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Physics

DNA contains the code of life, forming the molecular basis for all of life’s diversity. The past
several decades have witnessed remarkable progress in our ability to read and understand
life’s code through DNA sequencing. While fast and cheap DNA sequencing technologies
are revolutionizing both science and healthcare, a new generation of technologies capable of
single-molecule sequencing [[] promise to further revolutionize the field of DNA sequencing
by addressing many of limitations of the previous methods. Nanopore DNA sequencing is
one such emerging single-molecule sequencing technology, capable of long reads and direct
detection of epigenetically-relevant modified bases.

The basic nanopore sequencing devices consists of two wells filled with a conductive
electrolyte solution separated by an impermeable membrane containing a single nanometer-
size hole, or nanopore. A voltage applied across the membrane drives an ionic current
through the nanopore. DNA is negatively charged in solution and so will by drawn through
the pore by the voltage, blocking some of the ionic current. As the different nucleotides
along the DNA block the ionic current to different extents, the series of current fluctuations
in the recorded time series can be used to decode the sequence of the DNA molecule moving

through the pore. DNA motion through the pore is contolled using a DN A-processing motor

1Single-molecule sequencing means to read the sequence from a single copy of a target DNA molecule.
Previous sequencing technologies required making many copies of the target DNA prior to sequencing.



enzyme, which steps the DNA through in discrete steps slow enough to allow resolution of
the sequence-dependent flucutations in the ionic current.

Commercial nanopore sequencing devices have recently become available, making good
on the decades-long promise of this technology. However, despite considerable early success
and fanfare accompanying these first nanopore sequencers, technology development is not
complete. Particularly, the single-read de novo sequencing accuracy must be improved for
this technology to reach its full potential Pl In order to fully realize its promise, we must
both improve the accuracy of nanopore sequencing and devise better methods of handling
error-prone sequencing data.

In this dissertation, I discuss my work in the Gundlach nanopore lab at the University
of Washington towards the goals of improved nanopore sequencing accuracy and improved
application of existing error-prone sequencing data. In chapter[l], T introduce the broad field
of DNA sequencing. I cover the history of scientific interest in DNA and DNA sequencing
and provide motivation for DNA sequencing as a worthwhile pursuit both for its scientific
and medical merits. I also discuss previous and existing DNA sequencing technologies, as
well as the limitations of these technologies that motivate the developement of new methods
such as nanopore sequencing. In chapter [J] T describe and introduce nanopore sequencing,.
I summarize the development of nanopore sequencing technology, how various challenges
were overcome, and how currently available nanopore sequencing devices work, setting the
stage for understanding the primary error modes limiting the sequencing accuracy of this
technology. In chapter (3] in I present my work on improving nanopore sequencing accuracy
using a new method of DNA control for enzyme-actuated nanopore DNA sequencing. This
new method, in which we use a time-varying voltage to control DNA motion through the pore
in addition to a DNA-processing enzyme, is able to mitigate two of the primary error modes in

nanopore sequencing and dramatically improve sequencing accuracy. I discuss the motivation

2De novo sequencing means sequencing without the aid of any known reference sequence: a completely
unknown DNA molecule must be sequenced from scratch.



behind this new method, outline how we were able to realize nanopore sequencing using this
method, and demonstrate the improved sequencing accuracy it affords. In chapter [4] T shift
the discussion over to my work on improving the application of nanopore sequencing data.
Specifically, I introduce a method of aligning nanopore data that enables highly sensitive
and specific sequence alignment and species identification even for low accuracy reads. I go
over the motivation for this method, and present our findings of its improved performance
over alternative methods. Finally, I conclude in chapter [5| where I discuss the implications of
the demonstrated advances in the accuracy and application of nanopore sequencing, as well

as look out towards further progress that can be made in both arenas.
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GLOSSARY

ABASIC: Site on the DNA backbone where the nucleobase is absent.

ATP: Adenosine triphosphate. The substrate molecule used by Hel308 to generate the
energy needed to move along DNA.

AMINO ACID: The basic monomer building blocks of proteins.

BASE CALLING: The process of assigning a DNA sequence to an the signal generated by
a sequencing device.

CODON: A set of three bases that together code for an amino acid during protein syn-
thesis.

DE NOVO SEQUENCING: The task of sequencing DNA without reference to any informa-
tion other than that provided by the sequencing platform itself (no reference genome).

DNA: Deoxyrobonucleic acid. The moleucule forming the genetic basis of life.

DNAP: DNA polymerase. An enzyme (protein) that catalyzes the synthesis of a new,
complementary DNA strand from a single-stranded template.

DNA SEQUENCING: The process of reading the order of bases along a DNA molecule.

DNTP: Deoxynucleoside triphosphate. These molecules are the building blocks of DNA.

There are 4 types of dANTPs, one for each of the 4 canonical nucleobases. These are
denoted dATP, dCTP, dGTP, and dTTP.

DSDNA: Double stranded DNA.
ENZYME: A molecule that catalyzes a biological reaction.

EPIGENETICS: Heritable traits that do not arise from mutations in the DNA sequence.

x1



EXOME: The exome is the portion of the genome comprising the exons, which are the
sequences which are ultimately transcribed and translated into a gene’s final protein
product.

FLUOROPHORE: A molecule that can re-emit light of a specific spectrum upon excitation
by input light.

GENOME: The complete DNA sequence in a cell or organism.

HEL308: A DNA helicase used in our studies to step DNA through the nanopore in con-
trolled increments.

HELICASE: A motor enzyme that catalyzes the unwinding of double stranded DNA.
LIPID: A class of biological molecules with a hydrophobic tail and hydrophilic head.
K-MER: A DNA sequence k bases long.

MESSENGER RNA: mRNA. RNA molecules transcribed from genes, ultimately translated
into proteins.

MOTOR ENZYME: A class of enzymes that move along a nucleic acid track.

MSPA: Mycobacterium smegmatis porin A. A bacterial outer membrane protein with
properties well suited for nanopore DNA sequencing.

NGS: Next generation sequencing. Will be referred to as second generation sequencing
(SGS) throughout this work.

NUCLEOBASE: The bases along the DNA sugar-phosphate backbone that comprise the
DNA sequence.

NUCLEOTIDE: The structural unit of the DNA polymer. Consists of a nucleobase bound
to a sugar-phosphate backbone.

PCR: Polymerase Chain Reaction. A process used to exponentially amplify a DNA
molecule.

®29 DNAP: A DNA polymerase used in this work to step DNA through the pore

x1i



PROTEIN: A biological molecule comprised of amino acid building blocks, serving a wide
variety of biological functions. Proteins are synthesized from mRNA during translation.

PURINE: A two-ring nucleobase. Adenine (A) and guanine (G) are purines.

PYRIMIDINE: A single-ring nucleobase. Cytosine (C) and thymine (T) are pyrimidines.

RNA: Ribonucleic acid. A biological model, similar to DNA. RNA serves many functions
in the cell, but is primarily acts as an intermediary carrying the code from DNA to be

translated into proteins.

SANGER SEQUENCING: An early method of DNA sequencing that used inextensible ANTPs
along with gel electrophoresis to determine the sequence.

SBS: Sequencing by synthesis. A second generation sequencing technology that works by
monitoring the synthesis of a new DNA strand from the target DNA molecule.

SGS: Second generation sequencing. Any of a broad class of DNA sequencing technologies
that replaced Sanger sequencing in the mid 2000’s.

SSDNA: Single stranded DNA.

SVM: Support vector machine. A simple machine learning classifier that differentiates
between two categories by finding the plane best partitioning between labeled examples
of the two categories.

TRANSCRIPTION: The process whereby RNA is synthesized from a DNA template.

TRANSLATION: The process whereby a protein or polypeptide is synthesized from an
RNA template.

TRANSLOCASE: An enzyme that walks along a single stranded DNA track.
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Chapter 1
INTRODUCTION

1.1 Foundations

In 1952, the Hershey-Chase experiment [I] proved that deoxyribonucleic acid (DNA) carries
the genetic code of life. This discovery that a single molecule is responsible for encoding,
preserving, and propagating all of the information guiding the complexity of life is stunning.
Particularly, the existence of a centralized genetic code contained within a single-molecule
leads immediately to a tantalizing corollary: if we could determine the structure and compo-
sition of DNA, we could directly read and potentially understand the code of life. The next
goals were clear: understand the structure of DNA, find out how the genetic information is
encoded, then gain access to that information.

The first of these goals was achieved soon after. Only a year following the demonstration
that DNA encodes the genetic code, Watson and Crick, along with Franklin and Wilkins
[2] determined the structure of DNA (Fig [L.1)). Specifically, DNA is a long polymer made
up of two anti-parallel strands (termed “sense” and “antisense”) forming a double helix.
Each of the two strands is composed of an alternating sugar-phosphate backbone. The
strands have a directionality, with the 5’ end terminating in a phosphate and the the 3’ end
having a terminal hydroxyl group. The two strands run antiparallel to one another, with
the 5’ end of one corresponding with the 3’ end of the other. Each sugar binds to one of 4
canonical nucleobases: adenine (A), cytosine (C), guanine (G), or thymine (T). Hydrogen
bonds between complementary nucleobases bond the two strands together, with A forming
2 hydrogen bonds with T and G forming 3 hydrogen bonds with C.

Solving the structure of DNA revealed how information is encoded in the molecule. The



sugar-phosphate backbone is homogenenous over the long scales of the DNA molecule and so
serves only a structural role. The genetic information “payload” must then be carried by the
nucleobases. Namely, the code of life is “written” in the sequence of the nucleobases A, C,
G, and T from 5’ to 3’ along the backbone. The two strands are completely complementary:
an A, C, G, T in the sense strand is always accompanied by a T, G, C, or A in the antisense
strand. Thus, the double-stranded DNA molecule encodes two identical copies of the same
information. This apparent redundancy is critical to maintenance and replication of the
genetic code, wherein each of the two strands is individually used as a template to generate

a new copy of the DNA [3].

The understanding that genetic information is carried by the sequence of nucleobases
(“DNA sequence”) was expanded upon less than a decade later by work demonstrating that
sets of three bases (codons) correspond to specific amino acids—the building blocks of proteins
[4]. We now understand information flow in biology as occurring through the hierarchical
interactions of three key biopolymers: DNA, RNA, and protein [5]. This unifying biological
theory—termed the central dogma—states that DNA templates the transcription of ribonucleic
acid (RNA) molecules. RNA in turn guides the translation of the polypeptides which form
proteins—a versatile class of biomolecules which ultimately perform the myriad functions

crucial to life (Fig|1.2)).

The goal of understanding how the genetic information in DNA is decoded into RNA and
protein is far from complete. Both transcription (DNA into RNA) and translation (RNA
into proteins) form the basis of rich and complex fields of research. With regards to reading
the genetic code however, these early results and the basic formulation of the central dogma
painted a clear picture of where to go next. If the code of life is written in the sequence
of bases along DNA, then to read and ultimately understand the code, we must be able to

determine the DNA sequence.
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Figure 1.1: Structure of DNA. The basic unit of the DNA molecule is the nucleotide, com-
posed of a phosphate (yellow), sugar (orange), and nucleobase (red, blue, purple, or green).
Each of DNA’s two complementary strands is composed of a chain of these nucleotides,
with the alternating sugars and phosphates making up the polymer’s backbone. DNA’s two
strands have a directionality. The 5’ end terminates in a final phosphate group, and the 3’
end terminates in a final hydroxyl group. The four nucleobases Adenine (A, blue), Thymine
(T, red), Cytosine (C, purple), and Guanine (G, green) encode the biological information
stored in the DNA. Base pairing between complementary nucleobases across the two strands
holds the polymer together, with A pairing with T through 2 hydrogen bonds (gray dashed
lines) and C pairing with G through 3 hydrogen bonds. In its double stranded form, DNA
forms a double helix with a diameter of 2.4 nm and an inter-nucleotide spacing of 0.34 nm.
Single stranded DNA is not a double helix and is much more flexible. It is half the diameter
of dsDNA at 1.2 nm, and the nucleotides are spaced out to an inter-nucleotide spacing of
0.69 nm. This image is adapted from https://biologydictionary.net/dna/
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Figure 1.2: Biological information flow. DNA acts as the base repository of biological in-
formation. DNA templates the synthesis of new DNA during the process of replication.
Additionally, DNA templates the synthesis of RNA in the process of transcription. The
intermediary RNA then templates the synthesis of proteins in the process of translation.

1.2 Early DNA Sequencing

The goal of reading the sequence of nucleobases along a DNA molecule (DNA sequencing)
is a conceptually simple problem whose practical complexities and tremendous promise have
led to it occupying an enormous fraction of the scientific consciousness of the past several
decades. The obvious challenge in DNA sequencing lies in the scale of the molecule. The
bases along single stranded DNA (ssDNA) are spaced by only 0.69 nm along the backbone.
Furthermore, the chemical differences between the 4 bases are quite subtle. Particularly, the
single-ring pyrimidine bases C and T differ by only a few atoms from each other. The same

is true for the two-ring purine bases A and G.

In juxtaposition to the minuscule scale of the DNA bases is the enormous scale of the
entire polymer. Whole genomes can run from thousands (viruses) to millions (prokaryotes)
even to billions (eukaryotes) of bases. The human genome comprises over 3 billion base

pairs (Gbp), and would measure over a meter in length if stretched out end-to-end (double



stranded; over twice that if single stranded). The confluence of the small scale of the bases
making up the DNA sequence and the vast length of the entire sequence makes sequencing
an organism’s entire genome a daunting task.

It took nearly 25 years following the discovery of DNA’s structure for the first genome
to be sequenced [0]. the first completed genome was that of the ® X174 bacteriophage. The
®X-174 genome is modest in size (only 5386 bases), but its completion opened the door to
more ambitious sequencing projects. Notably, this first genome was sequenced using the first
broadly successful DNA sequencing technique, commonly known now as Sanger sequencing
after its inventor.

Sanger sequencing works by first making many copies of the DNA to be sequenced, all
starting at the same location in the genome (Fig . Each of these copies is then replicated
in vitro. During replication, a new copy of the initial DNA strand (template) is synthesized
by the successive incorporation of deoxynucleoside triphosphates (ANTPs, the building blocks
of DNA) by a DNA polymeraseﬂ (DNAP, an enzyme that catalyzes the synthesis of DNA).
A fraction of the dNTPs are chemically modified to be inextensible; that is, the DNAP is
unable to incorporate more dNTPs into the nascent copy strand following the incorporation
one of these modified dNTPs. These same inextensible dNTPs are additionally labeled
with a colored fluorescent molecule (fluorophore), with a separate color labeling each of
dATP, dCTP, dGTP, and dTTP. This process of in vitro replication with occasional random
incorporation of fluorescently-labeled inextensible dN'TPs results in a population of variable-
length nascent copies of the target DNA sequence. Each is labeled at its 3’ end with the
fluorophore corresponding to the final base incorporated. This DNA is run on an agarose

gel, which separates the strands by their length E| The target DNA can finally be sequenced

!The use of DNA-processing enzymes, such as DNA polymerases, has underpinned not only Sanger se-
quencing, but many more modern approaches as well. Both sequencing-by-synthesis and enzyme-actuated
nanopore sequencing use DNA-processing enzymes, as will be discussed later

2The above-described method is an amalgam of the several different implementations of Sanger sequencing

that have been used over the past decades. Older methods used four parallel reactions, one each for A, C,
G, and T termination and no fluorescent labels. Newer methods use capillary electrophoresis in place of
gels to allow more automated throughput.



by reading off the order of colors in the length-ordered DNA bands in the gel.

Sanger sequencing remained the state-of-the-art in DNA sequencing for nearly 40 years,
and is still used in certain applications. The Human Genome Project (HGP), begun in
1990 and completed in 2003 [7, §], relied heavily on Sanger sequencing to read the entire
3 Gbp human genome. Lasting over a decade and costing nearly $3 billion, the HGP was
an enormous undertaking and a resounding success. However, sequencing a single human
genome proved not to be the culmination of the goal of reading the genetic code, but rather
the starting point. The success of the HGP was a window into the enormous potential of
DNA sequencing as a tool for both clinicians and researchers. A new wave of ambitious
applications (section no longer seemed far-fetched.

However, despite its broad success, Sanger sequencing would not be sufficient to meet the
ambitious new goals of the DNA sequencing movement. High reagent costs, large require-
ments for input DNA necessitating in vivo DNA amplification, and the tedious difficulty of
running countless gels made Sanger sequencing costly and slow. While innovation driven
by the HGP had reduced Sanger sequencing costs more than 10-fold over the course of the
decade, estimates still placed the cost of sequencing a full human genome around $100 mil-
lion in 2001. An orders-of-magnitudes further cost reduction would be critical for DNA

sequencing to be clinically feasible for individuals and accessible to individual researchers.

1.3 Second Generation Sequencing

Following the completion of the Human Genome Project, the cost of DNA sequencing has
plummeted from nearly $100 million to just above $1000 over the course of about 15 years
(Fig . This precipitous drop has far outpaced Moore’s Law E] —long the gold standard
of technological innovation. The drop was driven by the advent of disruptive new technolo-

gies, a revolution commonly referred to as next generation sequencing (NGS). For clarity

3Moore’s Law states that the number of transistors per area on a chip will double every 18 months.
Commonly, this is interpreted and phrased as saying that computing costs will fall by half over this time
period. In general, it serves as a benchmark for rapid progress in technological development.
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Figure 1.3: Method of Sanger sequencing. Sanger sequencing of a target DNA strand (5'-
ACTGTA-3’) begins by making many copies of the target strand (amplification). The dupli-
cate copies are then replicated in vitro using a fraction of inextensible, fluoresently labeled
dNTPs. Some fraction of all the replicates will be terminated at each position along the
template. The terminated replicates are finally separated on a gel by their length. The flu-
orescence of the separated bands reveals the complementary sequence of the original target
strand. The final sequence can ultimately be read off as the complement of the fluorescently
decoded read.

going forward, T will refer to these technologies as second generation sequencing (SGS) to
differentiate them from the more modern approaches discussed later. SGS technologies were
able to massively parallelize the task of DNA sequencing, eliminate the need for gel-based
(or capillary-based) readouts, and reduce E] the sample size requirements on the input DNA.
Together, these achievements substantially reduced the time, cost, and effort required to do
DNA sequencing.

The method of sequencing-by-synthesis (SBS) underpins many of the most important SGS
technologies. SBS works by monitoring the activity of a DNA polymerase as it synthesizes
a copy of the target DNA strand. The target DNA molecule is amplified in vitro and many
identical copies of the target are fixed to a location on a flow cell (Fig . DNA polymerase
enzymes are then used to synthesize a complement to each copy of the target DNA in unison.
Nascent strand synthesis uses specially modified ANTPs. The dNTPs used are reversibly-
terminating (RT-dNTPs), meaning that their incorporation prevents further extension of the
nascent strand until the terminating moiety is removed by another chemical process referred
to as deblocking. Iteratively, one of the 4 types (A, C, G, or T) of RT-dNTPs is flushed
into the flow cell. The DNA polymerase incorporates the correct nucleotide into the nascent
strand, then is blocked from further incorporation. Incorporation is detected either optically

using fluorescently-labeled RT-dNTPs (as in Illumina sequencing) [9] or electronically by

4Though the input DNA requirements for SGS technologies still require polymerase chain reaction (PCR)
amplification, the scale of amplification is significantly reduced, and the need to amplify using bacterial
vectors has been largely deprecated.
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Figure 1.4: Cost per genome. The diamond data points and green line show how the
cost to sequence a single human genome has fallen since the completion of the human
genome project. The white line shows Moore’s law over the same period—costs falling by
half every 1.5 years. The cost per genome has dramatically outpaced Moore’s law for over
a decade, driven by disruptive advances in DNA sequencing technology. This image is
adapted from the National Institutes of Health, National Human Genome Research Insti-
tute, https://www.genome.gov/27541954 /dna-sequencing-costs-data,/
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detecting the release of HT ions accompanying dANTP addition (as in Ton Torrent sequencing)
[10]. Following incorporation, the deblocking agent is flowed through, allowing subsequent

further extension of the nascent strand.
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Figure 1.5: Sequencing by synthesis. Sequencing by synthesis starts by amplifying the target
DNA strand to form a clonal sequencing colony. In the extension step, fluorescently labeled
inextensible ANTPs are flowed in, and the template is extended via the incorporation of the
correct complementary base. The deblocking step then removes the inextensible end of the
incorporated nucleotide, allowing further extension. The extend/deblock cycle is repeated

until the entire complement has been synthesized and the entire strand sequenced.
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1.4 Applications of DNA Sequencing

A few burgeoning scientific and medical applications leveraging the modern power of second

generation DNA sequencing are discussed below.

1.4.1 Molecular Biology

Our ability to sequence DNA has revolutionized our understanding of the molecular basis of
life. We can now directly access the code governing cellular function. By sequencing DNA,
researchers can now read the genes that are transcribed into messenger RNA and ultimately
translated into proteins. Reading the sequence of genes allows researchers to understand

how genes are expressed, and how mutations change the overall function of the cell.

1.4.2  FEwvolutionary Biology

DNA sequencing has unsurprisingly proven to be a powerful tool for evolutionary biology—the
study of how organisms change over time and are related to one another. Comparing the
genomes of different species can reveal their shared evolutionary history and shed light on
relational questions beyond the reach of macroscopic analysis. Within species, comparative
sequencing of multiple individuals can be a tool to track evolution over faster time scales.
One such application is in the tracking of viral or bacterial pathogens during an outbreak
[T1] [12]. Fast, cheap DNA sequencing of the outbreak vector can monitor the spread of
the disease and track important evolutionary changes in the pathogen potentially leading to

drug resistance or difficulties in treatment [13].

1.4.3 Metagenomics

Metagenomics is a new field of scientific research enabled by the falling cost of DNA sequenc-
ing, focused on sequencing entire ecosystems rather than individuals or individual organisms.
Rather than reading the genetic material from a single individual, metagenomics studies se-

quence all the genetic material contained in an environmental sample. A large sample of
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material is collected from a given environment—for example, one study used 200 L of sea-
water [I4]. DNA from the multitudinous organisms present in the sample is extracted and
sequenced. The resulting sequencing data is then analyzed, providing profound insight into
the biodiversity present in the ecosystem. Such large-scale sequencing projects have already
revolutionized our understanding of ecosystems including the ocean [14] and the human mi-
crobiome [I5]. These types of studies have driven critical advances in fields including biofuels

research [10], environmental monitoring [I7], and agriculture [18].

1.4.4 Clinical Diagnosis

DNA sequencing is making it easier for clinicians to diagnose patients. Perhaps the simplest
case of clinical diagnosis using DNA sequencing is in the case of genetic diseases, where
DNA sequencing allows direct detection of the mutation(s) responsible for the disease. In
the future, it is possible that DNA editing technology will progress to the point where we
can not only identify genetic disorders, but also correct them.

In addition to the genetic diseases application, a metagenomics-style approach has proved
to be a powerful tool for pathogen detection and diagnosis of non-genetic illness. This type
of application extracts the DNA present in a sample from the blood or gut of a patient. By
sequencing the extracted DNA, we can determine the species present in the sample (viral,
bacterial, etc.) and from this determine the source of the observed illness as well as the best
way to treat it. This type of diagnosis could improve outcomes in cases such as sepsis. For
septic patients, each hour that diagnosis and the administration of effective antibiotics or
antimicrobials is delayed dramatically decreases the likelihood of survival [19] [20]. The fast
identification of the infectious organism through sequencing and the corresponding informed

administration of effective drugs would reduce sepsis mortality rates.

1.4.5 Personalized Medicine

The basic concept of personalized medicine—tailoring treatment to the unique circumstances

and needs of the patient, rather than following a one-size-fits-all standard of care procedure—
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is not new in and of itself. However, the advent of fast and affordable DNA sequencing has
revolutionized the scope and precision of personalized medicine. The presence or absence of
specific mutations can influence the range of likely outcomes for a given treatment plan. For
instance, a patient with mutation X; may be 90% likely to be cured by drug A, with a 5%
chance of adverse side effects. Conversely, a patient with a different mutation X5 may only
be 30% likely to be cured by the same drug, with a 50% chance of adverse side effects. By
sequencing in advance of treatment, the clinician would be able to know to prescribe drug A
to the first patient, but perhaps look instead for an alternative treatment plan for the second
patient. This type of approach has already proven effective in treatment of pancreatic [21],
promyelocytic leukemia [22], gastric [23], and non-small cell lung [24] cancers, amongst others
[25]. In general, by sequencing the specific gene(s) of interest of the patient—or even entire
exome or genome—clinicians can better predict the efficacy of various treatment plans prior

to beginning treatment and better tailor their approach on a patient-by-patient basis.

1.5 Limitations of Second Generation Sequencing

SGS technologies have brought us a long way toward understanding the code of life by
increasing the speed and decreasing the cost of DNA sequencing. The progress catalyzed
by SGS over the past decade continues to revolutionize science and health care. However
despite the substantial achievements of these technologies, they do not completely solve the

myriad challenges of DNA sequencing.

1.5.1 Cost and Speed

While SGS has made exponential progress in reducing the time and cost to sequence DNA,
progress in this arena has begun to plateau over the past several years (Fig as we
approach some fundamental limitations of these technologies.

In particular, the speed limitations of SGS technologies present a challenge to various

sequencing applications relying on fast time lines from taking a sample to getting an answer
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(sample-to-answer). The extend/deblock cycle is inherently slow ﬂ so it takes a long time
to sequence an individual clonal sequencing colony. As each individual read is slow, SGS
gains its speed through massive parallelization: taking many (millions or tens of millions)
reads simultaneously. This parallelization improves the overall average speed of these tech-
nologies in terms of base pairs sequenced per hour of run time. However, it is only a partial
workaround in terms of speedy sample-to-answer. The researcher or clinician must still wait
until the parallelized reading is complete before the sequencing data is available. Further
parallelization does not address the issue that a full SGS run takes a day or more. A new
technology seeking to improve sample-to-answer time lines would need to reduce the per-base

time for single reads.

1.5.2  Epigenetic Modifications

There is more information encoded in genomic DNA than just the order of the bases. Epi-
genetic factors are heritable changes outside of mutations in the DNA sequence that affect
biological function. A broad class of the epigenetic factors take the form of modifications
to the DNA bases. The presence or absence of modified bases such as 5-methylcytosine (a
methylated cytosine) at specific genome locations can influence gene regulation and expres-
sion, affecting the rate and manner in which certain genes are transcribed and ultimately
translated into proteins [26]. As such, the pattern of these epigenetically modified bases in
the genome has implications for cell differentiation and life cycle [27], as well as cancer and
other diseases [28] [29] [30].

Despite their importance, these epigenetically modified bases can not be directly detected
by SGS technologies. The process of amplifying the target DNA molecule does not preserve
modified bases present in the original DNA-all copies will be entirely unmodified. There
exist a suite of methods to indirectly detect modified bases using SGS, but all of these

SEven ignoring the hours required for colony formation, each base incorporation cycle takes ~10 minutes

in an Illumina sequencing device, meaning a 200 base read requires over a full day to run. A detailed
breakdown of Illumina runtimes can be found at https://support.illumina.com/bulletins/2017/02/run-
time-estimates-for-each-sequencing-step-on-illumina-sequenci.html
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methods have drawbacks in cost, speed, and/or accuracy [31] [32] [33]. A technology capable
of reading native DNA-without the need for amplification—would potentially be able to
directly detect these epigenetically-relevant modified bases and open a new dimension of

sequencing information.

1.5.3 Read Length

In addition to destroying epigenetic information, the DNA amplification requirement of all
SGS methods limits the read lengths possible using these technologies. To generate a good
signal, sequencing by synthesis relies on the clonal population being “in-phase”: the same
(correct) ANTP being incorporated into all members of the colony during each cycle of
extension/deblocking. However, the DNA polymerase incorporating the dNTPs is error
prone and occasionally fails to incorporate a nucleotide when it should, or incorporates an
extra nucleotide when it should not. During each extension cycle, some fraction of the clonal
population will experience an error, becoming “de-phased”. Each successive cycle will see
more and more members of the colony become de-phased and the signal will deteriorate.
Eventually, there will be too few in-phase incorporations to generate a useful sequencing
signal.

If the DNAP makes errors at some rate E] e, after n cycles only (1 — €)" of the colony
members will still be in-phase. If the sequencing device requires some fraction F of the
colony members to be in-phase in order to generate accurate results, the maximum possible
read length L is given by

L =log,_ . F (1.1)

Even for generous estimates of F = 0.25 (only requiring 25% of clones to be in-phase) and
e = 0.005 (DNAP only making 1 error in 200 tries), the maximum possible read length L is
only 276 bases. Typical SGS reads are limited to ~200 bases [}

6In this dissertation, I use the term error rate to refer to the per-base probability of a sequencing error.

TA summary of read length capabilities and other statistics for various Illumina sequencing devices can
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Short read lengths make the task of whole genome sequencing difficult or even impossible.
In order to reconstruct a DNA sequence (i.e. an entire genome) longer than a sequencer’s
read length, separate shorter reads of sections of the sequence must be stitched together.
Reads can be stitched together based on their overlapping stretches [34] but this can be
computationally difficult. Take the case of reconstructing a human genome using 200 base
SGS reads: the 3 billion base human genome would require tens of millions of these short
reads to cover its entire length. Finding the correct way to overlap and stitch together these
tens of millions of reads to reconstruct the entire genome is difficult, slow, and potentially
error prone.

Particularly, short reads are ill-suited for correctly sequencing repetitive sections of the
genome. Large stretches of the human genome (and those of other eukaryotes) are composed
of stretches of adjacent or interleaved copies of some DNA sequence [35]. These repetitive
sequence motifs cannot be correctly reconstructed unless the read length is longer than the
repeated sequence (Fig . Consequently, there are sections of the human genome (and
other genomes) that are impossible to correctly reconstruct using short read sequencing
technologies. A technology capable of long read lengths would reduce the computational
cost of sequence reconstruction and allow us access the true sequence of difficult repetitive
sections. Such a technology must not rely on the in-phase signal of many copies of the target

molecule.

1.6 Third Generation Sequencing

A new generation of sequencing technologies is now emerging, seeking to address the various
limitations of SGS. This “third generation” of sequencers is moving away from the massively
parallelized sequencing-by-synthesis approaches used in SGS. Instead, these new technologies
aim to achieve single-molecule sequencing: reading the sequence of a target DNA strand using

only a single unamplified copy. A single-molecule sequencing technology would not require

be found at https://www.illumina.com/systems/sequencing-platforms.html
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true sequence: GCCATCEATECATCTT

short reads GCC
CCA

GCC CAT
CCA CAT ATG ATG

TGT TGC
ATG TGC TGC
TGC GCA GCA

ATG
overlap reads TGT
reconstructed sequence: GCCATGERATETT

Figure 1.6: Genome reconstruction. In this example, the true DNA sequence has 3 repeats
of a 4 base motif (red, blue, green highlights). If this DNA were sequenced using a sequencer
with read length of 3, we would get a set of short reads covering the sequence. Stitching
together these short reads based on their overlap would yield a final reconstructed sequence
with only two copies of the repeated 4 base motif (red, blue highlights). The reconstructed
sequence has lost a repeat relative to the true sequence.
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DNA amplification and would therefore avoid many of the issues limiting SGS methods.
First, avoiding amplification would improve cost and speed by eliminating the time and
reagents required to amplify DNA. Furthermore, sequencing single molecules of native DNA
could allow us to detect the epigenetic modifications otherwise lost during the amplification
process. Finally, a single-molecule sequencing method would not rely on the in-phase signal
of a clonal cluster and so would have no intrinsic limit on the read length.

My work in the Gundlach lab has focused on developing, improving, and applying one
particularly promising third generation, single-molecule sequencing technology: nanopore

DNA sequencing. In chapter [2| I introduce and describe nanopore sequencing technology.
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Chapter 2

NANOPORE DNA SEQUENCING

Chapter [1] discussed second generation DNA sequencing technologies, and outlined their
primary limitations. It also suggested that a single-molecule sequencing technology could
address many of these limitations. In this chapter, I will go into depth on nanopore DNA
sequencing, an emerging single-molecule sequencing technology with the potential to ad-
dress many of the problems with existing sequencing methods. First proposed in 1996 [36],
nanopore sequencing has overcome numerous hurdles over the past two decades en route to
becoming a fully realized DNA sequencing technology. I will review the progress of nanpore
sequencing as it has progressed from idea to reality, outline the challenges already overcome,

and discuss the remaining challenges I hope to address in this work.

2.1 Basic Concept

The basic nanopore sequencing device consists of two wells separated by an impermeable
membrane (Fig[2.1p). The two wells, termed cis and trans, are each filled with a buffered,
conductive electrolyte solution (e.g. potassium chloride, KCI1). A single nanometer-scale pore
in the membrane—called the nanopore—provides the sole conductive pathway between the two
wells. When a voltage is applied across the membrane, an ionic current flows through the
nanopore. DNA molecules, which are poly-negatively charged in solution, are drawn into
and through the pore by the voltage, moving from cis to trans. While passing through
the pore, the DNA partially blocks the ionic current flow. Specifically, the extent of the
ionic current blockage is primarily influenced by the nucleotides present within the pore’s
narrowest region, or constriction. The fundamental idea underpinning nanpore sequencing is

that the different chemical characteristics of the nucleotides would cause different nucleotides
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to block different amounts of the ionic current (Fig[2.1p). By measuring the fluctuations in
the ionic current during DNA translocation through the pore, we could read off the sequence

of nucleotides as the DNA moves through.

A nanopore sequencing device as described above would have the potential to address
several of the limitations of SGS [37]. Such a device would sequence DNA by measuring a
single copy of the target DNA strand, and so would have no intrinsic limitation to its read
length. Additionally, this device would sequence DNA by sensing the chemical differences
between the 4 nucleobases; a device sensitive to these differences should also be able to
detect the chemical differences characterizing epigenetically-relevant modified bases such as
5-methyleytosine. Finally, DNA translocation through the nanopore could proceed much
faster than the extend/deblock cycle of SBS, allowing much faster speeds for individual

reads and enabling dramatically improved sample-to-answer time lines.

2.2 Choosing a Nanopore

The first key ingredient in a functioning nanopore sequencing device is the nanopore itself.
In order to actually sequence the DNA, the nanopore in the sequencing device must have
certain crucial features. The first requirement is that the nanopore have the correct dimen-
sions to sense the subtle chemical differences between the nucleotides along DNA. Ideally,
the nanopore would have a single narrow region approximately the dimensions of a single
nucleotide of ssDNA: just over 1 nm in diameter, and less than 1 nm in height. The nanopore
must also be atomically reproducible. A robust sequencing platform must measure the same
signal for the same DNA sequence on different devices on different days. Even subtle dif-
ferences between the nanopores in different devices would lead to each device producing a
different signal for the same DNA sequence, rendering consistent DNA sequencing difficult.
Various different nanopores have been explored as potential candidates for sequencing. The
candidates can be easily categorized into two main types: solid state nanopores and biological

protein nanpores.
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Figure 2.1: Basic nanopore sequencing scheme (a) Cross-sectional view of a simplified
nanopore sequencing device. An impermeable membrane separates the cis and trans wells,
with a single nanopore providing a conductive pathway across the membrane. We apply
a voltage across the membrane and measure the ionic current through the pore as DNA
moves through from cis to trans. (b) Idealized nanopore sequencing data. In a function-
ing nanopore sequencing device, the observed signal may be as follows. The open pore (no
translocating DNA) displays a high characteristic open pore current. Once DNA enters
the pore, the ionic current drops. The nucleotide-by-nucleotide translocation of the DNA
through the pore results in a series of different ionic current values as the different nucleotides
block the ionic current to different extents. In the simplest case, we may observe exactly 4
distinct current values—one for each of the 4 nucleotides. The DNA sequence could then be
decoded from the series of observed current values, in this case A-T-C-G.
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2.2.1 Solid State Nanopores

Solid state nanopores are man-made pores formed by drilling a small hole through a thin ma-
terial such as silicon nitride, molybdenum disulfide, or graphene [38|, [39] 140} 41}, (42| [43] . This
type of nanopore offers several advantages. The membranes in which solid state pores are
drilled are quite strong, and so can be long-lasting under the constant application of voltage.
Additionally, their fabrication lends itself well to massive parallelization and integration into
a commercial sequencing device. However, modern nanofabrication techniques are not yet
capable of achieving the scale and consistency required to produce good solid state pores for
DNA sequencing. Without the ability to reliably fabricate nanopores small enough to probe
DNA and with atomically consistent features, DNA sequencing using solid state nanopores
is not yet realistic. However, their considerable long term advantages in robustness and ease
of large-scale fabrication and parallelization make them an exciting avenue for continued

research.

2.2.2  DBiological Protein Nanopores

Another type of nanopore harnesses nature’s fabrication prowess in lieu of relying on man-
made pores. There exist a broad class of biological protein pores: naturally occurring
biomolecules that form small pores in cell membranes. Many of these protein pores bio-
logically function as ion channels, allowing and regulating the flow of ions into and out of a
cell. The immediate advantage of using a protein nanopore to sequence DNA is their atomic
reproducibility. Nature requires that each copy of a protein be atomically identical to each
other copy—without this property, life could not exist! By using protein pores to sequence
DNA, we can make use of billions of years of advances in precision fabrication and quality
control that we can not yet replicate in our own nanofabrication methods.

Biological protein nanopores are not without their drawbacks. These pores form channels

within lipid bilayer membranes[[], which are far less stable over long time periods and under

'Lipid bilayer membranes are synthetic cell membranes. They are composed of two oppositely-oriented
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sustained voltage than solid state membranes. The process of establishing a single protein
pore in a lipid bilayer membrane H is not as easily parallelized as the fabrication of solid
state nanopores. Finally, protein pores do not afford the customizability available in solid
state pores. As we are borrowing from nature’s design by using biological protein pores, we
can’t design the pore structure from scratch and must instead hope to find a suitable pore
for DNA sequencing within the catalog of existing proteins. The burgeoning field of de novo
protein designﬁ could to some day allow us to make our own entries in the catalog of available
protein pores and design from scratch our ideal protein nanopore for sequencing [44]. For
now however, both the nanofabrication techniques needed for sequencing-capable solid state
pores and the de novo protein design techniques needed for usable synthetic protein pores are
a ways away. Without the ability to create our own custom nanopores for DNA sequencing,

we must hope to discover a suitable nanopore already existing in nature.

Much of the pioneering work in developing nanopore sequencing was done using the a-
hemolysin nanopore (aHL, Fig[2.2h), a pore-forming protein toxin secreted by the bacteria
Staphylococcus aureus. Early nanopore sequencing work using aHL showed that DNA could
indeed translocate through the pore when driven by a voltage, and that these translocations
could be detected [36]. Later work in which DNA was held statically within the oHL pore
showed that the DNA sequence had a measurable effect on the on the current through
the pore [45] and even showed that cytosine and 5-methylcytosine could be distinguished
from each other [46]. However, nanopore sequencing using oHL would ultimately prove

difficult as its long constriction (Fig [2.2a) is simultaneously sensitive to many bases along

monolayers of lipid molecules. Lipids are composed of a hydrophilic head group and a hydrophobic tail. In
aqueous solution, the lipid molecules will arrange themselves into a bilayer to as to bring the head groups
in contact with water while shielding the tails.

2Protein pores will spontaneously insert themselves into a lipid bilayer. However, insertion is a random

process. To isolate a single channel, the user must recognize the characteristic jump in conductance
associated with a single pore insertion, then flush out all additional pores present in solution prior to
a second insertion. In a massively parallelized nanopore sequencing device, the fraction of wells with a
working single channel insertion will be poisson limited.

3In de novo protein design, researchers “write” a protein from scratch, customizing the sequence of amino
acids in order to achieve an objective functionality.
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Figure 2.2: oHL and MspA. Both (a) the oHL pore from Staphylococcus aureus and (b) the
MspA pore from Mycobacterium smegmatis have both been used for nanopore sequencing.
The main advantage of MspA over aHL is its single short constriction, in contrast to the
long uniform constriction of aHL. The space-filling representations of the two pores’ crystal
structures are shown here. This figure has been modified from [48]. Colors correspond to
amino-acid classes: negatively charged amino acids are shown in blue, positively charged
shown in red, polar are shown in purple, non-polar aromatic are in orange, and non-polar
aliphatic are in yellow.

the translocating DNA [47]. A pore with a shorter constriction would need to be found to

make nanopore sequencing a reality.

2.2.8  Mycobacterium smegmatis porin A

In 2008, my research group pioneered the use of a new protein pore for nanopore sequencing;:
Mycobacterium smegmatis porin A (MspA, Fig [2.2b) [49, 48]. MspA is an octomeric mem-
brane protein from the Mycobacterium smegmatis bacterium. Compared to aHL, MspA has
a much shorter constriction (Fig . Particularly, MspA has a single narrow constriction

only ~1.2 nm in diameter at its narrowest point and only ~0.6 nm in height, making it
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ideally suited to probe single nucleotides of ssDNA [[] Despite this ideal geometry, naturally-
occuring (“wild type”) MspA was not immediately suited for to DNA sequencing. The
presence of negatively-charged aspartic acid residues in the constriction prevented ssDNA
from translocating through MspA. However, by mutating the negatively charged residues
in the constriction to neutral asparagines, DNA translocation through mutant MspA was
achieved [48]. Further mutagenesis continued to optimize MspA for DNA sequencing ap-
plications by increasing the capture rate of ssDNA into the pore ﬂ Now armed with an
atomically reproducible nanopore capable of translocating ssDNA and with the correct ge-
ometry to probe single nucleotides, the stage was set to begin characterizing the ionic current

signal of ssDNA moving through MspA.

2.3 Controlling DNA Translocation

Free ssDNA moves through MspA at around 2-10 nucleotides per us [48]. At such a high rate
of translocation, it is not possible to resolve the sequence-dependent ionic current fluctuations
caused by the various nucleotides and actually sequence the DNA Fj A method to slow down

DNA motion through the nanopore is required if we are to sequence DNA.

Once again, nature provided a solution. In collaborative work between the nanopore
group here at the University of Washington and researchers at UC Santa Cruz, a DNA-
processing enzyme was used to control DNA motion through a nanopore [51] [52]. This first
demonstration of enzyme-actuated nanopore DNA sequencing used the 29 DNA polymerase

enzyme (®29 DNAP) as a molecular motor to move DNA through the pore in stochastic,

4ssDNA (section i is 1.2 nm in diameter, with an inter-nucleotide spacing of 0.69 nm

5The final mutant MspA used for DNA sequencing in our lab has a total of 6 point mutations rela-
tive to wild type MspA: D9ON/D9IN/D93N/D118R/E139K/D134R. D denotes aspartic acid (negatively
charged), N denotes asparagine (neutral), R denotes arginine (positively charged), E denotes glutamic acid
(negatively charged), and K denotes lysine (positively charged).

6Some researchers are working on developing advanced electronics with sufficiently high bandwidth and
low noise to sequence freely translocating DNA [50]. However, substantial further research is required
before such an approach will be feasible.
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discrete, single-nucleotide stepsm (Fig ) With DNA controlled by ®29 DNAP, the ionic
current signal displays a series of distinct states each characterized by a well-defined mean
(Fig [2.3b). Transitions between states are caused by single-nucleotide steps by the ®29
DNAP. The state durations are a product of the stochastic stepping behavior of the motor
protein and are not indicative of the translocating DNA sequence ﬁ The ionic current time
series data is optimally partitioned into distinct states using a maximum-likelihood-based
change point detection algorithm (appendix and the duration information is discarded.
This reduces the nanopore signal to a series of sequential mean ionic current values which

will ultimately be used to sequence the DNA.

Repeated measurements of the same DNA sequence translocating through MspA under
the control of ®29 DNAP show a reproducible pattern of ionic current states (Fig [2.3¢).
As the motor enzyme takes one step per nucleotide, we observe one ionic current state per
nucleotide in the target DNA. Aligning the known DNA sequence with the observed states,
we see that certain sequence motifs correlate with specific patterns in the ionic current.
Notably, thymine tends to cause lower currents, adenine higher currents, and the abasic site

results in high currents not observed for any of the 4 nucleobases.

With the demonstration of enzyme-controlled motion of DNA through MspA, all the
components necessary for functional nanopore sequencing were present. The MspA nanopore
provides the proper geometry to sense the chemical differences of single nucleotides, and the
atomistic consistence for reproducible measurements of the same DNA sequence. Concur-

rently, the motor protein controls DNA translocation to proceed slow enough to resolve the

"The 29 DNAP was used in two different modes in this work. In the first mode, termed “stripping”, ®29
DNAP was used as a physical brake, slowly lowering ssDNA through the pore as it stripped through the
upstream duplexed DNA from 5’ to 3’. The second mode, termed “synthesis”, had $29 DNAP working
as a polymerase, pulling ssDNA up out of the pore as it polymerased a complement to the template DNA
strand being sequenced.

8 Although not useful for DNA sequencing, there is rich scientific information in the state durations as to
the chemical kinetics of the motor protein. The detailed study of this information has been the subject
of extensive parallel research within the Gundlach nanopore lab, and is the foundation for the burgeoning
single-molecule biophysics tool “Single-molecule Picometer Resolution Nanopore Tweezers”, or SPRNT
53, 54 [55].
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nucleotide-by-nucleotide fluctuations in the ionic current caused by the chemical differences
between the bases. Together, the motor enzyme and nanopore form a system that generates
reproducible ionic current signals with the single-nucleotide resolution necessary to sequence
DNA. The final remaining hurdle to realizing the goal of nanopore sequencing was to deter-
mine the relationship between the observed ionic current states and the translocating DNA

sequence []
2.4 Relating Ionic Current with DNA Sequence

To sequence DNA using a nanopore, we must have a way of decoding an observed ionic
current signal into an inferred DN Asequence. In the idealized version of nanopore sequencing
data (Fig [2.1p), this decoding was simple: each observed ionic current state was influenced
by only one base, and each base had a unique and well-differentiated H mean ionic current
value. Measurement of enzyme-controlled DNA translocation would result in a series of ionic
current states, each with one of four distinct values corresponding to the 4 bases A, C, G,
and T. DNA sequencing would simply amount to reading off the order of the 4 different
current states as the 4 different bases.

As it turns out, decoding ionic current into DNA sequence is not as simple as for the
idealized model. The ionic current signal of translocating DNA exhibits far more than 4
distinct mean values (Fig[2.3c). The abundance of distinct ionic current values is caused by
more than one base influencing each state. In order to determine the sensitivity of each ionic
current state to the translocating DNA sequence, my predecessors in the Gundlach nanopore
lab conducted the following experiment. They measured the ionic current states of a DNA

sequence consisting of consecutive tri-nucleotide ‘CAT’ repeats (5'-CATCAT...CATCAT3’)

9There exist other proposed methods of nanopore DNA sequencing than enzyme-actuated nanopore se-

quencing (sometimes termed nanopore strand sequencing). Methods such as nanopore sequencing by
synthesis [56] are actively under development. However, enzyme-actuated nanopore sequencing is the
most fully realized approach and the only technology that is commercially available. It will be the sole
focus of the remainder of this dissertation.

10Tp this case, “well-differentiated” means that the mean ionic current state for each base was significantly
removed from the means of the other bases when accounting for noise.
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Figure 2.3: Enzyme-actuated nanopore sequencing. (a) In an enzyme-actuated nanopore
sequencing experiment, a $29 DNAP enzyme (red) controls the motion of DNA (purple)
through MspA (yellow). Here the enzyme acts as a physical brake, slowly stripping from 5’
to 3’ through the upstream dsDNA as the voltage pulls the ssDNA through the pore. (b) In
the raw current time series data, we see a series of distinct ion current states separated by
abrupt transitions caused by enzyme steps. The raw data (downsampled to 5 kHz) is shown
in gray. The black lines show the mean currents for the states found by the change point
detection algorithm. (c) Repeated enzyme-controlled DNA translocation events of the same
DNA sequence show a reprodicible pattern of ionic current states. Blue lines the stacked
current states for N = 86 different measurements of the same DNA sequence. The generating
DNA sequence is aligned above; the “X” represents an abasic site along the strand. The
black line shows the overall mean ionic current at each state, with error bars showing the
standard deviation of the various measurements of that state.
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with a single T—G substitution in the middle of the sequence. The goal was to observe how
a single base substitution in a repeating background would influence the observed pattern of

ionic currents.

The repeating tri-nucleotide sequence generated a repeating series of three ionic current
values (Fig [2.4). This pattern was interrupted at the location of the substitution, where
the 4 states nearest the substitution all diverged from repeating pattern. Particularly, the
two states directly adjacent to the substitution showed the largest change relative to the
repeating background, with smaller yet still significant changes observed for the two more
distant states. This observation indicated that each base influences 4 separate ionic current
states. Each base has its strongest effect on the ionic current for the two states during which
it is nearest the pore’s constriction, then continues to influence the ionic current less strongly
at positions farther away from the constriction (either upstream towards cisor downstream
towards trans). We can consider that if each base influences 4 states, each state is influenced
by 4 bases. Consequently, each observed ionic current state is representative of the 4 base
combination-termed 4-mer [T|-centered in MspA'’s constriction for the duration of the state.

MspA’s multi-base sensitivity is not a product of its geometry but rather of the thermal
nature of the nanopore sequencing system. Indeed, MspA’s constriction is sufficiently narrow
so that only a single base will reside within the pore’s high sensitivity region at a given
instant. However, DNA is not static within the nanopore throughout the duration of each
state. Rather, the elastic DNA molecule is in constant thermal motion, rapidly repositioning
itself relative to the pore’s constriction [57]. This thermal motion occurs on a time scale
of nanoseconds—orders of magnitude faster than the discrete stepping behavior of the motor
enzyme H Consequently, the mean ionic current observed for each state is not characteristic

of a single point along the DNA molecule, but is instead a time-averaging of the effects of the

U Throughout this dissertation, strings of k bases are referred to as k-mers.

12The motor protein stepping rate depends on various factors, including the choice of enzyme to use as the
motor protein and the concentration of necessary substrate molecules in the electrolyte solution. Typical
stepping rates however are on the scale of ~10-20 Hz. For a more detailed discussion of our experimental
operating conditions and of enzyme behavior in these conditions, see appendix E}
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Figure 2.4: MspA sensitivity. (a) An example ®29 DNAP-controlled DNA translocation
event of a repeating 5-CAT-3" DNA sequence, interrupted by a single T—G substitution
midway through the sequence. The measured ionic current (downsampled to 500 Hz) is
shown in red, with the states found by the change point algorithm shown in black lines
at their mean ionic current values. Asterisks mark enzyme missteps (section ; states
caused by missteps are not included in the extracted data below. (b) The extracted mean
ionic current states from (a) are plotted with the associated DNA sequence (from 3’ to 5)
aligned below. The repeating 3 base DNA sequence generates a repeating pattern of 3 ionic
current states (blue bars), which is interrupted at the site of the T—G substitution. At
the substitution site, 4 consecutive states have significantly different means relative to the
repeating pattern (highlighted in red). The 2 states (15 and 16) nearest the substitution
show the largest change, and the two further states (14 and 17) show a smaller change. This
figure has been modified from [51].
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various positions along the DNA that transiently occupy the pore’s constriction as a result
of the rapid thermal motion. The mean ionic current for each state is thus influenced by
the several bases nearest the pore’s constriction for the duration of the state, each of which
transiently occupy the pore’s high sensitivity region. The bases nearest the constriction will
spend the most time centered in the sensing region and thus have the largest influence on
the observed ionic current, with the more distant bases spending less time there and having

a more modest effect on the measurement.

2.5 Sequencing with 4-mers

In 2014, my research group successfully demonstrated enzyme-actuated nanopore DNA se-
quencing using the MspA nanopore[58]. The multi-base sensitivity of this system does
not mean that enzyme-actuated nanopore sequencing using MspA cannot sequence DNA
with single-nucleotide resolution. Indeed, the same substitution experiment demonstrat-
ing MspA’s multi-base sensitivity equivalently shows this system’s exquisite sensitivity to
individual bases: a single base substitution generates a significant signal (Fig .

The task of sequencing DNA with this system is to decode the DNA sequence most
likely to have generated an observed series of ionic current states. This decoding requires
some model relating DNA sequence to ionic currentGiven with the understanding that each
observed ionic current state is influenced by the 4 bases nearest the pore’s constriction,
a 4-mer model mapping ionic currents to DNA sequence is a natural choice for the ionic
current-to-DNA sequence model. In this 4-mer model, each 4 base combination will map
to a characteristic mean ionic current. The model is described by a map of the 4* = 256
possible 4-mers E to the ionic currents typically observed when they are in the pore.

Laszlo et al. generated a 4-mer model by measuring the typical ionic currents for all 256 4-
mers, using reads of known DNA sequence. They found that the 4-mer model was predictive

for new sequences. Given an unmeasured DNA sequence, the model could be used to predict

13In general, a k-mer model will comprise 4¢ possible k-mers, as any of the 4 bases A, C, G, or T can
occupy each of the k positions in the k-length “word”.
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Figure 2.5: Predictive power of the 4-mer model. (a) The 4-mer model is used here to
predict the ionic current states (blue) that would be observed for a previously unmeasured
DNA sequence (error bars show standard deviation, DNA sequence is aligned below). The
ionic currents measured for this DNA sequence (black) compare well with the 4-mer model
prediction. (b) The predicted and measured ionic currents are in good agreement throughout
the sequence, and in most cases differ by less than 2 pA. Figure has been modified from [58].

the ionic current states that would be observed for enzyme-controlled translocation of that
DNA through MspA. The model predictions were found to match well with the observed

ionic current states once the DNA was measured (Fig [2.5)).

Using this model, they were able to decode the observed ionic current states into the
generating DNA sequence using a hidden Markov model (HMM) [59]-a process called “base
calling” [58] [60]. A detailed description of the sequencing algorithm used to decode signal
into sequence in this work can be found in appendix [F] The HMM sequencing algorithm
works by decoding an optimal set of “hidden” states (here, the series of 4-mers) from a

set of observed states (here, the measured mean ionic currents), subject to a set of allowed
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transitions EL Put more concretely, a simplified HMM base calling process could proceed as
follows (Fig algorithm . Each measured ionic current state is compared against the
256 ionic currents in the 4-mer map to determine how well the observed state is modeled by
the various 4-mers. Then, model 4-mer states are matched to each of the observed states so

as to satisfy 2 conditions:

1. Only certain transitions are allowed from one state to the next. Namely, we can only
step by one nucleotide at a time, so subsequent 4-mers must overlap in 3 of their 4 bases.

For example, ACCT can only transition to one of CCTN where N € {A,C,G,T}.

2. The model ionic currents for the 4-mers matched to each measured ionic current state

should match as well as possible, subject to the above condition.

This sequencing algorithm will determine the DNA sequence most likely to have generated
the observed ionic currents EL With this demonstration of enzyme-actuated nanopore se-
quencing, all the pieces were in place for the first nanopore sequencing devices to make their

way to market.

2.6 Commercial Nanopore Sequencing

In 2014, Oxford Nanopore Technologies (ONT) made the MinION available to early access
users [61], marking the beginning of commercial nanopore sequencing. These first commercial

nanopore sequencing devices work using the same principles described above H Specifically,

14The Markov property states that the transitions allowed out of a given state depend solely on the present
state itself, and not on which states were visited in the past.

15This is claim is exactly true in the case that the 4-mer model exactly models the relation between
sequence and ionic current. This is not the case. While the 4-mer model describes the observed data
well, it is an incomplete description. Measured ionic currents are influenced by more than exactly 4 bases.
Although the 4 central bases are most important, bases further from the constriction have a small effect
as well, rendering the 4-mer model incomplete.

16The ONT sequencers are based on the same principles as the device described above but differ in some
details. Certainly, the MinION uses a different motor protein and possibly a different pore. While ONT
initially used a k-mer model as described above to relate ionic current to sequence, recent advances (and
the availability of large data sets) have seen k-mer models replaced by recurrent neural networks (RNNs)
which “learn” the relationship between ionic current and sequence [62] [63] [64].
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Algorithm 1 Simple DNA sequencing using 4-mers. This algorithm gives a formalized
presentation of a HMM sequencing algorithm using a 4-mer model. Here, we only allow

transitions corresponding to single nucleotide steps. For instance, ACCT can only transition
to CCTN, with N € {A,C,G, T}

1:
2:
3:

3 N observed ionic current states {I;}, i€ 1:n

For V 4-mers {k;}, j € 1: 256, 3 an associated ionic current {Z;}

Compute the n x 256 score matrix S, where S, ; = score(1;,Z;) > The score function
assigns a log likelihood that a measured ionic current I matches a model ionic current Z

4: 3 a 256 x 256 transition matrix T

o

10:
11:
12:
13:
14:
15:

16:

17:

18:
19:
20:
21:
22:
23:
24:
25:

26:

if k; = Ni1NyN3Ny and kj = My MyMsMy are such that NoNs Ny = M, M;Ms then >
N,M € {A,C,G, T} denote the bases in the 4-mer
T,y < 1, meaning k; can transition to k;
else
T,y < 0, meaning k; cannot transition to k;
end if
Initialize the n x 256 alignment matrix A to zeros
Initialize the n x 256 traceback matrix B to zeros

A(1,1:256) < S(1,1:256)

forie2:ndo > Filling the alignment and traceback matrices
for j € 1:256 do
allowed <+ {l} such that Tiiy=1 > Determine which previous states can

transition into the present state
A j) < S ) + max(A(i_Lallowed)) > The alignment matrix fills using the best
scoring of the possible transitions in
B ) < with [ such that Ay_1;) = max(AG-1a0weay) > The traceback matrix
tracks which transition gave the best incoming score
end for
end for
Find max(Aw,))
[ is such that Ag, ;) = maz(Apy,.,))

Initialize output sequence seq <+ k; > k; = NiNoN3N, with N € {A,C,G, T}
forten:—-1:2do > Conduct traceback along the best scoring pathway
[+ Bi,l

seq < { Ny, seq} where k; = Ny Ny N3N, > At each step in the traceback, append the
correct base to the start of seq
end for
return seq
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Figure 2.6: Sequencing using 4-mers. Example raw nanopore sequencing data is shown (gray,
downsampled to 500 Hz) with the mean ionic current values of the distinct states overlayed
(black lines). The DNA sequence generating the observed series of states is decoded by
matching each state with the 4-mer known to generate a matching ionic current. In this
case, the first (left-most) state may correspond to the 4-mer ACCT (written 5 to 37). At
each subsequent state, the enzyme has stepped the DNA forwards by 1 nucleotide, so each
subsequent 4-mer must overlap with the preceding 4-mer in 3 of its 4 bases. For example,
the state following ACCT can only correspond to one of CC'T'N, where N is one of A, C,
G, or T (in this case, G). By stitching together the overlapping 4-mers of the several states,
we reconstruct the generating DNA sequence ACCTGTGAA.
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a motor protein controls the step-wise translocation of ssDNA through a nanopore under the
application of a constant voltage across the membrane. The enzyme-controlled translocation
yields ionic current time series data that is partitioned into distinct states, each character-
ized by its mean ionic current. This series of ionic current states is then decoded into the
generating DNA sequence.

The milestone of the first working nanopore sequencing devices would not mark the end of
nanopore technology development. Enzyme-actuated nanopore sequencing is still limited by
its low single-read de novo sequencing accuracy. The single-read de novo sequencing accuracy
is the accuracy of a single sequencing read of a completely unknown DNA sequence. It is
important to note that a technology’s single-read sequencing accuracy does not represent the
accuracy level to which a DNA sequence can ultimately be determined using that technology.
In many cases—including that of nanopore sequencing—many of the single-read errors are
random. Such errors drop out when multiple low accuracy reads with different random
errors are combined into a consensus sequence. Through consensus sequencing, a technology
with a low single-read accuracy can generate a much higher accuracy sequence. Nevertheless,
single-read accuracy is a crucial benchmark for performance. Even when high accuracy can
be achieved through consensus sequencing, such an approach comes at a cost of throughput.
Given lower accuracy single reads, more will need to be combined to generate a satisfactory
consensus sequence, increasing the time and cost of sequencing. Conversely, improvements in
single-read accuracy will decrease the time and cost of sequencing as a satisfactory consensus
sequence can be derived from fewer individual reads.

Initial results on commercial nanopore sequencing devices showed single-read accuracies
in the low 60 percents [65]. Since these early results, various improvements have driven
the single-read accuracy up into the 70 percents [65]. However, there is still a significant
ways to go before nanopore sequencing accuracy is commensurate (or even comparable) with
the accuracy of more established second generation sequencing technologies, which are well

above 99% [ [9]. The long-term path forward to fully-realized nanopore sequencers requires

17«Well above” refers to the error rate (100% - sequencing accuracy) rather than the accuracy. For example,
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substantial improvement in the baseline single-read accuracy.

2.7 Sequencing Error Modes

Many of the errors hampering enzyme-actuated nanopore sequencing’s single-read accuracy
are caused by two primary error modes. These two error modes are indistinguishable ionic
current states and enzyme missteps. Each of these error modes is discussed individually in

more detail below.

2.7.1 Indistinguishable Ionic Current States

As discussed above (sections , , the base calling algorithm used to decode DNA se-
quence from an observed ionic current signal requires a model that maps observed ionic
current values to the likely generating DNA sequence. As the observed signals are a compli-
cated function of several bases near the pore’s constriction [51], this ionic current-to-sequence
model must comprise many multi-nucleotide ionic current-generating sequence “states”. For
example, the 4-mer model discussed above entails 256 states for the 256 possible 4 base
combinations.

For any such empirical ionic currentto-sequence model, there will be higher-order effects
that are not accounted for, such as the combined influence of the other bases in the pore
more distant from the constriction. These higher-order effects, along with the electrical
noise intrinsic to the nanopore signal and experiment-to-experiment variations in electrolyte
concentrations and temperature all conspire to introduce instance-to-instance variability in
the observed signal for different measurements of the same DNA sequence state. In our 4-
mer model E, the average standard deviation of the instance-to-instance ionic current values

of the 4-mers is 0.95 pA (Fig 2.7h). Additionally, the ionic current values of the lowest

the difference between 99% and 99.9% accuracy is the difference of 1% to 0.1% in terms of error rate—an
order-of-magnitude improvement.

18Specifically, the 4-mer model for the experimental conditions used for ®29 DNAP-controlled DNA
translocation. Experimental conditions are discussed in appendix |§|
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(CGTC, 23 pA) and highest (AGAA, 60 pA) 4-mers in the model are separated by only 37
pA (Fig ) This 37 pA represents the entire parameter space within which the sequencer
must distinguish between the 256 different 4-mer states. Inevitably, given only 37 pA of
parameter space, 256 4-mers, and nearly 1 pA of variation for each 4-mer, the ionic currents
of many different 4-mers will be indistinguishable within noise. Functionally, this means that
many different sequences can generate states with statistically identical ionic currents (Fig
ﬁ, green bars). These indistinguishable signals force the base calling algorithm into under-
determined decisions where it must choose between multiple possible generating sequences
for an observed set of states, only one of which is correct. These under-determined decisions
ultimately lead to errors in sequencing. Fundamentally, a state’s mean ionic current alone

does not provide enough information to unambiguously decode the signal into sequence.

Beyond forcing the base caller into under-determined and error-prone decisions, indis-
tinguishable ionic current states can also cause errors during step finding. In some cases,
two consecutive 4-mer states (k1 = Ny NoN3Ny — ko = NoN3NyNj E[) may both generate
similar ionic currents making the transition between them difficult to find (Fig orange
diamond). Typical measurement error on a single instance of a state (distinct from the
instance-to-instance variation) is ~1 pA; transitions smaller than this typical error will be
difficult to find for the change point detection algorithm. For our 4-mer model, 114 out of
the 1020 (11.2%) possible step transitions m lie below the 1 pA threshold for confident tran-
sition finding (Fig ). Transitions missed during change point detection ultimately lead
to missing states in the final signal passed to the base caller, potentially causing deletions

(too few called bases) in the final sequence.

9Tn the context of DNA sequences, N denotes any one of the 4 bases: N € {4,C,G,T}.

20The 1020 possible transitions represent the 256 4-mers with 4 transitions each, less the 4 homopolymer
transitions (i.e. AAAA — AAAA).
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(a) The histogram shows the average

instance-to-instance variation of the 4-mer states in our model. The green dashed line shows
the mean 4-mer variation of 0.95 pA. (b) The histogram of 4-mer ionic current values in the
4-mer model shows that many different sequences produce nearly identical ionic currents.
Bins are 0.95 pA wide—the average uncertainty in each 4-mer value. 4-mers residing within
the same bin will be difficult to distinguish. Dashed green lines mark the ionic currents
of the lowest 4-mer (CGTC) and highest 4-mer (AGAA). (c) The histogram shows the
current differences between possible consecutive 4-mers (NyNoN3Ny — NoN3NyN5). Tran-
sitions separated by less than the typical measurement error (~1 pA, shaded red box) will

be difficult to correctly identify and are likely to be missed.
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2.7.2 Enzyme Missteps

Irregular stepping by the DN A-controlling motor enzyme are the second primary error mode
for nanopore sequencing. Ideally, the enzyme would move DNA unidirectionally through the
pore in discrete steps of uniform length. However, the stochastic stepping of real enzymes
frequently diverges from this ideal behavior [66, 58] 55]. In addition to uniform forward steps,
“backsteps” can occur when the enzyme backtracks to a previously-observed position along
the DNA. Backsteps introduce extra states into the observed signal as we read the same DNA
position multiple times (Fig , red stars). Additionally, “skips” can occur when multiple
forward steps take place in quick succession too fast to resolve the intermediate step (or

steps). Skips lead to missing states in the observed signal.

The existence of these irregular enzyme steps means that the observed time order of the
ionic current states does not necessarily match the sequence order of the DNA generating
them. This mismatch complicates the decoding process, as we now must consider many more
possible transitions than in the case of uniform forward stepping. As discussed previously, a
single forward step from some 4-mer can only take us to one of 4 possible new 4-mer states.
For example, a forward step from k; = ACGT can only take us to ks = CGTN However,
if we are to consider the possibility of single base skips as well as steps, we now have 20
possible new 4-mer states. Returning to the previous example, we must still consider the
step transitions from ky = ACGT to ks = CGTN (4 possibilities) and also consider the
single skip transitions to ko = GT'N1 Ny (16 possibilities). Further accounting for backsteps

and larger (multi-base) skips continues to expand the list of possible transitions.

By expanding the list of allowed transitions, enzyme missteps expand the list of possible
sequences that could have generated the observed ionic current states. The larger the list of
possible sequences, the harder it becomes for the base caller to accurately identify the correct
sequence. Thus, enzyme missteps reduce sequencing accuracy by adding and removing states
from the signal, forcing the base caller into a difficult expanded decision space. The funda-

mental issue at the core of this error mode is that transition types cannot be easily inferred
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from the nanopore signal. Without a direct indicator in the signal to label transition types,
the base caller must account for all possible transitions, increasing the rate of erroneous base

calls.
2.8 A Foundation for Improvement

Through the work of my research group and others, operational enzyme-actuated nanopore
sequencing has been realized, with the first commercial nanopore sequencing devices now
available. The next hurdle on the path towards nanopore sequencing realizing its full poten-
tial is its low single-read de novo sequencing accuracy. The low accuracy is primarily caused
by two distinct error modes: indistinguishable ionic current states and enzyme missteps. My
work in the Gundlach nanopore lab has focused on improving nanopore sequencing by raising
its sequencing accuracy as well as designing better ways of answering important sequencing
questions with low accuracy reads. Chapter [3|will describe my work towards the first of these
two goals: raising the single-read de novo sequencing accuracy possible for enzyme-actuated

nanopore sequencing.
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Figure 2.8: Sequencing error modes. The primary error modes limiting nanopore sequencing
accuracy can be found in this example read. Raw data (downsampled to 500 Hz) is in
gray, with black lines showing the mean ionic current of the found states. Green bars
highlight indistinguishable states: states that were generated by different DNA sequences
but with mean ionic current values that are indistinguishable from one another within noise.
The orange diamond and zoomed-in inset show a location where the change point detection
algorithm missed a transition. Here, two consecutive states have similar mean ionic currents,
so no change point is detected at the transition between the states (red dashed line in inset).
Red stars mark states caused by enzyme missteps. On multiple occasions in this read, the
enzyme steps backwards, returning to a previously observed state before proceeding with
processing translocation, generating extra states in the observed signal.
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Chapter 3
VARIABLE-VOLTAGE NANOPORE DNA SEQUENCING

In chapter [2| we saw that enzyme-actuated nanopore sequencing works by using a motor
protein to incrementally step DNA through a nanopore, generating a sequential series of
ionic current states that will ultimately be decoded into the generating DNA sequence. We
also discussed the primary outstanding limitation of this technology: its low single-read
de novo sequencing accuracy. Many of the sequencing errors limiting the accuracy can be
attributed to two primary error modes: indistinguishable ionic current states (section
and enzyme missteps (section . In this chapter, I will present my work on developing
a new method of enzyme-actuated nanopore sequencing designed to directly address both of

these error modes and thereby improve sequencing accuracy.

3.1 Parallel Pathways to High Accuracy

Since the advent of enzyme-actuated nanopore sequencing, researchers have pursued several
parallel pathways towards improving the technique’s sequencing accuracy. Information ex-
traction from the signal has been improved by the introduction of new base calling methods
based on recurrent neural networks (RNNs) trained on the massive datasets generated by
commercial sequencers [62] [63]. The quality of the signal itself has also improved through
the use of new nanopores and motor enzymes with better behavior for DNA sequencing [67]
[68], as well as biochemical methods that allow reading of both sense and antisense strands
of the target DNA molecule in a single read [69].

Together, these two complementary approaches—clean up the signal, and improve infor-
mation extraction from that signal-have led to meaningful progress in sequencing accuracy

[65] [69] [68]. However, there is still significant room (and need) for improvement. A third
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complementary pathway towards improvement is to reexamine the fundamental character
of the nanopore signal itself, which has not yet been considered for redesign. In this work,
we modify the method of control over DNA motion in the pore in order to measure a more
information-rich signal that allows us to directly address the two primary nanopore sequenc-

ing error modes of indistinuishable ionic current states and enzyme missteps.
3.2 Shortcomings in the Signal

The two major error modes of indistinuishable ionic current states and enzyme missteps
(Fig can both be thought of as arising from a lack of information in the ionic current
signal. In the case of indistinuishable ionic current states, we have insufficient information
characterizing each state. The mean ionic current alone does not adequately differentiate
between all of the possible ionic current-generating sequence states (Fig . To reliably
assign an observed state unambiguously to the correct signal-generating DNA sequence, we
need more information to characterize each state than its mean ionic current alone. If each
state had more identifying information, the sequencer’s task of decoding the DNA sequence
from the observed states would become easier and fewer errors would occur.

The error mode of enzyme missteps could also be addressed by a more information-rich
signal. Specifically, enzyme missteps hurt the sequencing accuracy because it is difficult to
tell from the signal alone (without the aid of comparison against the known DNA sequence)
which type of enzyme steps occurred where. If the type of enzyme step leading into each
observed state could be inferred directly from the signal, enzyme missteps could be identified
and corrected prior to sequencing and would no longer cause sequencing errors.

This understanding of not only what the nanopore sequencing error modes are, but also
exactly why they are so detrimental points a way forwards to improving the sequencing
accuracy. We seek a way to generate a more information-rich signal from the nanopore
device. Precisely, we want each state to have more characterizing information than just its
mean ionic current, and we want enzyme missteps to be directly detectable based on the

signal.
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3.3 A New Enzyme Sheds New Light

To understand how to redesign the nanopore sequencing device to generate a more information-
rich signal, we need a better understanding of the signal itself. Changing the motor enzyme
used to control DNA motion through MspA provided a crucial insight into the fundamental

nature of the nanopore signal.

The foundational work in enzyme-actuated nanopore sequencing primarily used the ®29
DNAP enzyme to control DNA motion through the pore, which takes a single step per
nucleotide [[] The resulting signal is a series of states, each characterized by its mean ionic

current, with one state corresponding to each nucleotide translocated [51] [52].

In exploring alternative enzyme options to 29 DNAP for controlling DNA in nanopore
sequencing, our lab discovered that the Hel308 helicase enzyme [ deviates from this single-
nucleotide stepping behavior [53]. The ionic current states for the same DNA sequence were
measured for ®29-controlled and Hel308-controlled DNA translocation through MspA (Fig
. The ionic current states observed in both cases exhibited the same overall pattern of
peaks and troughs, but the signal generated by Hel308-controlled translocation resulted in
twice as many states marking out this overall pattern than the signal from $®29-controlled

translocation.

The integer ratio between the number of states observed for the two enzymes and the
similarity in the qualitative structure of the ionic currents indicate that the two enzymes are
taking different size steps along the DNA. Indeed, further kinetic analysis confirmed that the
Hel308 helicase takes two distinct steps per nucleotide, with each step approximately half
a nucleotide in length [53] [55]. This discovery pointed toward an immediate, simple path

to improving enzyme-actuated nanopore sequencing: replace ®29 with Hel308. Sequencing

!Commercial nanopore sequencing devices make use of different motor enzymes, but to our knowledge all
the enzymes in use take single-nucleotide steps.

2Specifically, the enzyme used here is the Hel308 helicase from Thermococcus gammatolerans, a ther-
mophilic and radiation-tolerant archaea found in deep ocean vents. Where applicable, we abbreviate this
as “tga”.
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data generated using Hel308 has two measurements per nucleotide, rather than one. This
amounts to additional information in the signal characterizing each base, as we now have
two mean ionic currents per base, rather than just one.

Simply changing to a better motor enzyme is not the “crucial insight” alluded to earlier.
In addition to pointing us to a better enzyme, the discovery of Hel308 half-steps hinted at
the fundamental nature of the nanopore signal. The fact that the half-nucleotide steps of
Hel308 interpolate smoothly between the full-nucleotide steps of ®29 indicates that the step-
wise ionic current signal is in fact a discrete sampling of some smooth underlying profile. If
this smooth profile indeed exists, and if we could find a way to access it during a nanopore
sequencing experiment, it could provide the additional information necessary to dramatically

improve sequencing accuracy.
3.4 Voltage Shifts DNA Position

In an effort to confirm the hypothesis that the ionic current signal of the DNA in the pore is
a smooth function of DNA position, we sought a way to further sample the inter-nucleotide
signal.

DNA’s elasticity in response to an applied force [70] [71] [72] [73] provides a convenient
method to probe the DNA’s ionic current profile at sub-nucleotide intervals. In an enzyme-
actuated nanopore sequencing experiment, the applied voltage exerts a force on the DNA
threaded through the pore, pulling it towards the trans well. Meanwhile, the DNA is held
static at its other end by the motor enzyme. Thus, the applied voltage stretches the segment
of DNA between the anchor point at the enzyme and the pore’s constriction (Fig|3.4pa) E|

As the DNA stretches in response to the voltage, the number of nucleotides spanning
the distance between the anchor point at the enzyme and the pore’s constriction changes.
Consequently, the DNA will be centered slightly differently within the constriction at dif-
ferent voltages (Fig|3.4). By changing the voltage, we can change the DNA’s registration

3 Appendices and give a complete accounting and analysis of DNA stretching within MspA in
response to voltage.
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Figure 3.1: ®29 DNAP vs. Hel308 Helicase. (a) The consensus pattern of ionic current
states measured using ®29 DNAP to control the DNA for the above DNA sequence are
shown in black, with the red spline showing the cubic spline fit to the mean ionic current
values. (b) The same DNA sequence was measured, but using the Hel308 helicase enzyme.
The consensus measured states exhibit the same pattern of peaks and troughs, and are well
fit by the same spline (red) as the ®29 DNAP states. However, we observer twice as many
total states. This figure has been adapted from [53].
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relative to the constriction. Thus, by conducting multiple enzyme-mediated DNA transloca-
tion experiments of the same DNA sequence at different voltages, we can take an ensemble

measurement of the inter-nucleotide ionic current profile of the nanopore signal.

We measured the ionic current states for ®29-controlled reads of the same DNA sequence
at a variety of voltages between 100 and 200 mV. At each distinct voltage, we observed
the same qualitative set of features (i.e. peaks and troughs), but with the locations of the
maxima and minima shifted relative to the other voltages, in addition to a general increase
in the observed ionic currents at higher voltages (Fig|3.4c). Once the overall increase of the
ionic currents at higher voltages was removed by converting from current to conductance
[], the shift in the features between the different voltages is easier to see (Fig [3.4d). The
various voltages can be shifted horizontally to align all of the myriad sets of conductance

measurements along a single smooth curve (Fig[3.4e).

This confirms the hypothesis that the ionic current (or conductance E| ) signal for the
DNA in the pore changes smoothly as a function of the DNA position. Additionally, the
results of the above experiment also point a way to measuring this underlying smooth curve
in a nanopore sequencing experiment. Changing the voltage from 100 to 200 mV shifts
the DNA position within the pore by over a full nucleotide (Fig |3.4f). The voltage therefore
affords fine control over the sub-nucleotide positioning of the DNA in MspA, while the motor
enzyme provides long-range coarse control as it walks the DNA through the pore. We will
use the voltage in conjunction with the enzyme to precisely control DNA motion through

the pore, allowing us to probe the entire conductance profile.

4Actually, to “normalized” conductance. The normalized conductance is the conductance with the con-
founding non-DNA-sequence-dependent contributions removed, as discussed in detail in appendix

5From this point forward, I will largely refer to conductance or normalized conductance in lieu of ionic
current, as we will be comparing data collected at a variety of different voltages. Conductance makes the
comparison of these data more convenient.
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Figure 3.2: Voltage-induced DNA position shift. (a) The nucleotide positions at high voltage
(red) are shifted down from the positions at low voltage (blue) as the higher voltage applies
a larger force to the thread end of the DNA. Consequently, there are fewer nucleotides
between the enzyme (green) and the pore’s constriction (shaded purple) at higher voltages.
(b) Increasing the voltage from the smaller Vi to the larger V5 changes the time-averaged
number of nucleotides between the enzyme and the constriction, positioning a different part
of the DNA within the center of the constriction. (c) The ionic current values are extracted
for 140 mV (red) and 120 mV (blue) for every step of a multi-read averaged set of consensus
I —V curves. Shaded errors are S.D. (d) Converting current to conductance removes the
scaling difference between the two measurements. A cubic spline interpolant (dashed line) to
each set of states shows the same overall features, shifted by a fixed distance §. Shaded errors
are S.D. (e) Shifting the 120 mV states along the x-axis places both sets of measurements on
the same interpolating curve (dashed line). The shift from 120 mV to 140 mV was found to
be 0.29+0.03 nt. Gray shading shows S.D. (f) The complete position shift vs. voltage curve
is shown in black, with the shaded gray errors showing the one sigma confidence interval of
the calculated voltage-to-position mapping. All shifts are given relative to the DNA position
at 180 mV.

3.5 Hybrid Control

Our proposed sequencing method (Fig will measure the continuous conductance profile
as a function of DNA position in the pore through the use of a time-varying, rather than
constant, applied voltage. The time-varying voltage will provide fine control over the DNA
position by variably stretching the DNA, with small (1 mV) changes in the voltage precisely
repositioning the DNA by ~0.01 nucleotides (Fig ) The fine control over DNA position
provided by the time-varying voltage complements the motor enzyme’s discrete stepping.
The enzyme’s discrete stepping provides directed translocation over the entire length of the
DNA, while the continuous repositioning of the DNA by the voltage gives us precise position

control within each enzyme step.

For our variable-voltage sequencing experiments, we use the Hel308 helicase as the motor

enzyme, as its half-stepping behavior provides a denser sampling of the DNA’s conductance
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profile than is provided by the single-stepping ®29 DNAP. The voltage was applied as a 200
Hz, 100 mV peak-to-peak symmetric triangle waveform voltage, biased to an average voltage
of 150 mV. The overall positive bias is necessary to keep the DNA anchored in the pore at
all times. The 100 to 200 mV voltage range provides just over 1 nucleotide of total stretch
(Fig[3.4).

The combination of the Hel308’s half-steps and the voltage’s 1 nt shift gives a complete (in
fact, overlapping) sampling of the DNA’s conductance profile. At each enzyme registration,
the voltage shifts the DNA forwards and back several times, as the 200 Hz voltage cycling
frequency is much faster than the typical enzyme stepping rate (10-20 Hz, appendix .
When the enzyme progresses by a half-nucleotide step, we again probe the conductance
profile along a full nucleotide distance on the DNA’s contour, resulting in an overlapping,

complete measurement of the smooth conductance profile.
3.6 Variable-Voltage Data Reduction

The data reduction is more complicated for the variable-voltage sequence data than for
constant voltage sequencing. The entire data reduction process is discussed in more detail
in appendices [B] and [C|, but the basic process will be covered here.

One chief difference between handling the variable-voltage data versus the constant-
voltage data is that the bilayer separating the cis and trans wells acts as a capacitor, re-
sulting in a charging and discharging current in response to the variable applied voltage.
Consequently, the observed time-series ionic current data exhibits large swings, masking the
DNA-sequence-dependent signal we wish to measure (Fig[3.4h).

To access the interesting, sequence-dependent signal, we must determine and remove
the capacitive contribution to the measured ionic current. However, the capacitive current
response is influenced not only by the voltage swing and the bilayer capacitance, but also by
the resistance in the system. Inconveniently, this resistance changes with each enzyme step as
the DNA moves through the pore—in fact, this variable resistance is exactly the fundamental

signal we wish to measure in order to decode the DNA sequence. So, prior to calculating and
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Figure 3.3: Hybrid control sequencing scheme. The variable-voltage sequencing method uses
a time-varying applied voltage sweeping from 100 to 200 mV in a symmetric triangle wave
at 200 Hz (left). The Hel308 helicase enzyme (green) is used to control DNA translocation
through the pore in discrete steps (green arrows). The voltage simultaneously oscillates the
DNA up and down in the pore, providing a fine control to complement the enzyme’s coarse
control (red arrow).
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removing the capacitive signal, we first partition the time-series data into separate enzyme
steps using our change point detection algorithm (appendix .

Once the time series ionic current data is partitioned into distinct enzyme states, we
individually calculate and remove the capacitive contribution to the observed ionic current
using our capacitance compensation procedure (appendix . The resulting ionic current
signal is free of the large swings caused by the bilayer’s charging and discharging and re-
veals an oscillating pattern in phase with the applied triangle wave voltage (Fig|3.4p). The
capacitance compensated data is consolidated into a set of states, each representing one en-
zyme step and characterized by its average current-vs-voltage (I — V') curve (Fig|3.4c). The
several complete voltage cycles completed within each enzyme step are treated as distinct
measurements of the I — V response for that particular DNA registration within the pore
and are averaged together to yield the state’s I — V' curve.

To reconstruct the desired continuous conductance profile of the DNA, we must now
account for the effects of the variable applied voltage. Changing the applied voltage changes
both the overall magnitude of the observed ionic currents (higher voltage causes larger ionic
current) as well as the exact position of the DNA within the constriction. The voltage
dependence of the overall ionic current magnitude is removed by converting ionic currents to
“normalized” conductance, as described in appendix[C.2] The applied voltage can be mapped
directly to a DNA position within the pore ]| This mapping is given by the measured DNA
shift vs. voltage curve (Fig [3.4f) and its corresponding interpolating fit (appendix [C.4)).
By mapping the voltage to DNA position and the ionic current and voltage together to
conductance, we have transformed the I — V' curves for each state into segments of the
conductance vs. DNA position profile (Fig|3.4d).

The final step in reconstructing the desired conductance profile is to recombine the state-
by-state conductance vs. position measurements onto a single axis. We accomplish this by

accounting for the Hel308 enzyme’s half-nucleotide steps. Each subsequent state’s conduc-

6This voltage-dependent DNA position is measured relative to the DNA position at 180 mV, the operating
voltage for our constant-voltage sequencing experiments.
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tance curve segment is shifted a half nucleotide right (towards the 5 end of the DNA) relative
to the previous state’s segment. With this accounting, the measured conductance segments
for all of the measured states can be plotted together on a single position axis, revealing the

DNA'’s smooth conductance profile (Fig [3.4k).
3.7 The Smooth Conductance Profile

The conductance profile recovered from the variable-voltage data reduction is a significantly
richer signal than is measured in constant-voltage sequencing. As constant-voltage sequenc-
ing relies entirely on the motor enzyme as the sole method of control over DNA position
in the pore, its signal is a sparse sampling of the conductance profile of the DNA at half-
nucleotide intervals (Fig [3.5p). In this data, each state is only characterized by its mean
conductance value. Furthermore, the states do not contain any intrinsic information as to
their ordering. Nothing about each state indicates which state should precede or follow it
in the correct ordering. The correct ordering is the ordering that reflects the order of bases
along the DNA, rather than the order that reflects how the DNA was moved through the
pore, which can be marred by enzyme missteps.

The variable-voltage sequencing method gives a dense sampling of the conductance profile
(Fig3.5b). Each enzyme state is now characterized by a conductance curve segment, rather
than simply by a mean conductance. These curves have identifying “shape” information
(slope, curvature, etc.) that is not present in the constant-voltage data. These additional
features can aid in distinguishing between states that would have been indistinguishable
based solely on their means.

The variable-voltage states also contain information as to their correct ordering. At each
enzyme step, we measure a set of positions along the DNA that overlaps with both the
previously- and subsequently-measured sets of positions. As subsequent enzyme steps each
sample overlapping portions of the DNA’s conductance profile, states separated by a single
Hel308 half-nucleotide steps should have overlapping conductance curves. Correctly ordered

states should overlap with both their predecessor and successor states—if they don’t, it means
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Figure 3.4: Variable-voltage data reduction. (a) The raw time-series data in variable-voltage
sequencing exhibits large swings due to the capacitive charging and discharging of the bilayer
separating the cis and trans wells. The first step of data reduction is partition the time-series
data by finding enzyme steps (red dashed lines mark partitions, separate steps marked by
color). (b) After the data is partitioned into enzyme steps, the capacitive effect is removed
by capacitance compensation. (c¢) Each enzyme step is characterized by a current-vs-voltage
(I — V) curve, with the several voltage cycles within the step averaged together to give the
final I — V curve. (d)) Each step’s I — V curve is transformed into conductance-vs-DNA
position, with the DNA position calculated based on the DNA extension curve calculated
earlier (Fig and the conductance calculated as in appendix|[C.2] (e) The segments of the
conductance profile probed at the separate enzyme steps can finally be plotted together on the
same conductance-vs-position plot, revealing the measurement of the smooth conductance
profile.

that the enzyme did not take a half-nucleotide step. Thus, variable-voltage signal addresses
both of the major shortcomings of the constant-voltage signal (section . Individual states
now have more characterizing features in addition to their mean conductance, and enzyme
missteps can be directly detected based on whether or not successive states overlap with one

another.
3.8 Error Correction with Variable-Voltage Data

We can use the additional information present in the variable-voltage sequencing signal to
automatically correct the two major sequencing error modes of indistinguishable states and
enzyme missteps. In Fig and b, we see the variable-voltage states observed for two
separate measurements of the same DNA sequence (lower panels). The upper panels show
the extracted conductance values from a single voltage value in the variable-voltage data,
representing the signal that would be available in a constant-voltage experiment.

These example events reveal the ability of the variable-voltage signal to correct error
modes present in the constant-voltage signal. First off, in several cases, states that are

indistinguishable in the constant-voltage data by their mean conductance along can be easily
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Figure 3.5: Discrete vs. continuous conductance sampling. (a) Constant-voltage sequencing
provides a discrete sampling of the DNA’s conductance as a function of position. The
translocating sequence (top) is sampled at half-nucleotide intervals by the two step motion
of the Hel308 helicase (odd steps in red, even steps in blue). The discrete sampling locations
(triangle pointers, top) result in a disconnected set of conductance values (points, dashed
line) for the sequencer to decode. (b) Variable-voltage sequencing provides a continuous
sampling of the DNA’s conductance profile. Red and blue bars (top) show the ranges along
the DNA molecule probed during the voltage swing at odd (red) and even (blue) enzyme
steps. Red and blue curves show the corresponding segments of the conductance profile
explored at each state. Blue and red points show the information that was available in
constant-voltage sequencing.
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distinguished in the variable-voltage data. For example, in (a), four consecutive states all
have nearly identical mean conductance values (steps 16-19, upper panel). It would be
difficult to confidently assign these measurements to the correct generating DNA sequence
states. Furthermore, these steps would be difficult for the change point algorithm to detect.
In the variable-voltage signal below, these same four states are easily distinguishable by their
overall shape. Two of the states (16, 18) are have little slope and notably positive curvature,
while the other two (17, 19) have decidedly positive slopes and little curvature. We can thus
determine that states 16 and 18 are two repeated measurements of the same DNA sequence

state, as are states 17 and 19.

This repeated measurement is caused by an enzyme backstep, leading into the second type
of error mode that can be corrected using the variable-voltage signal. As discussed in section
[3.7] consecutive states separated by a single half-nucleotide step should exhibit overlapping
conductance profiles. This overlap requirement allows us to identify locations where the
enzyme took a non-standard step by looking for locations where consecutive segments fail
to overlap |Z| In the previous example of states 16-19 in (a), we observe a large discontinuity
between states 17 and 18, indicating that the enzyme took a non-standard step at this
transition. The discontinuity information, combined with our above observation that states
16 and 18 seem to match, as do states 17 and 19, reveals that the enzyme took a backstep
at this transition, moving backwards along the DNA and causing the pore to re-measure a

previously observed sequence state.

We can use the overlap information throughout the read to determine what type of step
the enzyme took at each transition. This step type determination is conducted automatically
by custom support vector machines (appendix trained to recognize different enzyme
steps based on the variable-voltage data. Automatic step identification results in the colored

state labels between the upper and lower panels. Single half-nucleotide steps (green arrows),

"In (a) and (b), states are spaced by full nucleotide steps (rather than the half nucleotide steps taken by
the Hel308 enzyme) to more clearly show the individual states, so consecutive steps do not overlap in this
visualization.
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skips[f] (blue double arrows), backsteps | (red back arrows), and holds[[7] (gold pause symbols)
can all be accurately and automatically labeled and corrected.

Using the transition labels, we can account for the enzyme step type separating each of
the measured states, and reconstruct the error-free conductance profile for the target DNA
strand. The corrected signal for the read in (a) is shown in (c); the corrected signal for the
read in (b) is shown in (d). The corrected signals for the two reads are nearly identical,
despite the qualitative dissimilarity of the two reads prior to error correction. The read-to-
read consistency of the corrected variable-voltage signal indicates that this method should
improve sequencing accuracy. The constant-voltage signals (top) are difficult to correct and
vary substantially read-to-read, likely resulting in a different base calling result for what
should be the same DNA sequence. In comparison, the two reads’ similar corrected variable-

voltage signals will likely both decode to the same (correct) DNA sequence.
3.9 Sequencing with Variable-Voltage

Now armed with a method of measuring a more information-rich nanopore signal capa-
ble of addressing the major sequencing error modes, we sought to test the performance
of variable-voltage nanopore sequencing against the constant-voltage method. Full realiza-
tion of variable-voltage sequencing required substantial re-engineering and addition to the
constant-voltage sequencing procedure. A brief accounting of the major new or modified

components required to sequence the variable-voltage data includes

1. A change point detection procedure capable of identifying transitions in the raw variable-

voltage data (section appendix .

8Skips occur when a transition is longer than a half nucleotide and are typically caused by the enzyme
taking one or more steps that are too fast to be detected.

9Backsteps occur when the enzyme moves backwards along the DNA and are a natural product of Hel308’s
kinetics (and in fact the kinetics of all the motor proteins we’ve studied for nanopore sequencing).

10Holds are consecutive measured states representing the same DNA sequence. They are typically caused
by over-calling by the change point detection algorithm, or by aberrant transient electrical noise causing
a false partitioning of a single state.
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Figure 3.6: Automatic error correction. (a) and (b) compare the information available
from the constant-voltage measurement of DNA-translocation events (above) against the
information available from the variable-voltage measurement of the same DNA-translocation
events (below). The constant-voltage data is extracted from the variable-voltage data. The
type of enzyme step taken at each transition is determined automatically based on the
variable-voltage data and labeled with the appropriate marker. Green arrows are steps, red
arrows are backsteps, blue double arrows are skips, orange pause symbols are holds. (c) and
(d) show the signals recovered from (a) and (b) respectively, after the enzyme missteps have
been automatically corrected. We see that although the states in the events above look quite
different, after correction the signal recovered from each of the two events is nearly identical.
In reality, both events were measurements of the same DNA sequence, so this event-to-event
reproducibility in the reconstructed signal indicates that the variable-voltage data should be
much more robust for sequencing.
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2. A capacitance compensation procedure to remove the capacitive current from the raw

data (section appendix |C.1]).

3. A choice of “features” to describe the conductance signal of each enzyme state (ap-

pendix [C.3)).
4. A method of automatically identifying and correcting enzyme missteps (appendix .

5. A new signal-to-sequence k-mer model mapping between observed conductance states

and the generating DNA sequence (appendix [E).

6. A sequencing algorithm that harnesses all the information available in the variable-

voltage signal to optimally decode the DNA sequence (appendix [F]).

The adapted change point detection algorithm and the capacitance compensation pro-
cedure have already been discussed briefly in section [3.6] and their full implementation is
covered in depth in appendices [B] and [C.1]

The remaining new and modified methods are discussed briefly below, with the full de-

scriptions provided in the appendices.

3.9.1 Feature Extraction

We chose to use the coefficients of the top three principal components to describe each state’s
conductance curve (appendix . We determined the principal components using principal
component analysis of a large dataset of states’ conductance curves, and found that the first
three principal components accounted for over 98% of the observed variance between states.
Linearly combinations of these three principal component vectors can describe the conduc-
tance signal generated by all of the possible sequence states. This three-feature description of

the conductance states provides a simple, low noise parameterization of our observed signal.
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3.9.2  FEnzyme Misstep Correction

We use a three stage “state filtering” process to identify and correct enzyme missteps in the
variable-voltage signal (appendix |D.2)). Together, this filtering pipeline converts the time-
ordered observed conductance states into the error-corrected, sequence-ordered conductance

states that will be passed to the sequencing algorithm.

Remowval Filter

The first stage is termed the “removal” filter and is responsible for removing conductance
states that are not informative of the underlying DNA sequence (appendix. A number
of sources (discussed in the appendix) can produce conductance states that are recognized
by the change point detection algorithm but are not actually representative of the DNA
sequence in the pore. A support vector machine (SVM) has been trained on a hand-labeled
dataset containing both “good” states (those informative of the DNA sequence in the pore)
and “bad” states (those uninformative of the DNA sequence in the pore). The SVM is used
to assign a “bad” probability to each observed state. States whose bad probability exceeds

a set threshold are discarded for downstream analysis.

Recombination Filter

The second stage in the filtering pipeline, termed the “recombination” filter, looks for in-
stances where enzyme missteps caused duplicate measurements of the DNA position (ap-
pendix . The conductance states for these duplicate measurements are then aver-
aged and recombined. Duplicate measurements be consecutive due to over-called transitions
(holds) or be separated by several interleaving states due to enzyme backsteps. The recom-
bination filter finds duplicate states by aligning the measured signal against itself. States
will match to their duplicates nearly as well as they match to themselves. A “self-alignment”
penalty biases against states simply aligning to themselves, allowing the self alignment to

match up nearly identical states, identifying duplicate measurements.
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The self-alignment is calculated using a Neeleman-Wunsch alignment procedure [74]. The
transition penalties in the alignment are calculated on a state-by-state basis based on the
overlap information in the variable-voltage signal. An ensemble of SVMs is used to assign a
probability that each transition is either a single step, a backstep, a skip, or a hold. These
step type probabilities are converted into appropriate alignment transition penalties, and

help the self-alignment to find the correct path through the observed states.

Reordering Filter

The final filtering step is the “reordering” filter which accounts for enzyme missteps not
treated by the removal and recombination filters (appendix . In some cases, enzyme
missteps result in out-of-order states, without any single state being measured multiple times.
One such case is that of a skip followed by a backstep, followed by another skip. This enzyme
behavior would result in us measuring first state 1, then state 3 (a skip), then state 2 (a
backstep), then state 4 (another skip). No state is measured more than once, but states 3
and 2 were measured in the wrong order. These compound error modes are less common
than those addressed by the previous filters, but can still diminish sequencing accuracy.

In the reordering filter, we use the same set of SVMs as were used in the recombination
filter to assign a probability that each transition was a step, skip, or backstep. Once we've
determined the step type probabilities for each transition, we use a dynamic programming
method to find the most likely set of transitions linking the states based on the calculated

probabilities.

3.9.3 Signal-to-Sequence Model

As discussed in section [2.4], to decode the DNA sequence that generated an observed signal,
we need a model relative signal to sequence. Previous work on constant-voltage nanopore
sequencing showed that a 4-mer model in which every possible 4 base sequence was associated

with a specific signal modeled the data well [51] [58].
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The existing 4-mer model mapping constant-voltage signal to DNA sequence is insufficient
for variable-voltage sequencing for two reasons. First, the variable-voltage signal is funda-
mentally different from the constant-voltage signal-this is why variable-voltage sequencing is
worth doing in the first place! Rather than associating each 4 base sequencing with a mean
ionic current(or equivalently, conductance), the variable-voltage signal-to-sequence model

must map each sequence to an associated conductance curve segment.

Second, the 4-mer model must be expanded due to the wider base sensitivity of the
variable-voltage method. In the case of constant-voltage sequencing, a 4-mer model was
chosen as the 4 bases nearest the constriction at a given enzyme step had the largest effect
on the resulting signal. However, a 4-mer model is simply a specific case of the more general
k-mer model, in which combinations of k bases are associated with specific signals. In general,
the larger £ is, the more predictive the model will be, as it will be able to account for the

small but non-negligible effects of bases more distant from the constriction (appendix [E.1)

[

As the variable applied voltage shifts the DNA back and forth within each enzyme step,
the bases to both the 3’ and 5’ of the central 4-mer have a larger effect on the observed signal
than when applying a constant voltage. The contribution of these additional bases means
that more than 4 bases contribute meaningfully to the variable-voltage signal, so we expanded
our signal-to-sequence model to 6-mers. Additionally, Hel308 has two steps per nucleotide
rather than one, so two distinct conductance states are measured for each 6-mer. All together,
this means that our variable-voltage 6-mer model for Hel308-controlled DNA translocation
entails 8192 (= 2 x 4%) total conductance states. We measured the two conductance states of
the variable-voltage signal for all possible 6-base combinations multiple times and in various

sequence contexts to construct the variable-voltage 6-mer model (appendix [EJ).

' The drawback of larger k-mer models is that they are more difficult to construct empirically. To construct
a model with a given k, the signal generated by all 4% possible k-base combinations must be measured—
ideally several times and in various surrounding sequence contexts to get a good estimate of the signal
variance. Thus, the experimental task of measuring the k-mers grows exponentially with k.
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3.9.4  Sequencing Algorithm

Given a k-mer model, section discussed how a measured series of signal states can be
decoded into the generating DNA sequencing using a hidden Markov model (HMM). As both
variable-voltage and constant-voltage sequencing use a k-mer model, the same fundamental
HMM-solving algorithm works in both cases, with a few modifications (appendix . First,
we adapted the sequencing algortihm to work for the half-nucleotide steps of Hel308, rather
than the full nucleotide steps of $29 DNAP (appendix . This modification is relevant to

sequencing Hel3080-controlled data in both the constant-voltage and variable-voltage cases.

Second, we use our understanding of Hel308’s kinetics to improve base calling of both
constant-voltage and variable-voltage data (appendix. Hel308 hydrolyzes ATP to power
its translocation along DNA. Kinetic analysis of the Hel308 enzyme revealed that the two
steps the enzyme takes per nucleotide represent two distinct mechanical substates of the
enzyme’s ATP hydrolysis cycle. The durations of one of the two steps (the “dependent”
step) depend upon the available concentration of ATP, while the durations of the second step
(the “independent” step) do not [53]. Further analysis showed that most of the observed
enzyme backsteps occur starting from the ATP-independent state. the sequencer can use
this property to narrow the range of possible 6-mer model states an observed signal state can
match to. Simply, if an observed state exhibits a backstep, it is far more likely to match to
an ATP-independent state in the 6-mer model than to an ATP-dependent state, narrowing
the match probabilities by half. This improvement is implemented for both constant-voltage

and variable-voltage sequencing.

Finally, we modified the variable-voltage sequencing algorithm to make full use of the
step-type identification abilities of the variable-voltage signal. The the one type of enzyme
misstep error mode that cannot be fully corrected using the variable-voltage scheme is the
skip. As a skip causes a conductance state to be completely missed during measurement, the
resulting gap cannot be filled in. However, being able to at least label the locations in the

data where a skip occurred can help tremendously during sequencing. At each state-to-state
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transition, the sequencer must decide the relative likelihood of different length steps in order
to determine which 6-mers can be transitioned into. During constant-voltage sequencing, the
various length steps (single step, skip 1, skip2, ...) are assigned constant likelihoods at every
transition. Conversely, in variable-voltage sequencing, although we cannot know exactly
what the skipped conductance state looked like, we can know that a skip occurred based on
segment-to-segment continuity, and even infer how long the skip was. Using this information,
we can assign state-by-state step size likelihoods that help the sequencer determine what

length step occurred in between each pair of observed states (appendix [F.3]).
3.10 Sequencing Results

With the full variable-voltage sequencing pipeline in place, we tested the performance of
variable-voltage against constant-voltage sequencing. We conducted this test by taking both
constant-voltage and variable-voltage reads of the same DNA sequence. We used the pET-
28a vector sequence (appendix for these experiments, as it provided a testing ground
of genomic DNA that was not used in constructing the 6-mer signal-to-sequence model E

To isolate the relative performance of the two applied voltage strategies, we held constant
all other aspects of the sequencing experiment. Specifically, both experiments were conducted
using Hel308 as the motor enzyme, in identical buffer conditions (appendix .
Additionally, base calling in both methods used a 6-mer model, with the constant-voltage
6-mer model extracted from the variable-voltage 6-mer model (appendix . As both
the variable-voltage and constant-voltage 6-mer models originate from the same underlying
model, any errors present in one will be present in both, providing a level playing field for
method-to-method comparison. Thus, any errors present in one model should be present in
both, providing a level playing field for method-to-method comparison.

In total, we sequenced 73 variable-voltage reads totaling 12873 bases and 31 constant-

12Tt was important to conduct the validation experiment using a DNA sequence not used in model con-
struction to avoid over-training. Over-training is less of an issue for pre-determined models (like the k-mer
model) than for learned models (as are constructed by recurrent neural networks), but can still arise and
should be avoided if possible for an accurate representation of sequencing performance.
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voltage reads totaling 9496 bases. For each read, we determined the true generating sequence
by aligning the called sequence to the pET-28a reference sequence E The accuracy was

calculated from the alignment as

N, matc
teh (3.1)
Nmatch + Nmismatch + Ninsertion + Ndeletion

accuracy =

Npaten 18 the number of alignment locations where the called base and true base match,
Nismaten 18 the number of locations where they don’t match, Nj,sertion 1S the number of
locations where an additional base is called relative to the true sequence (an insertion),
and Ngeerion 18 the number of locations where no base was called where one should have
been. Overall, we obtained 62.5% sequencing accuracy over the constant-voltage reads. The
variable-voltage reads yielded a 79.1% accuracy over the variable-voltagereads, representing
nearly a nearly 2-fold improvement in the error rate E The 37.5% error rate over the
constant-voltage reads broke down into a 13.3% miscall rate, 16.7% insertion rate, and 7.5%
deletion rate. The variable-voltage reads’ 20.9% error rate was consisted of a 7.7% miscall
rate, 6.1% insertion rate, and 7.0% deletion rate. Fig [3.7| provides a full accounting of the

per-base accuracies.

3.11 Discussion and Conclusions

3.11.1 Context for Improvement

The jump in sequencing accuracy from 62.5% to 79.1% provided by the change from constant-
voltage to variable-voltage is significant, even taken at face value. However, the jump takes
on greater meaning when the performance of the two methods is compared against the
performance of a random sequencer. Random sequencing accuracy represents the baseline

performance of a hypothetical sequencing method that extracts no information about the

13 Alignment was conducted using a local-to-global Smith-Waterman-style gapped alignment, in which we
aligned the entire called sequence to the best matching section of the longer reference sequence

MError rate = 1 - sequencing accuracy
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Figure 3.7: Sequencing confusion matrices. The confusion matrices for the constant-voltage
(a) and variable-voltage (b) sequencing methods show the the various error rates of the
two methods. The rate at which a given true base (y-axis) is called as a given called base
(x-axis) is shown in the corresponding cell. Diagonal entries represent correctly called bases,
off-diagonal entries represent errors. The bottom row shows the base-by-base insertion rate,
where an extra base has been called relative to the true sequence. The right-most column
shows the base-by-base deletion rate, where too few bases have been called relative to the
true sequence. Matrices are normalized to sum to 1 along the columns. The variable-voltage
method exhibits across-the-board improvement in all calling rates.
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DNA sequence in question. Comparing the performance of the constant-voltage and variable-
voltage methods against this baseline contextualizes how far above this information-less
baseline each method operates.

Counterintuitively, a randomly generated DNA sequence will not have 25% accuracy.
The sequence-to-sequence alignment procedure used to determine the sequencing accuracy
inserts gaps into both the called and true sequences to generate the best match between
the two. As a consequence of this gapped alignment, aligning two random sequences will
yield an accuracy well above 25%. In our case of local-to-global alignment of a short (called)
sequence to a section of a longer (true) sequence, the random accuracy will depend on the
lengths of both the called sequence and the true sequence, with shorter called sequences and
longer true sequences resulting in higher random accuracy E

We compared the distribution of full-read sequencing accuracies for constant-voltage and
variable-voltage reads against the distribution of random accuracies generated by aligning
random sequences the same length as the collected reads against the pET-28a reference
sequence (Fig . With this context, we see that although the constant-voltage method
is producing meaningful sequencing results above random, it only barely outperforms this
baseline (Fig ) Comparatively, the variable-voltage reads are consistently well above the
random accuracy baseline (Fig ) Against the random accuracy baseline, the variable-

voltage sequencing method dramatically outperforms the constant-voltage method.

3.11.2  Towards Higher Accuracies

The variable-voltage method’s 79.1% accuracy is competitive with the best reported single-

read de movo obtained using a nanopore sequencing device E Importantly however, this

15Global-to-global alignment of the entirety of two random sequences will yield ~54.3% identity, with
local-to-global alignments generating higher identity as discussed in appendix

161t is difficult to pin down definitive numbers for commercial nanopore sequencing devices, as companies
rarely publish on their most recent results. A recent review of nanopore sequencing progress [65] shows a
highest single-read accuracy of around ~75%. More recent published results have used either “2D” reads
or the newer “1D?” reads, both of which read both the sense and antisense strand of the target DNA
strand to generate higher accuracy and are thus not comparable to true single-read accuracies.
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Figure 3.8: Read accuracy distributions. (a) The distribution of measured constant-voltage
read accuracies (blue) is only marginally better than the distribution of random accuracies
generated for reads of the same length (red). (b) The distribution of measured variable-
voltage accuracies (blue) is consistently well above the distribution of random accuracies for

equal length random sequences (red).
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initial accuracy figure represents only the baseline starting point of the accuracies nanopore
sequencing can ultimately achieve with the aid of the variable-voltage method. This method
requires little re-engineering of the basic nanopore sequencing system beyond the application
of a variable rather than constant voltage. Consequently, it is straightforward to combine this
method with other techniques being developed to improve nanopore sequencing accuracy.
The improved techniques that have improved commercial constant-voltage sequencing ac-
curacy over the past 5 years are easily applicable to variable-voltage sequencing as well. The
constant-voltage versus variable-voltage comparison presented above tested both methods
without the incorporation of any other new sequencing advances such as more processive and
predictable motor enzymes, more sophisticated base calling algorithms, and reads measuring
both the sense and antisense strand of the target DNAE. Just as the implementation of these
several improvements have taken constant-voltage accuracy from the low 60%’s into the mid
70%’s, combining these techniques with variable-voltage sequencing should enable continued
advances in sequencing accuracy well above the presented 79.1% mark. The merger of the
variable-voltage method with these other advances offers a path forward toward realizing the

ultimate goal of high accuracy nanopore sequencing.

1"These sense and antisense reads are the “2D” and “1D?” reads referenced above. Both read methods
are fundamentally the same. Combining the information from the two strand reads allows error correction
where an error was made in only one of the two reads. In the case of completely random errors, the error
rate will square (e.g. a 70% single read becomes a 91% 2D read). If errors are anti-correlated (as is the
case in our sequencing, where certain k-mers are called more accurately than others), it is possible to do
better than squared error rate.
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Chapter 4

A HIGH SENSITIVITY BLAST ALGORITHM FOR
NANOPORE SEQUENCING

In chapter [3| we focused on improving nanopore DNA sequencing by raising the single-
read de novo sequencing accuracy. Here, we will shift our focus over to a parallel avenue
towards improving the overall efficacy of nanopore sequencing technology. Rather than fo-
cusing on raising the accuracy of the next generation of nanopore sequencing devices, we will
discuss how to make better use of the data produced by the devices that are already avail-
able. Specifically, I will present a new method of sequence alignment capable of generating

strong and fast alignment results even for low accuracy nanopore reads.

4.1 BLAST

Many important clinical and in-field DNA sequencing questions can be answered without
conducting whole genome sequencing. Applications including pathogen detection (section
[1.4.4), outbreak tracking (section [1.4.2)), and metagenomic studies (section are more
interested in coarse-grained information about the representation of different species or mu-
tants in a sample, rather than in sequencing entire genomes. The common question asked
in these studies is not “what is the DNA sequence of this organism (or organisms)?” but

rather “what organism (or organisms) are represented by these measured DNA sequences?”.

These sorts of “what’s in my pot?” experiments rely on quickly searching for matches
of the sequencing reads against a large database of previously-sequenced reference genomes.
This type of large-scale sequence-to-sequence comparison problem is computationally diffi-

cult. The reference databases within which we want to look for matches can be dauntingly
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large. The entire database of all known genomes E| comprises over 2.9 Tb (nearly 3 trillion
bases) ﬂ Searches usually only use a subset of this vast database, but can still commonly
run to several gigabases. E|

The computational issues posed by the large reference database sizes are compounded by
the typical requirement that a search return inexact matches. Searching for exact sequence-
to-sequence matches is computationally simple, even for long sequences. This sort of simple
“word search” can run in O(N) time, where N is the length of the sequence within which
we are searching for matches (i.e. the reference database). However, given the possibility
of mutations relative to the reference genome, and of errors in either the reference or the
read, we are often interested in inexact matches. The optimal inexact match (“alignment”)
of one smaller sequence to some subset of a larger sequence is efficiently found by the Smith-
Waterman alignment algorithmﬁ [75], (74, [76]. A full sequence-to-sequence Smith-Waterman
alignment requires O(N;y x Ny) time, where N is the length of sequence 1 and N, is the
length of sequence 2. As the database of reference genomes becomes large, conducting a
Smith-Waterman alignment of the sequencing reads against the entire reference becomes
impractical.

The Basic Local Alignment Search Tool (“BLAST”) is a fast alignment algorithm com-
monly used to solve these computational difficulties [77]. Unlike the Smith-Waterman al-
gorithm, BLAST is a heuristic algorithm and does cannot guarantee that it will find the
optimal local alignment. However, it is able to reliably achieve near-optimal results while
vastly reducing computation time relative to Smith-Waterman, making it a powerful tool

for searching large sequence databases. BLAST achieves its speed advantage through a

IThis database is available from the NCBI (National Center for Biotechnology Information).
ZStatistics available at https://www.ncbi.nlm.nih.gov/genbank /statistics/

3The standard SI prefixes are typically used to denote genome size: a thousand bases is 1 kb, a million
bases is 1Mb, etc.

4The Smith-Waterman algorithm is a special case of the more commonly known Needleman-Wunsch
algorithm. Needleman-Wunsch finds the optimal global alignment between two sequences, aligning all of
sequence 1 against all of sequence 2. Smith-Waterman instead finds the optimal local alignment between
subsets of the two sequences.
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seed-extend approach (algorithm . Given a “query” sequence (i.e. the sequencing read)
and a reference database to search, BLAST first looks for seeds: short, exact matches of
segments of the query within the database. Seed finding is a fast O(N) word search prob-
lem, as described above. The found seeds are then extended using a Smith-Waterman-type
local alignment algorithm, terminating when the quality of the nascent alignment starts to

deteriorate Pl

Algorithm 2 Sequence-to-sequence BLAST

. Start with a query sequence Q and a reference database of known sequences R

List: generate a list £ of all words of length k (k-mers) that exist within Q

Scan: scan through R for seeds: exact matches to k-mers in £

Extend: extend seeds into candidate alignments using Smith-Waterman-type alignment

algorithm

5. Evaluate: evaluate the extended candidate alignments by their alignment scores to
determine the confidence that each candidate represents a meaningful (non-random)
alignment

The seed-extend strategy saves time over full alignment by avoiding filling in the align-
ment matrix at locations unlikely to generate good matches. A Smith-Waterman alignment
calculates a length(query) x length(reference) alignment matrix, representing all possible
alignments of the two sequences (Fig , all boxes). BLAST instead only fills in the align-
ment matrix around the exactly-matching seeds (Fig , colored boxes). This selective
calculation introduces some risk that the overall best alignment is missed, but this risk is
low assuming the seeds are of a reasonable size. In return for this risk, we achieve a dramatic

improvement in run time.

4.2 Nanopores and BLAST

Several of the advantages of nanopore sequencing make it ideally suited for BLAST-based

sequencing applications. Already, nanopore sequencing devices have demonstrated fast

5 Appendix contains a more detailed discussion of how the BLAST extension algorithm works.
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Figure 4.1: Calculation efficiency of BLAST vs. Smith-Waterman. In a full Smith-Waterman
alignment, we must calculate the entire length(query) x length(reference) alignment matrix,
shown here schematically as a grid of boxes. BLAST saves time by selectively only filling in
regions of the alignment matrix likely to yield good results. It first finds exactly-matching
seeds (green boxes), then extends the seeds (red boxes) into candidate alignments (black
lines). The best local alignment is the best scoring of these candidates (blue line). Locations
in the alignment matrix where no seeds are present are not filled in (blank boxes), saving on
computational overhead.
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sample-to-answer timelines, low input and sample preparation requirements, and portabil-
ity [78, [79, B0]. These advantages indicate that nanopore sequencing technologies could be
uniquely well-suited to these sorts of BLAST-based clinical and in-field sequencing appli-
cations where speed, ease-of-use, and portability are often of utmost importance. Indeed,
researchers and clinicians have already used nanopore sequencing effectively in pathogen
detection [81, 82l 83|, outbreak tracking [80, 84, [85], species identification [86], and metage-
nomic sequencing [87, [8§].

However, the low single-read sequencing accuracies typical of existing nanopore sequenc-
ing devices [68, 89,90} [65] can hinder BLAST performance. Lower read accuracy means that
a read will match less strongly to the correct on-target location in the reference database.
Weaker on-target alignments mean that the correct alignment is less distinguishable from the
crowd of off-target alignments. Thus, low accuracy reads can increase the rate of both false
positives (alignments to incorrect reference locations being called as matches) and false nega-
tives (alignments to the correct reference location not being called as matches). Widespread
interest in BLAST-based nanopore sequencing applications has driven development of new
algorithms designed to better handle the long, low-accuracy reads generated by nanopores
E| [9T), 92, 93], ©94]. These new algorithms help to mitigate the issues caused by low-accuracy
reads, but analyses would be better and easier given stronger identity between the reads and

the reference database.
4.3 Beyond Sequence Alignment

Previous work has shown that aligning the measured ionic current signal from the nanopore
against the predicted signal for the reference sequence using a Smith-Waterman-style align-
ment can give strong alignments even for low accuracy reads [58]. Laszlo et al. showed that
using the ionic current-to-sequence model (section to predict the signal that would be

observed for the reference sequence, then aligning the measured signal to that generated

6Long, low-accuracy reads are characteristic not only of nanopores, but of other single-molecule sequencing
technologies as well. These new BLAST algorithms work generally for all sequencing data of this character.
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