then exposed each population to their respective LC$_{25}$ and LC$_{50}$ concentrations at three temperature regimes based on ambient temperatures, B1 (+1.8°C), and A2 (+3.5°C) IPCC climate change scenarios. I found *C. americana* to be more sensitive to Cu than lab-reared *F. candida*, and increased temperatures greatly lowered both species tolerance to Cu. The results of this study highlight the impact that interactions between climate change and pollutants have on ecosystem health.
TABLE OF CONTENTS

LIST OF TABLES ... v

LIST OF FIGURES ... vi

ACKNOWLEDGEMENTS .. vii

CHAPTER 1: INTRODUCTION .. 1

CHAPTER 2: Effects of vehicle-derived Cu on Collembola in Western Washington, USA

 Abstract .. 14
 Introduction .. 15
 Materials and Methods .. 19
 Results .. 24
 Discussion ... 26
 References .. 31

CHAPTER 3: Interacting Effects of Cu and Supraoptimal Temperatures on Collembola in Western Washington, USA

 Abstract .. 39
 Introduction .. 40
 Materials and Methods .. 43
 Results .. 46
 Discussion ... 48
 References .. 54
List of Tables

2.1: Copper LC values for lab-reared and wild-collected Collembola 62

3.1: Significance of temperature regimes on Collembola mortality 63

3.2: Cu LC values for lab-reared and wild-collected Collembola at Ambient, B1, and A2 temperature scenarios ... 64
List of Figures

2.1: Tullgren funnel setup... 65
2.2: Collembola mortality after 10 days exposure to Cu............................... 66
2.3: F. candida mortality after Tullgren funnel extraction 67
3.1: Bar graph of Ambient, B1, and A2 temperature regimes.......................... 68
3.2: Collembola mortality in response to Cu and temperature.......................... 69
3.3: Collembola mortality in response to Cu exposure shown separately at ambient, B1, and A2 temperature regimes... 70
3.4: Bar graph of Collembola mortality at all Cu doses and temperatures............. 71
3.5: Dose- and time-response of Collembola mortality at all temperatures........... 72
Acknowledgements

I would like to thank my advisor Dr. Patrick C. Tobin for his support and encouragement throughout my time in the School of Environmental and Forest Sciences. It was always a pleasure to work together on this project, as Patrick’s guidance was honest, kind, and respectful. Even when I was feeling lost, I felt comfortable approaching Patrick, and I will always remember how lucky I am to have worked with such an incredible mentor and friend over the past few years.

I thank Amanda Bidwell for the countless hours of planning and fieldwork that went into our projects. Working with Amanda was inspiring and encouraging, and I always knew I had someone to turn to when things got tough. Climbing into the maples together in the rain and (occasional) sun was often difficult but always worth it. I feel honored to have worked with someone so intelligent and dedicated, yet always humble. My work here would not have been possible without your support and friendship.

Thank you to my parents who have supported me in everything (and there have been many things) that I’ve chosen to pursue throughout my life.

I would also like to thank Dr. Thomas DeLuca for his support and guidance in the design of the project, as well as his role as Director of SEFS. I always felt that I could speak openly with Tom about my research or my greater concerns within our community and he would lend his full support and attention. Thank you to my tree-climbing companions Korena Mafune, Russel Kramer, and James Freund. Thank you to my close friends and fellow students Rose Pazdral and Summer Jennings, it was all worth it for your friendship. Thank you to the other members of the disturbance ecology lab: Michael Freeman and Riley Metz who came into the program with me and supported me throughout, Lila Westreich and Jake Betzen for their friendship, and Dr. Angela Mech for her guidance. Thank you to Constance Lin for joining me in the field and building her own research on Collembola.

This research would not have been possible without the support and permission of the Hoh River Trust and the City of Seattle Department of Parks and Recreation. I am grateful for the funding provided by the USDA National Institute of Food and Agriculture, McIntire Stennis project #1006427, and the University of Washington, which allowed me to do this work.

Lastly, the biggest thank you to my partner Ada for her unwavering support throughout this long process. There is far too much to say to be written down here, so I will simply say thank you for everything.
Chapter 1: Introduction

Seattle is currently ranked as the 10th most traffic-congested city in the United States (INRIX 2016). Despite its reputation as an environmentally conscious city, Seattle has more cars per person (637 per 1,000 people) than the other nine densest large US cities, including Los Angeles (Balk 2017). As cities become denser, most will begin to add people at a faster rate than they add vehicles (Balk 2017). However, when Seattle’s population increased by 12% from 2010 to 2015, the number of vehicles also increased by 12% over the same time period (Balk 2017), bringing the citywide average traffic count to >1 million vehicles per day (WSDOT 2015). With this increase in vehicles comes an inevitable increase in traffic-derived heavy metal pollutants, including Iron, Copper, Zinc, Cadmium, and Titanium (Pearson et al. 2000, Bakirdere and Yaman 2008, Thorpe and Harrison 2008, Apeagyei et al. 2011, Wesley 2012). Copper is of particular concern to the State of Washington because it negatively affects endangered Salmonid populations, even at relatively low concentrations in aqueous environments (Boxall and Maltby 1997, Baldwin et al. 2003, Sandahl et al. 2004, Linbo et al. 2006, Sandahl et al. 2007).

Despite the high impact of Cu in aquatic ecosystems, there has been scant attention given to the effects of increasing Cu pollution on PNW forest ecosystems (Bidwell 2017). Western Washington forests are defined by heavy loads of epiphytic bryophytes, which provide ecosystem services in the form of water retention, nutrient cycling, and habitat creation (Binkley and Graham 1981, Nadkarni 1984, Pypker et al. 2006, Cornelissen et al. 2007, Lindo and Gonzalez 2010). There is a history of using bryophytes, such as moss, and lichen as indicators of air quality due
and wild-collected Collembola populations to quantify the effect of Cu pollution on Collembola across Western Washington. The results of this study are presented in Chapter 2, and provide important insight into the resiliency of PNW forest ecosystems in the face of increasing traffic-derived heavy metal pollutants.

Looking to the future, PNW ecosystems will experience stress from not only increased deposition of heavy-metal pollutants, but also from a warming climate. According to climate change projections, Washington State will see an increase in temperatures of 1.8°C by the 2040s and 3.0°C by the 2080s (IPCC 2007, Adair and Reeder 2009, Miles et al. 2010, Abatzoglou et al. 2014, TNC 2016). These changes in temperature will also be accompanied by shifts in precipitation, with ~22% less rain in the summer months by 2050 and a ~38-46% decrease in April 1st snow water equivalent (Adair and Reeder 2009, Miles et al. 2010, Luce et al. 2016). On a large scale these changes will likely lead to increased tree mortality, changes in insect populations and community structure, and larger areas burned by wildfire (Miles et al. 2010, Stavros et al. 2014, Clark et al. 2016, Halofsky and Peterson 2016, Hicke et al. 2016, Kolb et al. 2016, Luce et al. 2016, Halofsky et al. 2017). No studies to date have examined the combined effects of increased temperatures and heavy metal pollutants on PNW forest ecosystems. Thus, the second objective of my thesis was to measure the interacting effect of supraoptimal temperatures and sub-lethal doses of Cu on Collembola from both lab-reared and wild-collected populations.

These results are presented in Chapter 3, and provide insight into the relationship between Cu pollution and climate change for microarthropod communities in PNW forest ecosystems. This information is important for predicting the resiliency of
these ecosystems under the combined stress of heavy-metal pollution and a warming climate.

I wrote Chapters 2 and 3 of this thesis to be combined in manuscript form. The results of Chapter 2 form the basis for the experimental design in Chapter 3. In Chapter 2, I established the initial values of Cu that cause 25% and 50% mortality (LC$_{25}$ and LC$_{50}$) in lab-reared and wild-collected Collembolan populations, while in Chapter 3 I used those initial values and 5-year temperature averages for Seattle, which I increased based on IPCC climate change scenarios (IPCC 2007) to quantify the interactive effects of Cu pollution and temperature on lab-reared and wild-collected Collembolan populations; I also established new Cu LC$_{25}$ and LC$_{50}$ values for each population under three temperature regimes. The results of this work further our understanding of how increasing heavy metal pollutants and a warming climate will affect forest ecosystems in the PNW, which should inform adaptive planning to protect these ecosystems into the future.

Balk, G. 2017. Booming Seattle is adding cars just as fast as people. Seattle Times, Online.

Krogh, P. H. 2009. Toxicity testing with the collembolans *Folsomia fimentaria* and *Folsomia candida* and the results of a ringtest. Danish Ministry of the Environment, Environmental Project No. 1256.

Chapter 2. Effects of Vehicle-Derived Cu on Collembola

In Western Washington, USA

Abstract

In this study, I investigated the effects of Cu pollution on two species of Collembola. I reared the Collembolan species *Folsomia candida* Willem, under laboratory conditions and collected *Choreutinula americana* from two field sites representing high (Seattle) and low (Hoh Rainforest) background Cu levels in Western Washington. I exposed Collembola to aqueous Cu solutions ranging from 0.1 to 10,000 ppm for 10 days at 20°C. I found *Choreutinula americana* to be more sensitive to Cu than *F. candida*, with the LC$_{25}$ and LC$_{50}$ values being 19 and 131 ppm for *C. americana*, and 77 and 2,460 ppm for *F. candida* respectively. A follow up experiment revealed that the extraction procedure that wild-collected Collembola were subjected to resulted in much higher mortality in the lab-reared population when individuals were subsequently exposed to Cu. The results of this study reveal that Collembola in the Pacific Northwest are sensitive to Cu pollution, and may become more sensitive when exposed to other stressors.

Keywords: Collembola; heavy metals; traffic pollution; Pacific Northwest
Introduction

The Pacific Northwest (PNW) is currently experiencing some of the fastest population growth within the United States (2017). Seattle and the surrounding Puget Sound Region is home to 4.25 million people, and estimates project that there will be an increase of ~1.5 million new residents by 2040 (PSRC 2014). This increase in population will in turn increase travel demand throughout the region by 40% (PSRC 2014), adding to Seattle’s current citywide average traffic count of >1 million vehicles per day (WSDOT 2015). Traffic pollution leads to increased levels of heavy metal pollutants such as iron (Fe), copper (Cu), zinc (Zn), cadmium (Cd) and titanium (Ti), and increased nitrogen (N) deposition (Pearson et al. 2000, Bakirdere and Yaman 2008, Thorpe and Harrison 2008, Apeagyei et al. 2011, Wesley 2012). Seattle’s infamous stop-and-go traffic along the major transportation corridors I-5 and I-90 results in heavily increased deposition of the metals Cu, Zn, and Ti through brake and tire attrition (Bidwell 2017). With such increases in transportation demand on the horizon and many vehicles continuing to arrive from out of state, more efforts will be necessary to understand and address the effects of heavy metal inputs into the ecosystems of the PNW.

The State of Washington has already made efforts to reduce Cu pollution through regulations on brake pad composition, which will reduce the allowable composition of Cu by weight in brake pads sold throughout the state. The Washington Department of Ecology adopted the Better Brake Rule in October of 2012, but the benefits of the law will be slow to take effect (Wesley 2012). As of 1 January 2015, the manufacture of brake pads containing asbestos, lead, and other
pollutants (excluding Cu) was prohibited, but under the law distributors can continue to sell existing inventory until 2025. Copper is to be reduced to a maximum of 5% by weight for pads manufactured starting in 2021, and by 2025 brake pads containing more than 0.5% Cu by weight may not be sold in Washington. The impetus for this law was the discovery that even small amounts of Cu in aquatic systems can be detrimental to Salmonid populations, many of which are currently listed as threatened or endangered under the Endangered Species Act (Sandahl et al. 2007). Copper acts as a neurobehavioral toxin in fish by triggering the death of their olfactory epithelial cells and neurons in the lateral line system (Baldwin et al. 2003, Sandahl et al. 2004, Linbo et al. 2006, Sandahl et al. 2007). The implications of damage to these neurobehavioral systems are profound as they are used to detect movement and chemical signals in their environment that range from avoiding predators and finding food to returning to their natal freshwaters and assessing the reproductive status of potential mates (Baldwin et al. 2003, Sandahl et al. 2004, Linbo et al. 2006, Sandahl et al. 2007). With increasing concern over the status of fisheries around the country, the Better Brakes Law is being put forward as a model to improve the health of aquatic ecosystems around the nation. With the expanding population in the PNW and the accompanied increase in traffic-derived heavy metal pollutants, however, there is a need to develop a better understanding of how these environmental toxins are affecting other ecosystems in the PNW.

PNW forests are characterized by large epiphytic bryophyte colonies, which play an important functional role in water retention, nutrient cycling (including nitrogen fixation), microclimate, and habitat creation (Binkley and Graham 1981,
Bryophytes (mosses, liverworts and hornworts) are non-vascular plants that lack roots, have leaves that are one cell-layer thick, and lack a protective epidermis. These qualities make bryophytes sensitive to a range of environmental pollutants including heavy metals; consequently, they have been used historically as bioindicators of air quality (Rühling and Tyler 1973, Bengston et al. 1982, Gjengedal and Steinnes 1990, Tyler 1990, Bates 1992, Pott and Turpin 1996, Pearson et al. 2000, Cornelissen et al. 2007, Cesa et al. 2008, Harmens et al. 2008, Zvereva and Kozlov 2010, Baceva et al. 2012, Gonzalez and Pokrovsky 2014, Donovan et al. 2016, Bidwell 2017). Since mosses readily absorb pollutants via dry or wet deposition (Gjengedal and Steinnes 1990, Bates 1992, Gonzalez and Pokrovsky 2014), they can provide a snapshot of background metal levels within an area and be used to compare pollution levels between sites across the PNW region.

Epiphytic mosses are also home to a myriad of other life forms, including bacteria, nematodes, fungi, insects, and microarthropod communities (Nadkarni 1984, Lindo and Winchester 2006, Lindo and Gonzalez 2010, Lindo et al. 2013). Collembola are particularly abundant in epiphytic mosses (Hopkin 1997, Fountain and Hopkin 2005, Lindo and Winchester 2006, Lindo et al. 2013), and play a vital role in decomposition, stimulation of fungal growth, and pollination of mosses (Fountain and Hopkin 2005, Rosenstiel et al. 2012, Shortlidge 2014). Collembola are used frequently as a representative organism in ecotoxicology studies due to their small size, abundance, and sensitivity to a range of environmental toxins (Crommentuijn et al. 1995, Sandifer and Hopkin 1996, Pedersen et al. 1997, Scott-Fordsmand et al.
This combination of abundance, sensitivity to heavy metal pollutants, and important functional role within epiphyte communities make Collembola an ideal study organism to begin understanding how increased transportation pollution will affect PNW forest ecosystems. The standard toxicology testing procedure is designed for eudaphic (soil-dwelling) Collembola (Fountain and Hopkin 2005, Krogh 2009, OECD 2009); however, this protocol involves the need of an artificial soil for use in bioassays. In this paper, I introduce a new testing procedure that simplifies the test substrate, allows for continuous monitoring of the test individuals for mortality, and is appropriate for the testing of Collembola that live in non-soil environments. The main objective of this study was to use this method to develop a dose-response relationship between Cu and Collembola mortality in three distinct Collembola populations: a standard, lab-reared colony, a population collected from urban environments in the PNW, and a population collected from rural environments in the PNW. I hypothesized that Collembola from these three populations would differ in their sensitivity to concentrations of Cu, with the lab-reared population being the most sensitive due to their lack of previous exposure to Cu, and the rural population being more sensitive that the urban population due to the higher background levels of Cu found in the urban field site.
Materials and Methods

2.1 Study Sites

The study area consisted of two field sites chosen to represent a less polluted (rural) area and a more polluted (urban) area in Western Washington. The rural site is located on the west side of the Olympic Peninsula in the Hoh Rainforest along the Hoh River (47.82°N, 124.20°W), and the urban site is located within Seward Park (47.55°N, 122.25°W) in the city of Seattle.

The rural stand was dominated by bigleaf maple (Acer macrophyllum Pursh), western hemlock (Tsuga heterophylla (Raf.) Sarg.), and Sitka Spruce (Picea sitchensis (Bong.) Carriér), while the urban stand was dominated by Douglas fir (Psuedotsuga menziesii (Mirb.) Franco), bigleaf maple, and western redcedar (Thuja plicata Donn ex D. Don). I chose to collect epiphytic moss samples from A. macrophyllum because it was the only tree occurring in Seattle city parks and the Olympic Peninsula on which enough epiphytes reliably grow to support Collembolan populations of sufficient size for experimentation. In the forests of the Hoh River Valley on the Olympic Peninsula, A. macrophyllum holds the largest epiphyte loads of all woody plant species, averaging ~ 35.5 kg dry weight per tree (Nadkarni 1984). In similar forests, total microarthropod abundance has been found to be 15-20 individuals per gram of dry weight of epiphyte, which would suggest >500,000 individuals live on one A. macrophyllum (Lindo and Winchester 2006). The dominant moss species found on the base of A. macrophyllum in the rural stand were Kindbergia praelonga (Hedw.) Ochyra and Isothecium stoloniferum (Brid.), while the dominant mosses found on the base of A. macrophyllum in the urban stand were K. praelonga, I.
stoloniferum, and Orthotrichum lyelli Hook & Taylor. I chose to collect K. praelonga for this study due to its availability in both rural and urban sites and tendency to form thick mats conducive to microarthropod habitat.

2.2 Moss Collection

At study sites, I removed K. praelonga from the bottom 2 meters of A. macrophyllum stems by hand and placed samples into a 6-liter Ziploc bag for transport back to the laboratory. I took care to remove small sections of moss (~15 cm diameter) from a large number of A. macrophyllum until the bag was full to minimize the impact to each tree’s epiphytic moss and microarthropod communities. Samples from urban and rural sites were collected within one day of one another during the month of July 2016 and returned to the laboratory within 24 hours for processing.

2.3 Collembola Extraction

I placed K. praelonga samples from rural and urban sites into a Tullgren funnel array (Tullgren 1918) to live-extract the microarthropods within the moss. Tullgren funnels are a well-established technique for extracting microarthropods due to their sensitivity to desiccation and avoidance of heat and light sources, and have been found to be the most effective method for live-extracting Collembola (Hopkin 1997, Heneghan et al. 2004, Jones 2005, Lindo and Winchester 2006, Creamer et al. 2008, Yoshida and Hijii 2008, Kardol et al. 2011, Lindo et al. 2013, Bokhorst et al. 2014). The Tullgren funnel setup consisted of a plastic bucket with
its bottom removed to hold the moss, which was placed on top of hardware cloth over a Tupperware® container filled with deionized (DI) water to collect Collembola. A 15-watt light bulb and metal shield were placed over top of the bucket and moss to provide gentle heat and light that would facilitate Collembola to move downwards into the DI water without being hot enough to cause desiccation and mortality (Fig. 2.1). The extracted Collembola remained alive in the Tupperware® containers, as they lack sufficient mass to break the surface tension of the DI water. After 48 hours I removed the Tupperware® from underneath the Tullgren funnels and collected the extracted Collembola from the rural and urban sites into separate larger bins. I then observed the most common species for both sites and used individuals of that species in subsequent experiments. I identified the most common species for both rural and urban sites as *Choreutinula americana* (Collembola: Hypogastruridae) using online taxonomic keys provided through http://www.collembola.org (Bellinger et al. 1996-2017).

2.4 Rearing Collembola in the Laboratory

Krogh 2009, OECD 2009, Holmstrup et al. 2010, Pfeffer et al. 2010, Kim and An 2014); indeed, it is often referred to as the “white rat springtail” due to its nearly ubiquitous use in laboratory experiments involving Collembola (Hopkin 1997, Krogh 2009, OECD 2009). I reared *F. candida* in lidded plastic bins on a medium of charcoal and DI water. I added granulated active dry yeast to the bins every week as a food source and aerated the containers while adding new food. The Collembola were kept at 20°C in Percival Growth Chambers, and DI water was added regularly to ensure 100% humidity in the bins.

2.5 Copper Exposure

To test the sensitivity of the rural, urban, and lab-reared Collembola populations to Cu, I created a range of aqueous Cu solutions along a log\(_{10}\) scale from 0.1 to 10,000 ppm. I created the initial 10,000-ppm copper solution by dissolving cupric sulfate pentahydrate (CuSO\(_4\cdot5\)H\(_2\)O) in DI water in a 100 mL analytical volumetric flask. I made the remaining range of solutions by pipetting small amounts of the 10,000 ppm solution into subsequent analytical volumetric flasks and diluting them with DI water to the desired concentration. I then pipetted 1 ml of each concentration of copper solution into 12 wells of a 24-well Falcon™ cell culture tray (Fisher Scientific, Hampton, NH). I also added 1 ml of DI water to 12 wells of three additional cell culture trays as a control for each population, leaving us with seven treatments for each population.

I then placed Collembola from rural, urban and lab-reared populations in separate cell culture trays for each Cu treatment and the control. I removed
Collembola from the plastic bins using a stainless steel scoopula and transferred them into all 12 wells of the cell culture trays for each treatment, aiming for approximately 10 individuals per well. I transferred the rural and urban populations immediately after they had been collected into the larger plastic bins, and the lab-reared population was removed from the growth chambers only long enough to transfer individuals into the cell culture trays. Once I had placed enough individuals from all populations into each treatment, I placed the cell culture trays in the growth chambers at 20°C for 10 days. I removed the trays every two days during this period and placed them under the microscope to count how many individuals remained alive at the time, ignoring individuals under 1.5 mm in size. Mortality was determined by looking for movement in each individual and prodding immobile individuals thoroughly to ensure that I could not coerce any movement before counting them as dead.

2.6 Tullgren Stress Experiment

I ran a secondary experiment with individuals from the lab-reared *F. candida* population to measure the effect of heat and light exposure from the Tullgren funnels on mortality, and when exposed to Cu. I rewetted the same moss from which the wild populations were extracted and placed it in the Tullgren funnel array and then placed individuals from the lab-reared population into the moss and turned the funnel lights on for 48 hours (the same amount of time the wild populations were exposed for). I then placed the extracted individuals, which I will refer to as the stressed population, into cell culture trays with a control of DI water and Cu
concentrations of 1.0, 100, and 10,000 ppm, and placed a second set of lab-reared individuals that had not been subjected to the Tullgren funnels into the same range of concentrations for comparison. I will refer to this group as the unstressed population. I then placed the cell culture trays into the growth chambers at 20°C and removed after two and four days to assess mortality.

2.7 Statistical Analysis

I used Abbott’s formula to correct for control mortality using the DI water treatment for each respective population (Abbott 1925). I then pooled the mortality data over time to compare total mortality rates among the three populations. I subjected the pooled data to a logit analysis to determine the dose-response relationship between Cu and Collembola mortality for each population (Stokes et al. 2000). I used these dose-response curves for each population to assess slope and intercept heterogeneity among populations based upon the likelihood ratio \(\chi^2 \) \((G^2) \) values. The results led me to pool the rural and urban populations into one “wild” population. I then used this final model to estimate \(LC_{50} \) and \(LC_{25} \) values for the wild and lab-reared populations (Stokes et al. 2000).

Results

I found \(C. americana \) to be the dominant Collembolan species at both the rural (Hoh River Trust) and urban (Seward Park) sites. I observed that other urban sites did not have enough \(C. americana \) to detect in moss samples, and had lower numbers of Collembola in general. Seward Park did yield lower numbers than the
Hoh River Trust of *C. americana* for roughly the same amount of moss collected (Hoh River Trust: n = 542, Seward Park: n = 252), but they still remained the most dominant Collembolan species.

Mortality in Collembola from lab-reared, rural, and urban populations under control conditions (DI water) ranged from 0 to 1.3%. After correcting for mortality in each population and pooling the results over time, Cu concentration was a significant predictor variable of Collembola mortality \((G^2 = 2,188.49; \text{df} = 1, P < 0.001)\). I also detected significant differences in the intercepts \((G^2 = 127.74; \text{df} = 2; P < 0.001)\) and slopes \((G^2 = 75.41; \text{df} = 2; P < 0.001)\) of the population-specific dose-mortality curves. After excluding the lab-reared population in a comparison of rural and urban populations, I observed no significant difference in the estimates of the intercept \((G^2 = 1.03; \text{df} = 1; P = 0.3106)\) and slope \((G^2 = 0.50; \text{df} = 1; P = 0.4778)\) of their respective dose-response curves. Due to slope and intercept homogeneity, I combined the rural and urban populations into one wild population, which I then compared to the lab-reared population, and detected a significant difference in the estimates of the intercept \((G^2 = 126.86; \text{df} = 1; P < 0.001)\) and slope \((G^2 = 74.76; \text{df} = 1; P < 0.001)\) of their dose-response curves. Overall, the wild population, whether collected from urban or rural locations, was more susceptible to Cu exposure than the lab reared population (Fig. 2.2). The calculated LC\(_{25}\) and LC\(_{50}\) values for the wild population were 19 ppm and 131 ppm respectively, while the respective values for the lab population were 77 ppm and 2,460 ppm (Table 2.1).

In a follow-up study, I observed that *F. candida* (i.e., the lab-reared population) had higher mortality when exposed to Cu after being extracted through
the Tullgren funnels (Fig. 2.3). Individuals when extracted through this method (e.g., a stressed population) reached 100% mortality when exposed to the 10,000 ppm Cu solution after only 4 days. When individuals were not extracted through the use of Tullgren funnels (i.e., an unstressed population), mortality reached 37.9% mortality when exposed the 10,000 ppm Cu solution after 4 days, which was consistent with the lab-reared population mortality in the initial experiment at that dose and time. There was no mortality in the unstressed population when exposed to DI water, 1.0 ppm or 100 ppm Cu solutions after 4 days. This was also consistent with the data for the lab-reared population in the initial experiment. In contrast, the stressed population had 19.8% mortality when exposed to DI water control, 34.6% mortality for the 1 ppm Cu solution, and 98.2% mortality for the 100 ppm Cu solution after 4 days.

Discussion

A recent study determined that the rural site (Hoh River Trust) had an average Cu concentration of 3.52 ± 1.98 ppm while the urban site (Seward Park) had an average Cu concentration of 11.49 ± 3.80 ppm (Bidwell 2017). The fact that the most abundant Collembolan species at both sites was *C. americana* reveals that the difference in background Cu levels between sites was not enough to severely affect the presence of this species; however, the other urban sites with only slightly higher background levels of Cu (Ravenna Park at 11.95 ± 4.04 ppm and Interlaken Park at 12.30 ± 4.10 ppm) had below detection limit numbers of *C. americana*. Along with Cu, Bidwell (2017) analyzed a suite of other metals for each site including Cd, Cr, Fe,
K, Mg, Mn, Ni, Pb, Sr, Ti, and Zn, many of which are known to negatively affect Collembola over a certain environmental threshold (Crommentuijn et al. 1995, Sandifer and Hopkin 1996, Smit and Van Gestel 1997, Fountain and Hopkin 2001, Sorensen and Holmstrup 2005, Creamer et al. 2008, Kim and An 2014, Son et al. 2017). Variations among these other metals are a potential explanation for why C. americana presence varied among sites without much change in Cu levels. Lead, for example, was found in concentrations up to 64.06 ppm at Ravenna Park, compared to mean background urban levels of 8.12 ppm (Bidwell 2017). Seward Park was also the largest and least disturbed forest of our urban sites, and supported noticeably more moss in the understory, a trait that has been identified as a strong indicator of the health and abundance of microarthropod communities (Bokhorst et al. 2014).

I found Cu concentration to be a significant predictor of Collembola mortality across all populations, though sensitivity to Cu varied among populations and between treatments in the Tullgren stress experiment. I initially hypothesized that the lab-reared population would be more susceptible to Cu pollution than the rural or urban population because F. candida is known to be one of the most sensitive Collembolan species to many chemicals (Fountain and Hopkin 2001, 2005). Also, this lab-reared population had no previous exposure to Cu or other stressors that select for hardier individuals. The Tullgren stress experiment demonstrated that there was a significant effect on F. candida mortality after exposure to the stress of being extracted through the Tullgren funnels. This additional stress that the wild populations were exposed to in the Tullgren funnels could explain why the lab-reared population, which I predicted would be more susceptible to Cu exposure, had
lower mortality than both the rural and urban populations. Other studies on *F. candida* have shown that the effect of drought increases their susceptibility to various pollutants, including Cu (Holmstrup 1997, Højer et al. 2001, Damgaard et al. 2002, Holmstrup et al. 2010). It would be beneficial for future toxicology experiments to design a test that allowed for more accurate comparison of mortality between field-collected and lab-reared Collembolan populations by correcting for the effect of the Tullgren funnel procedure on field-collected Collembolan mortality.

Given the drastic increase in *F. candida* sensitivity to Cu after exposure to the Tullgren funnel procedure, it is possible that our predicted LC\textsubscript{25} and LC\textsubscript{50} values for *C. americana* overestimate the organism’s sensitivity to Cu in the environment. Still, it has been shown that sub-lethal concentrations of many toxins, including Cu, detrimentally affect fitness of Collembola spp. (Crommentuijn et al. 1995, Scott-Fordsmand et al. 1997, Filser et al. 2000, Fountain and Hopkin 2001, Creamer et al. 2008, Pfeffer et al. 2010, Kim and An 2014). It should also be noted that the predicted LC\textsubscript{25} value for the wild population is within the range of background levels detected in our urban field sites.

The decision to run this experiment directly on the solution rather than in an artificial standard soil gave me the opportunity to assess Cu induced mortality more rapidly and continuously than the standard Organization for Economic Cooperation and Development (OECD) procedure allows. The standard procedure involves creating an artificial soil of the following materials by percentage of dry weight: 5% sphagnum peat, 20% kaolin clay, 74% sand, and 1% calcium carbonate (OECD 2009). This artificial soil is then dosed with the various concentrations of the
toxicant of interest and Collembola are placed into the treated soils for 28 days before mortality is assessed (OECD 2009). Others have also attempted to assess mortality in shorter intervals to determine non-mortality effects such as growth rate, food selection, and gut composition (Crommentuijn et al. 1995, Scott-Fordsmand et al. 1997, Fountain and Hopkin 2001). I chose not to use the standard procedure because the Collembola were collected from epiphytic moss rather than soil, and using moss rather than soil for the toxicology tests would have required the additional stress of re-extracting Collembola after the period of exposure to Cu. Re-extraction of live Collembola using Tullgren funnel or floating would likely have lead to further mortality and unrecovered individuals remaining in the moss (Yoshida and Hijii 2008).

The mortality results from this experiment were comparable to studies that have used the OECD standard tests on F. candida (Krogh 2009). When multiple laboratories performed the standard OECD test to determine LC$_{50}$ values for F. candida when exposed to Cu, the average LC$_{50}$ value was 1,541 ppm with a 95% CI from 443 - 2,639 ppm (Krogh 2009) as compared to our result of 2,460 ppm with a 95% CI from 1,516 - 3,990 ppm. Several laboratories included in this study had LC$_{50}$ values that were higher than those I found, and several were not included in the statistical analysis, because either there were no effects or the results fell outside of the concentration range (Krogh 2009). Running this test directly on the Cu solution provided several advantages over the OECD standard test: (1) 100% humidity was guaranteed throughout the duration of the experiment; (2) Labor and time requirements were greatly reduced; (3) The Cu solution approach allowed for
comparison between an eudaphic species and a moss-dwelling species of
Collembola; (4) Continuous monitoring of mortality was possible, and the total time
necessary to estimate LC values was reduced; (5) Cell culture trays could be cleaned
and reused between iterations.

This test is not suitable to assess certain ecotoxicology measures such as
avoidance behavior, toxicity of food sources, or fecundity due to the crowding and
limited movement within wells of the cell culture trays and the lack of a solid
surface on which to present food. While additional studies would be necessary to
determine the comparability of our test to the OECD standard test, the initial
success, shorter time period required, reduction in labor, and reduction of variables
presents a potential increase in the ease and efficiency of determining LC values and
comparing different species and populations of Collembola over time.

Bidwell, A. 2017. Urbanization impacts on epiphytic nitrogen and metal cycling in
Acer macrophyllum stands in Western Washington, USA. University of Washington.

Heneghan, L., A. Salmore, and D. A. Crossley. 2004. Recovery of decomposition and

Krogh, P. H. 2009. Toxicity testing with the collembolans *Folsomia fimentaria* and *Folsomia candida* and the results of a ringtest. Danish Ministry of the Environment, Environmental Project No. 1256.

PSRC. 2014. Transportation 2040: Toward a sustainable transportation system. in P. S. R. Council, editor., Seattle, WA.

potentials as indicators of sublethal neurotoxicity in juvenile coho salmon (Oncorhynchus kisutch) exposed to copper, chlorpyrifos, or esfenvalerate.

Canadian Journal of Fisheries and Aquatic Sciences 61:404-413.

Sorensen, T. S., and M. Holmstrup. 2005. A comparative analysis of the toxicity of eight common soil contaminants and their effects on drought tolerance in the
collembolan Folsomia candida. Ecotoxicol Environ Saf 60:132-139.

Chapter 3:

Interacting Effects of Cu and Supraoptimal Temperatures on Collembola in Western Washington, USA

Abstract

I exposed two species of Collembola to Cu at previously determined LC$_{25}$ and LC$_{50}$ concentrations under three temperature regimes. Temperature regimes were based on ambient (Seattle June averages), B1 (+1.8°C), and A2 (+3.5°C) IPCC climate change scenarios. *Folsomia candida* Willem were reared under laboratory conditions and *Choreutinula americana* sp.nov. were collected from two field sites representing high (Seattle) and low (Hoh Rainforest) background Cu levels in Western Washington. Increasing temperatures greatly lowered both species tolerance to Cu, with LC$_{25}$ and LC$_{50}$ values at the A2 temperature regime being 0.5 and 39.3 ppm for *C. americana* and 0.1 and 31.2 ppm for *F. candida*, respectively. *Folsomia candida* was more sensitive to temperature increases alone than *C. americana*, though the interaction of Cu and temperature resulted in similar LC values at the A2 temperature regime. The results of this study highlight the importance of understanding the interacting effects of pollutants and climate change on organism and ecosystem health.

Keywords: Collembola; climate change; heavy metals; traffic pollution; Pacific Northwest
Introduction

The anthropogenic warming of the global climate is perhaps one of the most pressing ecological issues facing society today. Evidence of human-driven warming has been found in the form of higher ocean and surface temperatures, increased rates of Arctic and Antarctic ice melt, increased sea levels, and rapidly increasing rates of climate warming (IPCC 2007). This evidence has been all but fully accepted within the scientific community, with 97% agreement among publishing climate scientists that warming of our global climate is human-induced (Cook et al. 2013), and nearly 200 leading scientific organizations around the world issuing public statements supporting that position (NASA 2017). The mounting evidence of the reality of global climate change has spurred a vast amount of research into the potential impacts of these changes within ecosystems around the world (Cook et al. 2013). National governments around the world have put forth efforts to both mitigate and adapt to our inevitably changing climate through international agreements and, in the case of the United States, a combined effort to take responsibility from agencies of the federal government (Yurkovich 2012, UNFCCC 2014, Halofsky and Peterson 2016). There is a need for continued efforts from scientists across disciplines to incorporate climate change into their studies to better inform policymakers in their efforts to combat and adapt to the complex changes our ecosystems will face in the years to come.

Compared to temperatures from 1970-1999, climate change models predict Washington State will be 1.8°C warmer by the 2040s and 3.0°C warmer by the 2080s (IPCC 2007, Adair and Reeder 2009, Miles et al. 2010, Abatzoglou et al. 2014,
In response to these findings the Washington State legislature mandated that an assessment of the impacts of climate change in the region be prepared in collaboration with the University of Washington Climate Impacts Group. Broad scale patterns from these assessments show slightly increased annual precipitation (~2% by 2040s) but increased periods of summer drought (~22% less rain by the 2050s) with larger extreme precipitation events in autumn (Adair and Reeder 2009, Miles et al. 2010, Luce et al. 2016, TNC 2016). Changes in precipitation patterns will also lead to less snowpack, with a reduction of 38-46% of April 1st snow water equivalent that will further limit hydrologic systems and increase water short years in the Yakima basin from 14% (current) to 36% by the 2040s (Mote 2006, Miles et al. 2010). Modeling efforts directed towards Pacific Northwest (PNW) forest ecosystems predict changes in tree growth and regeneration, an increase in bark beetle outbreaks, increased tree mortality, and a 100-250% increase in area burned by fire (Miles et al. 2010, Stavros et al. 2014, Clark et al. 2016, Halofsky and Peterson 2016, Hicke et al. 2016, Kolb et al. 2016, Luce et al. 2016, TNC 2016, Halofsky et al. 2017). Many of these studies have focused on broad impacts that will effect PNW forest ecosystems as changing climate patterns lead to large disturbance events such as insect and pathogen outbreaks and wildfires (Miles et al. 2010, Stavros et al. 2014, Clark et al. 2016, Halofsky and Peterson 2016, Hicke et al. 2016, Kolb et al. 2016, Luce et al. 2016, Halofsky et al. 2017). However, examinations at a smaller scale using sensitive organisms may provide insight into less visible pathways to change that are likely already underway and will continue to define change in undisturbed areas.
The combined effects of a warming climate and increased deposition of heavy metal pollutants from the transportation sector will further increase stress to PNW ecosystems, an effect that will be magnified as the human populations continue to grow (Pearson et al. 2000, Bakirdere and Yaman 2008, Thorpe and Harrison 2008, Apeagyei et al. 2011, Wesley 2012). Past studies have shown that increasing temperature stress makes several organisms present in the PNW less tolerant to various pollutants, including heavy metals (Holmstrup 1997, Højer et al. 2001, Sjursen et al. 2001, Damgaard et al. 2002, Holmstrup et al. 2008, Slotsbo et al. 2009, Holmstrup et al. 2010, Bandow et al. 2014a, Bandow et al. 2014b, Holmstrup et al. 2014, Jegede et al. 2017). Several studies have attempted to assess the potential impacts of increased temperatures and drought conditions on Collembola (Holmstrup et al. 2002, Kardol et al. 2011, Waagner et al. 2012, Xu et al. 2012, Holmstrup and Bayley 2013, Holmstrup et al. 2013, Krab et al. 2013, Krab et al. 2014, Vestergård et al. 2015, Daghighi et al. 2017, Greenslade and Slatyer 2017). Collembola is a subclass of Entognatha within the same subphylum as Insecta, and is a commonly used test animal in the field of environmental toxicology (Fountain and Hopkin 2001, 2005, Krogh 2009). However, there are no known prior studies that simultaneously assess the effects of temperature and heavy metal deposition on bryophyte derived Collembola of the Pacific Northwest (PNW). I used lethal concentration (LC) values from experiments conducted on the sensitivity of lab-reared and wild Collembola collected from the PNW to Cu pollution (Chapter 2) to test the interactive effects of increased temperature and sublethal doses of Cu on Collembola mortality to quantify the impacts of these two abiotic stressors on
Collembola. I used both a field-collected Collembolan species considered to be native to the PNW, and a laboratory-reared species commonly used in ecotoxicology studies.

Materials and Methods

3.1 Study Site

My study area is located in the Hoh Rainforest between Upper Hoh Road and the Hoh River (47.82°N, 124.20°W). The site is dominated by bigleaf maple (*Acer macrophyllum*), western hemlock (*Tsuga heterophylla*), and sitka spruce (*Picea sitchensis*). The dominant moss present on *A. macrophyllum* is *Kinbergia praelonga*, and due to its dominance I selected it for Collembola sampling (Chapter 2.1).

3.2 Moss Collection

I collected approximately 15 cm diameter cores of *K. praelonga* from the bottom 2 meters of *A. macrophyllum* stems and placed all samples into 6-liter Ziploc bags to transport back to the laboratory (Chapter 2.2). Samples were collected during the month of June 2017 and returned to the laboratory within 24 hours.

3.3 Collembola Extraction

I placed *K. praelonga* samples into a Tullgren funnel array to live-extract Collembola from the moss (Chapter 2.3). After 48 hours, I removed the extracted Collembola from under the Tullgren funnels and pooled them into a large plastic bin. I identified the dominant Collebolan species as *Choreutinula americana* sp. nov.
3.4 Laboratory-Reared Collembola

I reared the temperate springtail *Folsomia candida* Willem (Collembola: Isotomidae) under laboratory conditions in large plastic bins filled halfway with charcoal and a layer of deionized (DI) water. I fed *F. candida* granulated active dry yeast every week and maintained the bins in growth chambers (Percival Scientific, Perry, Iowa) at 20°C (Chapter 2.4).

3.5 Supraoptimal Temperatures

I obtained data from the National Weather Service for the Puget Sound region from 2012-2016, from which I estimated the mean minimum and maximum daily temperatures for the month of June (NOAA 2014); these 5-year mean temperatures were 12.0°C and 22.5°C, respectively. Based on sunrise (~0500) and sunset (~2100) for Seattle in June, I used the growth chambers to maintain the appropriate photoperiod under different temperature conditions. Under an ambient scenario (e.g., 12.0°C and 22.5°C as the minimum and maximum temperature, respectively), temperature was increased by 1°C per hour from 0500 until 22.5°C was obtained at 1530; this maximum temperature was maintained until 1700, after which temperatures were decreased by 1.5°C per hour until reaching 12.0°C at 0000. I also used two additional temperature regimes based on the IPCC B1 and A2 climate change scenarios (IPCC 2007). To simulate the B1 and A2 scenarios, I increased temperatures by 1.8°C and 3.5°C, respectively, from ambient
temperatures, *caeteris paribus* (Fig. 3.1).

3.6 Exposure to Copper

I used LC\textsubscript{25} and LC\textsubscript{50} values estimated from the previous year's research (Chapter 2) to create aqueous Cu solutions by dissolving cupric sulfate pentahydrate (CuSO\textsubscript{4} \cdot 5H\textsubscript{2}O) in DI water in a 100 mL analytical volumetric flask. I created four solutions to match the LC\textsubscript{25} and LC\textsubscript{50} values for both the wild-collected (19 and 131 ppm Cu, respectively) and lab-reared populations (77 and 2,460 ppm Cu, respectively). I then pipetted 1ml of each solution (LC\textsubscript{25} and LC\textsubscript{50}) into 12 wells of Falcon 24-well cell culture trays (Fisher Scientific, Pittsburgh, Pennsylvania) along with a control of DI water in two additional cell culture trays. I then randomly added ~10 Collombola individuals from the lab-reared and wild populations into each cell culture well using a stainless steel scoopula. Cell culture trays were then randomly assigned to one of the temperature treatments (ambient, B1, and A2) in growth chambers. I removed trays every 2 days and counted live and dead individuals under a microscope to quantify the interactive effects of Cu and supraoptimal temperatures on Collombola mortality. Mortality was assessed over 10 days. For *F. candida*, individuals <1.5 mm in size were not counted as they were not considered adults.

3.7 Statistical Analysis

I first pooled mortality over time and subjected the data to a logit analysis to compare the dose-response relationship for both populations (Stokes et al. 2000). I
conducted an analysis for each population and tested the significance of the parameter estimates of the main effects of temperature regime and Cu dose, and their interaction, based on the Z-values. I then used the results of these analyses to estimate LC$_{25}$ and LC$_{50}$ values, and their respective confidence intervals, for both populations at each temperature regime (Stokes et al. 2000). I also tested the effect of temperature regime for each population at each Cu dose using logistic regression (Stokes et al. 2000). Lastly, I examined the effect of temperature regime and time, and their interaction, for each population at their respective control, LC$_{25}$, and LC$_{50}$ values using logistic regression. The significance of parameter estimates was based on Z-values (Stokes et al. 2000).

Results

When pooling mortality across time, there were significant differences between Cu doses ($Z = 5.69, P < 0.001$) and between the ambient and A2 temperature regimes ($Z = -2.64, P = 0.008$). There was no significant difference between the lab and wild populations ($Z = 1.62, P = 0.106$) or between the B1 and A2 temperature scenarios ($Z = -1.47, P = 0.142$; Fig. 3.2). When examining the wild population separately, there were significant differences for Cu dose ($Z = 5.69, P < 0.001$) and between the ambient and A2 temperature scenarios ($Z = -2.64, P = 0.008$; Fig. 3.2). In considering only the lab population, there were significant differences for Cu dose ($Z = 10.26, P < 0.001$), and between the A2 and ambient temperature scenarios ($Z = -4.19, P < 0.001$), the A2 and B1 temperature scenarios ($Z = -4.02, P < 0.001$), and the interaction of Cu dose and ambient ($Z = 2.12, P = 0.034$) and Cu dose
and B1 temperature scenarios ($Z = 2.33, P = 0.020$; Fig. 3.2).

At the control dose, only the ambient temperature scenario for the wild population was significantly different from the A2 scenario ($Z = -2.75, P = 0.006$), while the ambient ($Z = -5.00, P < 0.001$) and B1 ($Z = -3.30, P < 0.001$) scenarios were significantly different from the A2 scenario for the lab population (Fig. 3.3 and 3.4). At the LC25 dose the there was no significant difference between A2 and ambient ($Z = -0.23, P = 0.816$), and A2 and B1 ($Z = -0.35, P = 0.724$) temperature regimes for the wild population, while only the ambient scenario for the lab population was significantly different from the A2 scenario ($Z = -2.96, P = 0.003$; Fig. 3.3 and 3.4). At the LC50 dose the ambient scenario was significantly different from the A2 scenario ($Z = -2.13, P = 0.033$) for the wild population, while the B1 scenario was significantly different from the A2 scenario ($Z = -2.72, P = 0.007$) for the lab population (Figs. 3.3 and 3.4).

For the analysis examining mortality over time, the effects of temperature regime for each population at their respective control, LC25 and LC50 values is presented in Table 3.1. At the control level there was no significant difference between the A2 and ambient ($Z = -0.253, P = 0.8002$), and A2 and B1 ($Z = 1.011, P = 0.3120$) temperature regimes for the wild population over the 10-day exposure period. At the LC25 level there was no significant difference between the A2 and ambient ($Z = -1.486, P = 0.137$) and A2 and B1 ($Z = -0.305, P = 0.760$) temperature regimes for the wild population over the 10-day exposure period. Time was a significant factor at control ($Z = 2.392, P = 0.0167$), LC25 ($Z = 4.505, P < 0.001$), and LC50 values ($Z = 4.478, P < 0.001$) for the wild population (Fig. 3.5). Time was also a
significant factor at control \((Z = 7.313, P < 0.001)\), \(\text{LC}_{25} (Z = 11.49, P < 0.001)\), and \(\text{LC}_{50}\) levels \((Z = 9.23, P < 0.001)\) for the lab population (Fig. 3.5). At the control Cu dose for the lab population there was a significant interaction effect between time and ambient \((Z = -2.199, P = 0.02789)\) and time and B1 temperature regimes \((Z = -2.659, P = 0.00783)\).

Based on data from this study, I estimated the \(\text{LC}_{25}\) and \(\text{LC}_{50}\) values for the lab and wild populations under ambient temperature conditions, and when simulating temperature conditions under the B1 and A2 climate change scenarios. These values are presented in Table 3.2. \(\text{LC}_{25}\) and \(\text{LC}_{50}\) values were lower for both populations at all temperature regimes than they were during the initial experiment run at 20.0°C (Ch. 2).

Discussion

Increased temperature increased mortality in Collembola when exposed to their \(\text{LC}_{25}\) and \(\text{LC}_{50}\) values of Cu, and this effect was observed in both populations. The lab-reared population was more sensitive to temperature increases than the wild population, which was also observed in a Tullgren funnel stress experiment (Chapter 2). It is possible that because the lab population, which has been reared for many generations at nearly constant temperatures (Hopkin 1997, Fountain and Hopkin 2005, Krogh 2009), does not experience temperature fluctuations similar to those under natural conditions, that these individuals are therefore more sensitive to changes in temperature. Interestingly, mortality in the lab population was lowest at the B1 scenario for control and \(\text{LC}_{50}\) Cu doses (Fig. 4), which suggests that the B1
scenario could be closer to the optimal temperature for *F. candida*. Another study found that *F. candida* abundance increased when soil temperatures were raised from 15°C to 18°C, even though 15°C was used as the ambient treatment (A'Bear et al. 2012). However, this relationship did not hold for the LC25 Cu treatment in which the ambient temperature scenario had lower mortality than the B1 and A2 scenarios, which were not significantly different (Fig. 4). The estimated LC25 and LC50 values for Cu were also very similar between the ambient and B1 scenarios for the lab population, with a large increase in sensitivity to Cu at the A2 scenario (Table 1). The estimated LC25 and LC50 values for the wild population were similar or identical to previously estimated values (Chapter 2, Table 1). It is important to note that the LC25 values for the wild population at all temperature scenarios (0.5 – 4.2 ppm, Table 1) were equal to or lower than current environmental levels of Cu in epiphytic mosses in forests around Western Washington, which range from 3.5 - 12.3 ppm on average (Bidwell 2017).

The interaction of Cu exposure and temperature did not provide a consistent pattern of the effects of increased temperatures and Cu on Collembola mortality. However, Collembola mortality was higher at all temperature regimes and doses for both populations than mortality recorded from the initial experiment conducted at a constant temperature of 20°C (Chapter 2), suggesting that temperature fluctuations can add stress to Collembola in a laboratory setting. While the wild population tolerated the temperature fluctuations better than the lab population, mortality in the former still increased when they were exposed to Cu, even in the ambient scenario (i.e., temperatures at which Collembola normally experience in an average
June in Seattle). It should be noted that under natural conditions, surface-dwelling Collembola can behaviorally respond to adverse environmental conditions by seeking microhabitats that are wetter and cooler (Hopkin 1997, Kaersgaard et al. 2004, Holmstrup et al. 2013, Krab et al. 2013), which was a option not available to them in this experiment. However, with climate change models predicting longer periods of drought and more extreme temperature events, organisms could be approaching the limit of what is tolerable.

Variation in metal sensitivity of Collembola when tested in concert with interacting effects of temperature and other stressors has been previously reported. For example, Jegede et al. (2017) found that LC50 values of dimethoate were lower for *F. candida* at 28°C than at 20°C, while the opposite was true for the pesticide deltamethrin. Holmstrup et al. (2008) reported that exposure to mercury (Hg) lowered the ability of *F. candida* to tolerate and survive cold shock treatments while Slotsbo et al. (2009) reported that Hg also reduced tolerance to increased temperatures in *F. candida*. Smit and Van Gestal (1997) found that *F. candida* exposed to Zn showed decreased growth and reproductive rates as temperature was lowered, but mortality rates did not differ, likely due to internal Zn regulation by individuals. Bandow et al. (2014) studied the toxicity of lambda-cyhalothrin on two Collembolan species (*F. Candida* and *Sinella curviseta* Brook (Collembola: Entomobryidae)) and observed increased toxicity with increased temperatures for *F. Candida* but the opposite effect in *S. curviseta*. This same study also found that increased soil moisture increased fecundity in both species, while also increasing sensitivity to the toxin (Bandow et al. 2014). Collectively, these prior studies
demonstrate the interacting effects of both suboptimal and supraoptimal temperatures, and various toxicants, on Collembola mortality are not always clear.

Multiple studies have also examined the effect of drought on Collembola in combination with other factors under laboratory conditions (Holmstrup 1997, Højer et al. 2001, Sjursen et al. 2001, Damgaard et al. 2002, Holmstrup et al. 2002, Holmstrup et al. 2010, Waagner et al. 2012, Bandow et al. 2014a, Bandow et al. 2014b, Holmstrup et al. 2014). These studies have largely shown a compounding effect between drought and pollutants, leading to increased mortality in Collembola. However, in some cases these studies do not explain large variation in mortality, while some have shown decreased sensitivity to pollutants under drought conditions (Bandow et al. 2014a). There are several possible reasons for the variation within these studies. For example, some results vary by species of Collembola (Kaersgaard et al. 2004, Holmstrup et al. 2010, Holmstrup and Bayley 2013, Bandow et al. 2014a, Bandow et al. 2014b), the pollutants tested (Holmstrup 1997, Sjursen et al. 2001, Holmstrup et al. 2010, Bandow et al. 2014a, Bandow et al. 2014b), and whether mortality or some measure of fitness (i.e., reproductive rate) was used as the response variable (Smit and Van Gestel 1997, Sorensen and Holmstrup 2005, Holmstrup et al. 2013, Bandow et al. 2014a, Bandow et al. 2014b).

In this study, I examined the effects of temperature without introducing drought, as Collembola were placed directly on aqueous Cu solutions. Based on prior work with Collembola and drought, it is likely that drought in conjunction with higher temperatures will be more detrimental to Collembola in the absence of moisture (Hopkin 1997). Physiological tolerance to drought varies among species,

With climate change models predicting longer periods of drought and more extreme temperature events, it is important to understand how these species will adapt, and in the face of anthropogenically-derived heavy metal pollution. In the absence of pollution, prior field studies have shown that drought and extreme temperatures lead to changes in species richness rather than abundance (Kardol et al. 2011, Holmstrup et al. 2013, Krab et al. 2013, Vestergård et al. 2015, Daghighi et al. 2017). A primary concern is with endemic species inhabiting environments that do not allow for dispersal to higher elevations or latitudes (i.e. polar and montane environments) (Greenslade and Slatyer 2017). The results of shifts in Collembola species composition and richness poorly studied; however, given the important ecosystem services these species provide, it is possible that the loss of Collembola diversity will have implications for plant cover, moss pollination, fungal diversity and abundance, regulation of eudaphic pathogens and bacteria, nutrient cycling, and breakdown of organic matter (Hopkin 1997, Kardol et al. 2011, A’Bear et al. 2012, Holmstrup et al. 2013, Vestergård et al. 2015).

The interaction between temperature and exposure to heavy metal pollutants on Collembola mortality suggests that the effects of increased temperatures, and especially under conditions of drought, will have the most
detrimental effect on Collembola populations in our most polluted ecosystems, such as urbanized centers (Holmstrup 1997, Højer et al. 2001). This research adds to the evidence that the interacting effects of pollution and a warming climate will surpass the individual effects of each stressor independently, with a specific context for forest ecosystems in the PNW. This research highlighted the sensitivity of Collembola to Cu when exposed to increased temperatures, and the urgency to develop a better understanding of the impacts that climate change and pollution will have on Collembola communities. Further research is needed to determine the resiliency of microarthropod communities in Western Washington and their ability to continue providing ecosystem services as those communities change in the face of pollution and a warming climate.

Bidwell, A. 2017. Urbanization impacts on epiphytic nitrogen and metal cycling in
Acer macrophyllum stands in Western Washington, USA. University of Washington.

between effects of environmental chemicals and natural stressors: a review. Sci Total Environ 408:3746-3762.

Krogh, P. H. 2009. Toxicity testing with the collembolans Folsomia fimentaria and Folsomia candida and the results of a ringtest. Danish Ministry of the Environment, Environmental Project No. 1256.

NASA. 2017. Global Climate Change: Vital Signs of the Planet.in H. Shaftel, editor. NASA.

Stavros, E. N., J. T. Abatzoglou, D. McKenzie, and N. K. Larkin. 2014. Regional
projections of the likelihood of very large wildland fires under a changing climate in the contiguous Western United States. Climatic Change 126:455-468.

UNFCCC. 2014. Focus: Mitigation - Nationally appropriate mitigation commitments or actions by developed country parties. UNFCCC, United Nations Framework Convention on Climate Change.

Table 2.1 Copper LC values in ppm (95% Confidence Interval) for lab-reared and wild-collected Collembola

<table>
<thead>
<tr>
<th>Lethal Concentration (LC)</th>
<th>Lab (F. candida)</th>
<th>Wild (C. americana)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC 25</td>
<td>77 (48-125)</td>
<td>19 (12-22)</td>
</tr>
<tr>
<td>LC 50</td>
<td>2,460 (1,516-3,990)</td>
<td>131 (112-154)</td>
</tr>
</tbody>
</table>
Table 3.1 Z and P values showing the significance of Ambient and B1 temperature regimes (compared to the A2 temperature regime), on lab-reared and wild-collected Collembola mortality at their respective Cu control, LC$_{25}$ and LC$_{50}$ values.

<table>
<thead>
<tr>
<th>Population and Cu Concentration</th>
<th>Temperature Scenario</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ambient</td>
<td>Z</td>
<td>P</td>
<td>B1</td>
</tr>
<tr>
<td>Lab (Control)</td>
<td>1.59</td>
<td>0.112</td>
<td>0.67</td>
<td>0.503</td>
</tr>
<tr>
<td>Lab (LC 25)</td>
<td>0.93</td>
<td>0.352</td>
<td>1.60</td>
<td>0.109</td>
</tr>
<tr>
<td>Lab (LC 50)</td>
<td>-0.30</td>
<td>0.767</td>
<td>-0.68</td>
<td>0.499</td>
</tr>
<tr>
<td>Wild (Control)</td>
<td>-0.25</td>
<td>0.800</td>
<td>1.01</td>
<td>0.312</td>
</tr>
<tr>
<td>Wild (LC 25)</td>
<td>-1.49</td>
<td>0.137</td>
<td>-0.31</td>
<td>0.760</td>
</tr>
<tr>
<td>Wild (LC 50)</td>
<td>-1.24</td>
<td>0.216</td>
<td>0.39</td>
<td>0.694</td>
</tr>
</tbody>
</table>
Table 3.2 Lethal concentration (LC) values of Copper in ppm (+95% Confidence Intervals) for lab-reared and wild-collected Collembola at Ambient, B1, and A2 temperature scenarios

<table>
<thead>
<tr>
<th>Lethal Concentration (LC) & Temperature Scenario</th>
<th>Lab (F. candida)</th>
<th>Wild (C. americana)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC 25 (Ambient)</td>
<td>1.6 (0.9 – 2.7)</td>
<td>4.2 (1.9 - 9.3)</td>
</tr>
<tr>
<td>LC 25 (B1)</td>
<td>1.6 (0.9 – 2.8)</td>
<td>1.7 (0.9 – 3.1)</td>
</tr>
<tr>
<td>LC 25 (A2)</td>
<td>0.06 (0.03 – 0.13)</td>
<td>0.5 (0.2 – 1.2)</td>
</tr>
<tr>
<td>LC 50 (Ambient)</td>
<td>182.4 (102.8 – 323.7)</td>
<td>109.9 (50.2 – 240.4)</td>
</tr>
<tr>
<td>LC 50 (B1)</td>
<td>162.1 (92.8 – 283.0)</td>
<td>38.45 (20.9 – 70.8)</td>
</tr>
<tr>
<td>LC 50 (A2)</td>
<td>31.2 (15.4 – 63.3)</td>
<td>39.3 (16.1 – 96.2)</td>
</tr>
</tbody>
</table>
Figure 2.1 Tullgren funnel setup showing overhead view of moss (left) and frontal view of whole system extracting microarthropods out of the moss into DI water in a Tupperware® container
Figure 2.2 Lab-reared and wild-collected (from epiphytic bryophytes in western Washington) Collembola mortality (pooled over time) after 10 days of exposure to Cu solutions
Figure 2.3 Stressed (extracted through Tullgren funnel) and unstressed (control) *F. candida* mortality after four days of exposure to Cu solutions.
Figure 3.1 Ranges of temperatures of the ambient conditions (5-year average from Seattle in June), and simulated temperatures under the B1 and A2 climate change scenarios used in growth chamber experiments.
Figure 3.2 Wild (A, field collected in western Washington), Lab (B, purchased), and all Collembola (C) mortality pooled over time in response to exposure to the Cu control, LC$_{25}$ and LC$_{50}$ at the ambient, B1, and A2 temperature regimes.
Figure 3.3 Collembola mortality at control, LC25, and LC50 Cu concentrations under the ambient (A), B1 (B), and A2 (C) temperature regimes.
Figure 3.4 Lab-reared and wild-collected Collembola mortality at the control, and their respective LC\textsubscript{25}, and LC\textsubscript{50} Cu doses under the ambient, B1, and A2 temperature scenarios. Letters within a dose and population indicate significant difference ($\alpha = 0.05$).
Figure 3.5 Dose- and time-response of wild-collected and lab-reared Collembola mortality under the ambient, B1, and A2 temperature regimes at the control (A) and their respective LC$_{25}$ (B), and LC$_{50}$ (C) Cu concentrations.