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Abstract

Settling the complexity of the k-disjointness and the k-Hamming distance problems

Mert Sağlam

Chair of the Supervisory Committee:
Title of Chair Shayan Oveis Gharan
Computer Science and Engineering

Suppose that two parties, traditionally called Alice and Bob, are given respectively the

inputs x ∈ X and y ∈ Y to a function f : X × Y → Z and are required to compute f(x, y).

Since each party only has one part of the input, they can compute f(x, y) only if some

communication takes place between them. The communication complexity of a given function

is the minimum amount of communication (in bits) needed to evaluate it on any input with

high probability.

We study the communication complexity of two related problems, the k-Hamming distance

and k-disjointness and give tight bounds to both of these problems: The r-round commu-

nication complexity of the k-disjointness problem is Θ(k log(r) k), whereas a tight Ω(k log k)

bound holds for the k-Hamming distance problem for any number of rounds.

The lower bound direction of our first result is obtained by proving a super-sum result on

computing the OR of n equality problems, which is the first of its kind. Using our second

bound, we settle the complexity of various property testing problems such as k-linearity,

which was open since 2002 or earlier. Our lower bounds are obtained via information theoretic

arguments and along the way we resolve a question conjectured by Erdős and Simonovits in

1982, which incidentally was studied even earlier by Blakley and Dixon in 1966.
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Chapter 1

INTRODUCTION

In communication complexity, one tries to understand the limitations of computation

through communication bottlenecks. In computation, communication bottlenecks are ev-

erywhere; inside the same core, between the cores, inside the same die, package, between

the memory and the processor, between software components and more. These bottlenecks

are not specific to the current designs of computers; in fact, any physical computer has

to deal with similar communication issues as dictated by laws of nature. Communication

bottlenecks remain relevant and challenging even higher up in the abstraction hierarchy,

including theoretical abstractions such as data structures and algorithms.

In 1979 to study such bottlenecks in a generic way, Yao introduced the following abstract

model [87]. Two players, called Alice and Bob, are required to evaluate a known function f

on inputs (x, y), where Alice has only x and Bob has only y. The players communicate by

sending messages, that is, bit strings, to each other in turns until one of the players is able

to deduce f(x, y). The communication complexity of one such function f is taken to be the

minimum number of bits of communication needed to be able to evaluate it on any input

(x, y) with hight probability. Note here that the inputs x and y, for instance, may correspond

to data stored in separate parts of a computational device and the communication complexity

of the function would then model the data transfer between these parts.

One problem that proved its significance early on in the history of communication

complexity is set disjointness. In the set disjointness problem, the players receive respectively

subsets S, T of a ground set, say {1, 2, . . . , n}, and are required to figure out if their sets S

and T intersect. The first lower bound for this problem that applies even to randomized

protocols was given by Babai, Frankl and Simon in [5]. Their lower bound shows that any
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randomized protocol for the set disjointness problem over the ground set {1, 2, . . . , n} requires

at least Ω(
√
n) bits of communication. On the flip side, the best known protocol was the

trivial one round protocol wherein one player sends their entire input to the other, thereby

communicating n bits and solving the problem deterministically. This gap between the

upper bound and the lower bound was closed in a landmark paper of Kalyanasundaram

and Schnitger from 1987, which showed a tight Ω(n) bits lower bound. This result was

later simplified in influential papers of Razborov [77] and Bar-Yossef, Jayram, Kumar and

Sivakumar [7], which led to a whole new understanding of communication through the lens

of information theory.

The k-disjointness problem. To gather a more refined understanding of the set disjoint-

ness problem, in this work we study a variant of this problem where the set sizes are restricted

to be at most k for some arbitrary parameter k ≤ n. Needless to say, we can always take k

large enough to recover the unrestricted version of the problem. This restriction may seem

dull initially given the earlier remark, however it allows us to uncover an entirely new and

surprising aspect of the set disjointness problem: that the complexity of the problem exhibits

a rounds versus communication trade-off, that vanishes very quickly with increasing number

of rounds.

In fact, we are not the first to study this restriction on the size of the sets. In 1990s H̊astad

and Wigderson studied this variant of the problem, henceforth called the k-disjointness

problem, and gave a protocol which communicates only O(k) bits over O(log k) rounds,

solving the problem with constant probability [47, 73, 48]. In the first part of this thesis,

we improve this protocol to run in just log∗ k rounds, while we simultaneously reduce the

error probability to exponentially small in k. In fact, for an arbitrary integer r ≤ log∗ k,

this protocol can be run in r rounds with communication cost O(k log(r) k) bits in total, and

error probability well below polynomial for r ≥ 2. More importantly, we show that this

improvement is final: we prove that any r-round set disjointness protocol with even constant

error probability requires at least one message of size Ω(k log(r) k) bits. This proof works even
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when r is a function of k such as r = log∗ k, settling the complexity of the problem entirely.

The k-Hamming distance problem. An alternative way of viewing the k-disjointness

problem is through the characteristic vectors of sets S, T given to the players. We may think

of each player as having received a k-sparse bit vector vector and the goal of the players is to

understand whether the Hamming distance of their vectors is less than 2k. Notice that the

Hamming distance of these vectors is less than 2k if and only if the corresponding set S and

T intersect. An important generalization of this problem is the k-Hamming distance problem

wherein the players are given bit vectors, respectively x and y, within Hamming distance k

and the goal of the players is to compute the Hamming distance between x and y exactly.

Notice that, compared to the k-disjointness problem, here we removed the k-sparsity promise

while keeping the closeness promise intact.

For the k-disjointness and the k-Hamming distance problems there is a simple 1-round

O(k log k) bits protocol. As the work of H̊astad and Wigderson and our work uncovered,

for the k-disjointness problem the complexity goes to k very quickly as we allow more and

more rounds. Interestingly, no such protocol could be found for the k-Hamming distance

problem—not even a single improvement over the easy 1-round protocol. This lack of progress

became all the more pressing when in 2011 Blais Brody and Matulef [15] showed a connection

between the k-Hamming distance problem and a host of important property testing problems.

The property testing model. In the property testing model one is given black-box query

access to an otherwise unknown function g, with the task of determining whether the function

is inside a certain class or differs from any function inside the class in at least an ε-fraction

of the possible outputs. A function f : Fn2 → F2 is called k-linear if f(x) = 〈w, x〉 for some

w ∈ Fn2 with ‖w‖1 ≤ k. In other words, a k-linear function outputs the sum of at most k

bits of the input in mod 2. In [13], Blais gave a O(log k) round tester with O(k log k) queries

for k-linearity. This result was improved in [23] by Buhrman, Garcia-Soriano, Matsliah and

de Wolf, who gave a nonadaptive O(k log k) bits tester. The progress stuck here however
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and the gap between the O(k log k) query upper bound and the Ω(k) lower bound remained

unresolved for several years.

Multiple attempts have been made to show an Ω(k log k) lower bound to the k-Hamming

distance problem to close this gap. In [23], [32], and [75] an Ω(k log k) lower bound was

shown, but only for protocols having 1 round. However, these lower bounds do not rule

out the possibility that the complexity of the k-Hamming distance problem decays to, say

O(k), with multiple rounds, just like the related k-disjointness problem. In fact, all three of

these bounds apply to both the k-disjointness and the k-Hamming distance problems alike,

and therefore are incapable of separating them. Some other attempts have been made to

prove an O(k) upper bound to the k-Hamming distance problem. One daunting challenge in

proving a sharp lower bound the the k-Hamming distance problem lies in the fact that one of

the most powerful proof techniques in communication complexity, the corruption bound, is

unable prove any bound beyond Ω(k log 1/δ) where δ is the error probability of the protocol.

The corruption bound fails due to the existence of large combinatorial rectangles in the

communication matrix of the k-Hamming distance function.

In 2014, Blais, Brody and Ghazi [14] showed an Ω(k log 1/δ) lower bound for the k-

Hamming distance problem using an information theoretic argument. While this may seem

like a small improvement over the Ω(k) lower bound that follows from the work of [55], as one

usually takes δ to be a constant, the importance of this result lies in that it is the first formal

evidence that k-Hamming distance is harder than the k-disjointness problem. Recall that

our upper bound [80] solves the k-disjointness problem with O(k) bits of communication and

exponentially small error probability in k, so no bound of the form Ω(k log 1/δ) can be true

for k-disjointness. We remark that the lower bound [14] does not go further than Ω(k log 1/δ)

not only due to the limitation of the corruption method alluded to in the earlier paragraph,

but actually the problem they study, the OR ◦ 1vs3 problem, to establish their k-Hamming

distance lower bound admits an actual O(k log 1/δ) upper bound. Notice that this is a much

stronger statement than the existence of larger rectangles.

The usual decomposition technique employed in randomized communication complexity of



5

considering a special set of possible inputs which can be interpreted as calculating a composed

function, say f ◦ gk, with a simple f leads to the OR ◦ 1vs3 function of [14]. As mentioned

earlier, this restriction of the problem admits an O(k log 1/δ) bits upper bound, so it is of

no help to prove an Ω(k log k) lower bound. In the same work [14], the composed function

MAJ ◦ 1vs3 was proposed as a candidate to obtain an Ω(k log k) lower bound. However

working with the majority function appears to be difficult and it is unclear if the decomposition

bought us any comfort in proving the optimal lower bound at all.

If one does not go through the decomposition route, the only standard technique which

appears to be able to provide a global analysis for the k-Hamming distance problem is the

spectral norm bound. While it is possible to show an Ω(k log log 1/δ
k

+ k) lower bound for

the log-spectral-norm of the corresponding k-threshold function via a duality argument,

anything beyond this bound proved difficult. Through some experimentation with linear

program solvers, we believe that this lower bound is tight for the log-spectral-norm of the

k-threshold function. In fact, in an upcoming work with de Wolf and Hoyer, we show that

there are quantum communication protocols for the k-Hamming distance problem with just

O(k) qubits of communication and exponentially small error probability. This implies that

the log-spectral-norm of k-threshold function is O(k), even though this upper bound does

not match the log-spectral-norm lower bound in the δ parameter.

Given that various powerful lower bound techniques in communication complexity are all

stuck at Ω(k), and all upper bound attempts are stuck at O(k log k), it was far from clear

what the correct bound for the communication complexity of the k-Hamming distance should

be. In our work (recently published in [79]), we manage to find a connection between the

k-Hamming distance problem and a very natural statement about how heat behaves in time.

It turns out, similar questions were considered earlier in the literature. In 1966, Blakley and

Dixon [18] studied a special case of our main inequality, defined and proven in Chapter 4 of

this thesis. In 1982, Erdős and Simonovits [34] studied a slightly more restrictive case of the

inequality of [18] and posed it as a conjecture. In Chapter 4 we prove that the inequality of

Blakley and Dixon holds true even in a more general form, which in turn affirmatively answers
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the conjecture of Erdős and Simonovits. Furthermore in the second part of Chapter 4, we

prove a substantial refinement of this inequality, which in essence argues that the probability

mass contained in a certain region of a Markov chain must be nearly convex as a function

of time. In Chapter 5 we prove that the aforementioned inequality about Markov chains

is precisely what is needed to get an Ω(k log k) lower bound to the k-Hamming distance

problem, thereby establishing the complexity of k-Hamming distance problem and the tight

bounds for the property testing of k-linearity.

1.1 Our techniques.

An important challenge in proving the inequality of Blakley and Dixon [18] is the following.

Our generalized version of the inequality states that for vectors u, v with nonnegative entries

and a symmetric matrix S with nonnegative entries, we have
〈
v, Sku

〉1/k
≥ 〈v, Stu〉1/t for

k > t integers of the same parity. We remark that the nonnegativity requirement on u, v

is crucial and the inequality fails for general u, v. In fact, one way to deduce this is to

take our recent O(k) qubits quantum communication protocol for the k-Hamming distance

problem and obtain u, v from the log-spectral-norm relaxation of the protocol. The key

technical challenge in proving this inequality seems to be devising a proof that is sensitive

to u, v being in the the positive orthant. In [17], Blakley and Roy showed that the special

case
〈
v, Sku

〉1/k
≥ 〈v, Su〉 is true by taking a geometric view and working with the positive

orthant directly. For t > 1, working with the positive orthant directly appears to be very

difficult. Instead, we break apart from the geometric view and into a probabilistic perspective

to make positivity an inherent part of the technique. We cast this inequality as a probabilistic

statement and analyze it through the lens of information theory by viewing it as the success

probability of discrete time stochastic process.

1.2 Future directions

A surprising part of our Ω(k log k) lower bound for the k-Hamming distance problem is that

the proof does not use at all the tensor structure of the hypercube. The only two properties



7

of the hypercube that we use are that 1) it is an undirected graph 2) if we perform the

standard discrete time random walk from a vertex u, at time t �
√
n, we end up with a

vertex v satisfying Ham(u, v) = t with probability at least, say 0.9.

We believe a similar proof the Gap Hamming Distance problem may be possible. Current

lower bound proofs for the Gap Hamming Distance depend heavily on the product structure

of the hypercube through concentration of measure phenomenon. We discuss this possibility

in Conjecture 5.7.1.

1.3 Outline

In this thesis we study the communication complexity of the k-disjointness and k-Hamming

distance problems. In Chapter 5, we give our k-disjointness protocol, and show a matching

lower bound after we take a brief detour into combinatorics to develop our isoperimetric

inequality used in the lower bound proof.

Our lower bound for the k-Hamming distance, given in Chapter 5, requires us to understand

how heat behaves in discrete time. We develop this theory in Chapter 4. The notation we

use and some formal preliminaries are given in Chapter 2.
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Chapter 2

PRELIMINARIES

In this chapter we list the notation we use, conventions we adopt and formally and define

formally and in more detail the computational models that we work with in this thesis.

2.1 Notation

We denote by [n] the set {1, 2, . . . , n}. Throughout this thesis, we take exp and log functions

to the base 2. For exponentials and logarithms in other bases such as b, we write expb and

logb. We adopt the convention ln ··= loge where e = 2.718 . . . is the limiting value of (1+1/n)n

as n→∞. We will also use the iterated versions of these functions:

log(0) x ··= x, exp(0) x ··= x,

log(r) x ··= log
(
log(r−1) x

)
, exp(r) x ··= exp

(
exp(r−1) x

)
for r ≥ 1.

Moreover we define the log∗ x to be the smallest integer r for which log(r) x < 2. For instance,

we have log∗ 16 = 3 and log∗ 216 = 4. The function log∗ is conventionally called the iterated

logarithm, which we adopt. To differentiate, we call the function log(r) the r-iterated logarithm.

2.2 Random variables and distributions

Let Ω be a countable set. For a function µ : Ω→ R+ and a set Ψ ⊆ Ω, we use the shorthand

µ(Ψ) ··=
∑
x∈Ψ

µ(x).

A function µ : Ω→ R+ is said to be a distribution on Ω if µ(Ω) = 1 and a subdistribution if

µ(Ω) ≤ 1. For a function µ on Ω, we define

supp(µ) ··= {x ∈ Ω | µ(x) > 0} .
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For two distributions µ : Ω1 → R+ and ν : Ω2 → R+, let us denote by µν the distribution on

Ω1 × Ω2 given by (µν)(x1, x2) = µ(x1)ν(x2).

For a discrete random variable X, we denote by dist(X) the distribution function of X

and we define supp(X) ··= supp(dist(X)). If X is so that dist(X) : Ω → R+, then we say

that X has sample space Ω. Two random variables X and Y are said to be independent if

dist(XY ) = dist(X) dist(Y ).

Lemma 2.2.1 (Jensen [54], Formula (5)). Let X be a real-valued random variable and f be

a convex function. We have E [f(X)] ≥ f(E[X]). When f is strictly convex, the inequality

holds with equality if and only if X is constant with probability 1.

2.3 Facts from information theory

In this section we review the definitions and facts we use from information theory. Let µ and

ν be two nonnegative functions on Ω. The Kullback-Leibler divergence [85, 59] of µ from ν,

denoted D(µ ‖ ν), is defined by

D(µ ‖ ν) ··=
∑
x∈Ω

µ(x) log µ(x)
ν(x) . (2.3.1)

Here, if µ(x) = 0 for some x, then its contribution to the summation is taken as 0, even when

ν(x) = 0. The divergence is undefined if there is an x ∈ Ω such that µ(x) > 0 and ν(x) = 0.

It can be shown that if the related series converges for the right hand side of Eq. (2.3.1), it

converges absolutely, which justifies leaving the summation order unspecified. A fundamental

property of D(· ‖ ·) is that the divergence of a distribution from a subdistribution is always

nonnegative.

Lemma 2.3.1 (Gibbs [38], Theorem VIII). Let µ, ν : Ω→ R be such that µ is a distribution

and ν is a subdistribution. We have D(µ ‖ ν) ≥ 0 with equality if and only if µ = ν.

Lemma 2.3.2 (Kullback and Leibler [59], Lemma 3.2). Let µ, ν : Ω→ R+ be so that µ is a

distribution on Ω and supp(µ) = Ψ ⊆ Ω. We have

D(µ ‖ ν) ≥ − log ν(Ψ)
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with equality if and only if µ(x) = ν(x)/ν(Ψ) for x ∈ Ψ and µ(x) = 0 for x /∈ Ψ.

Proof. By Eq. (2.3.1) we write

D(µ ‖ ν) = −
∑
x∈Ψ

µ(x) log ν(x)
µ(x) ≥ − log

∑
x∈Ψ

ν(x) = − log ν(Ψ) ,

where the inequality follows from Lemma 2.2.1 and concavity of z 7→ log z on R+. If µ(x) =

ν(x)/ν(Ψ) for x ∈ Ψ, we have D(µ ‖ ν) = − log ν(Ψ) by direct computation. Otherwise

D(µ ‖ ν) > − log ν(Ψ) by strict concavity of z 7→ log z.

We extend the divergence notation D(· ‖ ·) to apply to random variables as follows. Let

X, Y be discrete random variables on the same sample space Ω. Define

D(X ‖Y ) ··= D(dist(X) ‖ dist(Y )) . (2.3.2)

With this notation in hand, we are ready to define the conditional divergence. Let X1X2 and

Y1Y2 be random variables defined on the sample space Ω1 × Ω2. The divergence of X1 |X2

from Y1 |Y2 is defined by

D(X1 |X2 ‖Y1 |Y2) ··= E
x2∼X2

D(X1 |X2 = x2 ‖Y1 |Y2 = x2) . (2.3.3)

Here, for each x2 ∈ supp(X2), X1 |X2 = x2 and Y1 |Y2 = x2 are random variables on the

sample space Ω1 obtained from, respectively X1X2 and Y1Y2, by conditioning on the second

coordinate equaling x2.

Lemma 2.3.3 (e.g., [31]). Let X1X2 and Y1Y2 be random variables, both on the sample space

Ω1 × Ω2. We have

D(X1X2 ‖Y1Y2) = D(X1 ‖Y1) + D(X2 |X1 ‖Y2 |Y1) .

Proof. Let µ, ν : Ω1 × Ω2 → R+ be the distributions of respectively X1X2 and Y1Y2. Using

the shorthands µ(Ω1, x2) ··=
∑
x1∈Ω1 µ(x1, x2) and ν(Ω1, x2) ··=

∑
x1∈Ω1 ν(x1, x2), we write

D(X1 |X2 ‖Y1 |Y2) =
∑
x2∈Ω2

µ(Ω1, x2)
∑
x1∈Ω1

µ(x1, x2)
µ(Ω1, x2) log µ(x1, x2)ν(Ω1, x2)

ν(x1, x2)µ(Ω1, x2)

=
∑
x1,x2

µ(x1, x2) log µ(x1, x2)
ν(x1, x2) +

∑
x2

µ(Ω1, x2) log ν(Ω1, x2)
µ(Ω1, x2)
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by splitting the terms inside the logarithm. Using Eq. (2.3.1) together with Eq. (2.3.2) we

conclude

D(X1 |X2 ‖Y1 |Y2) = D(X1X2 ‖Y1Y2)−D(X2 ‖Y2) .

Rearranging, we obtain the statement of the lemma.

The next lemma establishes that the Kullback-Leibler divergence is jointly convex in

its parameters. This fact is also called the data processing inequality for Kullback-Leibler

divergence.

Lemma 2.3.4. Let µ1, µ2 : Ω1 → R+ be distributions supported on Ω1 and let ν1, ν2 : Ω2 → R+

be distributions supported on Ω2. For any a ∈ [0, 1], we have

D(aµ1 + (1− a)µ2 ‖ aν1 + (1− a)ν2) ≤ aD(µ1 ‖ ν1) + (1− a)D(µ2 ‖ ν2)

Further for two reals p, q ∈ [0, 1], we use the shorthand notation D2(p ‖ q) to denote the

divergence of the random variable P from Q where P,Q are Bernoulli random variables with

expectation respectively p and q.

2.3.1 Mutual information and Shannon entropy

Let X and Y be jointly distributed random variables. The mutual information of X and Y ,

denoted I(X : Y ), is defined as

I(X : Y ) ··= D(dist(X, Y ) ‖ dist(X) dist(Y )) . (2.3.4)

The mutual information of a random variable with itself, i.e., the quantity I(X :X) is

called the Shannon entropy of X and denoted by H(X). If X ∈ [t]n and L ⊆ [n], then the

projection of X to the coordinates in L is denoted by XL. Namely, XL is obtained from

X = (X1, . . . , Xn) by keeping only the coordinates Xi with i ∈ L. The following lemma of

Chung et al. [28] relates the entropy of a variable to the entropy of its projections.

Lemma 2.3.5 (Chung et al. [28]). Let supp(X) ⊆ [t]n. We have l
n
H(X) ≤ EL[H(XL)],

where the expectation is taken for a uniform random l-subset L of [n].
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2.4 Concentration bounds

Let X1, . . . , Xn be random variables such that E[Xi] = ε for some 0 ≤ ε ≤ 1. Define

X = X1 + · · · + Xn. By linearity of expectation we have E[X] = εn. If each Xi is chosen

independently, due to the concentration of measure phenomenon, it is well understood that

X takes values close to its expectation with very high probability. The classical results of

Chernoff [27] and Hoeffding [45] give quantitative and intuitive bounds on the deviation

probability.

Theorem 2.4.1 (Chernoff [27]). Let X = X1 + · · ·+Xn, where Xi for i ∈ [n] are independent

binary random variables with expectation ε. Then for any ε ≤ γ ≤ 1 we have

Pr [X ≥ γn] ≤ exp (−nD2(γ ‖ ε)) .

Proof. Let E be the event that X ≥ γn. Let µ be the Bernoulli distribution that equals 1

with probability ε. We have

− log Pr[E] = D(dist(X1 . . . Xn |E) ‖µn) (by Lemma 2.3.2)

≥
n∑
i=1

D(dist(Xi |E) ‖µ) (by Lemma 2.3.3)

≥ nD2(γ ‖ ε) (as D2(δ ‖ ε) ≥ D2(γ ‖ ε) for ε ≤ γ ≤ δ)

Hence, Pr[E] ≤ exp (−nD2(γ ‖ ε)) as required.

2.5 Communication complexity and protocols

The model. In the two party communication complexity model we have two parties called

respectively Alice and Bob who are required to evaluate a function f : X × Y → Z (known

to both of them) on some input (x, y) where x is revealed to Alice only and y is revealed to

Bob only.

In the randomized variant of this model, which is what we solely study in this thesis, the

players also have access to a shared random source. Without loss of generality, the random



13

source can be taken as an infinite read-only string of bits, chosen uniformly at random. The

players, having received their inputs x and y respectively, and with access to the shared

random source, engage in a dialogue by alternately sending each other messages in rounds, in

order to compute f(x, y). Here, a message is a bit string of arbitrary length.

Protocols. A communication protocol specifies, for each round, which player’s turn it is

to speak and what message should be sent and whether the protocol terminates with some

answer. The protocol specifies the message to be sent through a function mapping the random

string, the current players input and all the messages the current player received so far to

a bit string which is to be sent to the other player. This ensures that the message sent by

the players, say Alice for illustration, can depend on only information known to her at the

time: her own input, the shared random source and the message she received in the previous

rounds. Some message are marked as answers; instead of being sent to the other player,

these message are to be announced as the output of the protocol, after which the protocol

terminates. We say that a communication protocol for a function f : X ×Y → Z has at most

δ-error if for any input pair (x, y) ∈ X × Y with probability at least 1− δ the output of the

protocol equals f(x, y), where the probability is over the random choices that come from the

shared random source.

In an r-round protocol there are at most r messages (excluding the output message) sent

for any input and any configuration of the shared random source. To illustrate the way the

number of messages is counted, consider the following protocol. Alice sends a single message

to Bob and in return Bob replies with another message after which Alice announces the

answer of the protocol. This protocol has two rounds. The complexity of a protocol is defined

to be the the maximum, over all input pairs (x, y) ∈ X × Y and all choices of the random

source, of the total number of bits sent by the two parties.

Let P be a protocol for a function f : X × Y . We denote by P (x, y, r) the output of the

protocol on input x ∈ X , y ∈ Y and when the shared random string is fixed to r. We denote

by P (x, y) the random variable denoting the output of the protocol on inputs (x, y). The
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transcript of the protocol P , denoted ΠP (x, y, r), is the concatenation of all the messages

sent by the players (excluding the answer of the protocol) on inputs x ∈ X , y ∈ Y and when

the shared random string is r. Likewise, ΠP (x, y) denotes the random variable entailing the

communication took place the two players when the random source is not fixed. We denote

by |ΠP | the length of the transcript, in bits.

Communication complexity The δ-error randomized communication complexity of a

function f : X × Y → Z, denoted Rδ(f), is the minimum over all δ-error protocols for f , of

the complexity of the protocol. We also define the r-round δ-error randomized communication

complexity of a function f , denoted Rr
δ(f), wherein the minimization this time is over all

r-round protocols for f with at most δ-error. Let us summarize the two key definitions of

this section in notation.

For a function f : X × Y → Z,

Rδ(f) ··= min
P

max
x∈X ,y∈Y,r

|ΠP (x, y, r)| (2.5.1)

Rr
δ(f) ··= min

P
max

x∈X ,y∈Y,r
|ΠP (x, y, r)| (2.5.2)

where P ranges over all δ-error protocols for f in Eq. (2.5.1) and P ranges over all δ-error

r-round protocols for f in Eq. (2.5.2).

2.5.1 The k-disjointness problem

In the k-disjointness problem (also known as the sparse set disjointness or small set disjoint-

ness), each of the players receives a subset of [n] of size at most k. Call the set Alice receives

S and the set Bob receives T . The goal of the players is to determine whether their sets S

and T intersect. We denote this problem by Disjnk .

One useful way to think about Disjnk problem is to associate the sets players receive with

their characteristic vectors. This way, Alice and Bob each receive an n bit string with at

most k ones and their goal is to determine if there is a coordinate in which both of their
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strings is one. Notice that the characteristic vectors have a common 1 if and only if their

Hamming distance is at most 2k − 2.

2.5.2 The k-Hamming distance problem

In the k-Hamming distance problem the players get n bit strings, say x, y ∈ {0, 1}n, respec-

tively with the promise that Ham(x, y) ≤ k. Their goal is to determine whether Ham(x, y)

under this promise. Note that by the previous paragraph, the k-disjointness problem is

a special case of the 2k-Hamming distance problem, therefore up to constant factors, the

communication complexity of Disjnk is upper bounded by Hamn
k .
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Chapter 3

THE K-DISJOINTNESS PROBLEM

In the set disjointness problem two players, traditionally called Alice and Bob, receive a

subset of [n] ··= {1, . . . , n} each and the goal of the players is to determine whether their sets

intersects or not. Since each player knows only one of the sets, this goal is achievable only

if some communication takes place between the players. The communication complexity of

the set disjointness problem is then defined to be the minimum amount of communication

needed by the players to determine whether their sets intersect, with high probability, for

any possible sets they may receive.

Set disjointness is perhaps the most studied problem in communication complexity. In

the most common version the players receive subsets of [n] with no restriction on the sizes of

the sets. The primary question is whether the players can significantly improve on the trivial

deterministic protocol, wherein the first player sends the entire input to the other player,

thereby communicating n bits. The first lower bound on the randomized complexity of this

problem was given in [5] by Babai, Frankl and Simon, who showed that any ε-error protocol

for disjointness must communicate at least Ω(
√
n) bits. The tight bound of Ω(n)-bits was

first given by Kalyanasundaram and Schnitger [55] and was later simplified by Razborov [77]

and Bar-Yossef, Jayram, Kumar and Sivakumar [7].

In the sparse set disjointness problem Disjnk , the sets given to the players are guaranteed

to have at most k elements. The deterministic communication complexity of this problem is

well understood. The trivial protocol, where Alice sends her entire input to Bob solves the

problem in one round using O(k log(n/k) + k) bits. On the other hand, an Ω(k log(n/k) + k)

bit total communication lower bound can be shown even for protocols with an arbitrary

number of rounds, say using the rank method; see [60], page 175.
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The randomized complexity of the problem is far more subtle. The result of Kalyanasun-

daram and Schnitger cited above immediately imply an Ω(k) lower bound for this version of

the problem. The folklore 1-round protocol solves the problem using O(k log k) bits, wherein

Alice sends O(log k)-bit hashes for each element of her set. H̊astad and Wigderson [48] gave

a protocol that matches the Ω(k) lower bound mentioned above. Their O(k)-bit randomized

protocol runs in O(log k)-rounds and errs with a small constant probability. In ??, we

improve this protocol to run in log∗ k rounds, still with O(k) total communication, but with

exponentially small error in k. We also present an r-round protocol for any r < log∗ k with

total communication O(k log(r) k) and error probability well below 1/k; see Theorem 5.1.1.

(Here log(r) denotes the iterated logarithm function, see Chapter 2.) As the exists-equal

problem with parameters t and n (see below) is a special case of Disjtnn , our lower bounds for

the exists-equal problem (see below) show that complexity of this algorithm is optimal for

any number r ≤ log∗ k of rounds, even if we allow the much larger error probability of 1/3.

Buhrman et al. [23] and Woodruff [86] (as presented in [75]) show an Ω(k log k) lower bound

for 1-round complexity of Disjnk by a reduction from the indexing problem (this reduction

was also mentioned in [?]). We note that these lower bounds do not apply to the exists-equal

problem, as the input distribution they use generates instances inherently specific to the

disjointness problem; furthermore this distribution admits a O(log k) protocol in two rounds.

In the equality problem Alice and Bob receive elements x and y of a universe [t] and they

have to decide whether x = y. We define the two player communication game exists-equal

with parameters t and n as follows. Each player is given an n-dimensional vector from [t]n,

namely x and y. The value of the game is one if there exists a coordinate i ∈ [n] such that

xi = yi, zero otherwise. Clearly, this problem is the OR of n independent instances of the

equality problem.

The direct sum problem in communication complexity is the study of whether n instances

of a problem can be solved using less than n times the communication required for a single

instance of the problem. This question has been studied extensively for specific communication

problems as well as some class of problems [25, 50, 51, 10, 36, 49, 42, 8]. The so called direct
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sum approach is a very powerful tool to show lower bounds for communication games. In

this approach, one expresses the problem at hand, say as the OR of n instances of a simpler

function and the lower bound is obtained by combining a lower bound for the simpler problem

with a direct sum argument. For instance, the two-player and multi-player disjointness

bounds of [7], the lopsided set disjointness bounds [76], and the lower bounds for several

communication problems that arise from streaming algorithms [52, 63] are a few examples of

results that follow this approach.

Exists-equal with parameters t and n is a special case of Disjtnn , so our protocols in

Section 3.4 solve exists-equal. We show that when t = Ω(n) these protocols are optimal,

namely every r-round randomized protocol (r ≤ log∗ n) with at most 1/3 error error probability

needs to send at least one message of size Ω(n log(r) n) bits. See Theorem 4.0.4. Our result

shows that computing the OR of n instances of the equality problem requires strictly more

than n times the communication required to solve a single instance of the equality problem

when the number of rounds is smaller than log∗ n−O(1). Recall that the equality problem

admits an ε-error log(1/ε)-bit one-round protocol in the common random source model.

For r = 1, our result implies that to compute the OR of n instances of the equality

problem with constant probability, no protocol can do better than solving each instance of the

equality problem with high probability so that the union bound can be applied when taking

the OR of the computed results. The single round case of our lower bound also generalizes

the Ω(n log n) lower bound of Molinaro et al. [67] for the one round communication problem,

where the players have to find all the answers of n equality problems, outputting an n bit

string.

3.1 Lower bound techniques

We obtain our general lower bound via a round elimination argument. In such an argument

one assumes the existence of a protocol P that solves a communication problem, say f , in

r rounds. By suitably modifying the inner working of P , one obtains another protocol P ′

with r − 1 rounds, which typically solves smaller instances of f or has larger error than P .
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Iterating this process, one obtains a protocol with zero rounds. If the protocol we obtain

solves non-trivial instances of f with good probability, we conclude that we have arrived at

a contradiction, therefore the protocol we started with, P , cannot exist. Although round

elimination arguments have been used for a long time, our round elimination lemma is the

first to prove a super-linear communication lower bound in the number of primitive problems

involved, obtaining which requires new and interesting ideas.

At the heart of the general round elimination lemma is a new isoperimetric inequality

on the discrete cube [t]n equipped with the Hamming distance. We present this result,

Theorem 3.6.5, in Section 3.6. The first isoperimetric inequality on this metric space was

proven by Lindsey in [61], where the subsets of [t]n of a certain size with the so called

minimum induced-edge number were characterized. This result was rediscovered in [58] and

[29] as well. See [4] for a generalization of this inequality to universes which are n-dimensional

boxes with arbitrary side lengths. In [19], Bollobás et al. study isoperimetric inequalities on

[t]n endowed with the `1 distance. For the purposes of our proof we need to find sets S that

minimize a substantially more complicated measure. This measure also captures how spread

out S is and can be described roughly as the average over points x ∈ [t]n of the logarithm of

the number of points in the intersection of S and a Hamming ball around x.

3.2 Related work

In [66], a round elimination lemma was given, which applies to a class of problems with

certain self-reducibility properties. The lemma is then is used to get lower bounds for various

problems including the greater-than and the predecessor problems. This result was later

tightened in [82] to get better bounds for the aforementioned problems. Different round

elimination arguments were also used in [56, 40, 71, 65, 33, 9] for various communication

complexity lower bounds and most recently in [20] and [22] for obtaining lower bounds for

the gapped Hamming distance problem.

In parallel and independent of the present form of this paper Brody et al. [21] have also

established an Ω(n log(r) n) lower bound for the r-round communication complexity of the
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exists-equal problem with parameter n. Their result applies for protocols with a polynomially

small error probability like 1/n. This stronger assumption on the protocol allows for simpler

proof techniques, namely the information complexity based direct sum technique developed

in several papers including [1, 25], but it is not enough to create an example where solving

the OR of n communication problems requires more than n times the communication of

solving a single instance. Indeed, even in the shared random source model one needs log n

bits of communication (independent of the number of rounds) to achieve 1/n error in a single

equality problem.

3.3 Structure of the present chapter

The general round elimination presented in Section 3.7 is technically involved, but the lower

bound on the one-round protocols can also be obtained in a more elementary way. As the one

round case exhibits the most dramatic super-linear increase in the communication cost and

also generalizes the lower bound in [67], we include this combinatorial argument separately

in Section 3.5.

We start in Section 3.4 with our protocols for the sparse set disjointness. Note that the

exists-equal problem is a special case of sparse set disjointness, so our protocols work also

for the exists-equal problem. In the rest of the paper we establish matching lower bounds

showing that the complexity of our protocols are within a constant factor to optimal for both

the exists-equal and the sparse set disjointness problems, and for any number of rounds. In

Section 3.5 we give an elementary proof for the case of single round protocols. In Section 3.6

we develop our isoperimetric inequality and in Section 3.7 we use it in our round elimination

proof to get the lower bound for multiple round protocols. Finally in Section 3.8 we point

toward possible extensions of the result of this chapter.
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3.4 The upper bound for Disjnk

Recall that in the communication problem Disjmk , each of the two players is given a subset

of [m] of size at most k and they communicate in order to determine whether their sets are

disjoint or not. In early 1990s, H̊astad and Wigderson [73, 48, 47] discovered a randomized

protocol that solves the Disjmk problem with O(k) bits of communication and has constant

one-sided error probability. The protocol takes O(log k) rounds. Let us briefly review this

protocol as this is the starting point of our protocol.

3.4.1 The H̊astad Wigderson protocol

Let S, T ⊆ [m] be the inputs of Alice and Bob. Observe that if they find a set Z satisfying

S ⊆ Z ⊆ [m], then Bob can replace his input T with T ′ = T ∩ Z as T ′ ∩ S = T ∩ S. The

main observation is that if S and T are disjoint, then a random set Z ⊇ S will intersect T in

a uniform random subset, so one can expect |T ′| ≈ |T |/2. In the H̊astad-Wigderson protocol

the players alternate in finding a random set that contains the current input of one of them,

effectively halving the other player’s input. If in this process the input of one of the players

becomes empty, they know the original inputs were disjoint. If, however, the sizes of their

inputs do not show the expected exponential decrease in time, then they declare that their

inputs intersect. This introduces a small one sided error. Note that one of the two outcomes

happens in O(log k) rounds. An important observation is that Alice can describe a random

set Z ⊇ S to Bob using an expected O(|S|) bits by making use of the joint random source.

This makes the total communication O(k).

3.4.2 Our protocol

In our protocol proving the next theorem, we do almost the same, but we choose the random

sets Z ⊇ S not uniformly, but from a biased distribution favoring ever smaller sets. This

makes the size of the input sets of the players decrease much more rapidly, but describing the

random set Z to the other player becomes more costly. By carefully balancing the parameters
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we optimize for the total communication given any number of rounds. When the number of

rounds reaches log∗ k −O(1) the communication reaches its minimum of O(k) and the error

becomes exponentially small.

Theorem 3.4.1. For any r ≤ log∗ k, there is an r-round probabilistic protocol for Disjmk with

O(k log(r) k) bits total communication. There is no error for intersecting input sets, and the

probability of error for disjoint sets can be made O(1/ exp(r)(c log(r) k) + exp(−
√
k))� 1/k

for any constant c > 1.

For r = log∗ k − O(1) rounds this means an O(k)-bit protocol with error probability

O(exp(−
√
k)).

Proof. We start with the description of the protocol. Let S0 and S1 be the input sets of Alice

and Bob, respectively. For 1 ≤ i ≤ r, i even Alice sends a message describing a set Zi ⊃ Si

based on her “current input” Si and Bob updates his “current input” Si−1 to Si+1 ··= Si−1∩Zi.

In odd numbered rounds the same happens with the role of Alice and Bob reversed. We

depart from the H̊astad-Wigderson protocol in the way we choose the sets Zi: Using the

shared random source the players generate li random subsets of [m] containing each element

of [m] independently and with probability pi. We will set these parameters later. The set

Zi is chosen to be the first such set containing Si. Alice or Bob (depending on the parity of

i) sends the index of this set or ends the protocol by sending a special error signal if none

of the generated sets contain Si. The protocol ends with declaring the inputs disjoint if the

error signal is never sent and we have Sr+1 = ∅. In all other cases the protocol ends with

declaring “not disjoint”.

This finishes the description of the protocol except for the setting of the parameters. Note

that the error of the protocol is one-sided: S0∩S1 = Si∩Si+1 for i ≤ r, so intersecting inputs

cannot yield Sr+1 = ∅.



23

We set the parameters (including ki used in the analysis) as follows:

u = (c+ 1) log(r) k,

pi = 1
exp(i) u

for 1 ≤ i ≤ r,

l1 = k exp(ku),

li = k2k/2i−4 for 2 ≤ i ≤ r,

k0 = k1 = k,

ki = k

2i−4 exp(i−1) u
for 2 ≤ i ≤ r,

kr+1 = 0.

The message sent in round i > 1 has length dlog(li + 1)e < k/2i−4 + log k + 1, thus the

total communication in all rounds but the first is O(k). The length of the first message is

dlog(l1 + 1)e ≤ ku+ log k + 1. The total communication is O(ku) = O(ck log(r) k) as claimed

(recall that c is a constant).

Let us assume the input pair is disjoint. To estimate the error probability we call round i

bad if an error message is sent or a set Si+1 is created with |Si+1| > ki+1. If no bad round

exists we have Sr+1 = ∅ and the protocol makes no error. In what follows we bound the

probability that round i is bad assuming the previous rounds are not bad and therefore

having |Sj| ≤ kj for 0 ≤ j ≤ i.

The probability that a random set constructed in round i contains Si is p−|Si|i ≥ p−kii . The

probability that none of the li sets contains Si and thus an error message is sent is therefore

at most (1− pkii )li < e−k.

If no error occurs in the first bad round i, then |Si+1| > ki+1. Note that in this case

Si+1 = Si−1 ∩Zi contains each element of Si−1 independently and with probability pi. This is

because the choice of Zi was based on it containing Si, so it was independent of its intersection

with Si−1 (recall that Si ∩ Si−1 = S1 ∩ S0 = ∅). For i < r we use the Chernoff bound. The

expected size of Si+1 is |Si−1|pi ≤ ki−1pi ≤ ki+1/2, thus the probability of |Si+1| > ki+1 is at

most 2−ki+1/4. Finally for the last round i = r we use the simpler estimate prkr−1 ≤ k/ exp(r) u
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for |Sr+1| > kr+1 = 0.

Summing over all these estimates we obtain the following error bound for our protocol:

Pr[error] ≤ re−k + k

exp(r) u
+

r∑
i=2

2−ki/4.

In case kr ≥ 4
√
k this error estimate proves the theorem. In case kr < 4

√
k we need to make

a minor adjustments in the setting of our parameters. We take j to be the smallest value

with kj < 4
√
k, modify the parameters for round j and stop the protocol after this round

declaring “disjoint” if Sj+1 = ∅ and “intersecting” otherwise. The new parameters for round j

are k′j = 4
√
k, p′j = 2−2

√
k, l′j = k28k. This new setting of the parameters makes the message

in the last round linear in k, while both the probability that round j − 1 is bad because

it makes |Sj| > k′j, or the probability that round j is bad for any reason (error message or

Sj+1 6= ∅) is O(2−
√
k). This finishes the analysis of our protocol.
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3.5 Lower bound for single round protocols

In this section we give an combinatorial proof that any single round randomized protocol

for the exists-equal problem with parameters n and t = 4n has complexity Ω(n log n) if its

error probability is at most 1/3. As pointed out in the Introduction, to our knowledge this is

the fist established case when solving the OR of n instances of a communication problem

requires strictly more than n times the complexity needed to solve a single such instance.

We start with with a simple and standard reduction from the randomized protocol to the

deterministic one and further to a large set of inputs that makes the first (and in this case

only) message fixed. These steps are also used in the general round elimination argument

therefore we state them in general form.

Let ε > 0 be a small constant and let P be an 1/3-error randomized protocol for the

exists-equal problem with parameters n and t = 4n. We repeat the protocol P in parallel

taking the majority output, so that the number of rounds does not change, the length of the

messages is multiplied by a constant and the error probability decreases below ε. Now we fix

the coins of of this ε-error protocol in a way to make the resulting deterministic protocol err

on at most ε fraction of the possible inputs. Denote the deterministic protocol we obtain by

Q.

Lemma 3.5.1. Let Q be a deterministic protocol for the EEn problem that makes at most ε

error on the uniform distribution. Assume Alice sends the first message of length c. There

exists an S ⊂ [t]n of size µ(S) = 2−c−1 such that the first message of Alice is fixed when x ∈ S

and we have Pry∼µ[Q(x, y) 6= EE(x, y)] ≤ 2ε for all x ∈ S.

Proof. Note that the quantity e(x) = Pry∼µ[Q(x, y) 6= EE(x, y)], averaged over all x, is the

error probability of Q on the uniform input, hence is at most ε. Therefore for at least half of

x, we have e(x) ≤ 2ε. The first message of Alice partitions this half into at most 2c subsets.

We pick S to consist of tn/2c+1 vectors of the same part: at least one part must have this

many elements.
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We fix a set S as guaranteed by the lemma. We assume we started with a single round

protocol, so Q(x, y) = Q(x′, y) whenever x, x′ ∈ S. Indeed, Alice sends the same message by

the choice of S and then the output is determined by Bob, who has the same input in the

two cases.

We call a pair (x, y) bad if x ∈ S, y ∈ [t]n and Q errs on this input, i.e., Q(x, y) 6= EE(x, y).

Let b be the number of bad pairs. By Lemma 3.5.1 each x ∈ |S| is involved in at most 2εtn

bad pairs, so we have

b ≤ 2ε|S|tn.

We call a triple (x, x′, y) bad if x, x′ ∈ S, y ∈ [t]n, EE(x, y) = 1 and EE(x′, y) = 0. The proof

is based on double counting the number z of bad triples. Note that for a bad triple (x, x′, y)

we have Q(x, y) = Q(x′, y) but EE(x, y) 6= EE(x′, y), so Q must err on either (x, y) or (x′, y)

making one of these pairs bad. Any pair (bad or not) is involved in at most |S| bad triples,

so we have

z ≤ b|S| ≤ 2ε|S|2tn.

Let us fix arbitrary x, x′ ∈ S with Match(x, x′) ≤ n/2. We estimate the number of

y ∈ [t]n that makes (x, x′, y) a bad triple. Such a y must have Match(x, y) > Match(x′, y) = 0.

To simplify the calculation we only count the vectors y with Match(x, y) = 1. The match

between y and x can occur at any position i with xi 6= x′i. After fixing the coordinate yi = xi

we can pick the remaining coordinates yj of y freely as long as we avoid xj and x′j. Thus we

have

|{y | (x, x′y) is bad}| ≥ (n−Match(x, y))(t− 2)n−1 ≥ (n/2)(t− 2)n−1 > tn/14,

where in the last inequality we used t = 4n. Let s be the size of the Hamming ball

Bn/2(x) = {y ∈ [t]n | Match(x, y) > n/2}. By the Chernoff bound we have s < tn/nn/2 (using

t = 4n again). For a fixed x we have at least |S|−s choices for x′ ∈ S with Match(x, x′) ≤ n/2

when the above bound for triples apply. Thus we have

z ≥ |S|(|S| − s)tn/14.
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Combining this with the lower bound on the number of bad triples we get

28ε|S| ≥ |S| − s.

Therefore we conclude that we either have large error ε > 1/56 or else we have |S| ≤ 2s <

2tn/nn/2. As we have |S| = tn/2c+1 the latter possibility implies

c ≥ n log n/2− 2.

Summarizing we have the following.

Theorem 3.5.2. A single round randomized protocol for EEn with error probability 1/3 has

complexity Ω(n log n). A single round deterministic protocol for EEn that errs on at most

1/56 fraction of the inputs has complexity at least n log n/2− 2.
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3.6 An isoperimetric inequality on the discrete grid

The isoperimetric problem on the Boolean cube {0, 1}n proved extremely useful in theoretical

computer science. The problem is to determine the set S ⊆ {0, 1}n of a fixed cardinality with

the smallest “perimeter”, or more generally, to establish connection between the size of a set

and the size of its boundary. Here the boundary can be defined in several ways. Considering

the Boolean cube as a graph where vertices of Hamming distance 1 are connected, the edge

boundary of a set S is defined as the set of edges connecting S and its complement, while the

vertex boundary consists of the vertices outside S having a neighbor in S.

Harper [41] showed that the vertex boundary of a Hamming ball is smallest among all

sets of equal size, and the same holds for the edge boundary of a subcube. These results can

be generalized to other cardinalities [43]; see the survey by Bezrukov [11].

Consider the metric space over the set [t]n equipped with the Hamming distance. Let f

be a concave function on the nonnegative integers and 1 ≤M < n be an integer. We consider

the following value as a generalized perimeter of a set S ⊆ [t]n:

E
x∼µ

[f (|BM(x) ∩ S|)] ,

where BM(x) = {y ∈ [t]n | Match(x, y) ≥M} is the radius n−M Hamming ball around x.

Note that when M = n− 1 and f is the counting function given as f(0) = 0 and f(l) = 1 for

l > 0 (which is concave), the above quantity is the size of the vertex boundary of S up to

some normalization. For other concave functions f and parameters M this quantity can still

be considered a measure of how “spread out” the set S is. We conjecture that n-dimensional

boxes minimize this measure in every case.

Conjecture 3.6.1. Let 1 ≤ k ≤ t and 1 ≤M < n be integers. Let S be an arbitrary subset

of [t]n of size kn and P = [k]n. We have

E
x∼µ

[f (|BM(x) ∩ P |)] ≤ E
x∼µ

[f (|BM(x) ∩ S|)].

Even though a proof of Conjecture 3.6.1 remained elusive, in Theorem 3.6.5, we prove

an approximate version of this result, where, for technical reasons, we have to restrict our
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attention to a small fraction of the coordinates. Having this weaker result allows us to prove

our communication complexity lower bound in the next section but proving the conjecture

here would simplify this proof.

3.6.1 A shifting argument

We start the technical part of this section by introducing the notation we will use. For

x, y ∈ [t]n and i ∈ [n] we write x ∼i y if xj = yj for j ∈ [n] \ {i}. Observe that ∼i is an

equivalence relation. A set K ⊆ [t]n is called an i-ideal if x ∼i y, xi < yi and y ∈ K implies

x ∈ K. We call a set K ⊆ [t]n an ideal if it is an i-ideal for all i ∈ [n].

For i ∈ [n] and x ∈ [t]n we define downi(x) = (x1, . . . , xi−1, xi − 1, xi+1, . . . , xn). We

have downi(x) ∈ [t]n whenever xi > 1. Let K ⊆ [t]n be a set, i ∈ [n] and 2 ≤ a ∈ [t].

For x ∈ K, we define downi,a(x,K) = downi(x) if xi = a and downi(x) /∈ K and we set

downi,a(x,K) = x otherwise. We further define downi,a(K) = {downi,a(x,K) | x ∈ K}. For

K ⊆ [t]n and i ∈ [n] we define

downi(K) ··= {y ∈ [t]n | yi ≤ |{z ∈ K | y ∼i z}|} .

Finally for K ⊆ [t]n we define

down(K) ··= down1 (down2 (. . . downn(K) . . .)) .

The following lemma states few simple observations about these down operations.

Lemma 3.6.2. Let K ⊆ [t]n be a set and let i, j ∈ [n] be integers. The following hold.

(i) downi(K) can be obtained from K by applying several operations downi,a.

(ii) | downi,a(K)| = |K| for each 2 ≤ a ≤ t, | downi(K)| = |K| and | down(K)| = |K|.

(iii) downi(K) is an i-ideal and if K is a j-ideal, then downi(K) is also a j-ideal.

(iv) down(K) is an ideal. For any x ∈ down(K) we have P ··= [x1] × [x2] × · · · × [xn] ⊆

down(K) and there exists a set T ⊆ K with P = down(T ).
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Proof. For statement (i) notice that as long as K is not an i-ideal one of the operations

downi,a will not fix K and hence will decrease ∑x∈K xi. Thus a finite sequence of these

operations will transform K into an i-ideal. It is easy to see that the operations downi,a
preserve the number of elements in each equivalence class of ∼i, thus the i-ideal we arrive at

must indeed be downi(K).

Statement (ii) follows directly from the definitions of each of these down operations.

The first claim of statement (iii), namely that downi(K) is an i-ideal, is trivial from

the definition. Now assume j 6= i and K is a j-ideal, y ∈ downi(K) and yj > 1. To

see that downi(K) is a j-ideal it is enough to prove that downj(y) ∈ downi(K). Since

y ∈ downi(K), there are yi distinct vectors z ∈ K that satisfy z ∼i y. Considering the vectors

downj(z) ∼i downj(y) and using that these distinct vectors are in the j-ideal K proves that

downj(y) is indeed contained in downi(K).

By statement (iii), down(K) is an i-ideal for each i ∈ [n]. Therefore down(K) is an ideal

and the first part of statement (iv), that is, P ⊆ K ′ follows. We prove the existence of

suitable T by induction on the dimension n. The base case n = 0 (or even n = 1) is trivial.

For the inductive step consider K ′ = down2(down3(. . . downn(K) . . .)). As x ∈ down(K) =

down1(K ′), we have distinct vectors x(k) ∈ K ′ for k = 1, . . . , x1, satisfying x(k) ∼1 x.

Notice that the construction of K ′ from K is performed independently on each of the (n− 1)-

dimensional “hyperplanes” Sl = {y ∈ [t]n | y1 = l} as none of the operations down2, . . . , downn
change the first coordinate of the vectors. We apply the inductive hypothesis to obtain the

sets T (k) ⊆ Sx
(k)
1 ∩K such that down2(. . . downn(T (k)) . . .) = {x(k)

1 } × [x2]× · · · × [xn]. Using

again that these sets are in distinct hyperplanes and the operations down2, . . . , downn act

separately on the hyperplanes Sl, we get for T := ∪x1
k=1T

(k) that

down2(. . . downn(T ) . . . ) = {x(k)
1 | k ∈ [x1]} × [x2]× · · · × [xn].

Applying down1 on both sides finishes the proof of this last part of the lemma.

For sets x ∈ [t]n, I ⊆ [n], and integer M ∈ [n] we define BI,M(x) = {y ∈ [t]n |

Match(xI , yI) ≥M}. The projection of BI,M to the coordinates in I is the Hamming ball of
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radius |I| −M around the projection of x.

Lemma 3.6.3. Let I ⊆ [n], M ∈ [n] and let f be a concave function on the nonnegative

integers. For arbitrary K ⊆ [t]n we have

E
x∼µ

[f(|BI,M(x) ∩ down(K)|)] ≤ E
x∼µ

[f(|BI,M(x) ∩K|)].

Proof. By Lemma 3.6.2(i), the set down(K) can be obtained from K by a series of operations

downi,a with various i ∈ [n] and 2 ≤ a ≤ t. Therefore, it is enough to prove that the

expectation in the lemma does not increase in any one step. Let us fix i ∈ [n] and 2 ≤ a ≤ t.

We write Nx = BI,M(x) ∩K and N ′x = BI,M(x) ∩ downi,a(K) for x ∈ [t]n. We need to prove

that

E
x∼µ

[f(|Nx|)] ≥ E
x∼µ

[f(|N ′x|)].

Note that |Nx| = |N ′x| whenever i /∈ I or xi /∈ {a, a − 1}. Thus, we can assume i ∈ I and

concentrate on x ∈ [t]n with xi ∈ {a, a − 1}. It is enough to prove f(|Nx|) + f(|Ny|) ≥

f(|N ′x|) + f(|N ′y|) for any pair of vectors x, y ∈ [t]n, satisfying xi = a, and y = downi(x).

Let us fix such a pair x, y and set C = {z ∈ K \ downi,a(K) | Match(xI , zI) = M}.

Observe that Nx = N ′x ∪ C and N ′x ∩ C = ∅. Similarly, observe that N ′y = Ny ∪ downi,a(C)

and Ny ∩ downi,a(C) = ∅. Thus we have |N ′x| = |Nx| − |C| and |N ′y| = |Ny|+ | downi,a(C)| =

|Ny|+ |C|.

The inequality f(|Nx|) + f(|Ny|) ≥ f(|N ′x|) + f(|N ′y|) follows now from the concavity of f ,

the inequalities |N ′x| ≤ |Ny| ≤ |N ′y| and the equality |Nx|+ |Ny| = |N ′x|+ |N ′y|. Here the first

inequality follows from downi,a(N ′x) ⊆ downi,a(Ny), the second inequality and the equality

comes from the observations of the previous paragraph.

3.6.2 Projecting to a subset of the coordinates

Lemma 3.6.4. Let K ⊆ [t]n be arbitrary. There exists a vector x ∈ K having at least n/5

coordinates that are greater than k ··= t
2µ(K)5/(4n).
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Proof. The number of vectors that have at most n/5 coordinates greater than k can be upper

bounded as (
n

n/5

)
tn/5k4n/5 = tn

(
n

n/5

)
(k/t)4n/5 = |K|

(
n
n/5

)
24n/5 ,

where in the last step we have substituted k
t

= 1
2µ(K)5/(4n) and µ(K) = |K|/tn. Estimating(

n
n/5

)
≤ 2nH2(1/5), we obtain that the above quantity is less than |K|. Therefore, there must

exists an x ∈ K that has at least n/5 coordinates greater than k.

Theorem 3.6.5. Let S be an arbitrary subset of [t]n. Let k = t
2µ(S)5/(4n) and M = nk/(20t).

There exists a subset T ⊂ S of size kn/5 and I ⊂ [n] of size n/5 such that, defining Nx =

{x′ ∈ T | Match(xI , x′I) ≥M}, we have

(i) Prx∼µ[Nx = ∅] ≤ 5−M and

(ii) Ex∼µ[log |Nx|] ≥ (n/5−M) log k − n log k/5M , where we take log 0 = −1 to make the

above expectation exist.

Proof. By Lemma 3.6.2(ii), we have | down(S)| = |S|. By Lemma 3.6.4, there exists an

x ∈ down(S) having at least n/5 coordinates that are greater than k. Let I ⊂ [n] be a set of

n/5 coordinates such that xi ≥ k for a fixed x ∈ down(S). By Lemma 3.6.2(iv), down(S) is

an ideal and thus it contains the set P = ∏
i Pi, where Pi = [k] for i ∈ I and Pi = {1} for

i /∈ I. Also by Lemma 3.6.2(iv), there exists a T ⊆ S such that P = down(T ). We fix such a

set T . Clearly, |T | = kn/5.

For a vector x ∈ [t]n, let h(x) be the number of coordinates i ∈ I such that xi ∈ [k]. Note

that Ex∼µ[h(x)] = 4M and h(x) has a binomial distribution. By the Chernoff bound we have

Prx∼µ[h(x) < M ] < 5−M . For x with h(x) ≥ M we have |BI,M(x) ∩ P | ≥ kn/5−M , but for

h(x) < M we have BI,M(x) ∩ P = ∅. With the unusual convention log 0 = −1 we have

E
x∼µ

[log |BI,M(x) ∩ P |] ≥ Pr[h(x) ≥M ](n/5−M) log k − Pr[h(x) < M ]

> (n/5−M) log k − n log k/5M
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We have down(T ) = P and our unusual log is concave on the nonnegative integers, so

Lemma 3.6.3 applies and proves statement (ii):

E
x∼µ

[log |Nx|] ≥ E
x∼µ

[log |BI,M(x) ∩ P |]

≥ (n/5−M) log k − n log k/5M .

To show statement (i), we apply Lemma 3.6.3 with the concave function f defined as

f(0) = −1 and f(l) = 0 for all l > 0. We obtain that

Pr
x∼µ

[Nx = ∅] = − E
x∼µ

[f(|Nx|)]

≤ − E
x∼µ

[f(|BI,M(x) ∩ P |)]

= Pr
x∼µ

[BI,M(x) ∩ P = ∅]

< 5−M .

This completes the proof.
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3.7 Lower bound for Disjnk

In this section we prove our main lower bound result for the exists-equal problem, which

implies a corresponding lower bound for the k-disjointness problem.

Theorem 3.7.1. For any r ≤ log∗ n, an r-round probabilistic protocol for EEn with error

probability at most 1/3 sends at least one message of size Ω(n log(r) n).

Note that the r = 1 round case of this theorem was proved as Theorem 3.5.2 in Section 3.5.

The other extreme, which immediately follows from Theorem 4.0.4, is the following.

Corollary 3.7.2. Any randomized protocol for EEn with maximum message size O(n) and

error 1/3 has at least log∗ n−O(1) rounds.

Theorem 4.0.4 is a direct consequence of the corresponding statement on deterministic

protocols with small distributional error on uniform distribution; see Theorem 3.7.9 at the

end of this section. Indeed, we can decrease the error of a randomized protocol below any

constant ε > 0 for the price of increasing the message length by a constant factor, then we

can fix the coins of this low error protocol in a way that makes the resulting deterministic

protocol Q err in at most ε fraction of the possible inputs. Applying Theorem 3.7.9 to the

protocol Q proves Theorem 4.0.4.

In the rest of this section we use a round-elimination argument to prove Theorem 3.7.9,

that is, we will use Q to solve smaller instances of the exists-equal problem in a way that the

first message is always the same, and hence can be eliminated.

Suppose Alice sends the first message of c bits in protocol Q. By Lemma 3.5.1, there

exists a S ⊂ [t]n of size µ(S) = 2−c−1 such that the first message of Alice is fixed when

x ∈ S and we have Pry∼µ[Q(x, y) 6= EE(x, y)] ≤ 2ε for all x ∈ S. Fix such a set S and let

k ··= t/2
5(c+1)

4n +1 and M ··= nk/(20t). By Theorem 3.6.5, there exists a T ⊂ S of size kn/5 and

I ⊂ [n] of size n/5 such that defining

Nx = {y ∈ T | Match(xI , yI) ≥M}
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we have Prx∼µ[Nx = ∅] ≤ 5−M and Ex∼µ[log |Nx|] ≥ (n/5−M) log k − n log k/5M . Let us fix

such sets T and I. Note also that Theorem 3.6.5 guarantees that T is a strict subset of S.

Designate an arbitrary element of S \ T as x′e.

3.7.1 Embedding the smaller problem

Let n′ ··= M/10 and t′ ··= 4n′. Suppose Alice and Bob are given an instance (u, v) of the

EEn′ problem, where u, v ∈ [t′]n′ . To compute EE(u, v), through a random process, Alice

and Bob will map (u, v) to random vectors (X ′, Y ), where X ′ and Y are supported on ∈ [t]n,

and then run the protocol on EE(X ′, Y ). The players embed a smaller instance u, v ∈ [t′]n′

of the exists-equal problem in EEn concentrating on the coordinates I determined above. We

set n′ ··= M/10 and t′ ··= 4n′. Optimally, the same embedding should guarantee low error

probability for all pairs of inputs, but for technical reasons we need to know the number of

coordinate agreements Match(u, v) for the input pairs (u, v) in the smaller problem having

EEn′(u, v) = 1. Let R ≥ 1 be this number, so we are interested in inputs u, v ∈ [t′]n′ with

Match(u, v) = 0 or R. We need this extra parameter so that we can eliminate a non-constant

number of rounds and still keep the error bound a constant. For results on constant round

protocols one can concentrate on the R = 1 case.

In order to solve the exist-equal problem with parameters t′ and n′ Alice and Bob use the

shared random source to turn their input u, v ∈ [t′]n′ into longer random vectors X ′, Y ∈ [t]n,

respectively, and apply the protocol Q above to solve this exists-equal problem for these

larger inputs. Here we informally list the main requirements on the process generating X ′

and Y . We require these properties for the random vectors X ′, Y ∈ [t]n generated from a

fixed pair u, v ∈ [t′]n′ satisfying Match(u, v) = 0 or R.

(P1) EE(X ′, Y ) = EE(u, v) with large probability,

(P2) supp(X ′) = T ∪ {x′e} and

(P3) Y |X ′ is distributed almost uniformly
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Combining these properties with the fact that Pry∼µ[Q(x, y) 6= EE(x, y)] ≤ 2ε for each

x ∈ S, we will argue that for the considered pairs of inputs Q(X ′, Y ) equals EE(u, v) with

large probability, thus the combined protocol solves the small exists-equal instance with small

error, at least for input pairs with Match(u, v) = 0 or R. Furthermore, by Property (P2) the

first message of Alice will be fixed and hence does not need to be sent, making the combined

protocol one round shorter.

The random variables X ′ and Y are constructed as follows. Let m ··= 2n/(MR) be an

integer. Each player repeats his or her input (u and v, respectively) m times, obtaining a

vector of size n/(5R). Then using the shared randomness, the players pick n/(5R) uniform

random maps mi : [t′] → [t] independently and apply mi to ith coordinate. Furthermore,

the players pick a uniform random 1-1 mapping π : [n/(5R)] → I and use it to embed the

coordinates of the vectors they constructed among the coordinates of the vectors X and Y

of length n. The remaining n − n/(5R) coordinates of X is picked uniformly at random

by Alice and similarly, the remaining n − n/(5R) coordinates of Y is picked uniformly at

random by Bob. Note that the marginal distribution of both X and Y are uniform on [t]n. If

Match(u, v) = 0 the vectors X and Y are independent, while if Match(u, v) = R, then Y can

be obtained by selecting a random subset of I of cardinality mR, copying the corresponding

coordinates of X and filling the rest of Y uniformly at random.

This completes the description of the random process for Bob. However Alice generates

one more random variable X ′ as follows. Recall that Nx = {z ∈ T | Match(zI , xI) ≥ M}.

The random variable X ′ is obtained by drawing x ∼ X first and then choosing a uniform

random element of Nx. In the (unlikely) case that Nx = ∅, Alice chooses X ′ = x′e.

Note that X ′ either equals x′e or takes values from T , hence Property (P2) holds. In the

next lemma we quantify and prove Property (P1) as well.

Lemma 3.7.3. Assume n ≥ 3, M ≥ 2 and u, v ∈ [t′]n′. We have

(i) if Match(u, v) = 0 then Pr[EE(X ′, Y ) = 0] > 0.77;

(ii) if Match(u, v) = R, then Pr[EE(X ′, Y ) = 1] ≥ 0.80.
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Proof. For the first claim, note that when Match(u, v) = 0, the random variables X and Y

are independent and uniformly distributed. We construct X ′ based on X, so its value is also

independent of Y . Hence Pr[EE(X ′, Y ) = 0] = (1− 1/t)n. This quantity goes to e−1/4 since

t = 4n and is larger than 0.77 when n ≥ 3. This establishes the first claim.

For the second claim let J = {i ∈ I | Xi = Yi} and K = {i ∈ I | X ′i = Xi}. By

construction, |J | = Match(XI , YI) ≥ mR and |K| = Match(X ′I , XI) ≥M unless NX = ∅. By

our construction, each J ⊂ I of the same size is equally likely by symmetry, even when we

condition on a fix value of X and X ′. Thus we have E[|J ∩K| |NX 6= ∅] ≥ mRM/|I| = 10

and Pr[J ∩ K = ∅ |NX 6= ∅] < e−10. Note that X is distributed uniformly over [t]n,

therefore by Theorem 3.6.5(i) the probability that NX = ∅ is at most 5−M . Note that

Match(X ′, Y ) ≥ |J ∩ K| and thus Pr[EE(X ′, Y ) = 0] ≤ Pr[J ∩ K = ∅] ≤ Pr[J ∩ K =

∅ |NX 6= ∅] + Pr[NX = ∅] ≤ e−10 + 5−M . This completes the proof.

We quantify the correlation of X ′ and Y stated in Property (P3) by their mutual

information. This mutual information argument is postponed to the next subsection; here we

show how such a bound to the mutual information implies that the error introduced by Q is

small.

Lemma 3.7.4. Let γ = Pr[Q(X ′, Y ) 6= EE(X ′, Y )]. If γ ≥ 2ε, then we have D2(γ ‖ 2ε) ≤

I(X ′ : Y ).

Proof. For all fixings x ∈ supp(X ′) and a distribution ν on [t]n, define

ex(ν) ··= Pr
y∼ν

[Q(x, y) 6= EE(x, y)].
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By the definition of mutual information and the conditional divergence,

I(X ′ : Y ) = D(Y |X ′ ‖Y )

= E
x∼X′

D(Y |X ′ = x ‖Y )

≥ E
x∼X′

D2(ex (dist(Y |X ′ = x)) ‖ ex (µ))

≥ D2

(
E

x∼X′
ex (dist(Y |X ′ = x))

∥∥∥∥ E
x∼X′

ex (µ)
)

= D2

(
γ

∥∥∥∥ E
x∼X′

ex (µ)
)

≥ D2(γ ‖ 2ε)

where the first inequality is the data processing inequality, the second inequality follows from

the convexity of D(· ‖ ·) and the last inequality follows from the guarantee ex(µ) ≤ 2ε for all

x that is provided by Lemma 3.5.1 and the assumption of the present lemma that γ ≥ 2ε.

3.7.2 Establishing the low correlation property

We quantify Property (P3) using the mutual information. If Match(u, v) = R our process

generates X and Y with the expected number E[Match(XI , YI)] of matches only slightly more

than the minimum mR. We lose most of these matches with Y when we replace X by X ′

and only an expected constant number remains. A constant number of forced matches with

X ′ within I restricts the number of possible vectors Y but it only decreases the entropy by

O(1). The calculations in this subsection make this intuitive argument precise.

Recall that X and Y are correlated due to the random process with which Alice and Bob

generate them and X ′ is obtained from X. To understand I(X ′ : Y )

Lemma 3.7.5. For any u, v ∈ [t′]n′ it holds that I(X :X ′) ≤M log k + n log k/5M .

Proof. We have

I(X :X ′) = H(X ′)− H(X ′ |X)

and H(X ′) ≤ log | supp(X ′)| = log (|T |+ 1) ≤ n
5 log k + 1.
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Observe that H(X ′ |X) = Ex∼µ[log |Nx|], where log 0 is now taken to be 0. From The-

orem 3.6.5(ii) we get H(X ′ |X) ≥ n
5 log k −M log k − n log k/5M . Plugging in, the n

5 log k

terms cancel and we get the statement of the lemma.

Lemma 3.7.6. Let X ′, Y be as constructed above. The following hold.

(i) If Match(u, v) = 0 we have I(X ′ : Y ) = 0

(ii) If M > 100 log n and Match(u, v) = R we have I(X ′ : Y ) = O(1).

Proof. Part (i) holds as Y is independent of X ′ whenever EE(u, v) = 0 by construction.

For part (ii) recall that if Match(u, v) = R one can construct X and Y by uniformly

selecting a size mR set L ⊆ I and selecting X and Y uniformly among all pairs satisfying

XL = YL. Recall that L is the set of coordinates the mR matches between um and vm were

mapped. These are the “intentional matches” between XI and YI . Note that there may be

also “unintended matches” between XI and YI , but not too many: their expected number is

(n/5−mR)/t < 1/20. As given any fixed L, the marginal distribution of both X and Y are

still uniform, so in particular X is independent of L and so is X ′ constructed from X. Let us

expand I(X ′L : Y ) using the chain rule in two different ways obtaining

I(X ′L : Y ) = I(X ′ : Y ) + I(L : Y |X ′)

= I(L : Y ) + I(X ′ : Y |L) . (3.7.1)

Since the first term of (3.7.1) is zero by independence of Y and L, we conclude

I(X ′ : Y ) = I(X ′ : Y |L)− I(L : Y |X ′)

= I(X ′ : Y |L)− I(L :X ′Y ) , (3.7.2)

where the second inequality follows again by the chain rule and the fact that X ′ and L are

independent. Let us understand the terms of (3.7.2) one by one. First we expand the first

term by the chain rule, obtaining

I(X ′ : Y |L) = I(X ′ : YL |L) + I
(
X ′ : Y[n]\L |LYL

)
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however since Y[n]\L is uniformly distributed for any fixed L, X ′ and YL, the second term on

the right hand side is zero. By construction we have XL = YL, thus

I(YL :X ′ |L) = I(XL :X ′ |L)

≤ mR

n/5 I(XI :X ′)

≤ 10 log k + MR

5M−1 log k,

where the first inequality follows by Lemma 2.3.5 as L is a uniform and independent of X

and X ′ and the second inequality follows from Lemma 3.7.5 that we will prove shortly and

the formula defining m.

Here, when condition on L, the correlation of X ′ and Y is roughly 10 log k bits, which is

significantly more than the constant bound we seek. Next we will see that all but a constant

bits of this correlation comes from having observed what L is. The next term, H(L) is easy

to compute as L is a uniform subset of I of size mR:

H(L) = log
(
n/5
mR

)

It remains to bound the term H(L |Y,X ′). Let Z = {i | i ∈ I and X ′i = Yi}. Note

that Z can be derived from X ′, Y (as I is fixed) hence H(L |Y,X ′) ≤ H(L |Z). Further, let

C = |Z \ L|. We obtain

H(L |Y,X ′) ≤ H(L |Z) ≤ H(L |Z,C) + H(C)

< E
Z,C

[
log

(
n/5− |Z|+ C

mR− |Z|+ C

)]
+ E

Z,C

[
log

(
|Z|
C

)]
+ 2

where we used H(C) < 2. Note that for any fixed x′ ∈ T and x ∈ supp(X |X ′ = x′), we have

E[|Z| − C |X = x,X ′ = x′] = Match(xI , x′I)mR/(n/5) ≥ 10

as Match(xI , x′I) ≥M by definition. Hence we have

log
(
n/5
mR

)
− log

(
n/5− |Z|+ |C|
mR− |Z|+ |C|

)
≥ 10 log n

5m −O(1),
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E
Z,C

[
log

(
|Z|
C

)]
≤ E[|Z|] < 20.

Summing the estimates above for the various parts of H(Y |X ′) the statement of the lemma

follows.

It remains to prove the following simple lemma that “reverses” the conditional entropy

bound in Theorem 3.6.5(ii):

3.7.3 The round elimination lemma

Let νn be the uniform distribution on [t]n × [t]n, where we set t = 4n. The following lemma

gives the base case of the round elimination argument.

Lemma 3.7.7. Any 0-round deterministic protocol for EEn has at least 0.22 distributional

error on νn, when n ≥ 1.

Proof. The output of the protocol is decided by a single player, say Bob. For any given input

y ∈ [t]n we have 3/4 ≤ Prx∼µ[EE(x, y) = 0] < e−1/4 < 0.78. Therefore the distributional error

is at least 0.22 for any given y regardless of the output Bob chooses, thus the overall error is

also at least 0.22.

Now we give our full round elimination lemma.

Lemma 3.7.8. Let r > 0, c, n be an integers such that c < 4
5n log n. There is a constant

0 < ε0 < 1/200 such that if there is an r-round deterministic protocol with c-bit messages

for EEn that has ε0 error on νn, then there is an (r − 1)-round deterministic protocol with

O(c)-bit messages for EEn′ that has ε0 error on νn′, where n′ = Ω(n/2 5c
4n ).

Proof. We start with an intuitive description of our reduction. Let us be given the determinis-

tic protocol Q for EEn that errs on an ε0 fraction of the inputs. To solve an instance (u, v) of

the smaller EEn′ problem the players perform the embedding procedure described in previous

subsection k0 times independently for each parameter R ∈ [R0]. Here k0 and R0 are constants

we set later. They perform the protocol Q in parallel for each of the k0R0 pairs of inputs
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they generated. Then they take the majority of the k0 outputs for a fixed parameter R. We

show that this result gives the correct value of EE(u, v) with large probability provided that

Match(u, v) = 0 or R. Finally they take the OR of these results for the R0 possible values of

R. By the union bound this gives the correct value EE(u, v) with large probability provided

Match(u, v) ≤ R0. Fixing the random choices of the reduction we obtain a deterministic

protocol. The probability of error for the uniform random input can only grow by the small

probability that Match(u, v) > R0 and we make sure it remains below ε0. The rest of the

proof makes this argument precise.

For random variables X ′ and Y constructed in Section 3.7.1, Lemma 3.7.6 guarantees that

H(Y |X ′) ≥ n log t−α0 for some constant α0, as long as M > 100 log n and Match(u, v) = R.

Let ε0 be a constant such that D2(1/10 ‖ 2ε0) > 200(α0 + 1). Note that such ε0 can be found

as D2(1/10 ‖ ε) tends to infinity as ε goes to 0. We can bound Pr(x,y)∼νm [Match(x, y) ≥ l] ≤

1/(4ll!) for all m ≥ 1. We set R0 such that Pr(x,y)∼νm [Match(x, y) ≥ R0] ≤ ε0/2 for all m ≥ 1.

Let Q be a deterministic protocol for EEn that sends c < (n log n)/2 in each round and

that has ε0 error on νn. Let S be as constructed in Lemma 3.5.1 and let M be as defined in

Theorem 3.6.5. We have M = n
402

−5(c+1)
4n as t = 4n and µ(S) = 2−(c+1) by Lemma 3.5.1. Note

that by our choice of c, we have M > 100 log n, hence the hypotheses of Lemma 3.7.6 are

satisfied.

Let n′ = M/10 = n
4002

−5(c+1)
4n . Now we give a randomized protocol Q′ for EEn′ . Suppose

the players are given an instance of EEn′ , namely the vectors (u, v) ∈ [4n′]n′ × [4n′]n′ . Let

k0 = 10 log(R0 + 1/ε0). For R ∈ [R0] and k ∈ [k0], the players construct the vectors X ′R,k and

YR,k as described in Section 3.7.1 with parameter R and with fresh randomness for each of

the R0k0 procedures. The players run R0k0 instances of protocol Q in parallel, on inputs

X ′R,k, YR,k for R ∈ [R0] and k ∈ [k0]. Note that the first message of the first player, Alice,

is fixed for all instances of Q by Property (P2) and Lemma 3.5.1. Therefore, the second

player, Bob, can start the protocol assuming Alice has sent the fixed first message. After

the protocols finish, for each R ∈ [R0], the last player who received a message computes bR
as the majority of Q(X ′R,k, YR,k) for k ∈ [k0]. Finally, this player outputs 0 if bR = 0 for all
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R ∈ [R0] and outputs 1 otherwise.

Suppose now that EE(u, v) = 0. By Lemma 3.7.3(i), we have Pr[EE(X ′R,k, YR,k) = 0] ≥

0.77 for each R and k. Recall that that YR,k is distributed uniformly for each R and k

and since EE(u, v) = 0, it is independent of X ′R,k. Therefore, by X ′R,k ∈ S (Property (P2))

and the fact that Pry∼µ[Q(x, y) 6= EE(x, y)] ≤ 2ε0 for all x ∈ S as per Lemma 3.5.1,

we obtain Pr[Q(X ′R,k, YR,k) = 0] ≥ 0.77 − 2ε0 > 0.76. By the Chernoff bound we have

Pr[bR = 1] < ε0/(2R0), and by the union bound Pr[Q′ outputs 0] ≥ 1− ε0/2.

Let us now consider the case Match(u, v) = R for some R ∈ [R0]. Fix any k ∈ [ko] and

set X ′ = X ′R,k, Y = YR,k. By Lemma 3.7.3(ii), Pr[EE(X ′, Y ) = 1] ≥ 0.80. By Lemma 3.7.6,

I(X ′ : Y ) ≤ α0 and that Y is distributed uniformly at random. By Lemma 3.7.4 and our

choice of ε0, we have Pr[EE(X ′, Y ) 6= Q(X ′, Y )] < 1/10. Furthermore, by Lemma 3.7.3(ii),

Pr[EE(u, v) 6= EE(X ′, Y )] < 0.20 hence with probability at least 0.70 we have EE(u, v) =

Q(X ′, Y ). This happens independently for all the values of k ∈ [k0], so by the Chernoff bound

and our choice of k0, we have Pr[Q′ outputs 0] ≤ Pr[bR = 0] < ε0/2.

Finally, Pr(u,v)∼νn′ [Match(u, v) ≥ R0] ≤ ε0/2 by our choice of R0. Note that the protocol

Q′ uses a shared random bit string, say W , in the construction of the vectors X ′R,k and YR,k.

Hence, overall, we have

Pr
W,(u,v)∼νn′

[EE(u, v) = Q′(u, v)] ≥ 1− ε0

Since we measure the error of the protocol under a distribution, we can fix W to a value

without increasing the error under the aforementioned distribution by the so called easy

direction of Yao’s lemma. Namely, there exists a w ∈ supp(W ) such that

Pr
(u,v)∼νn′

[EE(u, v) = Q′(u, v) |W = w] ≥ 1− ε0

Fix such w. Observe that Q′ is a (r − 1)-round protocol for EEn′ where n′ = n
4002

−5(c+1)
4n =

Ω(n/2 5c
4n ) and it sends at most R0k0c = O(c) bits in each message. Furthermore, Q′ is

deterministic and has at most ε0 error on νn′ as desired.
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Theorem 3.7.9. There exists a constant ε0 such that for any r ≤ log∗ n, an r-round

deterministic protocol for EEn which has ε0 error on νn sends at least one message of size

Ω(n log(r) n).

Proof. Suppose we have an r-round protocol with c-bit messages for EEn that has ε0 error

on νn, where c = γn log(r) n for some γ < 4/5− o(1). By Lemma 3.7.8, this protocol can be

converted to an r − 1 round protocol with αc-bit messages for EEn′ that has ε0-error on νn′ ,

where n′ = βn/25c/4n for some α, β > 0. We only need to verify that αc ≤ γn′ log(r−1) n′. We

have

γn′ log(r−1) n′ = γβn/25c/4n log(r−1)(βn/25c/4n)

= γβn/2
5γ
4 log(r) n log(r−1)(βn/25c/4n)

≥ γβn
(
log(r−1) n

)1− 5γ
4 −o(1)

≥ γαn log(r) n

for γ < 4/5 − o(1) and large enough n. Therefore, by iteratively applying Lemma 3.7.8

we obtain a 0-round protocol for EEn̄ that makes ε0 error on νn̄ for some n̄ satisfying

γn̄2 = γn̄ log(0) n̄ ≥ cαr. Therefore n̄ ≥ 1 and since ε0 < 0.22, the protocol we obtain

contradicts Lemma 3.7.7, showing that the protocol we started with cannot exists.

Remark 3.7.10. We note that in the proof of Theorem 4.0.4, to show that a protocol with

small communication does not exist, we start with the given protocol and apply the round

elimination lemma (i.e., Lemma 3.7.8) r times to obtain a 0-round protocol with small error

probability, which is shown to be impossible by Lemma 3.7.7. Alternatively, one can apply the

round elimination r − 1 times to obtain a 1-round protocol with o(n log n) communication for

EEn, which is ruled out by Theorem 3.5.2.
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3.8 Discussion

The r-round protocol we gave in Section 3.4 solves the sparse set disjointness problem in

O(k log(r) k) total communication. As we proved in Section 3.7 this is optimal. The same,

however, cannot be said of the error probability. With the same protocol, but with more

careful setting of the parameters the exponentially small error O(2−
√
k) of the log∗ k-round

protocol can be further decreased to 2−k1−o(1) .

For small (say, constant) values of r this protocol cannot achieve exponentially small error

error without the increase in the complexity if the universe size m is unbounded. But if m

is polynomial in k (or even slightly larger, m = exp(r)(O(log(r) k))), we can replace the last

round of the protocol by one player deterministically sending his or her entire “current set”

Sr. With careful setting of the parameters in other rounds, this modified protocol has the

same O(k log(r) k) complexity but the error is now exponentially small: O(2−k/ log k). Note

that in our lower bound on the r-round complexity of the sparse set disjointness we we use

the exists-equal problem with parameters n = k and t = 4k. This corresponds to the universe

size m = tn = 4k2. In this case any protocol solving the exists-equal problem with 1/3 error

can be strengthened to exponentially small error using the same number of rounds and only

a constant factor more communication.

Our lower and upper bounds match for the exists-equal problem with parameters n and

t = Ω(n), since the upper bounds were established without any regard of the universe size,

while the lower bounds worked for t = 4n. Extensions of the techniques presented in this

paper give matching bounds also in the case 3 ≤ t < n, where the r-round complexity is

Θ(n log(r) t) for r ≤ log∗ t. Note, however, that in this case one needs to consider significantly

more complicated input distributions and a more refined isoperimetric inequality, that does

not permit arbitrary mismatches. The Ω(n) lower bound applies for the exists-equal problem

of parameters n and t ≥ 3 regardless of the number of rounds, as the disjointness problem

on a universe of size n is a sub-problem. For t = 2 the situation is drastically different, the

exists-equal problem with t = 2 is equivalent to a single equality problem.
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Finally a remark on using the joint random source model of randomized protocols

throughout the paper. By a result of Newman [69] our protocols of Section 3.4 can be made to

work in private coin model (or even if one of the players is forced to behave deterministically)

by increasing the first message length by O(log log(N) + log(1/ε)) bits, where N =
(
m
k

)
is

the number of possible inputs. In our case this means adding the term O(log logm) + o(k)

to our bound of O(k log(r) k), since our protocols make at least exp(−k/ log k) error. This

additional cost is insignificant for reasonably small values of m, but it is necessary for large

values as the equality problem, which is an instance of disjointness, requires Ω(log logm)-bits

in the private coin model.

Note also that we achieve a super-linear increase in the communication for OR of n

instances of equality even in the private coin model for r = 1. For r ≥ 2, no such increase

happens in the private coin model as communication complexity of EEt
n is at most O(n log log t)

however a single equality problem requires Ω(log log t) bits.

3.9 Chapter notes

The results presented in this chapter are obtained with Gábor Tardos and published in our

joint paper [80] in FOCS 2013.
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Chapter 4

THE BLAKLEY-DIXON-ERDOS-SIMONOVITS CONJECTURE

Suppose that some initial heat configuration u : Ω → R+ is given over a finite space Ω

and the configuration evolves according to the map w 7→ Sw in each time step t = 0, 1, . . .,

for some symmetric stochastic matrix S : Ω × Ω → R+. Assume that we are interested in

the amount of heat contained in a certain region R ⊆ Ω and how this quantity changes over

time. In notation, assuming ‖u‖2 = 1 for normalization purposes and v(x) ··= 1x∈R/|R|1/2 for

x ∈ Ω, we would like to understand how

mt ··=
〈
v, Stu

〉

changes as a function of t. In this paper we derive local bounds that {mt}∞t=0 must obey for

any S, u and v satisfying the symmetry, magnitude and positivity constraints above (in fact

our bounds work for any countable Ω, arbitrary non-negative unit vector v and symmetric

non-negative S). Our first bound mt+2 ≥ m
1+2/t
t answers a question of Blakley and Dixon

from 1966 (see Conjecture 4.0.2 below) which was later conjectured independently by Erdős

and Simonovits in 1982 also (see Conjecture 4.0.6 in Section 4.0.2).

Moreover we establish a tight connection between such bounds and the well-studied

k-Hamming distance problem [72, 88, 30, 6, 37, 46, 15, 23, 14, 3] and the k-Hamming weight

problem [2, 16, 23] and obtain the first tight bounds for respectively the communication

complexity and parity decision tree complexity of them. Our tight Ω(k log(k/δ)) lower bound

for the δ-error communication complexity of the k-Hamming distance problem (that applies

whenever k2 < δn) answers affirmatively a conjecture stated in [14] (Conjecture 1.4). Prior

to our work, the best impossibility results for this problem were an Ω(k log(r) k) bits lower

bound (log(r) z being the r nested applications of logarithm) that applies to any randomized
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r-round communication protocol [80], and an Ω(k log(1/δ)) lower bound that applies to any

δ-error randomized protocol for k < δn [14].

Our parity decision tree lower bound shows that any δ-error parity decision tree solving the

k-Hamming weight problem has size exp Ω (k log(k/δ)), which directly implies an Ω(k log(k/δ))

bound on the depth of any such decision tree. Previously no nontrivial lower bound was

known for the parity decision tree size of this problem and an Ω(k log(1/δ)) bound on the

parity decision tree depth followed from the communication complexity bound of [14]. Prior

to [14], the best bound on the parity decision tree depth was Ω(k), derived in [15] and [16].

Either by combining our communication complexity lower bound with the reduction

technique developed in [15] or by combining our parity decision tree lower bound with a

reduction given in [12], one obtains an Ω(k log(k/δ)) bound for any (potentially adaptive)

property tester for the δ-error probability k-linearity testing problem. This establishes the

correct bound for this problem which was studied extensively [35, 39, 16, 12, 23, 15] since

[35] or earlier.

4.0.1 Motivating our bounds on mt

We would like to provide some intuition as to why one should expect

mt+2 ≥ m
1+2/t
t , and (4.0.1)

mt+2 ≥ m
1+2/t
t ·min

t1−ε, δm
1−2/t
t

mt−2

 (4.0.2)

to hold for appropriate ε, δ. Recalling that S is a symmetric matrix with maximum eigenvalue

1, we may write S = QDQᵀ for an orthonormal matrix Q having columns qx, x ∈ Ω and a

diagonal matrix D with entries λx ≤ 1, x ∈ Ω. Plugging this into mt = 〈v, Stu〉, we get

mt =
∑
x∈Ω

λtx 〈u, qx〉 〈v, qx〉 . (4.0.3)

For sake of analogy let us drop our assumption that S, u, v are coordinate-wise nonnegative

for a moment but instead assume that each summand in the right hand side of Eq. (4.0.3)
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is nonnegative by some coincidence. In this case we can consider {mt}∞t=0 as the moment

sequence of a random variable supported on [0, 1] that takes the value |λx| with probability

| 〈u, qx〉 〈v, qx〉 | and the value 0 with probability 1−∑x | 〈u, qx〉 〈v, qx〉 | (which is nonnegative

by Cauchy-Schwarz inequality). This would imply that {mt}∞t=0 is completely monotone by

Hausdorff’s characterization [44] and therefore log-convex (e.g., [70], Section 2.1, Example 6).

One particular implication of the log-convexity of {mt}∞t=0, that 1
t

logmt + t−1
t

logm0 ≥

logm1, when combined with the fact 0 ≤ m0 ≤ 1 (that follows from our assumption on

the terms of Eq. (4.0.3)), leads to mt ≥ mt
1. In 1958, Mandel and Hughes showed that if

u = v, rather surprisingly, one can trade the assumption that the summands of Eq. (4.0.3)

are nonnegative with the assumption that S and u = v are coordinate-wise nonnegative and

still obtain the conclusion mt ≥ mt
1:

Theorem 4.0.1 (Mandel and Hughes [64]). Let u be a nonnegative unit vector and S be a

symmetric matrix with nonnegative entries. For an integer1 t ≥ 1 we have 〈u, Stu〉 ≥ 〈u, Su〉t.

A more general implication of the log-convexity of {mt}∞t=0 and that m0 ≤ 1 is that for

k ≥ t, t
k

logmk + k−t
k

logm0 ≥ logmt, therefore mt
k ≥ mk

t . In 1966, Blakley and Dixon [18]

investigated whether mt
k ≥ mk

t holds in the case u = v when the nonnegativity assumption

on the summands of Eq. (4.0.3) is replaced by the coordinate-wise nonnegativity of S, u = v.

They note that the inequality mt
k ≥ mk

t fails when k and t have different parity and otherwise

holds true under the restriction mt ≥ e−4t. While the following is not explicitly stated as a

conjecture in [18], they write

if t > 1, [...] we cannot show that the inequality Eq. (4.0.1) holds for each

nonnegative |Ω|-vector u if S is nonnegative.

so with the earlier caveat we attribute the following to Blakley and Dixon [18]:

1Since u = v here, the summands inside Eq. (4.0.3) are nonnegative when t is even so this theorem is most
interesting for t odd.
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Conjecture 4.0.2 (Blakley and Dixon [18]). Let S : Ω×Ω→ R+ be a symmetric matrix with

nonnegative entries and let u : Ω → R+ be a nonnegative unit vector. For positive integers

k ≥ t of the same parity, we have

〈
u, Sku

〉t
≥
〈
u, Stu

〉k
.

In Section 4.1 we prove the following theorem which shows that a generalization of

Conjecture 4.0.2 holds true.

Theorem 4.0.3. Let S : Ω× Ω→ R+ be a symmetric matrix with nonnegative entries and

u, v : Ω→ R+ be nonnegative unit vectors. For positive integers k ≥ t of the same parity, we

have

〈
v, Sku

〉t
≥
〈
v, Stu

〉k
.

It goes without saying that Eq. (4.0.1) is equivalent to Theorem 4.0.3 as we can rearrange

Eq. (4.0.1) to m1/(t+2)
t+2 ≥ m

1/t
t and apply it iteratively to obtain m1/k

k ≥ · · · ≥ m
1/(t+2)
t+2 ≥ m

1/t
t

whenever k ≥ t and k, t have the same parity. Moreover, while defining Eq. (4.0.1) we

assumed S to be substochastic only to illustrate our interpretation of the inequality: indeed

any nonnegative S can be scaled to be substochastic as both sides of Eq. (4.0.1) are (t+ 2)-

homogeneous in S.

In Theorem 4.0.1 and Theorem 4.0.3 we observed that increasingly more general implica-

tions of the log-convexity of {mt}∞t=0 can be derived by only assuming the coordinate-wise

nonnegativity of S, u and v. One may naturally wonder if the coordinate-wise nonnegativity

of S, u and v implies the log-convexity of {mt}∞t=0 in its entirety. Unfortunately the following

example shows that this is far from the truth.

0 1 2 · · · t− 1 tε ε ε ε ε

Figure 4.1: Ω = {0, 1, . . . , t}, S(i, i+ 1) = S(i+ 1, i) = ε for i = 0, . . . , t− 1.
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Consider the transition matrix S on Ω = {0, 1, . . . , t} such that S(i, i+ 1) = S(i+ 1, i) = ε

for i = 0, 1, . . . , t− 1 and S(i, j) = 0 elsewhere. Let u and v be the point masses respectively

on states 0 and t; namely u = [1, 0, . . . , 0]ᵀ and v = [0, 0, . . . , 1]ᵀ. We have mt−2 = 0, mt = εt

and mt+2 = tεt+2. Therefore mt−2mt+2 = 0 6≥ ε2t = m2
t . In this example the log-convexity

breaks (in the strongest possible way) because the states 0 and t are separated by t hops

according to S and the point mass at state 0 cannot reach state t before the tth time step.

Our next theorem shows that such reachability issues are essentially the only way the

log-convexity property can fail to hold:

Theorem 4.0.4. For every ε > 0 there is a δ > 0 such that for any symmetric matrix

S : Ω×Ω→ R+ and unit vectors u, v : Ω→ R+ with nonnegative entires, defining mt as before,

we have

mt+2

m
1+2/t
t

≥ min

t1−ε, δm
1−2/t
t

mt−2

 , ∀t ≥ 2. (4.0.4)

In other words, Theorem 4.0.4 shows that one can recover a truncated version of the

log-convexity of {mt}∞t=0 from just the coordinate-wise nonnegativity assumption of S, u and

v. We stress that Theorem 4.0.4 is tight up to the appearance of ε and the choice of δ = δ(ε).

A direct calculation on Figure 4.1 for time steps t, t+ 2, t+ 4 shows that Eq. (4.0.4) cannot

be improved to

mt+2

m
1+2/t
t

≥ min

t1−2/t,
(1 + η

2

)
m

1−2/t
t

mt−2


for η > 0.

4.0.2 Related work on mt

Almost simultaneously with the work of Mandel and Hughes [64], Mulholland and Smith

also prove Theorem 4.0.1 in [68] and moreover they characterize the equality conditions of

the inequality. Independently, in 1965, Blakley and Roy [17] prove the same inequality and

characterize the equality conditions and [62] provides an alternative proof to that of [68]
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in 1966. We remark that Theorem 4.0.1 is most commonly referred to as the Blakley-Roy

bound or “Sidorenko’s conjecture for walks”. Note these results show that Conjecture 4.0.2 is

true whenever t divides k. Finally in 2012, Pate shows that mt ≥ mt
1 without the restriction

u = v:

Theorem 4.0.5 (Pate [74]). Let S : Ω× Ω→ R+ be a symmetric matrix with nonnegative

entries and let u, v : Ω→ R+ be nonnegative unit vectors. It holds that

〈
v, S2t+1u

〉
≥ 〈v, Su〉2t+1 ,

with equality if and only if 〈v, S2t+1u〉 = 0 or Su = λv and Sv = λu for some λ ∈ R+.

This result already shows that Theorem 4.0.3 is true when t divides k but such a bound

does not have any implications for our applications in complexity theory. In [34], Erdős and

Simonovits conjecture the following.

Conjecture 4.0.6 (Erdős and Simonovits [34], Conjecture 6). For a graph G = (V,E), let

wk(G) be the number length k walks in G divided by |V |. For an undirected graph G, we have

wk(G)t ≥ wt(G)k for k > t of the same parity.

This conjecture was recalled in a recet book [84] by Täubig as Conjecture 4.1. Note

that Conjecture 4.0.6 is a specialization of Conjecture 4.0.2 to S having 0-1 entries and

u = 1/
√
|V | therefore our Theorem 4.0.3 verifies Conjecture 4.0.6 as well.

4.0.3 Our results in complexity theory

Here we list our results in complexity theory; see ?? for the definition of the models and

the problems. The following theorem (which was already known [14]) is a consequence of

Theorem 4.0.3 and uses the standard corruption technique in communication complexity.

Theorem 4.0.7. Any two party δ-error randomized protocol solving the k-Hamming distance

problem over length-n strings communicates at least Ω(k log(1/δ)) bits for k2 ≤ δn.
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The next is our main result for the communication complexity of the k-Hamming distance

problem and is a consequence of Theorem 4.0.4. This result cannot be obtained by the

standard corruption technique and requires a suitable modification similar to [83].

Theorem 4.0.8. Any two party δ-error randomized protocol solving the k-Hamming distance

problem over length-n strings communicates at least Ω(k log(k/δ)) bits for k2 ≤ δn.

Theorem 4.0.9. Any δ-error parity decision tree deciding the k-Hamming weight predicate

over length-n strings has size exp Ω (k log(k/δ)) for k2 < δn.

Corollary 4.0.10. Any δ-error probability property tester for k-linearity requires Ω(k log(k/δ))

queries.

Note the bound mt
k ≥ mk

t obtained in [18] under the condition mt ≥ e−4t does not have

any implications for the communication complexity of the k-Hamming distance problem as

our reduction crucially uses the fact that u and v are arbitrary, however it does lead to an

exp Ω(k) lower bound for the parity decision tree size of the k-Hamming weight problem

when combined with our reduction.

Remark 4.0.11. Note that in Theorem 4.0.3, when u = v and either both k, t are even or S

is positive semidefinite, the summands of Eq. (4.0.3) become nonnegative and the inequality

holds trivially. For our application in communication complexity we crucially use the fact

that u and v are arbitrary and for our application in parity decision trees, one can do away

with u = v but only at the expense of having to choose k, t odd. In both results the S we

choose has eigenvalues 1 and −1 with equal multiplicities and therefore far away from being

positive semidefinite. In either case, the implications of Theorem 4.0.3 in complexity theory

follow from the interesting cases of this theorem.
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4.1 Monotonicity of t 7→ m
1/(2t)
2t and t 7→ m

1/(2t+1)
2t+1

In this section we prove Theorem 4.0.3 which we restate here (with additional equality

conditions) for the convenience of the reader. Recall this theorem confirms Conjecture 4.0.2

and Conjecture 4.0.6.

Theorem 4.0.3 (restated). Let S : Ω × Ω → R+ be a symmetric matrix with nonnegative

entries and u, v : Ω→ R+ be nonnegative unit vectors. For positive integers k ≥ t of the same

parity, we have
〈
v, Sku

〉t
≥
〈
v, Stu

〉k
, (4.1.1)

with equality if and only if
〈
v, Sku

〉
= 0 or Su = λv and Sv = λu for some λ ∈ R+ when t is

odd and u = v is an eigenvector of S2 when t is even.

We prove Theorem 4.0.3 by an information theoretic argument. Define the distributions

µ ··= u/ ‖u‖1 and ν ··= v/ ‖v‖1. Since either side of Eq. (4.1.1) is kt-homogeneous in S, we

may assume that S is substochastic by scaling as needed. Having fixed this normalization,

we view Eq. (4.1.1) as a statement about random walks on Ω that start from a state sampled

according to µ or ν and evolve according to the transition matrix S.

4.1.1 Reference random walks

Let Ω◦ = Ω ∪ {r} for some state r /∈ Ω and t be a positive integer. Recall that µ = u/ ‖u‖1

and ν = v/ ‖v‖1. We start by defining random walks F t, Bt on Ω◦ that evolve in discrete

time steps −1, 0, 1, . . . , t, t+ 1.

The random walk F t starts at r and transitions to a state x ∈ Ω with probability µ(x) at

time step −1. In steps 0, 1, . . . , t− 1, the random walk proceeds according to the transition

matrix S. At the time step t, each state x ∈ Ω transitions to r with probability ν(x) and

transitions to an arbitrary state in Ω with probability 1− ν(x) (say, all of them to the same

arbitrary state). We view F t as a joint random variable F t = (F t
−1, F

t
0, . . . , F

t
t+1), where F t

i

is the location of the walk in time step i.
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The random walk Bt proceeds backwards in time. At time step t+ 1 the walk Bt starts

at r and transitions to a state x ∈ Ω with probability ν(x). In time steps t, t− 1, . . . , 1, the

random walk proceeds as prescribed by S. At time step 0, each state x ∈ Ω transitions to r

with probability µ(x) and to an arbitrary state in Ω with probability 1− µ(x). Similarly, Bt

denotes the joint random variable Bt = (Bt
−1, B

t
0, . . . , B

t
t+1), where Bt

i is the location of the

walk at time step i.

The following facts about F t and Bt are immediate. The random variables F t
−1 and

Bt
t+1 are fixed to a single value r. The random variables F t, Bt are Markovian, namely,

dist(F t
i |F t

i−1, . . . , F
t
−1) = dist(F t

i |F t
i−1) and dist(Bt

i−1 |Bt
i , . . . B

t
t+1) = dist(Bt

i−1 |Bt
i) for

i ∈ {0, . . . , t+ 1}.

4.1.2 Random walks returning to the origin

Assume that Pr[F t
t+1 = r] > 0. Let X be the walk F t conditioned on F t

t+1 = r. Note that X

is a random variable on the sample space Ωt+3
◦ . The next two lemmas explicitly calculate the

distribution of X.

For a matrix M : Ω×Ω→ R+, functions f, g : Ω→ R+, and x, y ∈ Ω we use the shorthands

M(f, y) ··=
∑
x∈Ω

f(x)M(x, y) = (Mᵀf)(y)

M(x, g) ··=
∑
y∈Ω

M(x, y)g(y) = (Mg)(x)

M(f, g) ··=
∑
x,y∈Ω

f(x)M(x, y)g(y) = fᵀMg,

where the last expression in each line is understood as a matrix vector multiplication.

Lemma 4.1.1. Under our assumption St(µ, ν) > 0,

(i) we have Pr [Xi = x] = Si(µ,x)St−i(x,ν)
St(µ,ν) , and

(ii) if St−i(x, ν) > 0, we have Pr[Xi+1 = y |X≤i = x≤i] = S(xi,y)St−i−1(y,ν)
St−i(xi,ν) .
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Proof. From the definition of F t (cf. Section 4.1.1), we have

Pr[F t
i = x] = Si(µ, x) (4.1.2)

Pr[F t
t+1 = r |F t

i = x] = St−i(x, ν) (4.1.3)

Pr[F t
t+1 = r] = St(µ, ν) (4.1.4)

Pr[F t
i+1 = y and F t

t+1 = r |F t
i = x] = S(x, y)St−i−1(y, ν). (4.1.5)

Using Bayes’ rule with Eq. (4.1.2), (4.1.3) and (4.1.4) gives (i). Combining Eq. (4.1.3), (4.1.5)

and the observation that F t is Markovian gives (ii).

With Lemma 4.1.1 we confirm that the random variable X = (X−1, X0, . . . , Xt+1) is

Markovian; in particular a time inhomogeneous random walk on Ω◦. Next we observe that

the random variable Bt conditioned on Bt
−1 = r is precisely X also.

Lemma 4.1.2. Under our assumption St(µ, ν) > 0,

(i) we have dist(X) = dist(Bt |Bt
−1 = r), and

(ii) if Si(µ, x) > 0, we have Pr[Xi−1 = y |X≥i = x≥i] = S(xi,y)Si−1(y,µ)
Si(xi,µ) .

Proof. For any x ∈ Ωt+3
◦ with xt+1 = r,

Pr[X = x] = µ(x0)∏t
i=1 S(xi−1, xi)ν(xt)
St(µ, ν)

= ν(xt)
∏t
i=1 S(xi, xi−1)µ(x0)
St(µ, ν) (as S is symmetric)

= Pr[Bt = x]
Pr[Bt

t+1 = r] = Pr[Bt = x |Bt
t+1 = r] (by Bayes’ rule).

This proves (i). Given (i), the proof of (ii) is the same as Lemma 4.1.1(ii).

Lemma 4.1.3. We have D(X ‖F t) = D(X ‖Bt) = − logSt(µ, ν).

Proof. Recall that Pr[F t
t+1 = r] = St(µ, ν). Since X is obtained from F t by conditioning on

F t
t+1 = r, the equality criteria of Lemma 2.3.2 are fulfilled and thus D(X ‖F t) = − logSt(µ, ν).

The derivation of D(X ‖Bt) is identical as per Lemma 4.1.2(i).
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4.1.3 Longer random walks

Let J be an integer valued random variable taking the values {1, 2, . . . , t}, each with equal

probability. For each fixing j of J we perform a random walk Z | J = j on Ω◦ that evolves in

time steps −1, 0, 1, . . . , t, t+ 1, t+ 2, t+ 3 as follows.

The random walk starts at r and for each time step −1 ≤ i < j, proceeds according to

the transition kernel dist(Xi+1 |Xi). At time step j, the random walk proceeds according to

dist(Xj−1 |Xj) and in time steps j < i ≤ t + 3 proceeds according to the transition kernel

dist(Xi−1 |Xi−2). We view Z as a joint random variable Z = (Z−1, Z0, . . . , Zt+3), where Zi
denotes the location of the random walk at time step i.

Lemma 4.1.4. For −1 ≤ i ≤ j, we have dist(Zi | J = j) = dist(Xi) and for j < i ≤ t + 3,

dist(Zi | J = j) = dist(Xi−2).

Proof. This follows from the fact that

dist(F t |F t
t+1 = r) = dist(X) = dist(Bt |Bt

−1 = r)

and that X is an actual random walk (i.e., Markovian) on Ω◦.

To be more explicit, we have dist(Xi) = dist(Zi) for i ≤ j since both X and Z start at r in

time step −1 and evolve according to the transition kernel dist(Xi+1 |Xi) for i = −1, . . . , j−1.

Since dist(Xj) = dist(Zj) and Z proceeds according to dist(Xi−1 |Xj) at time step j, by

Lemma 4.1.2, dist(Xj−1) = dist(Zj+1). Finally in time steps i > j, we have dist(Zi) =

dist(Xi−2) since dist(Xj−1) = dist(Zj+1) and Z proceeds according to dist(Xi−1 |Xi−2).

From this we can deduce that Z always ends up in r at time step t+ 3. We next argue

that if X does not diverge too much from the reference random walk F t, then Z does not

diverge too much from F t+2.

Lemma 4.1.5. We have

D
(
Z | J

∥∥∥F t+2
)

= t+ 2
t

D
(
X
∥∥∥F t

)
− 1
t

(
D
(
X0

∥∥∥F t
0

)
+ D

(
Xt+1 |Xt

∥∥∥F t
t+1 |F t

t

))
− 1
t

(
D
(
Xt

∥∥∥Bt
t

)
+ D

(
X−1 |X0

∥∥∥Bt
−1 |Bt

0

))
.
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Proof. For a fixing j of J , we have

D
(
Z | J = j

∥∥∥F t+2
)

=
j−1∑
i=−1

D
(
Xi+1 |Xi

∥∥∥F t+2
i+1 |F t+2

i

)
+ D

(
Xj−1 |Xj

∥∥∥F t+2
j+1 |F t+2

j

)

+
t+2∑
i=j+1

D
(
Xi−1 |Xi−2

∥∥∥F t+2
i+1 |F t+2

i

)
,

where we have used the chain rule for divergence (cf. Lemma 2.3.3), the fact that Z | J = j

and F t+2 are Markovian and Lemma 4.1.4. Recalling that F t and Bt evolve according to S

in time steps 0, 1, . . . , t− 1, and dist(F t
t+1 |F t

t ) = dist(F t+2
t+3 |F t+2

t+2 ), we write

D
(
Z | J = j

∥∥∥F t+2
)

=
t∑

i=−1
D
(
Xi+1 |Xi

∥∥∥F t
i+1 |F t

i

)
+ D

(
Xj−1 |Xj

∥∥∥Bt
j−1 |Bt

j

)
+ D

(
Xj |Xj−1

∥∥∥F t
j |F t

j−1

)
= D

(
X
∥∥∥F t

)
+ D

(
Xj−1 |Xj

∥∥∥Bt
j−1 |Bt

j

)
+ D

(
Xj |Xj−1

∥∥∥F t
j |F t

j−1

)
again by the chain rule for divergence (Lemma 2.3.3) and the fact that X and F t are

Markovian. Now taking an expectation over all j ∈ supp(J), we have

D
(
Z | J

∥∥∥F t+2
)

= 1
t

∑
j

D
(
Z | J = j

∥∥∥F t+2
)

= D
(
X
∥∥∥F t

)
+ 1
t

∑(
D
(
Xj−1 |Xj

∥∥∥Bt
j−1 |Bt

j

)
+ D

(
Xj |Xj−1

∥∥∥F t
j |F t

j−1

))
= D

(
X
∥∥∥F t

)
+

D(X ‖Bt)−D(Xt ‖Bt
t)−D

(
X−1 |X0

∥∥∥Bt
−1 |Bt

0

)
t

+
D(X ‖F t)−D(X0 ‖F t

0)−D
(
Xt+1 |Xt

∥∥∥F t
t+1 |F t

t

)
t

.

Since D(X ‖Bt) = D(X ‖F t) by Lemma 4.1.3, collecting the D(X ‖F t) terms we finish the

proof.

Finally, we lower bound the negative terms in the statement of Lemma 4.1.5.

Lemma 4.1.6. We have

D
(
X0

∥∥∥F t
0

)
+ D

(
X−1 |X0

∥∥∥Bt
−1 |Bt

0

)
≥ H2 (µ) ··= − log ‖µ‖2

2 , and (4.1.6)

D
(
Xt

∥∥∥Bt
t

)
+ D

(
Xt+1 |Xt

∥∥∥F t
t+1 |F t

t

)
≥ H2 (ν) ··= − log ‖ν‖2

2 , (4.1.7)
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where H2 (·) denotes the second order Rényi entropy.

Proof. We only prove the first inequality as the second one is symmetric. By Lemma 4.1.1,

we have

D
(
X0

∥∥∥F t
0

)
=
∑
x∈Ω

µ(x)St(x, ν)
St(µ, ν) log S

t(x, ν)
St(µ, ν) and

D
(
X−1 |X0

∥∥∥Bt
−1 |Bt

0

)
=
∑
x∈Ω

µ(x)St(x, ν)
St(µ, ν) log 1

µ(x) .

Let Ψ = supp(X0). By adding the two terms we get

D
(
X0

∥∥∥F t
0

)
+ D

(
X−1 |X0

∥∥∥Bt
−1 |Bt

0

)
= −

∑
x∈Ψ

µ(x)St(x, ν)
St(µ, ν) log µ(x)St(µ, ν)

St(x, ν)

≥ − log
∑
x∈Ψ

µ(x)2St(x, ν)St(µ, ν)
St(µ, ν)St(x, ν) (4.1.8)

= − log
∑
x∈Ψ

µ(x)2

≥ − log
∑
x∈Ω

µ(x)2 , (4.1.9)

where the first inequality is by concavity of z 7→ log z and the second inequality is true as the

summands are nonnegative.

4.1.4 Combining the inequalities

Proof of Theorem 4.0.3. Note that Z−1 is fixed to r by definition (cf. Section 4.1.3) and Zt+3

is fixed to r by Lemma 4.1.4. Therefore by Lemma 2.3.2 we have

− logSt+2(µ, ν) ≤ D
(
Z
∥∥∥F t+2

)
(4.1.10)

= D
(
Z | J

∥∥∥F t+2
)
− I(J : Z) (4.1.11)

≤ D
(
Z | J

∥∥∥F t+2
)

(4.1.12)

≤ t+ 2
t

D
(
X
∥∥∥F t

)
+ log ‖µ‖2

2 + log ‖ν‖2
2

t
.
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Here Eq. (4.1.11) follows from the chain rule for the divergence (Lemma 2.3.3) and the

definition of mutual information (cf. Eq. (2.3.4)), Eq. (4.1.12) follows from the nonnegativity

of mutual information and the last line follows from Lemma 4.1.5 and Lemma 4.1.6. Plugging

in D(X ‖F t) = − logSt(µ, ν), provided by Lemma 4.1.3, we obtain

− logSt+2(µ, ν) ≤ −t+ 2
t

logSt(µ, ν) + log ‖µ‖2
2 + log ‖ν‖2

2
t

.

Arranging, we get

‖µ‖2
2 ‖ν‖

2
2

〈
ν, St+2µ

〉t
≥
〈
ν, Stµ

〉t+2

and substituting µ = u/ ‖u‖1, ν = v/ ‖v‖1, and recalling that u, v are unit vectors, we obtain

〈
v, St+2u

〉t
≥
〈
v, Stu

〉t+2
, i.e.,

mt+2 ≥ m
1+2/t
t . (4.1.13)

By applying this inequality iteratively, we get
〈
v, Sku

〉t
≥ 〈v, Stu〉k or written differently

m
1/k
k ≥ m

1/t
t as long as k > t and k, t have the same parity.

Next we characterize the equality conditions of Eq. (4.1.13). Let us verify the ‘if’ direction

of the statement. Clearly if
〈
v, Sku

〉
= 0 then we have

〈
v, Sku

〉
= 〈v, Stu〉 by the first part

of the theorem and the fact that 〈v, Stu〉 ≥ 0. If S2u = λ2u, then m2t = λ2t and if Su = λv

and Sv = λu, then m2t+1 = λ2t+1, therefore in both t even and t odd cases the inequality

holds with equality.

Conversely, if 0 6=
〈
v, Sk+2u

〉
=
〈
v, Sku

〉
, then the inequalities (4.1.8), (4.1.9), (4.1.10),

and (4.1.11) must hold with equality. Combining the assumption that Eq. (4.1.9) and (4.1.8)

hold with equality with the strict concavity of z 7→ log z and Jensen’s lemma, we get that

Stν = λ1µ+ σ1 for some λ1 ≤ 1 and σ1 ∈ RΩ
+ satisfying supp(σ1) ∩ supp(µ) = ∅. This also

means that Pr[X0 = x] = µ(x)2/ ‖µ‖2
2 for x ∈ Ω and a similar and symmetrical argument

shows that Pr[Xt = x] = ν(x)2/ ‖ν‖2
2 for x ∈ Ω. Assuming Eq. (4.1.11) holds with equality

leads to I(Z : J) = 0, which in turn shows that dist(Xi) = dist(Xi+2) for i = 0, . . . , t− 2. Let

Xk+2 ··=
(
F t+2 |F t+2

t+3 = r
)
. From our assumption 0 6=

〈
v, Sk+2u

〉
=
〈
v, Sku

〉
we conclude
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that dist(Z) = dist(X t+2) as X t+2 is the minimally divergent distribution from F t+2 among

distributions on walks ending at state r. Since dist(X t+2
2 ) = dist(X t+2

0 ) = dist(X0), and

Stν = λ1µ + σ1 we get that S2µ = λ2µ + σ2 for some λ2 ≤ 1 and σ2 ∈ RΩ
+ satisfying

supp(σ2) ∩ supp(µ) = ∅. Now we will show that it must be that σ2 = 0. Suppose for

sake of contradiction that σ2(z) > 0 for some z /∈ supp(µ). There exists x, y ∈ Ω so

that µ(x)S(x, y)S(y, z) > 0. If y ∈ supp(X1) then adding to a walk w ∈ supp(X) with

w1 = y the loop (y, z)(z, y) we obtain a length t + 2 walk which is not in the support of

X t+2 as dist(X t+2
2 ) = dist(X2) = dist(X0), which contradicts the fact that X t+2 is defined as

F t+2 |F t+2
t+3 = r. If on the other hand y /∈ supp(X1), adding the loop (x, y)(y, x) to a walk with

w0 = x leads to a walk which is not in the support of X t+2, which is a contradiction. Having

established S2µ = λµ, we complete the proof for even t by recalling that dist(X0) = dist(Xt)

therefore µ = ν. For t odd, the last argument shows that Sµ = λ3ν + σ3 for some λ3 ≤ 1

and σ3 ∈ RΩ
+ satisfying supp(σ3) ∩ supp(µ) = ∅. It remains to show that σ3 = 0 by using the

assumption that dist(Z) = dist(X t+2). Suppose σ3(y) > 0 for some y /∈ supp(ν). There exists

x ∈ Ω such that µ(x)S(x, y) > 0. Adding the loop (x, y)(y, x) to a walk w with wt−1 = x

leads to a length t+ 2 walk which is not in the support of X t+2. A symmetrical argument

shows that λ′µ = Sν. This completes the proof.
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4.2 Near log-convexity of t 7→ m2t and t 7→ m2t+1

In this section we would like to prove the following improvement to Eq. (4.1.13): for all ε > 0

there exists a δ > 0 such that

mt+2 ≥ m
1+2/t
t ·min

t1−ε,
δm

1−2/t
t

mt−2


 , ∀t ≥ 2. (4.2.1)

Recall that in proving Eq. (4.1.13), in line (4.1.12), we used the relaxation I(J : Z) ≥ 0. Note

that J is uniformly distributed on [t] therefore has log t bits of entropy and provided that it

is possible to infer J from Z (i.e., it is possibly to locate the time reversal we have inserted

in Z) the I(J :K) term appears to be large enough to recover the factor

min

t1−ε,
δm

1−2/t
t

mt−2


 .

Note moreover that intuitively we are able to infer J from Z better when m
1−2/t
t

mt−2
is high,

as in such cases on average for a time step i ∈ [t] and a typical x ∼ Xi, the distributions

dist(Xi−1 |Xi = x) and dist(Xi+1 |Xi = x) should be far from each other, as otherwise we

can argue that there should be many t − 2 walks as follows. If dist(Xi−1 |Xi = x) and

dist(Xi+1 |Xi = x) are close to each other, there should be many p ∈ Ω which has high

probability in both these distributions. Sample such a p, and attach to it a walk sampled

from X−1X1 . . . Xi−1 |Xi−1 = p and another walk sampled from Xi+1Xi+2 . . . Xt+1 |Xi+1 = p,

which leads to a length t− 2 walk returning to the origin. However if mt−2 is low, this should

not happen and therefore dist(Xi−1 |Xi = x) and dist(Xi+1 |Xi = x) on average should be far

apart, which means that we can notice when we take a step backwards in time and therefore

infer J . In particular, Figure 4.1 gives such an example where mt−2 = 0 and we can always

recover J with certainty from a sample from Z: whenever we take a step to the left, it must

be that we are at time step J .

Given this discussion, a direct approach to proving Eq. (4.2.1) appears to bound

I(Z : J) ≥ log min

t1−ε,
δm

1−2/t
t

mt−2


 . (4.2.2)
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Unfortunately, this approach does not seem to work as we demonstrate with an example

in the full version of this paper. The problem here appears to be that we fix a single

distribution Z to explore the two cases of Eq. (4.2.1). In our final approach, we pick different

distributions depending on the case we would like to prove. Namely, if I(J : Z) ≥ (1− ε) log t,

then carrying out the calculations in Eq. (4.1.10) through (4.1.13) with the assumption

I(J : Z) ≥ (1−ε) log t, we prove the first case, namelymt+2 ≥ t1−εm
1+2/t
t using the distribution

given by Z. If I(J : Z) < (1− ε) log t on the other hand, we demonstrate two new random

variables W,Y which are distributed respectively on length t+2 and length t−2 walks so that

D(W ‖F t+2) + D(Y ‖F t−2) ≤ −2 logSt(µ, ν) − log δ, which implies that mt−2mt+2 ≥ δm2
t .

While W and Y are constructed by modifying X in suitable ways, which is how Z was

constructed also, we do so with the hindsight of having inspected what causes I(J : Z) to

be smaller than (1− ε) log t. It is precisely this adaptivity which enables this approach to

overcome the difficulties encountered by the one suggested in Eq. (4.2.2).

If I(J : Z) ≥ (1− ε) log t, by plugging this into Eq. (4.1.12) and carrying out the following

calculations, we get mt+2 ≥ t1−ε · m1+2/t
t . Therefore it remains to show there exists a

δ > 0 such that assuming I(J : Z) < (1 − ε) log t, we have mt+2mt−2 ≥ δm2
t . To do so, we

will demonstrate random variables W and Y supported on walks that start from r ∈ Ω◦
and return to r after spending respectively t + 2 and t − 2 time steps in Ω such that

D(W ‖F t+2) + D(Y ‖F t−2) ≤ −2 logSt(µ, ν) − log δ. Notice that by Lemma 2.2.1 this

indeed implies that mt+2mt−2 ≥ δm2
t . The random variables W and Y will be mixtures of

Θ(t) random walks, in particular, they are not Markovian in general.

For brevity let us set µxi ··= dist(Xi−1 |Xi = x) and νxi ··= dist(Xi+1 |Xi = x). Let U be

the unary encoding of J : a length t bit vector of which only the Jth coordinate is set. First

we would like to understand the contribution of each bit of U to I(Z : J) = I(Z : U). Using
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the chain rule, we write

(1− ε) log t > I(U : Z)

=
t∑
i=1

I(Ui : Z |U<i) (4.2.3)

=
t∑
i=1

t− i+ 1
t

I(Ui : Z |U<i = 0) (4.2.4)

≥
t∑
i=1

t− i+ 1
t

I(Ui : ZiZi+1 |U<i = 0) (4.2.5)

=
t∑
i=1

1
t

E
x∼Xi

D(µxi ‖λiµxi + (1− λi)νxi )

+
t∑
i=1

t− i
t

E
x∼Xi

D(νxi ‖λiµxi + (1− λi)νxi ) (4.2.6)

where we set λi ··= 1/(t−i+1), which is the probability that Ui = 1 |U<i = 0. Here, Eq.(4.2.3)

follows from the chain rule, Eq. (4.2.4) is true because if U<i 6= 0 then Ui = 0 (as U has a

single coordinate that is one) and consequently the mutual information is zero, and Eq. (4.2.5)

is the data processing inequality. Next we lower bound Eq. (4.2.6) by its first term (which

is valid since µxi , νxi are distributions hence the second term of Eq. (4.2.6) is nonnegative),

obtaining

(1− ε) log t > E
i∼J

E
x∼Xi

D(µxi ‖λiµxi + (1− λi)νxi ) . (4.2.7)

To simplify the presentation, here we only provide the proof of Theorem 4.0.4 for ε > 7/8

which demonstrates the ideas in their simplest form. This bound already implies all our

results in complexity theory, with a constant factor loss of no more than 8. The proof for any

ε > 0 can be found in the full version of this paper.

4.2.1 The bound for ε > 7/8

If we condition on the event i ∈ {1, . . . , dt/2e}, this expectation increases by a factor of at

most 2; namely

E
i∼[t/2]

E
x∼Xi

D(µxi ‖λiµxi + (1− λi)νxi ) < 2(1− ε) log t.
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By Markov’s inequality

Pr
i∼[t/2],x∼Xi

[D(µxi ‖λiµxi + (1− λi)νxi ) ≥ 8(1− ε) log t] < 1/4,

so it follows that there is a set T ⊆ [dt/2e] of size at least bt/4c such that if i ∈ T we have

Pr
x∼Xi

[D(µxi ‖λiµxi + (1− λi)νxi ) ≥ 8(1− ε) log t] < 1/2. (4.2.8)

For each i ∈ T let X ′i be the random variable obtained from Xi by conditioning on those

x ∈ supp(Xi) satisfying D(µxi ‖λiµxi + (1− λi)νxi ) < 8(1 − ε) log t. Furthermore, for each

i ∈ T and x ∈ supp(X ′i), we construct distributions πxi : Ω→ R+ to be specified later. Let Pi
be sampled by x ∼ X ′i first and then picking p ∼ πxi .

4.2.2 The distributions W and Y

Let K be an integer sampled uniformly at random from the set T (constructed in the previous

section). For each fixing k of K, the random variables W |K = k and Y |K = k are random

walks (i.e., they are Markovian) constructed as follows. We first pick x, p ∼ X ′kPk. The walk

Y |K = k is generated by concatenating a sample from X−1X0 . . . Xk−1 |Xk−1 = p and an

independent sample from Xk+1 . . . Xt+1 |Xk+1 = p. The walk W is generated by concatenating

a sample from X−1X0 . . . Xk |Xk = x, the path (x, p) and (p, x′) for an independent sample

x′ ∼ (X ′k |Pk = p) and an independent sample from Xk . . . Xt+1 |Xk = x′.

For k ∈ T we define another random walk X̌k = (X̌k
−1, . . . , X̌

k
t+1), only to be used in the

analysis of W and Y . We sample x ∼ X ′k and set X̌k
k = x. We pick the rest of the coordinates

of X̌k according to the distribution X |Xk = x. Note that for any k ∈ T , we have

D(X̌k ‖X) = D(X ′k ‖Xk) ≤ 1

by Eq. (4.2.8) and Lemma 2.3.2 and the fact that both X and X̌k are Markovian.

Lemma 4.2.1. We have

D
(
W |K = k

∥∥∥F t+2
)

+D
(
Y |K = k

∥∥∥F t−2
)

≤ −2 logSt(µ, ν) + 2 + E
x∼X′

k

D(πxk ‖µxk) + E
x∼X′

k

D(πxk ‖ νxk ) .
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Proof. We have

D
(
W |K = k

∥∥∥F t+2
)

= D(X̌k ‖F t) + D(Pk |X ′k ‖Fk+1 |Fk) + D(X ′k |Pk ‖Fk+1 |Fk)

and further

D
(
Y |K = k

∥∥∥F t−2
)

+D(Pk |X ′k ‖Fk+1 |Fk) + D(X ′k |Pk ‖Fk+1 |Fk)

= D(X̌k ‖F t) + E
x∼X′

k

D(πxk ‖µxk) + E
x∼X′

k

D(πxk ‖ νxk ) .

Summing up the two inequalities and substituting D(X̌k ‖X) ≤ 1 we get the result.

At this point, in light of Lemma 4.2.1, we could pick each πxk so that it minimizes

D(πxk ‖µxk)+D(πxk ‖ νxk ): the unique minimizer is given by πxk = √µxkνxk/ 〈
√
µxk,
√
νxk 〉. However

doing so leads to W,Y which diverge from the F walk by more than a constant, and therefore

is not good enough for our needs. To obtain better random variables W and Y , we crucially

use the fact that W is a mixture of Θ(t) random walks. Namely, if we consider the entropy

coming from the I(W :K) term also, a better strategy for picking the distributions πxk
becomes available. By contrast, we do not use the fact that Y is a mixture and, in fact, it can

be replaced by Y |K = k0 where k0 = arg mink D(Y |K = k ‖F t−2), however the averaged

quantity D(Y |K ‖F t−2) is far more convenient to work with.

4.2.3 The contribution of I(K :W )

Similar to Eq. (4.2.7), we would like to understand the contribution of each time step t ∈ T

to I(K :W ). Let V be the unary encoding of K: a length t bit vector of which only the V th

coordinate is set. Using the chain rule for mutual information

I(W : V ) =
∑
i∈T

I(Vi :W |V<i)

≥ E
k∼K

E
x∼X′

k

D(πxk ‖ ηiπxk + (1− ηi)ṽxk) ,

where ηk = 1/ rankT (k) and ṽxk ··= Ej>k:j∈T dist(X̌j
k+1 | X̌

j
k = x). Here rankT (i) denotes the

position of i ∈ T when the elements of T are sorted in decreasing order. By Eq. (4.2.8), and
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the definition of X ′k, we have ṽxk(y) ≤ 2νxk (y) for all y ∈ Ω. Therefore we conclude that

I(W :K) ≥ E
k∼K

E
x∼X′

k

D(πxk ‖ ηkπxk + 2(1− ηk)νxk ) . (4.2.9)

Note in the above divergence expression the reference measure is not a probability distribution,

which our definition permits (cf. Eq. (2.3.1)).

Recall our goal in this section is to upper bound D(W ‖F t+2)+D(Y ‖F t−2)+2 logSt(µ, ν)

by log 1/δ. Let us write

D
(
W
∥∥∥F t+2

)
+D

(
Y
∥∥∥F t−2

)
+ 2 logSt(µ, ν)

≤ D
(
W |K

∥∥∥F t+2
)

+ D
(
Y |K

∥∥∥F t−2
)
− I(K :W ) + 2 logSt(µ, ν)

≤ 2 + E
k∼K,x∼X′

k

D
(
πkx
∥∥∥µkx)+ D

(
πkx
∥∥∥ νkx)− I(K :W )

≤ 2 + E
k∼K,x∼X′

k

E
y∼πx

k

log ηkπ
x
k(y)2 + 2(1− ηk)νxk (y)πxk(y)

µxk(y)νxk (y) , (4.2.10)

where the second inequality follows from Lemma 4.2.1 and the last inequality is obtained

by plugging in Eq. (4.2.9). Note that the function z 7→ z log(az2 + bz) is strictly convex in

R+ whenever ab > 0, therefore for each k, x there is a unique minimizer (πxk)∗ of Eq. (4.2.10),

which can be calculated, say, using Lagrange multipliers. However, instead of the minimizer,

we work with a simple approximation of it. For each k ∈ T and x ∈ supp(X ′k), we let

Ψx
k
··=
{
y ∈ Ω

∣∣∣∣∣ νxk (y) ≥ λk
1− λk

µxk(y)
}
.

By definition of X ′k, we have D(µxi ‖λiµxi + (1− λi)νxi ) < 8(1− ε) log t. Let γ = 1− 8(1− ε),

which is positive by our assumption ε > 7/8. By Markov’s inequality, and the fact that

λk ≤ 2/t, we get

µxk(Ψx
k) ≥ γ

for large enough t. Let πxk be µxk |Ψx
k, namely we have πxk(y) = µxk(y)/µxk(Ψx

k) if y ∈ Ψx
k, and

πxk(y) = 0 otherwise. Continuing from Eq. (4.2.10), we have

≤ 2 + E
k∼K,x∼X′

k

E
y∼πx

k

log ηkπ
x
k(y)2 + 2(1− ηk)νxk (y)πxk(y)

µxk(y)νxk (y)

≤ 2 + E
k∼K

log
(
ηk(1− λk)
λkγ2 + 2

γ

)
, (4.2.11)
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where the second inequality is true by definition of Ψx
k and πxk . Now we argue that the

expectation term in Eq. (4.2.11) is maximized when T is the set containing the smallest |T |

elements of [dt/2e]. To see this suppose there is an i /∈ T which is smaller than the maximum

element of T . Let j be the smallest item in T which is greater than i. We see that the

expectation term increases if we replace T by T \ {j} ∪ {i} as log
(
C(1−λk)
λkγ2 + 2

γ

)
is decreasing

in k and the ranks do not change after swapping j with i. Therefore,

D
(
W
∥∥∥F t+2

)
+D

(
Y
∥∥∥F t−2

)
+ 2 logSt(µ, ν)

≤ 2 + log
 |T |∏
i=1

t/2 + 3i
iγ2

1/|T |

= log 12
γ2 + log

 |T |∏
i=1

t/6 + i

i

1/|T |

≤ log 12
γ2 + log

(
2|T |
|T |

)1/|T |

(4.2.12)

≤ log 48
γ2 , (4.2.13)

where the
(

2|T |
|T |

)
is the middle binomial coefficient, in the second inequality we use the fact

|T | > t/6, and the last inequality is true as
(

2n
n

)
< 22n. Therefore it is enough to choose

ε > 7/8 and δ ≤ (1−8(1−ε))2

48 = 4
3(ε− 7/8)2. We have established the following.

Theorem 4.0.4 (restated). For any ε > 7/8 there is a δ > 0 such that mt+2 ≥ t1−εm
1+2/t
t

unless mt+2mt−2 ≥ δm2
t .

4.3 Chapter notes

The results of this chapter were obtained in our FOCS 2018 paper [79].
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Chapter 5

THE K-HAMMING DISTANCE PROBLEM

In this section we study the k-Hamming distance problem in communication complexity

and it’s incarnations in related computation models.

5.1 Communication complexity

In a two player communication problem the players, named Alice and Bob, receive separate

inputs, respectively x ∈ X and y ∈ Y , and they communicate in order to compute the value

f(x, y) of a function f : X × Y → {0, 1} (known to both players). In an r-round protocol,

the players can take at most r turns alternately sending each other a message (that is, a bit

string) and the last player to receive a message declares the output of the protocol. A protocol

can be deterministic or randomized; in the latter case the players can base their actions on

a common random source and we measure the error probability: the maximum over inputs

(x, y) ∈ X × Y, of the probability that the output of the protocol differs from f(x, y). The

communication cost of a protocol is the maximum, over the inputs and the random string,

of the total number of bits sent between the players. For a function f : X × Y → {0, 1}, an

integer r and δ ∈ [0, 1], we denote by Rr
δ(f) the minimum over all protocols for f having

r-rounds and error probability at most δ, of the communication cost incurred. We define

Rδ(f) similarly, but we take the maximum over δ-error protocols with no restriction on the

number of rounds it uses.

In the k-Hamming distance problem, denoted Hamn
k , the players receive length-n bit

strings, respectively x, y ∈ {0, 1}n, and are required determine if ‖x− y‖1 ≤ k or not.

There is a well known one-round communication protocol which accomplishes this with error

probability δ by communicating O(k log (k/δ)) bits.
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Theorem 5.1.1 (e.g., Huang, Shi, Zhang and Zhu [46]). It holds that

R1
δ(Hamn

k) = O(min {k log (k/δ) , k log(n/k)}).

Highly related to the Hamn
k is the k-disjointness problem Disjnk , wherein the players each

receive a k-subset of [n] and their goal is to determine if their sets intersect. Notice that Disjnk
can be seen as a promise version of Hamn

2k−2 where each player is guaranteed to have a string

with Hamming weight k: the sets are disjoint if and only if the Hamming distance between

the characteristic vectors of the sets is more than 2k − 2. Therefore any upper bound for the

Hamn
k carries over to Disjnk and any lower bound for Disjnk carries over to Hamn

k . Around 1993,

H̊astad and Wigderson [48] showed that there is a more efficient protocol for Disjnk than that

implied by Theorem 5.1.1, which communicates only O(k) bits, but over O(log k) rounds.

On the lower bounds side, the result of [55] implies that Ω(k) bits is needed for these

problems even if one uses arbitrarily large number of round protocols. In [23] it was shown

that any 1-round protocol for Disjnk needs to communicate at least Ω(k log k) bits when k2 < n

(this result was proven later in [?] also). In Theorem 3.2 of [78], an Ω(k log(1/δ)) bound for

1-round complexity of Disjnk was shown even when Bob receives just one element (i.e., the

indexing problem) for k < δn and a slightly more general result was shown in [53]. Finally,

in [80] the communication complexity of Disjnk was settled as presented in Chapter 5 of this

thesis.

Rr
1/3(Disjnk) = Θ(k log(r) k)

for 1 ≤ r ≤ log∗ k and k2 < n. Their upper bound solves the disjointness problem with error

probability at most 1/ exp k+1/ exp(r)(c log(r) k) for any c > 1 by communicating O(k log(r) k)

bits over r rounds. In fact bulk of the bits is sent in the first round and the rest of the rounds

amount to an O(k) bits of communication. Taking r = log∗ k, this leads to an O(k) bits

protocol with error probability that is exponentially small in k. Their lower bound shows that

at least one message of size Ω(k log(r) k) bits needs to be sent by any r-round protocol, even

if it has error probability 1/3. Prior to this work, this lower bound provided the strongest
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Problem Upper bound Rounds Error Lower bound Reference

Hamn
k

O(k log(k/δ)) 1 δ Folklore, [46]
ap

pl
. y any δ Ω(k log(1/δ)) [14]

any δ Ω(k log(k/δ)) This work

Disjnk

O(k log(k/δ)) 1 δ

ap
pl

ie
s

x

Folklore

O(k) O(log k) 1/3 [48]

O(k log(r) k) r 1/ exp(r)
(
c log(r) k

)
[80]

O(k) log∗ k 1/ exp k [80]

r 1/3 Ω(k log(r) k) [80]

1 1/3 Ω(k log k) [23, ?]

1 δ Ω(k log(1/δ)) [78, 53]

any 1/3 Ω(k) [55]

Table 5.1: Known bounds for Hamn
k and Disjnk . Each upper bound for Hamn

k applies to Disjnk
and each lower bound for Disjnk applies to Hamn

k .

lower bound for Hamn
k also, along with the incomparable bound of Ω(k log(1/δ)) due to [14]

which holds for any number of rounds, which we discuss shortly.

To summarize the above results, the 1-round communication complexity of both Disjnk
and Hamn

k is Θ(k log(k/δ)) by [23, 78, 53] and [46]. We know that Disjnk can be solved much

more efficiently if one is allowed multiple rounds: firstly the log k factor can be removed

[48] and secondly the error probability can be brought down to exp(−k), by using no more

than log∗ k rounds [80]. It is an interesting question whether similar efficiency improvements

can be obtained for Hamn
k also, by using multiple rounds. The first separation of Disjnk and

Hamn
k was proven in [14], which shows that Ω(k log(1/δ)) lower bound holds for any protocol
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solving Hamn
k . Therefore in Hamn

k , we get no improvements in error probability by interactive

communication. It remained an open question whether any improvement can be made at all

to the 1-round protocol by communicating interactively. In this work we answer this question

negatively:

Theorem 4.0.8 (restated). For k2 < δn we have Rδ(Hamn
k) = Ω(k log(k/δ)). The bound ap-

plies even to protocols that may output an arbitrary answer when ‖x− y‖1 /∈ {k − 2, k, k + 2}.

Before we proceed with proving Theorem 4.0.8, let us first warm up by showing that

Theorem 4.0.3 implies an Ω(k log(1/δ)) lower bound on Rδ(Hamn
k). To do so, let us review

the so called corruption bound method. Let f : X × Y → {0, 1} be the function the players

would like to compute with Alice having received x ∈ X and Bob y ∈ Y. For a protocol

P for f , define the matrix AP : X × Y → [0, 1] such that AP (x, y) is the probability that

the protocol outputs 1 on input (x, y). It is well known and not difficult to see that if P

has communication cost c, then AP is the average of matrices each of which is the sum of

at most 2c rank 1 matrices uvᵀ with u ∈ {0, 1}X and v ∈ {0, 1}Y . Therefore to show the

communication cost of a protocol P is more than c, it suffices to argue AP lies outside 2c

times the polytope

T ··= conv
{
uvᵀ | u ∈ {0, 1}X , v ∈ {0, 1}Y

}
,

where conv denotes the convex hull. By convexity, Ap lies outside of 2cT if and only if there

is a hyperplane (with normal H) separating the two; namely that 〈AP , H〉 > 2c 〈R,H〉 for all

vertices R of the polytope T .

Let µk : {0, 1}n × {0, 1}n → R+ be the distribution on pairs (x, y) obtained as follows.

Sample x uniformly at random and obtain y by flipping k coordinates of x chosen uniformly

at random and with replacement (here if a coordinate gets flipped twice it reverts back to its

initial value).

Theorem 4.0.7 (restated). For k2 < δn we have Rδ(Hamn
k) = Ω(k log(1/δ)). The bound

applies even to protocols that may output an arbitrary answer when ‖x− y‖1 /∈ {k, k + 2}.
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Proof. Suppose we have a randomized protocol for Hamn
k with error probability δ. Form the

matrix A, where A(x, y) is the probability that the protocol reports ‖x− y‖1 ≤ k on input

(x, y).

Set H = µk−µk+2/(3δ). Let us first argue that 〈A,H〉 ≥ 1/3. Note that when we sample

k elements from [n] uniformly at random, by a union bound, the probability that there is a

collision is at most
(
k
2

)
/n, therefore µk chooses a pair (x, y) at distance k with probability

at least 1−
(
k
2

)
/n. Hence, 〈A, µk〉 ≥ (1− δ)(1−

(
k
2

)
/n) > 1− 3δ/2, where in the last step

we used k2 < δn. Similarly, we have 〈A, µk+2〉 ≤ δ +
(
k+2

2

)
/n ≤ 3δ/2, thus it follows that

〈A,H〉 ≥ 1/3 for δ ≤ 1/9.

Next we argue that 〈R,H〉 < (3δ)k/2 for any R = uvᵀ with u, v ∈ {0, 1}n. If 〈R, µk〉 <

(3δ)k/2, we are done as 〈R, µk+2〉 ≥ 0 and is a negative term in 〈R,H〉. If 〈R, µk〉 ≥ (3δ)k/2

on the other hand, observing 〈R, µk〉 =
〈
v,W ku

〉
/2n, where W is the normalized adjacency

matrix of the Hamming cube, we have by Theorem 4.0.3(
‖u‖2 ‖v‖2

2n

)2/k 〈
v,W k+2u

〉
≥
〈
v,W ku

〉1+2/k
.

Note ‖u‖2 ‖v‖2 ≤ 2n since u, v are 0-1 vectors, therefore 〈R, µk+2〉 ≥ 3δ 〈R, µk〉 and hence

〈R,H〉 ≤ 0. In either case we have shown that 〈R,H〉 < (3δ)k/2. This implies an

log((3δ)−k/2/3) = Ω(k log(1/δ)) bits lower bound on Rδ(Hamn
k).

Interestingly, Theorem 4.0.8 cannot be proved by a direct application of the corruption

method described above. If we assume that the protocol is supposed to output 1 on inputs

‖x− y‖1 ≤ k, then there are vertices of the polytope T for which the Ω(k log(1/δ)) bound

of Theorem 4.0.7 is tight. If we assume that the protocol is supposed to output 1 on

inputs ‖x− y‖1 > k on the other hand, no bound above Ω(k) can be obtained, as there

are vertices for which this is tight. If we insist however that the protocol outputs 1 for

‖x− y‖1 = k and 0 for ‖x− y‖1 ∈ {k − 2, k + 2} then a protocol with cost smaller than

O(k log(k/δ)) would be in violation of the near log-convexity principle we established in

Theorem 4.0.4 as we argue next. Of course, if we had a δ-error randomized protocol P for

Hamn+2
k outputting 1 when ‖x− y‖1 ∈ {k − 2, k} and 0 if ‖x− y‖1 = k + 2 (but without
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any guarantees for other types of inputs), then given inputs a, b ∈ {0, 1}n Alice and Bob can

run P (say, in parallel) on instances (00a, 00b) and (00a, 11b) and declare ‖a− b‖1 = k if P

returns 1 on (00a, 00b) and 0 on (00a, 11b). This would lead to a protocol with twice the error

probability and communication cost of P , deciding between ‖a− b‖1 = k, ‖a− b‖1 = k − 2

and ‖a− b‖1 = k + 2. The table below shows that P outputting 1 on (00a, 00b) and 0 on

(00a, 11b) implies ‖a− b‖1 = k or at least one invocation of P erred.

Input k − 2 k k + 2

(00a, 00b) 1 1 0

(00a, 11b) 1 0 ?

Proof of Theorem 4.0.8. Suppose we have a δ-error randomized protocol that outputs 1 when

‖x− y‖1 = k and 0 when ‖x− y‖1 = k − 2 or ‖x− y‖1 = k + 2.

Form the matrix A, where A(x, y) is the probability that the protocol reports that

‖x− y‖1 = k on input (x, y). Let α1, α2 > 0 be some reals so that Theorem 4.0.4 implies

mt+2 ≥ tα1m1+2/t or mt+2mt−2 ≥ α2mt
2 for mt defined in statement of this theorem.

Set H = µk−(µk−2 +µk+2)/(6δ). Let us argue first that 〈A,H〉 ≥ 1/3. One can verify that

〈A, µk〉 ≥ (1− δ)(1−
(
k
2

)
/n) > 1− 3δ/2 and 〈A, µk−2〉+ 〈A, µk−2〉 < 3δ. Hence 〈A,H〉 ≥ 1/3

for δ ≤ 1/9.

We upper bound 〈R,H〉 for some rank-1 matrix R = uvᵀ with 0-1 values. Let W be

the normalized adjacency matrix of the Hamming cube graph. Observe that 〈R, µk〉 =〈
v,W ku

〉
/2n. By Theorem 4.0.4, either 〈R, µk+2〉 〈R, µk−2〉 ≥ α2 〈R, µk〉2 or

(
‖u‖2 ‖v‖2

2n

)2/k

〈R, µk+2〉 ≥ kα1 〈R, µk〉1+2/k .

In the former case,

〈R, µk+2〉+ 〈R, µk−2〉
2 ≥

√
〈R, µk+2〉 〈R, µk−2〉 ≥

√
α2 〈R, µk〉 ,

which implies that 〈R,H〉 < 0 whenever δ < 2√α2/6 (recall α2 is a constant). In the latter

case we get 〈R,H〉 < 0 unless 6δ 〈R, µk+2〉 ≤ 〈R, µk〉, which implies, recalling ‖v‖2 ‖u‖2 ≤ 2n,
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that kα1 〈R, µk〉2/k < 6δ. From this we get

〈R,H〉 ≤ 〈R, µk〉 ≤
(

6δ
kα1

)k/2
,

and hence 〈R,H〉 <
(

6δ
kα1

)k/2
in every case and Rδ(Hamn

k) = Ω(k log(k/δ)) whenever k2 <

δn.

For a protocol P , denote by Π = Π(x, y) the random variable entailing all the messages

communicated between the players on input (x, y). So far we have considered the com-

munication cost of a protocol which is the maximum length of Π over all inputs and the

configurations of the random source (these together determine the value of Π). When a

distribution µ on the inputs is available, we may speak of a more refined notion of cost, the

internal information cost, for a protocol P which is defined as

ICµ(P ) ··= I(Π : Y |X) + I(Π :X |Y ) ,

where (X, Y ) ∼ µ. Combining our Theorem 4.0.8 with a result of [57] which relates information

and communication costs of a protocol under suitable circumstances, one can conclude that any

randomized protocol for Hamn
k has information cost Ω(k log k) as well, under the distribution

µ = (µk + µk−2 + µk+2)/3. However we note that instead of using Theorem 4.0.4 black-box,

taking a closer look at the proof of Theorem 4.0.3 and not performing the relaxation provided

in Lemma 4.1.6, we get the following more directly.

Theorem 5.1.2. Let P be a protocol outputting 1 on pairs (x, y) having ‖x− y‖1 = k with

probability 1 − δ and outputting 0 on pairs (x, y) having ‖x− y‖1 ∈ {k − 2, k + 2} with

probability 1− δ. We have ICµk(P ) = Ω(k log(k/δ)).

Let us finally mention another highly related problem, the so called the gap Hamming

distance problem. In GHDn
k , each of the players receive a bit string, respectively x, y ∈ {0, 1}n,

with the promise that either ‖x− y‖1 ≤ k or ‖x− y‖1 ≥ k +
√
k. Their goal is to determine

which is the case for any given input. In [24], an Ω(k) lower bound for this problem was shown,
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which applies to protocols with any number of rounds. Here we conjecture an improvement

to this bound and argue that it would follow from a natural analogue of Theorem 4.0.4 for

continuous time Markov chains, which we discuss in Section 5.7.

Conjecture 5.1.3. For k < δn, we have Rδ(GHDn
k) = Ω(k log(1/δ)).

5.2 Parity decision trees

In the parity decision tree model, we are given a string x ∈ Fn2 and our goal is to determine

whether x satisfies a fixed predicate P : Fn2 → {0, 1} by only making linear measurements of

the form 〈x, y〉 for some y ∈ Fn2 we get to choose. Here, the inner product is over Fn2 , and

therefore we get a single bit answer for every measurement we make.

Such measurements can be identified by binary decision trees wherein each internal node

is labeled by a y ∈ Fn2 denoting the linear measurement 〈x, y〉 we would make at that node

and each leaf is labeled by a YES or a NO denoting the final decision we arrive. Given such

a tree and an x, the output of the decision tree is obtained by a root to leaf walk, where at

each internal node v with label yv, we perform the measurement 〈x, yv〉 and walk to the left

child of v if 〈x, yv〉 = 0 and to its right child if 〈x, yv〉 = 1. If a leaf node is reached, the label

of the node is taken as the answer of the decision tree. Two quantities we are concerned with

are the depth and the size (i.e., the total number of nodes) of the tree.

A δ-error randomized decision tree is a distribution ν over decision trees such that for any

fixed x, the sampled decision tree outputs the correct answer with probability at least 1− δ,

where the randomness is over the choice of the decision tree from ν. The depth and the size

of a randomized decision tree can be taken as the maximum over the decision trees in the

support of ν (here, one can also take the average depth or size also; our result on decision

tree size actually lower bounds this potentially smaller quantity).

For a predicate P : Fn2 → {0, 1}, let PDδ(P ) be the minimum, over all randomized decision

trees T computing P with probability 1− δ, of the depth of T . Let PSδ(P ) be the minimum,

over all randomized decision trees T computing P with probability 1− δ, of the size of T .
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The following inequalities are immediate

Rδ(P ◦ ⊕) ≤ 2PDδ(P ), (5.2.1)

log PSδ(P ) ≤ PDδ(P ),

where P ◦⊕ is the two player communication game in which the two players are given strings

x, y ∈ Fn2 and are required to calculate P (x+ y). We remark that log PSδ is incomparable to

Rδ in general.

Here we study the predicate Hn
k which equals 1 if and only if the Hamming weight of

its input is precisely k. By Eq. (5.5.1) and a padding argument similar to the one we gave

before the proof of Theorem 4.0.8, each lower bound for Hamn
k listed in Table 5.1 applies

to PDδ(Hn
k ) as well. In [16] another direct Ω(k) bound for PDδ(Hn

k ) was shown. In [12],

showing an Ω(k log k) lower bound to a variant of PDδ(Hn
k ) to obtain tight bounds for

k-linearity problem (see Section 5.6) was suggested. Finally, our Theorem 4.0.8 shows that

PDδ(Hn
k ) = Ω(k log(k/δ)), which is tight. Next we show the same bound holds even for

log PSδ(Hn
k ).

Theorem 4.0.9 (restated). For k2 < δn, log PSδ(Hn
k ) = Ω(k log(k/δ)).

Proof. The proof is very similar to that of Theorem 4.0.8, so we only describe the differences.

Let T be a δ-error randomized parity decision tree computing Hn
k . Form A : Fn2 → [0, 1]

so that A(x) is the probability T outputs 1 on input x ∈ Fn2 . Define the polytope

P ··= conv
{
x 7→ 1[Bx = c] | B ∈ Fn×n2 , c ∈ Fn2

}

whose vertices are indicator functions for affine subspaces of Fn2 . Given a randomized parity

decision tree, for each fixing of the randomness, the set of inputs that end up in a particular

leaf of it is an affine subspace in Fn2 . Therefore if T has at most s leaves, then A is inside sP .

It remains to demonstrate a hyperplane with normal H so that 〈A,H〉 > s 〈V,H〉 for any

vertex V of the polytope P for s = exp Ω(k log(k/δ)).
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Let µk be a distribution on Fn2 obtained as follows. Start with the 0 vector, and flip a

coordinate chosen uniformly at random with replacement k times. Here, flipping a coordinate

an even number of times leaves it as 0. Set H = µk − (µk−2 + µk+2)/(6δ).

First observe that 〈A, µk〉 > (1− δ)(1−
(
k
2

)
/n) > 1− 3δ/2 and 〈A, µk+2〉+ 〈A, µk−2〉 < 3δ

so 〈A,H〉 ≥ 1/3 for δ ≤ 1/9. Next we would like to upper bound 〈V,H〉 for an indicator

function V of an affine subspace {x ∈ Fn2 | Bx = c}. The key observation is

〈V, µk〉 =
〈
1c, S

k
10
〉

(5.2.2)

where S is a stochastic matrix describing the following transition: For any x ∈ Fn2 , sample a

column y of B ∈ Fn×n2 uniformly at random and transition to x+ y. Namely, the right hand

side of Eq. (5.5.2) describes the following probability. We start with the 0 vector in Fn2 and

in each time step sample a uniform random column y of B and add y to the current state.

We measure the probability of reaching c ∈ Fn2 at time step k. Having observed Eq. (5.5.2),

and that ‖10‖2 = ‖1c‖2 = 1, the rest of the proof is identical to that of Theorem 4.0.8: by

Theorem 4.0.4, we either have

〈
1c, S

k+2
10
〉 〈

1c, S
k−2

10
〉
≥ α2

〈
1c, S

k
10
〉2

or

〈
1c, S

k+2
10
〉
≥ kα1

〈
1c, S

k
10
〉1+2/k

.

In either event, we conclude that 〈V,H〉 ≤
(

6δ
kα1

)k/2
. This completes the proof.

Note in Theorem 4.0.8, we use Theorem 4.0.4 with a simple and fixed S (i.e., the standard

random walk on the Hamming cube), but with complicated vectors u, v that come from the

particular communication protocol whose communication cost we would like to lower bound.

By contrast, in Theorem 4.0.9 the vectors u, v are simple point masses on states 0 and c

but the matrix S is a convolution random walk on the Hamming cube that comes from the

particular decision tree whose size we lower bound.
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5.3 Property testing

In the property testing model, given black box access to an otherwise unknown function

f : Fn2 → F2, our goal is to tell apart whether x ∈ P for some fixed set of functions P or

‖f − g‖1 ≥ ε2n for any g ∈ P . Here, the black box queries are done by providing an input

x ∈ Fn2 to the function and observing f(x).

A function f : Fn2 → F2 is called k-linear if f is given by

f(x) =
∑
i∈S

xi

for some S ⊆ [n] of size at most k. By combining our communication complexity lower

bound Theorem 4.0.8 with the reduction technique developed in [15] or by combining our

parity decision tree lower bound Theorem 4.0.9 with a reduction given in [12], one obtains

the following.

Corollary 4.0.10 (restated). Any δ-error property testing algorithm for k-linearity with

ε = 1/2 requires Ω(k log(k/δ)) queries.

In fact through this, one obtains similar lower bounds to property testing for k-juntas,

k-term DNFs, size-k formulas, size-k decision trees, k-sparse F2-polynomials; see [13, 26].
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5.4 The lower bound for Hamn
k

Theorem 4.0.8 (restated). For k2 < δn we have Rδ(Hamn
k) = Ω(k log(k/δ)). The bound ap-

plies even to protocols that may output an arbitrary answer when ‖x− y‖1 /∈ {k − 2, k, k + 2}.

Before we proceed with proving Theorem 4.0.8, let us first warm up by showing that

Theorem 4.0.3 implies an Ω(k log(1/δ)) lower bound on Rδ(Hamn
k). To do so, let us review

the so called corruption bound method. Let f : X × Y → {0, 1} be the function the players

would like to compute with Alice having received x ∈ X and Bob y ∈ Y. For a protocol

P for f , define the matrix AP : X × Y → [0, 1] such that AP (x, y) is the probability that

the protocol outputs 1 on input (x, y). It is well known and not difficult to see that if P

has communication cost c, then AP is the average of matrices each of which is the sum of

at most 2c rank 1 matrices uvᵀ with u ∈ {0, 1}X and v ∈ {0, 1}Y . Therefore to show the

communication cost of a protocol P is more than c, it suffices to argue AP lies outside 2c

times the polytope

T ··= conv
{
uvᵀ | u ∈ {0, 1}X , v ∈ {0, 1}Y

}
,

where conv denotes the convex hull. By convexity, Ap lies outside of 2cT if and only if there

is a hyperplane (with normal H) separating the two; namely that 〈AP , H〉 > 2c 〈R,H〉 for all

vertices R of the polytope T .

Let µk : {0, 1}n × {0, 1}n → R+ be the distribution on pairs (x, y) obtained as follows.

Sample x uniformly at random and obtain y by flipping k coordinates of x chosen uniformly

at random and with replacement (here if a coordinate gets flipped twice it reverts back to its

initial value).

Theorem 4.0.7 (restated). For k2 < δn we have Rδ(Hamn
k) = Ω(k log(1/δ)). The bound

applies even to protocols that may output an arbitrary answer when ‖x− y‖1 /∈ {k, k + 2}.

Proof. Suppose we have a randomized protocol for Hamn
k with error probability δ. Form the

matrix A, where A(x, y) is the probability that the protocol reports ‖x− y‖1 ≤ k on input

(x, y).
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Set H = µk−µk+2/(3δ). Let us first argue that 〈A,H〉 ≥ 1/3. Note that when we sample

k elements from [n] uniformly at random, by a union bound, the probability that there is a

collision is at most
(
k
2

)
/n, therefore µk chooses a pair (x, y) at distance k with probability

at least 1−
(
k
2

)
/n. Hence, 〈A, µk〉 ≥ (1− δ)(1−

(
k
2

)
/n) > 1− 3δ/2, where in the last step

we used k2 < δn. Similarly, we have 〈A, µk+2〉 ≤ δ +
(
k+2

2

)
/n ≤ 3δ/2, thus it follows that

〈A,H〉 ≥ 1/3 for δ ≤ 1/9.

Next we argue that 〈R,H〉 < (3δ)k/2 for any R = uvᵀ with u, v ∈ {0, 1}n. If 〈R, µk〉 <

(3δ)k/2, we are done as 〈R, µk+2〉 ≥ 0 and is a negative term in 〈R,H〉. If 〈R, µk〉 ≥ (3δ)k/2

on the other hand, observing 〈R, µk〉 =
〈
v,W ku

〉
/2n, where W is the normalized adjacency

matrix of the Hamming cube, we have by Theorem 4.0.3(
‖u‖2 ‖v‖2

2n

)2/k 〈
v,W k+2u

〉
≥
〈
v,W ku

〉1+2/k
.

Note ‖u‖2 ‖v‖2 ≤ 2n since u, v are 0-1 vectors, therefore 〈R, µk+2〉 ≥ 3δ 〈R, µk〉 and hence

〈R,H〉 ≤ 0. In either case we have shown that 〈R,H〉 < (3δ)k/2. This implies an

log((3δ)−k/2/3) = Ω(k log(1/δ)) bits lower bound on Rδ(Hamn
k).

Interestingly, Theorem 4.0.8 cannot be proved by a direct application of the corruption

method described above. If we assume that the protocol is supposed to output 1 on inputs

‖x− y‖1 ≤ k, then there are vertices of the polytope T for which the Ω(k log(1/δ)) bound

of Theorem 4.0.7 is tight. If we assume that the protocol is supposed to output 1 on

inputs ‖x− y‖1 > k on the other hand, no bound above Ω(k) can be obtained, as there

are vertices for which this is tight. If we insist however that the protocol outputs 1 for

‖x− y‖1 = k and 0 for ‖x− y‖1 ∈ {k − 2, k + 2} then a protocol with cost smaller than

O(k log(k/δ)) would be in violation of the near log-convexity principle we established in

Theorem 4.0.4 as we argue next. Of course, if we had a δ-error randomized protocol P for

Hamn+2
k outputting 1 when ‖x− y‖1 ∈ {k − 2, k} and 0 if ‖x− y‖1 = k + 2 (but without

any guarantees for other types of inputs), then given inputs a, b ∈ {0, 1}n Alice and Bob can

run P (say, in parallel) on instances (00a, 00b) and (00a, 11b) and declare ‖a− b‖1 = k if P

returns 1 on (00a, 00b) and 0 on (00a, 11b). This would lead to a protocol with twice the error
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probability and communication cost of P , deciding between ‖a− b‖1 = k, ‖a− b‖1 = k − 2

and ‖a− b‖1 = k + 2. The table below shows that P outputting 1 on (00a, 00b) and 0 on

(00a, 11b) implies ‖a− b‖1 = k or at least one invocation of P erred.

Input k − 2 k k + 2

(00a, 00b) 1 1 0

(00a, 11b) 1 0 ?

Proof of Theorem 4.0.8. Suppose we have a δ-error randomized protocol that outputs 1 when

‖x− y‖1 = k and 0 when ‖x− y‖1 = k − 2 or ‖x− y‖1 = k + 2.

Form the matrix A, where A(x, y) is the probability that the protocol reports that

‖x− y‖1 = k on input (x, y). Let α1, α2 > 0 be some reals so that Theorem 4.0.4 implies

mt+2 ≥ tα1m1+2/t or mt+2mt−2 ≥ α2mt
2 for mt defined in statement of this theorem.

Set H = µk−(µk−2 +µk+2)/(6δ). Let us argue first that 〈A,H〉 ≥ 1/3. One can verify that

〈A, µk〉 ≥ (1− δ)(1−
(
k
2

)
/n) > 1− 3δ/2 and 〈A, µk−2〉+ 〈A, µk−2〉 < 3δ. Hence 〈A,H〉 ≥ 1/3

for δ ≤ 1/9.

We upper bound 〈R,H〉 for some rank-1 matrix R = uvᵀ with 0-1 values. Let W be

the normalized adjacency matrix of the Hamming cube graph. Observe that 〈R, µk〉 =〈
v,W ku

〉
/2n. By Theorem 4.0.4, either 〈R, µk+2〉 〈R, µk−2〉 ≥ α2 〈R, µk〉2 or

(
‖u‖2 ‖v‖2

2n

)2/k

〈R, µk+2〉 ≥ kα1 〈R, µk〉1+2/k .

In the former case,

〈R, µk+2〉+ 〈R, µk−2〉
2 ≥

√
〈R, µk+2〉 〈R, µk−2〉 ≥

√
α2 〈R, µk〉 ,

which implies that 〈R,H〉 < 0 whenever δ < 2√α2/6 (recall α2 is a constant). In the latter

case we get 〈R,H〉 < 0 unless 6δ 〈R, µk+2〉 ≤ 〈R, µk〉, which implies, recalling ‖v‖2 ‖u‖2 ≤ 2n,

that kα1 〈R, µk〉2/k < 6δ. From this we get

〈R,H〉 ≤ 〈R, µk〉 ≤
(

6δ
kα1

)k/2
,
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and hence 〈R,H〉 <
(

6δ
kα1

)k/2
in every case and Rδ(Hamn

k) = Ω(k log(k/δ)) whenever k2 <

δn.

For a protocol P , denote by Π = Π(x, y) the random variable entailing all the messages

communicated between the players on input (x, y). So far we have considered the com-

munication cost of a protocol which is the maximum length of Π over all inputs and the

configurations of the random source (these together determine the value of Π). When a

distribution µ on the inputs is available, we may speak of a more refined notion of cost, the

internal information cost, for a protocol P which is defined as

ICµ(P ) ··= I(Π : Y |X) + I(Π :X |Y ) ,

where (X, Y ) ∼ µ. Combining our Theorem 4.0.8 with a result of [57] which relates information

and communication costs of a protocol under suitable circumstances, one can conclude that any

randomized protocol for Hamn
k has information cost Ω(k log k) as well, under the distribution

µ = (µk + µk−2 + µk+2)/3. However we note that instead of using Theorem 4.0.4 black-box,

taking a closer look at the proof of Theorem 4.0.3 and not performing the relaxation provided

in Lemma 4.1.6, we get the following more directly.

Theorem 5.4.1. Let P be a protocol outputting 1 on pairs (x, y) having ‖x− y‖1 = k with

probability 1 − δ and outputting 0 on pairs (x, y) having ‖x− y‖1 ∈ {k − 2, k + 2} with

probability 1− δ. We have ICµk(P ) = Ω(k log(k/δ)).

Let us finally mention another highly related problem, the so called the gap Hamming

distance problem. In GHDn
k , each of the players receive a bit string, respectively x, y ∈ {0, 1}n,

with the promise that either ‖x− y‖1 ≤ k or ‖x− y‖1 ≥ k +
√
k. Their goal is to determine

which is the case for any given input. In [24], an Ω(k) lower bound for this problem was shown,

which applies to protocols with any number of rounds. Here we conjecture an improvement

to this bound and argue that it would follow from a natural analogue of Theorem 4.0.4 for

continuous time Markov chains, which we discuss in Section 5.7.

Conjecture 5.4.2. For k < δn, we have Rδ(GHDn
k) = Ω(k log(1/δ)).
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5.5 Parity decision trees

In the parity decision tree model, we are given a string x ∈ Fn2 and our goal is to determine

whether x satisfies a fixed predicate P : Fn2 → {0, 1} by only making linear measurements of

the form 〈x, y〉 for some y ∈ Fn2 we get to choose. Here, the inner product is over Fn2 , and

therefore we get a single bit answer for every measurement we make.

Such measurements can be identified by binary decision trees wherein each internal node

is labeled by a y ∈ Fn2 denoting the linear measurement 〈x, y〉 we would make at that node

and each leaf is labeled by a YES or a NO denoting the final decision we arrive. Given such

a tree and an x, the output of the decision tree is obtained by a root to leaf walk, where at

each internal node v with label yv, we perform the measurement 〈x, yv〉 and walk to the left

child of v if 〈x, yv〉 = 0 and to its right child if 〈x, yv〉 = 1. If a leaf node is reached, the label

of the node is taken as the answer of the decision tree. Two quantities we are concerned with

are the depth and the size (i.e., the total number of nodes) of the tree.

A δ-error randomized decision tree is a distribution ν over decision trees such that for any

fixed x, the sampled decision tree outputs the correct answer with probability at least 1− δ,

where the randomness is over the choice of the decision tree from ν. The depth and the size

of a randomized decision tree can be taken as the maximum over the decision trees in the

support of ν (here, one can also take the average depth or size also; our result on decision

tree size actually lower bounds this potentially smaller quantity).

For a predicate P : Fn2 → {0, 1}, let PDδ(P ) be the minimum, over all randomized decision

trees T computing P with probability 1− δ, of the depth of T . Let PSδ(P ) be the minimum,

over all randomized decision trees T computing P with probability 1− δ, of the size of T .

The following inequalities are immediate

Rδ(P ◦ ⊕) ≤ 2PDδ(P ), (5.5.1)

log PSδ(P ) ≤ PDδ(P ),

where P ◦⊕ is the two player communication game in which the two players are given strings
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x, y ∈ Fn2 and are required to calculate P (x+ y). We remark that log PSδ is incomparable to

Rδ in general.

Here we study the predicate Hn
k which equals 1 if and only if the Hamming weight of its

input is precisely k. By Eq. (5.5.1) and a padding argument similar to the one we gave before

the proof of Theorem 4.0.8, each lower bound for Hamn
k listed in Table 5.1 applies to PDδ(Hn

k )

as well. In [16] another direct Ω(k) bound for PDδ(Hn
k ) was shown. In [12], showing an

Ω(k log k) lower bound to a variant of PDδ(Hn
k ) to obtain tight bounds for k-linearity problem

(see ??) was suggested. Finally, our Theorem 4.0.8 shows that PDδ(Hn
k ) = Ω(k log(k/δ)),

which is tight. Next we show the same bound holds even for log PSδ(Hn
k ).

Theorem 4.0.9 (restated). For k2 < δn, log PSδ(Hn
k ) = Ω(k log(k/δ)).

Proof. The proof is very similar to that of Theorem 4.0.8, so we only describe the differences.

Let T be a δ-error randomized parity decision tree computing Hn
k . Form A : Fn2 → [0, 1]

so that A(x) is the probability T outputs 1 on input x ∈ Fn2 . Define the polytope

P ··= conv
{
x 7→ 1[Bx = c] | B ∈ Fn×n2 , c ∈ Fn2

}
whose vertices are indicator functions for affine subspaces of Fn2 . Given a randomized parity

decision tree, for each fixing of the randomness, the set of inputs that end up in a particular

leaf of it is an affine subspace in Fn2 . Therefore if T has at most s leaves, then A is inside sP .

It remains to demonstrate a hyperplane with normal H so that 〈A,H〉 > s 〈V,H〉 for any

vertex V of the polytope P for s = exp Ω(k log(k/δ)).

Let µk be a distribution on Fn2 obtained as follows. Start with the 0 vector, and flip a

coordinate chosen uniformly at random with replacement k times. Here, flipping a coordinate

an even number of times leaves it as 0. Set H = µk − (µk−2 + µk+2)/(6δ).

First observe that 〈A, µk〉 > (1− δ)(1−
(
k
2

)
/n) > 1− 3δ/2 and 〈A, µk+2〉+ 〈A, µk−2〉 < 3δ

so 〈A,H〉 ≥ 1/3 for δ ≤ 1/9. Next we would like to upper bound 〈V,H〉 for an indicator

function V of an affine subspace {x ∈ Fn2 | Bx = c}. The key observation is

〈V, µk〉 =
〈
1c, S

k
10
〉

(5.5.2)
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where S is a stochastic matrix describing the following transition: For any x ∈ Fn2 , sample a

column y of B ∈ Fn×n2 uniformly at random and transition to x+ y. Namely, the right hand

side of Eq. (5.5.2) describes the following probability. We start with the 0 vector in Fn2 and

in each time step sample a uniform random column y of B and add y to the current state.

We measure the probability of reaching c ∈ Fn2 at time step k. Having observed Eq. (5.5.2),

and that ‖10‖2 = ‖1c‖2 = 1, the rest of the proof is identical to that of Theorem 4.0.8: by

Theorem 4.0.4, we either have
〈
1c, S

k+2
10
〉 〈

1c, S
k−2

10
〉
≥ α2

〈
1c, S

k
10
〉2

or
〈
1c, S

k+2
10
〉
≥ kα1

〈
1c, S

k
10
〉1+2/k

.

In either event, we conclude that 〈V,H〉 ≤
(

6δ
kα1

)k/2
. This completes the proof.

Note in Theorem 4.0.8, we use Theorem 4.0.4 with a simple and fixed S (i.e., the standard

random walk on the Hamming cube), but with complicated vectors u, v that come from the

particular communication protocol whose communication cost we would like to lower bound.

By contrast, in Theorem 4.0.9 the vectors u, v are simple point masses on states 0 and c

but the matrix S is a convolution random walk on the Hamming cube that comes from the

particular decision tree whose size we lower bound.

5.6 Property testing

In the property testing model, given black box access to an otherwise unknown function

f : Fn2 → F2, our goal is to tell apart whether x ∈ P for some fixed set of functions P or

‖f − g‖1 ≥ ε2n for any g ∈ P . Here, the black box queries are done by providing an input

x ∈ Fn2 to the function and observing f(x).

A function f : Fn2 → F2 is called k-linear if f is given by

f(x) =
∑
i∈S

xi
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for some S ⊆ [n] of size at most k. By combining our communication complexity lower

bound Theorem 4.0.8 with the reduction technique developed in [15] or by combining our

parity decision tree lower bound Theorem 4.0.9 with a reduction given in [12], one obtains

the following.

Corollary 4.0.10 (restated). Any δ-error property testing algorithm for k-linearity with

ε = 1/2 requires Ω(k log(k/δ)) queries.

In fact through this, one obtains similar lower bounds to property testing for k-juntas,

k-term DNFs, size-k formulas, size-k decision trees, k-sparse F2-polynomials; see [13, 26].
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5.7 Discussion

We showed that for a symmetric matrix S : Ω × Ω → R+ and unit vectors u, v : Ω → R+,

defining mt = 〈v, Stu〉 for t = 0, 1, . . ., we have

mt+2 ≥ m
1+2/t
t , and (5.7.1)

mt+2 ≥ m
1+2/t
t ·min

t1−ε,
δm

1−2/t
t

mt−2


 (5.7.2)

and argued that Eq.(5.7.2) and (5.7.1), in this order, are best viewed as gradual weakenings of

the log-convexity of {mt}∞t=0. We conjecture that a similar principle holds true for continuous

time Markov chains as well.

Call a function f : R+ → [0, 1], whose logarithm is continuously twice differentiable

(i.e., log f ∈ C2(R+)), nearly-log-convex if x2(log f)′′(x) ≥ 2 log f(x) for x ∈ R+. Note that

log f ≤ 0, therefore this is a weakening of the usual log-convexity definition, which requires

(log f)′′ ≥ 0.

Conjecture 5.7.1. Let S : Ω×Ω→ R+ be a symmetric substochastic matrix and u, v : Ω→ R+

be unit vectors. The function

t 7→
〈
v, et(S−I)u

〉
is nearly-log-convex.

By an argument similar to the proof of Theorem 4.0.8, one can show the following.

Theorem 5.7.2. Conjecture 5.7.1 implies Conjecture 5.4.2.

5.8 Chapter notes

The results of this chapter have been published in FOCS 2018 in [79].
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[75] Mihai Pătraşcu. Cc4: One-way communication and a puzzle. http://infoweekly.
blogspot.com/2009/04/cc4-one-way-communication-and-puzzle.html. Accessed:
31/03/2013.
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