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Abstract8

Multibeam sonars can be used to detect and classify marine fauna under9

conditions when optical sensors are ineffective. In this work, we compare the10

detection and classification capabilities of two multibeam sonars with different11

operating frequencies, the Tritech Gemini 720is (720 kHz) and the Teledyne BlueView12

M900-2250 (2250 kHz). The two sonars were deployed with overlapping swaths in a13

narrow tidal channel with peak currents of approximately 2 m/s where seals, schools14

of fish, and diving birds were intermittently present. In comparing data concurrently15

acquired by both sonars, we observe differences in the appearance of detected targets16

and detection capabilities. The detected target tracks are classified using a random17

forest model as either individual biological targets (flora and fauna, including fish,18

diving birds, seals, and plant matter), fish schools, or non-biological targets (including19

entrained air and sonar artifacts). Despite the observed differences in detection20

capabilities for the two sonars, automatic classification distinguishes between target21

classes with precision and recall above 0.7 and 0.9, respectively. These results suggest22

that while similar methodologies can be used for data analysis, some outcomes from23

environmental studies using multibeam sonars may be instrument-specific.24

Introduction25

Multibeam sonars were first applied to bathymetric mapping and hydrographic surveys26

because their relatively large fields-of-view allowed for more accurate and rapid data27

collection than single-beam sonars [Kostylev et al., 2001, Colbo et al., 2014]. In recent28

years, increases in the angular resolution, range, and data acquisition rates of multibeam29

sonars have fostered new applications [Colbo et al., 2014], including detection of fauna30

[Melvin, 2016, Parsons et al., 2017], inspection of bubble seeps [Urban et al., 2017], and31

classification of benthic habitats [Lundblad et al., 2006, Li et al., 2017, Lacharité et al.,32
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2018].33

Due to their operational range (tens of meters) and field-of-view (120+ degrees), multibeam34

sonars are appealing for observations of fauna at marine energy sites [Copping et al., 2016],35

and a wide range of sonars have been used for this application (see Table 1). However, data36

collection at marine energy sites poses several challenges. First, these are characteristically37

“high-energy” environments, and entrained air from waves or tidal currents or advected38

debris can create high-intensity returns in the field-of-view, creating challenges for target39

classification [Melvin and Cochrane, 2015]. Second, interactions between fauna and marine40

energy converters are likely to be rare, meaning that detection requires continuous41

monitoring over relatively long time windows (i.e., months) [Copping et al., 2016].42

However, data collection from multibeam sonars can quickly accrue large volumes of data43

that are challenging to store and process. As an example, the BlueView M900-2250 sonar44

produces over 6 GB of raw data per hour using the manufacturer-provided software, or 445

TB over a one-month period. This motivates the use of automatic target detection46

algorithms to restrict human data review to periods of interest [Cotter et al., 2017, Lieber47

et al., 2017, Williamson et al., 2017, Hastie et al., 2019]. Our recent work, Cotter and48

Polagye [2020a], used machine learning to automatically separate targets associated with49

flora and fauna from those resulting from sonar artifacts and entrained air in data collected50

using a BlueView M900-2250 multibeam sonar. In Hastie et al. [2019], a similar approach51

was used to automatically distinguish between seal and non-seal targets in data collected52

using a Tritech Gemini 720id sonar, and Hastie et al. note that the classification approach53

would benefit from a comparative evaluation between sonars.54

Previous developments in multibeam sonar target detection and classification have only55

tested algorithms on one sensor, and we are not aware of any side-by-side comparison of56

the capabilities of multiple multibeam sonars to observe marine fauna. Here, we compare57

the detection and classification capabilities of two concurrently deployed multibeam sonars58
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with overlapping fields-of-view. Our objective is to explore the potential consequences of59

multibeam sonar selection on environmental monitoring data for marine energy projects60

and to investigate whether target classification methods are transferable between sonars.61

To this end, we first compare the appearance of targets (e.g., marine mammals, diving62

birds, fish, and entrained air) concurrently detected in the two sonar data streams.63

Following this, we compare the performance of automatic classification of targets detected64

by the two sonars. Finally, we discuss the implications of these findings for the use of65

multibeam sonars for environmental monitoring at marine energy sites.66

Materials and procedures67

Sensors and data collection68

The two multibeam sonars used in this study (Teledyne BlueView M900-2250 and Gemini69

720is, hereafter referred to as BlueView and Gemini, respectively) are described in Table 2.70

The sonars were deployed using an Adaptable Monitoring Package (AMP), a cabled sensor71

platform that facilitates deployment of active acoustic, passive acoustic, and optical sensors72

[Polagye et al., 2020]. The Gemini was mounted with a 10-degree upward tilt to73

compensate for an internal 10-degree downward tilt of the transducer, such that the sonar74

swaths overlapped to the greatest extent possible. During this deployment, the AMP was75

also instrumented with a Nortek Signature 500 acoustic Doppler current profiler (ADCP) to76

provide contextual information about tidal currents and Allied Vision Manta G507b optical77

cameras for opportunistic target identification. The sonars and ADCP were synchronized78

to minimize active acoustic crosstalk. We deployed the AMP in the tidal channel at the79

entrance to Sequim Bay, WA, USA at a location with a water depth of approximately 7 m80

and peak tidal currents of approximately 2 m/s. Both sonars were approximately 1.1 m81
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above the seafloor, and the angle of the sonar swaths with the seafloor was varied82

intermittently during deployment with a tilt motor (15-20◦ above horizontal). Harbor seals83

(Phoca vitulina), schools of fish (including Pacific herring, Clupea pallasii), and diving birds84

(including pigeon guillemots, Cepphus columba) were observed at the test site. BlueView85

data were stored as 814 x 444 8-bit Cartesian images in PNG format. The BlueView can86

render larger images, but image size was limited by CPU resources on the acquisition87

computer. Gemini data were stored as 512 x 1229 8-bit polar images in PNG format, where88

each row of the image represented a beam and each column represented a range bin.89

We consider two data sets in this paper: the first consists of 8 hours of continuously90

acquired data collected between 11 AM and 3 PM on 29 March and 3 April, 2019 and the91

second consists of 265 one-minute segments of sonar data collected on 21-25 March and92

16-19 April 2019 when a target of interest was detected in the BlueView data using the93

real-time methods described in Cotter and Polagye [2020a]. The first data set provides an94

unbiased comparison of sonar imagery, while the second contains a sufficient number of95

targets to train a machine learning classification model.96

Target detection and tracking97

Except where otherwise mentioned, target detection and tracking methods follow those98

outlined in Cotter and Polagye [2020a], and all processing was implemented in MATLAB99

R2019b. The process is summarized here, and was the same for both sonars excepting100

sonar-specific thresholds. For target detection, first, the foreground of each image was101

identified by subtracting the median of the previous 20 seconds of data (background).102

While the background could be updated every ping, we limited the update rate to every 10103

seconds to reduce the computational burden for real-time processing. Second, a104

sonar-specific, empirically-selected intensity threshold was applied to the image foreground.105
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For the BlueView data, a range-varying threshold with the highest intensity closest to the106

transducer was used to offset higher observed backscatter intensities in this region, while a107

static threshold was used for the Gemini data. Third, a two-dimensional median filter was108

applied to each thresholded image and only targets appearing larger than 0.015 and 0.02109

m2, for the continuously acquired data and the one-minute sequences, respectively, were110

retained. More permissive thresholds were used for the continuously acquired data than for111

the one-minute sequences to increase the number of candidate targets available for112

comparison. In BlueView images, targets in the outermost 10 degrees were rejected for113

direct comparison with the Gemini swath, and targets in the first 0.75 meters of range were114

rejected due to frequent high-intensity noise and poor representation of targets in this115

region. Gemini data were transformed to Cartesian coordinates before target detection and116

targets were rejected in a 2.2 m2 region in the center of the image (3% of the total image)117

due to persistent acoustic or electrical crosstalk from another AMP sensor. Finally, a118

morphological dilation operation was used to aggregate targets that might be part of the119

same object (e.g., fish schools), a method adapted from Williamson et al. [2017]. This is120

the only portion of the target detection and tracking that was substantially modified from121

Cotter and Polagye [2020a]. In the BlueView data, targets within 1.5 m Cartesian distance122

were aggregated, and in the Gemini data, targets within a range of 1.5 m and an azimuthal123

distance of two degrees were aggregated.124

A Kalman filter [Maybeck, 1979] was then used to track targets through the sonar swath,125

with the tidal current at the time of detection taken as an initial velocity assumption. If126

tidal current data was not available within 15 minutes of the target detection (e.g.,127

interruption in ADCP data stream), an initial velocity of zero was assumed, since the128

Kalman filter performance was relatively insensitive to the choice of initial velocity. If any129

targets were detected within a specified distance of the predicted location in the subsequent130

frame, the closest target to the predicted location was associated with the track. This131

association distance was 0.75 m for the continuously acquired data and 0.5 m for the132
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one-minute sequences. The Kalman filter was then updated with the new target position133

and velocity. When no target was associated with a track for one second, the track was134

considered complete and, if consisting of more than five target detections, considered valid.135

Target track annotation136

All valid target tracks were annotated as either seals, diving birds, fish schools, “small137

targets,” or non-biological targets by a human reviewer. We used concurrent data from the138

AMP optical cameras to opportunistically verify classification when the target fell within139

their field of view and ambient lighting and water clarity allowed. However, such data was140

infrequently available, which is one of the primary motivations for use of multibeam sonars141

in this application. The “small targets” class included individual fish and drifting pieces of142

plant matter, because, absent concurrent optical data, a reviewer cannot confidently143

differentiate these targets. The other target classes have distinct attributes (e.g.,144

appearance, patterns of motion) that allow reliable classification in the absence of optical145

data. Non-biological targets included entrained air bubbles and sonar artifacts.146

All target tracks from both sonars in the continuously acquired data were manually147

annotated by the reviewer. In the one-minute sequences, only BlueView target tracks were148

initially annotated and tracks for which the reviewer was not able to confidently assign a149

target class were removed from the data set (seven total tracks). These tracks were150

compared to the set of Gemini target tracks and concurrent targets were assigned the same151

class. The non-concurrent Gemini target tracks were then manually annotated. As152

discussed in the next section, some Gemini target tracks were retained in the continuously153

acquired data despite an ambiguous appearance. The consequences of including this154

ambiguous training data in a classification model provides an instructive contrast in155

classification model accuracy and the relative utility of the two sonars.156
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Comparison of classification capabilities157

We separated the annotated target tracks into three classes to compare automatic158

classification capabilities: individual biological targets, fish schools, and non-biological159

targets. The individual biological target class included small targets, seals, and diving160

birds. While diving birds and seals produce distinct acoustic imagery, there were161

insufficient training data available to train a machine learning classification model for these162

subclasses (e.g., 5 seal tracks, 16 diving bird tracks). While species or genus-level163

classification is ideal, coarse classification is still valuable since this can automatically reject164

the large number of non-biological targets that were detected on both sonars, thereby165

reducing the required human review effort [Cotter and Polagye, 2020a].166

The training data set for automatic classification was limited to the target tracks from the167

one-minute sequences to isolate differences in classification capability from differences in168

detection capability. The total number of target tracks associated with each class for each169

sonar are listed in Table 3. As discussed in the section Comparison of detection capabilities,170

frequent vessel traffic during collection of the continuously acquired data resulted in a171

relatively large number of non-biological targets in the Gemini data (entrained air from172

boat wakes) that were not present in the BlueView data. These non-biological targets were173

difficult to differentiate from small targets (individual target class) drifting near the surface.174

To explore the effects that ambiguous training data can have on classification model175

performance, we also evaluated the performance of a Gemini target track classification176

model trained using the target tracks from both the continuous and one-minute data sets.177

We used the same methods as in Cotter and Polagye [2020a] to train a classification model178

for each sonar. Twenty-nine hand-engineered features (Cotter and Polagye [2020a],179

Appendix 1) described the shape, motion, and intensity of each target track, as well as180

environmental covariates at the time of detection (e.g., current speed). Each feature was181
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normalized such that the 10th and 90th percentiles were equal to zero and one, respectively,182

and a hill-climbing feature selection algorithm [Dobeck et al., 1997] was used to identify183

the subset of the 29 features that provided optimal classification performance for each184

sonar. A random forest algorithm (100 trees, MATLAB default values for other185

parameters) was used for classification, and the holdout method was used for model186

cross-validation: random selection of 70% of the available data to train the classification187

model and the remaining 30% used to validate performance. To address disparity in the188

number of samples from each class (e.g., 985 non-biological targets compared to 115 fish189

schools in the Gemini data), target tracks were randomly subsampled [Wallace et al., 2011]190

such that there was equal representation from each class in both the training and191

validation data subsets. The predicted classes of the validation data subset were used to192

evaluate model performance using two metrics:193

• the recall, or true positive rate, for each class, defined as the fraction of target tracks194

belonging to that class that were correctly classified; and195

• the precision for each class, defined as the fraction of target tracks predicted to196

belong to the class that were correctly classified.197

This cross-validation process was repeated 100 times to address any variability from the198

randomized subsampling.199

Assessment200

Comparison of detection capabilities201

Figure 1 shows concurrent imagery of each biological target class on both sonars. In202

general, concurrently detected targets have similar appearances, though the higher203
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resolution of the BlueView results in sharper, more defined edges, and, in the case of the204

seal, the shape of the animal is more clear.205

Other than the appearance of targets, two key differences were noted between the detection206

capabilities of the two sonars. First, air bubbles from surface waves, boat wakes, and diving207

fauna produced higher intensity returns in the Gemini data. An example of entrained air208

from a boat wake that was detected in the Gemini data but not in the BlueView data is209

shown in Figure 2A, and a similar example of entrained air from a diving bird is shown in210

Figure 2B. These differences may be explained by scattering and absorption of sound from211

bubbles. Specifically, the lower operating frequency of the Gemini may be closer to the212

acoustic resonance peaks of small, entrained bubbles [Vagle and Farmer, 1991]. Similarly,213

the higher frequency BlueView signal attenuates more rapidly than that of the Gemini and214

the excess attenuation due to bubbles may result in shadow zones beyond such clouds215

where targets are not detectable. Excess attenuation due to bubbles [Medwin and Clay,216

1998] is a factor for both systems, but may simply be a more important factor for the217

BlueView. This is consistent with a lack of detected targets in the BlueView data within218

regions that contained bubbles on the Gemini. Figure 2C shows a small target, possibly219

kelp based on its passive trajectory, detected at ∼9 m range at a time when bubbles were220

observed in the Gemini data and not visible in the BlueView data. Finally, as shown in221

Figure 2D, the entrained air from a boat wake at closer range to the AMP has a starkly222

difference appearance in each sonar. Specifically, there is a high intensity return close to223

the transducer in the BlueView image and more diffuse scattering farther from the224

transducer in the Gemini image. Unlike the prior example of air bubble masking, we225

believe this is a consequence of thresholds used in the sonars’ internal processing.226

Second, radial segments in the BlueView image masked the detection of some targets, as227

shown in Figure 2E. These segments are produced by overlapping sidelobes of the three228

individual transducers that make up the BlueView (personal communication, Tyler229
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Whitaker, Teledyne BlueView), and obscure approximately 11% of the BlueView image (13230

m2). The Kalman filter target tracking scheme frequently did not effectively track targets231

moving across the sonar swath when they passed through in these regions, resulting in232

multiple, shorter tracks for a single target. These regions masked two of the nine diving233

birds that were observed in the continuously acquired Gemini data.234

Comparison of classification capabilities235

Figure 3 shows the precision and recall for automatic classification of each target class for236

both sonars. In general, performance is comparable between the two sensors, though some237

minor differences are observed. Recall rates were above 0.9 and similar for both sonars238

(BlueView: 0.91, 0.94, and 0.93; Gemini: 0.91, 0.96, and 0.90 for non-biological targets, fish239

schools, and individual targets, respectively), with little variability observed due to240

subsampling (interquartile ranges below 0.06 in all cases). Individual targets were classified241

with higher precision in the BlueView data (0.91, compared to 0.77), likely due to their242

sharper edges and better-defined shapes. Precision was similar between the two sonars for243

fish schools and non-biological targets, though for these classes, the BlueView had larger244

interquartile ranges than were observed for the Gemini, indicating that there was more245

track-to-track variation in that sonar’s data.246

When all available target tracks (one-minute sequences and continuously acquired data)247

were used to train the Gemini classification model, recall decreased for individual targets248

and non-biological targets. Similarly, precision for individual targets decreased by over 0.2.249

This is likely due to the difficulty in differentiating between drifting targets near the250

surface (small targets) and entrained air (non-biological targets) by the human reviewer.251

Classification model performance for fish schools was unchanged because there was no252

ambiguity in their annotation by the human reviewers.253
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Discussion254

Both sonars that we evaluated had strengths and weaknesses, and, in some situations, it255

may be advantageous to concurrently deploy multibeam sonars with contrasting256

capabilities. For example, human annotation of target tracks, particularly for smaller257

targets, is easier using the higher-frequency BlueView data, but more targets are258

observable in the Gemini data because of less signal attenuation from entrained air and a259

lack of sidelobe interference.260

Our findings have several implications for environmental monitoring at marine energy sites261

that may be more broadly applicable. First, air bubbles created high-intensity targets in262

the lower-frequency Gemini data but were infrequently visible in the higher-frequency263

BlueView data. However, this did not mean that target detection was superior in the264

BlueView data since it appeared that bubbles effectively shadowed some biological targets265

at greater range. What role excess attenuation from bubbles and instrument internal266

thresholds play in these observations remains unclear and cannot be fully addressed with267

the available information. However, this should be considered when interpreting data268

collected from shallow or turbulent environments where entrained air is common. We note269

that boat wakes were a significant source of entrained air at our test site, but that this270

would not be a factor when data are collected at greater depth or at sites with less vessel271

traffic. This could, however, be a factor for vessel-based data collection in any water depth.272

Second, we found that the target tracking and classification approach we introduced in273

Cotter and Polagye [2020a] is translatable between sonars, suggesting that it could be274

readily adapted to other multibeam sonars (Table 1). Third, ease of human classification is275

not necessarily analogous to accuracy of machine learning classification. Specifically, a276

human reviewer could unambiguously assign a target class to more detected tracks in the277

BlueView data, but, once trained, the random forest algorithm was able to distinguish278

between fish schools, individual biological targets, and non-biological targets with similar279

11



performance for both sonars. The difference in ease of human classification has280

implications for the accuracy of training data, which is foundational to the classification281

model. This is demonstrated in the decrease in Gemini classification model performance282

when all target tracks, including those with ambiguous class annotations, were included in283

the training data set.284

Comments and recommendations285

We have qualitatively and quantitatively compared the target detection and classification286

capabilities of two multibeam sonars. We found that differences in operating frequency,287

transducer design, and internal processing result in different detection capabilities. Most288

notably, entrained air created high-intensity targets in the lower-frequency Tritech sonar,289

but may have shadowed targets in the higher-frequency BlueView sonar. While human290

classification of targets was more straightforward in the higher-frequency sonar data291

because of its higher resolution, we found that a random forest algorithm was able to292

classify targets in both sonar data streams with similar results. Differences in detection293

capabilities should be considered when selecting multibeam sonars for environmental294

monitoring, particularly at sites where entrained air is prevalent.295
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Figure 1: Concurrent detection of each biological target class on the BlueView and Gemini
sonars. Note that the spatial scale varies between classes. The same intensity scale is used
for both sonars.
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Figure 2: Concurrent sonar imagery from the BlueView and Gemini sonars. A) Surface
interference visible in the Gemini data, but not the BlueView data, B) concurrent detection
of a diving bird (bubbles entrained in the dive are apparent in the Gemini data, but not the
BlueView data), C) detection of a small target (possibly drifting kelp) on the Gemini that is
not visible on the BlueView due to attenuation, D) a boat wake visible at close range on the
BlueView and long range on the Gemini, and E) detection of a diving bird in the Gemini
data that is not visible in the BlueView data due to low signal-to-noise in the beam overlap
region. The persistent target at a range of approximately 5 m on the left-hand-side of all
images is an instrument platform from another project. The same intensity scale is used for
all BlueView and Gemini images, respectively, but different scales are used for each sonar
to highlight detected targets. Video sequences containing the images in each subplot can be
found in [Cotter and Polagye, 2020b].
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Figure 3: Precision and recall for for each class for both sonars using the target tracks
contained in the one-minute sequences as training data. The colored dashed lines indicate
the median value for 100 iterations of cross-validation, and the shaded regions indicate
the interquartile range. The black dashed line indicates classification performance for the
Gemini when all available target tracks are used for classification (one-minute sequences and
continuously acquired data). Note that the center of the plot is 0.5, not 0.
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Reference
Sonar
Manufacturer

Sonar Model)
Operating
Frequency
(kHz)

Melvin and Cochrane [2015] Kongsberg MS 2000 200
Williamson et al. [2017] Imagenex 837B Delta T 260
Lieber et al. [2014] Teledyne Reson Seabat 7128 200/400
Cotter et al. [2017] Kongsberg M3 500
Lieber et al. [2017] Kongsberg M3 500
Hastie et al. [2019] Tritech Gemini 7209id 720
Francisco and Sundberg [2019] Teledyne BlueView M900-130-S-MKS-VDSL 900
Viehman and Zydlewski [2014] Sound Metrics Didson 1800
Cotter et al. [2017] Teledyne BlueView BlueView M900-2250 2250

452

Table 1: An overview of multibeam sonars tested for environmental monitoring at marine
renewable energy sites from 2014-2019

453

454

Manufacturer Tritech Teledyne
Model Gemini 720is BlueView M900-2250
Operating Frequency (kHz) 720 2250
Operating Range (m) 10 10
Ping Rate (Hz) 5 5
Along-Swath Dimension (o) 120 130
Across-Swath Dimension (o) 20 20

455

Table 2: Overview of the two multibeam sonars tested. The operating range of the Gemini
can be extended beyond 10 m, though resolution decreases with range. The range was
limited to 10 m here to provide direct comparison with the BlueView. The BlueView has
two transducers that operate at 900 and 2250 kHz, but only the 2250 kHZ transducer was
used. Both sonars are capable of acquiring data at ping rates above 5 Hz, but ping rates
were limited by synchronization to minimize crosstalk between the sonars.
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460

461

Non-biological Individual Targets Fish Schools
BlueView (one-minute sequences) 985 261 169
Gemini (one-minute sequences) 299 252 115
Gemini (continuous) 880 3 95

Table 3: Number of target tracks in each class from one-minute sequences used to evaluate
classification model performance for each sonar. The tracks from the continuous Gemini
data set were added to the one-minute sequences to train the classification model associated
with black, dashed line in Figure 3. Due to ambiguity in the sonar data, the target tracks
in the continuous data annotated by the human reviewer as “non-biological” likely contains
a number of small, individual targets.
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