Low-Dose Human Chorionic Gonadotropin Maintains Intratesticular Testosterone in Normal Men with Testosterone-Induced Gonadotropin Suppression

Center for Research in Reproduction and Contraception, Geriatric Research Education and Clinical Center, Veteran Affairs Puget Sound Health Care System (A.M.M.), and Department of Medicine, University of Washington School of Medicine (A.D.C., W.J.B., J.K.A., B.D.A., P.R.S.), Seattle, Washington 98195; Department of Medicine, Charles R. Drew University (K.L.H.), Los Angeles, California 90059; Department of Urology, Johns Hopkins University School of Medicine (X.Y., J.P.J.), Baltimore, Maryland 21287; and Division of Reproductive Biology, Department of Biochemistry and Molecular Biology Johns Hopkins University School of Public Health (W.W.W., T.R.B., X.Y., B.R.Z., J.P.J.), Baltimore, Maryland 21205

In previous studies of testicular biopsy tissue from healthy men, intratesticular testosterone (ITT) has been shown to be much higher than serum testosterone (T), suggesting that high ITT is needed relative to serum T for normal spermatogenesis in men. However, the quantitative relationship between ITT and spermatogenesis is not known. To begin to address this issue experimentally, we determined the dose-response relationship between human chorionic gonadotropin (hCG) and ITT to ascertain the minimum dose needed to maintain ITT within the normal range. Twenty-nine men with normal reproductive physiology were randomized to receive 200 mg T enanthate weekly in combination with either saline placebo or 125, 250, or 500 IU hCG every other day for 3 wk. ITT was assessed in testicular fluid obtained by percutaneous fine needle aspiration at baseline and at the end of treatment. Baseline serum T (14.1 nmol/liter) was 1.2% of ITT (1174 nmol/liter). LH and FSH were profoundly suppressed to 5% and 3% of baseline, respectively, and ITT was suppressed by 94% (1234 to 72 nmol/liter) in the T enanthate/placebo group. ITT increased linearly with increasing hCG dose (P < 0.001). Posttreatment ITT was 25% less than baseline in the 125 IU hCG group, 7% less than baseline in the 250 IU hCG group, and 26% greater than baseline in the 500 IU hCG group. These results demonstrate that relatively low dose hCG maintains ITT within the normal range in healthy men with gonadotropin suppression. Extensions of this study will allow determination of the ITT concentration threshold required to maintain spermatogenesis in man. (J Clin Endocrinol Metab 90: 2595–2602, 2005)
tration in a dose known to induce azoospermia, and 2) to evaluate ITT levels in response to graded doses of human chorionic gonadotropin (hCG) for selective replacement of LH activity. Determining the dose-response relationship between hCG and ITT will allow future studies of the dose-response relationship of ITT and spermatogenesis. Greater understanding of the effect of hCG on ITT will facilitate the design of future studies of the intratesticular hormonal microenvironment in relation to spermatogenesis with a focus on the ability to achieve uniform azoospermia for the ultimate goal of developing a successful male contraceptive.

Subjects and Methods

Subjects

The institutional review board for clinical investigation of University of Washington approved this study protocol before the initiation of this study. The study was conducted in the General Clinical Research Center facility at University of Washington Medical Center. Written informed consent was obtained from subjects before the screening evaluation.

Healthy men, aged 18–45 yr, with normal reproductive physiology were recruited for the study. Normal reproductive physiology was defined as normal physical exam, including testicular exam with Prader orchidometer; normal serum T, LH, and FSH; and sperm count more than 20 million/ml after 48 h of ejaculatory abstinence. Subjects had to be healthy as determined by medical history, physical examination, and a clinical laboratory tests within normal limits. Exclusion criteria included chronic medical or mental illness, previous or current ethanol abuse, anabolic steroid use, abnormal screening laboratory tests, single functional testicle in the scrotum, abnormal reproductive physiology as evidenced by computer assisted semen analysis (Hamilton-Thorn IVOS, Beverly, MA). Semen analysis and sperm counts were not an end point in this study due to the 3-wk study timeframe.

Blood was drawn at baseline and weekly during the 3-wk treatment phase. Serum T, LH, and FSH and sperm count were repeated 3 months after the start of the study to check for return to normal baseline status. Serum was separated by centrifugation and stored at −70 C until assays for serum T, LH, FSH, and hCG were done. Testicular fluid was collected with a percutaneous fine needle aspiration after the start of the study to check for return to normal baseline status. Serum and testicular fluid were stored at −70 C until assays were done. Serum T, LH, and FSH and sperm count were repeated 3 months after the start of the study to check for return to normal baseline status. All samples for a given individual were assayed simultaneously, and all assays were performed in duplicate.

ITT

Intratesticular fluid T was measured with a well-validated RIA (13–18). For this assay, samples were extracted with diethyl ether, followed by measurement of T byRIA. \([1,2,6,7,16,17-N^3H]T\) (specific activity, 140.9 Ci/mmol) was obtained from NEN Life Science Products (Wilmington, DE). Rabbit T antiserum was obtained from ICN Biomedicals, Inc. (Costa Mesa, CA). The sensitivity and intra- and interassay coefficients of variation for the RIAs for T were 10 pg/ml, 11.2%, and 9.6%, respectively. All samples for a given individual were assayed simultaneously, and all samples were assayed in the same laboratory at Johns Hopkins University. There were no apparent matrix effects in the intratesticular fluid assay. There was some minimal cross-reactivity (5%) of the antibody with dihydrotestosterone (DHT). Because DHT constitutes a very small percentage (~1–2%) of the androgen present within the testes (9), the amount of DHT potentially measured with the assay in these samples was very small (~<1%).

Semen analysis

Semen samples were assessed for volume, then analyzed for total sperm count and sperm concentration. Sperm counts were determined by computer assisted semen analysis (Hamilton-Thorn IVOS, Beverly, MA). Semen analysis and sperm counts were not an end point in this study due to the 3-wk study timeframe.

Statistical analysis

All hormone data were log-transformed for statistical analyses, then back-transformed for ease of presentation. Data are presented as the mean ± SEM, except where noted otherwise. ANOVA was used to detect treatment effects within and across groups over time as well as across groups over single time points. Significant changes over time within groups were analyzed for change from baseline at individual time points with paired t tests. The Mann-Whitney rank-sum test was used for comparisons of ITT between groups. Simple and multiple linear regres-
sion analyses were used to examine the relationship between hormones and ITT. StatView version 5.0.1 (SAS Institute, Cary, NC) and Stata version 6.0 (StataCorp LP, College Station, TX) statistical software were used for analyses. α was set at 0.05.

Results

The mean age of the subjects was 24 ± 1.3 yr. There were no significant differences between groups at baseline in age, body mass index; sperm count; serum T, LH, or FSH; or ITT (Table 1). All 29 participants completed the study. The FNA procedure was well tolerated by all participants without significant discomfort. There were no significant adverse events during the study.

Compliance with TE injections was 100%. Of a total of 319 hCG/placebo sc injections in 29 participants over a 3-wk period, three were missed giving an overall drug compliance rate of 99.1%. The three missed sc injections were in three different participants, one in the placebo group and two in the 250-IU hCG group. The latter two individuals both missed a single 250-IU hCG dose early in the 3-wk treatment phase on d 5. Therefore, it is unlikely that the missed hCG doses significantly affected the intratesticular fluid T concentrations measured on d 21.

Serum hCG

Serum hCG showed a dose-dependent increase during the 3-wk treatment phase among groups receiving hCG, with undetectable levels in the placebo group (Fig. 1). hCG was administered every other day, whereas serum hCG levels were measured once per week. Blood samples on d 7 and 21 were drawn about 24 h after hCG administration (note similar serum levels on d 7 and 21), whereas the blood samples drawn on d 14 were taken approximately 48 h after the last hCG dose and therefore represent a trough serum level during treatment. The lower serum hCG levels observed on d 14 in all three treatment groups were presumably due to the longer interval between the last hCG dose and the blood sample drawn on d 14 vs. d 7 and 21.

Serum T

The mean serum T concentration for all volunteers before treatment was 14.1 ± 1.1 nmol/liter (Table 1). Serum T was significantly elevated from baseline in all four groups by d 7 (P < 0.0001). The lowest hCG dose group had serum T levels similar to those in the placebo group, whereas higher serum levels were achieved in the two highest hCG groups, 250 and 500 IU (Fig. 2).

TABLE 1. Baseline characteristics of 29 participants and by treatment group

<table>
<thead>
<tr>
<th>Baseline (n = 29)</th>
<th>hCG treatment group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 IU (n = 7)</td>
</tr>
<tr>
<td>Age (yr)</td>
<td>24 ± 1.3</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>25 ± 0.6</td>
</tr>
<tr>
<td>Sperm count (millions/ml)</td>
<td>110 ± 12</td>
</tr>
<tr>
<td>LH (IU/liter)</td>
<td>4.11 ± 0.37</td>
</tr>
<tr>
<td>FSH (IU/liter)</td>
<td>2.83 ± 0.37</td>
</tr>
<tr>
<td>Serum T (nmol/liter)</td>
<td>14.1 ± 1.1</td>
</tr>
<tr>
<td>ITT (nmol/liter)</td>
<td>1174 ± 79</td>
</tr>
</tbody>
</table>

Values are the mean ± SEM. BMI, Body mass index.
with increasing hCG dose ($P < 0.001$) as well as increasing serum hCG ($P < 0.001$; Fig. 4B). ITT decreased 25% in the 125-IU hCG/TE group from a mean of 969 ± 145 nmol/liter (range, 60–1418 nmol/liter) to 726 ± 144 nmol/liter (range, 97–1180 nmol/liter) after treatment, but was not statistically different from baseline ($P > 0.05$). ITT decreased from baseline in five of these individuals, but increased in two; one subject in this group did not have sufficient fluid volume for analysis at the second aspiration.

ITT decreased by 7% in the TE/250-IU hCG group, from a mean of 1402 ± 125 nmol/liter (range, 1089–1984 nmol/liter) to 1306 ± 316 (range, 608–2948 nmol/liter) after treatment, but was not statistically different from baseline ($P > 0.05$). ITT decreased in three individuals and increased in three individuals from baseline in this group; one subject in this group did not have sufficient fluid volume for analysis at the second aspiration.

ITT increased 26% in the TE/500-IU hCG group from a mean of 1120 ± 163 nmol/liter (range, 383-1766 nmol/liter) to 1409 ± 286 nmol/liter (range, 109-2267 nmol/liter) after treatment, but was not statistically different from baseline ($P > 0.05$). ITT increased from baseline in five individuals and decreased in two individuals in this group.

All three hCG/TE groups had posttreatment ITT levels statistically significantly higher than the posttreatment ITT level in the placebo hCG/TE group ($P < 0.01$).

Serum hCG and ITT (regression analysis)

After 3 wk of treatment with hCG/TE, serum hCG showed a positive linear relationship with intratesticular fluid T. hCG was a statistically significant determinant of intratesticular fluid T when analyzed by hCG dose group ($P < 0.001$) or by serum hCG level ($P < 0.001$; Fig. 4B).

Serum LH, FSH and ITT (regression analysis)

After 3 wk of treatment with TE and hCG, serum LH was not predictive of ITT ($P = 0.6$). Serum FSH was negatively correlated with ITT ($P = 0.02$). However, neither posttreatment serum FSH ($P = 0.41$) nor serum LH ($P = 0.93$) was a predictor of ITT in the presence of serum hCG ($P < 0.001$) in multiple linear regression modeling.

Serum T and ITT

Comparisons of serum and intratesticular T must be made with caution because T levels were measured by two different RIAs (described above), one for serum T and one for intratesticular fluid T. The mean baseline ITT concentration for all 29 participants before treatment (1174 ± 79 nmol/liter) was approximately 80-fold higher than that of serum T (14.1 ± 1.1 nmol/liter; Fig. 5). Although serum T increased
from baseline in all groups \((P < 0.05)\), ITT remained significantly higher than serum T in all four groups after treatment \((P < 0.05); \text{Fig. 5}\). After 3 wk of TE/hCG treatment, serum T showed a positive linear relationship with ITT \((P = 0.002)\). However, hCG dose appeared to be the more significant determinant of ITT. In a multiple linear regression model, serum T \((P = 0.7)\) became an insignificant predictor of ITT in the presence of hCG \((P < 0.001)\).

Discussion

A significant intratesticular fluid to serum T gradient was observed in this group of young normal men at baseline. In this study, serum T was 1.2% of ITT, an 84-fold gradient. A similar testicular to serum gradient has been reported in studies of testicular biopsy tissue in the 1970s (19) as well as more recently (9, 13). However, the absolute ITT levels reported in testicular homogenates are higher than the ITT levels found in the testicular fluid aspirates in this study. This difference is probably the result of the release of cellular T stores in testicular homogenates compared with secreted T in fluid aspirates obtained with minimal cellular disruption.

Normal intratesticular fluid T concentrations were maintained by low doses of hCG (125, 250, and 500 IU every other day for 3 wk) in men with gonadotropin suppression from exogenous T. Presumably, normal ITT levels within the testis should support normal spermatogenesis.
rat (17). Rat models of spermatogenesis have shown a testis to serum T gradient with 100-fold higher T levels within the testis (17). The high ITT levels are in excess of the ITT concentration needed to support normal spermatogenesis; ITT can be reduced to 20% of normal levels without impacting normal spermatogenesis in the rat (16). However, below this threshold there is a direct quantitative relationship between ITT and sperm production. High doses of exogenous T can restore spermatogenesis in the rat (20–23). Additionally, replacing ITT by injecting microspheres containing T directly into the rat testis restored ITT levels as well as spermatogenesis to normal (24). In the rat, the high ITT levels have been shown to exceed the ITT level necessary for normal spermatogenesis. The threshold ITT concentration necessary for normal spermatogenesis in the rat is more than twice the normal serum T concentration (16). Similar studies in man have been limited by the inability to reliably assess the intratesticular microenvironment repeatedly. Studies relying on testicular biopsy have been cross-sectional in design, with the comparison of ITT levels across individuals who have undergone various hormonal manipulations. This study design is biased by the high variability in ITT between individuals. Percutaneous aspiration of testicular fluid has allowed us to perform a longitudinal study, with repeated assessment of the intratesticular hormonal environment in men, which allows for the serial assessment of ITT in response to hormonal manipulation.

Previous studies have shown that weekly administration of either 200 or 300 mg T, im, maximally suppresses gonadotropin secretion (6); moreover, these doses of T inhibit gonadotropin secretion within 2–3 d of administration (25). As expected, we observed that serum gonadotropin levels were significantly reduced by exogenous T in this study. Gonadotropin suppression without hCG administration caused dramatic reductions in ITT (94%) from baseline in the TE and placebo hCG group. Exogenous TE (200 mg weekly) has also been shown to reduce sperm production to azoo spermic levels in approximately 70% of Caucasian men (7, 8). Spermatogenesis was not assessed in this 3 wk study, but in a previous study of normal men (n = 7) with gonadotropin suppression induced with 6 months of T and a progestin, levonorgestrel (LNG), intratesticular fluid T was suppressed 98% from baseline (15). Intratesticular fluid T levels in these men after 6 months of TE plus LNG treatment were similar to their baseline serum T levels. In this group of seven men, ITT levels suppressed to levels approximating their baseline serum T levels were coincident with suppressed spermatogenesis. The addition of progestins to exogenous T has been shown to enhance gonadotropin suppression and azoospermia in a greater proportion of men (26–28) than T alone. The ITT levels (13 nmol/liter) in this small study were lower than the ITT levels in the TE/placebo hCG group in the current study (72 nmol/liter). The lower ITT levels may relate to the longer treatment phase (6 months vs. 3 wk), the additive effect of LNG to LH suppression, or other inhibitory effects of progestins within the testis. Although this low ITT level (13 nmol/liter) appeared to be insufficient to maintain spermatogenesis, the minimum ITT concentration required for normal spermatogenesis in men is unknown.

The quantitative use of hCG to selectively replace LH activity within the testis would allow for manipulation of the intratesticular androgenic environment, thereby enabling a study of the quantitative relationship between ITT and spermatogenesis. In this study, hCG increased the ITT concentration, presumably through stimulation of Leydig cell steroidogenesis. The dose of hCG required to maintain baseline ITT concentrations in men with maximal gonadotropin suppression is significantly lower than that historically used in the treatment of infertility due to hypogonadotropic hypogonadism.

A review of the literature reveals a broad range of relatively high doses of gonadotropin replacement using hCG ranging from 1250 IU three times weekly to 3000 IU twice weekly (29–32). Even higher doses of hCG (5000 IU, three times per week) have been shown to be safe in experimental models of gonadotropin withdrawal (33, 34). Regimens of 2000 IU administered im two or three times weekly have been used with hCG dose adjustment according to serum T levels with a goal of normal physiological serum T levels (32, 35, 36). This approach is based on the assumption that if normal serum T levels were established by hCG administration, ITT concentrations would be sufficient to support normal spermatogenesis. However, ITT was never directly assessed in these studies. The minimum hCG dose needed to restore ITT to levels sufficient for initiating and maintaining spermatogenesis is not known.

All three hCG groups in this study (125, 250, and 500 IU, given every other day) maintained ITT at levels statistically indistinguishable from baseline. These doses are 10–20% of the doses commonly used in male infertility treatment (1250–2000 IU, two or three times weekly). Endocrinologists and andrologists have been aware that the doses of hCG traditionally used to treat certain types of infertility are supra-physiological and may expose patients to high levels of T and estradiol, with the consequent risk of clinically significant gynecomastia (37). The ability to prescribe hCG doses at lower levels to target normal serum ITT and normal spermatogenesis would be useful for this patient population.

However, men rendered hypogonadotropic with exogenous T administration are different from men with infertility due to hypogonadotropic hypogonadism in two important ways. First, the study participants started with normal gonadotropin levels and were treated with high dose TE to induce gonadotropin withdrawal at the same time they were treated with hCG with the aim of maintaining ITT. In contrast, hypogonadotropic infertile men are treated with either T replacement or hCG for fertility, but not both simultaneously. The weekly administration of TE raised serum T levels significantly in all groups and may have resulted in higher ITT concentrations than would have been observed in a patient with hypogonadotropic hypogonadism receiving hCG therapy alone. Second, in the clinical setting, ITT production and spermatogenesis have to be induced after a prolonged period of gonadotropin deficiency. Therefore, the low-dose hCG used in this study may not normalize ITT in hypogonadotropic infertile men. However, lower hCG doses than those traditionally used may be sufficient to restore spermatogenesis.

The effect of TE 200 mg, im, weekly alone on ITT was demonstrated in the placebo hCG group. After 3 wk of ther-
apy with TE alone, the ITT concentration (72 nmol/liter) was approximately 2.5-fold higher than the serum T concentration (27 nmol/liter). After 3 wk, LH was significantly suppressed (5% of baseline). Presumably, intratesticular production of T by Leydig cells was markedly reduced in the absence of LH activity. The serum T level at this time was high normal at 27 nmol/liter, but it is unclear how a peripheral source of T would concentrate in the testis to result in a concentration higher than that found in serum. The higher ITT relative to serum T after 3 wk of TE alone in this study cannot be explained on the basis of androgen-binding proteins, because in men the concentration of SHBG in the human testis and serum are not significantly different (13). Both LH and FSH were suppressed significantly from baseline (5 and 3%, respectively), but not to undetectable levels. It is possible the low levels of gonadotropin activity are responsible for persistent low levels of ITT and/or spermatogenesis. However, serum LH (P = 0.93) was not a statistically significant determinant of ITT in the presence of serum hCG (P < 0.001) in a multiple linear regression model (overall model, P < 0.0001). It is possible that the Leydig cells were producing small amounts of T at 3 wk despite LH withdrawal. Spermatogenesis has been shown to be present in the LH receptor knockout mouse despite absent LH activity and very low ITT levels. Low-level residual ITT and FSH activity is believed to be responsible for spermatogenesis in this mouse model (38). It is possible that other factors become physiologically relevant in the low T intratesticular microenvironment in humans, such as low level FSH activity or increased DHT activity due to up-regulation of the enzyme 5α-reductase (9). However, although posttreatment serum FSH was negatively linearly associated with ITT in simple linear regression analysis, serum FSH (P = 0.41) was not a significant predictor of ITT in the presence of serum hCG (P < 0.001) in a multiple linear regression model (overall model, P < 0.0001).

Studies of the intratesticular hormonal environment can be undertaken if we can develop a model in which we can reliably control the ITT concentration. Clamping the pituitary with exogenous hormones and/or GnRH receptor analogs (39–41) allows for the selective replacement of gonadotropins to determine the relative contributions of intratesticular androgens and FSH in normal spermatogenesis. Clearly, low-dose hCG can restore ITT to normal levels in men with gonadotropin suppression from exogenous T administration. Although there was no statistically significant difference in ITT among the 125-, 250-, and 500-IU hCG dose groups in pairwise comparisons, there was a linear increase in ITT with increasing hCG dose, which was statistically significant by simple linear regression (P < 0.001). The 250-IU dose group had posttreatment ITT levels closest to their baseline levels of all the groups, with a posttreatment ITT 7% lower than their baseline ITT. However, the two higher hCG groups (250 and 500 IU) had higher serum T during TE/hCG treatment than the TE/placebo group or the TE/125-IU hCG group. The ITT concentration achieved with TE/125-IU hCG (group 2) was also not statistically different from baseline, and this group had lower serum T than the two higher hCG dose groups. The contribution of serum T to ITT levels is not clear, and these results must be interpreted with caution, given that different immunoassays were used to measure T in serum and intratesticular fluid.

In summary, assessment of the testicular hormonal environment through percutaneous fluid aspiration has shown a similar testis to serum T gradient as previous testicular biopsy studies in men and rats. Additionally, low doses of hCG maintain baseline levels of ITT in men with gonadotropin withdrawal from exogenous T administration. Lower doses of hCG may be as effective in treating male infertility due to hypogonadotropism as the higher doses used historically. Selective replacement of LH activity with low-dose hCG, as demonstrated in this study, will allow the design of future studies investigating the relative roles of intratesticular androgens and FSH in the control of human spermatogenesis. Such work will be applicable to the goal of developing uniformly effective male contraception.

Acknowledgments

Received April 29, 2004. Accepted February 9, 2005.

Address all correspondence and requests for reprints to: Dr. Andrea D. Coviello, Feinberg School of Medicine, Northwestern University, Tarry 15-751, 303 East Chicago Avenue, Chicago, Illinois 60611-3008. E-mail: a-coviello@northwestern.edu.

This work was supported by National Institutes of Health (NIH) Grant HD44258 (to B.R.Z. and J.P.J.), the National Institute of Child Health and Human Development, NIH, through Cooperative Agreements U54HD36209 (to B.R.Z. and J.P.J.) and U54HD12629 (to A.M.M. and W.J.B.) as part of the Specialized Cooperative Centers Program in Reproduction Research, Grant U54HD2454 (to A.D.C., W.J.B., J.K.A., and B.D.A.), and Reproductive Biology Training Grant T32HD07453 (to A.D.C.). A portion of this work was conducted through the Clinical Research Center at the University of Washington supported by NIH Grant M01RR00037.

References

11. Wallace EM, Gow SM, Wu FC 1993 Comparison between testosterone enanthate-induced azoospermia and oligozoospermia in a male contraceptive

References

11. Wallace EM, Gow SM, Wu FC 1993 Comparison between testosterone enanthate-induced azoospermia and oligozoospermia in a male contraceptive
study. J. Plasma luteinizing hormone, follicle stimulating hormone, testosterone,
estradiol, and inhibin concentrations. J Androl 22:290–293
and gonadotropin levels are similar in azoospermic and nonazoospermic nor-
mal men administered weekly testosterone: implications for male contracep-
the androgen environment within the human testis: minimally invasive
14. Chen H, Chandrashekar V, Zirkin BR 1994 Can spermatogenesis be main-
tained quantitatively in intact adult rats with exogenously administered di-
WW, Bremner WJ, Matsumoto AM, Jarow JP 2004 Intratesticular testosterone
concentrations comparable with serum levels are not sufficient to maintain
normal sperm production in men receiving a hormonal contraceptive regimen.
J Androl 25:931–938
spermatogenic cells in the adult rat testis: quantitative relationship to testos-
 terone concentration within the testis. Endocrinology 124:3043–3049
On the androgen microenvironment of maturing spermatocytes. Endocrinology
115:1925–1932
18. Schanbacher BD, Ewing LL 1975 Simultaneous determination of testosterone,
5α-androstane-17β-ol-3-one, 5α-androstane-3α,17β-diol and 5α-androstane-
3β,17β-diol in plasma of adult male rabbits by radioimmunoassay. Endocri-
nology 97:787–792
19. Morse HC, Horike N, Rowley MJ, Heller CG 1973 Testosterone concentra-
tions in testes of normal men: effects of testosterone propionate administration.
J Clin Endocrinol Metab 37:882–886
20. Awoyinfi CA, Sprando RL, Santulli R, Chandrashekar V, Ewing LL, Zirkin
BR 1990 Restoration of spermatogenesis by exogenously administered testos-
terone in rats made azoospermic by hypophysectomy or withdrawal of lu-
teinizing hormone alone. Endocrinology 127:177–184
advanced spermatogenic cells in the experimentally regressed rat testis: quan-
titative relationship to testosterone concentration within the testes. En-
docrinology 124:1217–1223
Quantitative restoration of advanced spermatogenic cells in adult male rats
made azoospermic by active immunization against luteinizing hormone or
gonadotropin-releasing hormone. Endocrinology 125:1303–1309
23. Zirkin BR, Santulli R, Strandberg JD, Wright WW, Ewing LL 1993 Testicular
ersosteroidogenesis in the aging brown Norway rat. J Androl 14:118–123
24. Turner TT, Howards SS, Gleavey JH 1990 On the maintenance of male fertility
in the absence of native testosterone secretion: site-directed hormonal therapy
in the rat. Fertil Steril 54:149–156
25. Schulte-Beerbuhl M, Nieschlag E 1980 Comparison of testosterone, dihy-
drotestosterone, luteinizing hormone, and follicle-stimulating hormone in se-
rum after injection of testosterone enanthate of testosterone cypionate. Fertil
Steril 33:201–203
26. Anawalt BD, Bebb RA, Bremner WJ, Matsumoto AM 1999 A lower dosage
levonorgestrel and testosterone combination effectively suppresses spermat-
gogenesis and circulating gonadotropin levels with fewer metabolic effects than
higher dosage combinations. J Androl 20:407–414
27. Bebb RA, Anawalt BD, Christensen RB, Paulsen CA, Bremner WJ, Matsumo-
to AM 1996 Combined administration of levonorgestrel and testosterone
induces more rapid and effective suppression of spermatogenesis than tes-
tosterone alone: a promising male contraceptive approach. J Clin Endocrinol
Metab 81:757–762
28. Mergioglia MC, Bremner WJ 1997 Progestin-androgen combination regimens
for male contraception. J Androl 18:240–244
29. Burris AS, Clark RV, Van'tman DJ, Sherins RJ 1988 A low sperm concen-
tration does not preclude fertility in men with isolated hypogonadotropic hy-
poandrogenism after gonadotropin therapy. Fertil Steril 50:343–347
30. Johnson SG 1978 Maintenance of spermatogenesis induced by HMG treatment
by means of continuous HCG treatment in hypogonadotropic men. Acta
Endocrinol (Copenh) 89:763–769
31. Kliesch S, Behre HM, Nieschlag E 1995 Recombinant human follicle-stimu-
lat ing hormone and human choric gonadotrophin for induction of spermat-
genesis in a hypogonadotropic male. Fertil Steril 63:1326–1328
32. Liu PY, Turner L, Rushford D, McDonald J, Baker HW, Conway AJ, Han-
delsman DJ 1999 Efficacy and safety of recombinant human follicle stimulating
hormone (Gonal-F) with urinary human choric gonadotrophin for induc-
tion of spermatogenesis and fertility in gonadotrophin-deficient men. Hum
Reprod 14:1540–1545
33. Matsumoto AM, Bremner WJ 1985 Stimulation of sperm production by hu-
man chorionic gonadotrophin after prolonged gonadotropin suppression in normal
34. Matsumoto AM, Paulsen CA, Hopper BR, Rebar RW, Bremner WJ 1983
Human chorionic gonadotrophin and testicular function: stimulation of testos-
terone, testosterone precursors, and sperm production despite high estradiol
levels. J Clin Endocrinol Metab 56:727–728
313:651–655
36. Liu L, Banks SM, Barnes KM, Sherins RJ 1988 Two-year comparison of
testicular responses to pulsatile gonadotropin-releasing hormone and exo-
genous gonadotropins from the inception of therapy in men with isolated hy-
pogonadotropic hypogonadism. J Clin Endocrinol Metab 67:1140–1145
Mol Cell Endocrinol 161:73–88
low-gonadotropin-independent constitutive production of testicular testos-
terone is sufficient to maintain spermatogenesis. Proc Natl Acad Sci USA
100:13692–13697
Bremner WJ 1989 A comparison of the suppressive effects of testosterone and
a potent new gonadotropin-releasing hormone antagonist on gonadotropin
and inhibin levels in normal men. J Clin Endocrinol Metab 69:43–48
40. Bagatell CJ, Matsumoto AM, Christensen RB, Rivier JE, Bremner WJ 1993
Comparison of a gonadotropin releasing-hormone antagonist plus testoster-
one (T) versus T alone as potential male contraceptive regimens. J Clin En-
docrinol Metab 77:427–432
41. Bagatell CJ, Rivier JE, Bremner WJ 1995 Dose effects of the gonadotropin-
releasing hormone antagonist, Nal-Glu, combined with testosterone enanthate
on gonadotropin levels in normal men. Fertil Steril 64:139–145

JCEM is published monthly by The Endocrine Society (http://www.endo-society.org), the foremost professional society serving the
endocrine community.