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Abstract

Bayesian Hierarchical Models and Moment Bounds for High-Dimensional Time Series

Yicheng Li

Co-Chairs of the Supervisory Committee:
Adrian E. Raftery

Fang Han

In this dissertation, I explore two statistical tasks involving high-dimensional time series.

The first task is to forecast high-dimensional time series using Bayesian hierarchical models

(BHM). The data under modeling is related to smoking epidemic and human mortality mea-

sures obtained from multiple populations around the world. I propose a BHM for estimating

and forecasting the all-age smoking attributable fraction (ASAF), which serves as a summa-

rizing statistical measure of the effect of smoking on mortality. The projected ASAF is used

to forecast the dynamics of the between-gender gap of life expectancy at birth. In addition, I

propose a general framework to incorporate smoking-related information into life expectancy

at birth forecast. The framework includes forecasting an age-specific smoking attributable

fraction (ASSAF), a non-smoking life expectancy at birth, and a male-female life expectancy

gap. Assessed by out-of-sample validation, the new framework improves forecast accuracy

and calibration compared with other commonly considered methods for mortality forecasts.

The second task is to obtain expectation bounds for the deviation of large sample auto-

covariance matrices from their means under weak data dependence. While the accuracy of

covariance matrix estimation corresponding to independent data has been well understood,

much less is known in the case of dependent data. We make a step towards filling this gap,

and establish deviation bounds that depend only on the parameters controlling the ”intrinsic

dimension” of the data up to some logarithmic terms. Our results have immediate impacts



on high dimensional time series analysis, and we apply them to the high dimensional linear

VAR(d) model, the vector-valued ARCH model, and a model used in Banna et al. (2016).
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Chapter 1

INTRODUCTION

1.1 Motivation

Estimation and inference on high-dimensional time series data are common tasks in modern

statistics, and they exhibit large differences in various aspects from their independent data

counterparts. This dissertation is motivated by two different prospects of high-dimensional

time series data. The first aspect, motivated by a task in statistical demography, is to forecast

multi-population smoking-related mortality measures through a Bayesian hierarchical model.

The other one, motivated by commonly used time series models under high-dimensional

setting, is to derive expectation bounds for the deviation of large sample autocovariance

matrices from their means under weak dependence.

Estimating mortality-related measures is one of the main components of human popula-

tion projection. With the improvements in food supply, medical care, and the general living

environment, the human mortality rate has been steadily decreasing since the last century.

However, unhealthy lifestyles associated with modernization such as smoking, alcohol con-

sumption, and obesity have become major risk factors of cardiovascular diseases, malignant

cancers, diabetes, and many others. Among these risk factors, smoking is the leading pre-

ventable cause of death. Globally, tobacco use causes approximately 6 million deaths per

year. In the United States, tobacco use kills more than 480,000 on average per year.

The onset of the smoking epidemic could be traced back to the mid-19th century when

the cigarette industry in industrialized regions started to sprout. Over the past century, the

dynamics of the smoking epidemic have shares similar trends with variations in duration,

magnitude, and velocity of development from population to populations. As described in

Pampel (2005), the smoking epidemic is a diffusion process from male to female population,
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and from developed to developing regions. The common trend of smoking prevalence, as

observed more completely in male populations of the developed world, shows an increasing-

peaking-decreasing pattern, where the turning point happened around the mid-20th century

when adverse effects of smoking were realized by the public and anti-smoking movements

began to thrive. Female populations from most developed regions have also experienced a

decline of the smoking epidemic but usually one or two decades later than that of the male

population. In the developing world, the smoking epidemic started later and some countries

such as China and India are still experiencing the stage of increasing or leveling. Female

smoking epidemics in developing regions remain at a low level in general since female smoking

is not encouraged in most of these areas due to gender disparity. Therefore, estimating and

forecasting mortality attributable to smoking is important for monitoring and controlling

the current and future level of smoking effect on public health, which motivates the work

presented in Chapter 2.

The smoking effect is mainly responsible for several noticeable characteristics in the

dynamics of mortality change over the past century. First of all, smoking is responsible for

the non-linear decline in mortality rate and non-linear increase in life expectancy. Janssen

et al. (2013) argued that as the smoking effect is removed, mortality decline becomes more

linear. Bongaarts (2006) estimated the life expectancy at birth after removing the smoking

effect, which appears to be more linear than observed life expectancy at birth. Secondly,

smoking accounts largely for geological differences in mortality measures. For example,

a regional disadvantage in mortality of the population from the southern United States

compared with those from other regions has shown to be largely due to smoking according

to Fenelon and Preston (2012). Last but not least, smoking accounts largely for the life

expectancy gap between males and females. During the last century, female populations from

almost all countries have a higher life expectancy at birth than those of the male populations,

but a shrinking between-gender gap of life expectancy has been observed among developed

countries starting from the last few decades, which has been shown to be associated with the

shrinking between-gender smoking effects (cf. Preston and Wang (2006), Pampel (2005)).
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Therefore, incorporating smoking-related information in mortality modeling will not only

help to understand the role of the smoking epidemic on mortality measures, but also gain

more accuracy and confidence in future mortality forecast. Chapter 3 focuses mainly on

building up such a model, inspired by Bongaarts (2006) and Janssen et al. (2013), to make

better life expectancy projections with the assistance of smoking-related data.

On the other hand, motivated from a theoretical aspect, the second main topic of this

dissertation studies the autocovariance matrix estimation of a class of high-dimensional time

series models. Concentration inequalities and moment bounds for high-dimensional covari-

ance matrix estimation based on independent samples are well-established in the literature.

However, such inequalities are not available until recently for many commonly used high-

dimensional time series models such as vector autoregressive model of lag d (VAR(d)) and

vector-valued autoregressive conditionally heteroscedastic (ARCH) model, and existing lit-

erature often requires special structures on autocovariance matrices. Deriving optimal tail

probability bound and moment bound for autocovariance matrix estimation under a more

general class of high-dimensional time series models motivates Chapter 4 in this disserta-

tion. The considered class is closely related to a weakly dependent data structure called

the τ -mixing process proposed by Dedecker and Prieur (2005), which includes the previously

mentioned models and many others such as Bernoulli shifts, contracting Markov Chains, and

so on. The result heavily depends on a brand new Bernstein-type concentration inequality for

the sum of a sequence of τ -mixing random matrices, which is mainly inspired by Merlevède

et al. (2009) and Banna et al. (2016).

1.2 Background

We now provide some brief background knowledge on mortality forecasts and non-asymptotic

theory of covariance estimation. This section is not meant to be a comprehensive literature

review but tries to provide information mostly related to this dissertation and references on

general readings for interested readers. Additional background for each subtopics can be

found in the Introduction section at the beginning of each chapter (Sections 2.1, 3.1, and
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4.1).

1.2.1 Mortality Estimation and Projection

Quantitative mortality forecasts methods have thrived in recent decades, largely required by

government and insurance companies due to the continuously population aging. In contrast

to qualitative methods which largely depend on experts’ opinions, modern mortality forecasts

methods, which are extrapolative in nature, are believed to be more objective, reliable, and

applicable. The most well-known class of mortality forecasts is the Lee-Carter-type method,

which is originated from Lee and Carter (1992). The original Lee-Carter method decomposes

the logarithmic transformed age-specific mortality rate of dx,t by three components

log(dx,t) = ax + bx × kt + εx,t,

where ax is average log-transformed mortality at age x, bx evaluates the responding change

of overall level of mortality over time at age x, kt measures the overall level of mortality at

time t, and εx,t is standard Gaussian error. For forecasts, Lee-Carter method extrapolates kt

linearly based on the historical data. Although the Lee-Carter model suffers from a severe

underestimation of prediction variance and heavily depends on the linearity assumption of

the time trend, it is often considered as a benchmark of mortality forecasts for comparison.

To overcome these shortcomings, many variants of the Lee-Carter method are developed.

Lee and Miller (2001) proposed a procedure to estimate the time effect so that the generated

life expectancy estimates match the observed values. Booth et al. (2002) suggested searching

for a fitting period, in which the linear assumption holds. Other variations of the Lee-Carter

method include adding a cohort effect (Renshaw and Haberman, 2006; Currie et al., 2004;

Plat, 2009), applying functional data approach (De Jong and Tickle, 2006; Hyndman and

Ullah, 2007; Shang, 2016), and incorporating biomedical information (Janssen et al., 2013;

Stoeldraijer et al., 2015; Vidra et al., 2017; Trias Llimós and Janssen, 2019). For a more

comprehensive summary and comparison among variants of Lee-Carter-type methods, see

Booth et al. (2006), Booth and Tickle (2008), and Janssen (2018).
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Probabilistic forecast under the Bayesian framework has been a recent advance. Bayesian

methods naturally incorporate variability in the observed data into the forecast. On the one

hand, several Bayesian Lee-Carter methods are developed. Wísniowski et al. (2015) intro-

duced a unified Bayesian framework of Lee-Carter-type modeling for mortality, fertility, and

migration. King and Soneji (2011) suggested a Bayesian linear model incorporating two

health risk factors–smoking and obesity. Pedroza (2006) and Fung et al. (2017) approached

the mortality dynamics by rewriting the original model into a Bayesian state-space frame-

work. On the other hand, Raftery et al. (2013) proposed a Bayesian hierarchical model

(BHM) on life expectancy directly, by modeling its non-linear growth. This method is cur-

rently adopted by the United Nations Population Division’s World Population Prospects

(WPP). Godwin and Raftery (2017) modified the BHM method by incorporating HIV epi-

demics related data, which improved the forecast performance for HIV-epidemic countries.

As Janssen (2018) commented, mortality forecasts could be more accurate and interpretable

with the help of extra epidemiology information compared to pure extrapolative methods.

Chapter 3 builds a new method for mortality forecast based on Raftery et al. (2013) by

considering smoking epidemics.

1.2.2 Dependent Data Framework

This section will introduce the framework of dependent data considered in Chapter 4 of this

dissertation. Mixing measure, which quantifies the dependence among random variables, is

defined on their corresponding σ-algebras. Consider an absolute probability space (Ω,F ,P),

for any sub-σ-algebras U , V ⊂ F , two well-studied strong mixing measures, α-mixing mea-

sure and β-mixing measure, which were introduced by Rosenblatt (1956) and Volkonskii and

Rozanov (1959) respectively, are defined as

α(U ,V) := sup
U∈U ,V ∈V

|P(U ∩ V )− P(U)P(V )|,

β(U ,V) :=
1

2
sup

I,J≥1,{Ui}Ii=1,{Vj}Jj=1

I∑
i=1

J∑
j=1

|P(Ui ∩ Vj)− P(Ui)P(Vj)|,
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where the supremum in the definition of β(U ,V) is taken over all measurable partitions

{Ui}Ii=1, {Vj}Jj=1 of Ω. It can be shown that 0 ≤ α(U ,V) ≤ β(U ,V) ≤ 1 for all U ,V ⊂ F .

Consider a random process, i.e., {Xi}i∈Z, where Z is the set of integers. Then the corre-

sponding mixing measures defined on the random process depend on how apart two subse-

quences are, i.e., for any integer k > 0,

α(k; {Xi}i∈Z) := sup
j∈Z

α(σ({X`}`≤j), σ({X`}`≥j+k)),

β(k; {Xi}i∈Z) := sup
j∈Z

β(σ({X`}`≤j), σ({X`}`≥j+k)).

A random process is called α-mixing if α(k; {Xi}i∈Z)→ 0 as k →∞. If α(k; {Xi}i∈Z) ≤ cαk

for some arbitrary constant c and 0 ≤ α < 1 for all k, then the process is called geometric

α-mixing. Such definitions could be applied to β-mixing measure similarly. Common ex-

amples of α-mixing and β-mixing include m-dependent random process, strictly stationary

countable-state Markov chain, strictly stationary Markov chain with geometric ergodicity,

and many others. For the interested readers, see Bradley (2005a) for a more complete survey

of the theory of strong mixing conditions.

Unfortunately, strong mixing conditions are usually hard to verify or violated in many

commonly used time series models, especially under high-dimensional settings (cf. Andrews

(1984) and Section 1.5 of Dedecker et al. (2007)). Dedecker and Prieur (2005) introduced a

class of weak dependence measure, which turns out to be more easily calculated and contains

a large range of pertinent examples. τ -mixing measure is one such weak dependence measure

and the one considered in Chapter 4 of this dissertation. Consider probability space (Ω,F ,P),

X an L1-integrable random variable taking value in a Polish space (X , ‖ · ‖X ), and a sub-σ-

algebra A ⊂ F . The τ -measure of dependence between X and A is defined to be

τ(A, X; ‖ · ‖X ) :=
∥∥∥ sup
g∈Λ(‖·‖X )

{∫
g(x)PX|A(dx)−

∫
g(x)PX(dx)

}∥∥∥
L(1)

,

where PX is the distribution of X, PX|A is the conditional distribution of X given A, and

Λ(‖ · ‖X ) stands for the set of 1-Lipschitz functions from X to R with respect to the norm

‖ · ‖X .
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A nice coupling property makes τ -mixing measure incredibly useful. First, a similar

coupling lemma on β-mixing measure was proved by Berbee (1979):

Lemma 1. Let X and Y be two random variables defined on a probability space (Ω,F ,P)

taking values in Borel spaces B1 and B2 respectively. Assume that there exists a random

variable U uniformly distributed over [0, 1], independent of σ(X) and σ(Y ). Then there

exists a random variable Ỹ , measurable with respect to σ(X) ∨ σ(Y ) ∨ σ(U), independent of

σ(X) and distributed as Y , such that

β(σ(X), σ(Y )) = E(1(Y 6= Ỹ )). (1.1)

Lemma 1 allows one to replace one half of a dependent random sequence with an

identically-distributed copy that is independent of the other half of the original sequence,

and the difference introduced by the copy can be quantified by the β-mixing measure of the

sequence.

The coupling lemma for τ -mixing measure is proved in Dedecker et al. (2007):

Lemma 2. Let (Ω,F ,P) be a probability space, A be a sigma algebra of F , and X be a

random variable with values in a Polish space (X , ‖ · ‖X ). Assume that
∫
‖x− x0‖XPX(dx)

is finite for any x0 ∈ X . Assume that there exists a random variable U uniformly distributed

over [0, 1], independent of the σ-algebra generated by X and A. Then there exists a random

variable X̃, measurable with respect to A ∨ σ(X) ∨ σ(U), independent of A and distributed

as X, such that

τ(A, X; ‖ · ‖X ) = E‖X − X̃‖X . (1.2)

Notice that the coupling property of τ -mixing measures differs from that of β-mixing

mainly by changing the distance function d(x, x̃) = 1(x 6= x̃) to d(x, x̃) = |x− x̃|. Dedecker

et al. (2007) provides a more comprehensive survey of the theory and applications of these

weak dependent measures.
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1.2.3 Non-asymptotic Theory of Covariance Estimation

In high-dimensional settings, the sample autocovariance matrix Σ̂m := (n−m)−1
∑n−m

i=1 YiY
T
i+m

for 0 ≤ m ≤ n − 1 based on a random sample size of n may not be a consistent estimator

for the population autocovariance matrix Σm of a random vector Y ∈ Rp when p > n.

Vershynin (2012) first introduced the “effective rank” of a matrix Σ

r(Σ) :=
tr(Σ)

‖Σ‖
,

as the “intrinsic dimension” of the data to quantify the minimal sample size required for

sample autocovariance matrix to be consistent and to achieve the optimal rate of convergence

of E‖Σ̂0 −Σ0‖ under the i.i.d and bounded support assumption. Lounici (2014) and Bunea

and Xiao (2015) established a similar rate optimal bound for sample covariance matrix

estimation based on a sample of i.i.d, subgaussian random vectors:

E‖Σ̂0 −Σ0‖ ≤ C‖Σ0‖
{√r(Σ0) log(ep)

n
+
r(Σ0) log(ep)

n

}
(1.3)

for some arbitrary constant C > 0. The key component in proving such results is to derive

a corresponding Bernstein-type large deviation inequality for a sum of random matrices

of interest. Vershynin (2012) and Lounici (2014) proved different versions of Bernstein’s

inequality under some boundedness assumptions while Bunea and Xiao (2015) proved one

for unbounded matrices.

Deriving rate optimal expectation bounds for the deviations of high-dimensional sample

autocovariance matrices from their means under dependence is more challenging. The major

issue is to derive a similar Bernstein-type inequality for a sequence of dependent random

matrices. Merlevède et al. (2009) and Merlevède et al. (2011) first derived the Bernstein-type

inequalities for one-dimensional α-mixing and τ -mixing random processes by introducing a

new decoupling technique using a Cantor-like partition of the sequence. Banna et al. (2016)

extended the result to matrix settings under β-mixing by carefully applying Berbee’s coupling

Lemma 1. Motivated by the fact that the τ -mixing measure possesses similar nice coupling

properties and includes a larger verifiable class of applications, Theorem 10 in Chapter 4
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further extends the Bernstein-type inequality to a sequence of τ -mixing random matrices

with bounded spectral norm. This Bernstein-type inequality provides a base for deriving

rate optimal moment bounds for high-dimensional sample autocovariance matrix estimation

under dependence in Chapter 4 of this dissertation.

Recently, in a remarkable series of papers (Koltchinskii and Lounici, 2017a,b,c), Koltchin-

skii and Lounici showed that, for subgaussian independent data, the extra multiplicative p

term in Inequality 1.3 could be further removed. The proof rests on Talagrand’s majoriz-

ing measures (Talagrand, 2014) and a corresponding maximal inequality due to Mendelson

(Mendelson, 2010). In the most general cases, it is still unknown if Talagrand’s approach

could be extended to weakly dependent data, but it motivates Theorem 4 in Chapter 4 to

remove all logarithm factors in Inequality (1.3) under a Gaussian random process.

1.3 Outline of the Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 and 3 focus on the

Bayesian hierarchical modeling of high-dimensional time series data on human mortality

data. Chapter 2 presents a method for projecting all-age smoking attributable fraction

(ASAF) for over 60 countries using a Bayesian hierarchical model. The result of this chapter

is used for modeling male-female life expectancy gap in Chapter 3. Chapter 3 focuses on

forecasting life expectancy at birth with the smoking effect incorporated for both genders

and over 60 countries simultaneously. Chapter 4 switches gears to provide the moment

bounds of high-dimensional autocovariance matrices estimation under weak dependence with

applications to some commonly used models in econometrics.
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Chapter 2

ESTIMATING AND FORECASTING THE
SMOKING-ATTRIBUTABLE MORTALITY FRACTION FOR

BOTH GENDERS JOINTLY IN OVER 60 COUNTRIES

2.1 Introduction

Smoking is known to have adverse impacts on health and is one of the leading preventable

causes of death (Peto et al., 1992; Bongaarts, 2014; Mons and Brenner, 2017). It is a

major risk factor for lung cancer, chronic obstructive pulmonary disease (COPD), respiratory

diseases, and vascular diseases, and tobacco use causes approximately 6 million deaths per

year (Britton, 2017). For instance, tobacco use causes more than 480,000 deaths per year in

the United States, accounting for about 20% of the total deaths of US adults, even though

smoking prevalence in United States has declined from 42% in the 1960s to 14% in 2018

(Mons and Brenner, 2017).

The smoking attributable fraction (SAF) is the proportion by which mortality would be

reduced if the population were not exposed to smoking. It is defined as

SAF =
nS
nD

,

where nS is the number of smokers who died because of their smoking habit and nD is the

total number of people who died. It can be shown that this is equivalent to

SAF =
p(r − 1)

p(r − 1) + 1
, (2.1)

where p is the underlying prevalence of smoking in the population and r is the risk of dying

of smokers divided by the risk of dying of nonsmokers in the population (Rosen, 2013).

Estimating and forecasting the SAF of mortality is essential for assessing how the smoking

epidemic influences mortality measures from the past to the future. First of all, nonlinear
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patterns of increase in life expectancy over time are partially due to the smoking epidemic.

Bongaarts (2006) used the SAF to calculate the non-smoking life expectancy, which turned

out to evolve in a more linear fashion than overall life expectancy (including smoking effects).

Janssen et al. (2013) used a similar technique to calculate the non-smoking attributable

mortality, and showed that its decline is more linear than that of overall mortality.

Second, smoking partly accounts for regional variations in mortality. In most developed

regions in the world including Western Europe, North America and some East Asian coun-

tries, the smoking epidemic among males started earlier than elsewhere, in the first half of the

20th century. The adverse effect of the smoking epidemic accumulated for several decades,

leading to SAF peaking in these countries around the 1980s. With the continuous decline

of male smoking prevalence in these countries due to anti-smoking movements and tobacco

control, years of life lost due to smoking began to decrease in recent decades. In contrast,

many developing countries are currently in the early stage of the smoking epidemic, with

high and increasing smoking prevalence among males, even though tobacco control policies

are in place.

Smoking also accounts for some subnational differences in mortality. For example, Fenelon

and Preston (2012) found that smoking accounts for the southern mortality disadvantage rel-

ative to other regions of the United States. They showed that smoking explained 65% of the

subnational variation in male mortality in 2004.

Third, changes in smoking mortality largely account for changes in the between-gender

differences in mortality. The gap in mortality between males and females has tended to first

widen and then narrow in most developed countries, and reduced between-gender differences

in smoking largely explain the current closing of the between-gender mortality gap (Pampel,

2006; Preston and Wang, 2006). Indeed, in these countries the female smoking epidemic

usually started one or two decades later than the male epidemic, and thereafter followed a

similar pattern. In mid- to low-income countries, female smoking-related mortality remains

low but still follows a similar rising-peaking-falling trend to the male one. The SAF for males

and females clearly follows the same general increasing-peaking-decreasing trend but with
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different times of onset, times-to-peak and maximum values (see Figure 2.1).

Therefore, estimating and forecasting the SAF can help to improve mortality forecasts

by taking the nonlinearity of mortality decline together with between-country and between-

gender differentials into account (Bongaarts, 2006; Janssen et al., 2013; Stoeldraijer et al.,

2015). Here we propose a new Bayesian hierarchical model to project SAF that captures

the observed increasing-peaking-declining trend so that it could be used for making better

mortality forecasts.

Estimating the SAF is not easy for several reasons (Bongaarts, 2014; Tachfouti et al.,

2014). First, the smoking habits of individuals can differ in terms of smoking intensity,

smoking history, types of tobacco used, as well as first-hand or second-hand smoking, so that

estimating the prevalence of smoking (p in Eq. 2.1) based on smoking behavior data is not

straightforward. Secondly, to estimate the relative risk of smoking (r in Eq. 2.1) requires

accurate cohort data. Such data are challenging to collect because smoking is not a direct

killer but rather has a lifelong impact, with deaths occurring mostly at older ages. The

American Cancer Society’s Cancer Prevention Study II (CPS-II), which began in 1982, is

so far the largest study that collects such data (Tachfouti et al., 2014). Thirdly, the quality

of registration and survey data varies across countries and between genders, which makes

estimation and comparison of SAF across countries difficult.

Three categories of methods have been proposed to estimate SAF. The first is prevalence-

based analysis in cohort studies (SAMMEC) (Levin, 1953). This uses estimated smoking

prevalence from surveys and relative risk from CPS-II. The second method is prevalence-

based analysis in case-control studies. This method is similar to the first one, except that the

relative risk is estimated from a case-control study. It has been used for India (Gajalakshmi

et al., 2003), Hong Kong (Lam et al., 2001), and China (Niu et al., 1998). The main drawback

of prevalence-based methods is the scarcity of reliable historical data on smoking prevalence,

especially for developing countries.

The third method, which overcomes this limitation, is an indirect method. It is called

the Peto-Lopez method and was first proposed by Peto et al. (1992). This method estimates
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the proportion of the population exposed to smoking using lung cancer mortality data, since

most lung cancer deaths are due to smoking in developed countries. According to Centers

for Disease Control and Prevention (2019), cigarette smoking is associated with more than

80% of lung cancer deaths in the United States. Simonato et al. (2001) also concluded by

case-control studies in 6 developed European countries that smoking is associated with over

90% of lung cancer cases. We use this method to estimate the SAF and we describe the

procedure in Section 2.2.3.

Another indirect method, the PGW method of Preston et al. (2009), also uses lung cancer

mortality rate as an indicator of the cumulative hazard of smoking. Instead of using relative

risks from the CPS-II as the Peto-Lopez method does, the PGW method adopts a regression-

based procedure. We discuss these two methods in Section 2.5.1. More comparisons among

different estimation methods of SAF can be found in Pérez-Ŕıos and Montes (2008), Tachfouti

et al. (2014), Kong et al. (2016), and Peters et al. (2016).

Figure 2.1 plots the estimated all-age SAF (ASAF) of males and females for the United

States from 1950 to 2015. It can be seen that the evolution of SAF over time follows a

remarkably strong pattern, first rising and then falling. Qualitatively very similar patterns

were found in most countries that we studied, although in countries with less good data,

higher levels of measurement error can be seen. It seems intuitive to expect that such a

regular pattern could be used to obtain good forecasts. Here we describe our method for

doing this. It turns out that, indeed, good forecasts can be obtained, thanks to the strong

and consistent pattern of SAF over time. Here we propose a new probabilistic projection

method for the SAF using a Bayesian hierarchical model. Our method will provide estimates

and projections of the SAF for both genders jointly for more than 60 countries.

The paper is organized as follows. The data, the detailed SAF calculation based on the

Peto-Lopez method, and the proposed Bayesian hierarchical model are described in Section

2.2. An out-of-sample validation experiment is reported in Section 2.3. We then discuss

general estimation and forecasting results for all the countries considered in this work, with

detailed case studies for four countries chosen from North America, South America, Asia,
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Figure 2.1: United States: All-age smoking attributable fractions of mortality for males and

females from 1950 to 2015, estimated using the Peto-Lopez method.

and Europe in Section 2.4. We conclude with a discussion in Section 2.5.

2.2 Method

2.2.1 Notation

We use the symbol y to denote the estimated (observed) all-age smoking attributable fraction

(ASAF), which is defined as the smoking attributable fraction for all age groups combined,

and we use the symbol h to denote the true (unobserved) ASAF. All of these quantities are

indexed by country c, gender s, and year t. The quantities of interest are the unobserved

true past and present ASAF together with their future projections. Here the estimation time

period is 1950–2015 and the projection time period is 2015–2050. Section 2.2.3 describes the

estimation procedure for ASAF using the Peto-Lopez method for all available countries. A

Bayesian hierarchical model will be used to model the estimated ASAF. In the Bayesian

hierarchical model, the country-specific parameter vector determining the time evolution
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pattern of ASAF for country c and gender s is denoted by θc,s, and the global parameters

by ψ.

2.2.2 Data

We use the annual death counts by country, age group, gender, and cause of death from the

WHO Mortality Database (World Health Organization, 2017) which covers data from 1950

to 2015 for more than 130 countries and regions around the world. This dataset comprises

death counts registered in national vital registration systems and is coded under the rules of

the International Classification of Diseases (ICD). There are 5 raw datasets available by the

most recent update on 11 April 2018. The first three datasets are labeled as ICD versions 7,

8, and 9 respectively, and the last two are labeled as ICD version 10.

Each version of ICD codes causes of death differently and a summary of the codes used

for estimating ASAF in Section 2.2.3 is given in Table 2.1. For each country, the death

counts data can differ by geographical coverage, number of years available and age group

breakdown. Some countries such as China only have data from selected regions, and these

countries will not be included here.

We use the quinquennial population by five-year age groups from the 2017 Revision of

the World Population Prospects (United Nations, 2017) for each country, gender and age

group. Since this dataset provides population estimates at five-year intervals, we use linear

interpolation to obtain annual population estimates for each five-year age group.

2.2.3 ASAF Estimation

We apply the original Peto-Lopez indirect method to estimate ASAF for male and female

separately. This method uses the lung cancer mortality rate as an indicator of the accu-

mulated hazard of smoking to estimate the proportion of population exposed to smoking.

As commented in Peto et al. (1992), it is very rare to observe lung cancer cases among

non-smokers in developed countries, even in areas with pollution sources such as radon and

asbestos. The original papers (Peto et al., 1992, 1994, 2006) applied the method to developed
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Table 2.1: ICD codes for different cause of death categories across versions.

Causes ICD-7 (A-list) ICD-8 (A-list) ICD-9 (09A, 09B)

Lung Cancer A050 A051 B101

Upper Aero-digestive Cancer A044, A045, A040 A045, A046, A050 B08, B090, B100

Other Cancer rest of A044-A059 rest of A045-A060 rest of B08-B14

COPD A092, A093 A093 B323, B324, B325

Other Respiratory rest of A087-A097 rest of A089-A096 rest of B31-B32

Vascular Disease A079-A086 A080-A088 B25-B30

Liver Cirrhosis A105 A102 A347

Other non-med A138-A150 A138-A150 B47-B56

Other medical rest rest rest

All causes A000 A000 B00

Causes ICD-9 (09N) ICD-10 (101) ICD-10 (103, 104, 10M)

Lung Cancer B101 1034 C33-C34

Upper Aero-digestive Cancer B08, B090, B100 1027, 1028, 1033 C00-C15, C32

Other Cancer rest of CH02 rest of 1027-1046 rest of C00-C97

COPD B323, B324, B325 1076 J40-J47

Other Respiratory rest of CH08 rest of 1072 J00-J99

Vascular Disease CH07 1064 I00-I99

Liver Cirrhosis S347 1080 K74, K70

Other non-med CH17 1095 V00-Y89

Other medical rest rest rest

All causes B00 1000 AAA
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countries only, especially in Western Europe and North America. With the shift of global

smoking pattern, and diffusion of smoking in middle- and low-income countries, this method

has been extended to less developed countries (Ezzati and Lopez, 2003, 2004; Pampel, 2006).

For estimating ASAF using the Peto-Lopez method, we need first to estimate age- and

cause-of-death-specific SAF. The age groups used for estimation are 0-34, 35-59, 60-64, 65-

69, 70-74, 75-79, and 80+. For each age group, annual death counts of the following nine

categories of causes of death are obtained from the five raw datasets of WHO Mortality

Database: lung cancer, upper aero-digestive cancer, other cancers, COPD, other respiratory

diseases, vascular diseases, liver cirrhosis, non-medical causes, and all other medical causes.

A detailed list of codes from ICD 7, 8, 9, and 10 for these nine categories is provided in Table

2.1.

The ICD categorizes death count data according to availability using so-called sublists,

which can be one of A-list or several others; see Table 2.1. The sublists we use are those

satisfying the minimum requirements for ASAF calculation. More specifically, for ICD 7 and

8, only countries whose ICD sublist is A-list are used. For ICD 9, only those countries whose

ICD sublist is 09A-, 09B-, or 09N-list are used. For ICD 10, countries whose ICD sublist is

one of 101-, 103-, 104-, 10M-list are used. In addition, we only calculate age-specific SAF

for countries whose age group breakdown is finer than the following age group breakdown:

0-34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, 75+. This corresponds to the

age group format number 00, 01, 02, 03, 04 in the raw datasets.

To estimate the proportion of a population exposed to smoking, i.e., p in Eq. 2.1, the

method compares the observed lung cancer mortality rate with the lung cancer mortality

rate of smokers estimated from CPS-II. The estimated proportion, indexed by country c, age

group a, gender s, and year t, is estimated by

pc,a,s,t =
dc,a,s,t − dSa,s
dSa,s − dNSa,s

,

where dc,a,s,t is the observed country-age-gender-year-specific lung cancer mortality rate, and

dSa,s and dNSa,s are age-gender-specific lung cancer mortality rates for smokers and nonsmokers
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from the CPS-II respectively. Here the observed lung cancer mortality rate dc,a,s,t is the

observed lung cancer death count divided by the population estimated from the 2017 Revision

of the World Population Prospects for country c, age group a, gender s, and year t.

The Peto-Lopez method uses the CPS-II to estimate the relative risk of dying for each

cause of death for smokers and nonsmokers, i.e., r in Eq. 2.1. Specifically, the Cochran-

Mantel-Haenszel method is used to estimate the relative risk for age group 35-59 by combining

five sub-age groups (35-39, 40-44, 45-49, 50-54, 55-59). The relative risk is indexed by cause-

of-death k, age group a, and gender s. Here k takes integer values 1-9 corresponding to the

nine categories mentioned above.

The excess mortality rate attributable to smoking is denoted by erk,a,s for cause-of-death

k, age group a, and gender s. For lung cancer, the excess mortality rate attributable to

smoking is calculated as er1,a,s = r1,a,s − 1. For all other categories except liver cirrhosis

(k = 7) and non-medical causes (k = 8), the excess risk is discounted by 50%, i.e., erk,a,s =

0.5(rk,a,s − 1) for k = 2, 3, 4, 5, 6, 9, so as to control for confounding factors. The excess

risks for liver cirrhosis and non-medical causes are set to 0, i.e., er7,a,s = er8,a,s = 0. The

country-cause-age-gender-year-specific SAF, denoted by yc,k,a,s,t, is then

yc,k,a,s,t =
pc,a,s,t × erk,a,s

pc,a,s,t × erk,a,s + 1
.

Any estimated negative values are set to zero.

Since the hazard due to smoking is accumulated across years and mostly causes deaths

at older ages, the fraction of deaths due to smoking for ages 0-34 is typically very small

and is set to 0. In addition, the SAF for ages 80+ is set to the same value as that for ages

75-79 since smoking data are unreliable for very old ages. Finally, the country-gender-year-

specific ASAF, denoted by yc,s,t, is a weighted average of the age-specific smoking attributable

fractions yc,k,a,s,t. Thus

yc,s,t =
∑
a

∑
k

yc,k,a,s,t × dc,k,a,s,t,

where dc,k,a,s,t is the country-cause-age-gender-year-specific mortality rate.
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We chose the Peto-Lopez method to estimate the ASAF because it has been validated

and widely used (Preston et al., 2009; Bongaarts, 2014; Tachfouti et al., 2014; Kong et al.,

2016). Also, the data required for the estimation are cause- and age-specific death counts

and population, which are provided with high quality by the WHO Mortality Database and

the 2017 Revision of the World Population Prospects.

There are some variants of the Peto-Lopez method, which also assume that the lung

cancer mortality rate is a good indicator for measuring smoking exposure. Some of the

modifications include using different relative risk estimation instead of the CPS-II to extend

the method to developing countries (Ezzati and Lopez, 2003) or using a regression-based ap-

proach (Preston et al., 2009). Section 2.5.1 contains more detailed discussion and comparison

of these methods.

2.2.4 Model

We develop a four-level Bayesian hierarchical framework to model male and female ASAF

jointly for multiple regions simultaneously.

Random walk with drift for the true ASAF The observed ASAF data show a strong

and consistent pattern of increasing, then leveling, and then declining again for both genderes

(Stoeldraijer et al., 2015) (see Figure 2.1 for the example of United States). This pattern

can be captured by the following five-parameter double logistic curve:

g(t|θ) =
k

1 + exp{−a1(t− 1950− a2)}
− k

1 + exp{−a3(t− 1950− a2 − a4)}
, (2.2)

where t is the year of observation and θ is the double-logistic parameter vector, θ = (a1, a2, a3, a4, k).

Models based on the double logistic curve have been used quite widely for human popula-

tion measures such as life expectancy and total fertility rates (Marchetti et al., 1996; Raftery

et al., 2013; Alkema et al., 2011)). Due to its natural scientific interpretability, the double

logistic curve has also been used in other scientific fields such as hematology (Head and

McCarty, 1987; Head et al., 2004), phenology (Yang et al., 2012), and agricultural science
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(Shabani et al., 2018). This function has also been used to describe social change, diffusion,

and substitution processes (Grübler et al., 1999; Fokas, 2007; Kucharavy and De Guio, 2011).

Most developed countries have had male smoking prevalence that started before 1950,

and peaked around the 1950s or 1960s when the adverse impacts of smoking on health

became known and tobacco control measures started being put in place. This led to a

peak in smoking-related mortality a generation or so later, followed by a continuous decline

since then. Pampel (2005) argued that the smoking epidemic involves diffusion from males

to females, and from more developed countries to less developed ones. Hence, the strong

increasing-peaking-decreasing trend of ASAF observed in most countries is a consequence of

the smoking epidemic diffusion process, and the double logistic curve can naturally describe

its dynamics.

For the five-parameter double logistic function in Eq. 2.2, a2 controls the first (left)

inflection point of the curve and a4 controls the distance between the first (left) and the

second (right) inflection points. The rates of change at these inflection points are controlled

by a1 and a3 respectively. The parameter k is an upper bound for the maximum value of

the curve. See the left panel of Figure 2.2 for an illustration.

To represent this and also take account of the observed pattern of variability, we model

changes in the true ASAF between adjacent time points using a random walk with drift

given by the difference between the double logistic curve at the two points. This takes the

form

hc,s,t = hc,s,t−1 + g(t|θc,s)− g(t− 1|θc,s) + εhc,s,t, (2.3)

where g(·|θc,s) (i.e., Eq. 2.2) quantifies the expected change of the true ASAF governed

by the country- and gender-specific parameters θc,s = (ac,s1 , ac,s2 , ac,s3 , ac,s4 , kc,s), and εhc,s,t are

independent Gaussian noises. This random walk with drift model is designed to capture

the variability of the true ASAF and allows the uncertainty of the forecast to increase when

projecting further into the future.
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Figure 2.2: Left: The five-parameter double logistic curve. a2 controls the left inflection

point, a4 controls the distance between left and right inflections points, a1, a3 determine the

rate of change at left and right inflection points, and k approximates the maximum value.

Right: The difference of country-specific am2 and af2 plotted against the difference between

the country-specific peaks for males and females. The peak and a2 are estimated from the

countries whose male and female ASAF have all passed the maximum by 2015, according to

the results of the non-linear least squares estimation. The solid line is the 45 degree line.

Male-female joint model Since the female smoking epidemic usually starts one to two

decades after the male one, the start of the increase in the female ASAF is also later than that

of the male ASAF. For most countries, the observed female ASAF is still in the increasing

or leveling phase up to 2015. However, as the smoking epidemic diffuses from the male

to the female population, it is reasonable to assume that the female ASAF will follow the

same trend of increasing-leveling-declining as that of the male ASAF. This has already been

observed for several countries with early smoking epidemics, such as the United Kingdom,

Denmark, and Japan (Pampel, 2005; Peto et al., 2006; Janssen et al., 2013; Bongaarts, 2014;

Stoeldraijer et al., 2015). For these countries, the female ASAF follows the same trend as
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that of the male ASAF, but differs mainly in terms of the rate of increase or decrease, the

number of years taken to reach the peak, and the peak ASAF value.

For males, we need only estimate the rate of decline of the ASAF. For females, especially

for those countries whose observed ASAF data have not levelled yet, one needs first to

determine the time and value of leveling. By modeling male and female data jointly, the

right panel of Figure 2.2 shows that for countries whose male and female ASAF both passed

the leveling period, the difference between the years of maximum of male and female is

approximately the same as the difference in the a2 parameter estimated from Eq. 2.2. The

a2 parameter represents the time point where the speed of the increasing part of the double

logistic curve begins to slow down.

The difference between the times-to-peak of male and female ASAF also differs among

countries. For example, the time-to-peak of the female ASAF in the United States is about

15 years later than that of the male ASAF, while the time-to-peak of the ASAF happened

at about the same time for both genders in Hong Kong. To incorporate these observa-

tions, we model the difference between male and female country-specific ac2 using a Gaussian

distribution:

ac,f2 = ac,m2 +4c
a2
, 4c

a2
|4a2 , σ

2
4a2
∼ N (4a2 , σ

2
4a2

), (2.4)

where ac,m2 and ac,f2 are the country- and gender-specific values of a2, and 4c
a2

is the country-

specific difference between these two parameters with prior mean 4a2 and variance σ2
4a2

.

Moreover, since there are very few countries whose female ASAF have begun to decline

by 2015, while the male ASAF has been declining for many years in most countries, we set

the same global parameters for the gender-specific parameters ac,m4 and ac,f4 for each country,

namely,

ac,m4 , ac,f4 |a4, σ
2
a4

ind∼ N (a4, σ
2
a4

). (2.5)

Except for ac4, the other four country-specific parameters of the double logistic curve are

conditioned on their own gender-specific global parameters.
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Measurement error model for observed ASAF The observed country-gender-year-

specific ASAF yc,s,t are modeled based on the true (unobserved) ASAF hc,s,t by incorporating

measurement error due to the variability of data quality across different countries:

yc,s,t|hc,s,t, σ2
c ∼ind N (hc,t,s, σ

2
c ). (2.6)

We assume that the variance of the observed ASAF for each country is time- and gender-

invariant based on exploratory analyses that indicate that the data quality is consistent

across time and between genders within the same country.

Summary of model We combine the Bayesian hierarchical model and measurement error

model into a four-level Bayesian hierarchical model. We model the observed ASAF estimates

using the measurement error model in Level 1, conditional on the true (unobserved) ASAF

data which are modeled with a random walk with drift in Level 2, conditional on the country-

specific parameters. Country-specific parameters are modeled in Level 3, where parameters

for male and female ASAF are modelled jointly conditional on the global parameters, whose

prior distributions are specified in Level 4.

The overall model is specified as follows:

Level 1: yc,s,t|hc,s,t ∼ N (hc,s,t, σ
2
c );

Level 2: hc,s,t0,c = g(t0,c|θc,s) + εhc,s,t0,c ,

hc,s,t = hc,s,t−1 + g(t|θc,s)− g(t− 1|θc,s) + εhc,s,t for t > t0,c,

εhc,s,t
ind∼ N (0, σ2

h);

Level 3: θc,s ∼ f(·|ψ),

σ2
c ∼ Lognormal(ν, ρ2);

Level 4: ψ, ν, ρ2, σ2
h ∼ π(·).

Here, t0,c is the year of the first available ASAF data for country c, g denotes the five-

parameter double logistic curve in Eq. 2.2, f denotes the conditional distribution of the
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country-specific parameters θc,s, and π denotes the hyperpriors for the global parameters

ψ, ν, ρ2, σ2
h. The country-specific parameters θc,s = (ac,s1 , ac,s2 , ac,s3 , ac,s4 , kc,s) are gender-specific

and the interaction between male and female parameters are governed by Eq. 2.4 and 2.5.

The global parameters ψ = (am1 , a
m
2 , a

m
3 , a4, k

m, af1 , a
f
3 , k

f ,4a2 , σ
2
am2
, σ2

a4
, σ2

km , σ
2
kf
, σ2
4a2

) are

also gender-specific except for 4a2 , σ
2
4a2

, a4, σ
2
a4

. More information about the specification

of the full model is given in the Appendix A.1.

Estimation and prediction Statistical analysis of the model is carried out in two phases,

estimation and prediction. The goal of the estimation phase is to obtain the joint posterior

distribution of the true ASAF hc,s,t during the estimation period 1950–2015 and the country-

specific parameters for the underlying double-logistic curve. The aim of the prediction phase

is to forecast the future ASAF of both genders for the prediction period 2015–2050 based on

the observed ASAF for over 60 countries whose male ASAF data are classifed as clear-pattern

(see Section 2.2.5 for the definition of clear-pattern).

The functional form of the prior distribution π(·) is assessed using results from non-

linear least squares estimation based on clear-pattern countries (see Section 2.2.5 for details).

Specifically, the priors for (am1 , a
m
2 , a

m
3 , a4, k

m, σ2
am2
, σ2

a4
, σ2

km , σ
2
am2
, σ2

a4
, σ2

km) are based on non-

linear least squares results from the male ASAF of over 60 clear-pattern countries, the prior

for af1 is estimated based on non-linear least squares results from the female ASAF of 52 clear-

pattern countries, the priors for (af3 , k
f , σ2

af3
) are set to the same priors as their counterparts

for males, while the priors for (4a2 , σ
2
4a2

) are estimated based on 19 countries for which both

male and female ASAF have passed the leveling stage by 2015. The priors for ν, ρ2, σ2
h are

estimated by pooling male and female ASAF from all clear-pattern countries. A complete

specification of the model is given in the Appendix A.1.

2.2.5 ASAF Categorization

We categorize estimated ASAF for 127 countries and regions into two categories according

to the data availability and quality: clear-pattern and non-clear-pattern. On one hand,
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the Peto-Lopez method is not guaranteed to produce reliable ASAF estimates for some less

developed countries because of poor data quality. On the other hand, modeling only with

clear-pattern countries can improve estimation and projection accuracy without introducing

too much random noise.

The classification is based on non-linear least squares estimation of the following model

for each country and gender separately:

yt = g(t|θ) + εt,

where g(t|θ) is as in Eq. 2.2 and εt are independent standard Gaussian errors. Its fit to the

data in a given country provides an indication of data quality for that country.

Our categorization is based on the number of observations, maximum of observed values,

and the R2 value of the non-linear least squares fit. Due to the differences between the

diffusion processes of smoking in the male and female populations (Pampel, 2006), we use

different criteria for male and female data. For male data, we require that (1) the number

of available annual observations up to 2015 be greater than 10; (2) at least one of the

observations be greater than 0.05; and (3) that the R2 value be greater than 0.5.

For female data, since the smoking epidemic in general started one to two decades later

than the male one, the onset and the value of the ASAF is later and smaller than that of

the male epidemic (Pampel, 2005; Preston and Wang, 2006). The criteria for female data

are that (1) the number of observations up to 2015 be greater than 10; (2) at least one of

the observations be greater than 0.01; and (3) that the R2 value be greater than 0.6.

By these rules, there are over 60 countries whose male data are classifed as clear-pattern

(2 in Africa, 16 in the Americas, 9 in Asia, 40 in Europe and 2 in Oceania), and 52 countries

whose female data are classified as clear-pattern (12 in the Americas, 7 in Asia, 31 in Europe

and 2 in Oceania).
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2.2.6 Estimation

Estimation is based on the male and female ASAF data from over 60 countries whose male

ASAF is classified as clear-pattern for the period 1950–2015. The reason why we chose clear-

pattern ASAF data is that non-clear-pattern data either have too few observations, very low

values, or their shapes are not identifiable.

We used the Rstan package (Version 2.18.2) in R to obtain the joint posterior distributions

of the parameters of interest (Carpenter et al., 2017). Rstan uses a No-U-turn sampler, which

is an adaptive variant of Hamiltonian Monte Carlo (Neal, 2011; Hoffman and Gelman, 2014).

We ran 3 chains with different initial values, each of length 10,000 iterations with a burn-in of

2,000 without thining. This yielded a final, approximately independent sample of size 8,000

for each chain. We monitored convergence by inspecting trace plots and using standard

convergence diagnostics.

We also conducted a sensitivity analysis on the hyperparameters that specify the priors

π(·) for the global parameters ψ, and concluded that the proposed model is not sensitive to

the choice of hyperparameters. More information about the convergence diagnostics and the

sensitivity analysis is given in the Appendix A.2 and A.3.

2.2.7 Projection

We produce projections of future ASAF for the period 2015–2050 for over 60 countries whose

male ASAF is classified as clear-pattern. The prediction of future ASAF for each country

is based on past and present ASAF. We sample from the joint posterior distribution of the

country-specific parameters θc,s and of the past, and present true ASAF hc,s,t. We then

use Eq. 2.3 and 2.6 to generate a sample of trajectories of future true and observed ASAF

respectively from their joint posterior predictive distribution. It is possible that the quantity

generated by Eq. 2.3 and Eq. 2.6 is negative, and we set such values to zero. This yields

a sample from the joint posterior predictive distribution of the future ASAF for over 60

countries, for both genders, taking account of uncertainty about the past observations as
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well as the future evolution. We include the plots of ASAF projections for over 60 countries

and both genders in the Appendix A.4.

2.3 Results

We assess the predictive performance of our model using out-of-sample predictive validation.

2.3.1 Study Design

The data we used for out-of-sample validation cover the period 1950–2015. We assess the

quality of our model based on different choices of estimation and validation data from the

observed data. Since the trend of increasing-leveling-declining pattern plays an important

role for estimation and projection, assessing how the model works when only part of the trend

has been observed is crucial. We consider different choices for estimation and validation

periods, namely (1) 1950– 2000 for estimation and 2000–2015 for validation; (2) 1950–2005

for estimation and 2005–2015 and for validation; and (3) 1950–2010 for estimation, 2010–

2015 for validation. The countries used for validation in each time-split scenario are required

to be clear-pattern countries based on the male ASAF, to contain more than 10 observations

in the estimation period, and to have at least one observation in the prediction period.

This results in 63, 66 and 66 countries used for validation under choices (1), (2) and (3),

respectively.

Since we are making probabilistic projections, our evaluation is based on both accuracy

of point prediction and calibration of prediction intervals. Our goal is not only to produce

accurate point predictions, but also to account for variability of future predictions based on

historic data, especially for those countries whose data in the estimation period reveal only

part of the pattern. If the proposed model works well, we would expect the point predictor

to have small gender-specific mean absolute error (MAE), which is defined as

MAEs =
1

N

∑
c∈C

∑
t∈Tc

|ŷc,s,t − yc,s,t|, (2.7)
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where C is the set of countries considered in the validation, Tc is the set of country-year

combinations used for validation, ŷc,s,t is the posterior median of the predictive distribution

of ASAF at year t for country c and gender s, and N is the total number of data used for

validation.

We wish the prediction to be well calibrated and sharp, i.e., the coverage of the prediction

interval to be close to the nominal level with its half-width as short as possible. Thus, we

include the empirical coverage and the half-width of the prediction interval in the validation.

To assess the overall predictive performance, we also calculate the gender-specific continuous

ranked probability score (CRPS) (Gneiting and Raftery, 2007), which is defined as

CRPSs =
1

|C|
∑
c∈C

[
1

|Tc|
∑
t∈Tc

∫ ∞
−∞
{Fc,s,t(y)− 1(yc,s,t ≤ y)}2dy

]
, (2.8)

where Fc,s,t(y) is the predictive distribution of the future ASAF for country c, gender s,

and time t, and 1(·) is equal to 1 if the condition in the parenthesis is satisfied and 0

otherwise. CRPS is a summary statistic measuring the quality of the probabilistic forecast,

which evaluates model calibration and sharpness simultaneously. The smaller the CRPS, the

closer the predictive distribution to the true data-generating distribution.

2.3.2 Out-of-sample Validation Results

To our knowledge, no other method is available in the literature to produce probabilistic

forecasts for male and female ASAF for developed and developing countries jointly. Janssen

et al. (2013) and Stoeldraijer et al. (2015) developed methods for projection of age-specific

SAF and age-standardized SAF, and their methods are based on age-period-cohort analysis,

which cannot be trivially extended to ASAF. See Section 2.5.2 for more discussion of their

procedures and comparison to the present ones.

As benchmarks against which to compare our method, we consider four other forecast

procedures. The first one is the persistence forecast, which takes the last observed value

as the forecast for the prediction period. The second method is the Bayesian thin plate

regression spline method (Wood, 2003), implemented in the mgcv package (Version 1.8-27)
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in R. The third method is the Bayesian structural time series model (Harvey, 1990; Durbin

and Koopman, 2012), implemented in the bsts package (Version 0.8.0) in R. Here we choose

to use two state components — local linear trend and autocorrelation with lag 1 — to

build the structural time series model. Our fourth comparison method is a non-hierarchical

version of our proposed model, namely our proposed model without Level 4 (i.e., the global

parameters). This is included to see whether the hierarchical structure is necessary.

We summarize the validation results in Table 2.2 for males and females separately. This

shows the MAE, the coverage and half-width of the prediction intervals, and the continuous

ranked probability score (CRPS). For males, our method improved the prediction accuracy

for all three scenarios over the persistence forecast. For forecasting one and two five-year

periods ahead, our method improved the MAE by 30% and 21% respectively. Since most male

ASAF series had passed the peak by 2005 and had experienced declines for several years, the

double logistic curve captures this trend well. For predictions three five-year periods into the

future, during which the male ASAF series for some countries were just reaching the peak,

our method still improved the MAE by 6%. For females, we observed similar improvements.

Our method decreased the MAE by 22%, 17%, and 27% for predictions one, two, and, three

five-year periods ahead compared to those of the persistence forecast.

Also, compared with other probabilistic forecast methods, our method produced shorter

prediction intervals with empirical coverages close to the nominal level for one and two five-

year predictions, while it produced predictive intervals with reasonably close to nomial for

the three five-year predictions for the male ASAF. On the other hand, since most female

ASAF series have not yet reached the peak, capturing the variability of future female ASAF

is essential. The coverage of our method is close to the nominal level, indicating that our

method is well calibrated.

Overall, our proposed BHM yielded the smallest CRPS among all methods in most cases

for both the male and female epidemics. Among all five methods compared in the validation

exercise, the Bayesian spline method was worst in terms of forecast accuracy, and tended

to underestimate the variability of future values. The Bayesian structural time series model
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produced predictive interval close to the nominal level with slightly larger average half-

width than our method. However, a significant drawback of the persistence forecast, the

Bayesian spline method, and the Bayesian structural time series model is that they tend to

produce unrealistic forecasts when all the observed data are before the peak, since they do

not incorporate the increasing-peaking-decreasing information in the model. The left panel

of Figure 2.3 indicates that the Bayesian thin plate spline method projected a monotonically

increasing ASAF for United States female based on data before 2000, where the entire

prediction interval missed the observed data after 2000. The right panel of Figure 2.3 shows

that the Bayesian structural time series model did cover the data but with an unrealistically

wide prediction interval.

The Bayesian model without the global level parameters produced results similar to those

from our BHM for projecting short term male ASAF. When forecasting three five-year periods

ahead, or the female ASAF, in both of which cases the peak has often not been reached, the

Bayesian model without the global level parameters was worse in accuracy and CRPS. This

indicates that the hierarchical structure did indeed improve the overall forecast when only

part of the trend has been observed, by sharing information among all the countries.

Table 2.3 gives validation results for subgroups of countries, categorized by membership of

the Organization for Economic Cooperation and Development (OECD). Most of the countries

in the OECD are regarded as developed countries with high GDP and human development

index (HDI). For male ASAF, our BHM improved most of the forecasts for OECD coun-

tries, especially the longer term projections. For OECD countries, the increasing-peaking-

decreasing pattern is clearer and stronger, which fits with our modeling well. In contrast,

our BHM performed less well among non-OECD countries.
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Table 2.2: Predictive validation results for all-age smoking attributable fraction (ASAF).

The first and second columns indicate the estimation and validation periods . The “Gender”

and “n” columns indicate the gender and the number of countries used for the validation. In

the “Model” column, “Bayes” represents the Bayesian hierarchcial model with measurement

error and random walk with drift, “Bayes(S)” represents the same model as “Bayes” without

the global parameters, “Persistence” represents the persistence forecast, “Spline” represents

the Bayesian thin plate regression spline method, and “BSTS” represents the Bayesian struc-

tural time series method. The “MAE” column contains the mean absolute prediction error

defined by Eq. 2.7. The “Coverage” columns show the proportion of validation observations

contained in the 80%, 90%, 95% prediction intervals with their average half-widths in paren-

theses. The “CRPS” column contains the continuous ranked probability score defined by

Eq. 2.8.

Training Test n Gender Model MAE
Coverage

CRPS
80% 90% 95%

1950–2010 2010–2015 66

Male

Persistence 0.010 - - - -

Bayes 0.007 0.78 (0.011) 0.86 (0.014) 0.90 (0.017) 0.00523

Bayes(S) 0.007 0.86 (0.014) 0.94 (0.018) 0.97 (0.022) 0.00505

Spline 0.008 0.58 (0.009) 0.65 (0.011) 0.72 (0.013) 0.00648

BSTS 0.008 0.85 (0.015) 0.94 (0.020) 0.94 (0.025) 0.00570

Female

Persistence 0.009 - - - -

Bayes 0.007 0.83 (0.012) 0.93 (0.015) 0.96 (0.018) 0.00507

Bayes(S) 0.008 0.88 (0.014) 0.94 (0.018) 0.97 (0.022) 0.00538

Spline 0.010 0.42 (0.007) 0.52 (0.009) 0.61 (0.011) 0.00763

BSTS 0.008 0.80 (0.013) 0.89 (0.016) 0.94 (0.020) 0.00562

Continued on next page
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Table 2.2 – Continued from previous page

Training Test n Gender Model MAE
Coverage

CRPS
80% 90% 95%

1950–2005 2005–2015 66

Male

Persistence 0.014 - - - -

Bayes 0.011 0.72 (0.014) 0.83 (0.018) 0.89 (0.022) 0.00797

Bayes(S) 0.010 0.85 (0.020) 0.93 (0.027) 0.97 (0.033) 0.00795

Spline 0.014 0.54 (0.014) 0.65 (0.018) 0.72 (0.021) 0.01096

BSTS 0.013 0.83 (0.026) 0.90 (0.035) 0.95 (0.043) 0.00989

Female

Persistence 0.012 - - - -

Bayes 0.010 0.80 (0.015) 0.90 (0.020) 0.92 (0.025) 0.00721

Bayes(S) 0.011 0.88 (0.021) 0.93 (0.028) 0.95 (0.035) 0.00808

Spline 0.014 0.44 (0.011) 0.51 (0.014) 0.58 (0.016) 0.01133

BSTS 0.011 0.77 (0.017) 0.88 (0.023) 0.93 (0.029) 0.00802

1950–2000 2000–2015 63

Male

Persistence 0.017 - - - -

Bayes 0.016 0.65 (0.020) 0.76 (0.026) 0.84 (0.031) 0.01214

Bayes(S) 0.018 0.84 (0.031) 0.92 (0.042) 0.95 (0.052) 0.01278

Spline 0.018 0.59 (0.019) 0.69 (0.024) 0.76 (0.029) 0.01335

BSTS 0.016 0.85 (0.039) 0.93 (0.053) 0.98 (0.068) 0.01281

Female

Persistence 0.015 - - - -

Bayes 0.011 0.81 (0.021) 0.90 (0.029) 0.95 (0.037) 0.00817

Bayes(S) 0.012 0.88 (0.027) 0.96 (0.039) 0.98 (0.050) 0.00887

Spline 0.016 0.48 (0.014) 0.59 (0.018) 0.70 (0.022) 0.01151

BSTS 0.012 0.79 (0.022) 0.89 (0.030) 0.94 (0.039) 0.00831
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Table 2.3: Predictive validation results for all-age smoking attributable fraction (ASAF) for

categories of countries. The “OECD” column represents whether the countries in the sub-

group belong to the OECD. The number of countries in the subgroup used for the validation

is in parentheses. All the other columns are the same as those in Table 2.2.

Training Test Gender OECD Model MAE
Coverage

ACRPS
80% 90% 95%

1950–2010 2010–2015

Male

Y(34)

Persistence 0.011 - - - -

Bayes 0.006 0.81 (0.011) 0.90 (0.014) 0.95 (0.016) 0.00448

Bayes(S) 0.006 0.88 (0.013) 0.94 (0.017) 0.99 (0.021) 0.00459

Spline 0.007 0.60 (0.008) 0.67 (0.010) 0.73 (0.012) 0.00565

BSTS 0.007 0.86 (0.014) 0.95 (0.018) 0.98 (0.022) 0.00529

N(32)

Persistence 0.008 - - - -

Bayes 0.009 0.75 (0.011) 0.81 (0.015) 0.84 (0.018) 0.00601

Bayes(S) 0.008 0.85 (0.015) 0.92 (0.019) 0.94 (0.023) 0.00554

Spline 0.010 0.56(0.010) 0.63 (0.012) 0.70 (0.015) 0.00736

BSTS 0.009 0.86 (0.017) 0.95 (0.023) 0.98 (0.028) 0.00629

Female

Y(34)

Persistence 0.009 - - - -

Bayes 0.007 0.82 (0.011) 0.92 (0.015) 0.94 (0.018) 0.00505

Bayes(S) 0.008 0.86 (0.013) 0.93 (0.017) 0.96 (0.021) 0.00560

Spline 0.010 0.42 (0.007) 0.51 (0.008) 0.58 (0.010) 0.00762

BSTS 0.009 0.78 (0.012) 0.85 (0.015) 0.91 (0.019) 0.00616

N(32)

Persistence 0.008 - - - -

Bayes 0.008 0.83 (0.012) 0.95 (0.015) 0.95 (0.018) 0.00507

Bayes(S) 0.007 0.89 (0.015) 0.95 (0.019) 0.98 (0.023) 0.00516

Spline 0.011 0.42(0.008) 0.54 (0.010) 0.63 (0.012) 0.00764

BSTS 0.007 0.82 (0.013) 0.89 (0.017) 0.94 (0.021) 0.00506

Continued on next page
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Table 2.3 – Continued from previous page

Training Test Gender OECD Model MAE
Coverage

ACRPS
80% 90% 95%

1950–2005 2005–2015

Male

Y(34)

Persistence 0.016 - - - -

Bayes 0.010 0.73 (0.014) 0.85 (0.018) 0.90 (0.021) 0.00676

Bayes(S) 0.010 0.84 (0.019) 0.93 (0.025) 0.97 (0.032) 0.00717

Spline 0.013 0.52 (0.012) 0.61 (0.015) 0.69 (0.018) 0.01008

BSTS 0.012 0.85 (0.028) 0.91 (0.039) 0.97 (0.049) 0.01000

N(32)

Persistence 0.011 - - - -

Bayes 0.012 0.70 (0.014) 0.81 (0.019) 0.88 (0.022) 0.00928

Bayes(S) 0.011 0.87 (0.021) 0.93 (0.029) 0.96 (0.035) 0.00879

Spline 0.015 0.57 (0.016) 0.68 (0.020) 0.76 (0.024) 0.01189

BSTS 0.013 0.83 (0.026) 0.90 (0.035) 0.95 (0.043) 0.00989

Female

Y(34)

Persistence 0.012 - - - -

Bayes 0.009 0.82 (0.015) 0.92 (0.020) 0.95 (0.025) 0.00669

Bayes(S) 0.010 0.88 (0.019) 0.95 (0.025) 0.96 (0.032) 0.00736

Spline 0.012 0.38 (0.008) 0.45 (0.011) 0.52 (0.013) 0.00945

BSTS 0.012 0.82 (0.019) 0.90 (0.026) 0.92 (0.033) 0.00851

N(32)

Persistence 0.013 - - - -

Bayes 0.011 0.78 (0.015) 0.88 (0.020) 0.90 (0.025) 0.00780

Bayes(S) 0.012 0.88 (0.023) 0.91 (0.031) 0.93 (0.039) 0.00885

Spline 0.017 0.51 (0.013) 0.58 (0.017) 0.66 (0.020) 0.01333

BSTS 0.011 0.77 (0.017) 0.88 (0.023) 0.93 (0.029) 0.00802

Continued on next page
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Table 2.3 – Continued from previous page

Training Test Gender OECD Model MAE
Coverage

ACRPS
80% 90% 95%

1950–2000 2000–2015

Male

Y(33)

Persistence 0.018 - - - -

Bayes 0.014 0.67 (0.020) 0.79 (0.026) 0.88 (0.032) 0.01063

Bayes(S) 0.017 0.83 (0.030) 0.90 (0.040) 0.95 (0.050) 0.01221

Spline 0.017 0.58 (0.015) 0.68 (0.020) 0.74 (0.023) 0.01338

BSTS 0.018 0.88 (0.035) 0.93 (0.047) 0.97 (0.060) 0.01308

N(30)

Persistence 0.017 - - - -

Bayes 0.019 0.63 (0.020) 0.72 (0.026) 0.80 (0.031) 0.01377

Bayes(S) 0.018 0.86 (0.032) 0.93 (0.042) 0.95 (0.053) 0.01341

Spline 0.018 0.60 (0.022) 0.71 (0.029) 0.79 (0.034) 0.01331

BSTS 0.016 0.85 (0.045) 0.94 (0.063) 0.98 (0.082) 0.01308

Female

Y(33)

Persistence 0.016 - - - -

Bayes 0.011 0.80 (0.021) 0.89 (0.029) 0.95 (0.037) 0.00817

Bayes(S) 0.013 0.84 (0.028) 0.94 (0.038) 0.97 (0.048) 0.00981

Spline 0.016 0.41 (0.012) 0.54 (0.015) 0.62 (0.018) 0.01230

BSTS 0.011 0.73 (0.016) 0.86 (0.022) 0.92 (0.027) 0.00777

N(30)

Persistence 0.013 - - - -

Bayes 0.010 0.82 (0.017) 0.92 (0.023) 0.95 (0.030) 0.00699

Bayes(S) 0.010 0.93 (0.028) 0.98 (0.040) 0.99 (0.052) 0.00784

Spline 0.016 0.56 (0.017) 0.66 (0.022) 0.79 (0.026) 0.01066

BSTS 0.010 0.86 (0.022) 0.94 (0.030) 0.95 (0.039) 0.00735
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Figure 2.3: Forecast of United States female ASAF based on data before 2000 using Bayesian

spline method (left) and Bayesian structured time series method (right). Black dots are

observed ASAF. The solid and dashed line represent posterior median and 95% predictive

interval, respectively.

Figure 2.4 shows validation results for the male ASAF of four countries or regions for

predictions three five-year periods ahead. We see that our method works quite well for the

United States and Hong Kong, and the prediction interval captures the variability of the

male ASAF of Chile. Figure 2.5 shows the results from Scenario (1) where most female

ASAF of countries among the examples have not reached the peak by the year 2000. We see

that the posterior median of the predictive distribution captures the general trend of future

female ASAF of the United States, the Netherlands, and Chile reasonably well. For countries

or regions like Hong Kong whose female ASAF already passed the peak, our method also

accurately estimates the rate of decline.
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Figure 2.4: Validation of male all-age smoking attributable fraction for the United States,

Netherlands, Hong Kong, and Chile. Past observed ASAF values are shown by black dots

for 1950–2000 and by black squares for 2000–2015. The posterior median for 2000–2015 is

shown by the solid line, and the 80% and 95% prediction intervals are shown by dotted and

dashed lines respectively.

2.4 Case Studies

Probabilistic forecasts of ASAF to 2050 are given in the Appendix A.4 for over 60 countries.

Broadly, the patterns in the OECD countries are similar, with male ASAF having declined
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Figure 2.5: Validation of female all-age smoking attributable fraction for the United States,

Netherlands, Hong Kong, and Chile. Past observed ASAF values are shown by black dots

for 1950–2000 and by black squares for 2000–2015. The posterior median for 2000–2015 is

shown by the solid line, and the 80% and 95% prediction intervals are shown by dotted and

dashed lines respectively.

from about 30% in the 1990s to around 15% in 2015, with further declines projected to 2050,

reaching around 5%. The patterns vary more for females in OECD, and for both males

and females in non-OECD countries because they are currently at different stages of the



39

epidemic.

We now give four cases studies which illustrate various aspects of the proposed method

for estimating and forecasting ASAF.

2.4.1 United States

The annual ASAF for both male and female for the time period 1950–2015 is shown in Figure

2.1. The very clear pattern is due to the high quality of the data, reflecting the fact that the

United States has one of the the best vital registration systems in the world.

The smoking epidemic in the male population in the United States started in the earlier

1900s, and there was a substantial decrease of smoking prevalence and lung cancer mortality

rate after the 1950s. Smoking prevalence among US male adults was approximately 60% in

1950s, and went down to about 20% in the 1990s, and the general decline is still continuing

(Burns et al., 1997; Islami et al., 2015). The observed ASAF levelled around the 1990s and

declined afterwards. We forecast that by 2050, the median observed ASAF for US males

will be around 4.3% (with 95% prediction interval [0.0%, 8.3%]). Because the measurement

error for the US is tiny, the projected true ASAF (long dashed line for posterior mean and

dotted line for 95% predictive interval in Figure 2.6) for US males is almost equal to that of

the observed ASAF.

The female smoking epidemic started two decades later than the male one and the maxi-

mum prevalence was around 30% in the 1960s, and then declined to about 20% in the 1990s

(Burns et al., 1997). The pattern of smoking prevalence among US females is similar to

that for males, but around 20 years behind (Burns et al., 1997; Islami et al., 2015). The

female ASAF started to rise around the 1960s and reached its peak of 23% around 2005.

We forecast that by 2050, the median observed ASAF for US females will be around 2.7%

(with 95% prediction interval [0.0%, 9.3%]). Similarly, the projected US female true ASAF

follows closely with that of the observed ASAF. Figure 2.6 shows the historical records of the

observed male and female ASAF during the time period 1950–2015, along with projections

up to 2050 with posterior median and prediction intervals.
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Figure 2.6: ASAF projection of the United States. The left and right panels show the

projection of ASAF up to 2050 under the proposed model for male and female respectively.

The solid and long dashed lines show the posterior median of projected observed ASAF and

true ASAF respectively. The dashed and dotted lines represent 95% prediction intervals for

observed ASAF and true ASAF respectively.

2.4.2 The Netherlands

The Netherlands is a high-income western Europe country whose smoking epidemic started

relatively early. Smoking prevalence reached 90% in the 1950s and dropped to 30% in the

2010s. The male observed ASAF in Netherlands passed its maximum ASAF around the

1990s and we project that it will go down to around 5.7% (with 95% prediction interval

[1.4%, 9.7%]) in 2050.

For females, smoking prevalence is also relatively high, and reached its peak of about

40% in the 1970s and dropped to 24% in the 2010s (Stoeldraijer et al., 2015). The female

ASAF in Netherlands is among the few that is already experiencing the leveling stage. By our

projection, the median year-to-peak for the female ASAF will be around 2020, which is about

30 years after the male peak, and will reach 16.6% (with 95% prediction interval [12.4%,
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18.5%]). By 2050, the median observed female ASAF will be 4.7% (with 95% prediction

interval [0.0%, 19.3%]). Similarly to the case of US, the projected true ASAF follows that

of the observed ASAF closely, due to the small measurement error. Figure 2.7 shows the

historical records of the observed male and female ASAF during time period 1950–2015, and

projections are given up to 2050 with posterior median and prediction intervals for both

observed and true ASAF.

●
●

●●

●●

●
●
●

●
●

●
●

●

●
●
●

●
●

●
●

●●

●
●
●

●●

●
●

●●●●
●●●

●
●

●

●●
●●

●●●●●
●

●
●●

●●●
●
●
●●●●

●

●
●
●

1960 1980 2000 2020 2040 2060

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

Netherlands male

Year

A
S

A
F

● obs
obs med
obs 95%
true med
true 95%

●●●●
●

●●●●●●●●●●●●●●●●●

●
●●●

●
●

●

●

●

●

●

●

●

●

●
●
●
●
●
●

●
●
●

●●
●
●

●
●●

●

●

●

●●

●
●●

●
●●

●

●●

1960 1980 2000 2020 2040 2060

0.
00

0.
05

0.
10

0.
15

0.
20

Netherlands female

Year

A
S

A
F

● obs
obs med
obs 95%
true med
true 95%

Figure 2.7: ASAF projection of the Netherlands. The left and right panels show the pro-

jection of ASAF up to 2050 under the proposed model for male and female respectively.

The solid and long dashed lines show the posterior median of projected observed ASAF and

true ASAF respectively. The dashed and dotted lines represent 95% prediction intervals for

observed ASAF and true ASAF respectively.

2.4.3 Hong Kong

Hong Kong has an advanced smoking epidemic, but had a decrease in male smoking preva-

lence from about 40% in the 1980s to 22% in 2000. A decline has also been observed in

female smoking prevalence, from 5.6% to 3.3% (Au et al., 2004). Like Japan, Singapore,
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and South Korea, both male and female ASAF have passed the leveling stage and have been

declining for two decades. Unlike in most western developed countries, the time trend of the

ASAF has been almost identical for males and females in Hong Kong, with similar times

of onset and times-to-peak. Au et al. (2004) showed that the time trends of lung cancer

incidence were similar for both genders.

By our projection, the observed ASAF will reach 9.7% for males (with 95% prediction

interval [4.9%, 14.3%]) and 4.1% for females (with 95% prediction interval [0.0%, 8.1%]) by

2050. Compared with US and the Netherlands, the projected true ASAF of Hong Kong will

have narrower predictor intervals than those of the observed ASAF due to larger measurement

error exhibited in the historical data. However, the difference becomes less and less since the

majority uncertainty of the future ASAF will be account mainly by the variance from the

random walk model of the true ASAF.

As discussed by Lam et al. (2001), Hong Kong may be a good indicator for the future

development of the smoking epidemic and its impact on mortality in mainland China and

other developing countries. Figure 2.8 shows the historical records of the observed male

and female ASAF during time period 1950–2015, along with projections up to 2050 with

posterior median and prediction intervals.

2.4.4 Chile

Chile is one of the South America countries that have clear-pattern ASAF data for both

males and females. It also has relatively high smoking prevalence. A decline in prevalence

among males and females has been observed in recent years but is modest compared to the

decline in the United States (Islami et al., 2015). Also, female smoking prevalence is far

behind that of males.

Our method projects that the male ASAF will decline gradually. By 2050, the projected

median observed ASAF for the male population will be 4.3% (with 95% prediction interval

[0.0%, 9.1%]). For females, we expect an increase for another 10 years with the median ob-

served ASAF reaching the maximum 7.6% (with 95% prediction interval [2.0%, 11.8%]) by
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Figure 2.8: ASAF projection of Hong Kong. The left and right panels show the projection of

ASAF up to 2050 under the proposed model for male and female respectively. The solid and

long dashed lines show the posterior median of projected observed ASAF and true ASAF

respectively. The dashed and dotted lines represent 95% prediction intervals for observed

ASAF and true ASAF respectively.

2030. By 2050, the median observed female ASAF be 5.36% (with 95% prediction interval

[0.0%, 15.2%]); see Figure 2.9. Similarly to Hong Kong, Chile also has larger measurement

error and the pattern is less clear, so that the projected true ASAF has wider predictive inter-

vals compared with previous cases and the difference between true and observed projections

also appears in the short term.

2.5 Discussion

2.5.1 Comparison between SAF Estimation Methods

In Section 2.1, we briefly described three categories of estimation methods for SAF. Prevalence-

based methods depend heavily on smoking prevalence history. Since the lag between smoking

prevalence and SAF is usually around two or three decades, in order to use smoking preva-
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Figure 2.9: ASAF projection of Chile. The left and right panels show the projection of

ASAF up to 2050 under the proposed model for male and female respectively. The solid and

long dashed lines show the posterior median of projected observed ASAF and true ASAF

respectively. The dashed and dotted lines represent 95% prediction intervals for observed

ASAF and true ASAF respectively.

lence to estimate and predict SAF, especially for those countries whose onset of SAF is before

1950, one needs data at least back to the 1920s or 1930s. However, such smoking prevalence

history is not available for most countries, and reconstruction of such data is challenging.

Ng et al. (2014) provided estimates of smoking prevalence for many countries only from 1980

onwards.

Insufficient historical data is a major obstacle to using smoking prevalence for estimation

and projection of SAF, and with currently available historical data, the predictive power using

smoking prevalence data is not very high. In addition, smoking prevalence only reveals one

aspect of the smoking epidemic, which cannot capture other aspects such as smoking intensity

and duration and thus has been argued to be a poor indicator of the smoking exposure of

the population (Shibuya et al., 2005; Luo et al., 2018). Prevalence-based estimation and

projection have generally been applied only to specific countries on an individual basis, and
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examples include Taiwan (Wen et al., 2005) and the United States (Ma et al., 2018).

There are two main indirect methods used widely in the literature, which both use the

lung cancer mortality rate as an indicator for the accumulated hazard of smoking. The first

one is the Peto-Lopez method which we have used here. This has been widely used in the

demographic literature, in part because its data requirements are relatively modest. It has

been validated in many studies (Preston et al., 2009; Kong et al., 2016).

One drawback of the Peto-Lopez method is that it uses the CPS-II to estimate the rela-

tive risk. Since the CPS-II was conducted in 1982 with volunteer participants only from the

United States and most of them were middle-class, the CPS-II might not be fully represen-

tative and may potentially underestimate lung cancer mortality in nonsmokers (Tachfouti

et al., 2014). Moreover, the Peto-Lopez method assumes that the relative risk is constant

over time and homogeneous across nations. Mehta and Preston (2012), Teng et al. (2017),

and Lariscy et al. (2018) have shown that the risks from smoking are changing over time.

Also, in China and India, the lung cancer mortality rate among nonsmokers is higher than

that of the developed countries such as that in the CPS-II (Liu et al., 1998; Gajalakshmi

et al., 2003). Another issue is that the original Peto-Lopez paper reduced the smoking excess

risk of each cause-of-death except lung cancer by 50% to control for other confounders. As

stated in their paper, this reduction is somewhat arbitrary. To avoid some of these issues,

here we have used only data from clear-pattern countries, which avoids some countries for

which the Peto-Lopez method may not give good estimates.

Some variants of the Peto-Lopez method have been proposed. For example, Ezzati and

Lopez (2003) reduced the correction factor for excess risk from 50% to 30% for all countries

and extended this method to less developed countries by estimating the non-smoker lung

cancer mortality rate based on household use of coal in poorly-vented stoves. They also

provided an analysis of uncertainty. Mackenbach et al. (2004) used a simplified version

which only used the all-cause relative risk in the CPS-II study and avoided calculations for

the nine disease categories separately. Janssen et al. (2013) used this version to calculate

age-specific SAF to partition mortality into smoking and non-smoking attributable parts,



46

and projected them separately.

Muszyńska et al. (2014) and Stoeldraijer et al. (2015) used the same method to cal-

culate an age-standardized SAF, whose purposes are to compare the role of smoking in

different regions of Poland, and to estimate and compare smoking attributable fraction of

mortality among England & Wales, Denmark and the Netherlands, respectively. While age-

standardization is used mainly to compare SAF among different populations, ASAF provides

the all-cause SAF with all age-groups aggregated and is the main quantity reported in the

iterature, e.g., Peto et al. (1992, 1994, 2006); Preston et al. (2009).

Based on these concerns about the Peto-Lopez method, Preston et al. (2009) and Preston

et al. (2011) came up with the PGW method, which used a regression-based method to

connect lung cancer mortality rate with other causes of death mortality rate instead of

using the CPS-II. The PGW method avoids the relative risk problem faced by the Peto-

Lopez method and provides estimates of uncentainty. However, its authors stated that the

Peto-Lopez method might work better for countries where the cause-of-death structure is

very different from that observed in developed countries, such as tropical African countries.

They also pointed out that both methods would not work well for countries whose lung

cancer mortality rate is also influenced largely by some other factors such as air pollution.

As discussed by Preston et al. (2009), the PGW method produces similar estimates to the

Peto-Lopez method in general for both males and females.

2.5.2 Projection Methodology

To our knowledge, there are only two other methods available for projecting SAF based on

the Peto-Lopez method. Janssen et al. (2013) proposed the first method to forecast age-

specific SAF and to our knowledge it has so far been applied only to the Netherlands. For

projecting male age-specific SAF, a constant decline rate (−1.5%) based on the current trend

of all-age combined SAF is applied for each age group. For females, it first estimates the

time-to-peak and value of peak of female SAF. It uses age-period-cohort (APC) analysis to

find the cohort with the highest lung cancer mortality rate and then adds 68, which is the
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average age of dying from lung cancer, to that cohort to estimate the year which the all-age

combined female SAF would reach the maximum. Then the difference between year-to-peak

of male and female SAF with all ages combined is estimated and applied to get the time-to-

peak and thus the age-specific female SAF. Finally, the rate of decline of female age-specific

SAF is set to the same as that of the male.

The other method proposed for projecting SAF is to first estimate and project lung

cancer mortality rate by considering the cohort effect, and use it to calculate the age-specific

SAF. Stoeldraijer et al. (2015) used an APC model to estimate and forecast the lung cancer

mortality rate of three countries: England & Wales, Denmark, and the Netherlands. For

female data, they first estimated the time-to-peak for each age group by assuming that

the time-to-peak of age-specific lung cancer mortality rate for females is when it reaches

the corresponding rate for males. By assuming that the female lung cancer mortality will

follow the same increasing-leveling-declining time trend as that for males for each age group,

the authors argued that their method could provide long-term projections of lung cancer

mortality rate, while previous work which only used historic trends in APC analysis could

only provide short-term projections.

APC analysis is widely used, but it is also plagued by the unidentifiability issue resulting

from the perfect linear relationship between the three effects. To resolve this requires extra

constraints on the parameter space, many of which are not desirable (Luo, 2013; Smith and

Wakefield, 2016). Also, projection of the future lung cancer mortality rate also requires the

projection of age, period, and cohort effects, which introduces additional projection error,

even more so for young cohorts for which historical data are not available.

Another way to resolve the unidentifiability issue in APC analysis is by introducing

cohort explanatory variables (Smith and Wakefield, 2016). Cohort smoking history is one

such powerful tool for estimating and projecting mortality. Preston and Wang (2006) and

Wang and Preston (2009) used the average year of smoking before 40 of a cohort as a

covariate to explain the mortality differences between genders and forecasted mortality of

United States for both genders up to 2035. Shibuya et al. (2005) and Luo et al. (2018) used
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APC anlaysis with selected smoking covariates such as cigarette tar exposure to estimate

and project the lung cancer mortality rate. Cohort smoking history is a powerful tool, but it

requires additional data (Burns et al., 1997) that are not available for many of the countries

we considered.

2.5.3 China and India

According to Reitsma et al. (2017), China and India are the two countries that have seen

the largest percentage increase in smoking prevalence. As a result, the ASAF for these

two countries is important for understanding and projecting the world trend of the effect of

smoking on mortality since the diffusion of the smoking epidemic from developed countries

to developing countries has already started.

Parascandola and Xiao (2019) found that smoking-related health issues in China have

increased over the past two decades, and the trend resembles the early pattern observed in

high income countries such as the US and Japan. Smoking prevalence among Chinese men

has remained high (around 60%) since the 1980s, with a modest decrease to 52% by 2015.

Smokers born after 1970 tended to start smoking earlier and more intensely than those born

before 1970.

Chen et al. (2015) analyzed two nationwide prospective cohort studies on smoking con-

ducted in China during 1991-99 and 2006-14. They found that the excess risk among smokers

almost doubled over the 15-year period. They reported that the SAF of males aged 40-79

increased from 11% in the first study to 18% in the second study, and they predicted that it

would be over 20% in the mid-2010s.

In contrast, female smoking prevalence decreased from 7% in the 1980s to 3% in 2015

(Parascandola and Xiao, 2019). However, second-hand smoking remains high among Chinese

females. Zheng et al. (2018) estimated that 65% of Chinese female non-smokers were exposed

to second hand smoking in 2012. Nonetheless, the SAF for Chinese females aged 40-79 years

was around 3% in 2006-14.

There are also substantial geographic differences in smoking prevalence. In big cities like
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Beijing and Shanghai, smoking control measures have developed more rapidly than in other

areas.

India has become the country with the second largest cigarette consumption in the world,

after China. Smoking, including manufactured cigarettes, bidis, and chewing tobacco is one

of the major causes of death for middle-aged Indians. Mishra et al. (2016) estimated that

smoking prevalence among male Indians aged 15-69 years declined modestly from 27% in

1998 to 24% in 2010, while smoking prevalence among young adults aged 15-29 years rose.

We have not included these two countries in our analysis for the following two reasons.

Firstly, we do not have enough data to estimate the ASAF for China and India. Even though

there are some records of lung cancer death count data in the WHO Mortality Database for

China (World Health Organization, 2017), these are only regional data and so could be

biased. India has a reasonably good vital registration system but it also has lung cancer

mortality data only for selected regions and locations.

Secondly, as pointed out by Preston et al. (2009), neither the Peto-Lopez original method

nor the PGW method will provide reliable estimates of SAF for countries like China since

smoking is not the only major factor that can cause lung cancer. The main assumptions of

the Peto-Lopez and PGW methods are that lung cancer mortality is primarily caused by

smoking and that the lung cancer mortailty rate is very low among nonsmokers. Therefore,

as proposed by Ezzati and Lopez (2003) and others, some extra covariates such as household

use of coal in poorly-vented stoves are used to adjust the estimates. Incorporating China and

India in the joint model could be feasible in the future if better ASAF estimation methods

and related data become available.

2.5.4 Decision-making and covariates

A main purpose of our method is to help improve mortality forecasts. One could also ask

whether our approach could be used directly for policy-making. One possible use would be

to provide a baseline forecast of what would happen with a continuation of current trends

in general health, development and tobacco control measures. This could help to assess the
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effectiveness of additional policies in accelerating the decline of smoking-related mortality.

This could be done retrospectively, by considering a time point in the past at which a new

tobacco control policy was introduced, and then comparing the probabilistic forecast based

on data up to that point with what actually happened.

To do this prospectively would require the addition of covariates to the model. This is

challenging, and would be a good topic for further research. A difficulty with forecasting

using covariates is that the covariates themselves need to be forecast, and the covariates can

be harder to forecast than the quantity being forecast. This is especially the case when, as

here, the quantity being forecast has a strong time trend, and thus may well itself be easier

to forecast than the covariates. In this situation, adding covariates can lead to forecasts that

are noisier. This is one reason why, after decades of research, the majority of demographic

studies do not use covariates in forecasting demographic quantities.
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Chapter 3

ACCOUNTING FOR SMOKING IN FORECASTING
MORTALITY AND LIFE EXPECTANCY

3.1 Introduction

Forecasting human mortality and life expectancy is of considerable importance for public

health policy, planning social security systems, life insurance, and other areas, particularly

as the world’s population continues to age. It is also a major component of population

projections, as it impacts the number of people alive and their distribution by age and gender.

Population projection are themselves a major input to government planning at all levels, as

well as private sector planning, monitoring international development and environmental

goals, and research in the health and social sciences.

Many methods for forecasting mortality have been developed. The Lee-Carter method

(Lee and Carter, 1992) for forecasting age-specific mortality rates was a milestone and has

developed rapidly since it was proposed. Lee and Miller (2001) modified the Lee-Carter

method by matching estimated life expectancy with the observed value. Other variations

of the Lee-Carter method include adding a cohort effect (Renshaw and Haberman, 2006),

applying a functional data approach (Hyndman and Ullah, 2007; Shang, 2016), and incorpo-

rating biomedical information (Janssen et al., 2013). Bayesian Lee-Carter methods have also

been proposed (Pedroza, 2006; King and Soneji, 2011; Wísniowski et al., 2015). See Booth

et al. (2006) for a review.

The main organization that produces regularly updated mortality and population fore-

casts for all countries is the United Nations, which publishes these forecasts every two years

in the World Population Prospects (United Nations, 2017). Traditionally since the 1940s,

population projections have been done using deterministic methods that do not primarily
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use statistical estimation methods or assess uncertainty in a statistical way (Whelpton, 1936;

Preston et al., 2000a). In 2015, in a major advance, the UN changed the method for pro-

ducing their official mortality and population forecasts from the traditional deterministic

method to a Bayesian approach that estimates and assesses uncertainty about future trends

in a principled statistical way using Bayesian hierarchical models for life expectancy and

fertility (Raftery et al., 2012, 2013, 2014a; United Nations, 2015).

The basic approach of these methods is to extrapolate past trends in observed mortality

rates, which have been dominated by a monotone increasing trend in life expectancy for

over a century. However, it may also be helpful to include risk factors that can impact

health, and hence mortality (Janssen, 2018). This has been done, for example, for the

HIV/AIDS epidemic (Godwin and Raftery, 2017), alcohol consumption (Trias Llimós and

Janssen, 2019), and the obesity epidemic (Vidra et al., 2017). Another major factor is

smoking, which is mainly responsible for lung cancer and is a risk factor for many other

fatal diseases, and causes about 6 million deaths per year (Britton, 2017). Smoking can

account for some nonlinear trends, cohort effects, and between-country and between-gender

differentials observed in mortality, suggesting that it could be used to improve mortality and

life expectancy projections (Bongaarts, 2014).

Here we propose a Bayesian method for doing this for both genders and multiple countries

jointly. It uses the smoking attributable fraction (SAF) of mortality, estimated by the

Peto-Lopez method (Peto et al., 1992; Bongaarts, 2006; Janssen et al., 2013; Stoeldraijer

et al., 2015). The proposed method consists of two main components, one to forecast the

age-specific SAF (ASSAF), and the other to forecast non-smoking life expectancy. Our

method develops male and female forecasts jointly, since the female smoking epidemic tends

to resemble the male one, but with a lag, and possibly a different maximum level, a fact

that can be used to improve forecasts. The female advantage in life expectancy is partly

due to smoking effects, and our method quantifies this and uses it to forecast the future life

expectancy gap between females and males. We apply our method to over 60 countries with

high quality data on the historical impact of smoking on mortality.
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The chapter is organized as follows. The methodology is described in Section 3.2. Sec-

tion 3.2.3 describes the method for estimating and forecasting the ASSAF. Section 3.2.4

presents the estimation and forecasting method for non-smoking life expectancy. Section

3.2.5 describes our model for the gap between male and female life expectancy to complete

the coherent projection. An out-of-sample validation experiment is reported in Section 3.3

to evaluate and compare the projection accuracy and calibration of our model with several

benchmark methods. We then study the details of the forecast results for four selected

countries in Section 3.4. We conclude with a discussion in Section 3.5.

3.2 Method

3.2.1 Notation

We use indices ` for country (always as a superscript unless otherwise indicated), s for gender,

t for time (usually in terms of the year), and c for cohort (usually in terms of the year of

birth). We use x to denote the left end of an age group, i.e., x represents the a-year age

group [x, x+ a), and x+ represents the age group [x,+∞).

A key general concept in our approach is the smoking attributable fraction (SAF) of

mortality for a population of interest. This is defined as the proportion by which mortality

would be reduced if the population were not exposed to smoking. We focus on the age-specific

SAF (ASSAF) of mortality for age group x in country ` and time period t, denoted by y`x,t.

The all-age smoking attributable fraction (ASAF) of mortality is defined as a weighted

average of the ASSAF over all age groups, where the weights are the age-specific mortality

rates. We use the symbols m, e0, and eNS0 to denote the mortality rate, the life expectancy

at birth, and the non-smoking life expectancy at birth, respectively.

We denote by N[u,v](λ, κ) the truncated normal distribution with mean λ and variance

κ on the support [u, v] (the subscript [u, v] is omitted if supported on the whole real line),

by G(λ, κ) the Gamma distribution with mean λ/κ and shape parameter κ, by IG(λ, κ) the

inverse-Gamma distribution with mean κ/(λ− 1) and shape parameter κ, and by U[u,v] the
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continuous uniform distribution on the support [u, v]. We denote the cardinality of a set

A by |A| and the absolute value of a number b by |b|. A truncated function is written as

b+ := max{b, 0}.

3.2.2 Data

To calculate the ASAF and ASSAF, we need annual death counts by country, age group,

gender, and cause of death from the WHO Mortality Database (World Health Organization,

2017), which covers data from 1950 to 2015 for more than 130 countries and regions around

the world. This dataset comprises death counts registered in national vital registration

systems and is coded under the rules of the International Classification of Diseases (ICD).

Quinquennial population, mortality rates, and life expectancy at birth were obtained from

the 2017 Revision of the World Population Prospects (United Nations, 2017) for each country,

gender, and age group.

3.2.3 Age-specific Smoking Attributable Fraction

We use estimates of the smoking attributable fraction (SAF) obtained with the Peto-Lopez

method, an indirect method based on the observed lung cancer count data (Peto et al., 1992;

Kong et al., 2016; Li and Raftery, 2019). Here we use a modified version of the Peto-Lopez

method proposed by Rostron and Wilmoth (2011) to estimate the ASSAF. The modified

method calculates the ASSAF for all 5-year age groups from 35 to 100, which is finer than

the original Peto-Lopez method. Also, the reference lung cancer mortality rates used in the

original Peto-Lopez method were underestimated because of selection bias, and the modified

method addresses this by introducing an inflation factor. Because of data quality issues, we

set ASSAF for age groups less than 40 to 0, and ASSAF for age groups 85 and older to the

same value as that for the 80–84 age group. These rules follow the guidelines in Peto et al.

(1992) and Rostron and Wilmoth (2011) with minor modifications, and result in nine age

groups with non-zero ASSAF. The left panel of Figure 3.1 shows the estimated quinquennial

ASSAF of US males for all nine age groups (shown in different colors) from 1953 to 2013.
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Figure 3.1: Age-specific smoking attributable fractions (ASSAF) for the male population in

the United States from 1950-2015. Left: Age-period plot. The horizontal axis is the year

of observation and colors differentiate age groups. Right: Age-cohort plot. The horizontal

axis is the year of birth for all cohorts, where the values for each age group are shown by a

different color.

Estimation and Forecasting: Age-cohort Modeling

We propose a probabilistic age-cohort approach to estimate and forecast the ASSAF for the

male population. The age-cohort plot of the US male ASSAF (right panel) in Figure 3.1 has

two main features that lead to our modeling. First, the ASSAF can be well approximated

by the product of an age effect and a cohort effect. The ASSAF of age group 80+ tends to

shift horizontally from other age groups for most of the countries (e.g., see the red dashed

line in the age-cohort plot of Figure 3.1 for the case of US males). Hence, we apply a cohort
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effect τ for all age groups less than 80, and a separate cohort effect τ̃ for the 80+ age group.

The probabilistic model of ASSAF in country ` is

y`x,t
ind∼ N (ξ`xτ

`
t−x1x 6=80 + ξ`xτ̃

`
t−x1x=80, σ

2
` ), (3.1)

where x takes values in {40, 45, 50, 55, 60, 65, 70, 75, 80}. To ensure identifiability, we set

ξ`40 = 1 for all countries. Eq. 3.1 is also closely related to a low-rank matrix completion

method. The age-cohort matrix based on the observed period ASSAF inevitably contains

missing values since we do not observe the ASSAF of early cohorts at young ages or that of

late cohorts at old ages (see Figure 3.2).

Figure 3.2: Transformation from age-period matrix (left) to age-cohort matrix (right). Black

and grey cells represent observed and missing values, respectively.

Second, the cohort pattern of the male ASSAF has a strong increasing-peaking-declining

pattern. This trend can be well captured by a five-parameter double logistic function (Meyer,

1994):

g(c|θ) :=
k

1 + exp{−41(c− 1873−42)}
− k

1 + exp{−43(c− 1873−42 −44)}
, (3.2)

where θ := (41,42,43,44, k). The double logistic curve is a flexible parametric curve,

which has been used in many scientific fields such as hematology, phenology, and agricultural
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science. Due to its scientific interpretability, it is often used to describe social change, diffu-

sion, and substitution processes (Grübler et al., 1999; Fokas, 2007; Kucharavy and De Guio,

2011). Examples of the use of a double logistic curve to describe dynamics in human de-

mography include mortality rates (Marchetti et al., 1996), life expectancy at birth (Raftery

et al., 2013), and total fertility rates (Alkema et al., 2011).

Most developed countries have already entered the declining stage of the smoking epi-

demic. The epidemic started in the early 1900s with a steady increase until the 1950s-

60s when the adverse impact of smoking became widely known and anti-smoking measures

started to be put in place. Since then, the smoking epidemic has continued to decline. Thus

the cohort effect of smoking exhibits a similar increasing-peaking-decreasing trend, which

can be captured naturally by the double logistic curve.

The cohort effect τ̃ for ages 80+ is just a horizontal shift of the cohort effect τ for younger

ages, so we use two related double logistic curves to bridge them:

τ `c |θ`, σ2[τ ] ind∼ N (g(c|θ`), σ2[τ ]), τ̃ `c |θ̃`, σ2[τ ] ind∼ N (g(c|θ̃`), σ2[τ ]), (3.3)

where c := t − x, θ` := (4`
1,4`

2,4`
3,4`

4, k
`), and θ̃` := (4`

1,4`
2,4`

3,4`
4 + δ`, k`). Here δ` is

a shift parameter controlling the amount of horizontal translation τ̃ can make with respect

to τ .

We use a three-level Bayesian hierarchical model (BHM) to estimate and forecast male

ASSAF for all countries of interest jointly. Level 1 models the observed male ASSAF in

terms of the tensor product of the age effect and the cohort effect (i.e., Eq. 3.1). Level

2 models the distributions (conditioning on the global parameters) of the country-specific

age effect ξ`x, the country-specific cohort effects τ `c and τ̃ `c in Eq. 3.3, the country-specific

parameters θ` and θ̃` of the double logistic function, and the country-specific measurement

variance σ2
` . Level 3 sets hyperpriors on the global parameters

ψ := ({µ[ξ]
x }x 6=40, {σ2[ξ]

x }x 6=40, σ
2, σ2[τ ], µ41 , µ42 , σ

2
42
, µ43 , µ44 , σ

2
44
, µk, σ

2
k, µδ, σ

2
δ ).

More details of the specification of the full model are given in the Appendix B.1.

The left and right panels of Figure 3.3 plot the cohort effects and age effect of US male
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ASSAF, respectively. The estimated cohort effect τ for the age groups 45-79 shows a clear

increasing-peaking-decreasing trend as observed in Figure 3.1. The estimated cohort effect τ̃

for the 80+ age group shows the same trend for the 13 cohorts reaching age 80 by 2015. We

could forecast any cohort effects based on the posterior distribution of the double logistic

function. The estimated age effect indicates that the smoking-attributed fraction of mortality

is higher among middle-aged males (aged 40–69) in the US than among older males (70 and

over). Figure 3.4 plots the posterior distributions of the means of the US male ASSAF for

all 9 age groups and all 21 cohorts.

To project the future ASSAF, we first generate future cohort effects by plugging samples

drawn from the posterior distributions of country-specific parameters θ` and θ̃` in Eq. 3.2 and

3.3. Then, we apply Eq. 3.1 using samples drawn from posterior distributions of the future

cohort effects, age effect, and country-specific variance σ2
` to get projections of ASSAF.

3.2.4 Non-smoking Life Expectancy

The non-smoking life expectancy at birth, eNS0 , is the life expectancy at birth that a popula-

tion would have if no one smoked, but all mortality risks were otherwise the same (Bongaarts,

2006). To estimate eNS0 , we need the age-specific mortality rates dx and the ASSAF yx de-

scribed in Section 3.2.3. As in the last section, all quantities described in this section are

specific to the male population, and the gender index s is omitted unless otherwise specified.

The calculation of eNS0 consists of two steps. First, the age-specific non-smoking at-

tributable mortality rate for a given country `, age group x, and period t (denoted by mNS
`,x,t)

is calculated as

mNS
`,x,t := (1− y`x,t) ·m`

x,t. (3.4)

Second, we convert the set of mNS
`,x,t to eNS0 using the standard period life table method

(Preston et al., 2000a, Chapter 3), as implemented in the life.table function in the R package

MortCast (Ševč́ıková et al., 2019a). Figure 3.5 shows the relationship between quinquennial

e0 and eNS0 for US males and Netherlands males from 1950 to 2015, respectively. The vertical
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Figure 3.3: Posterior distributions of cohort and age effects of United States male ASSAF.

Top Left: posterior median and 95% credible intervals of the cohort effects τ for the 40–79

age groups. Bottom Left: posterior median and 95% credible intervals of the cohort effect τ̃

for the 80+ age groups. Right: boxplot of posterior distribution of the age effect.

gap between e0 and eNS0 at each time point presents the years of life expectancy lost due to

smoking. The changes in the gaps also follow a similar increasing-peaking-decreasing trend

over the period 1950 to 2015.

Estimation and Forecasting: Non-linear Life Expectancy Gain Model

We forecast eNS0 by investigating the nonlinear five-year gains of eNS0 . As discussed by Raftery

et al. (2013), the improvement of gains on e0 for most of the countries has experienced a

slow-rapid-slow increasing pattern and a six-parameter double logistic function is used to
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Figure 3.4: Posterior distributions of the means of US male ASSAF for all 9 age groups. The

observed ASSAF is shown by black dots. The posterior median and 95% credible intervals

of the means are shown by solid and dashed red lines, respectively.

capture the non-linearity of five-year gains of e0:

g̃(e0|ζ) :=
w

1 + exp{−4.4
a2

(e0 − a1 − 0.5a2)}
+

z − w
1 + exp{−4.4

a4
(e0 −

∑3
i=1 ai − 0.5a4)}

, (3.5)

where ζ := (a1, a2, a3, a4, w, z) and z is the asymptotic average rate of increase in e0. We

assume that z is nonnegative, implying that life expectancy will continue to increase on

average (Oeppen and Vaupel, 2002; Bongaarts, 2006).

The five-year gains in eNS0 exhibit this nonlinear pattern as well. The left panel of Figure

3.6 plots the observed five-year gains of e0 (in grey dots) and eNS0 (in red dots) for over 60

countries with data of high enough quality from 1950 to 2015. The five-year gains in eNS0

have nearly the same shape as the five-year gains in e0, which supports using the same double

logistic function to model the gains. Also, eNS0 has almost the same five-year gain at the



61

Year

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

G
ap

●

●
● ●

●

●

●

●

●

●

●

●

●

1960 1970 1980 1990 2000 2010

66
68

70
72

74
76

78

United States of America

Li
fe

 E
xp

ec
ta

nc
y

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

e0

e0
NSMedian 

e0
NS95% CI 

Gap

Year

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

2.
6

G
ap

●

● ●
●

●

●

●

●

●

●

●

●

●

1960 1970 1980 1990 2000 2010

72
74

76
78

80

Netherlands

Li
fe

 E
xp

ec
ta

nc
y

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

e0

e0
NSMedian 

e0
NS95% CI 

Gap

Figure 3.5: Male life expectancy at birth, e0, and male non-smoking life expectancy at birth,

eNS0 , for the United States (left) and the Netherlands (right). The black line shows e0. The

solid red line and the dashed red lines show the posterior median and the 95% credible

interval of eNS0 . The blue line represents the gap between e0 and eNS0 .

highest age as e0, suggesting that the asymptotic average rate of increase z for eNS0 should

be similar to that of e0. Further, the variability of the five-year gains of eNS0 changes from a

low level to a high level of eNS0 , which suggests including a nonconstant variance component

in the model.

We use a three-level Bayesian hierarchical model for eNS0 . Level 1 models eNS0,`,t for country

` and period t by

eNS0,`,t
ind∼ N (eNS0,`,t−1 + g̃(eNS0,`,t−1|ζ`), (ω` · φ(eNS0,`,t−1))2), (3.6)

with country-specific parameters ζ` := (a`1, a
`
2, a

`
3, a

`
4, w

`, z`). Here φ(·) is a regression spline

fitted to the absolute residuals resulting from the model with constant variance in Eq. 3.6

with the same estimation method described later. The regression spline is used to account

for the changing variability of the observed data. The right panel of Figure 3.6 illustrates the
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Figure 3.6: Left: Five-year gains of e0 and eNS0 for over 60 countries from 1950 to 2015. The

gains in e0 and eNS0 are represented using grey and red dots, respectively. Right: Plot of

absolute residuals estimated from the constant variance model against life expectancy shown

by black dots, with fitted regression spline shown by the red line.

varying absolute residuals with the fitted spline in red. Level 2 specifies the conditional dis-

tribution for all country-specific parameters including ζ` and ω`. Level 3 sets the hyperpriors

for the global parameters ψ̃ := ({µai}4
i=1, {σ2

ai
}4
i=1, µw, σ

2
w, µz, σ

2
z). The full specification of

the model is given in the Appendix B.1.

To produce a probabilistic forecast, we sample from the joint posterior distributions of

the country-specific parameters ζ` to calculate the five-year gains g̃(eNS0 ) together with the

posterior distributions of ω`. For the variance component, we evaluate φ(eNS0,`,t−1) if eNS0,`,t−1 is

within the range of the fitted data; otherwise, it is set equal to the spline value evaluated at

the largest observed eNS0 . We then use Eq. 3.5 and 3.6 to generate samples from the posterior

predictive distribution for future country-specific eNS0,`,t. The set of samples approximates the
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posterior predictive distribution.

3.2.5 Male-Female Joint Forecast

Male e0 Forecast

First, we use the coherent Lee-Carter method (Li and Lee, 2005; Ševč́ıková et al., 2016) to

convert the projected eNS0,`,t back to mNS
`,x,t for all age groups x at period t of country `. Then, we

invert Eq. 3.4 to get the projected age-specific all-cause mortality, i.e., m`
x,t = mNS

`,x,t/(1−y`x,t)

for any age groups x, period t, and country `. Finally, applying the same life table method

described in Section 3.2.4 to the forecast m`
x,t, we obtain the forecast life expectancy at birth

for period t and country `. Figure 3.7 illustrates the projections of eNS0 and e0 for US and

the Netherlands males to 2060. The projected e0 converges to the projected eNS0 as ASSAF

decreases towards 0 for all age groups of US and the Netherlands males.

Female e0 Forecast: Gap Model

We propose a gap model similar to that of Raftery et al. (2014b) to produce a coherent

projection of male-female life expectancy at birth. It has been argued that differences in

smoking largely account for the life expectancy gap between males and females (Preston

and Wang, 2006; Wang and Preston, 2009). Here we explore the relationship between the

between-gender gap in life expectancy and the between-gender gap in the all-age smoking

attributable fraction (ASAF). The ASAF is a single statistic summarizing the smoking effect

on mortality and is defined as a weighted average of the ASSAF values as calculated in Section

3.2.3, where the weights are the age-specific mortality rates. Li and Raftery (2019) describe

the estimation of ASAF, as well as a method for forecasting it using a four-level Bayesian

hierarchical model.

We modify the gap model of Raftery et al. (2014b) by adding the country-specific between-
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Figure 3.7: Projections of eNS0 and e0 of US (left) and the Netherlands (right) males to 2060.

The posterior medians and the 95% predictive intervals of projected eNS0 are shown by solid

and dashed red lines, respectively. The posterior medians and the 95% predictive intervals

of projected e0 are shown by solid and dashed black lines, respectively.

gender ASAF gap as a covariate. The proposed gap model is as follows:

G`
t := min{max{G̃`

t, L}, U} (3.7)

G̃`
t

ind∼ N (β0 + β1e
`
0,m,1953 + β2G

`
t−1 + β3e

`
0,m,t + β4(e`0,m,t −$)+ + β5h

`
t, σ

2
G),

where U and L are the observed historical maximum and minimum of the between-gender

gap in e0, $ is the level of male e0 at which the gap is expected to stop widening, and ht is

the between-gender gap (male minus female) of the posterior median of ASAF in period t.

The estimated parameters of the model based on the data for over 60 countries for 1950–

2015 are reported in Table 3.1. Our estimates indicate that the e0 gender gap has a strong

positive association with the ASAF gap after adjusting for other factors (β̂5 = 1.180 with
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Table 3.1: Estimated gap model coefficients with standard errors in parentheses, if available.

Variable Parameter Estimate Variable Parameter Estimate

Intercept β0 -2.173 (0.627) h`t β5 1.180 (0.384)

e`0,m,1953 β1 0.012 (0.003) σG 0.496

G`
t−1 β2 0.901 (0.010) $ 61

e`0,m,t β3 0.043 (0.011) L 0.03

(e`0,m,t −$)+ β4 -0.107 (0.012) U 13.35

R2 0.933

p-value < 0.01). Since the estimated lower bound of the life expectancy gap L is positive,

our model guarantees that no crossover of male and female life expectancy forecasts will

happen for all trajectories. The other coefficients have similar estimates and significance as

in Raftery et al. (2014b), which accounts for the remaining variability in the between-gender

life expectancy gap, possibly due to biological and other social factors (Janssen and van

Poppel, 2015).

When performing projection, we forecast all terms in Eq. 3.7 forward. Instead of using

a random walk as in Raftery et al. (2014b), we make use of the ASAF gap to guide our

projection. However, we constrain the quantity (e`0,m,t −$)+ to be 20 when e`0,m,t is greater

than 81 years, which is the largest male e0 observed in countries of interest up to 2015, since

there is not enough information to determine whether the gap will continue to shrink for

higher e0. After the gender gap has been forecast, we add the gap to each posterior trajectory

of the forecast male e0 to get the full posterior predictive distribution of female e0.
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3.2.6 Estimation and Projection of the Full Model

We use data from over 60 countries for which the data on the male smoking-attributable

mortality was of good enough quality. The precise data quality criteria and thresholds used

are described in Li and Raftery (2019). Of these countries, two are in Africa, 16 are in the

Americas, nine are in Asia, 40 are in Europe and two in Oceania. Estimation of the full

model makes uses of male ASSAF, male age-specific mortality rates, both genders e0, and

both genders ASAF of all clear-pattern countries over 13 five-year periods during 1950–2015.

Future e0 of the same set of countries over 9 five-year periods from 2015 to 2060 is projected

based on the joint posterior predictive distribution of the full model. The full procedure is

described in the Appendix.

We use Markov Chain Monte Carlo (MCMC) to sample from the joint posterior distri-

butions of the parameters of interest. For the BHM of the ASSAF, we ran three chains, each

of length 100,000 iterations thinned by 20 iterations with a burn-in of 2,000. This yielded

a final, approximately independent sample of size 3,000 for each chain. For the BHM of

each of the 30 samples of eNS0 , we ran one chain with length 100,000 iterations thinned by

50 with a burn-in of 1,000. This yielded a final, approximately independent sample of size

1,000 for each chain. We monitored convergence by inspecting trace plots and using standard

convergence diagnostics, details of which are given in Appendix B.2. We include the plots

of e0 projections for over 60 countries and both genders in Appendix B.3.

3.3 Results

We assess the predictive performance of our model using out-of-sample predictive validation.

3.3.1 Study design

The data we used for out-of-sample validation cover the period 1950–2015, dividing it into

an earlier training period and a later test period. We fit the model using only data from

the training period, and then generated probabilistic forecasts for the training period. We
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finally compared the probabilistic forecasts with the observations for the training period. We

used two different choices of test period: 2000–2015, and 2010–2015. The former allows us

to assess longer-term forecasts, while the latter focuses on shorter-term forecasts.

To assess the accuracy of the probabilistic forecasts, we define the gender-specific mean

absolute error (MAE) as

MAEs =
1

|L||T |
∑
`∈L

∑
t∈T

|ê`0,s,t − e`0,s,t|, (3.8)

where L is the set of countries considered in the validation, T is the set of training periods,

and ê`0,s,t is the posterior median of the predictive distribution of life expectancy at birth

at year t for country ` and gender s. To assess the calibration and sharpness of the model,

we calculated the average empirical coverage of the prediction interval over the validation

period, which we hope to be close to its nominal level with as short a halfwidth of the interval

as possible (Gneiting and Raftery, 2007).

3.3.2 Out-of-sample validation

We evaluated and compared the performance of the proposed model with four commonly used

methods for forecasting e0: the Lee-Carter method (Lee and Carter, 1992), the Lee-Miller

method (Lee and Miller, 2001), the Hyndman-Ullah functional data method (Hyndman

and Ullah, 2007), and the Bayesian hierarchical model as implemented in the bayesLife R

package (Raftery et al., 2013). We refer to the last as the bayesLife method. The first three

methods were implemented using the corresponding functions with default settings in the

demography R package (Booth et al., 2006; Hyndman et al., 2019). The bayesLife method

was implemented under default settings using the R package bayesLife (Raftery et al., 2013,

2014b; Ševč́ıková et al., 2019b).

Table 3.2 gives the out-of-sample validation results for the four methods described above

as well as our proposed method. Our method had the smallest MAE for both genders and

both choices of test period among the five methods. For predicting one five-year period

ahead, our method improved accuracy over the Lee-Carter method by 70% (60%), and over
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the bayesLife method by 24% (11%) for males (females). For predicting three five-year

periods ahead, the new method improved accuracy over the Lee-Carter method by 53%

(40%), and over the bayesLife method by 24% (17%) for males (females).

For model calibration, the Lee-Carter-type models produced predictive intervals that

are too narrow, thus underestimating the predictive uncertainty in the testing period. The

bayesLife method and the new method produced predictive intervals with coverage close to

the nominal level. We assess the sharpness of the forecast method using the 80% predic-

tive interval halfwidth. For male data under the three five-year periods prediction, the 80%

predictive interval of the new method was 30% shorter on average, but yielded the same

empirical coverage as the bayesLife method. Under the one five-year out-of-sample predic-

tions, the 80% predictive interval of the new method was 30% shorter on average but yielded

even higher empirical coverage than the bayesLife method. For female data, the predictive

intervals of our method overcovered the observations slightly for each choice of test period,

but their median halfwidths were not much wider than those of the bayesLife method (e.g.,

the largest increment was less than 18%). The major source of variability in the female

projections of the new method comes from the gap model.

3.4 Case studies

On average, smoking results in 1.4 years lost of male life expectancy at birth for over 60

countries over 1950-2015. The trend in years lost due to smoking also follows the pattern of

the smoking epidemic. The average years lost due to smoking among males increased from

0.9 in 1953 to a maximum of 1.7 in 1993, and decreased to 1.3 in 2013.

For male populations of most countries, the ASSAF has already passed the peak for most

age groups. When this is the case, accounting for the smoking effect leads to higher forecasts

of life expectancy at birth. On average, our proposed method gives forecasts of male life

expectancy at birth that are 1.1 years higher than the bayesLife method used by the UN for

over 60 countries over the period 2015–2060.

Most female populations are still at the increasing or peaking stage of the smoking epi-
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Table 3.2: Out-of-sample validation results for forecasting life expectancy at birth of males

and females one and three five-year periods ahead. “Num” is the number of countries used

in the validation. In the “Method” column, “H-U FDA” is the Hyndman-Ullah functional

data analysis method, “bayesLife” represents the method described in Raftery et al. (2013),

and “smokeLife” is the our proposed method. “Halfwidth” represents the median of the

halfwidth of the prediction interval.

Period Num Gender Method MAE
Coverage Halfwidth

80% 95% 80% 95%

Train:1950–2000

67

M

Lee-Carter 2.043 0.144 0.199 0.368 0.568

Lee-Miller 1.536 0.318 0.418 0.831 1.239

H-U FDA 2.206 0.189 0.274 0.808 1.259

bayesLife 1.273 0.741 0.950 1.722 2.714

smokeLife 0.962 0.741 0.896 1.197 1.943

Test: 2000–2015 F

Lee-Carter 1.210 0.199 0.294 0.391 0.599

Lee-Miller 0.748 0.602 0.756 0.612 0.940

H-U FDA 1.430 0.114 0.299 0.412 0.633

bayesLife 0.876 0.816 0.955 1.312 1.985

smokeLife 0.718 0.891 1.000 1.380 2.173

Train:1950–2010

68

M

Lee-Carter 1.741 0.103 0.118 0.306 0.448

Lee-Miller 0.853 0.544 0.721 0.581 0.931

H-U FDA 1.364 0.191 0.324 0.548 0.791

bayesLife 0.688 0.824 0.897 1.098 1.748

smokeLife 0.523 0.912 0.985 0.773 1.250

Test: 2010–2015 F

Lee-Carter 1.025 0.118 0.221 0.279 0.436

Lee-Miller 0.486 0.662 0.779 0.476 0.708

H-U FDA 0.895 0.250 0.368 0.373 0.573

bayesLife 0.464 0.868 0.941 0.853 1.291

smokeLife 0.413 0.971 1.000 0.974 1.517
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demic. However, for 2055-2060, we expect to see an increment of 1.0 in female life expectancy

compared to the forecast result from the bayesLife method, since the female smoking epi-

demic will be following the same decreasing trend as that of males by then.

We now study four countries in detail, representing different patterns of the smoking

epidemic.

3.4.1 United States

The United States of America has one of the best vital registration systems in the world

and also high quality data on cause of death. It thus has high quality data on the SAF.

The smoking epidemic started in the early 1900s among the male population and rose to the

historical maximum of around 60% in the 1950s. At that point, government programs and

social movements against smoking began to develop, and the US public became increasingly

aware of the adverse impacts of smoking. Since then, there has been a substantial decrease

in smoking prevalence, going down to about 20% in the 1990s, and 17.5% in 2016 (Burns

et al., 1997; Islami et al., 2015).

The female smoking epidemic started two decades later than the male one with a max-

imum prevalence of around 30% in the 1960s. Female smoking prevalence decline to about

20% in 1990s and 13.5% in 2016 (Burns et al., 1997; Islami et al., 2015). Figure 3.8a shows

projections of the US male and female ASAF to 2060. Figure 3.8b predicts a continuously

narrowing gap of the between-gender life expectancy due to the shrinking gap between male

and female ASAF up to 2060.

Figures 3.8c and 3.8d show projections of male and female life expectancy for the period

2015-2060. The bayesLife method projects male life expectancy in 2055-2060 to be 84.0

years, with 95% predictive interval (79.2, 87.6). We project male life expectancy to be 86.1

in 2060, with 95% predictive interval (83.0, 88.9). The bayesLife method projects US female

life expectancy for 2055-2060 to be 86.5 with 95% predictive interval (82.9, 90.0). We project

female life expectancy to be 88.6 with interval (84.8, 92.4).

Our method gives forecasts of life expectancy that are about two years higher than
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those from the bayesLife method for both males and females, because of accounting for the

smoking effect. Our predictive interval for male life expectancy at birth is 29% shorter than

the bayesLife one, while our female interval is comparable with that of the bayesLife method.

Both of our 95% predictive intervals cover the posterior medians from the bayesLife method.

3.4.2 The Netherlands

The Netherlands is a western European country with a long history of the smoking epidemic,

which can be dated back to the 1880s when the cigarette industry began there. Male smoking

prevalence reached 90% in most age groups in the 1950s, but dropped rapidly to 30% in the

2010s. In contrast, smoking was more prevalent among females in the 1970s, when about 40%

of female smoked, and after 1975 there was a sustained drop to 24% in the 2010s (Stoeldraijer

et al., 2015).

Figure 3.9a shows that the female ASAF is forecast to surpass the male ASAF for the

next two decades and by 2060, both male and female ASAF will be at about the same

level. Figure 3.9b shows that the turning point in the between-gender gap of life expectancy

happened around the 1990s, when the male ASAF had passed its peak and the female ASAF

started to climb. With the shrinking of the ASAF gap, the projected life expectancy gap is

forecast to continue to shrink and plateau around 2.8, due to biological and social factors

(Janssen and van Poppel, 2015).

Both Dutch males and females experienced a period of stagnation in life expectancy

gains—in the 1960s for males and the 1990s for females. Smoking is a major reason for

this stagnation. The right panel of Figure 3.5 indicates that the forecast Dutch male life

expectancy gain is more linear and sustained after removing the smoking effect. Figures 3.9c

and 3.9d show projections of male and female life expectancy for 2015–2060. We project male

life expectancy for the period 2055-2060 to be 88.0 years, with a 95% prediction interval of

(85.0, 91.1), while the bayesLife method projects 86.1, with interval of (82.3, 89.7). We

project female life expectancy for the period 2055-2060 to be 90.8, with a 95% prediction

interval of (86.6, 95.0), while the bayesLife method projects 88.4 years, with interval of (85.1,
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Figure 3.8: United States of America. (a) All-age smoking attributable fraction (ASAF) for

male (black) and female (red) with median and 95% PI of posterior predictive distributions.

(b) Between-gender gap of life expectancy at birth with posterior predictive median (red

solid) and 95% PI (red dotted). (c) Forecasts of male life expectancy at birth to 2060 using

bayesLife method (green) and our proposed method (red) with posterior predictive medians

(dashed) and 95% PI (dotted). (d) Forecasts of female life expectancy at birth to 2060 using

bayesLife method (green) and our proposed method (red) with posterior predictive medians

(dashed) and 95% PI (dotted).
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91.9).

Similarly to the US, our forecast of life expectancy in 2060 is about two years higher

than a forecast that does not take account of smoking. By considering the decreasing trend

of the smoking epidemic, our forecast is 1.9 years higher for males and 2.3 years higher for

females expectancy compared with the bayesLife method. Janssen et al. (2013) forecast the

Dutch male and female life expectancy in 2040 to be 84.6 years and 87.2 years respectively,

taking account of smoking. This agrees well with our forecasts —85.0 for males and 87.3 for

female—in 2040.

3.4.3 Chile

Chile is a South American country where the smoking epidemic had a late start, and it is

currently one of the countries with the highest smoking prevalence in the Americas. Smoking

prevalence decreased from 50% in 2000 to 40% in 2016 among males, and from 44% to 36%

among females. This decline is modest compared to that in the United States (Islami et al.,

2015).

Figure 3.10a shows the projections of male and female ASAF. Chilean male ASAF has

been at the peaking stage for a long time, with high prevalence and no sign of a decline.

Female ASAF is predicted to grow to approach the male level. The narrowing of the ASAF

gap is forecast to lead to a sustained closing of the life expectancy between-gender gap

(Figure 3.10b).

Figures 3.10c and 3.10d show projections of male and female life expectancy for 2015–

2060. We project male life expectancy for the period 2055-2060 be 83.2, with a 95% predictive

interval of (80.9, 86.3). In contrast with the USA and the Netherlands, our median projection

is 1.8 years less than that from bayesLife method. This is due to the fact that the epidemic has

not yet clearly peaked. We project female life expectancy to be 84.5, with a 95% predictive

interval of (81.7, 88.5), which is again substantially smaller than that from the bayesLife

method with forecast median 87.6 years and 95% prediction interval (84.1, 91.0). This is

due to the increasing impact of smoking on the Chilean female population.
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Figure 3.9: The Netherlands. (a) All-age smoking attributable fraction (ASAF) for male

(black) and female (red) with median and 95% PI of posterior predictive distributions. (b)

Between-gender gap of life expectancy at birth with posterior predictive median (red solid)

and 95% PI (red dotted). (c) Forecasts of male life expectancy at birth to 2060 using

bayesLife method (green) and our proposed method (red) with posterior predictive medians

(dashed) and 95% PI (dotted). (d) Forecasts of female life expectancy at birth to 2060 using

bayesLife method (green) and our proposed method (red) with posterior predictive medians

(dashed) and 95% PI (dotted).



75

● ●
●

●

●

●

● ●
●

● ● ●
●

1960 1980 2000 2020 2040 2060

0.
00

0.
05

0.
10

0.
15

Year

A
S

A
F

● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

male obs
male med
male 95% PI
female obs
female med
female 95% PI

(a)

●

●

●

●

●

●
●

●

● ●
●

●

●

1960 1980 2000 2020 2040 2060

0
1

2
3

4
5

6

Year

e 0
 G

ap

● obs
proj med
proj 95%PI

(b)

●

●

●

●

●

●

●

●

●

●

●
●

●

1960 1980 2000 2020 2040 2060

60
70

80
90

Year

e 0

● obs
smokeLife med
smokeLife 95%
bayesLife med
bayesLife 95%

(c)

●

●

●

●

●

●

●

●

●

●

●
●

●

1960 1980 2000 2020 2040 2060

60
70

80
90

Year

e 0

● obs
smokeLife med
smokeLife 95%
bayesLife med
bayesLife 95%

(d)

Figure 3.10: Chile. (a) All-age smoking attributable fraction (ASAF) for male (black) and

female (red) with median and 95% PI of posterior predictive distributions. (b) Between-

gender gap of life expectancy at birth with posterior predictive median (red solid) and 95%

PI (red dotted). (c) Forecasts of male life expectancy at birth to 2060 using bayesLife method

(green) and our proposed method (red) with posterior predictive medians (dashed) and 95%

PI (dotted). (d) Forecasts of female life expectancy at birth to 2060 using bayesLife method

(green) and our proposed method (red) with posterior predictive medians (dashed) and 95%

PI (dotted).
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3.4.4 Japan

Japan has been a leading country in life expectancy for a long period, while it also has a long

history of smoking and is one of the largest tobacco consumers. Male smoking prevalence

reached 83.7% in 1966. That number dropped to 36% in the 1990s and halved again by 2018.

Female smoking prevalence is far lower and changes less dramatically than that of males.

Female smoking prevalence reached 16% in the 1970s and decreased to 9.7% in 2015. The

significant changes result mainly from government regulations and anti-smoking movements

starting in the 1980s. Figure 3.11a shows the forecast male and female ASAF. Figure 3.11b

shows the narrowing of the life expectancy gap as a result.

Figures 3.11c and 3.11d show projections of life expectancy for males and females. We

project male life expectancy for the period 2055-2060 to be 88.8, with a 95% predictive

interval of (85.8, 91.5). The bayesLife method forecasts 85.6, with a projection interval

(81.6, 89.7). Notice that our median forecast is 3.2 years higher than that of bayesLife, while

its interval is 1.4 years narrower. We project female life expectancy to be 92.2 with a 95%

prediction interval of (88.3, 96.1). Our forecast shows a noticeable slowdown of the growth

of female life expectancy due to the smoking effect. The bayesLife method projects 92.0

years with interval (88.8, 95.3). Though both methods produce comparable forecast results

for 2055-2060, the bayesLife method forecasts a more linear increase while ours reflects the

nonlinear smoking effect on the life expectancy forecast.

3.5 Discussion

We have proposed a method for probabilistic forecasting of mortality and life expectancy that

takes account of the smoking epidemic. The method is based on the idea of the smoking

attributable fraction of mortality, as estimated by the Peto-Lopez method using data on

lung cancer mortality. The age-specific smoking attiributable fraction (ASSAF) of mortality

is estimated and used to infer the non-smoking life expectancy at birth, eNS0 . Both the

ASSAF and eNS0 are then forecast using a Bayesian hierarchical models for all countries with
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Figure 3.11: Japan. (a) All-age smoking attributable fraction (ASAF) for male (black) and

female (red) with median and 95% PI of posterior predictive distributions. (b) Between-

gender gap of life expectancy at birth with posterior predictive median (red solid) and 95%

PI (red dotted). (c) Forecasts of male life expectancy at birth to 2060 using bayesLife method

(green) and our proposed method (red) with posterior predictive medians (dashed) and 95%

PI (dotted). (d) Forecasts of female life expectancy at birth to 2060 using bayesLife method

(green) and our proposed method (red) with posterior predictive medians (dashed) and 95%

PI (dotted).
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sufficiently good data. This in turn yields posterior predictive distributions of mortality rates

and life expectancy at birth. The method performed well in an out-of-sample validation

study.

The strength of the method derives from the fact that the smoking attributable fraction of

mortality follows a very strong increasing-peaking-decreasing trend over time in all countries

where the smoking epidemic has been going for long enough. This pattern is strong, broadly

the same across countries, is to a large extent socially determined, and is also not highly

correlated over time with the life expectancy at birth itself, which follows a broadly increasing

pattern over time. However, smoking does impact mortality. Thus smoking mortality can be

predicted with considerable accuracy, and accurate predictions improve mortality forecasts.

Another strength of the method is its use of a hierarchical model, which greatly facili-

tates forecasting, particularly for countries where the smoking epidemic is at an early stage.

This allows forecasts for such countries to be informed by information from other countries,

especially those where the epidemic is more advanced. It also makes it easier to incorporate

all major sources of uncertainty.

The results indicate that for country-gender combinations where the smoking epidemic

is advanced enough that we can expect it to be declining by 2060, incorporating smoking

increases forecasts of life expectancy by about two years. When the epidemic is at an earlier

stage, though, incorporating smoking tends to reduce forecasts of life expectancy. The results

also indicate that much of change over time in the female-male gap in life expectancy is due

to relative changes in smoking related mortality.

The biggest limitation of our method is that it relies on the availability of high-quality

data on cause of death, particularly lung cancer, which are available for only around 70

countries of the 201 or so countries in the world. Thus the biggest improvement in the

method would come from improvements in data quality. In particular, China and India are

missing from our study, because national data on cause of death of high enough quality are

not available. Producing such data should be a focus of future data collection and research.

This is very important because, not only are China and India the two most populous countries
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in the world, but they also have high smoking rates and are likely to experience high smoking

mortality in the coming decades.

Several other approaches to the problem have been proposed. Bongaarts (2006) intro-

duced the concept of non-smoking life expectancy, and proposed modeling it in a linear way.

However, the time evolution of non-smoking life expectancy appears generally to follow a non-

linear pattern, with gains that broadly follow a non-monotonic increasing-peaking-declining

patter. This is modeled in our method by a random walk with a the double logistic drift.

Janssen et al. (2013) proposed directly modeling the ASSAF and the age-specific non-

smoking attributable mortality rates. They observed that non-smoking mortality rates de-

cline more linearly than overall mortality rates, making the data fit a Lee-Carter model

better. They conducted an age-period-cohort analysis, while we found an age-cohort model

to be sufficient. There are well-known identifiability issues with age-period-cohort analysis

that our approach avoids. They used a coherent Lee-Carter method. This assumes linear

progress in log mortality rates, while in fact progress tends to be nonlinear, and also tends to

be more linear on the scale of life expectancy than of log mortality rates, which our double

logistic random walk attempts to represent.

The mortality component of the UN’s population projections for all countries is based

on the Bayesian hierarchical model of Raftery et al. (2013), which does not take account

of smoking. We have shown that this could be improved significantly by taking account of

smoking. However, the data to do this are available for only around 70 countries currently,

and the UN aims to use a unified approach for all the 230 countries and territories that they

analyze. Thus extending the UN’s method to take account of smoking in this way might

not be feasible in the short term. To do this would likely require a major improvement in

data availability for many countries. However, it could be useful for national population and

mortality projections for individual countries, for example for planning health services, and

also for the private sector, for example for actuarial and insurance analyses.
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Chapter 4

MOMENT BOUNDS FOR AUTOCOVARIANCE MATRICES
UNDER DEPENDENCE

4.1 Introduction

Consider a sequence of p-dimensional mean-zero random vectors {Yt}t∈Z and a size-n fraction

{Yi}ni=1 of it. This chapter aims to establish moment bounds for the spectral norm deviation

of lag-m autocovariances of {Yi}ni=1, Σ̂m := (n−m)−1
∑n−m

i=1 YiY
T
i+m, from their mean values.

A first result at the origin of such problems concerns product measures, with m = 0 and

{Yi}ni=1 independent and identically distributed (i.i.d.). For this, Rudelson (1999) derived

a bound on E‖Σ̂0 − EΣ̂0‖, where ‖ · ‖ represents the spectral norm for matrices. The

technique is based on symmetrization and the derived maximal inequality is a consequence

of a concentration inequality on a “symmetrized” version of p×p symmetric and deterministic

matrices, A1, . . . ,An (cf. Oliveira (2010)). That is, for any x ≥ 0,

P
(∥∥∥ n∑

i=1

εiAi

∥∥∥ ≥ x
)
≤ 2p exp{−x2/(2σ2)}, σ2 :=

∥∥∥ n∑
i=1

A2
i

∥∥∥, (4.1)

where {εi}ni=1 are independent and taking values {−1, 1} with equal probability. The appli-

cability of this technique then hinges on the assumption that the data are i.i.d..

Later, Vershynin (2012), Srivastava and Vershynin (2013), Mendelson and Paouris (2014),

Lounici (2014), Bunea and Xiao (2015), Tikhomirov (2017), among many others, derived

different types of deviation bounds for Σ̂0 under different distributional assumptions. For

example, Lounici (2014) and Bunea and Xiao (2015) showed that, for such {Yi}ni=1 that are

subgaussian and i.i.d.,

E‖Σ̂0 −Σ0‖ ≤ C‖Σ0‖
{√r(Σ0) log(ep)

n
+
r(Σ0) log(ep)

n

}
. (4.2)
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Here C > 0 is a universal constant, Σ0 := EY1Y
T

1 , and r(Σ0) := tr(Σ0)/‖Σ0‖ is termed the

“effective rank” (Vershynin, 2012) where tr(X) :=
∑p

i=1 Xi,i for any real p× p matrix X.

Statistically speaking, Equation (4.2) is of rich implications. For example, combining

(4.2) with Davis-Kahan inequality (Davis and Kahan, 1970) suggests that the principal

component analysis (PCA), a core statistical method whose aim is to recover the leading

eigenvectors of Σ0, could still produce consistent estimators even if the dimension p is much

larger than the sample size n, as long as the “intrinsic dimension” of the data, quantified

by r(Σ0), is small enough. See Section 1 in Han and Liu (2018) for more discussions on the

statistical performance of PCA in high dimensions.

The main goal of this chapter is to give extensions of the deviation inequality (4.2) to large

autocovariance matrices, where the matrices are constructed from a high dimensional struc-

tural time series. Examples of such time series include linear vector autoregressive model of

lag d (VAR(d)), vector-valued autoregressive conditionally heteroscedastic (ARCH) model,

and a model used in Banna et al. (2016). The main result appears below as Theorem 3, and

is nonasymptotic in its nature. This result will have important consequences in high dimen-

sional time series analysis. For example, it immediately yields new analysis for estimating

large covariance matrix (Chen et al., 2013), a new proof of consistency for Brillinger’s PCA

in the frequency domain (cf. Chapter 9 in Brillinger (2001)), and we envision that it could

facilitate a new proof of consistency for the PCA procedure proposed in Chang et al. (2018).

The rest of this chapter is organized as follows. Section 4.2 characterizes the settings and

gives the main concentration inequality for large autocovariance matrices. In Section 4.3, we

present applications of our results to some specific time series models. Proofs of the main

results are given in Section 4.4, with more relegated to an appendix.

4.2 Main results

We first introduce the notation that will be used in this chapter. Without further specifi-

cation, we use bold, italic lower case alphabets to denote vectors, e.g., u = (u1, · · · , up)T

as a p-dimensional real vector, and ‖u‖2 as its vector L2 norm. We use bold, upper case
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alphabets to denote matrices, e.g., X = (Xi,j) as a p × p real matrix, and Ip as the p × p

identity matrix. Throughout the chapter, let c, c′, C, C ′, C ′′ be generic universal positive con-

stants, whose actual values may vary at different locations. For any two sequences of positive

numbers {an}, {bn}, we denote an = O(bn) if there exists an universal constant C such that

an ≤ Cbn for all n large enough. We write an � bn if both an = O(bn) and bn = O(an) hold.

Consider a time series {Yt}t∈Z of p-dimensional real entries Yt ∈ Rp with R,Z denoting

the sets of real and integer numbers respectively. In the sequel, the considered time series

does not need to be stationary nor centered, and we are focused on a size-n fraction of it.

Without loss of generality, we denote this fraction to be {Yi}ni=1.

As described in the introduction, the case of independent {Yi}ni=1 has been discussed

in depth in recent years. We are interested here in the time series setting, and our main

emphasis will be to describe nontrivial but easy to verify cases for which Inequality (4.2)

still holds. The following four assumptions are accordingly made, with the notations that

Sp−1 := {x ∈ Rp : ‖x‖2 = 1}, S̄p−1 := {x ∈ Rp : |x1| = · · · = |xp| = 1},

and

‖X‖L(p) := (E|X|p)1/p, ‖X‖ψ2 := inf{k ∈ (0,∞) : E[exp{(|X|/k)2} − 1] ≤ 1}

for any random variable X.

(A1) Define

κ1 := sup
t∈Z

sup
u∈Sp−1

‖uTYt‖ψ2 <∞, κ∗ := sup
t∈Z

sup
v∈S̄p−1

‖vTYt‖ψ2 <∞.

Note that κ1 is the supremum taken over vectors in the unit hypersphere, while κ∗ is

the supremum taken over vectors in the discrete hypercube.

(A2) Assume that there exist some constants γ1, γ2, ε > 0 such that for any integer j, there

exists a sequence of random vectors {Ỹt}t>j which is independent of σ({Yt}t≤j), iden-

tically distributed as {Yt}t>j, and for any integer k ≥ j + 1,

‖‖Yk − Ỹk‖2‖L(1+ε) ≤ γ1κ1 exp{−γ2(k − j − 1)}.
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(A3) Assume that there exist some constants γ3, γ4, ε > 0 such that for any integer j, there

exists a sequence of random vectors {Ỹt}t>j which is independent of σ({Yt}t≤j), iden-

tically distributed as {Yt}t>j, and for any integer k ≥ j + 1,

sup
u∈Sp−1

‖(Yk − Ỹk)
Tu‖L(1+ε) ≤ γ3κ1 exp{−γ4(k − j − 1)}.

(A4) Assume there exists an universal constant c > 0 such that, for all t ∈ Z and for all

u ∈ Rp, ‖uTYt‖2
ψ2
≤ cE(uTYt)

2.

Two observations are in order. We first define a generalized “effective rank” as follows:

r∗ := κ2
∗/κ

2
1.

It is easy to see the close relationship between r∗ and the effective rank highlighted in (4.2).

As Yt ∼ N(0,Σ0), κ2
1 and κ2

∗ scale at the same orders of ‖Σ0‖ and tr(Σ0), and the same

observation applies to all subgaussian distributions with the additional condition (A4), which

is identical to Assumption 1 in Lounici (2014). As a matter of fact, r∗ could be considered

as a natural generalized version of r(Σ0) without these additional assumptions, and is used

in our main theorem.

Secondly, we note that Assumptions (A2) and (A3) are characterizing the intrinsic

coupling property of the sequence. In practice, such couples can be constructed from time

to time. Consider, for example, the following causal shift model,

Yt = Ht(ξt, ξt−1, ξt−2, . . .),

where {ξt}t∈Z consists of independent elements with values in a measurable space X and

Ht : X Z+ → Rp is a vector-valued function. Then it is natural to consider

Ỹt = Ht(ξt, . . . ξj+1, ξ̃j, ξ̃j−1, . . .)

for an independent copy {ξ̃t}t∈Z of {ξt}t∈Z.

The following is the main result of this chapter.
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Theorem 3 (Proof in Section 4.4.1). Let {Yt}t∈Z be a sequence of random vectors satisfying

Assumptions (A1)-(A3) and recall r∗ = κ2
∗/κ

2
1. Assume γ1 = O(

√
r∗) and γ3 = O(1).

Then, for any integer n ≥ 2 and 0 ≤ m ≤ n− 1, we have

E‖Σ̂m − EΣ̂m‖ ≤ Cκ2
1

{√r∗ log ep

n−m
+
r∗ log ep(log np)3

n−m

}
(4.3)

for some constant C only depending on ε,m, γ2, γ4. If in addition, {Yt}t∈Z is a second-order

stationary sequence of mean-zero random vectors and Assumption (A4) holds, then

E‖Σ̂m − EΣ̂m‖ ≤ C ′‖Σ0‖
{√r(Σ0) log ep

n−m
+
r(Σ0) log ep(log np)3

n−m

}
for some constant C ′ only depending on ε, c,m, γ2, γ4.

We first comment on the temporal correlatedness conditions, Assumptions (A2) and

(A3). We note that they correspond exactly to the δ-measure of dependence introduced in

Chapter 3 of Dedecker et al. (2007), for the sequence {Yt}t∈Z and {uTYt}t∈Z respectively.

In addition, as will be seen soon, our measure of dependence is also very related to the

τ -measure introduced in Dedecker and Prieur (2004). In particular, ours is usually stronger

than, but as ε→ 0, reduces to the τ -measure. Lastly, our conditions are also quite connected

to the functional dependence measure in Wu (2005), on which many moment inequalities in

real space have been established (cf. Liu et al. (2013) and Wu and Wu (2016)). However,

it is still unclear if a similar matrix Bernstein inequality could be developed under Weibiao

Wu’s functional dependence condition.

Secondly, we note that one is ready to verify that Inequality (4.3) gives the exact control

of the deviation from the mean. Actually, Inequality (4.3) is nearly a strict extension of

the results in Lounici (Lounici, 2014) and Bunea and Xiao (Bunea and Xiao, 2015) to weak

data dependence up to some logarithmic terms. This extension is achieved by applying

Theorem 10, a concentration inequality for a sequence of weakly dependent random matrices.

Theorem 10 is an extension of the Bernstein-type inequality for real-valued weakly dependent

random variables derived in Merlevède et al. (2011) to dependent random matrices, and

is a slight extension of the Bernstein-type inequality for a sequence of β-mixing random
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matrices derived in Banna et al. (2016). In some applications, especially those in high

dimensions, verifying the weak dependence condition in Theorem 10 is more straightforward

than verifying the β-mixing condition in Theorem 1 in Banna et al. (2016). The details of

the weak dependence condition will be introduced in Section 4.4.1, and Theorem 10 will be

proved in the Appendix.

Admittedly, it is still unclear if Inequality (4.3) could be further improved under the given

conditions. Recently, in a remarkable series of papers (Koltchinskii and Lounici, 2017a,b,c),

Koltchinskii and Lounici showed that, for subgaussian independent data, the extra multi-

plicative p term on the righthand side of Inequality (4.3) could be further removed. The proof

rests on Talagrand’s majorizing measures (Talagrand, 2014) and a corresponding maximal

inequality due to Mendelson (Mendelson, 2010). In the most general case, to the authors’

knowledge, it is still unknown if Talagrand’s approach could be extent to weakly dependent

data, although we conjecture that, under stronger temporal dependence (e.g., geometrically

φ-mixing) conditions, it is possible to recover Koltchinskii and Lounici’s result without re-

sorting to the matrix Bernstein inequality in the proof of Theorem 3.

Nevertheless, we make a first step towards eliminating these logarithmic terms via the

following theorem. It shows, when assuming a Gaussian sequence is observed, one could

further tighten the upper bound in Inequality (4.3) by removing all logarithm factors. The

obtained bound is thus tight in view of Theorem 2 in Lounici (2014) and Theorem 4 in

Koltchinskii and Lounici (2017a).

Theorem 4 (Proof in Section 4.4.2). Let {Yt}t∈Z be a stationary mean-zero Gaussian se-

quence that satisfies Assumptions (A2)-(A3) with γ1 = O(
√
r(Σ0)) and γ3 = O(1). Then,

for any integer n ≥ 2 and 0 ≤ m ≤ n− 1,

E‖Σ̂m −Σm‖ ≤ C‖Σ0‖
(√ r(Σ0)

n−m
+
r(Σ0)

n−m

)
for some constant C > 0 only depending on ε,m, γ2, γ4.

In a related track of studies, Bai and Yin (1993), Srivastava and Vershynin (2013),

Mendelson and Paouris (2014), and Tikhomirov (2017), among many others, explored the
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optimal scaling requirement in approximating a large covariance matrix for heavy-tailed data.

For instance, for i.i.d. data and as Σ0 is identity, Bai and Yin (Bai and Yin, 1993) showed

that ‖Σ̂0 −Σ0‖ will converge to zero in probability as long as p/n → 0 and 4-th moments

exist. Some recent developments further strengthen the moment requirement. These results

cannot be compared to ours. In particular, our analysis is focused on characterizing the role

of “effective rank”, a term of strong meanings in statistical implications and a feature that

cannot be captured using these alternative procedures.

4.3 Applications

In this section, we examine the validity of Assumptions (A1)-(A4) in Section 4.2 under

three models, a stable VAR(d) model, a model proposed by Banna et al. (2016), and an

ARCH-type model. One shall be aware of examples that are of VAR(d) or ARCH-type

structures but are not α- or β-mixing (cf. Andrews (1984)).

We first consider such {Yt}t∈Z that is a random sequence generated from VAR(d) model,

i.e.,

Yt = A1Yt−1 + · · ·+ AdYt−d + Et,

where {Et}t∈Z is a sequence of independent vectors such that for all t ∈ Z and u ∈

Rp, ‖uTEt‖ψ2 ≤ c′‖uTEt‖L(2) for some universal constant c′ > 0. In addition, assume

supt∈Z supu∈Sp−1 ‖uTEt‖ψ2 < D1 for some universal positive constant D1 <∞, ‖Ak‖ ≤ ak <

1 for all 1 ≤ k ≤ d, and
∑d

k=1 ak < 1, where {ak}dk=1, d are some universal constants.

Under these conditions, we have the following theorem.

Theorem 5 (Proof in Section 4.4.4). The above {Yt}t∈Z satisfies Assumptions (A1)-(A4)

with

γ1 = C(κ∗/κ1)(‖Ā‖/ρ1)K , γ2 = log(ρ−1
1 ), γ3 = C ′d(‖Ā‖/ρ1)K , γ4 = log(ρ−1

1 ).
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Here we denote

Ā :=


a1 a2 . . . ad−1 ad

1 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 . . . 1 0

 ,

ρ1 is a universal constant such that ρ(Ā) < ρ1 < 1 whose existence is guaranteed by the

assumption that
∑d

k=1 ak < 1 (cf. Lemma 17 in Section 4.4), K is some constant only

depending on ρ1, and C,C ′ > 0 are some constants only depending on ε.

We secondly consider the following time series generation scheme whose corresponding

matrix version has been considered by Banna, Merlevède, and Youssef (Banna et al., 2016).

In detail, let {Yt}t∈Z be a random sequence generated by

Yt = WtEt,

where {Et}t∈Z is a sequence of independent random vectors independent of {Wt}t∈Z such

that for all t ∈ Z and u ∈ Rp, ‖uTEt‖ψ2 ≤ c′‖uTEt‖L(2) for some universal constant c′ > 0.

In addition, we assume

sup
t∈Z

sup
u∈Sp−1

‖uTEt‖ψ2 ≤ κ′1 and sup
t∈Z

sup
v∈S̄p−1

‖vTEt‖ψ2 ≤ κ′∗

for some constants 0 < κ′1, κ
′
∗ < ∞, {Wt}t∈Z is a sequence of uniformly bounded τ -mixing

random variables such that maxt∈Z |Wt| ≤ κW , and

τ(k; {Wt}t∈Z, | · |) ≤ κWγ5 exp{−γ6(k − 1)}

for some constants 0 < γ5, γ6, κW <∞ (see, Appendix Section C.1 for a detailed introduction

to the τ -mixing random variables).

Theorem 6 (Proof in Section 4.4.4). The above {Yt}t∈Z satisfies Assumptions (A1)-(A4)

with

γ1 = Cκ′∗κWγ
1

1+ε

5 /κ1, γ2 = γ6/(1 + ε), γ3 = C ′κ′1κWγ
1

1+ε

5 /κ1, γ4 = γ6/(1 + ε)

for some constants C,C ′ > 0 only depending on ε.
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Lastly, we consider an vector-valued ARCH-model with {Yt}t∈Z being a random sequence

generated by

Yt = AYt−1 +H(Yt−1)Et,

where H : Rp → Rp×p is a matrix-valued function and {Et}t∈Z is a sequence of independent

random vectors such that

sup
t∈Z

sup
u∈Sp−1

‖uTEt‖ψ2 ≤ κ′1 and sup
t∈Z

sup
v∈S̄p−1

‖vTEt‖ψ2 ≤ κ′∗

for some constants 0 < κ′1, κ
′
∗ < ∞. Assume further that ‖A‖ ≤ a1 and the function H(·)

satisfies

sup
u,v∈Rp

‖H(u)−H(v)‖ ≤ a2

κ′∗
‖u− v‖2

for some universal constant a1 < 1, a2 > 0 such that a1 + a2 < 1.

Theorem 7 (Proof in Section 4.4.4). If the above {Yt}t∈Z satisfies Assumption (A1), it

satisfies Assumptions (A2)-(A3) with

γ1 = Cκ∗/κ1, γ2 = − log(a1 + a2), γ3 = C ′max(κ∗κ
′
1/κ1κ

′
∗, 1), γ4 = log(a1 + a2)−1

for some constants C,C ′ > 0 only depending on ε. If we further assume the above {Yt}t∈Z
to be a stationary sequence and supu∈Rp ‖H(u)‖ < D2 for some universal constant D2 <∞,

then {Yt}t∈Z satisfies Assumption (A1).

4.4 Proofs

4.4.1 Proof of Theorem 3

Proof of Theorem 3. The proof depends mainly on the following tail probability bound of

deviation of the sample covariance from its mean.

Proposition 8 (Proof in Section 4.4.1). Let {Yt}t∈Z be a sequence of random vectors satis-

fying (A1)-(A3). For any integer n ≥ 2, integer 0 ≤ m ≤ n−2 and real number 0 < δ ≤ 1,

define

Mδ := C max
{(κ∗

κ1

)2

log
n−m
δ

,
(κ∗
κ1

)2

,
2κ∗γ1

κ1

}
.



89

Then for any x ≥ 0,

P[‖Σ̂m − EΣ̂m‖ ≥ κ2
1{x+

√
δ/(n−m)}] ≤ 2p exp

{
− C ′(n−m)2x2

A1(n−m) + A2M2
δ + A3(n−m)xMδ

}
+ δ,

with

A1 :=
{κ∗γ1/κ1 + (κ∗/κ1)2(γ3 + 2m+ 1) + 2m+ 1}

1− exp{−min( 5+ε
6ε+10

γ2, γ4)}
, A2 :=

4532

γ2

,

A3 :=
2 log(n−m)

log 2
max

{
1, 8m+

48 log (n−m)p

γ2

}
for some constants C,C ′ > 0 only depending on ε.

Without loss of generality, let m = 0. Taking x =
√

r∗ log ep
n

t, δ = x−γ for some γ > 1,

γ1 = O(
√
r∗), and γ3 = O(1) in Proposition 8, we obtain

P
(
‖Σ̂0 − EΣ̂0‖ ≥ C1κ

2
1

√
r∗ log ep

n
t
)
≤ 2p exp

[
−

C2(log ep)t/{log(
√

r∗ log ep
n

t)}2

1 + r∗(logn)2

n
+
√

r∗ log ep
n

t(log np)3

]
+ x−γ

for some constants C1, C2 > 0 only depending on ε, γ2, γ4.

If 1 + r∗(logn)2

n
≥ r∗ log ep(lognp)6

n
, we have

E‖Σ̂0 − EΣ̂0‖2

(C1κ2
1

√
r∗ log ep

n
)2

≤1 +
r∗(log n)2

n
+

∫ {1+ r∗(logn)
2

n }2

r∗ log ep(lognp)6

n

1+
r∗(logn)2

n

2p exp

[
−
C2(log ep)t/{log(

√
r∗ log ep

n
t)}2

1 + r∗(logn)2

n

]
dt

+

∫ ∞
{1+ r∗(logn)

2

n }2

r∗ log ep(lognp)6

n

2p exp

[
−
C2(log ep)

√
t/{log(

√
r∗ log ep

n
t)}2√

r∗ log ep(lognp)6

n

]
dt

≤C3

(
1 +

r∗(log n)2

n
+
r∗ log ep(log np)6

n

)
.

This gives that

E‖Σ̂0 − EΣ̂0‖2 ≤ C4κ
4
1

{r∗ log ep

n
+
r2
∗(log ep)2(log np)6

n2

}
.

On the other hand, if 1 + r∗(logn)2

n
≤ r∗ log ep(lognp)6

n
,

E‖Σ̂0 − EΣ̂0‖2

(C1κ2
1

√
r∗ log ep

n
)2

≤r∗ log ep(log np)6

n
+

∫ ∞
r∗ log ep(lognp)6

n

2p exp

[
−
C2(log ep)

√
t/{log(

√
r∗ log ep

n
t)}2√

r∗ log ep(lognp)6

n

]
dt

≤C5
r∗ log ep(log np)6

n
.
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This renders

E‖Σ̂0 − EΣ̂0‖2 ≤ C5κ
4
1

{r2
∗(log ep)2(log np)6

n2

}
.

Combining two cases gives us the final result by using the simple fact that E‖Σ̂0 − EΣ̂0‖ ≤

(E‖Σ̂0 − EΣ̂0‖2)
1
2 . This completes the proof of the first part of Theorem 3.

Notice that under Assumptions (A1), (A4), zero-mean, and second-order stationarity,

we have κ2
1 � ‖Σ0‖ and κ2

∗ � tr(Σ0). Thus plugging in the first part of Theorem 3 finishes

the proof.

Now we prove Proposition 8 under Assumptions (A1)-(A3). In the proof, the cases for

covariance and autocovariance matrices are treated separately. In the following we give a

roadmap. The proof of Proposition 8 is based on combining a Bernstein-type inequality for

the almost surely (a.s.) bounded matrices and a truncation method. The probability bound

for the a.s. bounded part (a.k.a., the truncated part) of the random matrix is obtained by

employing a Bernstein-type inequality for τ -mixing random matrices, which is presented in

Theorem 10, and some related lemmas (Lemmas 11 and 12), whose proofs are presented

later. The tail part of the random matrix is controlled under the sub-Gaussian Assumption

(A1), which uses Lemma 9 that will be presented soon.

In more detail, given a sequence of random vectors {Yt}t∈Z, denote Xt := YtY
T
t for all

t ∈ Z. Then for any constant M > 0, we introduce the following “truncated” version of Xt:

XM
t :=

M ∧ ‖Xt‖
‖Xt‖

Xt,

where a ∧ b := min(a, b) for any two real numbers a, b.

For any integer m > 0, we denote Z
(m)
t := YtY

T
t+m for all t ∈ Z. For the sake of

clarification, the superscript “(m)” is dropped when no confusion is possible. Then the

truncated version is

ZM
t :=

M ∧ ‖Zt‖
‖Zt‖

Zt

for any M > 0.
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We further define the “variances” for {XM
i }ni=1 and {ZM

i }n−mi=1 as

ν2
XM := sup

K⊆{1,...,n}

1

card (K)
λmax

{
E
(∑

i∈K

XM
i − EXM

i

)2}
,

ν2
ZM := sup

K⊆{1,...,n−m}

1

card (K)

∥∥∥∥E(∑
i∈K

ZM
i − EZM

i

)2∥∥∥∥.
Here λmax(X) and λmin(X) denote the largest and smallest eigenvalues of X respectively.

Proof of Proposition 8. We first assume κ1 = 1. We consider two cases.

Case I: When m = 0, {Xt}t∈Z is a sequence of symmetric random matrices. We have,

P
{

1

n

∥∥∥∥ n∑
i=1

(Xi − EXi)

∥∥∥∥ ≥ x

}
=P
{

1

n

∥∥∥∥ n∑
i=1

(Xi −XM
i + XM

i − EXM
i + EXM

i − EXi)

∥∥∥∥ ≥ x

}
≤P
{

1

n

∥∥∥∥ n∑
i=1

(XM
i − EXM

i + EXM
i − EXi)

∥∥∥∥+
1

n

∥∥∥∥ n∑
i=1

(Xi −XM
i )

∥∥∥∥ ≥ x

}
≤P
{∥∥∥∥ n∑

i=1

(XM
i − EXM

i + EXM
i − EXi)

∥∥∥∥ ≥ nx

}
+ P

{∥∥∥∥ n∑
i=1

(Xi −XM
i )

∥∥∥∥ > 0

}
≤P
{∥∥∥∥ n∑

i=1

(XM
i − EXM

i )

∥∥∥∥ ≥ nx−
n∑
i=1

‖EXM
i − EXi‖

}
+

n∑
i=1

P(Xi 6= XM
i )

≤P
[
λmax

{ n∑
i=1

(XM
i − EXM

i )

}
≥ nx−

n∑
i=1

‖EXM
i − EXi‖

]
+

P
[
λmin

{ n∑
i=1

(XM
i − EXM

i )

}
≤ −nx+

n∑
i=1

‖EXM
i − EXi‖

]
+

n∑
i=1

P(Xi 6= XM
i ). (4.4)

We first show that the difference in expectation between the “truncated” XMδ
t and original

one Xt can be controlled with the chosen truncation level Mδ. For this, we need the following

lemma.

Lemma 9 (Proof in Section 4.4.3). Let {Yt}t∈Z be a sequence of p-dimensional random

vectors under Assumption (A1). Then for all t ∈ Z and for all x ≥ 0,

P{‖Yt‖2
2 ≥ 2κ2

∗ + 8κ2
∗(x+

√
x)} ≤ exp(−Cx)
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for some arbitary constant C > 0.

By applying Lemma 9, we obtain that for all i ∈ {1, . . . , n},

‖EXMδ
i − EXi‖ =

∥∥∥∥E(1− Mδ

‖Xi‖

)
Xi1{‖Xi‖>Mδ}

∥∥∥∥
≤ sup

u,v∈Sp−1

E|uTXiv|1{‖Xi‖>Mδ}

≤ sup
u,v∈Sp−1

{E(uTYiY
T
i v)2}

1
2{P(‖Xi‖ > Mδ)}

1
2

≤
√
δ/n,

where the last line followed by Assumption (A1), Lemma 9, and the chosen Mδ.

The second step heavily depends on a Bernstein-type inequality for τ -mixing random

matrices. The theorem slightly extends the main theorem of Banna et al. (2016) in which the

random matrix sequence is assumed to be β-mixing. Its proof is relegated to the Appendix

C.

Theorem 10 (Proof in Appendix). Consider a sequence of real, mean-zero, symmetric p×p

random matrices {Xt}t∈Z with ‖Xt‖ ≤M for some positive constant M . In addition, assume

that this sequence is τ -mixing (see, Appendix Section C.1 for a detailed introduction to the

τ -mixing coefficient) with geometric decay, i.e.,

τ(k; {Xt}t∈Z, ‖ · ‖) ≤Mψ1 exp{−ψ2(k − 1)}

for some constants ψ1, ψ2 > 0. Denote ψ̃1 := max{p−1, ψ1}. Then for any x ≥ 0 and any

integer n ≥ 2, we have

P
{
λmax

( n∑
i=1

Xi

)
≥ x

}
≤ p exp

{
− x2

8(152nν2 + 602M2/ψ2) + 2xMψ̃(ψ̃1, ψ2, n, p)

}
,

where

ν2 := sup
K⊆{1,...,n}

1

card(K)
λmax

{
E
(∑

i∈K

Xi

)2}
and ψ̃(ψ̃1, ψ2, n, p) :=

log n

log 2
max

{
1,

8 log(ψ̃1n
6p)

ψ2

}
.
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In order to apply Theorem 10, we need the following two lemmas. Lemma 11 is to show

that the sequence of “truncated” matrices {XM
t } under Assumptions (A1)-(A2) is a τ -

mixing random sequence with geometric decay. Lemma 12 calculates the upper bound for

ν2 term in Theorem 10 for {XM
t }t∈Z.

Lemma 11 (Proof in Section 4.4.3). Let {Yt}t∈Z be a sequence of random vectors under

Assumptions (A1)-(A2). Then {XM
t }t∈Z, {XM

t −EXM
t }t∈Z, {ZM

t }t∈Z, and {ZM
t −EZM

t }t∈Z
are all τ -mixing random sequences. Moreover,

τ(k; {XM
t }t∈Z, ‖ · ‖) ≤ Cγ1κ1κ∗ exp{−γ2(k − 1)},

τ(k; {XM
t − EXM

t }t∈Z, ‖ · ‖) ≤ Cγ1κ1κ∗ exp{−γ2(k − 1)},

τ(k; {ZM
t }t∈Z, ‖ · ‖) ≤ C ′ exp{γ2 min(k,m)}max(γ1κ1κ∗, κ

2
∗) exp{−γ2(k − 1)},

τ(k; {ZM
t − EZM

t }t∈Z, ‖ · ‖) ≤ C ′ exp{γ2 min(k,m)}max(γ1κ1κ∗, κ
2
∗) exp{−γ2(k − 1)}

for k ≥ 1 and some constants C,C ′ > 0 only depending on ε.

Lemma 12 (Proof in Section 4.4.3). Let {Yt}t∈Z be a sequence of random vectors under

Assumptions (A1)-(A3). Take M ≥ Cγ1κ1κ∗ for some constant C > 0 only depending on

ε. Then we obtain

ν2
XM ≤ C ′

κ2
1{κ2

1 + κ1κ∗γ1 + κ2
∗(γ3 + 2)}

1− exp{−min( 5+ε
6ε+10

γ2, γ4)}
,

ν2
ZM ≤ C ′′

κ2
1{(2m+ 1)κ2

1 + κ1κ∗γ1 + κ2
∗(γ3 + 2m+ 2)}

1− exp{−min( 5+ε
6ε+10

γ2, γ4)}

for some constants C ′, C ′′ > 0 only depending on ε.

Therefore, by applying Theorems 10, Lemma 11, and Lemma 12 with the chosen Mδ, we

obtain for any x > 0,

P
[
λmax

{
1

n

n∑
i=1

(XMδ
i − EXMδ

i )

}
≥ x+

√
δ/n

]
≤ p exp

(
− n2x2

A1n+ A2M2
δ + A3nxMδ

)
,

(4.5)
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where

A1 :=
C{κ∗γ1 + κ2

∗(γ3 + 2) + 1}
1− exp{−min( 5+ε

6ε+10
γ2, γ4)}

, A2 :=
4532

γ2

, and A3 :=
2 log n

log 2
max

{
1,

48 log(np)

γ2

}
for some constant C > 0 only depending on ε.

Similarly, notice that λmin(
∑n

j=1 XMδ
j ) = λmax(−

∑n
j=1 XMδ

j ). Hence the same argument

renders the same upper bound

P
[
λmin

{
1

n

n∑
i=1

(XMδ
i − EXMδ

i )

}
≤ −(x+

√
δ/n)

]
≤ p exp

(
− n2x2

A1n+ A2M2
δ + A3nxMδ

)
(4.6)

with the same constants as above.

For the last term of (4.4), with the choice of Mδ and Lemma 9, we obtain

n∑
i=1

P(Xi 6= XMδ
i ) =

n∑
i=1

P(‖Xi‖ > Mδ) ≤ δ. (4.7)

Combining (4.5), (4.6), and (4.7), we obtain

P(‖Σ̂0 − EΣ̂0‖ ≥ x+
√
δ/n) ≤ 2p exp

(
− n2x2

A1n+ A2M2
δ + A3nxMδ

)
+ δ

with the constants A1, A2, A3 defined above.

Case II: Now we consider the case when 0 < m ≤ n − 2. Since Zt := YtY
T
t+m is not

symmetric for all t ∈ Z, by applying matrix dilation (See Tropp (2015), Section 2.1.16 for

more details), we define the symmetric version of ZM
t as

Z
M

t :=

 0 ZM
t

(ZM
t )T 0

 .
Observe that λmax(Z

M

t ) = ‖ZM

t ‖ = ‖ZM
t ‖. By Lemma 11, {ZM

t }t∈Z and {ZM

t −EZ
M

t }t∈Z are

also sequences of τ -mixing random matrices. Define

ν2

Z
M := sup

K⊆{1,...,n−m}

1

card (K)
λmax

{
E
(∑

i∈K

Z
M

i − EZ
M

i

)2}
.
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Notice that ν2

Z
M and ν2

ZM have the same upper bound since spectral norm of block diagonal

matrix is less than or equal to the spectral norm of each block.

Now we apply similar arguments in Case I to {Zt}t∈Z and {ZM

t }t∈Z.

P
{

1

n−m

∥∥∥∥ n−m∑
i=1

(Zi − EZi)

∥∥∥∥ ≥ x

}

≤P
[
λmax

{ n−m∑
i=1

(Z
M

i − EZ
M

i )

}
≥ (n−m)x−

n−m∑
i=1

‖EZi − EZ
M

i ‖
]

+
n−m∑
i=1

P
(
Zi 6= ZM

i

)
.

The rest is straightforward by using Theorem 10, Lemma 9, Lemma 11, and Lemma 12, and

we thus finish the rest of the proof.

Lastly, we consider κ1 6= 1. Notice that for any sequence {Yt}t∈Z satisfying Assumptions

(A1)-(A3), the sequence {Yt/κ1}t∈Z will satisfy Assumptions (A1) automatically and As-

sumptions (A2)-(A3) with κ1 = 1. Hence, applying the above to {Yt/κ1}t∈Z renders the

results. This completes the proof of Proposition 8.

4.4.2 Proof of Theorem 4

Proof. The proof of Theorem 4 consists of two cases.

Case I. Whenm = 0, we first state a more general result of Gaussian process. Proposition

13 considers a general Gaussian process without further assumptions on the covariance and

autocovariance matrices. The proof modifies that of Theorem 5.1 in van Handel (2017) with

dependence among observations taken into account.

Proposition 13 (Proof in Section 4.4.2). Let {Yt}t∈Z be a stationary sequence of mean-zero

Gaussian random vectors with autocovariance matrices Σm for 0 ≤ m ≤ n− 1. Then

E‖Σ̂0 −Σ0‖ ≤
2

n

{
2
(
‖Σ0‖∗ + 2

n−1∑
m=1

‖Σm‖∗
)

+

√√√√2n‖Σ0‖
(
‖Σ0‖∗ + 2

n−1∑
m=1

‖Σm‖∗
)

+

√√√√2n
(
‖Σ0‖+ 2

n−1∑
m=1

‖Σm‖
)

tr(Σ0)

}
,
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where ‖ · ‖∗ is the matrix nuclear norm.

The rest of the proof is to show the geometric decay of spectral norm and nuclear norm

of autocovariance matrices under Assumptions (A2)-(A3) in order to apply Proposition 13.

It is obvious that κ2
1 � ‖Σ0‖ and κ2

∗ � tr(Σ0) when the process is a centered stationary

Gaussian process. We first prove the geometric decay of spectral norm of autocovariance

matrices. For any 0 ≤ m ≤ n− 1 and any integer j, by Assumption (A3), there exists Ỹ1+m

that is identically distributed as Y1+m, independent of Y1, and

sup
u∈Sp−1

‖(Y1+m − Ỹ1+m)Tu‖L(1+ε) ≤ γ3

√
‖Σ0‖ exp{−γ4(m− 1)}.

Therefore,

‖Σm‖ =‖EY1Y
T

1+m‖

=‖EY1(Y1+m − Ỹ1+m + Ỹ1+m)T‖

=‖EY1(Y1+m − Ỹ1+m)T‖

≤ sup
u,v∈Sp−1

|EuTY1(Y1+m − Ỹ1+m)Tv|

≤C‖Σ0‖ exp{−γ4(m− 1)},

where the last inequality is followed by Assumption (A3) and γ3 = O(1) for some constant

C > 0 only depending on ε, γ3.

Similarly, by Assumption (A2), there exists Ỹ1+m that is identically distributed as Y1+m,

independent of Y1, and

‖‖Y1+m − Ỹ1+m‖2‖L(1+ε) ≤ γ1

√
‖Σ0‖ exp{−γ2(m− 1)}.
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Then,

‖Σm‖∗ =
√

tr(ΣT
mΣm)

=

√
tr{E(Y1+m − Ỹ1+m)Y T

1 EY1(Y1+m − Ỹ1+m)T}

≤
√

tr{E(Y1+m − Ỹ1+m)Y T
1 Y1(Y1+m − Ỹ1+m)T}

=

√
tr{EY T

1 Y1(Y1+m − Ỹ1+m)(Y1+m − Ỹ1+m)T}

=

√
E‖Y1‖2

2‖Y1+m − Ỹ1+m‖2
2

≤ ‖‖Y1‖2‖L( 1+ε
ε

)‖‖Y1+m − Ỹ1+m‖2‖L(1+ε)

≤ C tr(Σ0) exp{−γ2(m− 1)},

where the third line is followed by the fact that E(Y1+m − Ỹ1+m)Y T
1 EY1(Y1+m − Ỹ1+m)T �

EY T
1 Y1(Y1+m − Ỹ1+m)(Y1+m − Ỹ1+m)T (“�” is the Loewner partial order of Hermitian

matrices), and both matrices are positive semi-definite, and the last line by Assumption

(A2) and γ1 = O(
√
r(Σ0)). Indeed, for any u ∈ Rp, E{uT(Y1+m − Ỹ1+m)}2(Y T

1 Y1) =∑p
j=1 E{uT(Y1+m − Ỹ1+m)}2Y 2

1,j and E{uT(Y1+m − Ỹ1+m)}Y T
1 EY1(Y1+m − Ỹ1+m)Tu

=
∑p

j=1[E{uT(Y1+m − Ỹ1+m)Y1,j}]2. The result follows.

Case II. When m > 0, we denote Ȳi := (Y T
i Y T

i+m)T for 1 ≤ i ≤ n−m. It is obvious that

{Ȳi} is a centered stationary Gaussian process satisfying Assumptions (A2)-(A3). Denote

Σ̄0 := EȲiȲ T
i and notice that Σm is the off-diagnal block submatrix of Σ̄0. By Case I and

the fact that spectral norm of submatrix is bounded above by that of the full matrix, we

obtain

E‖Σ̂m −Σm‖ ≤ C‖Σ̄0‖
(√ r(Σ0)

n−m
+
r(Σ0)

n−m

)
.

Notice that ‖Σ0‖ ≤ ‖Σ̄0‖ ≤ ‖Σ0‖+ ‖Σm‖ ≤ 2‖Σ0‖ since Σ0−Σm is positive semi-definite.

This completes the proof.

Proof of Proposition 13. The proof heavily depends on the following observation. Denote

Y := (Y1 . . .Yn) and let Ỹ be an independent copy of Y. Then

E‖Σ̂0 −Σ0‖ ≤
2

n
E‖YỸT‖.
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This is same as Lemma 5.2 in van Handel (2017) by noticing that the result holds without

independence assumption.

Now we state the following two core lemmas used to complete the proof.

Lemma 14 (Proof in Section 4.4.3). We have

E‖Σ̂0 −Σ0‖ ≤
2
√

2

n

{
E‖Y‖ ·

√√√√tr
(
Σ0 + 2

n−1∑
d=1

Σ̃d

)
+

√√√√2
(
‖Σ0‖+ 2

n−1∑
d=1

‖Σd‖
)
·
√
n tr(Σ0)

}
,

where Σ̃d := (UdΛdU
T
d + VdΛdV

T
d )/2. Here Ud,Vd,Λd are left singular vectors, right

singular vectors, and singular values of Σd for all 1 ≤ d ≤ n− 1 respectively.

Lemma 15 (Proof in Section 4.4.3). We have

E‖Y‖ ≤

√√√√2 tr

(
Σ0 + 2

n−1∑
d=1

Σ̃d

)
+
√

2n‖Σ0‖,

where Σ̃d for all 1 ≤ d ≤ n− 1 are defined in Lemma 14.

The proof of Proposition 13 completes by combining Lemma 14 and Lemma 15.

4.4.3 Proofs of auxiliary lemmas

Proof of Lemma 9. By Lemma A.2 in Bunea and Xiao (2015), we have E‖Yt‖2k
2 ≤ (2k)kκ2k

∗

for t ∈ Z. Hence

‖‖Yt‖2
2 − E‖Yt‖2

2‖ψ1 ≤ 2‖‖Yt‖2
2‖ψ1 ≤ 4‖‖Yt‖2‖2

ψ2
≤ 8κ2

∗.

Thus by property of sub-exponential random variable and Chernoff inequality, we have

for any x ≥ 0,

P(‖Yt‖2
2 − E‖Yt‖2

2 ≥ x) ≤ exp
{
− C min

( x2

64κ4
∗
,
x

8κ2
∗

)}
,

for some arbitary constant C > 0. Obviously, we have for all x ≥ 0,

P{‖Yt‖2
2 ≥ 2κ2

∗ + 8κ2
∗(x+

√
x)} ≤ exp(−Cx)

for some arbitary constant C > 0. This completes the proof.
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Proof of Lemma 11. We first show that {Xt}t∈Z is a sequence of τ -mixing random vectors

with geometric decay. Under Assumption (A2) (without loss of generality, take j = 0), there

exists a sequence of random vectors {Ỹt}t>0 which is independent of σ({Yt}t≤0), identically

distributed as {Yt}t>0, and for any integer t ≥ 1,

‖‖Yt − Ỹt‖2‖L(1+ε) ≤ γ1κ1 exp{−γ2(t− 1)}

for some constant ε > 0. Then for any m ≥ 0,

E‖YtY T
t+m − ỸtỸ

T
t+m‖

=E‖YtY T
t+m − YtỸ

T
t+m + YtỸ

T
t+m − ỸtỸ

T
t+m‖

≤E‖Yt(Yt+m − Ỹt+m)T‖+ E‖(Yt − Ỹt)Ỹ
T
t+m‖

≤‖‖Yt‖2‖L( 1+ε
ε

)‖‖Yt+m − Ỹt+m‖2‖L(1+ε) + ‖‖Yt+m‖2‖L( 1+ε
ε

)‖‖Yt − Ỹt‖2‖L(1+ε)

≤Cγ1κ1κ∗ exp{−γ2(t− 1)},

where the fourth line is followed by Hölder’s inequality and the fact that

sup
t∈Z
‖‖Yt‖2‖L(α) ≤ sup

t∈Z
sup

u∈S̄p−1

‖uTYt‖L(α) ≤ sup
t∈Z

sup
u∈S̄p−1

√
α‖uTYt‖ψ2 ≤

√
ακ∗

for any α ≥ 1. Here C > 0 is some constant only depending on ε.

Now define X̃t := ỸtỸ
T
t for any integer t > 0. It is obvious that {X̃t}t>0 is independent

of {Xt}t≤0 and identically distributed as {Xt}t>0. By applying Lemma 18, for any indices

0 < k ≤ t1 < · · · < t`, we obtain

τ{σ({Xt}t≤0), (Xt1 , . . . ,Xt`); ‖ · ‖} ≤
∑̀
i=1

E‖Xti − X̃ti‖ ≤ Cγ1κ1κ∗` exp{−γ2(k − 1)}.

By definition of τ -mixing coefficient, this yields

τ(k; {Xt}t∈Z, ‖ · ‖) ≤ Cγ1κ1κ∗ exp{−γ2(k − 1)}

for some constant C > 0 only depending on ε.

Now we proceed to prove τ -mixing properties for the “truncated version”. The following

lemma is needed.
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Lemma 16 (Proof in Section 4.4.3). Let u1, u2, v1, v2 ∈ Rp for p ≥ 1 with unit length

under `2-norm and σu ≥ 0. Then the function

f(σv) = ‖σvv1v
T
2 − σuu1u

T
2 ‖

is non-decreasing in the range σv ∈ [σu,∞]. In particular, for any M ≥ 0 such that M ≤

σu, M ≤ σv, we have

‖Mv1v
T
2 −Mu1u

T
2 ‖ ≤ ‖σvv1v

T
2 − σuu1u

T
2 ‖.

Now consider three cases.

(1) When ‖Xt‖ ≤M and ‖X̃t‖ ≤M , ‖XM
t − X̃M

t ‖ = ‖Xt − X̃t‖.

(2) When ‖Xt‖ ≤M and ‖X̃t‖ > M , we have

XM
t = Xt = ‖Yt‖2

2

Yt
‖Yt‖2

Y T
t

‖Yt‖2

and X̃M
t = M

Ỹt

‖Ỹt‖2

Ỹ T
t

‖Ỹt‖2

.

Since Yt
‖Yt‖2 ,

Ỹt
‖Ỹt‖2

have unit length and ‖Yt‖2
2 ≤M < ‖Ỹt‖2

2, we have ‖XM
t −X̃M

t ‖ ≤ ‖Xt−X̃t‖

by Lemma 16. By symmetry, the same argument also applies to the case where ‖Xt‖ > M

and ‖X̃t‖ ≤M .

(3) When ‖Xt‖ > M and ‖X̃t‖ > M , we have XM
t = M Yt

‖Yt‖2
Y T
t

‖Yt‖2 and X̃M
t = M Ỹt

‖Ỹt‖2
Ỹ T
t

‖Ỹt‖2
.

Again by Lemma 16, we have ‖XM
t − X̃M

t ‖ ≤ ‖Xt − X̃t‖.

By combining three cases, ‖XM
t − X̃M

t ‖ ≤ ‖Xt − X̃t‖ always holds, and hence E‖XM
t −

X̃M
t ‖ ≤ E‖Xt − X̃t‖ for any t ≥ 1. Hence for any indices 0 < k ≤ t1 < · · · < t`, by Lemma

18, we have

τ{σ({XM
t }t≤0), (XM

t1
, . . . ,XM

t`
); ‖ · ‖} ≤ Cγ1κ1κ∗` exp{−γ2(k − 1)}

for some constant C > 0 only depending on ε. By definition of τ -mixing coefficient, this

yields

τ(k; {XM
t }t∈Z, ‖ · ‖) ≤ Cγ1κ1κ∗ exp{−γ2(k − 1)}

for some constant C > 0 only depending on ε. Notice that E‖XM
t −EXM

t −(X̃M
t −EX̃M

t )‖ =

E‖XM
t −X̃M

t ‖ since EX̃M
t = EXM

t for any t ≥ 1. The τ -mixing property stated above applies

to {XM
t − EXM

t } directly.
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Similar arguments apply to {ZM
t }t∈Z and {ZM

t − EZM
t }t∈Z so we omit the details. This

completes the proof.

Proof of Lemma 12. The proof consists of two steps.

Step I. We first provide an upper bound for ν2
X. Without loss of generality, we only

consider ‖E(X0−EX0)(Xk−EXk)‖ for k ≥ 0. Under Assumptions (A2)-(A3), there exists

Ỹk where Ỹk is independent of σ({Yt}t≤0), identically distributed as Yk, and

‖‖Yk − Ỹk‖2‖L(1+ε) ≤ γ1κ1 exp{−γ2(k − 1)},

‖(Yk − Ỹk)
Tu‖L(1+ε) ≤ γ3κ1 exp{−γ4(k − 1)}

for constants γ1, γ2, γ3, γ4 > 0 in Assumptions (A2)-(A3).

For k = 0, we have

‖EX0X0 − EX0EX0‖ ≤ C(κ4
1 + κ2

1κ
2
∗)

by Assumption (A1) for some universal constant C > 0. For k > 0, we obtain

‖EX0Xk − EX0EXk‖ =‖EX0Xk − EX0X̃k‖

=‖EX0(Xk − X̃k)‖

= sup
u,v∈Sp−1

E|uTY0Y
T

0 (YkY
T
k − ỸkỸ

T
k )v|

≤ sup
u,v∈Sp−1

E|uTY0Y
T

0 Yk(Y
T
k − Ỹ T

k )v + uTY0Y
T

0 (Yk − Ỹk)Ỹ
T
k v|

≤ sup
u,v∈Sp−1

{E|Y T
0 Yk|

3(1+ε)
2ε }

2ε
3(1+ε)‖uTY0‖L(

3(1+ε)
ε

)
‖(Yk − Ỹk)

Tv‖L(1+ε)+

{E|uTY0Ỹ
T
k v|

3(1+ε)
2ε }

2ε
3(1+ε)‖‖Y0‖2‖L(

3(1+ε)
ε

)
‖‖Yk − Ỹk‖2‖L(1+ε)

≤Cκ2
1κ∗(κ∗γ3 + κ1γ1) exp{−min(γ2, γ4)(k − 1)},

where the first line is followed by EXk = EX̃k, fifth line by Hölder’s inequality, and sixth

line by Assumptions (A1)-(A3) for some constant C > 0 only depending on ε.
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Hence for any K ⊆ {1, . . . , n},

1

card (K)
λmax

{
E
(∑

i∈K

Xi − EXi

)2}
≤ 1

card (K)

∥∥∥∥ ∑
i,j∈K

E(Xi − EXi)(Xj − EXj)

∥∥∥∥
≤ 1

card (K)

∑
i,j∈K

‖E(Xi − EXi)(Xj − EXj)‖

≤C
[
κ4

1 + κ2
1κ

2
∗ +

κ2
1κ∗(κ∗γ3 + κ1γ1)

card (K)

∑
i,j∈K,i6=j

exp{−min(γ2, γ4)(|i− j| − 1)}
]

≤C
[κ2

1{κ2
1 + κ1κ∗γ1 + κ2

∗(γ3 + 1)}
1− exp(−min{γ2, γ4})

]
.

Step II.We first bound ν2
XM . By definition, we have∥∥∥∥E(∑

i∈K

XM
i − EXM

i

)2∥∥∥∥ =

∥∥∥∥ ∑
i,j∈K

E(XM
i − EXM

i )(XM
j − EXM

j )

∥∥∥∥ =

∥∥∥∥ ∑
i,j∈K

(EXM
i XM

j − EXM
i EXM

j )

∥∥∥∥.
Without loss of generality, we consider ‖EXM

0 XM
k − EXM

0 EXM
k ‖ for k ≥ 0. Let X̃M

k be

defined as in the proof of Lemma 11. Then X̃M
k is independent of X̃M

0 and distributed as

XM
k . Hence

‖EXM
0 XM

k − EXM
0 EXM

k ‖ = ‖EXM
0 XM

k − EXM
0 EX̃M

k ‖.

Then we could rewrite

‖EXM
0 XM

k − EXM
0 EX̃M

k ‖ =‖EX0Xkζ0ζk − EX0X̃kζ0ζ̃k‖

=‖EX0(Xk − X̃k)ζ0ζk + EX0X̃kζ0(ζk − ζ̃k)‖,

where ζi = M∧‖Xi‖
‖Xi‖ , ζ̃i = M∧‖X̃i‖

‖X̃i‖
. Since ζ0, ζk are bounded by 1, we have

‖EX0(Xk − X̃k)ζ0ζk‖ = sup
u,v∈Sp−1

E|uTX0(Xk − X̃k)ζ0ζkv|

≤ sup
u,v∈Sp−1

E|uTX0(Xk − X̃k)v|

= ‖EX0(Xk − X̃k)‖

≤ Cκ2
1(κ1κ∗γ1 + κ2

∗γ3) exp{−min(γ2, γ4)(k − 1)},
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where the last inequality is from result in Step I for some constant C > 0 only depending on

ε.

On the other hand, by applying Hölder’s inequality, we have

‖EX0X̃kζ0(ζk − ζ̃k)‖ = sup
u,v∈Sp−1

E|uTX0X̃kv||ζk − ζ̃k|

≤ sup
u,v∈Sp−1

{E|uTY0Y
T

0 ỸkỸ
T
k v|

5(1+ε)
4ε }

4ε
5(1+ε){E|ζk − ζ̃k|

5(1+ε)
5+ε }

5+ε
5(1+ε) .

Hence, for any u,v ∈ Sp−1,

{E|uTY0Y
T

0 ỸkỸ
T
k v|

5(1+ε)
4ε }

4ε
5(1+ε) ≤‖uTY0‖L(

5(1+ε)
ε

)
‖uTỸk‖L(

5(1+ε)
ε

)
‖‖Y0‖2‖L(

5(1+ε)
ε

)
‖‖Ỹk‖2‖L(

5(1+ε)
ε

)

≤Cκ2
1κ

2
∗,

where the first line follows by Hölder’s inequality and the last line by Assumption (A1) for

some constant C > 0 only depending on ε.

Next, we need to bound ‖ζk − ζ̃k‖L(
5(1+ε)
5+ε

)
. For the sake of presentation clearness, we

denote ak := ‖Xk‖ and ãk := ‖X̃k‖, and rewrite

‖ζk − ζ̃k‖L(
5(1+ε)
5+ε

)

=

∥∥∥∥M ∣∣∣∣ 1

ak
− 1

ãk

∣∣∣∣1{ak>M,ãk>M} +

(
1− M

ak

)
1{ak>M,ãk≤M} +

(
1− M

ãk

)
1{ak≤M,ãk>M}

∥∥∥∥
L(

5(1+ε)
5+ε

)

≤
∥∥∥∥M ∣∣∣∣ 1

ak
− 1

ãk

∣∣∣∣1{ak>M,ãk>M}

∥∥∥∥
L(

5(1+ε)
5+ε

)

+

∥∥∥∥(1− M

ak

)
1{ak>M,ãk≤M}

∥∥∥∥
L(

5(1+ε)
5+ε

)

+

∥∥∥∥(1− M

ãk

)
1{ak≤M,ãk>M}

∥∥∥∥
L(

5(1+ε)
5+ε

)

, (4.8)

where the last inequality follows by the fact that ‖ · ‖
L(

5(1+ε)
5+ε

)
is a norm for ε > 0.

For the first term, we have∥∥∥∥M ∣∣∣∣ 1

ak
− 1

ãk

∣∣∣∣1{ak>M,ãk>M}

∥∥∥∥
L(

5(1+ε)
5+ε

)

=

∥∥∥∥M ∣∣∣∣ ãk − akakãk

∣∣∣∣1{ak>M,ãk>M}

∥∥∥∥
L(

5(1+ε)
5+ε

)

≤ 1

M
{E|ãk − ak|

5(1+ε)
5+ε }

5+ε
5(1+ε)

≤ 1

M
{E‖Xk − X̃k‖

5(1+ε)
5+ε }

5+ε
5(1+ε)

≤ Cγ1κ1κ∗ exp{−γ2(k − 1)}/M,
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where the last inequality is followed by Lemma 11 for some constant C > 0 only depending

on ε. With the chosen M ≥ Cγ1κ1κ∗, we have

∥∥∥∥M ∣∣∣∣ 1

ak
− 1

ãk

∣∣∣∣1{ak>M,ãk>M}

∥∥∥∥
L(

5(1+ε)
5+ε

)

≤ exp{−γ2(k − 1)}.

For the second term, taking any εk > 0, we have

∥∥∥∥(1− M

ak

)
1{ak>M,ãk≤M}

∥∥∥∥
L(

5(1+ε)
5+ε

)

=

∥∥∥∥(1− M

M + εk

)
1{M<ak≤M+εk,ãk≤M}

∥∥∥∥
L(

5(1+ε)
5+ε

)

+

∥∥∥∥(1− M

ak

)
1{ak>M+εk,ãk≤M}

∥∥∥∥
L(

5(1+ε)
5+ε

)

≤ εk
M

+

∥∥∥∥1{ak>M+εk,ãk≤M}

∥∥∥∥
L(

5(1+ε)
5+ε

)

≤ εk
M

+ {P(|ak − ãk| > εk)}
5+ε

5(1+ε) .

By Markov inequality and Lemma 11, we have

P(|ak − ãk| > εk) ≤
E‖Xk − X̃k‖

εk
≤ Cγ1κ1κ∗ exp{−γ2(k − 1)}

εk

for some constant C > 0 only depending on ε. Taking εk = Cγ1κ1κ∗ exp{− 5+ε
6ε+10

γ2(k − 1)},

we obtain

∥∥∥∥(1− M

ak

)
1{ak>M,ãk≤M}

∥∥∥∥
L(

5(1+ε)
5+ε

)

≤ 2 exp

{
− 5 + ε

6ε+ 10
γ2(k − 1)

}
.

The third term follows by symmetry. Putting together, we have for k > 0,

‖ζk − ζ̃k‖L(
5(1+ε)
5+ε

)
≤ C exp

{
− 5 + ε

6ε+ 10
γ2(k − 1)

}
,

‖EX0X̃kζ0(ζk − ζ̃k)‖ ≤ Cκ2
1κ

2
∗ exp

{
− 5 + ε

6ε+ 10
γ2(k − 1)

}
,

‖EXM
0 XM

k − EXM
0 EX̃M

k ‖ ≤ Cκ2
1{κ1κ∗γ1 + κ2

∗(γ3 + 1)} exp

{
−min

( 5 + ε

6ε+ 10
γ2, γ4

)
(k − 1)

}
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for some constant C > 0 only depending on ε. Hence for any K ⊆ {1, . . . , n},

1

card (K)
λmax

{
E
(∑

i∈K

XM
i − EXM

i

)2}
≤ 1

card (K)

∥∥∥∥ ∑
i,j∈K

E(XM
i − EXM

i )(XM
j − EXM

j )

∥∥∥∥
≤ 1

card (K)

∑
i,j∈K

‖E(XM
i − EXM

i )(XM
j − EXM

j )‖

≤C
[
κ4

1 + κ2
∗κ

2
1 +

κ2
1{κ1κ∗γ1 + κ2

∗(γ3 + 1)}}
card(K)

∑
i,j∈K,i6=j

exp
{
−min

( 5 + ε

6ε+ 10
γ2, γ4

)
(|i− j| − 1)

}]
≤Cκ

2
1{κ2

1 + κ1κ∗γ1 + κ2
∗(γ3 + 2)}

1− exp{−min( 5+ε
6ε+10

γ2, γ4)}

for some constant C > 0 only depending on ε.

Similar arguments apply to ν2
ZM so we omit the details. This completes the proof.

Proof of Lemma 16. Fix u1,u2,v1,v2 ∈ Rp with unit length and σu ≥ 0. For any σv ≥ σu,

we perform singular value decomposition for matrix X(σv) := σuu1u
T
2 − σvv1v

T
2 . According

to Equation (8) in Brand (2006), the non-zero singular values of X(σv) are identical to those

of

S(σv) =

 σu − σvuT
1 v1v

T
2 u2 −σvuT

1 v1‖v2 − u2u
T
2 v2‖2

σvu
T
2 v2‖v1 − u1u

T
1 v1‖2 σ2

v‖v1 − u1u
T
1 v1‖2‖v2 − u2u

T
2 v2‖2

 .
For simplicity, denote w = uT

1 v1v
T
2 u2, ṽ1 = v1 − u1u

T
1 v1, ũ1 = v2 − u2u

T
2 v2. Hence S(σv)

could be rewritten as

S(σv) =

 σu − σvw −σvuT
1 v1‖ṽ2‖2

σvu
T
2 v2‖ṽ1‖2 σ2

v‖ṽ1‖2‖ṽ2‖2

 .
Using the calculation on Page 86 in Blinn (1996), ‖S(σv)‖ = Q(σv) +R(σv), where

Q(σv) :=
√

(σu − σvw + σv‖ṽ1‖2‖ṽ2‖2)2 + σ2
v(u

T
1 v1‖ṽ2‖2 + uT

2 v2‖ṽ1‖2)2/2,

R(σv) :=
√

(σu − σvw − σv‖ṽ1‖2‖ṽ2‖2)2 + σ2
v(u

T
1 v1‖ṽ2‖2 − uT

2 v2‖ṽ1‖2)2/2.



106

We are left to show that both Q and R are non-deceasing function of σv ∈ [σu,∞]. By

differentiating Q,R with respect to σv, we obtain

dQ

dσv
= cQ(σv)[σu(‖ṽ1‖2‖ṽ2‖2 − w) + σv{w2 + ‖ṽ1‖2

2‖ṽ2‖2
2 + (uT

1 v1)2‖ṽ2‖2
2 + (uT

2 v2)2‖ṽ1‖2
2}],

dR

dσv
= cQ(σv)[−σu(‖ṽ1‖2‖ṽ2‖2 + w) + σv{w2 + ‖ṽ1‖2

2‖ṽ2‖2
2 + (uT

1 v1)2‖ṽ2‖2
2 + (uT

2 v2)2‖ṽ1‖2
2}]

for some nonnegative constants cQ(σv), cR(σv).

By simple algebra, we have w2 + ‖ṽ1‖2
2‖ṽ2‖2

2 + (uT
1 v1)2‖ṽ2‖2

2 + (uT
2 v2)2‖ṽ1‖2

2 = 1 so that

dQ

dσv
= cQ(σv)[σu(‖ṽ1‖2‖ṽ2‖2 − w) + σv].

Moreover, since u1,u2,v1,v2 ∈ Rp are all length 1, we have |w| ≤ 1 by Cauchy-Schwartz.

Hence by the fact that σv ≥ σu ≥ 0, we have dQ
dσv
≥ 0. On the other hand, denote a := uT

1 v1

and b := uT
2 v2 and again by Cauchy-Schwartz we have |a| ≤ 1, |b| ≤ 1. In addition, we have

‖ṽ1‖2 =
√

(v1 − u1uT
1 v1)T(v1 − u1uT

1 v1)

=
√

vT
1 v1 − vT

1 u1uT
1 v1 − vT

1 u1uT
1 v1 + vT

1 u1uT
1u1uT

1 v1

=
√

1− a2.

Similarly, we have ‖ṽ2‖2 =
√

1− b2. Then

dR

dσv
= cQ(σv){σv − σu(‖ṽ1‖2‖ṽ2‖2 + w)}

≥ cQ(σv)σu(1− ‖ṽ1‖2‖ṽ2‖2 − w)

≥ cQ(σv)σu(1−
√

(1− a2)(1− b2)− ab).

Since (1− ab)2 ≥ (1− a2)(1− b2) and |ab| ≤ 1, we obtain dR
dσv
≥ 0. Therefore we have shown

that ‖S(σv)‖ = Q(σv) +R(σv) is a non-decreasing function with respect to σv.

Obviously ‖Mv1v
T
2 −Mu1u

T
2 ‖ ≤ ‖σuv1v

T
2 − σuu1u

T
2 ‖ since 0 < M ≤ σu. Applying the

monotonicity property proved above, we have ‖σuv1v
T
2 − σuu1u

T
2 ‖ ≤ ‖σuv1v

T
2 − σvu1u

T
2 ‖.

This completes the proof.
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Proof of Lemma 14. By the observation in the proof of Proposition 13, we have

E‖Σ̂0 −Σ0‖ ≤
2

n
E‖YỸT‖ =

2

n
E
(

sup
u,v∈Sp−1

n∑
k=1

uTYkỸ
T
k v
)

:=
2

n
E
(

sup
u,v∈Sp−1

Wu,v

)
.

Now consider

(Wu,v −Wu′,v′)
2 =
( n∑
k=1

uTYkỸ
T
k v −

n∑
k=1

u′
T
YkỸ

T
k v′

)2

=
( n∑
k=1

uTYkỸ
T
k v −

n∑
k=1

u′
T
YkỸ

T
k v +

n∑
k=1

u′
T
YkỸ

T
k v −

n∑
k=1

u′
T
YkỸ

T
k v′

)2

=
( n∑
k=1

(u− u′)TYkỸ
T
k v +

n∑
k=1

u′
T
YkỸ

T
k (v − v′)

)2

≤2
( n∑
k=1

(u− u′)TYkỸ
T
k v
)2

+ 2
( n∑
k=1

u′
T
YkỸ

T
k (v − v′)

)2

=2
n−1∑
d=0

∑
|j−k|=d

(u− u′)TYj · (u− u′)TYk · vTỸj · vTỸk

+ 2
n−1∑
d=0

∑
|j−k|=d

u′
T
Yj · u′TYk · (v − v′)TỸj · (v − v′)TỸk.

Now denote the conditional expectation EỸ := E(·|Ỹ). Then,

EỸ(Wu,v −Wu′,v′)
2

≤2(u− u′)TΣ0(u− u′)
n∑
j=1

vTỸjỸ
T
j v + 2

n−1∑
d=1

(u− u′)T(Σd + ΣT
d )(u− u′)

∑
(j−k)=d

vTỸj · vTỸk

+ 2
n∑

j,k=1

u′TΣ|j−k|u
′ · (v − v′)TỸj · (v − v′)TỸk

≤2(u− u′)T
(
Σ0 + 2

n−1∑
d=1

Σ̃d

)
(u− u′)

n∑
j=1

vTỸjỸ
T
j v + 2

(
‖Σ0‖+ 2

n−1∑
d=1

‖Σd‖
) n∑
j=1

(v − v′)TỸjỸ
T
j (v − v′)

≤2‖
(
Σ0 + 2

n−1∑
d=1

Σ̃d

) 1
2
(u− u′)‖2‖Ỹ‖2 + 2

(
‖Σ0‖+ 2

n−1∑
d=1

‖Σd‖
)
‖(v − v′)TỸ‖2,

where the second inequality is followed by defining Σ̃d := (UdΛdU
T
d + VdΛdV

T
d )/2. Here

Ud,Vd,Λd are left singular vectors, right singular vectors and singular values of Σd for all
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1 ≤ d ≤ n− 1. Note that Σ̃d are symmetric and positive semidefinite for all d, and hence so

is Σ0 + 2
∑n−1

d=1 Σ̃d.

Define the following Gaussian process:

Yu,v :=
√

2‖Ỹ‖uT
(
Σ0 + 2

n−1∑
d=1

Σ̃d

) 1
2
g +
√

2
(
‖Σ0‖+ 2

n−1∑
d=1

‖Σd‖
) 1

2
vTỸg′,

where g, g′ are independent standard Gaussian random vectors in Rp and Rn respectively.

Thus by previous inequality, we have

EỸ(Wu,v −Wu′,v′)
2 ≤ EỸ(Yu,v − Yu′,v′)2.

Hence by Slepian-Fernique inequality (Slepian, 1962), we have

EỸ sup
u,v∈Sp−1

Wu,v

≤EỸ sup
u,v∈Sp−1

Yu,v

=
√

2‖Ỹ‖ · E sup
u∈Sp−1

uT
(
Σ0 + 2

n−1∑
d=1

Σ̃d

) 1
2
g +
√

2
(
‖Σ0‖+ 2

n−1∑
d=1

‖Σd‖
) 1

2 · EỸ sup
v∈Sp−1

vTỸg′

≤
√

2‖Ỹ‖ · E‖
(
Σ0 + 2

n−1∑
d=1

Σ̃d

) 1
2
g‖+

√
2
(
‖Σ0‖+ 2

n−1∑
d=1

‖Σd‖
) 1

2 · EỸ‖Ỹg′‖

≤
√

2‖Ỹ‖ ·

√√√√tr

(
Σ0 + 2

n−1∑
d=1

Σ̃d

)
+
√

2
(
‖Σ0‖+ 2

n−1∑
d=1

‖Σd‖
) 1

2 ·
√

tr(ỸỸT).

Taking expectation with respect to Ỹ and using the fact that Ỹ is an independent copy of

Y, we obtain

E sup
u,v∈Sp−1

Wu,v ≤
√

2E‖Y‖ ·

√√√√tr

(
Σ0 + 2

n−1∑
d=1

Σ̃d

)
+
√

2

√√√√‖Σ0‖+ 2
n−1∑
d=1

‖Σd‖ ·
√
n tr(Σ0).

This completes the proof of Lemma 14.
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Proof of Lemma 15. Define Wu,v := uTYv. Then,

E(Wu,v −Wu′,v′)
2 =E(uTYv − u′TYv′)2

≤2E((u− u′)TYv)2 + 2E(u′TY(v − v′))2

=2
∑
i,j

(u− u′)TΣ|i−j|(u− u′)vivj + 2
∑
i,j

u′TΣ|i−j|u
′(vi − v

′

i)(vj − v
′

j).

In addition, define

ΣL :=


Σ0 Σ1 · · · Σn−1

ΣT
1 Σ0 · · · Σn−2

· · · · · · · · · · · ·

ΣT
n−1 ΣT

n−2 · · · Σ0

 ,ΣL,u :=


uT 0 · · · 0

0 uT · · · 0

· · · · · · · · · · · ·

0 0 · · · uT

ΣL


u 0 · · · 0

0 u · · · 0

· · · · · · · · · · · ·

0 0 · · · u

 ,

Σ◦u := (uTΣ0u)1n1
T
n , Σ� := ‖Σ0‖1n1T

n .

Since ΣL is a positive semi-definite matrix, we have

ΣL,u � Σ◦u � Σ�

for all u ∈ Sp−1, where “�” is the Loewner partial order of Hermitian matrices. Hence,

E(Wu,v −Wu′,v′)
2 ≤ 2‖

(
Σ0 + 2

n−1∑
d=1

Σ̃d

) 1
2
(u− u′)‖2 + 2‖Σ0‖(v − v′)T1n1

T
n(v − v′).

Then define the following Gaussian process:

Yu,v :=
√

2uT
(
Σ0 + 2

n−1∑
d=1

Σ̃d

) 1
2
g +
√

2‖Σ0‖
1
2vTg′,

where g ∈ Rp, g′ ∈ Rn are independent Gaussian random vectors with mean 0 and covariance

matrices Ip and 1n1
T
n respectively. Thus by previous inequality, we have

E(Wu,v −Wu′,v′)
2 ≤ E(Yu,v − Yu′,v′)2.
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Hence by Slepian-Fernique inequality, we have

E sup
u,v∈Sp−1

Wu,v ≤ E sup
u,v∈Sp−1

Yu,v

=
√

2E sup
u∈Sp−1

uT
(
Σ0 + 2

n−1∑
d=1

Σ̃d

) 1
2
g +
√

2‖Σ0‖
1
2 · E sup

v∈Sp−1

vTg′

≤
√

2E‖
(
Σ0 + 2

n−1∑
d=1

Σ̃d

) 1
2
g‖+

√
2‖Σ0‖

1
2 · E‖g′‖

≤
√

2

√√√√tr

(
Σ0 + 2

n−1∑
d=1

Σ̃d

)
+
√

2‖Σ0‖
1
2 ·
√
n.

This completes the proof of Lemma 15.

4.4.4 Proof of results in Section 4.3

Proof of Theorem 5. We first examine Assumptions (A1) and (A4). First of all, we will

study VAR(1) model, i.e., Yt = AYt−1 + Et. Notice that for VAR(1), we could rewrite the

original sequence as a moving-average model, i.e., Yt =
∑∞

j=0 AjEt−j. For any u ∈ Rp, we

have

‖uTYt‖ψ2 =
∥∥∥ ∞∑
j=0

uTAjEt−j

∥∥∥
ψ2

≤ C
( ∞∑
j=0

‖uTAjEt−j‖2
ψ2

) 1
2

≤ Cc′
( ∞∑
j=0

‖uTAjEt−j‖2
L(2)

) 1
2

= Cc′‖uTYt‖L(2)

for some universal constant C > 0. Here the second line and last equality are followed

by the fact that {Et}t∈Z is a sequence of independent random vector, and the third line

by the moment assumption on {Et}t∈Z. Since Yt−1 is a stable process when ‖A‖ < 1,

‖uTYt‖ψ2 ≤ Cc′‖uTYt‖L(2) <∞ for all u ∈ Rp.

Denote Ȳt := (Y T
t . . .Y T

t−d)
T and Ēt := (ET

t 0T . . .0T)T. For {Yt}t∈Z generated from a

VAR(d) model, {Ȳt}t∈Z is a VAR(1) process, i.e., Ȳt = Ā · Ȳt−1 + Ēt. Thus by previous
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argument, taking any v ∈ Rp(d+1) where only the first p digits are non-zero and denoting v′ ∈

Rp to be first-p part of v, we have ‖v′TYt‖ψ2 = ‖vTȲt‖ψ2 ≤ C‖vTȲt‖L(2) = C‖v′TȲt‖L(2) <∞

for some constant C > 0 only depending on c′ where the last inequality is followed by the

fact that {Yt} is a stable process (see Lemma 17). Assumptions (A1) and (A4) are verified.

Then we examine Assumption (A2). Without loss of generality, take j = 0 in Assumption

(A2). Let {Ỹt}0
t=1−d be a sequence of random vectors independent of {Yt}t≤0 and identically

distributed as {Yt}0
t=1−d. Define Ỹt = A1Ỹt−1+· · ·+AdỸt−d+Et for every t > 0. It is obvious

that {Ỹt}t>0 is independent of {Ỹt}t≤0 and identically distributed as {Yt}t>0. Moreover, for

any t ≥ 1, we have

‖‖Yt − Ỹt‖2‖L(1+ε) = {E‖A1Yt−1 + · · ·+ AdYt−d + Et − (A1Ỹt−1 + · · ·+ AdỸt−d + Et)‖1+ε
2 }

1
1+ε

≤ {E‖A1(Yt−1 − Ỹt−1) + · · ·+ Ad(Yt−d − Ỹt−d)‖1+ε
2 }

1
1+ε

≤
d∑

k=1

ak{E‖Yt−k − Ỹt−k‖1+ε
2 }

1
1+ε ,

where the third line follows by ‖·‖L(1+ε) is a norm for ε > 0. Denoting φt = ‖‖Yt−Ỹt‖2‖L(1+ε),

we have φt ≤
∑d

k=1 akφt−k. Let v be the unit vector with 1 at first position and 0 elsewhere.

Then by iteration, we have

vT(φt, . . . , φt−d+1)T ≤ vTĀt(φ0, . . . , φ1−d)
T ≤ ‖Āt‖‖(φ0, . . . , φ1−d)

T‖2.

Note that φt = Cκ∗ for t ≤ 0 by Assumption (A1) for some constant C > 0 only depending

on ε. By the following lemma which provides sufficient and necessary conditions for matrix

Ā to have spectral radius strictly less than 1, we could choose some arbitary ρ1 such that

ρ(Ā) < ρ1 < 1.

Lemma 17. For Ā defined above, ρ(Ā) < 1 if and only if
∑d

k=1 ak < 1, where ρ(Ā) is the

spectral radius of Ā.

Proof of Lemma 17. The result is well known and here we include a proof merely for com-

pleteness. First of all, we prove the sufficient condition. A key observation is that the



112

characteristic equation det(Ā− λId) = 0 for matrix Ā is

f(λ) = λd − a1λ
d−1 − · · · − ad−1λ

1 − ad = 0.

Assume
∑d

j=1 aj ≥ 1. We obtain f(1) = 1 −
∑d

j=1 aj ≤ 0 and f(∞) = ∞. By continuity

of f(λ), there exists at least one root whose modulus is greater than or equal to 1. This

contradicts with the fact that ρ(Ā) is strictly less than 1.

Secondly, we prove the necessary condition. Suppose there exists a root z ∈ C (the set

of complex numbers) of f(λ) such that |z| ≥ 1. Here |z| is the modulus of z. Then

|z|d = |a1z
d−1 + · · ·+ ad−1z

1 + ad| ≤ a1|z|d−1 + · · ·+ ad−1|z|1 + ad.

Since |z| ≥ 1, we have |z|k ≤ |z|d for 0 ≤ k ≤ d− 1. Hence |z|d ≤ (a1 + · · ·+ ad)|z|d implies

a1 +· · ·+ad ≥ 1. This contradicts the fact that
∑d

j=1 aj is strictly less than 1. This completes

the proof.

By Gelfand’s formula, there exists a K > 0, such that for all t ≥ K, ‖Āt‖ < ρt1. For

t < K, we have

φt ≤ 2dκ∗

(
‖Ā‖
ρ1

)K
ρt1.

For t ≥ K, we have φt ≤ Cdκ∗ρ
t
1 for some constant C > 0 only depending on ε. Taking

γ1 = Cd(κ∗/κ1)(‖Ā‖/ρ1)K for some constant C > 0 only depending on ε and γ2 = log(ρ−1
1 )

verifies Assumption (A2).

Lastly, we verify Assumption (A3). Following the same construction as in verifying

Assumption (A2), we have for any u ∈ Sp−1,

‖(Yt − Ỹt)
Tu‖L(1+ε)

=(E|{A1Yt−1 + · · ·+ AdYt−d + Et − (A1Ỹt−1 + · · ·+ AdỸt−d + Et)}Tu|1+ε)
1

1+ε

≤(E|{A1Yt−1 + · · ·+ AdYt−d − (A1Ỹt−1 + · · ·+ AdỸt−d)}Tu|1+ε)
1

1+ε

≤
d∑

k=1

ak{E|(Yt−k − Ỹt−k)
Tuk|1+ε}

1
1+ε ,
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for uk := Aku/‖Aku‖2, k ∈ {1, . . . , d}. The result follows as we follow the same arguments

to verify Assumption (A2). This completes the proof of Theorem 5.

Proof of Theorem 6. First of all, we verify Assumptions (A1) and (A4). It is trivial that

Assumptions (A1) and (A4) are satisfied if Wt = 0 almost surely for all t ∈ Z. If Wt 6= 0

almost surely, then for all u ∈ Rp, ‖uTYt‖ψ2 ≤ ‖Wt‖L(∞)‖uTEt‖ψ2 ≤ c′κW‖uTEt‖L(2) ≤

c′ κW
inft∈Z ‖Wt‖L(2)

‖uTYt‖L(2) <∞. This verifies Assumptions (A1) and (A4).

For Assumption (A2), without loss of generality, take j = 0. Since {Wt}t∈Z is a sequence

of uniformly bounded τ -mixing random variables, we may find {W̃t}t>0 which is independent

of {Wt}t≤0, identically distributed as {Wt}t>0, and for any t ≥ 1,

E|W̃t −Wt| ≤ κWγ5 exp{−γ6(t− 1)}.

Define Ỹt := W̃tEt for all t ≥ 1. It is obvious that {Ỹt}t>0 is independent of {Yt}t≤0 and

identically distributed as {Yt}t>0. Moreover, for any integer t ≥ 1,

‖‖Yt − Ỹt‖2‖L(1+ε) ≤ (E‖WtEt − W̃tEt‖1+ε
2 )

1
1+ε

≤ (E|Wt − W̃t| · |Wt − W̃t|1+ε)1+ε(E‖Et‖1+ε
2 )

1
1+ε

≤ Cκ′∗κWγ
1

1+ε

5 exp
{
− 1

1 + ε
γ6(t− 1)

}
for some constant C > 0 only depending on ε. Taking γ1 = Cκ′∗κWγ

1
1+ε

5 /κ1 and γ2 = 1
1+ε

γ6

verifies Assumption (A2).

For Assumption (A3), without loss of generality, take j = 0. Let {Ỹt}t>0 be the same

construction as above. For any integer t ≥ 1,

sup
u∈Sp−1

‖(Yt − Ỹt)
Tu‖L(1+ε) = sup

u∈Sp−1

{E|(WtEt − W̃tEt)
Tu|1+ε}

1
1+ε

= (E|Wt − W̃t|1+ε)
1

1+ε sup
u∈Sp−1

(E|ET
t u|1+ε)

1
1+ε

≤ Cκ′1κWγ
1
ε
5 exp

{
− 1

1 + ε
γ6(t− 1)

}
for some constant C > 0 only depending on ε. Taking γ3 = Cκ′1κWγ

1
1+ε

5 /κ1 and γ4 = 1
1+ε

γ6

verifies Assumption (A2). This completes the proof of Theorem 6.
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Proof of Theorem 7. We first verify Assumptions (A2) and (A3). Without loss of generality,

take j = 0 in Assumption (A2). Let Ỹ0 be a random vector independent of {Yt}t≤0 and

identically distributed as Y0. Define Ỹt = AỸt−1 +H(Ỹt−1)Et for every t ≥ 1. It is obvious

that {Ỹt}t>0 is independent of {Yt}t≤0 and identically distributed as {Yt}t>0. We obtain for

any t ≥ 1,

‖‖Yt − Ỹt‖2‖L(1+ε) = [E‖AYt−1 +H(Yt−1)Et − {AỸt−1 +H(Ỹt−1)Et}‖1+ε
2 ]

1
1+ε

≤ [E‖AYt−1 −AỸt−1 + {H(Yt−1)−H(Ỹt−1)}Et‖1+ε
2 ]

1
1+ε

≤ (a1 + a2)‖‖Yt−1 − Ỹt−1‖2‖L(1+ε).

By iteration, we obtain

‖‖Yt − Ỹt‖2‖L(1+ε) ≤ (a1 + a2)t(E‖Y0 − Ỹ0‖1+ε
2 )

1
1+ε ≤ Cκ∗(a1 + a2)t

for some constant C > 0 only depending on ε. Taking γ1 = Cκ∗/κ1 and γ2 = − log(a1 + a2)

verifies Assumption (A2).

For Assumption (A3), following the construction above, we have for any u ∈ Sp−1 and

t ≥ 1,

‖(Yt − Ỹt)
Tu‖L(1+ε) = [E|{AYt−1 +H(Yt−1)Et − (AỸt−1 +H(Ỹt−1)Et)}Tu|1+ε]

1
1+ε

≤ [E|{AYt−1 −AỸt−1 + (H(Yt−1)−H(Yt−1))Et}Tu|1+ε]
1

1+ε

≤ a1‖(Yt−1 − Ỹt−1)Tv‖L(1+ε) + a2
κ′1
κ′∗
‖‖Yt−1 − Ỹt−1‖2‖L(1+ε),

where v := Au/‖Au‖2 ∈ Sp−1. By iteration, we obtain

‖(Yt − Ỹt)
Tu‖L(1+ε) ≤ C{κ1a

t
1 + 2κ∗

κ′1
κ′∗
a2

t−1∑
`=0

a`1(a1 + a2)t−1−`} ≤ C(a1 + a2)t max(κ∗
κ′1
κ′∗
, κ1)

for some constant C > 0 only depending on ε. Taking γ3 = C max(
κ∗κ′1
κ1κ′∗

, 1) and γ4 =

− log(a1 + a2) verifies Assumption (A3).

By further assuming that {Yt} is a stationary process and H(·) is uniformly bounded, we

have that for all t ∈ Z, supu∈Sp−1 ‖uTYt‖ψ2 ≤ ‖A‖ supu∈Sp−1 ‖uTYt−1‖ψ2+D2 supv∈Sp−1 ‖vTEt‖.
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By stationarity, this renders κ1 = supu∈Sp−1 ‖uTYt‖ψ2 ≤ 1
1−‖A‖D2κ

′
1 <∞. Similar argument

applies to κ∗. This verifies Assumption (A1) under additional assumptions and completes

the proof of Theorem 7.
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Chapter 5

CONCLUSION

This chapter contains the main contributions of this work together with possible directions

for future research.

5.1 Contributions to Research

In this work, I have developed several methods and theories in high dimensional time series

estimations and forecasts. First of all, I proposed a new Bayesian hierarchical model to

forecast long term all-age smoking attributable fraction (ASAF). To the best of the author’s

knowledge, this is the first BHM to forecast ASAF for multi-population simultaneously. Out-

of-sample validation on the existing data shows that the proposed method is accurate and

calibrated. The potential uses of the projected ASAF include monitoring future smoking epi-

demics and its impact on human mortality measures, assisting the forecasts of various aspects

of human mortality measures, and providing a baseline forecast to assess the effectiveness of

additional smoking-related policies.

As an application of the previously mentioned BHM for ASAF, I proposed a joint model

for forecasting male-female life expectancy at birth to demonstrate the usefulness of ASAF

in determining the future between-gender gap. In addition, I proposed a new modeling

framework for the male life expectancy forecast by incorporating the smoking epidemic. This

framework considers the ideas proposed in Bongaarts (2006) and Janssen et al. (2013) as the

general guidance while it is built on two newly proposed BHMs for the age-specific smoking

attributable fraction (ASSAF) and the non-smoking life expectancy at birth. These two

models differ fundamentally from the ones used in the mentioned literature and are shown

to produce more accurate and calibrated forecasting results than commonly used methods.



117

The new framework provides further evidence for the adverse impacts of smoking on human

mortality measures and sheds light on modeling other health-risking lifestyles into mortality

forecasts.

The other component of this work is the derivation of the optimal moment bounds for

autocovariance matrices estimation under a general class of high-dimensional time series

models. This new result makes a step to extend current results based on independent samples

to a more general dependent data structure. The major contribution of the work is to derive

a Bernstein-type inequality for a sequence of dependent random matrices, which further

extends along the line of Merlevède et al. (2009), Tropp (2015), and Banna et al. (2016).

5.2 Future Research

5.2.1 Smoking- and mortality-related Forecast

One major drawback of our ASAF and life expectancy forecasts is that we can not apply this

method for all countries around the world. One possible direction is to gather useful smoking-

related data for more countries especially in particular developing countries and those still

experiencing a maturation of the smoking epidemic such as China, India, Indonesia, and most

African countries. Since the estimation of ASAF and ASSAF, using either the Peto-Lopez

method (Peto et al., 1992) or PGW method (Preston et al., 2009), depends on high quality

lung cancer mortality data, further collections of these data for countries of interest should

be conducted outside the WHO Mortality Database. Another possible direction is to impute

the missing data, which would require further investigation of country-specific covariates.

In addition, the female SAF forecast can be further refined. As more and more data

becomes available for the female population, the female SAF pattern is expected to resemble

that of the male one with more easy-to-estimate time-to-peak and rate of decline, which would

potentially yield more accurate and sharp forecasts compared with current results. Moreover,

the question of whether SAF will reach 0 in the future could be further examined. Although

the use of traditional tobacco and manufactured cigarettes is decreasing continuously among
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male adults in developed countries, the use of new devices to smoke such as electronic

cigarettes is increasing especially among adolescents. Recent, an Illinois resident recently

died of severe respiratory illness, possibly due to the use of vaping-e-cigarette. If such

trend continues, a short-term resurrection of the smoking epidemic would not be impossible.

However, the long-term influence of smoking is unlikely to resummit back to a historical

level.

Thirdly, the out-of-sample validation of our proposed method for ASAF works well for

populations with strong and clear patterns while it works less satisfactorily for non-clear-

pattern data. One possible solution would be collecting more accurate data. Another one

would be using country-specific covariates to assist the forecast. On the other hand, since

many such countries also suffer from other risk factors of respiratory diseases such as air pol-

lution, using the Peto-Lopez method directly might not be the most accurate, and adopting

variants such as in Ezzati and Lopez (2003) would be more proper.

For projecting life expectancy at birth, we encounter similar issues as discussed above,

such as limited high quality data and a large prediction variance for female forecasts. Besides

smoking, other lifestyle-type health risk factors like obesity and alcohol consumption have

also been investigated in literature (Trias Llimós and Janssen, 2019; Vidra et al., 2017).

It is of interest to see whether those risk factors could fit in our framework to produce a

probabilistic forecast.

5.2.2 Autocovariance Estimation Theory

One direct extension of our results is to remove the extra logarithm factors in the moment

bound in Theorem 3. As proven in Koltchinskii and Lounici (2017a) and Theorem 4 in

Chapter 4, such improvement is possible for independent subgaussian samples and samples

from a stationary Gaussian process. Another direction is to extend the results under less

restrictive moment assumption. Bai and Yin (1993) showed that ‖Σ̂0 − Σ0‖ converges to

0 in probability as long as the 4-th moment exists. Mendelson and Paouris (2014) proved

an optimal non-asymptotic tail bound for covariance estimation under 4 + δ moment as-
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sumption. For the potential use of our theorem, one could apply it to show the consistency

of principal component analysis (PCA) under high-dimensional time series models and to

provide theoretical guarantee for the spectral clustering of mixture models with dependent

data.
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Muszyńska, M. M., Fihel, A., and Janssen, F. (2014). Role of smoking in regional variation

in mortality in p oland. Addiction, 109(11):1931–1941.

Neal, R. M. (2011). MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte

Carlo, 2(11):2.

Negahban, S. and Wainwright, M. J. (2011). Estimation of (near) low-rank matrices with

noise and high-dimensional scaling. The Annals of Statistics, 39(2):1069–1097.

Ng, M., Freeman, M. K., Fleming, T. D., Robinson, M., Dwyer-Lindgren, L., Thomson,

B., Wollum, A., Sanman, E., Wulf, S., Lopez, A. D., et al. (2014). Smoking prevalence

and cigarette consumption in 187 countries, 1980-2012. Journal of the American Med-

ical, 311(2):183–192. Dataset last assess: Oct. 15, 2018 http://www.healthdata.org/

data-tools.

Niu, S.-R., Yang, G.-H., Chen, Z.-M., Wang, J.-L., Wang, G.-H., He, X.-Z., Schoepff, H.,

Boreham, J., Pan, H.-C., and Peto, R. (1998). Emerging tobacco hazards in China: 2.

early mortality results from a prospective study. BMJ, 317(7170):1423–1424.

http://www.healthdata.org/data-tools
http://www.healthdata.org/data-tools


134

Oeppen, J. and Vaupel, J. W. (2002). Enhanced: broken limits to life expectancy. Science,

296(5570):1029–1031.

Oliveira, R. (2010). Sums of random Hermitian matrices and an inequality by Rudelson.

Electronic Communications in Probability, 15:203–212.

Oliveira, R. I. (2009). Concentration of the adjacency matrix and of the Laplacian in random

graphs with independent edges. arXiv:0911.0600.

Pampel, F. (2005). Forecasting sex differences in mortality in high income nations: The

contribution of smoking. Demographic Research, 13(18):455.

Pampel, F. C. (2006). Global patterns and determinants of sex differences in smoking.

International Journal of Comparative Sociology, 47(6):466–487.

Parascandola, M. and Xiao, L. (2019). Tobacco and the lung cancer epidemic in China.

Translational Lung Cancer Research, 8(Suppl 1):S21.

Parkin, D. M., Boyd, L., and Walker, L. (2011). The fraction of cancer attributable to lifestyle

and environmental factors in the uk in 2010. British Journal of Cancer, 105(S2):S77.

Paulin, D., Mackey, L., and Tropp, J. A. (2016). Efron–Stein inequalities for random matri-

ces. The Annals of Probability, 44(5):3431–3473.

Pedroza, C. (2006). A bayesian forecasting model: predicting US male mortality. Biostatis-

tics, 7(4):530–550.
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Appendix A

APPENDICES TO CHAPTER 2

A.1 Full Bayesian Hierarchical Model for All-age Smoking Attributable Frac-
tion

The details of the four-layer Bayesian Hierarchical model described in Section 2.2.4 are as

follows. Here N u
l (a, b) represents a normal distribution with mean a and variance b truncated

at interval [l, u] (l(u) is omitted if it takes value −∞ (∞)). Gamma(a, b) represents a Gamma

distribution with shape a and rate b. Lognormal(a, b) represents a log-normal distribution

with parameters a, b. InvGamma(a, b) represents a inverse-Gamma distribution with shape
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a and scale b.

Level 1: yc,s,t|hc,s,t ∼ N (hc,s,t, σ
2
c );

Level 2: hc,s,t0 = g(t0|θc,s) + εhc,s,t0 ,

hc,s,t = hc,s,t−1 + g(t|θc,s)− g(t− 1|θc,s) + εhc,s,t for t > t0,

εhc,s,t ∼ind N (0, σ2
h);

Level 3: ac,m1 ∼ Gamma(2, 2/am1 ), ac,f1 ∼ Gamma(2, 2/af1),

ac,m2 ∼ N 65(am2 , σ
2
am2

), ac,f2 = ac,m2 +4c
a2
,

ac,m3 ∼ Gamma(2, 2/am3 ), 4c
a2
∼ N (4a2 , σ

2
4a2

),

ac,m4 ∼ N 100
0 (a4, σ

2
a4

), ac,f3 ∼ Gamma(2, 2/af3),

kc,m ∼ N0(km, σ2
km), ac,f4 ∼ N 100

0 (a4, σ
2
a4

),

σ2
c ∼ Lognormal(ν, ρ2), kc,f ∼ N0(kf , σ2

kf );

Level 4: am1 ∼ Gamma(αam1 , βam1 ), af1 ∼ Gamma(αaf1
, βaf1

),

am2 ∼ N (αam2 , βam1 ), 4a2 ∼ N (α4a2 , β4a2 ),

am3 ∼ N (αam3 , βam3 ), af3 ∼ Gamma(αaf3
, βaf3

),

a4 ∼ N (αa4 , βa4), kf ∼ N (αkf , βkf ),

km ∼ N (αkm , βkm), σ2
4a2
∼ InvGamma(ασ2

4a2
, βσ2

4a2
),

σ2
am2
∼ InvGamma(ασ2

am2

, βσ2
am2

), σ2
kf ∼ InvGamma(ασ2

kf
, βσ2

kf
),

σ2
a4
∼ InvGamma(ασ2

a4
, βσ2

a4
), ν ∼ N (αν , βν),

σ2
km ∼ InvGamma(ασ2

km
, βσ2

km
), ρ2 ∼ InvGamma(αρ2 , βρ2),

σ2
h ∼ InvGamma(ασ2

h
, βσ2

h
),

where αam1 = 1.477, βam1 = 9.423, αam2 = 24.362, βam2 = 12.488, αam3 = 1.031, βam3 =

7.378, αa4 = 38.362, βa4 = 19.058, αkm = 0.362, βkm = 0.255, ασ2
am2

= 2, βσ2
am2

=

12.4882, ασ2
a4

= 2, βσ2
a4

= 19.0582, ασ2
km

= 2, βσ2
km

= 0.2552, αaf1
= 2.093, βaf1

= 16.302, α4a2 =

12.080, β4a2 = 11.140, αaf3
= 1.031, βaf3

= 7.378, αkf = 0.362, βkf = 0.255, ασ2
4a2

= 2, βσ2
4a2

=
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112, ασ2
kf

= 2, βσ2
kf

= 0.2552, αν = −10.414, βν = 1.1862, αρ2 = 2, βρ2 = 1.1862, ασ2
h

=

2, βσ2
h

= 0.012.

A.2 MCMC Convergence Diagnostics

A.2.1 Hyperparameter Diagnostics

In this section, we present the MCMC convergence diagnostics of the hyperparameters in

Level 4 of the model in terms of traceplots, Raftery diagnostic statistics (Raftery and Lewis,

1992), and Gelman diagnostic statistics (Gelman and Rubin, 1992a). Table A.1 provides the

Gelman and Raftery diagnostic statistics of all hyperparameters. We use 3 chains with 2000

burnin and 8000 samples without thinning for the Gelman diagnostics, and randomly choose

one of the chain to perform the Raftery diagnostics. Figure A.1 shows the traceplots of all

8000 samples of hyperparameters.
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Table A.1: Diagnostic statistics for hyperparameters. PSRF and 95% UCI are the point

estimator and upper bound of the 95% CI of the Gelman potential scale reduction factor.

Burn1, Size1, and DF1 are the length of burn-in, requied sample size, and dependent factor of

Raftery diagnostics with parameters q = 0.025, r = 0.0125, s = 0.95. Burn2, Size2, and DF2

are the length of burn-in, requied sample size, and dependent factor of Raftery diagnostics

with parameters q = 0.975, r = 0.0125, s = 0.95.

Parameters
Gelman Diag Raftery Diag

PSRF 95% UCI Burn1 Size1 DF1 Burn2 Size2 DF2

am1 1 1.00 6 1318 2.20 6 1164 1.94

am2 1 1.00 3 710 1.18 6 1504 2.51

am3 1 1.00 6 1584 2.64 6 1424 2.37

a4 1 1.01 8 1750 2.92 9 2028 3.38

km 1 1.01 10 1952 3.25 6 1236 2.06

σ2
am2

1 1.00 2 640 1.07 6 1730 2.88

σ2
a4

1 1.00 21 4410 7.35 12 2132 3.55

σ2
km 1 1.00 6 1334 2.22 8 1448 2.41

af1 1 1.00 2 640 1.07 6 1318 2.20

4a2 1 1.00 4 756 1.26 6 688 1.15

af3 1 1.00 8 1504 2.51 12 1852 3.09

kf 1 1.00 5 895 1.49 2 640 1.07

σ2
4a2

1 1.00 3 696 1.16 4 839 1.40

σ2
kf

1 1.00 2 640 1.07 6 1376 2.29

ν 1 1.00 8 1518 2.53 8 1934 3.22

ρ2 1 1.00 6 1270 2.21 6 1392 2.32

σ2
h 1 1.00 10 1872 3.12 12 2337 3.90
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Figure A.1: Traceplots for the hyperparameters in BHM for ASAF.
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A.2.2 Country-specific Parameter Diagnostics

In this section, we present the MCMC convergence diagnostics of country-specific parameters

of the model in terms of traceplots, Raftery diagnostic statistics, and Gelman diagnostic

statistics. Table A.2 provides the Gelman and Raftery diagnostic statistics of country-

specific parameters of the United States for male and female. The chains are the same as in

the previous section. Figure A.2 shows the traceplots of all 8000 samples of country-specific

paremeters for male and female of the United States.
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Table A.2: Diagnostic statistics for country-specific parameters for the United States. PSRF

and 95% UCI are the point estimator and upper bound of the 95% CI of the Gelman potential

scale reduction factor. Burn1, Size1, and DF1 are the length of burn-in, requied sample size,

and dependent factor of Raftery diagnostics with parameters q = 0.025, r = 0.0125, s = 0.95.

Burn2, Size2, and DF2 are the length of burn-in, requied sample size, and dependent factor

of Raftery diagnostics with parameters q = 0.975, r = 0.0125, s = 0.95.

Parameters
Gelman Diag Raftery Diag

PSRF 95% UCI Burn1 Size1 DF1 Burn2 Size2 DF2

am1 1 1.00 4 830 1.38 2 640 1.07

am2 1 1.00 6 1326 2.21 4 756 1.26

am3 1 1.00 4 822 1.37 2 633 1.06

am4 1 1.00 2 614 1.02 4 772 1.29

km 1 1.00 6 1106 1.10 2 621 1.03

af1 1 1.00 3 661 1.10 2 614 1.02

af2 1 1.00 2 627 1.04 2 614 1.02

af3 1 1.00 2 627 1.04 6 1314 2.19

af4 1 1.00 3 661 1.10 4 848 1.41

kf 1 1.00 3 668 1.11 6 1444 2.41

σ2
c 1.01 1.03 96 15198 25.30 24 3834 6.39
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Figure A.2: Traceplots for the country-specific parameters of the United States in BHM for

ASAF.
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A.3 Hyperparameter Sensitivity Analysis

In this section, we present the sensitivity analysis for the hyperparameters set in π(·) on

the posterior distributions of the global parameters ψ in Level 4 of our model. We use

rstansensitivity package (Giordano, 2019) in R to perform the sensitivity analysis. The

local sensitivity of the posterior mean of parameter θ under hyperparameters ζ (i.e., E(θ|x, ζ))

to ζ at ζ0 is defined as

Sζ0 :=
dE(θ|x, ζ)

dζ

∣∣∣
ζ0
,

where x is the observed data. See Basu et al. (1996); Gustafson (1996); Giordano et al.

(2018) for more discussions on local sensitivity in Bayesian analysis. By scaling the local

sensitivity to be comparable with the possible range of the posterior distribution of θ, the

normalized local sensitivity is defined as

S̃ζ0 :=

∣∣∣∣ Sζ0
sd(θ|x, ζ0)

∣∣∣∣.
As commented in Giordano et al. (2018), if the quantity S̃ζ0 is less than 1 or if S̃ζ0 is greater

than 1 but the final results barely change when modifying the hyperparameters, then the

model is robust. First of all, Table A.3 investigates the normalized local sensitivity of the

hyperparameters set in π(·) on posterior distributions of the global parameters ψ. For most

hyperparameters, the normalized local sensitivity are much smaller than 1. For those whose

normalized local sensitivity are greater than 1, we conduct out-of-sample validations for three

five-year period prediction with the hyperparameters changed to evaluate the actual changes

on the validation results. Table A.4, A.5, A.6, and A.7 show the out-of-sample validtion

results after modifying βσ2
km

(0.2552 to 1), βσ2
kf

(0.2552 to 1), βσ2
h

(0.012 to 0.022), and αa4

(38.362 to 20), respectively. All four cases show that the validation results barely change

with the hyperparameters, and it is safe to conclude that model is robust to the current

choices of hyperparameters.
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Table A.4: Out-of-sample validation results of ASAF for both male and female with βσ2
km

changed. “Bayes (mod)” is the BHM with changed hyperparameter.

Gender Train Test num Method MAE
Coverage

80% 90% 95%

Male 1950-2000 2000-2015 63
Bayes(mod) 0.016 0.63 0.76 0.85

Bayes 0.016 0.65 0.76 0.84

Female 1950-2000 2000-2015 63
Bayes(mod) 0.011 0.80 0.89 0.94

Bayes 0.011 0.81 0.90 0.95

Table A.5: Out-of-sample validation results of ASAF for both male and female with βσ2
kf

changed. “Bayes (mod)” is the BHM with changed hyperparameter.

Gender Train Test num Method MAE
Coverage

80% 90% 95%

Male 1950-2000 2000-2015 63
Bayes(mod) 0.016 0.64 0.77 0.85

Bayes 0.016 0.65 0.76 0.84

Female 1950-2000 2000-2015 63
Bayes(mod) 0.011 0.82 0.90 0.95

Bayes 0.011 0.81 0.90 0.95
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Table A.6: Out-of-sample validation results of ASAF for both male and female with βσ2
h

changed. “Bayes (mod)” is the BHM with changed hyperparameter.

Gender Train Test num Method MAE
Coverage

80% 90% 95%

Male 1950-2000 2000-2015 63
Bayes(mod) 0.016 0.68 0.80 0.88

Bayes 0.016 0.65 0.76 0.84

Female 1950-2000 2000-2015 63
Bayes(mod) 0.011 0.82 0.90 0.95

Bayes 0.011 0.81 0.90 0.95

Table A.7: Out-of-sample validation results of ASAF for both male and female with αa4

changed. “Bayes (mod)” is the BHM with changed hyperparameter.

Gender Train Test num Method MAE
Coverage

80% 90% 95%

Male 1950-2000 2000-2015 63
Bayes(mod) 0.016 0.65 0.76 0.85

Bayes 0.016 0.65 0.76 0.84

Female 1950-2000 2000-2015 63
Bayes(mod) 0.011 0.81 0.89 0.95

Bayes 0.011 0.81 0.90 0.95
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A.4 All-age Smoking Attribuable Fraction Projection to 2050 for Over 60
Countries
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Appendix B

APPENDICES TO CHAPTER 3

B.1 Full Model Specification

We first describe the estimating and projection of the full model.

1. Estimate and forecast the male ASSAF using the 3-level Bayesian hierarchical model

described in Section 3.2.3, and generate 30 samples from the posterior distributions of

the mean of ASSAF of over 60 clear-pattern countries for all 13 five-year estimation

periods and all 9 five-year periods forecast period;

2. For each country, generate 30 samples of male eNS0 based on the ASSAF samples drawn

in Step 2 for all 13 five-year estimation periods, and for each of the 30 samples, forecast

male eNS0 of over 60 countries for all 9 five-year periods using the 3-level Bayesian

hierarchical model described in Section 3.2.4;

3. For each country, forecast male e0 based on the method described in Section 3.2.5 for

each of the 30 samples, and combine trajectories from all 30 samples to get the full

posterior predictive distribution of male e0;

4. For each country, apply the gap model described in Section 3.2.5 to the combined

trajectories of male e0 to get the full posterior predictive distribution of female e0.

The details of the Bayesian hierarchical model for modeling age-specific smoking at-
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tributable fraction (ASSAF) described in Section 3.2.3 are as follows.

Level 1: y`x,t
ind∼ N (ξ`xτ

`
t−x1x 6=80 + ξ`xτ̃

`
t−x1x=80, σ

2
` );

Level 2: ξ`40 = 1, ξ`x|µ[ξ]
x , σ

2[ξ]
x

i.i.d∼ N (µ[ξ]
x , σ

2[ξ]
x ) for all x except 40,

τ `c |θ`, σ2[τ ] ind∼ N (g(c|θ`), σ2[τ ]), τ̃ `c |θ̃`, σ2[τ ] ind∼ N (g(c|θ̃`), σ2[τ ]) for c = t− x,

4`
1|µ41

i.i.d∼ G(2, 2/µ41), 4`
2|µ42 , σ

2
42

i.i.d∼ N (µ42 , σ
2
42

),

4`
3|µ43

i.i.d∼ G(2, 2/µ43), 4`
4|µ44 , σ

2
44

i.i.d∼ N (µ44 , σ
2
44

),

k`|µk, σ2
k

i.i.d∼ N (µk, σ
2
k), δ`|µδ, σ2

δ
i.i.d∼ N (µδ, σ

2
δ ),

σ2
` |σ2 i.i.d∼ IG(2, σ2);

Level 3: µ[ξ]
x

i.i.d∼ N (1, 5), σ2[ξ]
x

i.i.d∼ IG(2, 5),

σ2 ∼ IG(2, 0.01), σ2[τ ] ∼ IG(2, 0.01),

µ41 ∼ G(2, 0.1), µ42 ∼ N (20, 1000),

µ43 ∼ G(2, 0.1), µ44 ∼ N (20, 1000),

µk ∼ N (0.3, 0.25), µδ ∼ N (0, 100),

σ2
42
∼ IG(2, 1000), σ2

44
∼ IG(2, 1000),

σ2
k ∼ IG(2, 0.25), σ2

δ ∼ IG(2, 100),

where θ` := (4`
1,4`

2,4`
3,4`

4, k
`), θ̃` := (4`

1,4`
2,4`

3,4`
4 + δ`, k`), and

g(c|θ) =
k

1 + exp{−41(c− 1873−42)}
− k

1 + exp{−43(c− 1873−42 −44)}
.

The details of the Bayesian hierarchical model for modeling non-smoking life expectancy
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(eNS0 ) described in Section 3.2.4 are as follows.

Level 1: eNS0,`,t
ind∼ N (eNS0,`,t−1 + g̃(eNS0,`,t−1|ζ`), (ω` · φ(eNS0,`,t−1))2);

Level 2: a`i |µai , σ2
ai

i.i.d∼ N[0,100](µai , σ
2
ai

), i = 1, · · · , 4,

w`|µw, σ2
w

i.i.d∼ N[0,15](µw, σ
2
w), z`|µz, σ2

z
i.i.d∼ N[0,1.15](µz, σ

2
z),

ω`
i.i.d∼ U[0,10];

Level 3: µa1 ∼ N (15.77, 15.62), µa2 ∼ N (40.97, 23.52),

µa3 ∼ N (0.21, 14.52), µa4 ∼ N (19.82, 14.72),

µw ∼ N (2.93, 3.52), µz ∼ N (0.40, 0.62),

σ2
a1
∼ IG(2, 15.62), σ2

a2
∼ IG(2, 14.52),

σ2
a3
∼ IG(2, 14.72), σ2

a4
∼ IG(2, 3.52),

σ2
w ∼ IG(2, 0.62), σ2

z ∼ IG(2, 0.62),

where ζ := (a1, a2, a3, a4, w, z) and

g̃(eNS0 |ζ) :=
w

1 + exp{−4.4
a2

(eNS0 − a1 − 0.5a2)}
+

z − w
1 + exp{−4.4

a4
(eNS0 −

∑3
i=1 ai − 0.5a4)}

.
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B.2 MCMC Convergence Diagnostics

First of all, we check the convergence of BHM for ASSAF based on trace plots and Raftery

diagnostics Raftery and Lewis (1992) for global parameters in Level 3. We check one chain

with 2,000 burnin and 100,000 samples with 20 thinning period. Table B.1 shows the sum-

marizing statistics of the diagnostics. Fig. B.1 shows the trace plots of all 3,000 samples of

global parameters. Second, we check the convergence of BHM for eNS0 based on trace plots

and Raftery diagnostics Raftery and Lewis (1992) for global parameters in Level 3. We check

one of the 30 samples with 1,000 burnin and 100,000 samples with 50 thinning period. Table

B.2 shows the summarizing statistics of the diagnostics. Fig. B.2 shows the trace plots of

all 1,000 samples of global parameters.

Table B.1: Diagnostic statistics for global parameters in BHM for ASSAF. Burn1, Size1,

and DF1 are the length of burn-in, requied sample size, and dependent factor of Raftery

diagnostics with parameters q = 0.025, r = 0.0125, s = 0:95. Burn2, Size2, and DF2 are

the length of burn-in, requied sample size, and dependent factor of Raftery diagnostics with

parameters q = 0.975, r = 0.0125, s = 0.95.

Parameters Burn1 Size1 DF1 Burn2 Size2 DF2

µ
2[β]
40 - - - - - -

µ
2[β]
45 2 606 1.01 2 631 1.05

µ
2[β]
50 2 641 1.07 2 581 0.97

µ
2[β]
55 2 577 0.96 2 631 1.05

µ
2[β]
60 2 616 1.03 2 591 0.98

µ
2[β]
65 2 601 1.00 2 621 1.03

µ
2[β]
70 2 616 1.03 2 621 1.03

µ
2[β]
75 2 587 0.98 2 611 1.02

µ
2[β]
80 2 626 1.04 3 664 1.11

Continued on next page
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Table B.1 – Continued from previous page

Parameters Burn1 Size1 DF1 Burn2 Size2 DF2

σ
2[β]
40 - - - - - -

σ
2[β]
45 3 669 1.12 3 653 1.09

σ
2[β]
50 2 601 1.00 2 601 1.00

σ
2[β]
55 2 591 0.98 2 621 1.03

σ
2[β]
60 2 606 1.01 2 572 0.95

σ
2[β]
65 2 611 1.02 2 611 1.02

σ
2[β]
70 1 595 0.99 2 591 0.98

σ
2[β]
75 3 648 1.08 2 641 1.07

σ
2[β]
80 2 621 1.03 3 676 1.13

σ 2 591 0.98 3 658 1.10

σ2[τ ] 2 591 0.98 3 648 1.08

µ41 6 1308 2.18 9 2040 3.40

µ42 8 1610 2.68 2 641 1.07

σ2
42

12 2160 3.60 8 1586 2.64

µ43 4 790 1.32 3 686 1.14

µ44 12 1980 3.30 15 2211 3.68

σ2
44

6 1701 2.84 8 1656 2.76

µk 6 1432 2.39 8 1456 2.43

σ2
k 4 1236 2.06 4 771 1.28

µδ 18 3090 5.15 24 4912 8.19

σ2
δ 15 2499 4.16 30 6955 11.60
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Figure B.1: Traceplots for the hyperparameters in BHM for ASSAF.
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Table B.2: Diagnostic statistics for global parameters in BHM for eNS0 . Burn1, Size1, and

DF1 are the length of burn-in, requied sample size, and dependent factor of Raftery diagnos-

tics with parameters q = 0.025, r = 0.0125, s = 0:95. Burn2, Size2, and DF2 are the length

of burn-in, requied sample size, and dependent factor of Raftery diagnostics with parameters

q = 0.975, r = 0.0125, s = 0.95.

Parameters Burn1 Size1 DF1 Burn2 Size2 DF2

µa1 164 14734 24.60 3 703 1.17

σ2
a1

2 596 0.99 3 648 1.08

µa2 2 572 0.95 81 10795 18.00

σ2
a2

3 648 1.08 3 648 1.08

µa3 2 572 0.95 7 1179 1.96

σ2
a3

2 596 0.99 2 621 1.03

µa4 3 703 1.17 6 1005 1.68

σ2
a4

3 675 1.12 5 867 1.44

µw 3 648 1.08 2 596 0.99

σ2
w 2 572 0.95 2 596 0.99

µz 3 662 1.10 2 572 0.95

σ2
z 2 596 0.99 3 689 1.15
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Figure B.2: Traceplots for the hyperparameters in BHM for eNS0 .
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B.3 Life Expectancy at Birth Projection to 2060 for over 60 countries
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Appendix C

APPENDICES TO CHAPTER 4

In this appendix we present the proof of Theorem 10 in Chapter 4, which slightly extends

the Bernstein-type inequality proven by Banna et al. (2016) in which the random matrix

sequence is assumed to be β-mixing. The proof is largely identical to theirs, and we include

it here mainly for completeness.

In the following, τk is abbreviate of τ(k) for k ≥ 1. If a matrix X is positive semidefinite,

denote it as X � 0. For any x > 0, we define h(x) = x−2(ex−x−1). Denote the floor, ceiling,

and integer parts of a real number x by bxc, dxe, and [x]. For any two real numbers a, b,

denote a∨b := max{a, b}. Denote the exponential of matrix X as exp(X) = Ip+
∑∞

q=1 Xq/q!.

Letting σ1 and σ2 be two sigma fields, denote σ1 ∨ σ2 to be the smallest sigma field that

contains σ1 and σ2 as sub-sigma fields.

A roadmap of this appendix is as follows. Section C.1 formally introduces the concept of

τ -mixing coefficient. Section C.2 previews the proof of Theorem 10 and indicates some major

differences from the proofs in Banna et al. (2016). Section C.3 contains the construction of

Cantor-like set which is essential for decoupling dependent matrices. Section C.4 develops a

major decoupling lemma for τ -mixing random matrices and will be used in Section C.6 to

prove Lemma 21. Then Section C.5 finishes the proof of Theorem 10.

C.1 Introduction to τ-mixing random sequence

This section introduces the τ -mixing coefficient. Consider (Ω,F ,P) to be a probability space,

X an L1-integrable random variable taking value in a Polish space (X , ‖ ·‖X ), and A a sigma
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algebra of F . The τ -measure of dependence between X and A is defined to be

τ(A, X; ‖ · ‖X ) =
∥∥∥ sup
g∈Λ(‖·‖X )

{∫
g(x)PX|A(dx)−

∫
g(x)PX(dx)

}∥∥∥
L(1)

,

where PX is the distribution of X, PX|A is the conditional distribution of X given A, and

Λ(‖ · ‖X ) stands for the set of 1-Lipschitz functions from X to R with respect to the norm

‖ · ‖X .

The following two lemmas from Dedecker and Prieur (2004) and Dedecker et al. (2007)

characterize the intrinsic “coupling property” of τ -measure of dependence, which will be

heavily exploited in the derivation of our results.

Lemma 18 (Lemma 3 in Dedecker and Prieur (2004)). Let (Ω,F ,P) be a probability space,

X be an integrable random variable with values in a Banach space (X , ‖ · ‖X ) and A a sigma

algebra of F . If Y is a random variable distributed as X and independent of A, then

τ(A, X; ‖ · ‖X ) ≤ E‖X − Y ‖X .

Lemma 19 (Lemma 5.3 in Dedecker et al. (2007)). Let (Ω,F ,P) be a probability space, A be

a sigma algebra of F , and X be a random variable with values in a Polish space (X , ‖ · ‖X ).

Assume that
∫
‖x−x0‖XPX(dx) is finite for any x0 ∈ X . Assume that there exists a random

variable U uniformly distributed over [0, 1], independent of the sigma algebra generated by X

and A. Then there exists a random variable X̃, measurable with respect to A∨σ(X)∨σ(U),

independent of A and distributed as X, such that

τ(A, X; ‖ · ‖X ) = E‖X − X̃‖X .

Let {Xj}j∈J be a set of X -valued random variables with index set J of finite cardinality.

Then define

τ(A, {Xj ∈ X}j∈J ; ‖ · ‖X ) =
∥∥∥ sup
g∈Λ(‖·‖′X )

{∫
g(x)P{Xj}j∈J |A(dx)−

∫
g(x)P{Xj}j∈J (dx)

}∥∥∥
L(1)

,

where P{Xj}j∈J is the distribution of {Xj}j∈J , P{Xj}j∈J |A is the conditional distribution of

{Xj}j∈J given A, and Λ(‖·‖′X ) stands for the set of 1-Lipschitz functions from X × · · · × X︸ ︷︷ ︸
card(J)

to
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R with respect to the norm ‖x‖′X :=
∑

j∈J ‖xj‖X induced by ‖·‖X for any x = (x1, . . . , xJ) ∈

X card(J).

Using these concepts, for a sequence of temporally dependent data {Xt}t∈Z, we are ready

to define measure of temporal correlation strength as follows,

τ(k; {Xt}t∈Z, ‖·‖X ) := sup
i>0

max
1≤`≤i

1

`
sup{τ{σ(Xa

−∞), {Xj1 , . . . , Xj`}; ‖·‖X}, a+k ≤ j1 < · · · < j`},

where the inner supremum is taken over all a ∈ Z and all `-tuples (j1, . . . , j`). {Xt}t∈Z is

said to be τ -mixing if τ(k; {Xt}t∈Z, ‖ · ‖X ) converges to zero as k → ∞. In Dedecker et al.

(2007) the authors gave numerous examples of random sequences that are τ -mixing.

C.2 Overview of proof of Theorem 10

The proof of Theorem 10 follows largely the proof of Theorem 1 in Banna et al. (2016).

Section C.3 reviews the Cantor-set construction developed and used in Merlevède et al.

(2009) and Banna et al. (2016). Lemma 20 is a slight extension of Lemma 8 in Banna

et al. (2016). The major difference is that the 0-1 function used to quantify the distance

between two random matrices under β-mixing by Berbee’s decoupling lemma (Berbee, 1979)

is replaced by an absolute distance function, which is used under τ -mixing by Lemma 18

(Dedecker and Prieur, 2004). Proofs of Lemma 21 and the rest of Theorem 10 follow largely

the proofs of Proposition 7 and Theorem 1 in Banna et al. (2016) respectively, though with

more algebras involved.

C.3 Construction of Cantor-like set

We follow Banna et al. (2016) to construct the Cantor-like set KB for {1, . . . , B}. Let

δ = log 2
2 logB

and `B = sup{k ∈ Z+ : Bδ(1−δ)k−1

2k
≥ 2}. We abbreviate ` := `B. Let n0 = B and

for j ∈ {1, . . . , `},

nj =
⌈B(1− δ)j

2j

⌉
and dj−1 = nj−1 − 2nj.
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We start from the set {1, . . . , B} and divide the set into three disjoint subsets I1
1 , J

1
0 , I

2
1 so

that card(I1
1 ) = card(I2

1 ) = n1 and card(J1
0 ) = d0. Specifically,

I1
1 = {1, . . . , n1}, J1

0 = {n1 + 1, . . . , n1 + d0}, I2
1 = {n1 + d0 + 1, . . . , 2n1 + d0},

where B = 2n1+d0. Then we divide I1
1 , I

2
1 with J1

0 unchanged. I1
1 is divided into three disjoint

subsets I1
2 , J

1
1 , I

2
2 in the same way as the previous step with card(I1

2 ) = card(I2
2 ) = n2 and

card(J1
1 ) = d1. We obtain

I1
2 = {1, . . . , n2}, J1

1 = {n2 + 1, . . . , n2 + d1}, I2
2 = {n2 + d1 + 1, . . . , 2n2 + d1},

where n1 = 2n2 + d1. Similarly, I2
1 is divided into I3

2 , J
2
1 , I

4
2 with card(I3

2 ) = card(I4
2 ) = n2

and card(J2
1 ) = d1. We obtain

I3
2 = {2n2 + d0 + d1 + 1, . . . , 3n2 + d0 + d1}, J2

1 = {3n2 + d0 + d1 + 1, . . . , 3n2 + d0 + 2d1},

I4
2 = {3n2 + d0 + 2d1 + 1, . . . , 4n2 + d0 + 2d1},

where B = 4n2 + d0 + 2d1.

Suppose we iterate this process for k times (k ∈ {1, . . . , `}) with intervals I ik, i ∈

{1, . . . , 2k}. For each I ik, we divide it into three disjoint subsets I2i−1
k+1 , J

i
k, I

2i
k+1 so that

card(I2i−1
k+1 ) = card(I2i

k+1) = nk+1 and card(J ik) = dk. More specifically, if I ik = {aik, . . . , bik},

then

I2i−1
k+1 = {aik, . . . , aik + nk+1 − 1}, J ik = {aik + nk+1, . . . , a

i
k + nk+1 + dk − 1},

I2i
k+1 = {aik + nk+1 + dk, . . . , a

i
k + 2nk+1 + dk − 1}.

After ` steps, we obtain 2` disjoint subsets I i`, i ∈ {1, . . . , 2`} with card(I i`) = n`. Then the

Cantor-like set is defined as

KB =
2`⋃
i=1

I i`,

and for each level k ∈ {0, . . . , `} and each j ∈ {1, . . . , 2k}, define

Kj
k =

j2`−k⋃
i=(j−1)2`−k+1

I i`.

Some properties derived from this construction are given by Banna et al. (2016):
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1. δ ≤ 1
2

and ` ≤ logB
log 2

;

2. dj ≥ Bδ(1−δ)j
2j+1 and n` ≤ B(1−δ)`

2`−1 ;

3. Each I i`, i ∈ {1, . . . , 2`} contains n` consecutive integers, and for any i ∈ {1, . . . , 2`−1},

I2i−1
` and I2i

` are spaced by d`−1 integers;

4. card(KB) ≥ B
2

;

5. For each k ∈ {0, . . . , `} and each j ∈ {1, . . . , 2k}, card(Kj
k) = 2`−kn`. For each j ∈

{1, . . . , 2k−1}, K2j−1
k and K2j

k are spaced by dk−1 integers;

6. K1
0 = KB and Kj

` = Ij` for j ∈ {1, . . . , 2`}.

C.4 A decoupling lemma for τ-mixing random matrices

This section introduces the key tool to decouple τ -mixing random matrices using Cantor-

like set constructed in Section C.3. With some abuse of notation, within this section let’s

use {Xj}j∈{1,...,n} to denote a generic sequence of p × p symmetric random matrices. As-

sume E(Xj) = 0 and ‖Xj‖ ≤ M for some positive constant M and for all j ≥ 1. For

a collection of index sets Hk
1 , k ∈ {1, . . . , d}, we assume that their cardinalities are equal

and even. Denote {Xj}j∈Hk
1

to be the set of matrices whose indices are in Hk
1 . Assume

{Xj}j∈H1
1
, . . . , {Xj}j∈Hd

1
are mutually independent, while within each block Hk

1 the matrices

are possibly dependent. For each k, decompose Hk
1 into two disjoint sets H2k−1

2 and H2k
2 with

equal size, containing the first and second half of Hk
1 respectively. In addition, we denote

τ0 := τ{σ({Xj}j∈H2k−1
2

), {Xj}j∈H2k
2

; ‖·‖} for some constant τ0 ≥ 0 and for all k ∈ {1, . . . , d}.

For a given ε > 0, we achieve the following decoupling lemma.
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Lemma 20. We obtain for any ε > 0,

E tr exp
(
t

d∑
k=1

∑
j∈Hk

1

Xj

)
≤

d∑
i=0

(
d

i

)
(1 + L1 + L2)d−i(L1)iE tr exp

{
(−1)it

( 2d∑
k=1

∑
j∈Hk

2

X̃j

)}
,

E tr exp
(
− t

d∑
k=1

∑
j∈Hk

1

Xj

)
≤

d∑
i=0

(
d

i

)
(1 + L1 + L2)d−i(L1)iE tr exp

{
(−1)i+1t

( 2d∑
k=1

∑
j∈Hk

2

X̃j

)}
,

where

L1 := ptε exp(tε), L2 := exp{card(H1
1 )tM}τ0/ε,

and {X̃j}j∈Hk
2
, k ∈ {1, . . . , 2d}, are mutually independent and have the same distributions

as {Xj}j∈Hk
2
, k ∈ {1, . . . , 2d}.

Proof. We prove this lemma by induction. For any k ∈ {1, . . . , d}, we have Hk
1 = H2k−1

2 ∪H2k
2

and hence
∑

j∈Hk
1

Xj =
∑

j∈H2k−1
2

Xj +
∑

j∈H2k
2

Xj.

By Lemma 19, for each k ∈ {1, . . . , d}, we could find a sequence of random matrices

{X̃j}j∈H2k
2

and an independent uniformly distributed random variable Uk on [0, 1] such that

1. {X̃j}j∈H2k
2

is measurable with respect to the sigma field σ({Xj}j∈H2k−1
2

) ∨

σ({Xj}j∈H2k
2

) ∨ σ(Uk);

2. {X̃j}j∈H2k
2

is independent of σ({Xj}j∈H2k−1
2

);

3. {X̃j}j∈H2k
2

has the same distribution as {Xj}j∈H2k
2

;

4. P(‖
∑

j∈H2k
2

Xj −
∑

j∈H2k
2

X̃j‖> εk) ≤ E(‖
∑

j∈H2k
2

Xj −
∑

j∈H2k
2

X̃j‖)/εk ≤ τ0/εk by

Markov’s inequality and the fact that τ0 =
∑

j∈H2k
2
E(‖Xj − X̃j‖).

To make notation easier to follow, we set equal value to εk for k ∈ {1, . . . , d} and denote it as

ε. Moreover, we denote the event Γk = {‖
∑

j∈H2k
2

X̃j −
∑

j∈H2k
2

Xj‖≤ ε} for k ∈ {1, . . . , d}.

For the base case k = 1.

E tr exp
(
t

d∑
k=1

∑
j∈Hk

1

Xj

)
= E

{
1Γ1 tr exp

(
t

d∑
k=1

∑
j∈Hk

1

Xj

)}
︸ ︷︷ ︸

I

+E
{
1(Γ1)c tr exp

(
t

d∑
k=1

∑
j∈Hk

1

Xj

)}
︸ ︷︷ ︸

II

.
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Notice the definitions of terms I and II therein.

We have

I = E
[
1Γ1 tr exp

{
t
( ∑
j∈H1

2

Xj +
∑
j∈H2

2

Xj +
d∑

k=2

∑
j∈Hk

1

Xj

)}]

≤ E tr exp
{
t
( ∑
j∈H1

2

Xj +
∑
j∈H2

2

X̃j +
d∑

k=2

∑
j∈Hk

1

Xj

)}

+ E
(
1Γ1

[
tr exp

{
t
( ∑
j∈H1

2

Xj +
∑
j∈H2

2

Xj +
d∑

k=2

∑
j∈Hk

1

Xj

)}
− tr exp

{
t
( ∑
j∈H1

2

Xj +
∑
j∈H2

2

X̃j +
d∑

k=2

∑
j∈Hk

1

Xj

)}])
.

By linearity of expectation and the facts that tr(X) ≤ p‖X‖ and ‖exp(X) − exp(Y)‖ ≤

‖X−Y‖ exp(‖X−Y‖) exp(‖Y‖), we obtain

E
(
1Γ1

[
tr exp

{
t
( ∑
j∈H1

2

Xj +
∑
j∈H2

2

Xj +
d∑

k=2

∑
j∈Hk

1

Xj

)}
− tr exp

{
t
( ∑
j∈H1

2

Xj +
∑
j∈H2

2

X̃j +
d∑

k=2

∑
j∈Hk

1

Xj

)}])

≤E
[
1Γ1p

∥∥∥ exp
{
t
( ∑
j∈H1

2

Xj +
∑
j∈H2

2

Xj +
d∑

k=2

∑
j∈Hk

1

Xj

)}
− exp

{
t
( ∑
j∈H1

2

Xj +
∑
j∈H2

2

X̃j +
d∑

k=2

∑
j∈Hk

1

Xj

)}∥∥∥]

≤E
[
1Γ1p

∥∥∥t∑
j∈H2

2

(Xj − X̃j)
∥∥∥ exp

{∥∥∥t∑
j∈H2

2

(Xj − X̃j)
∥∥∥} exp

{∥∥∥t( ∑
j∈H1

2

Xj +
∑
j∈H2

2

X̃j +
d∑

k=2

∑
j∈Hk

1

Xj

)∥∥∥}].
By spectral mapping theorem, for a symmetric matrix X with ‖X‖ ≤ M , we have

exp(‖X‖) ≤ ‖exp(X)‖ ∨ ‖exp(−X)‖ ≤ ‖exp(X)‖ + ‖exp(−X)‖. Moreover, since exp(X)

is always positive definite for any matrix X and ‖X‖ ≤ tr(X) for any positive definite

symmetric matrix X, we obtain ‖exp(X)‖ ≤ tr exp(X) and ‖exp(−X)‖ ≤ tr exp(−X). In

addition, since we have ‖
∑

j∈H2
2
(Xj−X̃j)‖ ≤ ε on Γ1, we could further bound the inequality
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above by

E
[
1Γ1ptε exp(tε)

∥∥∥ exp
{
t
( ∑
j∈H1

2

Xj +
∑
j∈H2

2

X̃j +
d∑

k=2

∑
j∈Hk

1

Xj

)}∥∥∥]

≤ptε exp(tε)
[
E tr exp

{
t
( ∑
j∈H1

2

Xj +
∑
j∈H2

2

X̃j +
d∑

k=2

∑
j∈Hk

1

Xj

)}

+ E tr exp
{
− t
( ∑
j∈H1

2

Xj +
∑
j∈H2

2

X̃j +
d∑

k=2

∑
j∈Hk

1

Xj

)}]
.

Putting together, we reach

I ≤{1 + ptε exp(tε)}E tr exp
{
t
( ∑
j∈H1

2

Xj +
∑
j∈H2

2

X̃j +
d∑

k=2

∑
j∈Hk

1

Xj

)}

+ ptε exp(tε)E tr exp
{
− t
( ∑
j∈H1

2

Xj +
∑
j∈H2

2

X̃j +
d∑

k=2

∑
j∈Hk

1

Xj

)}
. (C.1)

We then aim at II. For this, the proof largely follows the same argument as in Banna

et al. (2016). Omitting the details, we obtain

II ≤ exp{card(H1
1 )tM}(τ0/ε)E tr exp

{
t
( ∑
j∈H2

1

Xj +
∑
j∈H2

2

X̃j +
d∑

k=2

∑
j∈H1

k

Xj

)}
. (C.2)

Denote L1 := ptε exp(tε) and L2 := exp{card(H1
1 )tM}τ0/ε. Combining (C.1) and (C.2)

yields

E tr exp
(
t

d∑
k=1

∑
j∈Hk

1

Xj

)

≤(1 + L1 + L2)E tr exp
{
t
( ∑
j∈H1

2

Xj +
∑
j∈H2

2

X̃j +
d∑

k=2

∑
j∈Hk

1

Xj

)}

+ L1E tr exp
{
− t
( ∑
j∈H1

2

Xj +
∑
j∈H2

2

X̃j +
d∑

k=2

∑
j∈Hk

1

Xj

)}

=
1∑
i=0

(
1

i

)
(1 + L1 + L2)1−i(L1)iE tr exp

{
(−1)it

( ∑
j∈H1

2

Xj +
∑
j∈H2

2

X̃j +
d∑

k=2

∑
j∈Hk

1

Xj

)}
.
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This finishes the base case.

The induction steps are followed similarly and we omit the details. By iterating d times,

we arrive at the following inequality:

E tr exp
(
t

d∑
k=1

∑
j∈Hk

1

Xj

)

≤
d∑
i=0

(
d

i

)
(1 + L1 + L2)d−i(L1)iE tr exp

{
(−1)it

( d∑
k=1

∑
j∈H2k−1

2

Xj +
d∑

k=1

∑
j∈H2k

2

X̃j

)}
, (C.3)

where {Xj}j∈H2k−1
2

, k ∈ {1, . . . , d} and {X̃j}j∈H2k
2
, k ∈ {1, . . . , d} are mutually indepen-

dent. In addition, they have the same distributions as {Xj}j∈H2k−1
2

, k ∈ {1, . . . , d} and

{Xj}j∈H2k
2
, k ∈ {1, . . . , d}, respectively. For the sake of simplicity and clarity, we add an up-

per tilde to the matrices with indices in H2k−1
2 , k ∈ {1, . . . , d}, i.e., {X̃j}j∈H2k−1

2
is identically

distributed as {Xj}j∈H2k−1
2

for k ∈ {1, . . . , d}. Hence (C.3) could be rewritten as

E tr exp
(
t

d∑
k=1

∑
j∈Hk

1

Xj

)
≤

d∑
i=0

(
d

i

)
(1 + L1 + L2)d−i(L1)iE tr exp

{
(−1)it

( 2d∑
k=1

∑
j∈Hk

2

X̃j

)}
,

where {X̃j}j∈Hk
2
, k ∈ {1, . . . , 2d} are mutually independent and their distributions are the

same as {Xj}j∈Hk
2
, k ∈ {1, . . . , 2d}.

By changing X to −X, we immediately get the following bound:

E tr exp
(
− t

d∑
k=1

∑
j∈Hk

1

Xj

)
≤

d∑
i=0

(
d

i

)
(1 + L1 + L2)d−i(L1)iE tr exp

{
(−1)i+1t

( 2d∑
k=1

∑
j∈Hk

2

X̃j

)}
.

This completes the proof of Lemma 20.

C.5 Proof of Theorem 10

Proof. Without loss of generality, let ψ1 = ψ̃1.

Case I. First of all, we consider M = 1.

Step I (Summation decomposition). Let B0 = n and U
(0)
j = Xj for j ∈ {1, . . . , n}.

Let KB0 be the Cantor-like set from {1, . . . , B0} by construction of Section C.3, Kc
B0

=
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{1, . . . , B0} \KB0 , and B1 = card(Kc
B0

). Then define

U
(1)
j = Xij , where ij ∈ Kc

B0
= {i1, . . . , iB1}.

For each i ≥ 1, let KBi be constructed from {1, . . . , Bi} by the same Cantor-like set con-

struction. Denote Kc
Bi

= {1, . . . , Bi} \KBi and Bi+1 = card(Kc
Bi

). Then

U
(i+1)
j = U

(i)
kj
, where kj ∈ Kc

Bi
= {k1, . . . , kBi+1

}.

We stop the process when there is a smallest L such that BL ≤ 2. Then we have for i ≤ L−1,

Bi ≤ n2−i because each Cantor-like set KBi+1
has cardinality greater than Bi/2. Also notice

that L ≤ [log n/ log 2].

For i ∈ {0, . . . , L− 1}, denote

Si =
∑
j∈KBi

U
(i)
j and SL =

∑
j∈KBc

L−1

U
(L)
j .

Then we observe
n∑
j=1

Xj =
L∑
i=0

Si.

Step II (Bounding Laplacian transform). This step hinges on the following lemma,

which provides an upper bound for the Laplace transform of sum of a sequence of random

matrices which are τ -mixing with geometric decay, i.e., τ(k) ≤ ψ1 exp{−ψ2(k − 1)} for all

k ≥ 1 for some constants ψ1, ψ2 > 0.

Lemma 21 (Proof in Section C.6). For a sequence of p × p matrices {Xi}, i ∈ {1, . . . , B}

satisfying conditions in Theorem 10 with M = 1 and ψ1 ≥ p−1, there exists a subset KB ⊆

{1, . . . , B} such that for 0 < t ≤ min{1, ψ2

8 log(ψ1B6p)
},

logE tr exp

(
t
∑
j∈KB

Xj

)
≤ log p+ 4h(4)Bt2ν2 + 151

[
1 + exp

{ 1
√
p

exp
(
− ψ2

64t

)}] t2
ψ2

exp
(
− ψ2

64t

)
.

For each Si, i ∈ {0, . . . , L − 1}, by applying Lemma 21 with B = Bi, we have for any

positive t satisfying 0 < t ≤ min{1, ψ2

8 log{ψ1(n2−i)6p}},

logE tr exp(tSi) ≤ log p+ t2(C12−in+ C2,i)
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where C1 := 4h(4)ν2, C2,i := 302 · 2 6i
8 /ψ2n

6
8 .

Denote

f̃(ψ1, ψ2, i) := min
{

1,
ψ2

8 log{ψ1(n2−i)6p}

}
.

For any 0 < t ≤ f̃(ψ1, ψ2, i), we obtain

logE tr exp(tSi) ≤ log p+
t2(C12−in+ C2,i)

1− t/f̃(ψ1, ψ2, i)
≤ log p+

t2{C
1
2
1 (2−in)

1
2 + C

1
2
2,i}2

1− t/f̃(ψ1, ψ2, i)
.

For SL, since BL ≤ 2, for 0 < t ≤ 1,

logE tr exp(tSL) ≤ log p+ t2h(2t)λmax{E(S2
L)} ≤ log p+

2t2ν2

1− t
.

Denote σi := C
1
2
1 (2−in)

1
2 + C

1
2
2,i, σL :=

√
2ν, κi := 1/f̃(ψ1, ψ2, i), and κL := 1.

Summing up, we have

L∑
i=0

σi =
L−1∑
i=0

{C
1
2
1 (2−in)

1
2 + C

1
2
2,i}+

√
2ν ≤ 15

√
nν + 60

√
1/ψ2,

L∑
i=0

κi ≤
log n

log 2
max

{
1,

8 log(ψ1n
6p)

ψ2

}
:= ψ̃(ψ1, ψ2, n, p).

Hence by Lemma 3 in Merlevède et al. (2009), for 0 < t ≤ {ψ̃(ψ1, ψ2, n, p)}−1, we have

logE tr exp
(
t

n∑
j=1

Xj

)
≤ log p+

t2
(

15
√
nν + 60

√
1/ψ2

)2

1− tψ̃(ψ1, ψ2, n, p)
.

Step III (Matrix Chernoff bound). Lastly by matrix Chernoff bound, we obtain

P
{
λmax

( n∑
j=1

Xj

)
≥ x

}
≤ p exp

{
− x2

8(152nν2 + 602/ψ2) + 2xψ̃(ψ1, ψ2, n, p)

}
.

Case II. We consider general M > 0. It is obvious that if {Xt}t∈Z is a sequence of

τ -mixing random matrices such that τ(k; {Xt}t∈Z, ‖ · ‖) ≤ Mψ1 exp{−ψ2(k − 1)}, then

{Xi/M}i∈Z is also a sequence of τ -mixing random matrices such that τ(k; {Xt/M}t∈Z, ‖·‖) ≤
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ψ1 exp{−ψ2(k − 1)} and ‖Xt/M‖ ≤ 1. Then applying the result of Case I to {Xi/M}i∈Z,

we obtain

P
{
λmax

( n∑
j=1

Xj/M
)
≥ x

}
≤ p exp

{
− x2

8(152nν2
M + 602/ψ2) + 2xψ̃(ψ1, ψ2, n, p)

}
,

where ν2
M := supK⊆{1,...,n}

1
card(K)

λmax

{
E
(∑

i∈K Xi/M

)2}
= ν2/M2 for ν2 defined in The-

orem 10. Thus

P
{
λmax

( n∑
j=1

Xj

)
≥ x

}
≤ p exp

{
− x2

8(152nν2 + 602M2/ψ2) + 2xMψ̃(ψ1, ψ2, n, p)

}
.

This completes the proof of Theorem 10.

C.6 The proof of Lemma 21

Proof. Let KB be constructed as in Section C.3 for any arbitrary B ≥ 2 and M = 1.

Case I. If 0 < t ≤ 4/B, by Lemma 4 in Banna et al. (2016), we have

E tr exp
(
t
∑
i∈KB

Xi

)
≤ p exp

[
t2h
{
tλmax

( ∑
i∈KB

Xi

)}
λmax

{
E
( ∑
i∈KB

Xi

)2}]
.

By Weyl’s inequality, λmax(
∑

i∈KB Xi) ≤ B since card(KB) ≤ B, and by definition

of ν2 in Theorem 10, we have λmax{E(
∑

i∈KB Xi)
2} ≤ Bν2. Therefore, we obtain

h{tλmax(
∑

i∈KB Xi)} ≤ h(tB) ≤ h(4) and

E tr exp
(
t
∑
i∈KB

Xi

)
≤ p exp{t2h(4)Bν2}. (C.4)

Case II. Now we consider the case where 4/B < t ≤ min{1, ψ2

8 log(ψ1B6p)
}.

Step I. Let J be a chosen integer from {0, . . . , `B} whose actual value will be determined

later. We will use the same notation to denote Cantor-like sets as in Section C.3. By Lemma

20 and similar induction argument as in Banna et al. (2016), we obtain

E tr exp
(
t
∑
j∈K1

0

Xj

)
≤

20∑
i1=0

· · ·
2J−1∑
iJ=0

[( J∏
k=1

Ak,ik

)
E tr exp

{
(−1)

∑J
k=1 ikt

( 2J∑
i′=1

∑
j∈Ki′

J

X̃j

)}]
,

(C.5)
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where {X̃j}j∈Ki′
J

for i′ ∈ {1, · · · , 2J} are mutually independent and have the same distribu-

tions as {Xj}j∈Ki′
J

for i′ ∈ {1, · · · , 2J} ,and

Ak,ik :=

(
2k−1

ik

)
(1 + Lk,1 + Lk,2)2k−1−ik(Lk,1)ik ,

εk :=(2pt)−
1
2{2`−kn` exp(t2`−k+1n`)τdk−1+1}

1
2 ,

Lk,1 :=(pt/2)
1
2 exp(tεk){2`−kn` exp(t2`−k+1n`)τdk−1+1}

1
2 ,

Lk,2 :=(2pt)
1
2 exp(tεk){2`−kn` exp(t2`−k+1n`)τdk−1+1}

1
2 ,

Step II: Now we choose J as follows:

J = inf
{
k ∈ {0, . . . , `} :

B(1− δ)k

2k
≤ min

{ ψ2

8t2
, B
}}

.

We first bound E tr exp{t(
2J∑
i′=1

∑
j∈Ki′

J
X̃j)} and E tr exp{−t(

2J∑
i′=1

∑
j∈Ki′

J
X̃j)}. From (C.5)

we obtain 2J sets of {X̃j} that are mutually independent. To make notation less cluttered,

we will remove the upper tilde from X̃j for all j. Denote the number of matrices in each set

Ki
J to be q := 2`−Jn`. For each set Ki

J , i ∈ {1, . . . , 2J}, we divide it into consecutive sets

with cardinality q̃ and potentially a residual term if q is not divisible by q̃. More specifically,

we have 2q̃ ≤ q and mq,q̃ := [q/2q̃]. The value q̃ will be determined later.

Then each set Ki
J contains 2mq,q̃ numbers of sets with cardinality q̃ and one set with

cardinality less than 2q̃. For each Ki
J , i ∈ {1, . . . , 2J}, denote these consecutive sets described

above by Qi
k, k ∈ {1, . . . , 2mq,q̃ + 1}. Given these notation, we could rewrite the bound as

the following:

E tr exp
(
t

2J∑
i=1

∑
j∈Ki

J

Xj

)

=E tr exp
(
t

2J∑
i=1

2mq,q̃+1∑
k=1

∑
j∈Qik

Xj

)
= E tr exp

(
t

2J∑
i=1

mq,q̃∑
k=1

∑
j∈Qi2k

Xj + t

2J∑
i=1

mq,q̃+1∑
k=1

∑
j∈Qi2k−1

Xj

)
.

Since tr exp(·) is convex (cf. Proposition 2 in Petz (1994)), by Jensen’s inequality, we have

E tr exp
(
t

2J∑
i=1

∑
j∈Ki

J

Xj

)
≤ 1

2
E tr exp

(
2t

2J∑
i=1

mq,q̃∑
k=1

∑
j∈Qi2k

Xj

)
+

1

2
E tr exp

(
2t

2J∑
i=1

mq,q̃+1∑
k=1

∑
j∈Qi2k−1

Xj

)
.
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Since the number of odd index sets is always equal to or one more than that of the even

index sets, the upper bound of 1
2
E tr exp

(
2t
∑2J

i=1

∑mq,q̃
k=1

∑
j∈Qi2k

Xj

)
will always be less than

or equal to that of 1
2
E tr exp

(
2t
∑2J

i=1

∑mq,q̃+1
k=1

∑
j∈Qi2k−1

Xj

)
. Hence we only need to provide

an upper bound for E tr exp
(

2t
∑2J

i=1

∑mq,q̃+1
k=1

∑
j∈Qi2k−1

Xj

)
. Our goal is then to replace all

{Xj}j∈Qi2k−1
in the last inequality by mutually independent copies {X̃j}j∈Qi2k−1

with same

distributions for k ∈ {1, . . . , 2mq,q̃ +1}, i ∈ {1, . . . , 2J}. Again we will proceed by induction.

We first show

E tr exp
(

2t
2J∑
i=1

mq,q̃+1∑
k=1

∑
j∈Qi2k−1

Xj

)

≤
1∑

i1=0

Ãi1E tr exp
{

(−1)i12t
(mq,q̃+1∑

k=1

∑
j∈Q1

2k−1

X̃j +
2J∑
i=2

mq,q̃+1∑
k=1

∑
j∈Qi2k−1

Xj

)}
,

where the constants Ãi1 will be specified later. For each {Xj}j∈Q1
2k−1

, k ∈ {1, . . . ,mq,q̃ + 1},

we could find a sequence of {X̃j}j∈Q1
2k−1

, k ∈ {1, . . . ,mq,q̃+1} that are mutually independent

with each other. More specifically, let {X̃j}j∈Q1
1

= {Xj}j∈Q1
1
. By applying Lemma 19 on

{X̃j}j∈Q1
1

and {Xj}j∈Q1
3

with a chosen ε̃ > 0, we may find a sequence of random matrices

{X̃j}j∈Q1
3

such that for each j0 ∈ Q1
3, we have

1. X̃j0 is measurable with respect to σ({X̃j}j∈Q1
1
) ∨ σ(Xj0) ∨ σ(Ũ1

j0
);

2. X̃j0 is independent of σ({X̃j}j∈Q1
1
);

3. X̃j0 has the same distribution as Xj0 ;

4. P(‖ X̃j0 −Xj0 ‖≥ ε̃) ≤ E(‖ X̃j0 −Xj0 ‖)/ε̃ ≤ τq̃+1/ε̃ by Markov’s inequality.

For each j0 ∈ Q1
3, Ũ1

j0
is independent with {X̃j}j∈Q1

1
and Xj0 . In addition, since there

are at least q̃ number of matrices between {X̃j}j∈Q1
1

and Xj0 by our construction, we have

τ{σ({X̃j}j∈Q1
1
),Xj0 ; ‖ ·‖} ≤ τq̃+1. Note that {X̃j}j∈Q1

3
is independent with {X̃j}j∈Q1

1
but not

mutually independent within the set Q1
3.
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Following the induction steps similar to the previous step and without redundancy, we

obtain

E tr exp
(

2t
2J∑
i=1

mq,q̃+1∑
k=1

∑
j∈Qi2k−1

Xj

)

≤
1∑

i1=0

Ãi1E tr exp
{

(−1)i12t
(mq,q̃+1∑

k=1

∑
j∈Q1

2k−1

X̃j +
2J∑
i=2

mq,q̃+1∑
k=1

∑
j∈Qi2k−1

Xj

)}
,

where

ε̃ := (4pt)−
1
2{exp(2tq)τq̃+1}

1
2 ,

L̃1 :=
1

2
(4pt)

1
2 q exp(2tqε̃){exp(2tq)τq̃+1}

1
2 ,

L̃2 := (4pt)
1
2 q{exp(2tq)τq̃+1}

1
2 ,

Ãi1 :=

(
1

i1

)
(1 + L̃1 + L̃2)1−i1(L̃1)i1 ,

This completes the base case.

Iterating the above calculation, we arrive at the following bound:

E tr exp
(

2t
2J∑
i=1

mq,q̃+1∑
k=1

∑
j∈Qi2k−1

Xj

)

≤
1∑

i1=0

· · ·
1∑

i
2J

=0

( 2J∏
r=1

Ãir

)
E tr exp

{
(−1)

∑2J

r=1 ir2t
2J∑
i=1

mq,q̃+1∑
k=1

∑
j∈Qi2k−1

X̃j

}
, (C.6)

where {X̃j}j∈Qi2k−1
for (i, k) ∈ {1, . . . , 2J} × {1, . . . ,mq,q̃ + 1} are mutually independent and

identically distributed as {Xj}j∈Qi2k−1
for (i, k) ∈ {1, . . . , 2J} × {1, . . . ,mq,q̃ + 1}, and

ε̃ := (4pt)−
1
2{exp(2tq)τq̃+1}

1
2 ,

L̃1 :=
1

2
(4pt)

1
2 q exp(2tqε̃){exp(2tq)τq̃+1}

1
2 ,

L̃2 := (4pt)
1
2 q{exp(2tq)τq̃+1}

1
2 ,

Ãir :=

(
1

ir

)
(1 + L̃1 + L̃2)1−ir(L̃1)ir .
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Let q̃ := [2/t]∧ [q/2]. {X̃j}j∈Qi2k−1
for (i, k) ∈ {1, . . . , 2J}×{1, . . . ,mq,q̃ +1} are mutually

independent with mean 0 and 2J
∑mq̃,q+1

k=1 card(Qi
2k−1) ≤ B. Moreover by Weyl’s inequality,

for (i, k) ∈ {1, . . . , 2J} × {1, . . . ,mq,q̃ + 1}, we have

2λmax

( ∑
j∈Qi2k−1

X̃j

)
≤ 2q̃ ≤ 4

t
.

By Lemma 4 in Banna et al. (2016), we obtain

E tr exp
(

2t
2J∑
i=1

mq,q̃+1∑
k=1

∑
j∈Qi2k−1

X̃j

)
≤ p exp{4h(4)Bt2ν2}, (C.7)

E tr exp
(
− 2t

2J∑
i=1

mq,q̃+1∑
k=1

∑
j∈Qi2k−1

X̃j

)
≤ p exp{4h(4)Bt2ν2}. (C.8)

Plugging (C.7) and (C.8) into (C.6) and using the fact that
1∑

ir=0

Ãir = 1 + 2L̃1 + L̃2, we

obtain

E tr exp
(

2t
2J∑
i=1

mq,q̃+1∑
k=1

∑
j∈Qi2k−1

Xj

)
≤ (1 + 2L̃1 + L̃2)2Jp exp{4h(4)Bt2ν2}. (C.9)

By replacing X by −X, we obtain

E tr exp
(
− 2t

2J∑
i=1

mq,q̃+1∑
k=1

∑
j∈Qi2k−1

Xj

)
≤ (1 + 2L̃1 + L̃2)2Jp exp{4h(4)Bt2ν2}. (C.10)

Combining (C.5) with (C.9) and (C.10), we get

E tr exp
(
t
∑
j∈KB

Xj

)
≤

20∑
i1=0

· · ·
2J−1∑
iJ=0

[( J∏
k=1

Ak,ik

)
(1 + 2L̃1 + L̃2)2Jp exp{4h(4)Bt2ν2}

]
=
{ J∏
k=1

(1 + 2Lk,1 + Lk,2)2k−1
}

(1 + 2L̃1 + L̃2)2Jp exp{4h(4)Bt2ν2},

(C.11)

where the last equality follows by
∑2k−1

ik=1Ak,ik = (1 + 2Lk,1 + Lk,2)2k−1
.
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By using log(1 + x) ≤ x for x ≥ 0, we have

logE tr exp
(
t
∑
j∈KB

Xj

)
≤

J∑
k=1

2k−1(2Lk,1 + Lk,2) + 2J(2L̃1 + L̃2) + log[p exp{4h(4)Bt2ν2}].

(C.12)

For simplicity, we denote I =
J∑
k=1

2k−1(2Lk,1 + Lk,2), II = 2J(2L̃1 + L̃2) in (C.12).

Step III: Following calculations similar to Banna et al. (2016), we obtain

I ≤ 32
√

2

log 2

[
1 + exp

{ 1√
2p

exp
(
− ψ2

16t

)}] t2
ψ2

exp
(
− ψ2

32t

)
. (C.13)

and

II ≤ 128
[
1 + exp

{ 1
√
p

exp
(
− ψ2

32t

)}] t2
ψ2

exp
(
− ψ2

64t

)
. (C.14)

Hence by combining (C.4), (C.12), (C.13) and (C.14), we obtain for 0 < t ≤

min{1, ψ2

8 log(ψ1B6p)
},

logE tr exp
(
t
∑
j∈KB

Xj

)
≤ log p+ 4h(4)Bt2ν2 + 151

[
1 + exp

{ 1
√
p

exp
(
− ψ2

64t

)}] t2
ψ2

exp
(
− ψ2

64t

)
.

This completes the proof of Lemma 21.
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