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DNA contains the code of life, forming the molecular basis for all of life’s diversity. The past

several decades have witnessed remarkable progress in our ability to read and understand

life’s code through DNA sequencing. While fast and cheap DNA sequencing technologies

are revolutionizing both science and healthcare, a new generation of technologies capable of

single-molecule sequencing 1 promise to further revolutionize the field of DNA sequencing

by addressing many of limitations of the previous methods. Nanopore DNA sequencing is

one such emerging single-molecule sequencing technology, capable of long reads and direct

detection of epigenetically-relevant modified bases.

The basic nanopore sequencing devices consists of two wells filled with a conductive

electrolyte solution separated by an impermeable membrane containing a single nanometer-

size hole, or nanopore. A voltage applied across the membrane drives an ionic current

through the nanopore. DNA is negatively charged in solution and so will by drawn through

the pore by the voltage, blocking some of the ionic current. As the different nucleotides

along the DNA block the ionic current to different extents, the series of current fluctuations

in the recorded time series can be used to decode the sequence of the DNA molecule moving

through the pore. DNA motion through the pore is contolled using a DNA-processing motor

1Single-molecule sequencing means to read the sequence from a single copy of a target DNA molecule.
Previous sequencing technologies required making many copies of the target DNA prior to sequencing.



enzyme, which steps the DNA through in discrete steps slow enough to allow resolution of

the sequence-dependent flucutations in the ionic current.

Commercial nanopore sequencing devices have recently become available, making good

on the decades-long promise of this technology. However, despite considerable early success

and fanfare accompanying these first nanopore sequencers, technology development is not

complete. Particularly, the single-read de novo sequencing accuracy must be improved for

this technology to reach its full potential 2. In order to fully realize its promise, we must

both improve the accuracy of nanopore sequencing and devise better methods of handling

error-prone sequencing data.

In this dissertation, I discuss my work in the Gundlach nanopore lab at the University

of Washington towards the goals of improved nanopore sequencing accuracy and improved

application of existing error-prone sequencing data. In chapter 1, I introduce the broad field

of DNA sequencing. I cover the history of scientific interest in DNA and DNA sequencing

and provide motivation for DNA sequencing as a worthwhile pursuit both for its scientific

and medical merits. I also discuss previous and existing DNA sequencing technologies, as

well as the limitations of these technologies that motivate the developement of new methods

such as nanopore sequencing. In chapter 2 I describe and introduce nanopore sequencing.

I summarize the development of nanopore sequencing technology, how various challenges

were overcome, and how currently available nanopore sequencing devices work, setting the

stage for understanding the primary error modes limiting the sequencing accuracy of this

technology. In chapter 3, in I present my work on improving nanopore sequencing accuracy

using a new method of DNA control for enzyme-actuated nanopore DNA sequencing. This

new method, in which we use a time-varying voltage to control DNA motion through the pore

in addition to a DNA-processing enzyme, is able to mitigate two of the primary error modes in

nanopore sequencing and dramatically improve sequencing accuracy. I discuss the motivation

2De novo sequencing means sequencing without the aid of any known reference sequence: a completely
unknown DNA molecule must be sequenced from scratch.



behind this new method, outline how we were able to realize nanopore sequencing using this

method, and demonstrate the improved sequencing accuracy it affords. In chapter 4, I shift

the discussion over to my work on improving the application of nanopore sequencing data.

Specifically, I introduce a method of aligning nanopore data that enables highly sensitive

and specific sequence alignment and species identification even for low accuracy reads. I go

over the motivation for this method, and present our findings of its improved performance

over alternative methods. Finally, I conclude in chapter 5 where I discuss the implications of

the demonstrated advances in the accuracy and application of nanopore sequencing, as well

as look out towards further progress that can be made in both arenas.
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GLOSSARY

ABASIC: Site on the DNA backbone where the nucleobase is absent.

ATP: Adenosine triphosphate. The substrate molecule used by Hel308 to generate the
energy needed to move along DNA.

AMINO ACID: The basic monomer building blocks of proteins.

BASE CALLING: The process of assigning a DNA sequence to an the signal generated by
a sequencing device.

CODON: A set of three bases that together code for an amino acid during protein syn-
thesis.

DE NOVO SEQUENCING: The task of sequencing DNA without reference to any informa-
tion other than that provided by the sequencing platform itself (no reference genome).

DNA: Deoxyrobonucleic acid. The moleucule forming the genetic basis of life.

DNAP: DNA polymerase. An enzyme (protein) that catalyzes the synthesis of a new,
complementary DNA strand from a single-stranded template.

DNA SEQUENCING: The process of reading the order of bases along a DNA molecule.

DNTP: Deoxynucleoside triphosphate. These molecules are the building blocks of DNA.
There are 4 types of dNTPs, one for each of the 4 canonical nucleobases. These are
denoted dATP, dCTP, dGTP, and dTTP.

DSDNA: Double stranded DNA.

ENZYME: A molecule that catalyzes a biological reaction.

EPIGENETICS: Heritable traits that do not arise from mutations in the DNA sequence.
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EXOME: The exome is the portion of the genome comprising the exons, which are the
sequences which are ultimately transcribed and translated into a gene’s final protein
product.

FLUOROPHORE: A molecule that can re-emit light of a specific spectrum upon excitation
by input light.

GENOME: The complete DNA sequence in a cell or organism.

HEL308: A DNA helicase used in our studies to step DNA through the nanopore in con-
trolled increments.

HELICASE: A motor enzyme that catalyzes the unwinding of double stranded DNA.

LIPID: A class of biological molecules with a hydrophobic tail and hydrophilic head.

K-MER: A DNA sequence k bases long.

MESSENGER RNA: mRNA. RNA molecules transcribed from genes, ultimately translated
into proteins.

MOTOR ENZYME: A class of enzymes that move along a nucleic acid track.

MSPA: Mycobacterium smegmatis porin A. A bacterial outer membrane protein with
properties well suited for nanopore DNA sequencing.

NGS: Next generation sequencing. Will be referred to as second generation sequencing
(SGS) throughout this work.

NUCLEOBASE: The bases along the DNA sugar-phosphate backbone that comprise the
DNA sequence.

NUCLEOTIDE: The structural unit of the DNA polymer. Consists of a nucleobase bound
to a sugar-phosphate backbone.

PCR: Polymerase Chain Reaction. A process used to exponentially amplify a DNA
molecule.

Φ29 DNAP: A DNA polymerase used in this work to step DNA through the pore
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PROTEIN: A biological molecule comprised of amino acid building blocks, serving a wide
variety of biological functions. Proteins are synthesized from mRNA during translation.

PURINE: A two-ring nucleobase. Adenine (A) and guanine (G) are purines.

PYRIMIDINE: A single-ring nucleobase. Cytosine (C) and thymine (T) are pyrimidines.

RNA: Ribonucleic acid. A biological model, similar to DNA. RNA serves many functions
in the cell, but is primarily acts as an intermediary carrying the code from DNA to be
translated into proteins.

SANGER SEQUENCING: An early method of DNA sequencing that used inextensible dNTPs
along with gel electrophoresis to determine the sequence.

SBS: Sequencing by synthesis. A second generation sequencing technology that works by
monitoring the synthesis of a new DNA strand from the target DNA molecule.

SGS: Second generation sequencing. Any of a broad class of DNA sequencing technologies
that replaced Sanger sequencing in the mid 2000’s.

SSDNA: Single stranded DNA.

SVM: Support vector machine. A simple machine learning classifier that differentiates
between two categories by finding the plane best partitioning between labeled examples
of the two categories.

TRANSCRIPTION: The process whereby RNA is synthesized from a DNA template.

TRANSLATION: The process whereby a protein or polypeptide is synthesized from an
RNA template.

TRANSLOCASE: An enzyme that walks along a single stranded DNA track.

xiii



ACKNOWLEDGMENTS

I want to thank my advisor Jens Gundlach for his enthusiasm, vision, and patience. His

endless passion for scientific inquiry and discovery over the past 5 years has been an enormous

motivation in my pursuit of the work presented here, as his scientific vision and guidance have

helped me avoid or overcome the numerous challenges encountered along the way. Thank you

also to Henry Brinkerhoff, with whom I’ve worked closely on the variable-voltage sequencing

project. His statistical and algorithmic knowledge and innovation has been instrumental

in taking the project from concept to reality. Thanks as well to previous lab members Ian

Derrington and Kyle Langford, who laid the foundations of my work on sequencing, as well

as to Brian Ross who wrote many of the initial versions of the algorithms used in this work.

Thank you to Andrew Laszlo, who was a source of advice and guidance throughout my time

in the lab, and whose foundational work on nanopore species identification paved the way

for the work I present here on BLAST. Thanks also to Ian Nova, who provided steadfast

friendship and helpful discussion on scientific goals in addition to elevating the stoke factor

on both surfing and skiing. Thank you to Jon Craig who was instrumental in first getting me

involved in the nanopore lab, and in keeping me there by promoting a fun and productive

lab environment. Thank you to all of my coworkers and collaborators whose enthusiastic

work and stimulating discussion (scientific and otherwise) has made working here a joy–

Ben Tickman, Hugh Higinbotham, Jasmine Bowman, Jesse Huang, Jenny Mae Samson,

Jon Mount, Josh Bartlett, Katie Baker, Kenji Doering, Noah DeLeeuw, Sinduja Marx, and

Yihan Jiang. Thanks to the graduate program advisor Catherine Provost for keeping me on

track. Thank you also to Tony She, who has helped keep me sane 3, and Daniel Noakes who

3somewhat

xiv



has been a source of support throughout my PhD. Thank you to Sarah Whiteside who has

supported, encouraged, and believed in me through the entire process.

This work was supported by the National Institutes of Health, National Human Genome

Research Institute $1,000 Genome Program Grant R01HG005115.

xv



DEDICATION

To my parents, Tim and Brenda, who taught me to work hard and pursue my dreams.

xvi



1

Chapter 1

INTRODUCTION

1.1 Foundations

In 1952, the Hershey-Chase experiment [1] proved that deoxyribonucleic acid (DNA) carries

the genetic code of life. This discovery that a single molecule is responsible for encoding,

preserving, and propagating all of the information guiding the complexity of life is stunning.

Particularly, the existence of a centralized genetic code contained within a single-molecule

leads immediately to a tantalizing corollary: if we could determine the structure and compo-

sition of DNA, we could directly read and potentially understand the code of life. The next

goals were clear: understand the structure of DNA, find out how the genetic information is

encoded, then gain access to that information.

The first of these goals was achieved soon after. Only a year following the demonstration

that DNA encodes the genetic code, Watson and Crick, along with Franklin and Wilkins

[2] determined the structure of DNA (Fig 1.1). Specifically, DNA is a long polymer made

up of two anti-parallel strands (termed “sense” and “antisense”) forming a double helix.

Each of the two strands is composed of an alternating sugar-phosphate backbone. The

strands have a directionality, with the 5’ end terminating in a phosphate and the the 3’ end

having a terminal hydroxyl group. The two strands run antiparallel to one another, with

the 5’ end of one corresponding with the 3’ end of the other. Each sugar binds to one of 4

canonical nucleobases: adenine (A), cytosine (C), guanine (G), or thymine (T). Hydrogen

bonds between complementary nucleobases bond the two strands together, with A forming

2 hydrogen bonds with T and G forming 3 hydrogen bonds with C.

Solving the structure of DNA revealed how information is encoded in the molecule. The
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sugar-phosphate backbone is homogenenous over the long scales of the DNA molecule and so

serves only a structural role. The genetic information “payload” must then be carried by the

nucleobases. Namely, the code of life is “written” in the sequence of the nucleobases A, C,

G, and T from 5’ to 3’ along the backbone. The two strands are completely complementary:

an A, C, G, T in the sense strand is always accompanied by a T, G, C, or A in the antisense

strand. Thus, the double-stranded DNA molecule encodes two identical copies of the same

information. This apparent redundancy is critical to maintenance and replication of the

genetic code, wherein each of the two strands is individually used as a template to generate

a new copy of the DNA [3].

The understanding that genetic information is carried by the sequence of nucleobases

(“DNA sequence”) was expanded upon less than a decade later by work demonstrating that

sets of three bases (codons) correspond to specific amino acids–the building blocks of proteins

[4]. We now understand information flow in biology as occurring through the hierarchical

interactions of three key biopolymers: DNA, RNA, and protein [5]. This unifying biological

theory–termed the central dogma–states that DNA templates the transcription of ribonucleic

acid (RNA) molecules. RNA in turn guides the translation of the polypeptides which form

proteins–a versatile class of biomolecules which ultimately perform the myriad functions

crucial to life (Fig 1.2).

The goal of understanding how the genetic information in DNA is decoded into RNA and

protein is far from complete. Both transcription (DNA into RNA) and translation (RNA

into proteins) form the basis of rich and complex fields of research. With regards to reading

the genetic code however, these early results and the basic formulation of the central dogma

painted a clear picture of where to go next. If the code of life is written in the sequence

of bases along DNA, then to read and ultimately understand the code, we must be able to

determine the DNA sequence.
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Figure 1.1: Structure of DNA. The basic unit of the DNA molecule is the nucleotide, com-
posed of a phosphate (yellow), sugar (orange), and nucleobase (red, blue, purple, or green).
Each of DNA’s two complementary strands is composed of a chain of these nucleotides,
with the alternating sugars and phosphates making up the polymer’s backbone. DNA’s two
strands have a directionality. The 5’ end terminates in a final phosphate group, and the 3’
end terminates in a final hydroxyl group. The four nucleobases Adenine (A, blue), Thymine
(T, red), Cytosine (C, purple), and Guanine (G, green) encode the biological information
stored in the DNA. Base pairing between complementary nucleobases across the two strands
holds the polymer together, with A pairing with T through 2 hydrogen bonds (gray dashed
lines) and C pairing with G through 3 hydrogen bonds. In its double stranded form, DNA
forms a double helix with a diameter of 2.4 nm and an inter-nucleotide spacing of 0.34 nm.
Single stranded DNA is not a double helix and is much more flexible. It is half the diameter
of dsDNA at 1.2 nm, and the nucleotides are spaced out to an inter-nucleotide spacing of
0.69 nm. This image is adapted from https://biologydictionary.net/dna/
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Figure 1.2: Biological information flow. DNA acts as the base repository of biological in-
formation. DNA templates the synthesis of new DNA during the process of replication.
Additionally, DNA templates the synthesis of RNA in the process of transcription. The
intermediary RNA then templates the synthesis of proteins in the process of translation.

1.2 Early DNA Sequencing

The goal of reading the sequence of nucleobases along a DNA molecule (DNA sequencing)

is a conceptually simple problem whose practical complexities and tremendous promise have

led to it occupying an enormous fraction of the scientific consciousness of the past several

decades. The obvious challenge in DNA sequencing lies in the scale of the molecule. The

bases along single stranded DNA (ssDNA) are spaced by only 0.69 nm along the backbone.

Furthermore, the chemical differences between the 4 bases are quite subtle. Particularly, the

single-ring pyrimidine bases C and T differ by only a few atoms from each other. The same

is true for the two-ring purine bases A and G.

In juxtaposition to the minuscule scale of the DNA bases is the enormous scale of the

entire polymer. Whole genomes can run from thousands (viruses) to millions (prokaryotes)

even to billions (eukaryotes) of bases. The human genome comprises over 3 billion base

pairs (Gbp), and would measure over a meter in length if stretched out end-to-end (double
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stranded; over twice that if single stranded). The confluence of the small scale of the bases

making up the DNA sequence and the vast length of the entire sequence makes sequencing

an organism’s entire genome a daunting task.

It took nearly 25 years following the discovery of DNA’s structure for the first genome

to be sequenced [6]. the first completed genome was that of the ΦX174 bacteriophage. The

ΦX-174 genome is modest in size (only 5386 bases), but its completion opened the door to

more ambitious sequencing projects. Notably, this first genome was sequenced using the first

broadly successful DNA sequencing technique, commonly known now as Sanger sequencing

after its inventor.

Sanger sequencing works by first making many copies of the DNA to be sequenced, all

starting at the same location in the genome (Fig 1.3). Each of these copies is then replicated

in vitro. During replication, a new copy of the initial DNA strand (template) is synthesized

by the successive incorporation of deoxynucleoside triphosphates (dNTPs, the building blocks

of DNA) by a DNA polymerase 1 (DNAP, an enzyme that catalyzes the synthesis of DNA).

A fraction of the dNTPs are chemically modified to be inextensible; that is, the DNAP is

unable to incorporate more dNTPs into the nascent copy strand following the incorporation

one of these modified dNTPs. These same inextensible dNTPs are additionally labeled

with a colored fluorescent molecule (fluorophore), with a separate color labeling each of

dATP, dCTP, dGTP, and dTTP. This process of in vitro replication with occasional random

incorporation of fluorescently-labeled inextensible dNTPs results in a population of variable-

length nascent copies of the target DNA sequence. Each is labeled at its 3’ end with the

fluorophore corresponding to the final base incorporated. This DNA is run on an agarose

gel, which separates the strands by their length 2. The target DNA can finally be sequenced

1The use of DNA-processing enzymes, such as DNA polymerases, has underpinned not only Sanger se-
quencing, but many more modern approaches as well. Both sequencing-by-synthesis and enzyme-actuated
nanopore sequencing use DNA-processing enzymes, as will be discussed later

2The above-described method is an amalgam of the several different implementations of Sanger sequencing
that have been used over the past decades. Older methods used four parallel reactions, one each for A, C,
G, and T termination and no fluorescent labels. Newer methods use capillary electrophoresis in place of
gels to allow more automated throughput.
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by reading off the order of colors in the length-ordered DNA bands in the gel.

Sanger sequencing remained the state-of-the-art in DNA sequencing for nearly 40 years,

and is still used in certain applications. The Human Genome Project (HGP), begun in

1990 and completed in 2003 [7, 8], relied heavily on Sanger sequencing to read the entire

3 Gbp human genome. Lasting over a decade and costing nearly $3 billion, the HGP was

an enormous undertaking and a resounding success. However, sequencing a single human

genome proved not to be the culmination of the goal of reading the genetic code, but rather

the starting point. The success of the HGP was a window into the enormous potential of

DNA sequencing as a tool for both clinicians and researchers. A new wave of ambitious

applications (section 1.4) no longer seemed far-fetched.

However, despite its broad success, Sanger sequencing would not be sufficient to meet the

ambitious new goals of the DNA sequencing movement. High reagent costs, large require-

ments for input DNA necessitating in vivo DNA amplification, and the tedious difficulty of

running countless gels made Sanger sequencing costly and slow. While innovation driven

by the HGP had reduced Sanger sequencing costs more than 10-fold over the course of the

decade, estimates still placed the cost of sequencing a full human genome around $100 mil-

lion in 2001. An orders-of-magnitudes further cost reduction would be critical for DNA

sequencing to be clinically feasible for individuals and accessible to individual researchers.

1.3 Second Generation Sequencing

Following the completion of the Human Genome Project, the cost of DNA sequencing has

plummeted from nearly $100 million to just above $1000 over the course of about 15 years

(Fig 1.4). This precipitous drop has far outpaced Moore’s Law 3 –long the gold standard

of technological innovation. The drop was driven by the advent of disruptive new technolo-

gies, a revolution commonly referred to as next generation sequencing (NGS). For clarity

3Moore’s Law states that the number of transistors per area on a chip will double every 18 months.
Commonly, this is interpreted and phrased as saying that computing costs will fall by half over this time
period. In general, it serves as a benchmark for rapid progress in technological development.
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Figure 1.3: Method of Sanger sequencing. Sanger sequencing of a target DNA strand (5’-
ACTGTA-3’) begins by making many copies of the target strand (amplification). The dupli-
cate copies are then replicated in vitro using a fraction of inextensible, fluoresently labeled
dNTPs. Some fraction of all the replicates will be terminated at each position along the
template. The terminated replicates are finally separated on a gel by their length. The flu-
orescence of the separated bands reveals the complementary sequence of the original target
strand. The final sequence can ultimately be read off as the complement of the fluorescently
decoded read.

going forward, I will refer to these technologies as second generation sequencing (SGS) to

differentiate them from the more modern approaches discussed later. SGS technologies were

able to massively parallelize the task of DNA sequencing, eliminate the need for gel-based

(or capillary-based) readouts, and reduce 4 the sample size requirements on the input DNA.

Together, these achievements substantially reduced the time, cost, and effort required to do

DNA sequencing.

The method of sequencing-by-synthesis (SBS) underpins many of the most important SGS

technologies. SBS works by monitoring the activity of a DNA polymerase as it synthesizes

a copy of the target DNA strand. The target DNA molecule is amplified in vitro and many

identical copies of the target are fixed to a location on a flow cell (Fig 1.5). DNA polymerase

enzymes are then used to synthesize a complement to each copy of the target DNA in unison.

Nascent strand synthesis uses specially modified dNTPs. The dNTPs used are reversibly-

terminating (RT-dNTPs), meaning that their incorporation prevents further extension of the

nascent strand until the terminating moiety is removed by another chemical process referred

to as deblocking. Iteratively, one of the 4 types (A, C, G, or T) of RT-dNTPs is flushed

into the flow cell. The DNA polymerase incorporates the correct nucleotide into the nascent

strand, then is blocked from further incorporation. Incorporation is detected either optically

using fluorescently-labeled RT-dNTPs (as in Illumina sequencing) [9] or electronically by

4Though the input DNA requirements for SGS technologies still require polymerase chain reaction (PCR)
amplification, the scale of amplification is significantly reduced, and the need to amplify using bacterial
vectors has been largely deprecated.
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Figure 1.4: Cost per genome. The diamond data points and green line show how the
cost to sequence a single human genome has fallen since the completion of the human
genome project. The white line shows Moore’s law over the same period–costs falling by
half every 1.5 years. The cost per genome has dramatically outpaced Moore’s law for over
a decade, driven by disruptive advances in DNA sequencing technology. This image is
adapted from the National Institutes of Health, National Human Genome Research Insti-
tute, https://www.genome.gov/27541954/dna-sequencing-costs-data/
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detecting the release of H+ ions accompanying dNTP addition (as in Ion Torrent sequencing)

[10]. Following incorporation, the deblocking agent is flowed through, allowing subsequent

further extension of the nascent strand.
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Figure 1.5: Sequencing by synthesis. Sequencing by synthesis starts by amplifying the target

DNA strand to form a clonal sequencing colony. In the extension step, fluorescently labeled

inextensible dNTPs are flowed in, and the template is extended via the incorporation of the

correct complementary base. The deblocking step then removes the inextensible end of the

incorporated nucleotide, allowing further extension. The extend/deblock cycle is repeated

until the entire complement has been synthesized and the entire strand sequenced.
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1.4 Applications of DNA Sequencing

A few burgeoning scientific and medical applications leveraging the modern power of second

generation DNA sequencing are discussed below.

1.4.1 Molecular Biology

Our ability to sequence DNA has revolutionized our understanding of the molecular basis of

life. We can now directly access the code governing cellular function. By sequencing DNA,

researchers can now read the genes that are transcribed into messenger RNA and ultimately

translated into proteins. Reading the sequence of genes allows researchers to understand

how genes are expressed, and how mutations change the overall function of the cell.

1.4.2 Evolutionary Biology

DNA sequencing has unsurprisingly proven to be a powerful tool for evolutionary biology–the

study of how organisms change over time and are related to one another. Comparing the

genomes of different species can reveal their shared evolutionary history and shed light on

relational questions beyond the reach of macroscopic analysis. Within species, comparative

sequencing of multiple individuals can be a tool to track evolution over faster time scales.

One such application is in the tracking of viral or bacterial pathogens during an outbreak

[11] [12]. Fast, cheap DNA sequencing of the outbreak vector can monitor the spread of

the disease and track important evolutionary changes in the pathogen potentially leading to

drug resistance or difficulties in treatment [13].

1.4.3 Metagenomics

Metagenomics is a new field of scientific research enabled by the falling cost of DNA sequenc-

ing, focused on sequencing entire ecosystems rather than individuals or individual organisms.

Rather than reading the genetic material from a single individual, metagenomics studies se-

quence all the genetic material contained in an environmental sample. A large sample of
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material is collected from a given environment–for example, one study used 200 L of sea-

water [14]. DNA from the multitudinous organisms present in the sample is extracted and

sequenced. The resulting sequencing data is then analyzed, providing profound insight into

the biodiversity present in the ecosystem. Such large-scale sequencing projects have already

revolutionized our understanding of ecosystems including the ocean [14] and the human mi-

crobiome [15]. These types of studies have driven critical advances in fields including biofuels

research [16], environmental monitoring [17], and agriculture [18].

1.4.4 Clinical Diagnosis

DNA sequencing is making it easier for clinicians to diagnose patients. Perhaps the simplest

case of clinical diagnosis using DNA sequencing is in the case of genetic diseases, where

DNA sequencing allows direct detection of the mutation(s) responsible for the disease. In

the future, it is possible that DNA editing technology will progress to the point where we

can not only identify genetic disorders, but also correct them.

In addition to the genetic diseases application, a metagenomics-style approach has proved

to be a powerful tool for pathogen detection and diagnosis of non-genetic illness. This type

of application extracts the DNA present in a sample from the blood or gut of a patient. By

sequencing the extracted DNA, we can determine the species present in the sample (viral,

bacterial, etc.) and from this determine the source of the observed illness as well as the best

way to treat it. This type of diagnosis could improve outcomes in cases such as sepsis. For

septic patients, each hour that diagnosis and the administration of effective antibiotics or

antimicrobials is delayed dramatically decreases the likelihood of survival [19] [20]. The fast

identification of the infectious organism through sequencing and the corresponding informed

administration of effective drugs would reduce sepsis mortality rates.

1.4.5 Personalized Medicine

The basic concept of personalized medicine–tailoring treatment to the unique circumstances

and needs of the patient, rather than following a one-size-fits-all standard of care procedure–
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is not new in and of itself. However, the advent of fast and affordable DNA sequencing has

revolutionized the scope and precision of personalized medicine. The presence or absence of

specific mutations can influence the range of likely outcomes for a given treatment plan. For

instance, a patient with mutation X1 may be 90% likely to be cured by drug A, with a 5%

chance of adverse side effects. Conversely, a patient with a different mutation X2 may only

be 30% likely to be cured by the same drug, with a 50% chance of adverse side effects. By

sequencing in advance of treatment, the clinician would be able to know to prescribe drug A

to the first patient, but perhaps look instead for an alternative treatment plan for the second

patient. This type of approach has already proven effective in treatment of pancreatic [21],

promyelocytic leukemia [22], gastric [23], and non-small cell lung [24] cancers, amongst others

[25]. In general, by sequencing the specific gene(s) of interest of the patient–or even entire

exome or genome–clinicians can better predict the efficacy of various treatment plans prior

to beginning treatment and better tailor their approach on a patient-by-patient basis.

1.5 Limitations of Second Generation Sequencing

SGS technologies have brought us a long way toward understanding the code of life by

increasing the speed and decreasing the cost of DNA sequencing. The progress catalyzed

by SGS over the past decade continues to revolutionize science and health care. However

despite the substantial achievements of these technologies, they do not completely solve the

myriad challenges of DNA sequencing.

1.5.1 Cost and Speed

While SGS has made exponential progress in reducing the time and cost to sequence DNA,

progress in this arena has begun to plateau over the past several years (Fig 1.4) as we

approach some fundamental limitations of these technologies.

In particular, the speed limitations of SGS technologies present a challenge to various

sequencing applications relying on fast time lines from taking a sample to getting an answer
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(sample-to-answer). The extend/deblock cycle is inherently slow 5, so it takes a long time

to sequence an individual clonal sequencing colony. As each individual read is slow, SGS

gains its speed through massive parallelization: taking many (millions or tens of millions)

reads simultaneously. This parallelization improves the overall average speed of these tech-

nologies in terms of base pairs sequenced per hour of run time. However, it is only a partial

workaround in terms of speedy sample-to-answer. The researcher or clinician must still wait

until the parallelized reading is complete before the sequencing data is available. Further

parallelization does not address the issue that a full SGS run takes a day or more. A new

technology seeking to improve sample-to-answer time lines would need to reduce the per-base

time for single reads.

1.5.2 Epigenetic Modifications

There is more information encoded in genomic DNA than just the order of the bases. Epi-

genetic factors are heritable changes outside of mutations in the DNA sequence that affect

biological function. A broad class of the epigenetic factors take the form of modifications

to the DNA bases. The presence or absence of modified bases such as 5-methylcytosine (a

methylated cytosine) at specific genome locations can influence gene regulation and expres-

sion, affecting the rate and manner in which certain genes are transcribed and ultimately

translated into proteins [26]. As such, the pattern of these epigenetically modified bases in

the genome has implications for cell differentiation and life cycle [27], as well as cancer and

other diseases [28] [29] [30].

Despite their importance, these epigenetically modified bases can not be directly detected

by SGS technologies. The process of amplifying the target DNA molecule does not preserve

modified bases present in the original DNA–all copies will be entirely unmodified. There

exist a suite of methods to indirectly detect modified bases using SGS, but all of these

5Even ignoring the hours required for colony formation, each base incorporation cycle takes ∼10 minutes
in an Illumina sequencing device, meaning a 200 base read requires over a full day to run. A detailed
breakdown of Illumina runtimes can be found at https://support.illumina.com/bulletins/2017/02/run-
time-estimates-for-each-sequencing-step-on-illumina-sequenci.html



16

methods have drawbacks in cost, speed, and/or accuracy [31] [32] [33]. A technology capable

of reading native DNA–without the need for amplification–would potentially be able to

directly detect these epigenetically-relevant modified bases and open a new dimension of

sequencing information.

1.5.3 Read Length

In addition to destroying epigenetic information, the DNA amplification requirement of all

SGS methods limits the read lengths possible using these technologies. To generate a good

signal, sequencing by synthesis relies on the clonal population being “in-phase”: the same

(correct) dNTP being incorporated into all members of the colony during each cycle of

extension/deblocking. However, the DNA polymerase incorporating the dNTPs is error

prone and occasionally fails to incorporate a nucleotide when it should, or incorporates an

extra nucleotide when it should not. During each extension cycle, some fraction of the clonal

population will experience an error, becoming “de-phased”. Each successive cycle will see

more and more members of the colony become de-phased and the signal will deteriorate.

Eventually, there will be too few in-phase incorporations to generate a useful sequencing

signal.

If the DNAP makes errors at some rate 6 ε, after n cycles only (1 − ε)n of the colony

members will still be in-phase. If the sequencing device requires some fraction F of the

colony members to be in-phase in order to generate accurate results, the maximum possible

read length L is given by

L = log1−εF (1.1)

Even for generous estimates of F = 0.25 (only requiring 25% of clones to be in-phase) and

ε = 0.005 (DNAP only making 1 error in 200 tries), the maximum possible read length L is

only 276 bases. Typical SGS reads are limited to ∼200 bases 7.

6In this dissertation, I use the term error rate to refer to the per-base probability of a sequencing error.

7A summary of read length capabilities and other statistics for various Illumina sequencing devices can
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Short read lengths make the task of whole genome sequencing difficult or even impossible.

In order to reconstruct a DNA sequence (i.e. an entire genome) longer than a sequencer’s

read length, separate shorter reads of sections of the sequence must be stitched together.

Reads can be stitched together based on their overlapping stretches [34] but this can be

computationally difficult. Take the case of reconstructing a human genome using 200 base

SGS reads: the 3 billion base human genome would require tens of millions of these short

reads to cover its entire length. Finding the correct way to overlap and stitch together these

tens of millions of reads to reconstruct the entire genome is difficult, slow, and potentially

error prone.

Particularly, short reads are ill-suited for correctly sequencing repetitive sections of the

genome. Large stretches of the human genome (and those of other eukaryotes) are composed

of stretches of adjacent or interleaved copies of some DNA sequence [35]. These repetitive

sequence motifs cannot be correctly reconstructed unless the read length is longer than the

repeated sequence (Fig 1.6). Consequently, there are sections of the human genome (and

other genomes) that are impossible to correctly reconstruct using short read sequencing

technologies. A technology capable of long read lengths would reduce the computational

cost of sequence reconstruction and allow us access the true sequence of difficult repetitive

sections. Such a technology must not rely on the in-phase signal of many copies of the target

molecule.

1.6 Third Generation Sequencing

A new generation of sequencing technologies is now emerging, seeking to address the various

limitations of SGS. This “third generation” of sequencers is moving away from the massively

parallelized sequencing-by-synthesis approaches used in SGS. Instead, these new technologies

aim to achieve single-molecule sequencing: reading the sequence of a target DNA strand using

only a single unamplified copy. A single-molecule sequencing technology would not require

be found at https://www.illumina.com/systems/sequencing-platforms.html
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Figure 1.6: Genome reconstruction. In this example, the true DNA sequence has 3 repeats
of a 4 base motif (red, blue, green highlights). If this DNA were sequenced using a sequencer
with read length of 3, we would get a set of short reads covering the sequence. Stitching
together these short reads based on their overlap would yield a final reconstructed sequence
with only two copies of the repeated 4 base motif (red, blue highlights). The reconstructed
sequence has lost a repeat relative to the true sequence.
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DNA amplification and would therefore avoid many of the issues limiting SGS methods.

First, avoiding amplification would improve cost and speed by eliminating the time and

reagents required to amplify DNA. Furthermore, sequencing single molecules of native DNA

could allow us to detect the epigenetic modifications otherwise lost during the amplification

process. Finally, a single-molecule sequencing method would not rely on the in-phase signal

of a clonal cluster and so would have no intrinsic limit on the read length.

My work in the Gundlach lab has focused on developing, improving, and applying one

particularly promising third generation, single-molecule sequencing technology: nanopore

DNA sequencing. In chapter 2, I introduce and describe nanopore sequencing technology.
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Chapter 2

NANOPORE DNA SEQUENCING

Chapter 1 discussed second generation DNA sequencing technologies, and outlined their

primary limitations. It also suggested that a single-molecule sequencing technology could

address many of these limitations. In this chapter, I will go into depth on nanopore DNA

sequencing, an emerging single-molecule sequencing technology with the potential to ad-

dress many of the problems with existing sequencing methods. First proposed in 1996 [36],

nanopore sequencing has overcome numerous hurdles over the past two decades en route to

becoming a fully realized DNA sequencing technology. I will review the progress of nanpore

sequencing as it has progressed from idea to reality, outline the challenges already overcome,

and discuss the remaining challenges I hope to address in this work.

2.1 Basic Concept

The basic nanopore sequencing device consists of two wells separated by an impermeable

membrane (Fig 2.1a). The two wells, termed cis and trans, are each filled with a buffered,

conductive electrolyte solution (e.g. potassium chloride, KCl). A single nanometer-scale pore

in the membrane–called the nanopore–provides the sole conductive pathway between the two

wells. When a voltage is applied across the membrane, an ionic current flows through the

nanopore. DNA molecules, which are poly-negatively charged in solution, are drawn into

and through the pore by the voltage, moving from cis to trans. While passing through

the pore, the DNA partially blocks the ionic current flow. Specifically, the extent of the

ionic current blockage is primarily influenced by the nucleotides present within the pore’s

narrowest region, or constriction. The fundamental idea underpinning nanpore sequencing is

that the different chemical characteristics of the nucleotides would cause different nucleotides
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to block different amounts of the ionic current (Fig 2.1b). By measuring the fluctuations in

the ionic current during DNA translocation through the pore, we could read off the sequence

of nucleotides as the DNA moves through.

A nanopore sequencing device as described above would have the potential to address

several of the limitations of SGS [37]. Such a device would sequence DNA by measuring a

single copy of the target DNA strand, and so would have no intrinsic limitation to its read

length. Additionally, this device would sequence DNA by sensing the chemical differences

between the 4 nucleobases; a device sensitive to these differences should also be able to

detect the chemical differences characterizing epigenetically-relevant modified bases such as

5-methylcytosine. Finally, DNA translocation through the nanopore could proceed much

faster than the extend/deblock cycle of SBS, allowing much faster speeds for individual

reads and enabling dramatically improved sample-to-answer time lines.

2.2 Choosing a Nanopore

The first key ingredient in a functioning nanopore sequencing device is the nanopore itself.

In order to actually sequence the DNA, the nanopore in the sequencing device must have

certain crucial features. The first requirement is that the nanopore have the correct dimen-

sions to sense the subtle chemical differences between the nucleotides along DNA. Ideally,

the nanopore would have a single narrow region approximately the dimensions of a single

nucleotide of ssDNA: just over 1 nm in diameter, and less than 1 nm in height. The nanopore

must also be atomically reproducible. A robust sequencing platform must measure the same

signal for the same DNA sequence on different devices on different days. Even subtle dif-

ferences between the nanopores in different devices would lead to each device producing a

different signal for the same DNA sequence, rendering consistent DNA sequencing difficult.

Various different nanopores have been explored as potential candidates for sequencing. The

candidates can be easily categorized into two main types: solid state nanopores and biological

protein nanpores.
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Figure 2.1: Basic nanopore sequencing scheme (a) Cross-sectional view of a simplified
nanopore sequencing device. An impermeable membrane separates the cis and trans wells,
with a single nanopore providing a conductive pathway across the membrane. We apply
a voltage across the membrane and measure the ionic current through the pore as DNA
moves through from cis to trans. (b) Idealized nanopore sequencing data. In a function-
ing nanopore sequencing device, the observed signal may be as follows. The open pore (no
translocating DNA) displays a high characteristic open pore current. Once DNA enters
the pore, the ionic current drops. The nucleotide-by-nucleotide translocation of the DNA
through the pore results in a series of different ionic current values as the different nucleotides
block the ionic current to different extents. In the simplest case, we may observe exactly 4
distinct current values–one for each of the 4 nucleotides. The DNA sequence could then be
decoded from the series of observed current values, in this case A-T-C-G.
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2.2.1 Solid State Nanopores

Solid state nanopores are man-made pores formed by drilling a small hole through a thin ma-

terial such as silicon nitride, molybdenum disulfide, or graphene [38, 39, 40, 41, 42, 43] . This

type of nanopore offers several advantages. The membranes in which solid state pores are

drilled are quite strong, and so can be long-lasting under the constant application of voltage.

Additionally, their fabrication lends itself well to massive parallelization and integration into

a commercial sequencing device. However, modern nanofabrication techniques are not yet

capable of achieving the scale and consistency required to produce good solid state pores for

DNA sequencing. Without the ability to reliably fabricate nanopores small enough to probe

DNA and with atomically consistent features, DNA sequencing using solid state nanopores

is not yet realistic. However, their considerable long term advantages in robustness and ease

of large-scale fabrication and parallelization make them an exciting avenue for continued

research.

2.2.2 Biological Protein Nanopores

Another type of nanopore harnesses nature’s fabrication prowess in lieu of relying on man-

made pores. There exist a broad class of biological protein pores: naturally occurring

biomolecules that form small pores in cell membranes. Many of these protein pores bio-

logically function as ion channels, allowing and regulating the flow of ions into and out of a

cell. The immediate advantage of using a protein nanopore to sequence DNA is their atomic

reproducibility. Nature requires that each copy of a protein be atomically identical to each

other copy–without this property, life could not exist! By using protein pores to sequence

DNA, we can make use of billions of years of advances in precision fabrication and quality

control that we can not yet replicate in our own nanofabrication methods.

Biological protein nanopores are not without their drawbacks. These pores form channels

within lipid bilayer membranes 1 , which are far less stable over long time periods and under

1Lipid bilayer membranes are synthetic cell membranes. They are composed of two oppositely-oriented
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sustained voltage than solid state membranes. The process of establishing a single protein

pore in a lipid bilayer membrane 2 is not as easily parallelized as the fabrication of solid

state nanopores. Finally, protein pores do not afford the customizability available in solid

state pores. As we are borrowing from nature’s design by using biological protein pores, we

can’t design the pore structure from scratch and must instead hope to find a suitable pore

for DNA sequencing within the catalog of existing proteins. The burgeoning field of de novo

protein design 3 could to some day allow us to make our own entries in the catalog of available

protein pores and design from scratch our ideal protein nanopore for sequencing [44]. For

now however, both the nanofabrication techniques needed for sequencing-capable solid state

pores and the de novo protein design techniques needed for usable synthetic protein pores are

a ways away. Without the ability to create our own custom nanopores for DNA sequencing,

we must hope to discover a suitable nanopore already existing in nature.

Much of the pioneering work in developing nanopore sequencing was done using the α-

hemolysin nanopore (αHL, Fig 2.2a), a pore-forming protein toxin secreted by the bacteria

Staphylococcus aureus. Early nanopore sequencing work using αHL showed that DNA could

indeed translocate through the pore when driven by a voltage, and that these translocations

could be detected [36]. Later work in which DNA was held statically within the αHL pore

showed that the DNA sequence had a measurable effect on the on the current through

the pore [45] and even showed that cytosine and 5-methylcytosine could be distinguished

from each other [46]. However, nanopore sequencing using αHL would ultimately prove

difficult as its long constriction (Fig 2.2a) is simultaneously sensitive to many bases along

monolayers of lipid molecules. Lipids are composed of a hydrophilic head group and a hydrophobic tail. In
aqueous solution, the lipid molecules will arrange themselves into a bilayer to as to bring the head groups
in contact with water while shielding the tails.

2Protein pores will spontaneously insert themselves into a lipid bilayer. However, insertion is a random
process. To isolate a single channel, the user must recognize the characteristic jump in conductance
associated with a single pore insertion, then flush out all additional pores present in solution prior to
a second insertion. In a massively parallelized nanopore sequencing device, the fraction of wells with a
working single channel insertion will be poisson limited.

3In de novo protein design, researchers “write” a protein from scratch, customizing the sequence of amino
acids in order to achieve an objective functionality.
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Figure 2.2: αHL and MspA. Both (a) the αHL pore from Staphylococcus aureus and (b) the
MspA pore from Mycobacterium smegmatis have both been used for nanopore sequencing.
The main advantage of MspA over αHL is its single short constriction, in contrast to the
long uniform constriction of αHL. The space-filling representations of the two pores’ crystal
structures are shown here. This figure has been modified from [48]. Colors correspond to
amino-acid classes: negatively charged amino acids are shown in blue, positively charged
shown in red, polar are shown in purple, non-polar aromatic are in orange, and non-polar
aliphatic are in yellow.

the translocating DNA [47]. A pore with a shorter constriction would need to be found to

make nanopore sequencing a reality.

2.2.3 Mycobacterium smegmatis porin A

In 2008, my research group pioneered the use of a new protein pore for nanopore sequencing:

Mycobacterium smegmatis porin A (MspA, Fig 2.2b) [49, 48]. MspA is an octomeric mem-

brane protein from the Mycobacterium smegmatis bacterium. Compared to αHL, MspA has

a much shorter constriction (Fig 2.2). Particularly, MspA has a single narrow constriction

only ∼1.2 nm in diameter at its narrowest point and only ∼0.6 nm in height, making it
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ideally suited to probe single nucleotides of ssDNA 4. Despite this ideal geometry, naturally-

occuring (“wild type”) MspA was not immediately suited for to DNA sequencing. The

presence of negatively-charged aspartic acid residues in the constriction prevented ssDNA

from translocating through MspA. However, by mutating the negatively charged residues

in the constriction to neutral asparagines, DNA translocation through mutant MspA was

achieved [48]. Further mutagenesis continued to optimize MspA for DNA sequencing ap-

plications by increasing the capture rate of ssDNA into the pore 5. Now armed with an

atomically reproducible nanopore capable of translocating ssDNA and with the correct ge-

ometry to probe single nucleotides, the stage was set to begin characterizing the ionic current

signal of ssDNA moving through MspA.

2.3 Controlling DNA Translocation

Free ssDNA moves through MspA at around 2-10 nucleotides per µs [48]. At such a high rate

of translocation, it is not possible to resolve the sequence-dependent ionic current fluctuations

caused by the various nucleotides and actually sequence the DNA 6. A method to slow down

DNA motion through the nanopore is required if we are to sequence DNA.

Once again, nature provided a solution. In collaborative work between the nanopore

group here at the University of Washington and researchers at UC Santa Cruz, a DNA-

processing enzyme was used to control DNA motion through a nanopore [51] [52]. This first

demonstration of enzyme-actuated nanopore DNA sequencing used the Φ29 DNA polymerase

enzyme (Φ29 DNAP) as a molecular motor to move DNA through the pore in stochastic,

4ssDNA (section 1.1) is 1.2 nm in diameter, with an inter-nucleotide spacing of 0.69 nm

5The final mutant MspA used for DNA sequencing in our lab has a total of 6 point mutations rela-
tive to wild type MspA: D90N/D91N/D93N/D118R/E139K/D134R. D denotes aspartic acid (negatively
charged), N denotes asparagine (neutral), R denotes arginine (positively charged), E denotes glutamic acid
(negatively charged), and K denotes lysine (positively charged).

6Some researchers are working on developing advanced electronics with sufficiently high bandwidth and
low noise to sequence freely translocating DNA [50]. However, substantial further research is required
before such an approach will be feasible.
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discrete, single-nucleotide steps 7 (Fig 2.3a). With DNA controlled by Φ29 DNAP, the ionic

current signal displays a series of distinct states each characterized by a well-defined mean

(Fig 2.3b). Transitions between states are caused by single-nucleotide steps by the Φ29

DNAP. The state durations are a product of the stochastic stepping behavior of the motor

protein and are not indicative of the translocating DNA sequence 8. The ionic current time

series data is optimally partitioned into distinct states using a maximum-likelihood-based

change point detection algorithm (appendix B) and the duration information is discarded.

This reduces the nanopore signal to a series of sequential mean ionic current values which

will ultimately be used to sequence the DNA.

Repeated measurements of the same DNA sequence translocating through MspA under

the control of Φ29 DNAP show a reproducible pattern of ionic current states (Fig 2.3c).

As the motor enzyme takes one step per nucleotide, we observe one ionic current state per

nucleotide in the target DNA. Aligning the known DNA sequence with the observed states,

we see that certain sequence motifs correlate with specific patterns in the ionic current.

Notably, thymine tends to cause lower currents, adenine higher currents, and the abasic site

results in high currents not observed for any of the 4 nucleobases.

With the demonstration of enzyme-controlled motion of DNA through MspA, all the

components necessary for functional nanopore sequencing were present. The MspA nanopore

provides the proper geometry to sense the chemical differences of single nucleotides, and the

atomistic consistence for reproducible measurements of the same DNA sequence. Concur-

rently, the motor protein controls DNA translocation to proceed slow enough to resolve the

7The Φ29 DNAP was used in two different modes in this work. In the first mode, termed “stripping”, Φ29
DNAP was used as a physical brake, slowly lowering ssDNA through the pore as it stripped through the
upstream duplexed DNA from 5’ to 3’. The second mode, termed “synthesis”, had Φ29 DNAP working
as a polymerase, pulling ssDNA up out of the pore as it polymerased a complement to the template DNA
strand being sequenced.

8Although not useful for DNA sequencing, there is rich scientific information in the state durations as to
the chemical kinetics of the motor protein. The detailed study of this information has been the subject
of extensive parallel research within the Gundlach nanopore lab, and is the foundation for the burgeoning
single-molecule biophysics tool “Single-molecule Picometer Resolution Nanopore Tweezers”, or SPRNT
[53, 54, 55].
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nucleotide-by-nucleotide fluctuations in the ionic current caused by the chemical differences

between the bases. Together, the motor enzyme and nanopore form a system that generates

reproducible ionic current signals with the single-nucleotide resolution necessary to sequence

DNA. The final remaining hurdle to realizing the goal of nanopore sequencing was to deter-

mine the relationship between the observed ionic current states and the translocating DNA

sequence 9.

2.4 Relating Ionic Current with DNA Sequence

To sequence DNA using a nanopore, we must have a way of decoding an observed ionic

current signal into an inferred DNAsequence. In the idealized version of nanopore sequencing

data (Fig 2.1b), this decoding was simple: each observed ionic current state was influenced

by only one base, and each base had a unique and well-differentiated 10 mean ionic current

value. Measurement of enzyme-controlled DNA translocation would result in a series of ionic

current states, each with one of four distinct values corresponding to the 4 bases A, C, G,

and T. DNA sequencing would simply amount to reading off the order of the 4 different

current states as the 4 different bases.

As it turns out, decoding ionic current into DNA sequence is not as simple as for the

idealized model. The ionic current signal of translocating DNA exhibits far more than 4

distinct mean values (Fig 2.3c). The abundance of distinct ionic current values is caused by

more than one base influencing each state. In order to determine the sensitivity of each ionic

current state to the translocating DNA sequence, my predecessors in the Gundlach nanopore

lab conducted the following experiment. They measured the ionic current states of a DNA

sequence consisting of consecutive tri-nucleotide ‘CAT’ repeats (5’-CATCAT...CATCAT3’)

9There exist other proposed methods of nanopore DNA sequencing than enzyme-actuated nanopore se-
quencing (sometimes termed nanopore strand sequencing). Methods such as nanopore sequencing by
synthesis [56] are actively under development. However, enzyme-actuated nanopore sequencing is the
most fully realized approach and the only technology that is commercially available. It will be the sole
focus of the remainder of this dissertation.

10In this case, “well-differentiated” means that the mean ionic current state for each base was significantly
removed from the means of the other bases when accounting for noise.
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Figure 2.3: Enzyme-actuated nanopore sequencing. (a) In an enzyme-actuated nanopore
sequencing experiment, a Φ29 DNAP enzyme (red) controls the motion of DNA (purple)
through MspA (yellow). Here the enzyme acts as a physical brake, slowly stripping from 5’
to 3’ through the upstream dsDNA as the voltage pulls the ssDNA through the pore. (b) In
the raw current time series data, we see a series of distinct ion current states separated by
abrupt transitions caused by enzyme steps. The raw data (downsampled to 5 kHz) is shown
in gray. The black lines show the mean currents for the states found by the change point
detection algorithm. (c) Repeated enzyme-controlled DNA translocation events of the same
DNA sequence show a reprodicible pattern of ionic current states. Blue lines the stacked
current states for N = 86 different measurements of the same DNA sequence. The generating
DNA sequence is aligned above; the “X” represents an abasic site along the strand. The
black line shows the overall mean ionic current at each state, with error bars showing the
standard deviation of the various measurements of that state.
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with a single T→G substitution in the middle of the sequence. The goal was to observe how

a single base substitution in a repeating background would influence the observed pattern of

ionic currents.

The repeating tri-nucleotide sequence generated a repeating series of three ionic current

values (Fig 2.4). This pattern was interrupted at the location of the substitution, where

the 4 states nearest the substitution all diverged from repeating pattern. Particularly, the

two states directly adjacent to the substitution showed the largest change relative to the

repeating background, with smaller yet still significant changes observed for the two more

distant states. This observation indicated that each base influences 4 separate ionic current

states. Each base has its strongest effect on the ionic current for the two states during which

it is nearest the pore’s constriction, then continues to influence the ionic current less strongly

at positions farther away from the constriction (either upstream towards cisor downstream

towards trans). We can consider that if each base influences 4 states, each state is influenced

by 4 bases. Consequently, each observed ionic current state is representative of the 4 base

combination–termed 4-mer 11–centered in MspA’s constriction for the duration of the state.

MspA’s multi-base sensitivity is not a product of its geometry but rather of the thermal

nature of the nanopore sequencing system. Indeed, MspA’s constriction is sufficiently narrow

so that only a single base will reside within the pore’s high sensitivity region at a given

instant. However, DNA is not static within the nanopore throughout the duration of each

state. Rather, the elastic DNA molecule is in constant thermal motion, rapidly repositioning

itself relative to the pore’s constriction [57]. This thermal motion occurs on a time scale

of nanoseconds–orders of magnitude faster than the discrete stepping behavior of the motor

enzyme 12. Consequently, the mean ionic current observed for each state is not characteristic

of a single point along the DNA molecule, but is instead a time-averaging of the effects of the

11Throughout this dissertation, strings of k bases are referred to as k-mers.

12The motor protein stepping rate depends on various factors, including the choice of enzyme to use as the
motor protein and the concentration of necessary substrate molecules in the electrolyte solution. Typical
stepping rates however are on the scale of ∼10-20 Hz. For a more detailed discussion of our experimental
operating conditions and of enzyme behavior in these conditions, see appendix A.
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Figure 2.4: MspA sensitivity. (a) An example Φ29 DNAP-controlled DNA translocation
event of a repeating 5’-CAT-3’ DNA sequence, interrupted by a single T→G substitution
midway through the sequence. The measured ionic current (downsampled to 500 Hz) is
shown in red, with the states found by the change point algorithm shown in black lines
at their mean ionic current values. Asterisks mark enzyme missteps (section 2.7); states
caused by missteps are not included in the extracted data below. (b) The extracted mean
ionic current states from (a) are plotted with the associated DNA sequence (from 3’ to 5’)
aligned below. The repeating 3 base DNA sequence generates a repeating pattern of 3 ionic
current states (blue bars), which is interrupted at the site of the T→G substitution. At
the substitution site, 4 consecutive states have significantly different means relative to the
repeating pattern (highlighted in red). The 2 states (15 and 16) nearest the substitution
show the largest change, and the two further states (14 and 17) show a smaller change. This
figure has been modified from [51].
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various positions along the DNA that transiently occupy the pore’s constriction as a result

of the rapid thermal motion. The mean ionic current for each state is thus influenced by

the several bases nearest the pore’s constriction for the duration of the state, each of which

transiently occupy the pore’s high sensitivity region. The bases nearest the constriction will

spend the most time centered in the sensing region and thus have the largest influence on

the observed ionic current, with the more distant bases spending less time there and having

a more modest effect on the measurement.

2.5 Sequencing with 4-mers

In 2014, my research group successfully demonstrated enzyme-actuated nanopore DNA se-

quencing using the MspA nanopore[58]. The multi-base sensitivity of this system does

not mean that enzyme-actuated nanopore sequencing using MspA cannot sequence DNA

with single-nucleotide resolution. Indeed, the same substitution experiment demonstrat-

ing MspA’s multi-base sensitivity equivalently shows this system’s exquisite sensitivity to

individual bases: a single base substitution generates a significant signal (Fig 2.4).

The task of sequencing DNA with this system is to decode the DNA sequence most

likely to have generated an observed series of ionic current states. This decoding requires

some model relating DNA sequence to ionic currentĠiven with the understanding that each

observed ionic current state is influenced by the 4 bases nearest the pore’s constriction,

a 4-mer model mapping ionic currents to DNA sequence is a natural choice for the ionic

current-to-DNA sequence model. In this 4-mer model, each 4 base combination will map

to a characteristic mean ionic current. The model is described by a map of the 44 = 256

possible 4-mers 13 to the ionic currents typically observed when they are in the pore.

Laszlo et al. generated a 4-mer model by measuring the typical ionic currents for all 256 4-

mers, using reads of known DNA sequence. They found that the 4-mer model was predictive

for new sequences. Given an unmeasured DNA sequence, the model could be used to predict

13In general, a k-mer model will comprise 4k possible k-mers, as any of the 4 bases A, C, G, or T can
occupy each of the k positions in the k-length “word”.
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Figure 2.5: Predictive power of the 4-mer model. (a) The 4-mer model is used here to
predict the ionic current states (blue) that would be observed for a previously unmeasured
DNA sequence (error bars show standard deviation, DNA sequence is aligned below). The
ionic currents measured for this DNA sequence (black) compare well with the 4-mer model
prediction. (b) The predicted and measured ionic currents are in good agreement throughout
the sequence, and in most cases differ by less than 2 pA. Figure has been modified from [58].

the ionic current states that would be observed for enzyme-controlled translocation of that

DNA through MspA. The model predictions were found to match well with the observed

ionic current states once the DNA was measured (Fig 2.5).

Using this model, they were able to decode the observed ionic current states into the

generating DNA sequence using a hidden Markov model (HMM) [59]–a process called “base

calling” [58] [60]. A detailed description of the sequencing algorithm used to decode signal

into sequence in this work can be found in appendix F. The HMM sequencing algorithm

works by decoding an optimal set of “hidden” states (here, the series of 4-mers) from a

set of observed states (here, the measured mean ionic currents), subject to a set of allowed
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transitions 14. Put more concretely, a simplified HMM base calling process could proceed as

follows (Fig 2.6, algorithm 1). Each measured ionic current state is compared against the

256 ionic currents in the 4-mer map to determine how well the observed state is modeled by

the various 4-mers. Then, model 4-mer states are matched to each of the observed states so

as to satisfy 2 conditions:

1. Only certain transitions are allowed from one state to the next. Namely, we can only

step by one nucleotide at a time, so subsequent 4-mers must overlap in 3 of their 4 bases.

For example, ACCT can only transition to one of CCTN where N ∈ {A,C,G, T}.

2. The model ionic currents for the 4-mers matched to each measured ionic current state

should match as well as possible, subject to the above condition.

This sequencing algorithm will determine the DNA sequence most likely to have generated

the observed ionic currents 15. With this demonstration of enzyme-actuated nanopore se-

quencing, all the pieces were in place for the first nanopore sequencing devices to make their

way to market.

2.6 Commercial Nanopore Sequencing

In 2014, Oxford Nanopore Technologies (ONT) made the MinION available to early access

users [61], marking the beginning of commercial nanopore sequencing. These first commercial

nanopore sequencing devices work using the same principles described above 16. Specifically,

14The Markov property states that the transitions allowed out of a given state depend solely on the present
state itself, and not on which states were visited in the past.

15This is claim is exactly true in the case that the 4-mer model exactly models the relation between
sequence and ionic current. This is not the case. While the 4-mer model describes the observed data
well, it is an incomplete description. Measured ionic currents are influenced by more than exactly 4 bases.
Although the 4 central bases are most important, bases further from the constriction have a small effect
as well, rendering the 4-mer model incomplete.

16The ONT sequencers are based on the same principles as the device described above but differ in some
details. Certainly, the MinION uses a different motor protein and possibly a different pore. While ONT
initially used a k-mer model as described above to relate ionic current to sequence, recent advances (and
the availability of large data sets) have seen k-mer models replaced by recurrent neural networks (RNNs)
which “learn” the relationship between ionic current and sequence [62] [63] [64].
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Algorithm 1 Simple DNA sequencing using 4-mers. This algorithm gives a formalized
presentation of a HMM sequencing algorithm using a 4-mer model. Here, we only allow
transitions corresponding to single nucleotide steps. For instance, ACCT can only transition
to CCTN , with N ∈ {A,C,G, T}

1: ∃ N observed ionic current states {Ii}, i ∈ 1 : n
2: For ∀ 4-mers {kj}, j ∈ 1 : 256, ∃ an associated ionic current {Ij}
3: Compute the n x 256 score matrix S, where Si,j = score(Ii, Ij) . The score function

assigns a log likelihood that a measured ionic current I matches a model ionic current I
4: ∃ a 256 x 256 transition matrix T
5: if ki = N1N2N3N4 and kj = M1M2M3M4 are such that N2N3N4 = M1M2M3 then .
N,M ∈ {A,C,G, T} denote the bases in the 4-mer

6: T(i,j) ← 1, meaning ki can transition to kj
7: else
8: T(i,j) ← 0, meaning ki cannot transition to kj
9: end if

10: Initialize the n x 256 alignment matrix A to zeros
11: Initialize the n x 256 traceback matrix B to zeros
12: A(1,1:256) ← S(1,1:256)

13: for i ∈ 2 : n do . Filling the alignment and traceback matrices
14: for j ∈ 1 : 256 do
15: allowed← {l} such that T(i−1,l) = 1 . Determine which previous states can

transition into the present state
16: A(i,j) ← S(i,j) +max(A(i−1,allowed)) . The alignment matrix fills using the best

scoring of the possible transitions in
17: B(i,j) ← l with l such that A(i−1,l) = max(A(i−1,allowed)) . The traceback matrix

tracks which transition gave the best incoming score
18: end for
19: end for
20: Find max(A(n,:))
21: l is such that A(n,l) = max(A(n,:))
22: Initialize output sequence seq ← kl . kl = N1N2N3N4 with N ∈ {A,C,G, T}
23: for i ∈ n : −1 : 2 do . Conduct traceback along the best scoring pathway
24: l← Bi,l
25: seq ← {N1, seq} where kl = N1N2N3N4 . At each step in the traceback, append the

correct base to the start of seq
26: end for

return seq
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Figure 2.6: Sequencing using 4-mers. Example raw nanopore sequencing data is shown (gray,
downsampled to 500 Hz) with the mean ionic current values of the distinct states overlayed
(black lines). The DNA sequence generating the observed series of states is decoded by
matching each state with the 4-mer known to generate a matching ionic current. In this
case, the first (left-most) state may correspond to the 4-mer ACCT (written 5’ to 3’). At
each subsequent state, the enzyme has stepped the DNA forwards by 1 nucleotide, so each
subsequent 4-mer must overlap with the preceding 4-mer in 3 of its 4 bases. For example,
the state following ACCT can only correspond to one of CCTN , where N is one of A, C,
G, or T (in this case, G). By stitching together the overlapping 4-mers of the several states,
we reconstruct the generating DNA sequence ACCTGTGAA.
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a motor protein controls the step-wise translocation of ssDNA through a nanopore under the

application of a constant voltage across the membrane. The enzyme-controlled translocation

yields ionic current time series data that is partitioned into distinct states, each character-

ized by its mean ionic current. This series of ionic current states is then decoded into the

generating DNA sequence.

The milestone of the first working nanopore sequencing devices would not mark the end of

nanopore technology development. Enzyme-actuated nanopore sequencing is still limited by

its low single-read de novo sequencing accuracy. The single-read de novo sequencing accuracy

is the accuracy of a single sequencing read of a completely unknown DNA sequence. It is

important to note that a technology’s single-read sequencing accuracy does not represent the

accuracy level to which a DNA sequence can ultimately be determined using that technology.

In many cases–including that of nanopore sequencing–many of the single-read errors are

random. Such errors drop out when multiple low accuracy reads with different random

errors are combined into a consensus sequence. Through consensus sequencing, a technology

with a low single-read accuracy can generate a much higher accuracy sequence. Nevertheless,

single-read accuracy is a crucial benchmark for performance. Even when high accuracy can

be achieved through consensus sequencing, such an approach comes at a cost of throughput.

Given lower accuracy single reads, more will need to be combined to generate a satisfactory

consensus sequence, increasing the time and cost of sequencing. Conversely, improvements in

single-read accuracy will decrease the time and cost of sequencing as a satisfactory consensus

sequence can be derived from fewer individual reads.

Initial results on commercial nanopore sequencing devices showed single-read accuracies

in the low 60 percents [65]. Since these early results, various improvements have driven

the single-read accuracy up into the 70 percents [65]. However, there is still a significant

ways to go before nanopore sequencing accuracy is commensurate (or even comparable) with

the accuracy of more established second generation sequencing technologies, which are well

above 99% 17 [9]. The long-term path forward to fully-realized nanopore sequencers requires

17“Well above” refers to the error rate (100% - sequencing accuracy) rather than the accuracy. For example,
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substantial improvement in the baseline single-read accuracy.

2.7 Sequencing Error Modes

Many of the errors hampering enzyme-actuated nanopore sequencing’s single-read accuracy

are caused by two primary error modes. These two error modes are indistinguishable ionic

current states and enzyme missteps. Each of these error modes is discussed individually in

more detail below.

2.7.1 Indistinguishable Ionic Current States

As discussed above (sections 2.4, 2.5), the base calling algorithm used to decode DNA se-

quence from an observed ionic current signal requires a model that maps observed ionic

current values to the likely generating DNA sequence. As the observed signals are a compli-

cated function of several bases near the pore’s constriction [51], this ionic current-to-sequence

model must comprise many multi-nucleotide ionic current-generating sequence “states”. For

example, the 4-mer model discussed above entails 256 states for the 256 possible 4 base

combinations.

For any such empirical ionic currentto-sequence model, there will be higher-order effects

that are not accounted for, such as the combined influence of the other bases in the pore

more distant from the constriction. These higher-order effects, along with the electrical

noise intrinsic to the nanopore signal and experiment-to-experiment variations in electrolyte

concentrations and temperature all conspire to introduce instance-to-instance variability in

the observed signal for different measurements of the same DNA sequence state. In our 4-

mer model 18, the average standard deviation of the instance-to-instance ionic current values

of the 4-mers is 0.95 pA (Fig 2.7a). Additionally, the ionic current values of the lowest

the difference between 99% and 99.9% accuracy is the difference of 1% to 0.1% in terms of error rate–an
order-of-magnitude improvement.

18Specifically, the 4-mer model for the experimental conditions used for Φ29 DNAP-controlled DNA
translocation. Experimental conditions are discussed in appendix A



39

(CGTC, 23 pA) and highest (AGAA, 60 pA) 4-mers in the model are separated by only 37

pA (Fig 2.7b). This 37 pA represents the entire parameter space within which the sequencer

must distinguish between the 256 different 4-mer states. Inevitably, given only 37 pA of

parameter space, 256 4-mers, and nearly 1 pA of variation for each 4-mer, the ionic currents

of many different 4-mers will be indistinguishable within noise. Functionally, this means that

many different sequences can generate states with statistically identical ionic currents (Fig

2.8, green bars). These indistinguishable signals force the base calling algorithm into under-

determined decisions where it must choose between multiple possible generating sequences

for an observed set of states, only one of which is correct. These under-determined decisions

ultimately lead to errors in sequencing. Fundamentally, a state’s mean ionic current alone

does not provide enough information to unambiguously decode the signal into sequence.

Beyond forcing the base caller into under-determined and error-prone decisions, indis-

tinguishable ionic current states can also cause errors during step finding. In some cases,

two consecutive 4-mer states (k1 = N1N2N3N4 → k2 = N2N3N4N5
19) may both generate

similar ionic currents making the transition between them difficult to find (Fig 2.8, orange

diamond). Typical measurement error on a single instance of a state (distinct from the

instance-to-instance variation) is ∼1 pA; transitions smaller than this typical error will be

difficult to find for the change point detection algorithm. For our 4-mer model, 114 out of

the 1020 (11.2%) possible step transitions 20 lie below the 1 pA threshold for confident tran-

sition finding (Fig 2.7c). Transitions missed during change point detection ultimately lead

to missing states in the final signal passed to the base caller, potentially causing deletions

(too few called bases) in the final sequence.

19In the context of DNA sequences, N denotes any one of the 4 bases: N ∈ {A,C,G, T}.
20The 1020 possible transitions represent the 256 4-mers with 4 transitions each, less the 4 homopolymer
transitions (i.e. AAAA→ AAAA).



40

Figure 2.7: Variation between 4-mer instances. (a) The histogram shows the average
instance-to-instance variation of the 4-mer states in our model. The green dashed line shows
the mean 4-mer variation of 0.95 pA. (b) The histogram of 4-mer ionic current values in the
4-mer model shows that many different sequences produce nearly identical ionic currents.
Bins are 0.95 pA wide–the average uncertainty in each 4-mer value. 4-mers residing within
the same bin will be difficult to distinguish. Dashed green lines mark the ionic currents
of the lowest 4-mer (CGTC) and highest 4-mer (AGAA). (c) The histogram shows the
current differences between possible consecutive 4-mers (N1N2N3N4 → N2N3N4N5). Tran-
sitions separated by less than the typical measurement error (∼1 pA, shaded red box) will
be difficult to correctly identify and are likely to be missed.
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2.7.2 Enzyme Missteps

Irregular stepping by the DNA-controlling motor enzyme are the second primary error mode

for nanopore sequencing. Ideally, the enzyme would move DNA unidirectionally through the

pore in discrete steps of uniform length. However, the stochastic stepping of real enzymes

frequently diverges from this ideal behavior [66, 58, 55]. In addition to uniform forward steps,

“backsteps” can occur when the enzyme backtracks to a previously-observed position along

the DNA. Backsteps introduce extra states into the observed signal as we read the same DNA

position multiple times (Fig 2.8, red stars). Additionally, “skips” can occur when multiple

forward steps take place in quick succession too fast to resolve the intermediate step (or

steps). Skips lead to missing states in the observed signal.

The existence of these irregular enzyme steps means that the observed time order of the

ionic current states does not necessarily match the sequence order of the DNA generating

them. This mismatch complicates the decoding process, as we now must consider many more

possible transitions than in the case of uniform forward stepping. As discussed previously, a

single forward step from some 4-mer can only take us to one of 4 possible new 4-mer states.

For example, a forward step from k1 = ACGT can only take us to k2 = CGTN However,

if we are to consider the possibility of single base skips as well as steps, we now have 20

possible new 4-mer states. Returning to the previous example, we must still consider the

step transitions from k1 = ACGT to k2 = CGTN (4 possibilities) and also consider the

single skip transitions to k2 = GTN1N2 (16 possibilities). Further accounting for backsteps

and larger (multi-base) skips continues to expand the list of possible transitions.

By expanding the list of allowed transitions, enzyme missteps expand the list of possible

sequences that could have generated the observed ionic current states. The larger the list of

possible sequences, the harder it becomes for the base caller to accurately identify the correct

sequence. Thus, enzyme missteps reduce sequencing accuracy by adding and removing states

from the signal, forcing the base caller into a difficult expanded decision space. The funda-

mental issue at the core of this error mode is that transition types cannot be easily inferred
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from the nanopore signal. Without a direct indicator in the signal to label transition types,

the base caller must account for all possible transitions, increasing the rate of erroneous base

calls.

2.8 A Foundation for Improvement

Through the work of my research group and others, operational enzyme-actuated nanopore

sequencing has been realized, with the first commercial nanopore sequencing devices now

available. The next hurdle on the path towards nanopore sequencing realizing its full poten-

tial is its low single-read de novo sequencing accuracy. The low accuracy is primarily caused

by two distinct error modes: indistinguishable ionic current states and enzyme missteps. My

work in the Gundlach nanopore lab has focused on improving nanopore sequencing by raising

its sequencing accuracy as well as designing better ways of answering important sequencing

questions with low accuracy reads. Chapter 3 will describe my work towards the first of these

two goals: raising the single-read de novo sequencing accuracy possible for enzyme-actuated

nanopore sequencing.
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Figure 2.8: Sequencing error modes. The primary error modes limiting nanopore sequencing
accuracy can be found in this example read. Raw data (downsampled to 500 Hz) is in
gray, with black lines showing the mean ionic current of the found states. Green bars
highlight indistinguishable states: states that were generated by different DNA sequences
but with mean ionic current values that are indistinguishable from one another within noise.
The orange diamond and zoomed-in inset show a location where the change point detection
algorithm missed a transition. Here, two consecutive states have similar mean ionic currents,
so no change point is detected at the transition between the states (red dashed line in inset).
Red stars mark states caused by enzyme missteps. On multiple occasions in this read, the
enzyme steps backwards, returning to a previously observed state before proceeding with
processing translocation, generating extra states in the observed signal.
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Chapter 3

VARIABLE-VOLTAGE NANOPORE DNA SEQUENCING

In chapter 2, we saw that enzyme-actuated nanopore sequencing works by using a motor

protein to incrementally step DNA through a nanopore, generating a sequential series of

ionic current states that will ultimately be decoded into the generating DNA sequence. We

also discussed the primary outstanding limitation of this technology: its low single-read

de novo sequencing accuracy. Many of the sequencing errors limiting the accuracy can be

attributed to two primary error modes: indistinguishable ionic current states (section 2.7.1)

and enzyme missteps (section 2.7.2). In this chapter, I will present my work on developing

a new method of enzyme-actuated nanopore sequencing designed to directly address both of

these error modes and thereby improve sequencing accuracy.

3.1 Parallel Pathways to High Accuracy

Since the advent of enzyme-actuated nanopore sequencing, researchers have pursued several

parallel pathways towards improving the technique’s sequencing accuracy. Information ex-

traction from the signal has been improved by the introduction of new base calling methods

based on recurrent neural networks (RNNs) trained on the massive datasets generated by

commercial sequencers [62] [63]. The quality of the signal itself has also improved through

the use of new nanopores and motor enzymes with better behavior for DNA sequencing [67]

[68], as well as biochemical methods that allow reading of both sense and antisense strands

of the target DNA molecule in a single read [69].

Together, these two complementary approaches–clean up the signal, and improve infor-

mation extraction from that signal–have led to meaningful progress in sequencing accuracy

[65] [69] [68]. However, there is still significant room (and need) for improvement. A third
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complementary pathway towards improvement is to reexamine the fundamental character

of the nanopore signal itself, which has not yet been considered for redesign. In this work,

we modify the method of control over DNA motion in the pore in order to measure a more

information-rich signal that allows us to directly address the two primary nanopore sequenc-

ing error modes of indistinuishable ionic current states and enzyme missteps.

3.2 Shortcomings in the Signal

The two major error modes of indistinuishable ionic current states and enzyme missteps

(Fig 2.8) can both be thought of as arising from a lack of information in the ionic current

signal. In the case of indistinuishable ionic current states, we have insufficient information

characterizing each state. The mean ionic current alone does not adequately differentiate

between all of the possible ionic current-generating sequence states (Fig 2.7). To reliably

assign an observed state unambiguously to the correct signal-generating DNA sequence, we

need more information to characterize each state than its mean ionic current alone. If each

state had more identifying information, the sequencer’s task of decoding the DNA sequence

from the observed states would become easier and fewer errors would occur.

The error mode of enzyme missteps could also be addressed by a more information-rich

signal. Specifically, enzyme missteps hurt the sequencing accuracy because it is difficult to

tell from the signal alone (without the aid of comparison against the known DNA sequence)

which type of enzyme steps occurred where. If the type of enzyme step leading into each

observed state could be inferred directly from the signal, enzyme missteps could be identified

and corrected prior to sequencing and would no longer cause sequencing errors.

This understanding of not only what the nanopore sequencing error modes are, but also

exactly why they are so detrimental points a way forwards to improving the sequencing

accuracy. We seek a way to generate a more information-rich signal from the nanopore

device. Precisely, we want each state to have more characterizing information than just its

mean ionic current, and we want enzyme missteps to be directly detectable based on the

signal.
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3.3 A New Enzyme Sheds New Light

To understand how to redesign the nanopore sequencing device to generate a more information-

rich signal, we need a better understanding of the signal itself. Changing the motor enzyme

used to control DNA motion through MspA provided a crucial insight into the fundamental

nature of the nanopore signal.

The foundational work in enzyme-actuated nanopore sequencing primarily used the Φ29

DNAP enzyme to control DNA motion through the pore, which takes a single step per

nucleotide 1. The resulting signal is a series of states, each characterized by its mean ionic

current, with one state corresponding to each nucleotide translocated [51] [52].

In exploring alternative enzyme options to Φ29 DNAP for controlling DNA in nanopore

sequencing, our lab discovered that the Hel308 helicase enzyme 2 deviates from this single-

nucleotide stepping behavior [53]. The ionic current states for the same DNA sequence were

measured for Φ29-controlled and Hel308-controlled DNA translocation through MspA (Fig

3.1). The ionic current states observed in both cases exhibited the same overall pattern of

peaks and troughs, but the signal generated by Hel308-controlled translocation resulted in

twice as many states marking out this overall pattern than the signal from Φ29-controlled

translocation.

The integer ratio between the number of states observed for the two enzymes and the

similarity in the qualitative structure of the ionic currents indicate that the two enzymes are

taking different size steps along the DNA. Indeed, further kinetic analysis confirmed that the

Hel308 helicase takes two distinct steps per nucleotide, with each step approximately half

a nucleotide in length [53] [55]. This discovery pointed toward an immediate, simple path

to improving enzyme-actuated nanopore sequencing: replace Φ29 with Hel308. Sequencing

1Commercial nanopore sequencing devices make use of different motor enzymes, but to our knowledge all
the enzymes in use take single-nucleotide steps.

2Specifically, the enzyme used here is the Hel308 helicase from Thermococcus gammatolerans, a ther-
mophilic and radiation-tolerant archaea found in deep ocean vents. Where applicable, we abbreviate this
as “tga”.
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data generated using Hel308 has two measurements per nucleotide, rather than one. This

amounts to additional information in the signal characterizing each base, as we now have

two mean ionic currents per base, rather than just one.

Simply changing to a better motor enzyme is not the “crucial insight” alluded to earlier.

In addition to pointing us to a better enzyme, the discovery of Hel308 half-steps hinted at

the fundamental nature of the nanopore signal. The fact that the half-nucleotide steps of

Hel308 interpolate smoothly between the full-nucleotide steps of Φ29 indicates that the step-

wise ionic current signal is in fact a discrete sampling of some smooth underlying profile. If

this smooth profile indeed exists, and if we could find a way to access it during a nanopore

sequencing experiment, it could provide the additional information necessary to dramatically

improve sequencing accuracy.

3.4 Voltage Shifts DNA Position

In an effort to confirm the hypothesis that the ionic current signal of the DNA in the pore is

a smooth function of DNA position, we sought a way to further sample the inter-nucleotide

signal.

DNA’s elasticity in response to an applied force [70] [71] [72] [73] provides a convenient

method to probe the DNA’s ionic current profile at sub-nucleotide intervals. In an enzyme-

actuated nanopore sequencing experiment, the applied voltage exerts a force on the DNA

threaded through the pore, pulling it towards the trans well. Meanwhile, the DNA is held

static at its other end by the motor enzyme. Thus, the applied voltage stretches the segment

of DNA between the anchor point at the enzyme and the pore’s constriction (Fig 3.4a) 3.

As the DNA stretches in response to the voltage, the number of nucleotides spanning

the distance between the anchor point at the enzyme and the pore’s constriction changes.

Consequently, the DNA will be centered slightly differently within the constriction at dif-

ferent voltages (Fig 3.4). By changing the voltage, we can change the DNA’s registration

3Appendices C.4 and C.5 give a complete accounting and analysis of DNA stretching within MspA in
response to voltage.
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Figure 3.1: Φ29 DNAP vs. Hel308 Helicase. (a) The consensus pattern of ionic current
states measured using Φ29 DNAP to control the DNA for the above DNA sequence are
shown in black, with the red spline showing the cubic spline fit to the mean ionic current
values. (b) The same DNA sequence was measured, but using the Hel308 helicase enzyme.
The consensus measured states exhibit the same pattern of peaks and troughs, and are well
fit by the same spline (red) as the Φ29 DNAP states. However, we observer twice as many
total states. This figure has been adapted from [53].



49

relative to the constriction. Thus, by conducting multiple enzyme-mediated DNA transloca-

tion experiments of the same DNA sequence at different voltages, we can take an ensemble

measurement of the inter-nucleotide ionic current profile of the nanopore signal.

We measured the ionic current states for Φ29-controlled reads of the same DNA sequence

at a variety of voltages between 100 and 200 mV. At each distinct voltage, we observed

the same qualitative set of features (i.e. peaks and troughs), but with the locations of the

maxima and minima shifted relative to the other voltages, in addition to a general increase

in the observed ionic currents at higher voltages (Fig 3.4c). Once the overall increase of the

ionic currents at higher voltages was removed by converting from current to conductance

4 , the shift in the features between the different voltages is easier to see (Fig 3.4d). The

various voltages can be shifted horizontally to align all of the myriad sets of conductance

measurements along a single smooth curve (Fig 3.4e).

This confirms the hypothesis that the ionic current (or conductance 5 ) signal for the

DNA in the pore changes smoothly as a function of the DNA position. Additionally, the

results of the above experiment also point a way to measuring this underlying smooth curve

in a nanopore sequencing experiment. Changing the voltage from 100 to 200 mV shifts

the DNA position within the pore by over a full nucleotide (Fig 3.4f). The voltage therefore

affords fine control over the sub-nucleotide positioning of the DNA in MspA, while the motor

enzyme provides long-range coarse control as it walks the DNA through the pore. We will

use the voltage in conjunction with the enzyme to precisely control DNA motion through

the pore, allowing us to probe the entire conductance profile.

4Actually, to “normalized” conductance. The normalized conductance is the conductance with the con-
founding non-DNA-sequence-dependent contributions removed, as discussed in detail in appendix C.2.

5From this point forward, I will largely refer to conductance or normalized conductance in lieu of ionic
current, as we will be comparing data collected at a variety of different voltages. Conductance makes the
comparison of these data more convenient.
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Figure 3.2: Voltage-induced DNA position shift. (a) The nucleotide positions at high voltage
(red) are shifted down from the positions at low voltage (blue) as the higher voltage applies
a larger force to the thread end of the DNA. Consequently, there are fewer nucleotides
between the enzyme (green) and the pore’s constriction (shaded purple) at higher voltages.
(b) Increasing the voltage from the smaller V1 to the larger V2 changes the time-averaged
number of nucleotides between the enzyme and the constriction, positioning a different part
of the DNA within the center of the constriction. (c) The ionic current values are extracted
for 140 mV (red) and 120 mV (blue) for every step of a multi-read averaged set of consensus
I − V curves. Shaded errors are S.D. (d) Converting current to conductance removes the
scaling difference between the two measurements. A cubic spline interpolant (dashed line) to
each set of states shows the same overall features, shifted by a fixed distance δ. Shaded errors
are S.D. (e) Shifting the 120 mV states along the x-axis places both sets of measurements on
the same interpolating curve (dashed line). The shift from 120 mV to 140 mV was found to
be 0.29±0.03 nt. Gray shading shows S.D. (f) The complete position shift vs. voltage curve
is shown in black, with the shaded gray errors showing the one sigma confidence interval of
the calculated voltage-to-position mapping. All shifts are given relative to the DNA position
at 180 mV.

3.5 Hybrid Control

Our proposed sequencing method (Fig 3.3) will measure the continuous conductance profile

as a function of DNA position in the pore through the use of a time-varying, rather than

constant, applied voltage. The time-varying voltage will provide fine control over the DNA

position by variably stretching the DNA, with small (1 mV) changes in the voltage precisely

repositioning the DNA by ∼0.01 nucleotides (Fig 3.4f). The fine control over DNA position

provided by the time-varying voltage complements the motor enzyme’s discrete stepping.

The enzyme’s discrete stepping provides directed translocation over the entire length of the

DNA, while the continuous repositioning of the DNA by the voltage gives us precise position

control within each enzyme step.

For our variable-voltage sequencing experiments, we use the Hel308 helicase as the motor

enzyme, as its half-stepping behavior provides a denser sampling of the DNA’s conductance
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profile than is provided by the single-stepping Φ29 DNAP. The voltage was applied as a 200

Hz, 100 mV peak-to-peak symmetric triangle waveform voltage, biased to an average voltage

of 150 mV. The overall positive bias is necessary to keep the DNA anchored in the pore at

all times. The 100 to 200 mV voltage range provides just over 1 nucleotide of total stretch

(Fig 3.4).

The combination of the Hel308’s half-steps and the voltage’s 1 nt shift gives a complete (in

fact, overlapping) sampling of the DNA’s conductance profile. At each enzyme registration,

the voltage shifts the DNA forwards and back several times, as the 200 Hz voltage cycling

frequency is much faster than the typical enzyme stepping rate (10-20 Hz, appendix A.4).

When the enzyme progresses by a half-nucleotide step, we again probe the conductance

profile along a full nucleotide distance on the DNA’s contour, resulting in an overlapping,

complete measurement of the smooth conductance profile.

3.6 Variable-Voltage Data Reduction

The data reduction is more complicated for the variable-voltage sequence data than for

constant voltage sequencing. The entire data reduction process is discussed in more detail

in appendices B and C, but the basic process will be covered here.

One chief difference between handling the variable-voltage data versus the constant-

voltage data is that the bilayer separating the cis and trans wells acts as a capacitor, re-

sulting in a charging and discharging current in response to the variable applied voltage.

Consequently, the observed time-series ionic current data exhibits large swings, masking the

DNA-sequence-dependent signal we wish to measure (Fig 3.4a).

To access the interesting, sequence-dependent signal, we must determine and remove

the capacitive contribution to the measured ionic current. However, the capacitive current

response is influenced not only by the voltage swing and the bilayer capacitance, but also by

the resistance in the system. Inconveniently, this resistance changes with each enzyme step as

the DNA moves through the pore–in fact, this variable resistance is exactly the fundamental

signal we wish to measure in order to decode the DNA sequence. So, prior to calculating and
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Figure 3.3: Hybrid control sequencing scheme. The variable-voltage sequencing method uses
a time-varying applied voltage sweeping from 100 to 200 mV in a symmetric triangle wave
at 200 Hz (left). The Hel308 helicase enzyme (green) is used to control DNA translocation
through the pore in discrete steps (green arrows). The voltage simultaneously oscillates the
DNA up and down in the pore, providing a fine control to complement the enzyme’s coarse
control (red arrow).
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removing the capacitive signal, we first partition the time-series data into separate enzyme

steps using our change point detection algorithm (appendix B).

Once the time series ionic current data is partitioned into distinct enzyme states, we

individually calculate and remove the capacitive contribution to the observed ionic current

using our capacitance compensation procedure (appendix C.1). The resulting ionic current

signal is free of the large swings caused by the bilayer’s charging and discharging and re-

veals an oscillating pattern in phase with the applied triangle wave voltage (Fig 3.4b). The

capacitance compensated data is consolidated into a set of states, each representing one en-

zyme step and characterized by its average current-vs-voltage (I − V ) curve (Fig 3.4c). The

several complete voltage cycles completed within each enzyme step are treated as distinct

measurements of the I − V response for that particular DNA registration within the pore

and are averaged together to yield the state’s I − V curve.

To reconstruct the desired continuous conductance profile of the DNA, we must now

account for the effects of the variable applied voltage. Changing the applied voltage changes

both the overall magnitude of the observed ionic currents (higher voltage causes larger ionic

current) as well as the exact position of the DNA within the constriction. The voltage

dependence of the overall ionic current magnitude is removed by converting ionic currents to

“normalized” conductance, as described in appendix C.2. The applied voltage can be mapped

directly to a DNA position within the pore 6. This mapping is given by the measured DNA

shift vs. voltage curve (Fig 3.4f) and its corresponding interpolating fit (appendix C.4).

By mapping the voltage to DNA position and the ionic current and voltage together to

conductance, we have transformed the I − V curves for each state into segments of the

conductance vs. DNA position profile (Fig 3.4d).

The final step in reconstructing the desired conductance profile is to recombine the state-

by-state conductance vs. position measurements onto a single axis. We accomplish this by

accounting for the Hel308 enzyme’s half-nucleotide steps. Each subsequent state’s conduc-

6This voltage-dependent DNA position is measured relative to the DNA position at 180 mV, the operating
voltage for our constant-voltage sequencing experiments.



55

tance curve segment is shifted a half nucleotide right (towards the 5’ end of the DNA) relative

to the previous state’s segment. With this accounting, the measured conductance segments

for all of the measured states can be plotted together on a single position axis, revealing the

DNA’s smooth conductance profile (Fig 3.4e).

3.7 The Smooth Conductance Profile

The conductance profile recovered from the variable-voltage data reduction is a significantly

richer signal than is measured in constant-voltage sequencing. As constant-voltage sequenc-

ing relies entirely on the motor enzyme as the sole method of control over DNA position

in the pore, its signal is a sparse sampling of the conductance profile of the DNA at half-

nucleotide intervals (Fig 3.5a). In this data, each state is only characterized by its mean

conductance value. Furthermore, the states do not contain any intrinsic information as to

their ordering. Nothing about each state indicates which state should precede or follow it

in the correct ordering. The correct ordering is the ordering that reflects the order of bases

along the DNA, rather than the order that reflects how the DNA was moved through the

pore, which can be marred by enzyme missteps.

The variable-voltage sequencing method gives a dense sampling of the conductance profile

(Fig 3.5b). Each enzyme state is now characterized by a conductance curve segment, rather

than simply by a mean conductance. These curves have identifying “shape” information

(slope, curvature, etc.) that is not present in the constant-voltage data. These additional

features can aid in distinguishing between states that would have been indistinguishable

based solely on their means.

The variable-voltage states also contain information as to their correct ordering. At each

enzyme step, we measure a set of positions along the DNA that overlaps with both the

previously- and subsequently-measured sets of positions. As subsequent enzyme steps each

sample overlapping portions of the DNA’s conductance profile, states separated by a single

Hel308 half-nucleotide steps should have overlapping conductance curves. Correctly ordered

states should overlap with both their predecessor and successor states–if they don’t, it means
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Figure 3.4: Variable-voltage data reduction. (a) The raw time-series data in variable-voltage
sequencing exhibits large swings due to the capacitive charging and discharging of the bilayer
separating the cis and trans wells. The first step of data reduction is partition the time-series
data by finding enzyme steps (red dashed lines mark partitions, separate steps marked by
color). (b) After the data is partitioned into enzyme steps, the capacitive effect is removed
by capacitance compensation. (c) Each enzyme step is characterized by a current-vs-voltage
(I − V ) curve, with the several voltage cycles within the step averaged together to give the
final I − V curve. (d)) Each step’s I − V curve is transformed into conductance-vs-DNA
position, with the DNA position calculated based on the DNA extension curve calculated
earlier (Fig 3.4) and the conductance calculated as in appendix C.2. (e) The segments of the
conductance profile probed at the separate enzyme steps can finally be plotted together on the
same conductance-vs-position plot, revealing the measurement of the smooth conductance
profile.

that the enzyme did not take a half-nucleotide step. Thus, variable-voltage signal addresses

both of the major shortcomings of the constant-voltage signal (section 3.2). Individual states

now have more characterizing features in addition to their mean conductance, and enzyme

missteps can be directly detected based on whether or not successive states overlap with one

another.

3.8 Error Correction with Variable-Voltage Data

We can use the additional information present in the variable-voltage sequencing signal to

automatically correct the two major sequencing error modes of indistinguishable states and

enzyme missteps. In Fig 3.6a and b, we see the variable-voltage states observed for two

separate measurements of the same DNA sequence (lower panels). The upper panels show

the extracted conductance values from a single voltage value in the variable-voltage data,

representing the signal that would be available in a constant-voltage experiment.

These example events reveal the ability of the variable-voltage signal to correct error

modes present in the constant-voltage signal. First off, in several cases, states that are

indistinguishable in the constant-voltage data by their mean conductance along can be easily
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Figure 3.5: Discrete vs. continuous conductance sampling. (a) Constant-voltage sequencing
provides a discrete sampling of the DNA’s conductance as a function of position. The
translocating sequence (top) is sampled at half-nucleotide intervals by the two step motion
of the Hel308 helicase (odd steps in red, even steps in blue). The discrete sampling locations
(triangle pointers, top) result in a disconnected set of conductance values (points, dashed
line) for the sequencer to decode. (b) Variable-voltage sequencing provides a continuous
sampling of the DNA’s conductance profile. Red and blue bars (top) show the ranges along
the DNA molecule probed during the voltage swing at odd (red) and even (blue) enzyme
steps. Red and blue curves show the corresponding segments of the conductance profile
explored at each state. Blue and red points show the information that was available in
constant-voltage sequencing.
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distinguished in the variable-voltage data. For example, in (a), four consecutive states all

have nearly identical mean conductance values (steps 16-19, upper panel). It would be

difficult to confidently assign these measurements to the correct generating DNA sequence

states. Furthermore, these steps would be difficult for the change point algorithm to detect.

In the variable-voltage signal below, these same four states are easily distinguishable by their

overall shape. Two of the states (16, 18) are have little slope and notably positive curvature,

while the other two (17, 19) have decidedly positive slopes and little curvature. We can thus

determine that states 16 and 18 are two repeated measurements of the same DNA sequence

state, as are states 17 and 19.

This repeated measurement is caused by an enzyme backstep, leading into the second type

of error mode that can be corrected using the variable-voltage signal. As discussed in section

3.7, consecutive states separated by a single half-nucleotide step should exhibit overlapping

conductance profiles. This overlap requirement allows us to identify locations where the

enzyme took a non-standard step by looking for locations where consecutive segments fail

to overlap 7. In the previous example of states 16-19 in (a), we observe a large discontinuity

between states 17 and 18, indicating that the enzyme took a non-standard step at this

transition. The discontinuity information, combined with our above observation that states

16 and 18 seem to match, as do states 17 and 19, reveals that the enzyme took a backstep

at this transition, moving backwards along the DNA and causing the pore to re-measure a

previously observed sequence state.

We can use the overlap information throughout the read to determine what type of step

the enzyme took at each transition. This step type determination is conducted automatically

by custom support vector machines (appendix D.2) trained to recognize different enzyme

steps based on the variable-voltage data. Automatic step identification results in the colored

state labels between the upper and lower panels. Single half-nucleotide steps (green arrows),

7In (a) and (b), states are spaced by full nucleotide steps (rather than the half nucleotide steps taken by
the Hel308 enzyme) to more clearly show the individual states, so consecutive steps do not overlap in this
visualization.
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skips 8 (blue double arrows), backsteps 9 (red back arrows), and holds 10 (gold pause symbols)

can all be accurately and automatically labeled and corrected.

Using the transition labels, we can account for the enzyme step type separating each of

the measured states, and reconstruct the error-free conductance profile for the target DNA

strand. The corrected signal for the read in (a) is shown in (c); the corrected signal for the

read in (b) is shown in (d). The corrected signals for the two reads are nearly identical,

despite the qualitative dissimilarity of the two reads prior to error correction. The read-to-

read consistency of the corrected variable-voltage signal indicates that this method should

improve sequencing accuracy. The constant-voltage signals (top) are difficult to correct and

vary substantially read-to-read, likely resulting in a different base calling result for what

should be the same DNA sequence. In comparison, the two reads’ similar corrected variable-

voltage signals will likely both decode to the same (correct) DNA sequence.

3.9 Sequencing with Variable-Voltage

Now armed with a method of measuring a more information-rich nanopore signal capa-

ble of addressing the major sequencing error modes, we sought to test the performance

of variable-voltage nanopore sequencing against the constant-voltage method. Full realiza-

tion of variable-voltage sequencing required substantial re-engineering and addition to the

constant-voltage sequencing procedure. A brief accounting of the major new or modified

components required to sequence the variable-voltage data includes

1. A change point detection procedure capable of identifying transitions in the raw variable-

voltage data (section 3.6, appendix B).

8Skips occur when a transition is longer than a half nucleotide and are typically caused by the enzyme
taking one or more steps that are too fast to be detected.

9Backsteps occur when the enzyme moves backwards along the DNA and are a natural product of Hel308’s
kinetics (and in fact the kinetics of all the motor proteins we’ve studied for nanopore sequencing).

10Holds are consecutive measured states representing the same DNA sequence. They are typically caused
by over-calling by the change point detection algorithm, or by aberrant transient electrical noise causing
a false partitioning of a single state.
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Figure 3.6: Automatic error correction. (a) and (b) compare the information available
from the constant-voltage measurement of DNA-translocation events (above) against the
information available from the variable-voltage measurement of the same DNA-translocation
events (below). The constant-voltage data is extracted from the variable-voltage data. The
type of enzyme step taken at each transition is determined automatically based on the
variable-voltage data and labeled with the appropriate marker. Green arrows are steps, red
arrows are backsteps, blue double arrows are skips, orange pause symbols are holds. (c) and
(d) show the signals recovered from (a) and (b) respectively, after the enzyme missteps have
been automatically corrected. We see that although the states in the events above look quite
different, after correction the signal recovered from each of the two events is nearly identical.
In reality, both events were measurements of the same DNA sequence, so this event-to-event
reproducibility in the reconstructed signal indicates that the variable-voltage data should be
much more robust for sequencing.



62

2. A capacitance compensation procedure to remove the capacitive current from the raw

data (section 3.6, appendix C.1).

3. A choice of “features” to describe the conductance signal of each enzyme state (ap-

pendix C.3).

4. A method of automatically identifying and correcting enzyme missteps (appendix D.2.

5. A new signal-to-sequence k-mer model mapping between observed conductance states

and the generating DNA sequence (appendix E).

6. A sequencing algorithm that harnesses all the information available in the variable-

voltage signal to optimally decode the DNA sequence (appendix F).

The adapted change point detection algorithm and the capacitance compensation pro-

cedure have already been discussed briefly in section 3.6, and their full implementation is

covered in depth in appendices B and C.1.

The remaining new and modified methods are discussed briefly below, with the full de-

scriptions provided in the appendices.

3.9.1 Feature Extraction

We chose to use the coefficients of the top three principal components to describe each state’s

conductance curve (appendix C.3). We determined the principal components using principal

component analysis of a large dataset of states’ conductance curves, and found that the first

three principal components accounted for over 98% of the observed variance between states.

Linearly combinations of these three principal component vectors can describe the conduc-

tance signal generated by all of the possible sequence states. This three-feature description of

the conductance states provides a simple, low noise parameterization of our observed signal.
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3.9.2 Enzyme Misstep Correction

We use a three stage “state filtering” process to identify and correct enzyme missteps in the

variable-voltage signal (appendix D.2). Together, this filtering pipeline converts the time-

ordered observed conductance states into the error-corrected, sequence-ordered conductance

states that will be passed to the sequencing algorithm.

Removal Filter

The first stage is termed the “removal” filter and is responsible for removing conductance

states that are not informative of the underlying DNA sequence (appendix D.2.1). A number

of sources (discussed in the appendix) can produce conductance states that are recognized

by the change point detection algorithm but are not actually representative of the DNA

sequence in the pore. A support vector machine (SVM) has been trained on a hand-labeled

dataset containing both “good” states (those informative of the DNA sequence in the pore)

and “bad” states (those uninformative of the DNA sequence in the pore). The SVM is used

to assign a “bad” probability to each observed state. States whose bad probability exceeds

a set threshold are discarded for downstream analysis.

Recombination Filter

The second stage in the filtering pipeline, termed the “recombination” filter, looks for in-

stances where enzyme missteps caused duplicate measurements of the DNA position (ap-

pendix D.2.2). The conductance states for these duplicate measurements are then aver-

aged and recombined. Duplicate measurements be consecutive due to over-called transitions

(holds) or be separated by several interleaving states due to enzyme backsteps. The recom-

bination filter finds duplicate states by aligning the measured signal against itself. States

will match to their duplicates nearly as well as they match to themselves. A “self-alignment”

penalty biases against states simply aligning to themselves, allowing the self alignment to

match up nearly identical states, identifying duplicate measurements.
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The self-alignment is calculated using a Neeleman-Wunsch alignment procedure [74]. The

transition penalties in the alignment are calculated on a state-by-state basis based on the

overlap information in the variable-voltage signal. An ensemble of SVMs is used to assign a

probability that each transition is either a single step, a backstep, a skip, or a hold. These

step type probabilities are converted into appropriate alignment transition penalties, and

help the self-alignment to find the correct path through the observed states.

Reordering Filter

The final filtering step is the “reordering” filter which accounts for enzyme missteps not

treated by the removal and recombination filters (appendix D.2.3. In some cases, enzyme

missteps result in out-of-order states, without any single state being measured multiple times.

One such case is that of a skip followed by a backstep, followed by another skip. This enzyme

behavior would result in us measuring first state 1, then state 3 (a skip), then state 2 (a

backstep), then state 4 (another skip). No state is measured more than once, but states 3

and 2 were measured in the wrong order. These compound error modes are less common

than those addressed by the previous filters, but can still diminish sequencing accuracy.

In the reordering filter, we use the same set of SVMs as were used in the recombination

filter to assign a probability that each transition was a step, skip, or backstep. Once we’ve

determined the step type probabilities for each transition, we use a dynamic programming

method to find the most likely set of transitions linking the states based on the calculated

probabilities.

3.9.3 Signal-to-Sequence Model

As discussed in section 2.4, to decode the DNA sequence that generated an observed signal,

we need a model relative signal to sequence. Previous work on constant-voltage nanopore

sequencing showed that a 4-mer model in which every possible 4 base sequence was associated

with a specific signal modeled the data well [51] [58].
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The existing 4-mer model mapping constant-voltage signal to DNA sequence is insufficient

for variable-voltage sequencing for two reasons. First, the variable-voltage signal is funda-

mentally different from the constant-voltage signal–this is why variable-voltage sequencing is

worth doing in the first place! Rather than associating each 4 base sequencing with a mean

ionic current(or equivalently, conductance), the variable-voltage signal-to-sequence model

must map each sequence to an associated conductance curve segment.

Second, the 4-mer model must be expanded due to the wider base sensitivity of the

variable-voltage method. In the case of constant-voltage sequencing, a 4-mer model was

chosen as the 4 bases nearest the constriction at a given enzyme step had the largest effect

on the resulting signal. However, a 4-mer model is simply a specific case of the more general

k-mer model, in which combinations of k bases are associated with specific signals. In general,

the larger k is, the more predictive the model will be, as it will be able to account for the

small but non-negligible effects of bases more distant from the constriction (appendix E.1)

11.

As the variable applied voltage shifts the DNA back and forth within each enzyme step,

the bases to both the 3’ and 5’ of the central 4-mer have a larger effect on the observed signal

than when applying a constant voltage. The contribution of these additional bases means

that more than 4 bases contribute meaningfully to the variable-voltage signal, so we expanded

our signal-to-sequence model to 6-mers. Additionally, Hel308 has two steps per nucleotide

rather than one, so two distinct conductance states are measured for each 6-mer. All together,

this means that our variable-voltage 6-mer model for Hel308-controlled DNA translocation

entails 8192 (= 2×46) total conductance states. We measured the two conductance states of

the variable-voltage signal for all possible 6-base combinations multiple times and in various

sequence contexts to construct the variable-voltage 6-mer model (appendix E).

11The drawback of larger k-mer models is that they are more difficult to construct empirically. To construct
a model with a given k, the signal generated by all 4k possible k-base combinations must be measured–
ideally several times and in various surrounding sequence contexts to get a good estimate of the signal
variance. Thus, the experimental task of measuring the k-mers grows exponentially with k.
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3.9.4 Sequencing Algorithm

Given a k-mer model, section 2.5 discussed how a measured series of signal states can be

decoded into the generating DNA sequencing using a hidden Markov model (HMM). As both

variable-voltage and constant-voltage sequencing use a k-mer model, the same fundamental

HMM-solving algorithm works in both cases, with a few modifications (appendix F). First,

we adapted the sequencing algortihm to work for the half-nucleotide steps of Hel308, rather

than the full nucleotide steps of Φ29 DNAP(appendix F.4). This modification is relevant to

sequencing Hel3080-controlled data in both the constant-voltage and variable-voltage cases.

Second, we use our understanding of Hel308’s kinetics to improve base calling of both

constant-voltage and variable-voltage data (appendix F.2). Hel308 hydrolyzes ATP to power

its translocation along DNA. Kinetic analysis of the Hel308 enzyme revealed that the two

steps the enzyme takes per nucleotide represent two distinct mechanical substates of the

enzyme’s ATP hydrolysis cycle. The durations of one of the two steps (the “dependent”

step) depend upon the available concentration of ATP, while the durations of the second step

(the “independent” step) do not [53]. Further analysis showed that most of the observed

enzyme backsteps occur starting from the ATP-independent state. the sequencer can use

this property to narrow the range of possible 6-mer model states an observed signal state can

match to. Simply, if an observed state exhibits a backstep, it is far more likely to match to

an ATP-independent state in the 6-mer model than to an ATP-dependent state, narrowing

the match probabilities by half. This improvement is implemented for both constant-voltage

and variable-voltage sequencing.

Finally, we modified the variable-voltage sequencing algorithm to make full use of the

step-type identification abilities of the variable-voltage signal. The the one type of enzyme

misstep error mode that cannot be fully corrected using the variable-voltage scheme is the

skip. As a skip causes a conductance state to be completely missed during measurement, the

resulting gap cannot be filled in. However, being able to at least label the locations in the

data where a skip occurred can help tremendously during sequencing. At each state-to-state



67

transition, the sequencer must decide the relative likelihood of different length steps in order

to determine which 6-mers can be transitioned into. During constant-voltage sequencing, the

various length steps (single step, skip 1, skip2, ...) are assigned constant likelihoods at every

transition. Conversely, in variable-voltage sequencing, although we cannot know exactly

what the skipped conductance state looked like, we can know that a skip occurred based on

segment-to-segment continuity, and even infer how long the skip was. Using this information,

we can assign state-by-state step size likelihoods that help the sequencer determine what

length step occurred in between each pair of observed states (appendix F.3).

3.10 Sequencing Results

With the full variable-voltage sequencing pipeline in place, we tested the performance of

variable-voltage against constant-voltage sequencing. We conducted this test by taking both

constant-voltage and variable-voltage reads of the same DNA sequence. We used the pET-

28a vector sequence (appendix A.5) for these experiments, as it provided a testing ground

of genomic DNA that was not used in constructing the 6-mer signal-to-sequence model 12.

To isolate the relative performance of the two applied voltage strategies, we held constant

all other aspects of the sequencing experiment. Specifically, both experiments were conducted

using Hel308 as the motor enzyme, in identical buffer conditions (appendix A.1.6, A.1.7).

Additionally, base calling in both methods used a 6-mer model, with the constant-voltage

6-mer model extracted from the variable-voltage 6-mer model (appendix E.6). As both

the variable-voltage and constant-voltage 6-mer models originate from the same underlying

model, any errors present in one will be present in both, providing a level playing field for

method-to-method comparison. Thus, any errors present in one model should be present in

both, providing a level playing field for method-to-method comparison.

In total, we sequenced 73 variable-voltage reads totaling 12873 bases and 31 constant-

12It was important to conduct the validation experiment using a DNA sequence not used in model con-
struction to avoid over-training. Over-training is less of an issue for pre-determined models (like the k-mer
model) than for learned models (as are constructed by recurrent neural networks), but can still arise and
should be avoided if possible for an accurate representation of sequencing performance.
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voltage reads totaling 9496 bases. For each read, we determined the true generating sequence

by aligning the called sequence to the pET-28a reference sequence 13. The accuracy was

calculated from the alignment as

accuracy =
Nmatch

Nmatch +Nmismatch +Ninsertion +Ndeletion

(3.1)

Nmatch is the number of alignment locations where the called base and true base match,

Nmismatch is the number of locations where they don’t match, Ninsertion is the number of

locations where an additional base is called relative to the true sequence (an insertion),

and Ndeletion is the number of locations where no base was called where one should have

been. Overall, we obtained 62.5% sequencing accuracy over the constant-voltage reads. The

variable-voltage reads yielded a 79.1% accuracy over the variable-voltagereads, representing

nearly a nearly 2-fold improvement in the error rate 14. The 37.5% error rate over the

constant-voltage reads broke down into a 13.3% miscall rate, 16.7% insertion rate, and 7.5%

deletion rate. The variable-voltage reads’ 20.9% error rate was consisted of a 7.7% miscall

rate, 6.1% insertion rate, and 7.0% deletion rate. Fig 3.7 provides a full accounting of the

per-base accuracies.

3.11 Discussion and Conclusions

3.11.1 Context for Improvement

The jump in sequencing accuracy from 62.5% to 79.1% provided by the change from constant-

voltage to variable-voltage is significant, even taken at face value. However, the jump takes

on greater meaning when the performance of the two methods is compared against the

performance of a random sequencer. Random sequencing accuracy represents the baseline

performance of a hypothetical sequencing method that extracts no information about the

13Alignment was conducted using a local-to-global Smith-Waterman-style gapped alignment, in which we
aligned the entire called sequence to the best matching section of the longer reference sequence

14Error rate = 1 - sequencing accuracy
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Figure 3.7: Sequencing confusion matrices. The confusion matrices for the constant-voltage
(a) and variable-voltage (b) sequencing methods show the the various error rates of the
two methods. The rate at which a given true base (y-axis) is called as a given called base
(x-axis) is shown in the corresponding cell. Diagonal entries represent correctly called bases,
off-diagonal entries represent errors. The bottom row shows the base-by-base insertion rate,
where an extra base has been called relative to the true sequence. The right-most column
shows the base-by-base deletion rate, where too few bases have been called relative to the
true sequence. Matrices are normalized to sum to 1 along the columns. The variable-voltage
method exhibits across-the-board improvement in all calling rates.
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DNA sequence in question. Comparing the performance of the constant-voltage and variable-

voltage methods against this baseline contextualizes how far above this information-less

baseline each method operates.

Counterintuitively, a randomly generated DNA sequence will not have 25% accuracy.

The sequence-to-sequence alignment procedure used to determine the sequencing accuracy

inserts gaps into both the called and true sequences to generate the best match between

the two. As a consequence of this gapped alignment, aligning two random sequences will

yield an accuracy well above 25%. In our case of local-to-global alignment of a short (called)

sequence to a section of a longer (true) sequence, the random accuracy will depend on the

lengths of both the called sequence and the true sequence, with shorter called sequences and

longer true sequences resulting in higher random accuracy 15.

We compared the distribution of full-read sequencing accuracies for constant-voltage and

variable-voltage reads against the distribution of random accuracies generated by aligning

random sequences the same length as the collected reads against the pET-28a reference

sequence (Fig 3.8). With this context, we see that although the constant-voltage method

is producing meaningful sequencing results above random, it only barely outperforms this

baseline (Fig 3.8a). Comparatively, the variable-voltage reads are consistently well above the

random accuracy baseline (Fig 3.8b). Against the random accuracy baseline, the variable-

voltage sequencing method dramatically outperforms the constant-voltage method.

3.11.2 Towards Higher Accuracies

The variable-voltage method’s 79.1% accuracy is competitive with the best reported single-

read de novo obtained using a nanopore sequencing device 16. Importantly however, this

15Global-to-global alignment of the entirety of two random sequences will yield ∼54.3% identity, with
local-to-global alignments generating higher identity as discussed in appendix A.6

16It is difficult to pin down definitive numbers for commercial nanopore sequencing devices, as companies
rarely publish on their most recent results. A recent review of nanopore sequencing progress [65] shows a
highest single-read accuracy of around ∼75%. More recent published results have used either “2D” reads
or the newer “1D2” reads, both of which read both the sense and antisense strand of the target DNA
strand to generate higher accuracy and are thus not comparable to true single-read accuracies.
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Figure 3.8: Read accuracy distributions. (a) The distribution of measured constant-voltage
read accuracies (blue) is only marginally better than the distribution of random accuracies
generated for reads of the same length (red). (b) The distribution of measured variable-
voltage accuracies (blue) is consistently well above the distribution of random accuracies for
equal length random sequences (red).
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initial accuracy figure represents only the baseline starting point of the accuracies nanopore

sequencing can ultimately achieve with the aid of the variable-voltage method. This method

requires little re-engineering of the basic nanopore sequencing system beyond the application

of a variable rather than constant voltage. Consequently, it is straightforward to combine this

method with other techniques being developed to improve nanopore sequencing accuracy.

The improved techniques that have improved commercial constant-voltage sequencing ac-

curacy over the past 5 years are easily applicable to variable-voltage sequencing as well. The

constant-voltage versus variable-voltage comparison presented above tested both methods

without the incorporation of any other new sequencing advances such as more processive and

predictable motor enzymes, more sophisticated base calling algorithms, and reads measuring

both the sense and antisense strand of the target DNA17. Just as the implementation of these

several improvements have taken constant-voltage accuracy from the low 60%’s into the mid

70%’s, combining these techniques with variable-voltage sequencing should enable continued

advances in sequencing accuracy well above the presented 79.1% mark. The merger of the

variable-voltage method with these other advances offers a path forward toward realizing the

ultimate goal of high accuracy nanopore sequencing.

17These sense and antisense reads are the “2D” and “1D2” reads referenced above. Both read methods
are fundamentally the same. Combining the information from the two strand reads allows error correction
where an error was made in only one of the two reads. In the case of completely random errors, the error
rate will square (e.g. a 70% single read becomes a 91% 2D read). If errors are anti-correlated (as is the
case in our sequencing, where certain k-mers are called more accurately than others), it is possible to do
better than squared error rate.
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Chapter 4

A HIGH SENSITIVITY BLAST ALGORITHM FOR
NANOPORE SEQUENCING

In chapter 3, we focused on improving nanopore DNA sequencing by raising the single-

read de novo sequencing accuracy. Here, we will shift our focus over to a parallel avenue

towards improving the overall efficacy of nanopore sequencing technology. Rather than fo-

cusing on raising the accuracy of the next generation of nanopore sequencing devices, we will

discuss how to make better use of the data produced by the devices that are already avail-

able. Specifically, I will present a new method of sequence alignment capable of generating

strong and fast alignment results even for low accuracy nanopore reads.

4.1 BLAST

Many important clinical and in-field DNA sequencing questions can be answered without

conducting whole genome sequencing. Applications including pathogen detection (section

1.4.4), outbreak tracking (section 1.4.2), and metagenomic studies (section 1.4.3) are more

interested in coarse-grained information about the representation of different species or mu-

tants in a sample, rather than in sequencing entire genomes. The common question asked

in these studies is not “what is the DNA sequence of this organism (or organisms)?” but

rather “what organism (or organisms) are represented by these measured DNA sequences?”.

These sorts of “what’s in my pot?” experiments rely on quickly searching for matches

of the sequencing reads against a large database of previously-sequenced reference genomes.

This type of large-scale sequence-to-sequence comparison problem is computationally diffi-

cult. The reference databases within which we want to look for matches can be dauntingly
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large. The entire database of all known genomes 1 comprises over 2.9 Tb (nearly 3 trillion

bases) 2. Searches usually only use a subset of this vast database, but can still commonly

run to several gigabases. 3.

The computational issues posed by the large reference database sizes are compounded by

the typical requirement that a search return inexact matches. Searching for exact sequence-

to-sequence matches is computationally simple, even for long sequences. This sort of simple

“word search” can run in O(N) time, where N is the length of the sequence within which

we are searching for matches (i.e. the reference database). However, given the possibility

of mutations relative to the reference genome, and of errors in either the reference or the

read, we are often interested in inexact matches. The optimal inexact match (“alignment”)

of one smaller sequence to some subset of a larger sequence is efficiently found by the Smith-

Waterman alignment algorithm 4 [75, 74, 76]. A full sequence-to-sequence Smith-Waterman

alignment requires O(N1 ∗ N2) time, where N1 is the length of sequence 1 and N2 is the

length of sequence 2. As the database of reference genomes becomes large, conducting a

Smith-Waterman alignment of the sequencing reads against the entire reference becomes

impractical.

The Basic Local Alignment Search Tool (“BLAST”) is a fast alignment algorithm com-

monly used to solve these computational difficulties [77]. Unlike the Smith-Waterman al-

gorithm, BLAST is a heuristic algorithm and does cannot guarantee that it will find the

optimal local alignment. However, it is able to reliably achieve near-optimal results while

vastly reducing computation time relative to Smith-Waterman, making it a powerful tool

for searching large sequence databases. BLAST achieves its speed advantage through a

1This database is available from the NCBI (National Center for Biotechnology Information).

2Statistics available at https://www.ncbi.nlm.nih.gov/genbank/statistics/

3The standard SI prefixes are typically used to denote genome size: a thousand bases is 1 kb, a million
bases is 1Mb, etc.

4The Smith-Waterman algorithm is a special case of the more commonly known Needleman-Wunsch
algorithm. Needleman-Wunsch finds the optimal global alignment between two sequences, aligning all of
sequence 1 against all of sequence 2. Smith-Waterman instead finds the optimal local alignment between
subsets of the two sequences.
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seed-extend approach (algorithm 2). Given a “query” sequence (i.e. the sequencing read)

and a reference database to search, BLAST first looks for seeds: short, exact matches of

segments of the query within the database. Seed finding is a fast O(N) word search prob-

lem, as described above. The found seeds are then extended using a Smith-Waterman-type

local alignment algorithm, terminating when the quality of the nascent alignment starts to

deteriorate 5.

Algorithm 2 Sequence-to-sequence BLAST

1: Start with a query sequence Q and a reference database of known sequences R
2: List: generate a list L of all words of length k (k-mers) that exist within Q
3: Scan: scan through R for seeds: exact matches to k-mers in L
4: Extend: extend seeds into candidate alignments using Smith-Waterman-type alignment

algorithm
5: Evaluate: evaluate the extended candidate alignments by their alignment scores to

determine the confidence that each candidate represents a meaningful (non-random)
alignment

The seed-extend strategy saves time over full alignment by avoiding filling in the align-

ment matrix at locations unlikely to generate good matches. A Smith-Waterman alignment

calculates a length(query) x length(reference) alignment matrix, representing all possible

alignments of the two sequences (Fig 4.1, all boxes). BLAST instead only fills in the align-

ment matrix around the exactly-matching seeds (Fig 4.1, colored boxes). This selective

calculation introduces some risk that the overall best alignment is missed, but this risk is

low assuming the seeds are of a reasonable size. In return for this risk, we achieve a dramatic

improvement in run time.

4.2 Nanopores and BLAST

Several of the advantages of nanopore sequencing make it ideally suited for BLAST-based

sequencing applications. Already, nanopore sequencing devices have demonstrated fast

5Appendix G.3 contains a more detailed discussion of how the BLAST extension algorithm works.
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Figure 4.1: Calculation efficiency of BLAST vs. Smith-Waterman. In a full Smith-Waterman
alignment, we must calculate the entire length(query) x length(reference) alignment matrix,
shown here schematically as a grid of boxes. BLAST saves time by selectively only filling in
regions of the alignment matrix likely to yield good results. It first finds exactly-matching
seeds (green boxes), then extends the seeds (red boxes) into candidate alignments (black
lines). The best local alignment is the best scoring of these candidates (blue line). Locations
in the alignment matrix where no seeds are present are not filled in (blank boxes), saving on
computational overhead.
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sample-to-answer timelines, low input and sample preparation requirements, and portabil-

ity [78, 79, 80]. These advantages indicate that nanopore sequencing technologies could be

uniquely well-suited to these sorts of BLAST-based clinical and in-field sequencing appli-

cations where speed, ease-of-use, and portability are often of utmost importance. Indeed,

researchers and clinicians have already used nanopore sequencing effectively in pathogen

detection [81, 82, 83], outbreak tracking [80, 84, 85], species identification [86], and metage-

nomic sequencing [87, 88].

However, the low single-read sequencing accuracies typical of existing nanopore sequenc-

ing devices [68, 89, 90, 65] can hinder BLAST performance. Lower read accuracy means that

a read will match less strongly to the correct on-target location in the reference database.

Weaker on-target alignments mean that the correct alignment is less distinguishable from the

crowd of off-target alignments. Thus, low accuracy reads can increase the rate of both false

positives (alignments to incorrect reference locations being called as matches) and false nega-

tives (alignments to the correct reference location not being called as matches). Widespread

interest in BLAST-based nanopore sequencing applications has driven development of new

algorithms designed to better handle the long, low-accuracy reads generated by nanopores

6 [91, 92, 93, 94]. These new algorithms help to mitigate the issues caused by low-accuracy

reads, but analyses would be better and easier given stronger identity between the reads and

the reference database.

4.3 Beyond Sequence Alignment

Previous work has shown that aligning the measured ionic current signal from the nanopore

against the predicted signal for the reference sequence using a Smith-Waterman-style align-

ment can give strong alignments even for low accuracy reads [58]. Laszlo et al. showed that

using the ionic current-to-sequence model (section 2.4) to predict the signal that would be

observed for the reference sequence, then aligning the measured signal to that generated

6Long, low-accuracy reads are characteristic not only of nanopores, but of other single-molecule sequencing
technologies as well. These new BLAST algorithms work generally for all sequencing data of this character.
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strong read-to-reference alignment even for reads with low sequencing accuracy. Aligning

current-to-current instead of sequence-to-sequence is effective due to the origin of many

nanopore sequencing errors. As discussed in section 2.7.1, many errors are caused by incor-

rect decoding of ambiguous ionic current signals, rather than by fundamental errors in the

signal itself. These base calling errors arise as many different DNA sequences can generate

only slightly different electronic signals (Fig 4.2a, b). In the case of an ambiguous signal

that could have been generated by multiple different underlying sequences, the base caller

is forced to make a deterministic choice amongst the different sequence candidates. These

deterministic choices in response to ambiguous information can freeze in errors and destroy

information that was present in the original signal (Fig 4.2c). By aligning using the ionic

current signal in lieu of the called bases, we preserve all the information available and avoid

unnecessarily introducing errors into the reads (Fig 4.2d).

4.4 Current-to-Current BLAST

In this work, we extend the principle of current-to-current comparison by adapting the

BLAST algorithm to use the measured nanopore ionic currents instead of the called bases.

The goal is to produce a fast heuristic sequence alignment method that optimally uses the

data present in the nanopore signal. We will first implement an ionic current-based BLAST

algorithm, then compare its performance against the standard sequence-based BLAST algo-

rithm. We will test the two methods on data produced by Oxford Nanopore Technologies’s

MinION device–that is, on data produced using an existing commercial nanopore sequencing

device.

4.4.1 BLAST Implementation

To evaluate the relative performance of a heuristic alignment using ionic current in place of se-

quence, we implemented two versions of the BLAST algorithm in MATLAB–one (ssBLAST)

comparing sequence-to-sequence, the other (iiBLAST) comparing current-to-current (Fig

4.3).
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Figure 4.2: Principle of current-to-current comparison. (a) A hypothetical series of ionic
current measurements (black) matches well to both the predicted ionic currents for the true
DNA sequence (blue) and to the predicted ionic currents for an incorrect DNA sequence
(red). Shaded regions above and below the prediction values show the prediction model’s
standard deviation for these states. The black dotted line linking the measured currents is
to guide the eye. The true and called sequences (blue and red) are aligned below. (b) The
residuals (measured ionic current minus predicted ionic current) of the data against the true
sequence prediction (blue) and the incorrect sequence prediction (red) are both small. In
this case, the data match slightly better to the incorrect sequence than to the true sequence,
causing the base caller to call the incorrect sequence. The measured data diverges from the
true prediction primarily due to a somewhat low measurement at DNA position 4. This
single low measurement in the raw data causes 6 incorrect base calls. (c) If the base-called
sequence for the example read were put into a BLAST search, it would yield a poor match
to the true sequence, with only 4 out of 10 bases matching. Scores are assigned as +1 for
match, −1 for mismatch. (d) The predicted ionic currents of the called (incorrect) sequence
preserve the ambiguity of the measured data. Comparing the currents of the called sequence
to those of the true sequence, we see a stronger match. Scores are assigned as 2 minus the
z-score between the currents.
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Figure 4.3: Comparisons made by ssBLAST and iiBLAST. ssBLAST uses the base calls
based on the nanopore ionic current signal, then compares the bases against the reference
sequence. iiBLAST takes the same base calls, then uses them to reconstruct the ionic current
signal based on the ionic current-to-sequence model. The ionic currents for the reference
sequence are reconstructed in the same way. Finally, the reconstructed ionic currents of the
measurement and reference are compared.
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The ssBLAST algorithm works as described by algorithm 2. The seed-finding (“scan”)

phase is conducted using a Mealy-type finite state machine (appendix G.1) [95]. The seed-

extending (“extension”) phase uses a windowed Smith-Waterman-style alignment algorithm

allowing gaps (appendix G.3). Gapped alignment is critical to get strong alignments given

the high frequency of insertions and deletions (indels) in typical nanopore reads. Ungapped

alignments of nanopore data quickly encounter an indel and the query and reference get

de-synchronized, leading to a bad alignment. The iiBLAST implementation (algorithm 3)

uses the same scanning and extending machinery as ssBLAST.

Algorithm 3 Current-to-current BLAST

1: Start with a query sequence Q and a reference database of known sequences R
2: Convert: reconstruct the ionic currents QI and RI for the sequences Q and R using

the ionic current-to-sequence model used in base calling
3: Bin: place the continuously-valued ionic currents in QI and RI into discrete bins
4: List: generate a list L of all k-mers in QI . Here, the “letters” composing the k-mers

are the bin numbers of each ionic current measurement
5: Scan: scan through RI for seeds–exact bin-to-bin matches to k-mers in L
6: Extend: Extend seeds into candidate alignments . Extension is conducted using the

un-binned ionic current values of both QI and RI

7: Evaluate: evaluate the extended candidate alignments by their alignment scores to
determine the confidence that each candidate represents a meaningful alignment

4.4.2 Adapting the Algorithm

In order to adapt BLAST to current-to-current comparison, we had to work around some of

the basic assumptions of the algorithm.

The standard BLAST algorithm (algorithm 2) is designed to handle discrete inputs:

each entry in a DNA sequence will have exactly one of the four possible values {A,C,G, T}.

Consequently, what is meant by an “exact match” during the seed phase is clear: all letters

in the query word must be identical to those at the reference location for a seed to be

reported. The discrete nature of the DNA sequence also makes the scoring of candidate

matches during the extension phase straightforward. In the simplest case, a positive score
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Figure 4.4: Example sequence-to-sequence BLAST scoring matrix. In sequence-to-sequence
comparison, the penalties (negative, red) or bonuses (positive, blue) for aligning any base
to another can be compactly represented in a scoring matrix as shown here. This simple
scoring matrix give +1 to matches and −1 to mismatches, but in principle each individual
entry could take any desired value.

(i.e. +1) can reward each pair of matched bases in the alignment and a negative score (i.e.

−1) can penalize each pair of mismatched bases. More generally, the match score between

any pair of bases can be expressed concisely as a 4x4 scoring matrix (Fig 4.4).

To extend BLAST to handle current-to-current alignment we must adapt the algorithm

for continuously-valued inputs. We adapted the seed-finding phase by discretizing the input

ionic currents. The query signal is binned into a finite number of discrete values, as is the

predicted signal of the reference database 7. Exact bin-to-bin matches are required for a

seed to be reported 8. During seed extension, we revert to the continuous (not binned) ionic

currents in both the query and the reference. Match scores are computed as a rescaling of

the z-score between the query and reference currents, with smaller z-scores yielding more

favorable alignment scores (z =
iQ−iR√
σ2
Q+σ2

R

, iQ,R is the ionic current of the query or reference,

7Given our goal of not destroying information in the signal, binning may seem an unwise choice. We
tested an alternative algorithm that avoided binning during seed-finding, but found that performance was
both more robust and far faster using the binning method. For more discussion, see appendix G.2.

8Clearly, the number of bins used will be an important parameter. For a detailed discussion of algorithm
parameters, see appendix G.4. For further depth on the choice of the number of bins, see appendix G.5



84

and σQ,R is the uncertainty for the query or reference ionic current).

4.4.3 Choice of Ionic Current

There are two possible choices of which ionic currents to use in the current-to-current com-

parison. The first option is to use the raw ionic current states measured by the nanopore

device. The second option is to take the base-called sequence and reconstruct it back into

ionic currents using the ionic current-to-sequence model used in base calling. While the first

choice (measured ionic currents) seems the more natural and obvious choice, we found the

best results came using the second choice (reconstructed ionic currents). The reasons for

this are two-fold.

The first and primary reason is that of calibration. The ionic currents observed during

various nanopore reads of the same DNA sequence can vary in their overall magnitude (offset

from zero) and the relative magnitudes of the different ionic current states (scale). Variation

can occur day-to-day, experiment-to-experiment, and even pore-to-pore due to variation

in electrode offsets. Prior to base calling, each individual read must be calibrated to the

ionic current-to-sequence model used by the base caller. Further complicating matters, the

correct calibration for a given read is not necessarily constant over the duration of the read.

Particularly for long reads, the calibration required to match the measured ionic currents

to the model can drift as the electrode offsets change. ONT’s sophisticated base calling

software can account for the confounding effects of calibration, and the base-called results

of each read represent the optimal decoding of the calibrated ionic current measurements.

Thus, by reconstructing the base calls to ionic currents, rather than using the raw measured

states, we circumvent the difficulties of calibration and are guaranteed a well-calibrated ionic

current signal.

The second, less significant advantage to using the reconstructed ionic currents is also

predicated on corrections made by ONT’s base caller. The measured nanopore ionic current

signal can be marred by complex error modes. As discussed in section 2.7.2, the motor

protein used to control DNA progression through the nanopore [51, 52] can take random, non-
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single-nucleotide steps. Additionally, the change point detection algorithm used to partition

the time-series ionic current data into discrete states can make errors, introducing erroneous

partitions (extra states) or failing to call enough partitions (missed states). The combination

of enzyme missteps and partitioning errors means that the reported ionic current states do

not always faithfully represent the true sequence of the DNA strand being sequenced. The

ONT base caller has some ability to handle and ameliorate these error modes. By using the

ONT base calls and reconstructing the ionic current, we avoid the difficulties presented by

these complex error modes while still harnessing the power of current-to-current alignment.

4.5 Performance Evaluation

With the two versions of BLAST implemented, we evaluated their relative performance by

using both ssBLAST and iiBLAST to align the same set of nanopore reads against a database

of reference genomes. For this study, we used nanopore reads of the M13mp18 bacteriophage

genome from a previously published study using ONT’s MinION device 9. The MinION

reads were aligned using both ssBLAST and iiBLAST against a 30.2 Mb subset of the NCBI

viral genome database containing the M13mp18 genome along with the sense and antisense

sequences of 565 other viral genomes. To standardize run time, all alignments were run on

a desktop computer with a 12 core IntelR© CoreTM i7-5820K CPU @ 3.30 GHz with 32 GB

RAM. We ran a total of 1977 reads against the reference database using both algorithms,

each with fixed run parameters (appendix G.4). Reads were truncated to a constant 100

nt length to give a wider variety of read accuracies (section 4.6) and to ensure parameter

stability (appendix G.5).

4.6 Performance as a Function of Read Accuracy

We expect that the ssBLAST and iiBLAST methods will perform differently for reads with

different accuracies. In the limiting case where read accuracy tends to 100%, the distinction

9Data were downloaded from the European Nucleotide Archive, accession number ERR739515.
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Figure 4.5: Distribution of accuracies for full MinION reads of M13mp18 in test dataset.
A distinct population of reads (N = 264) had poor accuracies (red) clearly apart from the
typical distribution of accuracies (blue). Following the original authors of the dataset [96],
we attribute these reads to off-target DNA, possibly from the Escherichia coli in which the
M13mp18 was grown up. Of the remaining on-target reads (N = 893), 90% fall between
59.1% and 68.5% accuracy, with a median accuracy of 64.5%.

between operating using bases or ionic currents becomes immaterial. The interesting case is

for error-prone reads with less than 100% sequencing accuracy; here we expect iiBLAST to

outperform ssBLAST as it avoids the artificial introduction of errors during base calling.

The full reads in the test dataset fell within a narrow range of accuracies (90% of reads

were between 59.1% and 68.5% accurate, Fig 4.5). To explore a wider range of accuracies,

we partitioned the longer reads into 100 base subsets which were then aligned against the

reference genome database. These short subset reads allowed us to test the two BLAST

methods for read accuracies ranging from 50% to 90%. In total, we ran N = 1977 short read

subsets against the reference genome database.

We binned the results of these alignments by read accuracy and evaluated the BLAST

performance within each bin. To quantify performance, we used the maximum true positive
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rate (TPR) provided zero false positive rate (FPR) 10. This metric 11 tells us, given reads

with a certain accuracy, what fraction of the reads we can expect to align unambiguously to

the correct reference genome. The requirement that the FPR is identically zero is crucial to

ensure that the BLAST results are useful. The number of off-target genomes (Noff ) can be

large, so even a small FPR can result in the total number of false positives (= FPR ∗Noff )

vastly surpassing the number of true positives (= 1).

As expected, both ssBLAST and iiBLAST perform similarly on high accuracy reads (un-

ambiguously identifying all reads with accuracies 88% and above) and low accuracy reads

(unambiguously identifying none of the reads with accuracies 56% and below, Fig 4.6).

However, for intermediate accuracy reads, iiBLAST outperforms ssBLAST, achieving signif-

icantly higher true positive rates for reads between 58% and 86% accuracy.

4.7 Alignment Significance

In addition to measuring the rate of on-target read alignment, we also evaluated the signifi-

cance of the alignments produced by both ssBLAST and iiBLAST. We quantified alignment

significance by calculating a p-value for each on-target alignment based on the alignment’s

score against the distribution of scores for all off-target alignments within the database, as

described in appendix G.7.

The alignment p-value represents the probability that a BLAST alignment of the read in

questino to a random M13mp18-sized (7249 bp) genome of bases (in the case of ssBLAST)

or ionic currents (for iiBLAST) would yield an alignment with a score as good or better than

that of the alignment in question. The p-value can be used to estimate how large a database

would be required before one would expect a random alignment to yield a BLAST alignment

score as good as the given alignment. For example, for an on-target alignment with a p-value

of 10−4, we expect an alignment to a random genome will match or exceed its score when

10TPR = TP
TP+FN , FPR = FP

FP+TN , where TP , FP , TN , and FN are the total numbers of true positives,
false positives, true negatives, and false negatives, respectively.

11The calculation of this metric is described in more detail in appendix G.6.
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Figure 4.6: Comparison of true positive rate as a function of read accuracy for ssBLAST
and iiBLAST algorithms. The maximum true positive rate provided a zero false positive
rate is plotted as function of read accuracy for iiBLAST (blue, circles) and ssBLAST (red,
squares). Black dashed lines show TPR = 0 and TPR = 1, corresponding to no useful
performance and perfect performance, respectively. Reads are binned by their accuracy
into bins of width 0.04 (i.e. 62-66%). The two algorithms’ performance converges at low and
high read accuracies (56% bin, 88% bin), but iiBLAST performs better for intermediate read
accuracies (60% bin to 84% bin), unambiguously aligning a greater portion of the available
reads to the correct reference genome.
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running against a reference database of 72.5 Mb (the size of the M13mp18 genome divided

by our p-value, appendix G.7). If this read were aligned against references databases larger

than 72.5 Mb, the on-target alignment would likely not bet the highest scoring match found;

an off-target alignment would likely exceed it. Alignments with p-values below 10−10 are

good enough that they should align unambiguously against the 2.9 Tb database of all known

genomes in the NCBI database 12.

Comparing the p-values of on-target alignments generated by ssBLAST and iiBLAST, we

find that the alignment p-values are consistently several orders of magnitude smaller (bet-

ter) using iiBLAST than ssBLAST (Fig 4.7). Furthermore, the iiBLAST method generates

stronger alignments than ssBLAST across all read accuracies tested. Consequently, although

both methods had a 100% true positive rate for the high accuracy reads (86-90%) in our

test set against our trial database, iiBLAST would continue to outperform ssBLAST if the

search were expanded to include a larger reference database.

4.8 Discussion and Conclusions

We’ve shown that by implementing a version of the BLAST algorithm that makes current-

to-current, rather than sequence-to-sequence, comparisons between nanopore reads and ref-

erence genomes, we are able to dramatically improve the performance of the BLAST search

for error-prone nanopore sequencing reads. The the next steps of scaling and integrating

this technique bear discussion, as do the potential implications of this new method on the

future of nanopore sequencing.

4.8.1 Scaling to Larger Reference Databases

We conducted our validation experiment using a relatively small reference database. Using

a small reference allowed us to test many reads using both ssBLAST and iiBLAST using

12This is presently true, but the goalpost of maximum reference database size is always moving. DNA
sequencing is growing rapidly, and with it is the database of known genomes. Statistics are available at
https://www.ncbi.nlm.nih.gov/genbank/statistics/
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Figure 4.7: ssBLAST vs iiBLAST p-value comparison. Each on-target read in the validation
experiment is plotted as a single point at the p-value of the read’s alignment using ssBLAST
(x-axis) and its p-value using iiBLAST (y-axis), color coded by the read’s sequencing accu-
racy (color bar). The black line shows x = y, representing where the two algorithms yield
equally strong alignments. Points below the line represent reads where iiBLAST produced
a stronger alignment; points above the line represent reads where ssBLAST gave a stronger
alignment.
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limited computing power and without extensively optimizing our code for parallelization.

However, the results from this experiment are extensible to applications using much larger

references. The primary concerns with scaling to a larger reference are keeping the false

positive rate low and managing the computation time.

False Positives in Large Reference Searches

For larger reference databases, more high-scoring false positives will arise as there are more

chances for random matches to occur. However, iiBLAST’s stronger alignment p-values

indicate that the current-to-current method is better suited to large searches (Fig 4.7). Based

on the p-value results, we expect iiBLAST will outperform ssBLAST on larger databases,

even at higher read accuracies where the two methods both generated 100% true positive

rates during the validation experiment (Fig 4.6). The orders-of-magnitude improvement in

alignment significance indicates that iiBLAST queries will return useful, false-positive-free

results against reference databases orders-of-magnitude larger than would be searchable using

ssBLAST.

Compuation Time for iiBLAST and ssBLAST

It is important that current-to-current comparison not dramatically add to the computational

burden of the BLAST algorithm. In terms of computational complexity, both the seed

and extension phases of the iiBLAST implementation are identical to those of ssBLAST.

As discussed in section 4.4.1, both approaches use a Mealy finite state machine (appendix

G.1) to scan the reference database for seeds in O(N) time (N is the size of the reference

database). Likewise, both approaches use the same gapped alignment algorithm (appendix

G.3) requiring O(M ∗ L) time (M is the number of extensions prior to terminating the

alignment; L is the window lookout distance).

The iiBLAST method does require the additional computational step of predicting the

signal for the reference sequences. However, the prediction only takes O(N) time (N again

the size of the reference database), and only needs to be done once for a given reference
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genome. Once made, the prediction can be stored along with the sequence in the reference

database for future use.

Overall in our validation experiment, iiBLAST aligned reads over 4 times faster than

ssBLAST (appendix G.8 contains a more detailed breakdown of algorithm run times). The

improved run time is due to better efficiency in finding good seeds rather than any difference

in the intrinsic computational load of the two algorithms. The iiBLAST method found fewer

bad seeds that led to uninteresting alignments and thus saved time during seed extension.

Future Integration

Looking forward, the current-to-current method will be best used by integrating it into

a more sophisticated heuristic alignment algorithm [91, 92, 93, 94] better suited to long,

error-prone sequencing data than the standard BLAST algorithm. Such an implementation

will harness the improved read-to-reference identity offered by current-to-current alignment

within the architecture of an algorithm specifically designed to handle the unique aspects of

nanopore sequencing data.

4.8.2 Implications for Nanopore Sequencing Applications

The dramatic improvement in performance achieved by using current-to-current instead of

sequence-to-sequence alignment has myriad implications for both the present and future

applications of nanopore sequencing.

Immediate Implications

Immediately, our ability to generate strong, unambiguous alignments with low accuracy reads

will increase the effective throughput in BLAST-based nanopore sequencing experiments.

Fewer reads will fail to align due to low accuracy, making a better fraction of the sequencing

data useful to the researcher. It is particularly worth noting that iiBLAST consistently

generates good results for reads in the 70-80% accuracy range–the typical accuracy range
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for 1D nanopore reads [65] (in which only one strand of the DNA is read through the pore).

In comparison, ssBLAST can only achieve similar results for reads well above 80%–above

the accuracy of most 1D reads and typical only of 2D reads [65] (in which both strands

are read one after the other, then combined into a single, higher accuracy sequence). The

iiBLAST method’s better tolerance for low accuracy reads thus makes 1D reads substantially

more useful and reduces the need for 2D reads which are necessarily only half as fast (as

both strands must be read). By improving nanopore sequencing’s effective throughput by

increasing the fraction of usable reads, iiBLAST can reduce sample-to-answer timelines, input

sample requirements, and sequencing costs. Effectively, the iiBLAST method can increase

the speed and decrease the cost of nanopore sequencing.

Further Applications

The power of the current-to-current comparison method is not limited to improving only

BLAST-based nanopore sequencing applications. The same fundamental method can im-

prove nanopore sequencing’s ability to perform various other sequencing tasks, including

variant detection [97] and epigenetic mapping [98, 99].

Technology Development Implications

Looking forward, the ability to use low accuracy reads for BLAST-based sequencing exper-

iments offers an alternative way forward for nanopore sequencing to make an impact on

the larger sequencing community. To date, many efforts to improve nanopore sequencing

have focused on improving raw single-read sequencing accuracy. This work shows that–

while improved sequencing accuracy is certainly important–much more can be done with

the currently-available low accuracy reads than was previously believed. A future nanopore

sequencing device sacrificing sequencing accuracy for lower cost, faster turnaround time, im-

proved portability, and better throughput could prove useful for clinicians and researchers

interested in BLAST-based applications.
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Chapter 5

CONCLUSIONS

The past two decades have witnessed nanopore DNA sequencing mature from a sim-

ple, promising, but unproven concept into a fully-realized commercial sequencing platform.

Already, nanopore sequencing has demonstrated its ability to make good on many of the

promises of single-molecule DNA sequencing, addressing several of the limitations of the

previous generation of sequencing technologies. My work has aimed to further extend the

frontiers of nanopore sequencing by reducing the limitations posed by its low single-read de

novo sequencing accuracy. In chapter 2, I discussed the outstanding issues with this technol-

ogy leading to its low single-read de novo sequencing accuracy. My work in chapter 3 showed

that a simple re-engineering of the nanopore device–by replacing the constant applied voltage

with a variable voltage–addresses these error modes and dramatically improves sequencing

accuracy. In chapter 4, I presented a new method of sequence alignment that enables the

use of nanopore sequencing devices in diverse applications including pathogen detection and

metagenomics. This method is able to harness the information present in the raw nanopore

signal to generate useful results even for low accuracy reads. With this method, currently

available nanopore sequencing devices can already be used in a wide range of sequencing

applications.

The progress presented in this dissertation marks a starting point for the next phase of

nanopore technology development. Further improvement in nanopore sequencing accuracy

is possible through the integration of the new variable-voltage method with other parallel

advances that have also shown improved accuracy. The synthesis of these several techniques

into a final nanopore sequencing device should be possible in the near future and result in

a new generation of high accuracy nanopore sequencers. Likewise, the sequence alignment
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method presented here can be incorporated into other new sequence alignment algorithms

specially adapted to handle nanopore sequencing data.

Together, the advancements presented here in improving the accuracy and the appli-

cation of nanopore sequencing paint a picture of an exciting future for this technology.

The next several years should see the complete integration of the new techniques from this

work into nanopore devices and workflow, enabling high accuracy nanopore sequencing with

broad potential applications. This upcoming generation of nanopore sequencing devices will

propagate the on-going genomics revolution through faster, cheaper, more accessible DNA

sequencing capable of answering ever more questions, advancing both medicine and science.
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Appendix A

SEQUENCING EXPERIMENTS

A.1 Materials and Methods

A.1.1 Proteins

The same mutant MspA protein was used as the nanopore in all of the presented sequencing

experiments. This mutant, M2-NNN-MspA, was custom ordered from GenScript. M2-NNN-

MspA is engnineered on the wild type MspA (accession number CAB56052.1) with the follow-

ing mutations: D90N/D91N/D93N/D118R/E139K/D134R [48]. All sequencing experiments

used the Hel308 helicase enzyme from Thermococcus gammatolerans EJ3 (accession number

WP 015858487.1). Hel308 was expressed using standard techniques by in-house facilities

[53]. The Φ29 DNAP used in preliminary experiments was wild-type Φ29 DNAP obtained

from Enzymatics and Epicenter. All proteins were stored at -20 ◦C until immediately before

use.

A.1.2 Nanopore Experiments

All experiments used a single M2-NNN-MspA nanopore. Detailed description of our nanopore

experiments is provided in [54]. Briefly, experiments were established on a Teflon platform

containing two ∼ 50 µL chambers (cis and trans). The two chambers are connected by

a Teflon heat-shrink “u-tube”, ∼ 30 µL in volume. The cis side of the u-tube narrows

into a horizontal ∼20 µm diameter aperture. Both chambers and the u-tube were filled

with the operating buffers. The cis well was connected to the negative terminal of the

amplifier (ground) via an Ag/AgCl electrode. A lipid bilayer was painted across the aper-

ture using 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) or 1,2-di-O-phytanyl-sn-
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glycero-3-phosphocholine (DOPC), obtained from Avanti Polar Lipids. An Axopatch 200B

integrating patch clamp amplifier (Axon Instruments) applied the driving voltage across the

bilayer (trans side positive) and measured the ionic current throughout the experiment.

Following bilayer formation, M2-NNN-MspA was added to the cis well to a final con-

centration of ∼2.5 ng/mL. A single pore insertion into the bilayer was recognized by a

characteristic increase in the conductance. Upon single pore insertion, the cis well buffer

was perfused out and replaced with MspA-free buffer to prevent the insertion of additional

pores. The motor enzyme was added to a final cis well concentration of 50 nM, and DNA

was added to a final concentration of ∼ 5 nM.

A.1.3 Operating Buffers

All sequencing experiments (using Hel308) were conducted using symmetric cis and trans

buffer conditions of 400 mM KCl with 10 mM HEPES at pH 8.00 ± 0.05. The cis buffer

additionally contained 1 mM EDTA, 1 mM DTT, 10 mM MgCl2, and 100 µM ATP. ATP-

containing buffer was re-perfused into cis approximately once per hour to prevent depletion

of ATP and accumulation of ADP. Hel308 experiments were performed with at 37 ◦C.

Preliminary Φ29 DNAP experiments were conducted using 300 mM KCl, 10 mM HEPES

buffer at pH 8.00 ± 0.05 in both cis and trans. Again, 1 mM EDTA, 1 mM DTT, and 10

mM MgCl2 were included in the cis buffer only. Φ29 DNAP experiments can be designed so

that the DNA is passed through the pore twice [100] [51], first proceeding toward trans (5’

direction, unzipping mode) then being pulled back toward cis (3’ direction, synthesis mode).

For these dual-mode experiments, dATP, dCTP, dGTP, and dTTP were added to the cis

buffer to a final concentration of 10 nM. Φ29 DNAP experiments were performed at 22 ◦C.

A.1.4 Data Acquisition and Analysis

Data were acquired with acquisition software written in LabView (National Instruments)

at a sampling rate of 50 kHz using an Axopatch 200B amplifier low pass filtered at 10

kHz. Ionic current traces were analyzed using custom programs written in Matlab (the
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Mathworks). Enzyme-controlled DNA-translocation events were detected via a thresholding

algorithm. The open pore ionic current value is determined for the data, and an event is

called whenever the ionic current drops below 75% of the open state value. The event end

is called when the ionic current returns to greater than 94% of the open pore value. Events

failing certain basic criteria (duration longer than 1s, an average current less than 10% or

greater than 70% of the open pore ionic current) were automatically discarded. Remaining

events were classified by-eye based on their quality.

Small variations in temperature, salt concentration, and electode offsets day-to-day, pore-

to-pore, and read-to-read cause changes in both the overall magnitude of the observed ionic

currents (and conductances) (an “offset”) as well as the relative magnitudes of adjacent

states (a “scale”). We calibrate each read back to the 6-mer model prior to sequencing using

a scale and an offset calculated specifically for that read.

A.1.5 DNA Sequences and Constructs

Short DNA oligonucleotides were synthesized and purified using column purification meth-

ods at Stanford University Protein and Nucleic Acid. ΦX-174 DNA was obtained from New

England Biolabs. λ DNA was obtained from Promega. pET-28a was obtained from col-

laborators who used it as an expression vector for another DNA sequence not used in this

work.

All experiments were conducted with the DNA threaded through the pore 5’ first. Con-

structs for Φ29 DNAP experiments consisted of a template read strand, a blocking strand,

and a cholesterol primer strand, as shown in Fig A.1a. The phosphate at the 5’ end of

the read strand increases the capture rate by MspA. The cholesterol tag at the 5’ end of

the cholesterol primer strand anchors the DNA constructs into the bilayer, increasing the

local concentration near the pore and improving capture rate. Φ29 DNAP constructs were

annealed by mixing the read strand, blocker strand, and primer strand to a relative molar

concentration of 1:1:2, then heating to 95 ◦C for 5 minutes, cooling at 1 ◦C/s to 60 ◦C,

holding there for 2 minutes, then finally cooling to 4 ◦C at 1 ◦C/s.
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Figure A.1: DNA constructs for Φ29 and Hel308. (a) The basic DNA constructs for Φ29
experiments consist of 3 partially complementary strands. The template read strand (red)
is the sequence that we read in the experiment. Its 5’ terminal phosphate (P, arrowhead)
facilitates threading into MspA. A blocker strand (brown) forms a y-tail at the 5’ end of the
template read strand where Φ29 DNAP (purple) loads on. The cholesterol primer strand
(blue) enables a second read of the DNA by Φ29’s synthesis mode. The 5’ terminal cholesterol
on this strand up-concentrates the DNA in the bilayer to improve capture rate. (b) The
basic DNA constructs for Hel308 experiments consist of 2 partially complementary strands.
Again, the template read strand (red) has a 5’ terminal phosphate. The cholesterol blocker
strand (blue) has a 3’ terminal cholesterol. The template read strand has an 8 base 3’
overhang where Hel308 (orange) loads on.

Constructs for Hel308 experiments consisted of a template read strand and a cholesterol-

tagged blocking strand, as shown in Fig A.1b. Again, a 5’ phosphate on the read strand

facilitates capture by MspA. A 3’ cholesterol on the blocking strand up-concentrates the

DNA in the bilayer. Read and blocking strands were mixed at a 1.2:1 molar ratio, then

annealed using the same procedure as for the Φ29 DNAP constructs.

The preparation of long genomic DNA for building the variable-voltage signal-to-sequence

model is covered in appendix E.

A.1.6 Constant-Voltage Sequencing Experiments

Constant-voltage sequencing experiments were conducted using Hel308, in standard Hel308

buffer conditions at 37 ◦C. A constant 180 mV voltage was applied.
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A.1.7 Variable-Voltage Sequencing Experiments

Variable-voltage sequencing experiments were conducted using Hel308, in standard Hel308

buffer conditions at 38 ◦C. The voltage was applied as a 200 Hz, 100 mV peak-to-peack

symmetric triangle wave, offset to a mean voltage of 150 mV. The cycling frequency of 200

Hz gave an integer number of sampling points per cycle (250), as well as ensured that most

enzyme steps would last for multiple full voltage cycles (section A.4). The 100 to 200 mV

voltage range ensures that the DNA stays anchored in the pore (as the voltage is always

positive) and provides over a full nucleotide of stretch (appendix C.4), giving good overlap

between the conductance curves of sequential states.
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A.2 Using Hel308 as a Translocase

In our Hel308 experiments, Hel308 operates as a translocase rather than a helicase, moving

directionally (from 3’ to 5’) over a ssDNA track. Hel308 is a poor helicase in our oper-

ating conditions and does not readily unwind dsDNA. Translocase experiments proceed as

diagrammed in Fig A.2.
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Figure A.2: Hel308-controlled DNA translocation through MspA. (a) Hel308 (green) binds

on to the overhanging 3’ end of the template DNA strand (black) at the ssDNA-dsDNA

junction. Hel308 is an inefficient helicase in our experimental conditions and does not sub-

stantially unwind the dsDNA ahead of it. (b) The 5’ end of the template strand is captured

by the pore (gold). As the template strand is pulled through, the blocking strand (red) is

sheared off, as dsDNA is too large to fit through the pore’s constriction. (c) Once the block-

ing has been sheared off, the template strand is fully threaded through the pore, with the

attached Hel308 blocking complete translocation. At this point, Hel308 is able to operate as

a translocase rather than a helicase, and begins to walk towards the 5’ end of the DNA. As

Hel308 progresses along the DNA, the DNA is pulled out of the pore. This image is adapted

from [53].
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A.3 Hel308 Processivity

The read length in both our constant-voltage and variable-voltage sequencing experiments

is limited by the processivity of the Hel308 helicase enzyme we use to control DNA motion

through the pore. The enzyme’s processivity is the typical number of nucleotides it translo-

cates through the pore before it dissociates from the DNA, ending the event. Processivity

can in principle be a function of various experimental conditions, including temperature,

substrate and salt concentration, pH, and applied force (i.e. applied voltage). Hel308’s ac-

tivity is insensitive to force over the range of forces (voltages) we apply in our experiments,

so its stepping rate and processivity should not change with the variable applied voltage [53]

[55].

We observed Hel308’s processivity under our variable-voltage conditions (section A.1.7)

by looking at the read lengths obtained on our ΦX-174 construct. Specifically, we looked at

read lengths on the larger, 5042 bp fragment, as this fragment is long enough that nearly

all reads terminated due to the helicase unbinding from the DNA prior to reaching the end

of the strand. Based on alignments of the reads to the ΦX-174 reference, we investigated

50 reads of the long fragment, all starting at the same location in the genome (at the AvaII

cut site, appendix E.3.1). Hel308 shows little ability to unwind DNA in our experimental

conditions, so all reads began at the loading site and only progressed once the duplex strand

had been sheared away by the pore. The read survival fraction as a function of read length

was calculated as the number of reads reaching a given position in ΦX-174 over the total

number of reads. We found that the survival fraction f as a function of read length l was well

modeled by a single exponential function of the form f(l) = e
l
lp , where lp is the characteristic

processivity of the enzyme (Fig A.3). The single-exponential form of the survival fraction

indicates that Hel308 dissociation from the ssDNA track in our experiments is dominated by

a single rate-limiting step. From our data, we found a best fit processivity of lp = 945± 139

nt.
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Figure A.3: Hel308 processivity in variable-voltage sequencing conditions. The fraction of
reads (all starting from the same cut site in ΦX-174) reaching a given position in the genome
is plotted as block dots on a logarithmic y-scale. We see an exponential fall-off in read
survival, indicating a read-termination process dominated by a single off-rate. The red line

shows the best-fit single exponential model of the form f(l) = e
l
lp , with the best fit obtained

with lp = 945 nt.
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A.4 Hel308 Step Durations

The distribution of step durations for Hel308 in our sequencing experimental conditions

(section A.1.7) is shown in Fig A.4. We need 3 complete voltage cycles (15 ms) to accurately

estimate the covariance of the 3 principal components for a state (appendix C.3), otherwise

we must take a default value for the covariance for the state. Over 90% of states are long

enough to accurately estimate the covariance (blue). A small fraction (¡10%, red) are too

short and are assigned a default covariance value.

States shorter than a full voltage cycle (5 ms) will not be detected by the change-point

detection algorithm and ultimately manifest as skips in the final data. However, for these

conditions such short states should make up only a small minority of the total Hel308 states.

Long term, it will be desirable to use a faster enzyme (or experimental conditions in which

Hel308 steps faster) in to increase throughput and decrease the per-read time. To accomplish

this in variable-voltage setting, we will need to increase the variable-voltage cycle frequency.

The primary limitation to increasing the cycle frequency is that the capacitive current (ap-

pendix C.1) increases with increasing rate of change in the voltage. If the capacitive current

becomes too large, it could rail the amplifier (rail is ± 1 nA), resulting in a loss of signal.

This issue can be addressed in multiple ways. First, reducing bilayer capacitance is a

straightforward way of reducing the capacitive current. A commercial sequencing device will

need to be dramatically miniaturized compared to the experiments we run in our lab, and

will require an automated method of bilayer formation. These automatically-formed bilayers

can in principle be much smaller (lower capacitance) than the hand-painted bilayers used in

this work. Second, we have some room to reduce the range of the voltage sweep without

compromising the efficacy of the variable-voltage signal. The 100-200 mV swing currently

in use gives us more than enough state-to-state overlap to identify and correct enzyme

missteps. A smaller voltage range should still provide adequate overlap, while reducing the

rate of voltage change and thus the size of the capacitive current. Finally, on-line methods

can be used to compensate for the capacitive signal. The injection of an in-phase square
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Figure A.4: Hel308 step durations in variable-voltage sequencing conditions. Marked in red
are states too short to accurately estimate the covariance of the 3 principal components.
States of sufficient length for this estimation are marked in blue.

wave current into the system to counteract the square wave contribution of the capacitance

would allow us to take the variable-voltage method to much higher cycle frequencies.
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A.5 Sequencing Verification Experiment

We tested the relative performances of our constant-voltage and variable-voltage sequencing

methods by using both methods to sequence DNA from the pET-28a vector. The pET-28a

vector was chosen as it represented a readily available genomic DNA sequence and was not

involved in our 6-mer model construction, thus avoiding the risk of over-training artificially

boosting our sequencing numbers. Given Hel308’s limited processivity (section A.3), an

experiment in which all reads began from the same start point in pET-28a would be unlikely

to generate good coverage throughout the sequence and instead concentrate most reads on

the same ∼1000 base pairs nearest the start point. To get broad coverage throughout the

sequence, and to get reads of both the sense and antisense strands, we fragmented the pET-

28a sequence using a double restriction digest. Digestion gave us a variety of 100-1000 base

fragments for our sequencing experiments (table A.5), which were generated, then prepared

for Hel308 sequencing experiments as follows.

1. The pET-28a vector was digested using the NspI and Sau3aI restriction enzymes (New

England Biolabs). We used 3.5 µL of 10000 U
mL

NspI and 7 µL of 5000 U
mL

Sau3aI per

17.5 µg of vector DNA. Following digestion, fragments were cleaned on DNA Clean

and Concentrator column (Zymo Research).

2. Following digestion, we prepared 4 distinct adapter constructs for ligation. The four

constructs were

(a) Sau3aI threading adapter, composed of the Sau3aI threading strand and the

Sau3aI cholesterol blocker (table A.3)

(b) Sau3aI loading adapter, composed of the Sau3aI loading strand and the Sau3aI

loading blocker

(c) NspI threading adapter, composed of the NspI threading strand and the NspI

cholesterol blocker
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(d) NspI loading adapter, composed of the NspI loading strand and the NspI loading

blocker

We require four adapter constructs as each pET-28a fragment needs an threading

adapter to facilitate capture into the pore and a loading adapter to facilitate Hel308

loading onto the DNA. Each of the two cutsites needs its own set of loading and

threading adapters as the two restriction enzymes leave different sticky-end overhangs.

Adapters were prepared individually by mixing equimolar portions of the two con-

stituent oligos and annealing using standard annealing protocols (appendix E).

3. We ligated the several adapters to the pET-28a fragments by mixing the fragmented

DNA with the annealed adapter constructs in approximately equimolar ratios 1, then

incubating with T4 DNA ligase. Following ligation, the final products were purified

using another DNA Clean and Concentrator column.

There are a few important drawbacks to the above-described preparation procedure that

must be considered in estimating the overall yield and in conducting downstream analysis.

First, due to the palindromic nature of both the NspI and Sau3aI cutsites, we are not

guaranteed to correctly get one each of the loading and threading adapters ligated to each

fragment. Indeed, 25% of the total fragments will have the correct adapters for a sense

strand read, 25% will have the correct adapters for an antisense strand read, and 50% will

have either 2 loading adapters or 2 threading adapters and will be unlikely to produce reads.

Even with this 50% drop off in the effective yield of this preparation procedure, we were still

able to generate plenty of DNA to collect the data needed.

On this same note, the loading and threading adapters for each cutsite are themselves

self-complementary at their overhanging sticky ends. This can lead to the formation of so-

called adapter dimers, where two adapters ligate to each other. When a loading adapter

1The exact molarity of the pET-28a DNA is difficult to determine as it is not clear what fraction of which
fragments survived the clean-up step on the column.
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Table A.1: pET-28a fragments from double digest with NspI and Sau3aI. Only fragments
longer than 100 bp are shown, shorter fragments resulted in short sequencing reads that were
not used for the validation experiment.

ligates to a threading adapter, we create a DNA construct that can both load Hel308 and

thread into the pore, and so is likely to be read. We see a population of these dimers in

our experiments, and discard them from later analysis based on their characteristically short

length and recognizable pattern of states.

The final drawback also stems from the palindromic nature of the restriction cutsites. The

sticky-end overhangs left on the pET-28a fragments after digestion are self-complementary,

which can lead to chimera formation. Chimeras occur when different fragments from dis-

parate parts of the pET-28a reference sequence ligate together. We see a population of these

chimeras in our reads. There is nothing intrinsically wrong with the chimera reads, but de-

termining the base calling accuracy for these reads is more difficult. In these cases, we must

piece together the ground truth reference sequence by separately aligning the smaller frag-

ments composing the chimera to find which parts of the reference sequence have been stitched

together. The called sequence is then compared against this stitched-together ground truth
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sequence to evaluate the read accuracy.
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A.6 Random Sequencing Accuracy

We empirically determined the random accuracy baseline for our constant-voltage and variable-

voltage sequencing reads by aligning random sequences of the same length as the called reads

against the reference pET-28a genome. The pET-28a reference genome is 5204 bp, so the

sense and antisense sequences together comprise a 10408 base reference. In general, the ran-

dom accuracy of a local-to-global alignment, in which a shorter called sequence is aligned to

the best-matching location of a longer reference sequence is a function of the called length

and the reference length. Additionally, genomic DNA is highly non-random, so the distri-

bution of accuracies of random called sequences against a genomic reference sequence may

differ from the distribution obtained from alignment against a random reference sequence of

the same length. Fig A.5 shows the random accuracy dependence on called sequence length

for comparisons against the pET-28a reference sequence. Several random sequences were

generated for a variety of lengths from 50 to 10408 bases and aligned against the sense plus

antisense pET-28a sequence. We see that shorter reads result in higher random accuracies

than long reads, with random accuracy falling from 64.5% for the 50 base reads to 54.3% to

10408 base reads (full length reads).
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Figure A.5: Random sequencing accuracy as a function of called sequence length. The mean
random sequencing accuracy generated by aligning random sequences of various lengths to
the pET-28a reference sequence are shown (black markers). Error bars show one standard
deviation around the mean. Gray markers show the individual trial results for each read
length.
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A.7 DNA Sequences

Tables A.2 and A.3 contain a list of the short custom DNA sequences used in our sequencing

and DNA stretching experiments. In addition to these short sequences, we used the λ phage

(Promega) and ΦX-174 genomes (New England Biolabs) as well as the pET-28a vector (from

collaborators).

Table A.2: Table of short DNA sequences used for constructing the variable-voltage 6-mer

model.
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Table A.3: Table of short DNA sequences used for measuring DNA stretching and for vali-

dating variable-voltage sequencing performance.
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A.8 Experimental Statistics

Statistics for the variable-voltage and constant-voltage experiments conducted to generate

the 6-mer model, validate the performance of variable-voltage sequencing, and measure the

stretching response of DNA in MspA in response to voltage are summarized in table A.4.

Table A.4: Experimental statistics. The number of pores run and the total number of

enzyme-controlled DNA translocation events collected are summarized for the experiments

underpinning the development and demonstration of variable-voltage sequencing.

A.9 Work Fuel

Both the writing of this dissertation and the data analysis presented within were fueled by

copious amounts of tea. A summary of the tea consumed to keep this work moving forward

can be found in table A.5.
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Flavor Count Flavor Count

Lemon Lift 119 Orange and Spice 9
Darjeeling 51 Earl Grey 8

Constant Comment 47 Chai Green 5
China Black 44 English Breakfast (Ceylon) 5
China Green 38 Irish Breakfast 5

Green (Twinnings) 36 Pomegranate White 5
Lady Grey 35 Chamomile 4

Super Irish Breakfast 20 Mint Medley 2
Ginger Peach Green 18 Chai 1

Herbal 18 China Green Tips 1
Vanilla Chai 17 Ginger Green 1

Green (Private Selection) 16 Green (Stash) 1
French Vanilla 15 Lemon Black 1
Jasmine Green 12 Passion Fruit 1

English Breakfast (Twinnings) 10 Pomegranate Pizzazz 1
Matcha Green 9 Zen 1

– – Total 556

Table A.5: Summary of tea used to generate this dissertation. We found Lemon Lift to be
most effective, but variety is indispensable.
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Appendix B

CHANGE POINT DETECTION ALGORITHM

B.1 Basic Description

In both constant-voltage and variable-voltage sequencing, our first step is to partition the

raw time-series ionic current data into segments corresponding to enzyme steps. Partition-

ing simplifies the data stream passed to the hidden Markov model by turning the many

noisy measurements making up an enzyme step observation into a series of a few low-noise

parameters describing each step. In the case of constant-voltage sequencing, each enzyme

step is described by a mean ionic current and an associated variance. For variable-voltage

sequencing, we use the coefficients of the top three principal components (appendix C.3),

along with their associated covariance.

The data is partitioned into enzyme steps using a change point detection algorithm (al-

gorithm 4). The same fundamental algorithm works for both constant-voltage and variable-

voltage sequencing data. Simply, the change point algorithm chooses between two competing

hypotheses. Given a segment of data {xi}, is the data best modeled by a single model (pa-

rameterized as θT ) or by two models (θL, θR) each separately describing the data to the left

and right of some transition point t? If the single-model hypothesis proves better, no change

point is present in the segment. If the two-model hypothesis is better, a change point is

called at the best transition point.

The basic considerations in this type of algorithm are how to model the data, and how

to prevent over-calling transitions. In the case of constant-voltage data, we use a mean ionic

current and a variance to describe the individual states. We model the variable-voltage data

by the five largest principal components of the periodic functions that represent the raw data

of each enzyme state (Fig B.1). These principal components were determined by choosing
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change points by-eye, then averaging each enzyme state into a single 250-sample period of

the waveform 1. We then treated each state as a separate measurement for the purposes of

principal component analysis. The principal components provide a descriptive, concise basis

with which we can describe the variable-voltage time series data.

The over-calling issue is a consequence of the fact that a model with more parameters

can always describe a data set better than a model with fewer parameters, even if it is not

actually more predictive. Consequently, the two-model hypothesis will always fit the data

better–the question is rather is it sufficiently better to justify the addition of more parameters

into our description of the data? We correct this bias by penalizing the addition of extra

parameters, using the results of Lamont and Wiggins [101] to determine the appropriate

penalty.

B.2 Mathematical Description

The following is a full mathematical description of the change point detection procedure.

The change point problem is formulated mathematically as follows: given a time series of

d-dimensional data {x1, x2, ... , xN}, x ∈ Rk, choose a model consisting of some number of

change points {ta, tb, ...}, and a different set of parameters {θa, θb, ...} describing the data

between each change point. Our change point detection algorithm (algorithm 4) finds a

close-to-optimal partitioning of time series data using this model.

We assume each state is a function f of time t and parameters θ with normally distributed

noise σ. Under these assumptions, the probability density of obtaining a measurement x(t)

at a time t given a choice of parameters θ for that time is

1We actually do not model the entire 250-point cycle period but instead discard the first and last 20
points in each cycle period for the purposes of change point detection. Thus, the principal components
model a 210-point period. This is done to avoid anomalous capacitive behavior commonly present at the
beginning and end of cycles (around the change from increasing to decreasing voltage) from confusing the
change point detection procedure. These points are later re-incorporated after change point detection for
down-stream data reduction and analysis.
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Algorithm 4 Change point detection
1: Input:
d-dimensional data {xi}, i ∈ {1 : N}
Transition threshold T

2: Initialize: {t} ← [] . Initialize an empty list of transition points
3: function Partition({xi}, T , {t})
4: Score: assign a score Si for the placement of a transition at each point i ∈ {1 : N}
5: Sbest ← max({Si})
6: tbest ← i such that Si = Sbest
7: if Sbest > T ) then . The best transition point is good enough to call a transition
8: {t}[end]← tbest . Add the found transition to the growing list
9: {t} ← Partition({xi} i ∈ {1 : tbest}, T , {t}) . Recursively find partitions in

the data to the left of the found transition point
10: {t} ← Partition({xi} i ∈ {tbest : N}, T , {t}) . Recursively find partitions in

the data to the right of the found transition point
11: else
12: Output: {t}
13: end if
14: end function

Figure B.1: Principal components for change point detection. The five principal component
vectors used to model the variable-voltage time series date are shown. Linear combinations
of these five vectors can describe the observed data.
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p (x(t), t | θ) =
1√

2πσ2
e−

(f(t;θ)−x(t))2

2σ2

For a number of measurements indexed by time t = 1, 2, 3, ..., the probability density is

the product of the probabilities of each measurement:

p (x | θ) =
N∏
t=1

1√
2πσ2

e−
(f(θ)t−xt)

2

2σ2

We convert this probability into a log-likelihood L(θ |x) = p(x | θ) to simplify calculations,

giving

logL = −1

2

N∑
t=1

log 2πσ2 +
(f(θ)t − xt)2

σ2

For change point detection, we are interested in the relative likelihood between using two

different sets of parameters θL and θR to model the data to the left and right of a possible

change point, versus using one set of parameters θT to describe the total region in question.

Defining the first time index of the region as L, the final index as R, and the number of points

to the left, the right and in the whole region as NL, NR, and NT = R − L + 1 respectively,

the relative log-likelihood is

logL = −1

2

[
L+NL−1∑
t=L

log 2πσ2
L +

(f(θL)t − xt)2

σ2
L

+

NT∑
t=L+NL

log 2πσ2
R +

(f(θR)t − xt)2

σ2
R

−
L+NT−1∑
t=L

log 2πσ2
T +

(f(θT )t − xt)2

σ2
T

]

If our maximum likelihood estimate for θ given the data is θ̂, the residual variance is

σ̂2 = 1
N

∑
t(f(θ̂)t − xt)

2. We find the maximum log-likelihood log L̂ by plugging in these

estimators:
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log L̂ = −1

2

[
NL log 2πσ̂2

L +NL
σ̂L

2

σ̂2
L

+NR log 2πσ̂2
R +NR

σ̂2
R

σ̂2
R

−NT log 2πσ̂2
T −NT

σ̂2
T

σ̂2
T

]

= −1

2

[
NR log σ̂2

R +NL log σ̂2
L −NT log σ̂2

T

]
This is the correct expression for the log-likelihood of a fit, giving the most descriptive

model of the data. However, we are not interested in the most descriptive but rather the most

predictive model. To find this, we need to correct for the tendency to over-fit. We can always

fit better by partitioning data and supplying more parameters, but we lose information by

doing so. This leads to an over-fitting bias. To correct for this, we use the results of LaMont

and Wiggins [101] to subtract this bias. In general, the bias is a function of the number of

points NT and the dimensionality of the data being partitioned d, and is calculated through

Monte Carlo simulations and either fitted or used as a lookup table. The test statistic is

CPIC = − log L̂+ p(N, d) =
NR

2
log σ̂2

R +
NL

2
log σ̂2

L −
NT

2
log σ̂2

T + pd(NT )

where pd(NT ) is the penalty for adding parameters in modeling NT d-dimensional data

points. The natural choice is to call a level transition if CPICp < 0. A simple way to tune

the sensitivity of this score is to apply a multiplier λ > 0 to pd, which can be made higher to

increase the penalty and find fewer levels. This is done to compensate for a model that does

not exactly describe the data; we choose λ = 4 because it provides empirically good results.

So the final score used is

CPIC(λ) =
NR

2
log σ̂2

R +
NL

2
log σ̂2

L −
NT

2
log σ̂2

T + λpd(NT )

To calculate the σ̂’s, we need to determine the maximum likelihood estimates of the

model parameters θ̂. Obtaining these can in general be slow and difficult, possibly even

requiring nonlinear optimization not guaranteed to converge. However, in certain situations
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it is easy, and we can even take advantage of some tricks to avoid redundant calculation.

The simplest example is the case of constant levels about a single mean. The maximum

likelihood estimate of the mean in bounds [L,R] is

µ̂ =
1

R− L+ 1

R∑
t=L

xt

We can avoid continually re-adding the same points together by instead defining and

pre-calculating the cumulate Xt =
∑t

s=1 xs, in which case our expression for the mean is

simply

µ̂ =
XR −XL

R− L+ 1
.

This difference is much more expedient to calculate than the mean, and the calculation

of its value for many possible transition points may be vectorized. We can use a similar

technique to calculate the variance,

σ̂2 =
1

R− L+ 1

R∑
t=L

(xt − µ̂)2 =

[
1

R− L+ 1

R∑
t=L

x2
t

]
− µ̂2

Again defining and pre-calculating the cumulate sum

X2
t =

t∑
s=1

x2
s,

we quickly calculate the MLE variance as

σ̂2 =
X2
R −X2

L

R− L+ 1
− µ̂2.

In general, the function f(θ) may depend on time. One case is if we can write f(θ)t as a

sum of p basis functions bit with amplitudes θi,

f(θ)t =

p∑
i=1

θibit.
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Assuming again normally distributed random errors, we find maximum likelihood esti-

mators

θ̂ = arg min
θ

R∑
t=L

(
xt −

p∑
i=1

θibit

)2

To this end, we set the derivative of the sum squared error to zero,

2
R∑
t=L

(
xt −

p∑
i=1

θ̂ibit

)
bjt = 0

R∑
t=L

xtbjt =

p∑
i=1

θ̂i

R∑
t=L

bitbjt

Both of these sums over time are again precalculable from cumulates, which we define as

Bijt =
t∑

s=1

bitbjt (note: Bijt is symmetric in i and j.)

cit =
t∑

s=1

xtbit

Then, in vector notation, interpreting ct as the vector with elements (c1t, c2t, ... , cpt), θ

as (θ1, θ2, ... , θp), and Bt as the matrix with Bijt as the element at row i and column j, the

expression for θ̂ becomes

[cR − cL]T = θ̂
T

[BR −BL]T

[cR − cL] = [BR −BL] θ̂

θ̂ = [BR −BL]−1 [cR − cL]

We can now calculate σ on that domain to be used in the CPIC calculation. The sum of
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squared errors is

σ̂2 =
1

R− L+ 1

R∑
t=L

[
xt −

p∑
i=1

θ̂ibit

]2

.

Expanding the squared term,

σ̂2 =
1

R− L+ 1

R∑
t=L

[
x2
t − 2

p∑
i=1

θ̂ixtbit +

p∑
i,j=1

θ̂ibitbjtθ̂j

]
.

Plugging in our expression for θ̂i,

σ̂2 =
1

R− L+ 1

[
R∑
t=L

x2
t − 2

p∑
i,j=1

[BR −BL]−1
ij [cR − cL]j

R∑
t=L

xtbit

+

p∑
i,j,k,l=1

[BR −BL]−1
ik [cR − cL]k

(
R∑
t=L

bitbjt

)
[BR −BL]−1

jl [cR − cL]l

]
.

Defining one more cumulate X2
t =

∑t
s=1 x

2
t and plugging in this as well as other cumulate

expressions,

σ̂2 =
1

R− L+ 1

[
X2
R −X2

L − 2

p∑
i,j=1

[BR −BL]−1
ij [cR − cL]j [cR − cL]i

+

p∑
i,j,k,l=1

[BR −BL]−1
ik [cR − cL]k [BR −BL]ij [BR −BL]−1

jl [cR − cL]l

]
.

σ̂2 =
1

R− L+ 1

[
X2
R −X2

L − 2

p∑
i,j=1

[BR −BL]−1
ij [cR − cL]j [cR − cL]i

+

p∑
i,j=1

[BR −BL]−1
ik [cR − cL]j [cR − cL]i

]
.
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σ̂2 =
1

R− L+ 1

[
X2
R −X2

L −
p∑

i,j=1

[cR − cL]i [BR −BL]−1
ij [cR − cL]j

]

Or, in vector notation,

σ̂2 =
1

R− L+ 1

[
X2
R −X2

L − [cR − cL] [BR −BL]−1 [cR − cL]

]
At every possible division point we must invert a unique matrix, but these matrices are

small, and with a reasonably small number of basis functions applying this algorithm is not

too slow. For the variable-voltage data, we used the five largest principal components of the

periodic ionic current signal, as described above.
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Appendix C

VARIABLE VOLTAGE DATA REDUCTION

C.1 Capacitance Compensation

The bilayer separating the cis and trans wells acts as a capacitor. When operating the

nanopore sequencer at constant voltage, the capacitor’s presence in the circuit is unimpor-

tant. However, when operating using a time-varying voltage, the capacitor introduces an

additional charging and discharging ionic current Icap which must be removed from the sig-

nal Isig we wish to observe. Thus, rather than directly reading out the sequence-dependent

ionic current signal, the observed ionic current Iobs takes the form Iobs = Isig + Icap

Icap depends on both the size of the capacitor formed by the bilayer (a constant value

over the course of the experiment) and the size of the resistor formed by the pore and the

translocating DNA (which varies as a function of the sequence present within the pore).

Because the resistance is different at each ionic current state, capacitance compensation is

conducted separately for each ionic current state.

As Icap is proportional to the rate of change of the voltage dV
dt

, our triangle wave applied

voltage (section A.1.7) causes an in-phase square wave capacitive current, plus decaying

exponential contributions around the ill-defined regions of dV
dt

when the voltage transitions

from up-slope to down-slope and back. The goal of our capacitance compensation procedure

is to infer the Icap from the asymmetry between the current values during the up-slope and

down-slop voltage ramps, then subtract out this inferred signal to reveal Isig.

The procedure is as follows.

1. The overall phase of the signal is calculated from the applied voltage signal for the

entire read. Knowing the overall phase, along with the number of data points collected

per voltage cycle (50 kHz sampling rate, with the voltage cycling at 200 Hz gives 250
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points per cycle) allows us to assign an identification index between 1 and 250 to each

point in the ionic current trace I(t) marking its phase.

2. For each ionic current state, all data points in the ionic current trace I(t) are grouped

by their previously determined identification index, thus binning together all data

points collected at the same location in the voltage sweep. For each ionic current state,

the ionic current trace I(t) is divided into “up-slope” and “down-slope” based on the

identification index previously determined (Fig C.1a,b).

3. For both the up-slope and down-slope data, we group and average all data points

with the same identification index, thus finding the average ionic current value at

each location in the voltage cycle. This yields the average current-voltage (I − V )

characteristic for both up and down: Iup(V ) and Idown(V ) (Fig C.1c).

4. Taking the difference between the two I − V curves, we get the asymmetry between

the sweeps, H(V ) = Idown(V )− Iup(V ) (Fig C.1d).

5. To find the magnitude of the square wave component in the capacitive signal, which

appears as a systematic offset m between the up and down I − V curves, we fit a

parabola to the residual, H(V ), over the second and third quartiles in the voltage

(125 to 175 mV ). The x-coordinate of the parabola’s vertex is constrained to occur

at the voltage midpoint (150 mV ), and the y-coordinate is taken as the systematic

offset m. Low and high voltages are omitted in order to isolate the offset, without

interference from the sharp spikes appearing near the voltage turnaround points. A

parabolic fit is used in lieu of a mean, as H(V ) exhibits some curvature even over the

middle voltage quartiles due to the decaying exponential current spikes generated at

the voltage turnaround points.

6. Capacitive correction functions for up and down (Corrup(V ) and Corrdown(V )) are

generated from the left and right halves of the residual function H(V ) (Fig C.1e, f).
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The residual function is split around the midpoint voltage of the sweep Vmid, and the

correction functions are given by:

For V < Vmid,

Corrup(V ) = H(V )− m

2

corrdown(V ) = −m
2

And for V > Vmid

Corrup(V ) =
m

2

Corrdown(V ) =
m

2
−H(V )

Splitting the correction in this way attributes the spike at low voltage to the up-sweep

and the spike at high voltage to the down-sweep. The overall offset m is attributed

equally to both sweep directions. This assignment is justified, as the capacitive effect

of an instantaneous change in V (t) falls off exponentially, with time constant RC. As

the low voltage turnaround immediately precedes the up-slope region, the effect of this

turnaround is strong in the up-slope, but negligible by the down slope. The opposite

is true for the high voltage turnaround. The overall offset is the manifestation of the

square wave current generated by the constant dV
dt

throughout the rest of the triangle

wave, and so appears equally in both up-slope and down-slope curves.

7. Applying the up and down correction functions to their respective I − V curves gives

the corrected curves Iccup and Iccdown:

Iccup = Iup(V ) + Corrup(V )

Iccdown = Idown(V ) + Corrdown(V )

The corrected curves show no residual hysteresis, and the spikes around the turnarounds

have been eliminated (Fig C.1g).
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8. Lastly, the correction is applied to all I(t), at each point according to the identification

index previously determined. This yields the capacitance compensated I(t) trace that

will be used in all further analysis (Fig C.1h).
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Figure C.1: Capacitance compensation. (a) Voltage time series for a single variable-voltage
ion current state. Points at which the voltage is increasing are marked red, those at which
the voltage is decreasing are marked blue. Dashed green lines mark the beginning and end
of the ionic current state. (b) Raw ionic current time series for the single ionic current state
in (a). Again, red points mark where the voltage is increasing, blue mark where the voltage
is decreasing. Green dashed lines mark the beginning and end of the ionic current state.
(c) Raw ionic current vs. voltage curve for the above ionic current state. Individual cycles
have been averaged together. Red shows the average up-slope curve, blue the average down-
slope curve. (d) Residual function H(V ) for the above ionic current state. Black shows the
residual as a function of voltage. Green dashed lines mark the first and third quartiles in the
voltage over which the quadratic fit is calculated. Red shows the quadratic fit to these data.
The blue asterisk marks the calculated vertex. (e, f) Calculated correction functions to be
added in to the up-slope (e) and down-slope (f) I − V curves. (g) Corrected up-slope (red)
and down-slope (blue) I−V curves. Dashed lines are used as both curves lie directly on top
of one another after the capacitance compensation has removed all hysteresis. (h) Corrected
current time series for the above ionic current state. Up- and down-slopes are marked in red
and blue; dashed green lines mark the beginning and end of the ionic current state.

C.2 Conductance Normalization

Following capacitance compensation (section C.1), the response to the changing voltage in

the variable-voltage signal retains a nuisance component in addition to the DNAposition-

dependent portion of the signal (which is the signal we are ultimately interested in for

sequencing). This complicating component, dominated by the intrinsically non-ohmic char-

acter of the pore’s conductance when blockaded by a charged molecule, is mostly additive

with the DNAdependent portion of the signal, but is not itself affected by DNA position.

We need to remove this portion of the signal in order to arrive at the purely DNAposition-

dependent conductance signal that changes smoothly as a function of DNA position. We

refer to the process of removing the non-position-dependent portion of the conductance as

“normalization” and refer to the final smooth conductance profile as the “normalized” con-

ductance.
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To find the normalized conductance curve /gi(V ) of a state i, we take an average of the

conductance at each voltage gj(V ) over each state in a read (j ∈ 1 : N where N is the number

of states), and subtract this mean conductance from the measured conductance from each

state:

/gi(V ) = gi(V )− 1

N

N∑
j=1

gj(V ) (C.1)

In effect, this process estimates the position-independent contribution to each state’s

conductance curve as the portion of the curve found on average in all of the states, then

removes this shared component.

Following this simple normalization, we require a further correction to fully realize the

continuous conductance profile. We observe a “fraying” of the segments in the continuous

curve (Fig C.2). That is, at high voltage, states with normalized conductances well above

the mean tend to exaggerated and take higher values than what is necessary for the curve

to be continuous. Likewise, states with conductances below the mean take values lower than

would be expected for the continuous curve. We attribute this effect to the stretching of the

DNA at high voltages. The additional elongation of the DNA at higher voltage means that

fewer bases on average will contribute to the instantaneous conductance through the pore,

as fewer bases spend time near the constriction. So, the DNA-dependent signal is dominated

further by a few bases at high voltage than low voltage. This effect serves to exaggerate the

peaks and troughs in the normalized signal.

To correct for this effect, we note that there should be no correlation between the applied

voltage and the DNA-dependent conductance. Therefore, we correct to the first order by

fitting a linear model to each reduced conductance curve, obtaining from each /gi a slope mi.

These slopes are then linearly fit to the voltage means of the normalized conductances,

〈/gi〉 =
1

NV

NV∑
j=1

/gi(Vj) (C.2)

where NV is the number of voltages measured in each state (= 101). This fit with slope
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Figure C.2: Fraying correction. The linear fray correction accounts for the exaggerated effects
of a few bases on the conductance at high voltage. The initial mean-only normalization (red)
demonstrates systematic discontinuities around peaks (not shown) and troughs (shown here)
where the high-voltage points (left on each segment) are too high (peaks) or low (troughs).
The dashed green line shows the overall average conductance (for the whole read, of which
only a short section is shown). The fray correction accounts for this and generates a more-
continuous conductance profile (blue).

α represents the magnitude of the linear voltage response as a function of conductance.

Subtracting this bias, we obtain the final normalized conductance which represents the DNA-

dependent signal that will ultimately be used:

/gi(V ) = gi(V )− 1

N

N∑
j=1

gj(V )− αV
(
gi(V )− 1

N

N∑
j=1

gj(V )

)
(C.3)
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C.3 Feature Extraction

Following change point detection (appendix B) and capacitance compensation (section C.1),

the sequencing data is in the form of a series of time-ordered ionic current-vs-voltage (I−V )

curves. These I − V curves are converted to conductance-vs-voltage (G − V ) curves by

dividing out the voltage from the ionic current. Going forward from here, variable-voltage

sequencing analysis is conducted using conductance in lieu of voltage.

Each G− V curve characterizes one enzyme step along the DNA, as determined during

change point detection. Each G−V curve is made up of 101 conductance measurements taken

at voltages between 110 and 190 mV, represented by a 101-dimensional feature (column)

vector, g. The sampled voltage points are chosen so that the shift in DNA registration

between each consecutive pair of points is uniform–we sample the conductance uniformly

over DNA position, but non-uniformly over voltage. Uniform sampling over position ensures

maximum independence between the sampled conductances.

The 101 elements (features) in g are largely not independent. Many of the features

provide redundant information and serve only to introduce noise into our characterization

of the states. We used principal component analysis (PCA) to reduce the dimensionality of

the feature vectors describing each state. PCA revealed that the top 3 principal components

explain nearly 98% of the variance between G − V curves. In light of this, we reduce the

dimensionality of the feature vectors from 101 to 3 by replacing the 101 sampled conductances

with the coefficients of the top 3 principal components (Fig C.3).

We calculate the reduced 3-dimensional feature vector pi for state i as

pi = [π1;π2;π3]T ∗ gi (C.4)

where πj is the jth principal component (column) vector. This dimensional reduction allows

us to satisfactorily characterize each state while dramatically de-noising our description (Fig

SC.4).
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Additionally, we are much better able to estimate the covariance amongst the features

for these smaller feature vectors. Each full voltage cycle j (200 Hz) completed during a

given state i provides two measurements gji of the state’s conductance feature vector gi, one

from the voltage up-swing, one from the voltage down-swing. Similarly, we can treat the 3

principal component coefficients for each half cycle pji as distinct measurements of the overall

principal component feature vector pi. Given t half-cycle measurements, we can estimate

the covariance in the state’s conductance (Σg
i ) and principal component features (Σp

i ) as

Σg
i = E

j∈1:t
[(gji − E

j∈1:t
[gji ])(g

j
i − E

j∈1:t
[gji ])

T ] (C.5)

and

Σp
i = E

j∈1:t
[(pji − E

j∈1:t
[pji ])(p

j
i − E

j∈1:t
[pji ])

T ] (C.6)

The estimators Σg,p
i are only well defined if we have at least as many measurements as

there are independent entries elements in the covariance matrix. As covariance matrices

are symmetric, Σg,p
i has d

2
∗ (d − 1) independent entries, where d is the dimensionality of

the associated g or p feature vector. So, in order to get a good estimate of the covariance

of the conductance features gi for a given state, we require 5050 half-cycle measurements,

representing over 12.5 seconds spent in that state–far longer than the typical state duration.

Conversely, we can estimate the covariance of the principal component features pi from just

6 half-cycle measurements, or 15 ms of data. Using the principal component dimensional

reduction, we are thus able to accurately estimate the feature covariance for nearly all (>

90%) of the observed states (appendix A.4). For the < 10% of states for which the covariance

is not well estimated, we fill in the covariance with the 90th percentile largest (by value of

the determinant) well-estimated covariance.
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Figure C.3: Principal component vectors for feature extraction. (a), (b), and (c) show the
first, second, and third principal component vectors for the variable voltage data, respectively.
Linear combinations of these three vectors can describe all observed conductance vs. DNA
position states. The three vectors roughly represent an offset (a), slope (b), and curvature
(c) and thus primarily describe the states as quadratic curves.

Figure C.4: Principal component description of conductance states. Linear combinations of
the 3 principal components (black curves) satisfactorily describe the 101-dimensional con-
ductance states (colored curves). The description preserves the state shape while discarding
parameters describing only noise.
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C.4 Elongation of DNA in MspA

We hypothesize that the observed voltage-dependent shift in DNA position relative to MspA

is due primarily to the elongation of the section of ssDNA between the enzyme and the pore’s

constriction in response to the force generated by the applied voltage. To confirm that DNA

stretching is the main effect responsible for the position shift and that other effects (i.e.

Brownian motion of the enzyme above MspA or deformation within the enzyme or pore

under force) are less important, we compare our shift vs. voltage data to the extensible

Freely Jointed Chain (ex-FJC) model of ssDNA elongation in response to force. The ex-

FJC is an experimentally validated model [71] of ssDNA’s elastic response to applied force

which predicts the average end-to-end distance of the DNA (x) as a function of the force (F )

applied to one end as

x = Lc(coth(
Fb

kBT
)− kBT

Fb
)(1 +

F

S
) (C.7)

where Lc is the DNA contour length, kB is the Boltzmann constant, T is the temperature,

b is the Kuhn length of ssDNA, and S is the stretching modulus of ssDNA.

In the high force regime in which we operate our variable-voltage experiments Fb >>

kBT , so the coth term can be well-approximated as identically equal to 1. With this approx-

imation, the force-extension relation simplifies to

x = Lc(1−
kBT

Fb
)(1 +

F

S
) (C.8)

The Kuhn length of ssDNA is known to depend upon salt concentration. From Bosco et

al. [73], we expect a Kuhn length of around 1.40 nm for the 400 mM KCl conditions in our

variable-voltage experiments (section A.1.7). We take a reasonable value of the stretching

modulus S to be 800 pN [73].

Following the analysis in Derrington et al. 2015 [53], we observe that in our system the

end-to-end extension x is fixed as the distance between MspA’s constriction and the point
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where the DNA is anchored within the enzyme. With x fixed, it is the contour length Lc

that changes with applied force. Assuming that the force on the DNA is proportional to the

applied voltage as F = αV (α some proportionality constant) gives

x = Lc(1−
kBT

αV b
)(1 +

αV

S
) (C.9)

Changing the applied voltage from V to βV will change the contour length of the DNA

within the pore from Lc to ωLc:

x = ωLc(1−
kBT

βαV b
)(1 +

βαV

S
) (C.10)

Here, the elongation ratio ω is the ratio between the contour length of DNA in the pore

at the two voltages V and βV . Solving equations C.9 and C.10 for ω gives us a model

predicting the elongation ratio ω as a function of the voltage ratio β as

ωmodel = β[
(bαV − kBT )(S + αV )

(bβαV − kBT )(S + βαV )
] (C.11)

We compare this ωmodel to the measured elongation ratio results (ωmeas) as a function of

voltage. The measured elongation ratio is calculated from the position shift data as

ωmeas(β) =
Nref + δ(β)

Nref

(C.12)

where δ is the measured position shift from 180 mV (Fig C.5) and Nref is the number of

nucleotides between the last hold point within the enzyme and MspA’s constriction at the

reference voltage of 180 mV. Position shift is calculated as described in section C.5.

From Bhattacharya et al.[102], we estimate Nref = 12 nt. Fitting equation C.11 to our

data shows that a single parameter fit with α = 1.32± 0.10 e−

nm
describes the data well (Fig

C.5). Uncertainties here are based on uncertainties in the DNA shift at different voltages

and an assumed 0.5 nt uncertainty in Nref . As the position shift can be well modeled by a
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reasonable single parameter model of DNA elongation, we are confident attributing the shift

observations to this effect.

The fitted α parameter corresponds to a force of ∼38 pN at 180 mV. This force estimate

has larger uncertainties than the uncertainty in α as the estimate is critically dependent on

the choices of ex-FJC parameters and ignores secondary effects contributing to the stretching.

Potentially relevant secondary effects not accounted for by the ex-FJC model could include

effects from the confinement of the ssDNA within the pore’s vestibule, voltage dependence fo

the position of the enzyme relative to MspA, and voltage-induced deformation of the enzyme

or the pore.
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Figure C.5: DNA stretching in MspA. The DNA position shift data is plotted here (black
points) as the shift to the position at 180 mV as a function of applied voltage. Error bars
show standard error in the position shift measurement. Errors are correlated as subsequent
shift measurements are calculated based on the previous shift value (e.g. shift at 140 mV is
based on shift at 150 mV). An ex-FJC model is fit to the data with one free parameter α:
the effective charge per length on the DNA. The red curve shows the best fit, resulting from
α = 1.32± 0.10 e−

nm
.
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C.5 Position Shift Calculation

During the voltage-to-position shift calculation, we calculate the position shift between the

voltages V1 and V2 by finding the shift that best places the conductance profile measurements

at both voltages along a single spline. The shift yielding the best single spline placement is

calculated as follows.

After first normalizing the conductances (section C.2), we have the conductance profiles

for each of the two voltages, G1 and G2. We then calculate cubic spline interpolations (spG1

and spG2) to both of the transformed current profiles. The two splines are shifted left and

right relative to each other in increments of 1
1000

th
nt. For each shift position φ, we calculate

a match scoreM by taking the error-weighted sum-square difference between the two splines

for the given shift:

M(φ) =

Npts∑
i=1

(spG
(i)
1 − spG

(i+φ)
2 )2

2(σ2

spG
(i)
1

+ σ2

spG
(i+φ)
2

)
(C.13)

The shift φ0 giving the best (smallest) match score gives us the shift that makes the two

splines most similar. This φ0 is taken as the position shift between V1 and V2.

The match score at a given shift shiftM(φ) is interpretable as the negative log likelihood

(up to a constant additive factor) of both spline curves being statistically identical. Thus,

the minimum match score corresponds to the highest likelihood of the two curves matching.

The uncertainty δφ was determined by a Monte Carlo analysis of 1200 random perturbations

of the data, with δφ taken as the standard deviation of the φ measurements at each voltage.
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Appendix D

PRE-SEQUENCING STATE FILTERING

D.1 Flicker Filter

In Hel308-controlled DNA translocation data, we observe short-lived states of a particular

character which we refer to as “flickers”. These states are milliseconds or less in duration,

always have a lower ionic current than the state they start from, and always return to the

state they started in. These flicker states cannot be mapped to any predicted ionic current

state when reads are compared against the predicted signal for the known DNA sequence,

and are thus not informative in decoding the DNA sequence. We remove these flickers prior

to any data processing (including change point detection) as their presence decreases the

performance and accuracy of downstream.

In variable-voltage data, flickers are easily identified and removed by the removal filter

(section D.2.1) as their conductance curves look starkly different from normal data. To

remove these transients from the constant-voltage data, we search for outlying low states of

short duration. We score every individual ionic current measurement xn in a read with a

one-sample t-test against the data surrounding it:

tn =
xn − µ[n−k,n+k]

σ[n−k,n+k]

where

µ[n−k,n+k] =
1

2k

[( n+k∑
m=n−k

xm

)
− xn

]
and

σ2
[n−k,n+k] =

1

2k

[( n+k∑
m=n−k

x2
m

)
− x2

n

]
− µ2

[n−k,n+k]
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Figure D.1: Example of flicker states. The raw ionic current trace (downsampled to 5 kHz)
for a Hel308-controlled DNA translocation event is shown in red, with the states found by
the change point detection algorithm overlaid in black. The arrows identify several flickers–
transient decreases in the ionic current that are not cannot be mapped to any sequence state.
This image is adapted from [55].

are the mean and variance of the data k points to the left and right of the point being scored,

not including the point itself. We discard any points |tn| > e, where e is a threshold chosen

to specify the desired aggressiveness of the filter. This procedure is iterated with a fixed

threshold e and window k until no more points are removed, then repeated a second time

with a larger window k. The the constant-voltage sequencing data in this work, we use e = 3

for both iterations and k = 2 for the first iteration and k = 5 for the second. Filtering is

done on the 5 kHz time series data.

D.2 Variable-Voltage State Filtering

One of the primary advantages of the variable-voltage method is that it allows us to determine

the correct ordering of the observed states prior to sequencing. We determine the best

ordering of observed states via a three stage “state filtering” process prior to sequencing. The

three stages are termed the removal filter (section D.2.1), the recombination filter (section

D.2.2), and the reorder filter (section D.2.3). Each stage of state filtering aims to eliminate
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a specific error mode common to the data.

D.2.1 Removal Filter

The goal of the removal filter is to find and remove states that are not informative of the

DNA sequence moving through the pore. These uninformative “bad” states are common

in both constant-voltage and variable-voltage sequencing data and can arise from myriad

sources. Common sources of “bad” states include:

1. Pore Gating: Protein pores such as MspA are well known to exhibit transient stochastic

changes in their conductance, referred to as gating. Gating can occur during DNA

translocation, resulting in an abrupt drop in the observed conductance of the observed

states for the duration of the gating event. Although DNA translocation continues

during the gating event, the conductance states measured in this time period will not

match the ionic current-to-sequence model states of the translocating DNA due to the

low overall conductance.

2. Conductance Spikes: We observe occasional transient spikes up in the conductance

through the pore during DNA translocation events. These spikes may be attributable

to brief openings of alternative conducting pathways through the bilayer. Regardless

of origin, these spike states are not indicative of the translocating DNA sequence,

and are not observed at the same DNA sequence position when comparing multiple

translocation events of the same DNA sequence.

3. Flickers: As discussed in section D.1, we observe short drops in conductance within

enzyme states termed “flickers” in both constant- and variable-voltage data. These

drops in conductance are distinct from pore gating as they are far shorter-lived and

return to the state that preceded them.

4. Over-called States: The change point detection algorithm (appendix B) occasionally

calls too many transitions, partitioning a single state into multiple. This can be
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caused by spontaneous changes in the electronic noise, flickers occuring faster than

the variable-voltage cycling frequency, or other transient effects distorting the signal.

Frequently, the over-called states exhibit higher noise than the true state. These high-

noise over-called states are discarded for sequencing.

The removal filter works by iteratively assigning a “bad state probability” Pbad to each

state in the event, then removing those where Pbad exceeds some threshold value for removal

Tremove. This process is repeated until no more states are removed (algorithm 5). The process

is iterated because P i
bad, the bad state probability for a given state i, is a function not only

of the state itself, but also of its flanking states i+ 1 and i−1. So, P i
bad can change following

the first round of removal if either of its flanking states were removed. As there is no state

preceding the first state or following the last state, Pbad cannot be evaluated for these two

cases. To cope with this, the first and last state are kept as “good” until the final iteration

of removal, at which time they are discarded.

Algorithm 5 Removal Filter

1: assume we start with N states {xi}i∈1:N

2: stop← false
3: while ∼ stop do
4: anyremoved← false
5: calculate the SVM feature vectors {ξi}i∈2:N−1 from the states {xi}i∈1:N

6: calculate the bad state probabilities {P i
bad}i∈2:N−1 from the SVM feature vectors

{ξi}i∈2:N−1

7: for j ∈ 2 : N − 1 do
8: if P i

bad > Tthresh then
9: remove xj from {xi} . Remove states above the removal threshold

10: anyremoved← true . Stop iterating if nothing is removed
11: end if
12: end for
13: if ∼ anyremoved then
14: stop← true
15: end if
16: end while
17: remove x1 and xN from {xi} . Remove the first and last states
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The Pbad values are calculated as follows. States are first evaluated using a support

vector machine (SVM) with a quadratic kernel classifying between “good” states (those to

be kept for sequencing) and “bad” states (those to be removed). The SVM takes as input

12-dimensional feature vectors for each state. The composition of the feature vector for state

i is as follows:

Features 1-3 are the 3 principal component coefficients (section C.3) for the previous state,

i− 1.

Features 4-6 are the 3 principal component coefficients for the state itself, i.

Features 7-9 are the 3 principal component coefficients for the subsequent state, i+ 1.

The first 9 features serve to quantify how continuous or discontinuous the state is with its

neighbors. States that are discontinuous with both the previous and subsequent states are

more likely to be “bad”.

Feature 10 is the value of the single conductance measurement in the state’s conductance

curve that most deviates from the overall mean conductance in the event. This helps to

identify levels with short, extreme deviations from typical conductance values. Such devia-

tions can indicate that a noise spike occurred during the state, likely causing an over-calling

during change point detection.

Feature 11 is the average mean square difference between the state’s 101-dimensional mea-

sured conductance curve and its 3-dimension principal component description. This quanti-

fies how well the state is described by the principal components. States poorly described by

the principal components are more likely to be “bad”.

Feature 12 is the score of these state’s best match against the 6-mer model (section E). States

that do not have any high scoring match within the 6-mer model are unlikely to represent

good measurements of the DNA’s conductance profile and should be labeled “bad”.

To train the SVM, we hand-labeled states taken from the reads used for map building

(section E) as either “good” or “bad”. The SVM was trained on a sample of 800 labeled

“good” states and 800 labeled “bad” states. We then passed a hold-out validation set
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Figure D.2: Removal filter confusion matrix. Entries show the rate at which truly “good”
or “bad” states are called as either “good” or “bad” by the SVM.

consisting of 400 labeled “good” and 400 labeled “bad” states to the trained SVM. The

validation set showed that the SVM correctly classifies 97.3% of “good” states, 86.5% of

“bad” states (Fig D.2), and 91.9% of validation states overall.

To generate the “bad state” probabilities Pbad, we looked at the scores output by the

SVM, rather than the labels. The SVM score S of a state is the distance of that state’s SVM

feature vector from the decision boundary (Fig D.3a). This score serves as a proxy for how

good (negative scores) or bad (positive scores) a state is. We want to assign higher Pbad to

states with higher scores. We do this by plotting the true state labels (0 for good, 1 for bad)

as a function of the state scores S (Fig D.3b). These data are then fit by the logit function

f(S|α, β) =
1

1− e−(αS+β)
(D.1)

using a global likelihood maximization fit (Fig D.3).

Together, the SVM and the fit logit function give us a way to calculate P i
bad for any state

i. First, the 12 features are evaluated for this state. Then, the SVM is used to score the

feature vector relative to the decision boundary, yielding a score Si. Finally, we evaluate
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f(Si|α, β), yielding P i
bad for the state.
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Figure D.3: Converting SVM outputs to Pbad probabilities. (a) In this classifier (contrived
data), points occupying the space (shaded green) above the decision boundary (solid black
line) are classified as good while those below (shaded red) are classified as bad. Points
marked with a “plus” are classified correctly, while “circles” are classified incorrectly. Green
markers denote truly good states and red markers denote truly bad states. Each point i has
an associated score Si, which is its distance from the decision boundary. (b) Each state in
the validation set is plotted by its good (0) or bad (1) label as a function of its assigned
SVM score S. The dashed black vertical line is at S = 0, representing points lying exactly
on the decision boundary. The solid black curve shows the logit function fit to the validation
states using a global likelihood maximization procedure. The SVM scores S are converted
into probabilities that the state is bad using a logit function. During removal filtering,
an unknown state is assigned a score S∗ by the SVM. This score is then converted into a
probability it is bad (P ∗bad) using the logit function (orange arrow).
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D.2.2 Recombination Filter

The goal of the recombination filter is to find instances where multiple observed states

represent repeated measurements of the same DNA position. Repeated state measurements

can arise from two potential sources. First, over-called transitions during change point

detection result in consecutive states representing the same DNA position. If these over-

called states are not removed by the removal filter, they show up in this stage as “holds”. The

second source of duplicate states is enzyme missteps in which the enzyme moves backwards

(in the 3’ direction) along the DNA. These “back steps” result in non-consecutive duplicate

states.

The recombination filter works by aligning an event against itself (self-alignment). Re-

peated states will match to their duplicates within the event nearly as well as they match

to themselves. We conduct a Needleman–Wunsch-style alignment of the states {xi} with

themselves, A({xi}, {xi}) (algorithm 6). In this alignment, alignment of a state i to itself

A(xi,xi) can be thought of as establishing xi as a unique, previously unobserved state.

Conversely, alignment of a state i to a different (previous) state j, A(xi,xj), i 6= j means

that states i and j are repeated measurements of the same DNA position and should be

recombined into a single state.

A state i will always match best with itself. However, we bias the alignment against

aligning states to themselves by applying a “self-alignment penalty” PSA to such cells in the

alignment matrix (Fig D.4). Statistically, the self-alignment penalty is a penalty for adding

parameters (states) to our model of the observed event and the self-alignment penalty is

thus taken 1
2

the number of added parameters (3, for the 3 principal component coefficients

characterizing each state (appendix C.3)).

With these considerations, we conduct a Needleman-Wunsch-style alignment of the mea-

sured states against themselves with the following modifications. First, to reduce the com-

putational load and avoid recombining distant states that may look similar but too far apart

to represent a likely duplication, we limit ourselves to a fixed lookback distance L, where we
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only consider matches for state i within states i− L to i− 1.

Secondly, we assign unique step-type probabilities at each transition based on the con-

ductance curve overlap information (section 3.7). At each transition between two states m

and n, we calculate the relative probabilities that the transition between the two occured via

a single half-nucleotide step (Pmn
S ), skip (Pmn

K ), backstep (Pmn
B ), or hold (Pmn

H ). To calculate

these probabilities, we use an ensemble of 3 SVMs (quadratic kernel), SSK , SSB, and SSH .

These three SVMs are all trained on labeled transitions generated from the ΦX-174 data

used to build the 6-mer model (appendix E.3.1). In the same manner as was described above

for the good/bad SVM classifier (section D.2.1), we first trained these classifiers to determine

their decision boundary, then conducted a global likelihood maximization fit to tune a logit

function (characterized by two parameters, α and β) to their output scores on a held-out

validation set. This fit logit function allows us to convert the output scores from the SVMs

(distances from the decision boundary) into probabilities. All three SVMs take as input a

6-dimensional feature vector composed of the 3 principal component coefficients of state m

and from state n.

SSK differentiates between steps and skips (88.7% correct on the validation set), SSB

differentiates between steps and backsteps (98.2% correct on the validation set), and SSH

differentiates between steps and holds (95.4% correct on the validation set). The scores of

these SVMs (SSX , X one of K, B, H), converted to probabilities through their associated

logit functions, give us relative likelihoods between the different step types. The relative

likelihoods of a step vs. a skip between states m and n is given by

Pmn
S

Pmn
K

=
logit(SSK , αSK , βSK)

1− logit(SSK , αSK , βSK)

with similar relations for step vs. back and step vs. hold. These three relations, along with

the overall normalization condition that

Pmn
S + Pmn

B + Pmn
H + Pmn

K = 1
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give us a system of four equations for the four unknowns, allowing us to solve for the various

step type probabilities. Skips longer than two half-steps and backsteps longer than a single

half-step backwards are treated as independent processes, with their probability given as the

product of the correct number of PK ’s or PB’s. For example, the probability of a backstep

of 3 half-steps PB3 is given as

PB3 = P 3
B

In the language of affine probabilities, the extension probability is set to be equal to the

basic probability,

PB+ = PB

We can enter a previously unmeasured (new) state through one of three transitions: a

step, a skip, or a backstep. Consequently, our alignment matrix has dimensions N x (L+ 3)

where N is the number of measured states. The columns 1 : L represent alignment of a state

to the state L : 1 states before it. The final 3 columns represent the creation of a new state

via alignment of the state to itself, entered into via a step, skip, or backstep, respectively.

The final modification made in our self-alignment method is the above-discussed assess-

ment of an additional self-alignment penalty PSA = −3
2

to these newly created states. The

full matrix of transition penalties (penalties taken as log probabilities, S = log(PS), etc.)

is summarized in Fig D.5. Using this self-alignment method to identify repeated states, we

conduct recombination filtering as described in algorithm 6.
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Algorithm 6 Recombination filter

1: Input: start with N observed states {xi}, i ∈ 1 : N . States are passed in after
removal filter

2: function StepProbs({xi}) . Function to calculate the transition-by-transition
step-type probabilities

3: Calculate Get the scores SSK , SSB, and SSH from the SVMs SSK , SSB, and SSH
4: Calculate Convert SVM scores into relative likelihoods using the attached logit

functions
5: Solve Use the resulting system of 4 equations to find PS, PB, PH , and PK for each

transition
6: Output Transitions matrix T contains the step-type probabilities for each transition
7: end function
8: function SelfAlign({xi})
9: T ← StepProbs({xi})

10: PSA ← −3
2

11: Calculate Alignment A is the alignment of {xi} to {xi} subject to the self-alignment
penalty PSA and the transition penalties T . A is a 1 x N array, where Ai = j means
that the ith measured state is the jth recombined state

12: Output: A
13: end function
14: Initialize:

changed← TRUE
{xinew} ← {xi}

15: while changed do
16: {xiold} ← {xinew} . Store the existing {xinew} in a new variable
17: A ← SelfAlign({xiold}) . Conduct self-alignment
18: if max(A) = length({xiold}) then . We have the same number of recombined states

as initial states, meaning nothing has been recombined
19: {xinew} ← {xiold} . no states have changed so just pass on the old ones
20: changed← FALSE . Our recombination has converged, exit the while loop
21: else
22: Initialize: {xinew} as a empty holder of size 1 x max(A) . Storage for the set of

recombined states
23: for i ∈ 1 : max(A) do . Loop over old states and recombine into new states

based on alignment
24: xinew ← mean({x{j}old}) where {j} is such that Aj = i for all j ∈ {j}
25: end for
26: changed← TRUE . As long as things have changed, continue recombination
27: end if
28: end while
29: Output {xinew} . Final output is the new set of recombined states
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Figure D.4: Self-alignment procedure for recombination filter. (a) The recombination filter
seeks to find repeated instances of the same k-mer conductance state in a sequencing read.
Shown here is a toy example of a sequencing read with various missteps. Toy data is modeled
on a single-nucleotide-stepping enzyme for simplicity. (b) The self-alignment of the above
states to themselves reveals repeated k-mer states. States 1, 2, 5, 6, 7, 9, and 10 are unique
states. States 3 (= state 1), 4 (= state 2), and 8 (= state 7) are repeated measurements of
previously observed states. (c) Recombining the repeated measurements into single states
dramatically reduces the errors in the signal. The remaining misordered states (3 and 4
should be swapped) will be treated by the reordering filter.

Figure D.5: Self-alignment transition penalties. During self-alignment, the transition from a

starting point in the alignment (rows) into a final point in the alignment matrix (columns)

takes an additive penalty. Alignments of a state to a previously measured state take a penalty

equal to the log probability of the enzyme step required to generate the states in that order.

Alignments of a state to itself take a step-type penalty as well as the self-alignment penalty

PSA. Certain transitions (marked −−) are not allowed.
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D.2.3 Reordering Filter

Some enzyme misstep errors can persist in the signal even after removal and recombination

filtering. Particularly, complex error modes involving successive enzyme missteps (e.g. a

skip, then backstep, then skip as in Fig D.4c) can result in out-of-order states even after

bad states are removed and duplicate states are recombined. The reordering filter–the last

of the three filters involved in the state filtering process–aims to identify and correct these

out-of-order states prior to sequencing.

The reordering filter works by using by using an ensemble of SVMs with associated

logit functions (as in the recombination filter, section D.2.2) to assign a probability that

each transition was a single step (“S”), a skip (“K”), or a backstep (“B”). A dynamic

programming algorithm is then used to find the most likely set of allowed transitions linking

the observed states.

The calculation of step-type probabilities for the reordering filter uses the same SVMs

and logits as the recombination filter. The only change here is we are no longer looking for

holds (holds by definition result in duplicate states, and so should be entirely treated by the

recombination filter) so we only use two of the three SVMs: SSK to decide between steps

and skips, and SSB to decide between steps and backsteps. Using the same procedure as in

the recombination filter, we use these two SVMs to calculate the probability that each state-

to-state transition represents a step, skip, or backstep. In our notation, the nth transition,

from state n to state n + 1 has a step probability P n
S , skip probability P n

K , and backstep

probability P n
B. For a read of N states, the step-type probabilities are summarized in the

N − 1 x 3 matrix P :

P =


P 1
S P 1

K P 1
B

P 2
S P 2

K P 2
B

... ... ...

PN−1
S PN−1

K PN−1
B


For convenience, we convert these probabilities to log-probabilities (denoted P) for further
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use:

P = log(P)

Now with the step-type log-probabilities calculated, we use a dynamic programming

algorithm (algorithm 7) to find the most likely path of transitions through the states, subject

to certain constraints. Namely, we must choose a set of transitions reflective of a state

ordering not requiring any repeated visits to the same state. For example, we cannot choose

to take a step from state 1 to 2, then a backstep from 2 to 3. This hypothetical path

would imply that state 3 is a repeated measurement of state 1. If this were the case, these

states would have been recombined during the previous filtering step. As they were not

recombined, this transition pathway must be ruled out, and is not allowed during reordering.

To implement this “no repeated states” condition, we consider 4 “transition states”: steps

(S), backsteps (B), skips where the previous transition was a step or a skip (K|SK), and

skips where the previous transition was a backstep (K|B). The allowed linkages between

these transition states are summarized as an allowed linkage matrix L:

L =


1 0 1 0

0 0 0 1

1 1 1 0

1 0 1 0


where a linkage from transition state i to transition state j is allowed if Lij = 1 and is not

allowed if Lij = 0. The 1st row and column in L represents the step “transition state” S, the

2nd represents B, the 3rd represents K|SK, and the 4th represents K|B. So, for example

L1,2 = 0 tells us that we cannot jump from a step into a backstep (as discussed above).

Subject to these allowed transitions, we compute an alignment matrix A and traceback

matrix B that provide us the most likely pathway through the allowed transitions. This

pathway tells us what type of step was most likely taken at each transition. With this step-

type information, we can optimally reorder the observed states to finally reconstruct the
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most likely sequence order, completing the filtering process.
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Algorithm 7 Reordering filter
1: Input:

P . step-type log-probabilities for each of the N − 1 transitions
L . matrix of allowed “transition type” linkages

2: Initialize:
A← ones(N − 1, 4) . alignment matrix, 1st column is S, 2nd is B, 3rd is K|SK, 4th is
K|B
B← ones(N − 1, 4) . traceback matrix

3: A1,1:3 ← [P1,1,P1,2,P1,3,−∞] . Fill first row of alignment matrix
4: for i ∈ 2 : (N − 1) do . Loop over the rest of the transitions, filling the alignment and

traceback matrices
5: A← [Pi,1,Pi,3,Ai,2,Ai,2] . Begin filling next row in alignment matrix
6: T ← [Ai−1,1,Ai−1,2,Ai−1,3,Ai−1,4] . T stores the scores of possible cells we can

transition in from
7: for j ∈ 1 : 4 do . Loop over the 4 transition types
8: t← T . make a copy of t as we fill this particular cell
9: tk ← −∞ for ∀k where Lk,j = 0 . turn off disallowed transitions

10: t∗ ← max(t) . take the best scoring path in
11: b∗ ← k such that tk = t∗ . record which transition had the best score
12: Ai,j ← Aj + t∗ . fill alignment matrix cell
13: Bi,j ← b∗ . fill traceback matrix cell
14: end for
15: end for
16: Intialize R← [] . inialize storage for the best path through the alignment matrix as

we conduct traceback
17: R← [rR] where r is such that An−1,r = max(An−1,: . start traceback at best scoring

cell in bottom row of A
18: for doi ∈ (n− 1) : −1 : 2 . conduct traceback over most likely pathway
19: r ← Bi,r . B tells us where we came from to get to the max cell in A
20: R← [rR] . append the location of the best score in the row to the start of the

traceback
21: end for
22: Output: r contains the type of step (1 = S, 2 = B, 3 and 4 = K) taken at each

transition
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Appendix E

CONSTRUCTING THE 6-MER MODEL

E.1 General Considerations

To sequence our variable-voltage reads, we determine the DNA sequence most likely to have

generated the observed series of ionic current states. In order to decode this DNA sequence,

we require a map relating the ionic current signal and the DNA sequence in the pore. We

model the nanopore signal as being generated by the k nucleotides (i.e. the k-mer, with k an

integer) nearest the pore’s constriction. This model is described by a map of the 4k possible

k-mers to the ion ionic currents typically observed when they are in the pore. The k-mer

model has been previously validated as an effective model for nanopore signal prediction [58].

Our lab’s previous work on constant-voltage nanopore DNA sequencing used a model

with k = 4, but we found that a 4-mer model was insufficient for our variable-voltage

signal. During variable-voltage sequencing, the nucleotides centered within the nanopore

constriction at each enzyme registration are shifted forwards and backwards as the DNA is

stretched by the changing voltage. This shifting means that the nucleotides both 5’ and 3’ of

the central 4-mer have more of an effect on the observed signal when using variable-voltage

than they had in the constant-voltage case. In order to better model this effect, we expanded

our model from 4-mers to 6-mers, now including an additional nucleotide on both the 5’ and

3’ ends of the previous 4-mers, expanding our model from 44 = 256 4-mers to 46 = 4096

6-mers.

Each state in the variable-voltage model is characterized by more complex information

than in the constant-voltage model. In the constant-voltage model, each k-mer state was

characterized by its mean conductance value (G), its typical conductance noise (dG), and

the variance of both of these quantities. In contrast, during variable-voltage sequencing, the
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k-mer state occupied at each enzyme step is not a constant conductance value characterized

by a mean and noise, but instead a conductance vs. voltage (G − V ) curve. We found

that each variable-voltage k-mer state is well characterized by its 3 principle component

amplitudes p and their covariance Σp (appendix C.3).

In previous work, we used the Φ29 DNAP as the motor protein controlling the DNA,

which steps in full nucleotide increments. Our new method instead uses the Hel308 DNA he-

licase as the motor protein, which takes two distinct steps per nucleotide, an ATP-dependent

step and an ATP-independent step [53]. As our signal now contains two distinct enzyme

states per nucleotide, each single k-mer is now associated with two distinct states, and the

4096 6-mers in our model represent 8192 total states, two for each k-mer.

E.2 Initial Model

To construct the variable-voltage 6-mer model for the two-step-per-nucleotide Hel308 helicase

motor protein, we refined the existing constant-voltage 4-mer model. We note that the 6-

mer denoted N1N2N3N4N5N6 (where Ni denotes a nucleotide A, C, G, or T ) is made up

of 3 distinct 4-mers: N1N2N3N4, N2N3N4N5, and N3N4N5N6. Additionally, we recall that

the variable-voltage signal samples the translocating DNA’s conductance as a function of

position. This function should interpolate smoothly between the discrete samples taken at

constant voltage. We approximate the smooth conductance vs. position curve interpolating

the DNA positions between the three constituent 4-mers by a quadratic fit to the three

conductances known from the phi29 DNAP 4-mer model (Fig E.1).

Sampling this curve at the appropriate DNA positions gives us an estimate of the variable-

voltage 6-mer states. The first of Hel308 helicase’s two states is known to have the same DNA

registration within the pore as Φ29 DNAP [53]. The constant-voltage model was derived

from experiments run at a bias of 180mV , and we know from the DNA force-extension curve

(appendix C.4) that the variable-voltage sweep stretches the DNA +0.1nt from the 180mV

position at its highest voltage and −0.9nt from the 180mV position at its lowest voltage.

So, to predict the state 1 conductance vs. position curve, we sample the interpolating curve
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Figure E.1: Method of generating variable-voltage Hel308 helicase 6-mer predictions from
the constant-voltage phi29 DNAP 4-mer model. Black points show the constant-voltage
4-mer model predictions for the 3 4-mers comprising the 6-mer of interest. Black dashed
line shows the quadratic fit to the 4-mer model predictions, which acts as an estimate of
the smooth conductance vs. position profile explored by variable-voltage. The blue to red
points show the predicted conductance as a function of DNA position for the given 6-mer.
Blue-er points correspond to lower voltages, red-er points to higher voltages. (a) Prediction
for the first of the two Hel308 states. The first of the two Hel308 states has the same DNA
registration within the pore as the phi29 DNAP full-nucleotide steps. The conductance value
of the Hel308 state 1 prediction coincides with the phi29 DNAP conductance prediction for
the central 4-mer in the 6-mer of interest. (b) Prediction for the second of the two Hel308
states. The second state is shifted 0.55nt to the 3’ of the first state.

at equally-spaced points from −0.9nt to +0.10nt (Fig E.1a). The second of Hel308’s two

states is 0.55nt 3’ from state 1. So, state 2 is predicted by sampling the interpolating curve

between −0.35nt and 0.65nt (Fig SE.1b).

The amplitudes of the 3 principle components p for each 6-mer state can now be calculated

from the predicted G − V curve (appendix C.3). All 8192 states in the initial guess map

were assigned the same default covariance for their 3 principle components. The 3 principle

components are sufficient for this initial model to provide a framework on which to build an

empirical 6-mer model based on measurements of DNA under variable-voltage conditions.
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E.3 Measuring Genomic DNA of Known Sequence

To build the 6-mer model we will ultimately use for DNA sequencing, we measure the signal

produced by all 4096 of the 6-mers during variable-voltage experiments. We read DNA of

known sequence under the variable-voltage sequencing conditions (appendix A.1.7), then use

the measured signals of this known DNA to update the initial 6-mer model.

E.3.1 ΦX174

We first measured the 5386 bp ΦX174 genome (New England Biolabs). We prepared the

circular genome for variable-voltage nanopore sequencing experiments as follows:

1. The circular genome was linearized via a double digest using the restriction enzymes

PstI and AvaII (New England Biolabs). ΦX174 was prepared in 20 µg batches. For

each batch, a mixture of

(a) 40 µL of ΦX174 DNA at 500 ng
µL

(b) 5 µL of 10x CutSmart (New England Biolabs) Buffer

(c) 1 µL of PstI-HF restriction enzyme at 100 Units
µL

(d) 1 µL of AvaII restriction enzyme at 10 Units
µL

(e) 3 µL of molecular biology grade water

was incubated at 37◦C for 60 minutes, then heat inactivated via heating to 80◦C for

20 minutes. Each of PstI and AvaII have a single cut site in ΦX174, so the double

digest yields two linear fragments, one of 5042 bp, the other of 344 bp (Fig E.2a, b).

2. The linearized fragments were purified from the heat-inactivated restriction enzymes

on a DNA Clean and Concentrator column (Zymo Research), and eluted into 50 µL of

molecular biology grade water.
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3. Two DNA adapters are attached to each of the fragments enabling reading by the

nanopore (Fig E.2c, d). At one end, we ligate a threading adapter, which promotes

capture a single strand into the pore, entering with the 5’ end of the DNA threading

into the pore. This threading adapter also features a cholesterol tagged 3’ end. The

cholesterol tagged 3’ end inserts into the lipid bilayer, localizing the DNA strands near

the pore and increasing the rate of 5’ end capture. The threading adapter is made up

of two partially complementary strands: the ΦX174 threading strand and the ΦX174

cholesterol blocker (Table A.2). The threading adapter is formed at high concentration

by mixing equal volumes of 12.5 µM threading strand and cholesterol blocker, then

annealing to yield a 12.5 µM solution of the fully formed threading adapters.

4. At the other end, we ligate a loading adapter which promotes loading of the Hel308

helicase onto the DNA construct. This adapter consists of two partially complementary

strands: the ΦX174 loading strand and the ΦX174 loading blocker (Table A.2). The

loading adapter is formed at high concentration by mixing equal volumes 12.5 µM

loading strand and loading blocker, then annealing to yield a 12.5 µM solution of the

fully formed loading adapters.

5. The threading and loading adapters are ligated to the sticky ends of the linearized

ΦX174 DNA fragments. A mixture of

(a) 48 µL of 100 nM ΦX174 DNA

(b) 6 µL of 10x T4 ligase buffer (New England Biolabs)

(c) 2 µL of 12.5 µM threading adapters (to give 5:1 ratio of adapters to target sticky

ends)

(d) 2 µL of 12.5 µM loading adpaters (to give 5:1 ratio of adapters to target sticky

ends)

(e) 1 µL of molecular biology grade water
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(f) 1 µL of T4 DNA ligase at 400 Units
µL

(New England Biolabs)

was incubated at 16◦C for 60 minutes, then heat inactivated by heating to 65◦C for 10

minutes.

6. The fully formed DNA constructs (Fig E.2e) were purified from the remaining un-

ligated adapters and the heat-inactivated ligase on a DNA Clean and Concentrator

column, and eluted into 50 µL of molecular biology grade water.

These two fragments, now with the necessary adapters attached, were run using the stan-

dard variable-voltage nanopore sequencing conditions. In total, we observed 155 individual

reads comprising 188543 enzyme steps, or 94272 nucleotides.

E.3.2 λ Phage

In order to get better coverage of numerous 6-mers not present in the ΦX174 genome, and

to increase the context diversity of all of our measurements, we next decided to measure a

larger genome. For this second round of measurements, we chose the 48502 bp λ bacterio-

phage genome. We chose a new approach to fragmentation for this experiment in order to

provide uniform read coverage over the entire genome. Due to the limited processivity of our

Hel308 helicase (∼1000 nt, appendix A.3), restriction enzyme fragmentation results in most

reads starting at the restriction site, but terminating prior to reading the entire fragment.

Consequently, such a fragmentation gives excellent read coverage near the restriction sites,

but poor coverage further away from them.

For uniform coverage, we instead use two separate Covaris products giving random shear-

ing over the entire genome into fragments of a well-defined size range. In one λ library prepa-

ration, we used the Covaris Blue DNA miniTUBE, which yielded random fragments of on

average 3 kbp in length. For our second library preparation, we used Covaris gTUBEs to get

random fragments of on average 6 kbp in length. We switched from miniTUBEs to gTUBEs
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Figure E.2: Preparation of ΦX174 for variable-voltage sequencing. (a) The circular 5386 bp
genome is cut twice using the AvaII and PstI restriction enzymes. (b) Restriction results in
two fragments of 344 and 5042 bp, with sticky ends of size 3 and 4 nt. (c) The threading
adapter consists of a threading strand (dark green) featuring a 5’ phosphate (P, arrowhead)
which promotes capture of this end by the pore, and a cholesterol blocker strand (light
green), featuring a 3’ cholesterol tag (Z, crossbar) which associates with the lipid bilayer to
concentrate the DNA constructs near the pore and increase the capture rate. (d) The loading
adapter consists of a loading strand (tan) which overhangs the blocking strand (brown) at
the 3’ end to provide a loading site for the Hel308 helicase (orange ellipse). The helicase
loads at the ss-dsDNA junction and proceeds to walk in a 3’ to 5’ direction along the loading
strand (orange arrow). (e) After adapter ligation, the DNA constructs are now ready to
be run in the variable-voltage sequencing experiments. Our adapters are designed such that
we will read the sense (red) strand of the long fragment, and the antisense (blue) strand fo
the short fragment. The red asterisk marks a sticky end mismatch at the loading end of the
short fragment, a byproduct of the non-palindromic AvaII cut site. Despite this mismatch,
we still observe a population of reads of this smaller fragment, indicating that the loading
adapter did still attach with some efficiency.



178

simply for easy of use, as these required only a centrifuge, and not the Covaris sonicator

instrument. For both shearing methods, the library preparation proceeded as follows:

1. The full length λ DNA (Promega) was fragmented using either Blue miniTUBEs (in

20 µg batches) or gTUBEs (in 30 µg batches) (Fig E.3a, b).

For miniTUBE fragmentation, 20 µg of λ DNA was suspended in Tris EDTA buffered

at pH 8.0 to a total volume of 200 µL. DNA was then fragmented using the Covaris

M220 Focused-ultrasonicator, using the recommended settings for product fragments

of ∼3000 bp in length.

For gTUBE fragmentation, 30 µg of λ DNA was suspended in molecular biology grade

water to a total volume of 150 µL. The gTUBE was then centrifuged on an Eppendorf

5417R centrifuge for 30 seconds at 12400 rpm (corresponding to 16200 g), resulting in

fragments of ∼6000 bp in length.

2. Following fragmentation, the DNA fragments have random 3’ and 5’ overhangs. Before

proceeding with adapter ligation, we ensure that all DNA fragments are blunt-ended

by running an end repair protocol (Fig E.3c). Using the NEBNext end repair module

(New England Biolabs), a mixture of

(a) 5 µg fragmented DNA

(b) 10 µL of NEBNext 10x End Repair Reaction Buffer

(c) 5 µL of NEBNext End Repair Enzyme Mix

(d) Molecular biology grade water to total volume of 100 µL

was incubated at 20◦C for 30 minutes. The end-repaired fragments (now blunt-ended)

were purified on a DNA Clean and Concentrate column.

3. After end repair, we used the NEBNext dA-tailing module (New England Biolabs) to

attach a dA monomer at the 3’ end of each strand as a target for adapter ligation (Fig
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E.3d). A mixture of

(a) 5 µg of λ DNA

(b) 5 µL of 10x NEBNext dA-Tailing Reaction Buffer

(c) 3 µL of Klenow Fragment (3’ → 5’ exo−)

(d) Molecular biology grade water to a total reaction volume of 50 µL

was incubated at 37◦C for 30 minutes, then purified on a DNA Clean and Concentrate

column.

4. Similar threading and loading adapters are used for variable-voltage sequencing exper-

iments on the λ DNA as were used for ΦX174, differing only in the sequence at the

sticky ends to be ligated onto the genomic DNA fragments. For the threading adapter

(Fig E.3e), equimolar parts of the λ threading strand and the λ cholesterol blocker

(Table A.2) were mixed and annealed to a final concentration of 10 µM . Similarly, for

the loading adapter (Fig E.3f), equal molar parts of the λ loading strand and the λ

loading blocker were mixed and annealed to a final concentration of 10 µM .

5. Adapters were ligated to the dA-tailed λ DNA fragments using T4 DNA ligase (New

England Biolabs). A mixture of

(a) 10 µg of λ DNA fragments

(b) 3 µL of 10 µM threading adapters (for a ∼ 10:1 adapter to dA-tail end ratio)

(c) 3 µL of 10 µM loading adapters (for a ∼ 10:1 adapter to dA-tail end ratio)

(d) 15 µL of 10X Ligation Buffer

(e) 7.5 µL T4 DNA Ligase

(f) Molecular biology grade water up to a total reaction volume of 150 µL
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was incubated at 22◦C for 125 minutes, then heat inactivated at 65◦C for 10 min-

utes. The ligation products (Fig E.3g) were purified on DNA Clean and Concentrator

columns to remove the inactive ligase and residual un-ligated adapters, and eluted into

molecular biology grade water.

As all the 3’ ends of the λ fragments have the same single dA overhang, not all liga-

tion products will have the correct conformation of one threading adapter and one loading

adapter. 25% of the population will have loading adapters at each end, and 25% will have

threading adapters at each end. This reduces the overall effective yield of this library prepa-

ration by half, but a sufficient number of constructs were well formed to allow us to generate

128 individual reads comprising 120867 enzyme steps, or 60434 nucleotides.

E.4 Building the Empirical 6-mer Model from Genomic Reads

Having measured a total of 309410 enzyme steps along genomic DNA tracks (120867 in

λ, 188543 in ΦX174) representing 154705 measured nucleotides, we now organize these

measurements to empirically update the initial model of the predicted nanopore signal for

each of the 8192 model states (2 enzyme states for each of the 4096 6-mers). Each observed

enzyme step is a measurement of one of the two Hel38 helicase states at one of the 4096

possible 6-mers.

To update the model, we must associate the signal at each enzyme step with the sequence

that generated it. We get this association by aligning the measured signal to the predicted

signal for the known DNA sequence being measured (ΦX174 or λ). For the first construction

of the empirical model, the predicted signal is given by the initial model described in section

E.2.

Each read of genomic DNA is aligned to the predicted signal for its reference sequence

using the BCJR alignment algorithm [103]. The alignment maps the G − V curve at each

measured ionic current state to a state in the predicted signal, which represents a known

location in the reference sequence. In addition to an alignment location, the BCJR algorithm
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Figure E.3: λ DNA Fragmentation. (a) Full length double stranded λ DNA, 48502 bp. (b)
The genomic DNA is sheared into random fragments of average length 3 kb (miniTUBE)
or 6 kb (gTUBE). (c) The random 3’ and 5’ overhangs generated through the shearing are
repaired (green segments) using the NEBNext end repair module. (d) A single base dA
overhang is added to each 3’ end using the NEBNext dA-tailing module. (e) The threading
adapter is composed of two strands. The threading strand (dark green) has a 5’ phosphate
(P, arrowhead) to facilitate capture by the pore and a single base dT 3’ overhang for ligation
onto the λ fragment. The cholesterol blocker (light green) is partially complementary to
the threading strand, with a non-complementary 3’ end, and a terminal 3’ cholesterol (Z,
crossbar) which inserts into the lipid bilayer to up-concentrate DNA near the pore. (f)
The loading adapter is also composed of two strands. The loading strand (tan) has an
overhanging 3’ end where the Hel308 helicase (orange ellipse) can load onto a ss-dsDNA
junction, and proceed in a 3’ to 5’ direction along the strand. The loading blocker (brown)
is complementary to the non-overhanging region of the loading strand, with a single base
dT 3’ overhang for ligation onto the λ fragment. (g) Our fully formed DNA constructs
are now ready to be run in variable-voltage nanopore sequencing experiments. This library
preparation can obtain reads of both the sense (red, top construct) and antisense (blue,
bottom construct) strand.
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Figure E.4: Iterative map construction flow chart

also returns a likelihood that each alignment location is the true alignment location for the

measured state. We update the mean values in the 6-mer model by filling each state in

the model with the weighted average (weighted by the likelihood score of alignment) of all

measured states aligning to locations in the reference corresponding to that enzyme and

6-mer state. Additionally, the covariance of each state in the model is updated with the

covariance of all measured states aligning to reference locations corresponding to that state.

The above procedure of generating predictions, aligning reads, and updating the predic-

tions can be iterated (Fig E.4). For the work presented here, we ran two iterations: one

starting from the interpolated initial model and second aligning to the first version of the

empirical model. Though we found that two iterations yielded a good quality model, it is

possible that a larger data set of genomic DNA reads combined with further iterations of

the model generation could result in an improved model.

E.5 Filling in Unmeasured 6-mers

After constructing the empirical 6-mer model from long reads of ΦX174 and λ DNA, we

found that for a small fraction (168 out of 4096) of the 6-mers, one or both of the enzyme

states had not been well measured. In order to efficiently measure the remaining states,

we used a De Bruijn graph approach [34] to construct a minimal sequence of length 337 nt

containing all 168 of the poorly measured 6-mers. We then split up this minimal sequence

over a total of 6 short synthetic DNA oligos (Fill-in strands 1-6 in Table A.2, Fig E.5). We
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Figure E.5: DNA constucts for the fill-in data set are composed of two partially-
complementary short oligos. The fill-in template (one of a possible 6) in red has a 5’ terminal
phosphate (P, arrowhead) facilitating threading of this end into the pore. The 5’ phosphate
is followed by a section of the minimal sequence containing the missing 6-mers, then by a
target sequence for duplexing the complementary strand, and finally an overhanging non-
complementary 8 nucleotide section at the 3’ end for loading the Hel308 helicase (orange
oval). The fill-in cholesterol blocker (blue) contains at its 5’ end the complementary se-
quence to the target duplex sequence in the template strand. The complementary sequence
is followed by a series of 4 18-Carbon spacers and a 3’ terminal cholesterol tag (Z, crossbar).
The 18-Carbon spacers give the construct a flexible fan-tail, and the terminal cholesterol tag
associates with the lipid bilayer, up-concentrating the constructs near the pore.

ran these 6 strands using standard variable-voltage sequencing conditions, collecting a total

of 172 reads comprising 16675 enzyme steps (8338 nucleotides) across the 6 strands. Using

these reads, we filled in the remaining gaps in the empirical 6-mer model using the same

approach detailed in section SE.4: we predicted the signal for the known sequence based on

the existing 6-mer model, aligned the reads to this prediction, then updated the model based

on the alignments and iterated the process. We iterated the predict/align/update cycle 10

times for the short strands in order to generate the final version of the 6-mer model which

we ultimately use for sequencing.

E.6 Constant-Voltage Model Extraction

The variable-voltage 6-mer map contains as a subset all the information required for a

constant-voltage 6-mer model. In evaluating the performance of the two sequencing meth-

ods, we used the constant-voltage 6-mer model extracted from the variable-voltage model

to provide a fair test. By doing this, any errors present in one model detracting from the

sequencing accuracy will be present in both models, and will affect the accuracy of both
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Figure E.6: Constant voltage model extraction. The constant-voltage model value for a given
6-mer (e.g. ATGAGA) is taken as the point (red) in the variable-voltage conductance curve
for that 6-mer in the variable-voltage model (black) corresponding to 180 mV (0 nt shifted
relative to 180 mV). The uncertainty (red line) is taken as the variation in the variable-voltage
model prediction (gray shading) at the 180 mV point.

methods equally.

The constant-voltage model is extracted from the variable-voltage model as shown in Fig

E.6. The constant-voltage mean conductance for each 6-mer is extracted from the corre-

sponding variable-voltage conductance curve by taking the value of the curve at the point

corresponding to 180 mV (the operating voltage for our constant-voltage sequencing exper-

iments). The variance of the mean constant-voltage conductance is taken as the variance in

the variable-voltage conductance curve’s value at that same point.
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Appendix F

SEQUENCING ALGORITHM

DNA sequencing is performed using a hidden Markov model (HMM) solver as described

below. Simply, we decode the series of k-mers most likely to have generated the observed

series of conductance states by conducting an alignment between the observed states and

the 6-mer model states. In standard sequence-to-sequence (or conductance-to-conductance)

alignment, the alignment proceeds from left-to-right in both sequences. In contrast, this

sequencing alignment proceeds left to right in the measured states, but jumps around in the

model states based on the allowed k-mer transitions. For example, AAAAAT (the 4th k-

mer) can transition to AAAATG (the 15th k-mer) via a single nucleotide step, but requires

a 6 nucleotide jump to reach the 5th k-mer, AAAACA. A simple implementation of this

HMM-solving algorithm applied to nanopore sequencing data is formalized in algorithm 1 for

the case where only single-nucleotide steps are allowed. Our full adaptation and calculation

of the measured-to-model alignment is described in detail below.

F.1 Match Scores

We first compute an score matrix S of match likelihoods Snj between measured state n and

reference 6-mer model state j. The measured state and model state are each characterized

by their d 1 principal component amplitudes and the associated uncertainty (for measured

states) or covariance (for model states) covariance matrix. The measured state is written

as xn with uncertainty matrix Σxn , and the reference state is written as yj with covariance

1For our purposes here, d = 3 (section C.3).
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matrix Σyj . The match score between these states is given by

Snj =
1√

(2π)d
|Σ−1

xn ||Σ
−1
yj
|
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xn+Σ−1

yj
|
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(F.1)

The corresponding array of log-likelihoods is the natural logarithm of this,

snj = logSnj =
1
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(F.2)

F.2 Hel308 Backstep Kinetics

We use the known backstep kinetics of the Hel308 enzyme to inform our sequencing. Specif-

ically, previous work [55] found that Hel308 is far more likely to backstep when in its ATP-

independent state (the “pre” states in our 6-mer model) than when in its ATP-dependent

state (the “post” states in our 6-mer model). Consequently, measured states determined to

have backstepped during enzyme step correction (appendix D.2.2) are more likely to have

been generated with ATP-independent states in our 6-mer model. To use this information,

we label which measured states backstepped, then incorporate the independent/dependent

state probabilities into the score matrix S as follows.

We estimate the probability that a state that backstepped was an ATP-independent

state Pind|b = 0.975 from Hel308 kinetics data [55]. The overall probability that a state will

backstep is also estimated from Hel308 kinetics data as Pb = 0.025. From these, we can

calculate the probability Pind|∼b that an ATP-independent state will not backstep as

Pind|∼b =
1
2
− Pb ∗ Pind|b
Pind|∼b

The probability that a given state is ATP-dependent given that it did (Pdep|b) or did not
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(Pdep|∼b) backstep is simply 1 minus the complementary independent probability:

Pdep|b = 1− Pind|b

Pdep|∼b = 1− Pind|∼b

We incorporate these probabilities into the score matrix S by first converting them to

log-probabilities: p = log(P ). The odd-numbered columns in the score matrix (Sij where j

is odd) represent matches to ATP-independent states and the even-numbered columns (Sij

where j is even) are matches to ATP-dependent states. For every measured state i where

we observed a backstep, we update the row Si: as

Sij ← Sij + pind|b if j is odd

and

Sij ← Sij + pdep|b if j is even

Likewise, for every measured state i where we did not observe a backstep, we update the

row Si: as

Sij ← Sij + pind|∼b if j is odd

and

Sij ← Sij + pdep|∼b if j is even

This accounting tells our sequencer to preferentially call states for which a backstep was

observed as ATP-independent states.

F.3 Transition Probabilities

We also determine transition probabilities between each pair of states. In the case of constant-

voltage sequencing, the relative probabilities of different transitions (step, skip1, skip2, ...)

between any two given states are fixed for all states. In variable-voltage sequencing, we can
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use the overlap between two states’ conductance curves in order to get a more informed

estimate of the relative probabilities. Two states whose conductance curves overlap well

are likely to be separated by a single step, whereas states whose conductance curves do not

overlap are more likely to be skips. We find that we can differentiate effectively between

steps and non-steps (88.9% correct calls on the labeled validation set), as well as between

single skips and larger skips (79.1% correct calls on the validation set).

We use an ensemble of SVMs (similar to those described in appendix D.2) to assign

each transition its own set of probabilities of being a step, skip1, or a larger skip. The

SVMs take as input the principal components of the two measured states m and n to assign

probabilities to the different types of transitions between m and n. The ensemble of SVMs

is made up of two classifiers (S1 and S2), trained on labeled examples of steps and variously

sized skips from the ΦX-174 data collected during the 6-mer model construction (appendix

E.3.1). The scores Si output by the SVMs Si are converted into probabilities using the same

logit procedure as described previously in appendix D.2.

S1 differentiates between steps and non-steps, and assigns the probability that the tran-

sition from state m to state n was a single step as

P (1)
mn = logit(S1, α1, β1)

with the logit function as defined previously and using logit parameters α1 and β1 determined

from global likelihood maximization over a labeled validation set (appendix D.2).

Similarly, S2 differentiates between single skips (involving two half-nucleotide steps) and

larger skips (involving more than two half-nucleotide steps). S2 gives us the probability that

the transition between states m and n was a single skip given that it was not a step:

P (2|∼1)
mn = logit(S2, α2, β2)
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The overall probability then that the transition between m and n was a single skip is then

P (2)
mn = P (2|∼1)

mn ∗ P (∼1)
mn = logit(S2, α2, β2) ∗

(
1− logit(S1, α1, β1)

)
We set the probabilities of larger skips by an affine probability P

(+)
mn such that

P (k)
mn = P (k−1)

mn ∗ P (+)
mn

P
(+)
mn is set so that the summed probability of all possible steps and skips sums to 1.

F.4 Transition Matrix

For each pair of measured states we wish to consider, we compute an 8192 x 8192 transition

matrix T composed of the probabilities of transitioning between map states:

Tmn,ij = P (state m is a measurement
of true map state i

| state n is a measurement
of true map state j

) (F.3)

To calculate the transition matrix, we first find a matrix whose elements are the proba-

bilities of having transitioned between states conditioned on a step size of a single half-step,

τij1 = P (state t is a measurement
of true map state i

| state t+ 1 is a measurement
of true map state j

, step size = 1)

=


1 i is a “pre” state and j the corresponding “post” state

1/4 i is a “post” state and j a succeeding 6-mer

0 otherwise

where we define two 6-mers as “successive” when they share 5 nucleotides shifted by one

position, e.g. ACGTAC could be succeeded by CGTACT. We then define a similar matrix

for larger sizes of step, which is calculated by taking powers of the single half-step matrix:
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τijk = P (state t is a measurement
of true map state i

| state t+ 1 is a measurement
of true map state j

, step size = k) = (τij1)k.

Finally, we define τij(12) to correspond to all transitions with step size greater than or

equal to 12, which could be between any two states. Therefore it has uniform entries τij(12) =

1/8192. Now, we can compute the total transition probability matrix as the sum of the

probabilities of each possible step size by which the measured levels could have advanced:

Tmn,ij = P (1)
mnτij1 +

12∑
k=2

P (2)
mn

(
P (+)
mn

)k−2
τijk. (F.4)

We also define the log transition likelihood, tmn,ij = log Tmn,ij.

F.5 Markov Model

If we are sequencing a read of N measured states, we create an N × 8192 alignment matrix,

A. In each element of the array Anj we write an estimate of the log-likelihood that measured

state n came from map state j, given the observation of measured states 1 through n− 1:

A1j = s1j + log
(

1− P (bad)
1

)

Anj = log
8192∑
k=1

n−1∑
m=1

exp

{
snj + tmn,kj + hmk + log

(
1− P (bad)

n

)
+

n−1∑
l=m+1

logP
(bad)
l

}
, n > 1,

where P
(bad)
n is the probability that observed state n is an erroneous measurement that

should be omitted from the sequencer. In constant-voltage sequencing, P (bad) is taken as

a constant value for all states. In variable-voltage sequencing, we use the same bad state

classifier as in the removal filter (appendix D.2.1) to assign a unique P (bad) to each state.

This is a forwards-propagating approximation of a MAP algorithm, which in practice

gives similar results to a slower forwards-backwards algorithm relying on all observations to



191

determine likelihoods [104] [103]. We take two additional steps to increase speed. Firstly,

using the approximation

log
∑
i

eai ≈ arg max
i

ai,

which is valid when one ai is significantly larger than the others. We replace the log-

arithms of sums of exponentials in our alignment matrix A with maxima, which are more

expedient to calculate:

Anj = max
k,m

{
snj + tmn,kj + hmk + log

(
1− P (bad)

n

)
+

n−1∑
l=m+1

logP
(bad)
l

}
, n > 1,

We also record a traceback array,

Bnj = arg max
k,m

{
snj + tmn,kj + hmk + log

(
1− P (bad)

n

)
+

n−1∑
l=m+1

logP
(bad)
l

}
, n > 1.

Thus Bnj = (m, k), such that Amk is the maximum likelihood observed state-map state

matching to have occurred just prior to the one described by likelihood Anj. This is a Viterbi

algorithm [104], approximating the results of the MAP algorithm [103].

Additionally, we improve speed by restricting the max over m to only cases where m >

n − q − 1, where q is the maximum number of sequential “bad” observed states allowed by

the algorithm. We found good results taking q = 3, as cases of more than 3 consecutive

“bad” states not removed by the removal filter (appendix D.2.1) are exceedingly rare. We

also restrict the max over k to values of k such that snk > maxj snj − c, where c is a score

difference cut-off. Similarly, Ank with k subject to the same restrictions is left uncalculated,

because it will not be used by the algorithm under any circumstances. This avoids spending

time calculating the probability flow into and out of states unlikely to represent the optimal
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alignment. Using c = 10 provides identical results to the full calculation in all tested cases,

while dramatically reducing the computational load.

Calculation of Anj and Bnj requires knowledge of A(n−1)k for all k, so the array is calcu-

lated starting with the n = 1 elements and proceeding upwards in n.

F.6 Traceback and Sequence Construction

Once B has been calculated, we find sequence of map states with the maximum approximate-

likelihood of having produced the observed states. We do this by starting at the maximum

approximate-likelihood entry in alignment matrix, at An∗j∗ , and iteratively following the

traceback array through the most likely sequence of transitions. In other words, if a is the

sequence of indices of true map states and n is the sequence of indices of valid observed

states,

(nfinal, afinal) = arg max
(n, j)

Anj,

(ni, ai) = Bni+1,ai+1
.

From a we calculate the most likely DNA sequence. Between ai and ai+1, we find the

most likely (the smallest) step size that could transition between those two 6-mers, and

fill in bases accordingly. For example, GTACAC (pre) could transition to ACACTT (pre)

with four half-nucleotide steps, moving the GT outside of the pore’s constriction and the

TT into it. It could also make the transition by taking eight half-nucleotide steps, moving

the GTAC outside and the ACTT in, or by taking twelve half-nucleotide steps, moving

the entire sequence GTACAC out of the constriction and the entire sequence of ACACTT

in. The four-nucleotide step is the most likely based on our empirical model of transition

probabilities. Therefore, if these two 6-mers were ai and ai+1, they would be sequenced as

GTACACTT, because that is more likely than the alternative choices GTACACACTT or

GTACACACACTT. By performing this step for every state in a, we arrive at a close-to-

optimal-likelihood sequence for the observed states.
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Appendix G

SUPPLEMENTAL INFORMATION FOR BLAST

G.1 Seed Scanning

Both ssBLAST and iiBLAST use a Mealy finite state machine (FSM) to scan for seeds within

the reference database [95, 77]. The Mealy FSM can be graphically represented as a collection

of states linked by transitions triggered by inputs (individual bases or ionic currents from the

reference database), or mathematically represented by a “transition” and “emission” matrix

(Fig G.1).

Simply, the FSM-based seed scan works as follows (algorithm 8). Starting in the null

state (“−−−” in Fig G.1), we read in the bases from the reference database one-at-a-time.

As each base is read in, we move along the corresponding pathway from the initial state to

a new state. Each time the input base takes us along an emitting pathway (red pathways in

Fig G.1), we report a seed and continue. This procedure continues for the entire length of

the reference genome and results in a complete list of all seed locations within the reference.

Computationally, this procedure requires N lookups from the transition matrix and emission

matrix, where N is the length of the reference.
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Figure G.1: Finite state machine for seed finding. This example demonstrates a simple
case of a Mealy FSM for seed finding. In this example, our genetic alphabet is made up
only of A’s and T ’s, and we are using k-mers with k = 3. All 3-mers present in the query
sequence are added to the list of possible seeds. The state machine has a distinct state
(ovals) for each possible substring of the possible seeds ({−−−, A−−, T −−, AA−, AT−,
TA−}). Arrows show state-to-state transitions given that the next incoming base is an A or
a T . The Mealy FSM emits on transitions, rather than from states. When a state gains an
input that forms a completed seed, it emits a seed hit and returns to the initial blank state
(red lines). The entire machine can be concisely expressed using a transition and emission
matrix. The transition matrix summarizes which state an initial state will transition into
given a particular input. The emission matrix summarizes what seed hit is emitted from
each state given different inputs (red 3-mers) or if no seed is emitted (black “x”). Scanning
each base in the reference genome amounts to a single lookup from both the transition and
emission matrices.
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Algorithm 8 Mealy FSM seed scan. This example algorithm refers to the ssBLAST case
of bases as inputs, but works identically in the iiBLAST case of ionic currents as inputs.

1: Start with a query sequence Q, a reference database of known sequence R, and an
alphabet α of entries in Q and R . For ssBLAST, α = {A,C,G, T}

2: List: generate a list L of all k-mers existing in Q
3: Build: build a FSM comprised of

a transition matrix T where Ti,j is the output state resulting from input αj into state i
an emission matrix E where Ei,j is the emitted seed resulting from input αj into state i

4: Initialize: initialize variables prior to beginning scan
State S ← 1
Seed list Σ← zeros(1, length(R))

5: for i ∈ 1 : length(R) do
6: αin ← Ri

7: S ← TS,αin
8: Σ[i]← ES,αin
9: end for

10: Output: Σ is a final list of which seed (if any) was found at each position in the reference
R

G.2 Binning

To adapt the Mealy FSM seed scanning method (section G.1) to work with continuously

valued ionic current inputs, we binned the observed ionic currents, as discussed in section

4.4.2.

The binning was constructed based on the composition of the ionic current-to-sequence

model used in base calling. For the data used in this experiment, ONT used a k-mer model,

with k = 5, comprising 45 = 1024 distinct sequence states, each with an associated ionic

current. Given a number of bins Nbins (section G.4), the partitions between bins were chosen

so that each bin contained the same number of sequence states.

As mentioned in section 4.4.2, binning may seem a bad way of adapting our seed scanning

algorithm to work for continuously-valued inputs, given the overarching goal of this work

to avoid destroying information. Indeed, we tested an alternative, bin-free method of seed

scanning.

Briefly, this method also used a Mealy FSM, but with “fuzzy”, rather than deterministic,
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logic. The query is still binned to give a finite number of possible seeds and states, but the

input from the reference is kept as continuously-valued. As such, the instantaneous “state”

of the FSM is expressed not as a single state value but rather as a vector of the fractional

occupation of all possible states. Likewise, the “inputs” from the reference database are

vectors expressing the relative input contribution along the different alphabet elements.

Seeds are reported when the build-up occupation of an emission state exceeds some threshold

value. A simple example (Fig G.2) demonstrates this method for the case of continuously-

valued inputs between 0 and 1.

We ultimately decided against the fuzzy FSM method in favor of the deterministic, binned

standard FSM seed scan for two reasons. First, the fuzzy method failed to demonstrate

meaningful improvement over the binned method. It seems that for the purposes of finding

short, exact seed matches, binning does not appreciably diminish the information in the

signal. Indeed, in many cases seed finding was easier with the binned method, as in this case

we did not require tuning of the emission threshold parameter, which is strongly sensitive to

the seed size and the chosen discretization of the query signal.

Secondly, the fuzzy method is considerably more costly in terms of computation. Rather

than a simple lookup at each step in the scan of the database, the fuzzy method requires a

matrix multiplication, where an Nstates x Nstates size matrix multiplies the instantaneous state

vector in order to progress the scan by a step. For typical iiBLAST run parameters, Nstates is

well over 500, so this sort of matrix multiplication is quite cumbersome. Overall, as the fuzzy

method failed to improve performance while simultaneously increasing the computational

load, it was abandoned in favor of the binned approach.
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Figure G.2: Fuzzy FSM. This example presents the fuzzy FSM method for a short query
and a brief excerpt of a reference database. The query sequence is used to construct a
FSM comprising the possible states and inputs. However, inputs are now expressed as
continuously-valued numbers between 0 and 1. These inputs can be thought of as 2-vectors
with the two entries representing the “fraction” of the input along the 0 or 1 direction. For
example, an input = 0.75 is the 2-vector (0,1) = (.25, .75). The instantaneous state is now
expressed as an occupation vector of the fractional weight present in each of the possible
states (upper table). A similar emission vector is tracked (lower table) and a seed is reported
whenever a single component in the emission vector exceeds the emission threshold. In this
example, the emission threshold is 0.75, and the seed 000 is reported at the last step, in
response to the input sequence 0.125− 0− 0.
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G.3 Seed Extension

We use a non-standard seed extension method in both ssBLAST and iiBLAST in order to

cope with the high rate of insertions and deletions (indels) in nanopore sequencing data.

The main feature of our method is that we allow gapped alignments. In the simplest seed

extension method, each cell (i, j) in the growing alignment matrix can only be entered via

a step from cell (i − 1, j − 1), corresponding to stepping one location forward in both the

query and the reference. In our gapped alignment method [58], each cell can be entered

from several initial cells, with each different pathway in weighted by an associated transition

penalty (Fig G.3a). For each cell, all possible transition pathways in are scored, and the cell

is populated with the best of the several scores. This gapped alignment strategy is able to

handle the indels and poorly measured states common in nanopore reads.

The downside of the gapped alignment method is that it dramatically increases the

computational cost of the extension phase. Rather than a single calculation to fill each

cell as in the ungapped alignment method, we now require a calculation for each potential

path in. Furthermore, we must explore a larger swath of the alignment matrix, as the gapped

alignment makes more cells conceivably reachable.

To cope with the computational cost and prevent it becoming intractable, we use a

windowed extension method with a finite lookout distance. As the extension proceeds, at

each extension step a new row and column are added to the alignment matrix. Rather than

filling all of the newly added cells, the windowed method fills only those cells within a fixed

lookout distance of the best scoring cell in the previously added row and column (Fig G.3b).

This lookout cutoff prevents the computation time from blowing up as the extension gets long

and the corresponding alignment matrix gets large. Instead of each subsequent extension

adding linearly more cells to fill, the number of cells to fill now plateaus at a reasonable

value, allowing extension to proceed in a tolerable time. The same fundamental extension

algorithm (algorithm 9) extends seeds both to the right and the left, and is used for both

ssBLAST and iiBLAST.
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Figure G.3: Seed extension algorithm. (a) Method of gapped alignment. The gapped
alignment algorithm evaluates multiple possible transitions into a given cell. Here, M(1, 4) is
populated with the maximum score of 6 different potential transitions in. The A transition
is a hold, where the query position progresses, but the reference position stays constant.
The hold transition pays a penalty PH in addition to the match score of query entry 1 and
reference entry 4 (S(1, 4)). The B transition is a step, where both the query and reference
positions are incremented by 1. There is an associated penalty PS along with S(1, 4). The C
transition is a bad, where we decide to discard a query entry at the cost PB. This transition
avoids paying the match score S(1, 4) at the expense of the bad penalty PB. The D, E,
and F transitions are different size skips, where the reference position is incremented by a
larger amount than the query position. These transitions pay a base penalty PK to initiate
a skip, and an additional penalty PK+ to extend the skip, as well as the match score S(1, 4).
Ultimately, M(1, 4) is populated with the best scoring option. (b) Method of windowed
extension. The existing 5x5 alignment matrix (gray cells) is extended by adding a new row
and column. Of the newly added cells, only those within the lookout distance of the best
scoring cell in the outer rank of the 5x5 matrix (red cell, marked with star) are to be filled.
Red arrows show what constitute steps of distance 1. In the case of a lookout distance of 4,
the green cells would be filled while the white cells would be left unfilled.
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Algorithm 9 Extend seed to the right. A functionally identical algorithm is used to also

extend seeds to the left)

1: Assume there is a seed found at query position qi and reference position rj

2: Initialize variables

M ← [0] . alignment matrix

Sbest ← 0 . best score in M

Srank ← 0 . best score in outermost row/column of M

locbest ← (0, 0) . indices of Sbest

locrank ← (0, 0) . indices of Srank

q ← qi . current position in query

r ← ri . current position in reference

misses← 0 . counter for consecutive misses

STOP ← FALSE . flag to terminate alignment

3: while ∼ STOP do

4: if q > length(query) or r > length(reference) then . make sure we have not

overrun the end of the query or reference

5: STOP ← TRUE return Sbest, locbest

6: end if

7: Add new cells {(x, y)}new to M forming a new right-most row and new bottom-most

column.

8: for cell (x, y) ∈ {(x, y)}new do . check to see if the cell is within the lookout

distance from locrank

9: if distance((x, y), locrank) <= lookout then . for distance, see fig. G.3b

10: M(x, y)← max{all alignment paths in} . for paths in, see fig. G.3a

11: else

12: M(x, y)← −∞

13: end if

14: end for
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15: Srank ← max{M({x, y}new)} . update Srank with the best score of the newly filled
cells

16: locrank ← loc(Srank) . update locrank with the location of the best score of the newly
filled cells

17: if Srank < Sbest − Ttermination then . have fallen too far below best score, stop
extension

18: STOP ← TRUE return Sbest, locbest
19: else if Srank >= Sbest then . new best score, update and continue
20: Sbest ← Srank
21: locbest ← locrank
22: q ← q + 1
23: r ← r + 1
24: else . intermediate score, record miss and continue
25: misses← misses+ 1
26: if misses > missesmax then . have exceeded the maximum allowed consecutive

steps without improving alignment, stop extension
27: STOP ← TRUE return Sbest, locbest
28: end if
29: q ← q + 1
30: r ← r + 1
31: end if
32: end while
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G.4 Algorithm Parameters

For the validation experiment, we ran both iiBLAST and ssBLAST with fixed parameters.

These parameters gave satisfactory performance during pre-run trials, but were not exten-

sively optimized. A subset of 19 reads of variable read accuracy were aligned against the

reference viral database using a range of values for each of the run parameters. The parame-

ters producing the best performance for this trial set (in terms of number of reads aligned and

strength of alignment) were used for the full performance evaluation experiment. Although

it is likely that further fine-tuning of the parameters of both algorithms could moderately im-

prove performance, the alignment results were qualitatively similar within reasonable choices

of the run parameters. The final parameters we used are shown in table G.1. The parameters

work as follows.

1. Seed size (w0): number of bases (ssBLAST) or currents (iiBLAST) making up the

seeds for the first phase of the BLAST algorithm. Typically, BLAST operates with a

larger seed size (12 or 14 is common). However, since seeds are only found at exact

matches, seeds must be smaller for the low accuracy nanopore data. Setting the seed

size too small hurts run time as too many candidate seeds are found. See section G.5

for an in-depth discussion of this parameter.

2. Number of bins (Nbins): the number of bins used to discretize the currents for the seed

phase. Too many bins makes exact matches too rare, while too few can cause many

falsely matched seeds. There is a balance between Nbins and w0 which yields good

performance. Bins are chosen to partition the states in the sequence-to-current model

into evenly-populated bins.

3. Match penalty (pmatch): how much a base-to-base or current-to-current match is re-

warded (positive values) during the seed extension phase of the BLAST algorithm. In

the case of iiBLAST and its continuously valued signal, matches between two currents

i1 and i2 with variances σ2
i1 and σ2

i2 are scored as score = pmatch − i1−i2√
σ2
i1+σ2

i2

.
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4. Mismatch penalty (pmismatch): how much base-to-base mismatch is penalized (negative

values) during the seed extension phase. For iiBLAST, the scores are calculated as

a rescaling of the distance between the currents (see previous), so pmatch also sets

pmismatch and this second parameter is not needed.

5. Step penalty (pS): how much a forward step transition is penalized (negative values)

during seed extension (fig G.3a). A value of zero for the step penalty means that there

is no penalty for a step transition.

6. Skip penalty (pK): penalty for initiating a skip during seed extension (fig G.3a).

7. Skip extension penalty (pK+): penalty for extending an already-initiated skip during

seed extension (fig G.3a).

8. Bad penalty (pB): penalty to completely discard a measured state during seed extension

(fig G.3a). This is unimportant to the ssBLAST algorithm, as a measurement can

only ever simply mismatch with the reference and take the penalty pmismatch, which is

capped. However for iiBLAST, a measurement can in principle be arbitrarily far from

the reference. In this case, it is likely that the measurement was generated by some

other, non-DNA-tranlocation-related phenomenon and is not indicative of the target

DNA sequence. This pB allows for a work around against these nonsense measurements.

9. Hold penalty (phold): penalty to match a measured state to the same reference state as

the previous measurement was matched to during seed extension (fig G.3a).

10. Longest skip (Kmax): upper limit on the longest skip ahead allowed during seed ex-

tension. This parameter mainly works to improve run time, as calculating longer skips

adds computational requirements while the longer skips are only rarely the optimal

transition.

11. Lookout (L): sets the lookout window during the seed extension (fig G.3b).
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12. Max misses (Mmax): maximum number of consecutive seed extensions allowed while

failing to improve on the best alignment score before seed extension is terminated (see

algorithm 9). Improves run time by forcing the extension to end if it is not proving

productive.

13. Termination threshold (Tterm): how far the present alignment score during extension is

allowed to fall below the best score observed previously in extension before extension

is terminated. Improves run time by stopping extensions once they stop generating

better scores.

Parameter Name ssBLAST Value iiBLAST Value

seed size (w0) 7 7

number of bins (Nbins) N/A 8

match penalty (pmatch) 1 2

mismatch penalty (pmismatch) -1 N/A

step penalty (pS) 0 0

skip penalty (pK) -1 -3

skip extension penalty (pK+) -1 -1

bad penalty (pbad) -10 -5

hold penalty (phold) -10 -2.5

longest skip (Kmax) 4 4

lookout (L) 7 7

max misses (Mmax) 25 25

termination threshold (Tterm) -12.5 -7.5

Table G.1: Parameter values used in validation experiment
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G.5 Seed Size Parameter for Variable Read Lengths

The validation experiment was conducted using fixed length 100 base reads, rather than the

full length, several thousand base reads typical of nanopore sequencing data. As discussed

in the main text, the use of smaller reads provided a wider range of sample sequencing

accuracies over which to evaluate performance. Additionally, constant length reads were

important for the purposes of this validation for a second reason; we found that the run

parameters leading to good performance for both ssBLAST and iiBLAST were dependent

upon the query length.

Specifically, the seed size parameter must change for long or short read lengths. For

short reads, typical BLAST seed sizes of around 14 bases do not yield good results. This

is because error-prone sequencing is unlikely to yield 14 consecutive correctly called bases

within a short read. So, for shorter reads, a smaller seed size is necessary.

However, small seed sizes (i.e. 7) are not practical for longer read lengths. In this case, the

number of seed words existing within the query read approaches the total number of possible

seed words. The total number of unique seed words for a seed size w0 and an alphabet of size

d is given by N = dw0 . For ssBLAST, d is 4 (the alphabet is {A,C,G, T}) and for iiBLAST d

is equal to the number of bins used to partition the currents (Nbins). So, as our read lengths

grow into the thousands of bases (or currents), the list of seed words present in the read

becomes a significant fraction of the total possible seed words. For example, a random 5000

base sequence can be expected to contain 30% of all 7-letter seed words, meaning a seed

will be found at 30% of all positions in the reference genome. This density of found seeds

is clearly too high to be useful, and results in the BLAST algorithm effectively calculating a

complete Smith-Waterman gapped alignment against the reference genome.

Overall, the important parameter for variable-length reads providing good performance

is the ratio of seed words present in the read to the total number of possible seed words. This

ratio can be increased (reduced) by shortening (lengthening) the seed size w0 or by reducing

(increasing) the number of bins Nbins in the case of iiBLAST.
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Ultimately, the basic BLAST algorithm is not the best approach to error-prone nanpore

data [91, 92, 93, 94]. The best application of this work on current-to-current alignment will

be to integrate it into a nanopore-specific BLAST implementation. In such an integration,

the better identity from current-to-current comparisons will still improve alignments, while

the surrounding architecture should allow smoother application to typical nanopore data.
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Figure G.4: TPR and FPR variation with acceptance threshold. As the acceptance threshold
is tuned from low to high, both the TPR (green dashed line) and FPR (red solid line) fall
from 1 to 0. The FPR falls off faster than the TPR. We choose the BLAST operational
point to be the point where the FPR first reaches 0 (blue lines). The TPR at FPR = 0
(blue star) is the metric reported in section 4.6.

G.6 True Positive Rate at Zero False Positive Rate

The concept here is that we have the freedom to choose an acceptance threshold of alignment

scores at which we will mark an alignment as meaningful. If we turn this threshold too low,

we will simply accept all the candidates. At this operational point, we will keep all the true

positives (TPR → 1) but also keep all the false positives (FPR → 1). Conversely, if we

crank the threshold too high, we will reject all candidates. In this case, we will successfully

discard all the false positives (FPR → 0) but simultaneously discard all the true positves

(TPR → 0). If BLAST is generating useful results, the FPR should fall faster with an

increasing acceptance threshold than does the TPR, allowing us to find a point where the

FPR = 0 while the TPR is still nonzero (Fig G.4). This point is the metric reported in

section 4.6, Fig 4.6.

The performance metric of true positive rate provided zero false positive rate as a function

of read accuracy (section 4.6, Fig 4.6) was extracted from the receiver operating character-

istics of the iiBLAST and ssBLAST algorithms over sets of reads binned by accuracy. The
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aligned reads were binned by their sequencing accuracy into 10 bins each spanning a 4%

range in accuracy (i.e. 74− 78%). For each set of reads, we varied the acceptance threshold

(how good an alignment score is required to report a match) and plotted the resulting true

positive rate against the resulting false positive rate (fig G.5). True positive rate (TPR) was

calculated as TPR = TP
TP+FN

. False positive rate (FPR) was calculated as FPR = FP
FP+TN

.

TP is the total number of true positives, FN is the total number of false negatives, TN is

the total number of true negatives, and FP is the total number of false positives.

We extracted the TPR value corresponding to FPR = 0 for each set of accuracies to

quantify performance as a function of read accuracy. We looked specifically at this FPR = 0

point as this performance point best reflects the requirements of a typical BLAST-based

experiment. In a typical experiment, the reference database will contain almost exclusively

off-target genomes, meaning that we expect an overwhelming number of true negatives.

Consequently, even a miniscule FPR will lead to most matches being false positives. Thus,

a useful BLAST implementation must operate at FPR very close to 0 to generate useful

results.
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Figure G.5: Receiver operating characteristics for different read accuracies. The true
positive rate is plotted against the false positive rate for reads with accuracies from 86−90%
(a), 74 − 78% (b), 62 − 66% (c), and 50 − 54% (d). Red points show the performance
of ssBLAST, blue points show the performance of iiBLAST. The starred data points mark
the true positive rate at zero false positive rate. The dashed blue line and solid red line
connecting the data points are to guide the eye.
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G.7 Calculating Alignment P-Values

Alignment scores provide a relative ranking between alignments (higher scores are better),

but the actual value of the score is not inherently statistically meaningful. The value of the

alignment score is a function of the parameters used in the alignment algorithm and is not

comparable to any alignment generated using different parameters. For example, the scores

from iiBLAST and ssBLAST alignments cannot be directly compared, as alignment in the

two algorithms uses different score parameters.

To compare alignment quality across algorithms, we need to assign a statistical signif-

icance to the alignment based on the score. We can do this by comparing the candidate

alignment score against the distribution of scores observed for off-target alignments. We

expect off-target scores to increase with increasing size of the off-target genome, as a longer

genome provides more opportunities for a high scoring random alignment. Indeed, we observe

that off-target scores increase logarithmically with genome length (Fig G.6). We normalized

all off-target scores for genome length by shifting the scores along the logarithmic fit to the

length of the M13mp18 genome (7249 bp).

For all of the reads, we took the best alignment score to each off-target reference genome

and used the genome length correction function to bring all scores to the reference length of

M13mp18. This provides us an empirical distribution of scores for random alignments (Fig

G.7). We fit an extreme value distribution

f(s|µ, σ) = σ−1e( s−µ
σ

)e−e
(
s−µ
σ )

(G.1)

to the tail of the observed distribution for both iiBLAST and ssBLAST. Using this fit, we

can calculate the probability that a given alignment score s∗was generated by an alignment

of a random sequence to the reference genome by

prandom(s∗) =

∫ +∞

s∗

f(s|µ, σ)ds (G.2)
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Figure G.6: Length correction for alignment scores. For each off-target reference genome,
the mean best alignment score over all reads is plotted against the length of the genome in
nucleotides (black points). Both ssBLAST (a) and iiBLAST (b) scores show a logarithmic
dependence on the reference genome length (red line). The blue dashed line shows the
M13mp18 genome length. An alignment score to a differently sized genome (unfilled red star)
is shifted along the logarithmic fit (dashed red line) to a corrected score for the M13mp18
genome length (filled red star).
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where f is defined by eq G.1 and µ and σ are specific to the algorithm used to generate the

alignment.

This prandom is the p-value for the alignment, and can be interpreted as a statement about

how large of a reference database the read could be aligned against before a false positive

alignment would be likely to generate a better score. For example, a p-value of 10−4 means

that a random alignment to a 7249 bp reference genome will generate a better score once in

10000 times. Therefore, this read could be aligned against a database of 72.49 Mb before we

are likely to see a false positive outscoring the on-target alignment (eq G.3).

Sizedatabase =
SizeM13mp18

prandom
(G.3)
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Figure G.7: Converting alignment scores to p-values. A maximum likelihood fit matches
an extreme value distribution (red line, eq G.1) to the tail of the distribution of off-target
alignment scores (gray) for both ssBLAST (a) and iiBLAST (b). An alignment score s∗
is converted to a p-value by integrating the fit distribution from s∗ to +∞ (green shaded
region). Histograms are pdf-normalized and displayed on a log y-scale.
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Phase iiBLAST (sec) ssBLAST (sec)

Generate list of all seed words in the query 9.0 ∗ 10−4 3.9 ∗ 10−4

Build Mealy FSM for the seed search 0.23 0.034
Put currents into bins 0.0066 N/A

Scan database for seeds 0.45 20
Locate the found seeds in the query 0.058 0.19

Extend seeds into alignments 393.5 1787

Total 394 1807

Table G.2: Mean time spent per read (in seconds) during the various phases of the BLAST
algorithm

G.8 Computation Time

Over the 1977 reads aligned in this study, the mean run time for iiBLAST was 394 seconds

and the mean run time for ssBLAST was 1807 seconds. The improvement in run time for

iiBLAST over ssBLAST is attributable entirely to spending less time on seed extension.

In general, the seeds found during the scan phase were higher quality for iiBLAST than

ssBLAST, meaning that a lower percentage of the candidate seeds led to uninteresting final

alignments. So, ssBLAST spent much more time extending seeds into ultimately discarded

alignments. Overall, the extension phase makes up nearly all of the computational burden.

For iiBLAST, extension made up 99.8% of the total run time, with the next most costly

step being the scan phase at 0.1% of the total. For ssBLAST, extension was 98.9% of total

run time, with scanning taking up most of the reminder at 1.1%. The scanning phase was

somewhat slower for ssBLAST as more seeds were found, and the computational cost to

record a found seed was consequently larger than for iiBLAST. A complete accounting of

the average per-read time spent during the various phases of the BLAST algorithm can be

found in table G.2.


