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In this thesis I present my research on the early stages of planet formation. Using advanced

computational modeling techniques, I study global gas and gravitational dynamics in proto-

planetary disks (PPDs) on length scales from the radius of Jupiter to the size of the solar

system. In that environment, I investigate the formation of gas giants and the migration,

enhancement, and distribution of small solids—the precursors to planetesimals and gas giant

cores.

I examine numerical techniques used in planet formation and PPD modeling, especially

methods for generating initial conditions (ICs) in these unstable, chaotic systems. Disk

simulation outcomes may depend strongly on ICs, which may explain results in the literature.

I present the largest suite of high resolution PPD simulations to-date and argue that direct

fragmentations of PPDs around M-Dwarfs is a plausible path to rapidly forming gas giants.

I implement dust physics to track the migration of centimeter and smaller dust grains

in very high resolution PPD simulations. While current dust methods are slow, with strict

resolution and/or time-stepping requirements, and have some serious numerical issues, we



can still demonstrate that dust does not concentrate at the pressure maxima of spiral arms,

an indication that spiral features observed in the dust component are at least as well resolved

in the gas. Additionally, coherent spiral arms do not limit dust settling. We suggest a novel

mechanism for disk fragmentation at large radii driven by dust accretion from the surrounding

nebula. We also investigate self induced dust traps, a mechanism which may help explain

the growth of solids beyond meter sizes. We argue that current apparent demonstrations of

this mechanism may be due to numerical artifacts and require further investigation.
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Chapter 1

INTRODUCTION

Increased computing power, advances in computational techniques, and continually de-

veloping observational advances over the last several decades have allowed astronomers and

physicists to develop increasingly sophisticated models of planet formation. Due to the

mathematically and computationally difficult nature of the problem, and due to limited

observational evidence, there remain many unanswered questions. The dynamics encoun-

tered in modeling planet formation are highly non-linear, span many orders of magnitude in

length- and time-scales, and are difficult to probe with telescopes or in the lab. Despite this,

a general picture has emerged.

The basic stages of planet formation are as follows. Gas and dust collapse in a molecular

cloud core to form a young star. Due to stability and angular momentum considerations,

the gas and dust surrounding the star form a thin disk orbiting at approximately Keplerian

angular velocity. As this protoplanetary disk (PPD) is formed, the dust will tend to settle to

the disk midplane [?]. The dust is expected to coagulate and eventually form planetesimals.

At this stage, there are three main mechanisms for planet formation: (1) terrestrial planet

formation through collisions of planetesimals; (2) giant planet formation through core accre-

tion (CA); and (3) giant planet formation via gravitational instability (GI). Here I review the

current understanding of PPDs and these mechanisms for planet formation. I then outline

the general computational approach used here.

1.1 Protoplanetary disks

Protoplanetary disks may exist around stellar binaries or with external binary companions,

but for this simple picture let us assume a single central star of mass M∗. PPDs are mainly
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gaseous, with abundances assumed to be similar to those of the progenitor stellar nebula,

mainly hydrogen and helium, with disk masses somewhere around a few percent of M∗. Disks

may extend out to radii of tens to hundreds of AU. The scale-height can be estimated as

H = csΩ (1.1)

where Ω is the orbital angular velocity and cs =
√
γkBT/m is the adiabatic sound speed

for an ideal gas at temperature T with a mean molecular weight of m. This approximation

assumes H � R and a negligible disk self-gravity compared to the star’s gravity. Typical

disk aspect ratios are around H/R ≈ 0.05 (with a large scatter). To within around 10%,

orbital angular velocities are approximately Keplerian: Ω ≈ ΩK ≡
√
GM∗/R3, where R is

the cylindrical radius.

While the viscosity of an ideal gas in typical PPD conditions is expected to be very small,

disks are thought to have an effective viscosity due to small scale turbulence driven largely

by growth of the magnetorotational instability (MRI) in the presence of magnetic fields in

a slightly ionized disk [???]. The exact details of the magnetohydrodynamics (MHD) and

turbulence are an area of ongoing research [???], but to low order the general scaling of the

viscosity ν is usually parameterized according to the method of ? as:

ν = αS
c2
s

Ω
(1.2)

Where αS is a dimensionless parameter, often assumed to be approximately constant. Typical

values used are of order αS ≈ 0.01, although much smaller or larger values may be reasonable.

In a realistic disk, αS is probably not constant. Disks may possess “dead-zones”: regions at

intermediate radial locations, centered on the midplane z = 0 with a scale-height comparable

to the disk scale-height where ionization and magnetic fields are suppressed, thus dropping

the turbulence and effective viscosity dramatically [?].

Viscosity transports angular momentum, causing the disk to spread radially on time-

scales of order the disk lifetime of Myrs. This angular momentum transport drives the inner

regions of the disk to migrate radially inward, driving accretion onto the star. Outer regions
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of the disk migrate radially outward. These viscous interactions can be a main source of

heating in the disk.

Disk temperatures are thought to be approximately uniform along much of the vertical

direction, with a layer with a different temperature at the large |z| boundaries. By conven-

tion, we orient the disk in the x − y plane such that Ω points along +z. Along the radial

direction, viscous heating and stellar irradiation dominate the disk temperature profile. Gen-

erally speaking, at the earliest stages of disk evolution, viscous heating may dominate, and

later on stellar irradiation will, although this depends on the region of the disk under con-

sideration. A stellar irradiation dominated profile for standard disks may be approximated

by a powerlaw [?]:

T (R) = T0(R/R0)−q (1.3)

Where q is between 3/7 for a fully flared disk and 3/4 for a flat disk. T0 is the disk temperature

at R0. A viscous dominated disk profile will have the functional form [?]:

T 4(R > Rin) ∝ 1

R3

(
1−

√
Rin

R

)
(1.4)

where Rin is some inner radius of the disk with vanishing viscosity, where presumably the

temperature will be increased by stellar irradiation. Taken together, these models indicate

temperature profiles will decrease away from the star.

The surface density Σ =
∫∞
−∞ ρ(z)dz is thought to decrease away from the star for most

of the disk but with a maximum somewhere in the inner disk. For simplicity, Σ is often

parameterized as a powerlaw:

Σ(R) = Σ0(R/R0)−p (1.5)

Σ0 is the value at R0, and typically p = 1. Another common parameterization, with more

physical motivation, is the similarity solution for a viscous disk [?]:

Σ(R) ∝ (R/Rc)
−l exp[−(R/Rc)

2−l] (1.6)

With Rc being a length-scale parameter and l some constant.
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The Σ and T profiles create a disk with an outwardly decreasing pressure. This pres-

sure gradient generates a force on the gas directed radially outward, thus decreasing the

centripetal force, causing the gas to orbit more slowly than the solid components. Disk self

gravity will cause further deviation from Keplerian orbit.

Eventually, photoevaporation and viscous spreading/accretion will cause disks to dissi-

pate on time-scales of Myrs [?].

1.2 Planetesimal formation

Planetesimals are compact, gravitationally bound bodies bigger than ∼100–1000m, formed

by the aggregation of dust in the PPD. They are thought to be precursors to terrestrial

planets and to the cores of giant planets. In the molecular cloud core precursor of the young

star and the PPD there are expected to be micrometer sized dust grains [?]. At such a small

size, the dust is strongly coupled to the gas, but as the dust grains grow through collisions

in the PPD to mm sizes they will tend to settle to the mid-plane of the disk [???].

These small dust particles, coupled strongly to the gas, will undergo collisions with small

relative velocities, due to Brownian motion. They will tend to aggregate and grow to cen-

timeter sized objects. To continue growing to the size of planetesimals and larger, these

pebbles must overcome two challenges, for which there is no generally accepted solution: the

meter barrier, and sticking during collisions [?].

The meter barrier [?] refers to the phenomenon where meter sized objects will rapidly drift

toward the central star, on timescales much shorter than those relevant to planet formation.

As objects grow, they begin to decouple from the gas flow as their Reynolds number increases.

Due to radial pressure gradients, the orbital velocity of the gas is lower than that of the solids.

The solids feel a headwind, causing them to lose energy and fall inward. For very small and

very large objects, this will be a minor effect, but for meter sized objects migration timescales

can be of order 100 years, significantly shorter than any planet formation timescales.

The second major barrier is the problem of sticking during collisions. As has been seen

in laboratory experiments, small particles, coupled to the gas, with small velocity disper-
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sions must avoid bouncing in order to grow—the so called “bouncing barrier” [???]. Larger

particles with higher velocity dispersions must avoid destruction during collisions [?]. Both

of these processes will tend to stall grain growth at a maximum grain size.

I discuss some possible solutions to these problems in §1.6. If these barriers can be

overcome, planetesimals 100-1000m and bigger are expected to form. These planetesimals

will eventually form terrestrial planets and giant planet cores.

1.3 Core Accretion

One method for giant planet formation with widespread acceptance is core accretion [see ?; ?

for reviews]. Under the core accretion (CA) paradigm, a large rocky embryo is formed from

planetesimals, which will become the core of a gaseous planet. Once the core is sufficiently

large, typically some fraction of an Earth mass, it will rapidly accrete nearby planetesi-

mals [?]. For illustration, Safronov’s equation gives an estimate of the rate of planetesimal

accretion onto the embryo:
dM

dt
= FπR2ΣsΩ (1.7)

Where F is a gravitational focusing factor, πR2 is the effective cross section of the embryo

for capturing planetesimals, and Σs is the surface density of solids in the PPD. F depends

strongly on the velocity dispersion of the solids, and therefore the state of the gas in the disk

[?]. Stirring by the embryo can excite random motions of the planetesimal disk, decreasing

F and thereby stifling embryo growth [?]. Note that the accretion rate depends directly on

the available mass of solids Σs, and therefore is sensitive to enhancement or depletion of

solids.

Eventually, the embryo will grow large enough that the escape velocity will exceed the

local thermal velocity (vrms) of the gas. The protoplanet will then rapidly accrete gas and

planetesimals until it clears a gap in the disk through gravitational torques. After this, the

planet will continue to slowly accrete gas, and may undergo inward or outward migration

[for example, see ?)]. If the protoplanet can cool efficiently, it will contract and the gaseous

envelope will become permanently bound, and may survive tidal interactions. Planetary
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collapse can be further accelerated when full 3D models are considered as compared to 1D

spherical collapse models [?].

Under the CA model, gas giants are naturally expected to preferentially form outside

of the inner disk. The annulus cleared out by the protoplanet should be of order 1 Hill

radius in width, so the total available gas and solids will increase with disk radius, so long

as the surface density decreases sufficiently slowly. Additionally, beyond the snow line ice

will form, increasing the available solids. The snow line occurs where the temperature drops

below 170 K, somewhere in the vicinity of 1− 5 AU for a solar type star [?].

1.4 Gravitational Instability

In contrast to the bottom up formation scenario of core accretion, the gravitational insta-

bility model (GI) proposes giant planet formation seeded by global disk instabilities. As

demonstrated by ?, a differentially rotating, 2D disk orbiting a central point mass will be

unstable to axisymmetric perturbations provided:

Q ≡ csκ

πGΣ
> 1 (1.8)

where cs is the local sound speed in the gas and κ is the epicyclic frequency (κ ≈ Ω for

very light disks). Q is called the Toomre parameter. A simple physical interpretation of the

above Toomre instability criterion can be outlined by considering under what conditions a

small clump of gas will remain stable under compression. Compressing the gas increases the

outward pressure and the inward gravitational forces. Additionally, because of the shearing in

the disk, the compressed gas will spin faster to conserve angular momentum, thus creating

an outward centrifugal force. If the pressure and centrifugal forces are larger than the

gravitational force, the disk will remain stable. The above relation can be derived more

rigorously from the dispersion relation for axisymmetric perturbations to a 2D disk [?].

While strictly speaking this is a 2D analysis, Q has proven surprisingly effective at predicting

stability in fully 3D numerical simulations—with the caveat that the minimum stable Q value

appears to differ from unity [?????].
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For sufficiently unstable disks, perturbations will grow and form spiral arms, which may

eventually collapse/break apart, forming dense, gaseous fragments. Figure 1.1 shows an

example of a fully 3D simulation of such a gravitationally unstable PPD.

1.5 Observations

Recent years have seen a surge in our understanding and knowledge of extra-solar planetary

systems, driven in large part by advances in observation. Astronomers have found plan-

ets to be plentiful in our galaxy, and our improved estimates of planet populations have

made the discovery of extraterrestrial life seem increasingly plausible. The Kepler mission

has expanded our catalog of known planets by around 2800, with another ∼4700 candi-

dates awaiting confirmation [?]. Radial velocity surveys performed with instruments such

as HARPS having found and confirmed nearly 300 planets [?]. High-contrast direct imaging

techniques have observed giant planets at large separations from their host stars [?]. Even

gravitational microlensing measurements have proven sensitive enough to detect exoplanets

[?].

Observations of PPDs have seen major improvements as well. Imaging of disks at millime-

ter and submillimeter wavelengths has allowed disk parameters such as mass and temperature

to be probed, dating back over a decade [???]. Over 100 pre-main sequence disks have been

resolved [?]. Next generation instruments, such as the Atacama Large Millimeter/submil-

limeter Array (ALMA) have greatly enhanced our knowledge of disk compositions, dynamics,

and life-times. Stunning images of circumstellar disks (for an example, see figure 1.2) are now

being released from campaigns that include observing disks in the Taurus molecular cloud

[?], evidence of dead-zones [?], improved observation and modeling of the gas component in

regions cleared of dust [?], and direct observations of disk turbulence [?].

These observational advances greatly inform and direct research into theoretical models of

planet formation. Knowledge of disk masses, temperatures, sizes, and compositions, greatly

constrain our models. Additionally, the final configurations of planetary systems dictate

what results must be predicted by planet formation models. This marks an exciting time for
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Figure 1.1: An example simulation of a gravitationally unstable disk. Pictured are four

snapshots of density (with a logarithmic color scale). The initially smooth disk (top-left)

rapidly develops spiral arms (top-right) within several orbits from gravitational instabilities

seeded by Poisson noise in the spatial distribution of particles. Several orbits later, dense

gravitationally bound clumps form from over-dense spiral arms (bottom-left), followed by

rapid formation of more clumps in the now highly unstable disk (bottom-right). The disk

orbits a central star of mass M∗ = 0.33M� and has a minimum Toomre parameter of

Q = 0.75 at the disk radius Rd = 1
3

AU. This 106-particle SPH simulation, run with

ChaNGa, models the disk as locally isothermal molecular hydrogen.



9

Figure 1.2: A remarkable image of the PPD around HL Tau. Taken from the ALMA website.

See ?
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expanding our understanding of planet formation.

1.6 Growth barriers

As discussed in §1.2, one of the largest gaps in our models of planet formation is the meter

barrier. There is no universally agreed upon solution to this problem, though given the

existence of planets a solution must exist. To cross the meter barrier and avoid migrating

into the host star, either solids must grow extremely rapidly, or gas must be cleared out of

some region of the disk. There are several proposed solutions to the meter barrier worth

investigating, which may also be related to the bouncing and destruction barriers.

To accelerate the growth from dust to objects much larger than a meter, there will need

to be enhancement of the solid to gas ratio. Dust is expected to settle to the midplane of the

disk; however, the details of settling in a full, gravitationally active 3D disk are unknown.

The amount of concentration due to settling is still open for investigation.

A proposed mechanism for concentration is dust enhancement seeded by gravitational

instabilities. As shown in figure 1.1, large, non-axisymmetric density gradients can be driven

by GI. As shown numerically in ?, solids are expected to accumulate at pressure maxima

due to gas drag and pressure gradients. However, the highly non-axisymmetric nature of

spiral arms and of clumps due to fragmentation, along with dust migration, require global

numerical simulations to probe.

Aaron Boley has proposed another mechanism for enhancing the concentration of solids.

As mentioned in §1.2, objects approaching centimeter size and above must cross the destruc-

tion barrier. As particles approach the meter barrier, they will migrate inward rapidly and

they will have larger velocity dispersions. High velocity collisions will tend to fragment and

destroy these objects, thus returning their mass to the population of smaller solids. These

small solids migrate much less rapidly and may pile-up in a specific disk region. This will

enhance the concentration of small solids available for growth past the meter barrier.

This mechanism may operate in conjunction with the self induced dust-traps model pro-

posed by ?. Outer regions of the disk are expected to have lower small scale turbulent
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velocities, due to decreased disk shearing and lowered sound speed. This, along with de-

creased gas densities, will stir small solids less, which can decrease their average relative

velocities during collisions. This may allow them to avoid the destruction barrier and to

grow efficiently to larger sizes. Solids that grow rapidly enough, and at sufficiently large

radii, will migrate inward under gas drag and enter regions of high gas densities which will

slow their migration. If enough dust can pile-up at the inner disk, gas will be cleared from

some annulus by drag interactions with the dust. This in turn can create a local pressure

maximum. The gas component feels pressure forces, while the dust does not. Ignoring mag-

netic fields, in the presence of gravity and hydrodynamics the specific forces on the dust and

gas are related by:

fg = fd −
1

ρg
∇P (1.9)

where fg, fd are the specific forces (accelerations) on the gas and dust components, respec-

tively. The gas density is given by ρg. P is the gas pressure. Relative to the gas, the dust

will therefore move in the direction of pressure gradients, toward pressure maxima. Dust

will then accumulate at radial pressure maxima. This will clear more gas, deepening the

“dust-trap”, creating a region with low gas density where grains can grow beyond the meter

barrier without migrating toward the star.

The formation of centimeter sized objects is also of interest to the growth of large cores.

Typical estimates for the core growth time scales, especially in outer regions of the disk

where giant planets are observed to exist, are as long or longer than the timescales of gas

dissipation around the disk (1-10 million years). A possible solution to this problem [?] is

that a disk with a high concentration of solids at the midplane, dominated by mm to cm

sized grains, can rapidly grow cores. Key to this mechanism is that cm grains decouple

sufficiently to migrate rapidly, creating a “rain” of solids onto young cores. This can cut core

formation timescales by orders of magnitude.
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1.7 Computational approach

1.7.1 Challenges

The physics involved in modeling protoplanetary disks provides a large computational chal-

lenge. Gravity is non-local and non-linear. Being non-local means all parts of a simulation

are coupled to each other and any naive approach will therefore be O(N2), where N is the

number of points sampled in space. Being non-linear and often unstable can drive com-

plex, chaotic, and often counter-intuitive dynamics which may depend strongly on the initial

conditions, the numerical methods, and the numerical parameters such as resolution.

There is an enormous range of variation in density, length, energy, and time-scales in

PPDs, all of which may vary by orders of magnitude at different regions in the disk and

at different stages of disk evolution. Accretion disks in general can be very difficult due to

supersonic bulk orbital flow and sub-sonic local flow which must be simultaneously captured

in a highly shearing environment. This poses serious challenges for handling advection, con-

servation, and viscosity. Accurately handling heating and cooling involves radiation physics,

which is long range and naively O(N2), especially in PPDs which typically include optically

thin, thick, and intermediate regimes. Modeling solids also involves enormously different

scales and can involve dynamical time-scales many orders of magnitude shorter than orbital

timescales.

1.7.2 Smoothed Particle Hydrodynamics

First introduced by ? and ?, Smoothed Particle Hydrodynamics (SPH) is a Lagrangian

technique for integrating hydrodynamic equations which uses kernel interpolation to estimate

fields, with widespread use especially in astrophysics. In contrast to common Eulerian grid

methods which discretize the fields and hydrodynamic equations at fixed locations in space,

Lagrangian methods integrate the hydrodynamic equations at discrete points which move

with the flow. There are many good reviews on SPH [????], so here I will restrict myself to

a very brief overview. In their simplest forms, the continuum hydrodynamic equations take



13

on the following forms:

dρ

dt
= −ρ(∇ · v) (continuity) (1.10)

dv

dt
= −∇P

ρ
+ f (momentum) (1.11)

du

dt
= −P

ρ
(∇ · v) + Λ (energy) (1.12)

ρ is the fluid density, v is the flow velocity, and P is the fluid pressure. f is the total external

force per mass acting on the fluid (the specific force) due to, e.g. gravity or artificial viscosity.

Artificial viscosity terms are required by SPH for numerical stability and to handle shocks.

u is the internal energy and Λ is the net heating/cooling, which may involve terms due to

radiation, artificial viscosity, or other processes. The time derivatives are taken at points

which follow the flow. Therefore, the convective derivative is used:

d

dt
≡ ∂

∂t
+ (v · ∇) (1.13)

SPH “particles” move under the standard equations of motion with the fluid flow velocity

v. Each particle is assigned a mass. The fluid discretization begins by calculating the SPH

density estimate as a weighted sum over nearby particles:

ρ(r) =
∑
b

mbW (|r− rb|, h) (1.14)

where mb is the mass of neighboring particle b, W is the SPH kernel which serves as a

weighting function, and h is the smoothing length, a length scale-factor. The kernel W must

be normalized, i.e. the integral of W over all space must equal 1. There are many kernels

which find use in practice, and the best choice of kernel is debated and depends on the

environment being modeled. Typically, kernels should decrease monotonically with distance,

be fairly smooth, be flat at zero separation, and should be computationally cheap (which

rules out e.g. a gaussian) [??]. For illustration, the simplest kernel in common use is the

M4 cubic spline kernel, which is a piecewise polynomial of order 3 which is defined to be

zero for |r − rb| > 2h. Fig. 1.3 shows this kernel and its derivative, for particles along the
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Figure 1.3: The M4 cubic spline kernel and its derivative for particles along the x axis, in

arbitrary units.

x axis. A standard method is to choose h for a particle such that there are a fixed number

of particles Nsmooth within a distance 2h of that particle. All hydrodynamic interactions are

then calculated as interactions with a particle’s Nsmooth nearest neighbors.

Fields are then estimated at the particle positions and can be interpolated, or smoothed,

with a kernel weighted sum over neighbors. A general field or vector field can be interpolated

at a given location as weighted sum:

A(r) ≈
∑
b

mbAb

ρb
W (|r− rb|, h) (1.15)

which serves as the basis for estimating spatial derivatives as well. In general, there are many

approximations to spatial derivatives which are used in the literature, but for illustration I
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reproduce the following here:

∇ ·A(r) ≈
∑
b

mbAb

ρb
· ∇W (|r− rb|, h) (1.16)

∇×A(r) ≈
∑
b

mbAb

ρb
×∇W (|r− rb|, h) (1.17)

∇A(ra) ≈ ρa
∑
b

mb

(
Aa
ρ2
a

+
Ab
ρ2
b

)
∇W (|ra − rb|, h) (1.18)

(1.19)

Unlike with grid codes, finite differences are not used to estimate spatial derivatives. These

estimates are functions only of fields at the particle locations and kernel gradients which are

analytically known for standard kernels. Since kernels and their gradients are typically zero

for |r − rb| > 2ha, these sums involve loops over the nearest Nsmooth neighbors. These SPH

gradient estimates can then be plugged into the hydrodynamic equations to discretize them.

There are several main benefits to using SPH over an Eulerian method in the environment

of a PPD, including:

• Conservation. Mass, momentum, angular momentum, and energy are all simultane-

ously conserved in SPH, which can be difficult to maintain with grid codes, especially

in PPD environments.

• Resolution follows mass. Density and length scales in PPDs span orders of magnitude,

and as structure such as spiral arms and clumps begin to form this, range increases

rapidly and dynamically.

• Advection. Advection is handled exactly in SPH, which is particularly important in

PPDs which have strong, non-uniform advection due to orbital velocities.

• Vacuum boundary conditions. Boundary conditions can be very difficult to handle for

grid codes, in particular for the vacuum boundaries which are natural to PPDs. These

are handled automatically in SPH.
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There are also several main drawbacks to using SPH in a PPD simulation:

• Artificial viscosity (AV). This is perhaps the largest drawback to SPH in a PPD. AV

is necessary in SPH to handle the shocks which naturally arise in PPDs which have

highly supersonic orbital flow. In a highly shearing environment, SPH AV can generate

strong numerical heating.

• Implementation. In general, it tends to be significantly more difficult to implement

new physics in SPH codes, due to computational and algorithmic challenges inherent

to SPH.

• Generating initial conditions (ICs). In general, it is more difficult to generate ICs

for SPH, since the density is a derived parameter (eq. 1.14) and cannot be directly

specified.

• Noise. SPH is prone to noise, especially in the estimate of spatial derivatives. This

noise typically worsens with higher order derivatives.

• Magnetic fields. Magnetohydrodynamics is difficult to implement in SPH for many

reasons, including that it is not easy to enforce ∇·B = 0 in SPH or to handle diffusion

with non-ideal MHD, although advances are being made [??].

1.7.3 ChaNGa and supercomputing

The challenges outlined above place strict resolution and time-stepping constraints on PPD

simulations. In the simplest cases, PPDs typically require N = 106 particles, and in some

cases may require as many as N = 108. Therefore, any O(N2) algorithms must be immedi-

ately discarded. To achieve O(N logN) scaling requires intelligent approaches to gravity and

SPH, and to achieve decent wall-times requires sophisticated, highly parallel approaches.

The simulation code used and developed in part by the N-Body Shop at the University

of Washington is called ChaNGa. It achieves good scaling through tree based SPH and
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gravity. Physical space is hierarchically partitioned into sub-domains with approximately

equal numbers of particles using the “oct-tree” decomposition. This tree can be built in

O(N logN) time and allows rapid look-up. Equal numbers of particles in sub-domains allow

efficient load balancing. The gravitational potential is then calculated exactly for interactions

with nearby particles and approximately for distant particles by using a multi-pole expansion.

This reduces the complexity from the naive O(N2) to the desired N logN scaling.

The same tree can be used to efficiently look-up particle neighbors, allowing rapid calcu-

lation of SPH sums. SPH interactions are local, so with the tree already built this calculation

is O(NsmoothN).

The resolution requirements of PPDs mean it is necessary to run in a massively parallel

environment, with up to 10, 000 cores being used in some simulations. ChaNGa was de-

veloped originally for cosmological simulations and has been tested to scale well up to half

a million cores [?]. To achieve this, ChaNGa is written in C++ and uses the Charm++

parallel system. The simulation is dynamically broken into TreePieces–small sections of the

tree containing sub-groups of particles. Communication with other TreePieces is handled by

Charm++ to allow interaction among TreePieces. Overlapping asynchronous computation

of SPH and gravity is built into ChaNGa. Dynamic load balancing is required and imple-

mented using Charm++ to distribute computation among the cores on a node and among

the nodes in the network. Overlapping communication and computation are also managed

dynamically, which is especially important in a supercomputing cluster where communication

occurs between nodes on a cluster, processors in a node, cores within a processor, and some-

times virtual cores within a core, all with very different associated latencies and bandwidths.

Developing in the Charm++ environment also allows ChaNGa to make efficient use of

many different computing architectures, from personal laptops to massive supercomputing

clusters.
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1.8 Outline

In this dissertation I present my doctoral research in computational modeling of protoplane-

tary disks. In Chapter 2 I discuss the role of initial conditions (ICs) in PPD simulations and

present a fast method for generating equilibrium ICs for SPH simulations of PPDs. I explore

direct formation of gas giants around M-Dwarfs via fragmentation under GI in Chapter 3.

Chapter 4 presents my research on dust migration and concentration in PPDs. I investigate

grain growth and self induced dust traps in Chapter 5. The results of my research and

suggestions for future research are discussed in Chapter 6.
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Chapter 2

INITIAL CONDITIONS

2.1 Overview

Along with the numerical techniques and the governing equations, initial conditions define the

system and the model for any simulation. Depending on the problem and the computational

approach, choosing and generating ICs can be straightforward, or it can be as difficult and

computationally costly as running the simulation itself. In the case of PPD simulations,

while the choice of disk parameters and the methods for generating ICs have historically

received little attention in the literature, they may be of primary importance in dictating

the outcomes of PPD studies.

The general difficulties are twofold: (i) the exact properties of young PPDs are uncertain,

both theoretically and observationally; (ii) the systems we are investigating are often very

sensitive to their ICs due to their complexity and, particularly in the case of gravitational

instability studies, their unstable nature. Improving our understanding of (i) the properties

of young PPDs will require involved studies to make further progress. On the theoretical

side, work has been done on modeling proto-star and PPD formation [???], but that is an

entire field of research unto itself and well beyond the purview of my research. Current

simulation techniques are unable to model the entire life time of a nebular cloud through

the stages of star, proto-star, and PPD formation, due to the vast differences in scales and

required physics. In particular, magnetic fields and radiation physics play an important

role in nebular collapse and disk formation. Additionally, observations of PPDs remain very

limited: very few high resolution images exist, and those are mainly of the dust component.

We therefore attempt to use explicitly simple models, making as few assumptions as

possible. We choose to begin with disks as near to equilibrium as possible, which have
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temperature and surface density profiles which decrease away from the star. Since the

systems we are modeling are very sensitive to ICs, it is important that any deviations from

equilibrium in the ICs are well understood and intentional. This introduces the second

general difficulty.

Generating ICs close to equilibrium has been approached through many different meth-

ods. With grid codes, this is typically straightforward: all state/field quantities such as

density, pressure, temperature, and velocity (ρ, P , T , v) can be directly specified. All forces

can then be calculated using the simulation code and quantities such as ρ or v can be directly

updated to reach equilibrium. In the case of PPDs, equilibrium can be achieved so precisely

that even very unstable systems must be artificially perturbed to evolve away from equilib-

rium in any computationally feasible time-frame. This is often done by applying spiral arm

structure (as tested in §2.3) or by applying small, random density perturbations.

Generating ICs with SPH is not so straightforward. Directly specifying ρ is not possible

with precision in SPH. Density is calculated from particle masses and positions, according

to 1.14, and is therefore a derived quantity and not a specified one. One could generate

particle positions, calculate density, adjust particle masses to approach the desired density,

and iteratively repeat, hoping succesive density estimates would approach the desired value.

However, for computational and algorithmic reasons, SPH implementations tend to behave

much better when SPH particles all have identical masses.

Therefore, the desired ρ(x, y, z) must be approximated by assigning particle locations.

The simplest method for this is to treat ρ as a probability distribution function (PDF) up

to some normalization constant and use that to randomly generate particle positions drawn

from the PDF. This will not exactly reproduce ρ, and in general vacuum boundries or regions

of rapidly varying ρ will be very poorly approximated since the density estimate (on average)

will be a convolution of the SPH kernel with the PDF.

A bigger issue is that this method suffers from “poisson noise”. For simplicity, consider

a uniform density which we discretize using SPH by randomly drawing particle positions

from a uniform PDF. Density estimates are taken over Nsmooth nearest neighbors, with ρ
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scaling approximately as the inverse of the volume enclosed by a sphere extending out to

the furthest of the neighbors. For Poisson distributed particles, the standard deviation in

this volume obeys σV ∝
√
Nsmooth, giving us a density estimate which will have a standard

deviation of:

σρ =
ρ√

Nsmooth

(2.1)

This can introduce very large, pseudo-random variations in the density estimate, which do

not decrease in amplitude as resolution (i.e. total particle count) is increased. Poisson noise

can be mitigated by increasing Nsmooth, but this increases the computational cost. Although

spatial resolution cannot be as precisely defined in SPH as it can be for grid codes, in

general for a fixed spatial resolution N/Nsmooth = constant. Increasing Nsmooth therefore

forces N to be increased rapidly as: N ∝ 1/σ2
ρ. Historically, SPH simulations were run with

Nsmooth = 32. Contemporary runs may use 64 or 128 neighbors, and some authors have

argued for 200 neighbors or more [?]. However, getting Poisson noise to decrease to the 1%

level would require Nsmooth = 10, 000.

The noise in density estimates will also be reflected in hydrodynamic force calculations,

and even magnified since force estimates typically involve gradient estimates which may be

very sensitive to noise. Additionally, poisson distributed particles will tend over-estimate the

density. Particles are more likely to be in higher density regions than low density regions,

since high density by definition requires more particles. Therefore, random poisson “clumps”

tend to be over-sampled. See figure 2.1b for a demonstration of this.

Density over-estimation, coupled with random, “noisy” variations in ρ mean a poisson

distributed system will be in an excited energy state. Approaching equilibrium will tend

to smooth out density variations. This leads naturally to the idea of an SPH “glass”. In

this context, a glass can be loosely defined as the minimum energy state which reproduces a

desired density and which has no preferential ordering. This keeps particles as evenly spaced

as possible with particle separations being randomly oriented. Glasses produce much better

density estimates than poisson distributed particles and do not impose an artificial geometry

as grids do. Figure 2.1 shows a comparison of random vs glass distributed particles.
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Random

Glass

(a) Random vs. glass particle placement, for a

2D periodic box. The glass was formed by run-

ning the random ICs with a damping force pro-

portional to the velocity to settle into a glass-

like state. Notice the “poisson clumping” in

the random ICs. Particles in the glass state

are nearly evenly spaced without using a grid.

Nsmooth = 32 was used.
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(b) Random vs. glass density estimate for 1000

particles in a periodic cube with a target den-

sity of ρ = 1. The ρ estimates for all parti-

cles are plotted as dots. The mean densities

for particles for the two snapshots are plotted

as dashed horizontal lines. The ρ estimate for

randomly placed particles is much noisier and

biased significantly above ρ = 1. Nsmooth = 32

was used.

Figure 2.1: Random vs. Glass
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Grids produce very evenly spaced systems at the cost of introducing preferred directions,

i.e. long range order. Such order can strongly influence the behavior of some systems, and

is one of the reasons to choose an SPH approach over a grid discretization.

Stable SPH systems tend to evolve towards glass states naturally, especially in the pres-

ence of velocity damping forces. Unstable systems may not, however. Given the amount of

energy that poisson noise deposits into a system, it is therefore very desirous to have ICs for

unstable systems be placed in as glass-like a state as possible to prevent numerical effects

from dominating the dynamics.

We therefore desire to generate ICs as close to equilibrium and as glass-like as possible.

Getting a complex SPH system into equilibrium is not usually straightforward. For PPDs,

estimating the required equilibrium ρ involves calculating disk self gravity and pressure

gradients, both of which depend on ρ and for which there are no direct analytic solutions.

Numerical effects such as artificial viscosity, force approximations, and SPH noise, all must

be accounted for self consistently. SPH noise in particular means that force estimates must

be averaged over many particles to estimate equilibrium state values.

In this chapter, I begin by describing my method for generating equilibrium PPD ICs

(§2.2). While direct comparison with other authors’ methods is not in general possible,

since they are not publicly available and published research can be sparse on details with

inaccuracies, I argue that my approach rapidly generates state of the art equilibrium ICs.

In §2.3 I explore the dependence of simulation results on the state of unstable ICs in the

context of fragmentation studies by perturbing unstable disks near equilibrium. I find that

minor errors in the vertical density profile estimate, poor radial boundary conditions, or

small density perturbations are all unlikely to lead to spurious fragmentation. Minor errors

in velocity calculations can have a large impact and cause disks to fragment. In §2.4 I explore

the effect of resolution on unstable PPDs. For these isothermal SPH simulations, decreasing

resolution tends to drive these disks to fragment.
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2.2 Generating ICs

A major emphasis of this work was to ensure that ICs were as close to equilibrium as possible.

Axisymmetric disks very near equilibrium may not realistically model actual PPDs, but we

wish to make as few assumptions as possible about disks and have attempted to minimize

numerical artifacts. One worry is that disks too far from equilibrium may artificially enter

the non-linear regime, possibly initiating fragmentation in an otherwise stable disk. This

possibility is explored in §2.3. In this section, I present my method for generating ICs.1

Many methods have been used in previous work for generating initial conditions. As

discussed by ?, apparently contradictory results in fragmentation studies may be due to

differences in ICs used. Most published research does not detail IC generation in sufficient

detail to be reproducible, but we can sketch out a few different approaches used. ? generated

ICs by defining the midplane density ρ(R, z = 0), analytically estimating ρ(z), using an

approximate circular velocity, and iteratively adjusting the temperature profile to create a

steady state solution.

Such an approach makes defining disk profiles difficult. As with us, some other authors

[??] were able to define the surface density and temperature profiles. They then estimated

vertical hydrostatic equilibrium to calculate density. ? estimated the gas velocity required

for circular orbits (vcirc) from gravitational forces and adjusted for hydrodynamic forces. As

with others (e.g. ?), they approached low Q values by running the simulation and slowly

growing the disk mass. Similarly, ? used low mass, high-Qmodels in his grid code simulations

and accreted mass from the z boundaries gradually to grow simulations towards instability.

? placed great care in developing equilibrium ICs. In contrast to our method, they

also modeled the central, accreting star. They generated a stable disk (Q = 1.8) using a

field equilibrium code [?]. They specified the specific angular momentum j(R) of the gas

(which forces velocity to be solely a function of radius) then iteratively used a self consistent

1My code for generating ICs is freely available on github at https://github.com/ibackus/diskpy as a
part of my PPD python package diskpy

https://github.com/ibackus/diskpy
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field method to solve the Poisson gravity equation and balance the hydrodynamic forces to

approach equilibrium. A shooting method for j(R) was used to reach a desired Σ(R). For

low-Q simulations, they ran the simulation and cooled the disk with an external cooling term

until it reached Qmin = 0.9.

For our simulations, we desired to scan parameter space by defining the surface density

(Σ) and temperature (T ) radial profiles, along with the star mass. From these, the gas density

(ρ) can be estimated to ensure vertical hydrostatic equilibrium in the disk. SPH particles

are then semi-randomly seeded and their equilibrium circular velocities are estimated using

the NBody/SPH simulation code ChaNGa to calculate the forces. Our method allows us

to directly and quickly generate equilibrium ICs for low Q values and arbitrary Σ and T

profiles.

2.2.1 Estimating ρ(R, z)

To estimate ρ(R, z), we first select M∗, Σ(R), and T (R). Hydrostatic equilibrium is solved

by adjusting the vertical density profile to maintain vertical hydrostatic equilibrium and

adjusting the gas orbital velocity to ensure radial equilibrium.

To be in equilibrium along the vertical direction, the vertical component of gravity from

the star and from the disk’s self-gravity should balance the vertical pressure gradient in the

gas. All quantities are axisymmetric and symmetric about the midplane z = 0. For the disk

self-gravity term, we assume a thin disk approximation where ρ is locally assumed to be only

a function of z (equivalently, this is the infinite sheet approximation). For most regions, the

disk is slowly varying and this approximation is valid. The disk is much lighter than the star

and in most regions the star’s gravity dominates.

Under this approximation, the disk self-gravity force can be estimated by treating the

disk as thin, infinite sheets of mass, each of which creates a uniform gravitational force along

the z axis given by:

f = 2πGρ∆z (2.2)
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where f is the specific force and ∆z is the sheet’s thickness. The gravitational forces of all

sheets at |z| > |z0| cancel out. In the limit ∆z → 0, the specific force due to disk self gravity

as a function of z is:

fdisk(z) = −2πG

∫ z

−z
ρ(z′) dz′ = 4πG

∫ z

0

ρ(z′) dz′ (2.3)

T is set to be independent of z, which is reasonable for the locally isothermal equation

of state used in these simulations. Given the ideal gas equation, this gives the specific force

due to vertical pressure gradients as:

fpressure(z) = −∇P
ρ

= −
(
kBT

m

)
1

ρ(z)

dρ(z)

dz
ẑ (2.4)

The specific force due to the central star’s gravity is just the vertical component of the

gravitational force:

fstar(z) = −GM∗
z

(z2 +R2)3/2
ẑ (2.5)

Putting together eqs.(2.3)-(2.5) gives the condition for vertical hydrostatic equilibrium:

kBT

m

dρ

dz
+GM∗

zρ(z)

(z2 +R2)3/2
+ 4πGρ(z)

∫ z

0

ρ(z′) dz′ = 0 (2.6)

wherem is the mean molecular weight of the gas, M∗ is the star’s mass and R is the cylindrical

radius. The boundary conditions for this equation are:∫ ∞
0

ρ(z′)dz′ = Σ/2 (2.7a)

dρ

dz

∣∣∣
z=0

= 0 (2.7b)

By physical reasoning, we can note that ρ should also be maximum at z = 0, therefore

we can also state:
d2ρ

dz2

∣∣∣
z=0

< 0 (2.8)

Eq.(2.6) for vertical hydrostatic equilibrium can then be solved numerically, which turns

out to be a non-trivial task. The boundary condition on dρ
dz

is trivially satisfied. At z = 0

eq.(2.6) reduces to kBT
m

dρ
dz

= 0. A simple integration beginning at the boundaries at z = 0
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or |z| = ∞ is also not possible. At z = 0 every term in eq.(2.6) is trivially zero, making it

impossible to apply the boundary conditions. As |z| → ∞, all 3 terms also trivially go to

zero for a normalizable ρ. Shooting techniques were explored, where an initial guess ρ(0) is

used to integrate the equation. ρ(0) is then scaled to attempt to satisfy eq.(2.7a). However,

these techniques all displayed poor convergence for a large range of physical parameters.

Ultimately, many techniques were attempted. Here I detail the two methods that worked.

The latter method is currently the preferred one.

The first numerical method2 was used robustly for the set of parameters explored in

my initial work for young, gravitationally unstable PPDs around M-Dwarfs ? (see chap-

ter 3). Given that direct numerical integration is not possible, numerical root finding meth-

ods were investigated. Unfortunately, integro-differential equations can behave poorly with

such methods, and performing the integral is computationally costly. Additionally, applying

the boundary condition on the integral of ρ is non-trivial, since this is a non-linear equation

and re-scaling ρ to satisfy eq.(2.7b) will no longer be a solution to the equation.

To apply the boundary conditions and avoid performing integrals, eq.(2.6) can be trans-

formed to be a differential equation for the quantity I(z) ≡
∫∞
z
ρ(z′) dz′, which gives an

equation of the form:

d2I

dz2
+
dI

dz

[
c1z

(z2 +R2)3/2
+ c2

(
Σ

2
− I
)]

= 0 (2.9)

with the constants set by eq.(2.6). Given the definition of I(z), ρ can be calculated directly

as:

ρ(z) = −dI

dz
(2.10)

and the boundary conditions are now all on I(z) and its derivatives:

I(0) = Σ/2 (2.11a)

d2I

dz2

∣∣∣
z=0

= 0 (2.11b)

2 ICgen is my publicly available python package which implements this method for solving vertical hy-
drostatic equilibrium, along with generating PPD ICs. It is available at https://github.com/ibackus/

ICgen. Note that ICgen is now deprecated in favor of diskpy (https://github.com/ibackus/diskpy)

https://github.com/ibackus/ICgen
https://github.com/ibackus/ICgen
https://github.com/ibackus/diskpy
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By the definition of I(z), as |z| → ∞, I(z)→ 0 (along with its derivatives). This transformed

eq.(2.9) still cannot be integrated from the boundaries trivially. Minimizing the norm of the

residuals of eq.(2.9) was found to be ineffective—converging to a good solution is rarely

achieved and it is even more rare to converge to the solution which satisfies all the boundary

conditions. A root finding algorithm therefore is used to solve hydrostatic equilibrium as

follows.

The dimensionality of the root finding problem is the number of data discretization points

Nz chosen along z. Typically, 1000 points were chosen from z = 0 to about 6 scale heights.

This generates a very large space and therefore a good initial guess is necessary, both to

ensure convergence to the proper solution and to ameliorate computational costs. An error

function was used as an initial guess: I0(z) = Σ
2

[
1− erf

(
z√
2H

)]
. This is the exact solution

in the limit of a massless, thin disk such that |z| � R. In that limit, the scale height is:

H =

√(
R3

GM∗

)(
kBT

m

)
(2.12)

regardless of equation of state (EOS), so long as T is locally independent of z. For an

isothermal disk where c2
s = kBT

m
, this is identical to the typical approximation used in studying

PPDs: H = cs/Ω.

An erf of the form above is then fit by minimizing L1 norm of the residuals, with the

scale height H as the free parameter. Residuals are estimated by using second order central

finite differences to calculate the LHS of eq.(2.9). This solution is then used as the initial

guess for the root finding algorithm. The roots of the residuals are found using a Newton-

Krylov solver [?] as implemented in scipy [?]. Through much experimentation, it was found

that this can often produce an inadequate solution to the equation governing ρ, but it can

provide a good initial guess. From the solution to I(z), the initial guess for ρ is calculated

from eq.(2.10). The same Newton-Krylov solver is used to find the roots of the residuals

to eq.(2.6). To ensure that ρ is properly normalized according to eq.(2.7a), the integral of

ρ is numerically calculated and ρ is rescaled. This solution can be used as an initial guess

and the root finding procedure can be repeated. The ρ fitting procedure is then iteratively
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repeated until numerical convergence is detected. For most of the PPDs around MDwarfs

analyzed in my first study (see table 3.1), convergence was achieved after no more than

several iterations.

There are two main draw-backs to this method: (i) it is slow and (ii) there are a large

range of physical parameters of potential interest for which it does not converge. While

the method is fairly slow, it can be easily parallelized by solving for ρ(z) at several radii

simultaneously. Even so, for a typical PPD, this method can take an hour to generate the

full solution ρ(R, z). This makes exploring parameter space difficult.

The second (ii) problem motivated developing another approach: solving the hydrostatic

equilibrium equation iteratively. The iterative approach uses a generator function by rewrit-

ing an equation for ρ as an equation of the form ρ(z) = g(ρ(z), z). Approximations to the

solution are then iteratively generated as:

ρn(z) = g(ρn−1(z), z) (2.13)

Iterative approaches have been used by other authors [?] to calculate vertical hydrostatic

equilibrium, although the details of their use are unclear and may differ significantly from

the approach presented here.

If ρn(z) approaches a fixed point, it is guaranteed to be a solution to the equation for ρ,

since ρn = ρn−1 implies ρn(z) = g(ρn(z), z) which is the full equation for ρ. However, ρ is not

guaranteed to approach a fixed point. It is important to rewrite the equation and choose a

well behaved generator g, as well as a well behaved initial guess ρ0. Several generators and

initial guess were tried that did not converge to a fixed point for disk parameters of interest,

however one was found. Given 1
ρ

dρ
dz

= d ln ρ
dz

, eq.(2.6) can be re-arranged as:

d ln ρ

dz
= −GM∗m

kBT

z

(z2 +R2)3/2
− 4π

Gm

kBT

∫ z

0

ρ(z′)dz′ (2.14)

which can be integrated from 0 to z and rearranged to solve for ρ, which gives our generator
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function:

ρ(z) = ρ(0) exp

−GM∗m
kBT

(
1

R
− 1√

R2 + z2

)
− 4π

Gm

kBT

z∫
0

z′∫
0

ρ(z′′)dz′′dz′


= g(ρ(z), z)

(2.15)

The initial guess used is the solution for a thin disk without self-gravity, ρ0(z) = Σ√
2πH

exp(−z2/2H2)

with H given by eq.(2.12). The second integral of this can be evaluated analytically:

z∫
0

z′∫
0

ρ0(z′′)dz′′dz′ = z
Σ

2
erf (z/

√
2H) +H2ρ0(z)− ΣH√

2π
(2.16)

Which can be placed into a discretized version g (eq. 2.15) to generate the next estimate.

Subsequent estimates of ρ are calculated by plugging previous estimates into g and normal-

izing to enforce eq.(2.7a):

ρ̃n(z) = g(ρn−1(z), z) (2.17)

ρn(z) =

(
Σ

2

)
ρ̃n(z)∫∞

0
ρ̃n(z′)dz′

(2.18)

Note that this is still an iterative approach as the result of the two steps in eqs.(2.17) and

(2.18) are together of the form of eq.(2.13). For all sets of physical parameters tested, this

method converges rapidly to a fixed point solution. Typically, convergence to within double

floating point precision is achieved in fewer than 20 iterations. Figure 2.2 shows an example

of this convergence for a standard powerlaw profile 20 AU disk around and M-Dwarf at

R = 10 AU.

The root finding method detailed above was initially preferred, because it displayed much

better and more robust convergence than the iterative approaches initially attempted. Many

generator functions of the form of eq.(2.13) can be easily derived from eq.(2.6), however

many of them display very poor numerical convergence. The generator function chosen here

typically behaves well, but for some parameters of interest it will not converge if only the

gaussian initial guess is used, instead of the 1st order analytic estimate of eq.(2.16).
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Figure 2.2: Iterative solutions ρn(z) to the vertical hydrodynamic equilibrium equation

(eq. 2.6), starting with initial guess ρ0(z) ∝ exp(−z2/2H2). After 3 iterations, the solu-

tion is nearly indistinguishable from the asymptotic solution. Convergence to within double

floating point precision is achieved after only 16 iterations. This is for a standard powerlaw

profile disk around an M-Dwarf at R = 10 AU.
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Figure 2.3: A comparison of methods for estimating vertical hydrostatic equilibrium. The

bottom panel shows the surface density profile. The top panel shows the disk height for

various methods of estimating ρ(z). Disk height is defined here as the standard deviation of

the vertical density profile.

Figure 2.3 compares the solutions for various methods of approximating disk vertical

density profiles for an example heavy, unstable disk. Disk height (defined as the standard

deviation of the vertical density profile) is plotted as a function of radius for an example

disk around a solar mass star. The ICs are for a heavy (unstable) PPD around a star of

mass M∗ = 1M� with a standard powerlaw temperature profile of T ∝ R−q and a powerlaw

surface density profile of Σ ∝ R−p, where (q, p) = (0.59, 1) were used.

The heavy disk approximation assumes disk self-gravity dominates such that the second

(star) term in the vertical hydrostatic equilibrium equation (eq. 2.6) is zero. Following ?
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(eq. 42), the solution becomes:

ρ(z) = ρ0 sech(z
√

2/H)

ρ0 =
Σ√
2H

H =
kBT√

2πGmΣ

(2.19)

The cs/Ω curve in fig. 2.3 is the scale-height of eq. 2.12, ignoring disk self gravity and

assuming |z| � R. The optimization curve is the solution using the root finding method

described above. The “measured” curve was calculated by generating ICs according to the

method presented here and then running those ICs in ChaNGa for several outer rotational

periods (ORPs) defined at the disk radius Rd, with all forces not along the z direction set to

zero and with a damping force of the form ~fdamp = −α~v with α > 0 being a constant. This

settling method guarantees ICs very close to vertical equilibrium, however it is very slow,

taking of order a typical simulation walltime.

Clearly, the best approximation method for this disk is the iterative approach detailed

above, which converges to a valid solution everywhere in the disk and is fast, allowing rapid

generation of ICs. The root finding (optimization) method fails to converge to the correct

solution between about 20 to 40 AU. For this heavy disk, the H = csΩ approximation over-

estimates the disk height except at the interior and exterior of the disk. The heavy disk

approximation fairs well in the high density regions of the disk, but overestimates the disk

height at the interior and exterior.

2.2.2 Generating particle positions

The solution to ρ(z,R) is then used to semi-randomly seed SPH particles. Particles are

assigned a position in the x−y plane and then a z position. Rather than randomly assigning

particle positions by drawing from a radial distribution defined by Σ and a uniform angular

distribution, to mitigate Poisson noise, we have implemented two methods:(i) the method

of ? which places the particles along a spiral in the x − y plane to keep them more evenly

spaced, and (ii) tiling and deforming a glass cube.
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The first method, originally presented in ?, is as follows. The spiral is made in such a

way that Σ(R) is reproduced. Following their method, the radial cumulative distribution

function (CDF) can be calculated as:

fR(R) =

∫ R
0

Σ2πR′dR′∫∞
0

Σ2πR′dR′
(2.20)

where the integrals are performed numerically. For N particles, radial positions can be

generated from the CDF inverse as: Ri = f−1
R (mi) where mi are N evenly spaced numbers

between 0 and 1. The inverse is calculated numerically using spline interpolation. Particle

spacings can be made approximately equal along the radial and azimuthal directions by

increasing successive particle angles by:

∆θi = −
√

2π(1− Ri−1

Ri

) (2.21)

Note that the sign of ∆θ is important. The tight spirals should be trailing to avoid swing

amplification and unwinding effects. For disks orbiting counter-clockwise when seen from

above (i.e. in the +θ̂ direction), this requires ∆θ < 0. For a Keplerian disk, ignoring self-

gravity and pressure, θ(t) = Ωt where Ω =
√
GM∗/R3 is the Kepelerian angular velocity. A

“kink” in spirals will develop when ∆θi changes sign. This does not happen for trailing spi-

rals, but does happen for leading spirals at a radius given by: R(t) = (3t)1/2 (GM∗∆R/2π)1/4

where ∆R is the spacing of sequential particles at a radius R. Figure 2.4 shows a spiral

“kink” development. Plotted are 1000 points generated radially according to a powerlaw

profile Σ ∝ R−1 from R = 0.1 to 1. While gas pressure, artificial viscosity, and SPH noise

will tend to disrupt the kink formation, such a well defined leading spiral arm can also be

susceptible to swing amplification ? which can drastically amplify the effect and drive a disk

to instability.

For the z positions, the vertical CDF at a given radius is calculated as:

fz(z,R) =

∫ z
0
ρ(z′, R)dz′

Σ/2
(2.22)

From which z can be assigned randomly by |zi| = f−1
z (mi, Ri) where mi are N random
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Figure 2.4: Spiral “kink” development. The left column is for leading spiral ICs (∆θ > 0),

the right column is for trailing spiral ICs (∆θ < 0). The disk is orbiting in a counter-

clockwise direction with angular velocity Ω ∝ R−3/2. Plotted are 1000 points generated

radially according to a powerlaw profile Σ ∝ R−1 from R = 0.1 to 1. A “kink” develops

in the leading spiral which propagates outward as R(t) ∝ t1/2(∆R)1/4 as the leading spiral

unwinds and transitions to a trailing spiral.
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numbers distributed uniformly on [0, 1] and the inverse of fz is taken with respect to z. The

sign of z is then randomly chosen.

The second method avoids using random numbers along z by using a small glass cube in

a periodic box as a starting point (with Nc = 4096 particles by default). Since the cube is

periodic we can tile it to generate an arbitrarily large glass. Any structure created by this

glassy lattice is minimal. We begin by generating a cylinder, in what I call the CDF space,

of arbitrary radius r̃max with a height 2z̃max, centered on the origin with |z̃| < z̃max, by tiling

the cubic glass. The cube length is scaled to generate the proper number density according

to:
Nc

L̃3
=

N

2πr̃maxz̃max
, where N is the total number of particles in the simulation and L̃ is

the cube length in CDF space. This can be done by tiling cubes in a region that includes

the cylinder and removing particles outside the cylinder. This will generate semi-random,

glassy positions, uniformly distributed in a cylinder CDF space. Positions can be mapped

from CDF space to real space with the following mappings:

θ = θ̃ ≡ gθ(θ̃)

R = f−1
R

(
(r̃/r̃max)

2
)
≡ gR(r̃)

z = f−1
z (z̃/z̃max, R) ≡ gz(z̃)

(2.23)

where the square in the radial mapping is due to the fact that positions are uniformly

distributed in x̃− ỹ but are distributed along r̃ with a PDF proportional to r̃.

With r̃max as an arbitrary parameter, we need to determine a reasonable value for z̃max.

The mass weighted mean of H/R over the disk provides a decent value for z̃max/r̃max, but

we have implemented slightly more sophisticated approach. The goal is to have the particles

remain as glassy as possible when mapped to physical space. One way to achieve this is to

attempt to keep the stretching along all 3 directions as uniform as possible. Stretching along

the θ̂ direction will be equal to that along the R̂ direction, which will differ from stretching

along ẑ. Using ∆R = dgR
dr̃

∆r̃ and ∆z = dgz
dz̃

∆z̃. For ∆z̃ = ∆r̃, our goal is to achieve a stretch

factor S ≡ dgR
dr̃
/dgz

dz̃
as close to unity as possible.

In principle, we could use a variable z̃max and remove particles with |z̃| > z̃max to get
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S ≈ 1. However, the radial mapping in eq. (2.23) assumes a distribution in CDF space of

Pr̃ ∝ r̃. A variable z̃max would change the required mapping, which would in turn change

the required z̃max. This might be solvable iteratively, but using a fixed z̃max is much simpler.

From the mappings in eq. (2.23) we get S = 2z̃max

r̃2max

Pz(z,R)r̃
PR(R)

, where Pz and PR are the PDFs for

z and R. Performing a mass weighted mean over the disk, 〈S〉 =
∫ ∫

SPz(z, R)PR(R) dz dR.

Solving for z̃max gives:

z̃max =
r̃max

2

 ∞∫
0

√
fR(R)

+∞∫
−∞

P 2
z (z, R)dz dR

−1

(2.24)

where Pz(z, R) = ρ(z, R)/Σ(R).

2.2.3 Circular velocity calculation

A major concern with avoiding artifacts in the ICs is calculating the particle velocities

required for circular orbits (vcirc). For typical disks, vcirc is one to two orders of magnitude

larger than cs. The ratio of kinetic to thermal energies is proportional to (vcirc/cs)
2 with

an order unity constant of proportionality. Thus, particle velocities which deviate from vcirc

on the percent level will deposit a significant amount of power into the disk. The disk

may enter a highly non-linear regime and fragment for unrealistically high Q. We include a

demonstration of this in §2.3.3.

Figure 2.5 shows the ratio (vcirc/cs)
2 as a function of radius for a typical disk. Everywhere

in the disk, the kinetic energy is orders of magnitude larger than the thermal energy and

increases with decreasing radius. For a temperature profile of T ∝ R−q and assuming the

keplerian circular velocity vcirc =
√
GM∗/R, we have: (vcirc/cs)

2 ∝ 1/R1−q. For almost any

disk, q < 1. The keplerian circular velocity approximation is typically valid within 10%.

Therefore, for almost any disk, this ratio will grow towards the interior of the disk, meaning

it is especially important to estimate the circular velocity well at the interior of the disk.

For a massless disk, pressureless disk vcirc =
√
GM∗/R is the Kepelerian velocity. Pres-

sure gradients change the net radial force and tend to decrease vcirc. Disk self gravity also
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Figure 2.5: v2
circ/c

2
s for the fiducial M-Dwarf disk orbiting a 1/3M� central star with a

powerlaw temperature profile T = T0(R/R0)−q with q = 0.59. Throughout the disk, the

available kinetic energy is orders of magnitude larger than the available thermal energy,

varying as ∝ 1/R1−q.

changes vcirc and is non-trivial to estimate. Numerical forces due to e.g. artificial viscosity

can also be significant. To further complicate things, all these forces have z dependence.

Some studies use the keplerian velocity. Others attempt to adiabatically evolve the disk

towards an equilibrium state by cooling the disk, growing the disk mass artificially, or by

continuously loading mass onto the disk from the boundaries. However, such methods are

slow, make precisely defining disk profiles difficult, and often do a poor job reaching an

equilibrium state.

To calculate vcirc, we employ our simulation code ChaNGa to calculate the radial grav-

itational and hydrodynamical forces self-consistently on all particles. To deal with SPH

noise, the forces must be averaged over many particles. The gravitational and SPH forces

are averaged separately because of a different spatial dependence. In both cases, 50 radial

bins are used.

For the gravitational forces, linearly spaced bins are used. To fit the R and z dependence

of the gravitational forces, particles are binned radially, and for each bin a line is fit to the
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radial force per mass due to gravity, as a function of cos θ:

fg,i(cos θ) = mi cos θ + bi (2.25)

where θ is the angle above the plane of the disk. The radial gravitational force from the

central star is proportional to cos θ. The fit parameters (mi, bi) are then linearly interpolated

as a function of R to create a model which allows us to estimate the radial gravitational

specific force as

fg(R, z) = m(R)
R√

z2 +R2
+ b(R) (2.26)

The radial hydrodynamic forces display very little z dependence, as is expected for a

temperature profile independent of z. The SPH forces are averaged over logarithmically

spaced radial bins and then interpolated with a linear spline. From the total force per mass

(a = agrav + aSPH) we can calculate vcirc as:

vcirc =
√
aR (2.27)

Following ?, we set the gravitational softening length to εs = 0.5 〈h〉, where 〈h〉 is the

SPH smoothing length, calculated over the Nsmooth nearest neighbors (typically Nsmooth = 32

or 128), and averaged over all particles in the simulation. The softening length εs for the

star is by default set as the distance to the nearest gas particle in the ICs, although this can

be safely decreased. ChaNGa is then used to estimate the gravitational and SPH forces

separately.

2.3 Sensitivity to ICs

It is important to understand the causes of disk fragmentation in our simulations. We have

paid particular care to characterizing numerical issues which may drive fragmentation. In

§2.4 we present a simple convergence test which demonstrates that for our locally isothermal

SPH treatment, lower resolution disks fragment more easily.

To assess the sensitivity of disk fragmentation to the state of the ICs, we applied a series of

small perturbations to disks close to the fragmentation boundary, with a Qeff slightly greater
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than 1. Qeff is an effective Toomre Q which includes a scale-height correction (see §3.3). Disks

with Qeff < 1 are expected to fragment. We used two of the ICs in our suite of M-Dwarf runs

which didn’t fragment: one with Qeff = 1.01 and one with Qeff = 1.12 (simulations 2 and 5

in Table 3.1). We find that perturbing orbital velocities slightly out of equilibrium can cause

a disk to fragment, but that results are fairly insensitive to perturbing the disk height or to

applying small spiral density perturbations. These results are summarized in Table 2.1.

We also tested the importance of the inner and outer boundaries by taking a disk near

the fragmentation boundary with Qeff slightly above 1 and applying a step function cut-off to

Σ on the inner edge, the outer edge, and on both edges. Waves were seen to reflect off these

hard boundaries, but the effect was not sufficiently strong to drive the disk to fragmentation.

We tested runs 2, 10, 12, 39, 40, 45, 48, 49, 52 from table 3.1. Figure 2.6 shows the first

two ORPs of run 2 (Qeff = 1.01) with a hard exterior cut applied. A strong wave propagates

inward from the ICs, reflects, and travels outward. After several ORPs, the disk settles into

a typical spiral arm dominated state. The wave is insufficient to cause the disk to fragment.

2.3.1 Density perturbations

We applied m = 2, 3, 4 spiral density perturbations by multiplying the particle masses M0

by:

M1 = M0 (1 + δ cos(mθ)) (2.28)

where M1 is the perturbed particle mass and δ is the depth of the perturbation, here chosen

to be δ = 0.01. These perturbations are similar to those done by e.g. ? to seed instabilities

in a grid code which does not have SPH particle noise. These perturbations were performed

on the Qeff = 1.01 simulation and were not sufficient to force the disk to fragment.

Figure 2.7 shows the results of the density perturbation runs. The midplane gas density

is plotted on a logarithmic color scale for the original (“control”, top-panel) and the spiral

density perturbation runs. Time increases to the right. By 0.4 ORPs (first column), the

spiral structure due to the perturbations is evident, with the number of arms corresponding



41

5 10 15 20 25 30
R (AU)

Li
n
e
a
r 

m
a
ss

 (
Σ
∗2
π
R

)

Hard cut - outer boundary
2.0 ORPs

Figure 2.6: A stack of plots of the linear density (Σ2πR) vs radius for a Qeff = 1.01 disk

with a step function cut-off applied to Σ at the disk radius Rd = 30 AU. Lines are stacked

for ease of viewing, earliest to latest from top to bottom. A strong wave propagates inward

from the ICs, reflects, and travels outward. The wave is still insufficient to cause the disk to

fragment. The first 2 ORPs are plotted.
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to the order of the perturbation, m. Shortly after, the original mode no longer dominates.

By 6.3 ORPs, the m = 2 perturbed disk shows the strongest spiral structure, but by the end

of the simulation after 25 ORPs, all disks have approached a similar, non-fragmenting state.

2.3.2 Height perturbations

We also wished to probe how sensitive disks are to perturbing the height. When generating

ICs, there are many different methods for estimating the vertical density profile. We therefore

wished to see whether perturbing a disk’s scale height away from equilibrium could cause it

to fragment. We ran the Qeff = 1.01 simulation twice, multiplying the particle z positions

by 0.98 and 0.9, decreasing the scale heights by 2% and 10%, respectively. Neither of these

runs fragmented.

Figure 2.8 shows the results for these runs. The vertically integrated density is shown on

a logarithmic color scale for the original (“control”, top-panel) and the 2 height perturbation

runs. The end results (rightmost column) are all similar. The disks have all approached a

stable Qeff value and do not fragment. The disk were run for 25 ORPs (not pictured). At

0.3 ORPs, oscillations in the height are visible in the 10% perturbation run as rings, but

they are insufficient to cause the disk to fragment.

2.3.3 Velocity perturbations

Disks do appear to be much more sensitive to particle velocities. We applied small, axisym-

metric velocity perturbations to disks which otherwise did not fragment. The perturbed

velocity v1 was calculated as:

v1 = v0

(
1 + δ

R0

R

)
(2.29)

where v0 is the original velocity, R0 is the inner edge of the disk (where the Σ reaches a max-

imum) and δ << 1 is the depth of the perturbation. This applies a fractional perturbation

of δ at R0 which decays as 1/R. Nearly all the disk mass lies outside of R0, meaning most of

the disk has a perturbation applied which is much less than δ. The general functional form
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Figure 2.7: A comparison of simulations near the Qeff = 1 boundary with density pertur-

bations of the form ∆ρ ∝ cosmθ (see eq. 2.28), listed in table 2.1. Pictured is the midplane

gas density on a logarithmic color scale. Time increases to the right. The original disk

(“control”, top row) approaches a stable Qeff and does not fragment. The perturbations are

insufficient to cause the disk to fragment.
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control
Qeff: 1.01

Perturb: 0.0%

h.2
Qeff: 1.01

Perturb: -2%

h.1
Qeff: 1.01

Perturb: -10%

t: 0.1 ORPs t: 0.3 ORPs t: 1.7 ORPs t: 10.4 ORPs

t: 0.1 ORPs t: 0.3 ORPs t: 1.7 ORPs t: 10.4 ORPs

t: 0.1 ORPs t: 0.3 ORPs t: 1.7 ORPs t: 10.4 ORPs

Height perturbations - integrated density

Figure 2.8: A comparison of simulations near the Qeff = 1 boundary with height perturba-

tions applied by scaling particle z positions as z′ = (1 − δ)z, listed in Table 2.1. Pictured

is the vertically integrated gas density on a logarithmic color scale. Time increases to the

right. By 0.3 ORPs, oscillations in the height of the 10% perturbed disk are visible as rings.

The original disk (control, top row) approaches a stable Qeff and does not fragment. The

perturbations are insufficient to cause the disk to fragment. All disks were run longer (not

pictured) and approached stable Qeff values.
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control (lo Q)
Qeff: 1.01

Perturb: 0.0%

v.01
Qeff: 1.01

Perturb: 0.5%

v.02
Qeff: 1.01

Perturb: 1%

v.04
Qeff: 1.01

Perturb: 10%

t: 0.5 ORPs t: 1.0 ORPs t: 8.5 ORPs t: 28.4 ORPs

t: 0.5 ORPs t: 1.0 ORPs t: 8.5 ORPs t: 28.4 ORPs

t: 0.5 ORPs t: 1.0 ORPs t: 8.5 ORPs

t: 0.5 ORPs t: 1.0 ORPs

Low Q velocity perturbations - midplane density

Figure 2.9: A comparison of simulations near the Qeff = 1 boundary with velocity pertur-

bations of the form of eq.(2.29), listed in table 2.1. These are the Qeff = 1.01 runs. Pictured

is the midplane gas density on a logarithmic color scale. Time increases to the right. The

original disk (control, top row) approaches a stable Qeff and does not fragment. The 0.5%

perturbation run also does not fragment, but all runs with larger perturbations fragment.

Blank panels are for runs that were halted after fragmenting.
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control (hi Q)
Qeff: 1.12

Perturb: 0.0%

v.07
Qeff: 1.12

Perturb: 4%

v.09
Qeff: 1.12

Perturb: 11%

v.10
Qeff: 1.12

Perturb: 16%

t: 0.9 ORPs t: 3.1 ORPs t: 3.7 ORPs t: 28.4 ORPs

t: 0.9 ORPs t: 3.1 ORPs t: 3.7 ORPs t: 28.4 ORPs

t: 0.9 ORPs t: 3.1 ORPs t: 3.7 ORPs

t: 0.9 ORPs

Hi Q velocity perturbations - midplane density

Figure 2.10: A comparison of simulations with Qeff = 1.12 with velocity perturbations of the

form of eq.(2.29), listed in table 2.1. Pictured is the midplane gas density on a logarithmic

color scale. Time increases to the right. The original disk (control, top row) is at a stable

Qeff and does not fragment. The 4% perturbation run also does not fragment, but the 11%

perturbation is sufficient to cause fragmentation. Blank panels are for runs that were halted

after fragmenting. In particular, the 16% run fragments violently early in the simulation and

was stopped after about 1 ORP.
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was chosen to mimic behavior observed in many runs with ICs potentially out of equilibrium:

a density wave spreading out from the inner disk. Such behavior indicates a disk with poorly

estimated vcirc, and has been observed in early tests of mine and which I have observed in

other tests.

For the Qeff = 1.01 disk, a 1% perturbation (δ = 0.01) was sufficient to cause fragmenta-

tion. Figure 2.11 shows the spiral power as a function of time for this run. Spiral power is

calculated by binning Σ in (R, θ) and calculating the standard deviation. This is equivalent

to summing the non-DC components of the fourier transform. The perturbed and original

simulations initially develop in a similar manner for the first orbital period (defined at the

most unstable radius). During this stage an axisymmetric (m = 0) density wave moves

outward from the disk center. After about an orbital period, the perturbed disk develops

significantly more pronounced spiral density waves. After 9-10 orbits the disk fragments.

Fragmentation is accompanied by a rapid spike in spiral power as the disk becomes highly

non-axisymmetric.

A similar test was performed with a much more stable disk (Qeff = 1.12). A series of

perturbations were applied (δ = .01, .02, .04, .08, .11, .16). An 11% perturbation was sufficient

to force the disk to fragment. Depending on the approximations used to estimate circular

velocities, discrepancies on this order can happen for disks sufficiently massive to be close

to the fragmentation boundary. In particular, the Ω =
√
GM∗/R3 approximation can be

wrong at the 10% level, especially for the massive disks of interest to gravitational instability

studies.

Figures 2.9 and 2.10 show the results of these velocity perturbations for the Qeff = 1.01

and Qeff = 1.12 runs, respectively. The panels show the midplane gas density plotted on a

logarithmic scale with time increasing to the right. Early in the runs, them = 0 axisymmetric

waves are clearly visible for the perturbed runs as rings. For sufficiently strong perturbations,

these rings can seed strong spiral structure which ultimate leads the disk to fragment. Note

that increased perturbations cause the disks to fragment more rapidly.

This demonstrates the care which must be taken in developing equilibrium models of
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Figure 2.11: Total non-axisymmetric power versus time for a disk with and without a 1%

velocity perturbation (simulation number 2). The original simulation (Qeff = 1.01) did not

fragment but the simulation with a small, axisymmetric velocity perturbation does. Spiral

structure initially develops similarly for both simulations for about the first ORP. For the

next 8 ORPs the perturbed simulation develops deeper spiral structure until it fragments

after 9-10 ORPs.

unstable disks near the fragmentation boundary, especially with regard to the velocity cal-

culation. An apparently small perturbation can deposit large amounts of energy in a disk,

forcing it sufficiently far of equilibrium to fragment.

2.4 Resolution test

Previous work has indicated that the results of SPH simulations of PPDs can be resolution

dependent [???]. ? laid out several resolution requirements for SPH simulations of PPDs.
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Table 2.1: Results for a series of tests to perturb disks near equilibrium.

name type depth fragment? Qeff notes

ρ.1 density 1% no 1.01 m=4

ρ.2 density 1% no 1.01 m=3

ρ.3 density 1% no 1.01 m=2

h.1 height -10% no 1.01

h.2 height -2% no 1.01

v.01 velocity 0.50% no 1.01

v.02 velocity 1% yes 1.01

v.03 velocity 2% yes 1.01

v.04 velocity 10% yes 1.01

v.05 velocity 1% no 1.12

v.06 velocity 2% no 1.12

v.07 velocity 4% no 1.12

v.08 velocity 8% no 1.12

v.09 velocity 11% yes 1.12

v.10 velocity 16% yes 1.12
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For our suite of 106 particle M-Dwarf runs (§3), we exceed the mass resolution requirement

by a minimum factor of 7, and most simulations exceed it by a factor of 40. We also easily

meet their scale height resolution requirement. At the midplane of the most unstable disk

radius, the ratio of the smoothing length to the scale height is between 4 − 12 for all our

runs (? finds this ratio should be at least ∼ 4).

As part of our analysis, we ran a basic convergence test to verify our simulation code

and to investigate the effects of resolution on disk fragmentation in SPH simulations. The

resolution tests presented here are done without dust. Dust resolution requirements are

discussed in Chapter 4. We ran a simulation close to the fragmentation boundary with a

minimum Qeff = 1.06 (simulation 48 in table 3.1) at 6 different resolutions from 50k to 10M

particles. These runs are summarized in Table 2.2.

We find (i) that low resolution simulations are more susceptible to disk fragmentation

and (ii) that simulations appear to converge reasonably well, with our chosen resolution of

106-particles being sufficient for the analysis presented in §3. However, these convergence

tests are only preliminary and future work may reveal that higher particle count is required

for fully believable results. Convergence may also depend on EOS, cooling prescriptions, and

whether a grid code or an SPH code is used.

Figure 2.12 shows logarithmic surface density plots of all 6 runs after 4.0 ORPs. The

50k- and 100k-particle runs have already fragmented violently. The 500k-particle run has

developed somewhat stronger spiral power than the higher resolution runs and eventually

fragments after about 12 ORPs. The other runs have developed some spiral power that is

insufficient to drive the disks to fragmentation. Figure 2.13 shows the logarithmic midplane

density at several times for these runs.

Figure 2.14 shows what we call the normalized spiral power. We calculate spiral power by

binning the surface density in R, θ (we used 128 × 128 bins here), calculating the standard

deviation along the angular direction, and summing along the radial direction. We then

normalize by multiplying the spiral power by
√
N , where N is the number of SPH particles

in the run. This is done to account for noise in the number of particles per bin which scales
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Figure 2.12: Logarithmic surface density plots for the simulations listed in Table 2.2 of a

Qeff = 1.06 run after 4.0 ORPs. The low resolution runs have already fragmented. The 500k-

particle run has developed strong spiral power and will eventually fragment (see fig. 2.13).

The remaining runs do not fragment and approach a value of Qeff > 1.1 within the course of

the simulations.



52

50k

100k

500k

1M

5M

10M

t: 0.5 ORPs t: 1.5 ORPs t: 4.0 ORPs t: 6.9 ORPs

t: 0.5 ORPs t: 1.5 ORPs t: 4.1 ORPs t: 6.9 ORPs

t: 0.5 ORPs t: 1.5 ORPs t: 4.0 ORPs t: 7.0 ORPs t: 12.5 ORPs

t: 0.5 ORPs t: 1.5 ORPs t: 4.0 ORPs t: 7.0 ORPs

t: 0.5 ORPs t: 1.5 ORPs t: 4.0 ORPs t: 7.0 ORPs

t: 0.5 ORPs t: 1.5 ORPs t: 4.0 ORPs t: 7.0 ORPs

Resolution test - midplane density

Figure 2.13: A comparison of the convergence test runs (Table 2.2) of a Qeff = 1.06 disk near

the fragmentation boundary at 6 different resolutions. Pictured is the midplane gas density

on a logarithmic color scale. Time increases to the right. Disks become asymptotically

more stable with increasing resolution. The 50k, 100k, and 500k runs all fragment. Higher

resolution runs stabilize as Qeff increases. The 500k disk was run longer as it did not tend

towards a stable Qeff . See also figure 2.12.
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Figure 2.14: Normalized spiral power vs. time for the 6 simulations in the convergence test.

Power is calculated by binning Σ in (R, θ), calculating the standard deviation along θ and

summing along R. Power is then normalized by multiplying by
√
N to adjust for the power in

particle noise. Fragmentation is seen for the simulations with 50k-, 100k-, and 500k-particles

as a rapid increase in spiral power at the end of the simulation. As expected, the higher

resolution simulations do not fragment.

as ∝ 1/
√
nper bin where nper bin is approximately proportional to N .

The normalized spiral power then represents how much larger than the particle noise the

spiral power is. Fragmentation is visible in figure 2.14 as a sharp rise in power at the end

of the simulation. As can be seen, the normalized spiral power decreases with increasing

particle count and converges for the higher-resolution simulations.

As expected for Qeff = 1.06, the higher resolution simulations do not fragment. As shown

in Table 2.2, the simulations with N ≥ 106 particles approach a stable value of Qeff ≈ 1.11
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Table 2.2: Convergence tests runs. ICs are identical to simulation 48 in table 3.1 but with a

different number of particles. The resolution is the number of SPH particles in the run. Runs

that fragment are highly non-axisymmetric, so the quoted Qeff values are only illustrative.

Runs that don’t fragment approach a stable value significantly above 1.

Run Resolution Fragment? Final Qeff

0 50k yes 0.67

1 100k yes 0.69

2 500k yes 0.89

3 1M — 1.11

4 5M — 1.11

5 10M — 1.12

and therefore would not fragment if run for longer. Simulations with N ≤ 500k particles

approached very low Qeff minimum values, although Qeff is strictly speaking not well defined

for highly non-axisymmetric disks.

2.5 Conclusions

Particularly in unstable systems, generating ICs is of the utmost importance, and in the field

of PPDs it is often glossed over. Systems as chaotic as gravitationally active PPDs are very

sensitive to ICs. Fortunately, we have demonstrated that SPH runs are not terribly sensitive

to density estimates, in particular vertical density profiles or azimuthal perturbations. When

disk heights are perturbed by 10%, even disks on the verge of fragmentation are not driven

to fragment. However, PPDs are highly sensitive to velocity estimates, and percent level

errors in estimating them may drive disks to fragment.

Here we presented a method which is robust and generates ICs very near equilibrium.

My ICgen package is available on GitHub as a sub-package of my diskpy python package.
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Importantly, this method is rapid and independent of particle count beyond the 106 or so

maximum number of particles required for velocity estimates. Typical ICs take about 1

minute to generate on a modern desktop. Many methods in the literature involve difficult

computations which may take of order the simulation walltime to generate, such as artificially

growing the disk mass or cooling the disk.

We have also seen here just how important resolution can be in interpreting simulation

results. Very few convergence tests have been reported in the literature, and very little

has been published on the effect of resolution on SPH simulations of PPDs. We find that

decreasing resolution in SPH can lead to artificially unstable and fragmenting disks. This

is different for grid codes, which often suppress fragmentation at low resolution since the

maximum density can be effectively limited by the grid size.

Much future work remains to be done on understanding the role of resolution in SPH.

Some work has been done on characterizing artificial viscosity as a resolution dependent

turbulence [?], but in general AV is resolution dependent and its effects are poorly charac-

terized. If realistic SPH simulations extend beyond the isothermal approximation, resolution

may play an entirely different role. The choice of Nsmooth, the choice of gravitational soft-

ening length, and the growth and nature of SPH noise remain poorly characterized in the

literature.
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Chapter 3

FRAGMENTATION OF PROTOPLANETARY DISCS
AROUND M-DWARFS

1

3.1 Introduction

The importance of gravitational instabilities (GI) in the evolution of protoplanetary disks

(PPDs) and in planet formation remains hotly debated [?????]. In recent years, the core

accretion (CA) plus gas capture model of giant planet formation has received much attention

[??], but GI is still seen as a candidate for the direct formation of giant planets, especially

at large orbital radii [?]. While CA gives a more natural explanation of terrestrial planet

formation and small bodies, GI may be important for the formation of these objects via

solid enhancement within spiral arms or fragments [?]. GI may also play an important role

during the embedded phase of star formation [?].

Understanding the role of GI in planet formation will require continued observation of

PPDs [???] and further theoretical work. Of primary importance are (i) disk cooling times

[????], which must be sufficiently short to allow density perturbations to grow against pres-

sure support, and (ii) the Toomre Q parameter [?]:

Q ≡ csκ

πGΣ
(3.1)

where cs =
√
γkBT/m

2 is the gas sound speed, κ is the epicyclic frequency (κ = Ω for a

massless disk), and Σ is the disk surface density. As Q decreases toward unity, PPDs become

increasingly unstable, and if Q becomes sufficiently small, disks will undergo fragmentation.

The parameters required for fragmentation, such as disk mass (Md), disk radius (Rd), and

disk temperature (T ), are constrained by the critical Q required for fragmentation. Some

1This chapter has been published in ?

2 γ → 1 for the isothermal sound speed
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previous studies have found values of Qcrit = 1.3−1.5 [???], although it has been noted that

Q can drop below unity and the disk may still trend toward a self-regulating state [?].

Determining the parameters required for fragmentation is complicated by issues of res-

olution. The constant (β) cooling simulations of ? demonstrated non-convergence of SPH

simulations. Further work [??] suggested artificial viscosity is to blame. Work is underway

to investigate this problem; however, resolution dependent effects are still poorly understood

in SPH simulations of PPDs [?].

Previous work has tended to focus on PPDs around solar mass stars. Motivated by

the large population of low mass stars, we study GI around M-dwarfs with mass M∗ =

M�/3. Around 10% of known exoplanets are around M-dwarfs [?]. Due to selection effects

of current surveys such as Kepler [?], this is expected to be a large underestimate of the

actual population. Recent discoveries show that disks around M and brown dwarfs are

different from those around solar analogs: the mass distribution falls of more slowly with

radius, and is denser at the midplane. These differences change disk chemistry and the

condensation sequence. M-dwarf disks are also less massive and survive longer [??]. Core

accretion timescales, which scale as the orbital period, are long around M-dwarfs. Because

the stars are much lower in luminosity, their disks are substantially cooler. Additionally,

planets orbiting nearby M-dwarfs are likely to be the first smaller planets spectroscopically

characterized [?].

The simulations of ? indicate that GI is able to form gas giants around M-dwarfs. ? and

? even argue that super earths around M-dwarfs can be explained as gas giants, formed via

GI, and stripped of their gaseous envelopes by photoevaporation.

In this chapter I explore the conditions required for disk fragmentation under GI around

M-dwarfs. Previous studies have found a range of values of the Qcrit required for disk

fragmentation [????]. Discrepancies may be due to different equations of state (EOS), cooling

algorithms, numerical issues such as artificial viscosity prescriptions, Eulerian vs. Lagrangian

codes, and initial conditions (ICs). ICs close to equilibrium are non-trivial to produce and

so in Chapter 2 I explored the dependence on ICs of simulations of gravitationally unstable
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disks.

Here, I focus on probing disk fragmentation around M-Dwarfs, which remains poorly

studied. This warrants a simple, well understood isothermal EOS. We therefore probe the

Toomre Q required for fragmentation while leaving the question of the cooling required for

fragmentation for future work.

§3.2 describes the suite of simulations presented here and discusses the theoretical and

observational motivations behind our disk profiles. §3.3 presents our analysis of disk fragmen-

tation around M-dwarfs. §3.4 presents our method for finding and tracking gravitationally

bound clumps and discusses clump formation in our simulations. We present our discussion

in §3.5. We consider the effects of thermodynamics and ICs on fragmentation in PPD simu-

lations and argue that GI should play an important role in PPDs around M-dwarfs and that

we expect disk fragmentation at large radii to occur around many M-dwarfs.

3.2 Set of runs

3.2.1 Disk Profiles

Figures 3.1 & 3.2 show radial profiles for example simulations. Pictured are the surface

density Σ(R) (top panel), temperature T (R) (middle panel), and Q(R) (bottom panel). The

exact disk structure of PPDs, especially young ones, is poorly constrained. Therefore we

adopt simple, easy to interpret profiles, and consider a range of values of disk mass (Md) and

temperature (T ) in order to bracket plausible disk parameters. Below we describe our choice

of disk temperature and surface density profiles, along with the theoretical and observational

motivations for them.

Temperature

For a blackbody disk with heating dominated by solar radiation, ? showed that the tem-

perature profile should be a power law. The exponent is q = 3/7 for a fully flared disk and

q = 3/4 for a flat disk. We therefore adopt a temperature profile of the form:
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Figure 3.1: Example radial profiles for powerlaw surface density Σ ∝ 1/R, with Rin = 0.3 AU

and Rd = 1 AU. Top: Surface density profile including cutoffs (solid) and excluding cutoffs

(dashed). Middle: Disk temperature T ∝ R−0.59 Bottom: Toomre Q, calculated including

full disk self gravity, SPH forces, and calculation of κ.
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Figure 3.2: Example radial profiles for a viscous disk surface density Σ(r) =

Σ0r
−γ exp(−r2−γ), where r is a dimensionless radius and γ = 0.9. The radius containing

95% of the mass is Rd = 11 AU. Top: Surface density profile including cutoffs (solid) and

excluding cutoffs (dashed). Middle: Disk temperature T ∝ R−0.59 Bottom: Toomre Q.
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T (R) = T0

(
R

R0

)−q
(3.2)

where R0 was set to be 1 AU and T0 is the temperature at 1 AU. The values we adopt for

T0 and q come from the observations of ?. They observed dust SEDs of circumstellar disks

in the Taurus-Auriga star forming region. Fit results for 44 mainly solar type stars yielded

median inferred parameters of T0 = 148K and q = 0.58 (see their Table 2). Averaging their

results for M-Stars only, we adopt q = 0.59 for every simulation and T0 = 130K as our central

fiducial values. This power law of q = 0.59 lies between a fully flared and completely flat

disk. Given the uncertainty of these values we also ran simulations with T0 = 65K and 260K

to bracket plausible disk temperatures.

Surface density

Two functional forms for Σ were used: a power law (Fig. 3.1) and the similarity solution for

a thin, viscous disk (Fig. 3.2). The power law used was:

Σ(R) = Σ0

(
R

R0

)−1

(3.3)

Where the normalization Σ0 is fixed by the desired disk mass. As shown in Fig. 3.1, inte-

rior and exterior cutoffs were applied. For R > Rd, an exponential cutoff was applied by

multiplying Σ(R) in eq.(3.3) by:

Σexterior = Σ(R)e−(R−Rd)2/L2

(3.4)

where the cutoff length was set to L = 0.3Rd. This form ensures that Σ and dΣ
dR

are unchanged

at R = Rd. The interior cutoff was applied by multiplying Σ by a smooth high order

polynomial approximation to a step function, defined to be [0, 1] at R = [0, Rcut] with the

first 10 derivatives set to be 0 at R = [0, Rcut]. For these simulations Rcut = 0.5Rd and Σ

differs significantly from a power law for R . 0.3Rd (see Fig.3.1). This radius was chosen

such that: (a) Q � 1 at Rcut to ensure the disk is stable at Rcut, and (b) the cutoff is
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applied far enough from the most unstable disk region and removes little enough mass that

fragmentation should not be strongly affected by the cutoff.

The second functional form for Σ (see Fig.3.2) comes from the similarity solution to a

thin, light, viscous disk orbiting a star, as found in ?. For a viscosity obeying a power law

ν ∝ Rγ, at a given time Σ can be written as:

Σ(r) = Σ0r
−γ exp(−r2−γ) (3.5)

where r is a dimensionless radius and the normalization Σ0 is fixed by the disk mass. Note

that the full similarity solution includes a time dependence which we fold into Σ0 and r.

From fits to observations of 9 circumstellar disks, ? found a median value of γ = 0.9, which

is the value we adopt here. For this profile, no exterior cutoff is required. The same interior

cutoff as for the power law Σ was applied at r = 0.1.

If we define Rd to be the radius containing 95% of the disk mass (ignoring the interior

cutoff), then:

r =
R

Rd

ln(1/0.05)1/(2−γ) (3.6)

As has been noted before (e.g. ?), there is no physical motivation for adopting a power

law for Σ. It is also not clear how applicable the viscous profile is. These are just simple

functional forms often adopted in previous work. We have examined the end state of stable

high-Q runs and they are better approximated by the viscous profile, but the fit is not

perfect.

3.2.2 Run Parameters

For a given functional forms of Σ(R) and T (R), three parameters must be set to define our

ICs and thereby fix a value of Qmin: the temperature normalization (T0), the disk mass (Md),

and the disk radius (Rd). The choices of T0 are discussed in §3.2.1.
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Disk mass

Under our scheme, setting Md fixes the surface density normalization. We selected plausible

values to explore, ranging from 0.01 to 0.08M�. ? reported observations of 11 disks around

pre-main-sequence stars, including 7 around M-stars. From their Tables 1 & 2, we find a

median value of Md/M∗ = 0.15, which for our simulations (M∗ = 1/3M�) gives a central

value of Md = 0.05M�. It should be stressed that these disk masses are inferred using an

assumed gas to dust ratio of 100 and therefore may have large, uncharacterized uncertainties.

Disk radius

? argue that for a typical disk, Rd increases from around 20 AU to 100 AU over the course

of ∼5 Myr. This tends to stabilize disks by decreasing Σ over time. Since we are interested

in disks at their most unstable, we adopt 20 AU as our central fiducial value. To explore

parameter space, we used values of Rd ranging from 1/3 AU to 30 AU.

Numerical Parameters

For the analysis of fragmentation criteria, a set of 64 ICs were run with 106 particles. For

typical disks, this yields particles with a mass of mparticle ≈ 5 × 10−5MJupiter. A locally

isothermal EOS with a mean molecular weight of 2 was used for the gas. Following ?, we

set the gravitational softening length to εs = 0.5 〈h〉, where 〈h〉 is the SPH smoothing length

calculated over the 32 nearest neighbors and averaged over all particles. Typical values are

around 〈h〉 = 5× 10−3Rd.

The central star (mass M�/3) was set to be a sink particle: when a gas particle ap-

proaches the star within a distance of Rsink, its mass and momentum are accreted onto

the star. Rsink was set as the distance to the closest gas particle in the ICs. This yielded

Rsink = [0.08Rd, 0.02Rd] for the power law and viscous Σ profiles, respectively

Making the central star a sink serves two purposes worth mentioning. A gas particle near

the star gains a large velocity, experiences strong forces, and is often captured in a tight
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orbit around the star. This requires a very small time-step which can increase computation

time by orders of magnitude. Secondly, the adaptive time-stepping used by ChaNGa can

fail to conserve momentum when two interacting particles require time-steps which differ by

more than a couple orders of magnitude. The effect is sufficiently strong that very stable

disks (Q > 2) were seen to fragment when the central star was not treated as a sink.

We note that treating the star as a sink in this manner is unrealistic in that it forces

accretion to happen at very large radii (of order an AU). When accretion happens, the star

will jump to the center of mass of the star + particle system. In the limit of low accretion

rates and in locations far from the star this will be a negligible effect, but in disks with high

accretion a different scheme should be used. For our simulations there is very little accretion:

less than 10−3Md over the duration of the simulations.

As shown in figure 3.5, non-fragmenting simulations were run for ∼30 outer rotational

periods (ORP), where we define 1 ORP as the orbital period at the most unstable disk

radius (Rd in the case of the powerlaw surface density profiles). ORPs for our disks range

from 0.3 yrs for our smallest disks to 300 yrs for the largest. Disks with parameters close to

fragmentation were run longer (100–200 ORP) to ensure they reached a steady state which

would not fragment. Since the main goal of this work is to investigate fragmentation of

PPDs and since computation time increases drastically after clump formation, simulations

which fragmented were run for around 1–2 ORP after fragmentation. Figure 3.5 shows the

fragmentation timescales for these disks.

3.3 Fragmentation analysis

The primary goal of this analysis is to investigate under what conditions we can expect a

PPD surrounding an M-dwarf to fragment. The parameters explored by our model are T ,

Md, and Σ. Although all simulations were run with a star of M∗ = M�/3, we also extend

our analysis to stars of similar mass. As expected, we find that sufficiently heavy or cold

disks will fragment under GI.

Gravitational instability in PPDs is typically parameterized by the Toomre Q parameter
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Figure 3.3: Minimum Toomre Q for the fragmenting (clump–forming) and non-fragmenting

simulations. The red (blue) lines mark the largest (smallest) values of the fragmenting (non-

fragmenting) simulations. The two populations overlap around Q ≈ 0.9.
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fragment. β is a normalization factor chosen such that disks with a Qeff < 1 will fragment.
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(eq. 3.1). For our isothermal simulations, cs =
√
kBT/m. Two dimensional disks will

be unstable for Q > 1, but the instability and fragmentation criteria for 3D disks remain

uncertain. Previous studies have found that 3D disks will fragment for Qmin significantly

greater than 1 [????]; however, we do not find this to be the case for our simulations.

Figure 3.3 shows the fragmentation boundary for our simulations. Disks with Q . 0.9

fragment. Here, we define fragmentation to be when the first gravitationally bound clump

is found (see §3.4).

We also considered the effects of swing amplification. If the parameter:

Xm =
κ2R

2πGΣ

1

m
(3.7)

for integer m ≥ 1 is near or below unity, small leading disturbances will amplify upon

becoming trailing disturbances and can drive disk dynamics, especially spiral arm growth [?].

Lower order modes are expected to dominate. For our disks, our lowest value is X1 = 5.7,

and most disks have X1 > 10, so swing amplification should not be significant in these

simulations.

Another proposed instability in gaseous disks is provided by the SLING mechanism [??],

which is driven by m = 1 mode growth and is sensitive to the outer edge of the disk. For our

simulations, we see little m = 1 power. Additionally, we tested the importance of the outer

edge by applying a step-function cutoff to Σ on the disk outer edge for marginally stable

disks and the overall behavior was unaltered. It therefore seems unlikely that the SLING

mechanism plays a major role in these simulations.

It should be noted that for our simulations we calculate Q from the ICs. Since the

equilibrium orbital velocity is known (see §2.2.3), we can directly calculate κ2 = 2Ω
R

d
dR

(R2Ω).

This fully includes the effects of a 3D disk with self-gravity and pressure gradients. Σ is

calculated by binning SPH particles radially, summing their masses, and dividing by the

annulus area. A common approximation for light disks is to ignore disk self gravity and

pressure gradients and use Q ≈ csΩ/πGΣ, which for disks of Md/M∗ ≈ 0.1 underestimates

Q at the 10% level. Different estimates of Q may account for some of the discrepancy in
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the literature regarding the critcal Q required for fragmentation.

As can be seen in figure 3.3, there is some overlap in Q for the fragmenting and non-

fragmenting populations. Since the Toomre stability criterion strictly applies to a 2D disk,

this is unsurprising. Following the work of ?, to higher order a disk scale height correction

enters into the dispersion relation for axisymmetric perturbations. Taller disks should be

more stable than thinner ones.

We re-parameterized Q to include disk height as:

Qeff ≡ Qβ(H/R)α (3.8)

where H is the disk scale height and α is a free parameter. β is normalization parameter

that we set such that Qeff < 1 is the boundary for disk fragmentation (see below). H is

calculated as the standard deviation of the vertical density profile, rather than the first order

approximation cs/Ω. We then fit the power law α to minimize the overlap of the boundaries

in Qeff for the fragmenting/non-fragmenting population. Figure 3.4 shows the separation

of the two populations (compare to fig. 3.3). For α = 0.18 and β = 2.1, simulations with

Qeff < 1 fragment.

A power law was chosen because it is a simple functional form, and there is a great deal of

self-similarity in PPDs, but other forms such as linear corrections might be suitable as well.

As expected, taller disks have a larger Qeff and are therefore less prone to fragmentation,

although the dependence on height is weak. A simple linear correction can be derived by

Taylor expanding and demanding Qeff(H = 0) = Q. Doing so and defining h ≡ H/R gives:

Q′eff = Q

[
1 +

α

1− α

(
h

h0

)]
(3.9)

where h0 = [β(1 − α)]−1/α = 0.043, which is a very reasonable value for typical disk aspect

ratios.

We also found that Qeff correlates strongly with time until fragmentation (see fig. 3.5).

We found it to predict fragmentation time with less scatter than Q. To verify that H/R is an

important parameter in predicting disk fragmentation, we considered power law dependence
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Figure 3.5: Total simulation time (non-fragmenting simulations) and time until fragmen-

tation (fragmenting simulations), in units of the orbital period at the most unstable disk

radius. Fragmentation is defined to occur when a gravitationally bound clump forms. The

fragmentation timescale increases rapidly as Qeff approaches 1. Simulations with Qeff & 1

were run for longer to verify that they do not fragment.

of Qeff on various dimensionless combinations of parameters, including the most unstable

wavelength, cs, T , and Ω. We found H/R to separate the populations most strongly.

These considerations indicate disk scale height is an important parameter in dictating

stability and fragmentation. With the fragmentation boundary Qeff = 1, we are equipped to

estimate disk parameters for which we may reasonably expect disks to fragmentation.

Figure 3.6 shows the boundaries for disk fragmentation for a star of mass M∗ = M�/3

as a function of Rd, Md, and the temperature at 1 AU (T0). The contour lines mark the

boundary for various values of T0. Disks to the right of the contour lines have a minimum
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Qeff < 1 and will fragment.

The red boundary marks the fiducial value of T0 = 130K from the observations of ? (see

§3.2.1), with the surrounding red region marking the sample scatter in their observations of

25K. The red point marks the fiducial values (for a young disk) of Md and Rd from the

observations of ? (see §3.2.1).

Since the fiducial disk parameters lie to the left of the fiducial boundary, we expect the

observed disks to not be susceptible to fragmentation by GI. This is to be expected, since

the timescales for fragmentation are so much shorter than observed disk lifetimes/ages, it is

unlikely to observe gravitationally highly unstable PPDs. However, we note that observed

disk parameters lie close to the region of fragmentation.

3.4 Clumps

The formation of tightly bound, dense clumps of gas marks the stage of disk evolution where

our isothermal treatment begins to break down. Clumps can collapse rapidly, much faster

than cooling timescales, and therefore are better approximated as adiabatic than isothermal.

Since isothermal clumps do not heat up, they will be less pressure supported and tend to

collapse more easily. We therefore restrict our analysis of clumps to the early stages of

formation and accordingly limit the scope of our results.

To track the formation of clumps, we developed a simple clump finding/tracking software

routine3 built around the group finder SKID4. To find gravitationally bound clumps, we may

factor in the disk geometry. Particle masses are scaled by R3 and a density threshold is

set such that at least N particles lie within the Hill-sphere of particles under consideration,

where N = Nsmooth is chosen as the number of neighbors used for SPH smoothing. This

gives a threshold of

ρmin =
3NsmoothM∗

R3
(3.10)

3Our clump finding code is freely available on github at https://github.com/ibackus/diskpy as a part
of our PPD python package diskpy

4SKID is freely available at https://github.com/N-BodyShop/skid

https://github.com/ibackus/diskpy
https://github.com/N-BodyShop/skid
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Figure 3.6: Fragmentation criteria for disk ICs. The curved lines define which disks will

fragment for various disk temperatures at 1 AU, assuming a temperature profile of T ∝ r−0.59

and a surface density profile of Σ ∝ 1/R. ICs which lie to the right of a line will fragment.

The boundaries are Qeff = 1 contours, where the Qeff estimates include approximations for

disk height and disk self gravity. The red line marks the boundary defined by the fiducial

temperature of T0(1 AU) = 130± 25K from ? and the red dot marks the fiducial disk mass

and radius for a young disk from ? (see §3.2.2 for a discussion of these values). These fiducial

values likely have large uncertainties (not pictured).
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Figure 3.7: An example of the typical stages of clump formation. Clockwise, from top-left:

(1) Initial conditions Qeff < 1 (2) Strong spiral structure develops. (3) Spiral arms become

overdense and break apart into clumps. (4) The disk begins fragment strongly.
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The SKID algorithm is then applied, which uses a friends-of-friends clustering algorithm fol-

lowed by a gravitational unbinding procedure to determine which clumps are gravitationally

bound. By visual inspection, this provides robust results over a large range of disk and sim-

ulation parameters, and importantly it avoids marking high-density spiral arms as clumps.

Figure 3.8 shows an example of this clump finding applied to a highly unstable PPD.

To track clumps over many time steps, clumps are first found in all simulation snapshots.

They are then tracked over time by comparing clumps in adjacent time steps and seeing which

have the most particles in common. Mergers (including multiple mergers), clump destruction,

and clump formation are accounted for. Clump parameters such as mass, density, size, and

location are all calculated and followed as a function of time.

We find that clumps form according to the same general picture, as shown in figure 3.7.

Disks with a minimum Qeff . 1.6 (or about Qmin . 1.3) will form noticeable spiral structure

after several orbital periods. Disks with an initial Qeff < 1 will grow overdense spiral arms

which will collapse and fragment into several dense clumps. Clumps initially form near

the most unstable disk radius. For these simulations, that is approximately at Rd. They

form after several to tens of orbital periods at the most unstable radius. Average clump

masses are around 0.3MJupiter, with some rapidly growing to 1MJupiter. The timescales for

disk fragmentation increase rapidly as Qeff → 1 (fig. 3.5). After this stage, the isothermal

approximation begins to break down. The disks then undergo a rapid, violent fragmentation.

3.5 Discussion

3.5.1 Thermodynamics

For these simulations we used a locally isothermal approximation for several reasons. We

wished to perform a large scan of parameter space without compromising resolution too

strongly. A computationally fast isothermal EOS is straightforward to implement. We also

desired to build on previous work and to extend it to poorly studied M-dwarf systems.

Our work here is directed at exploring the dependence of the fragmentation boundary on
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Figure 3.8: A demonstration of the clump finding algorithm used here. Integrated column

density for the gas is pictured with a logarithmic color scale. Red circles mark the detected

clumps. At the end of the simulation, this highly unstable disk formed 108 distinct, gravi-

tationally bound clumps. The algorithm picks out clumps with a high success rate without

reporting false positives from other high density structure such as spiral arms.
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stellar/disk mass, disk height, and ICs. We leave the dependence on EOS for future work.

A non-isothermal EOS introduces non-trivial numerical issues, especially in the context

of SPH simulations of protoplanetary disks. Unwarranted, poorly understood heating terms,

especially from artificial viscosity (AV), are introduced into the energy equation. Previous

results [?????] and our own initial tests indicate that in the context of PPDs, AV heating

can dominate disk thermodynamics. Non-isothermal PPD simulations may not converge

[?], whereas in §2.4 we demonstrate that our approach does converge. It is also unclear

how rapidly disks will radiatively cool, an important parameter for the possibility of disk

fragmentation [???]. We hope to investigate these effects in future work.

The isothermal approximation used for these simulations limits the scope of our results.

An isothermal EOS would well approximate a disk where stellar radiation, viscous accretion

heating, and radiative losses to infinity, are nearly balanced and control the temperature

of the disk. Furthermore, temperature is independent of density, which is only appropriate

for an optically thin disk. The isothermal approximation applies only to scenarios where

dynamical timescales are much longer than the timescales for heating/cooling back to thermal

equilibrium with the background.

These conditions may not hold in the disks under consideration. This experiment there-

fore does not realistically follow the thermal evolution of the disk. We are limited to a

preliminary investigation into the large-scale dynamics of the disk before the putative equi-

librium temperature profile would be expected to be strongly altered.

During the initial stages of disk evolution, dynamical and physical timescales are of order

the orbital period and disk radius, respectively. During this stage, the isothermal EOS can

still provide insight into the global dynamics of a GI disk at a certain stage. However, once

clumps form, the isothermal approximation no longer provides much insight. Clumps should

get hot as they collapse. The dynamic timescales of dense clumps will be short as they

accrete matter, decouple from the disk, and scatter with other clumps. Pressure support of

clumps, which is poorly captured by an isothermal EOS, should tend to increase their size

and their coupling to the disk, meaning that the violent fragmentation of disks after initial
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clump formation which we see in our simulations may not be the final state of a typical

fragmenting disk. Clumps which are sufficiently dense may decouple from the disk enough

to experience strong shocks and tidal interactions which will cause heating. These processes

will strongly influence clump growth, evolution, and survival, all of which are still under

investigation [??].

We therefore limit ourselves to discussing the early stages of clump formation. Our results

indicate that the critical value of Qmin . 0.9 required for fragmentation is significantly

lower than some previous results which found closer to Qmin . 1.5. Although this makes

requirements for fragmentation more stringent, it does not rule out GI and disk fragmentation

as important mechanisms during planet formation in PPDs around M-dwarfs.

3.5.2 Previous results

We find that for most disks, Q . 0.9 is required for disk fragmentation. Re-parameterizing

Q as Qeff to include the stabilizing effect of disk height provides a more precise way to

predict fragmentation. The ratio of Qeff/Q can vary by 30% for reasonable disk parameters.

This ratio will vary even more when considering solar type stars in addition to M-dwarfs.

However, Q still provides a reasonable metric for disk fragmentation.

Other isothermal studies have found different boundaries. In contrast to our results, ?

found the threshold to be Q ≤ 1.5. ? found Q as high as 1.3 would fragment. ? found,

using an isothermal EOS or diffusive radiative transfer, that Q = 1.3− 1.5 would fragment.

? found Q = 1.4 isothermal disks would fragment. ? found that cooling a disk from Q = 1.8

to Q = 0.9 caused it to fragment. Their clumps did not survive, although as they note

that may be due to numerical issues. ? found that disks could be pushed below Q = 1 by

mass loading and still not fragment, by transporting matter away from the star and thereby

decreasing Σ and increasing Q. It should be noted that some of these simulations were run at

much lower resolution than ours. Differences may also be due in part to simulation methods:

using cylindrical grids, spherical grids, or SPH methods; applying perturbations; or even 2D

[?] vs 3D simulations.
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Since all the details of previous work are not available, the source of the discrepancy in

critical Q values is uncertain. One source of discrepancy is simply how Q is calculated. As

mentioned in §3.3, approximating Q by ignoring disk self-gravity and pressure forces can

overestimate Q on the 10% level for heavy disks.

The discrepancy may also be due to the different methods of constructing equilibrium

disks. As demonstrated in §2.3, overestimating velocities at less than the percent level can

force a disk to fragment. Disks near the fragmentation boundary are very sensitive to ICs.

Initial conditions are not in general available for previous work, however we can note that

some studies appear to display a rapid evolution of Q at the beginning of the simulation.

For example, some runs of ? evolve from Qmin = 1.5 to Qmin = 1 in fewer than 3 ORPs (see

their Figure 14). Figure 1 of ? shows two isothermal simulations which evolve from a Qmin

of 1.38 and 1.65 to Qmin = 1 in fewer than 2 ORPs. This is indicative of ICs which are out

of equilibrium.

In contrast, even our very unstable disks display a remarkably smooth and gradual initial

evolution. Figure 3.9 shows the behavior of the minimum Qeff (normalized by its initial value)

for our fragmenting runs as a function of time until fragmentation. For all the runs, Qeff

decreases gradually for most of the simulation until dropping rapidly shortly before the disk

fragments. For our runs near the fragmentation boundary, this is much more gradual and

much less pronounced than for the runs of ? or ? mentioned above. For us, a much smaller

change in Q takes around 10 ORPs. Qeff evolves even more slowly for non-fragmenting runs.

Qmin follows a similar behavior, although with more scatter (in large part because Q does

not determine the timescale until fragmentation as well as Qeff does).

However it is not certain how close to equilibrium ICs should be to capture the relevant

physics of PPDs. Actual disks are constantly evolving from the early stages of star formation

until the end of the disk lifetime. We chose to use disks as close to equilibrium as possible,

seeded only with SPH poisson noise, to avoid introducing numerical artifacts. Some authors

introduce density perturbations which are controllable. If sufficiently large, they may serve

to ameliorate the problems mentioned above by explicitly having fragmentation be driven
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Disk fragmentation occurs at t/tfragment = 1. All runs follow similar trajectories in this plot,

even though a significant range of initial Qeff and tfragment values are represented here (all

the fragmenting runs in Fig. 3.5 are presented here). The simulations undergo an initially

gradual decrease in Qeff which steepens sharply shortly before fragmentation.
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by physically reasonable spiral modes (e.g. ?) or intentionally large random perturbations

(e.g. ?). Others have considered mass loading as a means to grow to low Q [?].

3.5.3 GI in PPDs

Observed disks around M-dwarfs do not appear to have low enough inferred Qmin values to

be sufficiently unstable for fragmentation under GI, however this is what would be expected

given the short timescales for the fragmentation of an unstable disk. Reported disk ages are

of order 106 years [?], orders of magnitude longer than fragmentation timescales, making the

observation of a highly gravitationally unstable disk unlikely. This is a strong selection effect

for observed disk parameters.

Although fragmentation timescales are very rapid, disks may persist much longer in

moderately unstable configurations where GI drives large scale structure but which have not

grown sufficiently unstable as to be prone to fragmentation. Early work is being done on

trying to observe GI driven structures, but with current instrumentation such structures will

be difficult to resolve [??].

As shown in figure 3.6, the fiducial values for disk parameters adopted here place observed

disks near the boundary for fragmentation. The fact that observations indicate normal disk

parameters which are close to the boundary, rather than orders of magnitude off, suggests it

is plausible that a significant portion of PPDs around M-dwarfs will undergo fragmentation.

This would predict a sharp transition in the distribution of inferred Qeff values around

Qeff = 1. Older disks tend to expand radially [?], thereby decreasing Σ, increasing Q, and

pushing them away from the Qeff = 1 boundary. We note that while Q is a reasonably

strong predictor of fragmentation, disk height is an additional parameter worth measuring

to predict fragmentation.

Given the results of these isothermal simulations, we expect GI to play a large role in

the early stages of planet formation around M-dwarfs. The exact role of star mass/type on

fragmentation remains unclear. The parameter space we scanned is sufficiently large that

adding an extra dimension was prohibitive, we therefore only studied one star mass. Future
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work should be able to determine what stars are the most suitable for fragmentation. Once

large-scale density perturbations are formed via GI, the fate of the disk remains unclear.

Future work should include more sophisticated thermodynamics to follow the evolution of

the gaseous component of the disk to better determine under what conditions clumps will

form, and what is required for them to survive. Additionally, decreasing the resolution in

our isothermal SPH simulations appears to drive fragmentation (see §2.4). The importance

of resolution in simulations is subject to much investigation and should be further pursued

(e.g. ???).

Planet formation will of course require the concentration of solids as well. Including

dust in simulations of young PPDs will be required. In a fully 3D, highly non-axisymmetric

environment, we may investigate how GI affects solids. Dust enhancement through pres-

sure gradients, dust evolution through collisions and coagulation, and dust coupling to disk

opacity and cooling, will all strongly affect prospects for planet formation.
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Sim. Profile Rd T0 Md Q Qeff fragment?
(AU) (K) (M�)

0 powerlaw 1/3 64 0.02 0.78 0.76 yes
1 powerlaw 3 64 0.03 0.82 0.86 yes
2 powerlaw 30 64 0.04 0.88 1.01 —
3 powerlaw 1/3 129 0.03 0.81 0.84 yes
4 powerlaw 3 129 0.04 0.86 0.96 yes
5 powerlaw 30 129 0.06 0.92 1.12 —
6 powerlaw 1/3 258 0.04 0.85 0.93 yes
7 powerlaw 3 258 0.06 0.91 1.07 —
8 powerlaw 30 258 0.09 0.98 1.26 —
9 powerlaw 1/3 64 0.01 0.95 0.94 yes
10 powerlaw 3 64 0.02 0.99 1.05 —
11 powerlaw 30 64 0.04 1.04 1.23 —
12 powerlaw 1/3 129 0.02 0.98 1.03 —
13 powerlaw 3 129 0.03 1.02 1.16 —
14 powerlaw 30 129 0.05 1.09 1.35 —
15 powerlaw 1/3 258 0.03 1.01 1.13 —
16 powerlaw 3 258 0.04 1.07 1.29 —
17 powerlaw 30 258 0.07 1.12 1.48 —
18 powerlaw 1/3 64 0.01 1.12 1.12 —
19 powerlaw 3 64 0.02 1.15 1.25 —
20 powerlaw 30 64 0.03 1.21 1.45 —
21 powerlaw 1/3 129 0.02 1.14 1.22 —
22 powerlaw 3 129 0.03 1.19 1.37 —
23 powerlaw 30 129 0.04 1.24 1.56 —
24 powerlaw 1/3 258 0.02 1.18 1.33 —
25 powerlaw 3 258 0.04 1.23 1.51 —
26 powerlaw 30 258 0.06 1.27 1.7 —
27 powerlaw 1/3 64 0.01 1.28 1.3 —
28 powerlaw 3 64 0.02 1.32 1.45 —
29 powerlaw 30 64 0.03 1.37 1.67 —
30 powerlaw 1/3 129 0.01 1.31 1.41 —
31 powerlaw 3 129 0.02 1.35 1.59 —
32 powerlaw 30 129 0.04 1.4 1.78 —
33 powerlaw 1/3 258 0.02 1.34 1.54 —
34 powerlaw 3 258 0.03 1.39 1.73 —
35 powerlaw 30 258 0.05 1.42 1.93 —
36 powerlaw 1 64 0.02 0.8 0.81 yes
37 powerlaw 9 64 0.03 0.84 0.92 yes
38 powerlaw 1 129 0.03 0.83 0.89 yes
39 powerlaw 9 129 0.05 0.89 1.03 —
40 powerlaw 1 258 0.04 0.87 0.99 —
41 powerlaw 9 258 0.07 0.94 1.15 —
42 powerlaw 1/3 64 0.02 0.87 0.85 yes
43 powerlaw 1 64 0.02 0.88 0.9 yes
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Sim. Profile Rd T0 Md Q Qeff fragment?
(AU) (K) (M�)

44 powerlaw 3 64 0.02 0.9 0.96 yes
45 powerlaw 9 64 0.03 0.93 1.02 —
46 powerlaw 30 64 0.04 0.96 1.12 —
47 powerlaw 1/3 129 0.02 0.89 0.93 yes
48 powerlaw 1 129 0.03 0.92 0.99 —
49 powerlaw 3 129 0.04 0.94 1.06 —
50 powerlaw 9 129 0.04 0.97 1.14 —
51 powerlaw 30 129 0.06 1.0 1.23 —
52 powerlaw 1/3 258 0.03 0.93 1.03 —
53 powerlaw 1 258 0.04 0.96 1.1 —
54 powerlaw 3 258 0.05 0.99 1.18 —
55 powerlaw 9 258 0.06 1.02 1.27 —
56 powerlaw 30 258 0.08 1.06 1.38 —
57 viscous 5 129 0.04 0.91 1.01 yes
58 viscous 9 129 0.04 1.0 1.13 —
59 viscous 11 129 0.04 1.04 1.19 —
60 viscous 13 129 0.04 1.09 1.26 —
61 viscous 16 129 0.04 1.13 1.32 —
62 viscous 19 129 0.04 1.17 1.38 —
63 viscous 27 129 0.04 1.25 1.51 —

Table 3.1: The suite of runs presented here.
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Chapter 4

DUST PROCESSING IN GRAVITATIONALLY ACTIVE
PROTOPLANETARY DISKS

4.1 Introduction

Growth of solids from micron to meter scales and above—a requirement for the forma-

tion of terrestrial planets and gas giant rocky cores—is not trivial in protoplanetary disk

(PPD) environments. Overcoming the barriers to grain growth will likely require significant

concentration of millimeter and smaller grains above stellar nebulae abundances. Growth to

centimeter sized grains (pebbles) requires that small grains collide and stick without destruc-

tion. This requires surpassing the “bouncing barrier” [???] and the “destruction barrier”

[?]. Sufficiently small grains are strongly coupled to the gas and therefore have low relative

velocities in most regions of the disk. Laboratory experiments have demonstrated that un-

der these conditions, grains tend to bounce during collisions, thus preventing growth. Larger

grains which decouple more from the gas and have larger velocity dispersions must avoid

destruction during collisions in order to grow.

Growth beyond meter sized objects requires overcoming the “meter barrier” [?]. The gas

component of a PPD experiences a small amount of radial pressure support which the dust

does not. The dust therefore orbits more quickly and experiences a headwind. This generates

a torque which decreases the angular momentum of the dust. Very small dust grains couple

strongly to the gas and tend to orbit with the gas, while the drag force is insignificant for

very large solids which decouple from the gas. Objects between these scales—from mm

to km sizes depending on local conditions, though around a meter for typical PPDs—will

experience very rapid radial migration from 1 AU on time-scales of hundreds of years, much

faster than planet formation time-scales, and will fall rapidly into the central star.
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Overcoming these growth barriers may require significant concentration of solid material.

Current instruments, in particular ALMA, are sensitive to observing mm sized dust grains

in PPDs and are beginning to provide a sensitive laboratory for small solids in PPDs [??]).

Our work, which takes a theoretical approach, is aimed at addressing solid-gas interactions

in PPDs and how they dictate the conditions of solid growth and planet formation.

One mechanism for dust concentration is vertical dust settling. Gas and dust in the disk

will feel a vertical component of gravity toward the midplane. For a light, thin disk with a

uniform vertical temperature profile, the gas has a nearly gaussian vertical density profile

with a scale-height of Hg = cs/Ω due to pressure support, where cs is the isothermal sound

speed and Ω is the orbital angular velocity. The dust component is not pressure supported

and will therefore tend to settle toward the midplane. However, dust settling may be limited

by disk turbulence or large-scale vertical motion of the gas in a non-axisymmetric disk [??].

Dust may also be enhanced due to local pressure maxima in the disk. It has been

shown numerically that dust can accumulate at pressure maxima in PPDs [?]. Spiral arms

due to gravitational instability (GI) naturally generate well defined pressure maxima and

may generate significant dust enhancement. Sufficiently cool or massive disks will naturally

generate spiral structure for Toomre Q parameter [?] Q = csκ/πGΣ less than about 2 [??,

Chapter 3], where κ is the epicyclic frequency (equal to Ω for a Keplerian disk) and Σ is

the disk surface density. Indeed spiral structure has been observed in PPDs, in particular

around Elias-27, which has been imaged using ALMA in dust SEDs [?].

Until recently, fully realistic 3D hydrodynamic simulations of dust in PPDs have not

been possible due to computational and numerical constraints. Naive approaches are not

computationally feasible given the harsh time-stepping constraints imposed by modeling the

diffusion-like dynamics of dust grains. ? (hereafter ?) proposed a smoothed particle hydro-

dynamics (SPH) implementation of a terminal velocity approximation for small dust grains,

which avoids these time-stepping constraints. This method is self-consistent, including the

dynamical effect of dust on the gas, and potentially fast. Recent studies have used this

method to model dust migration in a circumbinary PPD [?] and to model dust enhancement
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in molecular clouds [?].

Here we study the effect of GI on dust concentration and migration in PPDs, paying

particular attention to the role of spiral-arms. We use the one fluid terminal velocity dust

algorithm of ?, which we implement in ChaNGa. We test and analyze the ? dusty-gas

algorithm in the context of realistic PPDs. To that end we present a suite of SPH PPD

simulations, including the highest resolution SPH PPD simulation to-date with 108 particles.

In §4.2 we discuss the dusty-gas algorithm of ? as implemented here, along with test re-

sults, which motivate our resolution choices for our PPD simulations. Section 4.3 describes

the disk model presented here, the initial conditions (ICs), and the run parameters cho-

sen. We present our results in §4.4, including the gas and dust dynamics. The problem of

dust mass conservation inherent to this algorithm is presented and discussed in §4.5. Our

discussion is presented in §4.6.

4.2 Dusty-gas algorithm

To model dust dynamics, we use the one-fluid SPH implementation of ? (hereafter ?) with

some minor modifications required to adapt it for our simulation code ChaNGa. ? use a

one fluid SPH implementation of dust-gas coupling via a drag force. Dust grains of one size

are modeled. Compared to two-fluid approaches [??], the one-fluid approach is much less

noisy and is faster due to needing only gas particles rather than gas and dust particles. For

small dust grains at low Stokes number St� 1 (typically cm or smaller, depending on local

conditions), the punishing time-stepping constraint of the diffusion equation is avoided by

assuming a terminal velocity approximation:

∆v ≡ vd − vg = ts∆f (4.1)

Where vd, vg are the dust and gas velocities, ts is the dust stopping time and ∆f ≡ fd− fg is

the difference in acceleration due to external forces acting on the dust and gas components.

Note that the opposite sign is often used in drag studies. This approximation is strictly

valid for only low Stokes numbers. For the disks studied here, this approximation holds well
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everywhere in the disk except at extremely large R. In most cases, for high Stokes numbers

this will under-diffuse the dust. Under this approximation, the time-stepping constraint for

the dust-gas interaction is satisfied by the Courant conditions, which is already required for

hydrodynamics.

To implement the one-fluid approach, an extra SPH quantity is integrated. The dust

fraction is defined as ε ≡ ρd/ρ, where ρ is the volume density of the dust and ρ is the total

(gas + dust) volume density. The gas density is then given by ρg = (1− ε)ρ.

Here we reproduce the hydrodynamic equations of ? for this approximation, neglecting

external heating/cooling terms, which are not used in this study.

dρ

dt
= −ρ(∇ · v) (4.2)

dv

dt
= (1− ε)fg + εfd + fext (4.3)

dε

dt
= −1

ρ
∇ · [ε(1− ε)ρts∆f ] (4.4)

du

dt
= −P

ρg
(∇ · v) + εts(∆f · ∇u) (4.5)

where fext is external specific force acting on both the dust and gas components (e.g., gravity)

and fd and fg are the external specific forces (or accelerations) acting on only the dust, gas

components, respectively. Pressure gradients factor only into the fg term. The operator

d
dt
≡ ∂

∂t
+v ·∇ is the standard convective derivative used in Lagrangian hydrodynamics. The

standard specific internal energy of the gas is given by u, and v is the barycentric velocity

of the dusty-gas mixture. In the case of hydrodynamics and gravity only (as used in this

study):

fd = 0; (4.6)

fg = −∇P
ρg

+ fAV ; (4.7)

fext = fgrav; (4.8)

where fgrav is the specific force due to gravity and fAV is due to artificial viscosity. As with

?, fAV is only applied to the gas component.
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4.2.1 Implementation

Equation (4.2) is unchanged from the standard SPH continuity equation. In the case of

hydrodynamics + gravity (which we use here), eqs.(4.6)-(4.8) imply that the momentum

equation becomes (4.3):

dv

dt
= −∇P

ρ
+ fgrav + (1− ε)fAV (4.9)

This is identical to standard SPH, but with the factor of (1 − ε) multiplying fAV . There-

fore, our implementation of dusty-gas is primarily restricted to the dust fraction and energy

equations.

To apply SPH discretization to these equations, ? propose two approaches. Eqs.(4.6)

& (4.7) imply that with hydrodynamics eqs.(4.4) & (4.5) involve second derivatives. The

“two-loop” method requires an extra loop over neighbors to calculate the second derivatives

in eq.(4.4), whereas the “one-loop” method estimates the second derivatives directly.

The “one-loop” method avoids an extra loop over neighbors, making it the computation-

ally faster approach. However, it has two main flaws. First, the one-loop method makes

assumptions about the AV scheme used. In particular, the derivation of the method assumes

negligible artificial viscosity such that fAV ≈ 0 in eq.(4.7). The derivation also implicitly as-

sumes a certain form of AV and the momentum equation [?]. Our tests demonstrate very bad

behavior when a different AV scheme is used. Additionally, this method may be inconsistent

with some weighting schemes used in calculating the momentum equation (eq. 4.3).

Second, the one-loop approach suffers more strongly from noise in the second derivative

estimates. Noisy second derivatives are a well known problem in SPH [?]. As demonstrated

in the PPD simulation results presented in §4.4, this dusty-gas method suffers generally from

strong SPH noise. It is therefore important to avoid noisy second derivatives.

While the two-loop method is slower, in the production version of the code the cost

is fairly insignificant. In ChaNGa, the majority of time is spent building the Barnes-Hut

[?] tree, calculating gravity, and initializing the SPH loops over neighbors. An extra loop

over neighbors is rapid. For a PPD in ChaNGa, the two-loop method typically requires an
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increase of a few percent in wall clock time.

We perform the two-loop method by first looping over neighbors using the standard SPH

approach, which allows us to estimate:

∆f = − 1

1− ε

(
dv

dt

)
SPH

(4.10)

in which fd = 0 and
(

dv
dt

)
SPH

is the hydrodynamic acceleration on the particle, including AV

terms and pressure gradients. A second loop over neighbors is then performed to calculate

the dust fraction and energy equations. Let:

Gab ≡
εa(1− εa)ts,a

ρa
∆fa · ∇Wab(ha) (4.11)

where Wab(ha) is the SPH kernel W (|ra − rb|, ha) and ha is the smoothing length of particle

a. We can write the SPH discretization of eqs.(4.4)&(4.5) as:

dεa
dt

= −
∑
b

mb(Gab −Gba) (4.12)

dua
dt

=
1

1− εa

(
dua
dt

)
SPH

− 1

1− εa

∑
b

mbGab(ua − ub) (4.13)

where
(

dua
dt

)
SPH

is calculated from the normal SPH energy equation and represents heating

by gas-gas interactions. The sum in eq.(4.13) is due to gas-dust interactions. These sums

are essentially the same as ? eqs.(26) & (27), but we have not specified the AV scheme or

how exactly
(

dua
dt

)
SPH

is calculated. Note that the term Ωa ≡ 1− ∂ha
∂ρa

∑
bmb

∂Wab(ha)
∂ha

in the

SPH formulation used by ? is replaced with Ωa → 1 under our SPH implementation. This

is explained in ?.

As with ?, we calculate the stopping time in the Epstein regime, valid for small dust

grains at Stokes number � 1:

ts =

√
πγ

8

ρgrainsgrain

ρcs
(4.14)

where cs =
√
γkBT/m is the adiabatic sound speed, ρgrain is the intrinsic grain density (e.g.

∼ 3g/cm3 for silica) and sgrain is the size of the grains, e.g. the radius for spherical grains.

Note that the
√
γ factor in the expression for ts is canceled out by

√
γ in cs. The sound

speed here is used as a proxy for the thermal velocity.
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Conservation

Equation (4.13) is derived from demanding conservation of energy. As shown in ?, eq.(4.12)

conserves total dust mass exactly when (i) ma is constant with respect to t for all particles

and (ii) all particles are on the same time step.

Condition (i) is met since we do not change gas particle masses. Strictly speaking,

condition (ii) is violated, since in production codes such as ChaNGa, multi-stepping is used

to dramatically decrease computation cost. In ChaNGa, particles are dynamically assigned

time-steps of the form ∆t = 2−N∆t0 according to dynamical time-step constraints such as

the Courant condition and acceleration constraints. ε̇a is only updated for particles on active

time-steps [??]. In practice this produces minimal dust mass non-conservation. Occasionally,

ε can go outside of the range [0,1]. As with ?, when this happens we set ε = 0 or 1. This

can cause significant mass non-conservation, which we examine in detail in §4.5.

4.2.2 2D settling test

In Appendix B we reproduce the results of the four tests presented in ?. Our implementation

is able to reproduce their results. Here we discuss some test results that are particularly

relevant to PPDs.

The 2D dust settling test of ? is a simple, idealized model of dust settling in a PPD disk.

Turbulence, stirring due to spiral arms and disk structure, shearing, and 3D effects are all

ignored. The results of this test motivate our choice of resolution for our 1e8 PPD run and

indicate that we should be able to capture the basic vertical dust settling dynamics.

We follow their procedure for setting up the ICs. The set-up has an external vertical

potential applied due to a star of M∗ = 1M� at 50 AU along the z direction. The test

is run in a 2D box of width ∆x = 5 AU with periodic boundary conditions along x and

open boundary conditions along z, without self-gravity and with an isothermal EOS. ICs are

generated from gas-only particles on a hexagonal grid, stretched to give an approximately

gaussian vertical density profile with an initial scale height H/R = 0.05, fixed by setting the
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Figure 4.1: Results for the high resolution ? dust settling test. This reproduces the results

in the second panel of their Fig. 8. The dust density is plotted for all SPH particles at 5

epochs. This is a 2D test in x-z in a fixed external potential along z which represents a

patch of a protoplanetary disk. The ICs are in equilibrium and are a nearly gaussian vertical

density profile with a uniform dust fraction of ε ≈ 0.01.

sound speed to cs = ΩH for Ω =
√
GM∗/R3. The ICs are then run with a velocity damping

force to approach equilibrium before adding a uniform dust fraction of ε = 0.0099. We use

a grain size sgrain = 1 mm and grain density ρgrain = 3 g cm−3.

After the initial settling, the density profile is still very nearly gaussian, with a scale

height of H = 2.52 AU. This yields a midplane density of ρ0 = 5.55 × 10−13 g cm−3 and

a midplane stopping time of ts = 0.51 yr1. As with ?, the settling test was run at three

resolutions: 896 (LoRes), 3552 (MedRes), and 14208 (HiRes) particles. The test was run for

50 ORPs, defined as 2π/Ω = 103/2 yr. For all runs we use Nsmooth = 28 neighbors and the

1 This value of ts does not agree with the value reported in ?, due to a typo in their §4.4.1 for the cs–H
relation which has an extra factor of cs which propagates into their reported ts value (eq. 58).
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Wendland C4 kernel. Figure 4.1 shows the results of the HiRes dust settling test (similar to

?, Fig. 8). Dust density as a function of z is plotted for all particles at several time steps.

As expected, the dust settles to the midplane, with settling occuring more rapidly at higher

elevations due to the increased ts and vertical component of the star’s gravity, resulting in

the double peaked profile apparent after 10 ORPs.

To check the validity of the approach, we have compared the results to a semi-analytic

solution. Let us assume a negligible dust fraction ε � 1 such that ρ ≈ ρg and such that

the gas remains in equilibrium with a time-independent density profile of the form ρg =

ρ0 exp(−z2/2H2). Let us also assume very small dust particles, tightly coupled to the gas

such that the terminal velocity approximation holds exactly, i.e. dust velocity is given by

vd = tsfd where fd is the specific force acting on the dust, excluding gas-drag. For an

isothermal EOS with uniform cs, the dust velocity is then given as a function of position:

vd(z) =
dz

dt
= −GM∗

√
πγ

8

ρgrainsgrain

ρ0cs

zez
2/2H2

(z2 +R2)3/2
(4.15)

The lagrangian continuity equation can be evaluated as:

dρd
dt

= −ρd
vd
z

[
1 + z2

(
1

H2
− 3

z2 +R2

)]
(4.16)

where the time derivative is a convective derivative. These equations can easily be numeri-

cally integrated.

Figure 4.2 compares ρd for the semi-analytic solution with the test results at all 3 resolu-

tions after 40 ORPs. For the semi-analytic solution, we integrate positions from −3H to 3H,

equivalent to setting ρd = 0 for |z| > 3H. As resolution increases, the tests better approxi-

mate the semi-analytic curve, and the noise decreases. The MedRes and HiRes runs perform

fairly well at approximating the width of the profile. Although still smoothed, the HiRes run

is able to broadly capture the dual-humped nature of the profile. The semi-analytic profile

is likely much more strongly peaked than a realistic solution would be, due to neglecting:

the force of the dust on the gas as it gets highly concentrated; any 3D effects; disk shearing;

and turbulence. Additionally, the semi-analytic profile neglects the SPH smoothing. When

smoothed by the SPH kernel, the semi-analytic result more closely matches the simulation.
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Figure 4.2: 2D dust settling test: resolution comparison. Plotted is the dust density for the

2D dust settling tests at 3 resolutions after 40 ORPs, for all particles. The semi-analytic

solution is overlaid in red, assuming no dust beyond 3H for the ICs. The horizontal bars

represent the midplane smoothing length for the different runs.

These tests indicate that we should be able to capture global dust settling rates in a

full PPD simulation, and if our resolution is sufficient we should be able to capture the

“outside-in” nature of the settling. We can naively scale the particle count of these tests

from a 2D patch to a full 3D PPD. For a disk with radius R and uniform Σ, the equivalent

particle count is N = πR2N
3/2
2D /(∆x)2. For these tests, that gives N = 8.5× 106, 6.7× 107,

and 5.3× 108 particles for the LoRes, MedRes, and HiRes runs, respectively. Capturing the

overall dust settling dynamics seems to require a resolution somewhere between the MedRes

and the HiRes runs. Noise in ρd is fairly well suppressed for the MedRes test. We therefore

choose to use 108 particles for our largest run as a decent compromise between computational

cost and resolution. This represents the largest PPD run to-date that we are aware of.
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Table 4.1: Simulations. NSPH is the number of SPH particles, s is the grain size, Qeff is the

effective Toomre Q (see §3.3) with a correction for scale height. Disks with Qeff < 1 are

expected to fragment. The simulation runtime is given in ORPs, the rotational period at

Rd = 20 AU. The 1e6 VeryHiQ run has the same τsettle as the 20 mm runs.

Run NSPH s Qeff Frag? trun

(mm) (ORP)

1e5 105 1 1.03 No 132

1e6 106 1 1.03 No 46

1e7 107 1 1.03 Yes 14.8

1e8 108 1 1.03 No 9.6

1e7 HiQ 107 1 1.10 No 68

1e7 20mm 107 20 1.10 Yes 5.4

1e7 20mm exp cut 107 20 1.10 Yes 4.7

1e7 20mm hard cut 107 20 1.10 Yes 2.7

1e7 5mm 107 5 1.10 No 34

1e6 20mm 106 20 1.03 No 50

1e6 VeryHiQ 106 0.27 63 No 50

4.3 Overview of runs

For a full list of runs, see Table 4.1. The disk model here is similar to the fiducial model

of Chapter 3 based on observations [??] of disks around M-Dwarfs, representing a typical

young disk. The disk mass we use is slightly increased to place the disk near the Qeff = 1

fragmentation boundary, where Qeff is the Toomre Q parameter, modified to account for

disk height, defined as Qeff ≡ βQ(H/R)α (eq. 3.8) where we adopt α = 0.18 and β = 2.1.

This places our disks a little below Q = 1. Gaseous disks with Qeff < 1 are susceptible to
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fragmentation. The star mass is M∗ = M�/3.

Equilibrium ICs were generated with the method of §2.2. The surface density profile

used is a Σ ∝ R−1 powerlaw, with a smooth step-function interior cutoff applied at 2 AU

and a gaussian cutoff applied at Rd = 20 AU. The central star is treated as a sink particle

with a sink radius of about 1 AU. The surface density normalization is set by the required

Qeff . The temperature follows a powerlaw of T ∝ R−q. This fiducial model uses a power law

of q = 0.59, from the mean value for fits to dust SEDs for M-Stars in ?, where we set the

temperature at 1 AU to 130 K. Figure 4.3 shows the IC profiles for this disk model.

In order to investigate the resolution dependence of this dusty-gas algorithm in the con-

text of a gravitationally active PPD, it was necessary to seed spiral arm growth with an

artificial perturbation. Spiral arm growth in SPH simulations of axisymmetric PPDs is

seeded by SPH noise, which is highly resolution dependent, making direct comparison of

spiral arm dynamics at different resolutions very difficult. The spiral arm growth timescales

vary with resolution and the dominant modes (especially early in the simulation) can vary

stochastically.

An m = 2 density perturbation was applied to the disk after generating the equilibrium

ICs. A surface density profile of:

Σ(r, φ) = Σ(r)[1 + δΣ sin(mφ)] (4.17)

was applied by shifting particles by a small amount along φ:

∆φ =
δΣ

m
cos(mφ) (4.18)

For these runs we used a fractional surface density perturbation of δΣ = 0.02.

All the simulations performed here use a locally isothermal EOS with a mean molec-

ular weight of 2, representing molecular hydrogen. As discussed in Chapter 3, while the

isothermal approximation is an idealization, in the context of the early stages of gravita-

tionally active PPDs it can reasonably capture the dynamics. Once a disk fragments, the

approximation breaks down. However, current SPH approaches are not able to accurately



95

0

1000

2000

(g
cm

2 )

IC Profiles for 1e8 PPD

100

200

T 
(K

)

2

4

Q
ef

f

10 3

10 1

St

0 5 10 15 20 25 30
R (AU)

0

200

400

se
tt

le
(O

RP
)

Figure 4.3: Radial profiles for the 1e8 PPD ICs. Plotted (from top to bottom) are the total

surface density (gas + dust), temperature, the effective Toomre Q (Qeff), the vertically mass

averaged Stokes number St ≡ tsΩ, and the dust settling timescale τsettle. The surface density

is a powerlaw of −1 with an interior cutoff at 4 AU and a smooth gaussian cutoff from 20

to 30 AU. Disks with a minimum Qeff < 1 are prone to fragmentation under GI [?].
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run non-isothermal PPDs ???. Our own test results indicate very strong artificial viscosity

driven heating, with temperatures doubling on outer orbital time scales.

For our primary, fiducial runs we chose a dust grain size of s = 1 mm, to represent

physically reasonable grain sizes in early PPDs. Current instruments such as ALMA are

sensitive to observing dust in this regime. For our disks, this grain size also obeys the short

stopping time ts � ∆t and low stokes St� 1 assumptions of this algorithm (see figure 4.3).

To probe more dust settling times (τsettle) we also ran several 5 mm and 20 mm runs. To

test the impact of disk stability, we ran a disk with decreased gas mass and with dust size

scaled to keep ts the same as for the 20 mm runs (run 1e6 VeryHiQ in table 4.1).

Since the approach used to model dusty-gas in this chapter is fairly new we have studied

the resolution requirements of this algorithm in a PPD environment. The test results of §4.2.2

indicate that unprecedented resolution may be required to properly capture dust settling in

a PPD. An additional concern is the noise present in this algorithm, a problem common to

SPH methods employing second derivatives. Given the test results, we have chosen to run

our fiducial 1 mm disk at a highest resolution of 108 particles (run 1e8 in table 4.1). To

understand the effects of resolution we additionally ran the 1 mm fiducial disk at 105, 106,

and 107 particles (1e5, 1e6, and 1e7 in table 4.1). Due to early fragmentation of the 107

particle disk we also re-ran it at a slightly increased Qeff (run 1e7 HiQ).

The dust settling test of ? adopts Nsmooth ≈ 28 for the number of nearest neighbors used

for smoothing2. Scaling this naively from 2D to 3D gives Nsmooth = 283/2 ≈ 148. For our

runs we adopted Nsmooth = 128. A neighbor count significantly larger than the often used

Nsmooth = 32 seems necessary to reduce noise in the dust algorithm. We used the Wendland

C4 smoothing kernel to prevent particle pairing instabilities at this high neighbor count [?].

A gravitational force accuracy (node opening) criterion of θBH = 0.7 was used. Timesteps

are set by a Courant condition of ηC = 0.3 and an acceleration criterion of ∆ti = η
√

εi
ai

where

εi and ai are respectively the softening and acceleration of a particle, and η = 0.2. As with ?

2 While ? use a variable number of nearest neighbors, we use a fixed number of neighbors for smoothing
operations.
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and ?, we set the gravitational softening length to 0.5 〈h〉, where 〈h〉 is the SPH smoothing

length, calculated over the Nsmooth nearest neighbors, and averaged over all particles in the

simulation.

4.4 Run results

4.4.1 Gas dynamics

As discussed in §4.3 an initial m = 2 perturbation was applied to the disks presented here

to ease comparison across resolutions spanning 3 orders of magnitude. These initial small

perturbations rapidly grow (within fewer than 1 ORP) to become well defined m = 2 spiral

arms extending to the edge of the disk. The spiral pattern speed is uniform across most of

the disk and is not strongly resolution dependent for the m = 2 mode. For the 1e8 disk,

Ωs/ΩORP = 0.57 where ΩORP is the keplerian angular velocity at Rd = 20 AU and Ωs is the

spiral angular velocity. This places co-rotation at R = 29 AU, which is also the outer edge

of the disk where Σ has significantly decreased due to the external cutoff (see figure 4.3).

Once the spiral arms develop, they extend out to corotation.

As has been reported before [???, §2.4] we find that gas dynamics in SPH simulations of

PPDs can display strong resolution dependence, even up to typical resolutions of 106 par-

ticles. Figure 4.4 compares the midplane total density ρ at the 4 resolutions of the 1 mm

dust simulations presented here at the end of the 1e8 run, after 9.6 ORPs. At 107 and 108

particles the disk is still composed of two well formed spiral arms, but at 106 and 105 parti-

cles the well defined arms vanish. In general, increasing resolution produces more coherent,

well defined, and long-lived spirals. At lower resolutions, SPH noise can dominate the initial

m = 2 perturbation which introduces significant higher mode power. However it is not clear

if the different results are due simply to increased noise at lower resolutions. The effects of

resolution dependent SPH features on PPD evolution, such as artificial viscosity, smooth-

ing lengths, or gravitational softening lengths, remain poorly characterized. Additionally,

the depth of perturbations in ρ due to SPH poisson noise in the ICs is approximately res-
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olution independent for fixed Nsmooth: what changes is primarily the length scales of the

perturbations.

For the 1e8 disk, the m = 2 mode dominates throughout the simulation and higher

order modes (except harmonics) do not grow relative to the m = 2 mode. The spiral arms

remain coherent and stable, with a nearly uniform pattern speed which extends from the

inner regions of the disk to the outer regions. For the 1e7 disk, an m = 3 mode grows

and the pattern speed begins to vary radially. This causes spiral arms to cross, resulting

in small, very high density regions at the outer disk which eventually fragment, forming

small gravitationally bound clumps. For the lower resolution disks, higher order modes grow

strongly and more chaotic spiral arms develop, but no regions become locally dense enough

to drive fragmentation.

It is perhaps surprising that the 1e7 run fragments after about 14 ORPs while the other

disks do not fragment. The disk fragments in a manner consistent with that presented

in Chapter 3. Generally, decreasing resolution tends to make an isothermal SPH disk more

likely to fragment, however in our case the 1e5 and 1e6 disks do not fragment. These runs are

all very close to the Qeff = 1 fragmentation boundary, and the 1e7 run is just unstable/noisy

enough to enter a chaotic phase and has sufficiently high resolution that small regions may

have enough density (due to decreased smoothing length) to fragment.

To study the 1e7 disk at later times, we ran it again with a slightly higher Qeff = 1.1 (1e7

HiQ in table 4.1) by decreasing the gas mass slightly. This run did not fragment. Similar

to the 1e6 and 1e7 runs it enters a chaotic phase, but rather than fragment it recovers and

returns to an m = 2 dominated state again. During the chaotic phase, radial mass transport

increases, spreading disk mass and decreasing Σ, placing the disk into a higher Q state. To

roughly quantify the mass transfer rate, we estimate a disk spreading time-scale by defining

the disk width w as the mass-weighted standard deviation of R and defining the spreading

timescale as τspread = w/dw
dt

. We estimate dw
dt
≈ ∆w/∆t over a time scale of a few ORPs.

At the beginning, chaotic, and final stages this gives a τspread of roughly 300, 60, and 1100

ORPs, respectively (equal to 0.3, 0.06, and 1.1 Myr). At the end of the chaotic phase, the



99

spiral power extends over a smaller region, mainly out to about R = 15 AU, and persists

until the end of the run (68 ORPs).

We also detect long lived low Mach number shocks at the edges of spiral arms. The shocks

grow in strength as resolution increases and the spiral arms become more well defined. For

an isothermal shock, the Mach number is given by M =
√
ρg,2/ρg,1. In the 1e8 disk this

yields typical Mach numbers ofM≈ 1.2. Nowhere do we see the strong shocks required for

chondrule formation, even in our strong and well defined spiral arms at very high resolution.

For the inner regions of our disk, this gives shock speeds of v ≈ 1 km/s. For comparison, ?

find shocks of v = 5km/s may form chondrules and ? argue for shocks of order v = 8km/s.

We also observe that spiral arms have significantly decreased scale heights. Figure 4.5

shows the scale heights of our 1 mm disks. Here, we define the scale height as the vertically

mass weighted mean of |z|/R. Comparison with figure 4.4 demonstrates that the high density

regions of spiral arms have a decreased scale height, an effect which is present at all resolu-

tions for the various spiral arm configurations. The post-shock region in a self-gravitating

isothermal disk is expected to compress vertically (see ? discussion around eq. 4.56), which

is what we find here. However we are in the weak shock regime which is poorly studied

analytically. Typical pre/post-shock scale height ratios are of order 1.2, similar to our Mach

number. We also observe small, sharp jumps in the disk height of around 10% at the shock,

which is only expected for adiabatic shocks.

4.4.2 Spiral arm enhancement

We find that spiral arms can drive dust enhancement at rates comparable to or greater than

dust settling or radial migration. Figure 4.6 shows the vertically mass-averaged dust fraction

for the four 1 mm dust runs after 9.6 ORPs. This is equivalent to Σd/Σ. We find that the

structure of ε in R and θ does not follow the gas spiral arm structure and is resolution

dependent, requiring very high resolution to be captured.

At 105 and 106 particles almost no structure is visibile along (R, θ) but rather is dominated

by noise. In general, ε displays significantly more noise than the gas does (compare figures 4.4
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Figure 4.4: Midplane total density ρ after 9.6 ORPs (the end of the 1e8 run) for the 1 mm

simulations at 4 resolutions, listed in table 4.1. As resolution increases, the m = 2 spiral

mode becomes increasing well defined, coherent, and long-lived. At 106 and fewer particles,

SPH noise and possibly other resolution effects drive the disk into a more chaotic state with

higher order modes contributing significantly. The 107 disk is beginning to enter a chaotic

state at this point, and after several more ORPs it fragments. The 108 disk shows no signs

of entering such a state. The m = 2 pattern speed and winding angle are not strongly

resolution dependent.
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Figure 4.5: Scale height for the total mass (gas + dust) after 9.6 ORPs (the end of the 1e8

run) for the 1 mm simulations at 4 resolutions, listed in table 4.1. The scale height is defined

as |z|/R, mass weighted and vertically averaged. The scale height is highly correlated with

spiral arms, decreasing in the spiral arms due to self-gravity. Short, rapid spikes in the scale

height are visible at the edges of spiral arms, particularly at higher resolution in the 1e8 run.
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and 4.6). By 107 particles, ring-like structures are visible in ε which become more prominent

at 108 particles.

The growth of these ring-like structures is generated by small, localized regions of dust

enhancement around the shocks along the spiral arm edges. Figure 4.7 shows the dust

density enhancement rate, defined as |ρdε
dt
|, where the time derivative is the standard material

derivative used in SPH. Enhancement due to spiral arms increases as resolution increases and

noise in the dust fraction decreases. Capturing structure along (R, θ) in ε requires extremely

high resolution.

As the spiral arms pass, a given location will experience a brief period of dust enhance-

ment. The sweeping motion of the spiral arms, coupled with the shearing of the disk which

tends to un-wind spiral perturbations, results in the tightly packed ring-like structures. These

rings are not stationary and grow in depth as the simulation progresses (i.e. the contrast in

ε increases). We are unable to determine the ultimate outcome of these rings since they only

form at very high resolution and we are unable to run such large simulations for sufficiently

many dynamical times. Whether they continue to develop and create regions of highly con-

centrated dust or simply vanish due to shearing or some other dynamical effect remains to

be seen.

These ring-like structures are also imprinted on the dust scale height. Figure 4.8 shows

the ratio of the dust to gas scale heights, hd/hg. At high resolution, the ring structures

are clearly visible. The dust scale height increases in regions of increased ε. Dust gets

concentrated and lofted upward by spiral arms. At 105 and 106 particles, (R, θ) structure in

hd/hg largely vanishes as the dust scale height tracks the gas scale height.

4.4.3 Dust settling and migration

The disk scale height in the gaseous component is primarily due to pressure gradients, which

the dust will not feel. Therefore, the dust is expected to settle toward the midplane. Dust

settling should be a primary mechanism for concentrating dust in PPDs. We can estimate

a dust settling time scale from the expression in eq. 4.15 for vd(z), the vertical velocity for
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Figure 4.6: Vertically averaged dust fraction ε for the 1 mm simulations at 4 resolutions,

listed in table 4.1. The dust enhancement is not co-located with the spiral arms. Structure

in the x− y plane increases with resolution. At 108 particles, rings of dust-enhanced regions

develop due to spiral arm driven dust concentration. This behavior is less prominent but

still visible with 107 particles, but vanishes at lower resolutions. By 105 particles, noise

completely dominates and no structure is visible in the x− y plane.
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Figure 4.7: Absolute value of the dust density enhancement rate |ρε̇|, vertically mass aver-

aged. The time derivative is a material derivative, i.e. on a particle basis. Spiral arms drive

strong local dust concentration at the interface of two arms. Since spiral arms grow more

coherent and well defined with resolution, this effect increases with resolution, however it

remains visible even in the more chaotic spiral arms of the 1e6 run.
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Figure 4.8: Dust height to gas height ratio hd/hg for the 1 mm simulations at 4 resolutions,

listed in table 4.1. Particularly at high resolution, structure in the x−y plane largely follows

the dust fraction structure (figure 4.6). With dust scale height increasing in regions where ε

increases. As with ε, at the highest resolution prominent ring-like structures form which are

still visible but less prominent at 107 particles, and which vanish at lower resolution. At 105

and 106 particles, the dust to gas height ratio is more uniform along θ as it tracks the gas

height more strongly than at high resolution.
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dust tightly coupled to the gas settling in a gaussian vertical gas density profile. Letting the

dust settle at a characteristic velocity vd(H) from a characteristic height of H = cs/Ω we

obtain a dust settling timescale of

τsettle =
1

e1/2Ω2ts,0
(4.19)

where ts,0 is the midplane dust stopping time (see eq. 4.14). Figure 4.3 (bottom panel)

shows τsettle vs R for the 1-mm ICs. The mass weighted mean settling time is about τsettle ≈

220ORP.

Figure 4.9 shows the mass weighted mean dust-gas height ratio hd/hg, averaged out to

R = 30 AU as a function of time for the 1 mm dust runs. The dust settling rate is resolution

dependent and increases with resolution. For the 1e5 disk, settling has nearly ceased by the

end of the run, saturating at a mean dust to gas height ratio of hd/hg ≈ 0.75, comparable to

the ratio reported in ? for dust grains of a similar size in a circumbinary disk. This settling

timescale for the 1e5 disk is much shorter than predicted by eq. 4.19 and the limiting is due

entirely to numerical SPH effects, in particular increased SPH noise and increased smoothing

lengths. The settling rate for the first 10 ORPs appears to converge by 107 particles and

agrees with the analytic approximate mean settling time. Settling continues until the end

of all the 1 mm runs at resolutions above 105 particles. During the chaotic spiral transition

period present in the 1e6 and 1e7 HiQ disks around 25 ORPs, settling is strongly limited.

Probing dust settling requires high resolution disks. This introduces high computational

cost and therefore reducing the τsettle is needed to explore settling at reasonable cost. To

achieve that, we performed a series of runs with increased grain sizes of s = 5 mm and

20 mm, which reduce τsettle by factors of 5, and 20 respectively to τsettle = 44 ORPs and

11 ORPs. Unfortunately, these decreased settling times introduce dust mass conservation

errors, particularly at large radii (see §4.5). These errors restrict our analysis to the interior

of the disk (out to about Rd = 20 AU) and to short time-scales.

With those caveats, we can still note some general dust settling behavior. Figure 4.10

shows the mass weighted mean dust-gas height ratio hd/hg, averaged out to R = 20 AU as
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a function of time for several runs with decreased τsettle: 1e7 5 mm, 1e7 20 mm, 1e6 20 mm,

and the 1e6 VeryHiQ run. The 1e6 VeryHiQ run has the same τsettle as the the 20mm runs.

The 1 mm 1e7 HiQ run is included for comparison. As expected, early in the simulation for

a given resolution the settling rate is approximately proportional to the grain size, as can be

seen by comparing the curves for the 107 particle runs. The settling rate also increases with

resolution. The 1e6 20mm run settles at a similar rate to the 1e7 5mm run, even though

by physical reasoning the settling rate is expected to increase by a factor of 4 due to the

increased grain size. Dust settling is also strongly limited at the end of the lower resolution

106 particle runs, although it is not yet stalled as with the 1e5 1 mm run (figure 4.9).

One possible explanation for the reduced settling observed at lower resolutions is an

increase in chaotic spiral power and turbulence-like SPH noise on length scales comparable

to the disk scale height. To test this we ran a very stable 106 particle disk (1e6 VeryHiQ

in table 4.1), produced by increasing the Q of the 1e6 20 mm run by decreasing the disk

mass and proportionally decreasing the grain size to keep ts and τsettle constant. This disk

shows almost no non-axisymmetric power and very little chaotic behavior, and yet as shown

in figure 4.10 it settles significantly more slowly than the 1e6 20 mm run. This indicates that

spiral arms are not limiting the settling and that chaotic spiral arms driven by low resolution

do not explain the decrease in settling that we observe at lower resolutions. Rather, low

resolution directly limits settling.

4.5 Mass conservation

In the absence of multi-stepping or the dust floor/ceiling, the dust mass in this algorithm

would be exactly conserved. The dust fraction time derivative can be written as a sum of

interaction terms ε̇a =
∑

b ε̇ab, where the terms are of the form ε̇ab = −mb(Gab −Gba). Since

particle masses are constant with respect to time, ṁdust = mε̇. The change in dust mass in

particle a due to this interaction is:

dmdust,ab

dt
= ma

dεab
dt

= −mamb(Gab −Gba) (4.20)



108

0 20 40 60 80 100 120
t (ORP)

0.6

0.7

0.8

0.9

1.0

h d
us

t/h
ga

s

Mass weighted dust-gas height ratio
R < 30 au

1e5
1e6
1e7 HiQ
1e7
1e8

Figure 4.9: Mean dust to gas height ratio weighted by the dust mass as a function of

simulation time for the simulations with 1 mm grains. Dust settling rates increase with

resolution, appearing to converge by 107 particles for the duration simulated (about 10

ORPs). By the end of the 1e5 run, settling has been largely stalled. The small up-tick at

the end of the 1e7 run is due to fragmentation. The “bump” at around 25 ORPs for the 1e6

and 1e7 HiQ runs is due to the chaotic spiral transition period. The mass weighted settling

timescale is τsettle = 220 ORP for these runs.
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Figure 4.10: Mean dust to gas height ratio weighted by the dust mass for several simulations.

The 1 mm 1e7 HiQ run is included for comparison. As expected, increased grain size increases

the settling rate. However, as with figure 4.9, resolution increases the dust settling rate,

which can dominate the effect of changing grain size. The 1e7 5 mm disk (expected τsettle =

44ORP) measured settling rate is comparable to that of the 1e6 20 mm disk (expected

τsettle = 11 ORP). The 1e6 VeryHiQ run has nearly zero non-axisymmetric power (no spiral

arms). It has the same expected τsettle as the 20 mm runs and does not settle faster than the

gravitationally active 1e6 20 mm run.
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Under particle exchange, clearly maε̇ab = −mbε̇ba. Therefore this interaction adds nothing

to the total mass. Any dust gained by a is exactly canceled by dust lost by b.

Multi-stepping can break the dust mass conservation by changing when particle time

derivatives are updated. In ChaNGa, multi-stepping is handled under the kick-drift-kick

paradigm. A big time step ∆t0 is defined as a run-time parameter. Particles are dynamically

assigned a time step ∆tN = ∆t02−n to obey time stepping constraints such as the Courant

condition, gravitational accelerations, and Saitoh timestepping[?] to handle strong shocks.

For a typical PPD multi-stepping reduces the total number of required time-steps by an

order of magnitude or more.

Multi-stepping appears to be a minor contribution to dust-mass non-conservation, typ-

ically accounting for 10−2 or less of the total mass change. This is easily demonstrated

by running a simulation with and without multi-stepping. In practice, the overwhelming

majority of interacting neighbor pairs are on the same timestep. Additionally, particle time-

stepping constraints mean that ε̇a should not vary much over the course of a time step,

meaning that ε̇a and ε̇b will be roughly consistent in most cases. The majority of mass

non-conservation is instead caused by requiring ε ∈ [0, 1].

4.5.1 Dust Fraction Limiting

There is no guarantee that integrating the numerically estimated time derivative of ε will keep

ε in the physically meaningful range of [0, 1]. To cope with this, we follow ? and whenever ε

leaves that range, we limit it by setting ε = 0 or 1. In practice, we model environments with

small dust fraction and therefore primarily encounter ε dipping below zero. This means that

dust fraction limiting generates dust mass.

? also propose integrating a quantity s ≡
√

(ρε) which guarantees ε = s2/ρ ≥ 0. Initial

tests of ours indicate that this can drive unphysical behavior as s goes negative, driving

oscillations in ε. If we integrate ε, the dust fraction going below zero is intrinsic to the

algorithm, which we illustrate here in the case of 2D dust settling. These results can be

extended by analogy to inward radial migration at the disk outer regions. The issue can be



111

Simulation ∆md/md

diffusion 1.71e-13

shock 0.0

wave -1.22e-15

settling HiRes 0.11

settling MedRes 0.17

settling LoRes 0.24

PPDs (9.6 ORPs)

1e5 7.3e-5

1e6 -1.6e-2

1e7 -3.0e-4

1e8 (R < 30 AU) 0.13 (1.9e-3)

1e7 HiQ 1.2e-2

1e7 20mm 3.3*

1e7 20mm exp cut 3.2*

1e7 20mm hardcut 2.6*

1e7 5mm 0.77

1e6 20mm 0.17

1e6 VeryHiQ 0.40

Table 4.2: Mass non-conservation for simulations and tests. The second column shows the

fractional change in total dust mass. For the 2D dust settling tests, increasing the resolution

decreases the mass non-conservation. For the PPD simulations, except for runs that finished

earlier, the numbers are quoted after 9.6 ORPs, corresponding to the end of 1e8 run. Two

numbers are quoted for the 1e8 PPD run–mass non-conservation for the entire disk and for

R < 30 AU.

*These numbers are for the end of these runs, just before fragmentation. See table 4.1 for

fragmentation times.
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illustrated by considering particles at the vertical boundaries in the 2D dust settling test.

For our algorithm, the contribution to ε̇a due to the interaction with b is:

ε̇ab = −mb(Gab −Gba) (4.21)

Gab ≡
εa(1− εa)ts,a

ρa
∆fa · ∇Wab(ha) (4.22)

Let particle a be at the largest z in its neighborhood such that za > zb for all neighbors

b. After a dynamical time or so, particles at the boundaries lose dust and have a very

low dust fraction, so it is safe to assume εa, εb � 1. Let us assume the gas is isothermal

along z such that cs = constant and let us assume the gas density follows a gaussian profile

ρg ≈ ρ = ρ0 exp (−z2/2H2). Also, let the particle spacing ∆zab ≡ za − zb � z,H. In these

limits, the stopping time can be written as ts = τ/ρcs where τ is a constant. In general,

the kernel gradient is inversely proportional to the smoothing length, and can be written

as: ∇aWab(ha) = −(|Fab|/ha)r̂ab, where Fab is some scalar, defined by that equation and is

symmetric under particle exchange, Fab = Fba.

For SPH and gravity only (ignoring artificial viscosity), ∆f = ∇P/ρg = c2
s∇ρg/ρg. For a

gaussian profile, this reduces to ∆f = −(cs/H)2z. Under all these assumptions, Gab simplifies

to:

Gab =

(
τcs|Fab|
H2

)
εaza
ρ2
a

r̂ab · ẑ (4.23)

The smoothing length depends weakly on ρ as h ∝ ρ−1/3 so we can use h ≡ ha ≈ hb. Using

r̂ab = −r̂ba and r̂ab = ẑ, we can write:

ε̇ab = −mb
τcs|Fab|
H2

(
εaza
ρ2
a

+
εbzb
ρ2
b

)
(4.24)

Since a is at the boundary, ε̇ab < 0 and a will lose dust. Consider the terms g ≡ εz
ρ2

in

eq. 4.24. In the limit of infinite resolution, the particles would be very close and ga = gb.

Putting this into the equation above tells us εa would exponentially damp since this entails

ε̇ab ∝ −εa. Similarly, εa will exponentially damp in the limit ga � gb. In the case of finite

resolution εa may not asymptote to 0. Whenever gb is appreciably different from ga, εa may
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not damp to 0. Expanding g gives gb ≈ ga − ∆zab
dg
dz

. For simplicity, let us assume ε also

follows a gaussian with scale height Hε < H. The derivative of g can be estimated as:

dg

dz
=
g

z

[
−
(
z

Hε

)2

+ 2
( z
H

)2

+ 1

]
(4.25)

The particles are at high elevations, so z will be at several scale heights. Once the dust

has settled to about Hε < H/
√

2, this derivative will be negative and gb > ga, meaning εa will

decrease faster than exponentially and will be driven below zero, regardless of the time step.

Therefore, dust fraction limiting will be required in any dust settling environment and this

will cause mass non-conservation. For this idealized case, increasing resolution will mitigate

the mass non-conservation. This analysis agrees with our 2D test results. Decreasing ∆t0

does not mitigate the mass non-conservation, while increasing the resolution can, as shown

by the 2D settling test results in Table 4.2.

4.5.2 PPD mass conservation

Table 4.2 shows the percent change in dust mass (∆md/md) over the course of the simulations

for the tests and the PPD runs. For the PPD runs, dust mass accreted onto the star sink

particle is accounted for. For the 2D dust settling tests, ∆md/md decreases with resolution,

as predicted by the analysis in §4.5.1.

Mass non-conservation in the PPD runs is more complicated. In general, mass non-

conservation for PPDs tends to worsen with increasing resolution, grain size, or Q. Com-

paring the 1 mm runs in table 4.2, all runs below 108 particles demonstrate mass non-

conservation on the percent level or below after 9.6 ORPs, but the 1e8 run shows a dust

mass increase of 13%. Runs with larger grains show even worse mass non-conservation. Com-

paring the 1e7 5mm and 1e7 20mm runs shows that increasing grain size (which decreases

τsettle) drives more mass non-conservation. Comparing the 1e6 20mm and 1e7 20mm runs

also shows that increasing resolution can greatly increase the mass non-conservation. We

also ran a highly stable version of the 1e6 20mm run by decreasing the gas density and the
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dust size by a factor of 75 (1e6 VeryHiQ), which keeps ts constant. The increased Q run

displays significantly worse mass conservation.

For PPDs, mass non-conservation is driven by dynamics at large radii. As with our test

runs, multi-stepping contributes very little to mass non-conservation. In the turbulent, shear-

ing, 3D, and glass-like environment of the PPDs there is very little mass non-conservation

due to vertical dust settling at R < Rd. However, at large radii mass non-conservation can

become severe. At the outer boundaries of the disk at large R, τsettle becomes short due

to rapidly decreasing gas density. As a result, vertical dust settling occurs rapidly. This

vacates dust from particles at higher elevations and drives mass non-conservation as de-

scribed in §4.5.1 as particles with no dust try to lose dust. A similar effect happens along

the radial direction: dust migrates rapidly radially inward at large radii. As with verti-

cal settling, this results in boundary regions with no dust which try to lose dust, driving

mass non-conservation. Modifying the outer boundary by applying a hard step function

in Σ at R = Rd (1e7 20mm hardcut) or applying an exponential cutoff in ε at Rd (1e7

20mm exp cut) does not improve mass conservation. Decreasing Q or decreasing resolution

makes these boundaries more noisy and less cleanly defined, which actually helps limit mass

non-conservation.

Dust mass is then loaded at large radii and rapidly migrates radially inward. As gas

density increases toward the center of the disk and stopping times decrease the dust migrates

more slowly and piles up, forming dense regions at the outer edge of the disk. Figure 4.11

shows the dust mass per unit radius as a function of R for several time steps for the 1e7 20mm

run. The snapshots are plotted from start (dark) to end (light) of the run. Dust mass is

loaded primarily from R > 40 AU. As it migrates inward (while being continuously loaded)

the peak density increases, until at the final snapshot when the disk is driven unstable and

fragments. Fragmentation is reflected in the jagged final profile.
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Figure 4.11: Dust mass per unit radius as a function of R for the ‘1e7 20mm’ run at several

time steps. Dust mass is not conserved here, increasing by a factor of ∼ 4. Dust mass is

added at large R (well beyond Rd = 20 AU) and migrates radially inward, piling up as it

approaches regions of higher gas density where the dust radial migration velocity decreases.

The peak of the mass profile grows until driving the disk to fragmentation. Fragmentation

is evident in the jagged last snapshot profile.
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4.6 Discussion

In this chapter we presented SPH simulations of the gas and dust components of a young,

gravitationally active PPD with spiral arms around an M-Dwarf. We used the one fluid

dusty-gas SPH method of ? to study the migration and concentration of millimeter-sized dust

grains. This method, which uses a terminal velocity approximation, is attractive for being

less noisy than many two-fluid methods and for potentially being fast by avoiding punishing

time step criteria. However, its speed may be offset by strict resolution requirements.

The simple, 2D dust settling test of ? hints at potentially strict resolution requirements

for modelling dust settling in a realistic PPD. Resolution effects are often non-trivial and

not intuitively obvious with hydrodynamic simulations, particularly with algorithms such as

the dusty-gas method used here which are fairly new and poorly studied. Fortunately, a

high resolution simulation can be run and analyzed at lower resolutions for almost no extra

computer or human time: running a simulation at 0.1 and 0.01 of the maximum resolution

introduces almost no overhead. In full, 3D PPDs, at resolutions of 105 or 106 particles,

settling is strongly limited, with typical dust/gas scaleheight ratios of hd/hg ≈ 0.7 or so. At

higher resolutions, settling is not limited within the duration of simulations presented here,

reaching values as low as 0.4 without indications of asymptoting. Globally, settling rates

appear to converge by 107 particles, at least for the stages presented here. At resolutions

below 107 particles, dust noise dominates any structure in ε in the x − y plane. Limited

settling, limited dust concentration, and a lack of x− y structure mean that particularly at

resolutions below 107 particles this method is very similar to simply “painting” the dust on,

i.e. running a gas-only simulation and assuming a constant dust fraction.

We also encounter significant dust mass non-conservation which depends on resolution

and on the physical environment. This is due to poorly capturing the vacuum boundary

conditions natural to a PPD simulation as explained in §4.5.1. The basic mechanism is that

dust will tend to settle away from disk boundaries at large z or R. Due to finite spatial

resolution, particles at the boundaries will lose dust rapidly, driving their dust fractions
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negative, regardless of time-step. Forcing ε ≥ 0 will load dust mass at the boundaries. This

effect is worse with increasing resolution and decreasing spiral power. Smooth, non-chaotic

boundaries suffer more strongly from this effect. This is an example of a more general

difficulty: when a quantity is transported in a non-lagrangian way, boundary conditions

must be handled. Properly handling boundary conditions (particularly vacuum boundaries)

is generally difficult, a difficulty which is compounded in SPH where boundaries are not

precisely defined. Such difficulties have been encountered in the case of photospheric cooling

in SPH [?].

Changes to the algorithm as presented here may help address the mass non-conservation

problem, however they will require more work. We have explored other approaches as well.

It is possible to not limit the dust fraction and let it leave [0, 1], but this can generate large

waves in the dust fraction as it oscillates around 0. Any external term which drives ε to

0 is non-conservative or may drive oscillations. Other explicitly conservative approaches,

such as exchanging dust mass with neighbors, are sensitive only to the gradient of ε (not

the value of ε) and do a poor job of limiting the dust fraction. ? suggest integrating the

quantity s ≡ √ρε. This forces the dust fraction, calculated as ε = s2/ρ, to always be positive.

However, our experiments indicate that this can lead to bad wave-like behavior. In regions

where ε should be driven to 0 but integration over-shoots and s is driven negative, we are

now integrating a quantity allowed to go negative but which experiences a restoring “force”

towards 0, an effect which may drive oscillations.

A different approach may be to “upwind” the dust fraction by calculating the direction

of the pair-wise dust flow by the sign of terms in the dust fraction equation. SPH noise-

driven diffusion is already a serious problem with this algorithm. Initial experiments with

dust upwinding bear this out and indicate that mass non-conservation remains a problem in

realistic PPDs.

For the gas dynamics of our runs, spiral arms are increasingly coherent and long lived

as resolution increases. By 107 particles, m = 2 arms appear long lived, which is even more

pronounced at 108 particles. Short lived, chaotic spirals due to e.g. variable pattern angular
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velocity, often seen in PPD simulations, may often be due to low resolution.

In order to test the dusty-gas method used here with full PPDs, in a resolution inde-

pendent way, we applied a 2%, m = 2 spiral perturbation, which mitigates perturbations

driven by SPH noise. A low order, m = 2 perturbation provides the best resolution to spiral

perturbation scale. Additionally, there are physical reasons to model m = 2 disks. Indeed,

clear m = 2 spiral arms are visible in recent observations of Elias-27 using ALMA [?]. ?

argue that disk arms may be due an external perturber and/or gravitational instability.

An m = 2 perturbation can be formed via tidal interactions with an external perturber

or distant binary companion, both of which may be commonplace for young PPDs. The

tidal interaction for a distant binary companion can be estimated at R = Rd as δa/a =

2(Rd/Rp)
3Mp/M∗ where Rp is the distance to the companion of mass Mp and δa/a is the

fractional perturbation to the centripetal force for a particle orbiting the central star of

mass M∗. For an equal mass companion, a 2% perturbation would place the companion at

Rp ≈ 5Rd, larger companions would push that radius out.

For 1 mm sized dust grains, we find that dust enhancement does not follow the spiral

arms. Dust does not pile up at these pressure maxima as it has been shown to do in solar

nebulae [?]. At the edges of spiral arms where shocking and convergent flow occur, dust gets

enhanced. As the spiral arms pass by a given region, and as the dusty-gas mixture is sheared

by the disk, dust-enhanced ring-like structures form in the disk. This effect is almost not

present at typical PPD simulation resolutions of 106 particles and becomes well defined at

108 particles. Recent observations have revealed ring-like structures in dust SEDs of disks

such as HL-Tau. Their origins are still unknown and debated and may be due to entirely

different mechanisms such as clearing by protoplanets, but the general mechanism of local,

non-axisymmetric dust enhancement by a rapidly moving perturburber (in our case spiral

arms) may produce ring-like structures in many shearing disk environments.

Our very high resolution simulations allow us to probe dynamics of spiral arms in an

idealized isothermal environment. Spiral arms do not strongly limit dust settling, although

we do not probe down to low dust/gas scale-height ratios. Well defined weak shocks of
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M ≈ 1.2 are present. There is no evidence for the strong shocks required for astrophysical

processes such as chondrule formation. While necessary to capture dust and gas dynamics,

high resolution does have the undesirable consequence of driving dust mass non-conservation.

A main issue which caused mass conservation issues here is the presence of the large range

of dust settling times present in a PPD. Our method has trouble simultaneously modeling

the inner and outer disk. The mass non-conservation encountered here is roughly equivalent

to dust-mass loading at large R and leads us to propose a mechanism for PPD fragmentation:

Toomre instability driven by dust accretion at large R.

For outer regions of the disk, the dust radial migration velocity generally increases with

R. From the continuity equation, this means that dust mass will “pile up” as convergent

dust flow generates regions of increased density. This behavior is seen in Figure 4.11: as

dust migrates inward rapidly from regions of low gas density it hits the disk and piles up. In

the limit of small dust fraction in an isolated disk, ? demonstrated that out regions of the

disk may show enhanced dust due to such outwardly increasing dust migration velocity. We

suggest that if allowed to accrete from the surrounding nebula, the dust may reach a sufficient

density to drive the disk Toomre unstable at fairly large R which can lead to fragmentation.

For simplicity, consider a keplerian disk where at some radius we have powerlaw profiles

in T and Σ of q, p respectively. Let us assume a terminal velocity approximation such that

the dust radial velocity is given by vd = ts
∇P
ρg

. From the continuity equation, the inward

dust-mass flux rate is Ṁd = −2πRΣdvd. Assuming densities (for the gas or dust component)

are given by ρ = Σ/H with a gas scale height of Hg = cs/Ω and a dust to gas height ratio

h ≡ Hd/Hg. Ignoring the effect of dust on the gas component, to achieve a Toomre Q = 1

for Σd = Σg gives a mass loading rate of:

Ṁd = (p+ q/2 + 3/2)
2πσc2

s

Ω

(
h

h+ 1

)
(4.26)

where we define σ ≡ tsρcs, which for our stopping time proscription and for an isothermal

EOS is σ =
√
π/8ρgrainsgrain. Note that this is not extremely sensitive to the steepness of the

disk or the exact nature of the outer cutoff region. In general, dust radial migration rates
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will increase outward, driving this behavior.

For the disk studied in this chapter, at R = 30 AU and assuming a dust/gas height ratio

of h = 0.1 and powerlaws of p = 2 (appropriate for a disk cut-off region) and q = 0.59,

this gives Ṁd = 8 × 10−13M�/yr or 2 × 10−10M�/orbit at 30 AU. This is fairly modest

and represents the minimum rate at which the external medium would have to supply dust.

Supplying dust faster would enhance the pile-up and drive instability more rapidly.

The mass required for fragmentation may roughly be estimated by assuming we need

enough dust to achieve Σd = Σg and Q = 1 in a region of radial extent ∆R = 1/kT where

kT = κ2/2πGΣ is the most unstable Toomre wave number. Under these assumptions we get

Md =
2c2
sR

G
(4.27)

where R is the radius at which the pile-up occurs. From this a time scale for the pile-up to

grow to instability can be estimated as:

τgrowth =
Md

Ṁd

=
ΩR

πGσ

(
h+ 1

h

)
(p+ q/2 + 3/2)−1 (4.28)

A growth time scale may also be calculated by estimating Σ̇d from vd and the continuity

equation which yields:
1

Σd

Σ̇d =

(
3

2
+

pΣg

Σg + Σd/h

)
v

R
(4.29)

The growth timescale to Σd = Σg and Q = 1 can be estimated in the limits Σd � h and

Σd � h. For simplicity, taking the harmonic mean of τgrowth in both limits gives:

τgrowth =
8Ω2R2

πGσcs
(2p+ q + 3)−1(2p+ 3 + 3h)−1 (4.30)

For typical parameters, eqs.(4.28) and (4.30) yield similar values of τgrowth.

To roughly estimate a reasonable range of values for the Md and τgrowth, we performed a

simple monte carlo test. Grain density, the temperature at 1 AU, p, and q were all drawn

randomly from uniform distributions of ρgrain ∈ [1, 3] g/cm3, T0 ∈ [100, 300] K, p ∈ [0, 3], and

q ∈ [3/7, 3/4]. Stellar mass, grain size, h, and R were all randomly drawn from distributions
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uniform in log space (i.e. logM was uniformly distributed) in the ranges of M∗ ∈ [0.1, 2]M�,

s ∈ [1µm, 10mm], h ∈ [0.01, 1] and R ∈ [20, 300] AU.

Calculating 106 trials gives a total dust mass required of Md = 2 × 10−2(8 × 10−3 −

7× 10−2) M∗, where the numbers in parentheses provide the 1 standard deviation range (in

log-space) and M∗ is the mass of the star used in the trial. If dust mass can be accreted

more rapidly, much less mass may be required. The growth time as calculated in eq.(4.28)

is τgrowth = 3× 106 (2× 105 − 6× 107) yr and the time in eq.(4.30) is τgrowth = 5× 106 (2×

105 − 8 × 107) yr. These growth time-scales represent the amount of time a disk has for

the instability to form. Up to a limit, longer τgrowth may make the instability more likely

to form, as short τgrowth requires loading mass rapidly to drive the dust pile-up. If dust can

be supplied faster (as may be the case since Ṁd increases radially outward) growth of the

pile-up will be much shorter.

We can place some cuts on the accreted dust mass and growth time-scale to estimate

disk parameters which may allow dust pile-ups. Disk life times are Myrs [???] so we select

a rough cut of 104yr < τgrowth < 107yr. Assuming ε = 0.01 for the surrounding medium

and that at most we can deplete dust from a gas mass of M∗, we select Md < 0.01M∗.

Selecting trials according to these cuts does not strongly change the distribution for disk

parameters except for grain size and stellar mass, indicating a weak dependence on those

parameters. Under these cuts, the dust pile-up fragmentation may form for M∗ > 0.3M�
and s > 40µm. This is a plausible mechanism for realistic PPDs, but it requires a much

more in-depth investigation.

Dust pile-ups may also be able to promote the collapse of clumps once fragmentation by

Toomre instability has occurred. At sufficient ε the dust component may act as a pressure-

less heat sink which can reduce the effective γ, reducing pressure support of gravitationally

bound clumps. If the effective γ can be driven below unity, direct collapse by Jeans instability

becomes a possibility. However, the algorithm presented here will not realistically be able

to probe this regime, due to mass non-conservation and due to resolution constraints which

render the long integration times required computationally infeasible.
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We find that the one-fluid, terminal velocity, dusty-gas method used here has limited use

in PPDs due to resolution requirements and mass conservation issues. Within those limits,

we find that dust settling in PPDs is not limited by spiral arms. Spiral structure can drive

rings of dust enhancement, however dust does not build up in spiral arms. This has an

important observational consequence: when spiral density features are observed in the dust

component, they will be at least as well defined in the gas. Axisymmetric features in the

dust, however, may not be as strong in the gas.
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Chapter 5

GRAIN GROWTH

We have so far restricted our dusty-gas models to track a single grain size. A realistic

disk will have a distribution of grain sizes, and importantly grains will grow, through sticking

during collisions, and shrink by fragmenting under high velocity collisions. The details of

grain growth and destruction are a topic of on-going research [????]. Dust growth can have

important dynamical effects, in particular because dust migration is controlled to a large

degree by grain size.

A recent paper by ? proposed a mechanism which may overcome the fragmentation

and meter barriers which they call self-induced dust traps. Dust may grow rapidly and

without destruction in outer regions of the disk where relative velocities of dust particles

during collisions are low enough to avoid fragmentation, even as grains grow to cm size. As

the grains grow larger they will migrate radially inward. If they are large enough they will

be sufficiently decoupled from the gas that stirring due to gas will be minimal and their

relative velocities will be low enough to avoid fragmentation. As they approach the inner

regions of the disk, dust may pile-up (similar to dust pile-ups in the outer regions of the disk

which I proposed in §4.6). Piling-up may be promoted by increased gas density and by dust

fragmentation at inner regions (relative velocities will tend to increase as R decreases) as

both will decrease ts and therefore the radial migration velocity. If ρd can grow sufficiently

(of order ρg), drag on the gas due to the dust may clear some gas from a small radial extent.

This may create a local pressure maximum. Roughly speaking, the dust radial migration

velocity vr,d ∝ dP
dr

, and therefore dust tends to migrate toward pressure maxima. This can

further clear the nearby regions of gas. This can stall radial migration, even for larger grains,

which potentially solves the meter barrier. Additionally, due to decreased ρg, the relative
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velocities of collisions will decrease, potentially solving the fragmentation barrier.

They demonstrated the formation of self induced dust-traps using a simple two-fluid dust

SPH implementation. While very promising, their implementation has several draw-backs.

Two-fluid SPH dust implementations, including the one they use, suffer from strong SPH

noise [????]. Additionally, two-fluid dust particles are known to clump very strongly due to

numerical problems [?]. They also were only able to run at the quite low resolution of 2×105

gas particles, with an unreported number of nearest neighbors used. These numerical issues

drive large noise in densities and may cause unrealistically high dust over-densities to form

and are potentially the seeds of dust trap formation.

The dust traps form quite close to the artificial disk inner boundary. As orbital velocities

and gas densities increase rapidly toward the inner disk, dynamical considerations force

time-steps to decrease rapidly toward the origin. It is therefore necessary to not model the

inner disk. This is typically handled by creating a hole in Σ and treating the star as a sink

particle. For many SPH PPD studies, e.g. when studying GI, the inner boundary is not very

important since the inner region of the disk is very Toomre stable. However for this study

the inner disk may be very important, and the effects of the inner cut-off are poorly studied.

Here, I present our initial tests and implementation of a one-fluid, terminal velocity, dust

grain growth model. A one-fluid approach, especially in a fast code such as ChaNGa which

can potentially run at very high resolution, has the potential to avoid these problems. While

using our different approach may not provide refutation of the self-induced dust traps model,

it does have the potential to provide more robust confirmation as it suffers from different

problems and works under different assumptions.

While our tests indicate that a one-fluid SPH method may be poorly suited to studying

self induced dust-traps, it does provide some further insight into the mechanism and the tests

of ?. In §5.1 I describe the grain growth model of ? used here. I outline our implementation

of one-fluid variable dust size, explain how we handled dust advection in §5.2, our upwinding

scheme to improve mass conservation in §5.3, and an alternative to the parallel SPH “gather-

scatter” approach ? in §5.4. Test results for 2D settling tests are presented in §5.5 and
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analysis of PPD simulations are presented in §5.6.

5.1 Grain growth model

While the Gonzalez implementation uses a 2 fluid SPH implementation, ChaNGa’s dusty-

gas implementation is a single fluid. This will force us to use a slightly modified approach.

For the one fluid approach, the SPH particles have a single grain size (s) associated with

them. This treats the grains as having a single size locally with spatial variance. SPH noise

will allow a grain size distribution in small local regions (by looking at the distribution among

nearby particles). This one fluid approach is simple because advection of solids of different

sizes is automatically handled, and one only needs to time evolve s locally. We, however,

will also need to handle advection of dust between particles as dust is transported between

particles.

Local grain growth is handled according to the simple model of ?:

(
ds

dt

)
growth

=


ερ

ρgrain
Vrel (Vrel < Vfrag)

− ερ
ρgrain

Vrel (Vrel > Vfrag)

(5.1)

Where Vfrag is the fragmentation velocity and Vrel is a sub-grid average relative velocity

between dust grains for a given SPH particle. This approximately represents the veloc-

ity dispersion of dust grains. There are many plausible candidates for reasonable sub-grid

turbulent models to estimate Vrel. For simplicity, we follow the model of ?:

Vrel =
√

2 ∗ 21/2Ro αS

√
St

1 + St
cs (5.2)

Where Ro is the Rossby number for turbulent flow, which they take to be 3 and αS is the

dimensionless Shakura & Sunyaev viscosity parameter for a self-similar viscous PPD [?]. The

typically used value for PPDs is αS = 0.01, which we adopt but is certainly debatable. St

is the Stokes number. As with ? we take this to be approximately equal to the ratio of the

dust stopping to orbital times ts/T :

St ≡ ΩKρgrains

ρgcs
(5.3)
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where ΩK ≡
√
GM∗/R3 is the keplerian orbital angular velocity. Note that the stokes

number increases with grain size. Due to the dependence on stokes number which in turn

depends on ΩK , this turbulent model assumes that we are modeling a keplerian PPD. For

disks which have undergone fragmentation, have strong spiral-arms, or which have highly

enhanced dust regions this assumption may not hold.

For this simple model, the fragmentation velocity Vfrag is a free parameter and is meant to

represent the average velocity at which colliding grains fragment rather stick. In principle this

should be a function of many things (grain size, grain composition, grain growth history, etc.)

but we will follow Gonzalez and ignore that for simplicity and just make it a constant. They

consider values of Vfrag = (10, 15, 20, 25) m/s. In principle, reasonable values of Vfrag should

be measurable in laboratory experiments and may be informed by rubble pile simulations,

but for now we should consider them quite unconstrained.

This model captures a few general features. The growth/destruction rates increase with

increased grain volume density as more collisions occur. Collisions with very high relative

velocities tend to break grains apart, resulting in decreased average grain size. Above the

fragmentation threshold, increasing collision velocity tends to drive more fragmentation,

thereby decreasing the average grain size more rapidly. The relative velocity between dust

grains Vrel increases as gas turbulent velocities increase (these grow with αS and cs). In the

limit of very small grains (very small St) dust is tightly coupled to the gas and Vrel is very

small and therefore the so is the growth rate. In the large grain limit the dust decouples

from the gas and is not stirred by it. The Stokes number is small and again, Vrel and the

growth rate are small.

Figure 5.1 shows a diagram of Vrel as a function of St. The dashed lines represent several

different Vfrag parameters. For simplicity, imagine a disk with a static profile. For a particle

with a fixed location, St will grow as long as Vrel < Vfrag. Let Vmax be the maximum Vrel (at

St = 1). For Vfrag > Vmax (for example the top dashed line), particles will continue to grow

un-impeded. For Vfrag < Vmax (the bottom dashed line), particles with very small stokes

numbers will grow up to a maximum size when Vrel = Vfrag. Particles with very large St will
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Figure 5.1: Vrel as a function of stokes number (St) in arbitrary units. The dashed lines

represent several different Vfrag parameters. The stokes number of particles with Vrel < Vfrag

will grow and will decrease for Vrel > Vfrag.

grow indefinitely. Particles with intermediate St (around St = 1) will have Vrel > Vfrag and

will shrink to a minimum size where Vrel = Vfrag.

5.2 Dust advection

Since we have a one fluid approach and we transport dust between SPH particles, we need

to also keep track of how much dust of a given size moves from one particle to the next.

To achieve this, we update the particle grain size s after advecting dust from neighboring

particles as a mass weighted average of grain sizes. We can say a particle a receives dust

from a particle b whenever ε̇ab > 0. If a particle a gets dust from some neighbors 1, 2, 3...

we should update particle a’s new dust size to be:

s′a =
(md,a − |∆Md,a|)sa + ∆md,a1s1 + ∆md,a2s2 + ...

(md,a − |∆Md,a|) + ∆md,a1 + ∆md,a2 + ...
(5.4)

Where md,a is the mass of dust in a at the beginning of the time step; ∆md,a1 is the

amount of dust given to a by particle 1 (zero when a gives dust to b); and ∆Md,a is the mass

of dust that a loses to other particles during that time step, such that m̃d,a ≡ md,a−|∆Md,a|.
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is the amount of its original dust that a has after advecting dust. The term ∆Md,a can be

evaluated by adding up all the terms where a gives dust to b. The denominator is just the

total dust mass in a after updating, m′d,a.

It can be shown that this is equivalent to:

s′a =
samd,a +

∑
b ∆md,abs<a,b>
m′d,a

(5.5)

where we now take ∆md,ab to be the mass give to a by b, positive when a receives dust and

negative otherwise. The index of s is chosen according to:

< a, b >≡

a for ∆md,ab < 0

b for ∆md,ab > 0

(5.6)

This is a weighted mean, however the weights can be negative which will result in a poorly

defined mean. Let A be the set of neighbors where ∆md,ab < 0 (i.e. those that particle a

gives dust to) and let B be the set of neighbors where ∆md,ab > 0 (i.e. those that particles

a gets dust from). Eq. (5.5) can be re-written:

s′a =
sa(md,a −

∑
b∈A |∆md,ab|) +

∑
b∈B ∆md,absb

(md,a −
∑

b∈A |∆md,ab|) +
∑

b∈B ∆md,ab

(5.7)

This is a weighted mean of sa and all sb terms. By definition, ∆md,ab > 0 in the sum over

b ∈ B, so those weights are positive. Our weighted mean is guaranteed to be well behaved if

the weight: (md,a −
∑

b∈A |∆md,ab|) > 0. This is equivalent to saying a must not give up all

its dust. We therefore separately sum the positive and negative ε̇ab terms such that

ε̇a =
∑
b∈A

ε̇ab +
∑
b∈B

ε̇ab = ε̇a,loss + ε̇a,gain (5.8)

We enforce (εa + ∆tε̇a,loss) ≥ δ where δ is some very small number. Using ∆md,ab ≈ ε̇ab∆t

we can update s′a:

s′a =
sa(εa + ∆tε̇a,loss) + ∆t

∑
b∈B ε̇absb

(εa + ∆tε̇a,loss) + ∆tε̇a,gain
+ ∆t

(
dsa
dt

)
growth

(5.9)
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where the final term, given by eq. (5.1), is due to local grain growth. The mass weighted dust

grain size mεs is conserved by the advection term except when we enforce (εa+∆tε̇a,loss) ≥ δ,

although for small δ and with proper time-stepping this should be limited. Conservation can

also be broken when forcing ε ∈ [0, 1] or through multi-stepping. In practice, we find this

non-conservation to be limited.

5.3 Dust upwinding

An unfortunate effect of updating the grain size according the eq. (5.9) is that dust mass non-

conservation can become particularly severe (see also §4.5). Initial tests with the standard

2D dust settling test indicate mass non-conservation, even with nearly uniform s and local

grain growth turned off, can be much more severe than for the uniform grain size method of

?. To limit mass non-conservation we have implemented an upwinding scheme for the dust

fraction.

Upwinding schemes use gradient estimators biased behind the direction of the flow or

information propagation. In the simple case of a wave packet propagating along the +x

direction, an upwinding scheme would primarily use samples at x < x0 to estimate a gradient

at x0. Such schemes are often used in advection-like scenarios, however they often suffer from

strong numerical diffusion.

The interaction term between particles a and b in the dust fraction equation of the ?

one-fluid dust method are given by:

ε̇ab = −mb

[
εa

(1− εa)ts,a
ρa

∆fa · ∇Wab(ha) + εb
(1− εb)ts,b

ρb
∆fb · ∇Wab(hb)

]
(5.10)

which allows us to calculate ε̇a =
∑

b ε̇ab. This involves two terms, weighted by εa and εb.

We introduce here an upwind alternative to this, using only the dust fraction of the

upwind particle:

ε̇ab = −ε<a,b>mb

[
(1− εa)ts,a

ρa
∆fa · ∇Wab(ha) +

(1− εb)ts,b
ρb

∆fb · ∇Wab(hb)

]
(5.11)



130

where:

< a, b >=

a for ε̇ab < 0

b for ε̇ab > 0

(5.12)

The term ε<a,b> is the dust fraction in the particle from which the dust is coming. When

dust is moving from a to b we use εa. In this case, a is on the “upwind” side (behind the

direction of the flow), hence this is an upwinding scheme.

This scheme can be written formulaically as:

ε̇ab = −ε<a,b>mb(G
′
ab −G′ba)

G′ab ≡
(1− εa)ts,a

ρa
∆fa · ∇Wab(ha)

ε<a,b> = [εaΘ(G′ba −G′ab) + εbΘ(G′ab −G′ba)]

(5.13)

where Θ is the heaviside step function. Dust mass is conserved by this method. The total

dust mass time derivative due to this interaction is:

dmd,ab

dt
= maε̇ab +mbε̇ba = 0 (5.14)

by eq. (5.13). The corresponding energy equation is derived from conservation of total energy

(thermal + kinetic), which in the absence of external heating/cooling terms reads:

dE

dt
=
∑
a

ma

[
va ·

dva
dt

+ (1− εa)
dua
dt
− ua

dεa
dt

]
= 0 (5.15)

The first term in the sum is the kinetic energy term which represents PdV work and is the

normal SPH u̇ term. The third term is due to dust advection. There are several ways to

formulate the energy equation which all satisfy the above equation and conserve total energy.

A few alternatives are:

dua
dt

= ma

(
dua
dt

)
SPH

+
mbε<a,b>

1− εa
×


G′ab(ua − ub)

(G′ab −G′ba)ua

−(G′ab −G′ba)ub

(5.16)
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Similar to the ? scheme, we select the first option which can be understood as something

analogous to a central finite difference scheme in u:

dua
dt

= ma

(
dua
dt

)
SPH

+
mbε<a,b>

1− εa
G′ab(ua − ub) (5.17)

This method introduces an implementation challenge, with an interesting generic solution.

Certain asynchronously parallel SPH implementations do not allow for quickly and efficiently

calculating such terms as Θ(G′ab −G′ba). We discuss this below.

5.4 Gather-scatter

ChaNGa uses the “gather-scatter” approach, originally presented in the ? TREESPH

paper. This method is a clever and efficient way to calculate SPH terms for particle a (such

as forces) due to an interaction with particle b when they are a non-mutual particle pair.

By this I refer to the situation where b is a neighbor of a, but a is not a neighbor of b (see

Fig. 5.2). In the gather-scatter approach, a calculates terms for itself and for b that are

non-zero when b is a’s neighbor, and vice-versa. An in depth explanation follows.

First, some definitions. We define the neighborhood of particle a (Na) as the region de-

fined by where a’s kernel is positive. In ChaNGa this is defined as the region with a distance

2ha of a, where ha is the smoothing length of particle a. Typically, the smoothing length is

chosen such that there are a fixed number of particles (Nsmooth) within the neighborhood of a.

The SPH kernel for an interaction between a and b is a function of the smoothing length and

the distance between particles, which we can write as written as Wab(hi) = W (|ra − rb|, hi)

where hi is the smoothing length of a or b. This entails that the kernel is symmetric under

particle exchange, i.e.: Wab(hi) = Wba(hi). In ChaNGa we follow the convention:

Wab(hi) = 0 for |ra − rb| ≥ 2hi (5.18)

From which we can say the kernel gradient is also negative outside the neighborhood of a:

∇aWab(hi) = −∇bWab(hi) = 0 for |ra − rb| ≥ 2hi (5.19)
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b

a 2ha

Figure 5.2: An example of a non-mutual particle pair. Particle b is in the neighborhood of a,

but a is not in the neighborhood of b. The “gather-scatter” approach is a method to handle

this situation in SPH when looping over neighbors.
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Where ∇a is the gradient taken with respect to particle a.

This can be summed by saying outside the neighborhood of a particle, the SPH kernel

and the SPH kernel derivative go to zero, i.e.:

Wab(ha) = 0 for b /∈ Na (5.20)

∇aWab(ha) = 0 for b /∈ Na (5.21)

The kernel and its gradient typically show up in every term for the time derivative of an

SPH quantity. For an arbitrary SPH quantity x (such as velocity or internal energy), the

time derivative is typically defined as a sum of the form:

dxa
dt

=
∑
b

ẋab =
∑
b

Fab +Gba (5.22)

where the sum is in general over all the particles in the simulation. ẋab is the interaction

term between particle a and b, and Fab and Gba are functions of the SPH kernel and/or its

derivative and are zero when b is outside the neighbor of a such that:

|Fab|, |Gab|

≥ 0 for b ∈ Na

= 0 for b /∈ Na

(5.23)

And of course the converse holds, i.e. Fba = 0 for a /∈ Nb.

The gather-scatter approach uses these properties to efficiently calculate the interaction

terms ẋab and ẋba, which are given by:

ẋab = Fab +Gba (5.24)

ẋba = Fba +Gab (5.25)

We start calculating the time derivatives by setting them to zero for all particles. We loop

over all particles a and their neighbors b ∈ Na and calculate the terms which are non-zero

for b ∈ Na, for both a and its neighbor b, i.e.:

ẋa += Fab (5.26)

ẋb += Gab (5.27)

(5.28)
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When the outer loop over particles gets to particle b, if a ∈ Nb, this procedure will calculate

the remaining terms:

ẋa += Gba (5.29)

ẋb += Fba (5.30)

If a is not a neighbor of b we won’t add these terms, but they are zero anyway, so the result

is the same. This ensures that the terms in eqs.(5.24) and (5.25) are all calculated and

are calculated exactly once. Additionally, all these calculations can be done asynchronously

in parallel in a lock-free manner since all the calculations above are addition and therefore

associative. Gather-scatter pseudo-code is printed in algorithm 1.

for a ∈ all particles do

for b ∈ Na do
Add interaction terms that are non-zero for b ∈ Na.

ẋa += Fab

ẋb += Gab

end

end

Algorithm 1: Gather-scatter method for calculating interactions of the form ẋab = Fab +

Gba. These calculations can be done in parallel asynchronously.

Calculating the time derivative as in eq.(5.22) assumes a loop over all particles. This

method ensures that a particle only needs to loop over its neighbors, not over its neighbors

and all particles for which it is a neighbor. This greatly simplifies the tree building/tree

walking procedure and reduces the number of neighbors to loop over. As an added bonus, it

usually also avoids calculating the kernel/kernel gradient twice, since typically Fab and Gab

are functions of the same kernel.
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5.4.1 Alternative gather scatter

The above “gather-scatter” approach works for interaction terms of the form in eqs. (5.22)

and (5.23), involving terms which are only a function of one particle’s kernel/kernel gradient.

If we want to extend this to terms which are a function of the kernels/kernel gradients of

both particles, we need to change our approach. Consider terms that are only guaranteed to

be zero when a and b are not neighbors:

Hab = 0 for a /∈ Nb and b /∈ Na (5.31)

For example, some advection schemes might follow a modified version of equation 5.24:

ẋab = [Fab +Gba] Θ(Fab +Gba) (5.32)

where Θ is the heaviside step function. This is similar to the upwinding approach in eq. (5.13)

The key difference with terms such as this is that we have to calculate the entire term all at

once.

We cannot separately calculate the Fab and Gba terms asynchronously and combine them

since they are not reduced under an associative operation such as addition. To efficiently

calculate such terms, we can calculate the entire interaction at once with a condition which

ensures it is only calculated once. This can be done as in the following pseudocode. See

algorithm (2) below. A simplified equivalent implementation is included in algorithm (3).
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for a ∈ all particles do

for b ∈ Na do

if a /∈ Nb then

// Non-mutual neighbors. We can avoid double counting and

safely calculate all interaction terms here since b’s loop

will not include a. This is the situation in Fig. 5.2

// We also know that ha > hb

Calculate interaction terms for both a and b

ẋa += Hab

ẋb += Hba

else

// Mutual neigbors. If we aren’t careful, both a and b may

calculate the interaction terms, resulting in a double

counting. This requires some check to ensure only one

particle will calculate the terms.

if ha > hb then
Calculate interaction terms for both a and b

ẋa += Hab

ẋb += Hba

else

Do Nothing // Since these are both neighbors, a will be in

b’s loop. Except in extreme edge cases, we will have

hb > ha and this term will be calculated. In the edge

case ha = hb, this term will be neglected.

end

end

end

end

Algorithm 2: Alternative approach to “gather-scatter”. This method has the advantage of

allowing the entire interaction to be calculated at once, rather than splitting the calculation

up between particles, but at the cost of introducing more if statements.
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for a ∈ all particles do

for b ∈ Na do

if ha > hb then

// We can avoid double counting and safely calculate all

interaction terms here since b’s loop will not include a

Calculate interaction terms for both a and b

ẋa += Hab

ẋb += Hba

else

// Do Nothing -- a and b are each others’ neighbors and b will

calculate the interaction.

end

end

end

Algorithm 3: Simple gather scatter alternative, a simpler equivalent to algorithm (2).

Note that in the edge case ha = hb we will miss a term. This edge case will only arise in

SPH grid ICs with evenly spaced particles, before they have moved, and can be avoided

by checking for equality and updating the particle with the lower particle ID.

5.5 2D dust settling tests

Here we present the results of 2D dust settling tests using the terminal velocity one-fluid

upwinding dust scheme presented here. We present results for the fixed grain size ? 2D dust

settling test and for a variant with variable grain size to test the dust grain advection which

we call the “top-hat” test.
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5.5.1 PL15 settling test

The ? settling test is detailed in §4.2.2. Briefly, it is a 2D test in x − z in a fixed external

potential along z which represents a patch of a PPD. The ICs are in equilibrium and are a

nearly gaussian vertical density profile with a uniform dust fraction of ε ≈ 0.01 and uniform

grain size s = 1mm and a scale-height of H = 0.252. The test is run at 3 resolutions:

896 (LoRes), 3552 (MedRes), and 14208 (HiRes) particles. For all the tests presented here,

Nsmooth = 28 and the Wendland C4 kernel were used. Since the grain-size is uniform in this

test, it demonstrates the effect that upwinding has on dust advection.

The primary motivation for introducing the upwinding scheme was to promote mass con-

servation. It should be noted that while the upwinding method in eq. (5.13) is conservative,

the full approach is not since the dust fraction is forced to stay within the region ε ∈ [0, 1].

This is discussed in detail in §4.5.1. With variable grain-sizes (before implementing upwind-

ing), our approach showed significantly worse mass non-conservation at the z boundaries of

the 2D settling test. Additionally, up-winding is more conceptually coherent, since our dust

size advection scheme transports grain sizes from one particle to another, in a fixed direc-

tion. The dust size is therefore upwinded and upwinding the dust fraction as well makes

intuitive sense. Figure 5.3 plots the fractional change in dust mass for this test at all 3 reso-

lutions for the upwinding and non-upwinding implementations. Upwinding implementations

are marked with a “-gg” suffix. Without upwinding, after 50 ORPs the dust mass increase

by 7-25%, increasing with decreasing resolution. With upwinding, the fractional change is

limited to the percent level.

While the upwinding scheme shows marked improvement in mass conservation, as an

upwinding scheme it does suffer from numerical diffusion. Figure 5.4 shows the vertical dust

density profiles at several epochs for the ? dust settling test using the one-fluid terminal

velocity, fixed grain size method (fig. 5.4a) and for the variable grain-size, upwinding method

presented in this chapter (fig. 5.4b). The upwinding scheme is certainly more diffusive–the

double humped shape is much more prominent without upwinding, although the overall set-
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Figure 5.3: Fractional dust mass change for 2D dust settling tests at all 3 resolutions for

the standard scheme and the upwinding scheme, marked by names ending in ‘gg’ (for grain-

growth). The upwinding scheme displays much better mass conservation as it does not suffer

as strongly from boundary error (see §4.5).
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tling rate is still captured. Upwinding here has an effect similar to decreasing the resolution.

For reference, figure 5.5 shows a similar effect. The dust density after 50 ORPs is plotted

for both methods, along with the semi-analytic solution (see §4.2.2) assuming no dust at

|z| > 3H for the ICs. The midplane smoothing length (a measure of spatial resolution at

the midplane) is represented as bars in the upper left corner. The salient features of the

semi-analytic solution are the double humped feature–a product of more rapid settling at

larger z–and the overall width and height of the profile. The extremely sharp edges are

due to neglecting turbulence or the dynamical effect of dust on the gas. The upwinding

scheme underestimates but broadly captures the overall settling rate, but it fails to capture

the outward-in nature of the settling. In this idealized 2D test, the upwinding affects the

profile in a manner similar to decreasing the resolution.

5.5.2 Top-hat settling test

The top-hat test is identical to the ? settling test but with a double “top-hat” in the grain

size. We set the grain size as a function of z: s =
√

3 mm for 0.75H ≤ |z| ≤ 2H and

s = 1/
√

3 mm otherwise. This produces a double top-hat in the ICs of height smax/smin = 3

with a geometric mean size of 1 mm. Grain growth is turned off. The larger grains should

settle more rapidly toward the midplane, producing an average size profile with peaks which

move toward the midplane.

Figure 5.6 shows grain size s profiles for the LoRes (fig. 5.6a) and the HiRes ((fig. 5.6b))

tests after 0, 10, 20, and 30 ORPs. The grain size is plotted vs z in blue for the simulation

and in green for the semi-analytic result. Note that the z scale decreases in adjacent panels

as the dust profile narrows and settles to the midplane. The semi-analytic solution is binned

and averaged and overlaid as a dashed red line. The semi-analytic solution is calculated

assuming the terminal velocity approximation and negligible dust mass such that the gas

density profile (assumed to be gaussian) is static. This allows a vertical velocity profile

vd(z) to be calculated (eq. 4.15). We then randomly seeded 4× 105 points according to the

gaussian gas density profile, each representing lagrangian dust particles. It is straightforward
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(b) Dust settling test with dust upwinding

(§5.3). Grain-growth was turned off by setting

αS = 0. Dust-size advection is off by using uni-

form s.

Figure 5.4: Dust upwinding comparison in the HiRes 2D dust settling test presented in

§4.2.2. The dust density is plotted for all 14208 SPH particles at 5 epochs. This is a 2D test

in x− z in a fixed external potential along z which represents a patch of a PPD. The ICs are

in equilibrium and are a nearly gaussian vertical density profile with a uniform dust fraction

of ε ≈ 0.01 and uniform grain size s = 1mm. Dust upwinding was used in (b) and not

(a). The diffusivity of the upwinding scheme is apparent in the smoothed profiles in panel

(b). The double humped nature of the settling gets washed out. The upwinding results are

similar to lower resolution for the non-upwinding scheme.
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Figure 5.5: 2D HiRes dust settling test: upwinding comparison. The dust density is plotted

vs z after 50 ORPs for without upwinding (HiRes) and with upwinding (HiRes-gg). The

semi-analytic solution assuming no dust beyond 3H is overlayed. The bars in the upper

left indicate the midplane smoothing length. The upwinding scheme is significantly more

diffusive and approximates the semi-analytic result worse.
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to numerically integrate vd(z) to calculate the positions as a function of time.

As our method is one-fluid, it only allows a single s at a given location. We track the

mean grain size. The simulation does reproduce two peaks in grain size that move toward

the midplane. The binned and averaged semi-analytic result produces significantly sharper

peaks, however if they were smoothed over several particles they would be similarly broad.

Importantly, the settling occurs more slowly for the one-fluid approach, and the settling rate

increases with resolution. However, the overall picture of a top-hat grain size distribution

narrowing and settling to the midplane holds here, and the settling rate broadly agrees within

a factor of order unity. Note also that the semi-analytic solution ignores any disk turbulence.

Figure 5.7 shows the dust density profiles for the same tests at the same times, with the

semi-analytic density overlaid as a dashed red line. The semi-analytic density was estimated

by histogramming the semi-analytically integrated lagrangian particles. Note the decreasing

z scale as time increases. As with the s profiles, the semi-analytic result settles a bit more

rapidly. The overall shape of 4 humps shows up in the simulation. The two, broad central

peaks are from the rapidly settling larger grains. The two small peaks at the wings are

not extremely evident for the simulation in this figure, but they are present at the correct

locations. They are the peaks expected from particles rapidly settling at high altitudes,

similar to the double humped profile in the 2D uniform s settling test (fig. 5.4). The peaks

are significantly more narrow in the semi-analytic solution, however this is not necessarily

more realistic due to ignoring turbulence and the effect of dust on gas which will both tend

to smooth out any such strong discontinuities in ε.

As a general picture, these results indicate that our method can broadly capture dust

settling and dust grains of variable sizes advected across many SPH particles. Upwinding

essentially solves the problem of mass conservation in the idealized 2D settling case, although

it introduces diffusion in ε. The top-hat test represents a worst case scenario for advecting

grain sizes in our method, as our method is poorly suited to handle steep gradients in the

dust size since it assumes s is locally uniform and continuous. We now proceed to examine

results for a PPD test.
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Figure 5.6: Dust size for the 2D top-hat settling test at several times and at two resolutions,

LoRes (top) and HiRes (bottom). The ICs are identical to the ? 2D settling test but with

a double “top-hat” in the grain size, set such that s =
√

3 mm for 0.75H ≤ |z| ≤ 2H and

s = 1/
√

3 mm otherwise. The semi-analytically integrated Lagrangian particles are displayed

in green. The binned mean of s for these are overlaid (dashed red line). The basic feature of

two peaks settling radially inward is captured by the simulation, however the settling rate is

decreased and the grain size is smoothed out, representing an average grain size.
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Figure 5.7: Dust density for the 2D top-hat settling test at several times and at two resolu-

tions, LoRes (top) and HiRes (bottom). The ICs are identical to the ? 2D settling test but

with a double “top-hat” in the grain size, set such that s =
√

3 mm for 0.75H ≤ |z| ≤ 2H

and s = 1/
√

3 mm otherwise (see fig. 5.6). The semi-analytic solution is overlaid assuming

no dust beyond 3H. The semi-analytic result displays much steeper peaks in ρd which settle

inward slightly more rapidly, although these may be unrealistically steep. All 4 peaks are

present in the simulation and are captured better in the HiRes test.
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5.6 PPD test

Here we present the results of a PPD test using our one-fluid grain-growth and dust advection

code. ? tested two disk models to demonstrate their self induced dust-traps mechanism: a

“flat” disk model with uniform Σ and a “steep” disk model with Σ ∝ R−1. While the

steep model is more realistic, we have chosen to test the flat disk since it demonstrates the

dust-traps more strongly.

The uniform surface density is Σ = 487.74 kg/m2. Interior and exterior cut-offs in Σ are

applied at R = 4 AU and Rd = 120 AU, respectively, as described in §3.2.1. The temperature

follows a profile T (R) = T0(R/R0)−1 with T0 = 623 K and R0 = 1 AU. A uniform dust

fraction ε = 0.01 and uniform grain size s = 1µm were used in the ICs. A grain density of

ρgrain = 1 g/cm3 was used, reasonable for ice or fluffy aggregate. For the grain growth model

parameters we used the maximum fragmentation that Gonzalez considered, Vfrag = 25 m/s

as a larger Vfrag value promotes grain growth and formation of the self-induced dust traps.

The star is treated as a sink particle with radius rsink = 4 AU. Gas particles which

approach within rsink are accreted onto the star particle, conserving momentum and dust

mass. For SPH parameters we used Nsmooth = 128, artificial viscosity parameters of α = 0.1

and β = 0.5, and a Courant condition of ηC = 0.3. As with ?, the gas gravitational softening

length was chosen as εs = 0.5 〈h〉 where 〈h〉 is the mean smoothing length, as discussed in

§3.2.2.

? run their simulation without disk self gravity, i.e. the only gravity calculated is due

to the central star. To easily achieve this with ChaNGa, which always calculates gravity,

we simply scaled Σ and ρgrain by a factor of 1/50. This keeps the dust stopping times and

dynamics unaffected and keeps the gas accelerations, from e.g. pressure gradients, constant.

The gas+dust mass simply provides a negligible contribution to the gravitational forces.

Figure 5.8 shows the basic features of the disk model which may promote self-induced

dust traps. Plotted are important dust grain sizes vs R for the ICs. The initial dust size vs R

is plotted as the horizontal black line. The St = 1 line shows the vertically averaged s which
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Figure 5.8: Important grain sizes for the Gonzalez flat disk ICs, vertically averaged. sfrag

(blue) is defined as the dust size(s) required for the transition between grain growth and

grain destruction (eq. 5.1) Vrel = Vfrag (see eq. 5.2). The St = 1 size is the grain size that

gives St = 1. The initial grain size is plotted in black. Grains with s below the bottom sfrag

curve will grow. Grains with s between the top and bottom sfrag curves will decrease in size.

All others will grow, including grains in regions where the sfrag curve is not defined (e.g. at

large R), which will grow indefinitely as Vrel < Vfrag for all grain sizes there.

would give St = 1. This grain size gives the maximum Vrel for given disk conditions. In

regions where this is greater than Vfrag, this grain size provides the fastest grain destruction,

while in regions where this is below Vfrag in generates the fastest grain growth, as per the

model of eq. 5.1. In the uniform Σ region of the disk, the St = 1 size gradually increase,

dropping rapidly beyond Rd = 120 AU where the cutoff in Σ is applied.

The blue sfrag curve shows grain sizes at the transition between grain growth and destruc-

tion (vertically integrated). This transition is defined by Vrel = Vfrag. For the Vrel model
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used here (eq. 5.2), solving for s gives two roots to this equation:

s±frag = sdrift

[
c̃s

2 − 1± c̃s
√
c̃s

2 − 2
]

(5.33)

with the definitions c̃s
2 ≡
√

2RoαS(cs/Vfrag)2 and sdrift ≡ ρgcs
ρgrainΩK

, which define the upper

and lower portions of the blue curve in fig. 5.8. Grains with size s < s−frag will tend to

grow until s = s−frag, at which point growth stalls due to fragmentation. Larger grains, with

s > s+
frag are sufficiently decoupled from the gas that their relative velocities are not too

large and will grow indefinitely. Grains with s−frag < s < s+
frag will shrink until s = s−frag. At

sufficiently large R, the temperature will decrease such that c̃s
2 < 2 and there are no roots to

eq. (5.33). In these regions, Vrel < Vfrag for all s and the grains will tend to growth without

destruction. For the disk presented here, this transition occurs around R = 75 AU. This

model can therefore allow grains to grow at large R where there is no sfrag boundary and

migrate inward. Sufficiently large grains may migrate inward above the s+
frag boundary and

continue growing. It should be stressed that this is just an approximate, 1D analysis meant

to illustrate the general behavior.

Figure 5.9 shows the grain size evolution. The grain size for all particles is plotted against

R at several epochs. The points are color-coded according the Stokes number. As with ?, we

get efficient grain growth at large R. Those grains migrate radially inward and the largest

grains are able to form at small R. By 80 kyr, ? form a separate population of large grains

at large R which migrate inward and get trapped at small R. Due to the averaging of our

one-fluid s advection method, we do not form a separate population of grains. Rather, our

grain size shows a dependence on R with little scatter. By the end of the simulation, at the

inner disk our grains have grown to s & 10 cm.

Although we do not form a separate population of large grains, we do form a sort of dust

trap at the disk interior. Figure 5.10 shows the total surface density Σtot = Σd + Σg (top

panel) and the dust surface density Σd (bottom panel) at several times. Large spikes in the

surface density due to dust pile-ups are evident by the end of the simulation. These regions

of high dust density are formed as large grains migrate to the inner disk and clear gas away
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Figure 5.9: Grain-size evolution for the Gonzalez flat disk. The grain size is plotted as a

function of R and color coded according to the Stokes number. The grain size distribution

is nearly a function of R, with little scatter, unlike with the two-fluid approach of Gonzalez

which produces a separate population of large s, high St particles at inner regions of the

disk.
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Figure 5.10: Total surface density (top panel) and dust surface density (bottom panel) vs R

at several times for the Gonzalez flat disk model. The gray bar represents twice the mean

smoothing length 2 〈H〉 at the location of the local trough in σ. This is the distance between

a particle and its furthest interacting neighbor. This is approximately the distance between

the peaks in Σ at the end of the simulation.

from small annuli, creating pressure maxima which trap the dust. However, it should be

noted that this is very likely a boundary effect. Due to the star sink particle, the very inner

edge of the disk gets almost cleared of SPH particles out to R ≈ 10 AU. The first spike in

Σd forms about one smoothing length exterior to this point, followed by several more spikes,

each spaced by about twice the mean smoothing length, 2 〈H〉 (pictured as a gray bar). This

is the distance between a particle and its furthest SPH interacting neighbor. Given how

unrealistic it is to have a sink particle vacuum boundary at small R we cannot treat this

effect as physical. It is very likely numerical.

It should be noted that the nature of our dust traps is visually different from those of ?.

Our traps are significantly more narrow, ∼ 5 AU compared to ∼ 25 AU. We appear to form
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more traps, and at generally a smaller R, however at the end of their flat disk run (see their

fig. 2) they appear to form a second dust trap beginning at the interior cut-off. Additionally,

that run used a smaller Vfrag = 15 m/ sec, which may tend to form traps at larger R. Our

traps may not be formed by exactly the same mechanism. It is uncertain from their plots

whether boundary issues drive their dust traps as well, although their dust traps do form

close to the inner boundary.

Unfortunately, even with upwinding, our approach still suffers from mass non-conservation,

similar to our uniform grain-size simulations without upwinding. The basic mechanism is

outlined (for the case without upwinding) in §4.5, but the basic effect is that vacuum bound-

aries can generate mass non-conservation as we must force ε ∈ [0, 1]. This is exacerbated at

large R where Σg is very low and settling times are very short and SPH particles without

dust try to lose dust and therefore tend to force ε < 0. Applying a floor to ε therefore tends

to generate dust mass at large R which then migrates rapidly inward. Figure 5.11 shows the

dust mass per unit radius (Λ) at two times for the flat disk run with 106 particles. Large

amounts of dust mass are generated at R > Rd, migrate inward, and pile-up at the edge of

the disk.

The inner disk is not as strongly affected, so it is unlikely that the dust traps which form

are driven by this mass non-conservation. That being said, our simulation cannot be run for

very long and all analysis should be restricted to the inner regions of the disk due to this

numerical mass loading.

As found in §4.5.2, this error can be worsened with increasing resolution. Figure 5.12

shows the total dust mass normalized by the initial dust mass as a function of time for the

flat disk at the 3 resolutions presented here. While the up-winding scheme is able limit mass

non-conservation for a while, this gets broken at all resolutions at some point. As resolution

increases, the mass non-conservation begins to occur earlier.
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Figure 5.11: Dust mass per unit radius (Λ) for the Gonzalez flat disk with 106 particles at

two times. Dust mass is generated by the scheme at large R, well beyond the disk radius,

and migrates radially inward, piling up as it hits the disk, as seen in §4.5.2 for uniform grain

sizes. As seen by Gonzalez, the dust piles up at the inner disk. For us, this is likely an

artificial boundary effect.
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Figure 5.12: Dust-mass non-conservation for the Gonzalez flat disk, using the one-fluid,

terminal velocity, upwinding dust scheme presented here. The total dust mass normalized

by the initial dust mass is plotted as a function of time for 3 resolutions. The upwinding

scheme is able to completely stall mass non-conservation for a while, but as with the non-

upwinding scheme these PPDs undergo severe dust mass loading at large R (see fig. 5.11),

beyond the disk radius. The mass loading occurs earlier as resolution increases.
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5.7 Conclusions

In this section I presented a novel approach to modeling variable sized dust grains in gas

with a one-fluid SPH approach. Dust grains are free to grow and fragment under collisions

with the sub-grid turbulent model of ?. Dust is allowed to be transported between SPH

particles, as with ε in the one-fluid approach. Particles keep track of the average grain size

s which is free to be advected between particles, along with the dust. Our method will tend

to smooth out grain size distributions due to this averaging, and the advection rate for s will

tend to be underestimated, but we broadly capture the expected behavior.

Altering the formulation of the dust fraction equation to use an upwinding scheme to

integrate ε (eq. 5.13) and u (eq. 5.17) essentially solves the mass non-conservation vacuum

boundary problem in the 2D dust settling test, however in realistic disks it does not.

We use our implementation to test the self induced dust-traps model of ?, and find that

dust traps do indeed form, but they are likely caused by issues with the inner disk boundary.

Since mass conservation is a significant problem in our simulations at large R (beyond Rd),

our analysis must be restricted to the inner disk. Because of this, our simulations are not

entirely realistic and must be understood as a disk model which loads dust mass at large R.

Over a short enough period (around the duration of these simulations) this does not have

an enormous impact on the inner disk.

Since our one-fluid approach integrates the average s in a region, we do not form the

second population of large dust grains which putatively drive the dust-traps in simulations

of ?. However, the fact that we can generate dust traps numerically driven by boundary

conditions problems may call into question their demonstration of dust-traps. While the

self-induced dust traps model is very promising as a solution to the meter and fragmentation

barriers, more work needs to be done to produce a fully realistic simulation of self-induced

dust traps.
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Chapter 6

CONCLUSIONS

6.1 Results

The process of planet formation is long—beginning with a stellar nebula, through the stages

of collapse, star and protoplanetary disk formation, solid growth, and eventual disk dissipa-

tion and evaporation leaving a planetary system—and it involves a broad swath of science,

including chemistry, geology, fluid dynamics, magnetohydrodynamics, nuclear physics, and

thermodynamics. Over the last several years, my work has focused on one aspect of that

long story: the highly non-linear fluid and gravitational dynamics of young protoplanetary

disks. I have investigated the role of global disk structure driven by gravitational instabil-

ity, with an eye on explaining the formation of gas giants, on solid-gas interactions, and on

illuminating the growth of solids from micron to meter sizes and beyond.

To model these very complex systems with dynamical, length, density, and force scales

that span orders of magnitude, I have employed smoothed particle hydrodynamic methods

in a highly parallel, supercomputing context. Certain features of SPH make it very well

suited to studying PPDs, in particular: explicit simultaneous conservation of momentum,

angular momentum, energy, and mass; natural handling of vacuum boundary conditions;

and resolution naturally tracking the mass flow, allowing us to easily capture the 10 orders

of magnitude or more of density variations which may arise in PPDs.

I have developed a fast, robust, and effective method to generate equilibrium initial

conditions for PPDs. The importance of ICs in studying such non-linear, often unstable

systems cannot be overemphasized. Perturbing ICs out of equilibrium can drive massive,

disk wide instabilities and even cause artificially driven disk fragmentation. I have also

studied the role of resolution and have demonstrated that decreasing resolution can drive
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disks to fragment and may control the formation of spiral structure in gravitationally active

disks. The effects of resolution are surprisingly poorly studied in the literature, and these

effects are often non-trivial and unintuitive. For all my large simulations, I have performed

resolution studies, and I urge the community to join me in doing so. Much published research

does not share resolution tests or demonstrate convergence. Since the methods used to

publish new science in computational astronomy are typically very new and poorly studied,

publishing resolution tests should be standard practice. This can be done for almost no

extra computational or human cost. Adding a few runs at say 0.1, 0.01, and 0.001 of the

maximum resolution adds negligible overhead to the simulations, and since all analysis is

done on computers with scripts, it adds almost no extra effort to the analysis chain.

Armed with a fast, simple method to generate ICs, and armed with our fast simulation

code ChaNGa, I was able to produce the largest suite to-date of high resolution PPD

simulations (64 simulations of 106 particles) to study gravitational instability around M-

Dwarfs. M-Dwarfs comprise around 70% of stars in our galaxy and may be the first stars

around which we can find and characterize earth-like planets. We find that requirements

for direct disk fragmentation via GI are more strict than previously thought, with Toomre

Q . 0.9 being required for disk instability.

While a lower Q may be required, it still appears that direct fragmentation is a plausible

outcome of many disks and may explain gas giants at large radii. We also demonstrate that

increased disk height tends to stabilize disks and introduce the effective Toomre Q parameter

Qeff ≡ βQ(H/R)α which is a much better predictor of disk dynamics and fragmentation

than Q. From our simulations, we derived parameters of (α, β) = (0.18, 2.1) that predict

fragmentation for Qeff < 1. The cause of discrepancies between our results and previously

published work is unknown because, in general, previous work is not reproducible.

While the gas component of a disk has been well studied with realistic, 3D full hy-

drodynamic and gravitational simulations, the solid components which eventually comprise

terrestrial planets and gas giant cores, have received much less attention. This is primarily

due to numerical and computational challenges. Individual dust grains are far too small
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and numerous to model directly. In the ensemble, dust can behave poorly. It can have

diffusion-like dynamics, meaning it will suffer from the harsh time-stepping constraint of

the diffusion equation, requiring a timestep ∆t ∝ (∆x)2. Additionally, dust can behave as

having a negative diffusion coefficient, meaning it will tend to clump, which can drive large

numerical instabilities and errors. Even in non-diffusive regimes, time-stepping constraints

can remain harsh. Additionally, a distribution of dust sizes is expected at a given location,

which may require integrating an entire population of dust grains, at enormous potential

computational cost.

We have presented rigorous tests of an SPH method for simulating small dust grains in

a dusty-gas mixture which is designed to be rapid by avoiding the diffusion time-stepping

constraint and to suffer much less from the noise inherent to simulating dust. To test the

method, we presented the highest resolution PPD simulation to-date (108 particles). We

find that spiral arms drive dust enhancement rapidly, marked by rings of concentrated dust

particularly at higher altitudes. Dust does not build up at the pressure maxima of spiral

arms as previously speculated, and therefore spiral arms observed in the dust will be at least

as well defined in the gas component. Coherent spiral arms do not limit settling, but chaotic

spiral arms can.

The method of ? used for simulating a dusty-gas mixture requires very high resolution to

capture dust dynamics and therefore is not computationally fast. Dust settling is resolution

dependent, increasing with increased resolution and converging at around 107 or 108 parti-

cles. Additionally, this method suffers from mass conservation and boundary problems that

become worse with increasing resolution. This prevents the long-integration times required

to achieve the high dust concentrations which would make dust dynamically important. We

therefore find the method has limited use in the context of PPDs, although it may be well

suited to more uniform environments without vacuum boundaries.

Inspired by the numerical dust mass-loading at largeR which is present in our simulations,

we propose a mechanism for direct disk fragmentation at large R. Dust will tend to migrate

radially inward in a PPD. At the outer regions of the disk, the migration velocity vr will
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increase radially outward, causing convergent flow inwards which will cause dust to pile-

up. If the disk can accrete sufficient mass from the surrounding nebula it may be driven

Toomre unstable by the added dust mass and may fragment directly under GI. With so much

dust mass present, direct collapse of clumps may be enhanced due to dust behaving like a

pressure-less fluid and heat-sink that tends to migrate to pressure maxima. While plausible,

this mechanism requires significantly more study to determine if it will operate in realistic

disks.

Recently, ? proposed the self induced dust traps model which may provide a natural

means to overcome the meter and fragmentation barriers. Dust grains may grow efficiently

in outer regions of the disk, migrate inward and pile-up, achieving sufficient densities to

clear some gas from a region, creating a “trap” where dust will tend to collect. As gas

is cleared away, the dust may grow rapidly and without migrating into the star. They

provided a demonstration of this with a two-fluid dusty-gas code, but at low resolution using

a technique which may suffer strongly from noise and which neglects disk self-gravity. We

have developed an extension of the one-fluid approach to allow us to model variable grain size

and to follow the local average of sgrain, with the simple grain-growth and destruction model

of ?. We introduce an upwinding scheme to integrate the dust fraction equation which can

mitigate dust mass non-conservation, although in a PPD simulation, the upwinded, one-fluid

approach still suffers from mass non-conservation. While our simulations do not develop the

separate population of grains which putatively drive the dust trap formation, we do form

dust traps. These are due to boundary effects at the disk’s artificial inner edge. This may

explain the ? results, although more work needs to be done to confirm or deny that.

6.2 Future work

The underlying goal and over-arching trajectory of my research has been to work toward

combining solid and gas dynamics to investigate the formation of gas giants via direct grav-

itational collapse and to explain terrestrial planet and gas giant core formation by studying

dust migration and enhancement, and by understanding solid growth past the destruction
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and meter barriers. There are several directions that this work should take, both as a direct

continuation of my projects and as a task for the community at large.

Perhaps the biggest difficulty in SPH simulations of PPDs is to extend beyond an isother-

mal EOS. To date, no one has done so in a realistic manner. So-called “β cooling” [???]

simulations have been done, where disks are run with an adiabatic equation of state with

external cooling, proportional to the temperature, with a time-scale proportional to the or-

bital period given by tcool = β/Ω. However, the heating terms in these simulations may be

primarily numerical, as evidenced by the reported non-convergence of the critical β required

to drive fragmentation [??].

The fundamental difficulty with a non-isothermal EOS in SPH simulations of PPDs is

handling artificial viscosity. Artificial viscosity is required in SPH, particularly to handle

the shocks which are naturally present in many astrophysical contexts. Even grid codes

implicitly have some diffusive numerical terms. In the highly shearing environment of a

PPD disk, AV is very active. With an isothermal simulation this is not a big problem since

AV heating is suppressed, and it mainly leads to the disk behaving like a viscous disk with

plausible levels of viscosity [?]. Once we relax the isothermal assumption, heating due to AV

can dominate. For typical PPDs, our tests indicate that AV can triple the disk temperature

within an ORP.

Modern SPH formulations all use the Balsara switch [?]. The switch is applied by multi-

plying artificial viscosity terms by the following factor, averaged over the interacting neighbor

pair:

B ≡ |∇ · v|
|∇ × v|+ |∇ · v|

(6.1)

In the limit of infinite resolution in a Keplerian disk, ∇·v = 0 and AV should be off, but due

to discretization and SPH noise, estimates of ∇ · v can be quite large and AV will be poorly

damped. Some research has been done on alternative AV formulations designed specifically

for accretion disks [?], but limited tests have been done on fully realistic, high resolution

disks. A particular difficulty is designing an AV scheme which works well for keplerian flow

and for flow in disks with spiral structure or which have undergone fragmentation.
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If AV heating can be handled we will be able to model perhaps the most important

dynamical effect that dust will have on disks: cooling. Dust is expected to strongly influence

disk cooling, both as a heat sink and as an efficient black-body radiator. Dust will couple

strongly to the disk opacity. As a first step, simple radiative cooling approximations might

be used, appropriate for the somewhat optically thin regimes present in PPDs. One such

approximation has been implemented in ChaNGa, similar to the work of ? and ? where the

gradient of the radiative flux (which is proportional to the heating/cooling) is given locally

by:

∇ · F = −(36π)1/3 σ(T 4 − T 4
irr)

r(∆τ + 1/∆τ)
(6.2)

Where Tirr is a background temperature profile, r is the size of the SPH particle, and

∆τ = rκdρ is the optical depth of the particle with an opacity of κd.

Further work should also be done to explore and improve two-fluid dust methods. As

we have demonstrated, particularly in the context of PPDs, one-fluid terminal velocity dust

is of limited use in PPDs. One-fluid dust methods will always need to contend with the

difficulties of conservation and of handling boundaries. Boundaries are non-trivial, even for

grid codes where they are cleanly defined, and it is even more difficult for SPH [?]. Adding

dust transport in a one-fluid method seems to unite all the difficulties unique to SPH with

those unique to grid codes. While two-fluid dust may suffer from noise and clumping driven

by SPH noise, there is some promising work currently underway. An improved, robust, two-

fluid dust algorithm would allow us to probe important dust dynamics, including self-induced

dust traps.

Investigating self induced dust traps in realistic simulations will also require further work

on the disk inner-boundary: a source of much trouble for PPD simulations. The self induced

dust traps model depends on both the inner and outer disk, and therefore we cannot restrict

ourselves to simulating one region. Unfortunately, these regions have vastly different dy-

namical time-scales and simulating both is computationally very expensive. Cutting a hole

at the inner disk is a simple way to handle this, but it has unknown consequences and may

artificially drive dust trap formation. Vacuum boundary conditions are quite inappropriate
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for the inner disk, and one might be able to help mitigate this by adding an external pressure

term, centered on the star’s location, to mimic gas orbiting close the the star.

We are unlikely to be able to solve the computational cost of the inner edge just by

throwing computing power at it. Moving the inner edge in does not require adding many

more particles to the simulation, but the time-steps rapidly decrease as R → 0 and the

gravitational and hydrodynamic forces diverge. Naive parallelization cannot help here: we

simply have a handful of particles which need to be integrated over an enormous number

of time-steps, while the rest of the simulation waits. For PPDs which have not fragmented,

the simulation wall-time is dominated by the inner disk. Often, a handful of particles (fewer

than 50 in a 106 particle run) may be responsible for doubling or even tripling the wall-clock

time.

Developing a load-balancing specific to the PPD geometry may help enormously. Han-

dling accelerations due to the star’s gravity using a method suitable for integrating Kepler’s

equations may relieve some of the time-stepping constraints. A method which I have played

around with also shows some promise: increasing SPH particle mass within some radius in

the ICs. This has the effect of decreasing the SPH resolution and increasing the time-steps

in those regions, however it needs further testing, especially since variable mass SPH can

raise difficulties.

In complement to the full, 3D simulation work, semi-analytic and simple 1D (along R)

and 2D (R + z) hydrodynamical tests should be carried out to investigate both the self-

induced dust traps and the outer-disk dust pile-ups. Both of these mechanisms may serve

as a means to grow solids to the sizes required to form initial planetesimals, and both may

serve to explain the formation of certain planets. Simplified tests and semi-analytic models

allow us to explore a much larger range of parameter space, to test the plausibility of these

models, and to select good parameters to be used for large-scale full simulations.

I hope to see these advances made in short order by the community. Our theoretical and

observational understanding of protoplanetary disks and the processes of planet formation

are advancing rapidly. This is the golden era for exoplanet science.
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6.3 Code and data

A major hindrance to progress in this branch of computational astronomy is a stunning

lack of reproducibility. At a basic level, simulations and numerical methods are just math,

and therefore results should be exactly reproducible. In my experience, this is almost never

the case. Code and data are rarely published or made publicly available. Instead, cursory

descriptions of methods and techniques are provided in papers. These descriptions are usually

incomplete and very often contain inconsistencies, typos, or other such errors that make

reproducing results impossible. This is not a case of a handful of offending papers, it is the

norm. Not only is this a crisis for the believability of results, it introduces much re-inventing

of the wheel. Since published techniques and methods—i.e. the code—cannot be directly

used, they must often be re-developed from scratch with the literature as an incomplete

guide.

In the digital era, your code and data are your math and your model. As such, they

should be published. In that interest, I have made it a priority to make my code and data

publicly available whenever possible. Unfortunately, journals typically have very low data

caps for supplementary on-line material, so this requires finding alternative hosting resources.

Most of my tools for analyzing and handling PPDs are available online in my diskpy pack-

age at https://github.com/ibackus/diskpy. IC generation is contained within the sub-

package diskpy.ICgen and clump tracking is contained within the subpackage diskpy.clumps.

testdust, a package for generating and analyzing the dust tests of ? can be found at

https://github.com/ibackus/testdust. A simple package for generating SPH glasses

(sphglass) in periodic boxes is available at https://github.com/ibackus/sphglass. A

public version of ChaNGa is available at https://github.com/N-BodyShop/changa and

is required for those packages, including for IC generation. The group finding software

SKID (required for clump finding) is available at https://github.com/N-BodyShop/skid

and depends also on tipsy tools (https://github.com/N-BodyShop/tipsy_tools).

We have also made much of our data available online at the University of Washington’s

https://github.com/ibackus/diskpy
https://github.com/ibackus/testdust
https://github.com/ibackus/sphglass
https://github.com/N-BodyShop/changa
https://github.com/N-BodyShop/skid
https://github.com/N-BodyShop/tipsy_tools
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ResearchWorks archive at http://hdl.handle.net/1773/34933. Initial conditions and fi-

nal simulation snapshots are available for all the M-Dwarf simulations simulations presented

in Chapter 3. Wengen test results (see appendix A) are also available there.

http://hdl.handle.net/1773/34933
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Appendix A

WENGEN TESTS

The Wengen tests are a series of code tests designed to compare different astrophysical hy-

drodynamic and gravity simulation codes and are available online at http://www.astrosim.net/code/.

We ran Wengen test 4, an unstable isothermal PPD, with ChaNGa. We present the results

of our simulation here. We find that our results are in good agreement with other simulation

codes (previous test results can be found at http://users.camk.edu.pl/gawrysz/test4/).

We have reproduced all the plots on the Wengen test website for the ChaNGa results, which

are available at http://hdl.handle.net/1773/34933. Our ICs are the 200k-particle run.

Here we present a few figures demonstrating the ChaNGa results.

http://www.astrosim.net/code/
http://users.camk.edu.pl/gawrysz/test4/
http://hdl.handle.net/1773/34933
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Figure A.1: Surface density map of the Wengen test simulation at t = 47.18 years (6 in

code units). This reproduces the surface density map at t = 6 in the images table at

http://users.camk.edu.pl/gawrysz/test4/#images. As with the other SPH codes and the

higher resolution runs, a clump has formed.
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Figure A.2: Amplitude of the fourier transform of the surface density along the an-

gular direction as a function of radius, for the same snapshot in figure A.1. This

reproduces the FFT of surface density plots at t = 6 in the images table at

http://users.camk.edu.pl/gawrysz/test4/#images. The clump which has formed shows up

as a bright vertical stripe. 200 radial bins were used. The features in the plot agree well

with those for other SPH codes and the high resolution codes.
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Figure A.3: Radially integrated fourier transform of surface density as a function of

time. The amplitudes are normalized by the DC amplitude (not shown). This re-

produces the FFT integrated over r, Am(t) plots in the images tables available at

http://users.camk.edu.pl/gawrysz/test4/#images. The development of strong power around

m = 8 and later around m = 16 agrees with other codes.
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Appendix B

PL15 ONE-FLUID DUST TESTS

Here we present the results of running ChaNGa on the four dusty-gas tests of ?: “dusty-

diffusion”, 2D dust settling in a PPD, “dustywave”, and “dustyshock”. We refer the reader

to ? for a further description of the tests.

The “dustydiffusion” test is a dusty-gas only test in a periodic box with a uniform total

density ρ and with ε decreasing radially outward. An isothermal EOS is used. This means

the gas density and the pressure increase radially outward. This generates a pressure gradient

which drives dust diffusion radially outward. Particles are placed on a 3D 50×58×60 and are

fixed in place, which allows an analytic solution to be calculated. This tests the integration

of the dust fraction equation only: the momentum and energy equations are not integrated.

Figure B.1 plots ε vs spherical r at several times for the dustydiffusion test with the analytic

solution overlaid in red, similar to ? figure 4.

Figure B.1 reproduces results for the 2D dust settling test, similar to ? figure 8. This test

is described in detail §4.2.2. This is an isothermal test with particles free to move (although

their motion is generally small) and serves to test the momentum and dust fraction equations.

The dustywave test is a 1D SPH test of wave propagation in an adiabatic dusty-gas mix-

ture. The particles are placed in a periodic box along z with a small sinusoidal perturbation

to the density, with corresponding velocity and pressure perturbations:

ρ(z) = ρ0(1 + δρ sin kz) (B.1)

v(z) = v0 sin kz (B.2)

P (z) = P0 + csv0 sin kz(1 +
δρ

2
sin kz) (B.3)

where k = 2π/L, ρ0 = 1, δρ = v0 = 10−4 in code units. P0 is the un-perturbed pressure, cal-
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Figure B.1: Dust diffusion test of ?, similar to their Fig. 4. The dust fraction for all particles

at various times is plotted in black (dots) with the analytic solution overlaid in red. The

peak dust fraction monotonically decreases with time and the profile broadens. The ICs is a

periodic box with a uniform total density and ε decreasing radially. The test is run with an

isothermal EOS and uniform cs. Particles are placed on a 3D 50× 58× 60 grid and fixed in

place.
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Figure B.2: Reproduction of Fig. 4.1 for completeness in this appendix. Results for the high

resolution ? dust settling test, similar to their figure 8.
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culated from cs. This tests the momentum, dust fraction, and energy equations. Figure B.3

shows the density after 4.5 periods with the analytic solution overlaid in red, similar to ?

figure 2. It should be noted that this is not a realistic test of wave propagation in SPH, since

it is 1D and not a glass. It is also very sensitive to kernel and Nsmooth. Our tests show good

behavior for the M4, cubic spline kernel with Nsmooth of 4 or 5 only, other neighbor counts

ruin the wave propagation. The M6 kernel performs poorly at all neighbor counts.

Figure B.4 shows the results for the dustyshock test, similar to ? figure 3. The dustyshock

test is an adiabatic shock tube test with ε = 0.5 for small grains and is primarily a test of

the momentum and energy equations. The analytic approximate solution is identical to an

ideal gas with increased molecular weight and is overlaid in red.
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Figure B.3: Results for the ? dustywave test. Plotted is the fractional density perturbation,

defined as (ρ − 〈ρ〉)/ 〈ρ〉. All 100 SPH particles are plotted. The dustywave test is a 1D

dusty-gas mixture with a small (order 10−4) wave perturbation propagating along the +z

direction. The grain size sgrain is very small such that the dust is strongly coupled to the

gas.
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Figure B.4: Results for the dustyshock test of ?, similar to their figure 2. All particles are

plotted (black dots) and the analytic solution is overlaid (red line). The test is a 1D Sod

shock tube with sgrain very small such that the dust is strongly coupled to the gas.
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