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Branko Grünbaum: 

An enduring error 
 
1. Introduction. 

Mathematical truths are immutable, but mathematicians do make errors, especially 

when carrying out non-trivial enumerations. Some of the errors are "innocent" –– plain mis-

takes that get corrected as soon as an independent enumeration is carried out.  For example, 

Daublebsky [14] in 1895 found that there are precisely 228 types of configurations (123), that 

is, collections of 12 lines and 12 points, each incident with three of the others. In fact, as 

found by Gropp [19] in 1990, the correct number is 229.  Another example is provided by the 

enumeration of the uniform tilings of the 3-dimensional space by Andreini [1] in 1905; he 

claimed that there are precisely 25 types.  However, as shown [20] in 1994, the correct num-

ber is 28.  Andreini listed some tilings that should not have been included, and missed several 

others –– but again, these are simple errors easily corrected. 

Much more insidious are errors that arise by replacing enumeration of one kind of ob-

ject by enumeration of some other objects –– only to disregard the logical and mathematical 

distinctions between the two enumerations.  It is surprising how errors of this type escape 

detection for a long time, even though there is frequent mention of the results. One example 

is provided by the enumeration of 4-dimensional simple polytopes with 8 facets, by Brückner 

[7] in 1909.  He replaces this enumeration by that of 3-dimensional "diagrams" that he inter-

preted as Schlegel diagrams of convex 4-polytopes, and claimed that the enumeration of 

these objects is equivalent to that of the polytopes. However, aside from several "innocent" 

mistakes in his enumeration, there is a fundamental error: While to all 4-polytopes corre-

spond 3-dimensional diagrams, there is no reason to assume that every diagram arises from a 

polytope. At the time of Brückner's paper, even the corresponding fact about 3-polyhedra and 

2-dimensional diagrams has not yet been established –– this followed only from Steinitz's 

characterization of complexes that determine convex polyhedra [45], [46].  In fact, in the 

case considered by Brückner, the assumption is not only unjustified, but actually wrong:  One 

of Brückner's polytopes does not exist, see [25].  Other examples of a similar nature involve 

the enumeration of types of isohedral or isogonal tilings of the plane.  In many works, the 

tilings in question were replaced –– for purposes of enumeration –– by labeled or marked 

tilings, or by pairs consisting of a tiling and a group of symmetries. However, the results 

were erroneously claimed to represent classifications of the tilings proper. The literature is 
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too numerous to be adequately quoted here; the reader is advised to consult Chapters 6 to 9 

of [24]. 

This brings us to the actual topic of this paper.  Polyhedra have been studied since an-

tiquity.  It is, therefore, rather surprising that even concerning some of the polyhedra known 

since that time there is a lot of confusion, regarding both terminology and essence.  But even 

more unexpected is the fact that many expositions of this topic commit serious mathematical 

and logical errors.  Moreover, this happened not once or twice, but many times over the cen-

turies, and continues to this day in many printed and electronic publications; the most recent 

case is in the second issue for 2008 of this journal.  I'll justify this harsh statement soon, after 

setting up the necessary background. We need first to clarify the enduring confusion in ter-

minology, and then discuss the actual enduring errors. 

 

2. Archimedean and uniform polyhedra. 

 Several kinds of polyhedra have made their first appearance in antiquity, and contin-

ued to be investigated throughout the ages.  Probably best known among these are the five 

regular polyhedra, also known as Platonic solids.  Representatives of these five kinds of 

convex polyhedra are beautifully illustrated in countless publications, in print and electronic.  

Over the centuries, there have been many different definitions, all leading to the same set of 

five polyhedra –– although in some cases a sizable grain of salt has to be supplied in order to 

reach that goal.  One old and widely accepted definition is that a convex polyhedron is regu-

lar provided all its faces are congruent regular polygons, meeting in the same number at 

every vertex.  A more recent definition stipulates that a convex polyhedron is regular pro-

vided the set of isometric symmetries of the polyhedron acts transitively on the family of all 

flags. (A flag is triplet consisting of a face, an edge, and a vertex, all mutually incident).  Al-

though the former definition relies on strictly local conditions and the latter one on global 

properties, the remarkable fact is that they determine the same five polyhedra; many other 

definitions do the same. 

 

Convex Archimedean polyhedra form another well-known family, also illustrated in 

may venues.  They are frequently defined by the following requirement, similar to the first 

one for Platonic solids: 
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Local criterion:  All faces are regular polygons, and the cyclic arrangement of the faces 

around each vertex is the same. 

 

In this context "same" is understood to allow mirror images, and "around" to include 

only faces that are incident with the vertex in question.  The definition obviously includes 

Platonic polyhedra, as well as regular-faced prisms and antiprisms of arbitrarily many sides.  

However, many writers specify that the polyhedra just mentioned should (by fiat, and be-

cause of tradition) be excluded and that by "polyhedra satisfying the local criterion" we 

should understand only those that are neither regular, nor prisms or antiprisms.  For simplic-

ity of exposition, in what follows we shall accede to this view even though it lacks any logi-

cal basis. 

 

In contrast to this "local" definition stands the following "global" one: 

 

Global criterion:  All faces are regular polygons, and all vertices form one orbit under 

isometric symmetries of the polyhedron. 

 

Here, too, we shall agree to exclude regular polyhedra as well as prisms and anti-

prisms. 

 

A confusion surrounding the topic is the result of inconsistent terminology.  Many 

writers call Archimedean those polyhedra that satisfy the local criterion, and many call uni-

form or semiregular the ones that satisfy the global criterion.  However, others give the 

name Archimedean polyhedra to those satisfying the global definition.  Still other writers 

consider "Archimedean" and "semiregular" as denoting the same polyhedra. The fact that 

there are two differing definitions makes it reasonable to give the two classes of polyhedra 

different names.  If this is accepted, then the polyhedra satisfying the local criterion should 

be called Archimedean, since it is a stretch to impute to Archimedes an approach via groups 

of symmetries –– as a matter of historical fact, before the nineteenth century nobody was 

thinking of groups, least of all in geometry.  The polyhedra satisfying the global criterion 

should be called uniform or semiregular. 
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The lack of standardization of terminology would be only a matter of pedantic hair-

splitting if it were not for the two facts.  First, "Archimedean" is the term used most fre-

quently, even though many writers using it do not specify what they mean by "Archimedean 

polyhedra" (or by polyhedra designated by any of the other names).  In the present paper we 

shall consistently use Archimedean to denote polyhedra satisfying the local criterion.  To 

confuse things even more, Walsh [50] and others (such as Villarino [49]) call polyhedra 

"semiregular" if they satisfy the local condition. 

 

The second fact is much more important. One might expect that –– in analogy to the 

situation concerning regular polyhedra –– the local and global definitions yield the same 

polyhedra.  If this were so, there would be not much of a point in insisting on different 

names; no confusion arises in the case of the regular polyhedra.  However, this coincidence 

does not occur.  With our understandings and exclusions, there are fourteen convex polyhe-

dra that satisfy the local criterion and should be called "Archimedean", but only thirteen that 

satisfy the global criterion and are appropriately called "uniform" (or "semiregular").  Repre-

sentatives of the thirteen uniform convex polyhedra are shown in the sources mentioned 

above, while the fourteenth polyhedron is illustrated in Figure 1.  It satisfies the local crite-

rion but not the global one, and therefore is – in our terminology – Archimedean but not uni-

form.  The history of the realization that the local criterion leads to fourteen polyhedra will 

be discussed in the next section; it is remarkable that this development occurred only in the 

20th century.  This implies that prior to the twentieth century all enumerations of the polyhe-

dra satisfying the local criterion were mistaken.  Unfortunately, many later enumerations 

make the same error.  

 

It may seem that the confusion of terminology is a matter of little importance.  Unfor-

tunately, it is mirrored in surprisingly many writings in which the definitions of Archimedean 

and uniform polyhedra are conflated, by adopting the local criterion as definition but claim-

ing that global symmetry results.  In the sequel, this will be referred to as the enduring er-

ror.  An unexpected aspect of this mathematical error is that it has been committed by 

many well-known mathematicians and other scientists.  It gives me no pleasure to cite names, 

but obviously a claim as serious as the one I just made has to be documented. This occurs in 

Section 4.  I should also mention that I have found no indication, in any of the three review-

ing journals (Jahrbuch über die Fortschritte der Mathematik, Zentralblatt für Mathematik, 
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Mathematical Reviews), that a reviewer was even aware of the problem.  A search of "Uni-

form polyhedra" on Google™ in 2005 yielded "about 13,600" results.  I checked the first 

three, namely [37], [51], [27], and found that all three committed this error.  A search re-

peated in June 2008 yielded "about 90100" items. The first four included [37], [51] and [27], 

but second on the list was [53] –– which did not make the error.  Details will be given in Sec-

tion 4.  The printed literature contains many books and articles that do not commit the endur-

ing error, and the same is true for the Web.  But my point is that in both kinds of publica-

tions, many are guilty of it.  It should also be mentioned that many of the same sources con-

tain a lot of other information, often quite valuable. 

 

In the interest of full disclosure I should mention that a version of this paper was 

submitted some time ago to a different journal.  The editor rejected the manuscript, because a 

referee stated that there are many correct expositions on the Internet.  Following this logic 

you should not worry about the counterfeit banknote you found in your wallet since there are 

many genuine ones in circulation. 

 

It is possible –– maybe even probable –– that the problem of incorrectly enumerating 

Archimedean polyhedra started with Archimedes.  His writings have not survived, and we 

have only Pappus' word [48] that Archimedes found "the thirteen polyhedra".  (The reference 

to Heron in [31, page 327] appears to be in error.)  But it is clear that if Archimedes used the 

local definition –– as has been believed throughout history –– then he should have found "the 

fourteen polyhedra".  The first available enumeration, close to two millennia after Ar-

chimedes', was that of Kepler [32], who independently discovered and described thirteen 

polyhedra which have since been repeatedly rediscovered.  Kepler used the local definition as 

well, hence committed the "enduring error". To Kepler's possible credit it should be said that 

on one occasion [33, page 11] he stated without explanation that there are fourteen Ar-

chimedean polyhedra; see also Coxeter [10], Malkevitch [38, page 85].  As far as is known, 

Kepler never publicly reconciled this statement with his detailed enumeration.   

 

3. The pseudorhombicuboctahedron. 

 

The first appearance –– beyond the fleeting glimpse that Kepler may have had –– of 

the fourteenth polyhedron, usually called the pseudorhombicuboctahedron, happened in a 
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paper by Sommerville [43] in 1905.  However, on the face of it this paper deals only with 

maps in two-dimensional elliptic, Euclidean and hyperbolic spaces.  It has been mentioned in 

several places (see, for example, [29]) that Sommerville at best has a map that can be inter-

preted as a Schlegel diagram of the pseudorhombicuboctahedron.  However, a more careful 

reading of his paper (in particular, middle of page 725), shows that he did actually have 

polyhedra in mind when discussing the diagrams. 

 

Unfortunately, Sommerville’s paper appears to have been completely forgotten for 

more than a quarter century. The next explicit mention of the pseudorhombicuboctahedron,  

discovered by J. C. P. Miller, is in [9, p. 336] in 1930.  It has at times been called "Miller's 

mistake", allegedly because Miller intended only to make a model of the rhombicuboctahe-

dron.  Miller's polyhedron received wider exposure in Ball and Coxeter [4] and in Fejes Tóth 

[16, p. 111]; in both books the distinction between local and global properties is stressed. 

 

Independently of Miller, the pseudorhombicuboctahedron was discovered by V. G. 

Ashkinuse in 1957 [2].  This was mentioned in Ashkinuse [3], and in Lyusternik [35].  A 

very strange presentation of Ashkinuse's polyhedron is in Roman [40].  While in Chapter 5 of 

[40] a detailed proof is presented of the "fact" that there are precisely thirteen polyhedra that 

satisfy the local criterion, in Chapter 6 is given a description of both the rhombicuboctahe-

dron and the pseudorhombicuboctahedron.  Roman correctly stresses their differences in re-

gard to symmetries but apparently believes that they are isomorphic and should not be 

counted separately. 

 

4. The enduring error. 

Skipping many early enumerations, I will mention only a few instances from more re-

cent times where the enduring error has been committed in one form or another.   

Badoureau [5] follows the global approach, and justly criticizes a well-known work 

of Catalan [8] for various errors; however, he does not observe that Catalan's local approach 

is incomplete and is not equivalent to his own global one.   

Lines [34] devotes Chapter 12 to Archimedean polyhedra (as defined by the local cri-

terion), and "proves" that there are precisely thirteen of them; this is the source on which 

Cundy and Rollett [13] base the presentation in their well-known book.  In his deservedly 

popular book, Wenninger [54, p. 2] states "Archimedean or semi-regular solids ... have regu-
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lar polygons as faces and all vertices equal but admit a variety of such polygons in one solid.  

There are thirteen such solids ...".  Wenninger then gives as reference the book by Lines [34] 

just mentioned -- even though it is clear that Wenninger is really concerned with polyhedra 

that satisfy the global criterion.  Wenninger's book is quoted as the source in some "college 

geometry" texts (for example, Sibley [41, p. 55]).  Lines [34] is also mentioned as a source 

for the definition of "Archimedean or semiregular polyhedra" by Villarino [49]. 

 

Fejes Tóth [15, p.18] lists the thirteen Archimedean polyhedra as defined by the local 

criteria, quoting Brückner [6] as authority.  This refers to Sections 99 and 106, pp. 121 – 122 

and 132 – 133, of Brückner's book, where references to several earlier enumerations can be 

found.  It should be noted that while Brückner seems to have had uniform polyhedra in mind, 

his definitions are local, although different from ours.  He never mentions the necessity of 

investigating whether any of the combinatorial possibilities leads to more than a single poly-

hedron.  (It is strange that the second edition of [15] repeats the error of the first edition men-

tioned above, although the situation is correctly presented in [16].)  Williams [56] and Field 

[17] assert that local and global definitions yield the same polyhedra.  Gerretsen and Verden-

duin [18, p. 277] find only 13 Archimedean polyhedra, although their definitions (different 

from the one accepted here) in fact allow more than 14.  Peterson's statements in [39] con-

cerning regular and Archimedean polyhedra are confused and incorrect in several respects. 

 Maeder [36], [37] states: "Uniform polyhedra consist of regular faces and congruent 

vertices. Allowing for non-convex faces and vertex figures, there are 75 such polyhedra, as 

well as 2 infinite families of prisms and antiprisms." This is a typical "enduring error", since 

in the context of more general polyhedra considered by Maeder (to which we shall come in 

Section 5) the correct number for polyhedra satisfying the local criteria he uses is at least 77. 

Weisstein [51] in the MathWorld encyclopedia makes a different error, by stating: 

"The uniform polyhedra are polyhedra with identical polyhedron vertices."  This clearly does 

not imply that the faces are regular polygons – any rectangular box satisfies this definition. 

Even if "identical" is understood as "equivalent under symmetries of the polyhedron" (and 

not it the more natural and more general interpretation that the vertices have congruent 

neighborhoods), then it is precisely the definition of "isogonal polyhedra".  It is well known 

that isogonal polyhedra exist in a virtually inexhaustible variety of types (see [21]), and not 

just 75 as claimed.  There are many other errors on this site. 
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In the companion article [52] Weisstein writes:  "The 13 Archimedean solids are the 

convex polyhedra that have a similar arrangement of nonintersecting regular convex poly-

gons of two or more different types arranged in the same way about each vertex with all sides 

the same length."  This is precisely the "enduring error"; the final part "all sides the same 

length" is clearly superfluous. 

 A special mention should be made of several sources which are knowledgeable and 

authoritative in the matters under discussion, but contribute to the confusion by a different 

route, that is misleading and constitutes a logical error.  They define the polyhedra they con-

sider by the local criterion, state that their enumeration leads to the thirteen uniform ones, 

and then – later – observe that this is actually not so, but that the additional polyhedron can 

be excluded by some supplementary requirement.   

 Cromwell [12] describes the pseudorhombicuboctahedron, but does not include it 

among the Archimedean ones (which he defines by the local criterion, see [12, p. 79]).  

Cromwell's peculiar argument is that to deserve the name "Archimedean" polyhedra must 

possess properties of global symmetry, that is, be uniform.  To quote (from page 91 of [12]): 

... some writers have suggested that this polyhedron [the pseudorhombicuboctahedron] 

should be counted as a fourteenth Archimedean solid.  This, however, misses the point.  

The true Archimedean solids, like the Platonic solids, have an aesthetic quality which 

Miller's solid does not possess.  This attractiveness comes from their high degree of sym-

metry –– a property that is easily appreciated and understood on an intuitive level.  It is 

not the congruence of the solid angles that is the important characteristic but rather the fact 

that the solid angles are all indistinguishable from one another. 

 The present paper is not an appropriate place to debate the aesthetics of polyhedra.  

One important point to be made here is that the definition as accepted (but later disavowed) 

yields fourteen polyhedra; the decision to exclude one on other grounds should not be made 

after claiming that only thirteen polyhedra meet the original requirements.  It may also be 

noted that even if one were to accept Cromwell's restricted concept of Archimedean polyhe-

dra, the many authors who missed the pseudorhombicuboctahedron were not enumerating 

aesthetically appealing polyhedra. They were looking for polyhedra that satisfy the local 

condition of "congruence of solids angles" –– and made an indisputable error in that enu-

meration.  A moot point is the apparent claim that in the pseudorhombicuboctahedron the 

solid angles are not indistinguishable; how can they be distinguished seeing that they are 

congruent? 
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 The presentation in Hart [27] is similar to Cromwell's, but at even greater remove.  

Uniform polyhedra are defined by the local criterion, and the "enduring error" is evidenced 

by the statement that there are 75 of them (as we shall see in Section 5, in the context here 

the number is at least 77).  There is a link to [28], which deals with convex polyhedra and 

contains an explicit statement that there are just thirteen satisfying the local criteria.  The 

polyhedra are listed by symbols and names, with links to impressive illustrations.  However, 

after this, there is an "Exercise" stating: 

Just saying that the same regular polygons appear in the same sequence at each vertex is 

not a sufficient definition of these polyhedra.  The Archimedean solid (shown at right) in 

which three squares and a triangle meet at each vertex is the rhombicuboctahedron.  Look 

at it, and then imagine another, similar, convex solid with three squares and an equilateral 

triangle at each vertex. 

The answer gives a link to [29], where the pseudorhombicuboctahedron is shown and its his-

tory is discussed.  Following this link, Hart [28] states: 

A more precise definition of these Archimedean solids would be that [they] are convex 

polyhedra composed of regular polygons such that every vertex is equivalent.   

For this replacement of the local criterion by the global one Hart [29] gives the same argu-

ment as Cromwell, by saying: 

The pseudo-rhombicuboctahedron is not classified as a semi-regular polyhedron because 

the essence (and beauty) of the semi-regular polyhedra is not about local properties of 

each vertex, but the symmetry operations under which the entire object appear unchanged. 

Which is a correct argument for not including the pseudorhombicuboctahedron among uni-

form (or semi-regular) polyhedra, but does not excuse its exclusion from the "Archimedean" 

polyhedra as defined in [28] by the local criterion. 

 Similar in spirit is the discussion in Kappraff [31, Ch. 9].  The Archimedean polyhe-

dra (called there "semiregular") are defined by the local criterion, and it is stated that Ar-

chimedes discovered thirteen polyhedra of this kind.  The existence of a fourteenth 

"semiregular" polyhedron is mentioned later, but it is not counted as an Archimedean poly-

hedron because it fails to have the following property [31, p.328]: 

Archimedes' original 13 polyhedra can be inscribed in a regular tetrahedron so that four 

appropriate faces share the faces of a regular tetrahedron ... This distinguishes them from 

prisms and antiprisms ... and from ... the pseudorhombicuboctahedron ... 
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Although this property of Archimedean solids is interesting, there is no indication in the lit-

erature that Archimedes had any such property in mind –– just as there is no indication he 

considered symmetry groups as operating on the polyhedra in question. 

 The reason for the error of missing one of the Archimedean polyhedra by all the 

authors that were actually enumerating them (and not just quoting other writers) is due to an 

error in the logic of enumeration.  How could such an error arise, and be perpetuated by be-

ing repeated over and over again?  Only through the neglect of rules to which we all profess 

to adhere, but in practice often fail to follow. 

 To see this, let's recall the general procedure of determining all Archimedean polyhe-

dra.  One first draws up a list of cycles of faces around a vertex that are possible candidates 

for cycles of faces of Archimedean polyhedra.  The precise steps of compiling such lists dif-

fer from author to author; they rely either on the fact that the sum of angles of all faces inci-

dent to a vertex of a convex polyhedron is less than  2π = 360°, or on Euler theorem, or on 

some other considerations.  Using various arguments, the starting list is pared down to one 

that consists of precisely 13 different cycles (besides those that correspond to regular polyhe-

dra, to prisms or to antiprisms).  Showing that each of these thirteen cycles actually corre-

sponds to a convex polyhedron with regular faces then completes the enumeration. 

 However, as anybody who tries to enumerate any sort of objects knows, if you wish 

to get all the objects it is not enough to get a list of candidates and determine which among 

them are actually realizable as objects of the desired kind. You also have to find out if any 

candidate can be realized by more than one object.  Unfortunately, over the centuries, none of 

the geometers that dealt with Archimedean polyhedra bothered with this last task.  As shown 

in Figure 3, in one of the cases a cycle corresponds to two distinct polyhedra, raising the 

number of Archimedean polyhedra to 14. 

 What is the moral of this story?  Actually, there are several.  First, define precisely 

the objects you wish to consider, and stick consistently with the definition.  Second, when 

carrying out enumerations, be sure you don't miss any of the objects.  (Be also sure you do 

not count any twice!)  Third, and possibly most importantly, when quoting some results from 

the literature, apply common-sense precautions: Make sure that you understand the defini-

tions, verify the claims, and check the deductions.   

 In reality, if some "fact" is "well-known", one is often inclined to let one's guard 

down.  Put differently, when the result is a forgone conclusion, logical niceties get the short 

shrift in what amounts to "wishful seeing".  Unfortunately, that is how many errors are 
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propagated in the literature.  The "fact" that there are precisely thirteen Archimedean polyhe-

dra is a prime example of such a failure of our critical processes.  Another illustration of the 

same kind of error –– turning a blind eye to facts that do not support the evidence or contra-

dict it –– appears it the famous and often reprinted work of Weyl [55].  Since he knows that 

any net (map) on a sphere with only meshes (faces) of at most six sides cannot have only 

hexagonal meshes, in his desire to bolster this claim Weyl produces several examples (Fig-

ures 51, 52 and 55 of [55]) of such meshes.  After each, he points out the existence of penta-

gons.  However, his claims are logically invalid, since each of these nets contains heptagons.  

It is not relevant to the critique that, in fact, the presence of heptagons increases the number 

of pentagons that must be present. 

 

5. General polyhedra. 

 So far, we have discussed only convex polyhedra.  But nonconvex polyhedra that are 

regular, or Archimedean, or uniform have also been studied.  The definitions we mentioned 

above may be applied to such polyhedra as well.  However, it is quite clear that the enumera-

tion of any of these classes depends in a crucial way on the generality of the polyhedra con-

sidered.  I have long argued that the traditional restrictions are unreasonable, and have pre-

sented in [22] and [23] an attempt to provide a more general framework.  Nevertheless, for 

the present discussion it seems most appropriate to stick with the definition that has been 

used in previous works by writers on the topic.  To quote from [11]: 

A polyhedron is a finite set of [planar] polygons such that every side of each belongs to 

just one other, with the restriction that no subset has the same property.  The polygons 

and their sides are called faces and edges.  The faces are not restricted to be convex, and 

may surround their centres more than once (as, for example, the pentagram, or five-sided 

star polygon, which surrounds its center twice).  Similarly, the faces at a vertex of the 

polyhedron may surround the vertex more than once. 

A polyhedron is said to be uniform if its faces are regular while its vertices are all alike.  

By this we mean that one vertex can be transformed into any other by a symmetry opera-

tion. 

 Thus, "uniform" is taken in the "global" meaning, and the polyhedra considered have 

been properly –– if narrowly –– characterized.  With these definitions, 75 uniform polyhedra 

(other than prisms and antiprisms) are described in [11], with no claim that the enumeration 

is complete.  (These 75 include the five Platonic and 13 convex uniform polyhedra, as well as 
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the four Kepler–Poinsot regular nonconvex ones. The omission of the five Platonic polyhedra 

from Theorem 1 of [49] is in contradiction to the definitions given –– although this may be 

deemed an "innocent" error.)  All 75 are illustrated in  [11], [54], and [26] and in many web-

sites, such as [27], [37], [53].  The completeness of this enumeration was established inde-

pendently by [44], [42] and [47]. 

 This leaves open the question whether among the polyhedra admitted by the defini-

tion of polyhedron in [11] there are any Archimedean but nonuniform ones (that is polyhedra 

satisfying the local but not the global criteria) aside from the pseudorhombicuboctahedron.  

The affirmative answer follows from existence of at least one such polyhedron, which is il-

lustrated in Figure 2.  In part (a) is shown the quasirhombicuboctahedron (see page 132 of 

[54]) and in (b), (d) and (e) a certain partition of the set of its faces.  This polyhedron can be 

described by the symbols  (-3.4.4.4) or 

! 

3

2

4|2 .  At each vertex there are three squares and one 

triangle, as in the rhombicuboctahedron shown in Figure 1, but their disposition in space is 

different and leads to a nonconvex  and selfintersecting polyhedron.  However, in analogy to 

the situation in the convex case, one part of the polyhedron can be rotated through  π/4 = 45°  

(see part (f)) to yield the Archimedean but nonuniform polyhedron shown in (c).  This poly-

hedron has been first described by Hughes Jones [30]; the only other mention of it that I 

found is in the internet posting of Hart [29]. 

 

In the more general setting studied in [23] it is easy to find many additional examples of 

polyhedra that satisfy the local –– but not the global –– criteria.  However, one interesting 

question remains unsolved: 

 

Are there any additional Archimedean but not uniform polyhedra in the class of polyhedra 

admitted by the definition in [11] ? 

 

It may be conjectured that the answer is negative, but a proof of this is probably quite com-

plicated. 
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Rhombicuboctahedron

(3.4.4.4)

Pseudorhombicuboctahedron

(3.4.4.4)*

 
 
Figure 1. The Archimedean (and uniform) rhombicuboctahedron  (3.4.4.4),  and the Archi-

medean but nonuniform pseudorhombicuboctahedron.  The lowest part of the diagram shows 

the common bottom part of the two polyhedra, while the middle shown how they differ in the 

top part –– by a twist of  π/4 = 45°. 
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(a) (b) (c)

(e)(d) (f)  

Figure 2.  The Archimedean (and uniform) quasirhombicuboctahedron  (3.4.4.4) is shown in 

(a),  and the Archimedean but nonuniform pseudoquasirhombicuboctahedron is shown in (c).  

Part (b) shows the common octagrammatic mantle, and (e) the common part adjacent to the 

bottom octagram.  Parts (d) and (f) are the top parts of the two polyhedra; as is visible, they 

differ by a rotation of  π/4 = 45°. 

 


