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Markov decision processes (MDPs) model a class of stochastic sequential decision prob-

lems with applications in engineering, medicine, and business analytics. There is consid-

erable interest in the literature in MDPs with imperfect information, where the search for

well-performing policies faces many challenges. There is no rigorous universally accepted

optimality criterion. The search space explodes and the decision-maker suffers from the

curse-of-dimensionality. Finding good policies requires careful balancing of the trade-off be-

tween exploration to acquire information and exploitation of this information to earn high

rewards. This dissertation contributes to this area by building a rigorous framework rooted

in information theory for solving MDPs with model uncertainty.

In the first chapter, the value of a parameter that characterizes the transition probabili-

ties is unknown to the decision-maker. The decision-maker updates its Bayesian belief about

this parameter using state observations induced by policies it chooses. Information Directed

Policy Sampling (IDPS) is proposed to manage the exploration-exploitation trade-off. At

each time-stage, the decision-maker solves a convex problem to sample a policy from a dis-

tribution that minimizes a particular ratio. The numerator of this ratio equals the square of

the expected regret of distributions over policy trajectories (exploitation). The denominator

equals the expected mutual information between the resulting system-state trajectory and



the parameter’s posterior (exploration). A generalization of Hoeffding’s inequality is em-

ployed to bound regret. The bound grows at a square-root rate with the planning horizon,

and a square-root log-linear rate with the parameter-set cardinality. It is insensitive to state-

and action-space cardinalities. The regret per stage converges to zero as the planning horizon

increases. IDPS is thus asymptotically optimal. Numerical results on a stylized example, an

auction-design problem, and a response-guided dosing problem demonstrate its benefits.

Uncertainty in transition probabilities arises from two levels in the second chapter. The

top level corresponds to the ambiguity about the system model. Bottom-level uncertainty is

rooted in the unknown parameter values for each possible model. Prior-update formulas using

a hierarchical Bayesian framework are derived and incorporated into two learning algorithms:

Thompson Sampling and a hierarchical extension of IDPS. Analytical performance bounds

for these algorithms are developed. Numerical results on the response-guided dosing problem,

which is amenable to hierarchical modeling, are presented.

The third chapter extends the above to partially observable Markov decision processes

(POMDPs). In POMDPs, the decision-maker cannot observe the actual state of the system.

Instead, it can take a measurement that provides probabilistic information about the true

state. Such POMDPs are equivalent to Bayesian adaptive MDPs (BAMDPs) from the first

two chapters. This connection is exploited to devise algorithms and provide analytical per-

formance guarantees for POMDPs in three separate cases: a) uncertainty in the transition

probabilities; b) uncertainty in the measurement outcome probabilities; and c) uncertainty

in both. Numerical results on partially observed response-guided dosing are included.

The fourth chapter proposes a formal information theoretic framework inspired by stochas-

tic thermodynamics. It utilizes the idea that information is physical. An explicit link between

information entropy and stochastic dynamics of a system coupled to an environment is de-

veloped from fundamental principles. Unlike the heuristic method of defining information

ratio, this provides an optimization program that is built from system dynamics, problem



objective, and the feedback from observations. To the best of my knowledge, this is the

first comprehensive work in MDPs with model uncertainty, which builds a problem formu-

lation entirely grounded in system and informational dynamics without the use of ad-hoc

heuristics.
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Chapter 1

INFORMATION DIRECTED POLICY SAMPLING FOR
MARKOV DECISION PROCESSES WITH PARAMETRIC

UNCERTAINTY

1.1 Introduction

Markov decision processes (MDPs) are perhaps the most widely studied models of sequen-

tial decision problems under uncertainty in Operations Research (Puterman, 1994). In this

chapter, an MDP is described by the tuple M = (S,A, T,R,N). Here, S is a finite set of

states; A is a finite set of actions; T denotes a transition probability function of the form

T (s′|s, a), for s, s′ ∈ S and a ∈ A; R denotes a reward function of the form R(s′|s, a),

for s, s′ ∈ S and a ∈ A; and N denotes a finite planning horizon. This MDP models the

following time-invariant, finite-horizon, sequential decision-making problem under uncer-

tainty. A decision-maker observes the state st ∈ S of a system at the beginning of time-slot

t ∈ {1, 2, . . . , N} and then chooses an action at ∈ A. The system then stochastically evolves

to a state st+1 ∈ S by the beginning of slot t+1 with probability T (st+1|st, at). As a result of

this transition, the decision-maker collects a reward R(st+1|st, at). This process of state ob-

servation, action selection, state evolution, and reward collection repeats until the end of slot

N . A policy trajectory π = (π1, π2, . . . , πN) is a decision-rule that assigns actions πt(st) ∈ A

to states st ∈ S, for t = 1, 2, . . . , N . Note that the set P of such policy trajectories is finite.

The decision-maker’s objective is to find a policy trajectory π = (π1, π2, . . . , πN) ∈ P that

maximizes the expected reward

Jπ(s1) = E

[
N∑
t=1

R(st+1|st, πt(st))

]
.
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It is assumed for simplicity of notation that no terminal reward is earned at the end of slot

N .

The transition probability function is often unknown to the decision-maker at the outset.

This calls for online learning of transition probabilities while the system evolves. For instance,

in medical treatment planning, a doctor might not know the uncertain dose-response function

of an individual at the beginning of a treatment course, but may want to adaptively make

drug selection and dosing decisions over the treatment course (Kotas and Ghate, 2016).

Similarly, a seller conducting a sequence of auctions may not know the bidder demand

and willingness-to-pay distributions, but must adaptively make auction-design decision such

as the minimum bid in each auction (Ghate, 2015). Such problems fall under the broad

framework of MDPs under imperfect information, and can be seen as Bayesian adaptive

MDPs (BAMDPs) or partially observable MDPs (POMDPs) in some cases (Bertsekas, 2005;

Dreyfus and Law, 1977; Krishnamurthy, 2016; Kumar, 1985; Kumar and Varaiya, 2016).

In this chapter, an MDP with unknown transition probabilities is modeled as follows. The

transition probability function is parameterized by a single parameter λ that takes values

from a finite set Ω. The transition probability function characterized by parameter λ ∈ Ω is

denoted by Tλ; the corresponding MDP is described by the tupleMλ = (S,A, Tλ, R,N). For

each λ ∈ Ω, the decision-maker can (easily) solve Mλ. The true parameter value is λ∗ ∈ Ω

and it is unknown to the decision-maker. If the decision-maker were an omniscient oracle, it

would implement a policy trajectory π∗ that is optimal for the MDP Mλ∗ , and this would

maximize expected reward. Since this is not possible, the decision-maker instead pursues

a Bayesian approach, wherein it starts with a prior belief probability mass function (pmf)

α1(·) over λ∗ and updates this belief as states sampled from Tλ∗ are observed, depending on

the sequence of actions chosen after starting in an initial state s1 ∈ S.

The situation described above arises, for instance, in stochastic inventory control, where λ

equals the mean of Poisson demand for a product. Possible values of λ could be λ1 < λ2 < λ3

corresponding to low, medium, and high demand. This Poisson demand characterizes the

transition probability function for stochastic inventory evolution. A similar setup arises in
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the aforementioned sequential auction problem. Finally, in the above medical treatment

planning example, different values of λ may correspond to non-responders, low-responders,

medium-responders, and good-responders.

Intuitively, good solutions to such problems call for balancing the trade-off between ex-

ploring policy trajectories to acquire sufficient information about the true parameter λ∗,

and exploiting acquired knowledge to accumulate high rewards (Powell and Ryzhov, 2012).

This chapter proposes an information theoretic approach to explicitly optimize this trade-off

during run-time as the system evolves.

1.1.1 Existing literature

The above model of parametric uncertainty results in a simultaneous learning and optimiza-

tion problem whose classical formulation is recalled next (Bertsekas, 2005; Dreyfus and Law,

1977; Kumar, 1985). The physical state st ∈ S of the system is augmented with an infor-

mation state αt(·) that equals the decision-maker’s posterior belief pmf about λ∗ at stage t.

This posterior belief pmf is calculated using Bayes’ Theorem. The physical- and information-

state pair is a sufficient statistic for the MDP with parametric uncertainty. This allows the

decision-maker to write the expected reward maximization problem as another MDP, which

is called a BAMDP. In fact, this BAMDP formulation is equivalent to a POMDP where λ∗

is viewed as an unobservable “state” (Krishnamurthy, 2016). Bellman’s equations for the

BAMDP can, in principle, be solved via the backward recursion algorithm of dynamic pro-

gramming. Exact implementation of dynamic programming, however, is impossible, since the

information state is continuous. Discretization of this information state for an approximate

implementation is impractical because its dimension equals the cardinality of Ω, and thus

could be large. Consequently, there has been a considerable interest in heuristic methods for

approximately solving such BAMDP problems.

Examples of such heuristic procedures include (Duff, 2001, 2002); the BEETLE algorithm

of Poupart et al. (2006); and the forward search methods from Castro and Precup (2007);

Fonteneau et al. (2013); Gelly et al. (2012); Guez et al. (2012); Kocsis and Szepesvári (2006);
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Poupart et al. (2006); Ross et al. (2008); Wang et al. (2005). These methods can be my-

opic in that they could settle for higher short term rewards by favoring more exploitation

than exploration. The BEB algorithm from Kolter and Ng (2009), the VBRB algorithm

of Sorg et al. (2012), the BOLT algorithm of Araya et al. (2012), and the POT procedure

of Kawaguchi and Araya (2013) thus heuristically add an exploration bonus to their search

process.

Strens (2000) proposed a simple approach using Thompson Sampling (Thompson, 1933).

At each step of Thompson Sampling, a parameter λ is drawn from the posterior belief. An

action prescribed by a policy that is optimal forMλ is then implemented. After the resulting

transition is observed, the posterior is updated, and the process repeats. Convergence of this

method is, however, provably slow because of the optimistic nature of sampling (Guez et al.,

2014). The BOSS algorithm of Asmuth et al. (2009) introduces a more complex version

of Thompson Sampling that samples many MDPs to guide action selection. Salemi-Parizi

and Ghate (2016) implemented a one-step-lookahead (Bertsekas, 2005) version of Thompson

Sampling to determine lot-sizes in sequential auctions, and numerically compared it with

semi-stochastic certainty equivalent control (Bertsekas, 2005) and with a one-step-lookahead

version of the knowledge gradient method (Frazier et al., 2008; Ryzhov et al., 2012).

There has been a surge of interest in rigorous analyses of regret bounds for the basic

Thompson Sampling method of Strens and its variants. Notable recent examples include

(Gopalan and Mannor, 2015; Osband and Van Roy, 2014; Osband et al., 2013). This chapter

attempts to extend the philosophy and methodology from these recent papers to a more

sophisticated policy sampling method.

1.1.2 Contribution of this chapter

The main contribution of this chapter is that it introduces a provably efficient and em-

pirically powerful algorithm that explicitly optimizes the exploitation versus exploration

trade-off. The performance of this method, as characterized by a worst case regret bound,

only depends on the number of possible parameter values and the horizon length; it exhibits
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a O(
√
N |Ω| log |Ω|) complexity. Specifically, we extend an action sampling method called

Information Directed Sampling (IDS), which was originally devised in Russo and Van Roy

(2014, 2017) for bandit problems, to MDPs with parametric uncertainty. In each step of

IDS, the decision-maker in a bandit problem samples an action that minimizes a so-called

information ratio. The numerator of this information ratio equals the square of the one-

period regret of an action. The denominator equals the information gain, which is a concept

from information theory. Roughly speaking, this gain calculates the information contained

in an action regarding the true parameter of the problem. The idea is that the decision-

maker should prefer actions with small one-period regret and large information gain. It

thus makes intuitive sense to minimize the information ratio. In particular, the information

ratio explicitly quantifies the trade-off between exploration (denominator) and exploitation

(numerator).

Our algorithm is naturally termed Information Directed Policy Sampling (IDPS). In each

step of IDPS, the decision-maker also minimizes the information ratio. Here, the numerator

equals the squared multi-period regret of a policy trajectory, and the denominator equals

the information gain of the system-state trajectory induced by this policy trajectory. Our

theoretical analysis of IDPS employs a nontrivial extension of the proof technique from Russo

and Van Roy (2014, 2016, 2017). Since the concept of a physical state and hence of a policy

are irrelevant in bandit problems, significant additional mathematical challenges need to be

carefully handled in our proof.

Section 1.2 describes the IDPS method. Section 1.3 provides bounds on the decision-

maker’s regret while implementing IDPS. Section 1.4 demonstrates the potential benefits of

IDPS versus Thompson Sampling via a well-known toy example. Finally, additional numer-

ical results are provided to illustrate the potential benefits of IDPS relative to Thompson

Sampling on a sequential auction-design problem from Ghate (2015), and a response-guided

dosing problem from Kim et al. (2009); Kotas and Ghate (2016); Maass and Kim (2017).

The ideas presented in the next two sections can be extended to the case of multiple unknown

parameters and parametric uncertainty in rewards. The chapter does not explicitly focus on
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these cases to keep notation to a minimum. Please note, however, that such more general

problems are tackled in the numerical results in Section 1.4.

1.2 Information directed policy sampling

Recall that the pmf αt(·) denotes the decision-maker’s posterior belief about λ∗ at the be-

ginning of slot t. Suppose the decision-maker observes state st at the beginning of slot t.

Let πt = (πt, πt+1, πN) denote the tail of any policy trajectory π = (π1, π2, . . . , πN) ∈ P .

The set of tail policy trajectories is denoted by P t. Also let π∗λ = (π∗1,λ, . . . , π
∗
N,λ) de-

note an optimal policy for MDP Mλ. Let V ∗t (λ) =
N∑̀
=t

R(s`+1|s`, π∗`,λ(s`)) denote the ran-

dom tail reward accumulated on implementing an optimal policy in MDP Mλ. Similarly,

Vt(λ, π
t) =

N∑̀
=t

R(s`+1|s`, π`(s`)) for any tail policy πt. In both these expressions, state s`+1

is drawn from Tλ given state s` and action π∗`,λ(s`) or action π`(s`), respectively.

Knowing st and αt, the decision-maker minimizes the information ratio at the beginning

of slot t. To define the information ratio, we need to first characterize the expected regret

and information gain of tail policy trajectory πt. In particular, the expected regret is defined

as

∆t(π
t|st, αt(·)) = E

λ∼αt(·)

[
E

{s`+1∼Tλ(·|s`,π`(s`)):`=t,...,N}

[
V ∗t (λ)− Vt(λ, πt)

]]
. (1.1)

This expression computes the expectation (with respect to the decision-maker’s posterior

αt(·)) of the expected difference between the optimal value and the value of policy πt. The

inner expectation is taken with respect to the stochastic state trajectory from stage t+ 1 to

the end of the planning horizon.

The information gain (or mutual information) between two random variables X and

Y is given by I(X;Y ) =
∑
x,y

P (x, y) ln P (y|x)
P (y)

, where the letter P denotes the appropriate

joint, conditional, and marginal distributions. In our MDP context, X takes values in the

parameter set Ω, while Y takes values in the observation set {s`+1 ∼ Tλ∗(·|s`, π`(s`)) : ` =
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t, · · · , N}. The information gain thus equals

gt(π
t|st, αt(·)) =

∑
λ∈Ω

∑
st+1,...,sN

(
N∏
`=t

Tλ(s`+1|s`, π`(s`))

)
αt(λ) ln


N∏̀
=t

Tλ(s`+1|s`, π`(s`))∑
λ∈Ω

N∏̀
=t

Tλ(s`+1|s`, π`(s`))αt(λ)

 .
(1.2)

Now let Dt denote the set of all pmfs over tail policies in P t. That is, pmf νt ∈ Dt assigns

probability mass νt(πt) to tail policy πt ∈ P t. Then, given the pair (st, αt(·)) at the beginning

of slot t, the expected regret and expected information gain of pmf νt are given by

∆t(ν
t|st, αt(·)) =

∑
πt∈Pt

νt(πt)∆t(π
t|st, αt(·)), ∀νt ∈ Dt, (1.3)

and

gt(ν
t|st, αt(·)) =

∑
πt∈Pt

νt(πt)gt(π
t|st, αt(·)), ∀νt ∈ Dt. (1.4)

This notation uses operator overloading, since the operators ∆t(·|st, αt(·)) and gt(·|st, αt(·))

take arguments from P t as well as Dt. This is done in favor of parsimonious notation in

the hope that the meaning should be clear from context. Such overloading may be used in

the sequel for other quantities as well. Furthermore, the conditioning (·|st, αt(·)) is dropped

in some expressions below for brevity; this conditioning is assumed to be implicit in such

cases. For instance, the expected regret may simply be written as ∆t(ν
t) and the expected

information gain as gt(ν
t). The information ratio is now defined as

Ψt(ν
t) =

(∆t(ν
t))2

gt(νt)
. (1.5)

The decision-maker finds a pmf over Dt by solving

νt∗ ∈ argmin
νt∈Dt

Ψt(ν
t). (1.6)
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Let Ψ∗t denote the optimal value min
νt∈Dt

Ψt(ν
t) of this problem. This is called the minimal

information ratio. As in IDS, solution of the above problem is facilitated by the fact that

Ψt(ν
t) is a convex function over {gt(νt) > 0}. Moreover, as in IDS, the above optimization

problem has a two-point optimal solution. That is, there exists an optimal solution νt∗ such

that the cardinality of {πt ∈ P t|νt∗(πt) > 0} is at most two.

While implementing IDPS, a tail policy πt = (πt, . . . , πN) ∈ P t is sampled from such

a two-point optimal pmf νt∗ and the action πt(st) prescribed by (the first time-component

of) this policy is implemented in state st. The system then stochastically evolves to st+1

according to Tλ∗(·|st, πt(st)). The posterior αt(·) is updated to αt+1(·) using Bayes’ Theorem

given that state st+1 was observed after choosing action πt(st) in state st. This procedure is

summarized in Algorithm 1 below. A theoretical performance analysis of IDPS is presented

in the next section.

Algorithm 1 Information Directed Policy Sampling

Require: MDPs Mλ = {S,A, Tλ, R,N} for λ ∈ Ω. Prior pmf α1(·). Initial state s1 ∈ S.

1: function IDPS
2: for episode k = 1, 2, 3, · · · do
3: Set t = 1
4: Initialize state s1; and prior α1(·)← αN+1(·) if k > 1
5: repeat
6: Compute distribution νt∗ = argmin

νt∈Dt
Ψt(ν

t|st, αt(·))

7: Sample πt = (πt, . . . , πN) ∼ νt∗
8: Implement action πt(st)
9: Observe st+1 drawn from Tλ∗(·|st, πt(st))

10: Update probability mass αt+1(λ) ∝ Tλ(st+1|st, πt(st))αt(λ), for each λ ∈ Ω
11: t ← t+1
12: until end of horizon N
13: end for
14: end function
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1.3 Theoretical analysis

This section provides an upper bound on the decision-maker’s regret while implementing

IDPS. Such regret bounds are often of interest for learning algorithms in MDPs (Gopalan

and Mannor, 2015; Jaksch et al., 2010; Russo and Van Roy, 2016). Our method of proof is

motivated by Russo and Van Roy (2014, 2016, 2017), with substantial modifications to handle

the more complicated temporal dependence structure and policy sampling requirements of

MDPs. It turns out that our regret bound does not explicitly depend on the cardinality of

S or of A. It instead depends on the cardinality of Ω and on the Shannon entropy of the

initial prior α1(·).

Let Λ1 : Ω 7→ R denote a random variable on Ω with pmf α1(·) and H(Λ1|s1) denote

its Shannon entropy −
∑
λ∈Ω

α1(λ) ln(α1(λ)). A similar notation is also employed for other

time-stages t whereby H(Λt|st) denotes the Shannon entropy of the prior on Λt. Moreover,

H(Λt|{s`+1 : ` = t : N}, πt, st) is the Shannon entropy of the posterior on Λt having observed

a trajectory {s`+1 : ` = t : N} while following a policy πt starting in state st. The next two

intermediate lemmas help later in the proof of regret bounds in Theorem 1.3.3.

Lemma 1.3.1. The information gain gt(ν
t|st, αt(·)) defined in (1.4) can be rewritten as

gt(ν
t|st, αt(·)) = H(Λt|st)− E

πt∼νt

[
E

{s`+1:`=t:N}
[H(Λt|{s`+1 : ` = t : N}, πt, st)]

]
.

Proof. The proof uses a property of information gain (see Lemma 5.5.6 in Gray (2011)),

which states that for random variables X and Y , the information gain can be expressed as

I(X;Y ) = H(X)−
∑
y∈Y

P (y)H(X|Y = y). Recall that, in our context, X takes values in the

parameter set Ω, and Y takes values in the observation set {s`+1 ∼ Tλ∗(·|s`, π`(s`)) : ` = t :
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N}. Thus, a direct application of the above property results in

gt(π
t|st, αt(·)) = I (Λt; {s`+1 ∼ Tλ∗(·|s`, π`(s`)) : ` = t : N})

= H(Λt|st)−
∑

{s`+1:`=t:N}

(∑
λ∈Ω

N∏
`=t

Tλ(s`+1|s`, π`(s`))αt(λ)

)
H(Λt|{s`+1 : ` = t : N}, πt, st)

= H(Λt|st)− E
{s`+1:`=t:N}

[
H(Λt|{s`+1 : ` = t : N}, πt, st)

]
.

Then, by taking expectation with respect to νt yields

gt(ν
t|st, αt(·)) = E

πt∼νt

[
gt(π

t|st, αt(·))
]

= E
πt∼νt

[H(Λt|st)]− E
πt∼νt

[
E

{s`+1:`=t:N}
[H(Λt|{s`+1 : ` = t : N}, πt, st)]

]
= H(Λt|st)− E

πt∼νt

[
E

{s`+1:`=t:N}
[H(Λt|{s`+1 : ` = t : N}, πt, st)]

]
.

The last equality follows because H(Λt|st) does not depend on πt. This completes the

proof.

We use Ψ∗ to denote max
t∈{1,2,...,N}

(Ψ∗t ) for brevity, and | · | to denote set cardinalities.

Lemma 1.3.2. Fix any arbitrary randomized tail policies ν2 ∈ D2, ν3 ∈ D3, . . ., νN ∈ DN .

Then, for any ε > 0, we have,

N−1∑
t=1

√√√√√Ψ∗t+1

H(Λt+1|st+1)− E
{s`+1:`=t+1:N}
πt+1∼νt+1

[H(Λt+1|{s`+1 : ` = t+ 1 : N}, πt+1, st+1)]

−
N−1∑
t=1

E
st+1


√√√√√Ψ∗t+1

H(Λt+1|st+1)− E
{s`+1:`=t+1:N}
πt+1∼νt+1

[H(Λt+1|{s`+1 : ` = t+ 1 : N}, πt+1, st+1)]




≤(1 +
√
N − 1)

√
εΨ∗ log(|Ω|),

(1.7)
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with probability
(

1− e−
(cε−2)2

2N

)(
1− e−

(c0
√
ε−2)2

2N

)
, where c > 2/ε and c0 > 2/

√
ε are positive

constants.

Proof. The proof starts by simplifying and bounding the summations on the left hand side of

Equation (2.3). We find an upper bound on the first term and a lower bound on the second

term. We first consider the second term in Equation (2.3), which is given by

N−1∑
t=1

E
st+1


√√√√√Ψ∗t+1

H(Λt+1|st+1)− E
{s`+1:`=t+1:N}
πt+1∼νt+1

[H(Λt+1|{s`+1 : ` = t+ 1 : N}, πt+1, st+1)]




a
=

N−1∑
t=1

E
st+1

√ E
{s`+1:`=t+1:N}
πt+1∼νt+1

[
Ψ∗t+1 (H(Λt+1|st+1)−H(Λt+1|{s`+1 : ` = t+ 1 : N}, πt+1, st+1))

]
b

≥
N−1∑
t=1

E
st+1

E
{s`+1:`=t+1:N}
πt+1∼νt+1

[√
Ψ∗t+1 (H(Λt+1|st+1)−H(Λt+1|{s`+1 : ` = t+ 1 : N}, πt+1, st+1))

]
c
=

N−1∑
t=1

E
{s`+1:`=t:N}
πt+1∼νt+1

[√
Ψ∗t+1 (H(Λt+1|st+1)−H(Λt+1|{s`+1 : ` = t+ 1 : N}, πt+1, st+1))

]
d
=

N−1∑
t=1

E
{s`+1:`=t:N}
πt+1∼νt+1

[Zt+1] . (1.8)

Equality “a” follows because the entities Ψ∗t+1 and H(Λt+1|st+1) do not depend on the tra-

jectory {s`+1 : ` = t : N}. Inequality “b” follows from Jensen’s inequality, which guarantees

that for any random variable X,
√

(E[X]) ≥ E[
√
X] (see (Boyd and Vandenberghe, 2004)).

Equality “c” is a simple modification of notations. Equality “d” follows by defining

Zt+1 =

(√
Ψ∗t+1 (H(Λt+1|st+1)−H(Λt+1|{s`+1 : ` = t+ 1 : N}, πt+1, st+1))

)

for brevity.
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Now consider the first term in Equation (2.3), which is given by

N−1∑
t=1

√√√√√Ψ∗t+1

H(Λt+1|st+1)− E
{s`+1:`=t+1:N}
πt+1∼νt+1

[H(Λt+1|{s`+1 : ` = t+ 1 : N}, πt+1, st+1)]


=

N−1∑
t=1

{
Ψ∗t+1

(
H(Λt+1|st+1)−H(Λt+1|{s`+1 : ` = t+ 1 : N}, πt+1, st+1)+

H(Λt+1|{s`+1 : ` = t+ 1 : N}, πt+1, st+1)−

E
{s`+1:`=t+1:N}
πt+1∼νt+1

[H(Λt+1|{s`+1 : ` = t+ 1 : N}, πt+1, st+1)]

)}1/2

a

≤
N−1∑
t=1

(√
Ψ∗t+1 (H(Λt+1|st+1)−H(Λt+1|{s`+1 : ` = t+ 1 : N}, πt+1, st+1))+{

Ψ∗t+1

(
H(Λt+1|{s`+1 : ` = t+ 1 : N}, πt+1, st+1)−

E
{s`+1:`=t+1:N}
πt+1∼νt+1

[H(Λt+1|{s`+1 : ` = t+ 1 : N}, πt+1, st+1)]
)}1/2)

=
N−1∑
t=1

(
Zt+1 +

{
Ψ∗t+1

(
H(Λt+1|{s`+1 : ` = t+ 1 : N}, πt+1, st+1)−

E
{s`+1:`=t+1:N}
πt+1∼νt+1

[H(Λt+1|{s`+1 : ` = t+ 1 : N}, πt+1, st+1)]
)}1/2)

b

≤
N−1∑
t=1

Zt+1+

√
N − 1

{
N−1∑
t=1

Ψ∗t+1

(
H(Λt+1|{s`+1 : ` = t+ 1 : N}, πt+1, st+1)−

E
{s`+1:`=t+1:N}
πt+1∼νt+1

[H(Λt+1|{s`+1 : ` = t+ 1 : N}, πt+1, st+1)]

)}1/2

c

≤
N−1∑
t=1

Zt+1 +
√

(N − 1)εΨ∗ log(|Ω|), with probability 1− e−
(cε−2)2

2N . (1.9)
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Inequality “a” follows from the algebraic relation
√
x+ y ≤

√
x+
√
y. Inequality “b” follows

from Cauchy-Schwarz. Inequality “c” follows from an application of the generalized Hoeffd-

ing’s inequality to Markov chains (Glynn and Ormoneit, 2002; Hoeffding, 1963). To see this,

consider the sequence of random variables Y1, Y2, · · · , YN such that Yt = ΨtH(Λt|{s`+1 : ` =

t : N}, πt, st). Here, the pair {αt(·), st} forms a Markov chain. Consider any µ > 0. Then,

by Glynn and Ormoneit (2002), we have,

N−1∑
t=1

Yt+1 − E
{s`+1:`=t+1:N}
πt+1∼νt+1

[Yt+1]

 ≥ µ,

with probability exp

(
− 2
N

(
cµ

2||ΨH|| − 1
)2
)
, where c > 2||ΨH||

µ
is a positive constant. The

sup-norm ||ΨH|| is taken over {λt, {s`+1 : ` = t + 1 : N}, πt, t}. The sup-norm can be

further bounded above as ||ΨH|| ≤ ||Ψ||||H|| ≤ Ψ∗ log(|Ω|). Here, we have used the fact

that Shannon entropy is maximum for a uniform distribution and takes the value log(|Ω|).

Substituting µ = ε||ΨH|| we get,

N−1∑
t=1

(
Ψ∗t+1H(Λt+1|{s`+1 : ` = t+ 1 : N}, πt+1, st+1)−

E
{s`+1:`=t+1:N}
πt+1∼νt+1

[
Ψt+1H(Λt+1|{s`+1 : ` = t+ 1 : N}, πt+1, st+1)

])
≤ εΨ∗ log(|Ω|),

with probability 1− e−
(cε−2)2

2N , where c > 2/ε is a positive constant.

We now combine (1.8) and (1.9), and apply the Hoeffding’s inequality for Markov chains

one more time. Here, we consider the sequence of random variables Z1, Z2, · · · , ZN such that

Zt =
√

Ψ∗t (H(Λt|st)−H(Λt|{s`+1 : ` = t : N}, πt, st)). Note again that the pair {αt(·), st}
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forms a Markov chain. Thus,

N−1∑
t=1

(√
Ψ∗t+1 (H(Λt+1|st+1)−H(Λt+1|{s`+1 : ` = t+ 1 : N}, πt+1, st+1))

− E
{s`+1:`=t+1:N}
πt+1∼νt+1

[√
Ψ∗t+1 (H(Λt+1|st+1)−H(Λt+1|{s`+1 : ` = t+ 1 : N}, πt+1, st+1))

])

≥
√
ε||ΨH||,

with probability e−
(c0
√
ε−2)2

2N , where c0 > 2/
√
ε is a positive constant. This implies that

N−1∑
t=1

Zt+1 − E
{s`+1:`=t+1:N}
πt+1∼νt+1

[
N−1∑
t=1

Zt+1

]
≤
√
εΨ∗ log(|Ω|), (1.10)

with probability 1− e−
(c0
√
ε−2)2

2N , where c0 > 2/
√
ε is a positive constant.

Now, putting together the results of (1.8), (1.9), and (1.10) yields the conclusion of the

lemma.

The next theorem bounds the decision-maker’s cumulative expected regret over N stages,

which is defined as

Regret(N) =
N∑
t=1

(
∆t(ν

t
∗|st)− E

st+1

[∆t+1(νt∗|st+1)]

)
, (1.11)

where st+1 ∼ Tλ∗(·|st, πt(st)) with πt ∼ νt∗. Here,

∆t+1(νt∗|st+1) = E
(πt,πt+1)∼νt∗

[
∆t+1(πt+1|st+1)

]
, (1.12)

with

∆t+1(πt+1|st+1) =
∑

λ∼αt(·)

[
E

{s`+1:`=t+1:N}

[
V ∗t+1(λ)− Vt+1(λ, πt+1)

]]
.

Recall from (1.3) that ∆t(ν
t
∗|st) is the expected regret if a policy πt sampled according to
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νt∗ ∈ Dt is implemented in stages t : N starting in state st. The term ∆t+1(νt∗|st+1) defined

in (1.12) above is the expected regret if a policy πt = (πt, π
t+1) sampled according to νt∗ at

time-step t is implemented in stages t + 1 : N starting in state st+1. Thus, the difference

∆t(ν
t
∗|st) − E

st+1

[∆t+1(νt∗|st+1)] may be viewed as the one-step expected regret of νt∗. The

cumulative expected regret over N stages as defined in (2.9) can therefore be interpreted

as a sum of these one-step regrets, because the decision-maker recomputes the randomized

policy νt∗ at every time-step t.

Theorem 1.3.3. Worst Case Regret Bound: Suppose there is a γ such that Ψ∗ ≤ γ.

Then, for any ε > 0, we have,

Regret(N) ≤ ((1+
√
N − 1)

√
ε+1)

√
γ log(|Ω|) with probability (1−e−

(cε−2)2

2N )(1−e−
(c0
√
ε−2)2

2N ),

where c > 2/ε and c0 > 2/
√
ε are positive constants.

Proof. Define gt+1(νt∗|st+1) as the information gain when a policy sampled according to νt∗ is

implemented from t+ 1 onwards starting in state st+1. Then we get

Regret(N) =
N∑
t=1

(
∆t(ν

t
∗|st)− E

st+1

[∆t+1(νt∗|st+1)]
)

=
N∑
t=1

(√
Ψ∗tgt(ν

t
∗|st)− E

st+1

[
√

Ψt+1gt+1(νt∗|st+1)]
)

a

≤
N∑
t=1

√
Ψ∗t

(
H(Λt|st)− E

{s`+1:`=t:N}
πt∼νt

[H(Λt|{s`+1 : ` = t+ 1 : N}, πt, st)]
)
−

E
st+1

 N∑
t=1

√√√√√Ψ∗t+1

H(Λt+1|st+1)− E
{s`+1:`=t+1:N}
πt+1∼νt+1

[H(Λt|{s`+1 : ` = t : N}, πt+1, st+1)]




b
=

N−1∑
t=1

√√√√√Ψ∗t+1

H(Λt+1|st+1)− E
{s`+1:`=t+1:N}
πt+1∼νt+1

[H(Λt|{s`+1 : ` = t : N}, πt+1, st+1)]

−
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N−1∑
t=1

E
st+1


√√√√√Ψ∗t+1

H(Λt+1|st+1)− E
{s`+1:`=t+1:N}
πt+1∼νt+1

[H(Λt|{s`+1 : ` = t+ 1 : N}, πt+1, st+1)]


+

√
Ψ∗1H(Λ1|s1)− E

{s`+1:`=1:N}
π1∼ν1

[H(Λ1|{s`+1 : ` = 1 : N}, π1, s1)]−

√
Ψ∗N+1H(ΛN+1|sN+1)

c

≤ (1 +
√
N − 1)

√
εγΨ∗ log(|Ω|) +

√
Ψ∗H(Λ1|s1), with prob.

(
1− e−

(cε−2)2

2N

)(
1− e−

(c0
√
ε−2)2

2N

)
≤ (1 +

√
N − 1)

√
εγ log(|Ω|) +

√
γH(Λ1|s1)

d

≤ ((1 +
√
N − 1)

√
ε+ 1)

√
γ log(|Ω|).

Here, inequality “a” follows from two ideas. The first is an equality that follows from

Lemma 1.3.1, and the second is that Ψt+1 ≥ Ψ∗t+1. Equality “b” is just a rearrangement

of entities inside the summation. Inequality “c” follows from Lemma 1.3.2. Inequality “d”

holds because the Shannon entropy is maximum for a uniform distribution where it equals

log(|Ω|).

The next result obtains a uniform upper bound on the minimal information ratio. This

uniform bound is then inserted back into Theorem 1.3.3 to derive Corollary 1.3.6. Russo

and Van Roy (Russo and Van Roy, 2014, 2017) used a similar approach to bound minimal

information ratios in bandit problems. Our proof is its generalization to MDPs. We first

recall the following fact from Russo and Van Roy (2016).

Fact 1.3.4. Let P and Q be any distributions such that P is absolutely continuous with

respect to Q. Consider any random variable X : Ω → R such that sup(X) − inf(X) ≤ 1.

Then,

EP [X]− EQ[X] ≤
√

1

2
DKL(P ||Q),

where DKL(P ||Q) = −
∑
x

P (x) log
(
Q(x)
P (x)

)
denotes Kullback-Leibler divergence (for discrete

distributions) (Gray, 2011).
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Proposition 1.3.5. Bounds on minimal information ratio: The minimal information

ratio is bounded above by |Ω|/2.

Proof. The information gain in (1.2) can be expressed as

gt(π
t|st) = E

λ∼αt(·)

{
DKL

[(
N∏
`=t

Tλ(s`+1|s`, π`(s`))

)∣∣∣∣∣
∣∣∣∣∣∑
λ∈Ω

N∏
`=t

Tλ(s`+1|s`, π`(s`))αt(λ)

]}
.

Define

Ut(π
t, λ) = E

{s`+1∼Tλ(·|s`,π`(s`)):`=t,...,N}
[Vt(λ, π

t)],

and

Lt(π
t, λ) = Ut(π

t, λ)− E
λ∼αt(·)

[
Ut(π

t, λ)
]
.

Further define

ΨL
t (νt) =

∆t(ν
t)2

E
λ∼αt(·)

[Lt(νt, λ)2]
,

and

νtL = argmin
νt∈Dt

ΨL
t (νt).

At the optimal solution νtIDPS to the information ratio minimization problem, we have,

Ψt(ν
t
IDPS) ≤ Ψt(ν

t
L).

Ψt(ν
t) =

∆t(ν
t)2

E
λ∼αt(·)

{
DKL

[(
N∏̀
=t

Tλ(s`+1|s`, π`(s`))
) ∣∣∣∣∣
∣∣∣∣∣∑λ∈Ω

N∏̀
=t

Tλ(s`+1|s`, π`(s`))αt(λ)

]}
a

≤ ∆t(ν
t)2

2 E
λ∼αt(·)

[Ut(πt, λ)− E
λ∼αt(·)

[Ut(πt, λ)]]2

=
1

2
ΨL
t (νt).

Here, “a” follows from Fact 1.3.4 with distribution P identified as P =
N∏̀
=t

Tλ(s`+1|s`, π`(s`))
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and distribution Q as Q =
∑
λ∈Ω

N∏̀
=t

Tλ(s`+1|s`, π`(s`))αt(λ) and X = Ut(π
t, λ). We assume

that sup(Ut(π
t, λ)) − inf(Ut(π

t, λ)) ≤ 1. For a finite MDP, stage-rewards and hence value

functions are uniformly bounded. Thus, the assumption sup(Ut(π
t, λ)) − inf(Ut(π

t, λ)) ≤ 1

holds without any loss of generality. This is because if sup(Ut(π
t, λ)) − inf(Ut(π

t, λ)) > 1,

we can rescale the rewards such that the new rewards R(s, a) ← R(s, a)/(sup(Ut(π
t, λ)) −

inf(Ut(π
t, λ))). This rescaling does not affect any decision rules for the MDP but ensures that

sup(Ut(π
t, λ))− inf(Ut(π

t, λ)) ≤ 1 making the theorem valid. Also note that the distribution

P is absolutely continuous with respect to Q because Q(·) = 0 implies that P (·) = 0. By

definition Q =
∑
λ∈Ω

N∏̀
=t

Tλ(s`+1|s`, π`(s`))αt(λ) and
N∏̀
=t

Tλ(s`+1|s`, π`(s`))αt(λ) ≥ 0; ∀λ. For

the sum of non-negative components to be 0 it is required that each individual component

should be 0. Thus, either
N∏̀
=t

Tλ(s`+1|s`, π`(s`)) = 0 or αt(λ) = 0. Since this is true for any

arbitrary αt and
∑

λ∈Ω αt(λ) = 1, it implies that
N∏̀
=t

Tλ(s`+1|s`, π`(s`)) = 0, which corresponds

to P (·) = 0. This yields

Ψt(ν
t
IDPS) ≤ Ψt(ν

t
L) ≤ ΨL

t (νtL)/2. (1.13)

Now let νtPS be the distribution over the policies, where each policy is optimal with

respect to the MDP Mλ obtained from sampling the corresponding parameter λ from the

posterior distribution αt. Hence by definition, the distribution νtPS is same as αt with the

identification that the domain consists of optimal policies of Mλ, for all λ ∈ Ω. Therefore,

E
λ∼αt(·)

[Lt(ν
t
PS, λ)2] = E

λ∼αt(·)
π∼νtPS

[Lt(π
t, λ)2]

a
= E

λ∼αt(·)
π∼αt(·)

[Lt(π
t, λ)2]. (1.14)

Equality “a” holds because of the aforementioned equivalence between sampling policies from

νtPS and from αt(·). Similarly,

∆t(ν
t
PS) = E

πt∼νtPS
[∆t(π

t)] = E
πt∼αt(·)

[∆t(π
t)]
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= E
πt∼αt(·)

[
E

λ∼αt(·)

[
E

{s`+1∼Tλ(·|s`,π`(s`)):`=t,...,N}

[
V ∗t (λ)− Vt(λ, πt)

]]]
b
= E

πt∼αt(·)

[
E

{s`+1∼Tλ(·|s`,π`(s`)):`=t,...,N}

[
Vt(λ, π

t)
]

− E
λ∼αt(·)

[
E

{s`+1∼Tλ(·|s`,π`(s`)):`=t,...,N}

[
Vt(λ, π

t)
]]]

= E
πt∼αt(·)

[Lt(π
t, λ)].

Equality “‘b”’ holds due to an extension of the logic behind equality “a”. Let P∗ be the

set of policies optimal for MDPs Mλ, ∀λ ∈ Ω. The above RHS is then bounded using

Cauchy-Schwarz as

E
πt∼αt(·)

[Lt(π
t, λ)] =

∑
πt∈Pt∗

αt(π
t)Lt(π

t, λ) (1.15)

≤
√
|Ω|

∑
πt∈Pt∗

(αt(πt)Lt(πt, λ))2

=
√
|Ω|
√∑

πt,λ

αt(πt)αt(λ)Lt(πt, λ)2

=
√
|Ω|
√

E
λ∼αt(·)
π∼αt(·)

[Lt(πt, λ)2].

This implies that ∆t(ν
t
PS)2 ≤ |Ω| E

λ∼αt(·)
πt∼αt(·)

[Lt(πt, λ)2]. Now recall that

ΨL
t (νtPS) =

∆t(ν
t
PS)2

E
λ∼αt(·)

[Lt(νtPS, λ)2]
=

∆t(ν
t
PS)2

E
λ∼αt(·)
π∼αt(·)

[Lt(πt, λ)2]
≤

|Ω| E
λ∼αt(·)
π∼αt(·)

[Lt(π
t, λ)2]

E
λ∼αt(·)
π∼αt(·)

[Lt(πt, λ)2]
= |Ω|, (1.16)

where the second equality follows from (1.14) and the inequality holds because of the above

upper bound on the numerator. Also note that ΨL
t (νtL) ≤ ΨL

t (νtPS) by optimality of νtL.
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Using this in (2.13) and combining with the above upper bound on ΨL
t (νtPS) yields

Ψt(ν
t
IDPS) ≤ ΨL

t (νtPS)/2 ≤ |Ω|/2. (1.17)

This completes the proof.

Corollary 1.3.6. The cumulative expected regret is bounded as

Regret(N) ≤ ((1 +
√
N − 1)

√
ε+ 1)√

2

√
|Ω| log(|Ω|),

with probability

(
1− e−

(cε−2)2

2N

)(
1− e−

(c0
√
ε−2)2

2N

)
, where c > 2/ε and c0 > 2/

√
ε are positive

constants.

Proof. Follows from Theorem 1.3.3 and Proposition 1.3.5.

A regret bound ofO(S
√
AN) is provided in (Osband et al., 2013) for Thompson Sampling.

Our worst-case regret bound in the above corollary for IDPS only depends on |Ω| and N .

This provides a better regret scaling when the state/policy space is large but where the set of

uncertain parameters is relatively much smaller. In addition, it provides insight via explicit

dependence on the prior information. Finally, note that the running average regret, that

is Regret(N)/N , asymptotically approaches zero at the rate (ε/
√
N) + (1/N). This shows

that IDPS is asymptotically optimal. In the next section, we supplement these theoretical

guarantees with numerical experiments.

1.4 Numerical results

Our numerical results are split into two sections. Section 1.4.1 studies a well-known stylized

example to gain insight into why IDPS might work well on some problems. Sections 1.4.2

and 1.4.3 implement IDPS on a business analytics problem and a medical treatment planning

problem, respectively, and compare its performance against Thompson Sampling.
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1.4.1 Illustrative example: 5-state MDP

In this section, we illustrate the potential advantage of using IDPS via the chain problem

from (Dearden et al., 1998). The decision maker has 2 actions {a, b} available, which cause

transitions between 5 states of the chain shown in Figure 1.1. Action a takes the agent to the

next state with a probability λ1, unless it is the state 5, where it causes the agent to remain

in the same state with same probability λ1. Additionally, action a can cause the agent to

transit to state 1 with probability λ2. Action b also causes the same transitions but with

reversed probabilities. Consider a discounted infinite horizon version of this problem with

discount factor 0.9. The true parameter values are {λ∗1, λ∗2} = {0.8, 0.2}. The decision-maker

knows that the true parameter value belongs to the set Ω = {{0.2, 0.8}, {0.8, 0.2}}. The

objective is to maximize the cumulative expected discounted reward while learning the true

parameter value λ∗ = {0.8, 0.2}. It is known that the optimal policy here is to follow action

a in every state, and that learning algorithms tend to get stuck in loops of choosing action b

(Dearden et al., 1998). In our experience, on the other hand, IDPS performed quite well on

this problem. IDPS realized that the maximum information gain is obtained while choosing

action a in all states. This action happens to be the optimal action in every state, hence the

expected value accumulated while following the policy sampled by IDPS was higher than

Thompson Sampling. The average cumulative reward on starting in state 1 was 150.86 for

IDPS and 139.33 for Thompson Sampling with 10 episodes of N = 50 time-stages each. (The

results were averaged over 50 independent simulations).

While IDPS performed well in the above example, the information structure of that

example is perhaps too simple to justify executing IDPS. We therefore consider a modification

of the 5-state MDP. Here, in addition to actions {a, b}, the decision maker has access to a

third action c. Action c skips the next state and takes the system to the state after that, with

probability γ; the system remains in the same state with probability 1−γ. If the system is in

state 4 or state 5, action c takes the system to state 1 or state 2, respectively, with probability

γ. The decision-maker has to learn the true parameter value l∗ = {γ∗, λ∗} = {0.6, 0.4, 0.6},
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Figure 1.1: Schematic of the MDP with 5 states discussed in Section 1.4.1. Rewards are shown next to transition arcs.

while maximizing the cumulative reward. The decision maker knows that the true parameter

value belongs to the set Ω = {{0.6, 0.4, 0.6}, {0.9, 0.4, 0.4}}. For this problem, choosing

action a for all states is optimal if the true parameter is l1 = {0.6, 0.4, 0.6}. We call this

policy πa. Action b is optimal in all states if the true parameter is l2 = {0.9, 0.4, 0.4}. We

call this policy πb. Policy πc corresponds to choosing action c in all states. This policy is

not optimal for l1 or for l2.

Table 1.1: Properties of three policies for the 5-state MDP in Section 1.4.1.

Information gain Expected Regret Value Function
Policy πa 0.0130 11.61 12.32
Policy πb 0.0132 11.65 12.21
Policy πc 0.0620 12.50 10.05

Table 1.1 shows the value functions for the three policies starting in state 1. If the

decision-maker uses Thompson Sampling, it will never chose policy πc because πc is not

optimal for any parameter combination from Ω. On the other hand, policy πc provides

information about the other policies. Indeed, Table 1.1 shows that policy πc has a larger

information gain compared to πa, πb. IDPS will thus select policy πc in the beginning, acquire

information about the optimal policy πa and will select that policy in future epochs. Table 1.2
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shows the average cumulative rewards for Thompson Sampling and IDPS starting in state 1,

for 3 consecutive episodes each of N = 50 time-steps. The table shows that, although IDPS

chooses a non-optimal policy πc in the beginning owing to its higher information gain, it is

still able to attain better rewards than Thompson Sampling in each of the three episodes.

Table 1.2: Cumulative rewards for the 5-state MDP discussed in Section 1.4.1.

Episode 1 Episode 2 Episode 3
IDPS 4.5 8.5 10.9

Thompson Sampling 1.8 7.3 10.5

1.4.2 Optimizing minimum bids in sequential Vickery auctions with unknown demand

In this section, we implement and compare Thompson Sampling and IDPS on a learning

problem in sequential Vickrey auctions that was originally studied by (Ghate, 2015). Con-

sider a seller who initially holds I ≥ 1 units in her inventory. The seller uses a sequence

of online, single-unit auctions of equal durations to clear inventory and generate revenue.

A single unit is put up for auction and the minimum bid requirement is announced. The

seller uses the Vickrey, that is, the second price-sealed-bid mechanism. Remaining units are

held in inventory during the auction. A cost of h ≥ 0 is incurred per unit held in inventory

over the duration of the auction and is charged at the beginning of the auction. At the

end of each auction, inventory level either drops by one (if at least one bid is posted) or

stays the same (if no bids are posted). This process continues until all inventory is cleared.

The discount factor over the duration of each auction is 0 < δ < 1. The seller’s goal is to

find a policy for minimum bid decisions to maximize total discounted expected profit over

all auctions. Bidders across different auctions are independent; each bidder has a private

valuation for a single item; these private valuations of different bidders in any one auction

and across auctions are independent and identically distributed (iid) random variables; and

the numbers of potential bidders across auctions are iid random variables.
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The random number of potential bidders in any auction is denoted by N . Let p(n) be

the probability mass function of N with support {0, 1, 2, · · · } and mean 0 < λ < ∞. This

demand is Poisson distributed. The seller knows this but she does not know its mean λ.

The seller has a prior belief distribution on λ and that she updates this belief over multiple

auctions by observing the number of posted bids.

Let χ denote the distribution function of bidder valuations with a density function θ that

satisfies θ(v) > 0 for all v ∈ (0, 1). The seller’s task is to find the minimum bid b ∈ [0, 1] in

each auction after observing the remaining inventory to maximize expected total discounted

profit. Bidders whose valuations are less than b will not post a bid, whereas others will.

Denote the probability that no bid is posted by qλ(b), for any given value of λ. Recall from

Ghate (2015) that

qλ(b) = e−λ(1−χ(b)),

and for linearly distributed private valuations with negative slope,

χ(b) = 2b− b2.

The transition probability function is given by

Tλ(s
′|s, b) =

qλ(b), for s′ = s

1− qλ(b), for s′ = s− 1.

Following Ghate (2015), define φ(b) to be the expected revenue earned in one single-unit

Vickrey auction with minimum bid b. This is given by

φ(b) = 1− 3b− 1

2
qλ(b)−

3

4

√
π

λ
erf

(√
λ(1− b)

)
.

Even when λ is known, the auctioneer faces complicated economic trade-offs while dy-

namically deciding minimum bids b as a function of inventory levels across different auctions.
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Too high a minimum bid would filter out a large portion of the bidding population thus re-

ducing bidder-competition, but at the same time would ensure that the closing price is high

as long as at least one bid is posted. A low minimum bid on the other hand allows several

bidders to participate, thus potentially increasing competition, but the actual posted bids

and hence the closing price might still be somewhat low. In addition, bidders in different

auctions compete against each other through the opportunity cost of limited inventory. For

large values of λ, the auctioneer can afford to be more aggressive in selecting minimum

bids because, roughly speaking, a larger number of bidders is interested in participating. In

contrast, for smaller λ values, the auctioneer may prefer to use lower minimum bid values

to make the most out of the small demand. When λ is unknown, the auctioneer needs to

balance such trade-offs associated with learning with the above trade-offs related to revenue

maximization, thus further complicating solution.

This problem can be modeled as an MDP with parametric uncertainty in λ. A BAMDP

formulation of this problem was presented in Ghate (2015). It was solved using heuris-

tic approximate dynamic programming methods. We applied IDPS and compared it with

Thompson Sampling on this problem.

Figure 1.2 plots the seller’s posterior about the true parameter value for IDPS and

Thompson Sampling. Observe that when the information structure is complex enough to

benefit from more sophisticated exploration, IDPS learns the true parameter value better

than Thompson sampling. This is the case when λ∗ = 3, 5, 7, 9, 11. On the other hand, when

λ∗ = 1, Thompson Sampling seems to learn better. This can perhaps be attributed to a

simpler information structure for smaller λ values; a small lambda value implies low demand

and consequently insufficient impact of decisions on future observed states and rewards to

justify sophisticated sampling. Figure 1.3 and Tables 1.3, 1.4 provide running average re-

grets and posterior beliefs for IDPS and Thompson Sampling. All results are averaged over

50 independent simulation runs. The results are consistent with Figure 1.2: IDPS seems to
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Figure 1.2: Posterior belief about the true parameter value for the auction problem in Section 1.4.2.

(a) λ = 1 (b) λ = 3

(c) λ = 5 (d) λ = 7

(e) λ = 9 (f) λ = 11

Table 1.3: Thompson Sampling: Posterior for the true parameter at the start of each episode for the auction problem.

``````````````̀Parameter
Episode

1 2 3 4 5 6

1 0.22 1 1 1 1 1
3 0.05 0.91 1 1 1 1
5 0.26 0.42 0.80 0.97 1 1
7 0.35 0.49 0.61 0.72 0.81 0.87
9 0.41 0.47 0.56 0.65 0.73 0.83
11 0.17 0.51 0.65 0.75 0.82 0.87
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Figure 1.3: Running average expected regret for different true parameter values for the auction problem in Section 1.4.2.

(a) λ = 1 (b) λ = 3

(c) λ = 5 (d) λ = 7

(e) λ = 9 (f) λ = 11
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Table 1.4: IDPS: Posterior for the true parameter at the start of each episode for the auction problem.

``````````````̀Parameter
Episode

1 2 3 4 5 6

1 0.22 0.78 1 1 1 1
3 0.05 1 1 1 1 1
5 0.26 0.68 0.93 1 1 1
7 0.35 0.47 0.65 0.81 0.93 1
9 0.42 0.53 0.65 0.76 0.86 0.98
11 0.17 0.55 0.71 0.82 0.88 0.94

outperform Thompson Sampling in all cases except λ = 1.

In the next section, we apply our methodology to another problem where the learning

versus optimization trade-off is crucial.

1.4.3 Response-guided dosing

This section considers an MDP formulation for response-guided dosing (RGD) in diseases

that call for treatment courses with multiple sessions. The objective in RGD is to tailor

drug-doses or various treatment modalities to the stochastic evolution of each individual

patient’s disease condition over the treatment course, in order to trade-off the patient’s

aversion to doses with disease control. Here, a patient’s aversion to dose may stem from

ill-effects of treatment such as high cost, side effects on health, and logistical inconvenience

of administering/receiving treatment (Kim et al., 2009; Kotas and Ghate, 2016; Maass and

Kim, 2017).

Here, at the beginning of each treatment session, the system state includes a numerical

score of the patient’s disease condition, and also a numerical score of the treatment’s side

effect. Disease condition examples include cholesterol level for heart disease; viral load for

hepatitis C; blood pressure; DAS28 scores for rheumatoid arthritis; or tumor size for cancer

patients. Side effect state examples include toxicity of radiation on healthy tissue for cancer

radiotherapy or platelet levels for chemotherapy. The decisions correspond to the doses
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administered to the patient in each session after observing the state. The immediate cost is

given by a disutility function that models patients’ aversion to doses. The disease conditions

and side effects evolve according to a stochastic dose-response function of the dose level.

The decision-maker’s goal is to minimize the total expected disutility of the doses given to

the patient over the treatment course and that of the disease condition reached at the end

of the course. The fundamental trade-off in this problem is that high dose levels are likely

to achieve better disease control, but at the same time, may induce worse side effects. A

good dosing strategy calls for adapting doses to the stochastic evolution of each individual

patient’s disease condition. This in turn requires learning a key parameter of the individual

patient’s dose-response function over the treatment course while simultaneously selecting

doses.

The model here is an extension of the framework in Kim et al. (2009); Maass and Kim

(2017), where the authors focus only on the perfect information special case. We consider

a treatment course with N sessions wherein disease condition and side effect measurements

are made and then a drug dose is administered at the beginning of sessions t = 1, 2, . . . , N .

The disease condition in session t is denoted by Xt, patient’s side effect is denoted by Yt, and

the dose chosen for this session after measuring st = {Xt, Yt} is denoted by dt. Disease state

Xt is integer value and belongs to the interval X = [0,m] with Xt = 0 representing the best

disease state and Xt = m denotes the worst disease state. Patient’s side effect state Yt is also

integer valued and belongs to the interval Y = [0, n] with Yt = 0 representing no side effect

and Yt = n representing the worst side effect. Doses dt are also integer valued and belong to

the interval D = [0, d̄], where d̄ <∞ is the maximum permissible dose in one session.

The disease condition and treatment’s side effects evolve according to a probability dis-

tribution. The transition probabilities between disease states is denoted by PX(Xt+1|Xt, dt),

transition probability between side effects is denoted by P Y (Yt+1|Yt, dt), and the state transi-

tion probability is given by P (st+1|st, dt) = PX(Xt+1|Xt, dt)×P Y (Yt+1|Yt, dt). For simplicity,

we assume that state variables can only change by at most one unit between two successive

treatment periods, and that disease progression only improves after treatment dose while
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side effect only improves after a session with zero dose. Qualitatively, the disease state has a

higher probability of improving, characterized by decreasing state value, with higher doses.

When the dose equals zero, the disease state has a nonzero probability of getting worse. The

side effect state has a higher chance of getting worse with higher doses and has a nonzero

probability of improving when no dose is given. The probabilistic evolution of side effects is

characterized by a parameter λ. The planner does not know the true value of this parame-

ter. Specifically, for our numerical simulation, we employed the state transition probabilities

described in Table 1.5 for non-boundary states. For boundary states, we used

PX(0|0, dt) = 1 and P Y (n|n, dt) = 1, for dt 6= 0;

and

PX(m|m, dt) = 1 and P Y (0|0, dt) = 1, for dt = 0.

The patient’s utility function was assumed to take the form

r(st+1|st, dt) = cX(Xt+1, qX) + cY (Yt+1, qY )− cdt,

where

cX(Xt, qX) =
1

mqX
(mqX −XqX

t ),

and

cY (Yt, qY ) =
1

nqY
(nqY − Y qY

t ).

The function cX(Xt, qx) represents the patients utility while being in disease state Xt; the

function cY (Yt, qY ) represents the patient utility with side effect Yt. The higher disease/side

effect states imply lower utility for the patient, as can be observed in the function forms. The

last term cdt represents the patient’s disutility on taking higher doses. For our numerical

simulation, we employed m = n = 6, c = 6, qX = qY = 2, and d̄ = 3.
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Table 1.5: State transition probabilities PX(Xt+1|xt, dt) and PY (Yt+1|Yt, dt). The decision maker does not know λ, which is
a parameter that characterizes the transition probabilities for side effects.

Dose
dt

Probability distribution over disease states Xt+1

PX(Xt+1|Xt, dt)
Probability distribution over side effects Yt+1

P Y (Yt+1|Yt, dt)
Xt+1 = Xt − 1 Xt+1 = Xt Xt+1 = Xt + 1 Yt+1 = Yt − 1 Yt+1 = Yt Yt+1 = Yt + 1

dt > 0 0.7 + 0.3dt
d̄

0.3− 0.3dt
d̄

0 0 1− λdt
d̄

λdt
d̄

dt = 0 0 0.7 0.3 0.7 0.3 0

Figure 2.2 plots the cumulative reward averaged over 50 runs for IDPS and Thompson

Sampling. Figure 1.5 plots the posterior of the true parameter values for IDPS and Thom-

poson Sampling. We observe that IDPS learns faster than Thompson Sampling approaches

which is consistent with the objective of this research. An interesting observation is that

the gap between learning rates for IDPS and Thompson Sampling decreases as parameter λ

approaches 1. This is because as λ→ 1, the effect of dose level on side effect increases and it

becomes prohibitive to use higher doses, irrespective of the disease condition. As such, the

decision maker is better-off selecting the lowest nonzero dose in all states for both methods.

1.5 Conclusion

This chapter introduced an information theoretic sampling method for MDPs with paramet-

ric uncertainty. Problems with complex information structure requiring careful balancing of

the trade-off between exploration and exploitation could potentially benefit from IDPS. We

were able to extend the IDS analysis on bandit problems from Russo and Van Roy (2014,

2017) to the more difficult case of IDPS for MDPs. In particular, we were able to obtain a

worst-case regret bound. The specific form of this bound provides insight to the decision-

maker. Our numerical experiments suggest that IDPS could be better at learning and reward

maximization as compared to Thompson Sampling on some problems. This chapter focused

on a theoretical analysis of an idealized version of IDPS. Its exact implementation may be

intractable when the set P of policies is large. Future work could investigate methods for
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Figure 1.4: Expected cumulative rewards for different true parameter values for response-guided dosing from Section 1.4.3.

(a) λ = 0.4 (b) λ = 0.6

(c) λ = 0.7 (d) λ = 0.8

(e) λ = 0.9
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Figure 1.5: Posterior belief about the true parameter value for the response-guided dosing problem in Section 1.4.3.

(a) λ = 0.4 (b) λ = 0.6

(c) λ = 0.7 (d) λ = 0.8

(e) λ = 0.9
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approximate implementation in such cases.
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Chapter 2

LEARNING IN MDPS WITH HIERARCHICAL PARAMETRIC
UNCERTAINTY

2.1 Introduction

I again consider MDPs of the form Q = (S,A, T,R,N) as in Chapter 1. The parametric

uncertainty in the transition probability function T here takes a hierarchical form. Let Θ be

a finite set whose elements index a family Tθ, for θ ∈ Θ, of possible transition functions. This

is the top-level parametrization in my MDP. For each θ ∈ Θ, the transition function Tθ is

further parametrized by a parameter λ ∈ Λθ, where Λθ is also a finite set. This is the bottom-

level parametrization in my MDP. The true transition function is thus characterized by a pair

(θ∗, λ∗) such that θ∗ ∈ Θ and λ∗ ∈ Λθ∗ . The decision-maker knows that the true transition

function is parametrized in this hierarchical fashion. It also knows all relevant finite sets of

possible parameters, but does not know the pair (θ∗, λ∗) that identifies the true transition

function. The family of all possible MDPs is denoted by tuplesMθ,λ = (S,A, Tθ,λ, R,N) with

θ ∈ Θ and λ ∈ Λθ. I assume, as in Chapter 1, that the decision-maker can (easily) solve each

MDP Mθ,λ. The decision-maker begins with a prior belief pmf h1(·) on θ and conditional

prior belief pmfs `1(·|θ), for θ ∈ Θ, on λ. These belief pmfs are updated via Bayes’ Theorem

as states drawn from the true transition function Tθ∗,λ∗ are observed starting from an initial

state s1 ∈ S. The decision-maker’s objective is to simultaneously learn the true transition

function while maximizing expected reward.

2.1.1 Existing literature

Hierarchical Bayesian approaches have been employed for modeling and learning in several

applications. Examples include veterinary studies (Stryhn and Christensen, 2014); sea level
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studies (Cahill et al., 2015); navigation tasks (Wilson et al., 2007); human performance

studies (Kruschke and Vanpaemel, 2015); biotechnology (Broët et al., 2002); and operations

management (Yeh, 1985; Qian and Wu, 2008). In some situations, characteristics of the

particular application naturally lend themselves to a hierarchical structure. Furthermore,

Bayesian methods can leverage hierarchical model structure for better learning as compared

to flat models. (Chipman and McCulloch, 2000) assert that hierarchical models provide more

representation power with efficient estimation performance. Hierarchical structures are often

used to model complex problems by composing simple models together. Such interleaving

can facilitate more complex model-fitting with the same data without over-fitting (Schmid

and Brown, 2000; Allenby et al., 2005).

Hierarchical models have been used in an entirely different context within the MDP

literature. That work focuses on temporal abstraction to utilize the hierarchical structure of

the problem (Barto and Mahadevan, 2003; Dietterich, 2000; Hauskrecht et al., 1998; Sutton

et al., 1999; He et al., 2011; Lim et al., 2011; Pineau and Thrun, 2002; Theocharous and

Kaelbling, 2003; Cao and Ray, 2012; Vien et al., 2016). These works show a reduction in

the difficulty of finding an optimal policy. The only other work I know is by Wilson et al.

(2007), where a hierarchical Bayesian learning approach is employed to transfer knowledge

between MDPs. That research showed how hierarchical models can speed up convergence to

an optimal policy.

Many sequential decision-making and learning problems naturally call for a hierarchical

modeling framework. For instance, in the MDP for response-guided dosing in Kotas and

Ghate (2016), a patient’s response to a therapeutic drug dose may be characterized by one

of several options: the Michaels-Menten function, the exponential linear-quadratic function,

the power law function, etc. Each such function in turn has a key parameter characterizing

(say) low responders, moderate responders, and good responders. A doctor may wish to

sequentially select dose levels while learning the response function and its parameter for an

individual patient or a cohort of patients in a clinical trial (Kotas and Ghate, 2015). Simi-

larly, in dynamic pricing problems, the price-demand function comes from several standard
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possibilities, and each function has a key parameter (Bertsimas and Perakis, 2006). To the

best of my knowledge, there is currently no research that formulates or solves hierarchical

learning problems in MDPs.

2.1.2 Contribution of this chapter

The first contribution of this chapter is to describe and formulate an MDP with hierarchical

parametric uncertainty. The second contribution is the development of a Bayesian frame-

work for updating the prior based on state observations in this hierarchical setting. The

third contribution utilizes this Bayesian framework to extended my IDPS framework from

Chapter 1 to the hierarchical setting. This uses formulas for the information ratio that I

developed by exploiting the hierarchical structure. I have also devised a Thompson Sam-

pling algorithm for the hierarchical framework. I have implemented Thompson Sampling

and IDPS on a response-guided dosing problem from Ghate (2015). My numerical experi-

ments on Thompson Sampling and IDPS hint at the potential benefit of using a hierarchical

modeling framework as opposed to a “flat” one. I also provide a theoretical analyses of

these learning algorithms to provably demonstrate this advantage. Specifically, I rederive

the Regret bounds for the hierarchical case for IDPS and show that it is much stronger than

the equivalent flat case.

2.2 Learning algorithms

In this section, I propose two algorithms for learning in MDPs with hierarchical parametric

uncertainty. The first is a simple and natural extension of Thompson Sampling from Gopalan

and Mannor (2015) and Strens (2000). The second is an extension of my IDPS framework

from Chapter 1. Before I delve into the details of these two algorithms, I now describe how

Bayes’ Theorem can be applied to update priors h1(·) and `1(·|θ) at the top and bottom

levels, respectively.

Let P (θ, λ|s, a, s′, ht(·), {lt(·|θ)|θ ∈ Θ}) denote the decision-maker’s posterior belief that

the true MDP isMθ,λ after the decision-maker observes new state s′ by choosing action a in
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state s, given that the decision-maker’s prior beliefs at the top and bottom levels were ht(·)

and {lt(·|θ)|θ ∈ Θ}. Note that

P (θ, λ|s, a, s′, ht(·), {lt(·|θ)|θ ∈ Θ})

= P (λ|θ, s, a, s′, ht(·), {lt(·|θ)|θ ∈ Θ})P (θ|s, a, s′, ht(·), {lt(·|θ)|θ ∈ Θ}).

The first term in the above RHS is the decision-maker’s posterior belief `t+1(λ|θ) at the

bottom level. The second term equals the posterior belief ht+1(θ) at the top level. These

two terms are individually calculated below. For the first term,

`t+1(λ|θ) = P (λ|θ, s, a, s′, ht(·), {lt(·|θ)|θ ∈ Θ})

∝ P (s′|θ, λ, s, a, ht(·), {lt(·|θ)|θ ∈ Θ})P (λ|θ, s, a, ht(·), {lt(·|θ)|θ ∈ Θ})

= P (s′|θ, λ, s, a)P (λ|θ, {lt(·|θ)|θ ∈ Θ})

= Tθ,λ(s
′|s, a)lt(λ|θ).

Now for the second term,

ht+1(θ) = P (θ|s, a, s′, ht(·), {lt(·|θ)|θ ∈ Θ})

∝ P (s′|θ, s, a, ht(·), {lt(·|θ)|θ ∈ Θ})P (θ|s, a, ht(·), {lt(·|θ)|θ ∈ Θ})

= P (s′|θ, s, a, ht(·), {lt(·|θ)|θ ∈ Θ})P (θ|ht(·))

= ht(θ)P (s′|θ, s, a, ht(·), {lt(·|θ)|θ ∈ Θ})

= ht(θ)
∑
λ∈Λθ

P (s′|θ, λ, s, a, ht(·), {lt(·|θ)|θ ∈ Θ})P (λ|θ, s, a, ht(·), {lt(·|θ)|θ ∈ Θ})

= ht(θ)
∑
λ∈Λθ

P (s′|θ, λ, s, a)P (λ|θ, {lt(·|θ)|θ ∈ Θ})

= ht(θ)
∑
λ∈Λθ

Tθ,λ(s
′|s, a)`t(λ|θ).

This derivation shows that the tuple (s, ht(·), {lt(·|θ)|θ ∈ Θ}) is a sufficient statistic for this
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problem of imperfect information in the sense of Bertsekas (2005). Although, algorithmically

speaking, lt+1 is available while computing ht+1. I will hence use lt+1 instead of lt. This can

be developed using formal algebraic computation but I will skip this derivation for brevity.

Although qualitatively, this can be derived along the same lines as the above derivation

except we consider one step lookahead as well. Also note that exact calculation of posterior

beliefs ht+1(·) and `t+1(·|θ) would in general be difficult owing to the normalization constants

in the denominators that are not displayed in the above derivation. Note, however, that since

I have assumed S, Θ, and Λθ to be finite sets, these exact calculations can be performed in

principle.

2.2.1 Thompson Sampling

In this version of Thompson Sampling, an MDP Mθt,λt is obtained in state st at stage

t by sampling θt from ht(·) and then sampling λt from `(·|θt). Let πt be a policy that

is optimal in stage t for Mθt,λt . Then, an action πt(st) is implemented and state st+1 is

observed according to the true transition function Tθ∗,λ∗(·|st, πt(st)). The priors are updated

to ht+1(·) and `t+1(·|θ) for θ ∈ Θ according to the Bayes’ formulas derived above. This is

repeated until the end of stage N . This procedure is summarized in Algorithm 2 below.

2.2.2 IDPS

To extend IDPS to the hierarchical setting, define expected regrets, information gains, and

information ratios at the top and bottom levels separately. Expressions are defined in a

manner similar to Chapter 1.

For each fixed θ ∈ Θ, the bottom-level expected regret is defined as

∆θ(π|st, `(·|θ)) = E
λ∼`(·|θ)

[
E

{s`+1∼Tθ,λ(·|s`,π`(s`)):`=t,...,N}

[
V ∗(θ, λ)− V (θ, λ, π)

]]
. (2.1)



40

Algorithm 2 Thompson Sampling for MDPs with hierarchical parametric uncertainty

Require: MDPs Mθ,λ = {S,A, Tθ,λ, R,N} for θ ∈ Θ, and λ ∈ Λθ. Prior pmf h1(·) for the
top-level and and prior bottom-level conditional pmfs `1(·|θ) for θ ∈ Θ. Initial state
s1 ∈ S.

1: function Hierarchical-TS
2: for episode k = 1, 2, 3, · · · do
3: Set t = 1
4: Initialize state s1; h1(·)← hN+1(·) and `1(·|θ)← `N+1(·|θ) for θ ∈ Θ, if k > 1
5: repeat
6: Sample θt ∼ ht(·) and λt ∼ `t(·|θt)
7: Let πt = policy optimal to Mθt,λt in stage t.
8: Observe st+1 drawn from the true distribution Tθ∗,λ∗(·|st, πt(st))
9: Update `t+1(Xλ|θ) ∝ Tθ,λ(st+1|st, πt(st))`t(λ|θ)

10: Update ht+1(θ) ∝ ht(θ)
∑
λ∈Λθ

Tθ,λ(st+1|st, πt(st))`t+1(Xλ|θ)

11: t ← t+1
12: until end of horizon N
13: end for
14: end function

Similarly, for each fixed θ ∈ Θ, the bottom-level information gain is given by

gθ(π|st, `t(·|θ)) =
∑
λ∈Λθ

∑
st,...,sN

(
N∏
`=t

Tλ(s`+1|s`, π`(s`))

)

`t(λ|θ) ln


N∏
t=1

Tθ,λ(st+1|st, πt(st))∑
λ∈Λθ

N∏
t=1

Tθ,λ(st+1|st, πt(st))`1(λ|θ)

 . (2.2)

After taking expectations with respect to pmf ν ∈ N over P , where N is the set of all

possible pmfs at the lower levels. I obtain

∆θ(ν) =
∑
π∈P

ν(π)∆θ(π|s, `(·|θ)), (2.3)



41

and

gθ(ν) =
∑
π∈P

ν(π)gθ(π|s, `(·|θ)). (2.4)

For brevity and without loss of any generality, I am suppressing the dependence on `(·|θ)

and s`.

Similar to Chapter 1, the bottom-level information ratio is given by

Ψθ(ν) =
(∆θ(ν))2

gθ(ν)
. (2.5)

At the top-level, I define µ as the distribution over the lower level pmfs ν ∈ N the

expected regret and information gain are defined as

∆(µ) =
∑
γ∈Θ

µ(ν∗γ) E
θ∼h(·)

[
∆θ(ν

∗
γ)
]
, (2.6)

and

g(µ) =
∑
γ∈Θ

µ(ν∗γ) E
θ∼h(·)

[
gθ(ν

∗
γ)
]
, (2.7)

where ν∗γ ∈ {arg minν Ψγ(ν) ∀γ ∈ Θ},is defined as the randomized policy that optimizes the

lower level information ratio for each element in Θ. Quantities ∆θ(·) and gθ(·) are obtained

from (2.3), (2.4), respectively. This yields the top-level information ratio

Ψ(µ) =
(∆(µ))2

g(µ)
. (2.8)

IDPS separately minimizes the above two information ratios to sample policies at each

stage. The resulting procedure is summarized in Algorithm 3 below.

The next theorem bounds the decision-maker’s cumulative expected regret over N stages

for hierarchical IDPS.

The rest of the entities are defined similar to the flat case in Theorem 1.3.3. For the
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Algorithm 3 Information Directed Policy Sampling for MDPs with hierarchical parametric
uncertainty

Require: MDPs Mθ,λ = {S,A, Tθ,λ, R,N} for θ ∈ Θ, and λ ∈ Λθ. Prior pmf h1(·) for the
top-level and and prior bottom-level conditional pmfs `1(·|θ) for θ ∈ Θ. Initial state
s1 ∈ S.

1: function Hierarchical-IDPS
2: for episode k = 1, 2, 3, · · · do
3: Set t = 1
4: Initialize state s1; h1(·)← hN+1(·) and `1(·|θ)← `N+1(·|θ) for θ ∈ Θ, if k > 1
5: repeat
6: Compute the distribution νtθ = argminν Ψt

θ(ν|s) using (2.5) where ∆θ,t(ν|s)
and gθ,t(ν|s) are defined in (2.3) ∀θ

7: Compute the distribution µt = argminµ Ψ(µ) using (2.8) where ∆(µ|s)t and
g(µ|s)t are defined in (2.6) ∀θ

8: Sample νt ∼ µt
9: Sample πt ∼ νt

10: Observe st+1 drawn from the true distribution Tλ∗(·|st, πt(st))
11: Update `t+1(λ|θ) ∝ Tθ,λ(st+1|st, πt(st))`t(λ|θ)
12: Update ht+1(θ) ∝ ht(θ)

∑
λ∈Λθ

Tθ,λ(st+1|st, πt(st))`t+1(λ|θ)

13: t ← t+1
14: until end of horizon N
15: end for
16: end function
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proof, I follow a similar structure as in Theorem 1.3.3; The main challenges that I overcame

for the hierarchical case are a) Propagation of state observations to the entities defined on

top levels, and b) Incorporating the hierarchical structure in the Bayesian learning part of

the algorithm to bound overall regret.

Regret(N) for hierarchical MDP is defined as

Regret(N) =
N∑
t=1

(
E

{s`+1:`=t+1:N}
θ,λ

[
V ∗(θ, λ)−V (πt, θ, λ)− E

st+1

[
V ∗(θ, λ)− V (πt+1, πt, θ, λ)

] ])
(2.9)

where V ∗(θ, λ) =
N∑̀
=t

R(s`+1|s`, π∗`,θ,λ(s`)) denote the random tail reward accumulated on

implementing an optimal policy in MDPMθ,λ. Similarly, V (θ, λ, πt) =
N∑̀
=t

R(s`+1|s`, π`(s`)),

for st+1 ∼ Tθ∗,λ∗(·|st, πt(st)) and πt ∼ νt∗. Here νt∗ ∈ {arg minν Ψγ(ν)|t ∀γ ∈ Θ}, and νt∗ ∼ µt∗,

where µt∗ = arg minµ Ψ(µ). Also note that πt = {πt, πt+1}. For the next proof, I also define

Ωθmax = maxθ{Ωθ ∀θ ∈ Θ}, which is the the largest parameter set at the lower level.

Theorem 2.2.1. Regret Bound: Suppose there is a γ such that Ψ∗ ≤ γ. Then, for any

ε > 0, we have,

Regret(N) ≤ ((1+
√
N − 1)

√
ε+1)

√
γ log(|Ωθmax|) with probability (1−e−

(cε−2)2

2N )(1−e−
(c0
√
ε−2)2

2N ),

where c > 2/ε and c0 > 2/
√
ε are positive constants.

Proof. This result is derived by building on Theorem 1.3.3 in Chapter 1. Consider
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Regret(N) =
N∑
t=1

(
E

{s`+1:`=t+1:N}
θ,λ

[
V ∗(θ, λ)− V (πt, θ, λ)

− E
st+1

[
V ∗(θ, λ)− V (πt+1, πt, θ, λ)

] ])
a
=

N∑
t=1

(
∆t(µ

t
∗|st)− E

st+1

∆t+1(µt∗|st+1)

)
b

≤
N∑
t=1

(√
Ψ∗t
∑
γ

µt(ν∗γ)E
θ

[gθ(ν∗γ)]− E
st+1

√Ψ∗t+1

∑
γ

µt(ν∗γ)E
θ

[gθ(ν∗γ)]

)

c
=

N∑
t=1

(√√√√√Ψ∗t
∑
γ

µt(ν∗γ)E
θ

H(Λθ,t|st)− E
{s`+1:`=t:N}

πt∼νt

[H(Λθ,t|{s`+1 : ` = t+ 1 : N}, πt, st)]



− E
st+1


√√√√√Ψ∗t

∑
γ

µt(ν∗γ)E
θ

H(Λθ,t|st+1)− E
{s`+1:`=t+1:N}
πt+1∼νt+1

[H(Λθ,t|{s`+1 : ` = t : N}, πt+1, st+1)]




d
=

N∑
t=1

(√√√√√Ψ∗t+1

∑
γ

µt(ν∗γ)E
θ

H(Λθ,t+1|st)− E
{s`+1:`=t+1:N}

πt∼νt

[H(Λθ,t+1|{s`+1 : ` = t : N}, πt, st)]



− E
st+1


√√√√√Ψ∗t

∑
γ

µt(ν∗γ)E
θ

H(Λθ,t+1|st+1)− E
{s`+1:`=t+1:N}
πt+1∼νt+1

[H(Λθ,t|{s`+1 : ` = t : N}, πt+1, st+1)]




+

√√√√√Ψ∗1
∑
γ

µt(ν∗γ)E
θ

H(Λθ,1|s1)− E
{s`+1:`=1:N}

π1∼ν1

[H(Λθ,1|{s`+1 : ` = 1 : N}, π1, s1)]


−
√

Ψ∗N+1

∑
γ

µt(ν∗γ)E
θ

[H(Λθ,N+1|sN+1)],

where ‘a’ follows from the definition of expected regrets ∆t(µ
t
∗|st) and ∆t+1(µt∗|st+1). Inequal-

ity ‘b’ follows from 2 ideas; The first is the equality that comes from the definition of the

upper level regrets and the second one is the inequality that comes from the optimality condi-

tion Ψt+1 > Ψ∗t+1. Equality ‘c’ follows from Lemma 1.3.1. Equality ‘d’ is just rearrangement

of terms. Now the rest of the proof bound the first and the second part of the last equation

and combine them together to arrive at the result. Consider the second part of the last

equation first:
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N−1∑
t=1

E
st+1

√Ψ∗t+1

∑
γ

µt(ν∗γ)E
θ

[
H(Λθ,t+1|st+1)− E

{s`+1:`=t+1:N}
πt+1∼νt+1

[H(Λθ,t+1|{s`+1 : ` = t+ 1 : N}, πt+1, st+1)]
]

a
=

N−1∑
t=1

E
st+1

√√√√ E
{s`+1:`=t+1:N}
πt+1∼νt+1

[
Ψ∗t+1

∑
γ

µt(ν∗γ)E
θ

[
H(Λθ,t+1|st+1)−H(Λθ,t+1|{s`+1 : ` = t+ 1 : N}, πt+1, st+1)

]]
b

≥
N−1∑
t=1

E
st+1

E
{s`+1:`=t+1:N}
πt+1∼νt+1

√Ψ∗t+1

∑
γ

µt(ν∗γ)E
θ

[
H(Λθ,t+1|st+1)−H(Λθ,t+1|{s`+1 : ` = t+ 1 : N}, πt+1, st+1)

]
c
=

N−1∑
t=1

E
{s`+1:`=t:N}
πt+1∼νt+1

√Ψ∗t+1

∑
γ

µt(ν∗γ)E
θ

[
H(Λθ,t+1|st+1)−H(Λθ,t+1|{s`+1 : ` = t+ 1 : N}, πt+1, st+1)

]
d
=

N−1∑
t=1

E
{s`+1:`=t:N}
πt+1∼νt+1

[Zt+1] , (2.10)

where equality ‘a’ follows due to independence of H(Λθ,t+1|st+1) with respect to the future

trajectory s`+1 : ` = t + 1 : N}, and policy πt+1 ∼ νt+1. Inequality ‘b’ follows from the

Jensen’s inequality and concavity of the square root function. Equality ‘c’ is just simplifying

the expectation terms, and equality ‘d’ follows from definition of Zt+1.

Now consider the first part of the above equation for Regret(N):
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N−1∑
t=1

√
Ψ∗t+1

∑
γ

µt(ν∗γ)E
θ

[
H(Λθ,t+1|st+1)− E

{s`+1:`=t+1:N}
πt+1∼νt+1

[H(Λθ,t+1|{s`+1 : ` = t+ 1 : N}, πt+1, st+1)]
]

=
N−1∑
t=1

{
Ψ∗t+1

∑
γ

µt(ν
∗
γ)E

θ

[
H(Λθ,t+1|st+1)−H(Λθ,t+1|{s`+1 : ` = t+ 1 : N}, πt+1, st+1)+

H(Λθ,t+1|{s`+1 : ` = t+ 1 : N}, πt+1, st+1)−

E
{s`+1:`=t+1:N}
πt+1∼νt+1

[H(Λθ,t+1|{s`+1 : ` = t+ 1 : N}, πt+1, st+1)]

)}1/2

a

≤
N−1∑
t=1

(√
Ψ∗t+1

∑
γ

µt(ν∗γ)E
θ

[
H(Λθ,t+1|st+1)−H(Λθ,t+1|{s`+1 : ` = t+ 1 : N}, πt+1, st+1)

]
+

{
Ψ∗t+1

(
H(Λθ,t+1|{s`+1 : ` = t+ 1 : N}, πt+1, st+1)−

E
{s`+1:`=t+1:N}
πt+1∼νt+1

[H(Λθ,t+1|{s`+1 : ` = t+ 1 : N}, πt+1, st+1)]
)}1/2)

=
N−1∑
t=1

(
Zt+1 +

{
Ψ∗t+1

∑
γ

µt(ν
∗
γ)E

θ

[
H(Λθ,t+1|{s`+1 : ` = t+ 1 : N}, πt+1, st+1)−

E
{s`+1:`=t+1:N}
πt+1∼νt+1

[H(Λθ,t+1|{s`+1 : ` = t+ 1 : N}, πt+1, st+1)]
]}1/2)

b

≤
N−1∑
t=1

Zt+1+

√
N − 1

{
N−1∑
t=1

Ψ∗t+1

∑
γ

µt(ν
∗
γ)E

θ

[
H(Λθ,t+1|{s`+1 : ` = t+ 1 : N}, πt+1, st+1)−

E
{s`+1:`=t+1:N}
πt+1∼νt+1

[H(Λθ,t+1|{s`+1 : ` = t+ 1 : N}, πt+1, st+1)]

]}1/2

c

≤
N−1∑
t=1

Zt+1 +

√
(N − 1)|εΨ∗t+1

∑
γ

µt(ν∗γ)E
θ

[H(Λθ]|, with probability 1− e−
(cε−2)2

2N

d

≤
N−1∑
t=1

Zt+1 +

√
(N − 1)|εΨ∗t+1| |

∑
γ

µt(ν∗γ)E
θ

[H(Λθ]|, with probability 1− e−
(cε−2)2

2N

e

≤
N−1∑
t=1

Zt+1 +
√

(N − 1)εΨ∗ log(|Ωθmax|), with probability 1− e−
(cε−2)2

2N , (2.11)
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where ‘a’ follows from a simple algebraic inequality, ‘b’ follows from Cauchy-Schwarz inequal-

ity. Inequality ‘c’ follows from Hoeffding’s inequality for Markov Chains, and inequality ‘d’

follows from the algebraic inequality |ab| ≤ |a||b|.

Now combining Equations (2.11) and (2.10), we get

N−1∑
t=1

Zt+1 +
√

(N − 1)εΨ∗ log(|Ωθmax|)−
N−1∑
t=1

E
{s`+1:`=t:N}
πt+1∼νt+1

[Zt+1]

=

√
ε||Ψ∗t+1

∑
γ

µt(ν∗γ)E
θ

[H(Λθ)]

+
√

(N − 1)εΨ∗ log(|Ωθmax|), with probability (1− e−
(cε−2)2

2N )(1− e−
(c0
√
ε−2)2

2N )

=
√
εΨ∗ log(|Ωθmax|) +

√
(N − 1)εΨ∗ log(|Ωθmax|),

with probability (1− e−
(cε−2)2

2N )(1− e−
(c0
√
ε−2)2

2N ).

Now combining all of this together, the regret bounds for hierarchical IDPS can be de-

rived as:

Regret(N) =
N∑
t=1

(√√√√√Ψ∗t+1

∑
γ

µt(ν∗γ)E
θ

H(Λθ,t+1|st)− E
{s`+1:`=t+1:N}

πt∼νt

[H(Λθ,t+1|{s`+1 : ` = t : N}, πt, st)]



− E
st+1


√√√√√Ψ∗t

∑
γ

µt(ν∗γ)E
θ

H(Λθ,t+1|st+1)− E
{s`+1:`=t+1:N}
πt+1∼νt+1

[H(Λθ,t|{s`+1 : ` = t : N}, πt+1, st+1)]




+

√√√√√Ψ∗1
∑
γ

µt(ν∗γ)E
θ

H(Λθ,1|s1)− E
{s`+1:`=1:N}

π1∼ν1

[H(Λθ,1|{s`+1 : ` = 1 : N}, π1, s1)]


−
√

Ψ∗N+1

∑
γ

µt(ν∗γ)E
θ

[H(Λθ,N+1|sN+1)]

≤ (1 +
√
N − 1)

√
εΨ∗ log(|Ωθmax|) +

√
γH(Λθ,1|s1)

a

≤ ((1 +
√
N − 1)

√
ε+ 1)

√
Ψ∗ log(|Ωθmax |)

with probability (1− e−
(cε−2)2

2N )(1− e−
(c0
√
ε−2)2

2N ).
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Here inequality ‘a’ follows by bounding Shanon entropy and choosing the maximum

possible bound from the lower levels. The next step is to find the upper bound for the

optimal top level information ratio Ψ∗. I derive that next in Proposition 2.2.2.

Proposition 2.2.2. Bounds on minimal information ratio: The minimal information

ratio is bounded above by |Ωθmax|/2.

Proof. The information gain in (1.2) can be expressed as

gt(π
t|st) = E

λ∼αt(·)

{
DKL

[(
N∏
`=t

Tθ,λ(s`+1|s`, π`(s`))

)∣∣∣∣∣
∣∣∣∣∣∑
λ∈Ω

N∏
`=t

Tθ,λ(s`+1|s`, π`(s`))αt(λ)

]}
.

Define

Ut(π
t, θ, λ) = E

{s`+1∼Tθ,λ(·|s`,π`(s`)):`=t,...,N}
[Vt(θ, λ, π

t)],

and

Lt(π
t, θ, λ) = Ut(π

t, θ, λ)− E
λ∼lθ,t(·)

[
Ut(π

t, θ, λ)
]
.

Further define

ΨL
t (µt) =

∆t(µ
t
PS)2

E
νγ∼µtPS(·)

E
θ∼ht(·)

E
π∼νγ(·)

E
λ∼lθ,t(·)

[Lt(πt, , θ, λ)2]
,

and

νtL = argmin
µt∈Dt

ΨL
t (µt).

At the optimal solution νtIDPS to the information ratio minimization problem, we have,

Ψt(ν
t
IDPS) ≤ Ψt(ν

t
L).
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Ψt(µ
t) =

∆t(µ
t)2

E
νγ∼µt(·)

E
θ∼ht(·)

E
π∼νγ(·)

E
λ∼lθ,t(·)

{
DKL

[(
N∏̀
=t

Tθ,λ(s`+1|s`, π`(s`))
) ∣∣∣∣∣
∣∣∣∣∣∑λ∈Ω

N∏̀
=t

Tθ,λ(s`+1|s`, π`(s`))αt(λ)

]}
a

≤ ∆t(µ
t)2

2 E
νγ∼µt(·)

E
θ∼ht(·)

E
π∼νγ(·)

E
λ∼lθ,t(·)

[Ut(πt, θ, λ)− E
λ∼lθ,t(·)

[Ut(πt, θ, λ)]]2

=
1

2
ΨL
t (µt). (2.12)

Here, “a” follows from Fact 1.3.4 with distribution P identified as P =
N∏̀
=t

Tθ,λ(s`+1|s`, π`(s`))

and distribution Q as Q =
∑
λ∈Ω

N∏̀
=t

Tθ,λ(s`+1|s`, π`(s`))αt(λ) and X = Ut(π
t, θ, λ). We assume

that sup(Ut(π
t, θ, λ))− inf(Ut(π

t, θ, λ)) ≤ 1. For a finite MDP, stage-rewards and hence value

functions are uniformly bounded. Thus, the assumption sup(Ut(π
t, θ, λ))− inf(Ut(π

t, θ, λ)) ≤

1 holds without any loss of generality. This is because if sup(Ut(π
t, θ, λ))− inf(Ut(π

t, θ, λ)) >

1, we can rescale the rewards such that the new rewards R(s, a)← R(s, a)/(sup(Ut(π
t, θ, λ))−

inf(Ut(π
t, θ, λ))). This rescaling does not affect any decision rules for the MDP but ensures

that sup(Ut(π
t, θ, λ))−inf(Ut(π

t, θ, λ)) ≤ 1 making the theorem valid. Also note that the dis-

tribution P is absolutely continuous with respect toQ becauseQ(·) = 0 implies that P (·) = 0.

By definition Q =
∑
λ∈Ω

N∏̀
=t

Tθ,λ(s`+1|s`, π`(s`))αt(λ) and
N∏̀
=t

Tθ,λ(s`+1|s`, π`(s`))αt(λ) ≥ 0; ∀λ.

For the sum of non-negative components to be 0 it is required that each individual compo-

nent should be 0. Thus, either
N∏̀
=t

Tθ,λ(s`+1|s`, π`(s`)) = 0 or αt(λ) = 0. Since this is true

for any arbitrary αt and
∑

λ∈Ω αt(λ) = 1, it implies that
N∏̀
=t

Tθ,λ(s`+1|s`, π`(s`)) = 0, which

corresponds to P (·) = 0. This yields

Ψt(ν
t
IDPS) ≤ Ψt(ν

t
L) ≤ ΨL

t (νtL)/2. (2.13)

Now let µtPS be the distribution over the policies, where each policy is optimal with

respect to the MDP Qλ obtained from sampling the corresponding parameter λ from the

posterior distribution αt. Hence by definition, the distribution νtPS is same as αt with the
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identification that the domain consists of optimal policies of Mλ, for all λ ∈ Ω. Therefore,

E
νγ∼µt(·)

E
θ∼ht(·)

E
π∼νγ(·)

E
λ∼lθ,t(·)

[Lt(ν
t
PS, λ)2] = E

λ∼αt(·)
π∼νtPS

[Lt(π
t, θ, λ)2]

a
= E

λ∼αt(·)
π∼αt(·)

[Lt(π
t, θ, λ)2]. (2.14)

Equality “a” holds because of the aforementioned equivalence between sampling policies from

νtPS and from αt(·). Similarly,

∆t(µ
t
PS) = E

νγ∼µt(·)
E

θ∼ht(·)
E

π∼νγ(·)
[∆θ,t(π

t)]

= E
νγ∼µtPS(·)

E
θ∼ht(·)

E
π∼νγ(·)

E
λ∼lθ,t(·)

E
{s`+1∼Tθ,λ(·|s`,π`(s`)):`=t,...,N}

[
V ∗t (θ, λ)− Vt(θ, λ, πt)

]
b
= E

νγ∼ht(·)
E

θ∼ht(·)
E

π∼νγ(·)

[
E

{s`+1∼Tθ,λ(·|s`,π`(s`)):`=t,...,N}

[
Vt(θ, λ, π

t)
]

− E
λ∼lθ,t(·)

[
E

{s`+1∼Tθ,λ(·|s`,π`(s`)):`=t,...,N}

[
Vt(θ, λ, π

t)
]]]

c
= E

θ∼ht(·)
E

lθ,t∼ht(·)
E

π∼lθ,t(·)

[
E

{s`+1∼Tθ,λ(·|s`,π`(s`)):`=t,...,N}

[
Vt(θ, λ, π

t)
]

− E
λ∼lθ,t(·)

[
E

{s`+1∼Tθ,λ(·|s`,π`(s`)):`=t,...,N}

[
Vt(θ, λ, π

t)
]]]

= E
θ∼ht(·)

E
lθ,t∼ht(·)

E
π∼lθ,t(·)

[Lt(π
t, θ, λ)]

d

≤ E
θ∼ht(·)

E
lθ,t∼ht(·)

√√√√√|Ωθ|

∑
π∼lθ,t

(lθ,tLt(πt, θ, λ))2


= E

θ∼ht(·)

√
|Ωθ| E

lθ,t∼ht(·)

√
E

π∼lθ,t(·)
λ∼lθ,t

[Lt(πt, θ, λ)]2

Equality “‘b”’ holds due to an extension of the logic behind equality “a”. Let P∗ be the set

of policies optimal for MDPs Mλ, ∀λ ∈ Ω. Now recall that

ΨL
t (µt) =

∆t(µ
t
PS)2

E
νγ∼µtPS(·)

E
θ∼ht(·)

E
π∼νγ(·)

E
λ∼lθ,t(·)

[Lt(πt, , θ, λ)2]
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=
∆t(µ

t
PS)2

E
νγ∼ht(·)

E
θ∼ht(·)

E
π∼νγ(·)

E
λ∼lθ,t(·)

[Lt(πt, , θ, λ)2]

=

 E
θ∼ht(·)

√
|Ωθ| E

lθ,t∼ht(·)

√
E

π∼lθ,t(·)
λ∼lθ,t

[Lt(πt, θ, λ)]2


2

E
νγ∼ht(·)

E
θ∼ht(·)

E
π∼νγ(·)

E
λ∼lθ,t(·)

[Lt(πt, , θ, λ)2]

≤ |Ωθmax|

 E
θ∼ht(·)

E
lθ,t∼ht(·)

√
E

π∼lθ,t(·)
λ∼lθ,t

[Lt(πt, θ, λ)]2


2

E
νγ∼ht(·)

E
θ∼ht(·)

E
π∼νγ(·)

E
λ∼lθ,t(·)

[Lt(πt, , θ, λ)2]

≤ |Ωθmax|

√ E
θ∼ht(·)

E
lθ,t∼ht(·)

E
π∼lθ,t(·)
λ∼lθ,t

[Lt(πt, θ, λ)]2


2

E
νγ∼ht(·)

E
θ∼ht(·)

E
π∼νγ(·)

E
λ∼lθ,t(·)

[Lt(πt, , θ, λ)2]

= |Ωθmax|

√ E
θ∼ht(·)

E
lθ,t∼ht(·)

E
π∼lθ,t(·)
λ∼lθ,t

[Lt(πt, θ, λ)]2


2

E
θ∼ht(·)

E
lθ,t∼ht(·)

E
π∼lθ,t(·)

E
λ∼lθ,t(·)

[Lt(πt, , θ, λ)2]

= |Ωθmax| (2.15)

Note that ΨL
t (µtL) ≤ ΨL

t (µtPS) by optimality of νtL. Using this in (2.12) and combining

with the above upper bound on ΨL
t (νtPS) yields

Ψt(µ
t
IDPS) ≤ ΨL

t (µtPS)/2 ≤ |Ωθmax|/2. (2.16)

This completes the proof.

Corollary 2.2.3. The cumulative expected regret is bounded as

Regret(N) ≤ ((1 +
√
N − 1)

√
ε+ 1)√

2

√
|Ωθmax| log(|Ωθmax|),



52

with probability

(
1− e−

(cε−2)2

2N

)(
1− e−

(c0
√
ε−2)2

2N

)
, where c > 2/ε and c0 > 2/

√
ε are positive

constants.

The above result gives a stronger bound as compared to a flat MDPs.The regret bound

for an equivalent flat MDP can be calculated using Corollary 1.3.6. The equivalent size of

the parameter set for the flat MDP would be Π
θ
|Ωθ|, therefore using Corollary 1.3.6 the regret

upper bound is
((1 +

√
N − 1)

√
ε+ 1)√

2

√
Π
θ
|Ωθ| log(Π

θ
|Ωθ|),

which is much higher as compared to the hierarchical bound derived above, provided |Λθ|∀θ, |Θ| >

1, which always holds. In the next section, I implement Thompson Sampling and IDPS for

a response-guided dosing problem. In each case I compare the performance of the algorithm

in the hierarchical setting versus a flat setting.

2.3 Numerical results for response-guided dosing

Kotas and Ghate (2016) introduced a stochastic DP formulation for response-guided dosing

in diseases that call for treatment courses with multiple sessions. Their objective was to tailor

drug-doses to the stochastic evolution of each individual patient’s disease condition over the

treatment course, in order to trade-off the patient’s aversion to doses with disease control.

Patient’s aversion to dose models ill-effect of treatment such as high cost, side effects, and

logistical inconvenience of receiving treatment.

The system state equals to a numerical scores of the disease condition for the patient at the

beginning of each treatment session. Higher scores correspond to worse disease conditions.

Examples include cholesterol level for heart disease, viral load for hepatitis C, blood pressure,

or DAS28 scores for rheumatoid arthritis. The decisions correspond to the doses administered

to the patient in each session. The immediate cost is given by a disutility function that

models patients’ aversion to doses. The disease conditions evolve according to a dose-response

function. The decision-maker’s goal is to minimize the total expected disutility of the doses

given to the patient over the treatment course and that of the disease condition reached at
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the end of the course.

In this section, I explore an extension of the problem in Kotas and Ghate (2016) under

response-function uncertainty and function-parameter uncertainty. This problem naturally

possesses a hierarchical information structure. I applied the framework developed in this

chapter to make dosing decisions that try to attain a higher reward under this hierarchical

parametric uncertainty.

I consider a treatment course with N sessions wherein disease condition measurements

are made at the beginning of session t = 1, 2, . . . , N and a drug dose is administered. The

disease condition in session t is denoted by Xt and the dose chosen for this session after

measuring Xt is denoted by dt. Doses dt belong to the interval D = [0, d̄], where d̄ < ∞ is

the maximum permissible dose in one session.

The treatment planner knows that the disease condition evolves according to one of two

dose-response functions: one derived from the Michaelis-Menten formula and the other from

power law. The planner is also uncertain about the specific parameters of these response-

functions. As described in Kotas and Ghate (2016), the Michaelis-Menten response is written

as

ln(Xt+1) = ln(Xt) + ln(k2)− ln(k1 + k2 + dt) + µ1. (2.17)

Here, k1 is a fixed parameter, and µ1 is a known stochastic component that follows a zero-

mean Normal distribution with standard deviation 5; k2 is an unknown parameter that the

planner must learn over the treatment course. Also, as described in Kotas and Ghate (2016),

the power law response is given by

ln(Xt+1) = ln(Xt)− k ln(1 + dt) + µ2. (2.18)

Here, k is an unknown parameter and µ2 is a known stochastic component that I assume

follows a zero mean Normal distribution with standard deviation 1.

For algebraic convenience, I modeled the state of the system as st = ln(Xt), and the

actions at as the dose dt in session t. These actions can take any value between [0, 10]
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corresponding to d̄ = 10. The family of transition functions is parameterized by θ ∈ {1, 2},

where θ = 1 corresponds to Michaelis-Menten, and θ = 2 corresponds to power law. For

θ = 1, the unknown model parameter λθ corresponds to k2 and takes values in the interval

[5, 50]. For θ = 2, the unknown model parameter λθ corresponds to k and takes values in

the interval [0.5, 5]. This yields transition functions

T1(s′|s, a) = N (s+ ln(k2)− ln(k1 + k2 + a), 52),

and

T2(s′|s, a) = N (s− k ln(1 + a), 1).

I used a reward function similar to Kotas and Ghate (2016), given by

R(s′|s, a) = −es − ca,

where c = 0.0285.

Figure 2.1 plots the posterior of the true parameter values and compares against the

equivalent flat model both using Thomposon Sampling. Figure 2.2 plots the cumulative

reward averaged over 50 runs for Thompson Sampling.

Similarly, Figure 2.3 plots learning curves for the posterior of the true parameter values

and compares against the equivalent flat model while using IDPS. Figure 2.4 plots the cu-

mulative reward averaged over 50 runs for IDPS. All plots show that my learning algorithms

work better in the hierarchical setting than in the flat one.

2.4 Conclusion and future work

This chapter explores Bayesian learning in MDPs with hierarchical parametric uncertainty.

This work is motivated by sequential decision problems where the decision-maker is uncertain
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Figure 2.1: Thompson Sampling: Posterior for true parameter values.

(a) θ = 1, λ = 4 (b) θ = 2, λ = 4

(c) θ = 2, λ = 5 (d) θ = 2, λ = 6

(e) Other Parameters
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Figure 2.2: Thompson Sampling: Reward accumulated over multiple episodes.

(a) θ = 1, λ = 4 (b) θ = 2, λ = 4

(c) θ = 2, λ = 5 (d) θ = 2, λ = 6

Figure 2.3: Information Directed Policy Sampling: Posterior for the true parameter.
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Figure 2.4: Information Directed Policy Sampling: Reward accumulated over multiple episodes.

about the model of stochastic system dynamics as well as about the parameter values for

each model. In order to make good decisions, one must learn the system model as well as the

model parameters during run-time as the system evolves. This can be viewed as simultaneous

model selection and parameter estimation problem in the MDP context. The decision-maker

maintains a prior on the system model, and a conditional prior on the parameters of each

model. These priors are updated as state observations are made. I derived hierarchical

prior update formulas using Bayes’ rule and incorporated them into two learning algorithms:

Thompson Sampling and IDPS. I provided numerical results on a response-guided dosing

problem. In these results, a hierarchical modeling framework performed better in terms

of both learning and reward accumulation. In addition, I derived theoretical performance

bounds to demonstrate benefits of hierarchical modeling.

As in the previous chapter, the framework here assumes that the decision maker has

access to (or can compute) the information gain and expected regret quantities. In practice,

these quantities are computationally expensive to calculate. This work can benefit from

developing efficient algorithms that can compute such quantities in an online manner. I

believe temporal difference learning methods can provide a good opportunity to make this

work more efficient in practice. It will also be interesting to see how model selection criterion
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(such as the Bayesian information criterion or Deviance information criterion) can be used

to compare the advantages of hierarchical models and flat models without the specifics of

algorithmic details.
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Chapter 3

INFORMATION DIRECTED POLICY SAMPLING WITH
PARTIALLY OBSERVABLE MARKOV DECISION PROCESS

In many MDPs, the state of the system is not directly observable. The decision maker

only has access to partial or indirect observations of the system. A typical example is in

medical treatment planning where the doctor makes certain measurements (observations)

that provide information about a patient’s health (state). In such cases, the system model

also includes a distribution over observations conditioned on the state, in addition to the

usual transition distribution, and reward function. This problem with imperfect information

is called a Partially Observable MDP (POMDP) (Krishnamurthy, 2016). A POMDP is

described by a tuple Q = (S,A, T,R,N,O, Z), where (S,A, T,R,N) is the same as in an

MDP, O is the set of possible observations, and Z is a probability distribution over the

observation of the systems conditioned on the state. This problem with imperfect information

can be reformulated as an MDP (with perfect information), where the redefined state equals

the decision-maker’s probabilistic belief about the actual system state. This redefined state is

often called “information state” and is a sufficient statistic for the decision-making problem.

The decision-maker updates this belief using Bayes’ Theorem, as the system evolves and

observations are made over time. In fact, there is a natural equivalence between BAMDPs

and POMDPs that has been discussed in the existing literature (Bertsekas, 2005; Duff,

2002). Thus, POMDPs with parametric uncertainty form a rich class of problems potentially

amenable to information theoretic learning methods.

This chapter starts by providing background on POMDPs in Section 3.1. Section 3.2

develops IDPS for POMDPs with parameteric uncertainty. Section 3.3 provides theoretical

bounds for this IDPS procedure. Section 3.4 starts by developing a generic POMDP model
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for response-guided dosing. This model is employed to demonstrate the benefits of IDPS for

POMDPs. The rest of that section is organized into three parts, which provide algorithms

and numerical results for three different special cases of the generic response-guided dosing

problem. The chapter then closes with conclusion and some discussion on open problems.

3.1 Background

The MDP formulation for POMDP follows a belief MDP framework. I define the belief state

as xt = (x1
t , · · · , x

|S|
t ), where xit = P (st = i), the probability that the system is in state i ∈ S

at time t.

X =

{
x ∈ R|S|+

∣∣∣∣∣∑
i

xi = 1

}
The transition between the belief states is given by a transition function φ : X × A× O 7→

φ. I define φst+1(xt, at, ot+1) as the probability that the next state is st+1 given that the

action at was chosen in belief state xt and observation ot+1 was made. With some algebraic

manipulations and using the Markovian property, we get

φst+1(xt, at, ot+1) =
Z(ot+1|st+1, at)

∑
st∈S T (st+1|st, at)xt(st)∑

st+1
Z(ot+1|st+1, at)

∑
st∈S T (st+1|st, at)xt(st)

,

and

φ(xt, at, ot+1) = {φst+1(xt, at, ot+1),∀st+1 ∈ S}. (3.1)

For a POMDP, this implies xt+1(.|xt, at, ot+1) = φ(xt, at, ot+1). The Bellman equation for the

POMDP is given by

U∗t (xt) = max
at∈A

(∑
st∈S

 ∑
st+1∈S

T (st+1|st, at)r(st+1|st, π(xt))


+ α

∑
ot+1∈O

P (ot+1|xt, at)U∗t+1(xt+1)

)
,
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where P (ot+1|xt, πt(ot)) =
∑

st+1
Z(ot+1|st+1, πt(xt))

∑
st∈S T (st+1|st, πt(xt))xt(st).

3.2 Information directed sampling in POMDPs

I utilize the equivalence between a BAMDP and a POMDP to re-derive (or re-state) theo-

retical results for IDPS applied to POMDPs. I supplement these with numerical results on

POMDPs. Following the same theme as in previous chapters, I use Thompson Sampling as

a benchmark to evaluate the performance of IDPS on POMDPs.

Consider the parametric uncertainty in the transition distribution T and the probability

distribution Z. Let Ω be the finite set whose elements, λ ∈ Ω, index the transition distribu-

tions Tλ, and let Q be the finite set whose elements, µ ∈ Q index the probability distribution

Z. The family of possible POMDPS is given by Qλ,µ = {S,A, Tλ, R,N,O, Zµ}. I assume,

as in Chapter 1, that the decision maker can easily solve the POMDP Qλ,µ,∀µ ∈ Q, λ ∈ Ω.

The decision maker begins with a prior belief α1(.) on λ and β1(.) on µ. These belief pmfs

are updated via Bayes’ Theorem as states drawn from the true transition function Tλ∗ , and

observations drawn from the true distribution function Zµ∗ are observed starting from an

initial state s1 ∈ S. This enables the decision to keep track of the posterior joint distribu-

tion δt(λ, µ). The decision-maker’s objective is to simultaneously learn the true transition

function and the true observation distribution function while maximizing expected reward.

To extend IDPS to POMDP, I redefine some quantities. Suppose the decision-maker

records the observation ot at the beginning of slot t. Let πt = (πt, πt+1, · · · , πN) denote the

tail of any policy trajectory π = (π1, π2, . . . , πN) ∈ P . The set of tail policy trajectories

is denoted by P t. Also let π∗λ,µ = (π∗1,λ,µ, . . . , π
∗
N,λ,µ) denote an optimal policy for POMDP

Mλ,µ. Let xt,λ,µ(s) be the probability of being in state s ∈ S at time t for parameters λ and

µ. Knowing ot+1, and the distributions Tλ, Zµ, the decision-maker estimates xt+1,λ,µ(st+1) =
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φst+1,λ,µ(xt, al, ot+1) as in equation 3.1.

φst+1,λ,µ(xt, at, ot+1) =
Zµ(ot+1|st+1, at)

∑
st∈S Tλ(st+1|st, at)xt(st)∑

st+1
Zµ(ot+1|st+1, at)

∑
st∈S Tλ(st+1|st, at)xt(st)

. (3.2)

I define a quantity R′(o`+1|x`, π`(x`)) which denotes the reward observed when the cur-

rent belief state is x`, and an action π`(x`) is applied which results in observing o`+1. This

quantity is defined to enable a more intuitive interpretation of value functions and other

related quantities described later in this section. A decision maker never observes the state

of the system directly, therefore the quantity R(s`+1|s`, π`(s`)) is not observed directly. Later

in this section, I express R′(o`+1|x`, π`(x`)) in terms of the model of the system, T , Z and R.

Now let V ∗t (λ, µ) =
N∑̀
=t

R′(o`+1|x`, π∗`,λ,µ(x`)) denote the random tail reward accumulated

on implementing an optimal policy in MDPMλ,µ. Similarly, Vt(λ, µ, π
t) =

N∑̀
=t

R′(o`+1|x`, π`(x`))

for any tail policy πt. In both these expressions, observation ot+1 is drawn from a distribution

derived from Tλ and Zµ given observation ot, a belief state xt, and action π∗t,λ,µ(xt) or action

πt(xt), respectively. Now consider

Ut(λ, µ, π
t) = E

{o`+1∼Pλ,µ(·|x`,π`,λ,µ(x`)):`=t,...,N}
[Vt(λ, µ, π

t)]

= E
{o`+1∼Pλ,µ(·|x`,π`,λ,µ(x`)):`=t,...,N}

[
N∑
`=t

R′(o`+1|x`, π`,λ,µ(x`))

]

=
∑

o`+1:`=t,...,N

Pλ,µ(·|x`, π`,λ,µ(x`))

[
N∑
`=t

∑
s`+1∈S

Zµ(o`+1|s`+1, π`,λ,µ(x`))

∑
s`∈S

Tλ(s`+1|s`, π`,λ,µ(x`))x`(s`)R(s`+1|s`, π`,λ,µ(x`))

]
.

Similarly,

U∗t (λ, µ) = E
{o`+1∼Pλ,µ(·|x`,π∗`,λ,µ(x`)):`=t,...,N}

[V ∗t (λ, µ)]
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= E
{o`+1∼Pλ,µ(·|x`,π∗`,λ,µ(x`)):`=t,...,N}

[
N∑
`=t

R′(o`+1|x`, π∗`,λ,µ(x`))

]

=
∑

o`+1:`=t,...,N

[
N∑
`=t

∑
s`+1∈S

Zµ(o`+1|s`+1, π
∗
`,λ,µ(x`))

∑
s`∈S

Tλ(s`+1|s`, π∗`,λ,µ(x`))x`(s`)R(s`+1|s`, π∗`,λ,µ(x`))

]
.

To define the information ratio, we need to first characterize the expected regret and in-

formation gain of tail policy trajectory πt. In particular, the expected regret is defined as

∆t(π
t|ot, xt, δt(·, ·)) = E

{λ,µ}∼δt(·,·)

[
U∗t (λ, µ)− Ut(λ, µ, πt)

]
. (3.3)

This expression computes the expectation (with respect to the decision-maker’s posterior

δt(·)) of the expected difference between the optimal value and the value of policy πt.

Please recall that the information gain (or mutual information) between two random variables

X and Y is given by I(X;Y ) =
∑
x,y

P (x, y) ln P (y|x)
P (y)

, where the letter P denotes the appropriate

joint, conditional, and marginal distributions. In our POMDP context, X takes values in the

parameter set Ω×Q, while Y takes values in the observation set {o`+1 ∼ Pλ∗,µ∗(·|x`, π`(x`)) :

` = t, · · · , N}. The information gain thus equals

gt(π
t|ot, xt, δt(·)) =

∑
λ∈Ω
µ∈Q

∑
ot+1,...,oN

(
N∏
`=t

Pλ,µ(o`+1|x`, π`(x`))

)

δt(λ, µ) ln


N∏̀
=t

Pλ,µ(o`+1|x`, π`(x`))∑
λ∈Ω
µ∈Q

N∏̀
=t

Pλ,µ(o`+1|x`, π`(x`))δt(λ, µ)

 , (3.4)

where Pλ,µ(o`+1|x`, π`(x`)) =
∑

s`+1
Zµ(o`+1|s`+1, π`(x`))

∑
s`∈S Tλ(s`+1|s`, π`(x`))x`(s`). Now

let Dt denote the set of all probability distributions over tail policies in P t. That is, proba-

bility distribution νt ∈ Dt assigns probability νt(πt) to tail policy πt ∈ P t. Then, given the
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pair (xt, δt(·, ·)) at the beginning of slot t, the expected regret and expected information gain

of probability distribution νt are given by

∆t(ν
t|ot, xt, δt(·, ·)) = E

πt∼νt

[
∆t(π

t|xt, δt(·, ·))
]
, ∀νt ∈ Dt, (3.5)

and

gt(ν
t|ot, xt, δt(·, ·)) = E

πt∼νt

[
gt(π

t|xt, δt(·, ·))
]
, ∀νt ∈ Dt. (3.6)

As in Chapter 1 the information ratio is defined as

Ψt(ν
t) =

(∆t(ν
t))2

gt(νt)
. (3.7)

The decision-maker finds a probability distribution over Dt by solving

νt∗ ∈ argmin
νt∈Dt

Ψt(ν
t). (3.8)

Let Ψ∗t denote the optimal value min
νt∈Dt

Ψt(ν
t) of this problem.

3.3 Regret bounds

The next theorem bounds the decision-maker’s cumulative expected regret over N stages,

which is defined as

Regret(N) =
N∑
t=1

(
∆t(ν

t
∗|ot, xt)− E

ot+1

[∆t+1(νt∗|ot+1, xt+1)]

)
, (3.9)

where ot+1 ∼ Pλ∗,µ∗(·|xt, πt(xt)). The decision maker estimates the belief state by using an

expectation on xt+1,λ,µ in 3.2, and

xt+1 = E
λ,µ

[{
Zµ(ot+1|st+1, at)

∑
st∈S Tλ(st+1|st, at)xt(st)∑

st+1
Zµ(ot+1|st+1, at)

∑
st∈S Tλ(st+1|st, at)xt(st)

,∀st+1

}]
(3.10)



65

with πt ∼ νt∗. Here,

∆t+1(νt∗|ot+1, xt+1) = E
(πt,πt+1)∼νt∗

[
∆t+1(πt+1|ot+1, xt+1)

]
, (3.11)

with

∆t+1(πt+1|ot+1, xt+1) =
∑

λ,µ∼δt(·)

[
U∗t+1(λ, µ)− Ut+1(λ, µ, πt+1)

]
.

Recall from (3.5) that ∆t(ν
t
∗|ot, xt) is the expected regret if a policy πt sampled according

to νt∗ ∈ Dt is implemented in stages t : N starting in belief state xt with observation ot.

The term ∆t+1(νt∗|ot+1, xt+1) defined in (1.12) above is the expected regret if a policy πt =

(πt, π
t+1) sampled according to νt∗ at time-step t is implemented in stages t+ 1 : N starting

in state xt+1 and observing ot+1. Thus, the difference ∆t(ν
t
∗|ot, xt)− E

ot+1

[∆t+1(νt∗|ot+1, xt+1)]

may be viewed as the one-step expected regret of νt∗. The cumulative expected regret over

N stages as defined in (2.9) can therefore be interpreted as a sum of these one-step regrets,

because the decision-maker recomputes the randomized policy νt∗ at every time-step t.

Theorem 3.3.1. Worst Case Regret Bound: Suppose there is a γ such that Ψ∗ ≤ γ.

Then, for any ε > 0, we have,

Regret(N) ≤ ((1+
√
N − 1)

√
ε+1)

√
γ log(|Q||Ω|) with probability (1−e−

(cε−2)2

2N )(1−e−
(c0
√
ε−2)2

2N ),

where c > 2/ε and c0 > 2/
√
ε are positive constants.

Proof. The proof of this theorem is a straightforward generalization of the flat IDPS Regret

bounds, which can be derived using some minor algebraic manipulations on the proof of

Theorem 1.3.3. It starts by finding an equivalent MDP for the POMDP. The equivalent MDP

MQ
λ,µ = {X,A, Pλ,µ(x′|x, π(x)), E

X×X
[R], N} for the POMDP Q, where Pλ,µ(x′|x, π(x)) =

fλ,µ(T, Z, x, x′, π). Let the cardinality of P be |ΩQ| = |QΩ|. Now applying Theorem 1.3.3
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for IDPS on the MDP MQ yields

Regret(N) ≤ ((1 +
√
N − 1)

√
ε+ 1)

√
γ log(|ΩQ|) w. p. (1− e−

(cε−2)2

2N )(1− e−
(c0
√
ε−2)2

2N )

≤ ((1 +
√
N − 1)

√
ε+ 1)

√
γ log(|Q||Ω|) w. p. (1− e−

(cε−2)2

2N )(1− e−
(c0
√
ε−2)2

2N ).

A point to note is that even though the MDP in Theorem 1.3.3 had discrete state space S,

the proof of theorem does not assume anything about the continuity of the state space except

that the space should allow a definition of a probability measure. Therefore Theorem 1.3.3

is also valid for continuous state space, which enables me to apply Theorem 1.3.3 to the

equivalent continuous state space MDP MQ.

The following corollary is a straightforward application of the Theorem 3.3.1 and the

bound on information ratio.

Corollary 3.3.2. The cumulative expected regret is bounded as

Regret(N) ≤ ((1 +
√
N − 1)

√
ε+ 1)√

2

√
|Q||Ω| log(|Q||Ω|),

with probability

(
1− e−

(cε−2)2

2N

)(
1− e−

(c0
√
ε−2)2

2N

)
, where c > 2/ε and c0 > 2/

√
ε are positive

constants.

The proof of this theorem is a straightforward generalization of the flat IDPS Regret

bounds, which can be derived using some minor algebraic manipulations on the proof of

Theorem 1.3.3.

3.4 Algorithms and numerical results

This section evaluates IDPS on POMDP on a generic version of responde-guided dosing for

specific cases. I start here by describing an example that is a more complex case of the

responde-guided dosing problem (the simpler case described in Section 1.4.3) due to the

partial observability and the corresponding uncertainties.
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3.4.1 Response-guided dosing

This section considers a POMDP formulation for response-guided dosing (RGD) in diseases

that call for treatment courses with multiple sessions. This problem is a generalization of

the problem described in Section 1.4.3. Again, the objective in RGD is to tailor drug-doses

or select various treatment modalities to the stochastic evolution of each individual patient’s

disease condition over the treatment course, in order to trade-off the patient’s aversion to

doses with disease control. In this case, the decision maker does not observe the disease

state directly, in fact, the decision maker makes an observation based on a measurement of

the disease condition. At the beginning of each treatment session, the decision maker makes

an observation about the patient’s state which includes a numerical score of the patient’s

disease condition, and also a numerical score of the treatment’s side effect. These numerical

score probabilistically represents the patient’s overall score. Based on these observations,

the decision maker estimates the probability of patient’s state x(s)∀s. The decision maker

then makes a treatment decision, the decisions correspond to the doses administered to the

patient in each session after observing the numerical scores. The immediate cost is given

by a disutility function that models patients’ aversion to doses. The disease conditions and

side effects evolve according to a stochastic dose-response function of the dose level. The

decision-maker’s goal is to minimize the total expected disutility of the doses given to the

patient over the treatment course and that of the disease condition reached at the end of the

course. A good dosing strategy calls for adapting doses to the stochastic evolution of each

individual patient’s disease condition. This in turn requires learning the key parameters of the

individual patient’s dose-response function over the treatment course, and the distribution

function over measurement outcomes, while simultaneously selecting doses.

The model here is an extension of the framework in Section 1.4.3. We consider a treat-

ment course with N sessions wherein disease condition and side effect measurements are

made and then a drug dose is administered at the beginning of sessions t = 1, 2, . . . , N . The

disease condition in session t is denoted by Xt, patient’s side effect is denoted by Yt, and dose
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dt is chosen for this session after measuring ot = {oX,t, oY,t}. Disease state Xt is integer value

and belongs to the interval [0,m] with Xt = 0 representing the best disease condition and

Xt = m denotes the worst disease condition. The measured disease scores oX,t takes values

in [0,mo]. Patient’s side effect state Yt is also integer valued and belongs to the interval

[0, n] with Yt = 0 representing no side effect and Yt = n representing the worst side effect.

Patient’s side effect toxicity scores oY.t takes values in [0, no]. Doses dt are also integer valued

and belong to the interval D = [0, d̄], where d̄ < ∞ is the maximum permissible dose in

one session. The patient’s state st ∈ S represents the patient’s overall health status which

is patient’s disease state and toxicity state due to dosing. The state space S = {SL, SD}

consists of living states SL and an absorbing state SD which corresponds to patient death.

The living states SL represents patients overall health and constitutes disease states SX , such

as good, bad and critical, and toxicity states due to dosing SY , such as, high toxicity, low

toxicity and critical toxicity . Let S = SX × SY = [0, y]× [0, z], where {y, z} represents the

absorbing state SD, and {0, 0} represents the best health possible.

The disease condition and treatment’s side effects evolve according to a probability dis-

tribution, as in Section 1.4.3. For our numerical simulation, we employed m = n = 6, c = 6,

qX = qY = 2, and d̄ = 3.

Additionally, the treatment planner does not observe the states directly but knows

that the measurement outcomes are observed according to a probability distribution. The

measurement outcome probability of disease score is denoted by PX(OX,t+1|st+1, dt), mea-

surement outcome probability of side effect score is denoted by P Y (OY,t+1|st+1, dt), and

the measurement outcome probability is given by P (ot+1|st+1, dt) = PX(OX,t+1|st+1, dt) ×

P Y (OY,t+1|st+1, dt), where st = {Xt, Yt}.

3.4.2 Unknown transition distribution and known observation distribution

Consider the case where the transition distribution of the MDP is parametrized as in Chap-

ters 1 or 2, while the observation distribution is known. In this case, λ ∈ Ω and µ = µ∗,
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which is known. Therefore, δ(λ, µ) = δ(λ, µ∗) = α(λ|µ∗). Algorithm 4 presents the algorithm

for this case.

Algorithm 4 Information Directed Policy Sampling

Require: MDPs Qλ = {S,A, Tλ, R,N,O, Zµ∗} for λ ∈ Ω. Prior pmf α1(·). Initial belief
state x1(s), s ∈ S.

1: x1(s) = p(s),∀s ∈ S

2: function IDPS
3: for episode k = 1, 2, 3, · · · do
4: Set t = 1
5: Initialize x1(s); and prior α1(·)← αN+1(·) if k > 1
6: repeat
7: Compute distribution νt∗ = argmin

νt∈Dt
Ψt(ν

t|ot, xt, αt(·))

8: Sample πt = (πt, . . . , πN) ∼ νt∗
9: Implement action πt(xt)

10: Observe ot+1 drawn from Pλ∗,µ∗(·|xt, πt(xt))
11: Estimate xt+1 as in equation 3.10
12: Update probability mass αt+1(λ) ∝ Pλ,µ∗(ot+1|xt, πt(xt))αt(λ), for each λ ∈ Ω
13: t ← t+1
14: until end of horizon N
15: end for
16: end function

Numerical experiments for response-guided dosing

In this case the planner is uncertain about the parameter value λ that characterizes the

patient’s evolution of side effect states but knows the distribution characterizing the patient’s

disease evolution, and also knows the measurement outcome parameter µ∗. The measurement

outcome probability for the disease scores is ZX(Ox,t+1|Xt+1, dt)

ZX(ox,t+1|xt+1, dt) = |F(ox,t+1 + 1− mo

m
xt+1 + µ∗dt)−F(ox,t+1 −

mo

m
xt+1 + µ∗dt)|.
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Similarly, the measurement outcome probabilities for the toxicity score is given by

ZY (oy,t+1|yt+1, dt) = |F(oy,t+1 + 1− no
n
yt+1 − µdt)−F(oy,t+1 −

no
n
yt+1 − µdt)|.

Therefore, the measurement outcome probability is given as

Z(ot+1|st+1, dt) = ZX(ox,t+1|xt+1, dt)× ZY (oy,t+1|yt+1, dt).

For this section the decision maker knows that µ = µ∗ = 0.125. Figure 3.2 plots the cumu-

lative reward averaged over 50 runs for IDPS and Thompson Sampling. Figure 3.1 plots the

posterior of the true parameter values for IDPS and Thompson Sampling. We observe that

for MDPs with partial observability IDPS learns faster than Thompson Sampling approaches

which is consistent with the objective of this research.

3.4.3 Unknown measurement outcome distribution with known transition distribution

In this subtask, I investigate the case where the decision-maker is uncertain about the obser-

vation distribution, but knows the transition distribution. I extend my previous information

theoretic learning methods to this setting. In this case, λ = λ∗, which is known and µ ∈ Q.

Therefore, δ(λ, µ) = δ(λ∗, µ) = β(µ|λ∗). Algorithm 5 presents the algorithm for this case. I

demonstrate this on the responde-guided dosing application as in section 3.4.1.

Numerical experiments for response-guided dosing

This case uses the same problem as in Section 3.4.1. Except now the planner is uncer-

tain about the parameter value µ that characterizes the patient’s disease and toxicity level

measurement outcomes, but knows the transition distribution characterizing the patient’s

disease evolution and side effect evolution λ = λ∗ = 0.7. The disease maker also know that

µ ∈ Q = {0.05, 0.25, 0.45}. Figure 3.4 plots the cumulative reward averaged over 50 runs for
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Figure 3.1: Posterior for true parameter values.

(a) λ = 0.1, µ = 0.125

(b) λ = 0.4, µ = 0.125

(c) λ = 0.7, µ = 0.125
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Figure 3.2: Averaged Cumulative Reward

(a) λ = 0.1, µ = 0.125

(b) λ = 0.4, µ = 0.125

(c) λ = 0.7, µ = 0.125
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Algorithm 5 Information Directed Policy Sampling

Require: MDPs Qµ = {S,A, Tλ∗ , R,N,O, Zµ} for λ ∈ Ω. Prior pmf β1(·). Initial belief
state x1(s), s ∈ S.

1: x1(s) = p(s), ∀s ∈ S

2: function IDPS
3: for episode k = 1, 2, 3, · · · do
4: Set t = 1
5: Initialize x1(s); and prior β1(·)← βN+1(·) if k > 1
6: repeat
7: Compute distribution νt∗ = argmin

νt∈Dt
Ψt(ν

t|ot, xt, βt(·))

8: Sample πt = (πt, . . . , πN) ∼ νt∗
9: Implement action πt(xt)

10: Observe ot+1 drawn from Pλ∗,µ∗(·|xt, πt(xt))
11: Estimate xt+1 as in equation 3.10
12: Update probability mass βt+1(µ) ∝ Pλ∗,µ(ot+1|xt, πt(xt))βt(µ), for each µ ∈ Q
13: t ← t+1
14: until end of horizon N
15: end for
16: end function
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IDPS and Thompson Sampling. Figure 3.3 plots the posterior of the true parameter values

for IDPS and Thompson Sampling. IDPS learns faster than Thompson Sampling approaches

which is consistent with the objective of this research.

3.4.4 Unknown measurement outcome distribution and unknown transition distribution

In this section, the decision-maker is uncertain about the measurement outcome distribution

and the transition distribution. This is a generalization of the scenarios in Section 3.4.2 and

3.4.3. In this case, λ ∈ Ω, and µ ∈ Q. Therefore, δ(λ, µ) = δ(λ, µ). Algorithm 6 presents

the algorithm for this case. I demonstrate this on the responde-guided dosing application as

in section 3.4.1.

Algorithm 6 Information Directed Policy Sampling

Require: MDPs Qµ = {S,A, Tλ, R,N,O, Zµ} for λ ∈ Ω. Prior pmf δ1(·, ·) = α(·)β(·).
Initial belief state x1(s), s ∈ S.

1: x1(s) = p(s),∀s ∈ S

2: function IDPS
3: for episode k = 1, 2, 3, · · · do
4: Set t = 1
5: Initialize x1(s); and prior δ1(·, ·)← δN+1(·, ·) if k > 1
6: repeat
7: Compute distribution νt∗ = argmin

νt∈Dt
Ψt(ν

t|ot, xt, δt(·, ·))

8: Sample πt = (πt, . . . , πN) ∼ νt∗
9: Implement action πt(xt)

10: Observe ot+1 drawn from Pλ∗,µ∗(·|xt, πt(xt))
11: Estimate xt+1 as in equation 3.10
12: Update probability mass δt+1(λ, µ) ∝ Pλ,µ(ot+1|xt, πt(xt))δt(λ, µ), for each µ ∈
Q, and λ ∈ Ω

13: t ← t+1
14: until end of horizon N
15: end for
16: end function
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Figure 3.3: Posterior for true parameter values.

(a) λ = 0.7, µ = 0.05

(b) λ = 0.7, µ = 0.25

(c) λ = 0.7, µ = 0.45
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Figure 3.4: Averaged Cumulative Reward

(a) λ = 0.7, µ = 0.05

(b) λ = 0.7, µ = 0.25

(c) λ = 0.7, µ = 0.45
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Numerical experiments for response-guided dosing

Now the planner is uncertain about the parameter value µ that characterizes the patient’s

disease and toxicity level measurement outcomes, as well as the transition distribution char-

acterizing the patient’s disease evolution and side effect evolution λ. The disease maker

knows that µ ∈ Q = {0.05, 0.1, . . . , 0.4, 0.45}, λ ∈ Ω = {0.1, 0.2, 0.3, . . . , 0.8, 0.9}. Figure 3.6

plots the cumulative reward averaged over 50 runs for IDPS and Thompson Sampling. Fig-

ure 3.5 plots the posterior of the true parameter values for IDPS and Thompson Sampling.

We observe that for MDPs with partial observability IDPS learns faster than Thompson

Sampling approaches which is consistent with the objective of this research.

3.5 Conclusion and future work

This chapter discussed learning in POMDPs with parametric uncertainty using information

theoretic principles. I extended the IDPS approach developed in Chapter 1 to POMDPs.

I analyzed three separate cases where the decision-maker is uncertain about the transition

distribution or the measurement outcome distribution or both. This demonstrates the gen-

eralizability of information theoretic approaches, specifically IDPS. Future work can develop

methods to make the IDPS more efficient in practice by rolling in the computation of infor-

mation gain and expected regret in an online learning framework.
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Figure 3.5: Unknown Transition and Measurement Outcome Distributions: Posterior for true parameter values.

(a) λ = 0.05, µ = 0.05

(b) λ = 0.05, µ = 0.25
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Figure 3.5: Unknown Transition and Measurement Outcome Distributions: Posterior for true parameter values.

(c) λ = 0.05, µ = 0.45

(d) λ = 0.20, µ = 0.05

(e) λ = 0.20, µ = 0.25
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Figure 3.5: Unknown Transition and Measurement Outcome Distributions: Posterior for true parameter values.

(f) λ = 0.20, µ = 0.45

(g) λ = 0.35, µ = 0.05

(h) λ = 0.35, µ = 0.25
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Figure 3.6: Unknown Transition and Measurement Outcome Distributions: Averaged Cumulative Reward

(a) λ = 0.05, µ = 0.05

(b) λ = 0.05, µ = 0.25

(c) λ = 0.05, µ = 0.45
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Chapter 4

STOCHASTIC THERMODYNAMICS-INSPIRED
INFORMATION THEORETIC LEARNING IN MDPS

The last three chapters provided a strong evidence in the potential for using information

theoretic approaches for learning in MDPs with parametric uncertainty. The key entity that

includes the cost/benefit of information gain and the actual performance of the method is the

Information Ratio Ψ. This quantity yields a convex optimization program that can be solved

at each time step of the MDP to get an optimal policy which balances the trade-off between

exploration and exploitation. The construction of information ratio comes from heuristic ar-

guments and is not grounded in any fundamental principles of system/information dynamics,

but I used this quantity to prove the benefits of using information theoretic approaches. In

this chapter, I take inspiration from stochastic thermodynamics to derive a problem formu-

lation for online learning in uncertain MDPs while grounded in system dynamics.

To this effect, I make an explicit link between the information entropy and the stochastic

dynamics of a system coupled to an environment. I analyze various sources of entropy pro-

duction: due to the decision-maker’s uncertainty about the system-environment interaction

characteristics; due to the stochastic nature of system dynamics; and the interaction of the

decision maker’s knowledge with system dynamics. This analysis provides a framework that

can be formulated either as a maximum entropy program to derive efficient policies that

balance the exploration and exploitation trade-off, or as a modified cost optimization pro-

gram that includes informational costs and benefits. This work provides a more grounded

reformulation of the IDPS ideas developed in Chapter 1, and bind the structural aspects of

information developed in Chapter 2, and Chapter 3 into a generic framework.

The challenge in any Bayesian learning approach is that there is no clear consensus on the
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Figure 4.1: Maxwell’s demon

actual problem that needs to be solved. Generally, we want to find a policy that maximizes

cumulative reward while learning with uncertain or partial information. BAMDPs provide

a classic formulation of this problem. But as discussed in Chapter 1 this formulation does

not take into account the cost of information gain, and hence intuitively one can find better

policies that leverage information gain while learning. The information theoretic methods

developed so far rely on the heuristic idea of information ratio, which, I believe, is somewhat

ad-hoc. In addition, this ratio does not give a strong insight into the global problem that is

being solved. I find a relation between the optimization of reward and the cost of information

that is embedded in the dynamics of the system and its interaction with the

4.1 Physical nature of information

In order to motivate the idea of the physical nature of information, I dive into the role of

information in thermodynamics of gases. To guide the reader, a natural connection is to

interpret particle configurations in gas systems as sample trajectories in stochastic system.

Physicist Ludwig Boltzmann showed that with time, a system evolves towards lower states

of energy, where the energy dispersed increases the entropy of the system due to the nature

of statistics (Boltzmann, 1974). As Wolchover (2017) commented, “ There are many ways

for energy to be spread among the particles in a system than concentrated in a few, so as

particles move around and interact, they naturally tend toward states in which their energy

is increasingly shared. This has been classically understood as the second law of thermody-

namics. But Maxwell’s letter (Maxwell, 1921) described a thought experiment in which an
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enlightened being, called Maxwell’s demon (Figure 4.1), uses its knowledge to lower entropy

and violate the second law. The demon knows the positions and velocities of every molecule

in a container of gas. By partitioning the container and opening and closing a small door

between the two chambers, the demon lets only fast-moving molecules enter one side, while

allowing only slow molecules to go the other way. The demon’s actions divide the gas into

hot and cold, concentrating its energy and lowering its overall entropy. The once useless gas

can now be put to work. This thought experiment lead to questions on how a law of nature

could depend on one’s knowledge of the positions and velocities of molecules. [This implies

that second law of thermodynamics require a reinterpretation to include the subjective nature

of information.] Charles Bennett (Bennett, 1987), building on work by Leo Szilard (Szilárd,

1976) and Rolf Landauer (Landauer, 1961), resolved the paradox by formally linking ther-

modynamics to the science of information. Bennett argued that the demon’s knowledge is

stored in its memory, and memory has to be erased, which takes work. (Landauer, 1961)

calculated that at room temperature, it takes at least 2.9 zeptojoules of energy for a computer

to erase one bit of stored information.) In other words, as the demon organizes the gas into

hot and cold and lowers the gas’s entropy, its brain burns energy and generates more than

enough entropy to compensate. The overall entropy of the gas-demon system increases, sat-

isfying the second law of thermodynamics. These findings revealed that, as Landauer put it,

“Information is physical” (Landauer, 1991). More information implies that more work can

be extracted. Maxwell’s demon can wring work out of a single-temperature gas because it has

far more information than the average user.”

This interaction of entropy and dynamics, capture by the second law, creates a strong

foundation to analyze stochastic systems. There is a natural equivalence between stochastic

thermodynamics and stochastic control theory. Any decision process can be modeled as

a classic control problem. Generally, the quantities which are of interest are averaged over

trajectories of the system rather than sample path behaviors. Thermodynamics has provided

an intuitive framework and solution about averaged entities on stochastic systems. I study

this equivalence and bridge gaps in the existing literature on learning in MDPs. I develop
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an equivalent thermodynamic system and apply an information theoretic framework to find

a formulation of the learning problem to compute good policies.

There has been some work in the literature to bridge this gap between control theory and

stochastic thermodynamics. Brockett and Willems (1979) studies second law of thermody-

namics from the point of view stochastic control theory. They compute a criterion which,

when satisfied, permits one to assign a temperature to a stochastic system in a way that

Carnot cycles become the optimal trajectories of optimal control problems. Propp (1985)

also studied the connection between thermodynamic and Markovian systems. There, an

input-output framework for thermodynamics was proposed, which allowed to introduce the

notion of states, controls and response, thus drawing a connection between the two fields.

There has also been a recent surge in understanding the field of stochastic thermodynamics

to study Markovian processes at the trajectory level using statistical quantities (Seifert et al.,

2011; Aurell et al., 2012). Saridis (1988) proposed a formulation that gives a generalized en-

ergy interpretation to the optimal control problem. This framework provides compatibility

between the control problem and the information theoretic methodology for the intelligent

control system using entropy as the common measure. A reformulation of the optimal con-

trol problem is based on the idea of expressing the design of the desirable control by the

uncertainty of selecting a control law that minimized a given performance index.

4.2 Clairvoyant MDP: an information theoretic perspective

Consider the Bellman’s equation for MDP M = {S,A, T,R,N}.

V ∗(s) = min
a

∑
s′

T (s′|s, a)[R(s′|s, a) + V ∗(s′)]. (4.1)

I consider an alternate formulation to this classical MDP, with a small loss of generality.

Todorov (2009) proposed a linear problem where actions that are considered symbolic in

the above formulation are replaced through making decisions over transition distributions.

Therefore, the decision maker specifies a control dynamics distribution a(s′|s) = T (s′|s, a).
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This allows us to write an equivalent reward form as

q(s, a) = `(s) + E
s′∼a(·|s)

ln

(
a(s′|s)
p(s′|s)

)
,

where the state cost `(s) is an arbitrary function encoding how undesirable different states

are and p(s′|s) is an arbitrary transition distribution. Using this construction the Bellman’s

equation can be rewritten as:

V ∗(s) = min
a

(
`(s) + E

s′∼a(·|s)

[
ln
a(s′|s)
p(s′|s)

+ V ∗(s′)

])
. (4.2)

Now, I define the quantity G(s) = E
s′∼p(·|s)

exp(−V ∗(s′)). Therefore, through some algebraic

manipulation, I get

E
s′∼a(·|s)

[
ln
a(s′|s)
p(s′|s)

+ V ∗(s′)

]
= − ln(G(s)) + KL

(
a(·|s)||p(·|s) exp(−V ∗(·))

G(s)

)
,

which gives

V ∗(s) = min
a

[
`(s)− ln(G(s)) + KL

(
a(·|s)||p(·|s) exp(V ∗(·))

G(s)

)]
. (4.3)

An interesting observation is that the right hand side of the above function is minimized

when the KL divergence is 0, which gives the optimality condition as

a∗(s′|s) =
p(s′|s) exp(−V ∗(s′))

G(s)
(4.4)

=
p(s′|s) exp(−V ∗(s′))∑
s′ p(s

′|s)exp(−V ∗(s′))
(4.5)

Now consider the following Lemma (Theodorou and Todorov, 2012; Theodorou, 2015).

Lemma 4.2.1. Consider distributions A and P defined on the same probability space with

sample set Ω, such that A is absolutely continuous with respect to P, and Q : Ω 7→ R is a
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measurable function, then the following inequality holds

1

ρ
ln
(
E
P

[
eρQ(s)

])
≤ E

A
[Q(s) + |ρ|−1KL(A||P)],

where ρ ∈ R−.

Proof. The proof is reproduced here for completeness. It is a straightforward derivation from

Jensen’s inequality. Consider,

ln
(
E
P

[
eρQ(s)

])
= ln

∑
s

p(s)e[ρQ(s)]

= ln

[∑
s

a(s)
p(s)

a(s)
exp (ρQ(s))

]
a

≥
∑
s

a(s) ln

[
p(s)

a(s)
exp (ρQ(s))

]
= ρE

A
[Q(s)] +

∑
s

a(s) ln
p(s)

a(s)

= ρ
(
E
A

[Q(s)]− ρ−1KL(A||P)
)
,

where inequality “a” follows from Jensen’s inequality and concavity of the ln function.

Now dividing both sides by ρ ∈ R− gives the required inequality.

Next, consider Equation (4.2), where I substitute Q(s′) = `(s) + V ∗(s′). Now using

Lemma 4.2.1 with ρ = −1, P = p(s′|s), A = a(s′|s), I get

− ln

(
E

s′∼p(·|s)

[
e−`(s)−V

∗(s′)
])
≤
∑
s′

a(s′|s)
[
`(s) + V ∗(s′) + ln

a(s)

p(s)

]
,

which implies

− ln

(
E

s′∼p(·|s)

[
e−`(s)−V

∗(s′)
])

= min
a

∑
s′

a(s′|s)
[
`(s) + V ∗(s′) + ln

a(s)

p(s)

]
.
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The right hand side of the above equation is the right hand side of the Bellman equation in

Equation (4.2). Therefore

V ∗(s) = − ln

(
E

s′∼p(·|s)

[
e−`(s)−V

∗(s′)
])

.

This framework can also be used as an estimation framework where instead of minimizing

the expected cumulative cost, the decision maker can maximize the KL divergence for a

required performance. Therefore, the optimization problem in Equation (4.2) becomes

min
A

KL(A||P),

subject to ∑
s′

a(s′|s) = 1,

V (s) = K,

where K is the required performance. In the interest of providing interesting connection, I

consider continuous optimization. Using the Lagrangian method, the optimization program

reduces to

L = KL(A||P) + µ(V (s)−K) + λ(

∫
s′
a(s′|s)ds′ − 1)

= −
∫
s′
a(s′|s)

(
ln
a(s′|s)
p(s′|s)

+ µV (s) + λ

)
ds′ + µK + λ

Now, maximizing with respect to a(s′|s) gives

ln
a∗(s′|s)
p(s′|s)

+ µV (s) + λ = 0,

which gives

a∗(s′|s) =

∫
exp(−muV (s)− λ)p(s′|s)ds′.



89

Substituting in the first constraint for
∫
a(s′|s)ds = 1, gives

λ = ln

∫
p(s′|s) exp(−µV (s))ds′.

Substituting λ back and discretizing gives the optimal solution for a∗ for a given level of

performance. In the case where K = V ∗(s), this solution gives the optimal a∗ as in Equa-

tion 4.5. This result is very similar to the one derived using HJB principle in the classic

paper by Saridis (1988). For the reader’s convenience, I recall that result in Appendix 4.6.

4.3 Thermodynamics of information

This section provides a brief introduction on the relationship between information and ther-

modynamics. We consider a system M (such as a gas in a container) that is connected to

external reservoirs and other systems. Suppose the microstate of the system (for example,

the coordinates and momentum of particles of the gas) is given by x, and suppose that the

information gained as a result of measurement is denoted by m. This measurement is what

helps to prepare the state of the system. Let us denote a generic statistical state of the

system with ρ(x) (for example, the distribution of coordinate states and momentum of the

gas molecules). I assume that in state ρ(x) the system is in statistical equilibrium. Now

after making the measurement, the new state of the system in ρ(x|m), which in general is

out of equilibrium. For example, in the context of the Sczilard’s engine described in Sec-

tion 4.1, after measurement the statistical state is confined to either the left or right half

of the box. Information drives the system away from equilibrium. The thermodynamics of

information allows us to reason about this scenario by associating an equivalent energy cost,

thus justifying this movement from equilibrium to a non-equilibrium state.

The most obvious entity that relates statistical entities to distributions is the entropy of

the system. In this case, the non equilibrium entropy is defined using a scaled version of the

Shannon Entropy as

S(ρ) = −
∑
x

ρ(x) ln ρ(x) = H(X),
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where H(X) is the Shannon entropy. At equilibrium this entropy coincides with the can-

nonical entropy

ρ(x) = exp−βE(x) /Z,

where E(x) is the Hamiltonian of the system, and Z is the partition function, and β is the

inverse temperature. Using this we recover the thermodynamic relationship between Free

energy F(ρ) = −β−1 lnZ, and internal Energy E = E[H] and Entropy: F = E−β−1S. The

free energy is interpreted as the amount of useful energy that can be used to extract work,

taking in account all entropy related costs. The classical second law of thermodynamics for

non equilibrium system, therefore, can be written as

∆S ≥ 0 =⇒ W −∆F ≥ 0, (4.6)

where W is the average work done on the system.

The rest of the section evaluates the change in non-equilibrium free energy due to a

measurement M . For this purpose the corresponding information gain is defined as

I(X;M) = H(X)−H(X|M).

Now, in the event that an external system changes the system parameter after an observation

is made, results in work extracted from the system. The refined second law of thermody-

namics then becomes

W −∆F ≥ −β−1I(X;M) (4.7)

An interesting observation is that ultimately, the information used to extract work during

feedback was supplied as work by the external system during the measurement process.
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4.4 Markovian systems and second law of thermodynamics

Now let’s consider the second law of thermodynamics W ≥ ∆F without feedback (Equa-

tion 4.6), and compare it with the Lemma 4.2.1

1

ρ
ln
(
E
P

[
eρQ(s)

])
≤ E

A
[Q(s) + |ρ|−1KL(A||P)].

The quantity on the left hand side is the Free Energy change ∆F and the work done on the

system is the expected cumulative cost given by the right hand side of the equation. Sub-

stituting the relevant entities for the MDP defined in Section 4.2 provides a bridge between

MDP and the respective thermodynamic interpretation. Therefore, using the mathematical

equivalence, the policy that minimizes work done (or maximum work extracted from the

system) gives the optimal solution for the MDP.

The above results give sufficient evidence to explore equivalence between thermodynamic

entities and Markov Decision Processes. In order to develop a learning framework in uncer-

tain MDPs using information theoretic arguments, I develop the definition of thermodynamic

quantities at the level of sample trajectories for Markovian system in the next section.

4.4.1 Second law of thermodynamics for a Markovian system in a heat bath

This section reviews the stochastic thermodynamics for Markovian Systems (Ito and Sagawa,

2016). Stochastic Thermodynamics is a theoretical framework to define quantities such as

work and heat at the level of sample trajectories.

Consider a system M that evolves stochastically. We assume a physical situation where

system M is connected to a single heat bath at inverse temperature β. Also assume that

the system M is driven by an external parameter π and the system is not subject to non-

conservative forces. For simplicity, we will assume discrete time tk, k = {1, 2, · · · , N}, al-

though, the mathematical setup does not force any assumption regarding the continuity of
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time. Let xk be the state of the system at time tk, and πk be the external parameter of the

system at time tk. Let p(xk|xk−1, πk) be the conditional probability of state xk under the

past trajectory and external parameter πk.

Now building on the thermodynamic principles, we define the Hamiltonian of the system

as E(xk, πk). The Hamiltonian change in the system is decomposed into 2 parts heat Qk and

work Wk. The heat absorbed by the system from heat bath at time tk is defined as

Qk = E(xk+1, πk)− E(xk, πk),

and the work done on the system M is defined as

Wk = E(xk, πk)− E(xk, πk−1).

For a given trajectory {x1, x2, · · · , xn} the total heat is Q =
∑N−1

i=1 Qk and total work is

W =
∑N−1

i=1 Wk, where x0 is defined as a buffer state such that p(x1|x0, π) = 1 for any π.

This is done to impose consistency as it will become apparent later on.

Using the above definitions, one can easily show that ∆Ek = Qk +Wk, which is the first

law of thermodynamics.

Now let us define the quantity pB(xk|xk+1, πk) as the backward transition probability. In

the absence of any non conservative the detailed balance (Seifert, 2005) is satisfied which

gives

p(xk+1|xk, πk)
pB(xk|xk+1, πk)

= e−βQk .

Now, I define the stochastic entropy of the system as h(xk) = −ln(xk). Therefore the

entropy production is defined as the sum of stochastic entropy change in the system and the



93

bath. The stochastic entropy change in the system is given by

∆hMk = h(xk+1)− h(xk).

The total stochastic entropy change therefore is given by

∆hM = ln
p(x1)

p(xN)
. (4.8)

The stochastic entropy change in the heat bath is given by the heat dissipation into the bath

∆hbathk = −βQk.

The total entropy change in the bath is given by

∆hbath = ln
p(xN |xN−1, πN−1)p(xN−1|xN−2, πN−2) . . . p(x2|x1, π1)

pB(x1|x2, π1)pB(x2|x3, π2) . . . p(xN−1|xN , πN−1)
. (4.9)

Therefore the entropy production σ is

σ = ln
p(xN |xN−1, πN−1)p(xN−1|xN−2, πN−2) . . . p(x2|x1, π1))p(x1)

pB(x1|x2, π1)pB(x2|x3, π2) . . . p(xN−1|xN , πN−1)p(xN)
.

For brevity I define the trajectory of the system as O = {x1, x2, . . . , xN}. Therefore the

total entropy production becomes

σ = ln
p(O)

pB(O)
.

Therefore, the entropy production is determined by the ratio of the probabilities of a trajec-

tory and its time-reversal.

Simple algebraic calculation on this definition yields the second law of thermodynamics

which states that
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E[σ] ≥ 0.

The equivalent stochastic energetics definition gives the form as in Equation (4.6)

W ≥ ∆F ,

where F(λk) = −β−1 ln
∑

X exp(−βE(x, λk)). This result can be derived using the integral

fluctuation theorem and the arguments presented in Seifert (2005).

4.4.2 Second law of thermodynamics for a Markovian system in connection with an external

entity

Here I consider the Markovian System M in contact with an external system D in addition

to the heat bath. This external system, for instance can be the decision maker in the context

of the MDP (More on this in the later sections). In particular, I state the generalized second

law of thermodynamics, which states that the entropy production is bounded by the initial

and final mutual information between M and D, and the transfer entropy from M to D.

Let’s consider the states of the system D at time tk be dk. Therefore, the joint time evo-

lution of system M ∪D is defined as {(x1, d0), (x2, d1), · · · , (xN , dN−1)}. For brevity, I define

pa(xk+1) as the parent of state xk+1 which is the set of all states which has a non zero tran-

sition probability to xk+1, therefore pa(xk+1) = {xk, dk−1}, such that p(xk+1|xk, dk−1) > 0.

At the initial state I assume that pa(x1) ⊆ D. The initial correlation between system

S and D is then characterized by the mutual information between x1 and pa(s1). The

corresponding stochastic mutual information is given by

Iini = I(x1; pa(x1)).
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Now, let’s define an(xk+1) as the ancestors of xk in the order that they were observed.

Therefore an(xk+1) = {(x1, d0), (x2, d1), · · · , (xk, dk−1)}. The final correlation between sys-

tem S and D is then characterized by the mutual information between xN and an(xN)∩D.

Ifin = I(xN ; {d0, d1, · · · , dN}).

Let’s define another quantity pa(dk)as the parent of dk that corresponds to pa(dk) =

{xk−1, dk−1}Finally, I define the transfer entropy from M to D as

Iktr = I(dk; pa(dk) ∩M |d1, d2, · · · , dk−1).

The total transfer entropy for the entire dynamics is therefore given by

N∑
k=1

Iktr = Itr.

By combining all the above informational content in the combined system, I define the

total informational exchange as

Θ = Ifin − Itr − Iini.

Now, as in the simple case in Section 4.4.1, I define the entropy production in system M

and the heat bath, while in the presence of system D.

Let Bk+1 ⊆ D define the set of states in D that effect xk+1, therefore Bk+1 = {dk−1}. Now

p(xk+1|xk,Bk+1) describes the transition probability from xk to xk+1 under the condition that

the states of D that affect M are given by Bk+1. We then define the backward transition

probability as PB(xk|xk+1,Bk+1). Following the definition of entropy change in the heat bath

from time k to k + 1 as in Equation (4.9) is given by:

∆sbath =
∑
k

xbathk
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=
∑
k

ln
p(xk+1|xk, Bk+1)

pB(xk|xk+1, Bk+1)
.

The total entropy change in the system M is similar to Equation (4.8)

∆ssys = ln
p(x1)

p(xN)
.

The total entropy production is therefore,

σ = ln
p(x1)

p(xN)
Πk

p(xk+1|xk, Bk+1)

pB(xk|xk+1, Bk+1)
.

Now, we can write the refined second law of thermodynamics, through some algebraic

manipulation it can be shown that

E[σ] ≥ Θ.

Using the integral fluctuation theorem and theory of stochastic energetics, this result can

be restated as in Equation (4.7)

W −∆F ≥ −β−1Θ (4.10)

4.5 MDP with uncertainty: a stochastic thermodynamics perspective

The framework in the previous section provides a way to model the effect of information gain

in MDPs with uncertainty with the objective of maximizing the work that can be extracted

out of the system. The system M considered in the previous section is the system that is

acting in the real environment, the system D is the decision maker, who changes some pa-

rameter of the system M in order to achieve the required objective. Both these systems are

suspended in a “heat bath” to account for the part of the work that is dissipated and cannot

be used for any useful work. The thermodynamic framework allows us to define the objective

of the optimization program when the MDPs have model uncertainty. To be consistent, the

uncertainty in the MDPs is assumed to be completely reflected through the uncertainty in
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the transition probabilities. In this section, I propose 2 different perspectives of how the

system D interacts with system M : a) the first perspective is where system D directly main-

tains a distribution over the policies and changes this distribution based on feedback; b) the

second perspective is where the system D maintains a distribution over a parameter of the

transition distribution and adapts this based on feedback in order to find a good policy. The

case “b” is consistent with the frameworks in previous chapter. Although, as we will see,

both cases “a” and “b” generate the same results and therefore, are interchangeable from a

modeling perspective.

4.5.1 MDP with distribution over policies

Consider an MDP M = {S,A, T,R,N}1 and the decision maker D = {π}. The decision

maker maintains a probability distribution νk(π|sk) over policies π at every time step tk in

state sk. The probability distribution is updated based on feedback. This setup is analogous

to the thermodynamic setup described in Section 4.4.2. In a standard MDP, the objective

is to minimize the expected cumulative cost

V π(st) =
N−1∑
k=t

E[c(sk, π(sk))],

where the expectation is taken over {sk, π(sk)}, in terms of the classical discrete MDP

c(sk, π(sk)) = Esk+1∼T (·|sk,π(sk))[R(sk+1|sk, π(sk))].

As in Section 4.2, the MDP problem for finding a policy to achieve the maximum perfor-

mance can be formulated as either a maximum entropy optimization program or the classical

expected cost optimization. In will start by formulating an expected cost optimization pro-

1Please note that for the purpose of this discussion I will consider R as the cost function (rather than the
reward function)
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gram using the Second Law of Thermodynamics. Equation 4.10 can be written as

W + β−1Θ ≥ F .

Note that the free energy F is the amount of useful energy, and the infimum of the left

hand side will give the most amount of net work that can be extracted out of the system.

Therefore, the optimization program becomes

min
νt;t=1:N

W + β−1Θ,

where W =
∑N−1

k=1 E[c(sk, π(sk))], Θ = Ifin−Itr−Iini, and νt = p(πt|st, πt−1). From previous

section xk = {sk}, and dk = πk. For the classical MDP p(s1) = δ(s1 − sinit), and pa(s1) = ∅.

Therefore,

Iini = I(s1; pa(s1)) = 0.

The final information correlation is given by

Ifin = I(sN ; π1, · · · , πN−1),

note that p(π1, · · · , πN−1) = ΠN−1
i=2 p(πi|πi−1).

Iktr = I(πk; sk−1|π1, · · · , πk−1) = I(πk; sk−1|πk−1)

Therefore the optimization program becomes

min
νt:t=1,··· ,N

(
N−1∑
k=1

(
E[c(sk, π(sk))]− β−1I(πk+1; sk|πk)

)
+ β−1I(sN ; π1, · · · , πN−1)

)
.

For the case, Ifin = 0, the solution to the resulting optimization program is discussed in

Tanaka et al. (2017).
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The above problem can reformulated as a maximum entropy principle, which translates

to

max
νt:t=1,··· ,N

N−1∑
k=1

I(πk+1; sk|πk)− I(sN ; π1, · · · , πN−1)

subject to ∑
k

νt(πk) = 1 ∀k,

N−1∑
k=1

E[c(sk, πk)] = K,

where K is the required performance. When K = V ∗, the resulting policy is the optimal

policy with respect to the cost based optimization program.

4.5.2 MDP with parametric uncertainty

In this case the decision maker D maintains a distribution over the parameter of the system.

This case is similar to the ones studied in previous chapters. Therefore the state of the

system D is denoted by λk at time tk. Again, the specific informational correlations are

given by

Iini = I(s1; pa(s1)) = 0,

Ifin = I(sN ;λ1, · · · , λN−1),

and

Iktr = I(λk; sk−1|λ1, · · · , λk−1) = Iktr = I(λk; sk−1|λk−1).

The optimization program becomes

min
νt:t=1,··· ,N

(
N−1∑
k=1

(
E[c(sk, π(sk))]− β−1I(λk+1; sk|λk)

)
+ β−1I(sN ;λ1, · · · , λN−1)

)
,

where νt = p(πt|st), and the distribution over λ is updated using Bayesian learning. As in

the previous section this can also be formulated as a maximum entropy framework.



100

4.6 Discussion and future work

This chapter provides a framework for formulating an optimization program for solving un-

certain MDPs built from fundamental principles of system dynamics and information theory.

The exact formulation of the optimization program depends on the specific nature of inter-

action between the decision maker and the system to be controlled. Sections 4.5.1 and 4.5.2

provide optimization program for 2 different scenarios. Given these formulation, we can use

many of the techniques for optimization (including the Bellman’s principle) to solve for a so-

lution. This will be a future work. An important discussion point is the entity β in the above

equations. Thermodynamically, β capture the inverse temperature (with a scaling constant).

The temperature is a property of the heat bath and assumed to be constant throughout the

dynamic process. In the context of a decision process, the temperature is a property of the

decision process and can be estimated. A good way to estimate temperature will be to find

an equilibrium solution and solve it inversely to get the temperature. For instance, given

a MDP M = {S,A, T,R,N} one can chose the starting state for which there a solution is

known apriori and that can be used to estimate the temperature of the decision process.

In the event we do not have access to this knowledge, the temperature can be considered a

pseudo state and a new MDP can be defined M ′ = {{S, β}, A, T ′, R′, N}.

Another important point is that the above framework works when certain conditions

on the underlying Markovian process is satisfied. One sufficient condition, as discussed in

Section 4.4, is the detailed balance equation, which implies reversibility of the Markovian

system. We know that is not a necessary condition, in fact, it can be shown that the results

still hold for non-reversible Langevin dynamics. Additional research is required to state and

prove the necessary and sufficient conditions for this framework to hold.

In conclusion, this work opens up avenues for further research in employing information

theoretic arguments to learning in MDPs with model uncertainty. This work is the first
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comprehensive work, to the best of my knowledge, to explicitly model information content

and system dynamics for MDPs. I provide a framework to formulate the optimality criterion

for MDPs with model uncertainty. Hopefully, future work can extend the rich theory of

MDPs to learn and make good decisions in the situations of information uncertainty.
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Appendix 1

MAXIMUM ENTROPY PRINCIPLE: A CONTROL
THEORETIC APPROACH

A classic paper by Saridis (1988) derives a maximum entropy framework for Control

systems. I present this here as it is interesting to see connections without using the definitions

from Thermodynamics.

Consider a generic decision system formulated in a classic control theoretic framework.

Assume that the dynamics of the system are deterministic for simplicity. Then the dynamics

are given by

ẋ(t) = f(x, u, t), x(t0) = x0

and the associated cost function is

V ∗(x0, u, t0) =

∫ T

t0

L(x, u, t)dt; L(x, u, t) > 0.

Here, x(t) ∈ X is a n-dimensional state vector and u(t) : X×T is the m dimensional feedback

control law. The solution is to find a control law uk(x, t) such that the value function V will

take a value K such that Vmin ≤ K <∞.

V ∗(x0, t0|uK(x(t), t) = K

This satisfies the Hamilton-Jacobi-Bellman equation

∂V

∂t
+
∂V T

∂x
f(x, uk, t) + L(x, uk, t) = 0.

In order to formulate the problem in entropy terms we consider the decision-maker’s
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uncertainty of selecting the proper control from the set of admissible controls to satisfy the

value function requirement to equal K (Vmin in the case of optimal control). This may be

expressed as a condition that the expected value of V equals K:

Eu∼p(u)[V
∗(x0, t0;u(x, t)] = K.

The expected value of V is taken over the set of admissible controls U , over which a proba-

bility density p(u) is assumed to express the uncertainty of selecting the proper control. The

corresponding entropy can then be expressed as

H(u, p) = −
∫
U

p(u) ln p(u)du.

According to Jaynes principle (Jaynes, 1957), the least biased estimate possible on the given

information is given by the probability distribution p(u) that maximizes the above entropy

H(u, p). Following the method of Lagrange, define

I = H(u)− µ(E[V ]−K)− λ(

∫
p(u)du− 1).

Using calculus of variation to maximize I with respect to the distribution p(u) yields

ln(p) + 1 + µV + λ = 0.

Therefore,

p(u) = exp−1−λ−µV ∗(x0,u(t),t),

and the entropy with maximum information is given by

H(u) = 1 + λ+ µE[V ∗(x0, u(x), t)].

For optimality, a control policy u is computed that minimizes the above entropy. This is,
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therefore, a max-min problem.

Saridis (1988) generalizes this analysis in the presence of dynamical uncertainty. Consider

that y ∈ Y is the observation on the state x. It is essentially shown that the entropy H(u)

can be decomposed in three parts as

H(u) = H(u|y) +H(y)−H(y|u),

where the associated probabilities are given by

p(u|y) = e−1−λ−µW (u(y),t) (A.1)

p(y) = e−ρ−ν
∫ T
0 ||y−x||

2dt (A.2)

p(y|u) = p(u|y)p(y)/p(u). (A.3)

Here, W (u(y), t) = Ex0,w(t){V ∗(x0, u(x, t), w, ν, t0}, and ρ, ν are appropriate constants for the

entropy estimation of H(y) based on Jayne’s principle.

In case of parametric uncertainty, when

ẋ = f(x, u, λ, w, t)

when y are the observations

H(y) = H(u|y, λ) +H(y|λ) +H(λ)−H(y, λ|u).

An interesting observation is that entropy in a stochastic control system is decoupled into 4

different parts which can be individually computed.
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