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Traffic safety has been and continues to be one of the most active research areas within 

transportation engineering as government agencies consistently name safety their top priority. 

While fundamental problems in the field (e.g., crash frequency modeling) often remain the same, 

advances in statistical methodologies, data availability, and computing continue to enable new 

solutions to these problems, as well as options for framing these problems in a new and different 

manner. Notably, real-time crash prediction modeling (RTCPM) has been an area gaining attention 

over recent years. RTCPM studies the relationship between crash risk and changes in traffic 

conditions (measured by different sensors) over short-duration time periods; it thus assumes the 

occurrence of a crash is related to the traffic conditions occurring in some time period before the 

crash takes place. While several studies have indicated correlation between traffic conditions and 

crashes, there is still much work to be done especially when it comes to critical evaluation of 

appropriate study design and application of traffic sensing data to derive appropriate and 
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representative features describing traffic conditions. This dissertation examines this question, 

along with others related to crash frequency modeling as part of a broader effort to investigate and 

gain a better understanding of the nature of the relationship between traffic operations and crashes, 

as well as better understanding of variation in crash frequency estimates.  

A key component of the RTCPM effort in this work is application of probe vehicle 

trajectory data derived from GPS trace points provided by mobile location services, consumer GPS 

devices, and commercial vehicle transponders. Such data have not been used in this application 

before (to the author’s knowledge) and provide finer spatial/temporal measurement resolution than 

obtainable through conventional traffic sensing infrastructure (e.g., loop detectors). Use of this 

trajectory data also provides novelty in that it (1) only describes a sample of the traffic stream, so 

thus, there are questions as to if it can be used to make population-level inference and (2) the 

dataset is substantially larger than that used in previous studies, necessitating an efficient data 

processing method. The RTCPM component of this study takes a comprehensive look at study 

design, feature extraction, modeling techniques, and interpretation of results.  

A final component of this dissertation focuses on how to better understand and account for 

variation in crash frequency modeling efforts. The bulk of existing studies produce point estimates 

for crash frequency, which only tell part of the story. At their core, crash frequency models produce 

estimates for a hierarchy of parameters, each of which can exhibit substantial variation. As such, 

this study derives confidence and prediction intervals for several types of mixed-Poisson models 

commonly used for crash frequency estimation in order to better capture and show the variation 

associated with crash estimates as one varies different factors. This study begins with the 

formulation of a mixed-Poisson model and discussion of several key mixture distributions used in 
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crash frequency modeling efforts. Then, the intervals are derived based on the variance of the 

safety (also known as the Poisson parameter), and a case study is presented for a real crash dataset 

to show how the method can be applied, as well to demonstrate the variation in estimates between 

and within models. 
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Chapter 1. BACKGROUND 

Traffic safety has been and continues to be one of the most active research areas within 

transportation engineering. This is not surprising as governments and the transportation agencies 

operating under them typically place a high priority on traffic safety. For example, the United 

States Department of Transportation (USDOT) lists safety as their top strategic goal in their most 

current strategic plan. Specifically, they are advocating for a “systemic safety approach” to 

decreasing fatalities and injuries associated with traffic crashes through numerous strategies 

including data-driven safety analyses, involving stakeholders in the safety-improvement process 

etc. (U.S. Department of Transportation 2018). Transportation agencies at various levels of 

government have almost universally adopted safety goals in alignment with those of USDOT. At 

the highest level, the Federal Highway Administration (FHWA) is embracing “a vision of zero 

deaths” on the country’s highways (FHWA 2019). Additionally, many states and cities have 

adopted similar goals. For example, the Washington State Department of Transportation 

(WSDOT) refers to their program as “Target Zero,” while the Seattle Department of 

Transportation named their program “Vision Zero” (SDOT 2019; WSDOT 2019). 

While agencies are advocating for traffic safety programs to accomplish the zero 

transportation-associated-deaths goal, the fact of the matter is that achieving such a goal seems 

quite challenging when considering the current state of traffic safety. Based on data collected 

across the country, the National Highway Traffic Safety Administration (NHTSA) reported a total 

of 34,247 fatal traffic crashes resulting in 37,133 deaths in the year of 2017. In the same year, 

approximately 6.45 million crashes were reported to police, resulting in approximately 2.75 

million injuries (NHTSA 2019). While these numbers (and the corresponding rates per 100 million 
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vehicle miles traveled (VMT) and per 100,000 population) represent a slight decrease over the 

2016 values, there is substantial room for safety improvement. In addition to the tremendous 

impact on human life, traffic crashes also affect mobility in terms of congestion and travel time 

reliability.  

In order to help improve the state of traffic safety, researchers across the world have been 

working for decades on a variety of efforts. One major research direction is and has consistently 

been the use of statistical models to better understand crashes. Typically, such models are 

developed based upon crash data, often collected by law enforcement officers at the crash site and 

recorded in a crash report. Crash reports typically contain data on the location of the crash, the 

time of day, the type of crash (e.g., rear-end, sideswipe, etc.), the type(s) and number(s) of the 

vehicle(s) involved, the state of the occupants (i.e., number in each vehicle, seatbelt usage, age, 

intoxication status, etc.), injury types sustained and associated severity (if any), and many other 

factors. Other data that can also be used in the statistical modeling of crashes includes roadway 

geometrics and attributes (e.g., number of lanes, speed limit, presence/magnitude of vertical 

curvature, presence/magnitude of horizontal curvature, etc.), weather data, lighting data, and 

operational data such as data on speed/volume/occupancy from traffic sensors (Mannering and 

Bhat 2014).  

The aforementioned models applying crash report data have typically sought to gain insight 

on factors associated with crash frequency and crash severity. Crash frequency models typically 

formulate a regression problem to model the dependent variable (crash frequency over some time 

period, often years, on a continuous scale for a given road segment) as a function of several 

covariates such as roadway geometric characteristics and traffic volumes (corresponding to the 

given segment) (Mannering and Bhat 2014). These models have applications in before/after 
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analyses (e.g., to examine effectiveness of a countermeasure) and safety estimation for facilities 

(Bonneson and Ivan 2013). Crash severity models, on the other hand, formulate a classification 

problem where the dependent variable (discrete level of crash severity for a given crash) is 

modeled as a function of several covariates such as vehicle type, weather condition, occupant 

attributes (e.g., age) (Savolainen et al. 2011). Such models have numerous applications including 

but not limited to evaluating effectiveness of countermeasures. Numerous advances in the 

modeling of crash frequency and crash severity have been made been over time with advances in 

statistical methodologies, data availability, and computing.  

In addition to the previously-described modeling efforts in traffic safety, another important 

research area is real-time crash prediction (Hossain et al. 2019; Roshandel et al. 2015). Real-time 

crash prediction models seek to predict the occurrence of a crash (alternately, to examine crash 

risk) as a function of several covariates and are typically framed as a binary classification problem 

(i.e., each data point used in model development either has or has not resulted in a crash). While 

the crash frequency and severity models typically apply a series of static factors in their 

formulation, real-time crash prediction often incorporate more dynamic, and microscopic features 

such as speed and occupancy as measured by loop detectors. Hossain et al. (2019) note that real-

time crash prediction relies on an underlying belief that changes in traffic flow parameters over 

some spatial and temporal window can be used to predict the occurrence of a crash. This belief 

also highlights another important view of the real-time crash prediction problem, that being that 

rather than simply just predict the occurrence of a crash, one can get a better understanding of 

traffic patterns and sets of traffic flow parameters that are correlated with crashes. Insight gained 

from framing the problem as a means to better understand traffic patterns correlated with crashes 

has implications in control (e.g., variable speed limits) (Pande 2005). 
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Real-time crash, or even simply incident, prediction models are an important component 

of incident management programs for traffic operators due to the impact that traffic incidents have 

on traffic operations. As part of a project for the Strategic Highway Research Program 2, List et 

al. (2014) cited traffic incidents as one of the seven main sources of unreliable travel times. 

Another key source of decreased travel time reliability is changes in demand, a factor directly 

impacted by incidents when drivers choose to take alternate routes to bypass incidents. In terms of 

delay, incidents are estimated to contribute to approximately 60% of the total-vehicle hours of 

delay (Ozbay and Kachroo 1999). Knoop et al. showed that freeway capacity could be reduced by 

approximately 50% across all lanes due to an incident, even those in the opposite direction of travel 

(a result they attributed to rubbernecking). Ultimately, the nature of the relationship between traffic 

crashes and traffic operations is complex and appears to be bi-directional (i.e., crashes have an 

impact on operations and operations have an impact on crashes). As was true for the general trend 

of safety modeling, advances on the methodological front, as well as increased data availability, 

and rapid growth in computing technologies present new means to address, model, and 

fundamentally understand these complicated issues. 

With regard to advances in data availability and computing, the increasing ubiquity of 

mobile phones and other mobile global positioning system (GPS) devices, traffic data are 

becoming available at a rate greater than ever before. Hererra et al. (2010) were among the first to 

make use of vehicle trajectory data derived from mobile phones in the “Mobile Century Field 

Experiment.” They gathered data from a sample of 100 vehicles traveling on the I-880 freeway 

near Union City, California for an 8-hour period of study. With the data, they visualized trajectories 

and time-space plots, as well as compared speed estimation from the mobile GPS data with speed 

estimates from loop data. This study was instrumental in showing how GPS data obtained from 
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mobile devices could be used to develop vehicle trajectories and use them in studies of traffic flow 

and operations. Since then, numerous studies have applied mobile GPS trajectory data, typically 

with a focus on traffic flow and operations (Herrera et al. 2010; Herring et al. 2010; Hofleitner et 

al. 2012b; a), but in some limited cases they have been applied to safety analysis as well (Stipancic 

et al. 2017, 2018a; b).  

1.1 PROBLEM STATEMENT 

This dissertation seeks to examine and better understand freeway crashes and their 

implications on traffic operations through a series of data-driven analyses. Further, this dissertation 

seeks to develop a means to better quantify uncertainty with estimates from safety models, notably 

mixed-Poisson models used in crash frequency applications. 

A central component of several of these analyses will be the use and application of mobile 

GPS data as a means to construct vehicle trajectories and extract detailed information (i.e., at high 

level of spatial and temporal resolution). Specifically, several GB of GPS trace point data for the 

Seattle-area freeway network have been obtained via a partnership with INRIX, Inc. for use in this 

study. Such data is often referred to as probe data as the vehicles collecting it are samples, or 

probes, within the traffic stream. The source of the original GPS data points can vary depending 

on the data provider, however, mobile location services (e.g., within cellular phones), consumer 

GPS devices, and commercial vehicle transponders (e.g., in fleet vehicles, taxis, etc.) are common 

sources (Henrickson et al. 2019). While these data provide tremendous opportunity to study the 

spatial and temporal dynamics of traffic in new ways, they are not without their limitations. 

Notably, these data have issues surrounding missingness (depending on factors such as sampling 

rate, penetration rate, etc.), sampling bias/self-selection, and overall quality/accuracy of data that 

must be accounted for and well understood in order to address biases their use may result in 
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(Henrickson 2018; Henrickson et al. 2019). How effective use of data from a sample of the vehicle 

population may be in real-time crash prediction is a challenging question that remains to be 

answered. 

As aforementioned, real-time crash prediction assumes a relationship between the 

probability of crash occurrence and the traffic conditions observed during some time period before 

the crash. While many studies have sought to investigate this issue and determine potentially 

influential factors impacting crash occurrence, there are still many issues that need to be addressed. 

First of all, to the best of the author’s knowledge, only two previous studies have applied vehicle 

trajectory data for real-time crash prediction (Hourdos 2005; Hourdos et al. 2006). In these studies, 

the data was derived from video, not mobile GPS devices and the sample sizes of crashes/number 

of sites examined was relatively small. Hence, there is a gap to fill by applying this novel data 

source to a larger-scale freeway network and seeing (1) what features (especially new ones that 

cannot be obtained via loop data) can be derived from it and (2) how they may possibly be related 

to crash occurrence. The vast majority of other studies on real-time crash prediction have derived 

features describing traffic operations from loop detector data. This data is inherently constrained 

in spatial (where the loops are located and how they are spaced) and temporal resolution (what the 

level of aggregation is), hence, use of trajectory data will allow increased resolution along both of 

these dimensions allowing potential to custom define spatial/temporal windows of analysis with a 

high level of detail. Another key challenge related to real-time crash prediction that deserves 

critical attention is the issue of investigating how the study design itself, notably the use of/choice 

in case-control analyses, may influence results (Roshandel et al. 2015). There are numerous 

parameters to define/tune in the study design for real-time crash prediction models including how 

to define normal and pre-crash traffic conditions, how to select the case-control ratio, level of 
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temporal aggregation of data, etc. Further, the issue of omitted variable bias, notably with respect 

to human-factors-related features also demands attention (Roshandel et al. 2015). With better 

understanding of these open issues, it is hoped that a stronger link can be established between 

traffic operations and safety. 

Omitted variable bias is also a key issue in crash frequency modeling, and it is sometimes 

mentioned as a consequence of unobserved heterogeneity (Mannering and Bhat 2014). Upon 

performing a quick scan of the literature on crash frequency modeling, one will notice that models 

typically incorporate a variety of relatively static (i.e., they are not changing on a small time scale, 

such as on the order of seconds) features such as lane width, number of lanes, speed limit, etc. 

Examples of crash frequency models with parameters describing traffic operations, with exception 

of annual average daily traffic (AADT) or some similar measure of exposure, are quite limited. 

One way to better understand the potential for variation in crash frequency estimates is to expand 

beyond the notion of only looking at a point estimate as most typical models provide. Instead, one 

can investigate confidence and prediction intervals for different parameters in the hierarchy of 

mixed-Poisson models (a family that includes the negative binomial model, a common choice in 

crash frequency analyses). In this study, the author explores the key results derived in Ash et al. 

(2019), which explore a variety of commonly used mixed-Poisson model formulations, as well as 

application of the newly derived intervals to real crash frequency data. 

1.2 RESEARCH OBJECTIVES 

The primary objective of this dissertation is to investigate the nature of the relationship 

between traffic operations and crashes. While this relationship has been investigated in previous 

work, there are still many gaps to fill on both the real-time crash prediction and crash frequency 

modeling fronts. With regard to the other direction of the relationship, i.e., the impact of crashes 
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on traffic operations, the problem is less well-studied. In addition to studying the aforementioned 

relationship to better understand freeway crashes, another objective of this dissertation is to 

investigate the value of vehicle trajectory data (collected from various GPS-enabled devices) in 

traffic safety analyses.  

The specific proposed objectives for this dissertation are as follows: 

• Develop a framework for real-time crash prediction based on detailed vehicle 

trajectory data and conventional and data-driven modeling strategies (a key 

component of this step will be feature design and extraction based on the large-scale 

GPS trajectory data); 

• Critically analyze study design used in previous real-time cash prediction efforts and 

see how parameters of the design may impact results; 

• Investigate the relationship between traffic operations and crash occurrence by 

developing a modeling framework that properly accounts for traffic dynamics;  

• Demonstrate that data derived from a sample of probe vehicles can be used to produce 

results consistent with previous RTCPM studies that rely on substantially larger 

samples from loop data; and 

• Study the issue of variance in crash frequency estimates and how to better describe it 

via derivation of confidence and prediction intervals for a variety of model types, and 

different hierarchical parameters in each model. 

1.3 OVERVIEW OF DOCUMENT 

This proposal document is arranged as follows. Chapter 2 presents the state-of-the art (i.e., 

background information and literature review) on the core topic areas of this dissertation to provide 
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context, help frame the problems, and highlight some of the gaps in the research. Chapter 3 

introduces the data resources available for this project and provides some summary information 

on each. A key part of this section is a brief summary of the vehicle trajectory data provided for 

use in this project. Chapter 4 presents initial discussion on the real-time crash prediction and issues 

related to the study design. Next, Chapter 5 presents results and interpretation for the real-time 

crash prediction models. Chapter 6 moves to focus on the crash frequency issue and how one can 

better understand the variance associated with crash prediction estimates through the use of derived 

confidence and prediction intervals. Finally, Chapter 7 draws conclusions from the study and 

suggests a few topics for future related work. An appendix also follows Chapter 7. In the appendix 

are summary data tables and model results for a selection of the real-time crash prediction models 

(as there are too many to include the main body) and derivations for the intervals in Chapter 6. 
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Chapter 2. STATE OF THE ART 

The following sections provide a brief review of the literature and key background 

information on the core topic areas of this dissertation. 

2.1 REAL-TIME CRASH DETECTION 

As aforementioned, the primary focus of real-time crash detection is to detect or, more 

correctly stated, predict the occurrence of a crash based on a set of covariates, and most typically 

including several variables describing traffic flow parameters. As the outcome of any evaluation 

point is discrete (i.e., either the occurrence or non-occurrence of a crash), the problem is inherently 

framed as a classification problem. One of the first works to address this problem used a Bayesian 

non-parametric model that combined crash data and loop data to demonstrated how speed variation 

has a direct correlation with crash likelihood (Oh et al. 2001; Stylianou et al. 2019). Recently, 

several review articles have been published describing the previous work in real-time crash 

prediction, its limitations, and future directions. The following will provide a summary of those 

publications, followed by an overview of several important individual studies on real-time crash 

prediction.  

Hossain et al. (2019) reviewed a series of existing studies on real-time crash prediction, 

provided a detailed analysis of study design, and put forth several requirements for future modeling 

efforts based on best-practices of the preceding work. They note how central to all such modeling 

efforts is a hypothesis or assumption that “the probability of a crash occurring on a specific road 

section within a very short time window can be predicted using the instantaneous traffic dynamics” 

(Hossain et al. 2019). Initial studies in the area focused simply on the prediction task, most often 

for freeways. More recent studies have expanded the scope and investigated issues including 
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application of models in other areas (i.e., transferability), model development for types of road 

segments beyond the typical basic freeway segment (such as weaving areas), and incorporating 

severity into the prediction (Hossain et al. 2019).  

A key contribution of Hossain et al. (2019) is their systematic definition of the typical 

components in the real-time crash prediction modeling process based on their review of more than 

70 sources. While not explicitly mentioned, the first step is essentially choosing the spatial and 

temporal boundaries for the study area. Then, the analyst must define the variables to be used in 

their model(s) and collect the data from their study site(s). Next, the criteria to classify “pre-crash 

and normal traffic conditions” are established and data points mapped to one of these two 

categories. After the data are prepared, the analyst must select a model type (typically a binary 

classification model), train the model, and validate/measure its performance (Hossain et al. 2019).  

The variable definition step is itself contingent upon what types of traffic flow data are 

available to the analyst, which itself depends on the available sensing infrastructure. Figure 2-1 

shows the distribution of sensor types used in the 77 studies reviewed by Hossain et al. (2019). It 

can be seen that the vast majority of the studies used traffic flow data from loop detectors, but 

other studies also applied automatic vehicle identification (AVI) systems, Bluetooth sensors, 

microwave vehicle detection systems (MVDS), probe vehicles, remote traffic microwave sensors 

(RTMS), or some combination of the aforementioned, sometimes in conjunction with video or 

radar detection. Besides types of detectors, detector spacing and relative location of detectors with 

respect to the crash location are also important considerations in the study design. In their review 

of 77 articles, Hossain et al. (2019) found that more than one fourth of the studies did not discuss 

detector spacing, and for those that did, that the average spacing for the most commonly-used 

detector type, i.e., loop detectors, was 0.8 kilometers. Further, there was variation in which 
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detectors were considered to pull data from. In addition to the nearest detector to the crash location, 

studies considered, detectors upstream of the crash, downstream of the crash, and in some cases 

both upstream and downstream (Hossain et al. 2019).  

 

Traffic conditions were classified as “pre-crash” or “normal” in many ways in different 

studies. One of the most common approaches was examining a 5-minute time period occurring 

between 5 and 10 minutes before the crash itself as the temporal data point describing pre-crash 

conditions (Hossain et al. 2019). Normal time periods were found to be defined based on a variety 

of criteria such as data measured no less than 30 minutes before the crash at the same detectors 

measuring the pre-crash condition, data measured 5 hours after the crash, as well as data chosen 

randomly in periods when no crash had occurred (Hossain et al. 2019). 

For the variable selection step, as noted previously, traffic flow variables were the most 

commonly used type of variables in the models. Depending on the type of sensor(s) used and 

configuration of the sensor, different variables were considered. As the majority of studies applied 

loop detector data, they considered variables including flow, occupancy, and speed; other studies 

3% 3%

65%

6%

1%

6%

16%

AVI Bluetooth Loop Detector MVDS Probe Vehicles RTMS Combination

Figure 2-1 Types of Detection used in Real-Time Crash Prediction Models (based on 

Hossain et al. (2019)) 
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applying different sensor types included variables such as density and queue lengths (Hossain et 

al. 2019). Further, transformations and comparisons of variables (e.g., coefficient of variation of 

speed, the difference in a metric between upstream and downstream locations with respect to the 

crash, etc.) were also considered. Non-traffic flow related variables considered in some studies 

included roadway geometrics (e.g., number of lanes, grade, shoulder width, etc.) and weather 

effects (Hossain et al. 2019). Finally, the modeling efforts reviewed by Hossain et al. (2019) were 

classified into two main categories: classical statistical and artificial intelligence (AI)/data-mining 

based. For statistical models, logit and probit models were most common; neural networks, 

directed graphical models, classification trees, and support vector machines (SVM), were among 

the choices of alternate models used. 

In addition to the review article by Hossain et al., (2019), a variety of other recent review 

articles have provided a great overview of advances in the field/state-of-the-practice. Stylianou et 

al. (2019) examined 48 studies on real-time crash prediction published between 2001-2018; all of 

the studies they consider apply data aggregated in intervals of between 20 seconds and 6 minutes. 

For each study, they summarized the key purpose, method(s) used, variables considered, the data 

source (including type of detection), as well as the main conclusions. They also note the main 

modeling approaches used in said studies, many of which overlap with those considered in Hossain 

et al. (2019), are either statistical or data-mining/AI-based. For the statistical approaches, they 

found that logistic regression of the regular or matched case control variety, as well as Bayesian 

models were the most commonly used. They also pointed out that one of the main tradeoffs 

between the statistical methods compared to the data-mining-based methods is that the former 

provides greater interpretability in terms of the impact of the independent variables often at the 

expense of limiting assumptions such as linear relations between dependent and independent 
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variables, while the latter trades interpretability for often-improved accuracy (Stylianou et al. 

2019). Types of detection found in the review by Stylianou et al. (2019) include loop detectors, 

MVDS, AVI, RTMS, radar, vehicle detection stations, video detectors, traffic message channel 

(TMC) data. 

While the preceding two review articles give a good overview of data types, variables used, 

types of models used, and key conclusions of previous real-time crash prediction studies, they are 

not especially critical of issues and limitations of said studies. Hossain et al. (2019) does, however, 

mention that sample size of crashes is a key limitation of existing studies. In their meta-analysis 

of real-time crash prediction work, Roshandel et al. (2015) review 13 studies published between 

2001 and 2012. Like the other review articles, they found a majority of the studies (11 out of 13) 

to have applied loop detector data, and noted that the studies they consider that did not apply loop 

data used vehicle trajectory data obtained from video. They also reported that the majority of the 

studies they considered applied a case-control study design (12 out of 13). In terms of limitations 

of the existing studies, Roshandel et al. (2015) highlight a number of issues that deserve attention 

in future work. For one they bring attention the fact that existing studies almost universally ignore 

human-factors related variables in the models, hence leading to omitted variable bias. Additionally, 

the real-time crash prediction models typically only consider first-order terms and fail to consider 

interactions. Another issue they point out is how, at the time of their review, many papers were 

developed from a single dataset, leading to further bias issues. As a final limitation of existing 

work, Roshandel et al. (2015) highlight issues associated with the use of case-control study 

designs, including the ratio of cases to controls itself. They discuss how the traffic crash prediction 

scenario is not completely analogous to the typical, medical usage of case-control studies where 

access to the full control set is usually impossible. They also call into question issues regarding 
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the impact of spatial and temporal resolution of data and data aggregation, in terms of suppression 

of signal in the data. Further, the lack of principled manner in which to choose a proper data 

resolution is discussed (Roshandel et al. 2015). 

Hourdos et al. (2006) used a logit model to estimate crash risk for a freeway segment with 

loop detectors, as well as video camera surveillance on I-94 in Minnesota. The segment was 450 

feet long, and the upstream and downstream segments under camera surveillance were both 300 

feet in length. Video surveillance made it possible to (1) extract vehicle trajectories from the study 

segment and (2) observe 110 crashes. The logit model considered variables such as average speed, 

coefficient of variation in speed, kinetic energy (density multiplied by mean speed), mean velocity 

gradient (ratio of acceleration noise to mean velocity) which was developed based upon trajectory 

data, traffic pressure (variance in speed multiplied by density),  an indicator for wet/dry pavement, 

a categorical variable describing position of the sun, an indicator for reduced/clear visibility. Upon 

testing their model, they determined it correctly identified 58 percent of crashes and had a false 

alarm rate of 6.8 percent. 

Hossain and Muromachi (2012) developed a Bayesian belief network (BBN) to predict 

real-time crash risk on expressways in Japan; the two segments were 11.9 km and 13.5 km in 

length, and had a total of 250 loop detectors between the two locations (leading to a detector 

spacing of approximately 250 m). A total of 722 crashes and a corresponding control set of 26,899 

periods with normal traffic were used in the model development, and it was determined that 

variables including downstream congestion index, difference in downstream and upstream 

occupancy, and difference in downstream and upstream speed had an impact on crash risk. The 

model ultimately correctly labeled two thirds of crashes in the testing phase with less than 20 

percent false positives. Ahmed and Abdel-Aty (2012) used toll tag reader, also known as AVI, 
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data in real-time crash prediction modeling efforts over 78 miles of expressway in Orlando. They 

built the model on 670 crashes matched to 2,680 controls (i.e., normal traffic periods). They 

showed that the coefficient of variation in speed for the segment in which the crash occurred on 

was positively correlated with crash risk and that their models could correctly classify between 

approximately 68-69 percent of crashes correctly. 

Yu and Abdel-Aty (2013a) used Bayesian logistic regression (with considerations for 

addressing unobserved heterogeneity, namely random parameters and random effects) and SVMs 

to predict real-time crash risk for a 15-mile segment of I-770 in Colorado. Variables considered in 

the logistic regression models include average speed at the nearest downstream detector to the 

crash, as well the standard deviation of occupancy and the standard deviation of volume also both 

calculated based on the nearest downstream detectors to the crash. Variables considered in the 

SVM model include average speed at the nearest downstream detector to the crash, average speed 

at a downstream RTMS station, as well as the average values of occupancy and volume at the 

nearest downstream RTMS to the crash. Ultimately, they concluded that the SVM with RBF kernel 

had the best goodness-of-fit amongst all models and that inclusion of random parameters or 

random effects within the logistic regression models had little impact on results. Xu et al. (2015) 

used a sequential logit model to predict crash risk for severity levels including: fatal/incapacitating 

injury, non-incapacitating/possible injury, and property damage only. They studied a 29-mile 

segment of I-880 in San Francisco with 119 loop detectors total over both directions of travel, 5 

weather stations, and 794 crashes occurring during 2008. They used data from loop detectors (both 

upstream and downstream of the crash) including upstream occupancy, standard deviation in speed 

both upstream and downstream, downstream average absolute difference in adjacent lane 

occupancy, average absolute difference in vehicle volumes between upstream and downstream 
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locations, average absolute difference in vehicle volumes between upstream and downstream 

locations, a peak hour indicator, and a rain/fog indicator, among other variables in their model. 

Their main conclusions were that non-injury crashes had a higher probability of occurring in 

congested periods with high standard deviation in speed and there are many lane-change 

maneuvers; severe injury crashes were most probable in uncongested time periods with high 

speeds and speed variations among lanes. 

Sun and Sun (2015) applied a dynamic Bayesian network (DBN) to six freeway segments 

in Shanghai, China ranging in length from 0.8-2.2 kilometers in length, over which 551 crashes 

occurred (April-December 2010); the crashes were matched to 2,755 control time periods. They 

used 5-minute loop data and considered traffic states defined based on speeds upstream and 

downstream of the crash site. They demonstrated that their DBN model with 9 traffic state 

combinations based on speed had the best performance compared to a static Bayesian network, a 

DBN with 4 states, and a DBN considering volume, speed, and occupancy variables, with an 

overall accuracy of 0.763 (i.e., proportion of correct predictions of crashes and non-crashes). Shi 

and Abdel-Aty (2015) developed real-time crash prediction models based on data from 275 MVDS 

detectors over 75-miles of freeway with segments along State Route (SR) 408, SR 417, and SR 

528 in Florida. Their study considered 243 rear-end crashes matched to 962 non-crash cases. They 

developed three types of Bayesian logit models: random effects, fixed effects, and random 

parameters, and each model considered the following variables: logarithm of volume at second 

nearest upstream detector station to crash, average speed at second nearest upstream detector 

station, and the congestion index (defined in Equation 2-1) measured at the nearest downstream 

detector station to the crash. Goodness-of-fit was similar between all models and key conclusions 
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were that increases in upstream volume and downstream CI, as well decreases in downstream 

speed were correlated with increased probability of rear-end crash occurrence. 

 ���������� 
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2.2 EXPOSURE AND CONSIDERATION OF TRAFFIC OPERATIONS IN CRASH 

FREQUENCY MODELING 

If one considers real-time crash prediction as micro-scale crash modeling, then, at the other 

end of the spectrum (i.e., macro-scale modeling) would be cash frequency modeling. Crash 

frequency models seek to estimate the number of crashes that will occur on a given road segment 

or at an intersection based on a variety of factors. Over the past few decades much of the focus on 

crash frequency modeling has involved applying different model formulations to enable better fit 

to the data, and account for issues such as over-dispersion, endogeneity, and unobserved 

heterogeneity among many others (Lord and Mannering 2010; Mannering and Bhat 2014). Models 

applied have evolved tremendously from the initial usage of the Poisson model to the negative 

binomial model to advanced formulations such as finite mixture models, Markov switching 

models, and machine-learning-/AI-based approaches such as neural networks (Lord and 

Mannering 2010). Despite the continual advances, there is much work to be done addressing a 

series of core issues including further consideration of the unobserved heterogeneity issue, as well 

as how to best handle and account for variation of variables over time periods used in crash 

modeling.  

Mannering and Bhat (2014) describe the unobserved heterogeneity issue in the context of 

crash frequency modeling as follows: “[when] unobserved factors … are correlated with observed 

factors, biased parameters will be estimated and incorrect inferences could be drawn.” The 
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unobserved variables generally refer to variables whose values are not or cannot be measured for 

any variety of reasons. As an example, consider a model for crash frequency whose only variables 

is AADT. For such a model, AADT is likely correlated with many other variables such as 

functional classification of the roadway, number of lanes, urban/rural location, etc. that may impact 

crash frequency as well. As such, the resultant model will (1) posit that the impact of AADT on 

crash frequency is constant for the entire population and (2) force AADT to be a proxy for the 

omitted variables, who will also almost certainly exhibit variation from the population perspective 

(Mannering and Bhat 2014). 

In regards to the issue of variation in variables within time periods, Stylianou et al. (2019) 

note that only considering the mean value of variables over some time period fails to address the 

importance of considering how variation of said variable in some time period may impact crash 

frequency. Lord and Mannering (2010) echo this sentiment and note that data availability may be 

partially to blame for this issue. They further describe how use of aggregated data (depending on 

the level, of course) can lead to unobserved heterogeneity.  

Crash frequency models typically apply a series of static, or at least, relatively static 

predictor variables such as AADT, number of lanes, lane width, shoulder width, etc. Often missing 

from these equations is variables describing traffic operations, which at least based on the 

aforementioned review of real-time crash prediction, appear to have some correlation with crash 

occurrence and in turn crash frequency. By omitting such variables from crash frequency models, 

the issue of unobserved heterogeneity arises. That said, how to best account for time-variation of 

these variables when considering modeling frameworks with “macro” time scales, typically on the 

order of a year or greater can be challenging. The following provides an overview of applications 

including traffic-flow/traffic-operations-related variables in frequency models. 
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While detailed traffic flow information is often not included in the predictor set for crash 

frequency models, one typical operational variable included is AADT, often considered to provide 

a measure of exposure. Exposure measures are included in most if not all crash frequency models; 

however, the specific metric used varies between studies. To further complicate things, the 

definition of exposure is not well agreed upon in the literature. Hauer (1982) states that “exposure 

is used to estimate risk” and that “a unit of exposure corresponds to a trial. The result of which is 

the occurrence or non-occurrence of [some type of] an accident.” Based on his definition, AADT 

would not qualify as a measure of exposure. Elvik et al. (2009), however, note that AADT is one 

of several so-called “summary measures of exposure” as it does not give a direct indication of 

trials in which a crash could occur. They further define elementary exposure measures as one of 

the following four possibilities: encounters (where vehicles traveling in different directions pass), 

arrivals at conflict points for conflicting movements, lane changes, and braking/stopping.  

In their spatial analysis of urban crashes Bao et al. (2017) considered exposure metrics 

including AADT, truck AADT, trip productions by traffic analysis zone (TAZ), and trip attractions 

by TAZ for their geographically weighted regression models. Stipancic et al. (2018b) used the 

number of GPS trips as an exposure metric in their study of crash frequency applying GPS data. 

Saunier and Sayed (2008) mentioned that typical exposure metrics include or are based upon 

numbers of peoples as well as quantities describing travel (i.e., in time or distance, such as road 

user-hours or road user-kilometers). They also discuss how the idea of exposure was raised a means 

to make comparing conditions between locations fair, and such comparisons were often based on 

a collision rate defined as the ratio of crashes to exposure. It is important to note however, that 

exposure and crashes may not actually be linearly related (Hauer 1995). Indeed, Qin et al. (2004) 

showed a non-linear relationship existed between crash count and AADT for two-lane highways, 
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when modeling crashes by the following crash types: single-vehicle, multi-vehicle same direction 

of travel, multi-vehicle opposite direction of travel, and multi-vehicle intersecting paths. 

Besides consideration of exposure metrics being derived from traffic flow/operational data, 

other studies have sought to include predictors derived from traffic flow data in their crash 

frequency modeling efforts. While these studies are limited in number, perhaps due to 

consideration of the within period variation issue aforementioned, there are still several of note. 

Recently, a series of studies by Stipancic et al. applied trajectory data derived from mobile phone 

GPS traces in order to examine relations between traffic operations and crashes (Stipancic et al. 

2017, 2018a; b). Stipancic et al. (2017) investigated GPS data collected over 21 days between 

April and May 2014 in Quebec City, Quebec. Their dataset had 21,939 trips completed by over 

4,000 total drivers, and data points in each trip were recorded with an average frequency of one to 

two seconds. Data were recorded for both road segments and intersections, and for each unit, 

functional classifications included were as follows: motorway, primary, secondary, tertiary, and 

residential. It is further important to note that data were collected through a mobile phone app 

which drivers had to choose to install. The crash data used in their study was collected between 

2000 and 2010, and it contained 9,248 crashes. For their initial study, they investigated correlation 

between crash frequency and the following surrogate safety measures (SSMs) defined based on 

the trajectory data for links and intersections: congestion index, average speed, and coefficient of 

variation of speed. Correlations found were not particularly strong, but it was observed that CI and 

crash frequency had positive correlation (ranging from 0.02 to 0.21, depending on functional 

classification of the analysis road unit). Additionally, CVS was found to have positive correlation 

with crash frequency (ranging from 0.10 to 0.38, depending on functional classification of the 

analysis road unit) (Stipancic et al. 2017). 
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Stipancic et al. (2018a) examined the correlation between hard breaking events (HBEs) 

and hard acceleration events (HAEs), two types of SSMs, derived from GPS data collected from 

more than 4,000 drivers and 21,939 trips taking place in Quebec City for 21 day period in 2014. 

Collision data was gathered between 2006-2010 and contained 9,238 total crashes. They observed 

that both HBEs and HAEs had positive correlation with crash frequency for links and intersections, 

and between the two types of analysis units, correlations were stronger at intersections. In the 

preceding two articles, univariate correlations were investigated between crash frequency and 

different SSMs. In Stipancic et al. (2018b), multivariate regression models were developed to 

examine the impact of SSMs on crash frequency. The GPS data used was collected over less than 

one month in 2014 in Quebec City and contained more than 4,000 drivers and close to 22,000 trips. 

Crash data were extracted between 2000-2010, a period in which 14,278 crashes occurred on the 

network. In their study, they developed latent Gaussian spatial negative binomial models for links 

and intersections based on features derived from the GPS trajectory data; such models were used 

as they can account for spatial correlations. Both models included the following predictors: an 

intercept, logarithm of number of trips on each spatial unit (taken as an exposure measure), number 

of HBEs per trip, CI, coefficient of variation of speed, average speed, logarithm of length (link-

based model only), and a categorical variable describing functional classification. For the link 

model, considering the variables derived from the trajectories only, coefficient of variation of 

speed was found to have positive correlation with crash frequency (and the variable was significant 

at the 95% confidence level). For the intersection-based model, logarithm of trips, HBEs per trip, 

and CI were positively correlated with crash frequency, while average speed showed negative 

correlation (all variables mentioned here were significant at the 95% confidence level). A crucial 
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issue with the three preceding studies is that the time periods over which the crash data and 

trajectory data were collected were not the same, nor even overlapping at all. 

2.3 CRASH FREQUENCY MODELING 

As aforementioned, crash frequency models are used by analysts to predict crash counts over time 

based on factors such as roadway geometry (e.g., lane width, shoulder width, etc.), traffic volumes, 

etc. (Mannering and Bhat 2014). As both statistical methodologies and computing power have 

advanced over time, many different types of models can be considered candidates for crash 

frequency analysis (Lord and Mannering 2010). For early crash frequency modeling applications, 

simple count data models such as Poisson regression were commonly applied (Gustavsson 1969; 

Gustavsson and Svensson 1976; Jovanis and Chang 1986). While such models are simple, 

intuitive, and relatively easy to apply/estimate, one of their biggest drawbacks is the inability to 

handle overdispersion in crash data, a phenomenon which is relatively common (Lord and 

Mannering 2010). Overdispersion is defined to occur when the variance of the crash counts is 

observed to be greater than the mean (Lord and Mannering 2010). When one assumes that crash 

data result from Poisson trials (i.e., Bernoulli trials with a non-constant crash probability for each 

trial), as outlined by Lord et al. (2005), overdispersion can indeed occur. Overdispersed crash 

datasets often have numerous datapoints (i.e., roadway entities such as segments) with zero 

observed crashes and/or a high number of crashes and thus are often not able to be accommodated 

by assuming a simple underlying Poisson distribution (Lord et al. 2005). Just as overdispersion is 

possible, underdispersion exists in crash datasets and occurs when the variance is less than the 

mean in observed crash counts. Study of underdispersed crash data is not a focus of this 

dissertation, however, it has been investigated in other studies. For a sample of such studies, 
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interested readers are directed to Lord et al. (2010a) and Giuffrè et al. (2011) who applied the 

Conway-Maxwell Poisson model to study underdispersed crash data.  

 As overdispersed crash data is quite common, many models/methodologies have been 

developed to properly account for said phenomenon. To date, it seems the most popular/most 

commonly applied is the negative binomial (NB) model, a model that many researchers and 

analysts have used in applications with overdispersed crash data (Connors et al. 2013; El-

Basyouny and Sayed 2006; Hauer et al. 1988; Lord and Mannering 2010; Maycock and Hall 1984; 

Park et al. 2012; Srinivasan et al. 2010; Ye et al. 2013). In the NB model, a crucial underlying 

assumption requires that the mean crash frequency (i.e., the Poisson parameter) for any roadway 

entity (i.e., site) �, $%, follows a gamma distribution (Hauer 1992). As such, the marginal mean and 

variance for a given crash count, &%, can be formulated in a manner in where the variance can be 

greater than the mean (Hauer 1992; Lawless 1987; Lord and Mannering 2010). Another name for 

the NB model is the Poisson-Gamma model due to the fact that the crash count for a given site �, 
&%, when conditioned on the Poisson parameter $% (again, following the gamma distribution), itself 

follows a Poisson distribution. With this in mind, it is important to note that one does not have to 

assume that $% must always be gamma distributed (Hauer 1997; Lord et al. 2005). Indeed, many 

studies have investigated the use of several other distributions for the $ parameter, and these in 

turn lead to different types of mixed-Poisson regression models (i.e., any models where the crash 

count when conditioned on the Poisson parameter, whose distribution is referred to as the mixing 

or mixture distribution, follows a Poisson distribution) (Cameron and Trivedi 2013; Lawless 

1987). One example of an additional choice for the mixture distribution is the generalized inverse 

Gaussian (GIG) distribution, and use of this mixture distribution leads to the Sichel (SI) model 

which can be used to model overdispersed count data (Rigby et al. 2008). Zou et al. (2015) 
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demonstrated an application of a Sichel model in the analysis of a crash dataset from Texas with a 

high degree of overdispersion and then compared those results to the results from a traditional NB 

model estimated on the same dataset. They observed that the SI model led to lower values for both 

the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) (i.e., better 

statistical goodness-of-fit) than those for the NB model. An additional candidate mixture 

distribution is the inverse Gaussian (IG) distribution, which when used in a mixed-Poisson model 

leads to the Poisson-Inverse-Gaussian (PIG) model (Dean et al. 1989). Zha et al. (2016) observed 

that when applied to the Texas crash dataset mentioned previously, as well as a crash dataset 

collected in Washington State, the PIG regression models yielded a  better fit (as measured by AIC 

and BIC) than the standard NB models.  

Still, there are additional candidate mixture distributions that include, but are not limited 

to, the Weibull and lognormal distributions, which yield the Poisson-Weibull (PW) and Poisson-

Lognormal (PLN) models, when applied respectively. Both the PW and PLN models, like their 

previously-mentioned counterparts, are able to be used in modeling applications with 

overdispersed data. Cheng et al. (2013) investigated an application of the PW model, while many 

others have investigated applications of the PLN model, including Lord and Miranda-Moreno 

(2008), Aguero-Valverde and Jovanis (2008), Lan and Persaud (2012), and Zhao et al. (2018), 

among others. 

 In additional to being able to accommodate overdispersion, another shared characteristic 

between each of the aforementioned mixed-Poisson regression models is that by default, they yield 

only a sole point estimate for expected crash frequency on a given roadway entity (i.e., segment, 

intersection, etc.). While these estimates still have their uses in different tasks such as prediction 

and before/after studies,  it is not difficult to imagine cases where having a confidence interval for 
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a particular crash estimate is better (Casella and Berger 2001). Previous studies have noted how 

confidence intervals have important applications in safety decision-making since they can as they 

can help convey the uncertainty associated with a particular point estimate (Lord 2008; Lord et al. 

2010b). In the traffic safety domain, Wood (2005) was among the first to present formulae for 

prediction intervals (PIs) for the predicted response (i.e., crash frequency for a new site, &%) and 

the gamma mean ('%), in addition to confidence intervals (CIs) for the true mean crash frequency 

(additionally named the mean response or Poisson mean, (%), for the commonly-used NB (Poisson-

gamma) regression model. Here, one must be clear on the difference between the Poisson 

parameter and the Poisson mean. When estimating a typical Poisson regression, these two values 

are indeed the same. That said, in the context of a mixed-Poisson model, the error term in the 

formulation of the Poisson parameter negates the former equality of these two terms. This issue is 

described further in this dissertation as well as in Ash et al. (2019). Wood (2005) concluded that 

the use of PIs and CIs may be quite useful for crash prediction applications at different sites with 

similar features to those found at the sites considered in the initial model development. Lord (2008) 

presented a method to estimate the predicted confidence intervals for NB regression models when 

multiplied by crash modification factors (CMFs). Geedipally and Lord (2008) examined PIs for 

the predicted response (&) and the gamma mean ('), as well as CIs for the mean response/Poisson 

mean ((), that were developed from NB models with dispersion parameters that were both fixed 

and allowed to vary, in addition to those for univariate and bivariate NB models (Geedipally and 

Lord 2010). Lord et al. (2010b) calculated PIs for crash counts (&) estimated from a multivariate 

NB model in comparison to those estimated based upon a “baseline model” (i.e., flow-only crash 

prediction model) with crash-modification factors (CMFs) applied to it. Connors et al. (2013) 

estimated and plotted the CIs and PIs for predicted values of (% and ' for a range of flow and 
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segment length values in NB and PLN model applications. In their study, however, it did not 

appear that any explicit formulae for the CIs and PIs for the PLN model were provided.  
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Chapter 3. DATA RESOURCES 

The main data components for this study can be classified into one of the following three 

categories: (1) operational data, safety/crash data, and (3) roadway inventory and descriptive data. 

The operational data primarily consists of vehicle trajectory data collected from probe vehicles. 

The safety data consists of data obtained from crash reports about the occurrence of specific 

crashes, including such features as time of type of crash, crash severity, time of crash occurrence, 

etc. Both disaggregate and aggregate forms of this data are used in different applications which 

will be detailed later. The final category of data used in this study consists of roadway inventory 

data (e.g., roadway geometrics) as well as other descriptive data, such as information on the 

weather. The following sections provide a detailed overview of the data used in this study. 

3.1 OPERATIONAL DATA 

3.1.1 Overview of Vehicle Trajectory Data 

In the simplest sense, a vehicle trajectory is defined as data describing the motion of an object 

in a time-space surface (Daganzo 1997). In transportation applications, vehicle trajectories are 

often mapped to a two-dimensional plane, space versus time, in which case their location is given 

with respect to a linear reference. That said, motion of vehicles can be described in higher-

dimensional terms as well; hence the use of a time-space surface. Often, vehicle locations are 

collected over time as pairs of longitude (abscissa) and latitude (ordinate) given in decimal degrees. 

Depending on the data resolution, trajectory data may be preferrable to data collected from loop 

detectors as it describes the movement of individual vehicles and can be aggregated to provide 

summary statistics over time, which is the primary form in which loop data is provided (i.e., loop 

data is most often aggregated over some time window).  
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Vehicle trajectory data provided for this project were supplied by INRIX, Inc., a traffic data 

company operating out of Kirkland, WA. At its core, the data are a series of GPS points in the 

form of (longitude, latitude), with supporting attributes, provided within a bounding box requested 

by the user. Sources of the data include cellphone providers, fleet vehicles, dedicated in-vehicle 

GPS navigation systems, etc. For this project, data were requested for the following geographical 

bounding box in the form of (xMin, yMin, xMax, yMax): (-122.34116, 47.44634, -121.970028, 

47.840953), as shown in Figure 3-1. For this project’s data request, INRIX provided data within 

these geographic bounds for the entire month of May 2017. The data provided come in two 

separate types of csv files, the “trips” files and the “waypoints” files; here each file represented 

one week (seven days) of data. A trips file contains summary information on any trip that traveled 

within (i.e., had at least one GPS point recorded in) the bounding box during the specified time 

period. Each row in the file represents one such trip and has attributes including, but not limited to 

the following, as shown in Table 3-1 Data Elements in Trips File. The waypoints file contains the 

individual GPS points that make up a given trip; the attributes of the waypoints file are show in 

Table 3-2. Both Trip ID and Device ID can be linked between the two files. In summary, the trips 

file provides broad overview/aggregate data on a given trip traveling into/through the bounding 

box, while the waypoints file describes the individual GPS trace points that make up a trip. 

A final point of note about the waypoints data used in this study is that it is a probe vehicle 

dataset representing just a sample of the broader traffic population. That is to say, unlike loop 

detectors, all vehicles in the traffic stream at a given time-space location are not accounted for, 

rather only a sample of them report their location data over time via on-board GPS devices. The 

penetration rate (i.e., sample percentage) for probe data is often in the range of 1.5 to 5.5 percent 
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of the total traffic population. Of course this factor brings with it its own set of challenges and 

considerations, and these will be addressed later. 

 
Figure 3-1 Bounding Box for INRIX Data Request (Seattle-Area Freeways), Image via 

Mapbox/© OpenStreetMap contributors 
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Table 3-1 Data Elements in Trips Files 

Variable Name Description [units] 

Trip ID Unique identifier for the given trip 

Device ID Unique ID for the specific device recording the GPS data 

Provider ID Unique ID for the provider of the GPS data for the given trip 

Mode Mode of travel 

Start date Start date and time of trip [down to 1/100 sec] 

End date End date time of trip [down to 1/100 sec] 

Start location Location of trip start (lat, lon) 

End location Location of trip end (lat, lon) 

Provider type GPS provider type 

Vehicle weight class Weight group classification 

Trip mean speed Mean speed [kph] 

Trip max speed Max speed [kph] 

Trip distance Distance traveled [m] 
 

Table 3-2 Data Elements in Waypoints Files 

Variable Name Description [units] 

Trip ID Unique identifier for the given trip 

Waypoint sequence Integer describing temporal order of GPS points 

Capture date Date and time 

Location Location of GPS point (lat, lon) 

Device ID Unique ID for the specific device recording the GPS data 

Raw speed Speed at moment of data capture [kph] 
 

An initial examination of the INRIX data was conducted to summarize some key aspects 

of the data (note the following summary measures were computed before map matching and 

filtering only to the Seattle area freeway network. i.e., metrics shown are for all trips occurring in 

May 2017 that travel into, through, and/or out of the bounding box shown in Figure 3-1). The 

freeway network of interest in this area includes I-5 and I-405 North and South running between 

Lynwood and Tukwila, I-90 East and West from its western terminus to an area near Issaquah, and 

SR-520 East and West from its western terminus to its eastern terminus.  In total, the dataset for 

May 2017 had 1,902,603 individual trips, comprised of 92,545,591 waypoints (i.e., individual GPS 
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points); see Table 3-3. The majority of the data came from consumer vehicles, and the distribution 

of trips by provider type is shown in Figure 3-2. In terms of vehicle type, most of the trips were 

from light duty vehicles (weight less than 14,000 pounds); the distribution of trips by vehicle 

weight class is shown in Figure 3-3. While the distribution of waypoint frequency (i.e., GPS point 

sampling rate) varies tremendously, this section begins by examining a summary of trips. In total, 

there are 451,000 trips (each composed of numerous GPS waypoints) with waypoint sampling 

rates less than or equal to 30 seconds. A bar chart showing the distribution of trips by sampling 

rate is shown in Figure 3-4. 

Table 3-3 Initial Data Counts for Data Request (May 2017, Seattle Area) 

Field Count 

Number of Trips 1,902,603 

Number of Waypoints 
(GPS points) 

92,451,591 

 

 
Figure 3-2 Distribution of Trips by Provider Type 
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Figure 3-3 Distribution of Trips by Vehicle Weight Class 

 
Figure 3-4 Distribution of Trip Waypoint Sampling Frequency 

 
The data provided by INRIX solely consisted of raw GPS points; that is to say, none of the 

data were map-matched or linked to/associated with any given part of a roadway network. In order 

to analyze the data in the context of the Seattle freeway network, the data points had to be mapped 

to the roadway network, and later filtered down to only the subject roadways of this study. At a 

high level, this process was achieved as follows. First, all data from the trips and waypoints files 

were loaded into respective “trips” and “waypoints” tables in a PostgreSQL database with the 
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PostGIS extension to enable use of spatial data types and analyses. These databases were created 

solely for this project. Then, the GPS data from the waypoints file were map matched to the 

Washington roadway network using a base map from OpenStreetMap (OSM). The map matching 

was accomplished through use of the Open Street Routing Machine (OSRM), a data routing engine 

provided and developed by OpenStreetMap (OSM).  OSRM applies a map-matching algorithm 

developed by Newson and Krum (2009) that uses a hidden Markov model (HMM) to link GPS 

points to the most probable roadway link on which they were recorded. For each measured GPS 

point with associated time stamp, the algorithm examines possible road segments in the OSM 

network the point may fall on and it also considers transitions to determine the most probable path. 

Finally, the GPS points were associated with a linear referencing system (i.e., one-dimensional 

space), so mileposts could be calculated. The aforementioned process is described in detail in the 

following.  

3.1.2 Trajectory Data Processing (Map Matching and Conflation) 

As previously described, the trajectory data processing process has three main steps 

described in the following. 

3.1.2.1 Map Matching 

The first step of the trajectory process is known as map matching, and here, it involves 

matching the GPS (lon, lat) points provided by INRIX to the OSM roadway network. First, the 

INRIX trip and waypoint data are loaded into relational database tables in the PostGRESQL 

database management system (referred to henceforth as PostGRES). These tables can then be 

linked via a foreign key defined on the Trip ID attribute and further queried to get things like 

summary statistics, as well as spatial statistics, the latter of which can be calculated in a more 
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efficient way by establishing a spatial index on the longitude and latitude of the GPS data points. 

Once the data are loaded into their respective tables, the longitude and latitude data in the 

Waypoints table are converted from their decimal (i.e., type double) representation in two different 

columns to a PostGIS-specific data type, known as a Geometry. The data are then converted to a 

representation on the World Geodetic System 84 (WGS 84) datum surface (spatial reference 

identifier (SRID) 4326), allowing them to be easily worked with and visualized in OSM, which 

also uses the WGS 84 coordinate system/reference. As an example of a series of waypoints records 

(i.e., GPS points from probe vehicles) being visualized in OSM with respect to the WGS 84 datum, 

see Figure 3-5. 

Figure 3-5 INRIX Waypoints Visualized in WGS 84 Coordinate System (credit: © 

OpenStreetMap contributors) 

 The next step of the map matching process involves using the Open Street Routing 

Machine to match the waypoints to the OSM roadway network. The OSM network is comprised 

of three primary elements including nodes, ways, and relations. These elements follow a hierarchy 

in that a series of nodes (i.e., individual GPS points) makes up a way, and a series of ways (i.e., 

lines) makes up a relation. OSRM works by ingesting a series of GPS coordinates and outputting 

a JSON file showing their relation to the OSM roadway network. This file shows elements 
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including the degree of confidence of the match a list of one-to-one matches of the input GPS 

points to points along the OSM network (assuming a match is possible; call these match points), 

the nodes in the OSM network that bound each match point, and a representation of the trip (i.e., 

list of input points) in terms of legs defined by the OSM nodes that bound a match between two 

input GPS points. When every input point is matched to the OSM network, the results will show 

n-1 legs for n input points, and each leg will be defined by at least two OSM nodes that bound the 

path between the two matched input points. To clarify this step, raw GPS points (i.e., the INRIX 

waypoints) are input into OSRM which matches them (as possible) to the OSM network and 

provides output associating the input points with a nodal representation along the OSM network. 

A Python script was written to automate this process and run it in parallel by pulling data from the 

Waypoints table in PostGRES for each Trip ID, passing the waypoints and corresponding 

timestamps to OSRM, and storing the output, namely the coordinates of the match point for every 

input point, as well as the OSM nodes that bound each match point. These data were stored in a 

separate table in PostGRES. At his point, each input waypoint is now matched to a GPS (lon, lat) 

pair corresponding to the OSM network and the IDs of the OSM nodes that bound it are also 

associated with each point. 

3.1.2.2 Map Conflation  

The second key step of the trajectory data processing is map conflation, which means finding 

a means to link the WSDOT roadway network with the OSM network so that one can determine 

the names of the roadways (and later the mileposts) the points fall on. Consider the following two 

map representations, each of which can be represented in a PostGIS table or series of tables. In the 

previous step, the representation of the OSM map in terms of nodes (points), ways (sets of points, 

i.e., links), and relations (sets of the aforementioned) was described. For the state of Washington, 
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one can generate a tabular representation of the OSM nodes, ways, and relations that comprise the 

state’s roadway network. The nodes table is comprised of individual points (nodes) designated by 

a unique ID as well as their longitude and latitude in decimal degrees. Similarly, the ways table is 

comprised of a set of ways (i.e., links made up of one or more nodes) and each entry gives a unique 

identifier for the way (Way ID) as well as an array of nodes that comprise the way. At the highest 

level of the hierarchy is the relations table. In this table, each relation (designated by a unique ID) 

is listed along with an array of ways that comprise it. As an example, I-5 North in Washington is 

designated as a relation in OSM and it is composed of several ways, each of which are composed 

of several nodes. In some cases, the relations are bidirectional, meaning there is not a separate 

relation for the increasing and decreasing milepost directions along the roadway. Such 

bidirectional relations are often used for shorter length roadways, such as I-405 and SR-520 for 

this project. Ultimately, however, even a relation is bidirectional, each direction of travel is 

comprised of several ways, so one is still easily able to distinguish travel direction. As an example 

of the hierarchy, consider the relation describing I-405, an example way that is a member of said 

relation, and one node that is a member of said way in Figure 3-6, Figure 3-7, and Figure 3-8, 

respectively. An extremely important point of note here is that each direction of travel for a given 

roadway is represented as one unit with no lateral (i.e., lane) separation. For example, I-405 has a 

four-lane cross section in several locations, but the OSM relation/way/nodal representation does 

not distinguish one lane of travel from another. 
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Figure 3-6 OSM Relation 1071195 (I-405, both directions) (credit: © OpenStreetMap 

contributors) 

 

Figure 3-7 OSM Way 1071195 (along I-405 SB) (credit: © OpenStreetMap contributors) 



   
 

 
39

 

Figure 3-8 OSM Node 2477186164 (along Way 1071195, I-405 SB) (credit: © 

OpenStreetMap contributors) 

 The other part of the conflation task, from a cartographic perspective, is a representation 

of the WSDOT roadway network. Like most public transportation agencies, WSDOT maintains 

GIS files of the roadway network they, and other entities, manage. For this project, the 24k 

representation (i.e., a scale of 1:24,000) of the state roadway network is used; note that the final 

analysis is only concerned with roadways functionally classified as freeways in the Seattle area. A 

representation of the Washington public roadway network can be seen in Figure 3-9, note the area 

of the map most densely populated with roadways is not surprisingly Seattle. 
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Figure 3-9 WSDOT Public Highway Network as Visualized in Q-GIS 

 While one may often think of geographic data like the aforementioned 24k map in terms 

of visual representation, i.e., as shapefiles, they can also be represented in a tabular form. Use of 

such representation was critical for this project, and a PostGIS table of the 24k map was developed. 

Each row (i.e., element) of the table represented a unidirectional link with the following attributes 

(as well as some additional attributes deemed unnecessary to show here) as shown in Table 3-4, 

and an image of a representative link as viewed in the OSM interface is shown in Figure 3-10 Link 

along I-405 SB as Viewed in OSM. Similar to the OSM representation of the roadway network, 

lanes are not distinguished for any link of the WSDOT network.  
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Table 3-4 Data Elements of PostGIS Tabular Representation of WSDOT 24k Road Map 

Field 

Name 
Data Type Description 

GID Integer Unique ID of link 

Direction Character Direction of travel (inc or dec) 

Barm 
Begin Route Accumulated 

MP 
Segment start MP 

Earm 
End Route Accumulated 

MP 
Segment end MP 

Region Text Region of state 

Route ID Integer Route number 

Route Type Text Type of roadway (e.g., I, SR, US, etc.) 

Geom Geometry 
Array of GPS points comprising road segment 

(SRID=4326) 
 

 

Figure 3-10 Link along I-405 SB as Viewed in OSM (credit: © OpenStreetMap 

contributors) 

 Once the map data for the OSM and WSDOT roadway networks are loaded into their 

respective PostGRES tables, the main task of conflation involves finding a means to link the two 

roadway networks. For example, one may need to determine how to match the segment from 

milepost 0.00-0.37 on I-405 SB to the corresponding relation/way/nodes in the OSM network. 

Similar to the previous task of map matching the vehicle trajectory GPS points, OSRM is also used 

as a key part of this task. For each of the following unidirectional roadways in the WSDOT map: 
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I-5 NB, I-5 SB, I-90 EB, I-90 WB, I-405 NB, I-405 SB, SR-520 EB, and SR-520 WB, the 

collection of segments comprising it (between a given milepost range defined in the next section) 

is fed into OSRM on a pointwise basis. That is to say, one can imagine the GPS points defining 

the WSDOT roadway links are nothing more than GPS points observed in a vehicle trajectory. 

Similar to the map matching process, for every unidirectional segment fed into OSRM on a 

pointwise basis, the output is a JSON file describing the including the confidence of the match 

results, a list of one-to-one matches of the input GPS points (here, defining unidirectional roadway 

links) to points along the OSM network (assuming a match is possible, again, call these match 

points), the nodes in the OSM network that bound each match point, and a representation of the 

roadway path (i.e., list of input points) in terms of legs defined by the OSM nodes that bound a 

match between two input GPS points. Again, when every input point is matched to the OSM 

network, the results will show n-1 legs for n input points, and each leg will be defined by at least 

two OSM nodes that bound the path between the two matched input points. Consider Figure 3-11 

for a more detailed explanation of the process. In this figure, consider a segment of a WSDOT 

roadway from milepost 0.00 to 0.37, itself comprised of four GPS points. These points are matched 

to points in the OSM network, denoted by the green squares. These green points themselves are 

each bounded by two nodes of the OSM network denoted as gray or black circles. The gray circles 

represent intermediate points defining a way in OSM and the black points represent end points of 

ways; such black points are also referred to as junction nodes. The ultimate goal here is to 

determine what way in OSM a given point defining part of a freeway link’s (with route number 

and direction) geometry corresponds to. Since there exists a tabular representation of the nodes 

and ways in OSM, one can determine what way the WSDOT points are on by (1) seeing what 

OSM nodes bound (gray or black points in the picture) them and (2) determining what OSM way 
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these bounding nodes are on. At the end of this step, one is able to associate each point along a 

WSDOT freeway (itself identified according to a start and end milepost as well as route number 

and direction) with a way in OSM on which it lies. Once one knows what ways the points defining 

the roadway network lie on in OSM, he can calculate the mileposts of the junction nodes for each 

OSM way by interpolating based on the mileposts of the WSDOT points and the geometries of the 

respective segments (i.e., curvature and shape are defined via the geometry). For each route 

number and direction, one can begin at milepost 0.0 and calculate the mileposts of the junction 

nodes of each way in the OSM map based on the WSDOT points that fall along them (whose 

mileposts are known). 

 

Figure 3-11 Schematic of Relation between WSDOT and OSM Roadway Networks 
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3.1.2.3 Milepost Calculation for Vehicle Trajectory Datapoints 

The next step of the trajectory data processing involves determining the route number, direction 

of travel, and milepost corresponding to each input GPS point along a probe vehicle’s trajectory. 

As a reminder, when a vehicle trajectory is provided from INRIX, it is solely a series of raw GPS 

points, none of which have any notion of being associated with a given roadway. For this step, an 

analog will be drawn to the output of the map matching step for the trajectories. Recall that for 

each matched trajectory, the output from OSRM provides (and have saved in a database table) the 

point in the OSM network that most closely matches the GPS input point, as well as the nodes that 

bound said point. As was the case for the map conflation step, one can use the bounding nodes to 

determine what way each matched point in the trajectory falls upon. In turn one is able to associate 

it with a route number direction of travel, and further calculate its milepost location based on the 

start and end milepost of the way and the geometry (i.e., shape/curvature of the way). Since the 

only roadways in the WSDOT network associated with the OSM network in the previous step were 

I-5, I-90, I-405, and SR-520, points matched to ways that do not comprise the relations defining 

these highways were filtered out at this step. Thus, the final output of this step and the map 

matching and conflation process was a PostGRES table of GPS points (for a given Trip ID) with 

timestamps, as well as their associated GPS point matches in OSM, and the route number, direction 

of travel, and milepost to which each was associated. This table only contained points along the 

aforementioned freeways, and the range of mileposts along which points can lie for each direction 

of travel is defined in Table 3-5. Further, it is important to note that in all cases, the increasing (I) 

direction of travel refers to NB or EB, while the decreasing (D) direction of travel refers to SB or 

WB. 
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Table 3-5 Milepost Range for Study by Route Number and Direction 

Route 

Name/Number 
Direction Start MP End MP 

I-5 
NB (I) 149.00 186.00 

SB (D) 186.00 149.00 

I-90 
EB (I) 0.00 30.00 

WB (D) 30.00 0.00 

I-405 
NB (I) 0.00 30.30 

SB (D) 30.30 0.00 

SR-520 
EB (I) 0.00 12.82 

WB (D) 12.82 0.00 
 

To conclude the trajectory data processing section, a schematic summarizing the map 

matching, conflation, and MP calculation process is shown in Figure 3-12, and a summary of the 

number of trips and waypoints remaining following the data processing (i.e., those on the routes 

shown in Figure 3-12) is shown in Table 3-6. 

 

Figure 3-12 Schematic of Trajectory Data Preparation Process (Seattle map via © 

OpenStreetMap contributors) 

Table 3-6 Final Counts of Data after Trajectory Processing 

Field Count 

Number of Trips 730,909 

Number of Waypoints (GPS points) 18,600,169 
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3.1.3 Some Notes on Trajectory Data 

While working with trajectory data from probe vehicles has many benefits, there are also 

some limitations that must be discussed. First, it is important to talk a bit more about data resolution 

in both the spatial and temporal domains. In terms of spatial resolution, trajectories offer benefits 

over fixed, point-based detectors in allowing for data to be collected at any point in a road network, 

assuming a probe either (a) reported a location at said point or (b) passed through said point as 

determined by interpolation. That said, while loop detectors can provide data per lane, assuming 

detectors in each lane are wired to report data separately, the probe data used herein does not have 

the spatial resolution to determine what lane the vehicle is in. Further, the notion of lanes is lost in 

the map matching process when the GPS points are mapped to OSM ways, themselves which do 

not differentiate between ways. Additionally, as the location data is reported from GPS devices 

there is an inherent potential for errors in the location data due to issues such as multi-path and the 

urban canyon effect, as well as general limitations on GPS precision. With the exception of small 

portions of I-5 in downtown Seattle and portions of I-90 crossing Lake Washington, both of which 

pass through tunnels, the majority of the roadway miles in the study area are generally unobstructed 

from so-called urban canyons. With regard to inherent error in the GPS data, this issue is closely 

related with the map matching algorithm. In principle, one is trying to match a point (the GPS 

waypoint from a trajectory) to a line (an OSM way representing a roadway link), neither of which 

have any associated width. A perfect match is thus impossible due to floating point error, hence 

all GPS points matched to the OSM network are provided along with an error distance to the 

snapped, matched point on the way on which they would fall. The error distance is a Euclidean 

distance and can be further amplified by the loss of distinction of the travel lane the vehicle is in. 

As an example, consider a highway with a 5-lane cross section where each lane has a 12-foot 
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width; it is easy to see how the true lateral location could affect the matching accuracy. While 

seemingly subtle, these errors can add up and impact latter calculations for measures such as speed. 

Finally, since the map-matching algorithm is itself prone to some errors. In cases where a match 

cannot be found, such a fact will be reported and the input data point will likely be rendered useless. 

In cases where a match was found, but it seems unlikely, the user will be alerted via the confidence 

of the match. In some cases, however, a match will be reported with a high degree of confidence 

yet examining the points more closely will show impossible travel behavior. This error most 

commonly manifested in monotonicity issues within a trajectory. Specifically, cases were 

identified in which a vehicle trajectory was matched to the network in such a way that one or more 

of its points in an increasing sequence of time would be mapped upstream of the preceding point(s), 

thus leading to non-sensical negative distance (and in turn speed calculations). Such cases, which 

may have arisen from location data subject to measurement noise being reported by a very slow-

moving vehicle (i.e., one in a jam state), were rare. Nonetheless, they were filtered out of the final 

dataset when identified.  

In terms of temporal resolution, the main benefit with respect to probe vehicle trajectories 

is that some data providers report location data at a very high resolution, about one second at the 

lowest, whereas loop detectors typically report data at intervals of no less than 20 seconds to as 

high was several minutes. On the other hand, some probe data providers report location data at a 

frequency of several minutes. Depending on the application, this data may or may not be 

appropriate to use as if one wants to examine the trajectory at a higher-sampling rate, accuracy 

would be lost as a result of interpolation. A final factor that many would see as a benefit from 

using probe vehicle trajectory data is that such data are provided in a disaggregate manner, 

allowing scaling to any spatial-temporal window for which data are available. This can be hugely 
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beneficial for allowing customization of study parameters and the associated benefits will only 

grow as more and more vehicle location data is collected.  

When one uses data collected from probe vehicles it is important to note that such data 

only represents a sample of the population, and while it may be representative of broader trends, 

it can also be subject to several biases as follows. First is the issue of data sparsity. Depending on 

the penetration rate of vehicles reporting location data (for the INRIX Trips data, 1.5-5.5% of the 

total vehicle population is estimated to be reporting data at any time), there can often be several 

locations and time periods across a network for which no data or data from a very small sample of 

probes are available. While traffic volume is often correlated with penetration rate, there are 

certainly cases in which it is not. If such correlations are present and can be shown over time 

however, a common assumption in periods of no data reported may be free-flow conditions (i.e., 

those associated with low volume). In cases where such correlation is not present and more 

generally in cases with small sample sizes of probe data, one must be aware of the inherent 

potential for bias in tasks like speed calculation depending on numerous factors including vehicle 

type, roadway functional classification, driver profile, roadway geometry. As a simple example, 

imagine a scenario on a low-volume rural freeway where only one tractor trailer is reporting 

location data. If such vehicle traverses sections of the roadway with large upgrades and reports 

location data in said areas, one may get an inaccurate picture that such roadway is congested if 

they based their decision on travel speed alone. While the preceding describes just a few of many 

potential biases associated with probe data, they are important to look out for. A much more 

detailed summary of such issues and the larger concept of probe vehicle sampling can be found in 

(Henrickson 2018). 
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3.2 CRASH DATA AND ROADWAY GEOMETRICS 

For this study, two different forms of crash data were applied. The first form involves a 

disaggregate dataset comprised of crash reports for individual freeway crashes. The second 

primary crash dataset investigated was comprised of crash counts (specifically animal-vehicle 

collision counts) on roadway segments over time (i.e., aggregate data). Each dataset as well as 

relevant supporting data (e.g., roadway geometrics) is described in the following sub-sections. 

3.2.1 Crash Report Data from Law Enforcement (Disaggregate) 

Police crash report data were requested from and provided by WSDOT for this research. 

Data were requested for state routes in King, Pierce, and Snohomish counties in Washington 

between 1/1/2015 and 12/31/2017. Spatially, these are the crashes that occurred on the Seattle area 

freeway network shown in Figure 3-1 (I-5, I-90, I-450, and SR-520). In total, 46,791 crashes 

occurred on state routes in the 3 aforementioned counties over the 3-year time period of the data 

request. Ultimately, however, crash report data was only used from the May 2017 for the real-time 

crash prediction analysis. Such dataset consisted of a total of 607 crashes, distributed across the 

study area by highway as shown in Table 3-7. 

Table 3-7 Distribution of May 2017 Crashes by Highway for Project Study Area 

Highway Number of Crashes 

I-5 291 

I-90 72 

I-405 217 

SR-520 27 
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Data elements shown on the crash report records are quite typical and include attributes 

such as roadway on which the crash occurred, milepost at which the crash occurred, date and time 

of crash, crash severity, vehicle types involved, weather, description of the crash events etc. A 

summary of the key data elements in the police crash reports is shown in Table 3-8. 

Table 3-8 Summary of Data Elements in WSDOT-Provided Police Crash Report Data 

Variable Name Description 

City City where crash occurred 

Primary trafficway Roadway where crash occurred 

Milepost Milepost where crash occurred 

Report number Crash report ID 

Date Date on which crash occurred 

Time Time at which crash occurred/was reported 

Most severe injury type Crash injury severity 

# Inj Number of injuries 

# Fat Number of fatalities 

# Veh Number of vehicles involved 

Vehicle 1 type Type of first vehicle 

Vehicle 2 type Type of second vehicle 

Junction relationship Whether or not crash was at/related to intersection 

Weather Weather at time of crash 

Roadway surface condition Roadway surface condition at time of crash 

Lighting condition Lighting condition at time of crash 

First collision type/object struck Type of primary collision 

Vehicle 1 action Action of first vehicle prior to crash 

Vehicle 2 action Action of first second prior to crash 
MV driver contributing circumstance 

1 (vehicle 1) 
Circumstance of crash for first motor vehicle 

MV driver contributing circumstance 
1 (vehicle 2) 

Circumstance of crash for second motor vehicle 

First impact location 
Lane number or shoulder indicator, 

increasing/decreasing travel direction 
 

3.2.2 Aggregate Crash Data for Crash Frequency Analysis 

The dataset used in this study was based upon that used in Lao et al. (2011). Specifically, 

it was collected to model animal-vehicle collisions along ten highways in Washington State over 
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a total of 752 road segments. Highways for which data were collected include US-2, SR-8, SR-20, 

I-90, US-97, US-101, US-395, SR-525, and SR-970, and in total. The dependent variable 

represents the number of animal (white-tailed deer, mule deer, or elk) carcasses removed from 

each road segment over a five-year period from 2002 to 2006; in total, there were 2,607 reported 

animal-vehicle collisions. A summary of the data, including the explanatory variables and relevant 

summary statistics can be seen in Table 3-9. For binary variables, the mean shows the proportion 

of “yes” values in the data. In general, the dataset is rather typical of that used in a crash frequency 

analysis as the predictors include things like AADT, properties of the roadway geometry, and other 

roadway-inventory-related predictors. More detailed information on the dataset can be found in 

Lao et al. (2011).  

Table 3-9 Summary Statistics for Animal-Vehicle Collison Dataset 

Variable Description Min Max Mean SD 

Carcass Number of carcasses per segment 0 53 3.47 6.86 

AADT Annual average daily traffic 612 120173 7721.85 10820.29 

Access 
Restrictive access control (0=No, 

1=Yes) 
  0.15   

Spd_limt Speed limit (miles per hour) 25 70 58.60 6.81 

Trkpcts Truck percentage (%) 0 54.16 15.54 8.88 

Nolanes Number of lanes 2 7 2.48 0.95 

Seg_lng Segment length (miles) 0.5 1 0.69 0.14 

TerRol Terrain type rolling (0=No, 1=Yes)   0.76   

TerMou 
Terrain type mountainous (0=No, 

1=Yes) 
  0.13   

Lanewid Lane width (feet) 10 17 11.78 0.55 

Lshlw Left shoulder width (feet) 0 20 6.02 2.77 

Rshlw Right shoulder width (feet) 0 26 8.64 6.24 

White 
White-tailed deer habitat (0=No, 

1=Yes) 
  0.36   

Elk Elk deer habitat (0=No, 1=Yes)   0.36   

Mule Mule deer habitat (0=No, 1=Yes)   0.60   
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3.2.3 Ancillary Data 

While a variety of different data types can be used to supplement vehicle crash and roadway 

inventory data, the only such set considered here described the weather in Seattle in May of 2017. 

Weather data were retrieved from http://www.weatherunderground.com for the entire month of 

May, and the data collection location was the Seattle-Tacoma International Airport (SEA-TAC). 

Historical weather data were typically reported on an hourly basis and measurements were taken 

for variables including temperature, dew point, humidity, wind direction, wind speed, amount of 

precipitation, weather condition (e.g., cloudy, foggy, etc.), etc. Ultimately, only precipitation and 

weather condition data were used to supplement the crash report data used in the real-time crash 

prediction modeling section. On a final note, it is important to point out that there is certainly 

potential for bias/issues with only using one weather station, given (1) the breadth of the study 

area and (2) the use of hourly data. The furthest location away from the airport in the study area is 

approximately 30 miles, and weather patterns can obviously change in intervals much less than an 

hour. While weather data with higher spatial and temporal resolution have their advantages, the 

hourly data was used due to its easy availability and more broadly as the consideration of weather 

impact on crashes itself is not a primary focus of this study. 
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Chapter 4. REAL-TIME CRASH PREDICTION STUDY DESIGN 

4.1 PROBLEM STATEMENT AND MOTIVATION 

As discussed in the literature review section, real-time crash prediction modeling refers to 

crash modeling on a micro-scale. Specifically, factors shown to be correlated with crash 

occurrence are used to model the likelihood of a crash, typically in a binary classification problem 

where success event (1) is described as a crash and a failure event (2) would be a non-crash. 

Typically, traffic-flow-related variables are calculated based upon data from traffic detectors (most 

commonly loop detectors) and grouped according to whether they preceded a crash event or not. 

This aggregated data is then used to model the aforementioned outcomes in a variety of models, 

though binary logit models are quite common. 

This dissertation does not deviate from the general concept of real-time crash prediction 

modeling, but rather tries to bring some novelty to the solution through several different ways. 

First of all, this study applies vehicle trajectory data collected from probe vehicles. Unlike other 

studies that have applied loop data or examined trajectories extracted from video data, not all 

vehicles are captured in the sample of probes. Hence, the goal is to determine if a small sample of 

the traffic can be used to draw inferences for the larger population when it comes to association 

between traffic conditions and crash occurrence. Additionally, the use of trajectory data allows 

calculation of disaggregate features (i.e., at the vehicle trip level) over a much broader spatial and 

temporal domain than that available via the fixed-location and fixed-time interval reporting from 

most traffic detectors (e.g., loops); that is to say the trajectory data is often sampled at higher 

resolution than loop data. These disaggregate features can also include metrics describing higher-

order position derivatives than just velocity, namely those related to acceleration and sometimes 
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jerk. It is of interest in this study to see if such new variables add any predictive power to the crash 

prediction models.  

Further, while it has been noted that preceding studies rarely investigated datasets with 

more than 500 crashes, the initial dataset considered in this study contains 607 crashes distributed 

over 220.24 roadway miles (Hossain et al. 2019). Additionally, several factors in the study design 

are varied to see their impact on the dataset generation and in turn, the modeling results. This is a 

first step towards the issue of investigating the way cases and controls are chosen as described by 

Roshandel et al. (2015). Finally, this study focuses on providing a clear and proper interpretation 

of results. Notably, conditional logit models are not intended for use in prediction applications in 

the conventional sense (i.e., predicting the probability of success (here a crash) conditioned on the 

given set of covariate values) due to the fixed nature of the case control design. Despite this issue, 

some studies still present a confusion matrix and describe the predictive power their conditional 

logit models (Abdel-Aty et al. 2004). 

In the following chapter, the steps of the RTCPM study with probe vehicle data are 

presented. First, a necessary background on case-control study design is provided as such design 

is the basis for nearly all datasets used in RTCPM applications. Next, the modeling framework 

used to estimate crash risk by comparing variables describing traffic conditions associated with 

crashes (i.e., pre-crash conditions) and non-crashes (i.e., non-crash normal conditions) is 

presented. Once the statistical framework is laid out, the data preparation and feature design for 

this study are discussed. Then, models are developed on a variety of datasets to examine the impact 

of several factors on RTCPM. These results are then discussed, interpreted, and compared to those 

from preceding studies. Finally, the chapter concludes with a discussion of some limitations of the 

work and next steps. 
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4.2 CASE-CONTROL STUDY DESIGN 

As previously mentioned, datasets used in RTCPM applications are typically developed 

under a case-control study design. Such study designs are extremely common in medical literature, 

where the goal may be to examine some propensity for a disease or condition based on several risk 

factors (Brinton et al. 1992; Schlesselman 1982; Selby et al. 1992; Sokejima and Kagamimori 

1998). The analog in RTCPM thus being investigating the correlation between traffic-related 

features and crashes. Commonly, the basic idea behind a case-control study design is to collect 

data in a way such that one is attempting to control for some number of potential confounding 

variables in the data selection process as opposed to controlling for the confounders via effects in 

the model itself. With this control application, the logic is that one can isolate and study the 

relations between the desired variables only and the outcome.  

The aforementioned effort towards control is typically conducted via a procedure known 

as matching in the study design. Here, the experimenter selects cases (entities who are associated 

with a “success” outcome) and controls (entities who are associated with a “failure” outcome) such 

that all entities in a given group are selected due to having similar values for one or more pre-

defined confounding/matching variables. Two types of matching are common in case control 

designs, those being individual and frequency matching. Individual matching takes a case and 

matches one or more controls to it based on a shared/similar value for one or more matching 

variables; each set of one case and one or more controls is known as a stratum. Frequency matching 

refers to the ensuring an equal distribution in values/ranges of values of the matching variable 

between the cases and controls across each stratum (Kleinbaum et al. 2007). In either case, the 

idea the main idea is that intra-stratum (i.e., within stratum) variance in the matching variables 

should be small, while inter-strata variance in the matching variables can be larger. This 
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dissertation will focus on the application of an individual matched case-control study design. It is 

important to note that the numbers of controls in each stratum do not have to be equal across strata, 

however, each stratum is required to have one case (Breslow and Day 1980; Gould 2000). That 

said, number of controls (just like sample size in general) will affect the statistical power. On a 

final note, one does not have to necessarily attempt to account for potential confounders in the 

study design; in such cases, the design is referred to as an unmatched analysis. In such case, there 

is only one stratum.  

In terms of matching variables, medical studies often match on factors such as age, gender, 

socioeconomic status, race, etc. (Breslow and Day 1980; Stevens 2020). For RTCPM applications, 

matching variables used to define non-crash/normal conditions primarily include time of day, day 

of week, functional classification of roadway, and location (Hossain et al. 2019). In general, the 

matching factors are chosen such that they represent confounders whose impact may not be able 

to be directly measured (e.g., what driver population typically comprises the traffic stream at a 

certain time of day at a certain milepost on a freeway?) (Graaf et al. 2011). 

4.3 MODELING METHODOLOGY 

In alignment with the preceding section, the data to be used in this study was collected 

under a case-control study design. Assume the dataset is comprised of N cases (i.e., crashes), each 

of which is matched to at most m controls (note, one must acknowledge the situation as at most 

since not all cases will be matched to the same number of controls, nor do they need to be) (Gould 

2000; Stevens 2020); note also that the matching procedure will be defined in a forthcoming 

section. Such data can be visualized in a two-dimensional array such as that shown in Figure 4-1. 

In this array, one can see there is one stratum per crash, each of which has at most m+1 data points 

(one crash and m controls), and a total of N strata. Each row in a given stratum represents either a 
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case or control, based on the value of the dependent variable, and each other column represents 

the values recorded for that data point over up to k different predictors or features. In RTCPM 

applications, these features are typically descriptors of traffic flow for conditions preceding a crash 

(i.e., pre-crash conditions, cases) or conditions in which no crash took place within a specified 

spatial-temporal window. Since most preceding studies used loop detector data, that features 

shown in Figure 4-1 are attributes commonly available from loop detectors. It is clear from the 

data layout that for RTCPM, one desires to model a binary outcome (crash/no-crash) as a function 

of several covariates. Thus, a logical choice of model would be one permitting binary 

classification, e.g., a logit model. That said, the stratified nature of the design makes it such that 

the conditional logit model is more commonly used, as it can account for the effects of stratification 

in the study design (i.e., the matched study design).  
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Figure 4-1 Array Representation of Case-Control Study Design Data 

In the following, a detailed explanation of the conditional logit model and its interpretation 

is provided. First, recall the typical logistic regression model, a generalized linear model (GLM) 

with a log link function, shown in the following. Equation 4-1 can be derived via maximum 

likelihood estimation (MLE) (Agresti 2007). 

)����*+
��, = log � 0
1�2�0
1�# = 34 5 67                                                                         (4-1) 

Where, 

+
�� = probability of success at given value of x; 

34 = intercept term; 
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6 = design matrix (n by p); 

7 = vector of regression coefficients (p by 1). 

A key interpretation of the logit model is that the odds of “success” are proportional to the 

exponentiation of the linear predictor. This still holds true for conditional logit models, however, 

in the conditional logit models there are other key differences. Consider an example where the 

probability (unconditional) of a “success” (i.e., crash) is defined by the logit model as shown in 

Equation 4-1. This can be described via the following: 

0
89�2�0
89� = exp
34 5 =>7�                                                                                               (4-2a) 

Stated in another way, the aforementioned can be written as follows. 

+
&%� = ?@A
BCD=>7�2D?@A
BCD=>7�                                                                                                    (4-2b) 

The issue with Equation 4-2b is that there is no consideration of the stratified sampling, 

that is to say, some sort of conditioning must be considered in each group (i.e., stratum) (Gould 

2000). As a simple example to understand the conditioning, consider a stratum defined with one 

case (i.e., crash) and one control (i.e., non-crash). Based on the data design, what is actually 

estimated is as follows (Gould 2000): 

E
1 GH��ℎ ��� 1 ���GH��ℎ|1 GH��ℎ� = K
&2 = 1 ��� &L = 0|&% = 1�                  (4-3a) 

Equation 4-3a can be expanded as follows, via Bayes’ theorem. 

M
8NO2�∗M
8QO4�M
8NO2�∗M
8QO4�DM
8NO4�∗M
8QO4�                                                                                      (4-3b) 

Then, finally, by substitution of (4-2b) into (4-3b), the result is the following. 

E
&2 = 1, &L = 0|&2 = 1� = ?@A
=R7�?@A
=R7�D?@A 
=S7�                                                             (4-4) 
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It is very important to note that in Equation 4-4 no intercept term is present. This is due to 

the fact that it would always cancel, and so it is not estimated/presented in output from statistical 

programs. Another consideration to think about here is that the nature of design fixes the ratio of 

success to failures, the exact data on which an intercept would depend.  

For the full presentation of the conditional logit model, return to the case for a sample of 

N crashes. Each of the N crashes (and its corresponding traffic conditions) will be matched to a 

total of up to m data points representing non-crash scenarios. The matching is done based on 

criteria such as location, time period, etc. Now define a stratum as a set of one crash data point and 

its corresponding matched non-crash data points. Thus, there is N strata and each individual 

stratum is comprised of m+1 data points. Each data point consists of a set of independent variables 

describing traffic flow and other variables (e.g., weather conditions) and a dependent variable (a 

binary indicator noting if the condition was associated with a crash or not) (Abdel-Aty et al. 2004; 

Collett 1991). 

Now, consider the case where the ith data point in the jth stratum corresponds to a crash. 

Equation 4-5 parametrizes this probability as a logistic regression model, specifically as the 

conditional logit model (again, note there is no intercept) (Abdel-Aty et al. 2004; Collett 1991). 

)����T+UV�%UWX = YU 5 β2�2%U 5 βL�L%U 5 ⋯ 5 3���%U                                                (4-5a) 
 

Where, 

 logit = link function, log(odds ratio); 

 πj = probability of a crash in the jth stratum (j=1, 2, …, N); 

 αj = stratum-specific intercept; 

 xij = ith data point in the jth stratum (i=0,1, 2, …, m); 
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βk = regression coefficient corresponding to kth feature (e.g., average speed, k=1, 

 2, …, p); and 

 xkij = value of the kth feature for the ith data point in the jth stratum. 

Additionally, the likelihood function that when maximized will give the model coefficients 

in Equation 4-5a is shown in Equation 4-5b Abdel-Aty et al. 2004). 

\
3� = ∏ T1 5 ∑ exp_∑ 3`V
�`%U − �4%U�W�̀O2 bc%O2 X�2dUO2                                              (4-5b) 

Finally, with regard to the conditional logit model, the odds ratio is defined in the same 

way as for the standard logit model. That is to say, any of the exponentiated regression coefficients 

(for continuous variables, at least) can be interpreted as a multiple on the odds of success 

corresponding to a one unit increase in the continuous predictor (while holding all other predictors 

constant) (Agresti 2007). 

In addition to the conditional logit model, itself a large part of the analysis, herein, kernel 

density estimation (KDE) is introduced in the following, as it was used in exploratory analyses to 

compare distributions of features between crash and non-crash events. At its core, KDE is a non-

parametric density estimation technique. For a random variable X, from which N randomly 

sampled observations are assumed to be independent and identically distributed, the kernel density 

estimator is defined in the following equation (Hastie et al. 2009). In this study, bandwidth is 

selected automatically through procedures in (Bowman and Azzalini 2019).  

efg 
�� = 2d ∑ hf
� − �%� =d%O2 2df ∑ h �1�19f #d%O2                                                              (4-6) 

Where, 

efg 
�� = kernel density estimate at x; 

K = kernel function; and 

h = bandwidth parameter. 
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For this study, a Gaussian kernel (Equation 4-7) is applied in all KDE applications. 

h
i� = 2√L0 exp �− kQL #                                                                                                    (4-7) 

Where, 

z = x-xi; 

And all other variables are as previously described. 

A final important point to discuss in the methodology for the RTCPM portion of the 

dissertation is that when using conditional logistic regression, prediction and use of goodness of 

fit tests based on prediction (e.g., Hosmer-Lemeshow) cannot be used since no intercept is 

estimated. Despite this important point, some studies have still presented predictions (i.e., 

confusion matrices) for crash occurrence under a conditional logit model (Abdel-Aty et al. 2004). 

4.4 DATA PREPARATION AND FEATURE DESIGN 

With the background on matched case-control logistic regression, the next step is to 

consider other important parts of the study design. Specifically, this section will focus on issues 

such as feature design, data processing, criteria for matching cases and controls, and some 

important issues inherent to the probe vehicle trajectory data to be aware of when applying it. 

4.4.1 Data Overview 

The main data sources to be used for the matched case-control study were the (1) probe vehicle 

trajectory data provided by INRIX and (2) the disaggregate crash data provided by WSDOT. Both 

datasets were examined under the time frame of May 1-31 2017 (the entire month). 
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4.4.2 Data Preprocessing 

The first task in the RTCPM modeling work-flow was data pre-processing. Specifically, the 

crash data from WSDOT was reduced to only include crashes taking place on the specified 

highways and within the specified milepost ranges as described in Chapter 3. Following this, the 

total crash count was 607. For each crash, key data elements were extracted from the respective 

crash reports as follows: 

• Crash location: route number, direction, milepost; 

• Time of crash (converted to Unix epoch, seconds since Jan. 1 00:00, 1970, for 

convenience); 

• Crash report number (used later to define strata); and 

• Whether the crash was a single-vehicle or multi-vehicle crash. 

The matrix consisting of the individual crashes and their respective features was hence 

defined as the list of “cases.” The next key step was to match each case with one or more controls, 

a topic to be discussed in the following sub-section. Before moving on though, it is important to 

note that here, the time of the crash provided on the crash report was correct. While some may 

doubt the accuracy of this time, a buffer time period before the crash occurred was used to collect 

pre-crash-related traffic variables (Hossain et al. 2019).  

4.4.3 Considerations for Study Design  

The following section outlines the key attributes of the study design used for the real-time 

crash prediction models. The first choice to make was how to define the spatial and temporal 

windows for data collection for cases and controls. In this study, it was decided to collect data over 

5-minute intervals for the following two periods for cases: (1) 5-10 minutes before the time of 
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crash and (2) 10-15 minutes before the time of the crash. The choice of aggregating data at the 5-

minute level was made based on the use of said interval in many other studies that used said interval 

and aggregated data across all lanes (Abdel-Aty et al. 2005, 2012; Hossain et al. 2019; Liu and 

Chen 2017; Yu et al. 2013) and the desire to select a “longer” interval in an effort to accumulate 

more probe samples and more data from them in that interval. Again, it is important to point out 

here that for the trajectory data used in this study, there is no option but to aggregate data across 

all travel lanes as data is not available on a per lane basis due to the spatial resolution of the map 

matching process. Further, five minutes is a commonly-studied interval for the reporting of 

aggregated loop detector data. With regard to (2), many previous studies have investigated data in 

5-minute intervals anywhere between 5 to 30 minutes (and sometimes other ranges) before a crash, 

and many have found that variables computed for the time period of 5-10 minutes before the crash 

were significant (at a given confidence level) in their regression models (Abdel-Aty et al. 2004; 

Abdel-Aty and Abdalla 2004; Hossain et al. 2019; Pande and Abdel-Aty 2006).  

With discussion of the time intervals over which data was collected, the next important 

decision was to define the spatial window. A benefit of this study compared to the vast majority 

of previous studies that applied data from point-based detectors was that, pending availability (i.e., 

the presence of probes at a given time), trajectory data could be queried in any spatial window 

with regard to the crash location. Previous studies applying loop data collected pre-crash data over 

a range of spatial locations including as many as five upstream loop stations (Abdel-Aty et al. 

2004; Abdel-Aty and Abdalla 2004; Abdel-Aty and Pande 2005) and three downstream loop 

stations (Ahmed and Abdel-Aty 2012; Shew et al. 2013). For this study, a range of upstream and 

downstream distances over which to collect data were chosen. For the traffic data collected 

upstream of the crash, distances of data collection spanning 0.5 miles, 1.0 miles, and 1.5 miles 
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were considered. Downstream of the crash location, a distance of 0.5 miles was considered if data 

were collected at all (in some cases, no downstream data was considered). Different combinations 

of upstream and downstream data collection were used in the modeling efforts, a topic explained 

at the end of this section. 

A key part of any matched case-control study is defining the factors on which to match the 

cases and controls (i.e., how to define the controls).  Hossain et al. (2019) define a variety of spatial 

and temporal criteria for matching and control definition. For this study two different definitions 

for controls were considered as follows: 

1. Control Definition 1: A control is defined as data collected in the same intervals 

(i.e., 5-minute intervals from 5-10 and 10-15 minutes before the crash time) as the 

pre-crash data, at the same location (same highway, direction, and milepost range), 

at the same time, and on the same day of the week. For this dataset, this meant each 

pre-crash case could be matched to at most four other controls depending on the 

day of week on which it fell and data availability.  

2. Control Definition 2: A control is defined as data collected in the same intervals 

(i.e., 5-minute intervals from 5-10 and 10-15 minutes before the crash time) as the 

pre-crash data, at the same location (same highway, direction, and milepost range), 

and at seven random times occurring between 5-1-17 00:00:00 and 5-31-17 

23:59:59. For this dataset, this meant each pre-crash case could be matched to at 

most seven other controls depending on data availability. 

In both definitions of controls, another matching factor was that no crash took place within 

a range of five miles upstream over a window of at least two hours before the time of the crash. 

A final factor to consider in these matching definitions is what confounders are potentially 
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accounted for. By collecting data at the same location, the design is attempting to adjust for a 

variety of roadway inventory variables that would take on the same values for the case and 

controls in one stratum included but not limited to: number of lanes at the crash location, 

shoulder widths, ramp density, AADT, etc. One can imagine how many of their variables may 

have an impact on crash occurrence and as such including them in a regression model would 

result in a very high number of terms and likely a poor fit. For the first matching definition, by 

collecting data at the same time as the crash occurred for the controls, the effects of driver 

population and trends in volume (e.g., peaking) are intended to be implicitly accounted for. This 

is not the case for the second definition of controls, where only the spatial factors are considered 

in the matching criteria. A final and intuitive note on this point is that even if one wanted to 

model the effects of some of the aforementioned variables (e.g., roadway geometry), if said 

variables were coded as binary or categorical variables, they would cancel out in the conditional 

logit model if both the case and all matched controls in a given stratum had the same value for 

said variables. The effects of these non-continuous variables can, however, be investigated via 

interaction terms if one desires. 

One final factor that was selected for examination in the study design was whether to 

separate out single-vehicle crashes from the data or not as was done in (Yu and Abdel-Aty 

2013b). It was hypothesized that multi-vehicle crashes could be more probably described by 

traffic conditions than single-vehicle crashes, where choices of one driver may be the main 

factor. As such, this dissertation considered datasets with all crash types (i.e., single- and multi-

vehicle) and multi-vehicle only crashes. Per discussion in Roshandel et al. (2015), this 

dissertation examined many potential study designs to surmise their impact on the RTCPM 

process. The conditions that define the datasets considered in this study are shown in Table 4-1. 
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In total, 36 datasets were considered in the modeling efforts; each row in Table 4-1 shows 

conditions to represent four total datasets (as the two right-most columns each take one of two 

values at a given time). The variety of datasets examined were intended to cover a range of 

conditions and ensure several datasets of adequate sample size were available as some stratum 

had to be removed prior to modeling based on missing data issues. 
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Table 4-1 Criteria for Different Datasets used in RTCPM Efforts 

Dataset 

Indices 

Time 

Periods for 

Data 

Collection 

Distance 

for 

Upstream 

Data 

Collection 

(mi) 

Distance for 

Downstream 

Data 

Collection 

(mi) 

Control 

Definition 

Used 

Crash 

Types 

Considered 

1-4 5-10 AND 
10-15 min. 

before crash 

0.5 0.0 Control 
Def. 1 OR 

Control 
Def. 2 

ALL OR 
Multi-Veh 

Only 

5-8 5-10, 10-15 
min. before 

crash 

1.0 0.0 Control 
Def. 1 OR 

Control 
Def. 2 

ALL OR 
Multi-Veh 

Only 

9-12 5-10, 10-15 
min. before 

crash 

1.5 0.0 Control 
Def. 1 OR 

Control 
Def. 2 

ALL OR 
Multi-Veh 

Only 

13-16 5-10, 10-15 
min. before 

crash 

0.5 0.5 Control 
Def. 1 OR 

Control 
Def. 2 

ALL OR 
Multi-Veh 

Only 

17-20 5-10, 10-15 
min. before 

crash 

1.0 0.5 Control 
Def. 1 OR 

Control 
Def. 2 

ALL OR 
Multi-Veh 

Only 

21-24 5-10, 10-15 
min. before 

crash 

1.5 0.5 Control 
Def. 1 OR 

Control 
Def. 2 

ALL OR 
Multi-Veh 

Only 

25-28 5-10, 10-15 
min. before 

crash 

1.0 1.0 Control 
Def. 1 OR 

Control 
Def. 2 

ALL OR 
Multi-Veh 

Only 

29-32 5-10, 10-15 
min. before 

crash 

1.5 1.0 Control 
Def. 1 OR 

Control 
Def. 2 

ALL OR 
Multi-Veh 

Only 

33-36 5-10, 10-15 
min. before 

crash 

1.5 1.5 Control 
Def. 1 OR 

Control 
Def. 2 

ALL OR 
Multi-Veh 

Only 
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4.4.4 Feature Design  

Once the controls were defined, datasets designed based on the characteristics in Table 4-1 

were developed. Recall, based on the case control design, for N crashes, each matched with at most 

m controls (assume m here for convenience), thus the dataset has dimension (N*m) by p dataset 

where N*m is the row count (with each case having y=1 and each control having y=0) and p being 

the number of features to be calculated. Also, recall that features are aggregated over time and 

spatial windows with time periods of five minutes and spatial windows defined both up- and 

downstream of the crash at varying distances (to be clear upstream and downstream data were 

collected and aggregated separately).  

The majority of features considered in the RTCPMs, i.e., the conditional logit models, were 

continuous variables based on the vehicle position, and higher order position derivatives, along 

the WSDOT linear referencing system as ascertained from the map-matched trajectories. 

Essentially, this step involved querying a large PostGRES database table containing the data for 

730,909 trips made up of a total of 18,600,169 waypoints (i.e., individual GPS points) for a given 

spatial-temporal window, computing values on a per trajectory/trip basis, and finally aggregating 

said values. In order to ensure some level of data quality, portions of trajectories that were not 

monotonically increasing in space-time were filtered out of the dataset. The process then involved 

calculating variables primarily defined based on vehicle speed, vehicle acceleration, and jerk. In 

all cases, these values were computed on a pointwise basis per trajectory prior to aggregating over 

time and space. Additionally, in no cases were points added to the trajectory based on interpolating 

over time or space. The effect of this choice would have little to no effect on high-sample-

frequency data (i.e., vehicles reporting location data every second), but would certainly have more 

of an effect as the sampling frequency decreases. That said, vehicles with low-sampling-frequency 
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data would often not even be considered in the calculations due to the relatively small spatial-

temporal windows considered.  

When calculating speed, as another quality control metric, data points with speeds greater 

than 100 miles per hour were removed from the dataset (similar to (Abdel-Aty and Abdalla 2004)), 

the hope being that this would also have an impact on the data for the higher order position 

derivatives. When considering acceleration, two additional variables were defined, count of hard 

braking events (HBE) and count of hard acceleration events (HAE). The threshold used to define 

an HBE was any deceleration event with value less than -10 ft/s2 and the threshold for an HAE 

was any acceleration event with a value exceeding 10 ft/s2 (Fazeen et al. 2012; Stipancic et al. 

2018a). Additionally, a count of severe jerk events was defined based on any events that exceeded 

the threshold value of -32.4 ft/s3 (Wolshon et al. 2015). 

Now, for an example, assume one wants to examine a dataset that considers all crashes 

(i.e., single- and multi-vehicle), defines controls under the first definition (same location, same 

time, same day of week), and aggregates data over a length of 1.5 miles upstream of the crash and 

0.5 miles downstream of the crash. For every row in the case-control design matrix (again, of 

dimension (N*m) by p), one can query data for the given spatial/temporal window, calculate speed, 

acceleration, and jerk vectors for each vehicle trajectory in said window, and finally aggregate data 

at the five-minute level to calculate all desired variables both upstream and downstream of the 

crash location separately. Variables considered in the study, which were calculated for both cases 

and controls 5-10 and 10-15 minutes before the crash at varying up- and downstream locations are 

shown in Table 4-2. 
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Table 4-2 Key Variables used in RTCPM Modeling 

Variable Name Description [units] 
Crash Report Number Unique ID of crash, used to define strata 

Crash/no crash (Y) 
Dependent variable, whether conditions under 

which data were collected correspond to a 
crash (1) or not (0) 

Probe Vehicle Sample Size 
Count of probe vehicles returned in query of 

waypoint data 
Average Speed Average speed across all vehicles [mph] 

Minimum Speed Min. speed across all vehicles [mph] 
Maximum Speed Max. speed across all vehicles [mph] 

Standard Deviation of Speed SD of speed across all vehicles [mph] 
HBE Count Count of HBEs across all vehicles 
HAE Count Count of HAEs across all vehicles 

Severe Jerk Event Count Count of severe jerk events across all vehicles 
Standard Deviation of Acceleration SD of acceleration across all vehicles [ft/s2] 

Standard Deviation of Jerk SD of jerk across all vehicles [ft/s3] 

Rain 
Binary indicator (1=rain at given time, 0=no 

rain) 

Fog 
Binary indicator (1=fog at given time, 0=no 

fog) 
 

Besides the variables shown in the preceding table, additional variables were calculated 

based on those in the table. For example, one such variable was the coefficient of variation of 

speed defined as follows. 

�lm����� = nopqqrsopqqr                                                                                                           (4-8) 

Other variables calculated included differences between upstream and downstream 

locations in terms of variables such as average speed and sample size.  

To conclude this section, it is important to raise a few further points about the data to be 

used in the forthcoming modeling sections. First of all, the majority of categorical variables (e.g., 

those defining roadway geometry) were excluded from the analysis since inherently, their impact 

cannot be estimated under the conditional logit model structure (as cases and controls typically 

have same values). Second, it is important to recall that different vehicles have different sampling 
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frequencies and no interpolation as done to add points to any trajectories. Vehicles with very low 

sampling frequencies would likely be excluded from consideration in the dataset as the definition 

of the spatial/temporal window would filter them out. As one example, consider a vehicle with a 

sampling frequency of 5-minutes traveling at 60 mph, and assume the area of investigation is one 

mile long. In such case, this vehicle would report at most one sample point in the data and thus it 

would not bias any calculations on speed/acceleration/jerk. A final point of note is that the probe 

data being applied, while high in volume compared to that used in a lot of previous RTCPM 

studies, is relatively sparse in terms of availability (depending of course on time and location). As 

a result, there were several time intervals for which no probes were detected and thus no metrics 

could be calculated. Any cases or controls for which this occurred were filtered out of the final 

dataset, under the additional condition that each case was matched to at least one control. 

4.4.5 Modeling Process and Data Summary 

As described previously, a total of 36 different matched case-control datasets were generated 

for this study, the goal being to examine the impact design factors may have on models. In order 

to accomplish this goal and the larger goal of developing meaningful real-time crash prediction 

models, two phases of modeling were conducted. The first phase involved developing 36 different 

conditional logit models, one for each of the aforementioned datasets. The same procedure was 

used to develop all of the models. The second phase involved a less procedural and deeper look at 

the model development process. In this phase, hypotheses on influential variables were examined, 

and a preliminary analysis of important factors in RTCP was conducted by comparing non-

parametric estimates of the random variables calculated separately for cases only and controls 

only. A permutation test was used, in addition to visual inspection, to assess the differences in the 

densities between crash/pre-crash and non-crash variables. 
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As previously mentioned, a relatively static procedure was used to develop the models for the 

first phase of the RTCPM efforts. The idea here was to have a relatively repeatable process and 

associated model selection criteria to use to develop each of the 36 models, such that they could 

be compared after development. In order to do this, a forward stepwise regression procedure 

considering first-order terms (i.e., no interactions) only was applied (Hastie et al. 2009). The steps 

of the stepwise procedure were as follows. The use of such a modeling procedure is not to 

necessarily advocate for its usage as stepwise procedures can sometimes lead to non-intuitive 

results, but rather to rely on the use of a consistent modeling method. 

1. Begin with no terms in the conditional logit model. Determine what single term will 

lead to the best fit (here, assessed based on the value of the Akaike Information 

Criterion (AIC)), and add that term (if p-val<0.05). 

2. From the remaining predictors, first determine which predictors are substantially 

correlated (define based on a threshold value of the Pearson correlation coefficient, ρ, 

exceeding 0.4) with the current predictor in the model and remove them from 

consideration so as to avoid multi-collinearity. From the remaining set of predictors, 

determine which one predictor, if any, will improve model fit (again based on AIC). 

If such a predictor is found, add it (if p-val<0.05). If not, stop here. 

3. Repeat Step 2 until no further predictors (that meet the criteria for preventing multi-

collinearity as previously defined) can be added (with p-val<0.05) to improve the 

model fit (i.e., decrease the AIC). At this point, stop and take the final model. 

The procedure used for the second phase of the modeling will be described in the modeling 

results section in advance of the second phase results. 
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In the following tables, summary data for the predictors used in a selection of the 36 

datasets are provided, and general trends are discussed after. As there are a lot of tables, the 

following only shows summary statistics for datasets with an upstream data collection range of 

0.5, 1.0, and 1.5 miles, and a downstream range of 0.5 miles; these data are shown in Table 4-3 

through Table 4-14. All other tables can be seen in the appendix. In cases where the variable 

involved of interest is binary, the “Mean” column is used to show the proportion of ones in the 

data. Each individual table shows: 

1. Data collected based on either Control Definition #1 or #2; 

2. Summary statistics for upstream (denoted with a green highlighted cell) or 

downstream (denoted with an orange highlighted cell) data; and  

3. Data from all crash types and data from multi-vehicle crashes only. 
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Table 4-3 Dataset for Control Def. #1 Upstream=0.5 mi, downstream=0.5mi (UP-stream 

portion only) 

Control Definition #1 (same location, day of week, and time) 

  All Multi-Veh Only 

Variable Name 
Time 

Period 
Min Max Mean SD Min Max Mean SD 

Sample Size 

5-10 min. 
before crash 

1 15 4.35 2.54 1 15 4.40 2.56 

Avg. Speed 8.51 72.30 41.28 13.77 8.51 72.30 40.83 13.61 

Min. Speed 0.00 69.77 6.82 13.50 0.00 69.77 6.49 13.15 

Max. Speed 27.79 99.98 76.55 10.96 27.79 99.98 76.46 10.91 

HBE Count 0 244 4.45 16.00 0 244 4.32 15.56 

HAE Count 0 266 3.85 15.77 0 266 3.70 15.35 
Severe Jerk 

Count 
0 120 1.08 5.28 0 120 1.02 5.01 

SD Speed 2.08 29.75 16.53 5.17 2.08 29.75 16.67 5.06 

SD Acceleration 0.04 46.19 2.82 3.39 0.04 46.19 2.81 3.35 

SD Jerk 0.00 49.58 2.44 4.43 0.00 49.58 2.40 4.37 

CVS 0.03 1.65 0.47 0.24 0.03 1.65 0.48 0.24 

Rain 
  

0.01 
  

0.01 
  

Fog 0.01 0.01 

Sample Size 

10-15 min. 
before crash 

1 18 4.42 2.65 1 18 4.48 2.67 

Avg. Speed 8.65 74.01 41.67 13.51 8.65 74.01 41.22 13.39 

Min. Speed 0.00 69.08 7.23 14.29 0.00 69.08 6.87 13.89 

Max. Speed 19.82 99.98 76.34 10.85 19.82 99.98 76.30 10.88 

HBE Count 0 240 4.86 16.58 0 240 4.82 16.37 

HAE Count 0 260 4.28 16.25 0 260 4.25 16.07 
Severe Jerk 

Count 
0 120 1.12 5.38 0 120 1.10 5.36 

SD Speed 1.50 31.94 16.42 5.36 1.50 31.94 16.55 5.26 

SD Acceleration 0.03 32.84 2.77 3.24 0.03 32.84 2.78 3.27 

SD Jerk 0.00 50.70 2.50 4.46 0.00 50.70 2.52 4.49 

CVS 0.02 1.44 0.46 0.24 0.02 1.44 0.47 0.24 
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Table 4-4 Dataset for Control Def. #1 Upstream=0.5 mi, downstream=0.5mi (DOWN-

stream portion only) 

Control Definition #1 (same location, day of week, and time) 

  All Multi-Veh Only 

Variable Name 
Time 

Period 
Min Max Mean SD Min Max Mean SD 

Sample Size 

5-10 min. 
before crash 

1 17 4.38 2.66 1 17 4.41 2.66 

Avg. Speed 8.64 72.30 41.12 13.79 8.64 72.30 40.68 13.68 

Min. Speed 0.00 69.77 7.26 14.38 0.00 69.77 6.97 14.03 

Max. Speed 28.20 99.98 76.60 11.03 28.20 99.98 76.48 11.02 

HBE Count 0 244 4.75 16.63 0 244 4.56 15.95 

HAE Count 0 266 4.13 16.32 0 266 3.93 15.69 
Severe Jerk 

Count 
0 120 1.15 5.48 0 120 1.09 5.20 

SD Speed 0.98 32.68 16.45 5.35 0.98 32.68 16.55 5.24 

SD Acceleration 0.02 41.74 2.79 3.29 0.02 41.74 2.80 3.30 

SD Jerk 0.00 77.03 2.46 4.77 0.00 77.03 2.46 4.78 

CVS 0.02 1.42 0.47 0.24 0.02 1.42 0.48 0.24 

Rain 
  

0.01 
  

0.01 
  

Fog 0.01 0.01 

Sample Size 

10-15 min. 
before crash 

1 16 4.40 2.62 1 16 4.46 2.62 

Avg. Speed 8.65 73.85 41.50 13.46 8.65 73.85 41.09 13.36 

Min. Speed 0.00 64.07 6.96 13.75 0.00 64.07 6.63 13.34 

Max. Speed 28.06 99.97 76.37 10.93 28.06 99.97 76.34 10.94 

HBE Count 0 272 4.99 17.58 0 272 4.93 17.41 

HAE Count 0 165 4.22 15.97 0 165 4.19 15.80 
Severe Jerk 

Count 
0 57 1.11 4.88 0 57 1.10 4.83 

SD Speed 1.73 29.08 16.45 5.27 1.73 29.08 16.55 5.19 

SD Acceleration 0.02 28.30 2.79 3.20 0.02 28.30 2.81 3.24 

SD Jerk 0.00 47.90 2.48 4.47 0.00 47.90 2.49 4.51 

CVS 0.03 1.20 0.47 0.24 0.03 1.20 0.47 0.24 
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Table 4-5 Dataset for Control Def. #2 Upstream=0.5 mi, downstream=0.5mi (UP-stream 

portion only) 

Control Definition #2 (same location, random time) 

  All Multi-Veh Only 

Variable Name 
Time 

Period 
Min Max Mean SD Min Max Mean SD 

Sample Size 

5-10 min. 
before crash 

1 17 3.89 2.52 1 17 3.93 2.54 

Avg. Speed 8.51 74.85 46.36 14.18 8.51 74.85 46.07 14.25 

Min. Speed 0.00 66.55 10.82 17.99 0.00 66.55 10.57 17.86 

Max. Speed 22.39 99.99 77.12 10.83 22.39 99.99 77.06 10.82 

HBE Count 0 315 5.02 19.92 0 315 5.11 20.33 

HAE Count 0 314 4.41 19.79 0 314 4.52 20.22 
Severe Jerk 

Count 
0 120 1.29 7.05 0 120 1.33 7.24 

SD Speed 0.36 30.51 14.89 6.14 0.36 30.51 14.95 6.08 

SD Acceleration 0.01 45.42 2.96 3.91 0.01 45.42 2.97 3.89 

SD Jerk 0.00 75.36 2.63 5.45 0.00 75.36 2.64 5.47 

CVS 0.01 1.65 0.39 0.25 0.01 1.65 0.40 0.25 

Rain 
  

0.01 
  

0.01 
  

Fog 0.02 0.02 

Sample Size 

10-15 min. 
before crash 

1 17 3.81 2.47 1 17 3.84 2.49 

Avg. Speed 8.65 77.31 46.70 14.32 8.65 77.31 46.33 14.38 

Min. Speed 0.00 66.70 11.61 18.42 0.00 66.70 11.33 18.27 

Max. Speed 19.20 99.98 77.38 10.93 19.20 99.98 77.26 10.92 

HBE Count 0 240 4.36 15.71 0 240 4.36 15.86 

HAE Count 0 260 3.81 15.70 0 260 3.81 15.90 
Severe Jerk 

Count 
0 120 1.05 5.70 0 120 1.07 5.84 

SD Speed 0.68 30.70 14.81 6.34 0.68 30.70 14.90 6.31 

SD Acceleration 0.02 33.30 2.73 3.49 0.02 33.30 2.75 3.54 

SD Jerk 0.00 41.88 2.42 4.64 0.00 41.88 2.43 4.69 

CVS 0.01 1.59 0.39 0.25 0.01 1.59 0.39 0.25 
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Table 4-6 Dataset for Control Def. #2 Upstream=0.5 mi, downstream=0.5mi (DOWN-

stream portion only) 

Control Definition #2 (same location, random time) 

  All Multi-Veh Only 

Variable Name 
Time 

Period 
Min Max Mean SD Min Max Mean SD 

Sample Size 

5-10 min. 
before crash 

1 21 3.79 2.49 1 21 3.82 2.50 

Avg. Speed 6.98 74.85 46.59 14.32 6.98 74.85 46.27 14.40 

Min. Speed 0.00 66.14 12.12 18.85 0.00 66.14 11.87 18.65 

Max. Speed 15.56 99.98 77.19 10.71 15.56 99.98 77.06 10.72 

HBE Count 0 316 5.14 19.91 0 316 5.19 20.11 

HAE Count 0 315 4.57 19.89 0 315 4.64 20.17 
Severe Jerk 

Count 
0 120 1.30 6.80 0 120 1.33 6.96 

SD Speed 0.59 30.27 14.65 6.26 0.75 30.27 14.71 6.19 

SD Acceleration 0.01 44.05 2.76 3.46 0.01 44.05 2.75 3.45 

SD Jerk 0.00 78.05 2.44 4.90 0.00 78.05 2.44 4.91 

CVS 0.01 1.45 0.39 0.25 0.01 1.45 0.39 0.25 

Rain 
  

0.01 
  

0.01 
  

Fog 0.02 0.02 

Sample Size 

10-15 min. 
before crash 

1 16 3.73 2.46 1 16 3.75 2.46 

Avg. Speed 8.65 77.31 46.81 14.13 8.65 77.31 46.47 14.21 

Min. Speed 0.00 66.70 11.81 18.37 0.00 66.70 11.59 18.24 

Max. Speed 25.65 99.85 76.80 10.69 25.65 99.85 76.72 10.74 

HBE Count 0 248 4.06 14.51 0 248 4.07 14.65 

HAE Count 0 253 3.54 14.27 0 253 3.55 14.44 
Severe Jerk 

Count 
0 155 0.96 5.37 0 155 0.97 5.49 

SD Speed 1.33 39.15 14.76 6.30 1.33 39.15 14.82 6.27 

SD Acceleration 0.01 28.30 2.67 3.35 0.01 28.30 2.66 3.32 

SD Jerk 0.00 47.41 2.34 4.62 0.00 47.41 2.33 4.62 

CVS 0.02 1.59 0.38 0.25 0.02 1.59 0.39 0.25 
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Table 4-7 Dataset for Control Def. #1 Upstream=1.0 mi, downstream=0.5mi (UP-stream 

portion only) 

Control Definition #1 (same location, day of week, and time) 

  All Multi-Veh Only 

Variable Name 
Time 

Period 
Min Max Mean SD Min Max Mean SD 

Sample Size 

5-10 min. 
before crash 

1 22 6.37 3.65 1 22 6.44 3.66 

Avg. Speed 8.51 72.30 41.52 13.28 8.51 72.30 41.05 13.14 

Min. Speed 0.00 69.77 5.18 12.10 0.00 69.77 5.03 11.91 

Max. Speed 33.66 99.98 78.74 10.89 33.66 99.98 78.67 10.91 

HBE Count 0 244 5.08 15.91 0 244 4.99 15.56 

HAE Count 0 266 4.27 15.62 0 266 4.16 15.29 
Severe Jerk 

Count 
0 120 1.18 5.12 0 120 1.14 4.89 

SD Speed 0.93 29.86 16.88 5.02 0.93 29.86 16.99 4.94 

SD Acceleration 0.02 38.53 3.12 3.50 0.02 38.53 3.11 3.47 

SD Jerk 0.00 66.99 2.85 4.81 0.00 66.99 2.83 4.77 

CVS 0.02 1.84 0.47 0.24 0.02 1.84 0.48 0.23 

Rain 
  

0.01 
  

0.01 
  

Fog 0.01 0.01 

Sample Size 

10-15 min. 
before crash 

1 22 6.45 3.65 1.00 22.00 6.52 3.68 

Avg. Speed 8.81 70.60 41.82 13.16 8.81 70.60 41.32 13.06 

Min. Speed 0.00 65.27 5.17 12.30 0.00 65.27 5.02 12.13 

Max. Speed 14.12 99.98 78.54 10.69 14.12 99.98 78.41 10.68 

HBE Count 0 240 5.85 17.71 0 240 5.72 17.19 

HAE Count 0 260 5.01 17.27 0 260 4.87 16.76 
Severe Jerk 

Count 
0 120 1.35 5.67 0 120 1.30 5.41 

SD Speed 1.47 28.93 16.73 5.04 1.47 28.93 16.84 4.97 

SD Acceleration 0.02 32.14 3.09 3.21 0.02 32.14 3.10 3.24 

SD Jerk 0.00 42.20 2.86 4.42 0.00 42.20 2.86 4.44 

CVS 0.02 1.44 0.47 0.23 0.02 1.44 0.47 0.23 
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Table 4-8 Dataset for Control Def. #1 Upstream=1.0 mi, downstream=0.5mi (DOWN-

stream portion only) 

Control Definition #1 (same location, day of week, and time) 

  All Multi-Veh Only 

Variable Name 
Time 

Period 
Min Max Mean SD Min Max Mean SD 

Sample Size 

5-10 min. 
before crash 

1 17 4.20 2.64 1 17 4.24 2.64 

Avg. Speed 8.64 72.30 41.60 13.78 8.64 72.30 41.13 13.68 

Min. Speed 0.00 69.77 7.97 15.05 0.00 69.77 7.62 14.63 

Max. Speed 17.53 99.98 76.12 11.22 17.53 99.98 76.01 11.23 

HBE Count 0 244 4.40 15.84 0 244 4.24 15.22 

HAE Count 0 266 3.79 15.53 0 266 3.61 14.96 
Severe Jerk 

Count 
0 120 1.06 5.21 0 120 1.00 4.96 

SD Speed 0.28 32.68 16.28 5.49 0.28 32.68 16.40 5.37 

SD Acceleration 0.00 41.74 2.76 3.33 0.00 41.74 2.77 3.36 

SD Jerk 0.00 77.03 2.41 4.75 0.00 77.03 2.42 4.77 

CVS 0.00 1.42 0.46 0.24 0.00 1.42 0.47 0.24 

Rain 
  

0.01 
  

0.01 
  

Fog 0.01 0.01 

Sample Size 

10-15 min. 
before crash 

1 16 4.23 2.59 1 16 4.29 2.60 

Avg. Speed 8.65 73.85 41.96 13.43 8.65 73.85 41.52 13.33 

Min. Speed 0.00 64.07 7.58 14.35 0.00 64.07 7.22 13.92 

Max. Speed 28.06 99.97 76.07 11.14 28.06 99.97 76.00 11.15 

HBE Count 0 272 4.71 17.07 0 272 4.68 16.95 

HAE Count 0 165 3.98 15.62 0 165 3.96 15.50 
Severe Jerk 

Count 
0 57 1.04 4.68 0 57 1.04 4.64 

SD Speed 0.28 30.32 16.31 5.42 0.28 30.32 16.41 5.34 

SD Acceleration 0.00 34.30 2.77 3.32 0.00 34.30 2.79 3.37 

SD Jerk 0.00 47.90 2.43 4.54 0.00 47.90 2.45 4.58 

CVS 0.00 1.20 0.46 0.24 0.00 1.20 0.46 0.24 
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Table 4-9 Dataset for Control Def. #2 Upstream=1.0 mi, downstream=0.5mi (UP-stream 

portion only) 

Control Definition #2 (same location, random time) 

  All Multi-Veh Only 

Variable Name 
Time 

Period 
Min Max Mean SD Min Max Mean SD 

Sample Size 

5-10 min. 
before crash 

1 26 5.41 3.53 1 26 5.47 3.57 

Avg. Speed 8.51 74.85 46.86 13.67 8.51 74.85 46.60 13.75 

Min. Speed 0.00 65.94 8.66 16.68 0.00 65.94 8.48 16.56 

Max. Speed 26.19 99.99 79.06 10.60 26.19 99.99 79.01 10.62 

HBE Count 0 315 5.27 19.14 0 315 5.37 19.51 

HAE Count 0 314 4.43 18.97 0 314 4.53 19.38 
Severe Jerk 

Count 
0 120 1.30 6.69 0 120 1.34 6.86 

SD Speed 0.36 36.62 15.34 5.96 0.36 36.62 15.39 5.92 

SD Acceleration 0.00 42.84 3.21 3.83 0.00 42.84 3.23 3.85 

SD Jerk 0.00 69.06 2.83 5.24 0.00 69.06 2.84 5.28 

CVS 0.01 1.84 0.39 0.24 0.01 1.84 0.40 0.24 

Rain 
  

0.01 
  

0.01 
  

Fog 0.02 0.02 

Sample Size 

10-15 min. 
before crash 

1 25 5.46 3.51 1 25 5.50 3.52 

Avg. Speed 9.10 77.27 47.28 13.82 9.10 77.27 46.96 13.88 

Min. Speed 0.00 66.70 9.30 17.11 0.00 66.70 9.09 16.92 

Max. Speed 19.20 99.98 79.30 10.30 19.20 99.98 79.17 10.33 

HBE Count 0 240 5.00 15.96 0 240 5.03 16.15 

HAE Count 0 260 4.18 15.83 0 260 4.21 16.06 
Severe Jerk 

Count 
0 120 1.20 5.75 0 120 1.22 5.88 

SD Speed 1.23 30.63 15.15 6.02 1.23 30.63 15.22 5.98 

SD Acceleration 0.01 41.68 3.06 3.77 0.02 41.68 3.07 3.78 

SD Jerk 0.00 59.48 2.71 4.88 0.00 59.48 2.71 4.91 

CVS 0.02 1.60 0.39 0.24 0.02 1.60 0.39 0.24 
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Table 4-10 Dataset for Control Def. #2 Upstream=1.0 mi, downstream=0.5mi (DOWN-

stream portion only) 

Control Definition #2 (same location, random time) 

  All Multi-Veh Only 

Variable Name 
Time 

Period 
Min Max Mean SD Min Max Mean SD 

Sample Size 

5-10 min. 
before crash 

1 21 3.56 2.43 1 21 3.57 2.44 

Avg. Speed 6.98 74.85 47.45 14.13 6.98 74.85 47.19 14.19 

Min. Speed 0.00 67.43 13.24 19.86 0.00 67.43 12.96 19.66 

Max. Speed 15.56 99.98 76.83 10.62 15.56 99.98 76.73 10.63 

HBE Count 0 316 4.71 18.71 0 316 4.76 18.90 

HAE Count 0 315 4.15 18.71 0 315 4.21 18.97 
Severe Jerk 

Count 
0 120 1.18 6.37 0 120 1.21 6.51 

SD Speed 0.59 36.62 14.41 6.46 0.75 36.62 14.47 6.40 

SD Acceleration 0.01 44.05 2.77 3.52 0.01 44.05 2.77 3.51 

SD Jerk 0.00 78.05 2.37 4.79 0.00 78.05 2.36 4.80 

CVS 0.01 1.45 0.37 0.25 0.01 1.45 0.38 0.25 

Rain 
  

0.01 
  

0.01 
  

Fog 0.02 0.02 

Sample Size 

10-15 min. 
before crash 

1 16 3.51 2.40 1 16 3.53 2.40 

Avg. Speed 8.65 77.31 47.63 14.00 8.65 77.31 47.36 14.07 

Min. Speed 0.00 66.70 13.02 19.38 0.00 66.70 12.84 19.28 

Max. Speed 25.65 99.85 76.49 10.72 25.65 99.85 76.41 10.77 

HBE Count 0 248 3.74 13.67 0 248 3.76 13.80 

HAE Count 0 253 3.24 13.49 0 253 3.27 13.65 
Severe Jerk 

Count 
0 155 0.88 5.00 0 155 0.90 5.12 

SD Speed 0.53 39.15 14.48 6.44 0.53 39.15 14.52 6.41 

SD Acceleration 0.00 41.67 2.69 3.60 0.00 41.67 2.68 3.59 

SD Jerk 0.00 47.41 2.28 4.68 0.00 47.41 2.27 4.68 

CVS 0.01 1.59 0.37 0.24 0.01 1.59 0.37 0.25 
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Table 4-11 Dataset for Control Def. #1 Upstream=1.5 mi, downstream=0.5mi (UP-stream 

portion only) 

Control Definition #1 (same location, day of week, and time) 

  All Multi-Veh Only 

Variable Name 
Time 

Period 
Min Max Mean SD Min Max Mean SD 

Sample Size 

5-10 min. 
before crash 

1 27 7.96 4.44 1 27 8.07 4.45 

Avg. Speed 8.51 72.30 41.85 13.19 8.51 72.30 41.33 13.05 

Min. Speed 0.00 69.77 4.67 11.74 0.00 69.77 4.42 11.37 

Max. Speed 33.66 99.98 79.91 10.51 33.66 99.98 79.88 10.52 

HBE Count 0 244 5.77 16.76 0 244 5.72 16.52 

HAE Count 0 266 4.81 16.32 0 266 4.73 16.08 
Severe Jerk 

Count 
0 120 1.32 5.28 0 120 1.28 5.08 

SD Speed 2.14 29.49 16.96 4.93 2.14 29.49 17.11 4.82 

SD Acceleration 0.02 35.64 3.19 3.30 0.02 35.64 3.20 3.30 

SD Jerk 0.00 61.20 2.99 4.63 0.00 61.20 2.98 4.61 

CVS 0.03 1.83 0.47 0.23 0.03 1.83 0.48 0.23 

Rain 
  

0.01 
  

0.01   

Fog 0.01 0.01   

Sample Size 

10-15 min. 
before crash 

1 32 8.11 4.55 1 32 8.22 4.56 

Avg. Speed 9.10 69.56 42.09 13.05 9.10 69.56 41.59 12.95 

Min. Speed 0.00 62.91 4.44 11.45 0.00 62.91 4.24 11.14 

Max. Speed 42.06 99.98 79.93 10.45 42.06 99.98 79.84 10.44 

HBE Count 0 240 6.79 19.26 0 240 6.69 18.84 

HAE Count 0 260 5.79 18.79 0 260 5.68 18.37 
Severe Jerk 

Count 
0 120 1.56 6.02 0 120 1.52 5.81 

SD Speed 1.50 28.94 16.85 4.96 1.50 28.94 16.97 4.87 

SD Acceleration 0.03 26.29 3.22 3.10 0.03 26.29 3.23 3.13 

SD Jerk 0.00 36.63 3.07 4.44 0.00 36.63 3.07 4.47 

CVS 0.02 1.39 0.47 0.23 0.02 1.39 0.47 0.23 
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Table 4-12 Dataset for Control Def. #1 Upstream=1.5 mi, downstream=0.5mi (DOWN-

stream portion only) 

Control Definition #1 (same location, day of week, and time) 

  All Multi-Veh Only 

Variable Name 
Time 

Period 
Min Max Mean SD Min Max Mean SD 

Sample Size 

5-10 min. 
before 
crash 

1 17 4.13 2.63 1 17 4.17 2.64 

Avg. Speed 8.64 72.30 41.90 13.80 8.64 72.30 41.40 13.69 

Min. Speed 0.00 69.77 8.38 15.38 0.00 69.77 8.01 14.96 

Max. Speed 17.53 99.98 75.94 11.22 17.53 99.98 75.82 11.23 

HBE Count 0 244 4.28 15.60 0 244 4.12 15.01 

HAE Count 0 266 3.68 15.29 0 266 3.52 14.74 
Severe Jerk 

Count 
0 120 1.03 5.13 0 120 0.98 4.88 

SD Speed 0.28 32.68 16.18 5.55 0.28 32.68 16.32 5.43 

SD Acceleration 0.00 41.74 2.73 3.34 0.00 41.74 2.74 3.37 

SD Jerk 0.00 77.03 2.38 4.73 0.00 77.03 2.38 4.76 

CVS 0.00 1.42 0.46 0.25 0.00 1.42 0.47 0.24 

Rain 
  

0.01 
  

0.01 
  

Fog 0.01 0.01 

Sample Size 

10-15 min. 
before 
crash 

1 16 4.17 2.58 1 16 4.23 2.59 

Avg. Speed 8.65 73.85 42.26 13.44 8.65 73.85 41.81 13.36 

Min. Speed 0.00 64.07 7.91 14.70 0.00 64.07 7.52 14.25 

Max. Speed 28.06 99.97 76.03 11.12 28.06 99.97 75.95 11.12 

HBE Count 0 272 4.64 16.86 0 272 4.60 16.76 

HAE Count 0 165 3.92 15.44 0 165 3.90 15.34 
Severe Jerk 

Count 
0 57 1.01 4.61 0 57 1.01 4.58 

SD Speed 0.28 30.32 16.22 5.48 0.28 30.32 16.32 5.39 

SD Acceleration 0.00 34.30 2.74 3.29 0.00 34.30 2.75 3.33 

SD Jerk 0.00 47.90 2.40 4.50 0.00 47.90 2.42 4.54 

CVS 0.00 1.20 0.45 0.24 0.00 1.20 0.46 0.24 
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Table 4-13 Dataset for Control Def. #2 Upstream=1.5 mi, downstream=0.5mi (UP-stream 

portion only) 

Control Definition #2 (same location, random time) 

  All Multi-Veh Only 

Variable Name 
Time 

Period 
Min Max Mean SD Min Max Mean SD 

Sample Size 

5-10 min. 
before crash 

1 26 6.70 4.27 1 26 6.78 4.31 

Avg. Speed 8.51 74.73 47.16 13.50 8.51 74.73 46.92 13.58 

Min. Speed 0.00 67.02 7.86 16.09 0.00 67.02 7.70 16.01 

Max. Speed 25.26 99.99 80.04 10.21 25.26 99.99 80.00 10.21 

HBE Count 0 315 5.65 19.35 0 315 5.77 19.72 

HAE Count 0 314 4.70 19.07 0 314 4.81 19.47 
Severe Jerk 

Count 
0 120 1.38 6.76 0 120 1.43 6.93 

SD Speed 0.36 36.62 15.46 5.86 0.36 36.62 15.51 5.82 

SD Acceleration 0.00 36.56 3.28 3.68 0.00 36.56 3.30 3.70 

SD Jerk 0.00 60.96 2.92 5.11 0.00 60.96 2.95 5.15 

CVS 0.01 1.83 0.39 0.24 0.01 1.83 0.39 0.24 

Rain 
  

0.01 
  

0.01 
  

Fog 0.02 0.02 

Sample Size 

10-15 min. 
before crash 

1 27 6.83 4.27 1 27 6.88 4.28 

Avg. Speed 9.10 73.56 47.54 13.61 9.10 73.56 47.27 13.68 

Min. Speed 0.00 66.78 8.48 16.64 0.00 66.78 8.30 16.47 

Max. Speed 45.63 99.98 80.37 10.04 45.63 99.98 80.26 10.05 

HBE Count 0 240 5.74 17.78 0 240 5.77 17.96 

HAE Count 0 260 4.81 17.54 0 260 4.83 17.75 
Severe Jerk 

Count 
0 120 1.40 6.42 0 120 1.42 6.55 

SD Speed 1.23 29.51 15.23 5.94 1.23 29.51 15.29 5.90 

SD Acceleration 0.02 41.68 3.16 3.67 0.02 41.68 3.16 3.69 

SD Jerk 0.00 58.17 2.88 4.84 0.00 58.17 2.88 4.87 

CVS 0.02 1.60 0.38 0.24 0.02 1.60 0.39 0.24 
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Table 4-14 Dataset for Control Def. #2 Upstream=1.5 mi, downstream=0.5mi (UP-stream 

portion only) 

Control Definition #2 (same location, random time) 

  All Multi-Veh Only 

Variable Name 
Time 

Period 
Min Max Mean SD Min Max Mean SD 

Sample Size 

5-10 min. 
before 
crash 

1.00 21.00 3.51 2.42 1.00 21.00 3.52 2.42 

Avg. Speed 6.98 74.85 47.70 14.13 6.98 74.85 47.45 14.19 

Min. Speed 0.00 67.43 13.76 20.23 0.00 67.43 13.49 20.03 

Max. Speed 15.56 99.98 76.66 10.63 15.56 99.98 76.55 10.63 

HBE Count 0.00 316.00 4.53 18.34 0.00 316.00 4.58 18.51 

HAE Count 0.00 315.00 3.99 18.33 0.00 315.00 4.05 18.57 
Severe Jerk 

Count 
0.00 120.00 1.14 6.24 0.00 120.00 1.16 6.38 

SD Speed 0.59 36.62 14.27 6.53 0.75 36.62 14.34 6.47 

SD Acceleration 0.01 44.05 2.72 3.49 0.01 44.05 2.72 3.48 

SD Jerk 0.00 78.05 2.30 4.72 0.00 78.05 2.30 4.72 

CVS 0.01 1.45 0.37 0.25 0.01 1.45 0.37 0.25 

Rain 
  

0.01 
  

0.01 
  

Fog 0.02 0.02 

Sample Size 

10-15 min. 
before 
crash 

1.00 16.00 3.45 2.38 1.00 16.00 3.47 2.38 

Avg. Speed 8.65 77.69 47.94 14.00 8.65 77.69 47.68 14.07 

Min. Speed 0.00 70.48 13.68 19.87 0.00 70.48 13.52 19.79 

Max. Speed 25.65 99.91 76.38 10.74 25.65 99.91 76.29 10.79 

HBE Count 0.00 248.00 3.64 13.41 0.00 248.00 3.65 13.53 

HAE Count 0.00 253.00 3.15 13.23 0.00 253.00 3.17 13.38 
Severe Jerk 

Count 
0.00 155.00 0.85 4.90 0.00 155.00 0.87 5.01 

SD Speed 0.53 39.15 14.30 6.50 0.53 39.15 14.34 6.48 

SD Acceleration 0.00 41.67 2.65 3.58 0.00 41.67 2.64 3.57 

SD Jerk 0.00 47.41 2.24 4.64 0.00 47.41 2.23 4.64 

CVS 0.01 1.59 0.36 0.25 0.01 1.59 0.37 0.25 
 

Here, a brief overview of the aggregate data collected from the vehicle trajectories used in 

the different datasets is provided. In terms of the sample size of probe vehicles, for the tables in 

Section 4.4.5, one will notice that in most cases the minimum number of probe vehicles observed 

in a given five-minute period describing a pre-crash or normal traffic condition is one (recall all 
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intervals with zero vehicles were filtered out). This low number certainly presents chances for bias 

in the data, depending on many characteristics of the sampled vehicle such as vehicle type, driver 

behavior, etc. In a free-flow state on a freeway, traffic conditions are less variable than during 

periods with worse levels of service; as such, sampling one vehicle in said intervals may give an 

accurate representation of the true conditions. On the other hand, if the lone sampled vehicle 

demonstrates behavior substantially different than the average behavior of the traffic stream, such 

measurements would be biased. The maximum number of vehicles sampled in a five-minute 

interval in Table 4-3 through Table 4-14 was 27, and in general, as the spatial extent of the study 

area increased (i.e., data were collected over a greater distance upstream and/or downstream), the 

sample size of probe vehicles increased. 

 In terms of speed values in Table 4-3 through Table 4-14, three speed metrics were 

considered, those being average, minimum, and maximum. Each of these (and their supporting 

metrics) were calculated using a pool of all sampled vehicle speeds in a given spatial-temporal 

window. Minimum speeds were as low as 0.00 mph (most likely during jam states), while 

maximum speeds approached 100.00 mph. That said, all speed values greater than 100.00 were 

filtered out of the dataset similar to (Abdel-Aty and Abdalla 2004). Average speeds ranged from 

less than 10.00 mph to values approaching 80.00 mph in cases where the sample of probes was 

small (i.e., 1).  

 For values of the counts of hard-braking events, hard-acceleration events, and severe jerk 

events, values of each ranged from 0 in the case of sampling 1 vehicle, to values in the low 

hundreds for periods with higher sample sizes. Average values of standard deviations of 

acceleration and jerk, however, were typically lower than the averages of standard deviation of 

speed. That said, it is important to interpret the results surrounding higher-order derivatives of 
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speed with caution and consider the potential impacts of lower sample size and lower sampling 

resolutions. Finally, in terms of the weather-related variables, rain was present for about one 

percent of the data points for most datasets, while fog was present for no more than two percent of 

data points.  
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Chapter 5. REAL-TIME CRASH PREDICTION MODELING 

RESULTS 

The following section presents the modeling results and supporting discussion for the 

models based upon the study design in the previous chapter. 

5.1 PRESENTATION OF RESULTS FOR INITIAL MODELS 

As described in Chapter 4, a matched case-control study design was used to generate 

datasets to study factors associated with crash occurrence, via conditional logit models. The first 

phase of the modeling involved using a forward stepwise regression procedure (focusing on main 

effects only) in an effort to compare how different factors including choice/definition of controls, 

type of crash (all vs. multi-vehicle only), upstream range of data collection (0.5, 1.0, 1.5 miles), 

downstream range of data collection (0.0, 0.5, 1.0, 1.5 miles) may affect model results and 

interpretation based on the probe vehicle dataset used herein. For each model, the following are 

presented: 

• Coefficient (coeff) estimates with standard error (SE), Z-statistic (Z stat) value, p-

value, estimated odds ratio (i.e., exp(coeff)), and a 95% confidence interval for the 

odds ratio; 

• Test statistics, supporting degrees of freedom (DF), and associated p-values; 

• AIC value to measure goodness of fit (the AIC presented was the lowest value 

found in the stepwise procedure; 

• The number of samples (cases [data collected in pre-crash time periods] + controls 

[data collected under normal conditions]), denoted as n; and 
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• The number of cases, denoted ncrash. 

As was the case with the previous section, the presentation of results will focus on a subset 

of the 36 models, specifically all of those with a downstream data collection distance of 0.5 mi. 

These models are relatively representative of the entire group of 36 in terms of the main effects, 

coefficient values, etc. Data on the remaining 24 models is presented in the appendix, and a 

discussion of trends across all 36 models is provided later in this chapter. 

The models with a downstream data collection distance of 0.5 miles are presented in Table 

5-1 through Table 5-12. Following their presentation, the results are interpreted. 

The models shown in Table 5-1 through Table 5-4 are based upon datasets with a 0.5 mile 

upstream and 0.5 mile downstream distance. All four of the models had downstream average speed 

(computed 5-10 minutes before the crash) as a significant variable at the 0.05 level. The 

downstream speed had a negative coefficient in all cases and an odds ratio ranging from 0.954-

0.969, meaning that for every mile per hour increase in average speed (all else held constant), the 

odds of a crash multiply by between 95-96 percent (i.e., they decrease by 4 percent). Upstream 

sample size of probe vehicles (calculated in the interval of 5-10 minutes before the crash) was 

found to be positively correlated with log odds of a crash in three of the models, with an odds ratio 

implying for every additional probe vehicle sampled (all else held constant), the odds of crash 

multiply by between 2.1 to 2.9. Finally, two models found downstream maximum speed 

(calculated 10-15 minutes before the crash) to have a positive coefficient as well. 
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Table 5-1 Model Results for Dataset 0.5 mi Upstream, 0.5 mi downstream, All Crashes, 

Control Definition #1 

 

Table 5-2 Model Results for Dataset 0.5 mi Upstream, 0.5 mi downstream, MV Crashes, 

Control Definition #1 

 

 

 

 

 

 

Distance Upstream

Variable Name Coefficient exp(coeff) SE(coeff) Z stat p-val Lower 95% Upper 95%

dn_05_510_avg_speed -0.032 0.968 0.007 -4.821 1.43E-06 0.956 0.981

up_05_510_sample_size 0.078 1.081 0.028 2.736 0.006 1.022 1.143

Test Name

Likelihood Ratio

Wald

Score (logrank)

AIC

n

ncrash

p-valTest Statistic

2

2

2
DF

395

1507

998.6994

3.00E-08

6.00E-08

2.00E-08

34.87

35.76

33.35

MODEL RESULTS

MODEL FIT

All Crashes, Controls=Def. #1 (same time, day of week, and location)

0.5 mi Distance Downstream 0.5 mi

Distance Upstream

dn_05_510_avg_speed -0.031 0.969 0.007 -4.641 3.46E-06 0.956 0.982

up_05_510_sample_size 0.085 1.088 0.029 2.932 0.003 1.029 1.152

Test Name

Likelihood Ratio

Wald

Score (logrank)

AIC

n

ncrash

2

2

2
DF

4.00E-08

8.00E-08

2.00E-08
p-val

34.26

32.76

35.09
Test Statistic

376

1446

956.3969

MODEL FIT

MODEL RESULTS

Multi-Veh Crashes Only, Controls=Def. #1 (same time, day of week, and location)

0.5 mi Distance Downstream 0.5 mi
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Table 5-3 Model Results for Dataset 0.5 mi Upstream, 0.5 mi downstream, All Crashes, 

Control Definition #2 

 

Table 5-4 Model Results for Dataset 0.5 mi Upstream, 0.5 mi downstream, MV Crashes, 

Control Definition #2 

 

The models shown in Table 5-5 through Table 5-8 are based upon datasets with a 1.0 mile 

upstream and 0.5 mile downstream distance. In two of the models, upstream average speed (in the 

5-10 minute period) was found to be negatively correlated with the log odds of a crash; and in the 

other two models, downstream average speed for the same time interval was found to be negatively 

correlated as well. In all cases, the odds ratios were quite similar and imply that for every mile per 

Distance Upstream

Variable Name Coefficient exp(coeff) SE(coeff) Z stat p-val Lower 95% Upper 95%

dn_05_510_avg_speed -0.047 0.954 0.005 -10.001 <2e-16 0.945 0.963

dn_05_1015_max_speed 0.016 1.016 0.006 2.763 0.006 1.005 1.028

Test Name

Likelihood Ratio

Wald
Score (logrank)

AIC

n

ncrash 406

984.0348
1661

111.60 2 <2e-16

100.50 2 <2e-16

114.50 2 <2e-16

MODEL RESULTS

MODEL FIT

Test Statistic DF p-val

All Crashes, Controls=Def. #2 (same location, random time)

0.5 mi Distance Downstream 0.5 mi

Distance Upstream

Variable Name Coefficient exp(coeff) SE(coeff) Z stat p-val Lower 95% Upper 95%

dn_05_510_avg_speed -0.046 0.955 0.005 -8.914 <2e-16 0.945 0.965

dn_05_1015_max_speed 0.016 1.016 0.006 2.682 0.007 1.004 1.028

up_05_510_sample_size 0.057 1.059 0.027 2.113 0.035 1.004 1.116

Test Name

Likelihood Ratio

Wald

Score (logrank)

AIC

n

ncrash

1569

384

118.30 3 <2e-16

917.1349

105.20 3 <2e-16

122.30 3 <2e-16
Test Statistic DF p-val

0.5 mi

MODEL RESULTS

MODEL FIT

Multi-Veh Crashes Only, Controls=Def. #2 (same location, random time)

0.5 mi Distance Downstream
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hour increase in average speed (all else held constant), the odds of a crash multiply by 

approximately 96 percent. Similar to the aforementioned models, downstream maximum speed (as 

calculated in the 5-10 minute time period) was found to be a significant predictor with an odds 

ratio ranging of roughly 1.01, suggesting a small impact on the odds of a crash increasing with 

increasing maximum speed. Finally, one model found downstream sample size of probe vehicles 

(in the 10-15 minute period) to be a significant predictor at the 0.05 level, with an odds ratio of 

approximately 1.07. 

Table 5-5 Model Results for Dataset 1.0 mi Upstream, 0.5 mi downstream, All Crashes, 

Control Definition #1 

 

 

 

 

 

 

 

Distance Upstream

Variable Name Coefficient exp(coeff) SE(coeff) Z stat p-val Lower 95% Upper 95%

up_10_510_avg_speed -0.037 0.964 0.007 -5.652 1.59E-08 0.951 0.976

dn_05_510_max_speed 0.014 1.014 0.006 2.464 0.014 1.003 1.025

Test Name

Likelihood Ratio

Wald

Score (logrank)

AIC

n

ncrash 431

1677

1110.326

2.00E-08

5.00E-08

2.00E-082

2

2

35.25

35.86

33.66

MODEL RESULTS

MODEL FIT

Test Statistic DF p-val

All Crashes, Controls=Def. #1 (same time, day of week, and location)

1.0 mi Distance Downstream 0.5 mi
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Table 5-6 Model Results for Dataset 1.0 mi Upstream, 0.5 mi downstream, MV Crashes, 

Control Definition #1 

 

Table 5-7 Model Results for Dataset 1.0 mi Upstream, 0.5 mi downstream, All Crashes, 

Control Definition #2 

 

 

 

 

 

Distance Upstream

Variable Name Coefficient exp(coeff) SE(coeff) Z stat p-val Lower 95% Upper 95%

up_10_510_avg_speed -0.037 0.964 0.007 -5.487 4.08E-08 0.951 0.977

dn_05_510_max_speed 0.013 1.013 0.006 2.312 0.021 1.002 1.024

Test Name

Likelihood Ratio

Wald

Score (logrank)

AIC

n

ncrash

2 2.00E-07

7.00E-082

Test Statistic

33.46 5.00E-08
p-valDF

2

31.42

MODEL FIT

410

1604

1061.795

32.87

MODEL RESULTS

Multi-Veh Crashes Only, Controls=Def. #1 (same time, day of week, and location)

1.0 mi Distance Downstream 0.5 mi

Distance Upstream

Variable Name Coefficientexp(coeff)SE(coeff) Z stat p-val Lower 95% Upper 95%

dn_05_510_avg_speed -0.045 0.956 0.005 -9.388 <2e-16 0.948 0.965

dn_05_1015_sample_size 0.068 1.070 0.026 2.628 0.009 1.017 1.126
dn_05_510_max_speed 0.012 1.012 0.006 2.186 0.029 1.001 1.023

Test Name

Likelihood Ratio
Wald

Score (logrank)

AIC

n

ncrash

<2e-16
<2e-16

<2e-16
p-valDF

3

3
3

143.10
Test Statistic

443

1996

1148.22

MODEL FIT

125.70
141.80

MODEL RESULTS

All Crashes, Controls=Def. #2 (same location, random time)

1.0 mi Distance Downstream 0.5 mi
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Table 5-8 Model Results for Dataset 1.0 mi Upstream, 0.5 mi downstream, MV Crashes, 

Control Definition #2 

 

The models in Table 5-9 through Table 5-12 are based upon datasets with a 1.5 mile upstream 

and 0.5 mile downstream distance. All models found average speed (in the 5-10 minute period) to 

be negatively associated with crash risk. In some cases, the predictor was upstream average speed 

and for others, it was downstream average speed; regardless, the odds ratio ranged between 1.01 

and 1.09. Three of the four models found upstream minimum speed (in the 10 to 15 minute period) 

to have a negative coefficient, suggesting that the odds of a crash decrease with minimum speed. 

Downstream sample size (in the 10-15 minute period) was found to be significant in three of the 

four models with an odds ratio of approximately 1.07-1.09, suggesting a roughly 8 percent increase 

in the odds of a crash with every unit increase in probe vehicle sample size (all else held constant). 

Finally, one model found maximum speed (in the 5 to 10 minute period) to have a positive 

coefficient similar to a previously mentioned model.  

 

 

Distance Upstream

Variable Name Coefficientexp(coeff)SE(coeff) Z stat p-val Lower 95% Upper 95%

dn_05_510_avg_speed -0.047 0.954 0.005 -9.501 <2e-16 0.945 0.964

dn_05_1015_sample_size 0.081 1.085 0.026 3.072 0.002 1.030 1.143

dn_05_510_max_speed 0.013 1.013 0.006 2.251 0.024 1.002 1.024

Test Name

Likelihood Ratio

Wald

Score (logrank)

AIC

n

ncrash

p-val

3

3

3

DF

152.90

Test Statistic

<2e-16

<2e-16

<2e-16

419

1889

1069.422

MODEL FIT

131.30

150.40

MODEL RESULTS

Multi-Veh Crashes Only, Controls=Def. #2 (same location, random time)

1.0 mi Distance Downstream 0.5 mi
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Table 5-9 Model Results for Dataset 1.5 mi Upstream, 0.5 mi downstream, All Crashes, 

Control Definition #1 

 

Table 5-10 Model Results for Dataset 1.5 mi Upstream, 0.5 mi downstream, MV Crashes, 

Control Definition #1 

 

 

 

 

 

Distance Upstream

Variable Name Coefficient exp(coeff) SE(coeff) Z stat p-val Lower 95% Upper 95%

up_15_510_avg_speed -0.037 0.964 0.007 -5.491 4.01E-08 0.951 0.977

dn_05_510_max_speed 0.013 1.013 0.005 2.353 0.019 1.002 1.024

up_15_1015_min_speed -0.013 0.987 0.006 -2.096 0.036 0.974 0.999

Test Name

Likelihood Ratio

Wald

Score (logrank)

AIC

n

ncrash

3

3 4.00E-09

1.00E-09

443

1734

1139.461

44.65

42.03

46.16 3 5.00E-10

MODEL RESULTS

MODEL FIT

Test Statistic DF p-val

All Crashes, Controls=Def. #1 (same time, day of week, and location)

1.5 mi Distance Downstream 0.5 mi

Distance Upstream

Variable Name Coefficient exp(coeff) SE(coeff) Z stat p-val Lower 95% Upper 95%

up_15_510_avg_speed -0.035 0.966 0.007 -5.228 1.71E-07 0.954 0.979

dn_05_510_sample_size 0.064 1.066 0.026 2.398 0.017 1.012 1.122

Test Name

Likelihood Ratio

Wald
Score (logrank)

AIC
n

ncrash

MODEL RESULTS

Multi-Veh Crashes Only, Controls=Def. #1 (same time, day of week, and location)

1.5 mi Distance Downstream 0.5 mi

5.00E-09
1.00E-08

3.00E-09

p-val

420

1654
1089.348

38.26
36.52

38.98

Test Statistic DF

2

2
2

MODEL FIT
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Table 5-11 Model Results for Dataset 1.5 mi Upstream, 0.5 mi downstream, All Crashes, 

Control Definition #2 

 

Table 5-12 Model Results for Dataset 1.5 mi Upstream, 0.5 mi downstream, MV Crashes, 

Control Definition #2 

 

5.2 DISCUSSION AND INTERPRETATION OF RESULTS 

In this section, general trends across the first phase of models are discussed. Table 5-13 

shows a summary of all of the main effects found to be significant in the 12 aforementioned 

models. In addition to simply naming the variables, an average value of the coefficient is 

Distance Upstream

Variable Name Coefficient exp(coeff) SE(coeff) Z stat p-val Lower 95% Upper 95%

dn_05_510_avg_speed -0.038 0.963 0.005 -8.043 0.000 0.954 0.972

dn_05_1015_sample_size 0.071 1.073 0.025 2.783 0.005 1.021 1.129

up_15_1015_min_speed -0.013 0.987 0.005 -2.579 0.010 0.977 0.997

Test Name

Likelihood Ratio

Wald

Score (logrank)

AIC

n

ncrash

1183.36

MODEL FIT

Test Statistic

153.10

3

3

DF

<2e-16

<2e-16

451

2083

148.60

130.70 3 <2e-16

MODEL RESULTS

p-val

All Crashes, Controls=Def. #2 (same location, random time)

1.5 mi Distance Downstream 0.5 mi

Distance Upstream

Variable Name Coefficient exp(coeff) SE(coeff) Z stat p-val Lower 95% Upper 95%

dn_05_510_avg_speed -0.040 0.961 0.005 -8.229 <2e-16 0.952 0.970

dn_05_1015_sample_size 0.085 1.089 0.026 3.245 0.001 1.034 1.146

up_15_1015_min_speed -0.012 0.988 0.005 -2.261 0.024 0.977 0.998

Test Name

Likelihood Ratio

Wald

Score (logrank)

AIC

n

ncrash

<2e-163

3

3

DF

427

1974

1105.717

Test Statistic

160.60

p-val

<2e-16

<2e-16

MODEL FIT

135.40

156.10

MODEL RESULTS

Multi-Veh Crashes Only, Controls=Def. #2 (same location, random time)

1.5 mi Distance Downstream 0.5 mi
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computed, along with standard deviation, a check of whether the sign of the coefficient is 

consistent across all models, and the odds ratio computed based on the average value of the 

coefficient. 

Table 5-13 Summary of Significant Predictors (0.05 level) across the 12 Models in Section 

5.1 

Variable 
# 

Models 

Avg. 

Coeff. 

SD. 

Coeff 

Sign 

Consistent? 
Exp(avg_coef) 

up_05_510_sample_size 8 0.069 0.024 Y 1.071 

up_05_510_avg_speed 4 -0.039 0.007 Y 0.962 

dn_05_510_sample_size 1 0.064 N/A Y 1.066 

dn_05_510_avg_speed 8 -0.041 0.006 Y 0.960 

dn_05_510_max_speed 5 0.013 0.001 Y 1.013 

dn_05_1015_sample_size 4 0.076 0.008 Y 1.079 

dn_05_1015_max_speed 1 0.016 N/A Y 1.016 

up_10_510_avg_speed 10 -0.044 0.010 Y 0.957 

up_10_1015_max_speed 2 0.013 0.001 Y 1.013 

dn_10_510_sample_size 4 0.054 0.001 Y 1.056 

dn_10_1015_hbe_count 2 0.007 0.000 Y 1.007 

up_15_510_avg_speed 14 -0.045 0.009 Y 0.956 

up_15_1015_max_speed 5 0.011 0.001 Y 1.011 
 

From the table, one will note that when possible to calculate, the standard deviations for 

the coefficients are rather small. This suggests that for the given probe vehicle dataset, the methods 

of defining controls, as well as considering all crashes versus multi-vehicle crashes only did not 

have a very large impact on the results. Clearly there is also overlap in the data between the sets, 

a fact that further reinforces the preceding point. Additionally, for all predictors in the final models, 

the signs of the coefficients are consistent across all models. Further, the signs on each predictor 

make intuitive sense and appear to be in line with previous studies. For example, in a meta-analysis 

of 11 RTCPM studies, Roshandel et al. (2015) noted that over 10 studies that investigated the 

impact of average speed on crash potential, the summary odds ratio was found to be 0.952, a value 



   
 

 
99

quite close to the values associated with average speed in Table 5-13 that range from 0.956-0.962. 

Additionally, Roshandel et al. (2015) noted that across six studies that investigated average volume 

in RTCPM applications, such variable was found to be positively associated with crash risk and 

had a summary odds ratio of 1.001. In this study, the summary odds ratio for the average volume-

like variable (here, sampled probe vehicle count, not actual volume) was found to be similar in 

magnitude 1.056-1.079. 

5.3 A DEEPER DIVE INTO REAL-TIME CRASH PREDICTION MODELING 

In the preceding section, the groundwork for a series of real-time crash prediction models 

was laid, and despite the procedural means of model fitting, results were seemingly reasonable and 

intuitive, at least when compared to past studies. In this section, additional models are built upon 

taking a closer look into the data, in terms of the distribution of variables between pre-crash and 

normal time periods, as well as the potential for inclusion of binary/categorical variables in the 

model through interaction terms. Recall that if a binary/categorical variable has a constant value 

within a stratum, then its effect cannot be estimated. Further, some additional variables such as 

upstream-downstream sample size difference and upstream-downstream speed difference were 

considered. Finally, since the results from last section appeared to be similar between datasets, for 

this section, only the datasets corresponding to an upstream data collection distance of 1.5 miles 

and a downstream data collection distance of 0.5 miles, for all crashes (i.e., single- and multi-

vehicle) were applied. 

First, kernel density estimation was used to examine how values of each of the predictors 

were distributed when comparing pre-crash versus normal conditions. In each case, a Gaussian 

kernel was used and bandwidth was automatically selected as discussed in (Bowman and Azzalini 

2019). For all variables, the density plots were inspected and the results of the permutation test 
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(i.e., H0: the two densities are the same) described in Bowman and Azzalini (2019) were also 

considered. The logic behind this portion of the investigation was to uncover variables whose 

distributions are markedly different between pre-crash and normal traffic conditions, as it was 

believed such variables may be good predictors in the conditional logit models for RTCPM. For 

brevity, Figure 5-1 through Figure 5-6 shows the KDE plots for the following scenarios, and in 

each plot, the red line represents normal conditions and the green, dashed line represents pre-crash 

conditions: 

• Control definition #1 (same location, same day of week, same time periods), UP-

stream 1.5 miles, 5-10 minutes before crash; 

• Control definition #1, DOWN-stream 0.5 miles, 5-10 minutes before crash; 

• Control definition #1, upstream-downstream differences, 5-10 and 10-15 minutes 

before crash; 

• Control definition #2 (same location, random time), UP-stream 1.5 miles, 5-10 

minutes before crash; 

• Control definition #2, DOWN-stream 0.5 miles, 5-10 minutes before crash; and 

• Control definition #2 upstream-downstream differences, 5-10 and 10-15 minutes 

before crash. 



   
 

 
101

 

Figure 5-1 KDE Plots for 1.5 mi Up-stream (5-10 minutes), Control Definition #1 
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Figure 5-2 KDE Plots for 0.5 mi Down-stream (5-10 minutes), Control Definition #1 
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Figure 5-3 KDE Plots for Upstream-Downstream Difference, Control Definition #1  

 

 

 

 

 

 

 

 

 

 

 

 



   
 

 
104

 

 

 

Figure 5-4 KDE Plots for 1.5 mi Up-stream (5-10 minutes), Control Definition #2 
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Figure 5-5 KDE Plots for 0.5 mi Down-stream (5-10 minutes), Control Definition #2 
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Figure 5-6 KDE Plots for Upstream-Downstream Difference, Control Definition #2 
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For variables defined based on data collected upstream, the density plots for average speed, 

coefficient of variation in speed (CVS), and probe sample size show substantial differences 

between pre-crash and normal conditions, with the differences appearing more prevalent for the 

datasets based on Control definition #2. This is not entirely surprising since the second definition 

of controls selects data random points in time at the same location as the crash, unlike the first 

control definition which selects data at the location of the crash on the same day of the week and 

at the same time as the crash throughout the period for which data are available; put simply, one 

would expect more variance in measurements when looking at the random time period data. 

Similar behavior is also observed for the downstream KDE plots, and minimal to no differences 

are observed for the plots describing differences between up- and down-stream data.  

With this in mind, it seems that variables including CVS, probe sample size, and average 

speed appear to have significant differences in their distributions when considering pre-crash and 

normal time periods. Further, this re-affirms the findings in the previous section. With this in mind, 

these factors were investigated, along with potential interactions, in order to fit additional models 

that perhaps make more intuitive sense than those in the aforementioned section. For example, the 

first round of variable selection in the stepwise procedure typically had to choose between many 

significant and correlated predictors. As such, the variable selected might be correlated to another 

predictor that makes the results more interpretable, but was wiped out due to multi-collinearity 

issues. For this model building process, the goal was to conclude with interpretable models for 

crash risk, whose predictors are significant (at a prescribed level), and all variables in the model 

had between-variable correlations (Pearson’s rho) of less than +/- 0.40 (in an effort to prevent 

multi-collinearity). In the following, the final models derived from this process are shown. 
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Similar to the preceding section, each of the models shown presents goodness of fit 

statistics as well as odds ratios and 95% confidence intervals for said odds ratios. The first two 

models were the output of the model fitting process for the matched case-control data defined 

according to control definition #1 (i.e., same location, same day of week, same time). 

Table 5-14 shows a model with two significant predictors at the 0.05 level: upstream 

coefficient of variation in speed (ratio of standard deviation to mean) (5-10 minute period) and 

downstream sample size (5-10 minute period). The sign and magnitude of the CVS coefficient 

suggest that as speed variation increases, that is either the mean speed decreases and/or the standard 

deviation of speed increases, the odds of a crash increase, and multiply by a factor of 5.53. For the 

downstream sample size predictor, a result indicating increases in volume positively affect the 

odds of a crash is intuitive and in line with the preceding findings. The downstream sample size 

was chosen as opposed to the upstream sample size as the upstream value was substantially 

correlated with CVS, but less so with the downstream value. 

Table 5-15 begins with the same base model as Table 5-14, but ultimately, not all predictors 

in the model were significant at the 0.05 level. However, the model was kept since most terms 

were significant at the 0.05 level and the interaction term was significant at the 0.10 level. 

Additionally, this model found upstream to downstream speed difference to be positively 

correlated with crash risk, with an odds ratio of approximately 1.84. Finally, while the main effect 

for the rain indicator was not significant at the 0.10 level, the interaction term between the rain and 

upstream to downstream speed difference variable was found to have a negative coefficient, 

perhaps indicating that when it is raining and upstream speed is greater than downstream speed, 

the odds of a crash decrease, suggesting drivers may be more cautious in the rain. 
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Table 5-14 shows a model with two significant predictors at the 0.05 level, those being 

upstream coefficient of variation in speed (ratio of standard deviation to mean) (5-10 minute 

period) and downstream sample size (5-10 minute period). With regard to CVS, the results indicate 

that as speed variation increases, that is either the mean speed decreases and/or the standard 

deviation of speed increases, the odds of a crash increase, and multiply by a factor of 8.35. For the 

downstream sample size predictor, a result indicating increases in volume positively affect the 

odds of a crash is intuitive and in line with the preceding findings. The downstream sample size 

was chosen as opposed to the upstream sample size as the upstream value was substantially 

correlated with CVS, but less so with the downstream value. 

Table 5-14 shows a model with two significant predictors at the 0.05 level: upstream 

coefficient of variation in speed (ratio of standard deviation to mean) (5-10 minute period) and 

downstream sample size (5-10 minute period). The sign and magnitude of the CVS coefficient 

suggest that as speed variation increases, that is either the mean speed decreases and/or the standard 

deviation of speed increases, the odds of a crash increase, and multiply by a factor of 5.53. For the 

downstream sample size predictor, a result indicating increases in volume positively affect the 

odds of a crash is intuitive and in line with the preceding findings. The downstream sample size 

was chosen as opposed to the upstream sample size as the upstream value was substantially 

correlated with CVS, but less so with the downstream value. 

Table 5-15 begins with the same base model as Table 5-14, but ultimately, not all predictors 

in the model were significant at the 0.05 level. However, the model was kept since most terms 

were significant at the 0.05 level and the interaction term was significant at the 0.10 level. 

Additionally, this model found upstream to downstream speed difference to be positively 

correlated with crash risk, with an odds ratio of approximately 1.84. Finally, while the main effect 
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for the rain indicator was not significant at the 0.10 level, the interaction term between the rain and 

upstream to downstream speed difference variable was found to have a negative coefficient, 

perhaps indicating that when it is raining and upstream speed is greater than downstream speed, 

the odds of a crash decrease, suggesting drivers may be more cautious in the rain. 

Table 5-14 Primary Model for 1.5mi Upstream, 0.5mi Downstream Data (Control Def. #1) 

 

 

 

 

 

 

 

 

 

 

 

 

Distance Upstream

Variable Name Coefficient exp(coeff) SE(coeff) Z stat p-val Lower 95% Upper 95%

up_15_510_coeff_var_speed 1.710 5.531 0.357 4.792 1.65E-06 2.748 11.133

dn_05_510_sample_size 0.063 1.065 0.026 2.433 0.010 1.012 1.121

Test Name

Likelihood Ratio

Wald

Score (logrank)

AIC

n

ncrash

All Crashes, Controls=Def. #1 (same time, day of week, and location)

1.5 mi Distance Downstream 0.5 mi

MODEL RESULTS

MODEL FIT

Test Statistic DF p-val

34.72 2 3.00E-08

32.63 2 8.00E-08

34.84 2 3.00E-08

1148.901

1734

443
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Table 5-15 Secondary Model for 1.5mi Upstream, 0.5mi Downstream Data (Control Def. 

#1) 

 

Table 5-16 shows a model with two significant predictors at the 0.05 level, those being 

upstream coefficient of variation in speed (5-10 minute period) and downstream sample size (5-

10 minute period). With regard to CVS, the results indicate that as speed variation increases, the 

odds of a crash increase, and multiply by a factor of 8.35. For the downstream sample size 

predictor, a result indicating increases in volume positively affect the odds of a crash is intuitive 

and in line with the preceding findings.  

Table 5-17 begins with the same base model as that in Table 5-16, but ultimately, not all 

predictors in the model were significant at the 0.05 level. Again, the model was evaluated since 

most terms were significant at the 0.05 level and the interaction term was significant at the 0.10 

level. Like the preceding model with the interaction term, this model found upstream to 

downstream speed difference to be positively correlated with crash risk, with an odds ratio of 

approximately 1.22. Finally, while the main effect for the rain indicator was not significant at the 

Distance Upstream

Variable Name Coefficient exp(coeff) SE(coeff) Z stat p-val Lower 95% Upper 95%

up_15_510_coeff_var_speed 1.792 5.999 0.368 4.870 1.12E-06 2.917 12.337
dn_05_510_sample_size 0.062 1.064 0.026 2.391 0.017 1.011 1.120

up_down_speed_diff_510 0.226 1.254 0.123 1.843 0.065 0.986 1.595

rain -0.326 0.722 0.591 -0.551 0.582 0.227 2.300
up_down_speed_diff_510*rain -0.215 0.807 0.121 -1.772 0.076 0.636 1.023

Test Name

Likelihood Ratio

Wald
Score (logrank)

AIC
n

ncrash 443

38.60 5 3.00E-07

1150.242
1734

39.38 5 2.00E-07

36.07 5 9.00E-07

MODEL RESULTS

MODEL FIT

Test Statistic DF p-val

All Crashes, Controls=Def. #1 (same time, day of week, and location)

1.5 mi Distance Downstream 0.5 mi
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0.10 level, the interaction term between the rain and upstream to downstream speed difference 

variable was found to have a negative coefficient. 

Table 5-16 Primary Model for 1.5mi Upstream, 0.5mi Downstream Data (Control Def. #2) 

 

Table 5-17 Secondary Model for 1.5mi Upstream, 0.5mi Downstream Data (Control Def. 

#2) 

 

Distance Upstream

Variable Name Coefficient exp(coeff) SE(coeff) Z stat p-val Lower 95% Upper 95%

up_15_510_coeff_var_speed 2.122 8.346 0.260 8.150 3.64E-16 5.010 13.901

dn_05_510_sample_size 0.111 1.118 0.024 4.561 5.09E-06 1.065 1.172

Test Name

Likelihood Ratio

Wald

Score (logrank)

AIC

n

ncrash

1204.329

2083

451

115.1 2 <2e-16

130.5 2 <2e-16

MODEL FIT

Test Statistic DF p-val

130.2 2 <2e-16

All Crashes, Controls=Def. #2 (same location, random time)

1.5 mi Distance Downstream 0.5 mi

MODEL RESULTS

Distance Upstream

Variable Name Coefficient exp(coeff) SE(coeff) Z stat p-val Lower 95% Upper 95%

up_15_510_coeff_var_speed 2.199 9.019 0.265 8.292 <2e-16 5.363 15.168

dn_05_510_sample_size 0.103 1.108 0.025 4.171 3.03E-05 1.056 1.163

up_down_speed_diff_510 0.198 1.218 0.099 2.002 0.045 1.004 1.479

rain -0.342 0.710 0.559 -0.612 0.541 0.237 2.125

up_down_speed_diff_510*rain -0.178 0.837 0.097 -1.830 0.067 0.691 1.013

Test Name

Likelihood Ratio

Wald

Score (logrank)

AIC

n

ncrash 451

138.3 5 <2e-16

1202.385

2083

138.1 5 <2e-16

120.6 5 <2e-16

MODEL RESULTS

MODEL FIT

Test Statistic DF p-val

All Crashes, Controls=Def. #2 (same location, random time)

1.5 mi Distance Downstream 0.5 mi
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5.4 CONCLUSION AND EXTENSIONS 

Through the real-time crash prediction modeling portion of this study, several key 

conclusions must be addressed. First of all, it was demonstrated that probe vehicle trajectory data 

produced results similar to preceding studies in terms of significant variables (e.g., volume, 

average speed, coefficient of variation in speed, etc.), time periods in which variables are 

significant (e.g., 5-10 minutes before the time of the crash) as well as sign and magnitude of 

coefficients (Hossain et al. 2019; Roshandel et al. 2015). Another thing to note here, and in other 

studies as well including many described in the literature review, is that the model developed 

herein and most of those in other studies have a rather small number of variables in the final model. 

In some senses, this is not surprising as that in many cases, the effects of categorical variable 

cannot be estimated in case-control designs (as discussed previously). Further, when one is looking 

to model crash likelihood based on traffic flow related variables, many of these variables are 

correlated (e.g., consider the linear model for a speed-density curve) with each other, as well as 

exhibiting auto-correlation over time and space, hence many get removed from consideration in 

the final model in order to prevent multi-collinearity. While many of these models present 

seemingly reasonable results in terms of variables selected and their impacts, it is quite clear that 

said problem is suffering from omitted variable bias, especially with respect to consideration of 

human factors. 
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Chapter 6. DEVELOPMENT OF CONFIDENCE AND PREDICTION 

INTERVALS FOR MIXED-POISSON REGRESSION 

MODELS 

6.1 PROBLEM STATEMENT AND MOTIVATION 

For full transparency, the author notes that the work in this section is derived from/based 

upon the work presented in Ash et al. (2019). In the study, the primary goal was to show additional 

applications building on the key work of Wood (2005) and thus develop the CIs and PIs for several 

other mixed-Poisson regression models that many researchers have previously investigated and 

that are used in practice by safety analysts. For comparison purposes and ensuring clear alignment 

with Wood (2005), his notation/naming of the PI in reference to & and ' (dependent variables) 

and the  CI in reference to ( (a model parameter) will also be used in this dissertation. To be 

explicit, this work will begin by reviewing how to derive the PIs for & and ' and the CI for (, 

respectively, for the NB model based Wood (2005); then, it will present derivations for the CIs 

and PIs for the same three values (where '  in these cases is generalized to be the Poisson 

parameter following a given mixture distribution, and such parameter is also called the safety) for 

the Poisson-Inverse-Gaussian, Sichel, Poisson-Weibull, and Poisson-Lognormal regression 

models. Following the methodology, the mixed-Poisson regression models of interest will be 

estimated in case study based on an animal-vehicle collision dataset a case study making use of an 

animal-vehicle collision dataset will be conducted. After the model development, the methodology 

will be demonstrated by estimating and plotting the associated PIs and CIs for &, ', and ( under 

each different model type. Then, a discussion and comparison of the PIs and CIs will be provided 

based on the case study and key results will be noted. Put simply, the key contribution of this work 
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is developing a means to express/quantify uncertainty for estimates from safety-modeling efforts 

(notably those from mixed-Poisson regression models), as opposed to just having access to point 

estimates. 

6.2 DERIVATION OF CONFIDENCE AND PREDICTION MODELS 

To begin, the confidence and prediction intervals for each type of mixed-Poisson model 

evaluated in this work are derived. Before this part of the methodology, though, a quick discussion 

of requisite  information on mixed-Poisson models is given. One may view a mixed-Poisson model 

as a sort of hierarchy with three levels. At the bottom/first level of the hierarchy there is the mean 

response ( (% ), also referred to as the Poisson mean. The mean response follows a normal 

distribution, t
(4, u4L�. At the next level up in the hierarchy is the Poisson parameter ('%), also 

called the safety, which when conditioned on the Poisson mean can be shown to follow the mixture 

distribution that is being applied. Lastly, at the third/top level of the hierarchy is the predicted 

response (&%), the crash frequency at site �. When conditioned on the Poisson parameter ('%), the 

predicted response can be shown to follow a Poisson distribution. 

6.2.1 Mixed-Poisson Models and Formulation 

There are two main points to the definition of a mixed-Poisson model. First, the count being 

modeled  (the number of crashes &%) follows a Poisson distribution, conditional on the Poisson 

parameter $%  (Cameron and Trivedi 2013). To stay in alignment with the terminology and notation 

of Wood (2005), this study will refer to the Poisson parameter $% as the “safety” and denote it as 

'% as shown in the following equation: 

e
&%|'%� = ?@A
�c9�∗c9v989! , &% = 0,1,2 …                                                                         (6-1) 
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Second, the Poisson parameter (safety), '%, has a multiplicative error term that follows the 

specified mixture distribution (e.g., gamma, inverse Gaussian, lognormal, etc.) and is represented 

in the conditional mean (the safety conditioned on the mean response (%) (Cameron and Trivedi 

2013). Readers may notice here that without the error term, the formulation of the safety reduces 

to that of the mean response ((%), also known as the Poisson mean. The Poisson parameter ('%) is 

defined in the following equation. 

'% = exp 
34 5 ∑ �%Uz ∗ 3U{UO2 5 |%�  

= exp
34 5 |%� ∗ expV∑ �%U ∗ 3U{UO2 W  

= expV34 5 ∑ �%U ∗ 3U{UO2 W ∗ exp
|%�  

= (% ∗ }%                                                                                                                         (6-2) 

Where, 

 � = site index; 

 3U = jth regression coefficient; 

 �%U = jth covariate for site �; and 

|% = error term such that exp 
|%�, itself referred to as }%, follows the chosen mixture 

distribution. 

As previously noted, ~|'%~E������
'%�. The marginal distribution for ~ (outlined in the 

equation as follows) is developed by integrating out the error term }%, and in this equation, ℎ
}%� 

is the mixture distribution (Cameron and Trivedi 2013): 

e
&%|(%� = � �
&%|(%, }%� ∗ ℎ
}%��4  �}%                                                                                
  = ��*�
&%|(%, }%�,                                                                                                          (6-3) 
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Then by noting the key equality '% = (%}%, one can show that the Poisson parameter '% 
clearly follows the mixture distribution (just like }%) (Cameron and Trivedi 2013). 

6.2.2 Parametrizations of the Mixture Distributions 

For this study, a total of five mixed-Poisson models were examined. These models, their 

corresponding mixture distributions for '%  and }% , and the parameterizations of each mixture 

distribution are outlined in the following sections. Each section is named in alignment with the 

model type described and the mixture distribution is shown in parentheses. Lastly, the subscript � 
is left out without any loss of generality.  

6.2.2.1 Negative Binomial [NB] Model (Gamma) 

When the choice of mixture distribution used in the mixed-Poisson model is the gamma 

distribution, the ultimate model is the NB model. Specifically, }~��''�
�, ��; that said, if one 

wants to be able to properly identify the intercept in the regression model, one must have �*}, =
1 . In order for this equality to result, one can set � = � , and thus a one-parameter gamma 

distribution is obtained. Finally, it follows that l�H*}, = 1/�, that is, l�H*}, = Y, and further 

that '|�, (~��''� ��, �s# (Cameron and Trivedi 2013).  

6.2.2.2 Poisson-Inverse-Gaussian [PIG] Model (Inverse Gaussian) 

The PIG model is obtained when the inverse Gaussian (IG) distribution is used for the 

mixture distribution. Specifically, }~
�
(�� , $�, where the subscript “IG” is needed to distinguish 

(�� (the mean of the IG distribution) from the Poisson mean ((). Just as was true for the NB model. 

the intercept identification condition necessitates that �*}, = 1. If (�� = 1, then �*}, = 1, and 

also l�H*}, = 1/$ (Rigby and Stasinopolous 2009). 
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6.2.2.3 Sichel [SI] (Generalized Inverse Gaussian) 

When the chosen mixture distribution is the generalized inverse Gaussian (GIG) 

distribution, the resultant model is the Sichel model. Here, }~�
�
(��� , u��� , }���� . Again, 

�*}, = 1  (in order to meet the intercept identification condition), and the variance of }  is 

expressed as shown in the following (Rigby et al. 2008; Rigby and Stasinopolous 2009): 

l�H*}, = Ln���
����D2�� 5 2�Q − 1                                                                                    (6-4) 

Where, 

G = ����� � 2n���#; 

��
�� = h�D2
��/h�
��; and  

h�
�� = 2L � ���2 exp �− 2L �
� 5 ��2���4  �� (where, Kλ(t) is the modified Bessel function 

of the third kind). 

6.2.2.4 Poisson-Lognormal [PLN] (Lognormal) 

A selection of the mixture distribution as the lognormal distribution, leads to the Poisson-

Lognormal model. In this case, }~ log t
�, u�dL �, and the mean of the lognormal distribution is 

shown as follows (Connors et al. 2013): 

�*}, = exp �� 5 n��QL #                                                                                                    (6-5) 

In order to satisfy the intercept identification condition, �*}, = 1, one can require that � =
−u�dL /2. The variance of ν can then be calculated by substituting the preceding value for � into 

the following equation for l�H*},: 
l�H*�, = V�n��Q − 1W�L�Dn��Q

  

= �n��Q − 1                                                                                                                     (6-6) 

 



   
 

 
119

6.2.2.5 Poisson-Weibull [PW] (Weibull) 

When ν, the error term, is chosen to follow the Weibull distribution, the resultant model is 

the Poisson-Weibull model; in this case, }~�����))
(�, u�� . The mean of the Weibull 

distribution is shown in the following (Cheng et al. 2013; Rigby and Stasinopolous 2009): 

�*}, = 2s�N/�� Γ � 2n� 5 1#                                                                                               (6-7) 

To establish the intercept identification condition of �*}, = 1, the following equality must 

be established: 

(� = �Γ � 2n� 5 1#�n�
                                                                                                  (6-8) 

Having �*}, = 1, the variance of ν can then be calculated by substituting the preceding 

value for (� into the equation for l�H*}, as follows. 

l�H*}, = 2s�Q/�� �Γ � Ln� 5 1# − �Γ � 2n� 5 1#�L�  

=  ¡ Q��D2¢
� ¡ N��D2¢�Q − 1                                                                                                           (6-9) 

6.2.3 Derivation of Confidence Intervals for Poisson mean (True mean Crash Frequency) (µ) 

To begin, a generalized linear model (GLM) for crash prediction will be examined, For the 

model, each site of interest is a road segment, and the model is of form shown as shown in 

Equations (6-10 a) and (6-10 b). 

£ = log � s�∗�# = log 
34� 5 ∑ �%U ∗ 3U¤%O2                                                                   (6-10 a) 

£ = log � s�∗�# = 3′4 5 ∑ �%U ∗ 3U¤%O2                                                                          (6-10 b) 
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Where,  

 £ = linear predictor; 

 3U = jth regression coefficient; 

�%U = jth predictor for segment (site); 

\ = segment length (in miles); and 

� = time period over which crash data was collected. 

An offset term can be calculated by considering the product of segment length and the 

duration over which crash data was collected for each site, and this results in a reformulation for 

Equation 6-10 describing the regression as shown in the following: 

£ = log
(� = log 
34� 5 ∑ �%U ∗ 3U¤%O2 5 log 
\ ∗ ��                                                  (6-11) 

Under Equation 6-11, if �2 is the traffic volume (F), then: 

( = 34¦BN
\ ∗ �� ∗ exp §¨ �%U ∗ 3U
¤

%OL © 

For the GLM, the estimators of the regression coefficients, 3ªU, are assumed to follow a 

multivariate normal distribution, T3′g 4, … , 3ª¤X′~t
*3′4, … , 3¤,z, «� . Then, from Equation 6-11, 

one can see that ( = exp
£�. As noted in the preceding, the subscript i for the values of £ and ( 

at every site � are omitted without any loss of generality. With this in mind, one can then use this 

information to derive an approximate (1-α)% confidence interval (CI) for the Poisson mean (also 

known as the true mean crash count), (, as follows (where ¬2�­/L is the critical value for the 1 −
Y/2 quantile of the standard normal distribution) (Wood 2005): 

exp 
£̂ ± ¬2�­/L°l�H
£̂��  

= exp
£̂� ∗ exp 
±¬2�­/L°l�H
£̂��  
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= (̂ ∗ exp 
±¬2�­/L°l�H
£̂��  

= ± s²?@AV³N´µ/Q°¶��
·²�W , (̂ ∗ expV¬2�­/L°l�H
£̂�W¸                                                      (6-12) 

Ultimately, no matter the choice of mixture distribution applied, the approximate 


1 − Y�% CI for the Poisson mean (i.e.,  the true mean crash count), (, is as shown in Equation 6-

12. Interested readers are referred to Wood (2005) for more detailed steps as to how to calculate 

linear predictor’s variance.  

6.2.4 Derivation of Prediction Intervals for Poisson Parameter (m) 

Next, the derivation of an approximate 
1 − Y�%  confidence interval for the Poisson 

parameter, also known as the safety, '  is provided, again following the procedure originally 

outlined in Wood (2005). Prior to the derivation, a useful point for later calculations involves 

considering that though the distribution of the estimator for the Poisson mean ((̂) is technically 

lognormal, it can be approximated as normal (Wood 2005). Hence, (̂~t
(4 = (, u4L =
(Ll�H
£̂��. 

 Based on Wood (2005), one can obtain the formulation for an approximate 
1 − Y�% PI 

for the Poisson parameter, also known as the safety, ' that is presented in Equation 6-13.  

(̂ ± ¬2�­/L ∗ °l�H
'�                                                                                               (6-13) 

From a mathematical/calculation perspective, it is indeed possible for the lower bound of 

the prediction interval for Equation 6-13 to be negative, but intuitively, this does not make sense 

as negative values of ' are not sensible. Thus, one can reformulate the PI for ' in Equation 6-13 

as follows: 

�max ¼0, (̂ − ¬2�µQ ∗ °l�H
'�½ , (̂ 5 ¬2�µQ ∗ °l�H
'��                                           (6-14)    
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The variance of ' is formulated as follows: 

l�H
'� = l�H
(}�  

= �
(L}L� − �
(}�L  

= �
(L��
�L� − �
(�L�
��L       *�& ����K�����G� �e ( ��� �,  
= *l�H
(� 5 �
(�L, ∗ *l�H
�� 5 �
��L, −  �
(�L�
��L                                         (6-15) 

Table 6-1 shows the full set of derived expressions for the variance of ' for each of the 

mixture distributions under analysis in this study. 

Table 6-1 Variance of m for Mixture Distributions 

Mixture Distribution ¾¿À
Á� 

Gamma Y ∗ 
u4L 5 (4L� 5 u4L  �t���: Y = 2Ã�  

Inverse Gaussian 
2� ∗ 
u4L 5 (4L� 5 u4L  

Generalized Inverse Gaussian *u4L 5 (4L, ∗ �Ln���
����D2�� 5 2�Q# − (4L  

Lognormal �n��Q ∗ *u4L 5 (4L, − (4L 

Weibull *u4L 5 (4L, ∗ Ä  ¡ Q��D2¢
� ¡ N��D2¢�QÅ − (4L  

 
Now that the formulations for l�H
'� have been established, and if one recalls that the 

distribution of (̂ can be approximated as normal (which provides the useful algebraic substitution 

u4L = (Ll�H
£̂�), the derived PIs for ' for each type of mixed-Poisson model considered in this 

study can be formulated and they are shown in Table 6-2. For simplicity, only 95% PIs are shown 

Table 6-2.  
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Table 6-2 95% Prediction Intervals for m 

Model 95% PI for Á 

Negative 
Binomial 
(NB) 

�max �0, (̂ − 1.96 ∗ °(̂L*YÉ
l�H
£̂� 5 1� 5 l�H
£̂�,# , (̂ 5 1.96 ∗ °(̂L*YÉ
l�H
£̂� 5 1� 5 l�H
£̂�,� 
Poisson-
Inverse-
Gaussian 
(PIG) 

Êmax �0, (̂ − 1.96 ∗ Ë(̂L �2�g 
l�H
£̂� 5 1� 5 l�H
£̂��� , (̂ 5 1.96 ∗ Ë(̂L �2�g 
l�H
£̂� 5 1� 5 l�H
£̂��Ì  

 

Sichel (SI) 

Êmax �0, (̂ − 1.96 ∗ Ë(̂L ¼*l�H
£̂� 5 1, ∗ �Ln²���
�²���D2�� 5 2�Q# − 1½� , (̂ 5 1.96 ∗
Ë(̂L ¼*l�H
£̂� 5 1, ∗ �Ln²���
�²���D2�� 5 2�Q# − 1½Ì  

 

Poisson-
Lognormal 
(PLN) 

Êmax �0, (̂ − 1.96 ∗ Ë(̂L*�n²��Q 
l�H
£̂� 5 1� − 1,� , (̂ 5 1.96 ∗ Ë(̂L*�n²��Q 
l�H
£̂� 5 1� − 1, Ì 

 

Poisson-
Weibull 
(PW) ÍÎÎ

ÎÎÏmax
ÐÑ
ÑÒ0, (̂ − 1.96 ∗

ÓÔÔÔ
ÔÔÔÔÔ
ÔÕ(̂L

ÐÑ
Ò*l�H
£̂� 5 1, ∗

ÍÎÎ
ÎÏ Γ ¡ 2uÉ� 5 1¢
�Γ ¡ 1uÉ� 5 1¢�LÖ××

×Ø − 1
ÙÚ
Û

ÙÚ
ÚÛ , (̂ 5 1.96 ∗

ÓÔÔÔ
ÔÔÔÔÔ
ÔÕ(̂L

ÐÑ
Ò*l�H
£̂� 5 1, ∗

ÍÎÎ
ÎÏ Γ ¡ 2uÉ� 5 1¢
�Γ ¡ 1uÉ� 5 1¢�LÖ××

×Ø − 1
ÙÚ
Û

Ö××
××Ø  
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6.2.5 Derivation of Prediction Intervals for Predicted Crash Count (y) 

The last type of prediction interval of interest in this study for a mixed-Poisson model is 

the interval for the predicted crash count 
&� at a new site. Here, the PI is formulated based upon 

Chebyshev’s inequality, and one must further assume the following: (1) The lower bound for & is 

zero (this is done in order to make a more conservative PI and since it follows the practice of Wood 

(2005)); (2) & must take on integer values only (Wood 2005). Thus, a 
1 − Y�% PI for & is shown 

in Equation 6-16, and in the formulation the floor of the upper bound is applied to enforce the 

constraint of ensuring an integer-value. Consider the following, where one wants to estimate a 

95% PI for &; in such case, the expression under the first radical in the equation would come out 

to 19. 

T0, Ü(̂ 5 √Y�2 − 1°l�H
&�ÝX                                                                                      (6-16)   

The variance of ~ is evaluated as follows: 

l�H
~� = �Þl�H
~|��ß 5 l�HÞ�
~|��ß  

= �
�� 5 l�H
��  

= �
(}� 5 l�H
��  

= �
(� ∗ �
�� 5 l�H
��  

= (4 5 l�H
��                                                                                                           (6-17) 

Thus, a 
1 − Y�%  PI for ~ can be re-formulated as is shown in Equation 6-18. 

�0, à(̂ 5 √Y�2 − 1°(̂ 5 l�H
'�á�                                                                             (6-18)   

Then, by applying the expressions for l�H
'� as outlined in Equation 6-15, one can 

estimate the 95% PIs for ~ for each of the five mixed-Poisson models, and these results are 

shown in Table 6-3. 
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Table 6-3 95% Predictions Intervals for y 

Model 95% PI for â 

Negative 
Binomial 
(NB) 

T0, Ü(̂ 5 √19°(̂ 5 (̂L*YÉ
l�H
£̂� 5 1� 5 l�H
£̂�,ÝX   
 

Poisson-
Inverse-
Gaussian 
(PIG) 

Ê0, ã(̂ 5 √19Ë(̂ 5 (̂L �2�g 
l�H
£̂� 5 1� 5 l�H
£̂��äÌ  

 

Sichel (SI) 
Ê0, ã(̂ 5 √19Ë(̂ 5 (̂L ¼*l�H
£̂� 5 1, ∗ �2û�
�
}̂51�

G 5 1
G2# − 1½äÌ  

 

Poisson-
Lognormal 
(PLN) 

Ê0, ã(̂ 5 √19Ë(̂ 5 (̂L*�n²��Q 
l�H
£̂� 5 1� − 1,äÌ  

 

Poisson-
Weibull 
(PW) ÍÎÎ

Ï0, ÍÎÎ
Î(̂ 5 √19å(̂ 5 (̂L æ*l�H
£̂� 5 1, ∗ �  �Q�²D2#

¡ �N�²D2#¢Q� − 1çÖ××
×
Ö××
Ø
      

 

Interested readers can find the full derivations for each of the aforementioned confidence and 

prediction intervals in the appendix of this dissertation.  

6.3 CASE STUDY 

In the following section, a case study is presented where the mixed-Poisson models are 

estimated based upon a crash dataset from Washington State. After the models are estimated, the 

corresponding confidence and prediction intervals for the different components of the mixed-

Poisson model hierarchy are estimated and displayed graphically. In this case study, the data 

applied is the animal-vehicle collision data that is further described in the preceding Section 3.2.2 

of this dissertation. 
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6.3.1 Model Development 

For the case study, five different mixed-Poisson models were estimated based upon the 

aforementioned animal-vehicle collision dataset. For each model, the variables included were 

those found to be significant at the Y = 0.05 level for the Negative Binomial model (in order to 

allow for comparison), and all models also had an offset term. The Negative Binomial, Poisson-

Inverse-Gaussian, and Sichel models were estimated via a maximum likelihood (ML) estimation 

approach in the GAMLSS package within the R statistical software program (Rigby and 

Stasinopoulos 2005). Since the Poisson-Lognormal and Poisson-Weibull likelihood functions do 

not have a closed form, these models had were estimated via a Bayesian approach in the WinBUGS 

software package (Lunn et al. 2000) (the estimation used 20,000 iterations following 5000 

iterations for the burn in process). For each model, the estimated model parameters, associated 

standard errors (SE) (and posterior values for the Bayesian models), p-values, and goodness-of-fit 

statistics such as the Akaike Information Criterion (AIC) and Bayesian Information Criterion 

(BIC) are presented in Table 6-4 and Table 6-5. 
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Table 6-4 Model Results Estimated with ML Approach 

 
 

Table 6-5 Model Results Estimated with Bayesian Approach 

 
 

6.3.2 Confidence and Prediction Intervals 

As a means to compare and contrast the prediction intervals for & and ', in addition to the 

confidence intervals for ( for each of the five mixed-Poisson models examined in this study, plots 

were made created so the intervals for each model could be shown graphically (Figure 6-1 through 

Figure 6-5). In every plot the results shown apply the model based on the coefficients shown in 

Table 6-6. In each case, AADT is varied (in increments of 50) between 0 and 120,000 vehicles per 

Estimate SE p-val Estimate SE p-val Estimate SE p-val

Intercept log(β0) -10.36 1.11 < 2.00E-16 -10.38 1.13 < 2.00E-16 -10.42 1.12 < 2.00E-16

log(AADT)  β1 0.55 0.08 1.45E-10 0.59 0.09 2.12E-11 0.56 0.09 2.00E-10

Access β2 -1.12 0.30 1.98E-04 -1.02 0.30 5.92E-04 -1.11 0.30 2.45E-04

Spd_limt β3 0.09 0.02 1.15E-07 0.08 0.02 5.49E-07 0.09 0.02 1.22E-07

Nolanes β4 -0.40 0.11 1.65E-04 -0.39 0.12 8.22E-04 -0.41 0.11 1.71E-04

Lshlw β5 0.12 0.03 4.07E-06 0.11 0.03 1.07E-04 0.12 0.03 7.06E-06

White β6 1.39 0.13 < 2.00E-16 1.59 0.13 < 2.00E-16 1.41 0.13 < 2.00E-16

Elk β7 0.37 0.13 3.54E-03 0.50 0.14 2.43E-04 0.38 0.13 3.47E-03

Distribution Parameter(s)

Global Deviance

AIC

BIC

PIG SI

λ = 0.106 νGIG = 0.4716, σGIG = 271

NB

3006.27

2986.46

3004.46

3046.06

α = 1/φ = 1.85

3010.00

3028.00

3069.60

2986.27

3052.49

Mean SE 2.5% 50% 97.5% Mean SE 2.5% 50% 97.5%

Intercept log(β0) -10.28 0.60 -11.20 -10.38 -8.87 -9.08 1.37 -10.75 -9.42 -6.87

log(AADT)  β1 0.58 0.06 0.44 0.59 0.67 0.53 0.08 0.38 0.53 0.66

Access β2 -1.05 0.32 -1.69 -1.04 -0.45 -0.79 0.31 -1.43 -0.79 -0.21

Spd_limt β3 0.08 0.01 0.06 0.08 0.10 0.07 0.02 0.04 0.07 0.10

Nolanes β4 -0.35 0.14 -0.57 -0.35 -0.10 -0.41 0.10 -0.61 -0.41 -0.22

Lshlw β5 0.12 0.03 0.07 0.13 0.17 0.13 0.03 0.08 0.13 0.19

White β6 1.69 0.15 1.40 1.69 2.00 1.51 0.13 1.25 1.51 1.74

Elk β7 0.60 0.14 0.32 0.60 0.88 0.39 0.14 0.13 0.39 0.66

Distribution Parameter(s)

PLN PW

σW = 0.70σLN = 1.35
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day (this was determined to be the approximate range in the animal-vehicle collision dataset). 

Finally, the segment length and time period were fixed and considered to be one mile and 5 years, 

respectively, in order to calculate the offset term. The remaining variables were set to constant 

values based upon the values that were the most common value of each variable, respectively, in 

the dataset. Thus, the intervals show the numbers of animal-vehicle collisions within the five-year 

period, for a one-mile road segment with AADT values that vary, and marginalizing across all 

other variables. 

Table 6-6 Default Values of Variables used in Models for Interval Construction 

Variable Value 

Access 3L 0 

Spd_limt 3é 60 

Nolanes 3ê 2 

Lshlw 3ë 8 

White 3ì 0 

Elk 3í 0 

 
 To begin, the 95% CI for the Poisson mean (() is examined as follows. From Table 6-4 

and Table 6-5 one can see that no matter what model is considered, estimates for the model 

regression coefficients are indeed rather similar. As such, it is not surprising that the estimates for 

the Poisson means across models were rather similar. For these means, the maximum values were 

found to range between 17.97 for the Poisson-Weibull model to as much as 21.53 for the Sichel 

model, where AADT=120,000 (the maximum value considered). As seen in Figure 6-1 through 

Figure 6-5, both the lower and upper bounds of the 95% CI for the Poisson mean take on similar 

values, respectively, for each of the different models considered. For AADT=120,000, the 

smallest/tightest interval around the estimate of ( was obtained for the Poisson-Lognormal model 

([11.94, 31.25], width=19.31), and on the other end, the largest interval was for the Sichel model 
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([11.62, 39.87], width=28.25). Since the true value of the Poisson mean is unknown for all sites, 

one cannot necessarily develop conclusions as to if the narrowest interval is “best” or not. 

 Figure 6-1 through Figure 6-5 show the plots of the 95% PIs for the safety, '. In each case, 

the lower bound values are technically not shown since in every model, no matter the value of 

AADT considered, the lower bounds were found to be zero. Technically, the models produced 

negative values for the calculated lower bounds, but as noted in Equation 6-14, any negative value 

for the safety (') is not sensible and as such, the lowest reasonable value must be zero. In the case 

of the Poisson-Inverse-Gaussian model, the width of the interval for an AADT value of 120,000 

was 149.10, and this was found to be the maximum value of ' estimated from any of the 95% 

CIs. On the other hand, the lowest value for any upper bound for the 95% CIs for ' at 120,000 

AADT, when considering all models, was 72.89 and this was obtained from the Poisson-Weibull 

model. Again, like in the case for the Poisson mean, the true value of ' is not known, and thus no 

conclusions on which interval is tightest, while still capturing the true parameter value can be 

developed. 

 No matter what model examined, the lower bound for the 95% prediction intervals for the 

predicted response at a new site (&) was always found zero, and thus, this interval does not appear 

in any of the plots. Further, one may observe how the upper bounds for the PIs for & are much 

greater (specifically, 1.92 to 2.06 times greater at 120,000 ADT) than the respective upper bounds 

for the 95% PIs for '. In addition to having the largest values, the curves for the PIs for & are also 

much less smooth than the curves for the CIs for ( and PIs for '. In these cases, the curve appears 

as a step-function due to the use of the floor function in the formulation of the upper bound of the 

PI as is shown in Equation 6-18. Again, this is due to the fact that one assumes that the number of 

crashes predicted for a new site should take on an integer value. In the case of upper bounds for 
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the PIs for &, they ranged from a maximum of  307 for the Poisson-Inverse-Gaussian model to a 

minimum of 141 for the Poisson-Weibull model. For the Negative Binomial, Sichel, and Poisson-

Weibull models the calculated upper bounds for the PIs for & appeared to be more similar in value 

than compared to those for the other models.  

 

 
Figure 6-1 95% CIs and PI for Negative Binomial Model 
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Figure 6-2 95% CIs and PI for Poisson-Inverse-Gaussian Model 

 
Figure 6-3 95% CIs and PI for Sichel Model 
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Figure 6-4 95% CIs and PI for Poisson-Lognormal Model 

 
Figure 6-5 95% CIs and PI for Poisson-Weibull Model 
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Table 6-7 shows  a summary of values for all of the CIs and PIs (shown in Figure 6-1 

through Figure 6-5) developed based upon the five different types of mixed-Poisson models 

considered in this study, and in this case, the value of AADT was fixed at 120,000 (i.e., the 

maximum value on the plots). 

Table 6-7 Summary of Values for Mixed-Poisson CIs and PIs at AADT=120,000 

  NB PIG SI PLN PW 

µ Lower Bound 11.55 10.82 11.62 11.94 10.24 

µ Max 21.23 20.27 21.53 19.32 17.97 

µ Upper Bound 39.02 38.00 39.87 31.25 31.53 

m Lower Bound 0.00 0.00 0.00 0.00 0.00 

m Upper Bound 81.92 149.10 87.06 109.07 72.89 

y Lower Bound 0.00 0.00 0.00 0.00 0.00 

y Upper Bound 157 307 168 219 141 

 

For the last section of the case study, the estimates of the Poisson mean, (, and the lower 

and upper bounds of the 95% CIs and PIs for each model across the range of values of covariates 

found in the dataset described in Table 6-4 and Table 6-5 were compared. Recall that in the 

previous section of the case study, the CIs and PIs considered were based on varying the AADT 

while holding all other variable values fixed (to those values shown in Table 6-6). For this section, 

the estimates were developed based on the full dataset as described in Table 6-4 and Table 6-5 

(i.e., all covariates covered a range of values based on the data collected, and none were fixed to 

any particular value was done in the preceding section). Here, the mean squared error (MSE) was 

then calculated (for each form of mixed-Poisson model examined in this study) between the 

estimated values of (, and the lower and upper bounds of the CI for ( and the PIs for the safety 

(') and the predicted response (&) considering all data points, respectively. The model coefficients 

in Table 6-4 and Table 6-5were applied to calculate the corresponding values for the Poisson mean 
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(() for all data points in the animal-vehicle collision dataset in the context of each model type. 

After this, the 95% CI for the Poisson mean (() and the PIs for the safety (') and the predicted 

response (&) were calculated, again for every data point under each model. Lastly, the MSE values 

were computed between the estimates of ( and the lower and upper bounds for all of the CIs and 

PIs, over all data points.  

The calculated MSE results considering the estimated values of the Poisson mean (() and 

the lower and upper bounds of the CIs and PIs, by model, are presented in Table 6-8. In this table, 

one may note that with the animal-vehicle collision dataset considered, the Negative Binomial 

model provided the estimates for the Poisson mean (() that led to the smallest MSE values for 

each of the confidence and prediction intervals. Hence, it would seem as if the Negative Binomial 

model may be able to provide smaller variation for the CIs and PIs than that found corresponding 

to the other models considered in this study. The Poisson-Lognormal model produced the largest 

MSE values for the 95% CI for Poisson mean ((), in the context of both the lower and upper 

bounds of said interval. If one examines the variation between the estimate of ( and the lower 

bounds for the PI for the safety (') and the PI for the predicted response (&), over all models, the 

largest MSE values resulted from the Poisson-Lognormal model. That said, when considering the 

variation between the estimate of ( and the upper bounds for the PI for the safety (') and the PI 

for the predicted response (&), again over all models, the largest MSE values were obtained for the 

Poisson-Inverse-Gaussian model. For each of the five models examined, the values of MSE for 

the lower bounds of the PIs for the safety (') and the predicted response (&) were shown to be 

equal across all models. Again, this result was due to the simple fact that in all cases, the lower 

bound of the PIs for ' and & was zero. 
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Table 6-8 MSE Values Calculated between µ and 95% CI and PI Lower and Upper Bounds 

for the Animal-Vehicle Collision Dataset 

  NB PIG SI PLN PW 

µ Lower Bound 2.24 3.28 2.41 4.09 2.37 

µ Upper Bound 4.49 6.96 4.95 8.83 4.76 

m Lower Bound 30.56 38.35 31.37 48.26 32.68 

m Upper Bound 226.46 1439.31 264.18 1008.96 282.80 

y Lower Bound 30.56 38.35 31.37 48.26 32.68 

y Upper Bound 1165.45 7141.38 1351.75 5025.57 1443.71 
 

6.4 SUMMARY AND CONCLUSIONS 

Following the pioneering work of Wood (2005), this study developed confidence intervals 

for the Poisson mean ((), safety or Poisson parameter/safety ('), and predicted response (i.e., 

number of crashes at a new site, &) for four new types of mixed-Poisson models. This extended 

beyond the initial work that considered just the Negative Binomial (Poisson-Gamma) and regular 

Poisson models that was outlined in by Wood (2005). Expressions for these intervals are provided 

herein and they are now able to be easily applied by safety analysts so they can estimate 

windows/ranges of uncertainty corresponding to their predictions, instead of a simple point 

estimate. In this study, the types of mixed-Poisson models examined were the Poisson-Inverse 

Gaussian, Sichel, Poisson-Lognormal, and Poisson-Weibull models. Each of these mixed-Poisson 

models is obtained when one allows for a multiplicative error term that follows a chosen mixture 

distribution to enter the functional form/expression of the Poisson parameter '. Following a brief 

background and motivation on mixed-Poisson models, the aforementioned confidence and 

prediction intervals were derived and shown. 

 After the expressions for the CIs and PIs were developed, a case study was conducted in 

which the intervals calculated for each of the five aforementioned types of mixed-Poisson models 
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were examined. As this study applied real-world, actually observed crash data, one cannot know 

the true values of the Poisson mean (() and safety or Poisson parameter ('), and as such, they 

cannot necessarily decide on which intervals perform “best.” That said, a series of conclusions can 

be still be developed from the case study based on the animal-vehicle collision data: 

(1) No matter what model type was investigated, the regression coefficient estimates were 

found to be relatively similar and as such, the values of the Poisson mean (() were also 

similar over the range of AADT values; 

(2) When considering all models developed in this study, the Sichel model produced the widest 

interval for the Poisson mean ((). Further, the Poisson-Inverse-Gaussian model produced 

the widest intervals for the safety (') and predicted response at a new site (&). This model 

also produced the second greatest value for the upper bound when considering all 95% PIs 

for the predicted response, &. Ultimately, however, it is important to remember that there 

is no way to say with full certainty that narrower intervals on the (, �, and & are necessarily 

better as the true values of these parameters are not known; 

(3) In the case of the Poisson mean ((), the Poisson-Lognormal model led to the narrowest 

95% CI. The Poisson-Weibull model led to the narrowest 95% PIs for ' and for & across 

all model types examined in this study; 

(4) All models estimated led to negative values being calculated for the lower bound on the 

safety (') (this was of course prior to coercing them to be zero);  

(5) For the maximum values of AADT examined, the upper bounds for the PIs for & ranged 

from 1.92 to 2.06 times the values of the upper bounds of ' at the same AADT in a 

different model; 
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(6) MSE values were calculated to examine the variation in the estimated values of the Poisson 

mean (() when compared to the lower and upper bounds of the 95% CIs and PIs for each 

model, considering all datapoints in the animal-vehicle collision dataset. Here, the 

Negative Binomial model led to estimates of the Poisson mean (() that yielded the smallest 

MSE values across all confidence and prediction intervals. On the other hand, the Poisson-

Lognormal model produced the biggest MSE values for the 95% CI for Poisson mean ((), 

when considering both the lower and upper bounds for the interval; 

(7) When examining the variation between estimates of ( and the lower bounds for the PI for 

the safety (') and the PI for the predicted response (&), again over all models, the Poisson-

Lognormal model yielded the largest MSE values; and 

(8) Lastly, when studying the differences between the estimate of ( and the upper bounds for 

the PI for the safety (') and the PI for the predicted response (&), over all models, the 

Poisson-Inverse-Gaussian model yielded the largest MSE values.  

This study concludes naturally with some ideas for future work. As one example, a 

simulation study where simulation of values for the Poisson mean ((), safety ('), and response 

(i.e., crash count, &) at a new site could be conducted in order to help determine which CIs and PIs 

“best” represent the true intervals. Additionally, as modeling tools and methodologies continue to 

advance, the estimated CIs and PIs should be extended and further developed for models such as 

multiparameter models (Geedipally et al. 2012; Lord and Geedipally 2018), random parameters 

models (Anastasopoulos and Mannering 2009; Rista et al. 2018; Shaon et al. 2018), and semi-

parametric models (Heydari et al. 2016; Shirazi et al. 2016; Ye et al. 2018; Zou et al. 2018). 
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Chapter 7. CONCLUSIONS AND FUTURE WORK 

This dissertation focused on crash modeling at two different levels, real-time crash 

prediction modeling and crash frequency modeling. The primary difference between the two 

beyond the obvious temporal differences is the type of features involved. RTCPMs generally apply 

traffic-flow-related features that are often quite dynamic. Crash frequency models, on the other 

hand, generally look at relatively static features such as descriptors of roadway inventory variables. 

With regard to real-time crash prediction modeling, this study was among the first to the 

author’s knowledge to apply large scale probe vehicle trajectory data. Such data allowed (1) greater 

spatial-temporal resolution and (2) calculation of variables unable to be derived from aggregate 

loop data. Additionally, an efficient data processing procedure was developed to ingest the raw 

trajectory data (lon, lat, and timestamp) and after a series of steps and manipulations (map-

matching, conflation, etc.), map it to the Washington State Highway linear referencing system. 

Once the data was converted from its initial raw form, numerous datasets were generated from it 

in a robust examination of RTCPM study design. In this component, the dissertation investigated 

the impact of spatial-temporal data collection window size, control definition in a matched case-

control study design, as well as potential differences between modeling for different crash types 

(e.g., all crashes versus multi-vehicle crashes only). Then, a series of real-time crash prediction 

models were built and observed findings from them were in alignment with many previous studies 

in terms of impactful predictor variables, as well as their coefficient signs and magnitudes. 

Notably, it was observed that variables including, but not limited to, coefficient of variation in 

speed, average speed, and probe vehicle sample size could be used in RTCPM applications. As 

one example for the use of such findings, that related to CVS provides some further evidence in 
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favor of variable speed limits. Additionally, as this study applied probe vehicle data that only 

represents a small fraction of the full traffic stream, it was demonstrated that such an approach 

based on a large volume of data describing a relatively small number of vehicles could produce 

results in alignment with previous RTCPM studies. This is important as the transportation world 

continues to push towards a connected state and away from one of fixed sensing infrastructure. 

Further, variation in the different hierarchical levels of various kinds of mixed-Poisson 

models used for crash frequency analysis was investigated. Notably, confidence and prediction 

intervals for the aforementioned models were developed based on expressions for the variance of 

the Poisson parameter (also known as the “safety”). Such expressions are based upon the 

parameters obtained from the regression analyses and can help applicants better understand 

potential variation in their crash frequency estimates as they vary model parameters. 

While this dissertation presented some new approaches to conventional crash modeling 

problems, it is not to say it is without some drawbacks that can themselves serve as topics of future 

work. Notably, the sparsity issue posed by the probe vehicle data made it such that only a limited 

set of traffic-flow variables could be derived from the data. While higher-order position derivatives 

could be obtained, unlike from loops, there is still tremendous potential for capturing variables 

describing car-following as well as other driver-behavior and surrogate safety related variables as 

the penetration rate of vehicles reporting location data via GPS increases. The ultimate goal here 

would be to study how individual vehicle trajectories correlate with crash occurrence. Then, one 

may be able to derive new surrogate safety/conflict metrics and get a better understanding of how 

said conflicts relate to crashes. When such data are available, a substantial amount of work will 

need to be done on the data processing end as the volume of data associated with a relatively small 
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sample of the traffic population used herein was quite large, compared to that used in previous 

RTCPM studies. 
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APPENDIX 

SUMMARY DATA TABLES FOR RTCPM MODELS IN CHAPTER 4 

Table 0-1 Dataset for Control Def. #1 Upstream=0.5 mi, downstream=0.0mi  

Control Definition #1 (same location, day of week, and time) 

  All Multi-Veh Only 

Variable Name 
Time 

Period 
Min Max Mean SD Min Max Mean SD 

Sample Size 

5-10 min. 
before crash 

1 15 4.10 2.51 1 15 4.17 2.53 

Avg. Speed 8.51 72.30 42.44 13.93 8.51 72.30 41.89 13.76 

Min. Speed 0.00 69.77 8.35 15.25 0.00 69.77 7.80 14.70 

Max. Speed 27.79 99.98 76.12 10.96 27.79 99.98 76.07 10.85 

HBE Count 0 244 4.12 15.13 0 244 4.00 14.70 

HAE Count 0 266 3.55 14.86 0 266 3.42 14.48 
Severe Jerk 

Count 
0 120 0.98 4.90 0 120 0.93 4.68 

SD Speed 0.79 39.72 16.12 5.55 0.79 30.35 16.32 5.39 

SD Acceleration 0.01 59.57 2.81 3.65 0.01 46.19 2.77 3.36 

SD Jerk 0.00 59.11 2.41 4.61 0.00 49.58 2.35 4.37 

CVS 0.01 1.65 0.45 0.25 0.01 1.65 0.46 0.25 

Rain 
  

0.02 
  

0.02 
  

Fog 0.01 0.01 

Sample Size 

10-15 min. 
before crash 

1 18 4.13 2.60 1 18 4.22 2.62 

Avg. Speed 8.65 79.68 42.81 13.98 8.65 74.01 42.25 13.85 

Min. Speed 0.00 75.83 9.05 16.37 0.00 69.08 8.52 15.87 

Max. Speed 19.82 99.98 75.85 10.89 19.82 99.98 75.83 10.90 

HBE Count 0 240 4.41 15.46 0 240 4.41 15.35 

HAE Count 0 260 3.88 15.14 0 260 3.88 15.06 
Severe Jerk 

Count 
0 120 1.00 5.00 0 120 1.00 5.00 

SD Speed 1.26 31.94 15.83 5.74 1.26 31.94 16.01 5.62 

SD Acceleration 0.02 32.84 2.70 3.27 0.02 32.84 2.69 3.21 

SD Jerk 0.00 50.70 2.39 4.41 0.00 50.70 2.39 4.38 

CVS 0.02 1.44 0.44 0.25 0.02 1.44 0.45 0.24 
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Table 0-2 Dataset for Control Def. #2 Upstream=0.5 mi, downstream=0.0mi 

Control Definition #2 (same location, random time) 

  All Multi-Veh Only 

Variable Name 
Time 

Period 
Min Max Mean SD Min Max Mean SD 

Sample Size 

5-10 min. 
before crash 

1 17 3.56 2.43 1 17 3.48 2.40 

Avg. Speed 8.51 74.85 48.10 14.04 8.65 77.31 48.24 14.21 

Min. Speed 0.00 69.03 13.30 19.98 0.00 68.62 14.00 20.32 

Max. Speed 22.39 99.99 76.62 10.63 19.20 99.98 76.81 10.78 

HBE Count 0 315 4.54 18.65 0 240 3.71 14.22 

HAE Count 0 314 3.96 18.23 0 260 3.22 14.27 
Severe Jerk 

Count 
0 132 1.17 6.85 0 120 0.90 5.21 

SD Speed 0.36 39.72 14.21 6.52 0.68 30.70 14.13 6.59 

SD Acceleration 0.01 59.57 2.91 4.17 0.00 41.85 2.66 3.54 

SD Jerk 0.00 75.36 2.53 5.56 0.00 45.89 2.25 4.60 

CVS 0.01 1.65 0.36 0.25 0.01 1.59 0.36 0.25 

Rain 
  

0.10 
    

0.01 
  

Fog 0.02 0.02 

Sample Size 

10-15 min. 
before crash 

1 17 3.45 2.38 1 17 3.48 2.40 

Avg. Speed 8.65 77.31 48.56 14.11 8.65 77.31 48.24 14.21 

Min. Speed 0.00 68.62 14.34 20.48 0.00 68.62 14.00 20.32 

Max. Speed 19.20 99.98 76.89 10.78 19.20 99.98 76.81 10.78 

HBE Count 0 240 3.70 14.13 0 240 3.71 14.22 

HAE Count 0 260 3.22 14.11 0 260 3.22 14.27 
Severe Jerk 

Count 
0 120 0.88 5.07 0 120 0.90 5.21 

SD Speed 0.68 34.61 14.03 6.63 0.68 30.70 14.13 6.59 

SD Acceleration 0.00 41.85 2.63 3.48 0.00 41.85 2.66 3.54 

SD Jerk 0.00 45.89 2.23 4.53 0.00 45.89 2.25 4.60 

CVS 0.01 1.59 0.36 0.25 0.01 1.59 0.36 0.25 
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Table 0-3 Dataset for Control Def. #1 Upstream=1.0 mi, downstream=0.0mi 

Control Definition #1 (same location, day of week, and time) 

  All Multi-Veh Only 

Variable Name 
Time 

Period 
Min Max Mean SD Min Max Mean SD 

Sample Size 

5-10 min. 
before crash 

1 22 5.85 3.59 1 22 5.97 3.61 

Avg. Speed 8.51 72.30 43.18 13.52 8.51 72.30 42.53 13.37 

Min. Speed 0.00 69.77 6.97 14.53 0.00 69.77 6.51 13.92 

Max. Speed 33.66 99.98 78.13 10.84 33.66 99.98 78.12 10.81 

HBE Count 0 244 4.56 14.74 0 244 4.51 14.46 

HAE Count 0 266 3.82 14.40 0 266 3.77 14.16 
Severe Jerk 

Count 
0 120 1.04 4.64 0 120 1.01 4.47 

SD Speed 0.85 31.14 16.34 5.49 0.93 31.14 16.55 5.34 

SD Acceleration 0.00 49.95 3.07 3.72 0.01 38.53 3.05 3.54 

SD Jerk 0.00 66.99 2.76 4.91 0.00 66.99 2.74 4.77 

CVS 0.02 1.84 0.45 0.24 0.02 1.84 0.46 0.24 

Rain 
  

0.01 
  

0.01 
  

Fog 0.01 0.01 

Sample Size 

10-15 min. 
before crash 

1 22 5.89 3.59 1 22 6.00 3.62 

Avg. Speed 8.81 75.37 43.48 13.59 8.81 75.37 42.85 13.52 

Min. Speed 0.00 67.53 7.30 15.12 0.00 67.53 6.97 14.77 

Max. Speed 14.12 99.98 77.86 10.74 14.12 99.98 77.79 10.67 

HBE Count 0 240 5.13 16.09 0 240 5.08 15.75 

HAE Count 0 260 4.40 15.67 0 260 4.35 15.35 
Severe Jerk 

Count 
0 120 1.17 5.12 0 120 1.15 4.93 

SD Speed 1.26 32.00 16.09 5.55 1.26 32.00 16.26 5.46 

SD Acceleration 0.02 32.14 2.98 3.27 0.02 32.14 2.97 3.26 

SD Jerk 0.00 42.20 2.70 4.39 0.00 42.20 2.70 4.39 

CVS 0.02 1.44 0.44 0.24 0.02 1.44 0.45 0.24 
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Table 0-4 Dataset for Control Def. #2 Upstream=1.5 mi, downstream=0.0mi 

Control Definition #2 (same location, random time) 

  All Multi-Veh Only 

Variable Name 
Time 

Period 
Min Max Mean SD Min Max Mean SD 

Sample Size 

5-10 min. 
before crash 

1 26 4.77 3.39 1 26 4.82 3.44 

Avg. Speed 8.51 74.85 49.29 13.40 8.51 74.85 49.06 13.50 

Min. Speed 0.00 70.25 12.29 19.97 0.00 70.25 12.02 19.81 

Max. Speed 15.87 99.99 78.22 10.52 15.87 99.99 78.27 10.54 

HBE Count 0 315 4.58 17.41 0 315 4.67 17.86 

HAE Count 0 314 3.82 17.00 0 314 3.91 17.46 
Severe Jerk 

Count 
0 132 1.14 6.34 0 132 1.18 6.55 

SD Speed 0.36 41.15 14.37 6.56 0.36 36.62 14.44 6.51 

SD Acceleration 0.00 64.42 3.12 4.28 0.00 54.15 3.09 4.06 

SD Jerk 0.00 69.06 2.65 5.35 0.00 69.06 2.64 5.34 

CVS 0.01 1.84 0.35 0.24 0.01 1.84 0.35 0.24 

Rain 
  

0.01 
  

0.01 
  

Fog 0.02 0.02 

Sample Size 

10-15 min. 
before crash 

1 25 4.71 3.37 1 25 4.74 3.39 

Avg. Speed 9.10 77.27 49.67 13.45 9.10 77.27 49.39 13.56 

Min. Speed 0.00 67.85 12.99 20.32 0.00 67.85 12.78 20.17 

Max. Speed 19.20 99.99 78.37 10.40 19.20 99.99 78.32 10.42 

HBE Count 0 240 4.20 14.78 0 240 4.26 15.01 

HAE Count 0 260 3.48 14.39 0 260 3.53 14.64 
Severe Jerk 

Count 
0 134 1.04 5.75 0 134 1.08 5.93 

SD Speed 0.48 30.63 14.08 6.51 0.48 30.63 14.16 6.48 

SD Acceleration 0.00 41.85 2.91 3.77 0.00 41.85 2.94 3.83 

SD Jerk 0.00 59.48 2.46 4.80 0.00 59.48 2.49 4.88 

CVS 0.01 1.60 0.34 0.24 0.01 1.60 0.35 0.24 
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Table 0-5 Dataset for Control Def. #1 Upstream=1.0 mi, downstream=0.0mi 

Control Definition #1 (same location, day of week, and time) 

  All Multi-Veh Only 

Variable Name 
Time 

Period 
Min Max Mean SD Min Max Mean SD 

Sample Size 

5-10 min. 
before crash 

1 27 7.22 4.39 1 27 7.42 4.40 

Avg. Speed 8.51 72.30 43.82 13.45 8.51 72.30 43.04 13.28 

Min. Speed 0.00 69.85 6.58 14.41 0.00 69.85 5.89 13.45 

Max. Speed 33.66 99.98 79.29 10.47 33.66 99.98 79.33 10.43 

HBE Count 0 244 5.31 15.92 0 244 5.35 15.84 

HAE Count 0 266 4.46 15.50 0 266 4.48 15.45 
Severe Jerk 

Count 
0 120 1.21 4.91 0 120 1.20 4.80 

SD Speed 0.85 30.93 16.34 5.49 1.27 29.49 16.62 5.28 

SD Acceleration 0.01 49.95 3.12 3.51 0.01 36.34 3.12 3.36 

SD Jerk 0.00 61.20 2.89 4.74 0.00 61.20 2.88 4.63 

CVS 0.02 1.83 0.44 0.24 0.02 1.83 0.45 0.24 

Rain 
  

0.01 
  

0.02 
  

Fog 0.01 0.01 

Sample Size 

10-15 min. 
before crash 

1 32 7.29 4.47 1 32 7.48 4.49 

Avg. Speed 9.10 75.37 44.04 13.47 9.10 75.37 43.31 13.36 

Min. Speed 0.00 67.53 6.79 14.73 0.00 67.53 6.15 13.87 

Max. Speed 39.06 99.98 79.07 10.46 39.06 99.98 79.10 10.42 

HBE Count 0 240 5.78 17.22 0 240 5.79 17.03 

HAE Count 0 260 4.90 16.75 0 260 4.91 16.58 
Severe Jerk 

Count 
0 120 1.31 5.36 0 120 1.30 5.23 

SD Speed 1.26 30.30 16.13 5.56 1.26 30.30 16.38 5.39 

SD Acceleration 0.01 27.98 3.07 3.13 0.01 27.98 3.08 3.14 

SD Jerk 0.00 36.63 2.86 4.36 0.00 36.63 2.87 4.37 

CVS 0.02 1.39 0.43 0.24 0.02 1.39 0.45 0.24 
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Table 0-6 Dataset for Control Def. #2 Upstream=1.5 mi, downstream=0.0mi 

Control Definition #2 (same location, random time) 

  All Multi-Veh Only 

Variable Name 
Time 

Period 
Min Max Mean SD Min Max Mean SD 

Sample Size 

5-10 min. 
before crash 

1 26 5.71 4.12 1 26 5.79 4.18 

Avg. Speed 4.87 74.73 49.96 13.17 4.87 74.73 49.73 13.29 

Min. Speed 0.00 69.03 12.02 19.90 0.00 69.03 11.85 19.85 

Max. Speed 14.04 99.99 78.96 10.36 14.04 99.99 79.00 10.34 

HBE Count 0 315 4.77 17.23 0 315 4.86 17.65 

HAE Count 0 314 3.94 16.71 0 314 4.03 17.14 
Severe Jerk 

Count 
0 132 1.17 6.22 0 132 1.21 6.44 

SD Speed 0.36 41.15 14.22 6.53 0.36 36.62 14.29 6.50 

SD Acceleration 0.00 64.42 3.14 4.19 0.00 54.15 3.12 4.01 

SD Jerk 0.00 60.96 2.70 5.25 0.00 60.96 2.70 5.27 

CVS 0.01 1.83 0.34 0.24 0.01 1.83 0.35 0.24 

Rain 
  

0.01 
  

0.01 
  

Fog 0.02 0.02 

Sample Size 

10-15 min. 
before crash 

1 27 5.71 4.12 1 27 5.75 4.15 

Avg. Speed 9.10 73.73 50.21 13.18 9.10 73.73 49.96 13.31 

Min. Speed 0.00 67.85 12.63 20.37 0.00 67.85 12.44 20.26 

Max. Speed 43.07 99.99 79.14 10.19 43.07 99.99 79.09 10.22 

HBE Count 0 240 4.60 15.84 0 240 4.65 16.07 

HAE Count 0 260 3.82 15.39 0 260 3.86 15.62 
Severe Jerk 

Count 
0 134 1.15 6.06 0 134 1.18 6.23 

SD Speed 0.17 33.67 14.01 6.50 0.17 29.51 14.09 6.47 

SD Acceleration 0.00 41.68 2.97 3.61 0.00 41.68 2.98 3.66 

SD Jerk 0.00 58.17 2.55 4.67 0.00 58.17 2.57 4.73 

CVS 0.00 1.60 0.34 0.24 0.00 1.60 0.34 0.24 
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Table 0-7 Dataset for Control Def. #1 Upstream=1.0 mi, downstream=1.0 mi (UP-stream 

portion only) 

Control Definition #1 (same location, day of week, and time) 

  All Multi-Veh Only 

Variable Name 
Time 

Period 
Min Max Mean SD Min Max Mean SD 

Sample Size 

5-10 min. 
before crash 

1 22 6.08 3.60 1 22 6.18 3.62 

Avg. Speed 8.51 72.30 42.43 13.30 8.51 72.30 41.92 13.19 

Min. Speed 0.00 69.77 5.97 13.20 0.00 69.77 5.71 12.86 

Max. Speed 33.66 99.98 78.40 10.89 33.66 99.98 78.40 10.85 

HBE Count 0 244 4.76 15.10 0 244 4.73 14.87 

HAE Count 0 266 3.98 14.80 0 266 3.93 14.59 
Severe Jerk 

Count 
0 120 1.09 4.81 0 120 1.07 4.62 

SD Speed 0.85 31.14 16.65 5.20 0.93 31.14 16.80 5.09 

SD Acceleration 0.02 38.53 3.10 3.54 0.02 38.53 3.10 3.49 

SD Jerk 0.00 66.99 2.79 4.77 0.00 66.99 2.77 4.71 

CVS 0.02 1.84 0.46 0.24 0.02 1.84 0.47 0.23 

Rain 
  

0.01 
  

0.01 
  

Fog 0.01 0.01 

Sample Size 

10-15 min. 
before crash 

1 22 6.14 3.60 1 22 6.23 3.63 

Avg. Speed 8.81 70.69 42.75 13.34 8.81 70.69 42.24 13.28 

Min. Speed 0.00 65.27 6.05 13.51 0.00 65.27 5.88 13.36 

Max. Speed 14.12 99.98 78.28 10.74 14.12 99.98 78.22 10.67 

HBE Count 0 240 5.45 16.70 0 240 5.37 16.30 

HAE Count 0 260 4.65 16.27 0 260 4.58 15.88 
Severe Jerk 

Count 
0 120 1.25 5.32 0 120 1.21 5.10 

SD Speed 1.46 28.93 16.42 5.25 1.46 28.93 16.53 5.19 

SD Acceleration 0.02 32.14 3.07 3.27 0.02 32.14 3.06 3.26 

SD Jerk 0.00 42.20 2.80 4.42 0.00 42.20 2.80 4.41 

CVS 0.02 1.44 0.45 0.23 0.02 1.44 0.46 0.23 
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Table 0-8 Dataset for Control Def. #1 Upstream=1.0 mi, downstream=1.0 mi (DOWN-

stream portion only) 

Control Definition #1 (same location, day of week, and time) 

  All Multi-Veh Only 

Variable Name 
Time 

Period 
Min Max Mean SD Min Max Mean SD 

Sample Size 

5-10 min. 
before crash 

1 25 6.18 3.62 1 25 6.25 3.61 

Avg. Speed 8.79 73.95 42.29 13.43 8.79 73.95 41.81 13.31 

Min. Speed 0.00 69.77 6.27 13.68 0.00 69.77 5.91 13.19 

Max. Speed 28.20 99.98 78.28 10.79 28.20 99.98 78.20 10.69 

HBE Count 0 244 5.19 16.47 0 244 5.11 16.11 

HAE Count 0 266 4.40 16.04 0 266 4.32 15.71 
Severe Jerk 

Count 
0 120 1.25 5.36 0 120 1.21 5.19 

SD Speed 0.28 29.39 16.47 5.22 0.28 29.39 16.61 5.10 

SD Acceleration 0.00 41.74 3.05 3.34 0.00 41.74 3.06 3.34 

SD Jerk 0.00 77.03 2.74 4.71 0.00 77.03 2.75 4.71 

CVS 0.00 2.44 0.46 0.26 0.00 2.44 0.47 0.26 

Rain 
  

0.01 
  

0.01 
  

Fog 0.01 0.01 

Sample Size 

10-15 min. 
before crash 

1 23 6.20 3.64 1 23 6.28 3.64 

Avg. Speed 8.93 71.80 42.79 13.21 8.93 71.80 42.33 13.09 

Min. Speed 0.00 64.75 6.28 13.74 0.00 64.75 5.89 13.14 

Max. Speed 36.86 99.97 78.46 10.66 36.86 99.97 78.41 10.64 

HBE Count 0 272 5.48 17.39 0 272 5.51 17.37 

HAE Count 0 168 4.56 16.09 0 168 4.61 16.12 
Severe Jerk 

Count 
0 57 1.19 4.68 0 57 1.21 4.68 

SD Speed 0.28 30.32 16.41 5.34 0.28 30.32 16.55 5.25 

SD Acceleration 0.00 28.11 3.05 3.25 0.00 28.11 3.07 3.27 

SD Jerk 0.00 43.69 2.77 4.55 0.00 43.69 2.81 4.59 

CVS 0.00 1.34 0.45 0.23 0.00 1.34 0.46 0.23 
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Table 0-9 Dataset for Control Def. #2 Upstream=1.0 mi, downstream=1.0 mi (UP-stream 

portion only) 

Control Definition #2 (same location, random time) 

  All Multi-Veh Only 

Variable Name 
Time 

Period 
Min Max Mean SD Min Max Mean SD 

Sample Size 

5-10 min. 
before crash 

1 26 5.06 3.44 1 25 5.07 3.41 

Avg. Speed 8.51 74.85 48.18 13.45 9.10 77.27 48.65 13.54 

Min. Speed 0.00 70.25 10.16 18.13 0.00 66.70 10.84 18.51 

Max. Speed 26.19 99.99 78.66 10.55 19.20 99.98 78.96 10.31 

HBE Count 0 315 4.96 18.26 0 240 4.57 15.37 

HAE Count 0 314 4.16 17.88 0 260 3.79 14.97 
Severe Jerk 

Count 
0 132 1.23 6.65 0 134 1.12 5.92 

SD Speed 0.36 36.62 14.88 6.24 0.79 30.63 14.63 6.24 

SD Acceleration 0.00 42.84 3.16 3.89 0.01 41.85 3.02 3.84 

SD Jerk 0.00 69.06 2.75 5.24 0.00 59.48 2.62 4.93 

CVS 0.01 1.84 0.37 0.24 0.01 1.60 0.36 0.24 

Rain 
  

0.01 
  

0.01 
  

Fog 0.02 0.02 

Sample Size 

10-15 min. 
before crash 

1 26 5.12 3.49 1 25 5.09 3.43 

Avg. Speed 8.51 74.85 47.98 13.54 9.10 77.27 48.37 13.63 

Min. Speed 0.00 70.25 10.02 18.08 0.00 66.70 10.65 18.40 

Max. Speed 26.19 99.99 78.68 10.57 19.20 99.98 78.86 10.32 

HBE Count 0 315 5.04 18.65 0 240 4.59 15.51 

HAE Count 0 314 4.24 18.30 0 260 3.81 15.14 
Severe Jerk 

Count 
0 132 1.27 6.85 0 134 1.15 6.08 

SD Speed 0.36 36.62 14.93 6.21 0.79 30.63 14.72 6.22 

SD Acceleration 0.00 42.84 3.16 3.89 0.01 41.85 3.03 3.89 

SD Jerk 0.00 69.06 2.74 5.28 0.00 59.48 2.63 4.98 

CVS 0.01 1.84 0.37 0.24 0.01 1.60 0.37 0.24 
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Table 0-10 Dataset for Control Def. #2 Upstream=1.0mi, downstream=1.0 mi (DOWN-

stream portion only) 

Control Definition #2 (same location, random time) 

  All Multi-Veh Only 

Variable Name 
Time 

Period 
Min Max Mean SD Min Max Mean SD 

Sample Size 

5-10 min. 
before crash 

1 24 5.00 3.44 1 24 5.01 3.45 

Avg. Speed 8.79 74.85 48.33 13.43 8.79 74.85 48.12 13.53 

Min. Speed 0.00 67.43 10.76 18.60 0.00 67.43 10.70 18.61 

Max. Speed 43.81 99.99 78.64 10.49 43.81 99.99 78.58 10.49 

HBE Count 0 316 4.94 17.70 0 316 5.00 17.95 

HAE Count 0 315 4.18 17.60 0 315 4.26 17.91 
Severe Jerk 

Count 
0 120 1.18 5.90 0 120 1.21 6.06 

SD Speed 0.40 33.09 14.75 6.26 0.40 33.09 14.80 6.24 

SD Acceleration 0.01 42.80 3.05 3.72 0.01 42.80 3.03 3.72 

SD Jerk 0.00 59.04 2.60 4.87 0.00 59.04 2.59 4.90 

CVS 0.01 1.32 0.37 0.24 0.01 1.32 0.37 0.24 

Rain 
  

0.01 
  

0.01 
  

Fog 0.02 0.02 

Sample Size 

10-15 min. 
before crash 

1 21 4.97 3.33 1 21 4.99 3.32 

Avg. Speed 8.93 75.21 48.78 13.49 8.93 75.21 48.58 13.56 

Min. Speed 0.00 66.70 11.45 18.91 0.00 66.70 11.26 18.76 

Max. Speed 39.02 99.98 78.74 10.41 39.02 99.98 78.68 10.39 

HBE Count 0 248 4.13 13.78 0 248 4.11 13.77 

HAE Count 0 253 3.44 13.47 0 253 3.42 13.47 
Severe Jerk 

Count 
0 155 0.97 4.96 0 155 0.97 5.05 

SD Speed 0.29 39.15 14.51 6.36 0.29 39.15 14.56 6.33 

SD Acceleration 0.00 41.67 3.01 3.80 0.00 41.67 3.01 3.82 

SD Jerk 0.00 47.41 2.62 4.88 0.00 47.41 2.61 4.90 

CVS 0.00 1.48 0.36 0.24 0.00 1.48 0.36 0.24 
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Table 0-11 Dataset for Control Def. #1 Upstream=1.5 mi, downstream=1.0 mi (UP-stream 

portion only) 

Control Definition #1 (same location, day of week, and time) 

  All Multi-Veh Only 

Variable Name 
Time 

Period 
Min Max Mean SD Min Max Mean SD 

Sample Size 

5-10 min. 
before crash 

1 27 7.58 4.39 1 27 7.73 4.41 

Avg. Speed 8.51 72.30 42.85 13.22 8.51 72.30 42.31 13.10 

Min. Speed 0.00 69.77 5.32 12.62 0.00 69.77 4.98 12.14 

Max. Speed 33.66 99.98 79.66 10.52 33.66 99.98 79.69 10.48 

HBE Count 0 244 5.58 16.27 0 244 5.56 16.05 

HAE Count 0 266 4.66 15.82 0 266 4.62 15.64 
Severe Jerk 

Count 
0 120 1.27 5.06 0 120 1.25 4.91 

SD Speed 0.85 29.49 16.73 5.12 2.04 29.49 16.91 4.99 

SD Acceleration 0.02 35.64 3.18 3.37 0.02 35.64 3.18 3.34 

SD Jerk 0.00 61.20 2.96 4.65 0.00 61.20 2.95 4.61 

CVS 0.02 1.83 0.46 0.23 0.03 1.83 0.47 0.23 

Rain 
  

0.01 
  

0.02 
  

Fog 0.01 0.01 

Sample Size 

10-15 min. 
before crash 

1 32 7.70 4.46 1 32 7.83 4.49 

Avg. Speed 9.10 70.69 43.08 13.22 9.10 70.69 42.58 13.15 

Min. Speed 0.00 62.91 5.26 12.61 0.00 62.91 5.02 12.30 

Max. Speed 42.06 99.98 79.66 10.40 42.06 99.98 79.63 10.35 

HBE Count 0 240 6.25 18.05 0 240 6.21 17.75 

HAE Count 0 260 5.30 17.58 0 260 5.25 17.29 
Severe Jerk 

Count 
0 120 1.42 5.62 0 120 1.40 5.45 

SD Speed 1.50 28.94 16.56 5.18 1.50 28.94 16.69 5.09 

SD Acceleration 0.02 26.29 3.20 3.15 0.02 26.29 3.20 3.15 

SD Jerk 0.00 36.63 3.00 4.43 0.00 36.63 3.00 4.43 

CVS 0.02 1.39 0.45 0.23 0.02 1.39 0.46 0.23 
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Table 0-12 Dataset for Control Def. #1 Upstream=1.5 mi, downstream=1.0 mi (DOWN-

stream portion only) 

Control Definition #1 (same location, day of week, and time) 

  All Multi-Veh Only 

Variable Name 
Time 

Period 
Min Max Mean SD Min Max Mean SD 

Sample Size 

5-10 min. 
before crash 

1 25 6.07 3.60 1 25 6.14 3.60 

Avg. Speed 8.79 73.95 42.69 13.47 8.79 73.95 42.18 13.36 

Min. Speed 0.00 69.77 6.58 13.99 0.00 69.77 6.20 13.48 

Max. Speed 28.20 99.98 78.17 10.83 28.20 99.98 78.08 10.75 

HBE Count 0 244 5.11 16.34 0 244 4.99 15.91 

HAE Count 0 266 4.33 15.91 0 266 4.22 15.54 
Severe Jerk 

Count 
0 120 1.23 5.30 0 120 1.19 5.15 

SD Speed 0.28 29.39 16.35 5.29 0.28 29.39 16.50 5.17 

SD Acceleration 0.00 41.74 3.04 3.37 0.00 41.74 3.04 3.37 

SD Jerk 0.00 77.03 2.73 4.73 0.00 77.03 2.72 4.72 

CVS 0.00 1.43 0.45 0.24 0.00 1.43 0.46 0.24 

Rain 
  

0.01 
  

0.02 
  

Fog 0.01 0.01 

Sample Size 

10-15 min. 
before crash 

1 26 6.09 3.66 1 26 6.17 3.66 

Avg. Speed 8.93 71.80 43.15 13.23 8.93 71.80 42.68 13.12 

Min. Speed 0.00 64.75 6.63 14.15 0.00 64.75 6.16 13.48 

Max. Speed 36.86 99.97 78.34 10.62 36.86 99.97 78.27 10.60 

HBE Count 0 272 5.36 17.12 0 272 5.39 17.13 

HAE Count 0 168 4.46 15.85 0 168 4.52 15.91 
Severe Jerk 

Count 
0 57 1.16 4.60 0 57 1.17 4.60 

SD Speed 0.28 30.32 16.31 5.43 0.28 30.32 16.46 5.32 

SD Acceleration 0.00 28.11 3.01 3.23 0.00 28.11 3.04 3.25 

SD Jerk 0.00 43.69 2.73 4.52 0.00 43.69 2.77 4.57 

CVS 0.00 1.34 0.44 0.23 0.00 1.34 0.45 0.23 
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Table 0-13 Dataset for Control Def. #2 Upstream=1.5 mi, downstream=1.0 mi (UP-stream 

portion only) 

Control Definition #2 (same location, random time) 

  All Multi-Veh Only 

Variable Name 
Time 

Period 
Min Max Mean SD Min Max Mean SD 

Sample Size 

5-10 min. 
before crash 

1 26 6.20 4.19 1 26 6.27 4.23 

Avg. Speed 8.51 74.73 48.64 13.27 8.51 74.73 48.44 13.35 

Min. Speed 0.00 68.89 9.55 17.77 0.00 68.89 9.40 17.71 

Max. Speed 25.26 99.99 79.59 10.24 25.26 99.99 79.63 10.24 

HBE Count 0 315 5.28 18.32 0 315 5.39 18.72 

HAE Count 0 314 4.39 17.82 0 314 4.49 18.23 
Severe Jerk 

Count 
0 132 1.30 6.64 0 132 1.34 6.83 

SD Speed 0.36 36.62 14.89 6.18 0.36 36.62 14.95 6.14 

SD Acceleration 0.00 38.02 3.21 3.76 0.00 38.02 3.22 3.78 

SD Jerk 0.00 60.96 2.83 5.12 0.00 60.96 2.85 5.17 

CVS 0.01 1.83 0.37 0.24 0.01 1.83 0.37 0.24 

Rain 
  

0.01 
  

0.01 
  

Fog 0.02 0.02 

Sample Size 

10-15 min. 
before crash 

1 27 6.28 4.17 1 27 6.32 4.18 

Avg. Speed 9.10 73.56 48.96 13.33 9.10 73.56 48.72 13.41 

Min. Speed 0.00 66.78 9.99 18.08 0.00 66.78 9.79 17.95 

Max. Speed 45.63 99.98 79.95 10.03 45.63 99.98 79.86 10.04 

HBE Count 0 240 5.17 16.82 0 240 5.19 16.97 

HAE Count 0 260 4.30 16.35 0 260 4.31 16.51 
Severe Jerk 

Count 
0 134 1.28 6.38 0 134 1.30 6.53 

SD Speed 1.02 29.51 14.70 6.17 1.02 29.51 14.77 6.14 

SD Acceleration 0.01 41.68 3.10 3.67 0.01 41.68 3.11 3.71 

SD Jerk 0.00 58.17 2.74 4.79 0.00 58.17 2.75 4.83 

CVS 0.01 1.60 0.36 0.24 0.01 1.60 0.36 0.24 
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Table 0-14 Dataset for Control Def. #2 Upstream=1.5 mi, downstream=1.0 mi (DOWN-

stream portion only) 

Control Definition #2 (same location, random time) 

  All Multi-Veh Only 

Variable Name 
Time 

Period 
Min Max Mean SD Min Max Mean SD 

Sample Size 

5-10 min. 
before crash 

1 24 4.86 3.40 1 24 4.87 3.42 

Avg. Speed 8.79 74.85 48.77 13.41 8.79 74.85 48.57 13.51 

Min. Speed 0.00 67.43 11.55 19.26 0.00 67.43 11.47 19.24 

Max. Speed 43.81 99.99 78.45 10.53 43.81 99.99 78.40 10.52 

HBE Count 0 316 4.68 17.17 0 316 4.73 17.40 

HAE Count 0 315 3.96 17.07 0 315 4.02 17.36 
Severe Jerk 

Count 
0 120 1.11 5.72 0 120 1.14 5.87 

SD Speed 0.40 33.09 14.53 6.38 0.40 33.09 14.58 6.36 

SD Acceleration 0.01 42.80 2.99 3.72 0.01 42.80 2.98 3.73 

SD Jerk 0.00 59.04 2.52 4.82 0.00 59.04 2.51 4.85 

CVS 0.01 1.32 0.36 0.24 0.01 1.32 0.36 0.24 

Rain 
  

0.01 
  

0.01 
  

Fog 0.02 0.02 

Sample Size 

10-15 min. 
before crash 

1 26 4.85 3.32 1 26 4.87 3.32 

Avg. Speed 8.93 77.69 49.21 13.44 8.93 77.69 49.01 13.53 

Min. Speed 0.00 68.55 12.17 19.51 0.00 68.55 11.96 19.36 

Max. Speed 31.79 99.98 78.51 10.47 31.79 99.98 78.45 10.45 

HBE Count 0 248 4.00 13.57 0 248 3.98 13.55 

HAE Count 0 253 3.34 13.28 0 253 3.32 13.28 
Severe Jerk 

Count 
0 155 0.94 4.85 0 155 0.94 4.93 

SD Speed 0.29 39.15 14.30 6.44 0.29 39.15 14.35 6.41 

SD Acceleration 0.00 41.67 2.97 3.80 0.00 41.67 2.97 3.82 

SD Jerk 0.00 47.41 2.57 4.86 0.00 47.41 2.56 4.88 

CVS 0.00 1.48 0.35 0.24 0.00 1.48 0.35 0.24 
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Table 0-15 Dataset for Control Def. #1 Upstream=1.5 mi, downstream=1.5 mi (UP-stream 

portion only) 

Control Definition #1 (same location, day of week, and time) 

  All Multi-Veh Only 

Variable Name 
Time 

Period 
Min Max Mean SD Min Max Mean SD 

Sample Size 

5-10 min. 
before crash 

1 27 7.45 4.38 1 27 7.60 4.39 

Avg. Speed 8.51 72.30 43.15 13.30 8.51 72.30 42.55 13.17 

Min. Speed 0.00 69.77 5.66 13.04 0.00 69.77 5.27 12.49 

Max. Speed 33.66 99.98 79.52 10.46 33.66 99.98 79.54 10.43 

HBE Count 0 244 5.50 16.19 0 244 5.49 16.03 

HAE Count 0 266 4.60 15.74 0 266 4.59 15.60 
Severe Jerk 

Count 
0 120 1.25 4.99 0 120 1.23 4.86 

SD Speed 0.85 30.93 16.63 5.25 2.04 29.49 16.83 5.11 

SD Acceleration 0.02 49.95 3.16 3.47 0.02 35.64 3.14 3.30 

SD Jerk 0.00 61.20 2.94 4.70 0.00 61.20 2.92 4.56 

CVS 0.02 1.83 0.45 0.24 0.03 1.83 0.46 0.23 

Rain 
  

0.01 
  

0.01 
  

Fog 0.01 0.01 

Sample Size 

10-15 min. 
before crash 

1 32 7.54 4.46 1 32 7.68 4.49 

Avg. Speed 9.10 73.98 43.43 13.36 9.10 73.98 42.86 13.28 

Min. Speed 0.00 64.66 5.86 13.46 0.00 64.66 5.51 12.99 

Max. Speed 42.06 99.98 79.38 10.38 42.06 99.98 79.36 10.34 

HBE Count 0 240 6.03 17.70 0 240 6.01 17.44 

HAE Count 0 260 5.12 17.24 0 260 5.10 16.98 
Severe Jerk 

Count 
0 120 1.37 5.51 0 120 1.35 5.35 

SD Speed 1.26 28.94 16.39 5.34 1.26 28.94 16.55 5.23 

SD Acceleration 0.01 26.29 3.14 3.12 0.01 26.29 3.14 3.12 

SD Jerk 0.00 36.63 2.94 4.37 0.00 36.63 2.94 4.38 

CVS 0.02 1.39 0.44 0.24 0.02 1.39 0.45 0.23 
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Table 0-16 Dataset for Control Def. #1 Upstream=1.5 mi, downstream=1.5 mi (DOWN-

stream portion only) 

Control Definition #1 (same location, day of week, and time) 

  All Multi-Veh Only 

Variable Name 
Time 

Period 
Min Max Mean SD Min Max Mean SD 

Sample Size 

5-10 min. 
before crash 

1 30 7.59 4.48 1 30 7.70 4.48 

Avg. Speed 8.99 72.30 42.98 13.35 8.99 72.30 42.39 13.21 

Min. Speed 0.00 62.87 5.86 13.30 0.00 62.24 5.46 12.70 

Max. Speed 28.20 99.98 79.30 10.54 28.20 99.98 79.20 10.46 

HBE Count 0 244 5.87 17.13 0 244 5.81 16.83 

HAE Count 0 266 5.01 16.75 0 266 4.95 16.51 
Severe Jerk 

Count 
0 120 1.40 5.69 0 120 1.39 5.59 

SD Speed 0.28 31.65 16.46 5.28 0.28 31.65 16.64 5.15 

SD Acceleration 0.00 41.74 3.13 3.32 0.00 41.74 3.13 3.26 

SD Jerk 0.00 77.03 2.92 4.81 0.00 77.03 2.92 4.78 

CVS 0.00 1.51 0.45 0.23 0.00 1.51 0.46 0.23 

Rain 
  

0.01 
  

0.01 
  

Fog 0.01 0.01 

Sample Size 

10-15 min. 
before crash 

1 30 7.66 4.54 1 30 7.79 4.55 

Avg. Speed 9.22 79.68 43.32 13.30 9.22 71.80 42.78 13.14 

Min. Speed 0.00 75.83 6.19 14.04 0.00 64.75 5.67 13.28 

Max. Speed 39.36 99.97 79.35 10.36 41.12 99.97 79.33 10.35 

HBE Count 0 272 6.10 18.98 0 272 6.19 19.14 

HAE Count 0 224 5.07 17.68 0 224 5.19 17.88 
Severe Jerk 

Count 
0 156 1.39 6.24 0 156 1.43 6.35 

SD Speed 1.46 30.27 16.34 5.43 1.46 30.27 16.52 5.31 

SD Acceleration 0.01 34.23 3.08 3.23 0.01 34.23 3.11 3.23 

SD Jerk 0.00 41.20 2.85 4.54 0.00 41.20 2.90 4.56 

CVS 0.02 1.45 0.44 0.24 0.02 1.45 0.45 0.23 
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Table 0-17 Dataset for Control Def. #2 Upstream=1.5 mi, downstream=1.5 mi (UP-stream 

portion only) 

Control Definition #2 (same location, random time) 

  All Multi-Veh Only 

Variable Name 
Time 

Period 
Min Max Mean SD Min Max Mean SD 

Sample Size 

5-10 min. 
before crash 

1 26 6.04 4.17 1 26 6.11 4.22 

Avg. Speed 4.87 74.73 49.03 13.31 4.87 74.73 48.83 13.40 

Min. Speed 0.00 68.89 10.53 18.69 0.00 68.89 10.40 18.67 

Max. Speed 14.04 99.99 79.31 10.33 14.04 99.99 79.34 10.32 

HBE Count 0 315 5.07 17.82 0 315 5.14 18.15 

HAE Count 0 314 4.21 17.34 0 314 4.27 17.68 
Severe Jerk 

Count 
0 132 1.24 6.43 0 132 1.27 6.61 

SD Speed 0.36 36.62 14.66 6.32 0.36 36.62 14.71 6.29 

SD Acceleration 0.00 49.95 3.18 3.86 0.00 38.02 3.16 3.78 

SD Jerk 0.00 60.96 2.79 5.15 0.00 60.96 2.78 5.12 

CVS 0.01 1.83 0.36 0.24 0.01 1.83 0.36 0.24 

Rain 
  

0.01 
  

0.01 
  

Fog 0.02 0.02 

Sample Size 

10-15 min. 
before crash 

1 27 6.08 4.16 1 27 6.12 4.17 

Avg. Speed 9.10 73.56 49.37 13.31 9.10 73.56 49.13 13.42 

Min. Speed 0.00 66.78 10.90 18.90 0.00 66.78 10.72 18.79 

Max. Speed 43.07 99.98 79.65 10.12 43.07 99.98 79.56 10.13 

HBE Count 0 240 4.94 16.39 0 240 4.94 16.51 

HAE Count 0 260 4.11 15.93 0 260 4.10 16.05 
Severe Jerk 

Count 
0 134 1.22 6.20 0 134 1.23 6.33 

SD Speed 0.48 33.67 14.47 6.29 0.48 29.51 14.53 6.26 

SD Acceleration 0.00 41.68 3.05 3.64 0.00 41.68 3.05 3.67 

SD Jerk 0.00 58.17 2.67 4.72 0.00 58.17 2.67 4.75 

CVS 0.01 1.60 0.35 0.24 0.01 1.60 0.36 0.24 
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Table 0-18 Dataset for Control Def. #2 Upstream=1.5 mi, downstream=1.5 mi (DOWN-

stream portion only) 

Control Definition #2 (same location, random time) 

  All Multi-Veh Only 

Variable Name 
Time 

Period 
Min Max Mean SD Min Max Mean SD 

Sample Size 

5-10 min. 
before crash 

1 30 5.99 4.18 1 30 6.01 4.19 

Avg. Speed 8.99 74.85 49.14 13.23 8.99 74.85 48.92 13.35 

Min. Speed 0.00 66.02 10.84 18.79 0.00 66.02 10.79 18.79 

Max. Speed 43.07 99.99 79.37 10.37 43.07 99.99 79.31 10.36 

HBE Count 0 316 5.08 17.18 0 316 5.12 17.39 

HAE Count 0 315 4.26 17.05 0 315 4.32 17.31 
Severe Jerk 

Count 
0 120 1.19 5.65 0 120 1.21 5.78 

SD Speed 0.40 33.09 14.51 6.30 0.40 33.09 14.57 6.28 

SD Acceleration 0.01 41.64 3.12 3.74 0.01 41.64 3.10 3.71 

SD Jerk 0.00 55.21 2.71 4.86 0.00 55.21 2.69 4.86 

CVS 0.01 1.33 0.35 0.24 0.01 1.33 0.36 0.24 

Rain 
  

0.01 
  

0.01 
  

Fog 0.02 0.02 

Sample Size 

10-15 min. 
before crash 

1 30 6.00 4.12 1 30 6.02 4.13 

Avg. Speed 9.22 77.69 49.45 13.38 9.22 77.69 49.25 13.47 

Min. Speed 0.00 68.55 11.16 18.99 0.00 68.55 10.90 18.80 

Max. Speed 31.79 99.99 79.40 10.27 31.79 99.99 79.39 10.25 

HBE Count 0 249 4.52 14.78 0 249 4.50 14.82 

HAE Count 0 253 3.75 14.54 0 253 3.73 14.59 
Severe Jerk 

Count 
0 155 1.08 5.74 0 155 1.08 5.85 

SD Speed 0.58 33.85 14.30 6.33 0.58 33.85 14.36 6.28 

SD Acceleration 0.00 41.67 3.07 3.81 0.00 41.67 3.07 3.83 

SD Jerk 0.00 59.56 2.71 4.92 0.00 59.56 2.70 4.95 

CVS 0.01 1.48 0.35 0.24 0.01 1.48 0.35 0.24 
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PHASE I MODEL RESULTS NOT SHOWN IN SECTION 5.2 

Table 0-19 Model Results for Dataset 0.5 mi Upstream, 0.0 mi downstream, ALL Crashes, 

Control Definition #1 

 

Table 0-20 Model Results for Dataset 0.5 mi Upstream, 0.0 mi downstream, MV Crashes, 

Control Definition #1 

 

 

 

 

Distance Upstream

Variable Name Coefficient exp(coeff) SE(coeff) Z stat p-val Lower 95% Upper 95%

up_05_510_avg_speed -0.034 0.966 0.006 -5.611 2.010E-08 0.955 0.978

up_05_510_sample_size 0.081 1.084 0.027 3.004 0.003 1.029 1.143

Test Name

Likelihood Ratio

Wald

Score (logrank)

AIC

n

ncrash

All Crashes, Controls=Def. #1 (same time, day of week, and location)

0.0 mi

MODEL RESULTS

Distance Downstream0.5 mi

2

2

2
DF

457

1799

1118.5

45.75

MODEL FIT

1.00E-10

3.00E-10

6.00E-11
p-valTest Statistic

47.12

43.70

Distance Upstream

Variable Name Coefficient exp(coeff) SE(coeff) Z stat p-val Lower 95% Upper 95%

up_05_510_avg_speed -0.032 0.969 0.006 -5.080 3.78E-07 0.957 0.981

up_05_510_sample_size 0.092 1.096 0.027 3.355 0.001 1.039 1.157

Test Name

Likelihood Ratio

Wald

Score (logrank)

AIC

n

ncrash

2

42.210

40.450

43.390
Test Statistic

MODEL FIT

7.00E-10

2.00E-09

4.00E-10
p-valDF

2

2

426

1705

1118.5

0.5 mi Distance Downstream 0.0 mi

MODEL RESULTS

Multi-Veh Crashes Only, Controls=Def. #1 (same time, day of week, and location)
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Table 0-21 Model Results for Dataset 0.5 mi Upstream, 0.0 mi downstream, ALL Crashes, 

Control Definition #2 

 

Table 0-22 Model Results for Dataset 0.5 mi Upstream, 0.0 mi downstream, MV Crashes, 

Control Definition #2 

 

 

 

 

Distance Upstream

Variable Name Coefficientexp(coeff)SE(coeff) Z stat p-val Lower 95%Upper 95%

up_05_510_avg_speed -0.044 0.957 0.004 -10.110 <2e-16 0.949 0.965

up_05_510_sample_size 0.064 1.066 0.024 2.640 0.008 1.017 1.117

Test Name

Likelihood Ratio

Wald

Score (logrank)

AIC

n

ncrash

158.30
Test Statistic DF

2 <2e-16
p-val

158.90

MODEL FIT

469

2221

1255.93

<2e-162

MODEL RESULTS

140.80 2 <2e-16

All Crashes, Controls=Def. #2 (same location, random time)

0.5 mi Distance Downstream 0.0 mi

Distance Upstream

Variable Name Coefficientexp(coeff)SE(coeff) Z stat p-val Lower 95%Upper 95%

up_05_510_avg_speed -0.046 0.955 0.005 -9.974 <2e-16 0.947 0.964

up_05_510_sample_size 0.080 1.083 0.025 3.212 0.001 1.032 1.137

Test Name

Likelihood Ratio

Wald

Score (logrank)

AIC

n

ncrash

p-val

2

2

2
DFTest Statistic

165.100

143.900

165.400

MODEL FIT

436

2065

1149.088

<2e-16

<2e-16

<2e-16

0.5 mi Distance Downstream 0.0 mi

MODEL RESULTS

Multi-Veh Crashes Only, Controls=Def. #2 (same location, random time)
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Table 0-23 Model Results for Dataset 1.0 mi Upstream, 0.0 mi downstream, ALL Crashes, 

Control Definition #1 

 

Table 0-24 Model Results for Dataset 1.0 mi Upstream, 0.0 mi downstream, MV Crashes, 

Control Definition #1 

 

 

 

 

 

Distance Upstream

Variable Name Coefficient exp(coeff) SE(coeff) Z stat p-val Lower 95% Upper 95%

up_10_510_avg_speed -0.039 0.962 0.006 -6.618 0.000 0.951 0.973

up_10_1015_max_speed 0.013 1.013 0.005 2.506 0.012 1.003 1.023

Test Name

Likelihood Ratio

Wald

Score (logrank)

AIC

n

ncrash

2

2

518

2145

1402.145

2.00E-11

5.00E-11

1.00E-11

249.50

50.35

47.28

MODEL RESULTS

MODEL FIT

Test Statistic DF p-val

All Crashes, Controls=Def. #1 (same time, day of week, and location)

1.0 mi Distance Downstream 0.0 mi

Distance Upstream

Variable Name Coefficient exp(coeff) SE(coeff) Z stat p-val Lower 95% Upper 95%

up_10_510_avg_speed -0.038 0.963 0.006 -6.316 2.68E-10 0.952 0.974

up_10_1015_max_speed 0.014 1.014 0.005 2.611 0.009 1.003 1.024

Test Name

Likelihood Ratio

Wald

Score (logrank)

AIC

n

ncrash

DF

2

243.82

46.57
Test Statistic p-val

8.00E-11

3.00E-11

482

2015

1315.88

MODEL FIT

1.00E-10245.82

MODEL RESULTS

Multi-Veh Crashes Only, Controls=Def. #1 (same time, day of week, and location)

1.0 mi Distance Downstream 0.0 mi
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Table 0-25 Model Results for Dataset 1.0 mi Upstream, 0.0 mi downstream, ALL Crashes, 

Control Definition #2 

 

Table 0-26 Model Results for Dataset 1.0 mi Upstream, 0.0 mi downstream, MV Crashes, 

Control Definition #2 

 

 

 

 

 

 

Distance Upstream

Variable Name Coefficient exp(coeff) SE(coeff) Z stat p-val Lower 95% Upper 95%

up_10_510_avg_speed -0.054 0.947 0.004 -13.920 <2e-16 0.940 0.955

Test Name

Likelihood Ratio

Wald

Score (logrank)

AIC

n

ncrash

<2e-16

<2e-16

<2e-16
p-valDF

1

1

1220.80

193.60

213.90
Test Statistic

1557.796

MODEL FIT

520

2954

MODEL RESULTS

All Crashes, Controls=Def. #2 (same location, random time)

1.0 mi Distance Downstream 0.0 mi

Distance Upstream

Variable Name Coefficient exp(coeff) SE(coeff) Z stat p-val Lower 95% Upper 95%

up_10_510_avg_speed -0.057 0.944 0.004 -14.070 <2e-16 0.937 0.952

Test Name

Likelihood Ratio

Wald

Score (logrank)

AIC

n

ncrash

1 <2e-16

<2e-16

<2e-16
p-val

229.20

198.00

223.20
Test Statistic DF

1

MODEL FIT

483

2746

1424.129

1

MODEL RESULTS

Multi-Veh Crashes Only, Controls=Def. #2 (same location, random time)

1.0 mi Distance Downstream 0.0 mi
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Table 0-27 Model Results for Dataset 1.5 mi Upstream, 0.0 mi downstream, ALL Crashes, 

Control Definition #1 

 

Table 0-28 Model Results for Dataset 1.5 mi Upstream, 0.0 mi downstream, MV Crashes, 

Control Definition #1 

 

 

 

 

 

 

Distance Upstream

Variable Name Coefficient exp(coeff) SE(coeff) Z stat p-val Lower 95% Upper 95%

up_15_510_avg_speed -0.042 0.959 0.006 -7.162 7.92E-13 0.948 0.970

up_15_1015_max_speed 0.012 1.012 0.005 2.374 0.018 1.002 1.022

Test Name

Likelihood Ratio

Wald

Score (logrank)

AIC

n

ncrash

2

2

2

2290

1485.361

540

2.00E-113

1.00E-12

2.00E-1358.29

58.73

55.16

MODEL RESULTS

MODEL FIT

Test Statistic DF p-val

All Crashes, Controls=Def. #1 (same time, day of week, and location)

1.5 mi Distance Downstream 0.0 mi

Distance Upstream

Variable Name Coefficient exp(coeff) SE(coeff) Z stat p-val Lower 95% Upper 95%

up_15_510_avg_speed -0.041 0.960 0.006 -6.871 6.37E-12 0.949 0.971

up_15_1015_max_speed 0.013 1.013 0.005 2.405 0.016 1.002 1.023

Test Name

Likelihood Ratio

Wald

Score (logrank)

AIC

n

ncrash

51.17

54.36

Test Statistic

2.00E-12

p-valDF

2

2

2

498

2131

1380.925

2.00E-12

8.00E-12

MODEL FIT

54.02

MODEL RESULTS

Multi-Veh Crashes Only, Controls=Def. #1 (same time, day of week, and location)

1.5 mi Distance Downstream 0.0 mi



   
 

171 
 
 

Table 0-29 Model Results for Dataset 1.5 mi Upstream, 0.0 mi downstream, ALL Crashes, 

Control Definition #2 

 

Table 0-30 Model Results for Dataset 1.5 mi Upstream, 0.0 mi downstream, MV Crashes, 

Control Definition #2 

 

 

 

 

 

 

Distance Upstream

Variable Name Coefficient exp(coeff) SE(coeff) Z stat p-val Lower 95% Upper 95%

up_15_510_avg_speed -0.056 0.946 0.004 -14.660 <2e-16 0.939 0.953

Test Name

Likelihood Ratio

Wald

Score (logrank)

AIC

n

ncrash

246.80

215.10

236.10
Test Statistic

<2e-16

<2e-16

<2e-16
p-valDF

1

1

1

MODEL FIT

1680.482

3275

540

MODEL RESULTS

All Crashes, Controls=Def. #2 (same location, random time)

1.5 mi Distance Downstream 0.0 mi

Distance Upstream

Variable Name Coefficient exp(coeff) SE(coeff) Z stat p-val Lower 95% Upper 95%

up_15_510_avg_speed -0.060 0.942 0.004 -14.917 <2e-16 0.935 0.949

up_15_1015_max_speed 0.010 1.010 0.005 2.002 0.045 1.000 1.021

Test Name

Likelihood Ratio

Wald

Score (logrank)

AIC

n

ncrash

224.90

255.10

<2e-16

<2e-16

<2e-16
p-val

2

2

2
DFTest Statistic

498

3023

1515.927

MODEL FIT

263.90

MODEL RESULTS

1.5 mi Distance Downstream 0.0 mi
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Table 0-31 Model Results for Dataset 1.0 mi Upstream, 1.0 mi downstream, ALL Crashes, 

Control Definition #1 

 

Table 0-32 Model Results for Dataset 1.0 mi Upstream, 1.0 mi downstream, MV Crashes, 

Control Definition #1 

 

 

 

 

 

Distance Upstream

Variable Name Coefficient exp(coeff) SE(coeff) Z stat p-val Lower 95% Upper 95%

up_10_510_avg_speed -0.034 0.966 0.006 -5.589 2.28E-08 0.955 0.978

dn_10_510_sample_size 0.054 1.056 0.020 2.757 0.006 1.016 1.097

Test Name

Likelihood Ratio

Wald

Score (logrank)

AIC

n

ncrash

1.00E-102

485

1958

1281.54

3.00E-10

6.00E-11

2

2

46.10

47.11

44.02

MODEL RESULTS

MODEL FIT

Test Statistic DF p-val

All Crashes, Controls=Def. #1 (same time, day of week, and location)

1.0 mi Distance Downstream 1.0 mi

Distance Upstream

Variable Name Coefficient exp(coeff) SE(coeff) Z stat p-val Lower 95% Upper 95%

up_10_510_avg_speed -0.033 0.967 0.006 -5.325 1.01E-07 0.955 0.979

dn_10_510_sample_size 0.055 1.057 0.020 2.736 0.006 1.016 1.099

Test Name

Likelihood Ratio

Wald

Score (logrank)

AIC

n

ncrash

MODEL FIT

p-val

40.84

43.61
Test Statistic DF

456

1853

1212.557

2

2

2 5.00E-10

1.00E-09

3.00E-10

42.71

MODEL RESULTS

Multi-Veh Crashes Only, Controls=Def. #1 (same time, day of week, and location)

1.0 mi Distance Downstream 1.0 mi
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Table 0-33 Model Results for Dataset 1.0 mi Upstream, 1.0 mi downstream, ALL Crashes, 

Control Definition #2 

 

Table 0-34 Model Results for Dataset 1.0 mi Upstream, 1.0 mi downstream, MV Crashes, 

Control Definition #2 

 

 

 

 

 

Distance Upstream

Variable Name Coefficient exp(coeff) SE(coeff) Z stat p-val Lower 95% Upper 95%

dn_10_510_avg_speed -0.052 0.949 0.004 -12.605 <2e-16 0.941 0.957

dn_10_1015_hbe_count 0.007 1.007 0.003 2.154 0.031 1.001 1.014

Test Name

Likelihood Ratio

Wald

Score (logrank)

AIC

n

ncrash

<2e-16

<2e-16

<2e-16

MODEL FIT

189.00

165.40

187.10

Test Statistic

2

DF

2

2

491

2513

1375.343

MODEL RESULTS

p-val

All Crashes, Controls=Def. #2 (same location, random time)

1.0 mi Distance Downstream 1.0 mi

Distance Upstream

Variable Name Coefficient exp(coeff) SE(coeff) Z stat p-val Lower 95% Upper 95%

dn_10_510_avg_speed -0.055 0.946 0.004 -12.694 <2e-16 0.939 0.955

dn_10_1015_hbe_count 0.008 1.008 0.003 2.223 0.026 1.001 1.015

Test Name

Likelihood Ratio

Wald

Score (logrank)

AIC

n

ncrash

MODEL FIT

DF

2

2

2

167.30

192.40

Test Statistic

1274.398

460

2360

<2e-16

<2e-16

<2e-16

p-val

193.30

MODEL RESULTS

Multi-Veh Crashes Only, Controls=Def. #2 (same location, random time)

1.0 mi Distance Downstream 1.0 mi
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Table 0-35 Model Results for Dataset 1.5 mi Upstream, 1.0 mi downstream, ALL Crashes, 

Control Definition #1 

 

Table 0-36 Model Results for Dataset 1.5 mi Upstream, 1.0 mi downstream, MV Crashes, 

Control Definition #1 

 

 

 

 

 

Distance Upstream

Variable Name Coefficient exp(coeff) SE(coeff) Z stat p-val Lower 95% Upper 95%

up_15_510_avg_speed -0.037 0.964 0.006 -6.027 1.67E-09 0.952 0.975

dn_10_510_sample_size 0.053 1.054 0.020 2.708 0.007 1.015 1.096

Test Name

Likelihood Ratio

Wald

Score (logrank)

AIC

n

ncrash

2

500

2045

1330.167

4.00E-12

2.00E-12

1.00E-11

2

2

52.65

53.78

49.98

MODEL RESULTS

MODEL FIT

Test Statistic DF p-val

All Crashes, Controls=Def. #1 (same time, day of week, and location)

1.5 mi Distance Downstream 1.0 mi

Distance Upstream

Variable Name Coefficient exp(coeff) SE(coeff) Z stat p-val Lower 95% Upper 95%

up_15_510_avg_speed -0.037 0.964 0.006 -5.785 7.25E-09 0.952 0.976

dn_10_510_sample_size 0.055 1.056 0.020 2.721 0.007 1.015 1.098

Test Name

Likelihood Ratio

Wald

Score (logrank)

AIC

n

ncrash

2
DF

46.97

50.50
Test Statistic

MODEL FIT

p-val

2.00E-11

5.00E-11

1.00E-11

2

469

1929

1253.947

49.44 2

MODEL RESULTS

Multi-Veh Crashes Only, Controls=Def. #1 (same time, day of week, and location)

1.5 mi Distance Downstream 1.0 mi
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Table 0-37 Model Results for Dataset 1.5 mi Upstream, 1.0 mi downstream, ALL Crashes, 

Control Definition #2 

 

Table 0-38 Model Results for Dataset 1.5 mi Upstream, 1.0 mi downstream, MV Crashes, 

Control Definition #2 

 

 

 

 

 

 

Distance Upstream

Variable Name Coefficient exp(coeff) SE(coeff) Z stat p-val Lower 95% Upper 95%

up_15_510_avg_speed -0.054 0.947 0.004 -13.310 <2e-16 0.940 0.955

Test Name

Likelihood Ratio

Wald
Score (logrank)

AIC

n

ncrash

MODEL FIT

1
1

DF

201.30

177.10
197.40

Test Statistic

<2e-16

<2e-16

1

504

2681

1443.934

MODEL RESULTS

<2e-16
p-val

1.5 mi Distance Downstream 1.0 mi

Distance Upstream

Variable Name Coefficient exp(coeff) SE(coeff) Z stat p-val Lower 95% Upper 95%

up_15_510_avg_speed -0.057 0.945 0.004 -13.370 <2e-16 0.937 0.953

Test Name

Likelihood Ratio

Wald

Score (logrank)

AIC

n

ncrash

MODEL FIT

<2e-16

<2e-16

<2e-16
p-valTest Statistic

202.50

178.80

205.60 1

1

1
DF

1340.06

2521

473

MODEL RESULTS

Multi-Veh Crashes Only, Controls=Def. #2 (same location, random time)

1.5 mi Distance Downstream 1.0 mi
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Table 0-39 Model Results for Dataset 1.5 mi Upstream, 1.5 mi downstream, ALL Crashes, 

Control Definition #1 

 

Table 0-40 Model Results for Dataset 1.5 mi Upstream, 1.5 mi downstream, MV Crashes, 

Control Definition #1 

 

 

 

 

 

Distance Upstream

Variable Name Coefficient exp(coeff) SE(coeff) Z stat p-val Lower 95% Upper 95%

up_15_510_avg_speed -0.039 0.961 0.006 -6.490 0.000 0.950 0.973

dn_15_1015_sample_size 0.036 1.036 0.017 2.091 0.037 1.002 1.071

up_15_1015_max_speed 0.011 1.011 0.005 2.065 0.039 1.001 1.022

Test Name

Likelihood Ratio

Wald

Score (logrank)

AIC

n

ncrash

2142

4.00E-12

515

59.61

1387.707

3

3

7.00E-13

56.31

60.68 3 4.00E-13

MODEL RESULTS

MODEL FIT

Test Statistic DF p-val

All Crashes, Controls=Def. #1 (same time, day of week, and location)

1.5 mi Distance Downstream 1.5 mi

Distance Upstream

Variable Name Coefficient exp(coeff) SE(coeff) Z stat p-val Lower 95% Upper 95%

up_15_510_avg_speed -0.037 0.964 0.006 -5.883 0.000 0.952 0.976

dn_15_510_sample_size 0.047 1.048 0.017 2.741 0.006 1.014 1.084

Test Name

Likelihood Ratio

Wald

Score (logrank)

AIC

n

ncrash

MODEL FIT

2

2

481

2014

1305.296

2.00E-11

3.00E-12
p-val

5.00E-12

DF

52.09

49.50

53.16
Test Statistic

2

MODEL RESULTS

Multi-Veh Crashes Only, Controls=Def. #1 (same time, day of week, and location)

1.5 mi Distance Downstream 1.5 mi
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Table 0-41 Model Results for Dataset 1.5 mi Upstream, 1.5 mi downstream, ALL Crashes, 

Control Definition #2 

 

Table 0-42 Model Results for Dataset 1.5 mi Upstream, 1.5 mi downstream, MV Crashes, 

Control Definition #2  

 

 

Distance Upstream

Variable Name Coefficient exp(coeff) SE(coeff) Z stat p-val Lower 95% Upper 95%

dn_15_510_avg_speed -0.052 0.949 0.004 -11.797 <2e-16 0.941 0.958

dn_15_1015_min_speed -0.008 0.992 0.004 -2.138 0.033 0.985 0.999

dn_15_510_max_speed 0.010 1.010 0.005 2.027 0.043 1.000 1.020

Test Name

Likelihood Ratio

Wald

Score (logrank)

AIC

n

ncrash

1528.027

Test Statistic

217.90

217.20 3

3
DF

<2e-16

<2e-16
p-val

520

2887

188.70 3 <2e-16

MODEL RESULTS

MODEL FIT

All Crashes, Controls=Def. #2 (same location, random time)

1.5 mi Distance Downstream 1.5 mi

Distance Upstream

Variable Name Coefficient exp(coeff) SE(coeff) Z stat p-val Lower 95% Upper 95%

up_15_510_avg_speed -0.052 0.950 0.004 -11.755 <2e-16 0.942 0.958

dn_15_1015_min_speed -0.012 0.988 0.004 -2.987 0.003 0.980 0.996

Test Name

Likelihood Ratio

Wald

Score (logrank)

AIC

n

ncrash

MODEL FIT

<2e-16

<2e-16

<2e-16
p-val

485

2702

1406.331

DF

2

2

2

190.90

224.50
Test Statistic

222.00

MODEL RESULTS

Multi-Veh Crashes Only, Controls=Def. #2 (same location, random time)

1.5 mi Distance Downstream 1.5 mi
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DERIVATION OF CI-PIS 

Here, derivations for the 95% CI for M and 95% PI Y are shown for each of the five types 

of mixed-Poisson models considered in the study. Additionally, the derivation for the Var(M) is 

shown. In all cases, the following is assumed: 

' = (} 

Where, the distribution of ν is the mixture distribution of interest. 

Negative Binomial (NB) Model 

 

Variance of M 

 l�H
�� = l�H
( ∗ �� = �
(L�L� − �
( ∗ ��L = �
(L��
�L� − �
(�L�
��L = *l�H
(� 5 �
(�L, ∗ *l�H
�� 5 �
��L, −  �
(�L�
��L = *u4L 5 (4L, ∗ ±1î 5 1¸ − (4L ∗ 1 = Y ∗ 
u4L 5 (4L� 5 u4L 
ïℎ�H�, Y = 2ð = ���K�H���� K�H�'���H� 

 

95% CI for m 

 (̂ ± 1.96 ∗ °l�H
'� (̂ ± 1.96 ∗ °YÉ
uÉ4L 5 (̂4L� 5 uÉ4L  (̂ ± 1.96 ∗ °YÉ
(̂Ll�H
£̂� 5 (̂L� 5 (̂Ll�H
£̂� (̂ ± 1.96 ∗ °(̂L*YÉ
l�H
£̂� 5 1� 5 l�H
£̂�,  �max �0, (̂ − 1.96 ∗ °(̂L*YÉ
l�H
£̂� 5 1� 5 l�H
£̂�,# , (̂ 5 1.96 ∗ °(̂L*YÉ
l�H
£̂� 5 1� 5 l�H
£̂�,� 

 
95% PI for y 

 �0, à(̂ 5 √19°(̂ 5 l�H
'�á�                       T0, Ü(̂ 5 √19°(̂ 5 (̂L*YÉ
l�H
£̂� 5 1� 5 l�H
£̂�,ÝX  
                                                                                     

Poisson-Inverse-Gaussian (PIG) Model 

Variance of M 

 l�H
�� = l�H
( ∗ �� = �
(L�L� − �
( ∗ ��L 
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= �
(L��
�L� − �
(�L�
��L = *l�H
(� 5 �
(�L, ∗ *l�H
�� 5 �
��L, −  �
(�L�
��L = *u4L 5 (4L, ∗ ±1$ 5 1¸ − (4L ∗ 1 
���G� l�H*}, = (é$ = 1$� 

= 1$ ∗ 
u4L 5 (4L� 5 u4L 

 

95% CI for m 

 (̂ ± 1.96 ∗ °l�H
'� (̂ ± 1.96 ∗ Ë2�g 
uÉ4L 5 (̂4L� 5 uÉ4L  

(̂ ± 1.96 ∗ Ë2�g 
(̂Ll�H
£̂� 5 (̂L� 5 (̂Ll�H
£̂�  

(̂ ± 1.96 ∗ Ë(̂L �2�g 
l�H
£̂� 5 1� 5 l�H
£̂��  
Êmax �0, (̂ − 1.96 ∗ Ë(g2 �1$g Vl�HV£gW 5 1W 5 l�HV£gW�� , (̂ 5 1.96 ∗ Ë(g2 �1$g Vl�HV£gW 5 1W 5 l�HV£gW�Ì  

 
95% PI for y 

 �0, à(̂ 5 √19°(̂ 5 l�H
'�á� 
Ê0, ã(̂ 5 √19Ë(̂ 5 (̂L �2�g 
l�H
£̂� 5 1� 5 l�H
£̂��äÌ   

 
Sichel (SI) Model 

Variance of M 

 l�H
�� = l�H
( ∗ �� = �
(L�L� − �
( ∗ ��L = �
(L��
�L� − �
(�L�
��L = *l�H
(� 5 �
(�L, ∗ *l�H
�� 5 �
��L, −  �
(�L�
��L = *u4L 5 (4L, ∗ Ê�2u
}��� 5 1�G 5 1GL − 1 � 5 1Ì − (4L ∗ 1 

= *u4L 5 (4L, ∗ �2u
}��� 5 1�G 5 1GL� − (4L 

 

95% CI for m (̂ ± 1.96 ∗ °l�H
'� (̂ ± 1.96 ∗ Ë*uÉ4L 5 (̂4L, ∗ �Ln²���
�²D2�� 5 2�Q# − (̂4L  

(̂ ± 1.96 ∗ Ë*(̂Ll�H
£̂� 5 (̂L, ∗ �Ln²���
�²D2�� 5 2�Q# − (̂L  
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(̂ ± 1.96 ∗ Ë(̂L ¼*l�H
£̂� 5 1, ∗ �Ln²���
�²D2�� 5 2�Q# − 1½  

Êmax �0, (̂ − 1.96 ∗ Ë(̂L ¼*l�H
£̂� 5 1, ∗ �Ln²���
�²D2�� 5 2�Q# − 1½� , (̂ 5 1.96 ∗ Ë(̂L ¼*l�H
£̂� 5 1, ∗ �Ln²���
�²D2�� 5 2�Q# − 1½Ì   
 
 
95% PI for y 

 �0, à(̂ 5 √19°(̂ 5 l�H
'�á�                       
Ê0, ã(̂ 5 √19Ë(̂ 5 (̂2 ¼*l�H
£̂� 5 1, ∗ �2û�
�
}̂51�

G 5 1
G2# − 1½äÌ  

 
Poisson-Lognormal (PLN) Model 

Variance of M 

 l�H
�� = l�H
( ∗ �� = �
(L�L� − �
( ∗ ��L = �
(L��
�L� − �
(�L�
��L = *l�H
(� 5 �
(�L, ∗ *l�H
�� 5 �
��L, −  �
(�L�
��L 

= *u4L 5 (4L, ∗ �V�n��Q − 1W ∗ �L�����QQ �Dn��Q 5 1� − (4L ∗ 1  

= *u4L 5 (4L, ∗ T�n��Q X − (4L  = �n��Q ∗ *u4L 5 (4L, − (4L  
 

95% CI for m 

 (̂ ± 1.96 ∗ °l�H
'�  (̂ ± 1.96 ∗ Ë�n²��Q ∗ *uÉ4L 5 (̂4L, − (̂4L  

(̂ ± 1.96 ∗ Ë�n²��Q ∗ *(̂Ll�H
£̂� 5 (̂L, − (̂L  

(̂ ± 1.96 ∗ Ë(̂L*�n²��Q 
l�H
£̂� 5 1� − 1,   
 Êmax �0, (̂ − 1.96 ∗ Ë(̂L*�n²��Q 
l�H
£̂� 5 1� − 1,� , (̂ 5 1.96 ∗ Ë(̂L*�n²��Q 
l�H
£̂� 5 1� − 1, Ì  

 
 
95% PI for y 

 �0, à(̂ 5 √19°(̂ 5 l�H
'�á�                       
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Ê0, ã(̂ 5 √19Ë(̂ 5 (É2*�uÉ\t2 
l�H
£É� 5 1� − 1,äÌ                        

 
Poisson-Weibull (PW) Model 

Variance of M 

 l�H
�� = l�H
( ∗ �� = �
(L�L� − �
( ∗ ��L = �
(L��
�L� − �
(�L�
��L = *l�H
(� 5 �
(�L, ∗ *l�H
�� 5 �
��L, −  �
(�L�
��L  = *u4L 5 (4L, ∗ Ê 2s�ñ�Q/� ÊΓ �Ln 5 1# − ¡Γ �2n 5 1#¢LÌ 5 1LÌ − (4L   

= *u4L 5 (4L, ∗ �  �Q�D2#
¡ �N�D2#¢Q − 1 5 1� − (4L  

= *u4L 5 (4L, ∗ �  �Q�D2#
¡ �N�D2#¢Q� − (4L  

 
95% CI for m 

 (̂ ± 1.96 ∗ °l�H
'�  

(̂4 ± 1.96 ∗ ò*uÉ4L 5 (̂4L, ∗ �  �Q�D2#
¡ �N�D2#¢Q� − (̂4L  

(̂ ± 1.96 ∗ ò*(̂Ll�H
£̂� 5 (̂L, ∗ �  �Q�²D2#
¡ �N�²D2#¢Q� − (̂L  

(̂ ± 1.96 ∗ å(̂L æ*l�H
£̂� 5 1, ∗ �  �Q�²D2#
¡ �N�²D2#¢Q� − 1ç  

ÍÎÎ
Ïmax ó0, (̂ − 1.96 ∗ å(̂L æ*l�H
£̂� 5 1, ∗ ô  �Q�²D2#

¡ �N�²D2#¢Qõ − 1çö , (̂ 5 1.96 ∗ å(̂L æ*l�H
£̂� 5 1, ∗ ô  �Q�²D2#
¡ �N�²D2#¢Qõ − 1çÖ××

Ø         
 
95% PI for y 

 �0, à(̂ 5 √19°(̂ 5 l�H
'�á�                       
ÍÎÎ
Ï0, ÍÎÎ

Î(̂ 5 √19å(̂ 5 (̂L æ*l�H
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