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 The human gut microbiome has been of great interest in recent years and is being 

increasingly incorporated into epidemiological research. While early work was primarily 

interested in characterizing the gut microbiota within healthy individuals, studies have gradually 

shifted focus towards identifying associations with disease risk and outcomes. The gut 

microbiome has already been linked to numerous diseases including colorectal cancer and liver 

disease, as well as allergic and immune diseases. Population-based approaches to studying the 

microbiome present both challenges and opportunities, including the need to better understand 

reliability of microbiome samples and the role of microbially-derived metabolites in disease risk. 

 We used data from the Multiethnic Cohort study (MEC) to address two primary aims: 1) 

investigate the temporal variability and stability of the fecal microbiome, and 2) identify 

associations of plasma trimethylamine N-oxide (TMAO) and precursors with biomarkers of 

inflammation and cardiometabolic risk and the fecal microbiome. Temporal variation of the fecal 

microbiome was assessed within 50 MEC participants who each provided 5 stool samples over 



 

 

a 2-year period. We calculated the reliability of the overall fecal microbial community using 

permutational multivariate analysis of variance (PERMANOVA). Taxa and diversity were 

measured by intraclass correlation coefficients (ICCs). Analyses were additionally stratified 

based on antibiotics use during the study period. For our second aim, we calculated 

associations between TMAO and its precursors (choline, carnitine, and betaine) with 

inflammatory and cardiometabolic risk biomarkers using multivariable regression. Associations 

between TMAO and the fecal microbiome were also assessed by PERMANOVA and LASSO 

regression of standardized, centered log-ratio transformed genera. 

 For our first aim, we found the fecal microbiome to be stable over the two-year study 

period, with inter-individual variation as the largest source of variation. The majority of 

microbiome measures were reliable (ICCs>0.40), although genera with very low abundances 

tended to be variable. Changes in abundances, rather than the complete loss or gain of taxa, 

were the main source of variation within individuals. Reliability was lower for participants who 

used antibiotics, although this was largely driven by samples with reported antibiotics use in the 

month prior to collection. 

 In our second aim, we identified several associations between TMAO and its precursors 

with disease biomarkers. In particular, choline indicated risk to adverse health outcomes, while 

TMAO, choline, carnitine, and betaine were all associated with insulin resistance. Although 

TMAO explained a small percentage of the overall fecal microbiome variation (<1%), it was 

associated with several genus-level taxa, including Desulfovibrio and two within the family 

Lachnospiraceae, all of which contain bacteria capable of metabolizing choline into 

trimethylamine. 

In summary, we showed the fecal microbiome to be reliable for use in a population-

based study, and when incorporating the fecal microbiome in an epidemiological study, found 

TMAO to be associated with choline-metabolizing bacteria as well as associations between 

TMAO and its precursors with inflammatory and cardiometabolic biomarkers.   
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CHAPTER 1 

Introduction 

 

Population-based studies of the human microbiome 

 Using a population approach to study the human microbiome is still a relatively new area 

of research, with landmark papers by the Human Microbiome Project (HMP) (1) and MetaHIT 

consortium (2) published less than a decade ago. Although these projects had relatively small 

sample sizes compared to more traditional epidemiological studies (242 in HMP and 124 in 

MetaHIT), the decreasing cost of sequencing and a greater recognition of the role of the 

microbiome in disease risk have led to the establishment of studies with increasingly larger 

numbers of participants. For example, Goodrich et al. sequenced >1,000 fecal samples from the 

TwinsUK registry population in a study of the gut microbiome and host genetics (3). A recently 

published report included data from 1,106 participants in the Belgian Flemish Gut Flora Project, 

which was validated in a separate Dutch cohort of 1,135 participants (4). 

 Many important concerns related to epidemiology will need to be addressed in the 

creation and analysis of these larger population-based studies of the human microbiome. Study 

design issues such as calculation of sample size and appropriate metadata collection are 

important and challenging given the multiple methods of characterizing the microbiome. As with 

population-based studies using other omics platforms, analysis of microbiome data necessitates 

combining the use of statistical tools that have been traditionally used in epidemiological 

research with more advanced tools such as machine learning algorithms. Approaches are also 

being designed for microbiome data specifically that take into account the inherent phylogenetic 

relationship and data structure. 

Quality control of microbiome samples 
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There are many temporal and technical sources of variation that can impact microbiome 

samples. Gut microbiome studies often allow for participants to collect stool samples in their 

own home, thus requiring temporary storage in warmer temperatures (e.g., home freezer and 

during shipment to study center) than the −80°C typically used for long-term storage. While the 

effect of storage temperature on collected samples has been assessed in several studies (5-7), 

how shipping and time between various laboratory processing steps influence microbial 

community structure is less clear. Most studies addressing this issue keep samples at room 

temperature or on ice in the laboratory to simulate shipping conditions, although this may not 

capture fluctuations (e.g. melting) that can occur during transport. Storage time has also been 

investigated in certain studies (8-10). Many of the quality-control studies that have been 

published focus on overall community changes, an approach that draws limited conclusions on 

individual taxa, especially those of lower abundance. There is however, an increasing 

recognition of the impact of technical variation in microbiome research, and larger efforts such 

as those by the Microbiome Quality Control (MBQC) project are underway to better quantify 

these effects as a way to inform investigators developing protocols for studies incorporating 

microbiome data (11). 

Another source of bias in microbiome research is use of internal standards. The benefit 

of incorporating internal standards during sequencing has been previously shown (12, 13). A 

study found that processing both positive and negative control samples resulted in many 

spurious taxa, the presence of which were mainly attributed to wet-lab protocol and 

contamination from other samples (14). Given the large number of species present in stool 

samples, determining what should be included in controls is important in order to appropriately 

normalize counts and identify spurious bacteria.  

Temporal variation of the gut microbiome 
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 Some studies have assessed the temporal variation of the microbiome in the gut and 

other anatomical sites, although these have tended to have small sample sizes, variable 

sampling periods, or were conducted for shorter periods of time. Costello et al. collected 

samples from multiple body sites including the gut, mouth, nares, hair, and skin both one day 

and 3 months apart (15), finding significantly less variation within individuals than between 

individuals, and greater variation over 3 months than 24 hours. Gut and skin exhibited greater 

variability across participants than oral samples. Several other studies have also shown there to 

be greater variation between individuals than within individuals over time (16, 17). Skin has also 

been found to be more variable in terms of the number of different taxa present when compared 

to other body habitats (18). Although microbial communities as a whole have been found to be 

stable over time, specific taxa may have more temporal variability. In a study of 37 healthy 

adults, 60% of bacterial strains remained after 5 years, while extrapolated data indicated that a 

majority of strains would be expected to remain after several decades (19). 

 Additional studies are important for measures of the microbiome obtained from other 

sequencing platforms. Mehta et al. analyzed metagenomic and metatranscriptomic sequence 

data from stool samples of 308 men within the Health Professionals Follow-up Study, finding 

relatively higher levels of inter-individual variation for taxonomic and functional measures, 

whereas within and between-individual variation for metatranscriptomic profiles were much 

more similar (20). Only 0.79% of transcripts had intraclass correlation coefficients greater than 

0.40 in that study, suggesting metatranscriptomic profiles to be much more dynamic. 

Trimethylamine N-oxide and disease risk 

Gut microbes produce a wide range of compounds through the metabolism of dietary 

components. Among the most studied are short chain fatty acids (SCFAs), which are generated 

from fermentation of dietary fiber and serve important functions, including as a major energy 

source for colonocytes and involvement in regulating many pathways related to energy 
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metabolism (21). The gut microbiota can synthesize various other beneficial compounds 

including vitamins and essential amino acids, some of which can only be produced by bacteria 

and archaea (22-24).  

However, the gut microbiome can also generate compounds that have been proposed to 

have harmful effects, including trimethylamine N-oxide (TMAO), which has recently been 

implicated in several diseases, most notably through a series of cardiovascular disease (CVD) 

studies out of Cleveland Clinic (Cleveland, OH). In a cohort study of adults undergoing elective 

diagnostic cardiac catheterization, those in the highest quartile of plasma TMAO concentration 

had significantly increased risk of developing a major adverse cardiovascular event (myocardial 

infarction, death, or stroke) over three years compared to those in the lowest quartile (adjusted 

HR=1.43, 95% CI: 1.05-1.94) (25). TMAO was also prognostic in subgroups with lower risk of 

major adverse cardiovascular events (e.g. no hypertension, no history of coronary artery 

disease, diabetes mellitus) (25, 26). Dietary choline supplementation of Apolipoprotein E 

knockout (ApoE-/-) mice led to increased TMAO levels and increased levels of pro-atherogenic 

markers including foam cell formation and scavenger CD36 and SR-A1 surface protein levels in 

macrophages (27). Evidence of TMAO as the causative agent was strengthened by the lack of a 

proatherogenic effect in mice on a similar diet given broad-spectrum antibiotics (27). Dietary 

supplementation of ApoE-/- mice with L-carnitine led to increased TMAO and atherosclerotic 

plaque, inhibition of reverse cholesterol transport, and reduced expression of bile acid transport 

genes in the liver (28). 

Subsequent studies have found relationships between TMAO and several other chronic 

diseases. Plasma TMAO was associated with rectal cancer (OR=3.38, 95% CI: 1.25-9.16) and 

overall colorectal cancer among women with below median plasma levels of vitamin B12 

(OR=2.44, 95% CI: 1.59-3.75) in a nested case-control study within the Women’s Health 

Initiative (29). In a prospective metabolomic analysis, TMAO was elevated in prostate cancer 
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cases compared to matched controls (OR=1.36, 95% CI: 1.02-1.81) (30). Plasma TMAO 

showed a linear dose-response relationship with type 2 diabetes in a case-control study based 

in China, with more than two times the odds of diabetes (OR=2.55, 95% CI: 1.99-3.28) for those 

in the fourth quartile of TMAO compared to the first quartile (31). Higher TMAO concentrations 

have also been found to be associated with heart failure and kidney diseases (32-35).  

Potential role of TMAO in systemic inflammation and cardiometabolic risk 

Potential mechanisms of action of TMAO in relation to diseases besides CVD are 

unclear. Given the central role of inflammation in all phases of the atherosclerotic process (36) 

and its association with many chronic diseases, TMAO has been hypothesized to influence 

disease risk through inflammation-related pathways. Many of the human studies of TMAO and 

inflammation to date have been limited by small numbers or the study of unhealthy individuals, 

and have shown mixed results. Consumption of eggs, a major source of phosphatidylcholine, 

increased TMAO concentrations but did not change CRP levels in a dose-response study of six 

healthy individuals (37) TMAO was also not associated with CRP in observational studies of 

patients with heart failure (33) or chronic kidney disease (CKD) (35) but was inversely 

associated in hemodialysis patients (38). Mice given TMAO had increased expression of the 

pro-inflammatory cytokine MCP-1 and decreased expression of the anti-inflammatory cytokine 

IL-10 in adipose tissue, suggesting TMAO may influence inflammatory biomarkers other than 

CRP (39). This is supported in a recent study of healthy adults where TMAO was associated 

with higher concentrations of TNF-α and soluble TNF receptors (40). Another study found that 

treatment of human aortic endothelial cells and human vascular smooth muscle cells with 

TMAO increased expression of several inflammatory biomarkers, although pretreatment of 

these cells with an NF-κB inhibitor was able to block the TMAO-induced expression (41). 

Animal studies suggest a role of TMAO in diabetes and insulin resistance, as 

supplementing mice with TMAO increased fasting insulin levels and impaired glucose tolerance 
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(39) while mice with impaired growth hormone receptor signaling produced higher 

concentrations of TMA and TMAO (42). Additionally, insulin has been shown to suppress FMO3 

activity, and knockdown of FMO3 led to the suppression of FoxO1 and improved glucose 

tolerance in insulin-resistant mice (43). There is also growing evidence in population-based 

studies, as Shan et al. (31) recently identified a positive association between TMAO and type 2 

diabetes in a case-control study.  

There is also epidemiological evidence that choline and betaine contribute to 

cardiometabolic risk. Konstantinova and colleagues reported that an unfavorable cardiovascular 

risk profile was associated with higher levels of plasma choline and lower levels of plasma 

betaine (44). Similar results were found in a study of older US adults (45). A third study also had 

similar results for betaine, which was negatively associated with BMI, non-high-density 

lipoprotein cholesterol, and triglycerides (46). Complementary studies of TMAO and 

cardiometabolic biomarkers would be useful in better understanding its potential disease 

mechanisms and for helping to shed light on previously shown associations with cardiovascular 

disease in particular.  

Bacteria involved in TMAO formation 

TMAO is formed by a two-step process in humans. Gut bacteria metabolize dietary 

quaternary ammonium compounds (e.g. choline, carnitine, and betaine) to trimethylamine 

(TMA), which is rapidly oxidized by human hepatic enzymes to form TMAO (47, 48). Early 

studies of microbial TMA formation were conducted using culture-based techniques and often 

tested a single species or a group of similar species at a time. Several bacteria have been found 

to produce TMA on a choline-based medium, including Streptococcus sanguinis, Escheria coli, 

Aerobacter aerogenes, Desulfovibrio desulfuricans, Proteus rettgeri, and Shigella alkalescens 

(49, 50). The bacterial species Serratia marcescens and Acinetobacter calcoaceticus can 

produce TMA from carnitine and γ-butyrobetaine (51, 52). Administration of a broad-spectrum 
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antibiotic in mice led to near complete suppression of detectable TMAO after a high choline or 

L-carnitine diet (27, 28), further highlighting the importance of microbes in this process. One 

16S rRNA-based analysis of human microbiota found associations between several microbial 

groups and TMAO concentrations, but only included genus-level comparisons and 53 

participants (28). Another study individually inoculated 79 human gut isolates in a diluted gut 

medium with choline, identifying 8 species (Anaerococcus hydrogenalis, Clostridium 

asparagiforme, Clostridium hathewayi, Clostridium sporogenes, Escherichia fergusonii, Proteus 

penneri, Providencia rettgeri, and Edwardsiella tarda) that were able to produce TMA, all of 

which belonged to the phyla Firmicutes and Proteobacteria (53). Colonization of germ free mice 

with these bacteria also resulted in detectable TMAO concentrations in serum. 

Microbial functional genes involved in TMAO formation 

Although it is known that TMA is microbially produced by cleavage of the C-N bond in its 

precursors, the microbial genetic and biochemical mechanisms involved have only been 

recently investigated using bioinformatics techniques. These studies have typically searched 

within TMA-producing bacteria either for homologs of genes involved in metabolism of 

structurally related compounds (54) or genes neighboring those involved in metabolism of TMA 

precursors (55). To date, two gene clusters have been identified. The choline utilization (cut) 

gene cluster in Desulfovibrio desulfuricans encodes a glycyl radical enzyme (CutC) and a glycyl 

radical protein (CutD). Another gene cluster in Acinetobacter baumannii encodes a two-

component Rieske-type oxygenase/reductase (cntA, cntB) that catabolizes choline and 

carnitine, respectively (54, 55). Mutagenesis of either or both genes in these clusters greatly 

reduced TMA formation. Microbes without these genes have been found to be able to produce 

TMA, suggesting other genes may be involved (53). 

Subsequent studies have used bioinformatics approaches to identify bacteria that 

possess these enzymes (i.e. have the potential to form TMA) by searching through whole 
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metagenomics shotgun sequencing data. Bacteria identified through these methods appear to 

be restricted to the phyla Actinobacteri, Firmicutes, and Proteobacteria (56). Although TMA-

forming bacteria are present in fecal samples, they represent a small percentage of the overall 

microbial community. The cut gene cluster also appears to be more prevalence than the cnt 

cluster (56). 

Dissertation aims 

In this dissertation, we used data from the Multiethnic Cohort study (MEC) to address 

two aims: 1) investigate the temporal variability and stability of the fecal microbiome, and 2) 

identify associations of plasma TMAO and its precursors with biomarkers of inflammation and 

cardiometabolic risk to inform our understanding of the role of the fecal microbiome in 

metabolism. The results from testing these aims will help provide guidance in developing 

sample collection protocols for longitudinal microbiome research, as well as a better 

understanding of the gut microbiome’s role in disease risk. 
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CHAPTER 2 

Temporal variability and stability of the fecal microbiome: the Multiethnic  

Cohort Study 

 

ABSTRACT 

Background: Measurement reliability and biological stability need to be considered when 

developing sampling protocols for population-based fecal microbiome studies. 

Methods: Stool samples were collected biannually over a two-year period and sequenced for 

the V1-V3 region of the 16S rRNA gene in 50 participants from the Multiethnic Cohort Study. 

We evaluated the temporal stability of the fecal microbiome on a community level with 

permutational multivariate analysis of variance (PERMANOVA), as well as on taxa and diversity 

measures with intraclass correlation coefficients. 

Results: Inter-individual differences were the predominant source of fecal microbiome variation, 

and variation within individual was driven more by changing abundances than the complete loss 

or introduction of taxa. Phyla and diversity measures were reliable over the two years. Most 

genera were stable over time, although those with low abundances tended to be more dynamic. 

Reliability was lower among participants who used antibiotics, with the greatest difference seen 

in samples taken within one month of reported use. 

Conclusions: The fecal microbiome as a whole is stable over a two-year period, although 

certain taxa may exhibit more temporal variability.  

Impact: When designing large epidemiologic studies, a single sample is sufficient to capture the 

majority of the variation in the fecal microbiome from 16S rRNA gene sequencing, while multiple 

samples may be needed for rare or less abundant taxa. 
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Introduction 

 In the past decade, the gut microbiome has been of great interest in health research, 

with diseases such as colon cancer (57), inflammatory bowel disease (58), and cardiovascular 

disease (27) already linked to both community-wide shifts and changes in specific bacterial 

taxa. Our ability to identify associations between gut microbes and diseases will be greatly 

improved with the continued establishment of well-powered population-based longitudinal 

studies coupled with the decreasing costs of DNA sequencing. In order to conduct these large-

scale studies, standardized methods that provide reliable estimates need to be implemented. 

Several studies have already investigated technical sources of variability due to different 

aspects of sample collection (59, 60), processing (11, 61), and sequencing (62-64). 

Having reliable estimates that sufficiently capture temporal variation of the gut 

microbiome is also crucial. Microbial communities are complex and constantly changing in 

response to their environment. Factors such as diet (65-68), use of antibiotics and other 

medications (4, 69), and exposure to pathogens (70) can have a pronounced impact on bacteria 

residing in the gut and other anatomical sites. In the context of epidemiologic research, a 

microbiome with dramatic fluctuations over time could require multiple sample collections or 

increased sample sizes for longitudinal studies. Previous studies have evaluated variation of the 

fecal microbiome over time, but have involved small numbers of participants (15, 16), variable 

sampling periods (19), or only Caucasian populations (17), which may limit generalizability. 

Here, we assessed the temporal variability of the fecal microbiome in 50 older adults from a 

multiethnic population with biannual sampling over a two-year period. 

 

Methods 

Study participants 

 The Multiethnic Cohort study (MEC) is a prospective cohort study conducted in Hawaii 

and Los Angeles County that was designed to investigate the association of lifestyle and genetic 
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factors with the incidence of cancer and other chronic diseases. The study design, recruitment, 

and baseline characteristics have been described previously (71). Briefly, 215,251 men and 

women between the ages of 45-75 from primarily five racial/ethnic groups (African-American, 

Japanese-American, Latino, Native Hawaiian, and white) were enrolled into the study from 

1993-1996 by completing a self-administered 26-page mailed questionnaire. Over 1800 of these 

participants (aged 60-77) were recruited in 2013-2017 as part of the MEC Adiposity Phenotype 

Study (APS) to investigate the relationships between the exposome, genome, microbiome, and 

metabolome with body fat distribution. Exclusion criteria for the MEC-APS included reported 

BMI outside the range of 18.5-40 kg/m2; oral or injection antibiotic use in the past 3 months; 

current or recent (<2 years) smoking; flu shot or other vaccinations in the past month; 

substantial weight change (>20 lbs) in the past 6 months; soft or metal implants; ileostomy or 

colectomy; dialysis; insulin or thyroid medication; and any of the following procedures or 

treatments in the past 6 months: chemotherapy, radiation therapy, corticosteroid hormones, 

prescription weight-loss drugs, endoscopy or irrigation of the large intestine. Percent body fat 

was measured by whole-body dual-energy X-ray absorptiometry (DXA) scans (72). Fifty 

individuals were randomly selected from the APS participants to have an equal distribution by 

sex (25 male and 25 female), the five main ethnic groups within the MEC (10 African American, 

10 Japanese American, 10 Native Hawaiian, 10 Latino, and 10 whites), and BMI categories 

(within each sex-ethnic group, one from each of 22-24.9, 25-26.9, 27-29.9, 30-34.9 kg/m2 and 

one either from 18.5-21.9 or 35-40 kg/m2) in which to conduct our longitudinal fecal microbiome 

study. Institutional Review Board approval was obtained from all participating institutions and 

informed written consent was obtained from the study participants. 

 

Sample collection 

 Over a two-year period, each participant was asked to collect a stool sample once every 

six months for a total of five samples. Stool samples were collected at home using a collection 
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tube containing 5 mL RNAlater (Fisher Scientific) and sterile 5 mm glass beads (Ambion) to 

facilitate sample dispersion in RNAlater. Samples were then frozen overnight and either brought 

in or mailed to the study clinic the following morning. Collection materials and procedures have 

been described in detail previously (73). Along with each sample, participants were asked to fill 

out a stool collection questionnaire that included items on collection time, special diets, and 

consumption of probiotic foods in the past six months. The questionnaire also asked whether 

participants were treated with an oral, injection, or IV form of antibiotics in the past six months, 

and the most recent month antibiotics were taken. If, at baseline, the participants reported to 

have received antibiotic therapy during the past six months, collection was deferred by six 

months and the baseline eligibility questionnaire was re-administered. 

 

Sample processing  

Stool samples were shipped on dry ice from study centers in Honolulu, HI and Los 

Angeles, CA to the Fred Hutchinson Cancer Research Center (FHCRC) in Seattle, WA. Stool 

samples collected in RNAlater were thawed and homogenized at 10,000 RPM on ice for 30 

seconds (Omni Tissue Homogenizer, Omni International, GA). Homogenized sample (300 µL) 

was transferred into four FastPrep tubes (MP Biomedical, Santa Ana CA) along with 0.3 g 

zirconium beads (Biospec Products, Bartleville OK) which were previously sterilized in an oven 

(180°C for >2 hours), and stored at -80 °C. For DNA extraction, two FastPrep tubes from each 

sample were thawed on ice. Sterile phosphate buffered saline (300 μL) was added to each of 

the tubes, which were then centrifuged at 14,000 RPM for 10 minutes. The supernatant was 

removed and discarded. Preheated ASL buffer (50 oC; 700 µL; QIAGEN, Germantown MD) was 

added to the pellet in each sample tube. FastPrep tubes were placed in a FastPrep bead beater 

24-5G (MP Biomedical) at 5.5 m/s for 45 seconds, followed by 95°C (Thermomixer, Eppendorf, 

Hauppauge NY) for 15 minutes at 15,000 RPM, and centrifuged for 3 minutes at 15,000 RPM. 

520 μL of the supernatant was placed in a 1.5 mL tube containing an InhibitEX tablet (QIAGEN). 
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Eppendorf tubes were centrifuged for 3 minutes at 15,000 RPM. The remaining DNA extraction 

procedures followed the standard QIAcube protocol for human stool (Qiagen). Final elution of 

DNA was performed with 200 μL elution buffer (AE buffer; QIAGEN). DNA concentrations and 

purity were determined using the NanoDrop 8000 Spectophotometer (ThermoFisher Scientific, 

Waltham, MA) and gel electrophoresis. Working stocks were diluted in AE buffer (QIAGEN) 

from genomic DNA and samples were stored at -20°C until shipped for sequencing.  

Samples for sequencing were prepared using a working stock at final concentration of 

20 ng/µL. Samples from the same participant were processed together in the same batch. FHC 

samples were used to assess variation in library preparation and sequencing batches.  FHC 

samples were prepared by pooling stool from 6 participants outside the time-series study who 

had not used antibiotic in the past three months. From each participant, we collected five tubes 

of stool, with each tube containing 5 mL RNAlater and two scoops of stool that were stored at -

80°C.  All five tubes from each participant were thawed on ice, briefly homogenized individually, 

and then all combined into one container. Homogenized stools (400-500 μL) were distributed 

into multiple aliquots in FastPrep tubes and stored at -80°C. To assess DNA extraction, we used 

duplicate stool samples from three individuals outside of the time-series study who had not used 

antibiotics in the past three months. Two stool samples per individual were collected in RNAlater 

and frozen at -80 oC for one week. Samples were thawed on ice, homogenized and extracted 

using the protocol outlined above. Intraclass correlation coefficients (ICCs) for extraction 

duplicates were ≥0.93 for alpha diversity measures, ≥0.99 for the first PCoA axis for unweighted 

and weighted UniFrac, and ≥0.97 for the four most abundant phyla.  

For paired-end sequencing of the V1-V3 region, the 27F mod forward PCR primer 

sequence was 5’-AGRGTTNGATCMTGGCTYAG-3’. The 519R reverse PCR primer sequence 

was 5’- GTNTTACNGCGGCKGCTG-3’. A 25-cycle PCR was performed using the HotStarTaq 

Plus Master Mix Kit (Qiagen, USA) under the following conditions: 94°C for 3 minutes, followed 

by 28 cycles of 94°C for 30 seconds, 53°C for 40 seconds, and 72°C for 1 minute, after which a 
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final elongation step at 72°C for 5 minutes was performed. After amplification, PCR products 

were checked in 2% agarose gel to determine the success of amplification and the relative 

intensity of bands. Multiple PCR products were pooled together in equal proportions based on 

their molecular weight and DNA concentrations. Pooled samples were purified using calibrated 

Ampure XP beads (Beckman Coulter, USA). The pooled and purified PCR products were used 

to prepare the Illumina DNA library using a ligation process (TruSeq Nano DNA LT, QIAGEN) 

which included Illumina adapters, pads, linkers and an 8 base pair (bp) barcode index. 

Sequencing was performed on the MiSeq using MiSeq Reagent Kit v3 following the 

manufacturer’s guidelines to obtain 2x300 bp paired-end reads (Illumina, San Diego, CA). 

FastQ files were exported and securely transferred (BaseSpace, Illumina) to FHCRC for 

bioinformatic analysis.  

 

Microbiome bioinformatic data processing 

To classify bacterial taxonomy, sequences were processed using QIIME v.1.8 (74). 

Sequences were joined with the fastq-join method, using min_overlap=15 and 

perc_max_diff=12. Sequences were filtered with split_libraries_fastq.py with q parameter set to 

25, and defaults otherwise. The Nelson two-step method was used for operational taxonomic 

unit (OTU) generation at 97% similarity using the SILVA database (release 111, clustered at the 

97% similarity level) for closed reference OTU picking following the UCLUST algorithm (75). 

The OTU table was filtered using the QIIME script filter_otus_from_otu_table.py with --

min_count_fraction set to 0.00005 as recommended in Navas-Molina et al (76). Additional OTU 

entries were filtered out if they were detected as chimeras using QIIME’s 

identify_chimeric_seqs.py script with the blast_fragments method (77). The sequences were 

classified using the matching SILVA taxonomy for OTUs found in the first step of the Nelson 

method, and MOTHUR’s naive Bayesian Classifier (78, 79) trained against the SILVA database 

(release 111, clustered at the 97% similarity level) for OTUs found in the second step. 
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Sequences were aligned to the SILVA 16S rRNA gene reference alignment (80) using the 

NAST algorithm (81). Sequences that did not align to the appropriate 16S rRNA gene region 

were removed. The phylogenetic tree was constructed following the FastTree method (82). 

Sequence counts for each sample ranging from phylum to genus level were generated without 

rarefaction. Alpha diversity measures [phylogenetic diversity (83), Shannon index (84), Chao1 

index (85)] and beta diversity matrices [unweighted and weighted UniFrac (86, 87)] were 

calculated in QIIME based on the average of 10 sub-samples with rarefaction to 10,000 

sequences per sample. 

 

Statistical analysis 

Differences in fecal microbiota composition were assessed using two phylogenetic beta 

diversity metrics, unweighted UniFrac and weighted UniFrac. Unweighted UniFrac is a 

qualitative measure that captures differences in the presence and absence of OTUs, while 

weighted UniFrac is a quantitative measure that additionally incorporates information on the 

relative abundance of OTUs (87). Principal coordinate analysis (PCoA) plots using the first two 

PCoA axes were generated for both unweighted and weighted UniFrac distances using the 

‘cmdscale’ function in R. The variation in microbial community structure explained by individual, 

time point, sample receipt time, and antibiotic use was determined by PERMANOVA (999 

permutations) for both unweighted and weighted UniFrac distances using the ‘adonis’ function 

from the R package ‘vegan’ (88). Due to the prevalence of use and impact of antibiotics, we 

stratified our analyses based on whether participants reported any antibiotic use during the 2-

year study period. 

To determine whether samples more closely resembled other samples from the same 

individual or samples from different individuals, we matched each non-baseline sample with the 

baseline sample it was most similar to as defined by the shortest distance using unweighted and 
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weighted UniFrac metrics. We determined whether each pair of samples belonged to the same 

individual and then calculated the proportion of pairs that both belonged to the same person. 

 Taxon abundances are often normalized by converting raw counts into relative 

abundances per sample. Although this addresses the issue of varying sequencing depth, the 

subsequent data are constrained to a simplex due to the unit-sum constraint and, while useful 

for characterization, may not be appropriate for use with standard statistical approaches. Here, 

we applied the interquartile log-ratio transformation (IQLR) for all taxa abundances, which 

allows for analysis of compositional data by calculating log-ratios of abundances and has been 

shown to be effective in producing approximately multivariate normal data (89, 90).  

We used ICCs to assess the reliability of several commonly used microbiome measures, 

including the four most abundant phyla (Firmicutes, Bacteroidetes, Proteobacteria, 

Actinobacteria), the three alpha diversity measures described above, and three beta diversity 

measures (first PCoA axis for unweighted UniFrac, weighted UniFrac, Bray-Curtis, and 

Jaccard). ICCs were calculated by first fitting a linear mixed effects model with a random effect 

for participant using the ‘lmer’ function in the R package lme4 (91), and then dividing the 

between-individual variation by the total variation from the model using the ‘icc’ function in the R 

package sjstats. To assess the reliability of genera, we computed ICCs for abundances as well 

as presence/absence. ICCs for abundances were calculated using the approach described 

above. ICCs for presence/absence were calculated by first converting the genus abundance 

table to a presence/absence table by replacing all counts greater than 0 with 1. Any genus that 

was present in every sample was excluded as the ICC would be undefined due to no variation. 

Then, a generalized linear mixed effects model with a binomial distribution and a random effect 

for participant was fitted using the ‘glmer’ function in lme4. ICCs were then computed using the 

‘icc’ function in sjstats. For all ICC measures, reliability was considered excellent for ICC≥0.75, 

good for 0.74≥ICC≥0.60, fair for 0.59≥ICC≥0.40, and poor for ICC≤0.39 (92). 
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Next, we assessed whether one sample is sufficient or multiple samples over time are 

necessary when using the fecal microbiome in an association analysis with a health-related 

outcome. Since multiple studies have aimed to link the fecal microbiome with obesity (93-95), 

we selected baseline percent body fat as a benchmark for assessing stability of the association 

over time. The variation in fecal microbiome composition explained by baseline percent body fat 

was calculated using PERMANOVA R2 at baseline, as well as with the addition of subsequent 

samples (e.g. including baseline and the 6-month sample) using unweighted and weighted 

UniFrac to examine differences in the association when incorporating multiple time points. 

We also explored recovery of the fecal microbiome from antibiotics among participants 

who reported antibiotic use during the two-year study period. Participants were excluded from 

this analysis if they did not provide the last date of antibiotic use, or had a baseline sample that 

failed laboratory quality control. We assessed recovery in samples that were taken after the first 

reported use of antibiotics only (i.e. samples were not included if they were collected after two or 

more courses of antibiotics), and categorized them based on time between last antibiotic use 

and date of sample collection (0-1 months, 1-3 months, 3-6 months, 6-12 months, 12-24 

months). Percent change in alpha diversity (Shannon index and phylogenetic diversity) was 

calculated by dividing the difference in diversity between a sample and the baseline sample by 

the diversity of the baseline sample, and multiplying by 100. We also assessed changes in beta 

diversity by using unweighted and weighted UniFrac distances between each sample and the 

baseline sample corresponding to the same individual. Differences between the six-month and 

baseline samples for those not reporting antibiotic use were also included as a comparison. 

Changes in alpha diversity for each time interval was assessed using a one-sample t-test for a 

mean of zero. All analyses were conducted in R version 3.4.3. 

 

Results 

Participant characteristics 
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Participants (n=50) had a mean ± SD age of 68.6 ± 2.7 years, and were equally 

distributed by sex and the five race-ethnic groups of the MEC (Table 1) in accordance with our 

recruitment strategy. 23 (46%) participants reported using antibiotics at least once during the 

study period. Those who took antibiotics were more likely to be male and Latino. Samples were 

collected 186.8 ± 36.0 (mean ± SD) days apart. Alpha diversity and phyla abundances were 

comparable between antibiotics use group (Supplemental Table 1). 

 

Temporal variation of the fecal microbiome  

 In our samples, we identified 10 phyla, 20 classes, 26 orders, 46 families, 93 genera, 

and 1220 OTUs. Three genera were present in every sample (Bacteroides and two belonging to 

Lachnospiraceae). There was 38,768 ± 11,596 (mean ± SD) sequences per sample and an 

average sequence length of 493 bp. ± 5 bp (mean ± SD). From the PCoA plots based on 

unweighted UniFrac, samples from the same individual generally clustered together (Figure 1A-

C), particularly among those who did not take antibiotics (Figure 1A). There was greater overlap 

of samples between individuals when using weighted UniFrac (Figure 1D-F). The majority of 

microbiome variation was due to inter-individual differences (Table 2), accounting for 70% and 

78% of the total unweighted UniFrac variation for those on and not on antibiotics, respectively. 

Inter-individual variation explained slightly less but remained the largest source of variation 

when using weighted UniFrac, accounting for 66% and 70% of the variation for those on and not 

on antibiotics, respectively. Variation was explained minimally by sample time point and days to 

receipt at study center (<1%). Inter-individual differences and antibiotic use were significant 

sources of microbiome variation while sample time point and days to receipt at study center 

were not.  

To assess whether a single sample was representative of an individual’s microbiome 

over time, we matched each non-baseline sample to the baseline sample with the shortest 

UniFrac distance. The majority of non-baseline samples matched to the baseline sample of the 



 

19 
 

same individual when using unweighted UniFrac distances (no antibiotics: 83%; antibiotics: 

72%). Fewer samples matched correctly for weighted UniFrac, with about one-third of samples 

being most similar to the same person’s baseline sample (no antibiotics: 34%; antibiotics: 30%). 

 

Reliability of microbiome measures  

 We next assessed fecal microbiome variability over time using ICCs of taxa and diversity 

measures. Among all participants, the four phyla had fair reliability, with ICCs between 0.56-

0.59 (Table 3). Differences were seen when stratifying by antibiotic use, as ICCs were 

consistently higher among those not taking antibiotics compared to those who did. The majority 

of genera had at least fair reliability. For abundance measures, 79% of genera in the no-

antibiotics group and 74% in the antibiotics group had ICC>0.40 (Figure 2A-C). For 

presence/absence, 86% in the no-antibiotics group and 84% in the antibiotics group had 

ICC>0.40 (Figure 2D-F). Genera with poor reliability were typically those with low abundance or 

low prevalence (Supplemental Table 2). 

 Alpha diversity measures tended to have better reproducibility than individual phyla 

measures in the no-antibiotics group. Phylogenetic diversity had the highest reproducibility, 

followed by Shannon diversity and the Chao1 estimator. The ICCs of all three alpha diversity 

measures were greater in the no-antibiotics group than in the antibiotics group. We also 

assessed beta diversity reproducibility, finding unweighted UniFrac PC1, Bray-Curtis PC1, and 

Jaccard PC1 to have excellent stability over time regardless of antibiotic use, and weighted 

UniFrac PC1 to have good stability over time in both groups (Table 3). 

 

Microbiome-body fat associations 

 To test the effect of variation in the microbiome over time on a relevant health outcome, 

we modeled the microbiome-body fat association starting with the baseline sample, followed by 

the addition of subsequent samples. Percent body fat had a wider range of values in the 
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antibiotics group (11.9%-46.8%) than in the no-antibiotics group (21.4%-50.3%). The variation 

of the fecal microbiome explained by percent body fat did not fluctuate with the addition of 

subsequent samples, and remained relatively stable (Supplemental Table 3) whether using all 

participants (0.029-0.034), only participants not on antibiotics (0.035-0.056), or only participants 

on antibiotics (0.056-0.070) for unweighted UniFrac. Weighted UniFrac measures were slightly 

more variable but still consistent over time.  

 

Recovery from antibiotics use  

We also explored microbiome recovery from antibiotics by comparing post-antibiotic use 

samples to the pre-antibiotic baseline sample among participants who took antibiotics. Although 

none of the time intervals were significantly different from zero for Shannon index (Figure 4A), 

changes in the first month were the most variable. The percent change in phylogenetic diversity 

for samples taken in the first month were significant (Figure 4B). Box plots for beta diversity 

suggested little difference in unweighted UniFrac distance compared to baseline samples 

across time intervals, but differences were larger overall among antibiotic users than 

participants not taking antibiotics (Figure 4C). Recovery over time was more evident for 

weighted UniFrac, with distances from baseline after the first month post-antibiotics closely 

resembling those not taking antibiotics (Figure 4D) 

 

Discussion  

Using several approaches, we showed the fecal microbiome as a whole to be relatively 

stable over a two-year period. Samples from the same participant clustered together and an 

association analysis between the overall community structure and baseline body fat showed 

consistent results throughout the study period. Much of the variation was due to changes in taxa 

abundances rather than the complete loss or gain of taxa. Although reliability among 
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participants who reported antibiotic use tended to be lower than among those who did not, the 

largest differences appeared to be among samples taken within a month of antibiotic use. 

As with previous studies (15-17), inter-individual differences were the dominant source 

of variation, as evident in the wide phylum distribution of our samples, with relative abundances 

ranging from 15.8%-89.6% for Firmicutes and 6.7%-67.0% for Bacteroidetes. When matching 

non-baseline samples to the most similar baseline sample, we found that the majority matched 

to the same individual when using unweighted UniFrac, while fewer matched using weighted 

UniFrac, suggesting that changes over time were driven more by changing abundances of taxa 

rather than their presence or absence. Claesson et al. (17) conducted a similar analysis on stool 

samples collected 3 months apart. Although they found less discrepancy between weighted and 

unweighted UniFrac measures compared to our results, there was a similar pattern where fewer 

samples were matched when using weighted UniFrac.  

There is also growing interest in studying the associations of specific taxa with disease, 

such as Fusobacterium and colon cancer (96, 97) or Christensenellaceae and obesity (3). We 

found phyla measures, as well as the majority of genera, to be reliable. Temporal variation was 

more of a concern for genera with very low abundances or prevalence, some of which could be 

taxa that are transient and not representative of an individual’s microbiome over time or those 

that are near the detection limit and are thus not able to be consistently identified. Larger 

sample sizes may be necessary if these are of particular interest to a study. Less abundant taxa 

exhibited lower reproducibility in other methodologic studies as well (60). 

In a set of exploratory analyses, we were able to assess the ability of the fecal 

microbiome to recover from antibiotics. Antibiotic use explained a small but significant 

proportion of the overall fecal microbiome variation. The strongest and most variable effect on 

diversity generally occurred in the weeks following use, with samples more closely resembling 

pre-antibiotic levels in the months that followed. Sampling the fecal microbiome one year (98), 

and even four weeks after antibiotics (99), has shown return in alpha diversity to pre-treatment 
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levels, although recovery varied for different taxa. Similarly, the ELDERMET study reported that 

alpha diversity among those who reported antibiotic use within the past month was not 

significantly different from those who did not (100). However, nine genera were found to be 

different when using 16S rRNA gene sequencing, as were Bifidobacterium levels when 

measured by culture. With frequent sampling, Dethlefsen et al. was able to show that adults 

undergoing courses of ciprofloxacin saw decreases in OTU richness, phylogenetic diversity, and 

Shannon index within 3-4 days of administration (69). Participants began to recover within a 

week after taking the antibiotic, although the time needed to reach a stable level varied among 

participants and alterations in the abundances of certain taxa were apparent. While the gut 

microbial community as a whole may be able to recover from antibiotics, lingering effects on 

specific taxa highlight the need for the development of antibiotics with more targeted effects as 

an alternative to those that act on a broad range of bacteria.  

Antibiotic use has also been associated with disease risk factors, including body weight, 

in animal models and epidemiologic studies, (101). We found that the fecal microbiome 

explained more variation in body fat among individuals who used antibiotics. Assuming that 

antibiotic use captured in our study reflects use before baseline (when percent body fat was 

measured), this finding might suggest a greater contribution by the altered microbial community 

structure to metabolic regulation and energy homeostasis. There is evidence that the type of 

antibiotic may have a different effect on overweight and obesity as well, since a longitudinal 

study by Bailey et al. (102) found an association between early-life exposure to broad-spectrum 

antibiotics with obesity, but not for narrow-spectrum antibiotics.  

Our study design had several strengths. Among studies on temporal variation of the 

fecal microbiome, ours has one of the most ethnically diverse populations to date and one of 

few using elderly participants. We were able to collect samples on a consistent schedule over a 

longer period than other population-based studies, which typically collect samples for only a few 
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months. The retention rate of the 50 enrolled study participants over the two years was also 

very high, with 49 sending all five samples and 1 participant only missing one.  

A limitation of our study was that we were not able to assess other sources of 

microbiome variation, such as travel or recent health, as these were not included in the 

questionnaire that was filled out at each stool collection. Our study also used 16S rRNA gene 

data. Additional studies measuring temporal variation of other aspects of the gut microbiome, 

such as the metagenome and metatranscriptome (20), are crucial. Another limitation was that 

we did not have information on what types of antibiotics were used or reason for use. Antibiotics 

have varying mechanisms of action that include targeting bacterial cell walls or membranes, 

protein synthesis, and DNA or RNA synthesis (103). A two-center randomized controlled trial in 

the United Kingdom and Sweden reported different responses to the Shannon index from four 

different antibiotics, with effects on the gut microbiome ranging from no difference after one 

week to sustained reduction at one year (104). As antibiotics are frequently prescribed for 

treating a variety of infections, as well as for prophylaxis in preventing infections among high-

risk patients, the disease state may also modify the effect of antibiotic treatment. However, the 

temporal trend we saw was comparable to studies conducted in participants who were healthy 

at the time of antibiotic administration (69, 99). 

 In summary, we showed that a single assessment sufficiently captures the majority of 

fecal microbiome measurements in a population-based study, but special consideration should 

be taken with very rare or low abundant taxa. The assessment of methodologic issues, such as 

our test of the reliability of measurements, is an important step in designing robust, effective 

population-based studies to evaluate the role of the fecal microbiome in disease risk. 
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Table 1. Characteristics of MEC study participants by any reported antibiotic use. 

 

 No antibiotic use  
(n=27) 

Antibiotic use 
(n=23) 

Total 
(n=50) 

    
Age, years 68.2 ± 2.9 69.0 ± 2.3 68.6 ± 2.7 
    
Female 15 (55.6) 10 (43.5) 25 (50) 

    
Race/ethnicity    

African American 5 (18.5) 5 (21.7) 10 (20) 
Japanese American 6 (22.2) 4 (17.4) 10 (20) 
Native Hawaiian 7 (25.9) 3 (13.0) 10 (20) 
Latino 3 (11.1) 7 (30.5) 10 (20) 
White 6 (22.2) 4 (17.4) 10 (20) 
    

Education, years 15.0 ± 2.5 13.8 ± 3.4 14.4 ± 3.0 
    
Smoking status    

Never 19 (70.4) 17 (73.9) 36 (72.0) 
Former 8 (29.6) 6 (26.1) 14 (28.0) 
    

Body fat % 33.2 ± 6.8 32.2 ± 9.2 32.8 ± 7.9 

 Mean ± SD for continuous variables and n (%) for categorical variables 
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Table 2. Microbiome variation explained by inter-individual differences, time point of sample, 

days to sample receipt at study clinic, and antibiotic use calculated using a distance-based 

analysis of variance. 

 

 No antibiotic use 
(n=27) 

 Antibiotic use 
(n=23) 

 Total 
(n=50) 

 R2 p  R2 p  R2 p 

Unweighted UNIFRAC         
Individual 0.777 <0.001  0.696 <0.001  0.743 <0.001 
Time point 0.006 0.797  0.008 0.643  0.004 0.424 
Days to receipt 0.007 0.640  0.012 0.180  0.005 0.178 
Antibiotic use       0.017 0.001 

         
Weighted UNIFRAC         

Individual 0.701 <0.001  0.655 <0.001  0.687 <0.001 
Time point 0.003 0.909  0.009 0.454  0.004 0.434 
Days to receipt 0.005 0.584  0.009 0.365  0.004 0.445 
Antibiotic use       0.018 0.003 
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Table 3. Temporal reliability of microbiome measures. Intraclass correlation coefficients for 

interquartile log-ratio transformed phyla, alpha diversity, and beta diversity measures. 

 

 No antibiotic use  

(n=27) 

Antibiotic use 

(n=23) 

Total 

(n=50) 

Phylum    

Firmicutes 0.64 0.46 0.57 

Bacteroidetes 0.62 0.59 0.56 

Proteobacteria 0.65 0.44 0.56 

Actinobacteria 0.67 0.49 0.59 

    

Alpha diversity    

Phylogenetic diversity 0.75 0.55 0.66 

Shannon index 0.67 0.46 0.58 

Chao1 0.56 0.45 0.52 

    

Beta diversity    

Unweighted UniFrac PC1 0.93 0.83 0.89 

Weighted UniFrac PC1 0.65 0.66 0.64 

Bray-Curtis PC1 0.95 0.88 0.90 

Jaccard PC1 0.95 0.90 0.90 
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Figure legends 

 

Figure 1. Variability of the gut microbiome. Principal coordinate plots based on unweighted 

UniFrac for no antibiotic use (A), antibiotic use (B), all participants (C), and weighted UniFrac for 

no antibiotic use (D), antibiotic use (E), all participants (F). Smaller dots indicate samples and 

are connected to larger dots which represent the mean PC1 and PC2 values for each individual. 

Dashed lines are connected to samples with reported antibiotic use. 

 

Figure 2. Reliability of genera. Intraclass correlations (ICC) genera were calculated for IQLR-

transformed abundances for no antibiotic use (A), antibiotic use (B), all participants (C), and 

presence/absence for no antibiotic use (D), antibiotic use (E), all participants (F) and are plotted 

against mean abundance. Dotted line indicates ICC of 0.40.  

 

Figure 3. Microbiome recovery from antibiotics. Recovery was assessed among participants 

reporting use of antibiotics during the two years of collection. Percent change in Shannon index 

(A) and phylogenetic diversity (B) was calculated relative to the baseline sample and 

categorized on time since last reported antibiotic use. Changes in alpha diversity for each time 

interval were assessed using a one-sample t-test for a mean of zero (*p<0.05). Distances from 

baseline were computed for unweighted UniFrac (C) and weighted UniFrac (D) measures. 

Comparison of six-month to baseline samples among participants not taking antibiotics are also 

included. 
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Figure 1 
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Figure 2 
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 Figure 3 
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Supplemental Table 1. Phyla relative abundances and alpha diversity measures for samples 

collected at baseline, by any reported antibiotic use. 

 

 No antibiotic use 
(n=27) 

Antibiotic use 
(n=23) 

Total 
(n=50) 

Phylum    
Firmicutes 0.55 ± 0.13 0.59 ± 0.14 0.57 ± 0.14 
Bacteroidetes 0.38 ± 0.11 0.34 ± 0.13 0.36 ± 0.12 
Proteobacteria 0.03 ± 0.08 0.02 ± 0.02 0.02 ± 0.06 
Actinobacteria 0.01 ± 0.02 0.01 ± 0.01 0.01 ± 0.01 

    
Alpha diversity    

Phylogenetic diversity 10.27 ± 2.03 11.03 ± 1.28 10.62 ± 1.75 
Shannon index 5.72 ± 0.82 5.82 ± 0.53 5.77 ± 0.70 
Chao1 187.41 ± 47.88 197.84 ± 33.50 192.23 ± 41.80 
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Supplemental Table 2. Intraclass correlation coefficients and mean IQLR-transformed abundances for genera among all participants. 

 

Phylum__Class__Order__Family__Genus 
Mean 
IQLR 

abundance 
ICC  

Bacteroidetes__Bacteroidia__Bacteroidales__Prevotellaceae__uncultured -1.40 0.97 

Fusobacteria__Fusobacteriales__CFT112H7__uncultured_bacterium__Other -1.65 0.96 

Proteobacteria__Gammaproteobacteria__Aeromonadales__Succinivibrionaceae__Succinivibrio -1.70 0.96 

Bacteroidetes__Bacteroidia__Bacteroidales__S24.7__uncultured_bacterium -1.76 0.91 

Bacteroidetes__Bacteroidia__Bacteroidales__Rikenellaceae__RC9_gut_group -1.73 0.88 

Firmicutes__Erysipelotrichi__Erysipelotrichales__Erysipelotrichaceae__Other -1.51 0.87 

Firmicutes__Erysipelotrichi__Erysipelotrichales__Erysipelotrichaceae__Catenibacterium -1.47 0.83 

Bacteroidetes__Bacteroidia__Bacteroidales__Bacteroidaceae__Bacteroides 6.49 0.82 

Bacteroidetes__Bacteroidia__Bacteroidales__Porphyromonadaceae__Barnesiella -0.64 0.81 

Bacteroidetes__Bacteroidia__Bacteroidales__Prevotellaceae__Other -0.78 0.81 

Bacteroidetes__Bacteroidia__Bacteroidales__Prevotellaceae__Prevotella 1.79 0.78 

Firmicutes__Clostridia__Clostridiales__Ruminococcaceae__Subdoligranulum 1.97 0.75 

Firmicutes__Clostridia__Clostridiales__Veillonellaceae__Dialister -1.14 0.74 

Bacteroidetes__Bacteroidia__Bacteroidales__Rikenellaceae__Alistipes 2.16 0.73 

Proteobacteria__Betaproteobacteria__Burkholderiales__Alcaligenaceae__Parasutterella 0.41 0.73 

Bacteroidetes__Bacteroidia__Bacteroidales__Porphyromonadaceae__Butyricimonas -1.62 0.73 

Bacteroidetes__Bacteroidia__Bacteroidales__Porphyromonadaceae__Odoribacter -0.11 0.72 

Firmicutes__Clostridia__Clostridiales__Veillonellaceae__Phascolarctobacterium 1.97 0.71 

Proteobacteria__Deltaproteobacteria__Desulfovibrionales__Desulfovibrionaceae__Desulfovibrio -1.64 0.71 

Lentisphaerae__Lentisphaeria__Victivallales__Victivallaceae__Victivallis -1.73 0.71 

Firmicutes__Clostridia__Clostridiales__Ruminococcaceae__uncultured 2.66 0.70 

Firmicutes__Clostridia__Clostridiales__Christensenellaceae__uncultured 0.35 0.69 

Tenericutes__Mollicutes__RF9__Other__Other -1.65 0.69 

Firmicutes__Clostridia__Clostridiales__Lachnospiraceae__Anaerosporobacter -1.73 0.69 

Verrucomicrobia__Opitutae__Other__Other__Other -1.62 0.68 
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Bacteroidetes__Other__Other__Other__Other -1.78 0.68 

Bacteroidetes__Bacteroidia__Bacteroidales__Porphyromonadaceae__Parabacteroides 2.15 0.67 

Firmicutes__Clostridia__Clostridiales__Lachnospiraceae__Howardella 0.39 0.67 

Firmicutes__Clostridia__Clostridiales__Ruminococcaceae__Oscillibacter -0.63 0.67 

Firmicutes__Clostridia__Clostridiales__Lachnospiraceae__Blautia 3.97 0.66 

Proteobacteria__Betaproteobacteri__Burkholderiales__Alcaligenaceae__Sutterella 0.10 0.66 

Firmicutes__Clostridia__Clostridiales__Lachnospiraceae__uncultured_bacterium -0.15 0.66 

Bacteroidetes__Bacteroidia__Bacteroidales__Prevotellaceae__Paraprevotella -0.23 0.66 

Firmicutes__Clostridia__Clostridiales__Ruminococcaceae__Flavonifractor -0.44 0.66 

Cyanobacteria__4C0d.2__uncultured_bacterium__Other__Other -1.43 0.66 

Actinobacteria__Coriobacteriia__Coriobacteriales__Coriobacteriaceae__Collinsella 0.96 0.64 

Firmicutes__Clostridia__Clostridiales__Lachnospiraceae__Anaerostipes 3.37 0.63 

Firmicutes__Clostridia__Clostridiales__Veillonellaceae__Acidaminococcus -1.43 0.62 

Firmicutes__Clostridia__Clostridiales__Lachnospiraceae__Dorea 2.65 0.61 

Actinobacteria__Bifidobacteriales__Bifidobacteriaceae__Bifidobacterium__uncultured_bacterium -0.97 0.61 

Firmicutes__Clostridia__Clostridiales__uncultured__Other -1.76 0.61 

Firmicutes__Clostridia__Clostridiales__Ruminococcaceae__Other 3.09 0.60 

Firmicutes__Clostridia__Clostridiales__Peptostreptococcaceae__uncultured -0.31 0.60 

Firmicutes__Clostridia__Clostridiales__Lachnospiraceae__Moryella 1.83 0.59 

Firmicutes__Erysipelotrichi__Erysipelotrichales__Erysipelotrichaceae__uncultured 1.98 0.58 

Firmicutes__Clostridia__Clostridiales__Lachnospiraceae__Coprococcus 1.94 0.58 

Firmicutes__Clostridia__Clostridiales__Eubacteriaceae__Other -1.76 0.58 

Bacteria__Other__Other__Other__Other__Other 1.97 0.57 

Firmicutes__Clostridia__Clostridiales__Ruminococcaceae__Ruminococcus 1.87 0.57 

Firmicutes__Clostridia__Clostridiales__Lachnospiraceae__Roseburia 1.87 0.57 

Actinobacteria__Bifidobacteriales__Bifidobacteriaceae__Bifidobacterium__human_gut_metagenome -0.72 0.57 

Firmicutes__Clostridia__Clostridiales__Ruminococcaceae__Anaerotruncus -0.93 0.57 

Firmicutes__Clostridia__Clostridiales__Lachnospiraceae__Lachnospira 3.18 0.54 

Firmicutes__Clostridia__Clostridiales__Ruminococcaceae__Oscillospira -1.21 0.54 
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Firmicutes__Clostridia__Clostridiales__Clostridiaceae__Clostridium -1.30 0.54 

Firmicutes__Clostridia__Clostridiales__Lachnospiraceae__Other 6.00 0.53 

Bacteroidetes__Bacteroidia__Bacteroidales__Other__Other 1.11 0.53 

Firmicutes__Clostridia__Clostridiales__Lachnospiraceae__Incertae_Sedis 4.56 0.52 

Firmicutes__Clostridia__Clostridiales__Lachnospiraceae__uncultured 2.20 0.52 

Firmicutes__Erysipelotrichi__Erysipelotrichales__Erysipelotrichaceae__Incertae_Sedis 0.56 0.52 

Proteobacteria__Gammaproteobacteria__Other__Other__Other -1.03 0.51 

Actinobacteria__Coriobacteriia__Coriobacteriales__Coriobacteriaceae__uncultured -1.11 0.50 

Proteobacteria__Gammaprotebacteria__oB38__uncultured_bacterium__Other -1.47 0.50 

Firmicutes__Clostridia__Clostridiales__Veillonellaceae__Megasphaera -1.56 0.50 

Firmicutes__Clostridia__Clostridiales__uncultured__uncultured_bacterium -1.71 0.50 

Firmicutes__Clostridia__Clostridiales__Ruminococcaceae__Faecalibacterium 5.30 0.47 

Firmicutes__Clostridia__Clostridiales__Lachnospiraceae__Pseudobutyrivibrio 4.83 0.47 

Proteobacteria__Alphaproteobacteria__Rhodospirillales__Rhodospirillaceae__Thalassospira -0.90 0.47 

Firmicutes__Clostridia__Clostridiales__Veillonellaceae__Megamonas -1.64 0.47 

Firmicutes__Bacilli__Lactobacillales__Streptococcaceae__Streptococcus 0.47 0.46 

Actinobacteria__Bifidobacteriales__Bifidobacteriaceae__Bifidobacterium__Other -0.47 0.46 

Firmicutes__Clostridia__Clostridiales__Other__Other 1.17 0.45 

Firmicutes__Clostridia__Clostridiales__Ruminococcaceae__Incertae_Sedis 1.44 0.44 

Firmicutes__Clostridia__Clostridiales__Ruminococcaceae__Pseudoflavonifractor -0.92 0.42 

Verrucomicrobia__Verrucomicrobiae__Verrucomicrobiales__Verrucomicrobiaceae__Akkermansia 1.05 0.41 

Actinobacteria__Coriobacteriia__Coriobacteriales__Coriobacteriaceae__Adlercreutzia -1.51 0.41 

Tenericutes__Mollicutes__RF9__uncultured_bacterium_adhufec202__Other -1.77 0.39 

Tenericutes__Mollicutes__RF9__uncultured_bacterium__Other -1.43 0.38 

Firmicutes__Clostridia__Clostridiales__Veillonellaceae__Other -0.91 0.37 

Firmicutes__Clostridia__Clostridiales__Lachnospiraceae__Marvinbryantia -1.56 0.36 

Firmicutes__Clostridia__Clostridiales__Veillonellaceae__Veillonella -1.54 0.35 

Proteobacteria__Gammaproteobacteria__Enterobacteriales__Enterobacteriaceae__Enterobacter -1.75 0.17 

Proteobacteria__Alphaproteobacteria__Rhizobiales__Methylobacteriaceae__Methylobacterium -1.83 0.16 
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Bacteroidetes__Bacteroidia__Bacteroidales__ratAN060301C__uncultured_bacterium -1.83 0.15 

Proteobacteria__Gammaproteobacteria__Enterobacteriales__Enterobacteriaceae__Escherichia.Shigella -1.73 0.14 

Firmicutes__Clostridia__Clostridiales__Family_XIII_Incertae_Sedis__Other -1.75 0.11 

Actinobacteria__Propionibacteriales__Propionibacteriaceae__Propionibacterium__uncultured_actinobacterium -1.81 0.09 

Proteobacteria__Betaproteobacteria__Burkholderiales__Burkholderiaceae__Burkholderia -1.82 0.09 

Proteobacteria__Gammaproteobacteria__Pseudomonadales__Moraxellaceae__Moraxella -1.82 0.09 

Proteobacteria__Gammaproteobacteria__Pseudomonadales__Pseudomonadaceae__Pseudomonas -1.75 0.07 

Actinobacteria__Micrococcales__Micrococcaceae__Micrococcus__Other -1.80 0.07 

Firmicutes__Bacilli__Bacillales__Staphylococcaceae__Staphylococcus -1.82 0.07 

Proteobacteria__Alphaproteobacteria__Rhizobiales__Other__Other -1.82 0.05 
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Supplemental Table 3. Gut microbiome-body fat association analysis calculated using 

PERMANOVA with unweighted and weighted UniFrac distance metrics. The variation in gut 

microbiome composition associated with percent body fat was calculated at baseline, followed 

by the addition of subsequent samples. 

 

 Stool Collection Time Points 

 Baseline Baseline+6mo Baseline+6mo+
12mo 

Baseline+6mo+
12mo+18mo 

All samples 

No antibiotic use      
Unweighted R2 0.056 0.043 0.038 0.035 0.035 
Weighted R2 0.045 0.034 0.026 0.028 0.026 

      
Antibiotic use      

Unweighted R2 0.070 0.066 0.060 0.057 0.056 
Weighted R2 0.127 0.101 0.090 0.088 0.092 

      
All participants      

Unweighted R2 0.032 0.034 0.031 0.030 0.029 
Weighted R2 0.053 0.037 0.027 0.024 0.025 
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CHAPTER 3 

Associations of plasma trimethylamine N-oxide and precursors with inflammatory 

and cardiometabolic risk biomarkers and the fecal microbiome in the  

Multiethnic Cohort 

 

Abstract 

Background: Trimethylamine N-oxide (TMAO), a compound derived from diet and metabolism 

by the gut microbiome, has been associated with several chronic diseases, although its disease 

mechanisms and the bacteria involved in its production are not fully known. 

Methods: We assessed relationships between TMAO and its precursors (choline, carnitine, and 

betaine) with inflammatory and cardiometabolic risk biomarkers and the fecal microbiome within 

the Multiethnic Cohort. Plasma concentrations of TMAO and its precursors were measured with 

LC-MS/MS. Biomarkers included inflammatory markers, insulin resistance, HDL and LDL 

cholesterol, triglycerides, and systolic and diastolic blood pressure. Composition of the fecal 

microbiome was evaluated by sequencing the 16S rRNA gene V1-V3 region. Associations 

between TMAO and its precursors with disease biomarkers were assessed by multivariable 

regression, while associations between TMAO and the fecal microbiome were assessed by 

PERMANOVA and LASSO regression. 

Results: Choline was associated with an adverse risk profile while TMAO and its precursors 

were all associated with insulin resistance. TMAO explained a small percentage of overall fecal 

microbiome variation (<1%), but was associated with several genera, including Desulfovibrio 

and ones within the family Lachnospiraceae. 

Conclusions: Plasma TMAO concentrations were associated with choline-metabolizing 

bacteria, and along with its precursors, may contribute to inflammatory and cardiometabolic risk 

pathways. 
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Introduction 

There is an increasing recognition of the role of gut microbiome-derived metabolites in 

disease etiology. The compound trimethylamine N-oxide (TMAO) has been found to be 

associated with several chronic diseases, including cardiovascular disease (CVD) (25), 

colorectal cancer (29), diabetes (26, 31, 105), and chronic kidney disease (35, 106, 107). 

Although earlier work has shown involvement by TMAO in atherogenic processes (47), the 

range of different diseases suggests other mechanisms may be at play. Growing experimental 

evidence in animal models demonstrates a contribution of TMAO to inflammation (41) and 

metabolic dysfunction (39), highlighting the need for additional epidemiological research in this 

area. 

TMAO is obtained from diet, both directly from foods such as fish and shellfish (108), as 

well as through the microbial metabolism of choline, carnitine, and betaine to trimethylamine 

(TMA) (27, 28, 53), which is oxidized to TMAO by hepatic flavin-containing monooxygenases 

(FMO), particularly FMO3 (109). Several bacterial species involved in TMA production have 

been identified by culture-based methods, and include those belonging to the phyla Firmicutes, 

Proteobacteria, and Actinobacteria (50, 51, 53, 110). Newer bioinformatic approaches have 

been utilized to identify bacterial genes involved in these conversions, including the cutC/D and 

cntA/B gene clusters which metabolize choline and carnitine, respectively (54, 55). The ability to 

reduce TMA by other microbes, namely Archaea (111), adds yet another layer of complexity in 

determining circulating TMAO concentrations. While many of these previous studies indicate 

which bacteria have the potential to produce TMA in the gut environment, it is less clear whether 

these will be also associated with TMAO in population-based studies.  

In this study, we used data from the Multiethnic Cohort to address two aims: 1) 

investigate associations between TMAO and its precursors (choline, carnitine, and betaine) with 

inflammatory and cardiometabolic biomarkers to better understand potential disease 
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mechanisms of these compounds, and 2) identify associations between TMAO and the fecal 

microbiome. 

 

Methods 

Study participants 

The Multiethnic Cohort (MEC) is an ongoing prospective cohort study that recruited 

215,251 men and women from Hawaii and Los Angeles, California between 1993 and 1996 

(71). MEC participants were aged 45 to 75 at the time of recruitment and were predominantly 

from five racial-ethnic groups: African American, Japanese American, Latino, Native Hawaiian, 

and white. The current study includes participants from the Adiposity Phenotype Study (APS), a 

sub-study that recruited 1,861 from the MEC to investigate associations between multi-omics 

data and body fat distribution. APS participants were selected as to have a similar distribution of 

men and women across the five racial-ethnic groups, with stratified sampling based on BMI 

categories (18.5-21.9, 22.0-24.9, 25.0-26.9, 27.0-29.9, 35.0-40.0 kg/m2). Additional inclusion 

and exclusion criteria for the APS have been reported in detail previously (72). Notably, 

individuals were excluded for current or recent (<2 years) smoking, insulin or thyroid medication, 

dialysis, serious health conditions, and antibiotics use in the last 3 months, as well as 

colonoscopy, chemotherapy, or radiation therapy in the last 6 months. 

In the current analysis, participants were excluded if they did not have blood samples 

measured for TMAO or biomarkers (n=9). Participants were also excluded (n=136) if they did 

not have information for key variables (aspirin use, diet, percent body fat, and physical activity), 

leaving 1,716 available for the current analysis. Carnitine data were available for 1,434 of these 

participants. 

 

Questionnaires 
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Prior to the clinic visit, participants filled out a mailed questionnaire containing items 

related to demographics, health and medication history, physical activity, and a quantitative food 

frequency questionnaire (FFQ).(112) Metabolic Equivalent of Tasks (METs) were calculated 

based on reported average time spent in light, moderate, and strenuous activity during the past 

year. Questions related to usual eating habits of over 180 food items during the last year were 

included in the FFQ, which has been validated and calibrated against 24-hour dietary recalls 

within the MEC, and incorporates many ethnic-specific foods (112). Participants were asked 

how often they ate each food item (8 possible responses ranging from “never or hardly ever” to 

“2 or more times a day”) and the usual serving size, which was accompanied by pictures of 

three different portion sizes to assist in estimation. Food groups were calculated as grams per 

day based on relevant food items, as well as portions of mixed dishes. The questionnaire was 

filled out by the participant at home and reviewed by study staff during the clinic visit. For the 

current analysis, we included food groups and nutrients that are major sources of TMAO (fish 

and shellfish) and its precursors (red and processed meats, eggs, fiber). 

 

Study clinic visit 

At the study clinic visit, participants had anthropometrics measured, fasting blood 

samples drawn, and underwent dual-energy X-ray absorptiometry (DXA) and magnetic 

resonance imaging (MRI) scanning. Venous blood was collected after an overnight fast (>8 

hours) in two 10 mL heparinized Vacutainer tubes and two 10 mL dry tubes. Fasting blood was 

processed into components within 4 hours of collection and frozen at -80˚C until analysis at the 

University of Hawaii Cancer Center (UHCC) Analytical Biochemistry Shared Resource lab. The 

DXA scan (Hologic Discovery A) was performed to measure total and regional body fat mass 

(113). DXA image files from both study sites were centrally analyzed at the University of 

California, San Francisco to estimate percent body fat. 
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 Systolic (SBP) and diastolic blood pressure (DBP) in the left arm was measured in a 

sitting position after 20 minutes of rest. Trained technicians measured blood pressure in the left 

arm of the participant using a digital monitor (Omron HEM-907XL, Lake Forest, IL). If the first 

two measurements differed by 10 mmHg or more, a third measurement was taken and the 

closest two were averaged. 

 

Blood biomarker analysis 

Serum was analyzed on a Cobas MiraPlus chemistry analyzer (Roche, Indianapolis, IN) 

for glucose using kits from Randox Laboratories (#GL1611) and high-sensitivity C-reactive 

protein (hsCRP), triglycerides (TG) and total high-density lipoprotein cholesterol (HDL-C) were 

measured using kits from Pointe Scientific (C7568, T7532, and H7545).  Low-density lipoprotein 

cholesterol (LDL-C) was derived from total cholesterol and HDL-C among individuals with TG 

below 400 mg/dL using the Friedewald equation (114). Enzyme-linked immunosorbent assays 

(ELISA) were used to measure serum insulin (EMD Millipore EZHI-14K) and plasma 

lipopolysaccharide binding protein (LBP; Cell Sciences CKH113).  The homeostasis model 

assessment estimate for insulin resistance (HOMA-IR) was derived from glucose and insulin 

measurements (115, 116).  Blind duplicate QC samples (10% of study samples) were included 

at random in each batch and yielded coefficients of variation and intra-class correlation 

coefficients (CVs and ICCs) as follows: glucose: 10% and 90%; hsCRP: 55%, 86%; TG: 18%, 

95%; total cholesterol: 14%, 72%; HDL-C: 18%, 80%; insulin: 14%, 96%; and LBP: 18%, 76%. 

 

Plasma choline, betaine, carnitine, and TMAO analysis 

 Plasma choline, betaine, carnitine, and TMAO were analyzed by tandem LCMS 

(Surveyor HPLC coupled to TSQ Quantum™ mass spectrometer, Thermo Scientific Inc., 

Waltham, MA) after electrospray ionization in positive mode using selected reaction monitoring 

modified from published methods (117, 118). Plasma (0.025 mL) was mixed with 0.01 mL of an 
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aqueous internal standard solution consisting of choline-(trimethyl-d9) hydrochloride, betaine-

(trimethyl-d9) hydrochloride, L-carnitine-d3 hydrochloride (all from Sigma, St. Louis, MO) and 

trimethylamine-d9 N-oxide, (Cambridge Isotopes, Tewksbury, MA). Proteins were then 

precipitated by the addition of 0.215 mL acetonitrile. After vortexing for 5 min. and centrifuging 

for 5 min. at 14,000 x g, 0.01 mL of the clear supernatant was injected onto a ZIC-c HILIC 

column (100 x 2.1mm, 3µm, 100A) with a ZIC-c HILIC guard column (20 x 2.1mm; The Nest 

Group, Southborough, MA). The mobile phases consisted of A=MeCN/EtOH/H2O/100mM 

NH4OAc, pH 4.8 (40/6.8/40/13.2; v/v/v/v) and B= MeCN/EtOH/H2O/100mM NH4OAc, pH 4.8 

(80/6.8/12.7/0.5; v/v/v/v). Linear gradient elution was performed at a flow rate of 0.2 mL /min. as 

follows (%A): 0-2.0 min. at 20%, 2.0-5.0 min. to 100%, 5.0-6.0 min. hold at 100%, 6.0-6.1 min. 

linear gradient to 20% and equilibrate at 20% for 5.9 minutes. 

The general MS conditions were as follows: source, ESI; ion polarity, positive; spray 

voltage, 4500 V; sheath and auxiliary and Ion sweep gas, nitrogen; sheath gas pressure, 45 

arbitrary units; auxiliary gas pressure, 5 arbitrary units; ion sweep gas pressure, 0 arbitrary 

units; ion transfer capillary temperature, 350°C; scan type, high resolution selected reaction 

monitoring; collision gas, argon; collision gas pressure, 1.0 mTorr, source CID 5V; scan width, 

0.01u; scan time, 1 s; Q1 peak width was set at 0.7 u full width at half maximum (FWHM) and 

Q3 peak width at 0.70 u FWHM. Mass spectrometric monitoring is started 0.0 minutes after 

sample injection by multiple reaction monitoring using transitions (only ions quantitated on are 

listed, collision energies applied in brackets) for choline from m/z 104.109 to m/z  45.203 

(21eV), 58.186 (33eV), and 60.188 (16eV); for betaine from m/z 118.089 to m/z 42.216 (53eV), 

58.181 (25eV), and 59.186 (18eV); for choline trimethyl-d9 from m/z 113.000 to m/z 49.200 

(35eV), 66.203 (32eV), and 69.235 (17eV); for betaine trimethyl-d9 from m/z 127.000 to m/z 

64.217 (35eV), 66.219 (30eV), and 68.209 (20eV) for trimethylamine N-oxide from m/z 76 to 

m/z 42.276 (42eV), 58.205 (19eV) for trimethylamine N-oxide-d9 from m/z 85.00 to m/z 46.284 

(38eV), 66.228 (19eV), and 68.276 (13eV); for carnitine from m/z 162.098 to m/z 60.176 (16eV), 
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85.086 (20eV), and 103.083 (16eV); and for carnitine-d3 from m/z 165.060 to m/z 61.209 

(40eV), 103.128 (16eV), and 105.154 (18eV). Final concentrations were obtained by external 

calibration. 

 

Microbiome sample collection and processing 

Participants received a stool collection kit during their clinic visit. Stool samples were 

collected at the participants’ home into a vial containing RNAlater and frozen overnight (73). 

Participants were then asked to bring the sample to the UHCC or University of Southern 

California (USC) study center. The UHCC and USC labs stored the samples at -80°C until bulk 

shipments were made every 3 months to the Fred Hutchinson Cancer Research Center (Fred 

Hutch), where they were stored at -80°C until processing. 

Laboratory and bioinformatic processing procedures have been previously described 

(please refer to the Methods section in Chapter 2). Briefly, DNA from stool samples was 

extracted at Fred Hutch, amplified for the V1-V3 region of the 16S rRNA gene, and shipped to 

Research and Testing Laboratory (RTL), LLC (Lubbock, TX) for sequencing. Gut microbial 

composition of stool samples was assessed with 2x300 bp paired-end sequencing on the 

Illumina MiSeq platform. Quality control of sequences and inference of phylogenetic 

relationships were done using Quantitative Insights Into Microbial Ecology (QIIME) v1.8 (74) 

pipelines. All failed sequence reads and low-quality sequence ends were filtered. Chimeric and 

non-bacterial sequences were also removed. Filtered sequences were grouped into Operational 

Taxonomic Units (OTUs) at 97% similarity and aligned for phylogenetic analysis. Alpha and beta 

diversity measures were rarefied to 9,000 sequences per sample. 

 

Real-time PCR quantification of Methanobrevibacter smithii 

 Total bacteria was quantified using TaqMan real-time PCR (Applied Biosystems, 

QuantStudio 5) 8FM (5’-AGAGTTTGATCMTGGCTCAG-3’)-530R primers (5’-
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TTACCGCGGCKGCTGGCAC-3’) and a Bac 338 NED labeled probe (5’-

CCAKACTCCTACGGGAGGCAGCAG-3’) (Applied Biosystems). For quality control purposes, 

we used a standard made of DNA extracted from the following pure cultures: B. fragilis HM-20D 

BEI Resources, B. adolescentis 15703D ATCC, C. difficile BAA-1382D-5 ATCC, V. parvula 

10790D-5 ATCC, and E. coli.  The TaqMan PCR assays were carried out in a total reaction 

volume of 10 μL using 5.0 μL of 2X TaqMan Multiplex Master Mix (Applied Biosystems) 

containing 2μL of templet DNA, 0.025 μM of each probe, and 0.125 μM of each primer. The 

PCR thermal-cycling conditions of the DNA were set at 50 °C for 2 min, 95 °C for 10 min, and 

40 cycles of 95 °C for 15 s and 60 °C for 1 min (119). The archaea Methanobrevibacter smithii 

was measured using PCR primers directed at archaeal 16S rRNA genes [FW 5′-

CCGGGTATCTAATCCGGTTC-3′; and 5′-CTCCCAGGGTAGAGGTGAAA-3′; and FAM labeled 

probe F FAM: 5′-CCGTCAGAATCGTTCCAGTCAG-3′] with the following cycling conditions: 30 

cycles of denaturing at 94 °C for 2 min, annealing at 65 °C for 45 s, and extension at 72 °C for 2 

min. DNA extracted from a pure culture was used to generate standard curves with the same 

primer probe set (Methanobrevibacter smithii, DSM 11975). Data were analyzed using 

QuantStudio software (v1.2.x; Applied Biosystems). M. smithii was expressed as a ratio of total 

bacteria in the sample (120). 

 

Statistical analysis 

 Descriptive statistics of the study population were calculated for each quartile of plasma 

TMAO concentration. Associations of plasma TMAO, choline, carnitine, and betaine with  

LBP, HOMA-IR, HDL cholesterol, LDL cholesterol, triglycerides, SBP, and DBP were 

determined by multivariable linear regression. For CRP, we applied a zero-inflated negative 

binomial (ZINB) regression model using the ‘zeroinfl’ function in the R package pscl (121) due to 

the number of participants with CRP values of 0. Both linear and ZINB regression models were 

adjusted for the following confounding factors selected a priori: age (continuous), sex, race-
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ethnicity (five groups), physical activity (metabolic equivalents; METs), percent body fat 

(continuous), and aspirin use (no, previous, current). TMAO, choline, betaine, and carnitine, as 

well as HOMA-IR and triglyceride concentrations, were log-transformed for all models. 

To identify associations between plasma TMAO and the fecal microbiome, we examined 

microbiome community structure as a whole, as well as at genus-level taxa. Both analyses 

included adjustment of laboratory batch. The variation in the microbiome explained by TMAO 

and its precursors was assessed by PERMANOVA (999 permutations) for both unweighted and 

weighted UniFrac distance measures with the ‘adonis2’ functions in the R package ‘vegan’ 

(122). Marginal effects were calculated with laboratory batch included as a covariate in the 

model using the “margin” option. We used least absolute shrinkage and selection operator 

(LASSO) regression (123) as a method of variable selection to identify genera associated with 

TMAO. Genera were centered log-ratio transformed and standardized, and only those present 

in at least 20% of participants were included in the model. Laboratory batch was included in the 

model by setting the penalty factor argument to 0. The LASSO tuning parameter was chosen by 

10-fold cross-validation.  

We also used linear regression, adjusting for age, sex, race-ethnicity, and percent body 

fat, to assess the relationship of TMAO and choline separately with M. smithii. M. smithii was 

evaluated as a continuous variable and as a binary variable (presence/absence). 

 Statistical tests were two-sided with significance at p<0.05. Adjusted p-values for the 

biomarker analysis were also calculated to correct for the false discovery rate (FDR) by using 

the Benjamini-Hochberg procedure (124). Analyses were conducted in R version 3.4.4. 

 

Results 

Participant characteristics 

 Among the 1716 study participants, those with higher plasma TMAO were more likely to 

be current users of aspirin and have lower physical activity (Table 1). Higher concentrations of 
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choline and carnitine were seen in the upper quartiles of TMAO, with a similar pattern across 

race-ethnic groups (Supplemental Table 1). Dietary intake of fish, shellfish, and processed 

meats, but not eggs, also differed across TMAO quartiles. Fish and shellfish exhibited a 

nonlinear trend, with the lowest intake in the second quartile. Processed meat showed an 

increasing trend, with the highest intake in the fourth quartile. 

 

Associations between TMAO compounds and biomarkers 

 We identified several associations between TMAO, choline, carnitine, and betaine with 

inflammatory and cardiometabolic biomarkers (Table 2). Plasma choline (β=0.23, p=0.03) and 

betaine (β=0.29, p=0.02), but not TMAO or carnitine, were positively associated with CRP, 

whereas only choline was associated with LBP (β=1968.3, p=0.01). All four plasma compounds 

were associated with HOMA-IR, with only betaine having an inverse association (β=-0.32, 

p<0.001). Choline was inversely associated with HDL cholesterol (β=-14.86, p<0.001) and 

positively associated with LDL cholesterol (β=9.86, p=0.049). Choline (β=0.14, p=0.002), 

carnitine (β=0.18, p<0.001), and betaine (β=-0.16, p<0.001) were associated with triglycerides. 

Betaine was inversely associated with systolic (β=-2.68, p=0.04) and diastolic blood pressure 

(β=-2.27, p=0.003), while choline was positively associated with systolic blood pressure 

(β=4.50, p=0.01). A majority of significant associations remained significant after correcting for 

multiple comparisons. Parameter estimates were similar after further adjustment for energy 

intake and dietary intake of seafood and red and processed meat (Supplemental Table 2). 

 

TMAO and the fecal microbiome 

 PERMANOVA analysis showed that TMAO, choline, carnitine, and betaine each 

explained between 0.1-0.3% of the variation in the fecal microbiome (Table 3). TMAO 

(R2=0.0010, p=0.007), choline (R2=0.0010, p=0.0006), and carnitine (R2=0.0018, p=0.002) were 
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significantly associated with the microbiome for unweighted UniFrac, and TMAO (R2=0.0014, 

p=0.038) and carnitine (R2=0.0029, p=0.007) was associated for weighted UniFrac. 

 Out of 104 genera present in the sample of APS participants, 92 were present in at least 

20% of participants. LASSO regression with these genera identified 4 which were positively 

associated with TMAO (Clostridia, Blautia, an uncultured bacterium within 

Peptostreptococcaceae, and Desulfovibrio) and 6 which were inversely associated (Barnesiella, 

an uncultured Peptostreptococcaceae genus, Faecalibacterium, an uncultured Clostridiales 

genus, Halocella, and Clostridium belonging to the order Erysipelotrichales) (Table 4). Two 

genera positively associated with TMAO, belonging to the family Lachnospiraceae and 

Peptostreptococcaceae, were also positively associated with choline (Supplemental Table 3). 

 M. smithii was not associated with TMAO when modeled as a continuous variable 

(Supplemental Table 4), although there was a positive association for presence of M. smithii 

(β=0.071, p=0.043). There was no association between M. smithii and choline. 

 

Discussion 

 In the present study, we identified several associations between TMAO and its 

precursors choline, carnitine, and betaine, with inflammatory and cardiometabolic biomarkers. 

Notably, we found that choline was significantly associated with nearly all markers and indicated 

risk to adverse health outcomes, and that TMAO and its precursors were all associated with 

insulin resistance. We also showed that TMAO and its precursors explained only a small 

proportion of fecal microbiome variation (<1%), although several genera were associated with 

TMAO concentration. 

 While the exact functions of TMAO in the human body have yet to be elucidated, its 

precursors are known to play critical roles in health and function. Carnitine is involved in the 

oxidation of fatty acids (125), while choline is an essential nutrient necessary for production of 

the neurotransmitter acetylcholine, as well as for phospholipids in cell membranes (126). 
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Betaine, which can be obtained directly from diet as well as by metabolism of choline, serves as 

a methyl donor for the conversion of homocysteine to methionine (127). Despite having critical 

roles in metabolic pathways, there is epidemiological evidence that these compounds may also 

contribute to cardiometabolic disease risk. Our results for plasma choline and betaine in 

particular are comparable to previous studies, which have found unfavorable cardiovascular risk 

profiles for higher concentrations of choline and lower concentrations of betaine. Roe et al. 

recently reported levels of plasma choline to be associated with higher homocysteine 

concentrations and body mass index and lower HDL cholesterol, while betaine was associated 

with lower LDL cholesterol and triglycerides, as well as lower odds of diabetes (45). Similar 

patterns have been seen in studies conducted in Norway (44) and New Zealand (46). 

These consistent associations across studies with components of metabolic syndrome, 

along with insulin resistance in our study, suggest a potential role of these compounds in 

diabetes. In fact, both dietary phosphatidylcholine intake and plasma TMAO have been linked to 

significantly increased type 2 diabetes risk in population-based studies (31, 128). There has 

also been support in animal models; Gao and colleagues showed that dietary supplementation 

of mice with TMAO led to impaired glucose tolerance, alterations in hepatic insulin signaling 

pathways, and promotion of adipose tissue inflammation (39). Additionally, insulin suppressed 

expression of FMO3 in vitro, and knockdown of the enzyme in insulin-resistant mice suppressed 

FOXO1, a key transcription factor involved in the regulation of insulin signaling (43). 

Interestingly, we did not find TMAO to be associated with any other disease biomarker, 

even though a variety of studies have linked TMAO with CVD and CVD-related mortality (47). It 

should be noted, however, that many of these studies have been conducted in participants with 

other diseases or patient populations undergoing procedures such as hemodialysis and cardiac 

catheterization. Thus, these associations may in part be influenced by other health outcomes or 

confounding factors. Although our participants were older age, they were relatively healthy with 

no serious health conditions and were not on dialysis or undergoing insulin treatment. Additional 



 

50 
 

studies in healthier populations are needed and may also show divergent results, as was seen 

in a prospective cohort study of healthy adults which did not find associations between TMAO 

and measures of atherosclerosis (129). 

How TMAO is obtained (i.e. directly from food or derived from precursors) could also 

impact these associations. For example, fish is a major source of TMAO even though fish 

consumption has been shown to reduce risk of CVD (130). The potential effects of TMAO on 

cardiometabolic pathways may be counteracted by other compounds present in fish. The dietary 

intake of fish in our study is likely greater than in previous studies that have been primarily in 

white and black populations, given the higher consumption among Japanese-Americans and 

Native Hawaiians (71, 131). We took into account food sources of TMAO by further adjusting for 

these in our model and found similar associations, although this may not have fully captured the 

circulating levels of specific compounds that impact disease risk. 

As gut microbes are necessary for the conversion of choline, carnitine, and betaine into 

TMA (28, 53), we hypothesized that composition of the gut microbiome would be associated 

with TMAO concentrations. We found that TMAO and its precursors explained <1% of overall 

fecal microbiome variation, which may not be surprising given that TMA-producing bacteria 

represent a small component of the gut bacterial community (56). Furthermore, the association 

may be influenced by variation of other factors related to the human conversion of TMA to 

TMAO as well as excretion rates of TMAO. Carnitine actually had the strongest association 

among the four compounds, possibly reflecting meat or protein intake, or overall dietary patterns 

(65, 132). 

We found several genera associated with TMAO using LASSO regression, including 

Desulfovibrio, from which the cut gene cluster was initially discovered.(54) Two genera 

belonging to the family Lachnospiraceae were also positively associated with TMAO in our 

study. Several bacteria in Lachnospiraceae have been identified to possess cutC/D, especially 

those in Clostridium XlVa (56), Lachnospiraceae was also more abundant among high-TMAO 
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producers in a crossover feeding trial of healthy young men (108). None of the genera we 

identified are known to have cntA/B, which may reflect the fact that the gene cluster is less 

prevalent in gut bacteria (53, 56). 

Archaea also play a role in determining TMAO concentrations. Using TMA, members of 

the Methanomassiliicoccales order can produce methane through the trimethylamine 

methyltransferase (mttB) gene (111, 133). This has been shown experimentally, as the strain 

Methanomassiliicoccus luminyensis B10 was able to reduce TMA and H2 for methanogenesis 

(111). Although M. smithii does not possess the mttB gene and thus would not directly impact 

TMA or TMAO concentrations through this pathway, we found that participants with the Archaea 

had increased levels of TMAO. Research in the role of Archaea in disease risk is still in its 

infancy, and additional studies are needed to better understand the role of M. smithii and other 

Archaea in contributing to production of TMAO. 

Our study has several strengths and limitations. First, we had an ethnically diverse and 

relatively healthy sample, whereas many of the TMAO studies to date have been limited to 

white and/or black populations of participants with disease or undergoing various medical 

procedures. Second, we were also able to assess associations between disease biomarkers 

with TMAO, as well as choline, carnitine, and betaine. Third, this is one of few population-based 

studies of TMAO and the gut microbiome, and is the largest to-date. A limitation of our study 

was the cross-sectional design, so we were unable to infer causality between TMAO and its 

precursors with disease risk biomarkers. We also used 16S rRNA gene data, which did not 

allow us to examine associations between TMAO and bacterial functional genes, such as the 

cut and cnt clusters. 

In summary, our findings lend support to a possible role of TMAO and its precursors in 

cardiometabolic risk, as well as associations between TMAO and fecal bacteria. Longitudinal 

studies of TMAO and its precursors in disease risk are needed, along with additional population-

based studies of TMAO and the gut microbiome. 
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Table 1. Characteristics of study participants by quartiles of TMAO 
 

 TMAO Quartile 

 Q1 Q2 Q3 Q4 
 <2.10 µmol/L 2.10-3.05 µmol/L 3.06-4.60 µmol/L >4.60 µmol/L 

N 432 427 431 426 
Age (years) 69.2 ± 2.8 69.0 ± 2.7 69.2 ± 2.8 69.3 ± 2.7 
Female (%) 228 (52.8) 220 (51.5) 208 (48.3) 200 (46.9) 
Race-ethnicity (%)     

African American 72 (16.7) 75 (17.6) 63 (14.6) 65 (15.3) 
Native Hawaiian 71 (16.4) 69 (16.2) 68 (15.8) 73 (17.1) 
Japanese American 126 (29.2) 91 (21.3) 94 (21.8) 118 (27.7) 
Latino 96 (22.2) 85 (19.9) 82 (19.0) 72 (16.9) 
White 67 (15.5) 107 (25.0) 124 (28.8) 98 (23.0) 

Cigarette smoking history (%)     
Former 268 (62.0) 259 (60.7) 258 (59.9) 256 (60.1) 
Never 164 (38.0) 168 (39.3) 173 (40.1) 170 (39.9) 

Physical activity (METs) 1.7 ± 0.3 1.7 ± 0.3 1.6 ± 0.3 1.6 ± 0.3 
Body fat (%) 33.4 ± 7.7 33.4 ± 7.9 33.2 ± 7.6 33.3 ± 7.8 
Aspirin use     

No 264 (61.1) 234 (54.8) 228 (52.9) 204 (47.9) 
Previous 55 (12.7) 54 (12.6) 68 (15.8) 61 (14.3) 
Current 113 (26.2) 139 (32.6) 135 (31.3) 161 (37.8) 

TMAO precursors (µmol/L)     
Choline 11.5 [9.9-13.3] 12.3 [10.6-14.2] 12.8 [10.8-14.9] 13.1 [11.0-15.8] 
Betaine 39.9 [31.7-47.7] 40.3 [33.5-49.2] 41.2 [33.6-51.1] 40.4 [31.4-48.8] 
Carnitine 38.7 [32.7-44.3] 38.7 [32.9-44.0] 39.2 [34.2-45.5] 40.9 [35.6-46.8] 

Total energy (kcal/day) 1675 [1303-2230] 1690 [1221-2170] 1753 [1334-2323] 1719 [1272-2291] 
Dietary intake (g/day)     

Fish 16.7 [7.0-28.6] 15.5 [7.2-27.2] 17.5 [7.5-32.7] 18.8 [10.1-33.4] 
Shellfish 2.0 [0.7-4.1] 1.6 [0.5-3.6] 2.0 [0.6-4.3] 2.1 [0.8-4.9] 
Fish + shellfish 19.0 [8.7-32.0] 17.8 [8.6-30.8] 20.1 [9.0-36.9] 21.5 [12.2-39.0] 
Red meat 22.6 [12.2-39.6] 20.7 [12.4-36.6] 22.3 [11.8-38.7] 23.4 [12.8-39.7] 
Processed meat 11.5 [5.2-21.2] 11.4 [5.5-19.0] 12.1 [5.4-23.3] 13.5 [7.0-24.2] 
Red + processed meat 35.6 [19.1-64.3] 34.3 [19.1-56.3] 35.3 [21.3-60.4] 39.3 [22.4-65.9] 
Eggs 16.4 [9.6-30.2] 15.5 [8.3-27.8] 17.7 [8.7-34.5] 15.8 [9.2-26.6] 
Fiber  19.8 [13.6-28.9] 20.4 [14.1-28.0] 21.3 [14.8-29.3] 19.6 [14.0-28.6] 

Values presented as n(%) for categorical variables and mean ± SD or median [IQR] for 
continuous variables. 
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Table 2. Parameter estimates and p-values for regression of plasma biomarkers on TMAO, choline, carnitine and betaine. 

Associations between TMAO, choline, and betaine with biomarkers were assessed in n=1716 participants, while carnitine and 
biomarker associations were assessed in n=1434 participants. Regression models were adjusted for age (continuous), sex, race-
ethnicity (five groups), physical activity (METs), percent body fat (continuous), and aspirin use (no, previous, current). 
*Adjusted p<0.05 after correcting for FDR by Benjamini-Hochberg. 
 
 
  

 TMAO  Choline  Carnitine  Betaine 

 β (SE) p  β (SE) p  β (SE) p  β (SE) p 

CRP 0.01 (0.04) 0.86  0.23 (0.10) 0.03  -0.06 (0.12) 0.64  0.19 (0.08) 0.02 

LBP 512.4 (283.9) 0.07  1968.3 (795.8) 0.01*  1085.6 (921.5) 0.24  1131.0 (594.8) 0.06 

HOMA-IR 0.08 (0.03) 0.004*  0.18 (0.08) 0.03  0.27 (0.09) 0.004*  -0.32 (0.06) <0.001* 

HDL cholesterol -1.49 (0.82) 0.07  -14.86 (2.29) <0.001*  -9.64 (2.53) <0.001*  0.23 (1.73) 0.86 

LDL cholesterol -1.47 (1.79) 0.41  9.86 (5.01) 0.05  -6.81 (6.03) 0.26  -0.21 (3.74) 0.96 

Triglycerides 0.01 (0.02) 0.43  0.14 (0.05) 0.002*  0.18 (0.05) <0.001*  -0.16 (0.03) <0. 001* 

SBP 0.06 (0.62) 0.92  4.50 (1.73) 0.01*  -2.33 (2.05) 0.24  -2.68 (1.29) 0.04 

DBP -0.35 (0.37) 0.34  1.33 (1.04) 0.20  -1.04 (1.22) 0.39  -2.27 (0.78) 0.003* 
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Table 3. Associations between gut microbiome community structure and plasma TMAO, 
choline, carnitine, and betaine using PERMANOVA. 
 

 Unweighted UniFrac  Weighted UniFrac 
 R2 p  R2 p 

TMAO 0.0010 0.007  0.0014 0.038 
Choline 0.0010 0.006  0.0012 0.068 
Carnitine 0.0018 0.002  0.0029 0.007 
Betaine 0.0008 0.073  0.0012 0.071 

R2 and p-values estimated after controlling for laboratory batch. 
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Table 4. Fecal bacterial genera associated with plasma TMAO from LASSO regression. 
 

Phylum__Class__Order__Family__Genus Prevalence Coefficient 

Positive association   

Firmicutes__Clostridia__Clostridiales__Lachnospiraceae_Incertae_Sedis__Clostridia 71.8 0.0140 

Firmicutes__Clostridia__Clostridiales__Lachnospiraceae__Blautia 100.0 0.0073 

Firmicutes__Clostridia__Clostridiales__Peptostreptococcaceae_Incertae_Sedis__uncultured_bacterium 89.7 0.0004 

Proteobacteria__Deltaproteobacteria__Desulfovibrionales__Desulfovibrionaceae__Desulfovibrio 24.7 0.0064 

   

Negative association   

Bacteroidetes__Bacteroidia__Bacteroidales__Porphyromonadaceae__Barnesiella 100.0 -0.0198 

Firmicutes__Clostridia__Clostridiales__Peptostreptococcaceae__uncultured 90.9 -0.0323 

Firmicutes__Clostridia__Clostridiales__Ruminococcaceae__Faecalibacterium 100.0 -0.0240 

Firmicutes__Clostridia__Clostridiales__uncultured__uncultured_bacterium 27.3 -0.0044 

Firmicutes__Clostridia__Halanaerobiales__Halanaerobiaceae__Halocella 22.2 -0.0109 

Firmicutes__Erysipelotrichi__Erysipelotrichales__Erysipelotrichaceae_Incertae_Sedis__Clostridium 58.1 -0.0173 

Coefficients estimated after adjustment for laboratory batch. Prevalence indicates percent of 
participants with each bacterium. 
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Supplemental Table 1. Median (IQR) values of choline, carnitine, and betaine across quartiles of 
TMAO for all participants and across race-ethnic groups. 
 

 TMAO Quartile 

 Q1 Q2 Q3 Q4 
 <2.10 µmol/L 2.10-3.05 µmol/L 3.06-4.60 µmol/L >4.60 µmol/L 

Choline (µmol/L)     
All participants 11.5 [9.9-13.3] 12.3 [10.6-14.2] 12.8 [10.8-14.9] 13.1 [11.0-15.8] 
African American 11.9 [10.5-13.1] 12.3 [10.3-14.1] 13.2 [11.4-15.2] 14.0 [11.9-16.7] 
Native Hawaiian 10.9 [9.7-12.5] 12.3 [11.0-14.1] 12.9 [11.1-15.0] 13.1 [10.5-16.3] 
Japanese American 12.1 [10.0-14.2] 12.2 [10.6-14.3] 12.4 [10.6-15.9] 13.6 [11.6-16.2] 
Latino 12.2 [10.7-13.5] 13.0 [11.2-15.9] 13.8 [11.7-15.5] 13.1 [11.4-15.9] 
White 10.5 [9.2-11.6] 11.5 [10.3-13.3] 11.8 [10.1-13.7] 12.3 [10.2-14.3] 
     
Carnitine (µmol/L)     
All participants 38.7 [32.7-44.3] 38.7 [32.9-44.0] 39.2 [34.2-45.5] 40.9 [35.6-46.8] 
African American 33.7 [30.1-38.8] 38.0 [32.1-42.8] 36.7 [32.7-42.5] 39.6 [32.7-42.9] 
Native Hawaiian 40.3 [37.2-45.7] 40.6 [36.6-46.8] 40.4 [35.5-46.1] 42.4 [37.0-47.5] 
Japanese American 41.8 [36.9-47.6] 41.8 [36.8-47.4] 43.5 [37.6-49.5] 42.5 [38.6-50.2] 
Latino 37.3 [32.8-44.2] 36.0 [31.3-43.2] 37.9 [32.7-45.0] 39.2 [32.5-47.0] 
White 33.0 [28.9-39.7] 35.1 [31.3-41.0] 38.0 [32.5-42.9] 39.9 [35.2-45.3] 
     
Betaine (µmol/L)     
All participants 39.9 [31.7-47.7] 40.3 [33.5-49.2] 41.2 [33.6-51.1] 40.4 [31.4-48.8] 
African American 38.2 [30.9-45.8] 38.2 [31.2-47.0] 43.2 [32.3-51.5] 41.1 [31.8-47.8] 
Native Hawaiian 41.3 [30.9-50.3] 44.0 [36.4-49.1] 43.2 [35.4-51.4] 42.3 [33.8-50.5] 
Japanese American 41.9 [34.3-48.4] 42.2 [34.2-54.7] 42.3 [32.8-52.2] 44.1 [33.8-53.7] 
Latino 39.8 [32.9-47.3] 39.3 [34.0-45.1] 39.9 [35.4-49.0] 39.0 [31.8-46.5] 
White 36.1 [29.7-45.5] 38.9 [31.9-47.9] 39.3 [32.2-49.8] 35.9 [30.0-44.7] 
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Supplemental Table 2. Parameter estimates and p-values for regression of plasma biomarkers on TMAO, choline, and betaine after 
further adjustment for energy intake and dietary intake of seafood and red and processed meats. 
 

 Associations between TMAO, choline, and betaine with biomarkers were assessed in n=1716 participants, while carnitine and 
biomarker associations were assessed in n=1434 participants. 
 

 TMAO  Choline  Carnitine  Betaine 

 β (SE) p  β (SE) p  β (SE) p  β (SE) p 

CRP -0.01 (0.04) 0.95  0.21 (0.10) 0.04  -0.04 (0.12) 0.74  0.21 (0.08) 0.01 

LBP 435.4 (284.2) 0.13  1749.4 (794.7) 0.03  941.5 (920.9) 0.31  1241.1 (592.9) 0.04 

HOMA-IR 0.07 (0.03) 0.01  0.14 (0.08) 0.07  0.24 (0.09) 0.01  -0.30 (0.06) <0.001 

HDL cholesterol -1.46 (0.83) 0.08  -14.71 (2.29) <0.001  -9.57 (2.53) <0.001  0.04 (1.73) 0.98 

LDL cholesterol -1.44 (1.80) 0.42  10.08 (5.03) 0.05  -6.76 (6.05) 0.26  -0.27 (3.75) 0.94 

Triglycerides 0.01 (0.02) 0.45  0.13 (0.05) 0.004  0.18 (0.05) <0.001  -0.16 (0.03) <0.001 

SBP -0.04 (0.62) 0.94  4.29 (1.73) 0.01  -2.61 (2.05) 0.20  -2.53 (1.29) 0.05 

DBP -0.41 (0.37) 0.28  1.30 (1.04) 0.21  -1.10 (1.22) 0.37  -2.19 (0.78) 0.005 
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Supplemental Table 3. Fecal bacterial genera associated with plasma choline from LASSO 
regression. 
 

Phylum__Class__Order__Family__Genus Prevalence Coefficient 

Positive association   

Bacteroidetes__Bacteroidia__Bacteroidales__Other__Other 90.8 0.0063 

Firmicutes__Clostridia__Clostridiales__Lachnospiraceae_Incertae_Sedis__Clostridia 71.8 0.0007 

Firmicutes__Clostridia__Clostridiales__Peptostreptococcaceae_Incertae_Sedis__uncultured_bacterium 89.7 0.0084 

Proteobacteria__Betaproteobacteria__Burkholderiales__Alcaligenaceae__Sutterella 83.9 0.0054 

Proteobacteria__Gammaproteobacteria__Enterobacteriales__Enterobacteriaceae__Raoultella 74.5 0.0081 

   

Negative association   

Firmicutes__Clostridia__Clostridiales__Christensenellaceae__uncultured 99.9 -0.0017 

Firmicutes__Clostridia__Clostridiales__Lachnospiraceae__Shuttleworthia 43.6 -0.0002 

Firmicutes__Clostridia__Clostridiales__Ruminococcaceae__Oscillospira 89.3 -0.0050 

Firmicutes__Clostridia__Clostridiales__Ruminococcaceae__uncultured 100.0 -0.0004 

Coefficients estimated after adjustment for laboratory batch. Prevalence indicates percent of 
participants with each bacterium. 
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Supplemental Table 4. Associations between TMAO and choline with M. smithii. Linear 
regression models were adjusted for age, sex, race-ethnicity, and percent body fat.  
 

 

 

 

 

  

 TMAO  Choline 

 β (SE) p  β (SE) p 

M. smithii (continuous) -0.003 (0.003) 0.268  -0.001 (0.001) 0.289 
      
M. smithii (presence) 0.071 (0.034) 0.043  0.009 (0.012) 0.471 
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CHAPTER 4 

Conclusion 

 

 In this dissertation, we used the MEC to conduct population-based studies of the fecal 

microbiome. We first assessed the temporal variability of the fecal microbiome, showing most 

measures derived from 16S rRNA sequencing to be reliable over a two-year period, although 

taxa with very low abundance tended to be more variable. These results show that a single 

sample sufficiently captures a majority of fecal microbiome variation, although multiple samples 

or larger sample sizes may be needed if rare taxa are of particular interest. We next focused on 

the gut microbial metabolite TMAO, which we found to be associated with genera known to 

metabolize choline into TMA based on previous work using in vitro and bioinformatics 

approaches. TMAO and its precursors (choline, carnitine, and betaine) were also associated 

with several inflammatory and cardiometabolic markers. Of note, choline was associated with 

adverse health outcomes, while TMAO, choline, carnitine, and betaine were all associated with 

insulin resistance. 

The results of our TMAO analysis in particular pave the way for at least two avenues of 

further research. First, while we used 16S rRNA sequencing to analyze genus-level data, other 

methods such as whole-genome shotgun metagenomic sequencing provide phylogenetic 

resolution at lower taxonomic levels. This approach would allow one to determine associations 

between TMAO and microbial species, which could shed light on which specific members of our 

identified genera are driving the associations. This is important as species even within the same 

genus can have a wide range of functional capacities. Second, the associations between insulin 

resistance across our four compounds suggest a possible role in diabetes risk. A nested case-

control study of diabetes cases and matched controls within the MEC or another population-
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based study using pre-diagnostic blood samples to measure TMAO and its precursors would be 

one approach to follow-up on this finding. 

The decreasing cost of sequencing, along with the greater understanding of how 

microbes in the gut and other body sites impact states of health and disease, have helped lead 

the way for the incorporation of microbiome data into larger, population-based studies. 

Prospective studies will be particularly important for building on much of the cross-sectional 

research that has been conducted to date. The results of our two aims highlight the utility of 

using epidemiological approaches to better understand the human microbiome, along with 

areas that need further study. As with other biospecimens, there are many technical sources of 

variation that need to be considered when dealing with microbiome samples. While we have 

addressed temporal variation, other issues including shipping and storage of samples, data 

processing, and statistical analysis are all areas that can impact findings in a study. Additional 

efforts by groups such as the Microbiome Quality Control (MBQC) project will be crucial in 

determining the reproducibility and accuracy of these various methods, and how they impact 

data quality and comparability across different studies.  

There has also been growing interest in understanding the functional capacity and 

metabolic activity of the microbiome. This requires methods beyond 16S rRNA sequencing, and 

include metagenomics and metatranscriptomics, as well as quantification of microbially-derived 

metabolites, as we have done with TMAO. In the gut, microbes are involved in the production of 

a vast range of compounds with important physiological roles. Additional studies are needed to 

identify specific bacteria involved in these processes and the impact of these metabolites on 

disease risk. 

 In conclusion, we used population-based approaches to characterize the stability of the 

fecal microbiome and to identify associations between TMAO, the fecal microbiome, and 

inflammatory and cardiometabolic risk biomarkers. As shown by this dissertation, population-

based studies of the human microbiome complement and are important in building upon 



 

63 
 

laboratory and computational studies. Epidemiology will play a pivotal role in our understanding 

of this exciting and rapidly growing field. 
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