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Basic-level categories are the primary categories humans use to think and communicate; they are the first 

categories learned, with numerous psychological advantages including quick exemplar recognition time. 

They are valuable in a range of applications such as assessing text readability. Using WordNet, we create 

the first broad, representative dataset to build and evaluate systems to identify basic-level categories. We 

show there is significant label bias in the limited labels available in the psychology literature, and we add 

one novel label value since we find some chains in a hypernym/hyponym hierarchy do not include basic-

level categories. We expand the number of labels available by a factor of 72, from 152 to 11,221. We build 

a heuristic baseline system to detect basic-level categories, showing systems evaluated on the previously-

available data can look twice as effective as they perform on a more broadly-representative dataset. We 

take advantage of the increased quantity of labeled data to build a classifier-based system that improves 

performance to an f-measure of 0.607 from 0.381 for the heuristic-based system. We demonstrate basic-

level categories may be useful in a range of applications. For measuring text readability, we show lower 

reading levels have proportionally more basic-level categories and our comparison of the reading levels of 

Wikipedia and Simple Wikipedia using basic-level categories alone aligns well with existing research in the 

area. We also show that image captions tend to be much more likely to include basic-level categories than 

normal text, further suggesting that basic-level categories may be a useful signal in language grounding 

applications. 
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Chapter 1   

Introduction 

1.1 Overview 

Basic-level categories are the primary categories humans form to understand and communicate about the 

world around them. They group together entities along the most basic cuts in reality. Examples include 

table, car, tree, bird, guitar, shirt, fish, and apple (Rosch et al. 1976). This is at an intermediate level of 

specificity; in the example car, the basic-level is not as broad as vehicle (its superordinate) or as narrow 

as sedan (a subordinate). These basic-level categories have been shown to have a number of interesting 

and useful properties, including that they are the first type of categories a child learns and they are used 

to identify or describe an object in a neutral context (Rosch et al. 1976). 

Given that basic-level categories are important to human cognition and communication, researchers have 

found that knowing them is helpful for a variety of practical applications. Basic-level categories are helpful 

in word sense disambiguation (Legrand 2006), image searches (Rorissa et al. 2008), ad targeting (Wang 

et al. 2015), accurately measuring the readability of a text (Lin et al. 2009), making search result entity 

cards more easily consumable (Wang et al. 2015), linking together different domain-specific information 

classification systems (Green 2006), and user-centered design of image-browsing interfaces (Rorissa et 

al. 2008). 

Despite this wide variety of practical applications, to the best of our knowledge all attempts to identify 

basic-level categories have been ad hoc as part of a broader practical system. Although a handful of 

examples of basic-level categories are available in the psychology literature, we are not aware of any 

attempts to identify a broad-coverage dataset including basic-level category labels for use in a variety of 

applications. Without a common data set, the several systems that have been built to identify basic-level 

categories have not been evaluated as such and rather their assistance in an application has been 

measured. 
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We attempt to fill this gap by using crowd-sourcing to build a labeled dataset for the creation and 

evaluation of systems to detect basic-level categories. We use properties of basic-level categories 

confirmed by experiment (Rosch et al. 1976) to generate instructions for crowd-source workers to follow 

in identifying basic-level categories. We then use the small number of examples from psychology 

experiments on basic-level categories (Rosch et al. 1976, Markman et al. 1997) to train the annotators as 

well as to validate the labeling process, producing a large set of labeled data.  

This labeling process, as well as our subsequent work, depends heavily on the taxonomic structure of 

Princeton WordNet (Miller 1995), which is a widely-used, broad-coverage lexical database that organizes 

English word senses (synsets) into a hypernym/hyponym hierarchy. This aligns well to the framework 

used in research on basic-level categories, where these are contrasted against more general 

(superordinate) and more specific (subordinate) categories (Rosch et al. 1976). 

Using our labels, we build a baseline heuristic-based system to identify synsets in WordNet which 

correspond to basic-level categories. We use this system to show that the previously-available examples 

of basic-level categories from psychology experiments are biased; when used to build and evaluate 

systems to detect basic-level categories, these examples can lead to overreporting effectiveness by a 

substantial margin. 

We next take advantage of the large set of labeled data to build a classifier-based system to identify 

basic-level categories in WordNet, showing it performs substantially better than our heuristic baseline. 

Finally, we show that this basic-level category data appears to be a useful signal in practical applications 

including measuring text readability and automatic image captioning. 

1.2 Contributions 

The primary contributions of this work include: 

• A demonstration that previously-available basic-level category labels contain substantial bias 

• The first broad, representative set of labels for basic-level noun categories 

• An extension to the theoretical framework used for basic-level categories which acknowledges 

the existence of hypernym/hyponym chains which do not contain any basic-level categories 
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• A system to identify basic-level categories in WordNet 

• An efficient algorithm for selecting the maximum likelihood set of basic-level category candidates 

in a tree structure obeying the constraint that a maximum of one node may be chosen in each 

chain from leaf to root in the tree 

• A demonstration that knowing basic-level categories appears promising for use in a range of 

practical applications 
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Chapter 2   

Literature Survey 

We review foundational psychology literature on basic-level categories as well as epistemology literature 

on first-level concepts. We then discuss Princeton WordNet, a lexical resource well-suited to work in this 

area, as well as work on detecting hypernym/hyponym relationships. We follow this with a discussion of 

identifying entry-level categories and the few existing approaches to identifying basic-level categories. We 

also describe relevant work on Amazon Mechanical Turk to crowd-source labels since this resource was 

instrumental in building our dataset. Finally, we discuss work to measure the readability of a text, which is 

an area of application we consider for this work. 

2.1 Basic-level Categories 

We first describe categories themselves in §2.1.1, and then discuss the basic-level in §2.1.2. 

2.1.1 Categories and Concepts 

A category is a means of classification where a single term is used to refer to any one of many distinct 

entities, where each is treated as essentially the same in an important respect (Rosch 1999). As an 

example, one individual entity may be referred to as a “cow,” and even though there is no other entity with 

the exact same size, shape, coloring pattern, sound, etc., we naturally group many similar entities under 

this same category “cow.” Humans do this naturally, but how this works has been a subject of much 

debate over millennia (Porphyry 270, Acquinas 1274, Ockham 1323, Kant 1781, Mill 1884, Rand 1966a, 

Rosch 1975, Aristotle c.350 BC, Plato c.380 BC); the way we are able to use a single category to denote 

an unlimited number of entities that have no single attribute exactly in common is referred to as the 

problem of universals.  

Some researchers refer to categories and others to concepts; some have attempted to make clear 

distinctions between concepts and categories, such as denoting a category as the set of entities referred 

to by a term while a concept is a mental representation of this set (Rips et al. 2012). This distinction being 

inconsequential to our current work, and having no reason to suppose categories themselves exist 
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independent of a human mind doing the conceptualization, we treat these terms as synonymous and use 

them interchangeably. Nonetheless, due to the heavy reliance of this work on experimental results from 

the psychology literature where the term “category” is used, outside of this literature review we generally 

use “category” rather than “concept”. 

Izquierdo et al. (2007) is careful also to point out the differences between basic-level categories and the 

similarly-named base concepts, which could be a source of confusion for those familiar with the latter. 

Base concepts are a set of concepts core to many relations and which tend to occur relatively high in the 

hierarchy (Izquierdo et al. 2007). These are often used to identify key concepts showing up across 

multiple languages and as a baseline set of concepts that should be included in a WordNet for a new 

language. On the other hand, while there is certainly overlap, basic-level categories tend to occur closer 

to the middle of the hierarchy and tend to have less relations (Izquierdo et al. 2007). 

There are two different viewpoints addressing the problem of universals relevant to this work.  

The first, used as the basis for the discussion of basic-level categories in §2.1.2, is prototype theory 

(Rosch 1973). In this view, categories are not well-defined groups with strict boundaries as in the 

classical view where every member of the category is similarly representative of the category as a whole; 

rather, people latch onto a prototypical member of the category and judge category membership by 

determining an exemplar is similar to the prototype. This allows for some members to be more strongly 

associated with the category label than others, some easier to recognize than others, and other 

properties which have been verified experimentally. 

The second viewpoint addressing the problem of universals is within the classical tradition in 

epistemology and describes a related idea of first-level concepts; this is discussed in §2.2. 

2.1.2 The Basic Level 

Brown (1958) noticed that children learn a middle level of concepts before concepts that are broader or 

more specific. Building on this insight, Rosch et al. (1976) distinguish between three levels of categories: 

basic-level, superordinate (hypernyms of the basic-level), and subordinate (hyponyms of the basic level). 

They describe the basic-level as the “level of abstraction at which the most basic category cuts are made” 
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(Rosch et al. 1976). An important motivation for this idea is that attributes in the world aren’t uniformly 

distributed; entities with feathers are also likely to have wings but not fur (Rosch et al. 1976). These “basic 

category cuts,” then, are groupings of entities possessing a set of these related properties. Rosch et al. 

(1976) describe advantages in cognitive economy in using categories that cut across these natural 

boundaries, as well as describing how categories at this level of inclusiveness have a high cue validity 

(attribute presence is a strong predictor of the category). While perhaps not offering the most succinct 

definition, Rosch et al. (1976) do describe and experimentally validate many properties of basic-level 

categories, discussed infra. 

Markman et al. (1997) offer what may be a more fundamental and clear definition of the basic-level as being 

the level with the most alignable differences. An alignable difference is a difference in degree rather than 

kind; for example, cars and motorcycles have a different number of wheels (alignable) but a car carries a 

jack and a motorcycle does not (non-alignable). Car and motorcycle here are both taken to be basic-level 

categories, while vehicle is a superordinate and coupe is a subordinate. The various subordinates of car 

(coupe, sedan, etc.) vary in a handful of ways, but they have more similarities than differences. Cars and 

motorcycles, on the other hand, have many more differences and many of these are alignable (number of 

wheels, type of seat, steering controls, acceleration controls, etc.). According to (Markman et al. 1997), this 

abundance of alignable differences is a clear indicator that car and motorcycle are basic-level. 

Though not offering a clear definition, Rosch et al. (1976) provide a broad array of experiments showing a 

number of interesting properties of basic-level categories. They find that basic-level categories are the most 

inclusive level at which exemplars include many attributes in common. Basic-level categories are also the 

most inclusive level at which people associate exemplars with similar motor movements they would expect 

to perform in relation to the exemplars. The basic-level is the most inclusive level at which exemplars share 

a similar shape, and thus also the most inclusive level at which people can readily identify objects based 

on their shape. Judging whether two objects are the same type of object or not is possible for both 

subordinates and basic-level categories, while it’s faster for people to recognize category membership from 

an image for basic-level categories than either subordinates or superordinates. Young children can 

categorize two objects into their basic-level category but can’t categorize two objects in different basic-level 
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categories into the same superordinate category; category membership is learned earlier for basic-level 

categories. Children also sort images, without prompting, into taxonomy-based groups at the basic-level 

but only do this at the superordinate level at later ages. The word used to represent a basic-level category 

is the most common word used to describe it in language, children learn these words first, and in languages 

without much taxonomic depth basic-level categories exist even while superordinate and subordinate levels 

are impoverished. These properties are all verified through experiments and analysis (Rosch et al. 1976). 

There has been a wide variety of additional research in this area within psychology showing a range of 

properties, applications, and even several potential issues with basic-level categories.  

Studies have shown children learn basic-level categories first, then subordinates, then superordinates 

(Jónsdóttir et al. 1996), with children not even considering a novel noun to potentially be a superordinate 

until around age 7 (Golinkoff et al. 1995).  

At the same time, there are some limitations to these advantages. Adult experts in a domain may be so 

fluent with the subordinate level in that domain that three of the twelve advantages of the basic-level over 

the subordinate level demonstrated by Rosch et al. (1976) become greatly diminished (Tanaka et al. 1991). 

None of the properties identifying the basic-level as the most inclusive level at which some property is true 

are questioned in this follow-up work by Tanaka et al. (1991), suggesting these may be the more durable 

properties. Additional work has further shown the boundary between basic and superordinate concepts is 

an important one with qualitative differences in how they are represented, such as superordinate concepts 

(e.g. furniture) often referring to groups of entities and basic-level (e.g. table) referring to individuals 

(Murphy et al. 1989). Some interesting corner cases have also been found with abnormal subordinate 

exemplars, for example with penguin being shown to have some of the basic-level advantages while bird 

is the clear basic-level category when dealing with more typical exemplars of the category (Jolicoeur et al. 

1984), again eroding the boundary between basic-level and subordinate concepts without undermining the 

significant differences found between the basic-level and superordinates.. 
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2.2 First-level Concepts 

Another line of work on this same phenomenon is in epistemology, where it is framed differently but with 

striking resemblances. This work is based on a different theory of concepts addressing the problem of 

universals. Rather than concepts being formed on the basis of similarity to a prototypical category 

member, a concept does have a clear definition in line with the classical view of concepts. Concepts are 

formed by identifying measurable characteristics that category members share and establishing a range 

of measurements that isolate included exemplars from other entities possessing the same characteristics 

For example, tables possess a range of shapes including a flat, level surface with supports as well as the 

purpose of supporting smaller objects; these can be differentiated from the shapes and purposes of other 

objects possessing these two characteristics, such as chairs.  

This approach is in the classical tradition that Rosch was arguing against (Rosch 1999) insofar as 

concepts represent clearly-defined sets of referents, but the range of measurements included also allows 

for some referents to be more central and others borderline which prototype theory handles better than 

treating all referents as equally representative of the category as in most classical theories. Note that this 

approach to concept formation already bears striking resemblance to the explanation Markman et al. 

(1997) give for basic-level categories in terms of alignable differences (discussed in §2.1.22.1.1, supra). 

In this view coming from epistemology, all concepts inherently have alignable differences to their siblings 

in a hypernym/hyponym hierarchy and the explanation Markman et al. (1997) give that the basic-level has 

the most alignable differences translates straightforwardly. Additionally, advocates of both theories treat 

economy of thought and expression as a key motivation for the need for concepts or categories (Rand 

1967, Rosch et al. 1976). 

In epistemology, what Rosch et al. (1976) refer to as basic-level categories are usually called first-level 

concepts (Rand 1966a, Binswanger 2014) or occasionally basic-level concepts (Rand 1990) rather than 

basic-level categories, but they identify the same phenomenon from a different perspective. In this view, 

first-level concepts are called first-level in part because they’re the first ones learned (an observation also 

common to Rosch et al. (1976)). In addition, non-first-level concepts are formed by reference to these 
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first-level concepts and/or their derivatives (Rand 1966b), which makes them primary or “first” in a 

hierarchical sense in addition to a temporal one. 

This is a very different theoretical framework for thinking about basic-level categories, but it is clear the 

same basic phenomenon is being described. Both theories even give a number of identical examples, 

including “bird”, “cat”, “chair”, “dog”, “fish”, and “table” (Rand 1966b, Rosch et al. 1976). 

Of particular interest for future work, this view from epistemology treats only concepts of entities as truly 

first-level since concepts of entities are formed before concepts of motion, relationship, attribute, 

characteristic, etc. (Rand 1966a) However, within each of these other fundamental groups of concepts 

there is a first-level within that group (Binswanger 2014). For example, “blue” is a first-level attribute 

concept, formed directly from perceptual data like first-level concepts but only after forming concepts of 

entities first (Binswanger 2014). We focus on first-level concepts of entities since this is what both 

theories treat as the basic or first level, as well as because this is where there are many experimentally-

validated examples to use as a set of gold-standard labels; however, this indicates much more work could 

be done to identify the first-level concepts in each of these other major groups of concepts as well. 

While the work on first-level concepts in epistemology (Rand 1966a) started before the work in 

psychology (Rosch et al. 1976), the latter does not cite the former indicating no direct influence between 

the two. Nonetheless, Rosch et al. (1976) does cite Anglin (1975) on the topic of the first words children 

learn, which is one of the key properties of both basic-level categories and first-level concepts share. 

Furthermore, in an influential book on concepts begun five years earlier and published the following year,  

quotes a passage from Rand (1966a) that he agrees with, even mentioning the latter as a little-read book. 

Rosch also subsequently cites this book by Anglin in her future work in the area (Mervis et al. 1981). 

While there is no clear indication of a direct relationship between the two lines of inquiry, Anglin at least 

serves as an indirect link suggesting there may have been some indirect influence between the two 

before the present work.  
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2.3 Princeton WordNet 

Princeton WordNet (Miller 1995), hereafter referred to as WordNet, organizes concepts into a hierarchy of 

hypernyms and hyponyms (Murphy 2003). While WordNet also identifies other information, such as 

meronymy, basic-level categories are not currently annotated in WordNet. As mentioned in Chapter 1 , 

basic-level categories are identified in contrast to their superordinates and subordinates (Rosch et al. 1976). 

This naturally aligns with hypernymy and hyponymy, making WordNet a basic organization of categories 

well-suited to our task of identifying basic-level categories. WordNet is an open-domain, dictionary-scale 

resource (Miller 1995). 

It is difficult to overstate the extent to which WordNet is used. WordNet is used widely in ontologies, 

including building ontologies, matching ontologies together (Lin et al. 2008a), and evaluating ontologies 

(Brank et al. 2005). It is used for measuring text similarity (Gomaa et al. 2013), sentiment analysis (Liu et 

al. 2012), word sense disambiguation (Navigli 2009), named entity recognition (Nadeau et al. 2007), 

information retrieval (Haav et al. 2001), and text summarization (Gholamrezazadeh et al. 2009) among 

many others. This list only includes some of the broad surveys of fields of research where WordNet is widely 

used as it would be impractical to catalog the entire range of applications of a system cited over 14,000 

times (Scholar 2018). The success of WordNet has led to the creation of numerous additional wordnets in 

other languages (Bond et al. 2012), corpora aligned to WordNet senses (Petrolito et al. 2014), and a variety 

of other, more specialized machine-readable lexical resources (Baker et al. 1998, Meyers et al. 2004, 

Schuler 2009). 

Given the broad coverage and widespread adoption of WordNet, we frame our task as one which involves 

identifying basic-level categories within WordNet, rather than as an independent task using WordNet as a 

reference. 

2.4 Hypernym/Hyponym Detection 

While WordNet does not contain annotations of basic-level categories, there are a number of other lexical 

properties and relations which are included and for some of which there’s been work to learn them 

automatically. Since this is indirectly related to the present work, we discuss some of this work here. 
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Hearst (1998) learns hypernym/hyponym relationships to extend the annotations present in WordNet. This 

included starting with some syntactic templates like “such NP1 as NP2” where NP2 is reliably a hyponym 

of NP1 when appearing in corpora inside sentences matching this template (Hearst 1998). They extend 

this to arbitrary relations by taking a set of manually-determined templates that work reliably, looking for 

example sentences in a corpus where the same words appear near one another in ways that aren’t 

consistent with the existing patterns, and identifying additional patterns to add to the set based on that. This 

results in new relations and concepts to be added to WordNet (Hearst 1998). Similar template-based 

approaches have been used to learn other relations including synonyms (Lin et al. 2003, Turney et al. 

2003), and meronyms (Girju et al. 2003). In addition to work on nouns, these sorts of approaches have also 

been extended to verbs. Chklovski et al. (2004) use patterns to identify verb antonyms, temporal happens-

before, and several other relations. 

Later work includes going beyond hand-built templates in identifying hyponyms, including a classifier-based 

approach using logistic regression and a set of known hyponym and non-hyponym relationships to learn 

these relationships without relying on hand-crafted rules (Snow et al. 2005). Snow et al. (2006) then extend 

and generalize this to combine multiple classifiers on different relations to both learn taxonomies and avoid 

lexical ambiguity by operating at the sense level rather than the token level. 

More recently, identifying hyponymy and entailment using distributional semantics has become an active 

area of research; we discuss several relevant examples here. Much of this recent work uses unsupervised 

approaches, particularly word embeddings, as an important component in the system (Henderson et al. 

2016, Chang et al. 2017).  Weeds et al. (2014) builds classifiers using operations on vectors representing 

the distributional semantics of two words to identify hyponymy and co-hyponym relations between them. 

Roller et al. (2016) present qualitative analysis on an entailment classifier and show that the most 

recognizable and common patterns learned are Hearst patterns (Hearst 1992) like “such as” (e.g. “animals 

such as cats”). These modern approaches are much more sophisticated and scalable solutions; the fact 

that this captures and heavily relies on Hearst patterns without needing them to be specified by the 

experimenter highlights how recent work in this area builds on the earlier, more heuristic approaches to 

identifying hyponymy in corpora. 
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2.5 Identifying Basic-level Categories 

There has been very little work specifically on detecting basic-level categories at scale. The experiments in 

psychology have dozens of examples of basic-level categories (Rosch et al. 1976, Markman et al. 1997), 

with 29 validated individually in experiments (Rosch et al. 1976) and another 63 proposed by later 

researchers and shown to share tendencies toward basic-level categories in aggregate (Markman et al. 

1997). 

There have only been a few efforts to use this data to learn patterns and extrapolate to a broader set of 

basic-level categories, all working with WordNet, though some of the psychology literature also points out 

attributes of basic-level categories that may be helpful. 

Stephen et al. (2009) starts with all nouns and does some filtering of superordinates and subordinates by 

depth in the hierarchy. This is followed by a voting scheme to pick the best candidate on each path from 

the top of the hierarchy to a leaf node, considering how short the word is, how frequently the word is used, 

and how many words are in the synset all as positive features while having few hyponyms and fewer 

relationships with other synsets more broadly as negative features (Green 2006). There is no effort to 

reconcile results from nearby paths down the hierarchy, though, and the list of basic-level categories 

generated is fed into a downstream system to map information systems together, with no evaluation of the 

categories themselves. This is purely heuristic, and all of the available data is used to define the rules, 

making evaluation difficult. 

Another effort focuses on word sense disambiguation, with Izquierdo et al. (2007) using a simpler approach 

that filters out the lower levels of the hierarchy and searches up the hypernym hierarchy exclusively looking 

for a synset with a large number of WordNet relations. These features are already included by Green (2006) 

and here as well the evaluation is only performed on the applied system and an evaluation is not performed 

on this basic-level category identification system as such. 

Lin et al. (2009) attempt to identify basic-level categories by looking for words that are shorter than their 

hyponyms and where the word is frequently contained within its hyponyms as a compound. Again, this is 
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only evaluated in the application of measuring text readability, and like the other experiments they use all 

the available data for forming the rules without holding aside any data for an independent evaluation. 

These systems each share many attributes in common, including many of the attributes used in heuristics, 

the basic approach itself, and the lack of a direct evaluation.  

2.6 Identifying Entry-level Categories in Images 

Motivated by the work on basic-level categories, Ordonez et al. (2013) work to identify entry-level 

categories, adapted from the “entry point level” terminology Jolicoeur et al. (1984) use to denote the word 

used to refer to an object from perceptual data. This is one of the properties Rosch et al. (1976) note is 

true of basic-level categories, though in their more detailed analysis of this particular property Jolicoeur et 

al. (1984) show that basic-level categories and entry point level categories are not always the same. Of 

the twelve properties of basic-level categories identified by Rosch et al. (1976), this entry level property is 

one of the three properties found to vary between inexperienced individuals and experts by Tanaka et al. 

(1991) as discussed in §2.1.2. These both suggest that being entry-level may be highly correlated with 

basic-level categories but not an essential property of basic-level categories as originally indicated by 

Rosch et al. (1976). 

Ordonez et al. (2013) show that the word used to refer to an object is strongly correlated with typicality of 

usage even when diverging from the basic-level category. Discrepancies between basic-level and entry-

level categories particularly include atypical exemplars. For example, penguin is an entry-level category 

while a more inclusive category, bird, is the corresponding basic-level category. The work by Tanaka et 

al. (1991) also suggests even typical exemplars may present similar discrepancies for individuals with an 

expert level of knowledge. 

Ordonez et al. (2013) work to identify entry-level categories present an image. Though these are not 

identical to basic-level categories, these two are often correlated. They use the SBU Captioned Photo 

Dataset (Ordonez et al. 2011), a large corpus of image caption data, as well as ImageNet (Deng et al. 

2009), a large-scale database of images depicting objects aligned to WordNet synsets widely used in 

computer vision for object recognition tasks. They use frequently-used words in image captions as well as 
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frequency information from the web generally as signals for identifying entry-level categories. The most 

relevant portion of this work is a subsystem which maps leaf nodes in ImageNet to entry-level categories 

by optimizing a function that prefers words with high frequency on the web offset by a cost proportional to 

the height in the hierarchy above the leaf node. They also consider another approach using information 

retrieval ranking on image captions. They find their best system achieves an f-score of 0.161 overall at 

identifying the entry-level category on a broadly representative dataset of consensus annotations 

obtained using Amazon Mechanical Turk. They also find that their mapping subsystem that most closely 

relates to our task achieves 37% agreement with human-supplied annotations, indicating that this is a 

difficult problem. 

The way the problem is framed by Ordonez et al. (2013) in identifying entry-level categories allows a 

strong dependence on frequency information, though we also find this to be a strong signal in identifying 

basic-level categories as well. 

2.7 Amazon Mechanical Turk for Crowd-Sourcing Labels 

Amazon Mechanical Turk is a platform supporting two sets of customers: requestors post tasks to be 

completed and make payments, while workers complete these tasks and receive payments. This platform 

has become a widely-used tool for data collection which is both economical and attracts workers who pay 

at least as much attention to directions as workers obtained through more traditional means (Paolacci et 

al. 2010). The data produced has also been shown to have a quality level at least as high as traditional 

alternatives (Buhrmester et al. 2011).  

Nonetheless, quality concerns lead to the practice of having multiple workers complete the same task 

with agreement rate and other approaches used to measure and maintain high-quality output (Ipeirotis et 

al. 2010). Using qualification tests to ensure workers understand the task’s directions and are able to 

apply them correctly has proven effective at improving the quality of the labels obtained from Mechanical 

Turk (Rashtchian et al. 2010). 

Mechanical Turk is now widely used for generating labels, and can produce labels of sufficient quality to 

replace expert annotators across a wide variety of tasks (Snow et al. 2008, Alonso et al. 2009). 
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We use Mechanical Turk to generate our labels, using both agreement by multiple workers per task and 

qualification tests to improve label quality. 

2.8 Measuring Text Readability 

In order to demonstrate the practical applications enabled by our work to identify basic-level categories, 

one area of application we consider is using basic-level categories as a signal to help measure the 

readability of a text. Automatically determining the reading level of a text is an active area of research. 

Recent examples include novel classification-based approaches (Dalvean et al. 2018) as well as those 

using unsupervised word embeddings (Cha et al. 2017).  

Despite more advanced recent systems, simple heuristic formulas have nonetheless proven useful and 

are widely used today. The Flesh Reading Ease Test (Flesch 1979) and Flesch-Kinkaid Grade Level 

(Kincaid et al. 1975), for example, are formulas only requiring the average number of syllables per word 

and average number of words per sentence to assign a reading level corresponding to grade levels in 

school. This is the most widely cited and used readability formula (Colmer 2018), even being written into 

law in Florida to force insurance companies to write more readable policies (Legislature 2003). 

In more complex systems, some researchers have attempted to incorporate high-frequency word lists or 

words likely to be known by students of a certain age in order to build vocabulary-based readability into 

the system as a feature. The Dale 3000 list of words familiar to most fourth-graders (Chall et al. 1995) is a 

widely-used list for this purpose (Collins-Thompson 2014). Since we suggest essentially using a list of 

basic-level categories could be helpful in assessing text readability, we directly compare our list to this 

one. 

With the more sophisticated approaches, research into the readability of medical texts, using domain-

specific datasets, has found that more concrete words tend to be more common in texts that are easier to 

read and can be used to improve text readability systems (Tanaka et al. 2013). Since basic-level 

categories specifically identify words used most commonly to describe concrete objects (Rosch et al. 

1976), this provides additional motivation for using basic-level categories to assess text readability and 

extending this benefit to systems not focused specifically on the medical domain. 
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We mention in §2.5 that Lin et al. (2009) create a simple heuristic for identifying basic-level categories 

along the way to measuring text readability and found this helpful in their system. However, the basic-

level category identification was not the focus of this work and so our purpose here is to show that our 

basic-level category data, with more focus on the identification of these basic-level categories, can also 

be of help with this problem.  
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Chapter 3   

Annotation 

We describe a process for annotating basic-level categories in WordNet. We start by describing the initial 

labels from the psychology literature we start with in §3.1, discuss aligning those labels with WordNet 

senses in §3.2, explain how we used crowd-sourced annotations to extend the labels in §3.3, discuss a 

novel label option in §3.4, describe the labeling process in §3.5, discuss a review of low-confidence 

annotations in §3.6, describe the resulting labels in §3.7, investigate the accuracy of our labels in §3.8, 

break the labels into sets for experimentation in §3.9, measure the difficulty of our labeling task in §3.10, 

and summarize what we learn from this process in §3.11.  

3.1 Rosch-Markman Labels 

We are aware of two major lists of basic-level categories as well as corresponding superordinates and 

some subordinates, which we describe as the Rosch-Markman labels. 

The original experiments that inspire much of the work in this area (Rosch et al. 1976) include nine 

superordinate taxonomies for their first two experiments. For the three of these superordinates falling in 

the biological taxonomy, the experimental results show the presumed superordinate level (tree, fish, 

bird) is actually the basic-level. So, for these three groups the taxonomy is shifted down one level (e.g. 

superordinate to basic) and new superordinates (plant, animal, animal) are added to ensure the 

experimental results are accounted for. Additionally, eight additional basic-level categories are used in 

their later experiments 3-4 (Rosch et al. 1976), so these are also added. Markman et al. (1997) also 

provide a large list of superordinates, basic-level categories, and subordinates, though there is overlap 

with the aforementioned list. Note that Rosch et al. (1976) individually validate each of the categories 

included in their lists, while Markman et al. (1997) propose a larger set of possible basic-level categories 

and then show they tend to have basic-level properties in aggregate. There are some conflicts, in which 

case we take the labels from Rosch et al. (1976). 
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Some of the categories chosen (e.g. chicken pox, TV show) seem questionable in Markman et al. 

(1997), so we treat those by Rosch et al. (1976) to be of higher quality and do not substantially base our 

labeling process on Markman et al. (1997). However, since we also build a heuristic system using the 

Rosch-Markman labels, and the quantity of data in Rosch et al. (1976) alone is very small while the vast 

majority Markman et al. (1997) seem reasonable, we do use these labels for that purpose and hence they 

are also described here. 

A summary of the lists is shown in Table 1. The full lists themselves are presented in Appendix A. The 

labels from experiments in Rosch et al. (1976) are included in Table 39 and Table 40, the labels from 

experiments in Markman et al. (1997) are included in Table 41, Table 42, and Table 43, and the unique 

combination is listed in Table 44. 

Table 1: Categories with known classification by level of abstraction 

Level Rosch Markman Combined 

Superordinate 8 24 24 
Basic-level 29 86 91 
Subordinate 45 25 68 

 
This data in Table 1 is used for training and evaluating a heuristic system, which we also update with the 

labels output from our broader labeling effort. 

3.2 Aligning Rosch-Markman Labels to WordNet Senses 

Starting with the labels from the psychology literature described in §3.1, we map these to synsets in 

WordNet. Fortunately, given the fact that the labels are aligned to superordinate, basic-level, and 

subordinate categories, this context is sufficient to resolve all but a couple sense ambiguities. 

Some categories with labels do not have an equivalent concept in WordNet. For example, while table 

maps to table.n.01 and kitchen table maps to kitchen_table.n.01, we do not find an equivalent concept 

for dining room table. In these cases we keep the labels that align to WordNet senses and discard the 

ones with no equivalent in WordNet. 

Another challenge in mapping the Rosch-Markman labels to WordNet senses involves the hierarchy 

being structured differently in WordNet than the one proposed by Markman et al. (1997). Note this conflict 



 
 

19 
 

does not arise for any of the examples in Rosch et al. (1976). As an example, Markman et al. (1997) 

consider weights, bicycle, and pool to be basic-level categories under the superordinate exercise 

equipment. In WordNet, however, weight.n.02 falls under sports_equipment.n.01, exercise_bike.n.01 

falls under exercise_bike.n.01, and swimming_pool.n.01 falls under athletic_facility.n.01. In cases like 

this, where each of the basic-level categories fall under a different superordinate and these are far 

enough apart in the hierarchy that there is not a nearby common ancestor of roughly similar generality to 

other superordinates in the list, these are also discarded. 

However, in cases where the superordinates are not so spread out, with no more than two superordinates 

and multiple categories remaining under a superordinate, the labels are all retained. This includes 

ball.n.01 and football.n.02 under game_equipment.n.01 as well as racket.n.04 and net.n.05 under 

sports_implement.n.01; all four of these basic-level categories are listed under sports equipment in 

Markman et al. (1997). 

The combined labels, aligned to WordNet synsets, are listed in Table 45 of Appendix B. A summary of the 

number of labels is shown in Table 2. 

Table 2: Label counts by WordNet alignment and level of abstraction 

Level Before 
Alignment 

WordNet-
Aligned 

Superordinate 24 26 
Basic-level 100 79 
Subordinate 68 50 

 

Aligning to WordNet senses increases the number of superordinates since the taxonomies do not match 

exactly and some basic-level categories are split across multiple superordinates in WordNet; while 

several are discarded, the total count does increase by 8%. Basic-level categories decrease by 21% and 

subordinates by 26%. Many of the basic-level categories not included are due to superordinate alignment 

issues, discussed supra. Many of the subordinates that fail to align, however, are due to the concept itself 

not being present in WordNet rather than these superordinate alignment issues; the labels most affected 

by these superordinate alignment issues are in an experiment that included superordinates and basic-

level categories but not subordinates. 
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An additional issue arose during alignment which is of theoretical interest but does not affect the number 

of labels successfully aligned. WordNet often includes many intermediate concepts between a basic-level 

category and what the labels would indicate are its superordinate or subordinates. As an example, 

consider the partial chain up the hypernym/hyponym hierarchy shown in Listing 1. This includes three 

intermediate categories between animal and fish as well as another four between fish and salmon. In 

Rosch et al. (1976), however, animal is listed as the superordinate of fish which is the basic-level 

category under which salmon is a subordinate. Less salient categories, like aquatic vertebrate and 

teleost fish, are not included in the psychology experiments. In most cases the subordinates are directly 

nested under the basic-level categories in the WordNet hierarchy, but there is more commonly an 

intermediate or several between the basic-level category and its superordinate. The example in Listing 1 

is a relatively extreme example of this issue with several intermediates on both sides of the basic-level 

category; this is relatively common in the biology taxonomy portion of WordNet. 

Listing 1: Abstruse categories between salient ones 

 

animal 

chordate 

vertebrate 

aquatic vertebrate 

fish 

bony fish 

teleost fish 

soft-finned fish 

salmonid 

salmon 
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This issue is interesting theoretically since the salient contrasts are not directly connected by edges in the 

WordNet hierarchy. This also poses an interesting set of challenges for labeling since the psychology 

experiments depend on having a comparison between easily-comprehensible categories with large 

increases in inclusiveness between levels. In this framework, however, the distinctions are more granular 

and the salient comparisons are spread out and non-obvious. 

3.3 Crowdsourcing Labels 

We use Amazon Mechanical Turk to obtain crowd-sourced labels for basic-level categories. We ask the 

crowd-source workers to select a single category as the basic-level category in a chain up the WordNet 

hypernym hierarchy.  

We do not obtain labels for superordinates or subordinates explicitly, but rather treat this as a binary 

classification problem to identify the basic-level categories against all others. When one category in a 

chain is chosen as the basic-level category in that chain, the other categories can be inferred as not 

belonging to the basic level. 

An example of the prompt we use for obtaining a label on a chain is shown in Figure 1.  
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Figure 1: Example Mechanical Turk Question 



 
 

23 
 

This is a wordy prompt. In addition to including the question itself, there are a number of additional 

aspects. The prompt includes a description of basic-level categories as well as an example before the 

question. The full hierarchy is not shown, starting at organism rather than entity. A ‘None’ option is 

included in the list as well, discussed in §3.4. We describe each component of the prompt as well as the 

motivations behind them in §3.3.1 through §3.3.3. 

3.3.1 Building and Testing the Prompt 

We build the prompt by initially testing, in person, a series of questions about five basic-level categories 

on several non-expert adults who were unfamiliar with basic-level categories, WordNet, and natural 

language processing more generally. We initially just use simple, diverse examples from our label set 

described in §3.2 and listed in Appendix B. Rosch et al. (1976) and Markman et al. (1997). This initial set 

includes piano, milk, gun, grape, and tree as the basic-level categories included. We randomly choose 

one chain including a subordinate also in the label set for each of these five categories and use the same 

chain for each person we interview. 

We iterate based on which questions lead to answers that align with the gold-standard labels, as well as 

based on feedback from observing the participants and getting their verbal feedback on the process and 

their interpretation of both the questions and their responses. We then switch to Mechanical Turk and, 

due to the ease of scaling the labeling there, increase the number of basic-level categories we request 

labels on from five to sixteen, obtaining ten labels per chain including these basic-level categories. We 

iterate further on the prompt based on the responses to these prompts, finally achieving 100% accuracy 

on aggregated answers per chain labeled based on simple voting; this also has a very high accuracy of 

98% on the individual responses. 

After obtaining high-accuracy results on simple cases, we choose four examples that are much more 

complicated to further refine the prompt and help ensure our labeling process scales outside the simple, 

salient categories used in the psychology experiments used to motivate our existing label set. We include 

three chains where ‘None’ is the correct answer and one where there is a basic-level category (trousers) 

but it is a narrower distinction between nearby categories than the more canonical cases. We iterate on 

the prompt until we obtain a 75% accuracy on aggregated answers using simple voting on these four 
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tricky cases while maintaining the same accuracy of 100% with aggregated labels and 98% on individual 

labels in the original, more canonical cases, where we do not observe any improvements (or regressions) 

from these prompt changes. This is the final prompt we use as shown in Figure 1.  

3.3.2 Choosing the Prompt 

The prompt we use for our labeling efforts is a question directly asking a labeler to pick the basic-level 

category. This is a straightforward question but requires the labeler to understand, at least at some level, 

what a basic-level category is. 

Our direct prompt right above the set of choices is: “Choose the basic word in the list below, or ‘None’ if 

there aren’t any.” This is under a large heading: “Basic Word”. In both of these cases, we use “basic 

word” rather than “basic-level category”, “basic category”, “basic-level concept”, “first-level concept”, or 

other descriptions which would be more technically accurate. Labelers appear confused by these terms 

so simply calling them basic words is simpler to understand. This language is less precise and may 

account for some of the mistakes we later observe as discussed further in §3.11, but using more technical 

language was among the worst alternatives we tried. 

We explore asking more basic questions about whether or not a given synset from WordNet had various 

of the properties of basic-level categories which may be accessible to non-experts. Questions include 

identifying the easiest word to learn, choosing the word a child would be expected to learn first, choosing 

the first in the list the labeler could picture (with synsets listed from more to less inclusive), gauging the 

complexity of the word on a scale, and identifying which word is the simplest to understand. The two most 

promising questions about properties include: 

• Starting from the top of the list, which is the first where a clear picture comes to your mind? 

• Which word do you think a child would learn first? (assume exposure to all these things) 

The latter, which involves speculation about which word a child would learn first, is the most promising but 

both were imperfect. The latter tends to result in some over-broad answers (e.g. fruit instead of grape), 

while the former tends to generate answers corresponding to less-inclusive categories than the basic-

level category in the chain (e.g. pine instead of tree). Placing multiple answers side-by-side leads many 
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labelers to selecting the same option for both questions though these tend to generate somewhat 

different answers separately. We believe we could have achieved around 80-90% accuracy on the simple 

concepts tested using a combination of these two questions asked separately, but this would have 

required additional reconciliation between the different answers and a more complicated process. 

The challenge with our solution, which involves directly asking users the broader question we are trying to 

answer, becomes needing to educate the user about what the question means since it’s less obvious. We 

use several means for this education. Most importantly, we provide this explanation at the top of every 

question rather than only in a separate instruction reference. In addition to this, we use a qualification test 

to limit participation to labelers who demonstrate the ability to perform well at this task (discussed in 

§3.3.3) and we provide a more detailed set of instructions for labelers to read when preparing for the test 

or for later reference (see Appendix C for these slightly more detailed instructions). 

The explanation we provide includes several key pieces of information: the meaning of a basic-level 

category, awareness that “None” is a valid answer, a simpler question to help focus the labeler, and a full 

example with the answer highlighted. 

We describe the meaning of a basic-level category by listing four of the properties associated with basic-

level categories. There are many properties, but those chosen are ones we believe to be easier to 

interpret and apply than the others. As an example comparison between an included property and an 

excluded property, we believe it should be more straightforward for a labeler to think about whether he 

can picture a category rather than what his reaction time is in recognizing an object belonging to that 

category. 

Another critical component in the explanation is that ‘None’ is a valid answer. This is of theoretical interest 

and discussed in more detail in §3.4. Of relevance here, however, is that we provide not only the mention 

that this is an option but also an example of an abstract chain of hyponyms (function, polynomial, 

quadratic) where none of the available options would be considered basic-level categories. 

We next provide, in bold italics, a key question: “Which word do you think a young child would learn first? 

(assume exposure to all these things)”. This corresponds to the first property of basic-level categories 
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listed earlier in the description, and to the narrow property-focused question that performs best. This 

enables us to ask the direct question about which is a basic-level category while also guiding the labeler 

to a useful question for focusing the labeler’s attention on a more concrete issue that leads to good 

results in the event the direct question is difficult to interpret. We find this works better than either 

alternative alone. 

Next we show a complete example of a question like the one the labeler will receive, with the correct 

answer in bold. In addition to making this more complete, we believe this provides a simple, concrete 

reminder not to choose an option that is too inclusive (e.g. animal) or too narrow (e.g. robin), but instead 

to choose the option that is at the basic-level (bird).  

This explanation is above the direct question asked (discussed supra) each time a label is requested. 

3.3.3 Presenting the Options 

The options shown in a labeling question involve listing each of the optional categories for the labeler to 

choose between. They are listed from the most inclusive category at the top of the list to the most narrow 

at the bottom of the list.  

In cases where there are large number of options, given that basic-level categories never appear to occur 

near the top of the hierarchy, we remove up to five of the most inclusive categories in the list, starting 

from the top. Since some leaves in the hierarchy are relatively close to the top (albeit generally not 

including any basic-level categories), we do not remove options that would lead the resulting list to 

contain less than five options, excluding ‘None’. 

There are two motivations for removing options near the top. First, while even leaf nodes in the hierarchy 

are occasionally basic-level, in the gold-standard labels basic-level categories generally do not appear in 

the top seven levels of the hierarchy, making the removal of no more than five levels relatively low-risk 

while also making the task easier for labelers. 

Second, in our early in-person testing of the questions we would ask, we heard some feedback that some 

of the words near the top have some of the properties of basic-level categories; in particular, some are 

very short words. Additionally, being very abstract, some of these words have alternate meanings that 
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seem like they could plausibly be learned early by a child, even if they aren’t basic-level. For example, the 

words “whole” has the abstract definition “an assemblage of parts that is regarded as a single entity”. 

Another concept represented by that same word, though, means “including all components without 

exception; being one unit or constituting the full amount or extent or duration; complete”. While this latter 

is also not a basic-level category, it is a short word and some labelers can imagine a child learning it early 

(e.g. “I want the whole cookie”). So, to avoid making some decisions more difficult we remove some of the 

top of the hierarchy. 

In WordNet, many synsets have multiple words associated with them. We choose to only show the first 

word in the synset to avoid confusion and make it easier for users to have a simple list of words to choose 

an individual word from, rather than requiring the labeler to compare lists of words. To help with 

disambiguation, however, we do provide the gloss for the term. Usually seeing the words representing a 

chain up the hierarchy disambiguates which sense of each word is intended based on the fact that they’re 

all related through hypernym/hyponym relations, but this is not always true and it may not be obvious to 

all labelers. Since this is not usually required but can be helpful in some circumstances, adding the gloss 

risks complicating the task or confusing the labeler. We therefore make the font size smaller and place it 

in parentheses and italics so the words being compared still jump out while making glosses available in 

the event they are needed. 

3.3.4 Using a Qualification Test 

The quality of labels can vary widely in Mechanical Turk, where labelers are paid by the label. Since the 

purpose of Mechanical Turk is to obtain results that are difficult to automate, it can be difficult to verify the 

accuracy of an individual label and many get accepted even if incorrect; as a result, malicious turkers may 

submit many low-quality labels and still get paid for them, creating quality issues for those using 

Mechanical Turk for labels (Ipeirotis et al. 2010). 

One effective strategy for obtaining higher-quality labels is to use qualification tests, where a labeler is 

required to follow the instructions and label a set of sample questions with known labels correctly before 

being allowed to participate in the labeling tasks (Alonso et al. 2008). We use a qualification test to 

increase the quality of the labels obtained. Our test asks for ten labels. Eight of these come from our gold-
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standard labels and two are ones we chose which clearly have ‘None’ as the correct answer. We require 

a score of 90% to be eligible for participating in the labeling project. This ensures that labelers are 

effective at the easier cases and at least somewhat capable at the more complicated ones. 

3.4 The “None” Option 

In the psychology literature containing experimentally-verified basic-level categories (Rosch et al. 1976, 

Markman et al. 1997), basic-level categories are contrasted against more inclusive superordinates and 

less inclusive subordinates. In §3.2 we discuss how this simple model does not map cleanly to WordNet. 

The main example discussed there is how the examples used are often salient words at each level while 

WordNet often includes less-salient categories in between. 

An additional challenge we encounter is that some chains in the WordNet hierarchy do not appear to 

include basic-level categories at all. Three examples are shown in Figure 2. 

 

Figure 2: Example chains with no basic-level categories 
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These examples do not fit into the theoretical framework from the psychology literature. It’s unclear 

whether this discrepancy is an oversight in the psychology work in this area or alternatively whether this 

framework is not intended to apply to all nouns and WordNet including out-of-scope nouns in its 

hypernym/hyponym hierarchy doesn’t pose a problem for the framework. 

In the epistemology literature, however, all concepts are either first-level or derived from a process 

starting with first-level concepts (Binswanger 2014), so this is a more interesting case that requires 

explanation. This theoretical framework, however, regards the relationships formed between concepts as 

more complicated than simple hypernym-hyponym relationships.  

For example, mending (“garments that must be repaired”) would fall under what this line of research calls 

a cross-classification (Binswanger 2014). A concept like this would get formed by starting with first-level 

concepts like shirt and pants, generalizing from there up to more inclusive concepts like garment, and 

then—going the other direction—subdividing this concept based on different properties than those used 

to form the generalization. When a concept is subdivided in this way multiple times along independent 

axes (i.e. cross-classified), a particular referent may fall under multiple paths in the resulting 

hypernym/hyponym chain.  

This leads to many awkward sections in the WordNet hierarchy. One case that motivates the inclusion of 

this ‘None’ option is freestone. Freestone (“fruit (especially peach) whose flesh does not adhere to the 

pit”) is most commonly used to refer to a subset of the referents of peach, but freestone is broader than 

that and reflects a distinction that also applies to plum and a handful of other fruit. This is illustrated in 

Figure 3. In WordNet, though, freestone couldn’t be a hyponym of peach, plum, and several other fruits; 

the hyponym relation requires that the hyponym would need to be a subset of any hypernym category. It 

wouldn’t be possible for the freestone plums to be a subset of peach, or for the freestone peaches to be a 

subset of plum. Instead, freestone is instead nested under a broader category edible fruit where its 

referents really are a subset of the parent’s referents. This is illustrated in Figure 4. Edible fruit has a set 

of hyponyms which are not mutually exclusive like peach and plum are (or freestone and clingstone are 

for that matter). But it is not the goal of WordNet to capture these more subtle relationships. 
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Figure 3: Edible fruit subdivisions 

 

 

Figure 4: Edible fruit partial hierarchy in WordNet 

 

Cross-classification is not captured explicitly by relationships in WordNet even in simpler cases like this 

where the categories are at or near the basic-level. This difference leads to concepts descendant from 

basic-level categories ending up in chains not including a basic-level category. This suggests the 

discrepancy between first-level concepts being regarded as the starting point for all concepts and there 

being some chains without any first-level concepts may be a result of a mismatch between the goals of 

WordNet and the goals of this work. While WordNet is the best available resource we are aware of to build 

on in identifying basic-level categories, we also imagine a resource that captures more relations in which 

these basic-level category labels would be even more well-suited and central. 

We have been discussing this primarily in terms of the epistemology literature since this is the framework 

that appears to have the most insights to offer in this particular case. To the best of our knowledge, the 

psychology work in this area does not consider this issue. Since basic-level categories and first-level 

concepts describe the same phenomena, as discussed in §2.2, we suspect the same analysis would apply 

to basic-level categories as described in the psychology literature and the discrepancy is between the 

purposes of WordNet and our purposes in identifying basic-level categories. 
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3.5 The Labeling Process 

We have described the prompt (§3.3.1, §3.3.2, §3.3.3, ), qualification test (§3.3.4), and some of the 

theoretical issues (§3.4) involved in obtaining labels using Mechanical Turk. With this framework in place, 

we now discuss the actual process of using Mechanical Turk to obtain labels. 

The chains we ask labelers to label are critical to how representative the resulting labels are, and this 

selection also affects the number of distinct labels we can obtain. We used three selection mechanisms 

for choosing new chains of hypernyms/hyponyms to label in search for new basic-level categories as 

shown in Figure 5. 

 

Figure 5: Process for Finding Chains to Label in Search of New Basic-Level Categories 

 

First, we include the synsets from the aligned labels described in §3.2. Since what we label is a chain, not 

a synset, we randomly choose 3 distinct chains passing through each selected synset and label each. 

Second, we added to this a random collection of chains across WordNet to expand the scope of labels 

well beyond the salient examples selected by Rosch et al. (1976) and Markman et al. (1997).  

Additionally, as a third (but iterative) source of chains to label, we expand outward from labeled chains 

with a basic-level category to find other nearby chains that may also contain a basic-level category. This 

is where most of our labels come from, though since this is an iterative process assuming an existing set 

of labels exists to expand outward from, the two aforementioned sources are extremely influential in 

determining which portions of the WordNet hierarchy are labeled.  



 
 

32 
 

An example of this third source of labels is shown in Figure 5, which shows a fragment of a tree structure 

like the WordNet hierarchy and how this works in a simple case. In Figure 5(a), a fragment of the 

hierarchy is shown with one node labeled as a basic-level category (noted in black). We start by 

expanding to the nearest neighbors on the same level by going up one level in the hierarchy and down 

one level to find all the siblings not yet labeled; these are highlighted in Figure 5(b). Chains going through 

these nodes are then labeled; since this is a fragment often somewhere in the middle of the hierarchy, 

each of the nodes appearing as leaf nodes actually have children in WordNet, so again we select three 

random chains passing through the gray node. In an ideal case, the basic-level categories are all on the 

same level, so we presume this case and show the new labels as black in Figure 5(c). 
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Figure 6: Expanding from Basic-Level Categories to Nearby Synsets to Label 

 

Note that if siblings of basic-level categories are necessarily basic-level categories, this labeling process 

would not be needed for these nodes. So, while in this diagram we presume the proposed nodes are in 

fact confirmed to be basic-level categories, but in reality it could end up being a different node, such as 

one of the proposed node’s children. 

Figure 5(d) reminds us that this is a fragment of the hierarchy and shows the three labeled nodes in a 

broader context with more nodes remaining to label. Here, we cannot expand outward to siblings since all 

the siblings are labeled from the previous step. So instead, we expand to additional nearby nodes on the 
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same level by going up two levels in the hierarchy and then down two levels, this time finding the cousins 

as illustrated in gray in Figure 5(e). Again three chains through these nodes are randomly chosen to be 

labeled, and presuming the proposed nodes turn out to be basic-level categories the result is shown in 

Figure 5(f) where these nodes are now black as well. 

We also expand to a third level out by going up three levels and then down to all descendants three levels 

below that looking for chains to label that aren’t already labeled. This is not pictured for brevity. In each 

case, we expand to the nearest group with any remaining nodes to be labeled, only expanding another 

level out when all of these nodes are successfully labeled. 

A key motivation for this expansion is that many siblings of basic-level categories are also basic-level 

categories, so it is a straightforward way to find new nodes that contain basic-level categories. Randomly 

selecting chains may result in many chains chosen from dense portions of the hierarchy, for example 

under person, a basic-level category with more than 400 subordinates and many more chains passing 

through it. By starting at a basic-level category and carefully expanding outward, we avoid submitting 

many labels through the same basic-level category, reducing the labeling effort required. This does create 

clumps of labels rather than having them randomly distributed throughout the hierarchy, but to the extent 

the locations of the clumps are chosen randomly this can still be a representative sample, albeit with 

higher variance. 

Another issue related to bias in the nodes labeled is that we do not expand from ‘None’ answers. When a 

chain does not have any basic-level categories, we have no basic-level category in the list to expand 

from. This could artificially limit the number of ‘None’ labels. 

There are two distinct type of ‘None’ labels. In one case, like freestone as discussed in 3.4, the ‘None’ 

labels are siblings of basic-level categories and as long as we select one chain passing through a basic-

level category nearby we can find these through expansion. Since we always select three distinct chains 

through any possible basic-level categories, this also helps reduce the likelihood of missing ‘None’ 

chains. 
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Another category of ‘None’ labels is those that are clumped together rather than adjacent to basic-level 

categories. It has been proposed, for example, that all nodes passing through abstraction (synset 

abstraction.n.06) may not contain any basic-level categories (discussed further in §4.2.2.1.14). These 

would inherently be underrepresented in our labeling process. We may select some randomly at the 

beginning, but since many of our labels come from expansion from these labels we do not find the nearby 

chains which would also be labeled ‘None’. The ratio of randomly-selected chains labeled as ‘None’ was 

slightly less than the ratio from expanding from basic-level categories, though, so this appears to be a 

relatively small problem since it didn’t drive a substantial difference in the other direction here. 

We have described the process of selecting which new chains get labeled. We have also mentioned that 

we label three chains passing through each possible basic-level category. Whenever we label a chain, we 

have three independent labelers label the chain. We use voting to choose the most common label for the 

chain. This is sufficient for labeling the chain itself, but for chains with a basic-level category already 

labeled in them we can get one positive label and additional negative labels. All the nodes in the chain not 

labeled as basic-level are taken as negative examples.  

Further, if we have three or more chains labeled through this same basic-level category, each with that 

basic-level category chosen as basic-level, we infer that this is a strong basic-level category label and 

infer that it is the basic-level category for all the chains running through that node. This enables us to infer 

additional negative labels; most of these are the subordinates of the basic-level category, but also since 

some nodes have multiple hypernyms we also have a small additional number of superordinate negative 

labels as well. As mentioned previously, WordNet senses are much more fine-grained and on average 

less salient than those in the previously-available labels, so we are using the terms subordinate and 

superordinate loosely in referring to all of the nodes above and below the basic-level category in the 

hypernym/hyponym hierarchy, respectively. 

This also leads to one additional source of chains to label not mentioned previously. Rather than finding 

new basic-level categories, we also have a small number of chains we want labeled to get stronger 

confirmation that an existing basic-level category label is strong enough to extrapolate to the other chains 

running through that node. The process for finding new chains to label attempts to handle this 
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automatically by expanding outward from basic-level categories and selecting three random chains 

including each node at the same hierarchical level as a nearby basic-level category. If the basic-level 

category is at a higher level than expected (e.g. the aunt of the node being expanded from), there will be 

at least three labeled chains already through that node. If the nodes chosen as basic-level by the labelers 

are at a lower level in the hierarchy, however, more labels are likely required since there will usually only 

be one chain labeled through each of these new basic-level categories. So in this case, we choose a 

couple more chains passing through the already-labeled basic-level category to confirm the label. This is 

not looking for a new basic-level category, the process described previously in Figure 5, but adding this 

as an additional source of new chains to label helps to extrapolate better to additional negative labels. 

Finally, occasionally there will be a disagreement between labelers in selecting the basic-level category 

on the chain. While voting works well, we request more labels on a chain in some circumstances. We 

request an additional seven labels for a chain when a minority of the labels is ‘None’ or when there is no 

clear winner (e.g. when there are three different answers). Since this is an indication of a potentially 

difficult case, getting a larger number of labels helps to make the voting more reliable by reducing the 

variance in the responses. 

In summary, we start with both an existing set of gold-standard labels and random sampling to label, and 

expand that outward by choosing new chains to label that are likely to lead to new basic-level category 

labels. We have several labels per labeled chain and use voting to determine the winner, though in some 

circumstances we request additional labels on the chain to make a more informed decision. We are 

specifically focusing the prompt on finding the positive labels, but we extrapolate both up and down the 

hierarchy from basic-level categories to obtain the related negative labels. 

3.6 Reviewing Targeted Labels 

In some cases, since parallel chains are being labeled, conflicts appear where a category present in 

multiple graded chains is labeled as basic-level in one chain and not basic-level in another. We review 

these cases as well as cases where ‘None’ was a minority choice, correcting egregious errors while 

leaving borderline cases with their original labels. Since the number of positive labels is relatively small, 

we also review these. Through these reviews, we make corrections to thirty-five labels, representing 0.3% 
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of the total number of labels resulting from this labeling process. Note that these label corrections are 

after the voting process, which already filters out some individual labeling errors.  

We notice three main sources of error. 

The first is that a number of superordinates are chosen as basic-level. There are some common 

superordinates, particularly including fruit, plant, animal, and food. These cases are easy to identify 

since there are many other categories below these in the hierarchy that are labeled as basic-level. It 

would be possible to automatically identify and remediate these mistakes based on conflicts, but since it 

is rare it was sufficient for us to correct these cases manually. Interestingly, these examples are all 

relatively short, frequent words. 

Another source of error is chains that should be labeled as ‘None’, particularly those with short, 

polysemous words elsewhere in the chain as well as meronyms and materials. Examples include plastic 

and handle. There is some overlap with the first error case, such as with the ‘None’ chain including 

freestone (an example discussed in more detail in §3.4), which provides an opportunity for fruit being 

chosen over ‘None’ even if ‘None’ does appear as a minority response that does not win the vote. 

A third source of error is basic-level categories not common in countries where English is the primary 

language. For example, niqab represents a piece of clothing that’s very common in Saudi Arabia where 

Islamic women often cover their faces in public, but rare in the United States where this is less common. It 

would be natural to think of this as a basic-level category just like shirt or pants. However, since one of 

the properties of basic-level categories is that they’re frequent, this is not true in this case. We mostly 

encounter this error with Islamic clothing and some locale-specific fruits. 

3.7 Basic-Level Category Labels 

Our labeling process results in a total of over eleven thousand labels; we show this by label category in 

Table 3. The terms “Superordinate” and “Subordinate” are used loosely hereafter when discussing these 

labels, referring to categories above or below a basic-level category in the WordNet hypernym/hyponym 

hierarchy, respectively. 
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Table 3: Label Frequency by Subcategory 

Label Category Labels 

Superordinate             126  

Basic-level             258  

Subordinate        10,348  

None             489  

Total        11,221  

 

The overwhelming majority, 92% of the labels, are ‘Subordinate’ labels. WordNet is heavily weighted 

toward the bottom of the hierarchy, and this reflects that. The next most common category is ‘None’ at 

4.4%. Only 2.3% of the labels are positive examples of basic-level categories, a label bias that could 

make it difficult for automated systems to identify this relatively rare class. 

The WordNet synsets corresponding to the positive (basic-level) labels are listed in Table 46 in Appendix 

D. With a total of 82,115 noun synsets in WordNet, we have labeled 14% of all synsets. From this label 

set we can estimate that there are around 1,888 basic-level categories in WordNet. This supersedes our 

previous estimate of 1,620 (Mills et al. 2018). 

3.8 Label Accuracy 

As previously mentioned, our labeling process is initially seeded, in part, with categories that are labeled 

and experimentally verified in the psychology literature (Rosch et al. 1976, Markman et al. 1997). While 

we seed the list of categories to label, we do not simply accept these labels as given and expand from 

these (and the random set we also include). We actually label these seed categories using the standard 

process, which provides an opportunity to measure alignment between the two sets of labels.  

This is not a perfect measure of accuracy since we have argued the Rosch-Markman labels are a biased 

subset of labels, and because one of the existing label sources (Rosch et al. 1976) is inherently more 

reliable than the other (Markman et al. 1997) given the experimental process used, as discussed in §3.1. 

Nonetheless, we believe it is the best estimate of labeling accuracy available, at least within the context of 

the way the problem is thought about in the psychology literature. 
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We find that 95% of the labels, where the WordNet synset being labeled was in common across the two 

sets, are in agreement. Interestingly, each of these disagreements is labeled as ‘None’ by our labeling 

process, an option which has not been discussed in experiments in this area.  

Each of the disagreements is interesting, albeit in different ways. We do not believe these are all errors in 

the labeling process but, not having a clear and objective way of resolving this small number of 

disagreements, we present potential interpretations for each.  

Two of the disagreements, synsets freestone.n.01 and cling.n.01, are closely related and are clearly 

examples that fall within the ‘None’ option as we have described it; in fact, freestone is used as an 

example in §3.4. However, this is not as clearly a mistake in the experimentally-validated labels as it may 

appear. We align “freestone peach” and “cling peach” from Rosch et al. (1976) to the WordNet synsets 

freestone.n.01 and cling.n.01. While these are easily the categories most closely aligned to one another 

across sets, the conceptual vocabulary that WordNet provides does not align perfectly to the conceptual 

vocabulary used by Rosch et al. (1976). Freestone.n.01, for example, is more general than “freestone 

peach” since it also includes “freestone plum” and others even if freestone is almost always used to refer 

to peaches. The error here may be in our alignment between Rosch et al. (1976) and WordNet, in the 

decision to treat “freestone peach” as an independent category rather than a combination of categories in 

Rosch et al. (1976), or in WordNet’s failure to include the more granular category “freestone peach”. 

Regardless, we believe that ‘None’ is the appropriate label given the synset freestone.n.01 that appears 

in WordNet, that ‘Subordinate’ is the appropriate label within the options provided by Rosch et al. (1976), 

and that this discrepancy does not substantially affect our systems derived from these labels since both of 

these are negative (non-basic) category labels. 

Shelter.n.01 is the disagreement most indicative of a potential mistake in our labeling process, although 

not with the individual response of a particular labeler on a particular hyponym chain of categories. In 

WordNet there are many hyponyms of shelter.n.01 and some of these chains include basic-level 

categories while others do not due to the inclusion of both basic-level subordinates and cross-

classifications like the previously-discussed freestone. In this case, shelter.n.01 was in a number of 

chains labeled that all happened to have their correct answer as ‘None’. 
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Underwear.n.01 is another interesting case but in our opinion it is less clear whether this is a labeling 

mistake on either side or just a complicated case. Underwear.n.01, at least as defined by WordNet, is a 

very broad term encompassing essentially anything worn next to the skin and under outer garments. 

Given the wide range of clothing included in this range, it is not entirely surprising that annotators do not 

choose this as a basic-level category. On the other hand, we do have underpants.n.01 as a basic-level 

category. Strangely, in WordNet this is a sibling of underwear.n.01, sharing the common hypernym 

undergarment.n.01. There may be a reasonable explanation of this, such as it being possible that what 

people typically think of as standard examples of underwear could be worn over other clothing and 

arranging the synsets this way to avoid incorrect implications. While we generally do not quibble over 

individual difficult decisions made in developing such a comprehensive and challenging-to-develop 

resource as WordNet, this is an instance where our intuitions differ from the hierarchy in WordNet. This 

resulting issue could be due to a mistake in WordNet, a mistake in our mapping the word ‘underwear’ to 

underwear.n.01 instead of underpants.n.01, or a mistake by our annotators (and one we did not make 

easier for them with examples or training). 

Overall we find the agreement rate is very high and each of the disagreements is instructive in 

understanding the sorts of issues we face in bridging data across psychology experiments and a lexical 

resource like WordNet, with both process challenges and difficult decisions for annotators along the way. 

Fortunately, these cases are a rarity and we consider there to be strong alignment between our labels 

and the Rosch-Markman labels. 

3.9 Canonical Sets for Experimentation 

We divide the labels up into sets for experimentation, including a train, development, and test set. Since 

experiments may take advantage of local tree-based features, we divide the sets at a superordinate level, 

placing all synsets under each superordinate in the same set. An additional motivation for this division is 

that since many of the labels are obtained through outward expansion from known basic-level categories 

the actual task of extrapolating to unlabeled categories more closely resembles needing to apply learned 

patterns to new portions of the hierarchy. 
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Various trade-offs are needed due to trying to place hierarchically nearby categories together, the sets do 

not divide perfectly. We particularly prioritize dividing up the positive labels (basic-level categories) across 

the three sets, and within the basic-level categories we prioritize getting a relatively even split between 

train and test.  

While we believe this is the best way to divide the set for experiments, this does lead to some 

imbalances. One imbalance in the quantity of basic-level categories per set, where the development set is 

somewhat impoverished relative to the more closely-balanced train and test sets. The most substantial 

imbalance, however, is in the count of subordinates across sets since some regions in the graph are 

much more dense with subordinates than others. This is particularly pronounced for the biological 

categories; we placed these in the train set, which makes 91% of all subordinate labels appear in the train 

set. However, subordinates are nonetheless the most common in each set. The breakdown is shown in 

Table 4. 

Table 4: Label Experiment Set Sizes 

Set Superordinate Basic-level Subordinate None Total 

Train 59 102 9,387 303        9,851  

Development 26 61 319 88           494  

Test 41 95 642 98           876  

Total 126 258 10,348 489      11,221  
 

The basic-level categories in each set are listed in Appendix E, with the train set in Table 47, the 

development set in Table 48, and the test set in Table 49. While not fully explaining the divisions, roughly 

speaking the biological categories are in the train set; clothing, eating-related, and cleaning-related 

objects are in the development set; and everyday objects like tools, devices, furniture, and means of 

transportation are in the test set. 

3.10 Task Difficulty 

We use crowdsourcing, ask annotators to select from a list rather than making binary judgments, and 

then we use multiple levels of agreement to accept a label; while this process appears to be efficient at 
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generating high-quality labels as discussed in §3.8, this complex process does not lend itself well to 

standard measures of task difficulty. 

To this end, we train two individuals with linguistics backgrounds as expert annotators to determine how 

difficult it is to label an individual concept as basic-level or not. We use the train set, as described in §3.9, 

to train the annotators by showing the correct labels. We provide the annotators with the same training 

material used on the Mechanical Turk labeling task showing how to choose the basic-level category in a 

chain. We then reframe this as a binary basic-level categorization task without providing the chain in the 

hierarchy, instead providing a list of individual concepts without their hierarchical context, indicating 

whether each concept presented is basic-level or not for the annotator to learn from. 

We then split the development set into two, having one half setup as a test where the annotators have the 

answer key to reference, and the other half being a preliminary test where annotators do not have the 

answer key to ensure they perform at a reasonable level before exposing them to the test set. Finally, we 

have the annotators grade the test set. 

Since these sets are large, we use stratified sampling per label subcategory to ensure reasonable 

representation with around 100 categories annotated per label subcategory, excepting superordinates 

where only forty-one labels exist in the test set. In total we obtain 334 labels with only the subordinate 

label subcategory being subsampled since this is the only one with over one hundred labels in the test 

set. After annotation, however, we re-weight the sample to reflect the overall test set when calculating 

inter-annotator agreement and the corresponding term in the kappa coefficient calculation. 

We report our results in Table 5, which shows that the task is relatively hard. The inter-annotator 

agreement itself is substantial though imperfect at 92%; when taking into account the difference across 

label subclasses with the kappa coefficient this drops to 0.61. 

Table 5: ITA and Kappa for Basic-level Category Annotation 

Metric Value 

Inter-annotator Agreement 92% 

Kappa coefficient 0.61 
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This value for the kappa coefficient barely falls within the “substantial agreement” bucket in a scale 

published by Landis et al. (1977) and widely-used(Viera et al. 2005). It is barely across the boundary from 

moderate agreement, which extends up to 0.60. This shows that our task is relatively difficult, yet there is 

still a substantial degree of agreement among annotators which indicates the data should provide useful 

signal to learn from. 

The largest source of disagreement between annotators is on cases where None is the gold-standard 

label. In each of the other label subcategories, agreement rates both between annotators and comparing 

annotators to gold-standard labels fall between 93% and 98%. On None, however, the agreement rate is 

only 86% between annotators and 67% to 69% when comparing annotators to the gold-standard labels. 

This shows a non-trivial amount of overlap in these mistakes between the annotators. We find in our 

Mechanical Turk-based labeling work that these are the most difficult cases and the presence of a 

minority of None labels is still an indicator of a None label since this is challenging and None labels are 

rare. Recall from §3.6 that we review all cases where a minority of labels are None for this very reason. 

Given the consistency of this being a problem for both labeling approaches, we believe these 

disagreements are an accurate reflection of the difficulty of the labeling task; this further justifies our work 

to reduce error in our labeling process when encountering a minority of None labels. 

While we report this inter-annotator agreement and kappa score on a binary labeling task to better 

compare the difficulty of this task with other labeling tasks reported in this way, our labeling task is not a 

binary labeling task. Instead, we have asked annotators to choose the basic-level category among a list 

of choices. We would expect this to be more challenging than binary labeling since there are more 

options and thus more opportunities to disagree. We therefore compare the inter-annotator agreements 

between the expert annotators on their binary labeling task and the crowd-source annotators on the more 

complicated multi-option labeling task in Table 6. The inter-annotator agreement for crowdsource 

annotators on the multi-option labeling task is calculated as the portion of annotations which correspond 

to the most popular response for the respective chain being annotated, with ties for the most popular 

response per chain broken arbitrarily to avoid overcounting. 
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Table 6: ITA Comparison Between Expert and Crowdsource Annotators 

Annotation Method Inter-annotator Agreement 

Expert annotators, binary labeling task 92% 

Crowdsource annotators, multi-option labeling task 71% 
  

We do find that the multi-option labeling task is more challenging, which further motivates our use of 

multiple layers of redundant labeling to maintain high accuracy, including multiple annotations on each 

chain as well as multiple chains being annotated with the same basic-level category. 

3.11 Lessons Learned from the Labeling Process 

The  most substantial lesson learned from the labeling process is that chains up the WordNet 

hypernym/hyponym hierarchy do not fit perfectly into the theoretical framework described in the 

psychology literature. Notable differences include WordNet often having uncommon, specialized words in 

between basic-level categories and their superordinates or subordinates. Perhaps even more 

challenging, however, is that some chains do not include basic-level categories at all; this requires the 

addition of a ‘None’ option when labeling chains. 

These differences highlight that the Rosch-Markman labels from psychology experiments, while certainly 

interesting for motivating and experimenting on the psychological consequences of basic-level categories, 

are not broadly representative of how basic-level categories fit into the broader English lexicon. 

We also learn that the basic level subsumes vastly different numbers of subordinates in different parts of 

the hierarchy. In particular, basic-level categories within the domain of organisms we label tend to have 

substantially more subordinates than others. The many subordinates under person indicate this is not 

just due to an abundance of scientific terms for creatures, but at least in this case it illustrates how 

categories that help people make distinctions between the many sorts of phenomena they deal with on a 

daily basis form a sizeable portion of this large number of subordinates. 

While the previously-available labels are biased, providing a broader spectrum is also harder with both 

theoretical and practical issues making the problem challenging. 
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In addition to the problem itself, we also learned that the wording of instructions and questions in 

Mechanical Turk is critical to obtain high-quality labels. This requires being careful to word text for a non-

technical audience not familiar with the theoretical framework underlying the task. This does lead to 

shortcuts which may cause additional problems.  

For example, we have strong evidence that using “basic word” instead of “basic-level category” or “first-

level concept” leads to better answers. However, we also believe this conceivably could be causing some 

of the common error cases, such as people choosing simple words that represent a broad, general set of 

referents (e.g. fruit) rather than more complicated words (e.g. pomegranate) that represent a simple 

basic-level category. In cases where the basic-level category is also a simple word (e.g. apple) the 

labelers are able to make the correct choice, but it seems harder for them to choose complicated words 

that represent simple concepts since mistakes did occur in this area. This could very well be due to our 

usage of “word” rather than a more accurate term like “category” or “concept” in the prompt. 

We attempt to strike a balance of using simple language but also providing sufficient detail to explain the 

ideas, along with a qualification test to ensure the labelers have read and applied the guidelines 

successfully. This enables us to use simple language to remind labelers of the question they are 

answering. Errors are very low overall, so oversimplification in the prompt language may be an issue but 

this was not as substantial as the improvement using more common words that do not perfectly align to 

technical distinctions we could make. 

We have struck a balance between clear and technically-precise language, which overall is net positive 

for labeling. The need for this balance, as well as the expansion of the theoretical framework underlying 

the labeling process, comprise the main insights we learn from the labeling process. 
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Chapter 4   

Heuristic-based System 

We build a heuristic-based system to identify basic-level categories in WordNet as a baseline to compare 

later machine learning-based approaches against. This system takes all WordNet noun synsets as input 

and outputs which of these are basic-level categories. As a heuristic-based system, it relies on rules; 

most of these rules are based on information contained within WordNet, and we supplement this with 

some external resources to provide additional context including a list of stopwords (Bird et al. 2009), the 

Brown, SEMCOR, and Gutenberg corpora for word frequency (Francis et al. 1964, Landes et al. 1998, 

MacWhinney 2000, Gutenberg 2018), the CHILDES corpus (MacWhinney 2000) for a list of words 

learned in early childhood, Dolch’s Word List of words spoken by kindergarteners(Dolch 1948), and the 

CMU Pronunciation Dictionary (Weide 1998).  

4.1 Background 

Francis Bond taught a class and in two separate terms assigned a class project to build a system to 

identify basic-level categories in WordNet (Mills et al. 2018). This resulted in 29 student projects each 

independently trying to solve this problem. We catalog the types of approaches and rules considered, 

taking these as inspiration for our system and combining a slightly-constrained set of these, as well as 

novel rules, into a combined system. 

4.2 System Description 

While the goal is to produce one system by evaluating the collective set of rules, some boundaries are 

needed to constrain this. For example, one student only considered words also appearing in the 

‘adventure’ category of the Brown corpus (Francis et al. 1964), a small, categorized corpus of English, 

which restricts the project beyond the goals of this work. We therefore start with a general approach 

common to most solutions (§4.2.1) and describe the relevant rules (§4.2.2) 
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4.2.1 General Approach 

We start with all noun synsets in WordNet as input to our system. We restrict ourselves to nouns because 

the available labels discussed in §3.1 and aligned to WordNet in §3.2 are all nouns, as well as to make 

the problem more tractable, though it is worth noting some research has indicated it is likely possible to 

extend the basic-level to other parts of speech (Lemaitre et al. 2013). 

Taking the synsets in WordNet with labels, the goal becomes to extrapolate from these labels to other 

WordNet synsets that are also at the basic-level and not at the superordinate or subordinate levels. In the 

psychology experiments (Rosch et al. 1976, Markman et al. 1997) this is done with words whose senses 

are disambiguated by context, so we operate at the sense level. For our purposes, category and synset 

will be used interchangeably.  

The student projects mentioned in §Error! Reference source not found. identify words, not synsets, t

hough each student tries to map words to synsets to use WordNet features before producing a final list of 

words from there, losing the synset distinctions. For this work, we treat the basic-level as operating at the 

sense level and ensure our labels for training and evaluation are on WordNet synsets to remove this 

unnecessary complexity. 

Essentially everything the students do to identify basic-level categories can be generalized as one of two 

approaches: 

1. filtering out nouns that are not basic-level or 

2. on a particular path from the root to a leaf node in the hypernym/hyponym hierarchy, score each 

node and choose the optimal one as the basic-level on that path  

We adopt both of these approaches, first applying a set of Filtering Rules to remove synsets unlikely to be 

basic-level and then choosing at most one per path based on a set of Voting Rules. The system diagram 

is shown in Figure 7. 
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Figure 7: Heuristic System Architecture Diagram 

 

Students consider a few other extensions, such as taking the top 2000 results with a provided sorting 

function, but since we do not want to assume a particular number of basic-level categories or otherwise 

restrict our system, we do not incorporate these approaches. Many students also dedupe their final list, 

deal with lemmatization, and other issues that are not necessary when operating at the synset level and 

thus are omitted here. 

4.2.2 Rules 

We catalog the rules students use and add four of our own novel rules. In addition to adding novel rules, 

we generalize and parameterize student rules where possible to enable experimenting with different 
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thresholds. Some rules are dependent on having a word, while we have synsets as our labels and these 

may have multiple words (lemmas) associated with them. We typically consider two possibilities for rules 

when a word is required to apply the rule: filtering the synset if any of the lemmas associated with the 

synset triggers the rule, or taking the first lemma associated with the synset (typically the most frequently 

used) and only applying the rule to that lemma. Students choose the latter, which is often best, but we 

consider both possibilities. 

4.2.2.1 Filtering Rules 

We use a variety of filtering rules, which filter out synsets from consideration as basic-level categories. 

This is a first pass that is intended to remove many synsets, with the Voting Rules described in §4.2.2.2 

used for resolving cases where multiple synsets have not been filtered out in the same chain up the 

hierarchy. 

We show a summary of the filtering rules in Table 7. Parameter ranges used by students, or examples in 

cases where there are long lists of parameters, are shown after the rule. Ranges are given in interval 

notation to avoid boundary condition ambiguity. We then describe these rules in more detail. Our novel 

rules are Rules 36-39, all four Filtering Rules.  

Table 7: Filtering Rules Used to Filter Non-basic Categories 

Filtering Rules 

1. Filter words with a set of suffixes (-ing, -ment, … [59 total])  
2. Filter words with a set of prefixes (un-, th-) 
3. Filter words of length n or greater [7, 16] 
4. Filter words of length n or fewer [1, 4] 
5. Filter space-separated compound words 
6. Filter hyphenated words ('-') 
7. Filter joined compounds (e.g. ‘racetrack’) 
8. Filter words with numbers 
9. Filter words with symbols 
10. Filter words with more adjective than noun senses 
11. Filter words with more adverb than noun senses 
12. Filter words with over 1 more verb than noun sense 
13. Filter words that are not substrings in immediate subordinate nodes 
14. Filter words containing any word at a higher level 
15. Filter stopwords 
16. Filter plural words 
17. Filter words with no vowels 
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18. Filter words with over n vowels [1] 
19. Filter capitalized words 
20. Filter synsets with average depth ((min+max)/2, recursive) outside the range a to b [4.2, 9) 
21. Filter synsets with average height ((min+max)/2, recursive) outside the range a to b [1.1, 2.2) 
22. Filter synsets with avg_depth/(avg_depth+avg_height) outside the range a to b [.74, .91] 
23. Filter the top n levels of the hierarchy [2-7] 
24. Filter nodes with n levels below them (5) 
25. Filter synsets with an average depth ((max+min)/2) outside the range a to b [0, 5.4) 
26. Filter the bottom n levels of the hierarchy [1, 3] 
27. Filter synsets n or more levels deep [9, 15] 
28. Filter siblings of synsets with 0 hyponyms 
29. Filter nouns with a to b hyponyms [0,2], [5,inf) 
30. Filter synsets in the Brown corpus with frequency < n (1-10) 
31. Filter synsets in the Brown corpus with frequency > n (40) 
32. Filter all synsets under abstraction.n.06 
33. Filter all synsets except those under set S (combinations of physical_entity.n.01, thing.n.08, 

substance.n.01, process.n.01) 
34. Filter all words in the CHILDES corpus 
35. Filter words in the CMU Pronouncing Dictionary with > n phonemes 
36. Filter all synsets with n or more siblings having no hyponyms 
37. Filter all synsets with at least p percent of siblings having no hyponyms 
38. Filter synsets with less than n siblings 
39. Filter words not in the Childes corpus 

 

4.2.2.1.1  Filtering Prefixes and Suffixes 

Rules 1-2 involve filtering words with a particular beginning (in the case of prefixes) or a particular ending 

(in the case of suffixes), motivated by the idea that basic-level categories should be simple and affixes 

often indicate a more complicated, derived category. The parameters to be set for each of these rules 

include: 

• the set of affixes to filter 

• the minimum length of a lemma to consider filtering it based on finding an affix 

• whether the rule is applied if it matches any lemma or only the first lemma in the synset 

For the set of affixes to filter, we only consider those suggested by students. The 59 total suffixes 

suggested are shown in Table 9. The only prefixes suggested by students are ‘un-‘ and ‘th-‘, so those are 

the only two we consider. 



 
 

51 
 

Table 8: Prefixes Considered in Filtering Rule 1 to Filter Categories with a Prefix 

-ability -cess -est -ize -sis -tics 

-acy -d -ful -le -sity -tion 

-age -dity -hood -less -sm -tion 

-al -dle -ian -logy -some -tive 

-ance -dosis -ic -ment -ssary -tor 

-ate -e -ing -ness -ssory -tory 

-bent -ed -ism -re -tal -ture 

-bess -ence -ist -s -tant -ty 

-c -er -ity -ship -th -y 

-ce -ess -ive -sion -tic  
 

4.2.2.1.2  Filter Words by Length 

Rules 3-4 involve filtering out long and short words, respectively. Basic-level categories tend to be 

relatively short words. The parameters to be set for these rules include: 

• the boundary length (minimum length when filtering long words, maximum length when filtering 

short words)  

• which lemma(s) the rule is applied to: 

o all lemmas associated with the synset (if any matches, the synset is filtered)  

o the first lemma in the synset 

o the shortest lemma in the synset 

4.2.2.1.3  Filter Compound Words 

Rules 5-7 filter out compound words. For Rule 5, multi-word expressions (words with at least one space in 

them) are filtered out. Note that WordNet uses an underscore (‘_’) to represent a space, so while the 

semantics involves filtering out words with spaces the technical solution actually involves filtering 

underscores. Rule 6 filters out hyphenated words. 

Rules 5 and 6 have only one parameter: 

• whether the rule is applied if it matches any lemma or only the first lemma in the synset 



 
 

52 
 

Rule 7 filters out words that are joined compounds, like ‘racetrack’, which is a compound of ‘race’ and 

‘track’. Since we are using WordNet for this task, we assume the components are also lemmas in 

WordNet. We look for any combination of other noun lemmas in WordNet The purpose of a parameter of 

only considering the first lemma in a synset is to apply the rule to the commonly-used form of the synset 

rather than a rarely-used alternative; in this case, for finding compounds we allow any lemma (not just the 

first) of any noun synset in WordNet to be a component in a compound. The parameters for Rule 7 

include: 

• whether the rule is applied if any lemma in the synset is a compound or only if the first lemma in 

the synset is a compound (in both cases, as noted supra, the components may include non-first 

lemmas of other synsets) 

• the minimum length of a lemma to be considered as a possible component of the compound 

This last parameter for Rule 7 is intended to avoid spurious compounds with several small words 

combining together to form larger words that are unrelated (e.g. ‘are’ and ‘a’ forming ‘area’). 

4.2.2.1.4  Filter Numbers and Symbols 

Rules 8 and 9 filter out words with numbers and symbols, respectively. Words with numbers are those 

that contain any 0-9 digit.  

Words with symbols in Rule 9 are defined using a negative definition: words with characters that aren’t 

alpha-numeric, a space, or an underscore (which is how WordNet encodes spaces). Rather than using a 

known list of symbols, we instead use this negative definition to avoid missing any. For all practical 

purposes, however, given that WordNet is a hand-curated lexicon developed in the English language, we 

do not expect any substantial difference between this and using a long list of symbols with a positive 

definition. Note that hyphen (‘-‘) here would be considered a symbol, so Rule 9 also filters out everything 

filtered by Rule 6, all else being equal (i.e. considering the same lemma(s) with respect to the synset 

being filtered). 

The only parameter for Rules 8-9 is: 
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• whether the rule is applied if it matches any lemma or only the first lemma in the synset 

4.2.2.1.5  Cross-Part-of-Speech Sense Counts 

Rules 10-12 involve counting the number of senses of a word as a noun as compared to one other part of 

speech. Rules 10 and 11 filter out a word if the number of adjective or adverb senses of the word, 

respectively, is greater than the number of noun senses of the word. Rule 12 is slightly more complicated, 

requiring the number of verb senses of a word to be over one more than the number of noun senses of 

the word in order to filter it out. 

In each case, we find the number of senses of the word by counting the number of synsets including the 

word as a lemma in the synset. 

The only parameter for Rules 10-12 is: 

• whether the rule is applied if it matches any lemma or only the first lemma in the synset 

This parameter only applies to the word used for filtering. For example, if only the first lemma in the 

synset is used, we check how many senses of that lemma exist both as a noun and the other respective 

part of speech relevant to the specific rule being considered. If the word appears as a non-first lemma in 

another synset, it will still be included in the sense count. On the other hand, if we consider all lemmas we 

repeat this exact same procedure for each lemma in the synset being considered for filtration, filtering it 

out if the condition is met for any of these lemmas, and again including in the sense count even synsets 

where the word appears as a non-first lemma. 

4.2.2.1.6  Substrings in Hypernym/Hyponym Chain 

Rules 13 and 14 involve looking at other words associated with synsets in the same hypernym/hyponym 

chain and using substring matches as a criterion for filtering. Both rules are based on the intuition that 

subordinates often include the basic-level category above them in the hierarchy as part of their name; for 

example, ball-peen hammer includes its corresponding basic-level category, hammer. 

These two rules are two of only three Filtering Rules which do not have any parameters to be set. We do 

not look at whether non-first lemmas in a synset appear elsewhere in the hypernym/hyponym hierarchy. 
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However, while we do focus on the first lemma as the word to find elsewhere in the hierarchy, we do 

check whether it appears in non-first lemmas of the other synsets in the hierarchy. 

Rule 13 works by assuming basic-level categories will tend to have at least one subordinate that follows 

this pattern. It filters out all words where there are no immediate subordinates (hyponyms) using that word 

as a substring. If none of the lemmas for any of the direct hyponyms of hammer included the word 

‘hammer’, the synset would get filtered out by this rule. 

Rule 14, on the other hand, filters out any words that contain any word higher in the hierarchy as a 

substring. Since ball-peen hammer’s first lemma, ‘ball-peen hammer’, contains its ancestor ‘hammer’ in 

its name, ball-peen hammer is thus filtered out by this rule. 

Rule 13 aggressively assumes this pattern will apply across all basic-level categories, while Rule 14 takes 

advantage of the pattern whenever it is observed at a cost of reducing the number of categories filtered 

out.  

Comparisons for both of these rules are case-sensitive, preventing many trivial substrings (e.g. atomic 

element symbols like ‘Ar’) from appearing to be a substring of many words that are derivationally 

unrelated. 

4.2.2.1.7  Stopwords 

Rule 15 filters out all words that are stopwords. The list of stopwords used is the standard set in the NLTK 

package in Python (Bird et al. 2009). Comparisons are case-insensitive. 

The only parameter for Rule 15 is: 

• whether the rule is applied if it matches any lemma or only the first lemma in the synset 

4.2.2.1.8  Plurals 

Plural words are filtered in Rule 16 by filtering all words ending in the suffix ‘-s’. 

The only parameter for Rule 16 is: 

• whether the rule is applied if it matches any lemma or only the first lemma in the synset 
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4.2.2.1.9  Number of Vowels 

Rules 17-18 filter out words based on the number of vowels they contain. By vowels, we specifically refer 

to the five vowels of the English language (‘a’, ‘e’, ‘i', ‘o’, and ‘u’). We only count vowels that are clearly 

vowels by including one of these characters in their English orthography. We do not use any morphological 

or phonetic rules, such as words ending in ‘-y’ or including syllabic /ɹ/ in their pronunciation. 

Rule 17 filters out words that contain a specified number of vowels or fewer. Rule 18 filters out words that 

contain more a specified number of vowels or more. 

Both rules have the following parameters: 

• whether the rule is applied if it matches any lemma or only the first lemma in the synset 

• the boundary number of vowels to trigger the filter (the maximum filtered for Rule 17, or the 

minimum required for filtering for Rule 18) 

4.2.2.1.10 Capitalized Words 

Rule 19 filters out words that are capitalized. This is determined by whether or not the first letter in the 

word is an upper-case alphabetic character. While this is a simple rule, it may not perfectly align to the 

common conception of capitalized words; for example, it includes acronyms and capitalized abbreviations 

in addition to the standard mixed-case examples that are more canonically considered capitalized words. 

The only parameter for Rule 19 is: 

• whether the rule is applied if it matches any lemma or only the first lemma in the synset 

4.2.2.1.11 Depth and Height 

Basic-level categories tend to occur at a middle level of the hierarchy, and this was perhaps the first 

observation (Brown 1958) that eventually led to the later research into basic-level categories. Since this is 

an important factor in identifying basic-level categories, and there are many different ways to filter based 

on the position in a complex hierarchy, Rules 20-27 all attempt to use this insight as a filter. Since here 

we are filtering by location in a hierarchy, we use synsets directly and do not need to address the issue of 

determining the right word to use to represent a synset. 
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For each of these rules we have a candidate synset being considered as a possible synset to filter. We 

use height to refer to the distance from leaf hyponym nodes up to a candidate node in the hierarchy, and 

depth to refer to the distance from the root hypernym down to a candidate node in the hierarchy. How we 

measure distance varies by rule. 

Rule 20 filters synsets with an average depth falling outside a specified target range, while Rule 21 filters 

synsets if their average height falls outside a specified target range. The distance measurement follows 

the same formula for these two rules, just in opposite directions. 

We describe this height measurement in detail for average height through the use of an example. A 

fragment of the WordNet noun hierarchy is shown in Figure 8. We consider calculating the height for 

orange as we would calculate it for Rule 21. In this example, Jaffa orange, navel orange, and Valencia 

orange are all leaf hyponyms which we take to have a height of one by definition. Sweet orange is the 

parent of these three synsets and no others. Our distance measurement for a parent is one plus the 

average of the minimum and maximum height of each child; since all the children of sweet orange are of 

height one, the minimum and maximum are both one and this makes sweet orange have a height of two. 

Sweet orange’s parent is orange, which has two other children, both height one synsets without 

hyponyms: temple orange and bitter orange. The height of orange, then, is one plus the average of the 

minimum and maximum height of its children. The minimum height is one (from temple orange and bitter 

orange) and the maximum is two (from sweet orange). So, the average is 1.5 and the height for orange 

is then 2.5. These heights are all annotated in Figure 8. 
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Figure 8: Example Calculating Average Height in WordNet – Orange 

 

This example shows how we measure average height for Rule 21 as one plus the average of the 

minimum and maximum heights of a synset’s children in the hierarchy. In Rule 20, we measure depth 

using an analogous formula in the opposite direction, which we do not repeat for brevity. 

Rule 22 takes a ratio of the average height and average depth (as measured in Rules 20-21) using the 

formula shown in Equation 1. 

Equation 1 𝐴𝑣𝑔𝐷𝑒𝑝𝑡ℎ𝐻𝑒𝑖𝑔ℎ𝑡𝑅𝑎𝑡𝑖𝑜 =
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑝𝑡ℎ

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑝𝑡ℎ+𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ℎ𝑒𝑖𝑔ℎ𝑡
 

 

Rules 20-22 each have two parameters: 

• the minimum value allowed 

• the maximum value allowed 
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The specific value being compared is the height, depth, or ratio being computed; any synset with a 

measurement outside the range from the minimum to the maximum value, inclusive, is filtered out. 

Rules 23-24 and 26-27 use a much simpler distance measure for both depth and height. In each case, 

the maximum depth and maximum height is used without any averaging at each intermediate node in the 

chain. All paths from the candidate node to a hypernym root (for measuring depth) or hyponym leaf (for 

measuring height) are considered and the measurement is taken over the longest path. 

Rules 23 and 26 filter out the top and bottom levels of the hierarchy, respectively. Each has a single 

parameter:  

• the number of levels to filter 

For Rule 23, if the depth is measured at this parameter or smaller, the synset is filtered. For Rule 26, if the 

height is measured at this number or smaller, the synset is filtered. 

It may also be possible to filter synsets that are not strictly near the very bottom or top, but which are 

relatively deep or shallow in the hierarchy. Since the hierarchy varies considerably in the distance 

between root and leaf nodes, we also use extreme depth or height as an indication of being on the 

periphery in a longer chain.  

Rule 24 filters out synsets with many others below them, while Rule 27 filters out synsets with many 

others above them. These share the same single parameter as used in Rules 23 and 26, listed supra. 

Rule 24 filters out synsets with a height at least as high as the parameter, while Rule 27 filters out synsets 

with a depth at least as high as the parameter. 

The last rule pertaining to depth and height is Rule 25, which filters synsets by average depth. The 

average again is not the average across all chains but the midpoint between the minimum and maximum 

depth. Rather than doing this in a recursive approach like in Rules 20-22, though, these values for the 

minimum and maximum are simply the length of the shortest and longest chains from a root hypernym 

down to the candidate node.  
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Rule 25 has the same two numeric parameters as Rules 20-22, listed supra. Synsets are filtered if their 

average depth falls outside the range specified by the minimum and maximum parameters, inclusive. 

4.2.2.1.12 Hyponyms 

Rules 28-29 and 36-37 involve filtering synsets based on the number of hyponyms in some relationship to 

the candidate synset. 

Rule 28 filters all siblings of synsets having zero hyponyms. Since basic-level categories should appear 

somewhere near the middle of the hierarchy, a sibling not having any hyponyms could indicate that the 

candidate is a sibling to a non-basic category and thus itself be unlikely to be a basic-level category. Rule 

28 is one of only three Filtering Rules without any parameters to be set. 

Rule 29 filters all synsets with a number of hyponyms in a specified range, requiring two parameters: 

• the minimum number of hyponyms required for filtering 

• the maximum number of hyponyms required for filtering 

Hyponyms falling within the range specified by these two parameters, inclusive, are filtered. 

Rules 36-37 are both novel rules.  

Rule 36 is a more restrictive version of Rule 28; rather than filtering all siblings of synsets having zero 

hyponyms, it filters synsets with at least a specified number of siblings having zero hyponyms. This 

requires one parameter: 

• the number of siblings without any hyponyms required for filtering 

Rule 37 looks at the percentage of siblings having no hyponyms and filters based on this ratio rather than 

a count. It also requires one parameter: 

• the minimum percentage of siblings having no hyponyms required for filtering 
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4.2.2.1.13 Brown Corpus Frequency 

Since basic-level category names will tend to be used to refer to an object unless a more specific context 

requires a different level of granularity (Rosch et al. 1976), basic-level categories may be frequently used 

in a corpus. Although this seems intuitive, we have not seen this validated in any prior research. There 

are many factors affecting when a word is used, including how often the referents are of relevance to a 

discussion; relatedly, more inclusive categories may apply in a wider range of contexts. 

We consider two rules related to corpus frequency. We use the Brown corpus (Francis et al. 1964) a one 

million word corpus of American English, to determine the frequency of a word. 

Rule 30 filters out synsets lower than a specified frequency, while Rule 31 filters out synsets over a 

specified frequency. In each case, two parameters are required: 

• whether the frequency is for the first lemma in the synset or the sum of the frequencies for all 

lemmas in the synset 

• a numerical frequency that marks the boundary between the filtered and unfiltered (the specified 

frequency itself is not filtered) 

4.2.2.1.14 Local Hypernyms 

In the examples of basic-level categories provided in Rosch et al. (1976) and Markman et al. (1997), 

many of the examples are living things, tools, several other broad groupings. There are other parts of the 

WordNet hierarchy that appear to be unlikely to contain basic-level categories. We have two rules aimed 

at using patterns like this to filter out non-basic-level categories. Rule 32 filters all synsets under a 

specified set of synsets, while Rule 33 takes the opposite approach and filters all synsets except those 

under a specified set of synsets. 

In each case, one parameter is required: 

• the set of synsets to use 
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Students only proposed filtering synsets under abstraction.n.06 and filtering all synsets except those 

under physical_entity.n.01, thing.n.08, substance.n.01, and process.n.01. So, in setting parameters here, 

these are the only ones we considered in building the sets used for the parameter. 

4.2.2.1.15 CHILDES 

Since basic-level categories are the first categories children learn, we use early childhood language data 

to inform two filters. The CHILDES corpus (MacWhinney 2000) is a collection of transcripts of early 

language acquisition. One student, the only who used this corpus, proposed a rule where we filter out all 

words in the CHILDES corpus. We include this as Rule 34. Since childhood language would be expected 

to indicate basic-level categories, this is the opposite of what we would expect the ideal rule to be using 

this corpus. It is unclear whether this was an accident on the student’s part or if this was intentional; either 

way, we propose novel Rule 39 as the opposite: to filter out all categories not in the CHILDES corpus. 

Each of these rules requires a single parameter: 

• whether the rule is applied if it matches any lemma or only the first lemma in the synset 

4.2.2.1.16 Long Pronunciation 

Basic-level categories are generally short words; aside from word length itself, another measure of the 

complexity of a word is the number of phonemes included in its pronunciation. The CMU Pronouncing 

Dictionary (Weide 1998) is a machine-readable English pronunciation dictionary which maps words to 

phonetic translations. We use this resource to determine the number of phonemes in a word, and this 

allows Rule 35 to filter out words with more than a specified number of phonemes.  

Rule 35 requires two parameters: 

• whether the rule is applied if it matches any lemma or only the first lemma in the synset 

• the maximum number of phonemes a word can have without being filtered 
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4.2.2.1.17 Siblings 

Many of the example basic-level categories from Rosch et al. (1976) and Markman et al. (1997) map to 

synsets with large numbers of siblings. We propose a novel rule, Rule 38, which filters synsets with less 

than a specified number of siblings.  This requires a single parameter: 

• the minimum number of siblings a synset must have to remain unfiltered 

4.2.2.2 Voting Rules 

Voting rules are used after all of the Filtering Rules have been applied. Whereas the Filtering Rules apply 

at an individual synset level, with logic being applied to a synset to determine whether or not it should be 

filtered, Voting Rules are applied to a synset chain. A Voting Rule can be thought of as giving a single 

point to one or more synsets in the chain. Only synsets not already filtered out remain as potential basic-

level categories, but the entire chain is used for applying the Voting Rules.  

So for example, if a chain of length eight only has two synsets that have not been filtered out by the 

Filtering Rules, those are the only two which may be proposed as basic-level categories. However, if a 

Voting Rule awards a point to the word with the greatest frequency in a particular corpus, even a filtered 

synset may be awarded that point. After applying the Voting Rules, either zero or one categories in the 

chain may be proposed as basic-level categories. In order to be proposed, the category must have the 

majority of the points awarded by Voting Rules, be over a certain minimum threshold, and not have been 

filtered out by a Filtering Rule. 

The Voting Rules considered are listed in Table 9. We then describe each of the rules in more detail. The 

rule numbering continues from where we left off numbering the Filtering Rules so that each rule has a 

unique number. Unlike Filtering Rules, which almost all include parameters, only a few of the Voting 

Rules have numerical thresholds; we used the student values provided rather than setting parameters as 

we did with the Filtering Rules. We describe these only when present.  

Table 9: Voting Rules Used to Select the Best Basic-Level Candidate in a Hypernym Chain 

Voting Rules 

40. Top frequency in the chain (sum of lemma frequencies in synset) 
41. Top frequency in the chain in SEMCOR and frequency <= n (60) 



 
 

63 
 

42. Word length between a and b [3, 7] 
43. Synset is of depth a to b in the hierarchy [6, 10] 
44. The word appears in Dolch's Word List 
45. The word appears in compound nouns 
46. Maximum % of descendants including the term as a compound in the chain 
47. The synset has hyponyms 
48. The highest value in the chain for (frequency in Brown + 1)/15 + (compounds in hyponym subtree 

containing word + 1)/5 
49. Highest frequency in Brown + Gutenberg corpora combined in the chain 
50. Maximum word length in chain 
51. Maximum number of meronyms in the chain 
52. Minimum word length in chain 

 

4.2.2.2.1  Frequency 

Rules 40-41 and Rules 48-49 both involve using corpus frequency to identify the synset in a chain which 

has the highest frequency. Rule 48 includes a combination of both frequency information and information 

about compounds, which are discussed in §4.2.2.2.5, so we defer discussion on that rule to §4.2.2.2.5. 

The other mentioned rules exclusively focus on frequency, so we discuss them here. In all cases, where 

word frequency is involved we arrive at a synset frequency by summing the frequencies of each of the 

lemmas associated with the synset. 

The main difference between the three frequency rules is the corpora used to compute the frequency, 

though Rule 41 and Rule 49 also each have an additional complexity. 

Rule 40 simply finds the synset with the highest frequency using the frequencies built into WordNet.  

Rule 41 does the same thing using the SEMCOR corpus, but also restricts consideration to words under 

a particular frequency. SEMCOR (Landes et al. 1998) is a WordNet sense-tagged corpus. Rule 41 

requires a single parameter: the maximum SEMCOR frequency allowed for a synset to be considered a 

basic-level category. The value used for this parameter is 60 as proposed by the student who used it. 

Rule 49 takes the highest frequency in a much larger combination of two corpora, both Brown (Francis et 

al. 1964) and Gutenberg corpora. The Gutenberg Corpus is a subset of the public domain books available 

on Project Gutenberg (Gutenberg 2018) and made available by the Natural Language Toolkit (Loper et al. 

2002). 
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4.2.2.2.2  Word Length 

Rule 42, Rule 50, and Rule 52 all involve the length of a word. In each case, this is only applied to the first 

lemma in the synset. 

Rule 42 applies to any word with a length in a specified range, which requires a minimum and maximum 

length to define the range of length allowed without filtering. We use a minimum of three and a maximum 

of seven as proposed by the student who used this rule. 

Under this rule, multiple synsets in the chain may equally fall within the range; in this case, this rule votes 

for each of them (i.e. gives each one a point). 

Rule 50 votes for the longest word in the chain, while Rule 52 votes for the shortest word in the chain. In 

the case of a tie, the rule votes for each of the corresponding synsets (i.e. gives each one a point). 

4.2.2.2.3  Depth 

Rule 43 is the only rule which relates to depth. Since we are looking at a specific chain in the 

hypernym/hyponym hierarchy we have no need to deal with the complexity of calculating depth as in 

§4.2.2.1.11. Instead, we simply use the depth of a synset within the current chain being considered. For 

the purposes of this rule, the top synset has a depth of zero and each synset below that has a depth one 

greater than the synset above it. 

Rule 43 votes for all the synsets within a specified depth range, inclusive, which requires two parameters: 

the minimum depth and the maximum depth allowed without filtering. We used values of six and ten for 

these two parameters, respectively, in accordance with the student who used this rule. 

4.2.2.2.4  Dolch’s Word List 

Dolch’s Word List (Dolch 1948) is a list of 510 words commonly spoken by kindergarteners. Rule 44 votes 

for all synsets where the first lemma is in Dolch’s Word List. 

4.2.2.2.5  Compounds 

Rules 45-46 and Rule 48 each involve compound words. A compound, here, specifically refers to a 

lemma name in WordNet that has a space in it (represented as an underscore [‘_’] in WordNet). 
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Rule 45 votes for any synsets where the first lemma in its entirety is used in any other compounds in the 

WordNet noun hierarchy, not just in the specific chain in question. Compounds may be found in non-first 

lemmas in other synsets, so although the candidate synset being voted on only uses its first lemma, it will 

still count if that lemma only appears as a component of a compound in a second or third lemma of 

another synset. 

Rule 46 votes for the synset with the highest portion of its descendants (including those outside the 

particular chain in question) having its first lemma as a part of a compound word in its descendants’ 

lemmas. 

Rule 48 combines compounds with frequency information. As with other frequency measures, this rule 

votes for the highest value in the chain. However, instead of voting for the highest frequency value, it 

votes on the highest value for the quantity represented by Equation 2, which incorporates both frequency 

and compound information. Brown Frequency represents the sum of the frequencies of the synsets' 

lemmas in the Brown corpus (Francis et al. 1964), while Compounds in hyponym subtree represents the 

number of descendants of the candidate node with its first lemma as a component of a compound in the 

descendant node. 

Equation 2 
𝐵𝑟𝑜𝑤𝑛 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦+1

15
+

𝐶𝑜𝑚𝑝𝑜𝑢𝑛𝑑𝑠 𝑖𝑛 ℎ𝑦𝑝𝑜𝑛𝑦𝑚 𝑠𝑢𝑏𝑡𝑟𝑒𝑒+1

5
 

4.2.2.2.6  Hyponyms 

Rule 47 votes for any synset with hyponyms. This means it votes for all but one (the bottom synset) in 

each chain.  

4.2.2.2.7  Meronyms 

Rule 51 votes for the synset in the chain with the most meronyms. Since WordNet includes meronym 

relationships, this used the WordNet meronym relationships and not another source. 

4.3 Experiments 

We use the train, development, and test sets described in §3.10 to build a system combining the Filtering 

Rules from §4.2.2.1, the Voting Rules from §4.2.2.2, and to evaluate their combination. The process we 

use for this experimentation is illustrated in Figure 9. 
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Figure 9: Experiment Design Flow Chart 

 

We start by using the train set to tune parameters on the Filtering Rules, evaluating each rule in isolation 

across its parameter space and choosing the best parameters. This is discussed in §4.3.1. We then apply 

these rules with the parameters from the first step to the development set, and only keep the rules that 

generalize well to this new set. We describe this in §4.3.2. With the set of Filtering Rules finalized, we 

look at the Voting Rules and on the development set, choosing the combination of rules and a threshold 

of votes needed to select a category as basic-level, which we discuss in §4.3.3. Finally, we take this 

complete system and evaluate its performance on the test set in §4.3.5. 

4.3.1 Parameter Tuning Filtering Rules 

We start by tuning the parameters of the Filtering Rules. To do this, we start with any range of parameters 

specified by students and exhaustively explore the relevant parameters for whole-number and categorical 

parameters. For parameters with decimal parameters, within the range of relevant parameter values we 

explore the values to two significant figures. 

Rule 1, which filters prefixes, deserves special mention as an exception to the exhaustive exploration of 

the parameter space. The number of possibilities is a prohibitive 259, so we instead settle for a greedy 
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search where we start at the beginning of the list and add prefixes one at a time, keeping them if they 

help the rule perform better and rejecting them if they harm the rule’s performance or produce no effect. 

We mention optimizing the system performance based on the values of the parameters, but we have not 

discussed an objective function being optimized. We optimize for the number of synsets filtered out by the 

rule, but only insofar as we maintain a precision of 100%. We do not allow any basic-level categories to 

be filtered out on the train set in order to keep the rule.  

In Table 10 we show the best parameter settings for each rule and whether or not the rule produces an 

improvement and thus was kept for Rule Selection or not. 

Table 10: Chosen Parameters for Filtering Rules 

Rule Abbreviated Description Parameters Result 

1 Suffixes Affixes: 'ment', 'ism', 'ness', 'tion', 'ing', 'ty', 
'tor', 'c', 're', 'th', 's', 'ive', 'ance', 'ence', 'ssory', 
'ssary', 'tant', 'bent', 'tory', 'ist', 'dle', 'tal', 'est', 
'ful', 'hood' 
Minimum lemma length: 0  
Lemma(s): first only 

keep 

2 Prefixes Affixes: ‘un’, ‘th’ 
Minimum lemma length: 0  
Lemma(s): first only 

keep 

3 Long words Minimum length: 14 
Lemma(s): first only 

keep 

4 Short words Maximum length: 3 
Lemma(s): first only 

discard 

5 Space-separated compounds Lemma(s): first only discard 

6 Hyphenated words Lemma(s): first only keep 

7 Joined compounds Minimum length: 6 
Lemma(s): first only 

keep 

8 Words with numbers Lemma(s): first only discard 

9 Words with symbols Lemma(s): first only keep 

10 Adjective senses Lemma(s): first only keep 

11 Adverb senses Lemma(s): first only discard 

12 Verb senses Lemma(s): any discard 

13 No subordinate substrings No parameters discard 

14 Substring of superordinate No parameters discard 

15 Stopwords Lemma(s): any keep 

16 Plurals Lemma(s): any discard 

17 No vowels Maximum vowels filtered: 0 
Lemma(s): any 

discard 
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18 Many vowels Minimum vowels filtered: 6 
Lemma(s): first only 

keep 

19 Capitalized words Lemma(s): first only keep 

20 Average depth Minimum: 3 
Maximum: 14 

keep 

21 Hyponym depth Minimum: 1.0 
Maximum: 3.5 

keep 

22 Depth ratio Minimum: 0.57 
Maximum: 0.94 

keep 

23 Top of hierarchy Levels to filter: 4 discard 

24 Many levels below Levels to filter: 10 keep 

25 Low min-max depth Minimum: 4 
Maximum: 14 

keep 

26 Bottom of hierarchy Levels to filter: 1 discard 

27 Many levels above Levels to filter: 14 keep 

28 0-hyponym siblings No parameters discard 

29 Hyponym range Minimum: 1.1 
Maximum: 2.0 

discard 

30 Low Brown frequency Lemma(s): all 
Minimum unfiltered: 1 

discard 

31 High Brown frequency Lemma(s): all 
Maximum unfiltered: 200 

discard 

32 Under particular synset Synsets: abstraction.n.06 discard 

33 Not under particular synset Synsets: physical_entity.n.01, thing.n.08, 
substance.n.01 

keep 

34 In CHILDES corpus Lemma(s): any discard 

35 Long pronunciation Maximum unfiltered: 10 
Lemma(s): any 

keep 

36 Many 0-hyponym siblings 0-hyponym siblings: 65 keep 

37 Fraction 0-hyponym siblings Percent of siblings: 100% discard 

38 Few siblings Siblings: 1 discard 

39 Not in CHILDES corpus Lemma(s): any discard 
  

The portion of each label type filtered out by each parameterized rule is shown in Table 11. The rules 

filtered out are displayed in gray. 

Table 11: Performance on Train Set by Label Subcategory 

Rule Abbreviated Description 

Percent Filtered by Label 

Superordinates Basic-level Subordinates None 

1 Suffixes 27% 0% 15% 19% 

2 Prefixes 0% 0% 1% 0% 

3 Long words 14% 0% 11% 15% 



 
 

69 
 

4 Short words 2% 6% 1% 1% 

5 Space-separated compounds 32% 9% 3% 28% 

6 Hyphenated words 0% 0% 3% 2% 

7 Joined compounds 5% 0% 6% 3% 

8 Words with numbers 0% 0% 0% 0% 

9 Words with symbols 0% 0% 3% 3% 

10 Adjective senses 3% 0% 2% 1% 

11 Adverb senses 0% 0% 0% 0% 

12 Verb senses 2% 1% 1% 3% 

13 No subordinate substrings 0% 26% 72% 47% 

14 Substring of superordinate 22% 6% 22% 23% 

15 Stopwords 2% 0% 0% 0% 

16 Plurals 5% 4% 7% 15% 

17 No vowels 0% 0% 0% 0% 

18 Many vowels 14% 0% 10% 16% 

19 Capitalized words 0% 0% 17% 4% 

20 Average depth 5% 0% 2% 1% 

21 Hyponym depth 10% 0% 0% 1% 

22 Depth ratio 19% 0% 0% 0% 

23 Top of hierarchy 22% 4% 0% 9% 

24 Many levels below 27% 0% 0% 0% 

25 Low min-max depth 12% 0% 2% 1% 

26 Bottom of hierarchy 0% 65% 79% 76% 

27 Many levels above 0% 0% 3% 1% 

28 0-hyponym siblings 0% 65% 79% 76% 

29 Hyponym range 0% 3% 4% 6% 

30 Low Brown frequency 34% 49% 67% 7% 

31 High Brown frequency 8% 4% 1% 2% 

32 Under particular synset 10% 1% 1% 6% 

33 Not under particular synset 7% 0% 0% 4% 

34 In CHILDES corpus 37% 53% 12% 14% 

35 Long pronunciation 10% 0% 5% 5% 

36 Many 0-hyponym siblings 0% 0% 10% 0% 

37 Fraction 0-hyponym siblings 0% 6% 33% 31% 

38 Few siblings 0% 4% 8% 9% 

39 Not in CHILDES corpus 63% 47% 88% 86% 
  

4.3.2 Rule Selection on Filtering Rules 

We next take each of the rules for which there is an acceptable set of parameters on the train set and 

apply it to the development set to evaluate whether it generalizes well to another part of the hierarchy. 

The results of this evaluation are shown in Table 12. 
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Table 12: Effectiveness of Filtering Rules on Development Set 

Rule Abbreviated Description 

Percent Filtered by Label  

Superordinates Basic-level Subordinates None Result 

1 Suffixes 31% 0% 0% 1% keep 

2 Prefixes 4% 5% 1% 3% discard 

3 Long words 19% 0% 5% 5% keep 

6 Hyphenated words 0% 0% 4% 2% keep 

7 Joined compounds 4% 2% 3% 1% discard 

9 Words with symbols 0% 0% 5% 3% keep 

10 Adjective senses 4% 0% 0% 2% keep 

15 Stopwords 0% 0% 0% 0% discard 

18 Many vowels 12% 0% 0% 3% keep 

19 Capitalized words 0% 2% 3% 1% discard 

20 Average depth 0% 0% 0% 0% discard 

21 Hyponym depth 19% 0% 0% 0% keep 

22 Depth ratio 4% 0% 0% 0% keep 

24 Many levels below 12% 0% 0% 0% keep 

25 Low min-max depth 0% 0% 0% 0% discard 

27 Many levels above 0% 0% 0% 0% discard 

33 Not under particular synset 0% 0% 0% 0% discard 

35 Long pronunciation 15% 0% 1% 2% keep 

36 Many 0-hyponym siblings 0% 0% 0% 0% discard 
 

Almost half of the rules that work well on the train set perform poorly or have no impact on the 

development set, while a slight majority is retained as the final set of ten Filtering Rules. 

4.3.3 Rule Selection on Voting Rules 

The Voting Rules (Table 9) are applied to categories not already filtered by Filtering Rules. These are 

applied along each chain from the bottom to the top of the hypernym hierarchy. Like Filtering Rules, these 

rules are also applied to a category although evaluated in the context of a chain.  

Using a greedy search starting with the most accurate Voting Rules, we identify a set of the rules which 

together enabled high accuracy on the development set. This combination is listed in Error! Reference s

ource not found.. 

We determine that by using these rules together, and only selecting categories with three of these Voting 

Rules being fulfilled, high accuracy could be obtained on the development set. This does limit the number 
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of basic-level categories that can be selected to one in each chain from the bottom to the top of the 

hypernym hierarchy. However, with three of the four rules only being fulfilled for one node in the chain, it 

is possible not to select a basic-level category in some chains. 

Table 13: Selected Voting Rules 

40. Top frequency in the chain (sum of lemma frequencies in synset) 
47. The synset has hyponyms 
49. Highest frequency in Brown + Gutenberg corpora combined in the chain 
51. Maximum number of meronyms in the chain 

 

4.3.4 Full System 

With thresholds set on the Filtering Rules, the Filtering Rules that generalize well selected, a set of 

selected Voting Rules, and a combination strategy for those Voting Rules, we describe our full system in 

Table 14. 

Table 14: Full Heuristic System Description 

First, filter out all synsets meeting any of the selected Filtering Rules: 
1. Filter synsets where the first lemma has any of the following suffixes: 

'ment', 'ism', 'ness', 'tion', 'ing', 'ty', 'tor', 'c', 're', 'th', 's', 'ive', 'ance', 'ence', 
'ssory', 'ssary', 'tant', 'bent', 'tory', 'ist', 'dle', 'tal', 'est', 'ful', 'hood' 

3. Filter synsets where the first lemma is 14 characters or longer 
6. Filter synsets where the first lemma is hyphenated ('-') 
9. Filter synsets where the first lemma contains a symbol 
10. Filter synsets where the first lemma has more adjective than noun senses 
18. Filter synsets where the first lemma has over 6 vowels 
21. Filter synsets with average height ((min+max)/2, recursive) outside the 

range 1.0 to 3.5, inclusive 
22. Filter synsets with avg_depth/(avg_depth+avg_height) outside the range 

0.57 to 0.94, inclusive 
24. Filter synsets with 10 or more levels of hyponyms below them 
35. Filter synsets where any of its lemmas are in the CMU Pronouncing 

Dictionary with > 10 phonemes 
 

Next, on each chain up the hierarchy, apply the following Voting Rules to each 
synset in the chain and select any unfiltered synsets triggering at least three of 
these Voting Rules: 
41. Top frequency in the chain (sum of lemma frequencies in synset) 
48. The synset has hyponyms 
50. Highest frequency in Brown + Gutenberg corpora combined in the chain 
52. Maximum number of meronyms in the chain 
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4.3.5 Evaluation and Discussion 

Our system’s overall performance on the test data is listed in Table 15. 

Table 15: Overall Effectiveness of the Heuristic System  

Metric Value 

Accuracy 88% 

Precision 42% 

Recall 35% 

F-score 0.381 

 
 

While our system only attempts to distinguish between basic-level categories and non-basic-level 

categories, we break down our system’s performance across each of the label subcategories as we 

describe them in §3.7 and §3.9. This breakdown is shown in Table 16. 

Table 16: Accuracy of the Heuristic System by Subcategory 

Subcategory Accuracy 

Superordinate 83% 

Basic-level 35% 

Subordinate 98% 

None 73% 

 

Accuracy is measured as the percentage of categories filtered (or not filtered) correctly based on the test 

data. So, for example, an accuracy of 83% on subordinates, which should be considered non-basic-level, 

means that 83% of subordinates are correctly labeled as non-basic-level. And for the basic-level, 35% 

accuracy means 35% of these categories are correctly labeled as basic-level. Our system did well at 

filtering out subordinates which predominate the overall label set. It performed much more poorly on 

basic-level categories, our focus, than the other classes.   

In Table 17 we show that out of the basic-level categories mistakenly chosen as non-basic, most 

mistakes are in chains were a superordinate is chosen as basic-level. There are several superordinates 

that are relatively short words with high frequency, including tool, seat, and device which are 

superordinates chosen as basic-level by the heuristics. Since the same superordinate may be a strong 
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choice to the system across multiple chains this results in a small number of superordinates accounting 

for most false negatives. 

Table 17: Subcategories Chosen by Mistake as Basic-Level Categories 

Subcategory Portion of False Negatives 

Superordinate 90% 

Subordinate 1% 

None 9% 

 

Our Filtering Rules are parameterized on the train set and selected on the development set, only 

including rules which make no mistakes on basic-level categories in each set. Only 53% of the Filtering 

Rules with acceptable performance on the train set are selected based on their extrapolation to the 

development set. Then, these only result in an accuracy of 35% on the test set. This indicates that 

extrapolating from one set to another is difficult. 

When we repeat this entire procedure of parameterization and rule selection just on the Rosch-Markman 

labels as described in §3.1, the rules extrapolate much better. Our system performance when trained, 

tuned, and evaluated on this data is shown in Table 18 and Table 19. Note that there is no ‘None’ 

subcategory in Table 19 because this is a novel label that does not exist in the Rosch-Markman Labels. 

Table 18: Heuristic System Effectiveness on Rosch-Markman Labels 

Metric Value 

Accuracy 77% 

Precision 68% 

Recall 84% 

F-score 0.749 

 

Table 19: Heuristic System Accuracy by Subcategory on Rosch-Markman Labels 

Subcategory Accuracy 

Superordinate 100% 

Basic-level 84% 

Subordinate 44% 
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This performance is almost twice as effective on the Rosch-Markman Labels as on our new, expanded 

labels. This indicates how the Rosch-Markman  Labels, using salient rather than representative examples 

as discussed in §3.3.1 and §3.5, is an easier set to experiment on and systems trained and evaluated on 

these labels will drastically over-estimate their performance. While this highlights the value of our labeling 

process, it also shows our heuristic system has plenty of room for improvement.  

While our system’s accuracy on the broader labels is 88%, which seems high, both the precision and 

recall are much lower. An important consideration in comparing the Rosch-Markman Labels with our new 

labels is the balance of labels across subcategories. The Rosch-Markman Labels are built around 

experiments on basic-level categories and thus have over half of the labels as positive examples (basic-

level categories). In our labels, however, there is a much greater imbalance with only 2.3% being basic-

level categories while 92% are subordinates. This leads to our system needing a very high accuracy on 

subordinates, where we achieve 98% accuracy, in order just to achieve a precision of just 42%. Filtering 

out so many subordinates in turn causes us to be aggressive at filtering in general, which leads to the 

issues with recall. The class imbalance makes achieving great performance challenging. 

We next discuss subsystem performance with the effectiveness of our two main subsystems shown in 

Table 20. 

Table 20: Subsystem Effectiveness for the Heuristic System 

Subsystem Precision Recall F-score 

Filtering Rules 13% 94% 0.221 

Filtering Rules + Voting Rules 42% 35% 0.381 

 

The Filtering Rules have a very high recall, indicating that not many basic-level categories are being 

filtered out. However, the precision is also low. The Voting Rules improve precision by a factor of 3.2 

while decreasing recall by a relative 63%. This results in an f-score 72% higher than the Filtering Rules 

alone, but the overall number is still relatively small. 
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4.4 Conclusion 

We build a heuristic system to automatically identify basic-level categories using WordNet. We are 

effective at including most basic-level categories and excluding superordinates, but not as effective at 

excluding subordinates. 
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Chapter 5   

Classifier-based System 

We build a classifier-based system to identify basic-level categories in WordNet. 

5.1 General Approach 

Our classifier-based system is similar in design to the Heuristic System discussed in Chapter 4 , except 

with the Filtering Rules replaced by a Filtering Classifier, and in addition to Voting Rules we also consider 

two alternative strategies using classifier prediction scores for combining synset-level decisions to make 

the optimal decision within a particular synset chain. Our system diagram is shown in Figure 10. 

 

Figure 10: Classifier System Architecture Diagram 

 

We start with all noun synsets in WordNet, and filter out many of these that are unlikely to be basic-level 

categories according to a Filtering Classifier, discussed in §5.2. We then try several Combination 
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Strategies (§5.3) to take the synsets left after filtering, and in some cases the classifier score for each, to 

determine which category to pick through each chain. The output of this is the proposed set of basic-level 

categories, which we then evaluate (§5.4). 

5.2 Filtering Classifier 

The Filtering Classifier is the first of two components in our system. This stage applies to WordNet noun 

synsets, filtering out ones that are unlikely to be basic-level categories. We discuss the features (§5.2.1), 

the learning algorithm chosen (§5.2.2), and our optimization grid search for that classifier (§5.2.3). We 

look at the learning curve (§5.2.4) to project what the effectiveness of the classifier might be with 

additional data available. 

5.2.1 Features 

Since we already have a heuristic system which incorporates domain knowledge in the form of rules, we 

draw on the Filtering Rules discussed in §4.2.2.1 as inspiration for our features. 

In many cases there are multiple rules using the same underlying number. For example, Rule 3 filters 

words with length of n or greater while Rule 4 filters words with length n or fewer. In our classifier, we can 

replace these two rules with a number representing the word’s length. This results in fewer features being 

needed than the number of rules. 

In some cases, the Filtering Rules are fundamentally binary and there’s no number involved. In these 

cases, we adopt the Filtering Rule itself as a binary feature, mapping true to 1 and false to 0 since our 

classifiers take numeric inputs. As an example, Rule 5 filters out compound words that contain a space. 

While we could conceivably include a feature for the number of space-separated tokens in the word, this 

naturally lends itself to binary representation and thus we treat this as a binary feature equivalent to the 

rule.  

Some binary features do pose one additional challenge in this framework: if the rule is parameterized with 

non-numeric values, we could have a number of possible choices: the rule as parameterized in the 

Filtering Rules of our Heuristic System, the most inclusive version of the rule, a separate rule for each 

possible parameter, etc. In many cases the parameter is a simple binary one such as whether the rule 
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only applies to the first lemma in the synset or any lemma in the synset; in these cases we simply use the 

parameter values from the heuristic rules. In cases where there is a wider variety of options, such as in 

choosing a set of suffixes, given our relatively sparse positive labels we prefer not to create many 

separate rules and multiply our features unnecessarily, so we take the rule as parameterized in the 

Filtering Rules in addition to the version of the rule with all of its available options included for maximum 

recall. This prevents an explosion of features for every individual parameter value while still allowing 

some additional signal beyond the Heuristic System at a cost of a handful of extra features. 

Following these principles, we build our feature set. The full list is shown in Table 21. While many of these 

are straightforward when reviewing their comparison to the related Filtering Rule(s) in the Heuristic 

System, since we have specified values for some parameters we briefly describe each feature for clarity. 

Nonetheless, the more verbose descriptions of relevant Filtering Rules in §4.2.2.1 may be of assistance 

in understanding some features—particularly including the motivation for including them—since the 

features are based on Filtering Rules which were described in more detail supra. 

Table 21: Features Used in the Filtering Classifier 

Feature Description Feature Type 

1 The word has one of the suffixes selected in Rule 1 Binary 
2 The word has any of the suffixes considered in Rule 1 Binary 
3 The word has one of the prefixes selected in Rule 2 Binary 
4 The length of the shortest lemma in the synset Numeric 
5 The length of the first lemma in the synset Numeric 
6 The first lemma contains a space Binary 
7 The word is hyphenated (‘-‘) Binary 
8 The word is a joined compound (e.g. ‘racetrack’) Binary 
9 The word contains a number Binary 

10 The word contains a symbol Binary 
11 Adjective-Noun ratio Numeric 
12 Adverb-Noun ratio Numeric 
13 Verb-Noun ratio Numeric 
14 No immediate subordinates include the word as a substring Binary 
15 No hypernyms have the word as a substring Binary 
16 The word is a stopword Binary 
17 The word is a plural Binary 
18 The number of vowels in the word Numeric 
19 The word is capitalized Binary 
20 The average depth of the synset Numeric 
21 The average height of the synset Numeric 
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22 The average depth-height ratio of the synset Numeric 
23 The maximum depth of the synset Numeric 
24 The maximum height of the synset Numeric 
25 The number of siblings without hyponyms Numeric 
26 The number of hyponyms Numeric 
27 The log of the Brown Frequency of the word Numeric 
28 The synset is under abstraction.n.06 Binary 
29 The synset is under physical_entity.n.01, thing.n.08, or substance.n.01 Binary 
30 The word is in the CHILDES corpus Binary 
31 The number of syllables in the CMU Pronouncing Dictionary Numeric 
32 The percent of siblings without hyponyms Numeric 
33 The number of siblings Numeric 

 

5.2.1.1 Prefixes and Suffixes 

Feature 1 and Feature 2 are both binary features indicating whether the first lemma in the synset ends 

with one of the suffixes on the list. The difference between the two rules is the set suffixes used. Feature 

1 uses the set of suffixes chosen for Rule 1, which we list in Table 22. 

Table 22: Prefixes Considered for Feature 1 to Identify Words with Relevant Prefixes 

-ance -est -ism -ness -ssory -tion 

-bent -ful -ist -re -tal -tor 

-c -hood -ive -s -tant -tory 

-dle -ing -ment -ssary -th -ty 

-ence      
 

Feature 2, on the other hand, includes the entire list of suffixes we considered, listed in Table 23. 

Table 23: Prefixes Considered for Feature 2 to Identify Words with any Prefixes 

-ability -cess -est -ize -sis -tics 

-acy -d -ful -le -sity -tion 

-age -dity -hood -less -sm -tion 

-al -dle -ian -logy -some -tive 

-ance -dosis -ic -ment -ssary -tor 

-ate -e -ing -ness -ssory -tory 

-bent -ed -ism -re -tal -ture 

-bess -ence -ist -s -tant -ty 

-c -er -ity -ship -th -y 

-ce -ess -ive -sion -tic  
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Feature 3 is similar to Feature 1 and Feature 2, except it indicates whether the first lemma in the synset 

starts with a prefix on a list of prefixes rather than suffix on a list of suffixes. Since Rule 2 only considers 

two prefixes, ‘un-‘ and ‘th-‘, and both are chosen during the parameterization of Filtering Rules, we only 

need one feature for prefixes. 

5.2.1.2 Word Length 

Feature 4 and Feature 5 are numeric features indicating the length of a word as measured in characters. 

For Feature 4, the word used is the shortest lemma in the synset. For Feature 5, the word used is the first 

lemma in the synset.  

5.2.1.3 Compounds 

Features 6-8 are binary features relating to whether or not the word is a compound based on two different 

ways of identifying compound words.  

Feature 6 identifies whether the first lemma in the synset contains a space, which is encoded in WordNet 

as an underscore (‘_’). Feature 7 identifies whether the first lemma in the synset contains a hyphen (‘-‘).  

Feature 8 identifies whether the first lemma in the synset is a joined combination of other lemmas in 

WordNet. We departed from the strict minimum length parameter in Rule 7, which required the other 

lemmas to be six characters or longer to be considered as part of a compound, and instead used a 

smaller threshold of three characters as the minimum for a component. 

5.2.1.4 Numbers and Symbols 

Feature 9 and 10 are binary features, with Feature 9 identifying words containing a number and Feature 

10 identifying words containing a symbol. In both cases, only the first word in the synset is considered 

when evaluating the feature. As with Rule 9 in the Heuristic System, symbols are defined as any 

characters which are not alphabetical, numeric, space, or underscore.  

5.2.1.5 Cross-Part-of-Speech Senses 

Features 11-13 are numeric features representing ratios.  
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Feature 11 is the ratio of adjective senses of a word to the number of noun senses of that same word. In 

this case, as well as with Features 12-13, the word used is the first lemma of the synset the feature is 

being calculated for. Feature 12 is the ratio of adverb senses to noun senses of the word, and Feature 13 

is the ratio of verb senses to noun senses of the word. 

5.2.1.6 Substrings in Hypernym/Hyponym Chain 

Features 14 and 15 involve the relationship between the first lemma of the synset and the lemmas of 

other synsets with hypernym or hyponym relationships with that synset. Both are binary features. 

Feature 14 identifies synsets where none of the immediate hyponyms have any lemmas that contain the 

synset’s first lemma as a substring. Feature 15 identifies synsets where none of the hypernyms up the 

WordNet hierarchy contain the synset’s first lemma as a substring in any of their lemmas. 

5.2.1.7 Stopwords 

Feature 16 is a binary feature identifying whether or not the first lemma of the synset is a stopword on the 

standard English stopword list in the NLTK package in Python (Bird et al. 2009). The comparisons are 

case-insensitive. 

5.2.1.8 Plurals 

Feature 17 is a binary feature identifying whether the first lemma of the synset ends in the suffix ‘-s’. 

5.2.1.9 Number of Vowels 

Feature 18 is a numeric feature that counts the number of vowels (‘a’, ‘e’, ‘i', ‘o’, and ‘u’) in the first lemma 

of the synset. 

5.2.1.10 Capitalized Words 

Feature 19 is a binary feature identifying whether the first letter of the first lemma of the synset is 

capitalized. 

5.2.1.11 Depth and Height 

Features 20-24 are all numeric features capturing aspects of where the synset falls vertically in the 

WordNet hierarchy between root hypernyms and leaf hyponyms. Feature 20 and 21 calculate the average 
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depth and height of the synset, respectively. We describe this calculation with a detailed example and 

diagram in the discussion of Depth and Height Rules in §4.2.2.1.11. Feature 22 is the ratio of the average 

depth to the average height, both values from Features 20 and 21. Features 23 and 24 represent the 

maximum depth and maximum height of the synset, respectively, calculated as the highest value of the 

depth or height across all chains passing through the synset.  

5.2.1.12 Hyponyms 

Features 25-26 and Feature 32 are all numeric features related to the number of hyponyms in some 

relationship to the candidate synset. 

Feature 25 counts the number of siblings (other hyponyms of the candidate synset’s hypernym) which 

themselves have no hyponyms. Feature 26 counts the number of hyponyms the candidate synset itself 

has. 

Feature 32 is similar to Feature 25 except it is calculated as a percentage of siblings without hyponyms 

rather than the count of siblings without hyponyms. 

5.2.1.13 Brown Corpus Frequency 

Feature 27 is numeric and represents the base-10 logarithm of the frequency of the synset’s lemmas in 

the Brown corpus (Francis et al. 1964). The frequency is obtained by summing the frequencies of each of 

the lemmas, and the base-10 logarithm is taken on that sum. 

5.2.1.14 Local Hypernyms 

Features 28 and 29 are binary features indicating whether the synset is in a certain region in the WordNet 

hierarchy by indicating whether the synset is a hyponym of specified hypernyms.  

These are two separate features because the hypernym specified in Feature 28 is one (abstraction.n.06) 

which indicates the synset is likely not to be a basic-level category while those specified in Feature 29 

(physical_entity.n.01, thing.n.08, substance.n.01) are hypernyms of many basic-level categories. As a 

result, we depart from our general attempt to reduce the number of rules into a smaller set of features and 

instead convert them into separate binary features with the intention of them providing signal in opposite 

directions. 
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5.2.1.15 CHILDES 

Feature 30 is a binary feature indicating whether any of the lemmas associated with the synset appear in 

the CHILDES corpus (MacWhinney 2000). 

5.2.1.16 Pronunciation 

Feature 31 is a numeric feature indicating the number of syllables, according to The CMU Pronouncing 

Dictionary (Weide 1998), which the first lemma associated with the synset includes in its pronunciation. 

5.2.1.17 Siblings 

Feature 33 is a numeric feature which is a count of the total number of siblings of the candidate synset. 

5.2.2 Choosing a Classifier 

We explore using a variety of classifiers with the features listed in §5.2.1. We train the classifiers on the 

train set and evaluate them on the development set. The results are shown in Table 24. 

Table 24: Different Classifiers - Effectiveness on Development Set 

Classifier Precision Recall F-Score Accuracy 

Logistic Regression 38% 64% 0.477 84% 

Naïve Bayes 46% 43% 0.444 89% 

Decision Tree (depth=5) 34% 57% 0.424 83% 

AdaBoost (Decision Stumps) 39% 43% 0.409 86% 

Random Forest 45% 30% 0.361 88% 

Linear SVM 22% 54% 0.313 71% 

Quadratic Discriminant Analysis 14% 90% 0.242 28% 

kNN (n=1) 30% 2% 0.038 89% 

RBF SVM 0% 0% 0.000 89% 

Neural Network 0% 0% 0.000 89% 
 

We used the default parameters in scikit-learn (Pedregosa et al. 2011) for these experiments, except that 

we adjust the sample weights for models that allow this. There is an extreme class imbalance, with 

subordinates comprising over 95% of all labels and basic-level categories only comprising 1%. This 

motivates us to use sample weighting. Without using weights, many classifiers tend to classify everything 

or nearly everything as non-basic-level and result in high accuracy but low or no recall. With these 

weights, we obtain reasonable basic-level recall. We select the weights by looking at the per-label-class 
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accuracy, with a special focus on subordinates due to their prevalence and basic-level due to them being 

the positive cases we are trying to learn, though we also attempt to ensure the mistakes aren’t all pushed 

into the superordinate or ‘None’ classes. 

Our weighting scheme, which reduces subordinates to 8% of their original weight, still results in 

subordinates comprising the majority of the aggregate weight. We also double the weight of basic-level 

categories, which takes them from 1% to 18% of the total weight. We finally decrease the weight of ‘None’ 

labels by 50% since this is the second largest label class and with subordinates so heavily down-

weighted this ensures most weight for negative samples is still placed on subordinates. The aggregate 

impact of this weighting scheme is shown in Table 25 on the train set, with weight being taken from 

subordinates and redistributed to the other label subclasses, especially for the basic-level. 

Table 25: The Aggregate Impact of Sample Weighting on the Train Set 

Label Subclass Original Weight Adjusted Weight 

Superordinate 0.60% 5.1% 

Basic-level 1.0% 18% 

Subordinate 95% 64% 

None 3.1% 13% 
 

We use f-score as our primary measure of performance due to the class imbalance, though we also 

report accuracy. 

Logistic regression is the classifier that works best in these experiments. Naïve Bayes is the next best 

classifier, but it has substantially lower recall and higher precision; as a first pass at filtering out 

categories unlikely to be basic-level, we prefer higher recall and thus the choice between these two is 

straightforward even despite the higher accuracy for Naïve Bayes. 

Decision trees and boosted decision stumps also perform reasonably well by comparison, but there is a 

sharp drop-off after that. Most of the worst classifiers do not support sample weighting, at least as 

implemented in scikit-learn, and have very low f-scores as a result, even as some have relatively high 

accuracy. For example, k-nearest neighbors is only able to identify 2% of basic-level categories, which 

leads to a very low f-score even with a precision value of 30% which has much less of a gap between it 
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and the better classifiers. Surprisingly, quadratic discriminant analysis produces a recall of 90%, by far 

the highest, despite not supporting sample weighting; the precision is very low, however, with an f-score 

barely half as much as the best classifier. 

Based on these experiments, we select logistic regression as the classifier to use for our system and 

hence our subsequent experiments all use this classifier. 

5.2.3 Optimizing the Classifier 

Having selected logistic regression as our classifier, we now attempt to improve the performance of the 

classifier by tuning its parameters with a grid search. 

We have two parameters to tune: 

• The regularization penalty to use (L1 or L2) 

• The coefficient C that has an inverse relationship with the strength of regularization (a high C will 

result in less impact from regularization) 

L1 regularization penalizes strong individual feature weights by adding the magnitude of the feature 

weights in as a penalty term in the cost function being minimized. L2 is a stronger penalty, penalizing 

proportional to the square of the weights. 

In the cost function being minimized, C is a coefficient on the loss term before regularization is 

incorporated, and regularization is added in without such a coefficient. So, C determines the weight of the 

standard cost function in the function being minimized, relative to a fixed regularization cost for a given 

set of weights; if C is higher this standard cost function will be more important, while if C is lower it will be 

less important. Meanwhile, the regularization term is unaffected by C. This results in the inverse 

relationship mentioned between C and the strength of regularization. When C is high the ordinary logistic 

regression cost function is more important and regularization has less impact; when C is low the impact of 

the standard cost function is diminished and regularization plays a larger role. 

We experiment with these parameters using a grid search, where we vary the penalty between L1 and L2 

while varying C exponentially from 0.01 to 1,000 by factors of 10. Our results are shown in Table 26. We 
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find that there are several different settings, using both L1 and L2 regularization, provide strong 

performance. 

Table 26: Parameter Optimization for Logistic Regression on Development Set 

Penalty C Precision Recall F-Score Accuracy 

L2 0.01 17% 41% 0.236 66% 

L2 0.1 26% 57% 0.358 75% 

L2 1 38% 64% 0.477 84% 

L2 10 39% 62% 0.477 84% 

L2 100 37% 59% 0.458 84% 

L2 1000 38% 59% 0.460 84% 

L1 0.01 18% 21% 0.191 78% 

L1 0.1 25% 62% 0.352 72% 

L1 1 37% 64% 0.472 83% 

L1 10 37% 62% 0.463 83% 

L1 100 42% 59% 0.488 85% 

L1 1000 37% 57% 0.448 83% 
 

As mentioned in §5.2.2, we prefer our classifier to have high recall to facilitate global optimization, though 

the best-performing parameters have low recall compared to the other top parameter settings. As a result, 

we also consider global optimization of the system in addition to local optimization of the classifier in 

choosing our settings. Using our best global optimization strategy, described in §5.3.3, we compare the 

overall system performance using the five highest-performing parameter settings in Table 27. 

Table 27: Global Optimization of Classifier Parameters on Development Set 

Penalty C Precision Recall F-Score Accuracy 

L2 1 64% 75% 0.693 93% 

L2 10 64% 67% 0.669 92% 

L1 1 62% 70% 0.659 92% 

L1 10 62% 70% 0.659 92% 

L1 100 65% 64% 0.646 92% 
 

Based on the holistic impact to the system’s overall performance, we use L2 regularization with a C value 

of 1 to achieve the best results on the development set. 
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5.2.4 Learning Curve 

We construct a learning curve, shown in Figure 11, where we train our classifier on subsampled portions 

of our train data to show how the amount of data available affects the effectiveness of the classifier. We 

then extrapolate up to larger data sets for an indication of how effectiveness may increase with additional 

labeled data. 

 

Figure 11: Learning Curve for Logistic Regression Classifier with Projection to Larger Data Sets 

 

We find that effectiveness generally increases, as expected with additional training data, in a shape best 

fit by a logarithmic function. We find that accuracy would increase from the low-80s to around 90% if we 

were to obtain a data set roughly four times bigger, which would amount to nearly half of WordNet noun 

synsets being labeled.  

Interestingly, with 100% of WordNet labeled this predicts we would expect to achieve an accuracy of 

92%, which is the same as the 92% value for inter-annotator agreement we report in §3.10. 
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5.3 Combination Strategies 

We consider three strategies for combining the Filtering Classifier output on individual synsets into a 

coherent set of basic-level category identifications up a chain or throughout the WordNet hierarchy as a 

whole. We first consider using the same Voting Rules we used in our Heuristic System, which we have 

described previously in §4.2.2.2 and revisit here in §5.3.1. We then discuss in §5.3.2 an approach using 

the Filtering Classifier’s probability outputs at the synset level to choose the most likely combination of 

synsets we should predict as basic-level in order to maximize the likelihood of our overall predictions. 

Finally, in §5.3.3 we discuss revising this maximum likelihood approach to increase recall at the expense 

of truly maximizing likelihood by using a minimum probability threshold for basic-level prediction rather 

than requiring it to be more likely than a non-basic-level prediction. After describing these three 

approaches, we compare the systems in Table 28 of §5.4. 

5.3.1 Voting Rules 

Our first approach to combining the Filtering Classifier outputs into a consistent set of basic-level 

predictions is to essentially replace the Filtering Rules in our Heuristic System with our Filtering 

Classifier’s binary judgments. In this system, illustrated in Figure 12, the Filtering Classifier’s binary output 

decisions are used, and its more fine-grained probabilities are not considered when comparing synsets in 

a chain. Instead of using more granular classifier output, we instead turn to the Voting Rules described in 

§4.2.2.2 as part of our Heuristic System. These operate identically to how they operate in the Heuristic 

System. The only difference is the input to the Voting Rules; instead of synsets being filtered out from 

consideration by Heuristic Rules, they are instead filtered out by the Filtering Classifier.  
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Figure 12: System Architecture Diagram with Voting Rules Combination Strategy 

 

5.3.2 Maximum Likelihood 

Our second approach to combining the output of the classifier on individual synsets into a coherent set of 

basic-level category identifications is to use a maximum likelihood approach. Rather than functioning on 

the synset chain, as we do with the Voting Rules, we now adopt a broader view of the entire 

hypernym/hyponym hierarchy. We illustrate this system in Figure 13. 

Each synset in WordNet has been assigned a probability of being a basic-level category by our Filtering 

Classifier. We impose the constraint that on any chain up the hierarchy, a maximum of one synset may be 

labeled as a basic-level category. Of course, many chains may run through the same synset, so a 

decision made on one chain may affect others as well. Within the bounds of this constraint, our approach 

is to choose the combination of basic-level and non-basic-level labels that maximize the probability of our 

predictions, according to our classifier, for the entire hierarchy. 
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Figure 13: System Architecture Diagram with Maximum Likelihood Combination Strategy 

 

While this is simple to state, implementing such a system is non-trivial since it is computationally 

infeasible to consider every possible combination of basic-level categories chosen, calculate the 

aggregate probability for each, and choose the one with the highest aggregate probability. 

We present pseudocode for the algorithm we use in Figure 14. In summary, starting with leaf nodes in the 

hierarchy we track whether it’s more likely the node is basic or non-basic. This proceeds up the hierarchy 

using a queue to keep track of when all the children of a node have been processed and it’s safe to 

consider the parent. When a node with children is considered, we determine whether the node should be 

marked as basic by comparing the best probability below combined with the current node not being basic 

against the probability that none of the nodes below are basic with the current node being basic. At each 

node we track two probabilities for the subtree rooted at this node: the probability that the entire subtree is 

non-basic and the best overall probability for the subtree regardless of which labels have been chosen. 
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We mark any node that locally appears to be a good choice as a potential basic-level category at the time 

the node is evaluated (i.e. considering it and its descendants). 

Once we’ve completed this upward pass, we then make a downward pass down the hierarchy. We 

branch out to each child, taking the first marked as basic-level we encounter and stopping there for each 

of the branching paths we traverse. Since the higher nodes always incorporate more information than 

those below, stopping at the marked nodes prevents us from selecting a node that locally appears to be 

basic-level but which would not be when considered in a broader context. There may be additional nodes 

lower in the tree that are marked but not chosen as basic-level because, when deciding over a larger 

portion of the hierarchy, it makes more sense to choose a higher node in the hierarchy as basic-level. 

This maximizes the aggregate probability of the resulting hierarchy, though this makes one critical 

assumption: each probability computation is independent, and thus multiplying all of the probabilities 

together results in the overall probability of that hierarchy having the corresponding labels. 

We present a simple example to show how this works. We show a sample subtree in Figure 15, where 

each node is numbered for identification and associated with a probability of being basic (as would be 

produced by the Filtering Classifier). We use a tree of height three because this is the smallest tree which 

enables us to show how a node can consider its children without worrying about its other descendants, 

and because we can illustrate some nodes appearing locally good that are overridden above alongside 

others not overridden. 
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Figure 14: Pseudocode for Maximum Likelihood Tree Algorithm 

MAXIMUM LIKELIHOOD TREE(BASIC_LOG_PROBS): 

CHILD_STATS ← Dictionary() 

Q ← Queue() 

for each noun SYNSET without hyponyms in WordNet: Q.put(SYNSET) 

while not Q.empty(): #Upward Pass 

 SYNSET ← Q.get() 

 PARENT ← PARENT of SYNSET #dummy ”empty->SYNSET” if root node 

 STATS ← CHILD_STATS[SYNSET] #empty if not present  

LOG_P_BEST ← sum(LOG_P_BEST in STATS.CHILDREN) 

 LOG_P_BEST_NON_BASIC ← sum(LOG_P_BEST_NON_BASIC in STATS.CHILDREN) 

if BASIC_LOG_PROBS[SYNSET].LOG_P_BASIC + LOG_P_BEST_NON_BASIC > 

BASIC_LOG_PROBS[SYNSET].LOG_P_NON_BASIC + LOG_P_BEST: 

 Mark SYNSET 

LOG_P_BEST ← BASIC_LOG_PROBS[SYNSET].LOG_P_BASIC + LOG_P_BEST_NON_BASIC 

else: 

LOG_P_BEST ← BASIC_LOG_PROBS[SYNSET].LOG_P_NON_BASIC + LOG_P_BEST, 

LOG_P_BEST_NON_BASIC ← BASIC_LOG_PROBS[SYNSET].LOG_P_NON_BASIC + 

LOG_P_BEST_NON_BASIC 

CHILD_STATS[PARENT].CHILDREN.Add(LOG_P_BEST, LOG_P_BEST_NON_BASIC) 

  if CHILD_STATS[PARENT].CHILDREN.COUNT == PARENT.CHILDREN.COUNT: 

if exists(PARENT) Q.put(PARENT) 

   else DOWN_Q.put(SYNSET) 

BASIC_SYNSETS ← Dictionary() 

while not DOWN_Q.empty(): #Downward Pass 

 SYNSET ← DOWN_Q.get() 

 if SYNSET is Marked: BASIC_SYNSETS.Add(SYNSET) 

 else for each CHILD of SYNSET: DOWN_Q.put(CHILD) 

return BASIC_SYNSETS 
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Figure 15: Maximum Likelihood Example Part 1, Classifier Probabilities 

 

We start at the bottom of the hierarchy in Figure 16. Each leaf node is evaluated independently, though 

we represent the result of each in this single figure for brevity. A leaf node is taken as a subtree (of height 

one at this stage), and we calculate two probabilities and determine whether the node is Marked or not. 

The first probability is P(best), which is the higher of P(basic) and P(non_basic), the latter which is 

calculated as 1 - P(basic). So in node 4, where P(basic) is 60%, P(non_basic) is 40%, and thus P(best) is 

the higher of those, 60%. The node is Marked since the highest-probability result is that the node under 

consideration is a basic-level category in this subtree. For Marked nodes at this point, P(best) + 

P(non_basic) will add up to 100% since P(best) is just P(basic). In nodes where P(non_basic) is higher 

than P(basic), like nodes 5 and 8, P(best) = P(non_basic) since the highest probability is that the node is 

not a basic-level category; thus these nodes are unmarked. Marked nodes are also highlighted in a lighter 

blue color. 
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Figure 16: Maximum Likelihood Example Part 2, First Layer of the Upward Pass 

 

Next, we consider the next layer of nodes up the tree in Figure 17. We include evaluations for nodes 2 

and 3 in one diagram for brevity though they are evaluated independently. For node 2, we are considering 

the subtree rooted at node 2, including nodes 2, 4, and 5. We calculate P(best) and P(non_basic) for the 

node 2’s subtree now, starting with its children in aggregate. P(best) for the children is 54% (60%*90%), 

while P(non-basic) for the children is 36% (40% * 90%). The two candidates for node 2’s best option, 

then, are the best value for the children and node 2 being non-basic (54% * 10% = 5.4%) or the children 

all being non-basic and node 2 being basic (36% * 90% = 32.4%). The latter is the best option, so P(best) 

= 32.4% for the tree and the node is Marked since the best option so far is for it to be basic. The overall 

P(non_basic) for the tree is 3.6% (36% * 10%). 

Node 3 is calculated in a similar manner. P(best) for the children of 3 is the product of each of their values 

of P(best), or 43.2% (80% * 60% * 90%). P(non_basic) for the children is the product of each of the 

children’s P(non_basic), or 7.2% (20% * 40% * 90%).  To find the best probability for node 3, we need to 

check the probability that node 3 is basic and its children are all non-basic against the probability that 

node 3 is non-basic and the best probabilities of all its children; these numbers are 0.72% (10% * 7.2%) 
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and 38.9% (43.2% * 90%), respectively. P(best) for the subtree, then, is 38.9% with node 3 being non-

basic but having two basic children. P(non_basic) for the entire tree is then 6.5% (90% * 7.2%).  

 

Figure 17: Maximum Likelihood Example Part 3, Second Layer of the Upward Pass 

 

We repeat this procedure for the top node in the subtree we’ve been working with, node 1, in Figure 18. 

In this case the subtree has more than one level below it, but since we’ve retained P(best) and 

P(non_basic) for the entire subtrees of each of node 1’s children, we only need to consider node 1 and its 

children in calculations for the subtree rooted at node 1. P(non_basic) for the children is 0.23% (3.6% * 

6.5%), while P(best) for the children is 12.6% (32.4% * 38.9%). The two options for P(best) for the entire 

subtree are that node 1 is basic with probability 0.023% (0.23% * 10%), or that node 1 is non-basic with 

subtree probability 11.3% (12.6% * 90%). The latter is higher, so P(best) = 11.3% and the node remains 

unmarked since the better option was with node 1 not being labeled as a basic-level category. The overall 

P(non_basic) for the subtree is 0.2% (0.23% * 90%). This completes the upward pass computing all the 

probabilities needed and marking candidate nodes which could eventually be selected as basic-level 

categories.  
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Figure 18: Maximum Likelihood Example Part 4, Top Layer of the Upward Pass 

 

In Figure 19 we show the result of the entire downward pass, which is much simpler than the upper pass 

and involves no new computations. We traverse down the tree, branching as necessary, selecting the first 

Marked node in each branch as a basic-level category and stopping the traversal of that branch once one 

has been selected. We have highlighted the nodes selected as basic-level categories in green. Note there 

is one Marked node, node 4, which is not selected as a basic-level category. This is because node 4’s 

parent, node 2, is also marked when including the context from node 4 and additional nodes in the tree, 

so when node 2 was selected as a basic-level category this is a more informed decision that essentially 

overrules the more local decisions below. In the algorithm we simply stop traversal down that branch at 

node 2, but node 2 incorporating more context is the reason why this works to produce the best possible 

combination. 
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Figure 19: Maximum Likelihood Example Part 5, Downward Pass and Final Selection 

 

This algorithm runs on the order of 𝑂(𝑛), where 𝑛 is the number of nodes in the tree. Superficially it 

appears to run in 𝑂(𝑛 × 𝑐) where 𝑐 is the number of children (hyponyms) per node, or slightly more 

precisely on the order of 𝑂(𝑛 + ∑ 𝑐𝑖
𝑛
𝑖=1 ), where 𝑐𝑖 represents the number of children (hyponyms) for node 

𝑖. However, at least under the simplified condition that each node has a single hypernym (which is true in 

trees but has a small handful of exceptions amounting to less than 2% of nouns in WordNet), each node 

is only a child of one other node and the sum of child counts will add up to 𝑛 − 1, resulting in a linear 𝑂(𝑛) 

runtime. 

5.3.3 Maximum Likelihood Relaxed with Minimum Threshold 

In §5.3.2 we propose a relatively complicated tree traversal algorithm for finding the most likely 

combination of basic-level category predictions obeying the constraint that only a single basic-level 

category should be selected in each chain. Here we propose a modification to this algorithm based on 

observations on some of the mistakes it made on the development set during evaluation. Our classifier 

tends to assign higher probabilities to basic-level category candidates lower in the hierarchy and this 

leads to excess subordinates being treated as basic-level. 
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As a result, we propose an additional approach. We use the algorithm described in §5.3.2, but we also 

introduce an additional minimum probability threshold required for a node to be selected as basic-level 

and we Mark the node as basic-level if it is above that threshold even if it does not improve the overall 

P(best) for that node. Note, however, that we still follow the algorithm in §5.3.2 except that additional 

nodes may get marked along the way. 

5.4 Evaluation and Discussion 

Our combined system effectiveness, using each of the three combination strategies described in §5.3, is 

shown in Table 28. 

Table 28: Classifier-based System Effectiveness with Different Second Stages 

Combination Strategy Precision Recall F-Score 

Voting Rules (from Heuristic System) 50% 52% 0.511 

Maximum Likelihood Estimate 54% 49% 0.512 

Maximum Likelihood with Min Threshold 56% 66% 0.607 

 

Our heuristic system, evaluated in §4.3.4 and listed in Table 15, achieves an f-score of 0.381 with 42% 

precision and 35% recall. By comparison, our Classifier-based system compares favorably under each of 

the combination strategies we evaluate, with better precision, recall, and f-score across the board. 

Just having a Filtering Classifier, even using the second stage Voting Rules from the Heuristic System, 

helps tremendously with an f-score of 0.511 relative to the entire Heuristic System’s 0.381. Using the 

maximum likelihood estimate approach described in §5.3.2, system performance only improves modestly 

with an f-score of 0.512, with slightly more gains in precision than loss in recall relative to the Heuristic 

System. The maximum likelihood approach modified with a minimum probability threshold, described in 

§5.3.3, performs the best with the highest precision, recall, and f-score. Recall in particular is substantially 

higher at 66% relative to the next highest at 52%. 

Our original hope in building this minimum threshold into the maximum likelihood estimate was to choose 

a high-confidence threshold (e.g. 80%) at which we prefer higher nodes in the hierarchy to lower ones 

while still allowing the algorithm to work as intended for the lower probability predictions. However, in 
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tuning the parameter on the development set, we find the system performs better with a low setting of 

20% as the minimum probability threshold. This gives us the ability to mark more nodes as basic-level 

higher in the tree despite a lower classifier prediction than we otherwise would; in order to be selected in 

a maximum likelihood approach, the probability would need to be at least 50%. So, the benefit of this 

modification does not come from taking a narrow selection of high-probability predictions and preferring 

higher nodes in the hierarchy on those. Rather, this achieves improved performance by increasing the 

recall of the basic-level category predictions and then using the second stage of the system preferring 

higher nodes in the hierarchy to correct mistakes lower in the hierarchy. This suggests further improving 

our ability to filter out subordinates or identify basic-level categories higher in the hierarchy with high 

confidence would be helpful at enabling a more principled maximum likelihood approach to be successful. 

For this best system configuration, we present the system performance including accuracy in Table 1. 

While the f-score is 59% higher than our Heuristic System, the accuracy only improves from 88% to 91%.  

Table 29: Full System Performance 

Metric Heuristic System Classifier-based System 

Accuracy 88% 91% 

Precision 42% 56% 

Recall 35% 66% 

F-score 0.381 0.607 

 

Our Classifier-based system is slightly more accurate than our Heuristic System; the f-score is much 

better for our Classifier-based System because it performs better on the less prevalent label 

subcategories. This is shown in Error! Reference source not found., where the Heuristic System is a

ctually slightly more accurate on the most prevalent subcategory, subordinates, while the classifier-based 

system is better on each other subcategory. The most substantial difference is in the critical basic-level 

subcategory, which corresponds to our positive labels and thus represents our system’s recall. 

One substantial difference between the Heuristic System and Classifier-based System is that the latter is 

trained using sample weighting while the former does not take sample weighting into account. When 

tuning the Heuristic System, however, we tune each rule to filter out as much as we can without filtering 
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any basic-level categories. This sets the decision boundary at the most aggressive parameter value 

feasible before the first basic-level category is filtered out. This will not change based on the way we 

weight samples together since our parameters only depend on the positive labels and any weighting 

within the negative labels will be irrelevant since more will be filtered out with more aggressive thresholds 

regardless of how we weight them together. Thus, while this is an apparent difference between the two 

systems, incorporating sample weighting while tuning the Heuristic System would not result in different 

performance; additionally, since sample weighting for the Classifier-based System only applies to the 

train data and not to the test data used to report results, this also does not lead to a discrepancy in the 

results reported. 

Table 30: Full Classifier-based System Effectiveness by Subcategory 

Subcategory Heuristic System Accuracy Classifier-based System Accuracy 

Superordinate 83% 90% 

Basic-level 35% 66% 

Subordinate 98% 97% 

None 73% 74% 

 

Having looked at our system’s overall performance and compared how different second stages affect that 

performance, we also evaluate the performance of our Filtering Classifier described in §5.2. For the 

purposes of this analysis, we use the binary output as to whether each synset is a basic-level category or 

not before any filtering by synset chain or by optimizing choices throughout the hierarchy. Incidentally, 

this is the same output as is fed into the Voting Rules in the variant of our Classifier-based System 

described in §5.3.1. We show the results of this subsystem in Table 31. 

Table 31: Filtering Classifier Subsystem Effectiveness 

Metric Value 

Accuracy 83% 

Precision 35% 

Recall 45% 

F-score 0.393 
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While this classifier alone achieves an f-score better than our entire Heuristic System, this is primarily 

driven by recall with a lower precision and accuracy than the Heuristic System. The Filtering Rules of the 

Heuristic System, however, only achieve an f-score of 0.221, so comparing the respective subsystems 

does indicate an even stronger improvement from using a classifier instead of heuristic rules. 

We break down the performance of this Filtering Classifier further in Table 32 by showing the accuracy on 

each of the label subcategories. Basic-level accuracy is the most important and the lowest, which 

provides additional motivation for using the minimum threshold modification to our maximum likelihood 

estimate combination approach to increase recall. 

Table 32: Filtering Classifier Subsystem Effectiveness by Subcategory 

Subcategory Accuracy 

Superordinate 93% 

Basic-level 45% 

Subordinate 87% 

None 91% 
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Chapter 6   

Error Analysis 

Having described our system, we now provide some additional context to understand how it works, and 

particularly to describe the sorts of mistakes it makes in our final application of our system to the test set. 

6.1 Filtering Classifier Feature Strength 

Feature weights are not perfect indicators of how useful each feature is since it’s their combination that is 

optimized. Additionally, some features may be more rare than others, or may have a large numeric range 

with smaller coefficients yet still having similar impact to a binary feature with a larger weight. Despite 

these sorts of concerns, looking at these weights still provides some indication about which features tend 

to have a stronger or weaker impact on the classifier output. 

We find the following to be some of the strongest indicators of a synset being a basic-level category: 

• The Brown Frequency is high 

• The word is in the CHILDES corpus 

• The synset is deep in the hierarchy 

• It has a low frequency in the Brown Corpus 

On the other hand, the following are strong indicators that the synset may not be a basic-level category: 

• The word is capitalized 

• The word is a plural 

• The words frequently appear in other parts of speech 

• The synset has many siblings without hyponyms 

• The synset is not under physical_entity.n.01, thing.n.08, or substance.n.01 

• All of the synset’s hyponyms siblings have hyponyms 

• The word has many vowels 

• The word is long 
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• The word has a suffix 

Additionally, while not a strong predictor, we include a bias feature in our classifier and this also received 

a score indicating that by default a synset should be predicted as not a basic-level category. The 

coefficient for this feature is about half the strength needed to qualify for the list of strong predictors. 

In general, we find more features are strong indicators of a synset not being a basic-level category than 

we find as strong indicators of being a basic-level category. While this is true, note also that some 

negative features (e.g. long word length) could be reinterpreted as positive features for identifying basic-

level categories (e.g. short word length).  

Many of these strong indicators are straightforward to interpret and are consistent with the intent behind 

the features. One in particular stands out as unexpected: having a low frequency in the Brown Corpus is 

an indication that the category is a basic-level category. While this is not nearly as strong as the feature 

indicating a high frequency in Brown, we believe this relates to the fact that presence in the Brown 

Corpus at all is still an indicator of being basic-level while a word not appearing in the Brown Corpus is 

less likely to be a basic-level category. 

6.2 False Negatives 

We now discuss the synsets our system predicts are not basic-level categories but which actually are 

basic-level. 

Of these, 78% received a predicted probability of being a basic-level category, according to the Filtering 

Classifier, of less than 20%. Using the Maximum Likelihood approach the probability would need to be at 

least 50% to be selected as a basic-level category, though our revised approach relaxes this down to 

allow categories with predictions as low as 20% to be selected as basic-level categories. However, most 

of our issues with recall occur with categories even below this very aggressive threshold. 

On the other hand, only 13% of the false negatives have predicted probabilities above 50%, with each of 

these probabilities all happening to fall in the relatively high range of 79% to 87%. Over half of these high-

probability cases are issues where a more inclusive synset was chosen with a lower probability due to our 

rule of aggressively choosing more abstract terms with moderate probability to avoid selecting too many 
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subordinates as basic-level; examples of these include choosing a moderate probability seat.n.03 (51% 

probability of being basic-level) over chair.n.01, sofa.n.01, and stool.n.01 with probabilities 79%, 85%, 

and 87%, respectively. Despite these errors and the clear room for improvement, this choice to choose 

superordinates in these cases is a net positive for the system and it only contributing to 7% of our false 

negatives reinforces this decision.  

Since our errors come mainly from synsets with low prediction probabilities, we focus our error analysis 

on this set. 

48% of these low-probability misses come from words that are compounds, including “stopwatch”, “pencil 

sharpener”, “bottle opener”, “pipe cutter”, and others. Many of these are small tools or appliances which 

are named in accordance with their function and appear to actually be basic-level categories with less 

straightforward names than most of those found in the psychology literature. 

As an example, “pencil sharpener” is the synset pencil_sharpener.n.01, which has parent sharpener.n.01 

(“any implement that is used to make something (an edge or a point) sharper”), with other children 

including grindstone.n.01, steel.n.03, strickle.n.01, and strop.n.01. It seems unreasonable to expect a 

child to learn the more generic sharpener.n.01 immediately from perceptual data, including grindstones 

and pencil sharpeners in the same category. This does appear to be an example where a compound 

word is a relatively clunky way to refer to a relatively simple everyday object like hammer, saw, and other 

first-level categories. 

Our classifier struggles with these not just because they are compound words; there are a number of 

features that contribute to these looking unlike a basic-level category. We do include space-separated 

compounds, hyphenated compounds, and compounds consisting of a conjoined combination of other 

words in WordNet both to be features representing compounds. But beyond this, these terms also tend to 

have other properties that make it challenging to identify them as basic-level. Many of these are relatively 

long words, whereas basic-level categories tend to be short. Many of them end in suffixes like -er. And 

they tend to have a large number of vowels, going along with their overall length. 
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The train data, which is segmented as a different part of the WordNet hierarchy to avoid cheating, does 

include a small handful of examples of compound words that are basic-level, so this is not purely an issue 

of a difference between the train and test sets. For example, spider_web.n.02 appears in the train set. 

Nonetheless, only 0.3% of the synsets in the train data that are compounds are basic-level categories; in 

the test set this is higher but still low at 1.2%. 

Every single basic-level category we mistakenly failed to classify as basic-level either has a low Brown 

frequency or is not present in the Brown corpus at all. A high Brown frequency one of the strongest 

features predicting a synset should be considered a basic-level category; that said, many of our true 

positives do not have high Brown frequency, so while it’s a missed opportunity this feature is not 

dispositive. 

On the other hand, the false negatives are much more likely to be in the Brown corpus than true positives, 

with a low frequency (p<0.01), and this is a strong positive feature. The false negatives also are helped by 

having a lower maximum height (p<0.01). Despite these two features helping the basic-level categories 

we miss more than in the set we classify correctly, there are more and stronger features that hurt the false 

negatives than those that help them. 

The false negatives have longer words (p<0.01), aren’t substrings in subordinates as frequently (p<0.01), 

are much less frequently in the CHILDES corpus (p<0.01), and they contain more vowels (p<0.05).  

These are all patterns expected of compound words, though the lower frequency in the CHILDES corpus 

and not having subordinates with substrings also apply to many of the other false negatives as well.  

Of the non-compound false negatives with low predicted basic-level probabilities, tools are by far the most 

common comprising 85% of this set. Many of these are low-frequency or contain the suffix -er, including 

gutter.n.01 and weeder.n.02. For most of these and the scattered non-tool errors, our system does not 

propose any of the synsets in paths through the false negative as basic-level; the low classifier score is a 

missed opportunity without competing with other errors from the classifier output. 

Our test set contains a number of categories related to furniture, means of transportation, and tools; 

overall, both with compound words and with these low-frequency and suffix-containing words, tools are by 
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far the biggest source of our false negatives. The average value for the average height of our true 

positives is 1.9 while for our false negatives this is 1.5 (p<0.01). Having a lower average height tends to 

indicate a synset is not basic-level. While this does not stand out as a substantial contributor to 

misclassifications overall, the difference is even more pronounced for tools where the average height is 

only 1.2. Basic-level categories tend to have subordinates, but basic-level tools are an area where this is 

less commonly true. This is manifest in a number of features with smaller impact that add up, such as 

having fewer hyponyms, a higher average depth to height ratio, and being near the bottom of the 

hierarchy, all of which add up even though none of these features individually stands out as a major driver 

of the misclassifications on its own. 

6.3 False Positives 

We now discuss the synsets our system predicts are basic-level categories but where the actual label is 

not basic-level. 

Since false positives include any non-basic-level label type, we show the breakdown of false positives by 

label type in Table 33. Interestingly, even though ‘None’ labels only comprise 11% of the test set, they 

comprise half of the false positives within this set. This comes at the expense of subordinates, which are 

under-represented in the false positive set. 

Table 33: Label Subcategory Proportions in False Positives and Test Set Overall 

Label Subcategory Test Set Test FPs 

Superordinate 5% 8% 

Basic-level 11% n/a 

Subordinate 73% 42% 

None 11% 50% 

 

Part of this discrepancy may be due to our weighting scheme described in §5.2.2; the proportions across 

sets are different since the sets are split based on common hypernym ancestors to avoid cheating as 

described in §3.9. Even so, the weights only apply during training, so the proportions in the train set are 

relevant to how the errors are traded off across label subcategories. In the train set, where subordinates 

are higher in frequency, ‘None’ labels still only correspond to 15% of the total after weighting. So, this 
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could affect the numbers somewhat but still doesn’t explain ‘None’ labels comprising half of the false 

positives. 

60% of our false positives are synsets with a low probability of being basic-level according to our Filtering 

Classifier, with low probability defined as less than 50%. Since our best combination strategy involves 

allowing lower-probability categories to be chosen to increase our recall, this sort of error is expected. 

While there is risk of a superordinate getting chosen over a basic-level category given the specific way we 

implement this strategy, we show in §6.2 that this is a rarity; on the other hand, this reduction in precision 

by aggressively proposing additional candidates as basic-level despite weak classifier probabilities is a 

problem but one that we expect as part of this trade-off. 

With so many false positives coming from an aggressive threshold, we find that unlike the false negatives 

which are most heavily concentrated around tools, the errors are spread out across a much wider range 

as shown in Table 34. 

Table 34: False Positive Breakdown by Superordinate Category 

Category Percent of FPs 

implement 32% 

tool 16% 

musical instrument 14% 

furniture 14% 

vehicle 8% 

part 8% 

weapon 4% 

abstract 4% 

 

Implement is a relatively abstract term, so since it is the leading source of false positives we provide 

several examples: lever.n.01, paintbrush.n.01, baton.n.01, and cane.n.01. Tools also make this list of top 

errors in the second position. Overall, false positives are much less driven by a single subtree in the 

hierarchy than false negatives. 
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There are many statistically significant differences between the false positives and true negatives in terms 

of their feature values, but unlike the false negative case the broader patterns here are less clear as 

many of these cancel one another out.  

The false positives actually receive more of a benefit than true negatives from average height, average 

depth, and average depth-height ratio features, but max depth and max height hurt them and this 

combined effect is 47% stronger by feature weight. All of these differences are statistically significant at p 

< 0.01 except for max height, which is significant at p < 0.05. For both max and average features, the 

false positives have lower height and higher depth, so these features trend in the same direction in these 

cases. Having so many related features facilitates our classifier assigning weights that counterbalance 

one another and the end result hurts the synsets that end up as false positives without a clearly 

interpretable explanation. 

That said, the false positives being further down in the hierarchy is interesting; subordinates are the label 

subcategory with 42% of the false positives, but many of the ‘None’ labels also exhibit this property (e.g. 

megaton_bomb.n.01, which has no hyponyms). 

Half of the false positives are on chains where no basic-level category is included. Of the other half with a 

basic-level category in the hierarchy, only 2% of the time is the basic-level category correctly given a 

higher score by the Filtering Classifier, indicating the problem is with the Filtering Classifier itself or our 

aggressive threshold used, rather than a result of our Combination Strategy. Additionally, the average 

predicted probability of being a basic-level category across all false positives is less than 50%, indicating 

our aggressive threshold is playing a substantial role in these mistakes. 

We attribute the false positives to a general level of aggressiveness to improve recall, which spreads 

errors across many diverse examples. While there are some trends which can be observed across the 

two sets, they are difficult to interpret and no clear pattern of errors emerges for the false positives. 

6.4 Error Analysis Summary 

The Filtering Classifier is the source of most errors. For false negatives, these are concentrated around 

tools, where compounds, suffixes, and long words make many basic-level tool categories appear non-



 
 

109 
 

basic-level. In the case of false positives, the pattern is less clear with a very aggressive threshold to 

improve recall driving a wide assortment of classification errors that do not follow patterns as clearly as 

the false negative case. 
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Chapter 7   

Suitability in Applications 

We have indicated several places in the literature where researchers attempting to solve a practical 

problem use a less well-developed attempt at identifying basic-level categories in the process of solving 

their more specific problem (Green 2006, Izquierdo et al. 2007, Lin et al. 2008b, Lin et al. 2009, Stephen 

et al. 2009). Nonetheless, we are approaching a novel task in identifying basic-level categories as a 

problem worthy of special attention itself. Since these other approaches are in the context of the 

researchers’ own systems and approaches to their problems, we here provide some empirical evidence 

that having a set of basic-level categories would be useful for real-world applications. 

In exploring the applicability of basic-level categories in real-world applications, we use our gold-standard 

labels rather than our system output. This is intended to demonstrate that knowing basic-level categories 

is helpful in real-world applications. Since our system has a moderate precision, we expect the gold-

standard labels to provide a stronger signal than system output. Furthermore, since generating a large, 

broad-coverage set of labels is a core contribution of our work, covering 13.7% of all WordNet synsets 

compared with a biased 0.2% coverage with previously-available labels, this analysis is made possible by 

our work and these approaches could be used just with our gold-standard labels in many cases given 

their relatively broad coverage. We briefly confirm with one example in §7.1.2 that the gold-standard 

labels provide a stronger signal than the system output, but also show that the system output is a useful 

signal in an application; elsewhere, all numbers reported are using our gold-standard labels. 

7.1 Automatically Measuring Text Readability 

7.1.1 Introduction 

As children develop their language skills they can read more complicated texts. Texts tend to target 

specific audiences. Determining whether a reader is capable of reading a particular text is useful for a 

wide range of applications, from displaying search results to recommending a book to buy. Readability 

also extends beyond children to adults as well. A straightforward example of this is foreign language 
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learners, but people with specialized knowledge are also able to read texts that those without that domain 

knowledge would not be able to comprehend. Nonetheless, most work on measuring text readability 

focuses on levels of language development that are more closely related to childhood language 

development and second language learning. 

7.1.2 Basic-Level Categories as a Useful Signal for Text Readability 

We now show that our basic-level category data is a useful signal in measuring text readability. We do so 

by using a standard readability dataset to show that the presence of basic-level categories in the text 

correlates with reading level as well as some of the most widely-used features in the field. We also show 

it correlates substantially better than a widely-used alternative word list containing commonly-understood 

words. 

For our dataset, we use the Common Core Appendix B corpus (National Governors Association Center 

for Best Practices 2010). This is a collection of texts by grade level, grouped into two to three year 

buckets (K-1, 2-3, 4-5, 6-8, 9-10, and 11-12). The collections include different types of texts relevant to 

different ages, including stories, poetry, informational texts, and drama. Some texts are referenced but 

the majority of the document consists of texts reproduced as examples of appropriate texts for the 

relevant grade levels. We take all of the texts reproduced in this corpus except the poetry, which we 

exclude. We exclude poetry not primarily because it is not representative of normal text, but rather 

because the number of words per sentence is one of the best and most widely-used metrics used for 

computing the readability of a text and including a text type without clear and regular sentence 

boundaries would artificially make our approach seem better by comparison. 

We tokenize these texts and part-of-speech tag them using NLTK (Loper et al. 2002). We determine the 

number of syllables in each word using the CMU Pronouncing Dictionary (Weide 1998). This enables us 

to calculate the two most widely-used features for assessing reading level, as discussed in §2.8: the 

number of words per sentence and the number of syllables per word.  
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Both of these show a strong positive correlation by grade level. A least squares best fit line on words per 

sentence by reading level as shown in Figure 20. Syllables per word, shown in Figure 21, still shows 

strong positive correlation but is not quite as strong as words per sentence.  

 

Figure 20: Average Number of Words per Sentence by Reading Level 

 

 

Figure 21: Average Syllables per Word by Reading Level 
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Basic-level categories are expected to be more common in text at lower reading levels. In Figure 22 we 

confirm this, showing that texts at lower reading levels tend to have a higher percentage of basic-level 

nouns. The number we show here is the percent, out of common noun tokens in the text we are able to 

associate with a label, that are basic-level. We exclude proper nouns based on the part-of-speech tags, 

as well as any common nouns we are not able to associate with a positive or negative label. This shows 

another strong correlation, with the lowest grade levels having the highest percentage of basic-level 

categories while the highest grade levels have the least.  

 

Figure 22: Basic-level Common Nouns as a Portion of Labeled Common Nouns by Reading Level 

 

Since readability systems sometimes use other word lists as a feature, and the Dale3000 list is a widely 

used list, we also show the correlation of words on this list by grade level in Figure 23.  
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Figure 23: Portion of Words on the Dale3000 List by Reading Level 

 

This list does exhibit the pattern, like basic-level categories, that more proportionally words on the list 

tend to appear in texts at lower grade levels. However, this correlation is weak. 

We show the correlation coefficients of each of these features by grade level in Table 35. Words per 

sentence narrowly beats basic-level categories as having the highest Pearson correlation coefficient and 

R2 value. Basic-level categories beats the other widely-used feature, syllables per word in correlating with 

grade level. The Dale3000 list matches, on the other hand, are only loosely correlated; basic-level 

categories perform much better than this alternative word list. 

Table 35: Correlation with Grade Level by Readability Feature 

Feature 

Pearson 
Correlation 
Coefficient R2 

Words per Sentence 0.964 0.929 

Basic-Level Categories (Gold-Standard Labels) 0.963 0.927 

Syllables per Word 0.953 0.908 

Dale3000 Matches 0.749 0.561 

Basic-Level Categories (System Output) 0.919 0.845 
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We also include a line in Table 35 showing the value of basic-level categories predicted by our system 

output rather than our gold-standard labels. This system output performance is not as strongly correlated 

with grade level as our gold-standard labels are, performing worse than both words per sentence and 

syllables per word features. Nonetheless, this still outperforms the alternative Dale3000 list by a wide 

margin. The R2 of basic-level categories using our system output is 7% worse than that of the syllables 

per word feature, but the Dale3000 list is 38% worse than syllables per word by that same measure. This 

shows that our system output is also a useful signal for measuring text readability relative to an 

alternative broadly-used word list. This may be particularly useful in cases where our gold-standard labels 

aren’t a sufficiently-large set or where broad coverage of English is required for integration in a system, 

and it also indicates an opportunity for higher performance if we improve our system in the future. 

While this does not go so far as to implement a state of the art system and show basic-level categories 

provide incremental value, this does indicate that basic-level categories are a relevant and interesting 

signal that should be considered for applications in this area. Using basic-level categories provides signal 

on par with some of the most widely-used features in this space and substantially outperforms a widely-

used competing list. 

7.1.3 Readability: Wikipedia vs. Simple Wikipedia 

Having shown our own correlation between the portion of documents that are basic-level categories and 

the reading level, with a best-fit line to enable us to predict reading level from the portion of basic-level 

categories, we now compare our predictions to a published study on the reading level of Wikipedia 

compared to the reading level of Simple Wikipedia. Simple Wikipedia is a simplified version of Wikipedia 

with generally shorter sentences and a restrictive vocabulary with the intention of making the text easier 

to read than the full version of Wikipedia. 

Lucassen (2012) applied the Flesch Reading Ease Test (Flesch 1979) to both Wikipedia and Simple 

Wikipedia, showing that using this standard measure of text readability in fact Wikipedia is harder to read 

than Simple Wikipedia. Finding that many Wikipedia documents are very short and this skews the 

numbers substantially, Lucassen (2012) first filters out documents having no more than five sentences. 

They then compute the Flesch Reading Ease scores, arriving at a score of 61.69 for Simple Wikipedia 
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and 51.18 for full Wikipedia. These scores, subdivided into 10-point ranges, map to grade levels or 

buckets with multiple grade levels. Since the grade groupings in the scale do not match the groupings in 

the Common Core Appendix B corpus we used for our readability work (National Governors Association 

Center for Best Practices 2010), we use linear interpolation within buckets with multiple grade levels 

across both datasets to pick a single grade most closely associated with the score. 

We repeat a similar procedure for determining the proportion of basic-level categories in documents 

across the two sets. We filter documents by the number of tokens rather than the number of sentences, 

though, removing corresponding documents where either Simple Wikipedia or full Wikipedia has less than 

75 tokens. We then map the portion of basic-level categories in each set to a grade level using the best-fit 

line in Figure 22. 

We report the grade levels across both sets, according to both the reported Flesch Reading Ease scores 

(Lucassen 2012) as well as our own approach using basic-level categories, in Table 36. 

Table 36: Reading Level Predictions for Wikipedia and Simple Wikipedia 

Reading Level Prediction Method Simple Wikipedia Full Wikipedia 

Flesch Reading Ease grade 8 grade 10 

Basic-level categories grade 8 grade 11 
 

Using only the portion of labeled nouns that are basic-level, we predict the exact same grade level for 

Simple Wikipedia and within one grade of the more widely-used test for Full Wikipedia. While our method 

predicts the two corpora are slightly further apart than the widely-used Flesch Reading Ease Test, this 

alignment between the two is striking. 

Additionally, while we map the portion of basic-level categories to a grade level, the portion itself (12.5% 

in Simple Wikipedia and 11.2% for full Wikipedia) is statistically significant with p < 0.01. 

7.1.4 Readability Conclusions 

We find that using a simple measure, the portion of basic-level categories among common nouns in a 

document with category predictions, correlates as well with reading level as other leading features used in 

more widely-used methods. We additionally predict the reading levels, using this measure alone, of 
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Simple Wikipedia and the full Wikipedia, showing that our predictions align well with existing research on 

this subject. This suggests that basic-level category data could be a useful signal for systems built to 

predict the readability of a text. 

7.2 Image Captioning 

7.2.1 Introduction 

Basic-level categories may be particularly relevant for natural language grounding. Since basic-level 

categories describe those concepts which are learned directly from perceptual data and are frequently the 

terms used to refer to objects absent a context requiring a more specific or generic term, we believe 

systems combining language and perceptual data could benefit from a dataset or system which indicates 

which words are basic-level categories.  

We consider an image captioning dataset, which is used by systems that learn how to write captions for 

novel images, and show that image captions contain substantially more basic-level categories than 

normal text represented by the readability analysis in §7.1. This suggests that basic-level category 

information could be a useful input into these systems, as well as others which combine perceptual and 

language data. 

7.2.2 Analyzing Image Caption Data 

We use COCO, a dataset consisting of images and metadata, including five captions for each image (Lin 

et al. 2014). This data includes 82,783 images with 99.8% of these having exactly five captions, with the 

remaining 0.2% having six or seven captions associated with them. 



 
 

118 
 

 

Figure 24: Example Image with Captions from COCO Dataset 

 

An example is shown in Figure 24, where an image from the COCO dataset is shown with its five 

captions. 

We tokenize these texts and part-of-speech tag them using NLTK (Loper et al. 2002), and calculate, as in 

§7.1.2, the portion of common nouns we can associate with a label where the label indicates it is a basic-

level category. We compare our results to the previous text readability corpus and our Wikipedia 

experiments in Table 37 to show how it compares. 
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Table 37: Basic-Level Categories by Corpus 

Corpus Subset Basic-Level Proportion 

Common Core Appendix B K-1 16.4% 

Common Core Appendix B 2-3 14.7% 

Common Core Appendix B 4-5 15.1% 

Common Core Appendix B 6-8 13.5% 

Common Core Appendix B 9-10 12.6% 

Common Core Appendix B 11-12 10.6% 

Wikipedia Simple Wikipedia 12.5% 

Wikipedia Full Wikipedia 11.2% 

COCO Image Captions 30.2% 
 

We find that the portion of common nouns that are basic-level is much higher in the image captions than 

any of the values from either of the readability corpora we consider. From a readability perspective, this 

number is too high to associate it with a grade level in school, being nearly double the value of even the 

earliest grades where students are just learning to read. 

Table 38: Basic-Level Proportion for Overlapping Nouns 

Noun Grouping Basic-Level Proportion 

All 30.2% 

Nouns appearing in 2+ captions 31.5% 
 

We further show in Table 38 that nouns which appear in multiple captions for the same image tend to be 

basic-level more often than in the overall set of captions (significant at p < 0.01). All of the standard 

metrics for automatically evaluating novel captions against the COCO reference set incorporate the 

overlap in words (and sometimes n-grams) across the reference captions and the candidate caption 

(Chen et al. 2015). While the difference in percentage is not extreme like comparing image captions to 

normal text, the large dataset enables us to show that this difference is nonetheless statistically 

significant. Given that word overlap is a critical component of evaluating systems, and basic-level 

categories are even more common in nouns that overlap across multiple captions, this further reinforces 

that basic-level categories could potentially help systems in choosing which noun to use in a caption. 
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This data indicates that basic-level categories may be particularly relevant for this area of application, 

where objects are being identified and named. Since Rosch et al. (1976) show that basic-level categories 

tend to be the terms used to describe objects absent a more specific context requiring otherwise, and 

since we find these terms to be more frequent in image captions than other texts, we believe the use of 

basic-level categories as an input to image captioning systems could potentially help generate more 

relevant captions. 
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Chapter 8   

Conclusion 

We approach the problem of identifying basic-level categories for the first time as an independent task 

worthy of a standard dataset and rigorous evaluation. Previous work has been done in psychology 

experiments on small numbers of words and subjects to show basic-level categories have theoretically 

interesting properties. Several applied systems have attempted to use data from these experiments to 

identify basic-level categories and use them in real-world applications, getting value from basic-level 

categories but without a way to effectively evaluate the identification itself except insofar as it helps in an 

applied task. 

We use crowdsourcing to build a broadly-representative dataset for basic-level categories. We rely on 

psychology experiments to provide properties we can use to elicit accurate responses from annotators 

and use WordNet as a resource providing a strong hierarchy of hypernyms and hyponyms to align the 

task to the framework of superordinates, basic-level categories, and subordinates used in the field of 

psychology. We find that despite this theoretically well-grounded framework, the salient examples used in 

the psychology experiments omit the possibility of some chains of hypernyms/hyponyms not containing 

any basic-level categories, and also that there are often intermediate categories between the more salient 

ones which make the annotation process more difficult than anticipated. While we use a very targeted 

labeling process asking annotators to choose the basic-level category (or none) in a chain up the 

WordNet hypernym/hyponym hierarchy, with multiple levels of agreement required on individual chains 

and across multiple chains through the same synset, we also train two expert annotators on the binary 

task of identifying whether or not a concept is a basic-level category. We show that this is a challenging 

task but that annotators are still able to achieve substantial agreement. 

Despite these challenges, our dataset increases the number of available labels by a factor of 72, from 

155 to 11,221. In the process, though unsurprising given the shape of the WordNet hierarchy, we also 

identify that there is a much stronger label bias toward subordinates rather than the more balanced 

combination of superordinates, basic-level categories, and subordinates found in the previously-available 
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labels. We provide a standard division of these categories into a train, development, and test set for any 

future researchers who are interested in working on this problem, and we use this division for our 

subsequent experiments. 

Using our dataset and the fraction of the overall WordNet hierarchy we label with any category labels, we 

can extrapolate to estimate that there are a total of 1,888 basic-level categories total in WordNet. 

Based on and extending the ideas generated by students in a class project, we develop a Heuristic 

System to identify basic-level categories in WordNet. Using dozens of Filtering Rules to filter out WordNet 

synsets unlikely to be basic-level based on simple properties like the length of the word and the height of 

the synset in the WordNet hypernym/hyponym hierarchy, we arrive at a set of candidate basic-level 

synsets. We then apply another set of over a dozen Voting Rules to identify, in each chain up the 

hypernym/hyponym hierarchy, which synset is the best one to choose as basic-level, if any. This system 

achieves an f-score of 0.381, with recall being the most challenging factor. We show that applying our 

Heuristic System to previously-available data achieves an f-score of 0.749, which shows that our more 

broadly-representative label set is much more challenging than the salient examples used in psychology 

experiments. We believe this more representative dataset will be helpful in enabling more effective 

systems in practice. 

Given the increased availability of data, we next build a Classifier-based System, training a logistic 

regression classifier using dozens of numeric and binary features based on the rules we use in our 

Heuristic System. We then take the output probabilities of this classifier and consider several ways to 

combine them into an optimal set of proposed basic-level categories. This includes a novel dynamic 

programming tree algorithm to make the calculation of the constrained overall maximum likelihood for the 

tree computationally tractable in linear time using two passes through the tree, where the constraint is 

that no more than one synset in any path up the hypernym/hyponym hierarchy may be proposed as a 

basic-level category. We settle on a relaxed version of our constrained maximum likelihood estimate; we 

relax this by encouraging lower probabilities to be selected and giving hypernyms additional preference 

over hyponyms to improve recall based on error analysis. This combined Classifier-based System 

achieves an f-score of 0.607, a relative 60% improvement over the Heuristic System. 
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We describe our errors in detail, showing opportunities for improvement given the f-score we report is still 

not extremely high. Our false negatives are concentrated around tools, which often use compound words 

to denote simple tools. Additionally, these tools tend to end in the suffix -er, while suffixes are often a sign 

that a category is not at the basic-level. The tools are also hurt by having sparse hyponyms, with many 

basic-level categories in this portion of the hierarchy not having hyponyms despite the presence of 

hyponyms being common across much of the rest of the hierarchy. As to false positives, we do not 

observe the same strong local properties but rather determine the errors are scattered across the 

spectrum as a result of our aggressive thresholding to increase recall and maximize f-score. 

We next show that this work we have done to identify basic-level categories appears interesting for use in 

a range of applications. We show that the readability of a text correlates with the proportion of basic-level 

categories in the text on a standard corpus used in text readability research. We apply our best-fit line 

approximating reading level based on the proportion of basic-level categories in a text to the problem of 

measuring the readability of full Wikipedia and Simple Wikipedia. Using just this one feature, we show 

that Simple Wikipedia appears to be at an 8th grade reading level while full Wikipedia is at an 11th grade 

reading level; this finding closely matches existing research in text readability, where Simple Wikipedia is 

also projected to be at an 8th grade reading level while full Wikipedia is measured at a 10th grade reading 

level. 

Additionally, we consider an application to image captioning. Using a standard dataset for image 

captioning, we show that the proportion of basic-level categories in text describing images is substantially 

higher than in normal text, suggesting that systems to generate automatic image captions could benefit 

from knowing which words represent basic-level categories. 
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Chapter 9   

Future Work 

Despite this progress, there is still plenty of room for improvement. In future work, we would like to 

explore other ways to improve recall, particularly with improvements in the Filtering Classifier by exploring 

additional features. Since frequency and early childhood language data are both very strong signals, we 

could explore larger corpora for frequency information and find additional early childhood development 

language data. We would also like to explore using multi-class classifiers for each label subcategory 

instead of only using binary classification as another way to potentially improve classifier effectiveness. 

Improving recall in this subsystem could enable us to use less aggressive thresholds in our Combination 

Strategy and thus mitigate our largest source of imprecision. 

We would like to extend this work to other parts of speech beyond nouns, particularly to verbs, adjectives, 

and adverbs. While we are not aware of substantial work on basic-level categories in other parts of 

speech, one property Rosch et al. (1976) identified about basic-level categories is that they are the most 

inclusive categories sharing many attributes in common. To the extent awareness of attributes is present 

as children form their first categories, we may be able to find a basic-level for adjectives as well. Klibanoff 

et al. (2000) find that basic-level categories are useful to children forming concepts of adjectives, and we 

suspect using the work on basic-level noun categories could help us extend the work to other parts of 

speech including adjectives.  

Lemaitre et al. (2013) shows that the sounds resulting from actions appear to be arranged around a 

basic-level while Van Dam et al. (2010) show that the concreteness of action verbs (with reference to a 

potential basic-level) is reflected in the neural response to action verbs; these both suggest the work 

could also potentially be extended to verbs. Additionally, nouns are learned before verbs (Gentner 1982) 

just as before adjectives, which suggests knowing the basic-level for nouns could also potentially help 

with verbs as it does for adjectives. While we are not yet aware of strong evidence for a basic-level in 

adverbs, by extension we expect it may exist in this remaining open-class part of speech as well. 
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In pursuing extending this work to other parts of speech, we also hope to help resolve the cross-

classification complexities in WordNet. By providing a richer set of relations on how categories are related 

to one another across parts of speech based on the way concepts are formed, it may be possible using 

selectional restrictions and multiple parts of speech to resolve the sorts of issues we discuss in §3.4 with 

freestone and clingstone where semantically closely-related categories have artificially large distances 

between them in the hypernym/hyponym hierarchy due to overlapping referents. 

We also hope to extend this work beyond the basic-level. We have noted in §3.2 that abstruse categories 

often tend to appear between a basic-level category and its superordinate and/or subordinate in the 

hypernym/hyponym hierarchy. The order we form concepts is not entirely the same as the order later 

organize them, a distinction Salmieri (2017) describes as leading to distinct epistemic and taxonomical 

hierarchies of concepts, where the epistemic hierarchy describes which concepts are learned before 

others while the taxonomic hierarchy shows the logical organization of all fully-formed concepts as in 

WordNet. Identifying basic-level categories is a first step in building an epistemic hierarchy, which ideally 

could be built by adding additional relations between synsets in WordNet based on the required or typical 

order of related concepts being learned. We believe that building these relations, even if just for the basic 

level and several layers out, could make distance measures within WordNet far more meaningful than 

distance measures through the existing taxonomic hierarchy which includes many abstruse concepts 

along many paths between common words. 

An additional opportunity for future work is in extending this work across languages and cultures. 

Languages and cultures divide the world up differently, and it would be interesting to see the extent to 

which the basic-level exists and is shared across languages. Rosch et al. (1976) provided some evidence 

for cross-linguistic applicability of basic-level categories, and other studies have shown a similarity in 

groupings of even continuous variables like color into similar categories across cultures (Roberson et al. 

2005). The work on first-level concepts in epistemology has also argued that although the specific order 

individuals learn particular concepts may theoretically be able to vary based on being exposed to 

extremely different circumstances (e.g. a child being raised in a furniture store and making distinctions 

between different types of tables first), these sorts of distinctions require much greater mental effort 
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without having simpler concepts (e.g. table) to build from and thus even if it is possible to learn them in a 

different order the eventual logical taxonomy including the simpler concept would result in the simpler 

concept being re-evaluated as first-level (Rand 1990) and thus likely having the basic-level advantages 

described in Rosch et al. (1976). However, these claims have not been validated with psychological 

experiments and this field generally is under-studied. On the other hand, other studies have more 

generally shown differences in childhood language development across languages (Choi et al. 1995). 

Since this is not a widely-studied problem, determining the extent to which basic-level categories are 

shared using broadly-representative datasets would be an interesting line of future work. We could 

specifically investigate the extent to which culture and language affect whether a particular category is 

basic-level, focusing in part on whether cultures with very different objects in their everyday life end up 

having basic-level advantages at different levels in the hierarchy for the objects more and less common in 

their respective cultures. Understanding these issues better could also help aid the development of multi-

lingual WordNets. 

Applying our system to different languages could pose some interesting challenges. While the classifier-

based approach would ideally facilitate scaling across languages relatively easily, this would be expected 

to work better in some languages than others. While the features used in our system may translate well 

across languages similar to English, valuable features like word length may not be as valuable in 

logographic languages. Here also words that include their hyponyms as substrings may be difficult. 

Looking at the complexity of the character and shared components could regain some of these patterns, 

but the system may not be able to perform as well and additional features could be needed to achieve 

similar performance. In languages with less taxonomic depth, some of the features regarding height and 

depth may not be as effective, and this could require a language-specific model being trained rather than 

using a general-purpose model across languages. Additionally, tokenized corpora would be needed in 

languages where we apply these techniques since word frequency is a very strong feature for identifying 

basic-level categories. 

While our system may generally perform best on languages more similar to English without additional 

feature engineering work, one alternative strategy could be to attempt automatic translation. Basic-level 



 
 

127 
 

categories are typically simple words denoting perceptual objects; these often have one-for-one 

mappings to words in other languages, while more complex categories can be very difficult to translate. 

This suggests translation of an English basic-level category list could potentially provide a strong starting 

point for identifying basic-level categories in other languages. 

We would also like to extend this work to applications, particularly in the area of natural language 

grounding. Basic-level categories are learned directly from perceptual data and appear to be the simplest 

concepts, while also being the terms people use to refer to objects absent context conditioning the need 

for more inclusive or specific terms. This seems well-aligned to helping with language grounding and 

robotics applications. We show that basic-level categories appear to be interesting signals for image 

captioning, and we hope that it could also be helpful for systems of human-computer interaction relating 

to objects in the real world. 
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Appendix A Rosch-Markman Labels 

Table 39: Labels from Rosch et al. (1976) Experiments 1-2 

Superordinate Basic Subordinate (2 columns) 

musical instrument guitar folk guitar classical guitar  
piano grand piano upright piano  
drum kettle drum base drum 

fruit apple delicious apple mackintosh 
apple  

peach freestone 
peach 

cling peach 

 
grapes concord grapes green seedless 

grapes 
tool hammer ball-peen 

hammer 
claw hammer 

 
saw hack hand saw cross-cutting 

hand saw  
screwdriver phillips 

screwdriver 
regular 
screwdriver 

clothing pants levis double knit 
pants  

socks knee socks ankle socks  
shirt dress shirt knit shirt 

furniture table kitchen table dining room 
table  

lamp floor lamp desk lamp  
chair kitchen chair living room 

chair 
vehicle car sports car four door 

sedan car  
bus city bus cross country 

bus  
truck pick up truck tractor-trailer 

truck 
tree maple silver maple sugar maple  

birch river birch white birch  
oak white oak red oak 

fish bass sea bass striped bass  
trout rainbow trout steelhead trout  
salmon blueback 

salmon 
chinook salmon 

bird cardinal easter cardinal grey tailed 
cardinal  

eagle bald eagle golden eagle  
sparrow song sparrow field sparrow 
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Note that although proposed and presented like this (Rosch et al. 1976), the examples relating to tree, 

fish, and bird in Table 39 are found to be basic-level in Rosch et al. (1976). Thus, reflecting the 

experiment output, we shift these labels down one level (superordinate to basic-level, basic-level to 

subordinate) in coding these as labels in our system as described in §3.1, also adding corresponding new 

superordinates plant, animal, and animal to correspond to tree, fish, and bird. 

Table 40: Labels from Rosch et al. (1976) Experiments 3-4 

Superordinate Basic 

clothing shoes 

vehicle airplane  
motorcycle 

animal cat  
dog  
butterfly 

furniture sofa  
bed 

 

Table 41: Labels from Markman et al. (1997) Experiment 1 

Superordinate Basic Subordinate 

vegetable beans green beans 

vehicle bus school bus 

musical instrument guitar folk guitar 

weapon gun shotgun 

jewelry necklace pearl 
necklace 

footgear shoes sandals 

exercise equipment weights Nautilus 
weights 

sports equipment ball football 

clothing pants jeans 

office equipment paper typing 
paper 

kitchen utensil plate dinner plate 

tool saw chainsaw 

camping equipment tent pup tent 

animal dog poodle 

reading material novel mystery 
novel 

beverage milk skim milk 
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entertainment movie horror 
movie 

food potatoes mashed 
potatoes 

furniture table kitchen 
table 

plant tree pine tree 
 

Table 42: Labels from Markman et al. (1997) Experiment 2 

Superordinate Basic 

clothing tie  
scarf 

musical instrument trumpet  
saxophone 

weapon sword  
spear 

vehicle bus  
truck 

furniture bed  
couch 

reading material magazine  
newspaper 

kitchen utensil spoon  
fork 

human dwelling apartment  
hotel 

tool screwdriver  
drill 

beverage coffee  
tea 

fruit apple  
pear 

vegetable onion  
radish 

animal horse  
cow 

insect ant  
termite 

bird robin  
canary 

disease measles  
chicken pox 
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Table 43: Labels from Markman et al. (1997) Experiment 3 

Superordinate Basic Subordinate 

vehicle bus school bus   
city bus  

truck fire truck   
semitrailer truck  

car limousine 

reading material novel mystery novel 

jewelry necklace 
 

 
ring 

 

 
watch 

 

sports equipment ball 
 

 
racquet 

 

 
net 

 

beverage milk 
 

 
soda 

 

 
alcohol 

 

musical instrument guitar 
 

 
piano 

 

 
drum 

 

clothing pants 
 

 
shirt 

 

 
underwear 

animal dog 
 

 
fish 

 

 
mouse 

 

exercise equipment weights 
 

 
bicycle 

 

 
pool 

 

furniture chair 
 

 
table 

 

 
lamp 

 

vehicle bus 
 

 
truck 

 

 
car 

 

office equipment paper 
 

 
pencil 

 

 
pen 

 

plant tree 
 

 
fern 

 

 
flower 

 

vegetable beans 
 

 
pepper 

 

 
onion 
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tool saw 
 

 
screwdriver  
hammer 

 

food potato 
 

 
cereal 

 

 
bread 

 

weapon gun 
 

 
knife 

 

 
bomb 

 

kitchen utensil plate 
 

 
spoon 

 

 
cup 

 

entertainment movie 
 

 
TV show 

 

 
museum 

 

footgear shoes 
 

 
boots 

 

 
skates 

 

reading material novel 
 

 
magazine 

 

 
reference 

 

 

Table 44: Combined Labels from Rosch et al. (1976) and Markman et al. (1997) 

Superordinate Basic Subordinate (2 columns) 

musical instrument guitar folk guitar classical guitar  
piano grand piano upright piano  
drum kettle drum base drum  
trumpet 

  

 
saxophone 

  

fruit apple delicious apple mackintosh apple  
peach freestone peach cling peach  
grapes concord grapes green seedless grapes  
pear 

  

tool hammer ball-peen hammer claw hammer  
saw hack hand saw cross-cutting hand saw   

chainsaw 
 

 
screwdriver phillips screwdriver regular screwdriver  
drill 

  

clothing pants levis double knit pants   
jeans 

 

 
socks knee socks ankle socks  
shirt dress shirt knit shirt  
tie 

  

 
scarf 
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shoes 

  

 
underwear 

 

furniture table kitchen table dining room table  
lamp floor lamp desk lamp  
chair kitchen chair living room chair  
sofa 

  

 
bed 

  

 
couch 

  

vehicle car sports car four door sedan car   
limousine 

 

 
bus city bus cross country bus   

school bus 
 

 
truck pick up truck tractor-trailer truck   

fire truck semitrailer truck  
airplane 

  

 
motorcycle 

 

plant tree maple birch   
oak pine tree  

fern 
  

 
flower 

  

animal fish bass trout   
salmon 

 

 
bird cardinal eagle   

sparrow robin   
canary 

 

 
cat 

  

 
dog poodle 

 

 
butterfly 

  

 
horse 

  

 
cow 

  

 
mouse 

  

insect ant 
  

 
termite 

  

vegetable beans green beans  
onion 

  

 
pepper 

  

 
radish 

  

weapon gun shotgun 
 

 
sword 

  

 
spear 

  

 
knife 

  

 
bomb 

  

jewelry necklace pearl necklace  
ring 

  

 
watch 
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footgear shoes sandals 
 

 
boots 

  

 
skates 

  

exercise equipment weights Nautilus weights  
bicycle 

  

 
pool 

  

sports equipment ball football 
 

 
racquet 

  

 
net 

  

office equipment paper typing paper  
pencil 

  

 
pen 

  

kitchen utensil plate dinner plate  
fork 

  

 
spoon 

  

 
cup 

  

camping equipment tent pup tent 
 

reading material novel mystery novel  
magazine 

  

 
newspaper 

 

 
reference 

  

beverage milk skim milk 
 

 
coffee 

  

 
tea 

  

 
soda 

  

 
alcohol 

  

entertainment movie horror movie  
TV show 

  

 
museum 

  

food potato mashed potatoes  
cereal 

  

 
bread 

  

human dwelling apartment 
  

 
hotel 

  

disease measles 
  

 
chicken pox 

 

 

Please note that in Table 44, shoes appears twice, once under footgear and another time under 

clothing from the two distinct sources. This is the only duplicated basic-level category, making for ninety-

one unique categories given of the ninety-two listed with one duplicate. Note, however, that we have 

corrected bird, fish, and tree to basic-level per the experimental findings in Rosch et al. (1976). Despite 

this change, note that Markman et al. (1997) include bird as a superordinate and thus to avoid one 

category being counted at two different levels we defer to the more reliable source that validated the 

findings on an individual category basis rather than as a group (Rosch et al. 1976), leaving bird as basic-

level rather than a superordinate in our labels. Robin and canary, listed as basic-level in Markman et al. 

(1997), are here listed as subordinates given the aforementioned realignment of bird. 
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Appendix B WordNet-Aligned Labels 

Table 45: Labels Aligned to WordNet Senses 

Superordinate Basic Subordinate 

musical_instrument.n.01 guitar.n.01 
 

 
piano.n.01 grand_piano.n.01   

upright.n.02  
drum.n.01 bass_drum.n.01  
cornet.n.01 

 

 
sax.n.02 

 

fruit.n.01 apple.n.01 
 

 
peach.n.03 freestone.n.01   

cling.n.01  
grape.n.01 concord_grape.n.01  
pear.n.01 

 

tool.n.01 hammer.n.02 ball-peen_hammer.n.01   
carpenter's_hammer.n.01  

saw.n.02 hacksaw.n.01   
crosscut_saw.n.01   
chain_saw.n.01  

screwdriver.n.01 phillips_screwdriver.n.01   
flat_tip_screwdriver.n.01  

drill.n.01 
 

clothing.n.01 trouser.n.01 levi's.n.01   
jean.n.01  

sock.n.01 knee-high.n.01   
anklet.n.02  

shirt.n.01 dress_shirt.n.01  
necktie.n.01 

 

 
scarf.n.01 

 

 
shoe.n.01 

 

 
underwear.n.01 

 

furniture.n.01 table.n.02 kitchen_table.n.01  
lamp.n.02 floor_lamp.n.01   

table_lamp.n.01  
chair.n.01 

 

 
bed.n.01 

 

 
sofa.n.01 

 

vehicle.n.01 car.n.01 sports_car.n.01   
sedan.n.01   
limousine.n.01  

bus.n.01 
 

  
school_bus.n.01  

truck.n.01 pickup.n.01   
tractor.n.02 



 
 

137 
 

  
fire_engine.n.01   
trailer_truck.n.01  

airplane.n.01 
 

 
motorcycle.n.01 

 

plant.n.02 tree.n.01 maple.n.02   
birch.n.02   
oak.n.02   
pine.n.01  

fern.n.01 
 

 
flower.n.01 

 

animal.n.01 fish.n.01 bass.n.08   
trout.n.02   
salmon.n.01  

bird.n.01 cardinal.n.04   
eagle.n.01   
sparrow.n.01   
robin.n.01   
canary.n.04  

cat.n.01 
 

 
dog.n.01 poodle.n.01  
butterfly.n.01 

 

 
horse.n.01 

 

 
cow.n.01 

 

 
mouse.n.01 

 

insect.n.01 ant.n.01 
 

 
termite.n.01 

 

vegetable.n.01 bean.n.01 green_bean.n.01  
onion.n.03 

 

 
pepper.n.04 

 

 
radish.n.01 

 

weapon.n.01 gun.n.01 shotgun.n.01  
sword.n.01 

 

 
spear.n.01 

 

 
knife.n.02 

 

weaponry.n.01 bomb.n.01 
 

jewelry.n.01 necklace.n.01 
 

 
ring.n.08 

 

timepiece.n.01 watch.n.01 
 

footwear.n.02 shoe.n.01 sandal.n.01  
boot.n.01 

 

sports_equipment.n.01 skate.n.01 
 

game_equipment.n.01 ball.n.01 football.n.02 

sports_implement.n.01 racket.n.04 
 

 
net.n.05 

 

flatware.n.01 plate.n.04 dinner_plate.n.01 
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cutlery.n.02 fork.n.01 
 

 
spoon.n.01 

 

crockery.n.01 cup.n.01 
 

shelter.n.01 tent.n.01 pup_tent.n.01 

beverage.n.01 milk.n.01 skim_milk.n.01  
coffee.n.01 

 

 
tea.n.01 

 

 
pop.n.02 

 

 
alcohol.n.01 

 

entertainment.n.01 movie.n.01 
 

 
television_program.n.01 

 

 
museum.n.01 

 

food.n.02 potato.n.01 mashed_potato.n.01  
cereal.n.03 

 

 
bread.n.01 

 

disease.n.01 measles.n.01 
 

 
chickenpox.n.01 
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Appendix C Mechanical Turk Labeling Instructions 

Instructions 

The goal of this task is to pick the "basic" word from a list of related words. A "basic" 

word is one where: 

• A young child can easily learn the word early on, before learning other 
related words (assuming the child is exposed to a number of examples) 

• When shown a picture of a very specific thing, it's the word you'd 
commonly refer to it as (e.g. seeing a specific dining room chair, you'd 
typically refer to it as a chair) 

• It is often a short, simple word. Some, like "television", are longer. 
• It's the highest word on the list where the things named by the word 

tend to look somewhat similar (e.g. most chairs have a similar shape so 
that could fit this requirement, but pieces of furniture vary widely in 
appearance and would not fit the requirement) 

You'll be presented with a list of words, from broadest to most specific. Please choose 

the "basic" word, if there is one. In some cases, there may not be a basic word in the 

list. For example, the list (function, polynomial, quadratic) does not have a basic 

word. In cases like this, choose "None". 

A good guiding question is: "Which word do you think a young child would learn 

first? (assume exposure to all these things)". The answer to that question is often the 

right answer, so it's a good starting point. Still, note some lists don't have a "basic" 

word in them! If none seem like a young child would learn them, even given exposure 

to some examples, that's another clue it could be "None" 

Example Question 

Here is a simple example with the correct answer in bold: 

• organism (a living thing that has (or can develop) the ability to act or function independently) 
• animal (a living organism characterized by voluntary movement) 
• bird (warm-blooded egg-laying vertebrates characterized by feathers and forelimbs modified as wings) 
• thrush (songbirds characteristically having brownish upper plumage with a spotted breast) 
• robin (small Old World songbird with a reddish breast) 
• None (none of these answers may be pictured or learned by a young child) 
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For this list, bird is the right answer. In relation to the four properties common to 

"basic" words: A child will learn this very young, if exposed to examples of birds. 

When seeing a particular bird it's usually the word "bird" that comes to mind first, not 

"thrush" or "animal". It does happen to be a short and simple word, which isn't a hard 

requirement but is additional evidence for "bird" being a "basic" word. And it's the 

broadest term that can be pictured as a single thing; most birds look roughly similar 

while different types of animals ("animal" is the next broader term on the list) are very 

differently shaped. So, "bird" fits all of these properties. 

"Basic" and "Not Basic" Examples 

Other example "basic" words: apple, bread, lamp, fish, cup, ring 

Some words that are not "basic" because they are too broad (can't be pictured as one 

thing representing all): entertainment, furniture, jewelry 

Some words that are not "basic" because they are too specific (a broader word can be 

pictured as one thing representing all): red delicious apple, salmon, flat tip 

screwdriver 

Some words that are not "basic" because they are too abstract (not picturable as a 

thing): entitlement, magnetization, population 
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Appendix D Basic-Level Category Labels 

Table 46: List of Synsets Corresponding to Basic-Level Categories from Labeling Process 

aba.n.01 guava.n.03 radio.n.03 

ackee.n.01 gutter.n.04 radish.n.01 

anchovy_pear.n.02 haik.n.01 raisin.n.01 

apple.n.01 hammer.n.02 rambutan.n.02 

apricot.n.02 hyena.n.01 ribbon.n.01 

armor.n.01 iceberg.n.01 robe.n.01 

avocado.n.01 icepick.n.01 romper.n.02 

awl.n.01 igloo.n.01 rose_apple.n.02 

banana.n.02 iron.n.03 rug.n.01 

band_aid.n.01 iron.n.04 sackcloth.n.01 

bassinet.n.01 izar.n.01 sandglass.n.01 

bed.n.01 jackal.n.01 sapodilla.n.02 

bedspread.n.01 jacket.n.02 sapote.n.02 

beet.n.02 jump_suit.n.01 saw.n.02 

bell_apple.n.01 kanzu.n.01 scarf.n.01 

berry.n.01 kettle.n.04 scraper.n.01 

bevel.n.02 kiwi.n.03 screwdriver.n.01 

bodkin.n.03 kumquat.n.02 seed.n.01 

body_stocking.n.01 lamp.n.02 seed.n.02 

bomb.n.01 land.n.02 shirt.n.01 

bookcase.n.01 legging.n.01 shoe.n.01 

boot.n.01 lemon.n.01 shovel.n.01 

bottle_opener.n.01 leotard.n.01 shovel.n.03 

brassiere.n.01 lime.n.06 shrub.n.01 

breadfruit.n.02 lip-gloss.n.01 skirt.n.02 

breechcloth.n.01 litchi.n.02 slipper.n.01 

brick.n.01 longanberry.n.02 snowsuit.n.01 

brush.n.02 loquat.n.02 snuffer.n.01 

bubble.n.04 mamey.n.02 sock.n.01 

burqa.n.01 mandarin.n.05 sofa.n.01 

bus.n.01 mango.n.02 sorb.n.01 

cabinet.n.01 mangosteen.n.02 sour_gourd.n.03 

can_opener.n.01 marang.n.02 spade.n.02 

canistel.n.02 mascara.n.01 spatula.n.02 

canopy.n.01 mask.n.01 spear.n.02 

car.n.01 mask.n.04 spider_web.n.02 

carambola.n.02 matchbook.n.01 spreader.n.01 

carriage.n.02 medlar.n.03 square.n.08 

carrot.n.03 medlar.n.04 stick.n.01 

carrycot.n.01 melon.n.01 stick.n.07 
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ceriman.n.02 motorcycle.n.01 stocking.n.01 

chador.n.01 necktie.n.01 stool.n.01 

chair.n.01 needle.n.03 stopwatch.n.01 

cherry.n.03 neighbor.n.02 straightedge.n.01 

citron.n.01 niqab.n.01 straitjacket.n.02 

cloak.n.01 oar.n.01 suit.n.01 

cloak.n.02 orange.n.01 swab.n.01 

clock.n.01 paint.n.01 swatter.n.01 

coat.n.01 pallet.n.03 sweater.n.01 

cone.n.03 papaw.n.02 swimsuit.n.01 

cracker.n.05 papaya.n.02 table.n.02 

cradle.n.01 parsnip.n.03 table.n.03 

crank.n.04 passion_fruit.n.01 tamarind.n.02 

cravat.n.01 peach.n.03 tangelo.n.02 

crib.n.01 pear.n.01 taro.n.03 

cue.n.04 pen.n.01 telephone.n.02 

custard_apple.n.02 pencil.n.01 television.n.01 

cymbal.n.01 pencil_sharpener.n.01 tent.n.01 

date.n.08 peplos.n.01 thimble.n.02 

diaper.n.01 person.n.01 thumb.n.02 

dibble.n.01 pestle.n.03 tights.n.01 

dog.n.01 piano.n.01 timer.n.01 

drum.n.01 pincer.n.01 toe.n.02 

dry_ice.n.01 pineapple.n.02 toothbrush.n.01 

durian.n.02 pinecone.n.01 toothpick.n.01 

earmuff.n.01 pipe_cutter.n.01 train.n.01 

eraser.n.01 pitahaya.n.02 tree.n.01 

feijoa.n.02 pitchfork.n.01 triangle.n.05 

field.n.14 plane.n.05 trouser.n.01 

fig.n.04 plate.n.14 trowel.n.01 

file.n.04 pliers.n.01 truck.n.01 

file_folder.n.01 plum.n.02 turnip.n.02 

flail.n.01 plumcot.n.02 underpants.n.01 

flea.n.01 plunger.n.03 vest.n.01 

float.n.05 poker.n.01 wall.n.02 

flower.n.02 pole.n.01 washer.n.03 

fox.n.01 pomegranate.n.02 watch.n.01 

gem.n.02 pomelo.n.02 watermelon.n.02 

genip.n.02 pot.n.01 weeder.n.02 

genipap.n.01 potato.n.01 wet_suit.n.01 

go-kart.n.01 prickly_pear.n.02 wire_stripper.n.01 

golfcart.n.01 prune.n.01 wolf.n.01 

gong.n.01 pulasan.n.02 wrench.n.03 
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grape.n.01 quandong.n.04 yam.n.03 

grapefruit.n.02 quince.n.02 yam.n.04 

graver.n.01 racket.n.04 yashmak.n.01 
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Appendix E Basic-Level Category Labels by Experiment Set 

Table 47: Basic-Level Categories in the Train Set 

ackee.n.01 guava.n.03 plum.n.02 

anchovy_pear.n.02 hyena.n.01 plumcot.n.02 

apple.n.01 iceberg.n.01 pomegranate.n.02 

apricot.n.02 igloo.n.01 pomelo.n.02 

avocado.n.01 jackal.n.01 potato.n.01 

banana.n.02 kiwi.n.03 prickly_pear.n.02 

beet.n.02 kumquat.n.02 prune.n.01 

bell_apple.n.01 land.n.02 pulasan.n.02 

berry.n.01 lemon.n.01 quandong.n.04 

breadfruit.n.02 lime.n.06 quince.n.02 

canistel.n.02 litchi.n.02 radish.n.01 

carambola.n.02 longanberry.n.02 raisin.n.01 

carrot.n.03 loquat.n.02 rambutan.n.02 

ceriman.n.02 mamey.n.02 ribbon.n.01 

cherry.n.03 mandarin.n.05 rose_apple.n.02 

citron.n.01 mango.n.02 sapodilla.n.02 

cone.n.03 mangosteen.n.02 sapote.n.02 

cracker.n.05 marang.n.02 seed.n.01 

custard_apple.n.02 medlar.n.03 seed.n.02 

date.n.08 medlar.n.04 shrub.n.01 

dog.n.01 melon.n.01 sorb.n.01 

dry_ice.n.01 neighbor.n.02 sour_gourd.n.03 

durian.n.02 orange.n.01 spider_web.n.02 

feijoa.n.02 paint.n.01 tamarind.n.02 

field.n.14 papaw.n.02 tangelo.n.02 

fig.n.04 papaya.n.02 taro.n.03 

flea.n.01 parsnip.n.03 tent.n.01 

flower.n.02 passion_fruit.n.01 tree.n.01 

fox.n.01 peach.n.03 turnip.n.02 

gem.n.02 pear.n.01 wall.n.02 

genip.n.02 person.n.01 watermelon.n.02 

genipap.n.01 pineapple.n.02 wolf.n.01 

grape.n.01 pinecone.n.01 yam.n.03 

grapefruit.n.02 pitahaya.n.02 yam.n.04 
 

Table 48: Basic-Level Categories in the Development Set 

aba.n.01 iron.n.04 skirt.n.02 

armor.n.01 izar.n.01 slipper.n.01 

band_aid.n.01 jacket.n.02 snowsuit.n.01 
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bedspread.n.01 jump_suit.n.01 sock.n.01 

body_stocking.n.01 kanzu.n.01 stocking.n.01 

boot.n.01 legging.n.01 straitjacket.n.02 

brassiere.n.01 leotard.n.01 suit.n.01 

breechcloth.n.01 mask.n.01 sweater.n.01 

brick.n.01 mask.n.04 swimsuit.n.01 

bubble.n.04 matchbook.n.01 thimble.n.02 

burqa.n.01 necktie.n.01 thumb.n.02 

canopy.n.01 niqab.n.01 tights.n.01 

chador.n.01 peplos.n.01 toe.n.02 

cloak.n.01 plate.n.14 toothpick.n.01 

cloak.n.02 robe.n.01 trouser.n.01 

coat.n.01 romper.n.02 underpants.n.01 

cravat.n.01 sackcloth.n.01 vest.n.01 

diaper.n.01 scarf.n.01 washer.n.03 

earmuff.n.01 shirt.n.01 wet_suit.n.01 

file_folder.n.01 shoe.n.01 yashmak.n.01 

haik.n.01   
 

Table 49: Basic-Level Categories in the Test Set 

awl.n.01 gutter.n.04 screwdriver.n.01 

bassinet.n.01 hammer.n.02 shovel.n.01 

bed.n.01 icepick.n.01 shovel.n.03 

bevel.n.02 iron.n.03 snuffer.n.01 

bodkin.n.03 kettle.n.04 sofa.n.01 

bomb.n.01 lamp.n.02 spade.n.02 

bookcase.n.01 lip-gloss.n.01 spatula.n.02 

bottle_opener.n.01 mascara.n.01 spear.n.02 

brush.n.02 motorcycle.n.01 spreader.n.01 

bus.n.01 needle.n.03 square.n.08 

cabinet.n.01 oar.n.01 stick.n.01 

can_opener.n.01 pallet.n.03 stick.n.07 

car.n.01 pen.n.01 stool.n.01 

carriage.n.02 pencil.n.01 stopwatch.n.01 

carrycot.n.01 pencil_sharpener.n.01 straightedge.n.01 

chair.n.01 pestle.n.03 swab.n.01 

clock.n.01 piano.n.01 swatter.n.01 

cradle.n.01 pincer.n.01 table.n.02 

crank.n.04 pipe_cutter.n.01 table.n.03 

crib.n.01 pitchfork.n.01 telephone.n.02 

cue.n.04 plane.n.05 television.n.01 

cymbal.n.01 pliers.n.01 timer.n.01 
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dibble.n.01 plunger.n.03 toothbrush.n.01 

drum.n.01 poker.n.01 train.n.01 

eraser.n.01 pole.n.01 triangle.n.05 

file.n.04 pot.n.01 trowel.n.01 

flail.n.01 racket.n.04 truck.n.01 

float.n.05 radio.n.03 watch.n.01 

go-kart.n.01 rug.n.01 weeder.n.02 

golfcart.n.01 sandglass.n.01 wire_stripper.n.01 

gong.n.01 saw.n.02 wrench.n.03 

graver.n.01 scraper.n.01 
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