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Positroids are certain representable matroids originally studied by Postnikov in connection

with the totally nonnegative Grassmannian and now used widely in algebraic combinatorics.

The positroids give rise to determinantal equations defining positroid varieties as subvari-

eties of the Grassmannian variety. Rietsch, Knutson-Lam-Speyer, and Pawlowski studied

geometric and cohomological properties of these varieties. In this thesis, we continue the

study of the geometric properties of positroid varieties by establishing several equivalent

conditions characterizing smooth positroid varieties using a variation of pattern avoidance

defined on decorated permutations, which are in bijection with positroids. This allows us to

give two formulas for counting the number of smooth positroids along with two q-analogs.

We also include results of Christian Krattenthaler, which give additional formulas for count-

ing smooth positroids and the coefficients of our q-analogs as well as an asymptotic growth

formula for the number of smooth positroids. Furthermore, we give a combinatorial method

for determining the dimension of the tangent space of a positroid variety at key points using

an induced subgraph of the Johnson graph. We also give a Bruhat interval characterization

of positroids. The results and much of the text of this thesis appear in joint work with Sara

Billey [BW22a; BW22b]. The enumerative results due to Krattenthaler presented here were



inspired by conjectures and results announced in [BW22a]. His results will be included as

an appendix to [BW22b].
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Chapter 1

INTRODUCTION

The use of permutation patterns emerged about a century ago, and this topic has, in

the intervening time, become a prominent field of study. The work of Donald Knuth in

the 1960s brought into light applications of permutation pattern avoidance to computer

science [Knu73]. Widespread study in this area developed in the 1990s, and 2003 saw the

establishment of the international Permutation Patterns conference, devoted solely to results

in this area of study. Over the last several decades, several thousand papers related to

permutation patterns have emerged, touching many different facets of the field.

Problems in enumerative geometry can be traced back over two thousand years, but a

more rigorous treatment of the subject began in the 1800s. In the late 1800s, Hermann

Schubert brought great developments to the field through the introduction of Schubert

calculus, whose key objects are Schubert cells [Sch86; Sch79]. Hilbert’s fifteenth prob-

lem called for a rigorous foundation to Schubert’s enumerative calculus, which influenced

a strong emphasis on these topics in the field of intersection theory within algebraic ge-

ometry throughout the twentieth century. In particular, Schubert varieties, which arise

as the closure of Schubert cells in both the Grassmannian variety and the flag variety,

have been thoroughly studied. A nonexhaustive list of major contributions in the last 100

years includes work produced by Ehresmann [Ehr34], Borel [Bor53], Weil [Wei62], Bernstein-

Gelfand-Gelfand [BGG73], Lascoux-Schützenberger [LS82], Macdonald [Mac91], Chevalley

[Che94], Billey-Haiman [BH95], Fulton [Ful92], Fomin-Gelfand-Postnikov [FGP97], Goresky-

Kottwitz-MacPherson [GKM98], and Lam-Lapointe-Morse-Shimozono [Lam+14].

One reason that Schubert varieties have undergone such comprehensive examination is
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that they provide ready examples of algebraic varieties which are often singular. Many

nice properties of algebraic varieties apply only to varieties that are smooth, while singular

varieties may require more careful and specialized treatment. See [Har77, Chapter 1] for

more on smooth varieties. Therefore, in the study of algebraic geometry, it is helpful to have

examples of varieties, and knowledge of whether a particular variety is smooth or singular is

essential.

In [LS90], Lakshmibai and Sandyha characterized exactly when a Schubert variety in

the complete flag variety, F`(n), is smooth. As Schubert varieties in F`(n) can be indexed

by permutations in Sn, their characterization is given via a permutation pattern avoidance

criterion in the corresponding permutations. In particular, a Schubert variety Xw corre-

sponding to a permutation w is smooth if and only if w avoids 1324 and 2143 as permutation

patterns. We note that in much of the literature Schubert varieties and opposite Schubert

varieties are indexed differently than how we index them here. We will spell out our nota-

tion more carefully in Chapter 2. In presenting this result, Lakshmibai and Sandyha united

these prominent fields of permutation patterns and the study of Schubert varieties. Their

result provided the first application of permutation patterns to the study of the geometry

of Schubert varieties. Related work was also done by Ryan [Rya87], Wolper [Wol89], and

Haiman [Hai92].

There have since been many results in the same spirit of the result of Lakshmibai and

Sandyha. In [BP05, Thm 2.4], Billey and Postnikov extend this result by giving a pattern

avoidance criterion for smoothness of Schubert varieties for all Weyl groups. Given a singular

Schubert variety, Xw, [BW03, Thm 1], [KLR03, Thm 1.3], [Man01, Thm 2], and [Cor03]

developed criteria based on permutation patterns to determine the singular points of Xw.

See [BL00] for additional details on singularities of Schubert varieties and [AB16] for a nice

survey on patterns in relation to Schubert calculus and geometry.

Positroids are an important family of realizable matroids originally defined by Postnikov

in [Pos06] in the context of the totally nonnegative part of the Grassmannian variety. These

matroids and the totally positive part of the Grassmannian variety have played a critical
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role in the theory of cluster algebras and soliton solutions to the KP equations and have

connections to statistical physics, integrable systems, and scattering amplitudes [AH+16;

BGY06; FWZ22; Lus98; Rie06; Wil07; Wil]. Positroids are closed under restriction, con-

traction, duality, and cyclic shift of the ground set, and furthermore they have particularly

elegant matroid polytopes [ARW16].

Positroid varieties were studied by Knutson, Lam, and Speyer in [KLS13], building on the

work of Lusztig, Postnikov and Rietsch [Lus98; Pos06; Rie98; Rie06]. They are homogeneous

subvarieties of the complex Grassmannian variety Gr(k,n) which are defined by determi-

nantal equations determined by the nonbases of a positroid. They can also be described as

projections of Richardson varieties in the complete flag manifold to Gr(k,n). These vari-

eties have beautiful geometric, representation theory, and combinatorial connections [KLS14;

Paw18]. See the background section for notation and further background.

In [Pos06], Postnikov shows that positroids are in bijection with decorated permutations,

which generalize ordinary permutations. Hence, in analogy with the indexing of Schubert

varieties by permutations, positroid varieties can be indexed by decorated permutations.

When studying the partially asymmetric exclusion process and its surprising connection

to the Grassmannian, Sylvie Corteel posed the idea of considering patterns in decorated

permutations [Cor07]. This suggestion was the foundation for the present work. Specifically,

we present pattern avoidance criteria for smoothness of positroid varieties which parallel

the pattern avoidance criterion for smoothness of Schubert varieties. We also extend our

criterion for decorated permutations to criteria on Grassmann intervals, matroid Johnson

graphs, and positroids, all of which are used as indexing sets for positroid varieties. The full

list of criteria is given in Theorem 1.2.5.

The majority of this thesis is devoted to our results on positroid varieties. In particular,

our pattern avoidance criteria for positroid varieties are achieved by considering patterns

as arrangements of arcs in chord diagrams of the associated decorated permutations. As

a separate consideration of patterns in decorated permutations, we provide an alternative

one-line representation of decorated permutations. Using this representation, we describe a
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version of pattern avoidance for decorated permutations that more closely resembles classical

permutation pattern avoidance. We provide enumerative results for this version of decorated

permutation pattern avoidance in Chapter 7.

1.1 Background on Positroid Varieties

Positroids and positroid varieties can be bijectively associated with many different combina-

torial objects [Oh11; Pos06]. For the purposes of this thesis, we will need to use the bijections

associating each of the following types of objects with each other:

1. positroids M of rank k on a ground set of size n,

2. decorated permutations w on n elements with k anti-exceedances,

3. Grassmann necklaces N = (I1, . . . , In) ∈ ([n]
k
)n, and

4. Grassmann intervals [u, v] in Gi(k,n).

Here, a decorated permutation w on n elements is a permutation w ∈ Sn together with an

orientation clockwise or counterclockwise, denoted
Ð→
i or

←Ð
i respectively, assigned to each

fixed point of w. A Grassmann interval [u, v] ∈ Gi(k,n) is an interval in Bruhat order

on permutations in Sn such that v has at most one descent, specifically in position k. In

Chapter 2, we will sketch the relevant bijections and remaining terminology. In addition to

these, there are bijections to juggling sequences, L-diagrams, equivalence classes of plabic

graphs, and bounded affine permutations [ARW16; KLS13; Pos06].

Many of the properties of positroid varieties can be “read off” from one or more of these

bijectively equivalent definitions. Thus, we will index a positroid variety

ΠM = Πw = ΠN = Π[u,v] (1.1.1)

using any of the associated objects, depending on the relevant context. For example, the

codimension is easy to read off from the decorated permutation using the notions of the

chord diagram and its alignments.
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Let Sn,k be the set of decorated permutations on n elements with k anti-exceedances.

The chord diagram D(w ) of w ∈ Sn,k is constructed by placing the numbers 1,2, . . . , n

on n vertices around a circle in clockwise order, and then, for each i, drawing a directed

arc from i to w(i) with a minimal number of crossings between distinct arcs while staying

completely inside the circle. The arcs beginning at fixed points should be drawn clockwise

or counterclockwise according to their orientation in w .

An alignment in D(w ) is a pair of directed edges (i ↦ w(i), j ↦ w(j)) which can be

drawn as distinct noncrossing arcs oriented in the same direction. A pair of directed edges

(i ↦ w(i), j ↦ w(j)) which can be drawn as distinct noncrossing arcs oriented in opposite

directions is called a misalignment. A pair of directed edges which must cross if both are

drawn inside the cycle is called a crossing [Pos06, Sect. 5]. Let Alignments(w ) denote the

set of alignments of w .

Example 1.1.1. Let w = 895
←Ð
4 7
Ð→
6 132 be the decorated permutation with a counterclock-

wise fixed point at 4 and a clockwise fixed point at 6. The chord diagram for w is the

following.

Here for example, (9 ↦ 2,8 ↦ 3) highlighted in yellow is an alignment, (2 ↦ 9,8 ↦ 3) is a

misalignment, and both (7↦ 1,8↦ 3) and (7↦ 1,5↦ 7) are crossings. Note, (7↦ 1,6↦ 6)
is an alignment and (7↦ 1,4↦ 4) is a misalignment.

Theorem 1.1.2. [KLS13; Pos06] For any decorated permutation w ∈ Sn,k and associated

Grassmann interval [u, v], the codimension of Πw in Gr(k,n) is

codim(Πw ) = #Alignments(w ) = k(n − k) − [`(v) − `(u)]. (1.1.2)
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We use the explicit equations defining a positroid variety inGr(k,n) to determine whether

the variety is smooth or singular. In general, a variety X defined by polynomials f1, . . . , fs

is singular if there exists a point x ∈ X such that the Jacobian matrix, Jac, of partial

derivatives of the fi satisfies rank(Jac∣x) < codim X. It is smooth if no such point exists.

The value rank(Jac∣x) is the codimension of the tangent space to X at the point x. Thus,

rank(Jac∣x) < codim X implies the dimension of the tangent space to the variety X at x is

strictly larger than the dimension of the variety X, hence x is a singularity like a cusp on a

curve. In the case of a positroid variety Πw , Theorem 1.1.2 implies that a point x ∈ Πw is

a singularity of Πw if

rank(Jac∣x) < codim Πw = #Alignments(w ). (1.1.3)

1.2 Main Results

Our first main theorem reduces the problem of finding singular points in a positroid variety

to checking the rank of the Jacobian only at a finite number of T -fixed points. For any

J = {j1, . . . , jk} ⊆ [n], let AJ be the element in Gr(k,n) spanned by the elementary row

vectors ei with i ∈ J , or equivalently the subspace represented by a k × n matrix with a

1 in cell (i, ji) for each ji ∈ J and zeros everywhere else. These are the T -fixed points of

Gr(k,n), where T is the set of invertible diagonal matrices over C. The reduction follows

from the decomposition of Π[u,v] as a projected Richardson variety. Every point A ∈ Π[u,v]

lies in the projection of some intersection of a Schubert cell with an opposite Schubert variety

Cy ∩Xv for y ∈ [u, v]. In particular, if y = y1y2⋯yn ∈ [u, v] in one-line notation and we define

y[k] ∶= {y1, y2, . . . , yk} to be an initial set of y, then Ay[k] is in the projection of Cy ∩Xv.

Theorem 1.2.1. Assume A ∈ Π[u,v] is the image of a point in Cy ∩Xv projected to Gr(k,n)
for some y ∈ [u, v]. Then the codimension of the tangent space to Π[u,v] at A is bounded

below by rank(Jac∣Ay[k]
).

Theorem 1.2.1 indicates that the T -fixed points of the form Ay[k] such that y ∈ [u, v] are

key to understanding the singularities of Π[u,v]. In fact, the equations determining Π[u,v] and
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the bases of the positroid M associated to the interval [u, v] can be determined from the

permutations in the interval by the following theorem. Our proof of the following theorem

depends on Knutson-Lam-Speyer’s Theorem/Definition 2.4.7 of a positroid variety as the

projection of a Richardson variety and Theorem 2.1.6. It also follows from [KW15, Lemma

3.11]. Both groups, Knutson-Lam-Speyer and Kodama-Williams, were aware of this result

in the context of positroid varieties for Grassmannians, but it does not appear to be in the

literature in the form we needed, hence we prove the result in Chapter 3.

Theorem 1.2.2. Let w ∈ Sn,k with associated Grassmann interval [u, v] and positroid M.

Then M is exactly the collection of initial sets of permutations in the Grassmann interval

[u, v],

M= {y[k] ∶ y ∈ [u, v]}.

Our next theorem provides a method to compute the rank of the Jacobian of Π[u,v]

explicitly at the T -fixed points. Therefore, we can also compute the dimension of the tangent

space of a positroid variety at those points. Comparing that with the number of alignments

gives a test for singularity of points in positroid varieties by (1.1.3).

Theorem 1.2.3. Let w ∈ Sn,k with associated Grassmann interval [u, v] and positroid M.

For y ∈ [u, v], the codimension of the tangent space to Π[u,v] ⊆ Gr(k,n) at Ay[k] is

rank(Jac∣Ay[k]
) = #{I ∈ ([n]

k
) ∖M ∶ ∣I ∩ y[k]∣ = k − 1}. (1.2.1)

The formula in (1.2.1) is reminiscent of the Johnson graph J(k,n) with vertices given

by the k-subsets of [n] such that two k-subsets I, J are connected by an edge precisely

if ∣I ∩ J ∣ = k − 1. For a positroid M ⊆ ([n]
k
), let J(M) denote the induced subgraph of

the Johnson graph on the vertices in M. We call J(M) the Johnson graph of M. Note,

the Johnson graph is closely related to bases of matroids by the Basis Exchange Property.

Theorem 1.2.3 implies J(M) encodes aspects of the geometry of the positroid varieties like

the Bruhat graph in the theory of Schubert varieties [Car94].
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To state our main theorem characterizing smoothness of positroid varieties, we need to

define two types of patterns that may occur in a chord diagram. First, given an alignment

(i↦ w(i), j ↦ w(j)) in D(w ), if there exists a third arc (h↦ w(h)) which forms a crossing

with both (i↦ w(i)) and (j ↦ w(j)), we say (i↦ w(i), j ↦ w(j)) is a crossed alignment of

w . In the example above, (9 ↦ 2,8 ↦ 3) is a crossed alignment; this alignment is crossed

for instance by (7↦ 1), highlighted in blue.

The second type of pattern is related to the SpirographTM toy, designed by Denys Fisher

and trademarked by Hasbro to draw a variety of curves inside a circle which meet the circle in

a finite number of discrete points. See Figure 1.1. Once oriented and vertices are added, such

curves each determine a chord diagram from a special class, which we will call spirographs.

We think of alignments, crossings, crossed alignments, and spirographs as subgraph patterns

for decorated permutations.

Figure 1.1: Spirographs made by the Spirograph Maker app for the iphone.

Definition 1.2.4. A decorated permutation w = (w, co) ∈ Sn,k is a spirograph permutation

if there exists a positive integer m such that w(i) = i+m (mod n) for all i and w has at most

one fixed point. The chord diagram of a spirograph permutation will be called a spirograph.

Theorem 1.2.5. Let w ∈ Sn,k with associated Grassmann interval [u, v] and positroid M=
{y[k] ∶ y ∈ [u, v]}. Then, the following are equivalent.

1. The positroid variety Πw = Π[u,v] = ΠM is smooth.
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2. For every y ∈ [u, v], #{I ∈ M ∶ ∣I ∩ y[k]∣ = k − 1} = `(v) − `(u).

3. For every J ∈ M, #{I ∈ M ∶ ∣I ∩ J ∣ = k − 1} = k(n − k) −#Alignments(w ).

4. The graph J(M) is regular, and each vertex has degree `(v) − `(u).

5. The decorated permutation w has no crossed alignments.

6. The chord diagram D(w ) is a disjoint union of spirographs.

7. The positroid M is a direct sum of uniform matroids.

In Chapter 2, we provide background material from the literature and define our notation.

In Chapter 3, we study initial sets for Grassmann intervals and prove Theorem 1.2.2 as well

as the equalities (2) ⇔ (3) ⇔ (4) in Theorem 1.2.5.

In Chapter 4, we prove several reduction steps that enable us to focus our study on a

particular class of decorated permutations and associated positroid varieties. This is done

first by proving Theorem 1.2.1 and Theorem 1.2.3 in Section 4.1. Then, Theorem 1.2.1 and

Theorem 1.2.3 together yield the equality (1) ⇔ (2) in Theorem 1.2.5. In Section 4.2, we

consider several rigid transformations of chord diagrams and the associated transformations

of the related objects. Furthermore, we show in Lemma 4.2.6 that applying these transfor-

mations to the objects indexing positroid varieties preserves the property of being smooth.

In Section 4.3, we utilize a decomposition ofM into connected components on a non-crossing

partition and show that a positroid variety is smooth if and only if all of the components of

the decomposition correspond to smooth positroid varieties.

In Chapter 5, we connect crossed alignments and spirographs in chord diagrams to the

study of singular and smooth positroid varieties. In Section 5.1, we identify the special

properties of positroid varieties indexed by spirograph permutations, which leads to the

implication (6) ⇒ (1) and the equalities (5) ⇔ (6) ⇔ (7) in Theorem 1.2.5. In Section 5.2,

we complete the proof of Theorem 1.2.5 by showing that (1) ⇒ (5). This implication is
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accomplished by constructing an injective map from the anti-exchange pairs for a particular

set J ∈ M to Alignments(w ).
The last two chapters are devoted to enumerative results. In Chapter 6, we provide

some enumerative results for smooth positroid varieties. This includes relevant results due

to Christian Krattenthaler, which are found in Section 6.3. We conclude in Chapter 7

by presenting an alternate version of pattern avoidance for decorated permutations and

corresponding enumerations.
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Chapter 2

BACKGROUND

We begin by giving notation and some background on several combinatorial objects and

theorems from the literature. These objects will be used to index the varieties discussed

throughout the thesis. We will then introduce notation for several geometrical objects,

including Grassmannian varieties, flag varieties, Schubert varieties, Richardson varieties,

and positroid varieties.

2.1 Combinatorial objects

2.1.1 Subsets and Partitions

For integers i ≤ j, let [i, j] denote the set {i, i+1, . . . , j}, and write [n] ∶= [1, n] for a positive

integer n. Let ([n]
k
) be the set of size k subsets of [n] for k ∈ [0, n]. Call J ∈ ([n]

k
) a k-subset

of [n].
Define the Gale partial order, ⪯, on k-subsets of [n] as follows. Let I = {i1 < ⋯ < ik} and

J = {j1 < ⋯ < jk}. Then I ⪯ J if and only if ih ≤ jh for all h ∈ [k]. This partial order is known

by many other names; we are following [ARW16] for consistency. Gale studied this partial

order in the context of matroids in the 1960s [Gal68].

For any k × n matrix A and any set J ∈ ([n]
k
), define ∆J(A) to be the determinant of the

k × k submatrix of A lying in column set J . The minors ∆I(A) for I ∈ ([n]
k
) are called the

Plücker coordinate of A. We think of ∆J as a polynomial function on the set of all k × n
matrices over a chosen field using variables of the form xij indexed by row i ∈ [k] and column

j ∈ J .

Definition 2.1.1. Let S be a partition [n] = B1 ⊔ ⋯ ⊔ Bt of [n] into pairwise disjoint,

nonempty subsets. We say that S is a non-crossing partition if there are no distinct a, b, c, d
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in cyclic order such that a, c ∈ Bi and b, d ∈ Bj for some i ≠ j. Equivalently, place the

numbers 1,2, . . . , n on n vertices around a circle in clockwise order, and then for each Bi,

draw a polygon on the corresponding vertices. If no two of these polygons intersect, then S

is a non-crossing partition of [n].

2.1.2 Matroids

A matroid of rank k on [n], defined by its bases, is a nonempty subset M⊆ ([n]
k
) satisfying

the following Basis Exchange Property: if I, J ∈ M such that I ≠ J and a ∈ I ∖ J , then there

exists some b ∈ J ∖ I such that (I ∖ {a}) ∪ {b} ∈ M. Compare the notion of matroid basis

exchange to basis exchange in linear algebra. We call the sets in ([n]
k
) ∖M the nonbases of

M, and we denote this collection of sets by Q(M). The set ([n]
k
) is the uniform matroid of

rank k on [n]. For more on matroids, see [Ard15; Oxl11].

Example 2.1.2. A notable family of matroids called representable matroids comes from

matrices. Let A be a full rank k × n matrix. The matroid of A is the set

MA ∶= {J ∈ ([n]
k

) ∶ ∆J(A) ≠ 0}.

The matroid of

A =
⎡⎢⎢⎢⎢⎢⎣

0 3 1 2 4 0

0 0 0 1 2 1

⎤⎥⎥⎥⎥⎥⎦
is

MA = {{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,6},{5,6}} ⊆ ([6]
2

).

Recall, the Johnson graph J(k,n) with vertices given by the k-subsets of [n] such that

two k-subsets I, J are connected by an edge precisely if ∣I ∩ J ∣ = k − 1. For a matroid

M ⊆ ([n]
k
), J(M) is the induced subgraph of the Johnson graph on the vertices in M. The

Basis Exchange Property forM implies that J(M) is connected, and furthermore, between

any two vertices I, J in J(M), there exists a path in J(M) which is a minimal length path

between I and J in J(k,n). The Johnson graph J(MA) from Example 2.1.2 is
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The direct sum of two matroids on disjoint ground sets, denoted M1⊕M2, is the matroid

with bases given by {I ∪J ∶ I ∈M1, J ∈M2} on the ground set which is the disjoint union of

the ground sets of the matroids M1 and M2. A matroid M on ground set [n] is connected if

M cannot be expressed as the direct sum of two matroids. Every matroid can be decomposed

into the direct sum of its connected components.

Given a matroid M on ground set [n], the dual matroid M∗ is the matroid on [n] with

bases {[n] ∖ I ⊆ [n] ∶ I ∈ M}. If M has rank k, then its dual matroid has rank n − k.

2.1.3 Permutations

Let Sn be the set of permutations of [n], where we think of a permutation as a bijection

from a set to itself. For w ∈ Sn, let wi = w(i), and write w in one-line notation as w =
w1w2⋯wn. For an interval of indices [i, j], we denote the image of [i, j] under w by w[i, j] =
{wi,wi+1, . . . ,wj}. The permutation matrix Mw of w is the n × n matrix that has a 1 in cell

(i,wi) for each i ∈ [n] and zeros elsewhere. The length of w ∈ Sn is

`(w) ∶= #{(i, j) ∶ i < j and w(i) > w(j)}.

The permutation in Sn of maximal length is w0 ∶= n(n − 1)⋯21.
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Example 2.1.3. For w = 3124, the length of w = 3124 is `(w) = 2, and Mw is the matrix

M3124 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that the permutation matrix of w−1 is MT
w . Furthermore, permutation multiplication

is given by function composition so that if wv = u, then w(v(i)) = u(i). By this definition,

MT
wM

T
v =MT

u .

Definition 2.1.4. [BB05a, Chapter 2] For u, v in Sn, u ≤ v in Bruhat order if u[i] ⪯ v[i] for

all i ∈ [n]. Equivalently, Bruhat order is the ranked poset defined as the transitive closure of

the relation u < utij whenever ui < uj, where tij is the permutation transposing i and j and

fixing all other values. For each u ≤ v in Bruhat order, the interval [u, v] is defined to be

[u, v] ∶= {y ∈ Sn ∶ u ≤ y ≤ v}. (2.1.1)

For 0 ≤ k ≤ n, write Sk × Sn−k for the subgroup of Sn consisting of permutations that

send [k] to [k] and [k + 1, n] to [k + 1, n]. If k = 0, consider [k] to be the empty set. A

permutation w ∈ Sn is k-Grassmannian if w1 < ⋯ < wk and wk+1 < ⋯ < wn. This is equivalent

to saying that w is the minimal length element of its coset w ⋅ (Sk ×Sn−k). For example, the

permutation w = 3124 is 1-Grassmannian. The set of Grassmannian permutations in Sn is

the union over k ∈ [0, n] of all k-Grassmannian permutations.

Definition 2.1.5. Assume u ≤ v in Bruhat order on Sn. Then, the interval [u, v] is a

Grassmann interval provided v is a k-Grassmannian permutation for some k ∈ [0, n]. Denote

by Gi(k,n) the set of all Grassmann intervals [u, v] in Sn, where v is k-Grassmannian.

The Grassmann intervals [u, v] are key objects for this thesis. Note that u need not be a

Grassmannian permutation. In the case where v is Grassmannian, there is a simpler criterion

for Bruhat order that follows closely from work of Bergeron-Sottile [BS98, Theorem A]. This

criterion also appears in [Pos06, Lemma 20.2]. We will use this criterion extensively.
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Theorem 2.1.6. Let u, v ∈ Sn, where v is k-Grassmannian. Then u ≤ v if and only if

(i) for every 1 ≤ j ≤ k, we have u(j) ≤ v(j), and

(ii) for every k <m ≤ n, we have u(m) ≥ v(m).

2.1.4 Classical Permutation Pattern Avoidance and Sequences

The notion of permutation patterns has been a well studied topic since the 1960s and has

been hugely popular since the 1990s, [Bón16; Bón17]. Of particular importance has been

pattern containment and avoidance.

Let L = {l1 < l2 < ⋯ < lm} ⊆ [n] and x = (x1, x2, . . . , xn) ∈ Cn. Denote by xL the restriction

of x to the coordinates indexed by L, xL ∶= (xl1 , xl2 , . . . , xlm) ∈ Cm. Identify a permutation

w = w1w2⋯wn ∈ Sn with the n-tuple (w1,w2, . . . ,wn) so that wL = (wl1 ,wl2 , . . . ,wlm). For a

sequence of distinct integers x = (x1, x2, . . . , xm), let fl(x) be the unique permutation in Sm

whose entries occur in the same relative order as those of x. We will refer to this as flattening

w on the set L.

Example 2.1.7. Let w = 31824756 and L = {1,3,4,7}. Then wL = (3,8,2,5), and the

corresponding permutation in S4 is fl(wL) = fl(3,8,2,5) = 2413.

For v ∈ Sm and w ∈ Sn, where m ≤ n, we say that w contains v if there is some m-subset L

of [n] such that fl(wL) = v. If there is no such subset L, we say that w avoids v. Denote the

set of all w ∈ Sn that avoid v by Sn(v). The set Sm may be partitioned into Wilf equivalence

classes according to the enumerations for #Sn(v) for v ∈ Sm. Here u and v in Sm are in the

same class if #Sn(u) = #Sn(v) for all n.

Consider, for example, the case m = 3. A well known fact in pattern avoidance is that

there is only one Wilf equivalence class of permutations in S3. In particular, Knuth showed

that for any v ∈ S3 and any n ≥ 0, #Sn(v) = Cn [Knu73], where Cn is the nth Catalan

number. The sequence of Catalan numbers is defined by setting C0 = 1 and letting

Cn+1 =
n

∑
i=0

CiCn−i
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for n > 0. More on Catalan numbers and the many objects they count can be found in

[Sta15].

Since Knuth’s enumeration for Sn(v) for v ∈ S3 was given, enumerations and related

results for v ∈ Sm for m ≥ 4 have proliferated. For m = 4, there are three Wilf equiva-

lence classes of permutations. Enumerations for #Sn(v) have been found for two of these

equivalence classes. The enumeration for the third class is an open problem.

For a sequence of natural numbers, it is of interest to study the asymptotic growth of

the sequence. In particular, for running an algorithm which is iterated over a sequence,

the asymptotic growth of the sequence is vital to determining the time complexity of the

algorithm. In Knuth-Theta, Knuth discusses several notations for expressing asymptotic

growth. One of these is the Θ notation, as defined below. See [Wik20] for more information

on related notation.

Definition 2.1.8. Let g and f be functions from the set of natural numbers to itself. The

function f is said to be Θ(g), if there are constants c1, c2 > 0 and a natural number n0 such

that c1 ⋅ g(n) ≤ f(n) ≤ c2 ⋅ g(n) for all n ≥ n0.

2.2 Grassmannian, Flag, and Richardson Varieties

Schubert varieties in both the flag variety and the Grassmannian are a well studied class

of varieties that have found importance in algebraic geometry, representation theory, and

combinatorics. Singularities of Schubert varieties, in particular, have been investigated thor-

oughly. See [BL00; Ful97; Kum02] for further background on these varieties.

For 0 ≤ k ≤ n, the points in the Grassmannian variety, Gr(k,n), are the k-dimensional

subspaces of Cn. Up to left multiplication by a matrix in GLk, we may represent V ∈ Gr(k,n)
by a full rank k × n matrix AV such that V is the row span of AV . Let Matkn be the set of

full rank k × n matrices. The points in Gr(k,n) can be bijectively identified with the cosets

GLk ∖Matkn. The Grassmannian varieties are smooth manifolds via the Plücker coordinate

embedding of Gr(k,n) into projective space. This includes the case when k = n = 0, in which
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case Gr(k,n) consists of one point, which is the 0-dimensional vector space in C0.

Let F`(n) be the complete flag variety of nested subspaces of Cn. A complete flag

V● = (0 ⊂ V1 ⊂ ⋯ ⊂ Vn) can be represented as an invertible n×n matrix where the row span of

the first k rows is the subspace Vk in the flag. Throughout the thesis, we will often identify

a full rank matrix with the point it represents in Gr(k,n) or F`(n). For a subset J ⊆ [n],
let ProjJ ∶ Cn → C∣J ∣ be the projection map onto the indices specified by J . Then, for every

permutation w ∈ Sn, there is a Schubert cell Cw and an opposite Schubert cell Cw in F`(n)
defined by

Cw = {V● ∈ F`(n) ∶ dim(Proj[j](Vi)) = ∣w[i] ∩ [j]∣ for all i, j},

Cw = {V● ∈ F`(n) ∶ dim(Proj[n−j+1,n](Vi)) = ∣w[i] ∩ [n − j + 1, n]∣ for all i, j}.

By row elimination and rescaling, we can find a canonical matrix representative AV● ∶= (ai,j)
for each V● ∈ Cw such that ai,wi

= 1 for i ∈ [n], ai,j = 0 for all 1 ≤ j < wi, and ah,wi
= 0 for h > i.

Canonical matrices for Cw can be found similarly, but so that every leading 1 has all zeros

to the right instead of the left. For example, the canonical matrices for C3124 have the form

below, where entries labeled ∗ can be replaced by any element of C.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 ∗
1 ∗ 0 ∗
0 1 0 ∗
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The Schubert variety Xw is the closure of Cw in the Zariski topology on F`(n), and

similarly, the opposite Schubert variety Xw is the closure of Cw. Specifically, Xw and Xw

can be defined by

Xw = {V● ∈ F`(n) ∶ dim(Proj[j](Vi)) ≤ ∣w[i] ∩ [j]∣ for all i, j},

Xw = {V● ∈ F`(n) ∶ dim(Proj[n−j+1,n](Vi)) ≤ ∣w[i] ∩ [n − j + 1, n]∣ for all i, j}.

Bruhat order determines which Schubert cells are in a Schubert variety,

Xw = ⊔
y≥w

Cy and Xw = ⊔
v≤w

Cv. (2.2.1)
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Schubert varieties in the Grassmannian manifold Gr(k,n) are indexed by the sets in ([n]
k
)

and can be defined as the projections of Schubert varieties in F`(n). Let

πk ∶ F`(n) → Gr(k,n) (2.2.2)

be the projection map which sends a flag V● = (0 ⊂ V1 ⊂ ⋯ ⊂ Vn) to the k-dimensional

subspace Vk. Identifying a full rank n × n matrix M with the point it represents in F`(n),
then πk(M) denotes the span of the top k rows of M . For each J ∈ ([n]

k
), there exists a

k-Grassmannian permutation v such that J = v[k] ∶= {v1, v2, . . . , vk}. The Grassmannian

Schubert variety indexed by J is the projection πk(Xv).
For permutations u and v in Sn, with u ≤ v, the Richardson variety is a nonempty variety

in F`(n) and is defined as the intersection Xv
u ∶= Xu ∩Xv. Then dimXv

u = `(v) − `(u). The

decompositions of Xu and Xv into Schubert cells and opposite Schubert cells in (2.2.1) yield

Xv
u = ⊔

u≤y≤v
(Cy ∩Xv) = (⊔

y≥u
Cy) ∩ (⊔

t≤v

Ct).

By Equation (2.2.1), one can observe that the permutation matrix My ∈ (Cy ∩Xv) ⊂ Xv
u for

each y ∈ [u, v].
In [LS90], Lakshmibai and Sandhya prove that Xw is smooth if and only if w avoids 1324

and 2143 as permutation patterns. Related work was also done by Ryan [Rya87], Wolper

[Wol89], and Haiman [Hai92]. In [BP05, Thm 2.4], Billey and Postnikov extend this result by

giving a pattern avoidance criterion for smoothness of Schubert varieties for all Weyl groups.

Given a singular Schubert variety, Xw, [BW03, Thm 1], [KLR03, Thm 1.3], [Man01, Thm

2], and [Cor03] developed criteria based on permutation patterns to determine the singular

points of Xw. These theorems characterizing smooth versus singular points in Schubert

varieties using permutation patterns motivated this work.

Singularities in Richardson varieties and their projections have also been studied in the

literature [Bri05; BC12; KLS14; KL04]. The characterizations of smooth versus singular

Richardson varieties described there are not based on pattern avoidance but rely on compu-

tations in the associated cohomology rings.
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2.3 Decorated Permutations

A decorated permutation w is defined by a permutation w together with a circular orien-

tation map called co from the fixed points of w to the set of clockwise or counterclockwise

orientations, denoted by {↻,↺}. Therefore, we will sometimes describe a decorated permu-

tation as a pair (w, co).
Postnikov made the following definitions in [Pos06, Sect 16]. Given a decorated permu-

tation w , call i ∈ [n] an anti-exceedance of w = (w, co) if i < w−1(i) or if w (i) = Ð→i is a

clockwise fixed point. If i ∈ [n] is not an anti-exceedance, it is an exceedance. Let I1(w ) = I1

be the set of anti-exceedances of w . For an arc (i ↦ w(i)) in the chord diagram of w , we

say the arc is an anti-exceedance arc or exceedance arc depending on whether w(i) is in

I1(w ) or not. Let k(w ) ∶= ∣I1(w )∣. Recall that Sn,k is the set of decorated permutations

with anti-exceedance set of size k.

More generally, let <r be the shifted linear order on [n] given by r <r (r + 1) <r ⋯ <r
n <r 1 <r ⋯ <r (r − 1) for r ∈ [n]. The shifted anti-exceedance set Ir(w ) of w is the

anti-exceedance set of w with respect to the shifted linear order <r on [n],

Ir(w ) = {i ∈ [n] ∶ i <r w−1(i) or w (i) = Ð→i }.

An element i ∈ Ir(w ) is called an r-anti-exceedance, and an element i ∉ Ir(w ) is called

an r-exceedance. Note from the construction that either Ir+1(w ) = Ir(w ) or Ir+1(w ) =
Ir(w ) ∖ {r}∪ {w(r)}, so ∣I1(w )∣ = ⋯ = ∣In(w )∣ = k(w ). Furthermore, Ir+1(w ) = Ir(w ) if

and only if r is a fixed point of w, so clockwise fixed points will be in all of the shifted anti-

exceedance sets and counterclockwise fixed points will be in none. Therefore, w is easily

recovered from (I1(w ), . . . , In(w )). The sequence of k(w )-subsets (I1(w ), . . . , In(w )) is

called the Grassmann necklace associated to w .

Given a decorated permutation w = (w, co) ∈ Sn,k and its anti-exceedance set, we can also

easily identify the Grassmann interval associated to it. The k-Grassmannian permutation v is

determined by v[k] = w−1(I1(w )), and then u is determined by u = wv, and hence I1(w ) =
u[k] by this construction. Let u(w ) = u and v(w ) = v. The interval [u, v] ∈ Gi(k,n) is
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the Grassmann interval associated to w ∈ Sn,k. To identify a decorated permutation from

a Grassmann interval [u, v] ∈ Gi(k,n), simply let

w = uv−1 with co(j) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

↻ if j ∈ u[k]

↺ if j ∉ u[k]
. (2.3.1)

We visualize the bijection from decorated permutations to Grassmann intervals as a

shuffling algorithm.

1. Write w in two-line notation with the numbers 1,2, . . . , n on the first row and w(1),
w(2),. . ., w(n) on the second row, including orientations on fixed points.

2. Highlight the columns i1 < i2 < ⋯ < ik such that ij > w(ij) or w (ij) =
Ð→
ij , corresponding

with anti-exceedances.

3. Keeping the columns intact, reorder the columns so that the highlighted columns i1 <
i2 < ⋯ < ik come first followed by the non-highlighted columns maintaining their relative

order within the highlighted and non-highlighted blocks. Then, drop any orientation

arrows to obtain a 2 × n array of positive integers [ vu ] with the one-line notation for u

determined by the lower row and the one-line notation for v determined by the upper

row.

From this shuffling algorithm, note that v is a k-Grassmannian permutation by construction

and v[k] = w−1 ⋅ I1(w ). Furthermore, u ∈ Sn and its initial set u[k] = I1(w ). Also observe

that ui ≤ vi for all 1 ≤ i ≤ k, and ui ≥ vi for all k + 1 ≤ i ≤ n. Hence, u ≤ v in Bruhat order by

Theorem 2.1.6. Thus, [u, v] is the Grassmann interval associated to w , since the shuffling

algorithm above is equivalent to the permutation multiplication wv = u.

Conversely, to go from [u, v] to w = (w, co), simply take the two line array [ vu ], sort

the columns by the top row to obtain w. Observe that j is a fixed point of w if and only

if u−1(j) = v−1(j). If j is a fixed point of w, then co(j) = ↻ if j ∈ u[k], and co(j) = ↺

otherwise.
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Remark 2.3.1. Observe that the chord diagram is just as easily obtained from [u, v] as it

is from of w . The chord diagram arcs {(i↦ w(i)) ∶ i ∈ [n]} are determined by the columns

in the two line notation of w , so {(i ↦ w(i)) ∶ i ∈ [n]} = {(vj ↦ uj) ∶ j ∈ [n]} with fixed

points oriented appropriately. Therefore, the graphical patterns determining properties for

decorated permutations also determine patterns for Grassmann intervals.

Remark 2.3.2. Note that the map above between decorated permutations in Sn,k and

Grassmann intervals in Gi(k,n) follows the work of [KLS13]. In [Pos06, Sect. 20], a slightly

different map is given. In particular, in Postnikov’s work, the decorated permutation w

obtained from a Grassmann interval [u, v] is computed as w = w0vu−1w0, with a fixed point

i assigned a clockwise orientation if n + 1 − i is in u[k]. Here w0 = n . . .21 ∈ Sn. We will

return to this involution on decorated permutations and associated objects in Remark 4.2.5.

Our reason for prioritizing the Knutson-Lam-Speyer bijection is the direct connection to the

corresponding positroid given in Theorem 1.2.2.

Example 2.3.3. For the decorated permutation w = 54127
Ð→
6 9
←Ð
8 3, the anti-exceedance set

is I1(w ) = {1,2,6,3}. These values occur in positions {3,4,6,9} in w . The Grassmann

necklace for w is

(I1, . . . , I9) = ({1236},{2356},{3456},{1456},{1256},{1267},{1267},{1269},{1269}).

Write the two-line notation, highlight the columns corresponding to anti-exceedances, and

shuffle the anti-exceedances to the front to identify the associated Grassmann interval [u, v]
= [126354798,346912578],

w =
⎡⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6 7 8 9

5 4 1 2 7
Ð→
6 9

←Ð
8 3

⎤⎥⎥⎥⎥⎥⎦
Ô⇒

⎡⎢⎢⎢⎢⎢⎣

v

u

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

3 4 6 9 1 2 5 7 8

1 2 6 3 5 4 7 9 8

⎤⎥⎥⎥⎥⎥⎦
.

Using Postnikov’s map, the decorated permutation corresponding to the interval [u, v] =
[126354798,346912578] is 3

←Ð
2 5
Ð→
4 98167. Postnikov’s inverse map would associate the Grass-

mann interval [416732598,478912356] to the original w = 54127
Ð→
6 9
←Ð
8 3.
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A key artifact of a decorated permutation in our work is its set of alignments. To formally

define alignments, we first establish the following notation for a cyclic interval of elements

in [n] for a fixed integer n.

Definition 2.3.4. Let a, b ∈ [n]. Then

[a, b]cyc ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[a, b] if a ≤ b

[a,n] ∪ [1, b] if a > b
. (2.3.2)

Definition 2.3.5. An alignment of w = (w, co) ∈ Sn is a pair of arcs (p ↦ w(p)) and

(s↦ w(s)) in D(w ) which can be drawn as distinct noncrossing arcs such that

1. both w(p) ∈ [p,w(s) − 1]cyc and w(s) ∈ [w(p) + 1, s]cyc,

2. if w(s) = s, then co(s) = ↻, and

3. if w(p) = p, then co(p) = ↺.

In this case, we denote the alignment by (p↦ w(p), s↦ w(s)) or A(p, s) if w is understood

from context. We say the arc (p ↦ w(p)) is the port side and the arc (s ↦ w(s)) is the

starboard side of the alignment. See Figure 2.1. We use Alignments(w ) to denote the set

of all alignments of w .

Figure 2.1: Alignment with port side (p↦ w(p)) and starboard side (s↦ w(s)).
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Example 2.3.6. Recall the chord diagram in Example 1.1.1 for w = 895
←Ð
4 7
Ð→
6 132, the

alignment (9 ↦ 2,8 ↦ 3) highlighted in yellow has port side (9 ↦ 2) and starboard side

(8↦ 3) as if they were two sides of a boat with its bow pointing to the right. Furthermore,

w has 13 alignments,

Alignments(w ) = {A(3,1),A(3,2),A(3,6),A(4,1),A(4,2),A(4,3),A(4,6),

A(5,1),A(5,2),A(7,6),A(8,6),A(9,6),A(9,8)}.

Definition 2.3.7. A crossed alignment A(p, s, x) consist of an alignment A(p, s) of w and

an additional arc (x ↦ w(x)) crossing both (p ↦ w(p)) and (s ↦ w(s)). We partition the

set of crossed alignments according to which side of the alignment the crossing arc intersects

first as it passes from x to w(x).

1. If x ∈ [w(s), s]cyc and w(x) ∈ [p,w(p)]cyc, we say A(p, s, x) is a starboard tacking crossed

alignment.

2. If x ∈ [p,w(p)]cyc and w(x) ∈ [w(s), s]cyc, we say A(p, s, x) is a port tacking crossed

alignment.

Note that if A(p, s, x) is a crossed alignment, then p and s cannot be fixed points. The

highlighted crossed alignment in Example 1.1.1 A(9,8,7) is an example of a starboard tacking

crossed alignment, while A(9,8,1) is a port tacking crossed alignment.

The following family of (decorated) permutations are key to this work. As a subset of

Sn, these permutations have nice enumerative properties [Cal04], [OEIS, A075834].

Definition 2.3.8. [Cal04] A permutation w ∈ Sn is stabilized-interval-free provided no proper

nonempty interval [a, b] ⊂ [n] exists such that w[a, b] = [a, b].

Note, the only stabilized-interval-free permutation with a fixed point is the identity per-

mutation in S1. Thus, the definition of stabilized-interval-free permutations extends easily

to decorated stabilized-interval-free permutations. Both decorated permutations in S○●1 are
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stabilized-interval-free, and for n ≥ 2 the SIF permutations and the decorated SIF permuta-

tions are the same.

2.4 Positroids and Positroid Varieties

Postnikov and Rietsch considered an important cell decomposition of the totally nonnegative

Grassmannian [Pos06; Rie06]. The term positroid does not appear in either paper, but has

become the name for the matroids that index the nonempty matroid strata in that cell de-

composition. They also individually considered the closures of those cells, which determines

an analog of Bruhat order. The cohomology classes for these cell closures was investigated

by Knutson, Lam, and Speyer [KLS13; KLS14] and Pawlowski [Paw18]. Further geometrical

properties of positroid varieties connected to Hodge structure and cluster algebras can be

found in [GL21; Lam19].

Definition 2.4.1. A real valued k×n matrix A is totally nonnegative (tnn) if each maximal

minor ∆I(A) satisfies ∆I(A) ≥ 0 for I ∈ ([n]
k
). Let Gr(k,n)tnn be the points in Gr(k,n) that

can be represented by totally nonnegative matrices.

Definition 2.4.2. A positroid of rank k on the ground set [n] is a matroid of the formMA

for some matrix A ∈ Gr(k,n)tnn. More generally, a positroid can be defined on any ordered

ground set B = {b1 < ⋯ < bn}.

Positroids are an especially nice class of realizable matroids. For example, they are closed

under the matroid operations of restriction, contraction, and duality, as well as a cyclic shift

of the ground set [ARW16]. The following theorem is nice connection between positroids

and non-crossing partitions as explored by Ardila, Rincón and Williams. See also [For15] for

one direction of this theorem.

Theorem 2.4.3. [ARW16, Thm. 7.6] The connected components of a positroid on ground

set [n] give rise to a non-crossing partition of [n]. Conversely, each positroid M on [n] can

be uniquely constructed by choosing a non-crossing partition B1 ⊔ ⋯ ⊔ Bt of [n], and then

putting the structure of a connected positroid Mi on each block Bi, so M=M1 ⊕⋯⊕Mt.
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The connected components appearing in the decomposition ofM above each correspond

to decorated SIF permutations. This relationship is given in the following corollary.

Corollary 2.4.4. The decomposition of a positroid M=M1 ⊕⋯⊕Mt into connected com-

ponents gives rise to a noncrossing partition [n] = B1 ⊔ ⋯ ⊔ Bt and a decomposition of

the associated decorated permutation w = w(1) ⊕ ⋯ ⊕ w(t), where each w(i) is a decorated

stabilized-interval-free permutation on Bi, and the converse holds as well.

As mentioned in the introduction, positroids are in bijection with decorated permutations.

The following bijection goes by way of the associated Grassmann necklace. The bijection

depends on the shifted Gale order ≺r on ([n]
k
) using the shifted linear order <r on [n].

Specifically, if I and J are k-sets that can be written under <r as I = {i1 <r ⋯ <r ik} and

J = {j1 <r ⋯ <r jk}, then I ⪯r J if ih ≤r jh for all h ∈ [k].

Theorem 2.4.5. [Oh11; Pos06] For w ∈ Sn,k, the set

M(w ) ∶= {I ∈ ([n]
k

) ∶ Ir(w ) ⪯r I for all r ∈ [n]} (2.4.1)

is a positroid of rank k on ground set [n]. Conversely, for every positroid M of rank k on

ground set [n], there exists a unique decorated permutation w ∈ Sn,k such that the sequence

of minimal elements in the shifted Gale order on the subsets inM is the Grassmann necklace

of w .

Corollary 2.4.6. For w = (w, co) ∈ Sn,k with associated positroid M(w ), every shifted

anti-exceedance set Ir(w ) is in M(w ).

Theorem/Definition 2.4.7. [KLS13, Thm 5.1] Given a decorated permutation w ∈ Sn,k
along with its associated Grassmann interval [u, v] and positroid M = M(w ) ⊆ ([n]

k
), the

following are equivalent definitions of the positroid variety Πw = Π[u,v] = ΠM.

1. The positroid variety ΠM is the homogeneous subvariety of Gr(k,n) whose vanishing

ideal is generated by the Plücker coordinates indexed by the nonbases of M, {∆I ∶ I ∈
Q(M)}.
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2. The positroid variety Π[u,v] is the projection of the Richardson variety Xv
u ⊆ F`(n) to

Gr(k,n), so Π[u,v] = πk(Xv
u).

Example 2.4.8. In Example 2.1.2, the matrix A has all nonnegative 2 × 2 minors, so

the associated matroid is a positroid. The minimal elements in shifted Gale order are

({24},{24},{34},{46},{56}, {26}), which is the Grassmann necklace for the decorated per-

mutation
←Ð
1 36524. The associated Grassmann interval is [241365,561234]. The set of non-

bases of M is

Q = {{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{4,5}}.

Therefore, the points in the positroid variety Πw are represented by the full rank complex

matrices of the form ⎡⎢⎢⎢⎢⎢⎣

0 a12 ca12 a14 da14 a16

0 a22 ca22 a24 da24 a26

⎤⎥⎥⎥⎥⎥⎦
.

As mentioned in the introduction, there are many other objects in bijection with positroids

and decorated permutations. We refer the reader to [ARW16] for a nice survey of many other

explicit bijections.
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Chapter 3

POSITROID CHARACTERIZATION USING INITIAL SETS

The definition of positroid varieties in Theorem/Definition 2.4.7 is given in terms of

positroids/positroid complements and the Grassmann intervals. In this section, we show

how the initial sets of permutations in Grassmann intervals determine the positroids, proving

Theorem 1.2.2. This theorem completes the commutative diagram below.

Sn,k Gi(k,n)

Grassmann necklaces in ([n]
k
)n Positroids in ([n]

k
)

shuffle

necklace initial

shiftedGale

3.1 Canonical Representatives

For a k-set I = {i1 < i2 < ⋅ ⋅ ⋅ < ik} such that ij ≤ vj for all 1 ≤ j ≤ k, we will show there exists

a unique maximal element below v in each Sk × Sn−k coset with initial set I. Let u(I, v) ≤ v
be this maximal element when it exists. We think of u(I, v) as the canonical representative

of I in [id, v].

Lemma 3.1.1. Let u ≤ v be two permutations in Sn, and assume v is k-Grassmannian. Then

there exists a unique permutation u′ ∈ [u, v] such that u′ is maximal in Bruhat order among

all permutations in the interval [u, v] with [u′1, . . . , u′k] = [u1, . . . , uk] fixed as an ordered list.

Similarly, there exists a unique permutation u′ ∈ [u, v] such that u′ is maximal in Bruhat

order among all permutations in the interval [u, v] with [u′k+1, . . . , u
′
n] = [uk+1, . . . , un] fixed.

Proof. Let u′ = u′1, . . . , u′n be defined by u′a ∶= ua for a ≤ k and for b = n,n − 1, . . . , k + 1 by

u′(b) = min [v(b), n] ∖ (u′[k] ∪ u′[b + 1, n]). (3.1.1)



28

We claim that u′ is well defined. To see this, recall that u ≤ v implies u(b) ≥ v(b) for all b > k
by Theorem 2.1.6, since v is k-Grassmannian. Hence, for all b′ such that k < b ≤ b′ ≤ n, we

have u(b′) ≥ v(b′) ≥ v(b), so ∣[v(b), n] ∩ u[k + 1, n]∣ ≥ n − b + 1. Then, at each step, the set

[v(b), n] ∖ (u′[k] ∪ u′[b + 1, n]) = ([v(b), n] ∩ u[k + 1, n]) ∖ u′[b + 1, n] is nonempty.

By construction, u′(a) = u(a) ≤ v(a) for all a ≤ k and u′(b) ≥ v(b) for all b > k, so again by

Theorem 2.1.6, we know u′ ≤ v. To see that u ≤ u′, observe that we can obtain u′ from u by

applying a sequence of transpositions which increase length at each step. Since u′(n) = u(b)
for some b ∈ [k + 1, n], then u(b) ≤ u(n) by (3.1.1). Therefore, u < utbn by Definition 2.1.4.

Next, u′(n − 1) = utbn(c) for some c ∈ [k + 1, n − 1] such that utbn(c) ≤ utbn(n − 1) by (3.1.1).

Hence u < utbn < utbntc(n−1), etc. for b = n − 2, . . . , k + 1.

Consider the permutation matrix Mu′ below row k. For each k < b ≤ n, we see from

the construction of u′ that the rectangle northeast of (b, v(b)) and southwest of (k + 1, n)
contains a decreasing sequence of 1’s ending at u′(b) ≥ v(b). Therefore, there is no a < b such

that u′ < u′tab ≤ v unless a ≤ k which would change the first k values of u′. So, u′ is maximal

among all elements below v with prefix [u1, . . . , uk].
It remains to show that u′ is the unique maximal element below v with prefix [u1, . . . , uk].

Say x ∈ Sn is another element such that u ≤ x ≤ v and ui = xi for all 1 ≤ i ≤ k. If u′ ≠ x, then

there exists a maximal j such that u′(j) ≠ x(j). Since x ≤ v, we know x(j) ∈ [v(j), n] by

Theorem 2.1.6 again. By construction u′(j) is the minimal element in

[v(j), n] ∖ (u′[k] ∪ u′[j + 1, n]}) = [v(j), n] ∖ (u′[k] ∪ x[j + 1, n]),

so u′(j) < x(j). Since u, u′, and x are bijections, there exists some k < i < j such that

x(i) = u′(j). Therefore, x < xtij, x(i) ≥ v(j), and x(j) ≥ v(i), so xtij ≤ v by Theorem 2.1.6.

Hence, x is not a maximal element below v with initial values [u(1), . . . , u(k)].
The proof for the second claim is very similar. We leave the details to the reader.

Definition 3.1.2. Given a k-Grassmannian permutation v ∈ Sn and a k-subset I = {i1 < i2 <
⋅ ⋅ ⋅ < ik} ∈ ([n]

k
) such that ij ≤ vj for all 1 ≤ j ≤ k, let u′ = u(I, v) be the permutation obtained

as follows.
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� Loop for j from 1 to k, assuming u′(1), u′(2), . . . , u′(j − 1) are defined. Let

u′(j) = max {i ∈ I ∶ i ≤ vj} ∖ u′[j − 1]. (3.1.2)

� Loop for j from n down to k + 1, assuming u′(n), u′(n − 1), . . . , u′(j + 1) are defined.

Let

u′(j) = min [v(j), n] ∖ (u′[k] ∪ u′[j + 1, n]). (3.1.3)

Corollary 3.1.3. Let v be a k-Grassmannian permutation, and let u ≤ v. If I = {u1, . . . , uk}
then u ≤ u(I, v) ≤ v, and u(I, v) is the unique maximal element in the Sk × Sn−k right coset

containing u.

Proof. Use Lemma 3.1.1 to find the maximal permutation u ≤ u′ ≤ v with the prefix deter-

mined by u. Then use Lemma 3.1.1 again to find the maximal permutation below v with

suffix determined by u′ to obtain u(I, v).

Remark 3.1.4. In preparation of this manuscript, we have learned that the restriction to

k-Grassmannian permutations is unnecessary in Corollary 3.1.3. In fact, Oh and Richmond

have proved a substantially more general statement. Their results imply that for any elements

u ≤ v in any Coxeter group W and any parabolic subgroup WJ , there exists a unique maximal

element in [u, v] ∩ uWJ , see [OR22, Thm. 2.1].

3.2 Intervals and Positroids

For I ⊆ [n], define w0 ⋅ I ∶= {n+ 1− i ∶ i ∈ I}. For any integer s, we also establish the notation

I+s ∶= {i + s ∶ i ∈ I},

I−s ∶= {i − s ∶ i ∈ I},

where all values are taken mod n in the range [n].
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Lemma 3.2.1. Let w = (w, co) be a decorated permutation in Sn,k. Let M and [u, v] be

the positroid and Grassmann interval corresponding to w . Then every I ∈ M satisfies

I1(w ) = u[k] ⪯ I ⪯ v[k] = w−1(I1(w )).

Furthermore, for any r ∈ [n], I satisfies

Ir(w ) ⪯r I ⪯r w−1(Ir(w )).

Proof. Recall the equalities u[k] = I1(w ) and v[k] = w−1(I1(w )) from the bijection between

decorated permutations and Grassmann intervals given in Section 2.3. To see the lower

bound, use the characterization ofM from Theorem 2.4.5. Any I ∈ M must satisfy Ir(w ) ⪯r
I for every shifted anti-exceedance set Ir(w ). In particular, for r = 1, I must satisfy

u[k] = I1(w ) ⪯1 I.

To prove the upper bound I ⪯ v[k], let I = {i1 < ⋯ < ik}, and suppose that I /⪯ v[k] =
{v1 < ⋯ < vk}. Then there is some maximal index r for which ir > vr. In particular, we have

∣v[k] ∩ [ir, n]∣ < k − r + 1. Consider the positroid variety Πw = πk(Xu ∩Xv). Recall that the

opposite Schubert variety Xv is defined by

Xv = {V● ∈ F`(n) ∶ dim(Proj[n−j+1,n](Vi)) ≤ ∣v[i] ∩ [n − j + 1, n]∣ for all i, j}.

Any point in Πw is the projection of a point in Xv. Thus, for any matrix A representing a

point in Πw , the rank of columns [ir, n] of A must be strictly less than k−r+1. In particular,

the rank of A in the column set {ir, . . . , ik} is strictly less than k − r + 1 so rank(AI) < k,

which implies ∆I(M) = 0. Since this argument holds for every matrix representing a point

in Πw , then by Theorem/Definition 2.4.7 it follows that I ∉ M. Thus, I ∈ M must also

satisfy I ⪯ v[k].
For general r, we have already seen above from the definition of M(w ) that I must

satisfy Ir(w ) ⪯r I. Thus again, it remains to show that I ⪯r w−1(Ir(w )). Consider the

action of rotating D(w ) in the counterclockwise direction by r − 1 positions. As discussed

further in Section 4.2, this transformation of D(w ) has the action of cyclically shifting the
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anti-exceedance sets of w as well as the ground set of M(w ). Let z = (z, co′) be the dec-

orated permutation whose chord diagram is obtained by applying this rotation to D(w ).
Then I1(z ) = Ir(w )−(r−1), z−1(I1(z )) = w−1(Ir(w ))−(r−1), and M(z ) = M(w )−(r−1).

Applying the result above yields that I−(r−1) ⪯r z−1(I1(z )) = w−1(Ir(w ))−(r−1). Cycli-

cally shifting the values back up by r − 1 positions, it follows that I = (I−(r−1))+(r−1) ⪯r
(w−1(Ir(w ))−(r−1))+(r−1) = w−1(Ir(w )), as desired.

The result of Lemma 3.2.1 gives a constraint on the elements in a positroid. From this

constraint, we prove the characterization of a positroid as a collection of initial sets of the

corresponding Grassmann interval.

Proof of Theorem 1.2.2. Let S = {y[k] ∶ y ∈ [u, v]} be the collection of initial sets for [u, v].
For y ∈ [u, v], the point represented by the permutation matrix My is in the Richardson vari-

ety Xv
u. Let Ay = Ay[k] be the submatrix of My given by the top k rows. Then Ay represents

a point in the positroid variety πk(Xv
u) = Π[u,v], by Part (1) of Theorem/Definition 2.4.7.

The restriction of Ay to the columns indexed by I = y[k] is a k × k permutation matrix.

Therefore, ∆I does not vanish at Ay ∈ Π[u,v]. Since ∆I is not in the vanishing ideal of Π[u,v],

we must have I ∈ M by Part (2) of Theorem/Definition 2.4.7. Thus, we have the inclusion

S ⊆M.

For the reverse inclusion, let I ∈ M. By Lemma 3.2.1, I must satisfy u[k] ⪯ I ⪯ v[k]. In

particular, since I ⪯ v[k], we may use Definition 3.1.2 to define a permutation y = u(I, v)
with initial set y[k] = I. By Corollary 3.1.3, y ≤ v under Bruhat order, so to prove I ∈ S it

remains only to show that this y satisfies u ≤ y.

By [BB05b, Ex. 8, Ch 2], u ≤ y if and only if u[j] ⪯ y[j] for all j ∈ [k] and u[n−j+1, n] ⪰
y[n − j + 1, n] for all j ∈ [n − k]. This exercise follows from Definition 2.1.4. We will prove

that u[j] ⪯ y[j] for j ∈ [k] by induction on j.

Let w be the decorated permutation associated to [u, v]. Since I ∈ M, we know by

Theorem 2.4.5 that Ir(w ) ⪯r I for all r ∈ [n] where Ir(w ) is the shifted anti-exceedance

set for w . By the shuffling algorithm described in Chapter 2 mapping w to [u, v], one can
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observe for all 1 ≤ j ≤ k that uj ∈ Ir(w ) unless uj < r ≤ vj. In particular, u[j] ⊂ Ir(w ) for

all r > vj since v1 < ⋯ < vj and u ≤ v. Therefore,

∣u[j] ∩ [i, vj]∣ ≤ ∣Ir(w ) ∩ [i, vj]∣ ∀ r > vj. (3.2.1)

For the case j = 1, fix r = v1 + 1 (or if v1 = n fix r = 1) so v1 is maximal under the order

<r. As observed above, u1 ∈ Ir(w ). Since Ir(w ) ∩ [u1, v1] is nonempty, Ir(w ) ⪯r I implies

I ∩ [u1, v1] must also be nonempty. By construction of y = u(I, v) and Definition 3.1.2, y1 is

the maximal element of I ∩ [u1, v1] . Thus u1 ≤ y1.

For the inductive step, fix j ∈ [2, k − 1], and assume that

u[j − 1] = {a1 < . . . < aj−1} ⪯ y[j − 1] = {b1 < . . . < bj−1}. (3.2.2)

We note that all ai, bi ∈ [vj] since v is k-Grassmannian and u, y ≤ v in Bruhat order by

Theorem 2.1.6. If uj ≤ yj, then no matter where uj and yj fit in among the increasing sequence

of ai’s and bi’s, we will have u[j] ⪯ y[j] by (3.2.2). Therefore, assume 1 ≤ yj < uj ≤ vj. By

the induction hypothesis, 1 ≤ ai ≤ bi ≤ vi for each 1 ≤ i < j, so if m is the largest index such

that bm < yj, then

u[j] ∩ [1, am] ⪯ y[j] ∩ [1, bm].

So, to prove u[j] ⪯ v[j], it suffices to show that for all i ∈ [yj, vj]

∣u[j] ∩ [i, vj]∣ ≤ ∣y[j] ∩ [i, vj]∣. (3.2.3)

Fix r = vj+1 modulo n so vj is maximal in the shifted ≤r order. By definition of y = u(I, v),
we know yj is maximal in (I ∖ y[j − 1]) ∩ [vj] under ≤r and the usual order on the integers.

Therefore, for all i ∈ [yj, vj] we have y[j] ∩ [i, vj] = I ∩ [i, vj]. Hence, since Ir(w ) ⪯r I, we

have

∣Ir(w ) ∩ [i, vj]∣ ≤ ∣I ∩ [i, vj]∣ = ∣y[j] ∩ [i, vj]∣. (3.2.4)

By (3.2.1),

∣u[j] ∩ [i, vj]∣ ≤ ∣Ir(w ) ∩ [i, vj]∣, (3.2.5)
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so (3.2.4) and (3.2.5) together imply (3.2.3) for all i ∈ [yj, vj]. Hence, u[j] ⪯ y[j] for all

j ∈ [k].
Observe that the map on permutations in Sn sending x → x′ = w0xw0 rotates the per-

mutation matrices 180 degrees. Using Theorem 2.1.6 we have [u, v] ∈ Gi(k,n) if and only

if [w0uw0,w0vw0] ∈ Gi(n − k,n). By the symmetry in Definition 3.1.2, we observe that

u(y[k + 1, n],w0vw0) = w0yw0. Therefore, by applying the argument above to y′ ∈ [u′, v′]
with I ′ = w0 ⋅ y[k + 1, n], we have u′[j] ⪯ y′[j] for all j ∈ [n− k] which implies u[n− j + 1, n] ⪰
y[n − j + 1, n] for j ∈ [n − k] as needed to complete the proof.

Proof of Theorem 1.2.5, (2) ⇔ (3) ⇔ (4). By Theorem 1.2.2, we have the equality M =
{y[k] ∶ y ∈ [u, v]}. By Theorem 1.1.2, we have #Alignments(w ) = k(n − k) − [`(v) − `(u)].
Hence, `(v) − `(u) = k(n − k) −#Alignments(w ). Together, these facts yield (2) ⇔ (3).

The equality (3) ⇔ (4) comes from the definition of the matroid Johnson graph J(M).
For a set J ∈ M, the vertices adjacent to J in J(M) are exactly the sets I ∈ M such

that ∣I ∩ J ∣ = k − 1. So again, the equality `(v) − `(u) = k(n − k) −#Alignments(w ) from

Theorem 1.1.2 implies (3) ⇔ (4).
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Chapter 4

REDUCTIONS

In this chapter, we prove several results which enable us to reduce our study to a particular

case of decorated permutations. We use these reductions in this chapter to prove equality

(1) ⇔ (2) in Theorem 1.2.5 and in Chapter 5.

In Section 4.1, we reduce the study of positroid varieties to analysis at a few key points.

To determine whether a variety is singular, in general one would have to test every point

in the variety. In this section, we show that for a positroid variety Π[u,v], one need only

check whether Π[u,v] is singular at the T -fixed points Ay[k] for y ∈ [u, v]. In particular, we

will complete the proofs of Theorem 1.2.1 and Theorem 1.2.3. Together these two theorems

along with Theorem 1.2.2 prove the equality between (1) and (2) in Theorem 1.2.5.

In Section 4.2, we consider a set of rigid transformations of a chordal diagram and the

corresponding action on the associated objects. In particular, we show in Lemma 4.2.6 that

applying any of these transformations preserves the property of being smooth or singular in

the associated positroid variety.

In Section 4.3, we enable a reduction to connected positroids. Specifically, we will show

in Corollary 4.3.5 that a positroid variety is smooth if and only if the positroid varieties

corresponding with each connected component are smooth.

4.1 Reduction to T -fixed points

To prove the ability to reduce to T -fixed points, we first recall some specifics for the definition

of the Jacobian matrix of a positroid variety. By Theorem/Definition 2.4.7 Part (1), the

polynomials generating the vanishing ideal of Π[u,v] are exactly the determinants ∆I for
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I ∈ Q[u,v] where

Q[u,v] ∶= ([n]
k

) ∖M = {I ∈ ([n]
k

) ∶ I ≠ y[k] ∀y ∈ [u, v]} (4.1.1)

is the set of nonbases of the positroid M corresponding to [u, v] ∈ Gi(k,n). The second

equality in (4.1.1) holds by Theorem 1.2.2. Each determinant ∆I is a polynomial function

using variables of the form xij indexed by row i ∈ [k] and column j ∈ [n]. Let Jac[u,v], or

just Jac if [u, v] is understood, be the Jacobian of Π[u,v]. Similarly, we will suppress the

subscript Q = Q[u,v]. Then, the rows of Jac are indexed by the sets I ∈ Q, the columns are

indexed by variables xij, and the (I, xij) entry of Jac is ∂∆I

∂xij
. If A is a k × n complex matrix

representing a point in Π[u,v] ⊆ Gr(k,n), then Jac∣A is the matrix with entries in the complex

numbers obtained from Jac by evaluating each entry at A,

Jac∣A(I, xij) =
∂∆I

∂xij
(A). (4.1.2)

By Theorem/Definition 2.4.7 Part (2), we can write Π[u,v] as the union

Π[u,v] = πk(Xv
u) = πk( ⊔

u≤y≤v
(Cy ∩Xv)) = ⋃

u≤y≤v
πk(Cy ∩Xv). (4.1.3)

For any y ∈ [u, v], recall Ay[k] is the projection of the permutation matrix My to the top k

rows.

Lemma 4.1.1. For [u, v] ∈ Gi(k,n) and y ∈ [u, v], the matrix Jac[u,v]∣Ay[k]
is a partial

permutation matrix, up to the signs of the entries. Furthermore, the nonzero entries occur

exactly in the entries (I, xst), where I ∈ Q[u,v] satisfies ∣I ∩ y[k]∣ = k − 1, the value s ∈ [k] is

determined by y[k] ∖ I = {ys}, and t ∈ [n] is determined by I ∖ y[k] = {t}.

Proof. Write Ay[k]∣I for the restriction of Ay[k] to column set I. By expanding ∆I along row

i ∈ [k] of the partial permutation matrix Ay[k], observe from (4.1.2) that entry (I, xij) of

Jac∣Ay[k]
is

(i) (j ∈ I) up to sign, the (k − 1) × (k − 1) minor of Ay[k]∣I in column set I ∖ {j} and row

set [k] ∖ {i}, or



36

(ii) (j ∉ I) 0, since ∆I does not contain xij.

Consider any I ∈ Q. By Theorem 1.2.2, y[k] ∈ M, so I ≠ y[k]. Since I and y[k] are

distinct k-sets, then ∣I ∩ y[k]∣ is at most k − 1. If ∣I ∩ y[k]∣ ≤ k − 2, then Ay[k] has at most

k − 2 ones in Ay[k]∣I , and the remaining entries of Ay[k]∣I are zeros. In that case, every

(k − 1) × (k − 1) minor of Ay[k]∣I is zero. Therefore, row I of Jac∣Ay[k]
contains only zeros.

Otherwise, I ∈ Q satisfies ∣I ∩ y[k]∣ = k −1. Say I ∖ y[k] = {t} and y[k] ∖ I = {ys} for some

s ∈ [k]. Then column t of Ay[k] contains all zeros, row s of Ay[k]∣I contains all zeros, and

the submatrix of Ay[k]∣I obtained by removing row s and column t is a permutation matrix.

Therefore, by cofactor expansion of the determinant

Jac∣
Ay[k]

(I, xst) = ∂∆I

∂xst
(Ay[k]) = ±1,

and xst is the unique variable such that ∂∆I

∂xij
(Ay[k]) is nonzero.

Conversely, we claim column xst contains a unique nonzero entry in row I. If I ′ ∈ Q is

another set such that ∣I ′∩y[k]∣ = k−1, let I ′∖y[k] = {t′} and y[k]∖I ′ = {ys′}. Then, the only

nonzero entry of Jac∣Ay[k]
in row I ′ occurs in column xs′t′ by the same reasoning as above.

If t ≠ t′, then xst ≠ xs′t′ . If t = t′, either s = s′ and I ′ = I or else ys ∈ I ′ so s′ ≠ s since y is a

bijection, in which case xst ≠ xs′t′ . Therefore, Jac∣Ay[k]
is a partial permutation matrix up to

signs as stated.

Proof of Theorem 1.2.3. From Lemma 4.1.1, Jac∣Ay[k]
is a partial permutation matrix, up

to the signs of its entries. Thus, the rank of Jac∣Ay[k]
is exactly the number of its nonzero

entries, which are exactly in the rows indexed by the sets I ∈ Q satisfying ∣I ∩ y[k]∣ = k − 1.

Therefore, the rank of Jac∣Ay[k]
is equal to the number of these sets,

rank(Jac∣Ay[k]
) = #{I ∈ ([n]

k
) ∖M ∶ ∣I ∩ y[k]∣ = k − 1}.

Next, consider a flag V● ∈ Cy ∩Xv and its canonical matrix representative AV● as defined

in Chapter 2. Let A be the projection of AV● to Gr(k,n). We will see that the rank of the

Jacobian matrix evaluated at A is at least the rank of the Jacobian evaluated at Ay[k].
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Proof of Theorem 1.2.1. Without loss of generality, we can assume A ∈ πk(Cy ∩ Xv) is a

canonical matrix with leading ones in exactly the same entries as Ay[k]. Therefore, per-

muting the columns of A and Ay[k] in the same way, we can assume the first k columns of

both have the form of an upper triangular matrix with ones on the diagonal. If we apply

the same permutation to the values in the k-sets in Q and the variables xij, then such a

rearrangement of columns will not change the rank of Jac∣Ay[k]
or Jac∣A. After permuting,

we can then assume y is the identity permutation, so Ay[k] = A[k]. Let N = rank(Jac∣A
[k]

).
By Theorem 1.2.3, we must show that

rank(Jac∣A) ≥ N = #{I ∈ Q ∶ ∣I ∩ [k]∣ = k − 1}.

Let R = {I1, . . . , IN} and C = {(s1, t1), . . . , (sN , tN)} be the unique row and column sets

such that the N ×N minor of Jac∣A
[k]

in rows R and columns C is nonzero, as determined in

Lemma 4.1.1. Then, for each Ij ∈ R, we know Ij = ([k]∖{sj})∪{tj}, where s ∈ [k] and tj > k
after permuting values. Since the first k columns of A form an upper triangular matrix with

ones along the diagonal, we observe that for all j ∈ [N],

Jac∣A(Ij, xsjtj) =
∂∆Ij

∂xsjtj
(A) = ±1. (4.1.4)

Fix j ∈ [N]. Assume that the sets in R are ordered lexicographically as sorted lists, and

let 1 ≤ h < j ≤ N . Either th ≠ tj or th = tj and sh > sj by lex order. If th ≠ tj, then Ih does

not contain tj, by construction of Ih. Hence, ∆Ih does not depend on the variable xsjtj , so
∂∆Ih

∂xsjtj
(A) = 0. Otherwise, sh > sj, and

∂∆Ih

∂xsjtj
(A) is the determinant of an upper triangular

matrix with a zero on its diagonal. Hence, in either case

Jac∣A(Ih, xsjtj) =
∂∆Ih

∂xsjtj
(A) = 0. (4.1.5)

Arrange the rows and columns of Jac so that I1, . . . , IN are the top N rows listed in order

and xs1t1 , xs2t2 , . . . , xsNktN are the first N columns listed in order. Then, the N ×N upper

left submatrix of Jac∣A is lower triangular with plus or minus one entries along the diagonal.

Thus Jac∣A contains a rank N submatrix, so rank(Jac∣A) ≥ N .
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Example 4.1.2. Rearranging the columns of the matrix in Example 2.1.2 so that y[k] = [k],
consider the matrix

A =
⎡⎢⎢⎢⎢⎢⎣

1 2 3 0 4 0

0 1 0 0 2 1

⎤⎥⎥⎥⎥⎥⎦
.

The nonbases of MA are

Q = {{1,3},{1,4},{2,4},{2,5},{3,4},{4,5},{4,6}} ⊆ ([6]
2

).

With k = 2, the sets I ∈ Q satisfying ∣[k]∩I ∣ = k−1, ordered lexicographically, are I1 = {1,3},

I2 = {1,4}, I3 = {2,4}, and I4 = {2,5}. The corresponding xst so that Ij = ([k] ∖ {sj}) ∪ {tj}
are x23, x24, x14, and x15, respectively. Arranging the rows and columns of Jac∣A as described

in the proof above, the upper left submatrix of Jac∣A is a lower triangular matrix with plus

or minus one entries on the diagonal, as shown below.

x23 x24 x14 x15

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

{1,3} 1 0 0 0

{1,4} 0 1 0 0

{2,4} 0 2 −1 0

{2,5} 0 0 0 1

Corollary 4.1.3. Let [u, v] ∈ Gi(k,n) and y ∈ [u, v]. Then πk(Cy ∩Xv) ⊆ Π[u,v] contains

a singular point of Π[u,v] if and only if Π[u,v] is singular at Ay[k]. Furthermore, Ay[k] is a

singularity of Π[u,v] if and only if

#{I ∈ Q[u,v] ; ∣I ∩ y[k]∣ = k − 1} < k(n − k) − [`(v) − `(u)].

Proof. Recall from (1.1.3) that A ∈ Π[u,v] is a singular point of Π[u,v] if and only if rank(Jac∣A)
< codim Π[u,v]. By Theorem 1.2.1, for any A ∈ πk(Cy ∩Xv), rank(Jac∣Ay[k]

) ≤ rank(Jac∣A).
Therefore, if there exists some A ∈ πk(Cy ∩Xv) that is a singular point of Π[u,v], then

rank(Jac∣Ay[k]
) ≤ rank(Jac∣A) < codim Π[u,v]
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implies that Ay[k] is also a singular point of Π[u,v]. Conversely, note that since the permuta-

tion matrix My is in Cy ∩Xv, then Ay[k] = πk(My) ∈ πk(Cy ∩Xv). Thus, if Ay[k] is a singular

point of Π[u,v], then Ay[k] is already a singular point of Π[u,v] in πk(Cy ∩Xv). This proves

the first statement.

For the second statement, recall from Theorem 1.1.2 that

codim Π[u,v] = k(n − k) − [`(v) − `(u)].

By Theorem 1.2.3, rank(Jac∣Ay[k]
) = #{I ∈ Q ∶ ∣I ∩ y[k]∣ = k − 1}. Therefore, Ay[k] is a

singular point of Π[u,v] if and only if

#{I ∈ Q ∶ ∣I ∩ y[k]∣ = k − 1} = rank(Jac∣Ay[k]
) < codim Π[u,v] = k(n − k) − [`(v) − `(u)].

Proof of Theorem 1.2.5, (1) ⇔ (2). From the definition of a smooth variety and the decom-

position

Π[u,v] = πk(Xv
u) = πk( ⊔

u≤y≤v
(Cy ∩Xv)) = ⋃

u≤y≤v
πk(Cy ∩Xv),

it follows that Π[u,v] is smooth if and only if, for every y ∈ [u, v], every point in πk(Cy ∩Xv)
is a smooth point of Π[u,v]. By Corollary 4.1.3, every point of πk(Cy ∩Xv) is a smooth point

of Π[u,v] if and only if Ay[k] is a smooth point of Π[u,v], which occurs if and only if

#{I ∈ Q ∶ ∣I ∩ y[k]∣ = k − 1} ≥ k(n − k) − [`(v) − `(u)]. (4.1.6)

Since rank(Jac∣Ay[k]
) is the codimension of the tangent space to Π[u,v] at Ay[k], it follows

that rank(Jac∣Ay[k]
) is bounded above by codim Π[u,v]. Thus, the inequality in (4.1.6) can

never be strict. Therefore, Ay[k] is a smooth point of Π[u,v] if and only if

#{I ∈ Q ∶ ∣I ∩y[k]∣ = k−1} = rank(Jac∣Ay[k]
) = codim Π[u,v] = k(n−k)−[`(v)−`(u)]. (4.1.7)

We can compute the left side of (4.1.7) as follows. For any j ∈ y[k] and any element

i ∈ [n]/y[k], observe that there are k(n − k) sets I ∈ ([n]
k
) of the form I = (y[k]/{j}) ∪ {i} so
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that ∣I ∩ y[k]∣ = k − 1. Since Q = ([n]
k
) ∖M, then

#{I ∈ M ∶ ∣I ∩ y[k]∣ = k − 1} + #{I ∈ Q ∶ ∣I ∩ y[k]∣ = k − 1} = k(n − k). (4.1.8)

Substituting the result of (4.1.8) into (4.1.7) yields that Ay[k] is a smooth point of Π[u,v] if

and only if

#{I ∈ M ∶ ∣I ∩ y[k]∣ = k − 1} = `(v) − `(u). (4.1.9)

Thus, Π[u,v] contains only smooth points if and only if every y ∈ [u, v] satisfies (4.1.9).

Finally in this section, we relate the vertex degree conditions in the Johnson graph to

the sets of nonbases of positroids similar to Corollary 4.1.3. If a positroid M corresponds

with the decorated permutation w , let Alignments(M) = Alignments(w ).

Corollary 4.1.4. Given a rank k positroid M on ground set [n], let Q ∶= ([n]
k
) ∖M be the

corresponding set of nonbases. For any J ∈ M, the codimension of the tangent space to ΠM

at AJ is

#{I ∈ Q ∶ ∣I ∩ J ∣ = k − 1} ≤ #Alignments(M) = codim(ΠM). (4.1.10)

Furthermore, AJ is a singular point in ΠM if and only if

#{I ∈ Q ∶ ∣I ∩ J ∣ = k − 1} < #Alignments(M). (4.1.11)

Proof. Equation (4.1.10) follows from Equation (1.1.3), Theorem 1.2.2, and Theorem 1.2.3.

The second claim now follows by Corollary 4.1.3 and Theorem 1.2.2.

4.2 Rigid Transformations

The authors of [ARW16] show that the set of positroids is closed under restriction, con-

traction, duality, and a cyclic shift of the ground set. We add to this list reversal of the

ground set. The fact that positroids are closed under duality, cyclic shift of the ground set,

and reversal of the ground set can be obtained by considering rigid transformations of the

chord diagram of the associated decorated permutation. We consider three types of rigid
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transformations on chord diagrams: arc reversal, reflection, and rotation. We associate these

transformations with the symmetric group operations of taking the inverse, conjugation by

w0, and conjugation by a cycle. Because these rigid transformations are bijections on the

set of chord diagrams, they generate a group of transformations on Grassmann intervals,

Grassmann necklaces, and positroids. The results are collected in Proposition 4.2.2.

Throughout this section, fix w = (w, co) ∈ Sn,k, and let z = (z, co′) be the decorated

permutation whose chord diagram D(z ) is obtained from D(w ) by a rigid transformation.

Denote by F (w ) the set of fixed points of w . Define the map flip ∶ {↻,↺} → {↺,↻}
to be the involution on {↻,↺} that reverses the orientation. Let χ ∈ Sn be the cycle with

χ(i) = i + 1 mod n.

To give the maps on decorated permutations corresponding to the chord diagram trans-

formations, we will consider the transformations on the arcs of the chord diagrams. The

transformations of arcs then lead to transformations of the two-line notation for decorated

permutations.

First, consider arc reversal, where where D(z ) is obtained from D(w ) by reversing all

the arcs in D(w ). So, an arc i↦ w(i) becomes w(i) ↦ i. When i ∈ F (w ), then i becomes

a fixed point in z with opposite orientation of i. Then z = w−1, and F (z ) = F (w ) with

all fixed point orientations reversed. Therefore, co′ = flip ○ co. With these observations in

mind, we define

(w )−1 ∶= (w−1, f lip ○ co). (4.2.1)

The two-line notation for (w )−1 is obtained from the two-line notation of w by swapping

the rows, reversing arrows labeling fixed points, and reordering the columns so that the

entries of the top line appear in increasing order.

Next, consider reflection, where D(z ) is obtained from D(w ) by reflecting D(w ) across

the vertical axis. So, an arc i ↦ w(i) becomes w0(i) ↦ w0(w(i)). When i ∈ F (w ), then

w0(i) becomes a fixed point of z with opposite orientation of i. Then z = w0ww0, and

F (z ) = w0 ⋅ F (w ) with all fixed point orientations reversed after applying w0 to the value
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of a fixed point in F (z ). Therefore, co′ = flip ○ co ○w0, and we define

w0 ⋅w ∶= (w0ww0, f lip ○ co ○w0). (4.2.2)

The two-line notation for z is obtained from the two-line notation of w by replacing i with

w0(i) in both lines, reversing all arrows labeling fixed points, and reversing the order of the

columns.

Finally, consider rotation, where D(z ) is obtained from D(w ) by rotating D(w ) by s

units in the clockwise direction. So, an arc i↦ w(i) becomes i + s↦ w(i) + s, taken modulo

n. When i ∈ F (w ), then i + s becomes a fixed point of z with the same orientation as i.

Then z = χswχ−s, and F (z ) = F (w )+s with all fixed point labels preserved after applying

χ−s to the value of a fixed point in F (z ). Therefore, co′ = co ○ χ−s, and we define

χs ⋅w ∶= (χswχ−s, co ○ χ−s). (4.2.3)

The two-line notation for z is obtained from the two-line notation of w by replacing i with

i + s mod n in both lines and cyclically shifting all columns s units to the right.

Associated with the maps listed above are maps on Grassmann intervals. Let [u, v] ∈
Gi(k,n) be the Grassmann interval corresponding to w , and let [u′, v′] be the Grassmann

interval corresponding to z . As we know from the shuffling algorithm described in Sec-

tion 2.3, u′ and v′ are easily extracted from the two-line notation for z by reordering the

columns so that the highlighted columns, corresponding to the anti-exceedances of z , ap-

pear on the left and the top line has the form of a k(z )-Grassmannian permutation. This

new array is the two-line array [ v′
u′
].

We have already described how the two-line notation for z is obtained from the two-line

notation of w under the three rigid transformations of D(w ). From these descriptions, we

obtain the following maps [ vu ] ↦ [ v′
u′
].

(1) For the arc reversal map, [ v′u′ ] is obtained from [ vu ] by swapping the rows, swapping the

left k-column block with the right (n − k)-column block, and reordering the columns

within the two blocks so that the top row gives an (n−k)-Grassmannian permutation.
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Define [u, v]−1 ∈ Gi(n − k,n) to be the Grassmann interval whose two-line array is

obtained in this way from [ vu ].

(2) For the reflection map, [ v′
u′
] is obtained from [ vu ] by replacing every i with w0(i) in

both rows and reversing all columns. It follows that u′ = w0uw0 and v′ = w0vw0.

Define w0 ⋅ [u, v] ∶= [w0uw0,w0vw0] ∈ Gi(n− k,n). Note that this operation on [u, v] of

conjugation by w0 was used at the end of the proof of Theorem 1.2.2.

(3) For the rotation map, [ v′
u′
] is obtained from [ vu ] by replacing every i with i + s, high-

lighting all columns corresponding to anti-exceedances, then reordering the columns

into a highlighted and an unhighlighted block so that the elements of the top row are

increasing within each block. Define χs ⋅ [u, v] ∈ Gi(k,n) to be the Grassmann interval

obtained from [u, v] in this way.

There are also naturally associated maps on the positroids corresponding to w and z .

These maps on positroids, listed in Proposition 4.2.2, can be seen from the following facts.

(1) The dual map on positroids corresponds to arc reversal, as shown in the following

lemma.

(2) The map on Grassmann intervals which corresponds to the map w ↦ w0w w0 on

decorated permutations is [u, v] ↦ [w0uw0,w0vw0] ∈ Gi(n−k,n), and [w0uw0,w0vw0] =
{w0yw0 ∶ y ∈ [u, v]}. In particular, the map y ↦ w0yw0 is an interval isomorphism

between [u, v] and [w0uw0,w0vw0]. The related map on positroids then follows from

Theorem 1.2.2.

(3) Every r-anti-exceedance of w translates to an (r + s)-anti-exceedance of z so that

Ir(w )+s = Ir+s(z ). Also, for sets I, J ∈ ([n]
k
), I ⪯r J if and only if I+s ⪯r+s J+s.
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Lemma 4.2.1. Let w ∈ Sn,k have associated positroid M(w ) ⊆ ([n]
k
), and let z = (w )−1 ∈

Sn,n−k. The positroid associated with z is the dual of M(w ),

M(z ) = {[n] ∖ I ∶ I ∈ M(w )} ⊆ ( [n]
n − k). (4.2.4)

Proof. Since arc reversal is an involution, to show that M(z ) is the dual of M(w ), as in

(4.2.4), it suffices to show that I ∈ M(w ) implies that [n] ∖ I ∈ M(z ). In particular, we

will show that I ∈ M(w ) implies that Ir(z ) ⪯r [n] ∖ I for all r ∈ [n].
For r ∈ [n], let Jr(w ) be the set of r-exceedances of w , Jr(w ) = [n] ∖ Ir(w ). Fix

r ∈ [n] and I ∈ M(w ). By definition, D(z ) is obtained from D(w ) by reversing every

arc. Then every arc a ↦ w(a) corresponding an r-anti-exceedance w(a) ∈ Ir(w ) yields an

arc w(a) ↦ a in D(z ), which corresponds to an r-exceedance of z , so that a ∈ Jr(z ).
Similarly, r-exceedances w(a) ∈ Jr(w ) yield r-anti-exceedances a ∈ Ir(z ). Therefore, we

have

Jr(z ) = w−1(Ir(w ))

Ir(z ) = w−1(Jr(w )) = [n] ∖w−1(Ir(w )).

Since I ∈ M, then by Lemma 3.2.1, I must satisfy Ir(w ) ⪯r I ⪯r w−1(Ir(w )). In

particular, I ⪯r w−1(Ir(w )) implies that [n] ∖ I ⪰r [n] ∖ w−1(Ir(w )) = Ir(z ), as desired.

Therefore, [n] ∖ I is in M(z ) by Theorem 2.4.5.

The transformations of arc reversal, reflection, and rotation can now be applied to any

of the bijectively equivalent objects. These transformations are summarized in the following

proposition.

Proposition 4.2.2. Fix a decorated permutation w = (w, co) ∈ Sn,k with associated Grass-

mann interval [u, v], Grassmann necklace (I1(w ), . . . , In(w )), and positroid M(w ). Let

z be a decorated permutation whose chord diagram is obtained from D(w ) by (1) arc re-

versal, (2) reflection, or (3) rotation. Let [u′, v′] be the Grassmann interval associated with

z . The table below describes z and its associated objects and values.



45

Trans / Obj z [u′, v′] Ir(z ) M(w ) ↦M(z ) k(z )

arc reversal (w )−1 [u, v]−1 [n] ∖w−1(Ir(w )) I ↦ [n] ∖ I n − k

reflection w0 ⋅w w0 ⋅ [u, v] w0 ⋅ ([n] ∖ Iw0(r)(w )) I ↦ w0 ⋅ ([n] ∖ I) n − k

rotation χs ⋅w χs ⋅ [u, v] Ir−s(w )+s I ↦ I+s k

Corollary 4.2.3. The set of positroids is closed under reversal of the ground set [n].

Proof. Let M ⊆ ([n]
k
) be a positroid, and let w be the decorated permutation associated

with M so that M =M(w ). Let w0 ⋅ M = {w0 ⋅ I ∶ I ∈ M} be the matroid obtained from

M by reversal of the ground set [n]. We show that w0 ⋅M is a positroid.

Let z be the decorated permutation whose chord diagram is obtained from D(w ) by arc

reversal followed by a reflection across the vertical axis. By Proposition 4.2.2, z = w0 ⋅(w )−1,

and in particular, M(z ) is obtained from M(w ) via the sequence of maps corresponding

with arc reversal followed by reflection on the positroid,

I ↦ [n] ∖ I ↦ w0 ⋅ ([n] ∖ ([n] ∖ I)) = w0 ⋅ I.

Therefore, M(z ) is exactly w0 ⋅ M(w ), so w0 ⋅ M(w ) = w0 ⋅ M is a positroid by Theo-

rem 2.4.5.

Remark 4.2.4. The closure of the set of positroids under reversal of the ground set can also

be obtained using the fact that positroids are the matroids of totally nonnegative matrices.

In particular, suppose A is a totally nonnegative k × n matrix with positroid M(A). Let

A′ be obtained by reversing the columns of A and multiplying the bottom row by (−1)(k2).
Then A′ is totally nonnegative, and M(A′) = {w0 ⋅ I ∶ I ∈ M(A)}.

Remark 4.2.5. Using the notation of rigid transformations, Postnikov’s bijection from

decorated permutations to Grassmann intervals mentioned in Remark 2.3.2 maps w to

w0 ⋅ [u, v]−1, which preserves the size of the anti-exceedance set. This map is similar to the

reversal of ground set involution on positroids.
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Observe that each of the three transformations in Proposition 4.2.2 induces a bijection

from Alignments(w ) to Alignments(z ). Then #Alignments(w ) = #Alignments(z ),
so it follows from Theorem 1.1.2 that codim Πw = codim Πz . Furthermore, as we have

seen from the results of Section 4.1, one may determine whether a positroid variety ΠM,

corresponding to a positroid M, is smooth or singular by performing certain computations

involving the sets inM. This fact and the maps given in Proposition 4.2.2 imply the following

relationship between Πw and Πz .

Lemma 4.2.6. Let w ∈ Sn,k, and let z be a decorated permutation whose chord diagram is

obtained from D(w ) by (1) arc reversal, (2) reflection, or (3) rotation. Then, in any of

these three cases, Πw is smooth if and only if Πz is smooth.

Proof. We know from the equivalence of Parts (1) and (3) of Theorem 1.2.5 that Πw ⊆
Gr(k,n) is smooth if and only if, for every J ∈ M(w ), J satisfies

#{I ∈ M(w ) ∶ ∣I ∩ J ∣ = k − 1} = k(n − k) −#Alignments(w ). (4.2.5)

As noted above, in all three cases, #Alignments(z ) = #Alignments(w ). Observe that

Πz ⊆ Gr(k(z ), n), where k(z ) = n − k in the cases of arc reversal and reflection, and

k(z ) = k in the case of rotation. Therefore, Πz is smooth if and only if every J ∈ M(z )
satisfies

#{I ∈ M(z ) ∶ ∣I ∩ J ∣ = k(z ) − 1} = k(n − k) −#Alignments(w ). (4.2.6)

For the cases of arc reversal and reflection, recall from Proposition 4.2.2 that the positroids

M(z ) and their nonbases in these cases are obtained by the maps I ↦ [n] ∖ I and I ↦
w0⋅([n]∖I), respectively. Let I, J ∈ ([n]

k
). Then ∣I∩J ∣ = k−1 if and only if ∣([n]∖I)∩([n]∖J)∣ =

(n−k)−1 if and only if ∣w0 ⋅([n]∖I)∩w0 ⋅([n]∖J)∣ = (n−k)−1. Hence, I ∈ M(w ) contributes

to the set in (4.2.5) if and only if [n]∖I ∈ M((w )−1) contributes to the set in (4.2.6) for the

case of arc reversal if and only if w0 ⋅ ([n] ∖ I) ∈ M(w0 ⋅w ) contributes to the set in (4.2.6)

for the case of reflection. Therefore, the result follows in these cases.
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For case of rotation, recall from Proposition 4.2.2 thatM(z ) =M(w)+s. For I, J ∈ ([n]
k
),

∣I ∩ J ∣ = k − 1 if and only if ∣I+s ∩ J+s∣ = k − 1. Therefore I ∈ M(w ) contributes to the set in

(4.2.5) if and only if I+s ∈ M(z ) contributes to the set in (4.2.6), so the result also follows

for this case.

Remark 4.2.7. In [Pos06], Postnikov defined a partial order on decorated permutations

called circular Bruhat order. This order determines the containment relations on positroid

varieties just as Bruhat order determines the containment relation on Schubert varieties. The

covering relations in circular Bruhat order on Sn,k are determined by exchanging a simple

crossing with a simple alignment by [Pos06, Thm. 17.8]. Since the rigid transformations

preserve simple crossings and simple alignments, we see these operations are order preserving

under circular Bruhat order.

4.3 Reduction to Connected Positroids

Recall that by Theorem 2.4.3, each positroid M on [n] can be uniquely constructed by

choosing a non-crossing partition B1 ⊔ ⋯ ⊔ Bt of [n], and then putting the structure of a

connected positroid Mi on each block Bi, so M=M1 ⊕⋯⊕Mt. The noncrossing partition

also determines a decomposition of the chord diagram of the associated decorated permuta-

tion into connected components as a union of directed arcs inscribed in the plane. We will

show that a positroid variety is smooth if and only if the positroid varieties corresponding

with each connected component are smooth. By direct analysis of the Jacobian matrix at

a T -fixed point, we show that this matrix can be decomposed into a block diagonal matrix

corresponding with the connected components of the associated positroid. We will need a

slight refinement of Corollary 2.4.4.

Lemma 4.3.1. Let M be a positroid on ground set [n]. If M is not connected, then up to

a possible cyclic shift, it has a decomposition of the form

M=M1 ⊕M+n1
2 = {I ∪ J+n1 ∶ I ∈M1, J ∈M2}.

where n = n1 + n2, M1 and M2 are positroids on ground sets [n1] and [n2] respectively.
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Proof. By [ARW16, Prop 7.4], ifM is not connected then we can assume it is the direct sum

of two positroids M1 and M2 on disjoint cyclic intervals. Using Lemma 4.2.6 and the fact

that positroids are closed under the transformation of rotating the set [n], we can assume

that M1 has ground set [1, n1] and M2 has ground set [n1 + 1, n].

As discussed in Section 4.1, for a set I ∈ M, one may classify the point AI ∈ ΠM as a

smooth or singular point by computing the rank of the Jacobian matrix, Jac(M), for ΠM

evaluated at AI . In the regime where M=M1 ⊕M+n1
2 , as in Lemma 4.3.1, Jac(M)∣AI

can

be written as a block diagonal matrix as follows.

Lemma 4.3.2. Let Mi ⊆ ([ni]

ki
) be positroids for i ∈ {1,2}, and let M = M1 ⊕M+n1

2 . Let

Ii ∈ Mi for i ∈ {1,2}, and let I = I1 ⊔ I+n1
2 ∈ M. Then the Jacobian matrix Jac(M)∣AI

can be

written as a block diagonal matrix whose first and second blocks are, up to signs of entries, the

matrices Jac(Mi)∣AIi
for i ∈ {1,2}, and whose third block has rank k1(n2 − k2) + k2(n1 − k1).

Proof. Recall that for a positroidM⊂ ([n]
k
), the rows of Jac(M) are indexed by the nonbases

in Q(M) = ([n]
k
)∖M, and the columns of Jac(M) are indexed by variables xij, where i ∈ [k]

and j ∈ [n]. Consider I ∈ M. By Theorem 1.2.2, if [u, v] ∈ Gi(k,n) is the Grassmann interval

corresponding to M, then there is some y ∈ [u, v] such that I = y[k]. By Lemma 4.1.1,

Jac(M)∣AI
is, up to the signs of the entries, a partial permutation matrix whose nonzero

entries occur exactly in the cells (J, xst), where J ∈ Q(M) satisfies ∣I ∩J ∣ = k−1, I ∖J = {ys},

and J ∖ I = {t}.

Set n = n1 + n2, k = k1 + k2, Jac = Jac(M), Jaci = Jac(Mi)∣AIi
, and Qi = Q(Mi) ⊂

([ni]

ki
) for i ∈ {1,2}. Let [u(i), v(i)] be the Grassmann interval corresponding to Mi, and let

y(i) = u(Ii, v) ∈ [u(i), v(i)], as in Definition 3.1.2. By considering the decorated permutations

corresponding to M and the Mi and the associated decomposition, as in Corollary 2.4.4,

vj = v(1)j for j ∈ [k1] and vj+k1 = v
(2)
j + n1 for j ∈ [k2]. Since every element of I+n1

2 is greater

than every element of v[k1], then the construction of y = u(I, v) replicates the constructions

of the y(i) so that yj = y(1)j for j ∈ [k1] and yj+k1 = y
(2)
j + n1 for j ∈ [k2].
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By definition,M=M1 ⊕M+n1
2 . Therefore, the collection of nonbases can be partitioned

as Q = B ⊔C ⊔D ⊔E ⊔ F , where the sets in the partitioned are defined as

B = Q1 ⊕ {I+n1
2 }, C = {I1} ⊕Q+n1

2 ,

D = {J ∈ ([n]
k

) ∶ ∣J ∩ [n1]∣ > k1 or ∣J ∩ [n1 + 1, n]∣ > k2},

E = Q1 ⊕ (([n1 + 1, n]
k2

) ∖ {I+n1
2 }), and F = (M1 ∖ {I1}) ⊕Q+n1

2 .

We also partition the set [k] × [n] = (I) ⊔ (II) ⊔ (III) in the following way.

� (I) = [k1] × [n1]

� (II) = [k1 + 1, k] × [n1 + 1, n]

� (III) = ([k1 + k, k] × [n1]) ∪ ([k1] × [n1 + 1, n])

The partitions above yield partitions of the row and column sets of Jac∣AI
. From these

partitions, Jac∣AI
can be decomposed as a block diagonal matrix in the following way.

Block 1: (J ∈ B) The rows of the first block will be indexed by the sets J ∈ B, and the

columns of this block will be indexed by xrc with pairs (r, c) in (I). The maps J1 ↦ J1 ⊔ I+n1
2

for J1 ∈ Q1 and (r, c) ↦ (r, c) for (r, c) ∈ [k1]×[n1] together give a bijection between the cells

in Jac1 and the cells in this upper left block of Jac∣AI
.

Since I = I1 ⊔ I+n1
2 , then a set J = J1 ⊔ I+n1

2 ∈ Q1⊕{I+n1
2 } satisfies ∣I ∩J ∣ = k −1 if and only

if ∣I1 ∩ J1∣ = k1 − 1. By Lemma 4.1.1 and Theorem 1.2.2, for any such J1 ∈ Q1, the unique

nonzero entry of Jac1 in row J1 is in column xst, where I1 ∖ J1 = {y(1)s } and J1 ∖ I1 = {t}.

Since I = y[k] = y(1)[k1] ∪ y(2)[k2]+n1 , then I ∖ J = {ys} and J ∖ I = {t}. Hence, for this same

pair (s, t), entry (J, xst) of Jac∣AI
will be nonzero. Note also that this unique pair is in (I).

Therefore, this upper left block with rows indexed by B and columns indexed by (I)

looks, up to sign, like Jac1. Furthermore, all entries in the rows indexed by B, but outside

of the columns indexed by (I), will be zeros.
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Block 2: (J ∈ C) This case is similar to the previous case. The rows of the second block will

be indexed by the sets J ∈ C, and the columns of this block will be indexed by xrc with (r, c)
in (II). The maps J2 ↦ I1 ⊔J+n1

2 for J2 ∈ Q2 and (r, c) ↦ (r + k1, c+n1) for (r, c) ∈ [k2] × [n2]
together give a bijection between the cells in Jac2 and the cells in the second block of Jac∣AI

.

A similar argument to that of the Block 1 case with elements and indices shifted by these

maps shows that this second block looks, up to sign, like Jac2 and that all entries in the

rows indexed by C, but outside of the columns indexed by (II), will be zeros.

Block 3: (J ∈D⊔E⊔F ) The rows of the third block will be indexed by the sets J ∈D⊔E⊔F ,

and the columns of this block will be indexed by pairs (r, c) in set (III). First, consider

J = J1 ∪ J2 ∈D, where J1 = J ∩ [n1] and J2 = J ∩ [n1 + 1, n]. Then J satisfies ∣I ∩ J ∣ = k − 1 if

and only if either

(i) J1 = I1 ∖ {ys} for some ys ∈ I1 and J2 = I+n1
2 ∪ {t} ∈ ([n1+1,n]

k2+1
), or

(ii) J1 = I1 ∪ {t} ∈ ([n1]

k1+1
) and J2 = I+n1

2 /{ys} for some ys ∈ I+n1
2 .

In case (i), the column pair (s, t) satisfying Lemma 4.1.1 has s ∈ [k1] since ys ∈ [n1] and

t ∈ [n1 + 1, n]. There are k1 choices for s and n2 − k2 choices for t. In case (ii), the pair (s, t)
satisfying Lemma 4.1.1 has s ∈ [k1 + 1, k] since ys ∈ [n1 + 1, n] and t ∈ [n1]. There are n1 − k1

choices for t and k2 choices for s. Thus, the rank of this block restricted to the rows in D is

k1(n2 −k2)+k2(n1 −k1). Furthermore, all nonzero entries in the rows indexed by D occur in

the columns in (III) by arguments similar to the proof of Lemma 4.1.1.

We claim that for J ∈ E ⊔ F , ∣I ∩ J ∣ < k − 1. Hence, Jac∣AI
has all zeros in row J

by Lemma 4.1.1. To prove the claim, consider J = J1 ⊔ J2 ∈ E, where J1 ∈ Q1 and J2 ∈
([n1+1,n]

k2
) ∖ {I+n1

2 }. Since J1 is in Q1, so J1 ≠ I1, then ∣I1 ∩ J1∣ ≤ k1 − 1. Similarly, since

J2 ≠ I+n1
2 , then ∣I+n1

2 ∩J2∣ ≤ k2−1. Therefore, ∣I ∩J ∣ ≤ (k1−1)+(k2−1) = k−2. Next, consider

J = J1 ⊔ J+n1
2 ∈ F , where J1 ∈ M1 ∖ {I1} and J2 ∈ Q2. Since J1 ≠ I1, then ∣I1 ∩ J1∣ ≤ k1 − 1.

Similarly, since J2 is in Q2, and therefore is not I2, then ∣I2 ∩ J2∣ = ∣I+n1
2 ∩ J+n1

2 ∣ ≤ k2 − 1.

Therefore, ∣I ∩ J ∣ ≤ (k1 − 1) + (k2 − 1) = k − 2.
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Figure 4.1: Chord diagram for w(1)
⊕w(2).

Lemma 4.3.3. Let M1 and M2 be positroids on grounds sets [n1] and [n2]. Let M =
M1 ⊕M+n1

2 and let w = w(1) ⊕ w(2) be the associated decorated permutation. Let ki be the

number of anti-exceedances of w(i). Then,

#Alignments(w ) = #Alignments(w(1)) +#Alignments(w(2)) + k1(n2 − k2) + k2(n1 − k1).

Proof. Consider the chord diagram for w partitioned by a line separating the connected

components of the noncrossing partition corresponding with w(1) and w(2). See Figure 4.1.

Every alignment of w(i) remains an alignment of w . In addition, every anti-exceedance arc

of w(i) forms an alignment with every exceedance arc of w(i′), where i′ = 3+(−1)i−1

2 . Since w(i)

has ki anti-exceedances and ni − ki exceedances, the result follows.

Lemma 4.3.4. Let M1 and M2 be positroids on grounds sets [n1] and [n2] of rank k1 and

k2, respectively. Let M =M1 ⊕M+n1
2 . For any I = I1 ⊔ I+n1

2 ∈ M, AI is a smooth point of

ΠM if and only if the AI1 and AI2 are both smooth points of ΠM1 and ΠM2, respectively.

Proof. By Theorem 2.4.3 and the construction, M is a positroid of rank k = k1 + k2 on

ground set [n] for n = n1 + n2. Let w = w(1) ⊕ w(2) be the corresponding decomposition

of the associated decorated permutation, as in Lemma 4.3.3. Let Jac = Jac(M)∣AI
and

Jaci = Jac(Mi)∣AIi
for i ∈ {1,2}. Since rank(Jac) is bounded above by #Alignments(w ),
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then by (1.1.3), AI is a smooth point of ΠM if and only if rank(Jac) = #Alignments(w ).
Similarly, AIi is a smooth point of ΠMi

if and only if rank(Jaci) = #Alignments(w(i)).
By Lemma 4.3.2, rank(Jac) = rank(Jac1) + rank(Jac2) + k1(n2 − k2) + k2(n1 − k1). It

follows from Lemma 4.3.3 that AI is a smooth point of ΠM if and only if

rank(Jac1) + rank(Jac2) = #Alignments(w(1)) +#Alignments(w(2)). (4.3.1)

Again, since rank(Jaci) ≤ #Alignments(w(i)), then (4.3.1) holds if and only if rank(Jaci)
= #Alignments(w(i)) for both i = 1,2, which holds if and only if AIi is a smooth point of

ΠMi
for both i = 1,2.

Corollary 4.3.5. Let M = M1 ⊕ ⋯ ⊕ Mt be a positroid decomposed into its connected

components. Then ΠM is smooth if and only if ΠMi
is smooth for each i ∈ [t].

Proof. If M is connected the statement holds, so assume M is not connected. We know

that ΠM is smooth if and only if all cyclic rotations ofM correspond with smooth positroid

varieties by Lemma 4.2.6. Therefore, by Lemma 4.3.1, we can assume it has a decomposition

of the form M=M1 ⊕M+n1
2 where n = n1 + n2 for some 1 ≤ n1, n2 < n, and M1 and M2 are

positroids on ground sets [n1] and [n2], respectively. By Lemma 4.3.4, ΠM has a singular

T -fixed point AI for I ∈ M if and only if either ΠM1 or ΠM2 has a singular T -fixed point.

Therefore, the result holds by Theorem 1.2.2, Corollary 4.1.3, and induction on t.

Remark 4.3.6. By Corollary 2.4.4, the connected components of positroids are associated

with decorated SIF permutations. In order to complete the proof of Theorem 1.2.5, it

remains to characterize the decorated SIF permutations indexing smooth positroid varieties

by Corollary 4.3.5. We will show that these are in bijection with the spirograph permutations,

discussed further in the next section.
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Chapter 5

DECORATED PERMUTATION PATTERNS
AND POSITROID VARIETIES

This chapter is concerned with connecting two of our central decorated permutation pat-

terns to singular and smooth positroid varieties, namely crossed alignments and spirographs.

Recall crossed alignments and the class of spirograph permutations introduced in Chapter 1.

In Section 5.1, we show that spirograph permutations always index smooth positroid

varieties. We will also show in this section that direct sums of spirograph permutations

on a noncrossing partition are exactly the same as decorated permutations that have no

crossed alignments. In particular, we prove the equivalence of Parts (5), (6), and (7) in

Theorem 1.2.5.

In Section 5.2, we relate decorated permutations with crossed alignments to singular

positroids varieties as determined by the vertex degrees of the matroid Johnson graphs in

Parts (1)-(4) in Theorem 1.2.5. By the end of Section 5.1, we will have proved Parts (5) ⇔
(6) ⇔ (7) and (6) ⇒ (1) in Theorem 1.2.5. To finish the proof of Theorem 1.2.5, it suffices

to prove (1) ⇒ (5), namely if Πw is smooth, then w has no crossed alignments.

5.1 Connecting Crossed Alignments and Spirographs

By Definition 1.2.4, the spirograph permutations are a subset of the decorated SIF permu-

tations. The chord diagram and the positroid associated to a spirograph permutation is

always connected. The two decorated permutations in S○●1 are spirographs, and for n > 1,

there are n − 1 distinct spirograph permutations corresponding with m ∈ [n − 1]. Therefore,

the generating function for spirograph permutations in Sn for n ≥ 1 is

S(x) = 2x + x2 + 2x3 + 3x4 + . . . = 2x − 3x2 + 2x3

(1 − x)2
. (5.1.1)
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Remark 5.1.1. Each Sn,k has a unique spirograph permutation, denoted πn,k. This spiro-

graph permutation is defined so that πn,k(i) = i + k for all i and is the unique maximal

element in circular Bruhat order in Sn,k for n > 1. For k = n = 1, π1,1 is the unique decorated

permutation in Sn,k, which consists of a single clockwise fixed point. For k = 0, n = 1, π1,0 is

the unique decorated permutation in Sn,k, which has a counterclockwise fixed point.

Lemma 5.1.2. If w is the unique the spirograph permutation in Sn,k, then Πw is Gr(k,n),
which is a smooth variety.

Proof. Observe that the chord diagram of a spirograph permutation w has no alignments,

so the codimension of Πw as a subvariety of Gr(k,n) is zero by Theorem 1.1.2. Hence,

Πw = Gr(k,n).

Proof of Theorem 1.2.5, (6) ⇒ (1). Let D(w ) be a disjoint union of spirographs corre-

sponding to the decomposition w = w(1) ⊕⋯⊕w(t) of w into decorated SIF permutations

withM(w ) =M(w(1))⊕⋯⊕M(w(t)) using Corollary 2.4.4. By Lemma 5.1.2, the positroid

varieties Πw(i) are all smooth. Hence, Πw = ΠM(w ) is smooth by Corollary 4.3.5.

Proof of Theorem 1.2.5, (5) ⇔ (6). By definition of a chord diagram D(w ), arcs from dis-

tinct components of the associated noncrossing partition must be drawn so that they do not

intersect. It follows that, if w contains a crossed alignment, then all arcs involved in the

crossed alignment must be contained in the same connected component of D(w ).

A spirograph permutation has no crossed alignments since it has no alignments. By the

observation above, if every connected component of D(w ) is a spirograph, then w has no

crossed alignments.

For the converse, observe that the property of containing a crossed alignment is invariant

under rotation of the chord diagram. Hence, by Corollary 2.4.4 and the fact that a crossed

alignment is contained a single connected component of D(w ), the argument may be com-

pleted by assuming that w is a decorated SIF permutation that is not a spirograph and

showing that w has a crossed alignment. For n < 4, w is either a spirograph permutation
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Figure 5.1: Chord diagrams with (i↦ w(i)) and (i + 1↦ w(i + 1)) crossing.

or has more than one connected component. Therefore, we must have n ≥ 4, in which case

we will denote w simply by w since it has no fixed points.

Since w has no fixed points, mi ∶= w(i) − i (mod n) ∈ [n − 1] for each i ∈ [n]. Since w

is not a spirograph permutation, the mi are not all equal. Therefore, taking indices mod n,

there must exist some i ∈ [n] such that mi < mi+1. Observe from the chord diagram that

mi <mi+1 implies the arcs (i↦ w(i)) and (i+1↦ w(i+1)) form a crossing. Use the crossing

arcs to create three disjoint cyclic intervals. Let A = [w(i) + 1,w(i+ 1) − 1]cyc. The fact that

mi < mi+1 implies that A is nonempty. Let B = [w(i + 1), i − 1]cyc ∖ [i,w(i + 1) − 1]cyc and

C = [i + 2,w(i)]cyc ∖ [w(i) + 1, i + 1]cyc. See Figure 5.1.

Since w is a SIF permutation, the arcs incident to elements of A cannot form an isolated

connected component. Thus, there must be an arc mapping some j ∈ [n] ∖ (A ∪ {i, i +
1}) = B ∪ C to w(j) ∈ A. If j ∈ B, then (i ↦ w(i), j ↦ w(j)) is an alignment crossed by

(i + 1 ↦ w(i + 1)). If j ∈ C, then (j ↦ w(j), i + 1 ↦ w(i + 1)) is an alignment crossed by

(i↦ w(i)). Therefore, w contains a crossed alignment.

Proof of 1.2.5, (6) ⇔ (7). The unique spirograph permutation πn,k in Sn,k, mentioned in Re-

mark 5.1.1, has shifted anti-exceedance sets Ir(πn,k) = [k]+(r−1) for all r ∈ [n]. Since [k]+(r−1)

is the minimal element of ([n]
k
) under ≺r, it follows from Theorem 2.4.5 thatM(πn,k) = ([n]

k
).

Hence, spirograph permutations correspond exactly to uniform matroids. By the correspon-

dence in Corollary 2.4.4, a positroidM=M(w ) is a direct sum of uniform matroids if and
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only if w is a direct sum of spirograph permutations.

5.2 Anti-Exchange Pairs and Crossed Alignments

Recall from the beginning of this chapter that to finish the proof of Theorem 1.2.5, it suffices

to prove (1) ⇒ (5), namely if Πw is smooth, then w has no crossed alignments. This final

step will be proved using the characterization of smoothness from Corollary 4.1.4 utilizing

the nonbases in Q(w ). Specifically, for any w ∈ Sn,k, Πw is singular if and only if there

exists a J ∈ M(w ) such that

#{I ∈ Q(w ) ∶ ∣I ∩ J ∣ = k − 1} < #Alignments(w). (5.2.1)

Thus, we now carefully study the sets I that occur on the left side of this equation. The

following vocabulary refers back to the Basis Exchange Property of matroids from Chapter 2.

Definition 5.2.1. For a set J in a positroid M ⊆ ([n]
k
), let a ∈ J and b ∈ [n] ∖ J . If

(J ∖ {a}) ∪ {b} ∈ M, we say the pair (a, b) is an exchange pair for J and that the values a

and b are exchangeable. Otherwise, (J ∖ {a}) ∪ {b} ∈ Q = ([n]
k
) ∖M, in which case we say

(a, b) is an anti-exchange pair for J and that the values a and b are not exchangeable.

For a set J ∈ M ⊆ ([n]
k
), pairs (a, b) with a ∈ J and b ∉ J are in bijection with the vertices

in the full Johnson graph J(k,n) adjacent to J . Exchange pairs for J are in bijection with

the vertices adjacent to J in the matroid Johnson graph J(M). Anti-exchange pairs for J

are in bijection with the vertices adjacent to J in J(k,n) that do not appear in J(M).

5.2.1 Characterizing Exchange Pairs in the Johnson Graph

For a positroid M(w ), we will focus on the set J = I1(w ), which is in M(w ) by Corol-

lary 2.4.6. The following lemma characterizes exchange pairs for I1(w ).

Lemma 5.2.2. For w = (w, co) ∈ Sn,k, suppose that a ∈ I1(w ) and b ∈ [n] ∖ I1(w ). Then

I = (I1(w ) ∖ {a}) ∪ {b} is in M(w ) if and only if a < b and for every r ∈ [a + 1, b], both of

the following conditions hold:
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(1) there exists x ∈ [a, r − 1] such that w−1(x) ∈ [r, n], and

(2) there exists y ∈ [r, b] such that w−1(y) ∈ [1, r − 1].

Proof. Let Ir = Ir(w ). Recall from Theorem 2.4.5 that I is in M = M(w ) if and only if

Ir ⪯r I for all r ∈ [n]. We use this characterization of M in terms of the elements of the

Grassmann necklace to derive the conditions of the lemma.

Consider the case when a > b. Then I is obtained by replacing an element of I1 with a

smaller element. By definition of the Gale order, I cannot satisfy I1 ⪯ I, so I /∈ M.

For the remainder of the proof, assume a < b. For r ∈ [b + 1, a]cyc, the inequality a <r b
holds, which implies that I is obtained by replacing an element of I1 with an element that is

larger under <r. Thus, I1 ≺r I. By Corollary 2.4.6, I1 is inM, so by Theorem 2.4.5, I1 must

satisfy Ir ⪯r I1. Hence, the sequence of inequalities Ir ⪯r I1 ≺r I holds for every r ∈ [b+1, a]cyc.
Therefore, I ∈ M if and only if Ir ⪯r I for every r ∈ [a + 1, b].

Fix some r ∈ [a + 1, b], so a >r b. An arc (i ↦ j) with i ∈ [r, n] and j ∈ [a, r − 1] is an

anti-exceedance arc, but not an r-anti-exceedance arc, so j ∈ I1∖Ir. Similarly, an arc (i↦ j)
with i ∈ [1, r − 1] and j ∈ [r, b] is an r-anti-exceedance arc, but not an anti-exceedance arc,

so j ∈ Ir ∖ I1. Therefore, the following statements hold.

For x ∈ [a, r − 1], w−1(x) ∈ [r, n] ⇔ x ∈ I1 ∖ Ir. (5.2.2)

For y ∈ [r, b], w−1(y) ∈ [1, r − 1] ⇔ y ∈ Ir ∖ I1. (5.2.3)

See Figure 5.2 for these two cases. From these observations, for the fixed r ∈ [a + 1, b],
Conditions (1) and (2) in the statement of the lemma are equivalent to the following:

(1′) (I1 ∖ Ir) ∩ [a, r − 1] ≠ ∅, and

(2′) (Ir ∖ I1) ∩ [r, b] ≠ ∅.

We must now compare the sets Ir and I under the shifted Gale order ≺r for r ∈ [a+ 1, b].
Recall that I is obtained from I1 by exchange of the elements a and b, where a ∈ I1 and
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Figure 5.2: Two conditions of Lemma 5.2.2

b ∉ I1. Thus we begin by writing I1 = {j1 <r ⋯ <r jk} increasing under the <r order. Setting

f = ∣I1 ∩ [r, b]∣ + 1, g = ∣I ∩ [r, n]∣ + 1, and h = ∣I ∩ [r, a]cyc∣, we refine the expression of I1 in

the following way,

I1 = {j1 <r ⋯ <r jf−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈[r,b]

<r jf <r ⋯ <r jg−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈[b+1,n]

<r jg <r ⋯ <r jh−1 <r a
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈[1,a]

<r jh+1 <r ⋯ <r jk
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈[a+1,r−1]

}.

Here, a = jh. Note that since b ∉ I1, then jf−1 <r b. Write Ir and I under <r as

Ir = {i1 <r ⋯ <r if−1 <r if <r if+1 <r ⋯ <r ig <r ig+1 <r ⋯ <r ih <r ih+1 <r ⋯ <r ik}

I = {j1 <r ⋯ <r jf−1 <r b <r jf <r ⋯ <r jg−1 <r jg <r ⋯ <r jh−1 <r jh+1 <r ⋯ <r jk}.

Then Ir ⪯r I if and only if all three of the following hold:

(i) i` ≤r j` for all ` ∈ [1, f − 1] ∪ [h + 1, k];

(ii) if ≤r b and i`+1 ≤r j` for all ` ∈ [f, g − 1]; and

(iii) i`+1 ≤r j` for all ` ∈ [g, h − 1].

For ` ∈ [1, f − 1] ∪ [h + 1, k], Ir ⪯r I1 already implies that i` ≤r j`, so (i) is always satisfied.

Thus, Ir ⪯r I if and only if (ii) and (iii) are satisfied.

Consider Condition (ii) above. We will show that (ii) is satisfied if and only if (Ir ∖ I1) ∩
[r, b] is nonempty, as in Condition (2′).
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We require the following observations about the elements j1, . . . , jg−1. By construction,

{j1, . . . , jg−1} = I1 ∩ [r, n]. Each of these j` has w−1(j`) ∈ [j`, n], as in Figure 5.3a. But then

j` and w−1(j`) also satisfy r ≤r j` ≤r w−1(j`) ≤r n. In particular, this implies that every such

j` is also an element of Ir so that {j1, . . . , jg−1} ⊆ Ir. Furthermore, j1 <r ⋯ <r jg−1 appear in

Ir in the same relative order as they do in I1, but there may be additional elements of Ir

that are interspersed among them. Therefore, for every ` ∈ [1, g−1], there is some `′ ≥ ` such

that i`′ = j`.

For the only if direction, (ii) implies (2′), assume (Ir∖I1)∩[r, b] is empty. By construction,

I1 ∩ [r, b] = {j1, . . . , jf−1}. Since {j1, . . . , jf−1} ⊂ Ir by the previous paragraph and (Ir ∖ I1) ∩
[r, b] = ∅, then Ir ∩ [r, b] = {j1, . . . , jf−1} = {i1, . . . , if−1}. In particular, if ∉ [r, b], so b <r if ,
violating Condition (ii).

Conversely, suppose (Ir ∖ I1) ∩ [r, b] is nonempty. Then ∣Ir ∩ [r, b]∣ ≥ ∣I1 ∩ [r, b]∣ + 1 = f . In

particular, if must be in [r, b], so if ≤r b. Furthermore, this extra element in Ir ∩ [r, b] shifts

the elements jf , . . . , jg−1 to the right in Ir. Specifically, for ` ∈ [f, g−1], i`′ = j` for some `′ > `.
Therefore, for ` ∈ [f, g − 1], we have the inequalities i`+1 ≤r i`′ = j`. Thus, (Ir ∖ I1) ∩ [r, b] ≠ ∅
implies that Condition (ii) is satisfied.

Now, consider Condition (iii) above. We will show that (iii) is satisfied if and only if

Condition (1′) holds. The argument is symmetric to the argument above for Condition (ii).

Consider any i` ∈ Ir ∩ [1, r − 1], as in Figure 5.3b. Since i` ∈ Ir, then w−1(i`) must be in

[i`, r−1] so that 1 ≤r i` ≤r w−1(i`) ≤r r−1. Hence, i` is also in I1, so Ir∩[1, r−1] ⊆ I1∩[1, r−1].
Thus, these i` ∈ Ir ∩ [1, r − 1] appear among the elements jg, . . . , jk, with possibly some

additional elements. So, each of these i` has some j`′ with `′ ≤ ` for which i` = j`′ . After

possibly deleting a, all of these elements are in I.

For the only if direction in this case, suppose [a, r−1]∩(I1∖Ir) is empty. By construction,

I1 ∩ [a, r − 1] = {jh, . . . , jk}. Then I1 ∩ [a, r − 1] = Ir ∩ [a, r − 1], so i` = j` for every ` ∈ [h, k].
In particular, ih = jh = a. But then we have ih = a >r jh−1, which violates Condition (iii) for

` = h − 1.

Conversely, suppose (I1 ∖ Ir)∩ [a, r−1] is nonempty. Then ∣I1 ∩[a, r−1]∣ > ∣Ir ∩[a, r−1]∣.
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Since I1 ∩ [a, r − 1] = {jh, . . . , jk}, then ih cannot be in [a, r − 1], so ih <r a, and thus i` <r a
for all ` ∈ [g + 1, h]. Furthermore, the existence of at least one extra element in I1 ∩ [a, r − 1]
implies that the elements of Ir ∩ [1, a− 1] all appear shifted to the left in I1. Specifically, for

i` ∈ {ig+1, . . . , ih}∩ [1, a− 1], there is some `′ < ` for which i` = j`′ . Then, for these i`, we have

i` = j`′ ≤r j`−1. The remaining i` ∈ {ig+1, . . . , ih} are in [r, n], so i` <r j`−1 ∈ [1, a − 1]. Hence,

i` ≤r j`−1 for all ` ∈ [g + 1, h], which is equivalent to Condition (iii).

(a) j` ∈ I1 ∩[r, n] ⇒ j` ∈ Ir. (b) i` ∈ Ir ∩[1, r−1] ⇒ i` ∈ I1.

Figure 5.3: Elements in both I1 and Ir.

5.2.2 Mapping Anti-Exchange Pairs to Alignments

For a fixed w ∈ Sn whose chord diagram contains a crossed alignment, we will show that

(5.2.1) holds for J = I1(w ). This will be achieved using an injective map Ψw , which maps

anti-exchange pairs for I1(w ) to alignments in D(w ) and is defined below for any w ∈ Sn
using Lemma 5.2.2.

Given w ∈ Sn , let AE(w ) be the set of all anti-exchange pairs (a, b) for I1(w ), so

a ∈ I1(w ), b /∈ I1(w ), and (I1(w ) ∖ {a}) ∪ {b} ∉ M(w ). For each (a, b) ∈ AE(w ), either

a > b or a < b and there must exist some r ∈ [a + 1, b] for which Condition (1) or (2) of

Lemma 5.2.2 fails. In the a < b case, we say r is a witness for (a, b) to be in AE(w ). Let
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AE>(w ) be all the anti-exchange pairs with a > b. Let AE1(w ) be all the anti-exchange

pairs with a < b such that Condition (1) fails for some r ∈ [a + 1, b]. Let AE2(w ) be the

anti-exchange pairs with a < b such that Condition (1) holds for all r ∈ [a+1, b]. Lemma 5.2.2

then implies for (a, b) ∈ AE2(w ) that Condition (2) fails for some r ∈ [a + 1, b]. These three

sets form a partition of the anti-exchange pairs for I1(w ),

AE(w ) = AE>(w ) ⊔AE1(w ) ⊔AE2(w ). (5.2.4)

Lemma 5.2.3. Fix w = (w, co) ∈ Sn and a ∈ I1(w ). Let {b1 < ⋯ < bs} be the set of all

elements in [a + 1, n] ∖ I1(w ) such that for each 1 ≤ i ≤ s, there exists some minimal ri ∈
[a+1, bi] for which Condition (1) of Lemma 5.2.2 fails, so (a, bi) ∈ AE1(w ). If {b1 < ⋯ < bs}
is nonempty, then defining r̄(a,w ) ∶= r1 we have

{b1 < ⋯ < bs} = [r̄(a,w ), n] ∖ I1,

and r̄(a,w ) ∈ [a + 1, bi] is a witness for Condition (1) failing for (a, bi) for each i.

Proof. Assume {b1 < ⋯ < bs} is nonempty. By construction, r1 ∈ [a+1, b1] ⊆ [a+1, bi] for all i.

Furthermore, r1 is chosen so that Condition (1) of Lemma 5.2.2 fails for the pair (a, b1), and

hence there is no x ∈ [a, r1−1] such that w−1(x) ∈ [r1, n]. This last condition only depends on

r1, so Condition (1) still fails for r1 when determining whether or not a is exchangable with

any given b ∈ [r1, n] ∖ I1, according to Lemma 5.2.2. Hence, {b1 < ⋯ < bs} = [r1, n] ∖ I1.

Corollary 5.2.4. If {b1 < ⋯ < bs} from Lemma 5.2.3 is nonempty, then b < r̄(a,w ) for any

(a, b) ∈ AE2(w ).

Proof. For (a, b) ∈ AE2(w ), Condition (1) of Lemma 5.2.2 is satisfied for every r ∈ [a+ 1, b].
In particular, b is not one of the bis as in Lemma 5.2.3, so b is not in [r̄(a,w ), n] ∖ I1. Since

b ∉ I1 by definition of an anti-exchange pair, b must be in [1, r̄(a,w ) − 1].

Lemma 5.2.5. Fix w = (w, co) ∈ Sn and b /∈ I1(w ). Let {a1 < ⋯ < as} be the elements

of [b] ∩ I1(w ) such that there exists some maximal ri ∈ [ai + 1, b] for which Condition (2)
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of Lemma 5.2.2 fails, so (ai, b) ∈ AE(w ). If {a1 < ⋯ < as} is not empty, then defining

r(b,w ) ∶= rs we have

{a1 < ⋯ < as} = [1, r(b,w ) − 1] ∩ I1(w ),

and r(b,w ) ∈ [ai + 1, b] is a witness for Condition (2) failing for (a, bi) for each i.

Proof. The proof is similar to the proof of Lemma 5.2.3 by reflecting D(w ) across the

vertical axis.

For each w ∈ Sn , we construct a map Ψw from the anti-exchange pairs for I1(w )
partitioned according to (5.2.4) to ordered pairs of the form (p ↦ w(p), s ↦ w(s)) for p ≠ s.
We will show in the lemma that follows that the range of Ψw is contained in the set of

alignments for w , as defined in Definition 2.3.5.

Definition 5.2.6. For w = (w, co) ∈ Sn , let Ψw be defined by the following algorithm.

Input : (a, b) ∈ AE(w ) = AE>(w ) ⊔AE1(w ) ⊔AE2(w )
Output: (p↦ w(p), s↦ w(s)) ∈ Alignments(w )

1 set p← w−1(b) and s← w−1(a).
2 if (a, b) ∈ AE1(w) then

3 while p /∈ [r̄(a,w ), n], do

4 update p← w−1(p).
5 end

6 end

7 if (a, b) ∈ AE2(w) then

8 while s /∈ [1, r(b,w ) − 1], do

9 update s← w−1(s).
10 end

11 end

12 return (p↦ w(p), s↦ w(s)).
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Lemma 5.2.7. For w ∈ Sn and (a, b) ∈ AE(w ), the algorithm defined in Definition 5.2.6

terminates in finitely many steps, and the image Ψw (a, b) is in Alignments(w ).

Proof. First, consider the case when (a, b) ∈ AE>(w ), so a > b. Since a ∈ I1(w ) and

b ∉ I1(w ), we have the inequalities w−1(b) ≤ b < a ≤ w−1(a), as indicated in Figure 5.4.

Thus, Ψw (a, b) = (w−1(b) ↦ b,w−1(a) ↦ a) is an alignment. Note that a and b could be

fixed points with co(a) = ↻ and co(b) = ↺, according to the definition of anti-exceedances

from Section 2.3.

Figure 5.4: The image of (a, b) when a > b is (w−1
(a) ↦ a,w−1

(b) ↦ b).

Next, consider the case when (a, b) ∈ AE1(w ), and let r̄ = r̄(a,w ). Then Ψw (a, b) =
(p ↦ w(p),w−1(a) ↦ a), where p is in [r̄, n]. By definition of AE1(w ), Condition (1) of

Lemma 5.2.2 fails for some r ∈ [a + 1, b]. It follows from Lemma 5.2.3 that b ≥ r̄, and

furthermore, that Condition (1) fails for this r̄. In particular, there is no x ∈ [a, r̄ − 1] with

preimage in [r̄, n]. Since a ∈ I1(w ), then w−1(a) ∈ [a,n]. But a ∈ [a, r̄ − 1] implies that

w−1(a) ∉ [r̄, n]. Hence, w−1(a) ∈ [a, r̄ − 1], as drawn in Figure 5.5.

The termination of the while loop in Line 3 of Definition 5.2.6 comes from the fact that

p is obtained by tracing in reverse the cycle containing b. By Lemma 5.2.3, b ∈ [r̄, n]. If

w−1(b) ∈ [r̄, n], then p = w−1(b), and the loop ends immediately. In this case, since b is an

exceedance by the assumption that (a, b) ∈ AE1(w ), then w−1(b) ∈ [r̄, b]. See Figure 5.5a.

However, even if w−1(b) is not in [r̄, n] so that the reverse cycle immediately leaves the

interval [r̄, n], it must eventually return to [r̄, n], since b ∈ [r̄, n]. In this case, the first

element at which the reverse cycle returns to [r̄, n] is p, which implies that w(p) ∈ [1, r̄ − 1].
However, the fact that Condition (1) is not satisfied for r̄ then implies that w(p) ∉ [a, r̄ − 1],
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and thus w(p) ∈ [1, a − 1]. See Figure 5.5b. In both cases, (p ↦ w(p),w−1(a) ↦ a) is an

alignment with port side (p↦ w(p)) and starboard side (w−1(a) ↦ a).

(a) w−1(b) ≥ r̄ (b) w−1(b) < r̄

Figure 5.5: The red alignment is the image of (a, b) ∈ AE1.

Finally, consider the case where (a, b) ∈ AE2(w ), and let r = r(b,w ). Again, this case

is symmetric to the AE1(w ) case above. From the algorithm, Ψw (a, b) = (w−1(b) ↦ b, s ↦
w(s)), where s ∈ [1, r − 1]. By Lemma 5.2.5, a < r, and Condition (2) is not satisfied for r.

Thus, no y ∈ [r, b] has preimage in [1, r − 1]. Since b ∉ I1(w ), we must have w−1(b) ∈ [r, b],
as drawn in Figure 5.6.

The termination of the while loop in Line 8 of Definition 5.2.6 is again seen to terminate

by tracing the cycle containing a in reverse. Since a ∈ I1(w ), then a ≤ w−1(a). If w−1(a) ∈
[a, r − 1], then s = w−1(a), as in Figure 5.6a. If w−1(a) ∈ [r, n], then s is the first element at

which the reverse cycle returns to the interval [1, r−1], as in Figure 5.6b. Thus w(s) ∈ [r, n],
and the fact that Condition (2) of Lemma 5.2.2 fails for r implies that w(s) ∈ [b + 1, n].
So, in both cases, (w−1(b) ↦ b, s ↦ w(s)) is an alignment with port side (w−1(b) ↦ b) and

starboard side (s↦ w(s)).

Lemma 5.2.8. Fix w = (w, co) ∈ Sn . The map Ψw ∶ AE(w ) Ð→ Alignments(w ) is

injective.

Proof. Let (a1, b1) and (a2, b2) be two distinct anti-exchange pairs for I1(w ). We need to
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(a) w−1(a) < r (b) w−1(a) ≥ r

Figure 5.6: The red alignment is the image of (a, b) ∈ AE2.

show Ψw (a1, b1) ≠ Ψw (a2, b2). We again utilize the partition of AE(w ) from (5.2.4) and

consider several cases.

Case 1: Assume at least one of (a1, b1) and (a2, b2) is in AE>(w ). Observe from Defini-

tion 5.2.6 that anti-exchange pairs (a, b) ∈ AE>(w ) are the only pairs assigned alignments

Ψw (a, b) = (p ↦ w(p), s ↦ w(s)) with p ≤ w(p) < s ≤ w(s). Thus, Ψw (a1, b1) ≠ Ψw (a2, b2)
unless both (a1, b1) and (a2, b2) are in AE>(w ). In this case, Ψw (ai, bi) = (w−1(bi) ↦
bi,w−1(ai) ↦ ai) for both i by definition. Therefore, since (a1, b1) and (a2, b2) are distinct,

we must have that Ψw (a1, b1) ≠ Ψw (a2, b2).

Case 2: Assume both (a1, b1) and (a2, b2) are in AE1(w ) and Ψw (ai, bi) = (pi ↦ w(pi),
w−1(ai) ↦ ai). If a1 ≠ a2, then the two alignments have distinct starboard sides. If a1 =
a2 = a, then b1 ≠ b2. Since the pi are determined uniquely by tracing the cycle containing

bi backwards and finding the first element in the interval [r̄(a,w), n], then b1 ≠ b2 implies

that p1 ≠ p2, so the alignments have distinct port sides. Either way, we have Ψw (a1, b1) ≠
Ψw (a2, b2).

Case 3: Assume both (a1, b1) and (a2, b2) are in AE2(w ) and Ψw (ai, bi) = (w−1(bi) ↦
bi, si ↦ w(si)). If b1 ≠ b2, then the two alignments have distinct port sides. If b1 = b2 = b, then

a1 ≠ a2. Since the si are determined uniquely by tracing the cycle containing ai backwards

and finding the first element in the interval [1, r(b,w ) − 1], then a1 ≠ a2 implies s1 ≠ s2.
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Either way, Ψw (a1, b1) ≠ Ψw (a2, b2).

Case 4: Assume one of the (ai, bi) is in AE1(w ) and the other anti-exchange pair is in

AE2(w ). Without loss of generality, we may assume that (a1, b1) ∈ AE1(w ) with r̄(a1,w ) ∈
[a1 + 1, b1] and (a2, b2) ∈ AE2(w ) with r(b2,w ) ∈ [a2 + 1, b2]. Then Ψw (a1, b1) = (p ↦
w(p),w−1(a1) ↦ a1) for some p ≥ r̄(a1,w ), and Ψw (a2, b2) = (w−1(b2) ↦ b2, s ↦ w(s)) for

some s < r(b2,w ).

If a1 = a2 = a, then Corollary 5.2.4 shows that b2 < r̄(a,w ) since (a, b2) ∈ AE2(w ) and

(a, b1) ∈ AE1(w ). Since b2 ∉ I1(w ), w−1(b2) ≤ b2 < r̄(a,w ) ≤ p. Therefore, once again, the

two alignments cannot have the same port sides, so Ψw (a1, b1) ≠ Ψw (a2, b2).

If a1 ≠ a2, observe from Definition 5.2.6 that (s↦ w(s)) is either the arc (w−1(a2) ↦ a2),
or it is an arc with s < r(b2,w) and w(s) ≥ r(b2,w ), in which case it is an exceedance arc.

See Figure 5.6 for these two cases. In either case, (s↦ w(s)) is not the anti-exceedance arc

(w−1(a1) ↦ a1). Hence, Ψw (a1, b1) ≠ Ψw (a2, b2).

5.2.3 The Case of Crossed Alignments

Recall the definition of a starboard tacking crossed alignment from Definition 2.3.7. Fig-

ure 5.7 depicts two examples of a starboard tacking crossed alignment where the tail of the

crossing arc is 1.

Lemma 5.2.9. If w = (w, co) ∈ Sn has a starboard tacking crossed alignment (p↦ w(p), s↦
w(s)), where 1 is the tail of the crossing arc, then there is no element of AE(w ) mapping

to (p↦ w(p), s↦ w(s)) under Ψw . Hence, Ψw is not surjective.

Proof. Assume by way of contradiction that there is some anti-exchange pair (a, b) ∈ AE(w )
such that Ψw (a, b) = (p↦ w(p), s↦ w(s)). Since fixed point loops cannot cross other arcs,

then none of the arcs involved in a crossed alignment are loops. Therefore, none of 1, p, or

s is a fixed point. There are two cases to consider, depending on whether w(s) = 1.

If w(s) ≠ 1, as in Figure 5.7a, then w(p) and w(s) are both exceedances. By considering

the various cases in the algorithm defined in Definition 5.2.6, w(p) and w(s) can both be
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(a) d ≠ 1 (b) d = 1

Figure 5.7: Two cases for starboard tacking crossing arc with tail at 1.

exceedances only if a < b and (a, b) ∈ AE2(w ), as in Figure 5.6b. In this case, we must

have that w(p) = b. Hence, the arc (1↦ w(1)) satisfies Condition (2) of Lemma 5.2.2 for all

r ∈ [2,w(1)], and the arc (p↦ w(p) = b) satisfies Condition (2) for r ∈ [p+1,w(p)]. Since the

alignment is crossed by (1 ↦ w(1)), then w(1) ≥ p. It follows that Condition (2) is satisfied

for all r ∈ [2,w(p)] and thus for all r in [a+1,w(p)]. This contradicts that (a, b) ∈ AE2(w ).

If w(s) = 1, as in Figure 5.7b, then the arrangement of the arcs in (p ↦ w(p), s ↦ w(s))
implies that a < b. Thus, (a, b) ∈ AE1(w )⊔AE2(w ). If (a, b) ∈ AE2(w ), then we must have

w(p) = b. Again, looking at the arcs (1↦ w(1)) and (p↦ w(p)) contradicts the assumption

that Condition (2) fails for some r ∈ [a + 1,w(p)]. Otherwise, (a, b) ∈ AE1(w ), and the

starboard side being (s ↦ w(s)) implies that a = 1. The port side being an exceedance

implies that w(p) = b, as in Figure 5.5a. Thus, Condition (1) fails for some r ∈ [2,w(p)]. If

r ∈ [2,w(1)], let x = 1, and if r ∈ [w(1)+1,w(p)], let x = p. In either case, the arc (x↦ w(x))
maps from [1, r−1] to [r, n]. The cycle containing the arc (x↦ w(x)) must then also contain

an arc (y ↦ w(y)) from [r, n] to [1, r − 1]. The existence of the arc (y ↦ w(y)) contradicts

the fact that Condition (1) fails for r. Therefore, (a, b) ∉ AE1(w ).

For these two cases of w(s) ≠ 1 and w(s) = 1, we have obtained contradictions that (a, b)
is an anti-exchange pair. Therefore, there can be no such anti-exchange pair mapping to
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(p↦ w(p), s↦ w(s)) under Ψw .

Proof of Theorem 1.2.5, (1) ⇒ (5). We prove the implication (1) ⇒ (5) using the contra-

positive. Thus, assume that w is a decorated permutation whose chord diagram contains

a crossed alignment. The chord diagram D(w ) may be rotated and reflected as necessary

to produce a new chord diagram with a starboard tacking crossed alignment whose crossing

arc has its tail at 1. By Lemma 4.2.6, any such operations on D(w ) preserve the property

of being smooth or singular. Therefore, we may assume that D(w ) has a starboard tacking

crossed alignment whose crossing arc has its tail at 1. It follows from Lemma 5.2.9 that

# AE(w ) < #Alignments(w ). Since I1(w) ∈ M, then Corollary 4.1.4 and Definition 5.2.1

of anti-exchange pairs imply that Πw is singular.
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Chapter 6

ENUMERATION OF SMOOTH POSITROIDS

Let w be a decorated permutation in Sn with associated positroid M of rank k on

ground set [n]. We say w is a smooth decorated permutation and M is a smooth positroid

if Πw = ΠM is a smooth positroid variety.

Definition 6.0.1. Let s(n) be the number of smooth positroids on ground set [n], and let

sc(n) be the number of connected smooth positroids on ground set [n].

By Theorem 1.2.5, each connected smooth positroid can be bijectively associated with a

spirograph permutation. Thus, by (5.1.1), we have

sc(n) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2 n = 1

n − 1 n > 1

. (6.0.1)

In this chapter, we give enumerative results for smooth positroids. Our enumerations

rely on the characterization of the corresponding decorated permutations as a union of

spirographs on a non-crossing partition of [n], found in Theorem 1.2.5. From the sum

over non-crossing partitions, we utilize result of Speicher [Spe94] to obtain s(n) as the coef-

ficient of a power of a polynomial, Theorem 6.1.1. By a formula due to Faà di Bruno, which

utilizes partial Bell polynomials, this expression for s(n) leads to a formula for s(n) as a

sum over set partitions of [n]. We are then able to refine the sequence (s(n))≥0 according

to three different statistics in Section 6.2 and show that two of the refinements coincide.

In Section 6.3, we list further enumerative results due to Christian Krattenthaler. In

this work, Krattenthaler expanded on our enumerations to provide elegant closed formulas

for s(n) as well as the refinements that we define in Section 6.2. In addition, Krattenthaler

provides an exact formula for the asymptotic growth of s(n) in Theorem 6.3.5.
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6.1 Enumeration with Bell polynomials

In analogy with the enumeration of smooth Schubert varieties studied by Haiman, Bona,

Bousquet-Mélou and Butler [B9́8; BMB07; Hai92], the enumeration of smooth positroids

on [n] gives rise to several interesting sequences. See [OEIS, A349413, A349456, A349457,

A349458, A353131, A353132]. The following formula for enumerating smooth positroids is

very similar to the results in [ARW16, Thm. 10.2]. In particular, we use the results of

Beissinger [Bei85] and Speicher [Spe94] for counting structures induced on the blocks of non-

crossing partitions and the Lagrange inversion formula for formal power series [Sta99, Sect.

5.4]. The sequence begins 2,5,16,61,256,1132,5174,24229,115654 for n = 1, . . . ,10 [OEIS,

A349458]. If G is a polynomial or power series in x, then ⟨xn⟩G(x) denotes the coefficient

of xn in G(x).

Theorem 6.1.1. The number of smooth positroids on ground set [n] is the coefficient

s(n) = ⟨xn⟩ 1

n + 1
(1 + 2x +

∞

∑
i=2

(i − 1)xi)
n+1

= ⟨xn⟩ 1

n + 1
(1 + 2x +

n

∑
i=2

(i − 1)xi)
n+1

. (6.1.1)

Proof. LetM=M1 ⊕⋯⊕Mt be a positroid decomposed into its connected components on

a non-crossing partition. Then, ΠM is smooth if and only if ΠMi
is smooth for each i ∈ [t]

by Corollary 4.3.5. Each connected smooth positroid can be bijectively associated with a

spirograph permutation by Theorem 1.2.5. Therefore, every smooth positroid on [n] can be

uniquely determined by a non-crossing partition of [n] along with a spirograph permutation

on each block. Hence, the number of smooth positroids on ground set [n] is given by

s(n) = ∑ sc(#B1) sc(#B2)⋯ sc(#Bt) (6.1.2)

where the sum is over all non-crossing partitions B1 ⊔ ⋯ ⊔Bt of [n]. Equation (6.1.1) now

follows directly from [Spe94, Corollary 0] and (6.0.1).

The partial Bell polynomial, Bn,k(x1, . . . , xn−k+1) introduced in [Bel27], is defined as

Bn,k(x1, . . . , xn−k+1) = ∑
B1⊔⋯⊔Bk

k

∏
i=1

x∣Bi∣, (6.1.3)
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where the sum is taken over all set partitions of [n] into k blocks. The following formula

of Faà di Bruno expresses the nth derivative of a composition of functions in terms of the

partial Bell polynomials [Joh02]

dn

dxn
f(g(x)) =

n

∑
k=1

f (k)(g(x)) ⋅Bn,k(g′(x), g′′(x), . . . , g(n+1−k)(x)). (6.1.4)

Define the triangle of numbers bn,k using the Bell polynomials evaluated at xi = sc(i) ⋅ i! for

all i, so

bn,k = Bn,k(2 ⋅ 1!,1 ⋅ 2!,2 ⋅ 3!, . . . , (n − k) ⋅ (n − k + 1)!) =
n−k+1

∑
i=1

(n − i
i − 1

) ⋅ sc(i) ⋅ i! ⋅ bn−i,k−1 (6.1.5)

for 1 ≤ k ≤ n along with initial conditions b0,0 = 1, and b0,k = bn,0 = 0 if n > 0 or k > 0, see

[OEIS, A353131]. Also, let (n)k denote the falling factorial,

(n)k ∶= n (n − 1)⋯(n − k + 1).

Corollary 6.1.2. The number of smooth positroids on ground set [n] is

s(n) = 1

(n + 1)!
n

∑
k=1

(n + 1)k ⋅ bn,k =
n

∑
k=1

bn,k
(n − k + 1)! . (6.1.6)

Proof. Set f(x) = xn+1 and g(x) = 1 + 2x + ∑n
i=2(i − 1)xi. By Theorem 6.1.1, s(n) = 1

n+1 ⋅
⟨xn⟩ f(g(x)). Furthermore, the coefficient of xn in the composition f(g(x)) can be computed

as ⟨xn⟩ f(g(x)) = 1
n!

dn

dxnf(g(x))∣
x=0

. Then, by Faà di Bruno’s formula (6.1.4),

s(n) = 1

n + 1
⋅ 1

n!
⋅ d

n

dxn
f(g(x))∣

x=0
(6.1.7)

= 1

(n + 1)!
n

∑
k=1

f (k)(g(x)) ⋅Bn,k(g′(x), g′′(x), . . . , g(n+1−k)(x))∣
x=0
. (6.1.8)

The kth derivative of f(x) = xn+1 is f (k)(x) = (n + 1)k ⋅ xn−k+1, so

f (k)(g(x))∣
x=0

= (n + 1)k(1 + 2x +
n

∑
i=1

(i − 1)xi)
n−k+1

∣
x=0

= (n + 1)k.

The derivatives of g are g′(x) = 2 +∑n−1
i=1 i(i + 1)xi and g(j)(x) = ∑n−j

i=0 (i + j − 1) ⋅ (i + j)jxi for

j > 1. Hence, g(j)(x)∣x=0 = sc(j) ⋅ j! for all j ≥ 1. Therefore, the formula in (6.1.6) follows

from (6.1.5) and (6.1.8).
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It is interesting to consider the asymptotic growth function for the number s(n) of smooth

positroids on [n]. We use the second formula in (6.1.1) to obtain the following data as

examples. Observe from this data the speed of growth of the number of smooth positroids:

s(51)/s(50) ≈ 5.4489775,

s(101)/s(100) ≈ 5.528236,

s(151)/s(150) ≈ 5.555362,

s(201)/s(200) ≈ 5.569062,

s(251)/s(250) ≈ 5.5773263.

Based on this data, we conjectured in [BW22a] that the growth function is of the order

O(cn) for some constant c < 6. The exact formula for growth was determined by Christian

Krattenthaler and is stated in Theorem 6.3.5. The proof is given in Section 6.3. The result

was determined separately by Omer Angel and Sergi Elizalde.

6.2 Equality of q-analogs.

Note that the value k in the Corollary 6.1.2 above does not represent the same value k = k(w )
used elsewhere in the thesis. These distinct values may be used to refine the enumeration of

s(n). To this end, we define

s1(n, k) ∶= #{smooth positroid varieties in Gr(k,n)} for 0 ≤ k ≤ n (6.2.1)

= #{smooth decorated permutations in Sn,k}, (6.2.2)

s2(n, k) ∶= #

⎧⎪⎪⎪⎨⎪⎪⎪⎩

smooth decorated permutations in Sn with

exactly k components in its SIF decomposition

⎫⎪⎪⎪⎬⎪⎪⎪⎭
for 1 ≤ k ≤ n, and (6.2.3)

s3(n, k) ∶=
bn,k

(n − k + 1)! for 1 ≤ k ≤ n. (6.2.4)

The terms si(n, k) are displayed in Figure 6.3 and Figure 6.4 for 1 ≤ n ≤ 10.



73

For each i ∈ {1,2,3}, we may define a q-analog of s(n) as

s(i)(n; q) = ∑
k≤n

si(n, k)qk. (6.2.5)

In fact, the q-analogs for i = 2 and i = 3 coincide. This equality leads to the following

theorem.

Theorem 6.2.1. For any 1 ≤ k ≤ n, the number of smooth decorated permutations in Sn

with exactly k components in its SIF decomposition is
bn,k

(n−k+1)! .

Using the notation from the proof of Corollary 6.1.2 so that g(x) = 1 + ∑n≥1 sc(n)xn,

we know from Theorem 6.1.1 that s(n) is the coefficient of xn in 1
n+1(g(x))n+1. Now, let

g(x, t) = 1 + t∑n≥1 sc(n)xn. We will show that s2(n, k) and s3(n, k) are both the coefficient

⟨xntk⟩ 1
n+1(g(x, t))n+1, and hence are equal. Expanding the product (g(x, t))n+1 yields a sum

over weak compositions of n into n + 1 parts. With (6.1.2) in mind, which expresses s(n)
via a sum over noncrossing partitions of [n], we now relate certain weak compositions to

noncrossing partitions of [n].

Let C = (d1, . . . , dn+1) be a weak composition of n into n+1 parts, and suppose that C has

k nonzero elements, say dm1 , . . . , dmk
. We will associate with C a partition B = B1 ⊔ ⋯ ⊔Bk

of a set B ∈ ([n+1]
n

) with k nonempty blocks. We think of the elements of [n + 1] as points

sitting around a circle in the clockwise order. Then, a set of elements is assigned to a block

by drawing an arc between every pair of consecutive elements in that set. Sets of elements

are assigned to a block using the following algorithm. All indices mi and elements defining

cyclic intervals should be considered mod n+ 1 in the set [n+ 1], and all subindices i on the

dmi
should be considered mod k in [k].

Definition 6.2.2. For a weak composition C = (d1, . . . , dn+1) of n into n+1 parts, let B(C) =
{B1, . . . ,Bk} be defined by the following algorithm.
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Input : C = (d1, . . . , dn+1)
Output: B(C) = {B1, . . . ,Bk}

1 set B = ∅.

2 while ∥C∥0 > 0 do

3 set D = {i ∈ [k] ∶ dmi
≤ ∣[mi,mi+1 − 1]cyc∣}

4 for i ∈D do

5 set j = #B
6 set Bj+1 = [mi,mi + (dmi

− 1)]cyc

7 update B = B ∪ {Bj+1}.

8 Delete dmi
and the dmi

− 1 zeros cyclically to the right of dmi
from C.

9 end

10 set n′ = n −∑i∈D dmi

11 Relabel the remaining n′ + 1 elements with the consecutive integers in [n′ + 1].
12 set n← n′

13 set k ← k − ∣D∣

14 end

15 return B = {B1, . . . ,Bk}.

Example 6.2.3. Consider the weak composition C = (0,0,3,0,3,0,0,0,0,0,0,3,2,0,0,5,0)
of 16. In the first iteration of the while loop, (dm1 , . . . , dmk

) = (3,3,3,2,5), (m1, . . . ,mk) =
(3,5,12,13,16), and D = {2,4}. Hence, we assign the sets {5,6,7} and {13,14} to blocks,

as in the image on the left below. The weak compositions and the corresponding block

assignments for each iteration of the loop are shown below.

(1) (0,0,3,0,3,0,0,0,0,0,0,3,2,0,0,5,0)

(2) (0,0,3,0,3,0,0,0,0,0,0,3,2,0,0,5,0)

(3) (0,0,3,0,3,0,0,0,0,0,0,3,2,0,0,5,0)

(4) (0,0,3,0,3,0,0,0,0,0,0,3,2,0,0,5,0)
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Figure 6.1: Iterations of algorithm.

Relabeling the elements of [n + 1] = 17 yields the figure below, corresponding to the

partition of B = [17]∖{11} so that 11 is the unique element not contained in any block of B,

B = {1,2,9,16,17} ⊔ {3,4,8} ⊔ {5,6,7} ⊔ {10,12,15} ⊔ {13,14}

For a weak composition of n into n + 1 parts, the set D must always be nonempty, for

otherwise the sum of the elements would be at least n + 1. The algorithm begins with a

composition of n into n + 1 parts. At each step, we reduce the sum of the composition by

some element dmi
and simultaneously delete dmi

terms from the composition. Therefore, at

each iteration, we always have a weak composition C′ of some n′ into n′+1 parts, and by the

previous observation, the set D will always be nonempty for this C′. Hence, the loop will

terminate in finitely many steps.
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Figure 6.2: Resulting partition.

By selecting intervals of the form [mi,mi + (dmi
− 1)]cyc to be blocks, then there will be

a block of size dmi
for each i ∈ [k]. Since C is a weak composition of n, then there will be

exactly one element x ∈ [n + 1] which is not assigned to any element. Thus, we consider the

partition B together with the element x, where B is a partition of some n-subset B ⊂ [n+ 1]
and [n + 1] ∖B = {x}.

Lemma 6.2.4. For a weak composition C = (d1, . . . , dn+1) of n into n + 1 parts, all n + 1

cyclic rotations (di, di+1, . . . , dn+1, d1, . . . , di−1) are distinct.

Proof. Let B be the noncrossing partition associated with C. Then B has a unique associated

element x ∈ [n+1] such that x is not contained in any of the blocks of B. Since the elements

and indices in the algorithm are considered mod n + 1 and k, respectively, then a cyclic

rotation of C simply corresponds to a cyclic rotation of B. Since each rotation B′ of B has

the unique element x′ which is not contained in any of the blocks of B′, then all n+1 rotations

of B yield distinct partitions. Therefore, the weak compositions from which these partitions

came must also all be distinct.

From the arguments above, each cyclic rotation equivalence class of weak compositions

of n into n+ 1 parts yields exactly one noncrossing partition such that n+ 1 is not contained

in any block of the partition. Hence, this is the unique partition of [n] for this rotation
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class. We will consider the weak composition which yields this partition of [n] to be the

representative of the cyclic rotation class and its partition to be the partition associated with

the equivalence class.

Lemma 6.2.5. Let C1, . . . ,Cs be the representative elements of the cyclic rotation equivalence

classes of weak compositions of n into n+1 parts. Then the associated noncrossing partitions

B1, . . . ,Bs of [n] are all distinct.

Proof. For any of the Cj and the corresponding partition Bj, recall that n+ 1 is not assigned

to any of the blocks of Bj. The element n + 1 can only be excluded from every block if for

every assignment of an interval of the form I = [mi,mi + (dmi
− 1)]cyc to a block, I is in fact

an ordinary interval with I ⊆ [n]. Then, mi will be the minimal element of the block in

which it is contained. Hence, for all of the nonzero elements dm1 , . . . , dmk
of Cj, the block

containing mi is a block of size dmi
with minimal element mi. Since Bj has exactly k blocks,

for any i ∉ {m1, . . . ,mk, n + 1}, corresponding to a zero of Cj, if i ∈ B` ∈ Bj, then i is not the

minimal element of B`.

Let C1 = (c1, . . . , cn+1) and C2 = (d1, . . . , dn+1) be distinct rotation class representatives

with associated partitions B1 and B2. Let i be the minimal index in [n + 1] at which C1 and

C2 differ. If, without loss of generality, ci = 0, so di ≠ 0, then i is not minimal element of its

block in B1, but i is the minimal element of its block in B2. If ci and di are both nonzero,

but distinct, then the blocks containing i in B1 and B2 have different sizes. In either case,

B1 ≠ B2.

Lemma 6.2.6. The coefficient ⟨xntk⟩ 1
n+1(g(x, t))n+1 is equal to s2(n, k).

Proof. Consider the expansion

1

n + 1
(g(x, t))n+1 = 1

n + 1
(1 + t∑

i≥1

sc(i)xi)

= 1

n + 1

⎛
⎝

1 +∑
j≥1

( ∑
d1,...,dn+1∈[0,j]
d1+⋯+dn+1=j

sc(d1)⋯sc(dn)t∥(d1,...,dn)∥0)xj
⎞
⎠
,
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where the inner sum is over all weak compositions of j into n+ 1 parts and ∥(d1, . . . , dn)∥0 is

the number of nonzero elements in the (n + 1)-tuple (d1, . . . , dn). Thus,

⟨xntk⟩ 1

n + 1
(g(x, t))n+1 = ∑

d1,...,dn+1∈[0,n]
d1+⋯+dn+1=n

sc(d1)⋯sc(dn),

where the sum is over only compositions containing exactly k nonzero elements.

For each equivalence class of weak compositions under cyclic rotation, recall that one

may choose a representative C = (d1, . . . , dn+1) such that the associated noncrossing partition

B is a partition of [n]. As above, let dm1 , . . . , dmk
be the nonzero elements of C. Writing

B = B1 ⊔ ⋯ ⊔ Bk so that dmi
= ∣Bi∣, then the number of smooth decorated permutations

whose underlying set partition is B is exactly sc(∣B1∣)⋯sc(∣Bk∣) = sc(dm1)⋯sc(dmk
). Since

each cyclic rotation of C corresponds to a cyclic rotation of B, then each cyclic rotation of

C also contributes the term sc(dm1)⋯sc(dmk
) to the sum above. By Lemma 6.2.4, there are

n + 1 distinct cyclic rotations of C. Hence, we get the term sc(dm1)⋯sc(dmk
) for each cyclic

rotation equivalence class.

By Lemma 6.2.5, the noncrossing partitions associated to these equivalence classes are all

unique. Since there are (2n
n
) weak compositions of n into n+1 parts, and each cyclic rotation

equivalence class has size n + 1, then there are Cn = 1
n+1

(2n
n
) equivalence classes contributing

to the sum.

Noncrossing partitions are a Catalan object. Hence, there are also Cn noncrossing parti-

tions of [n]. Therefore, the map C ↦ B gives a bijection between the equivalence classes and

noncrossing set partitions. In particular, every noncrossing partition is accounted for in the

sum above exactly once. It follows that 1
n+1 ⟨xn⟩ (g(x,1))n+1 recovers exactly (6.1.2). Fur-

thermore, the compositions with k = ∥(d1, . . . , dn)∥0 are exactly those whose equivalence class

is associated with a noncrossing partition of [n] into k blocks. Hence ⟨xntk⟩ 1
n+1(g(x, t))n+1

is exactly s2(n, k).

Lemma 6.2.7. The coefficient ⟨xntk⟩ 1
n+1(g(x, t))n+1 is equal to s3(n, k).

Proof. Observe that for n ≥ 1, 1
n+1 ⟨xntk⟩ (g(x, t))n+1 = 1

(n+1)! ⟨x0tk⟩ dn

dxn (g(x, t))n+1. By apply-
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ing Faà di Bruno’s formula with f(x) = xn+1, we have

dn

dxn
f(g(x, t)) =

n

∑
j=1

f (j)(g(x, t)) ⋅Bn,j(g′(x, t), g′′(x, t), . . . , g(n+1−j)(x, t))

=
n

∑
j=1

f (j)(g(x, t)) ∑
B1⊔⋯⊔Bj

j

∏
i=1

g(∣Bi∣)(x, t),

where all derivatives are with respect to x and the inner sum is over all partitions of [n] into

j parts. Since every block of every such partition is nonempty, then all derivatives g(∣Bi∣)(x, t)
are of order at least one. Then g(∣Bi∣)(x, t) = tg(∣Bi∣)(x), so t can be factored out of g(∣Bi∣)(x, t)
for each block of the partition. Therefore,

1

(n + 1)! ⟨x
0tk⟩ dn

dxn
(g(x, t))n+1 = 1

(n + 1)! ⟨x
0tk⟩

n

∑
j=1

f (j)(g(x, t)) ⋅ tj ∑
B1⊔⋯⊔Bj

j

∏
i=1

g(∣Bi∣)(x)

= 1

(n + 1)! ⟨x
0⟩ f (k)(g(x, t)) ⋅ ∑

B1⊔⋯⊔Bj

j

∏
i=1

⟨x0⟩ g(∣Bi∣)(x)

= 1

(n + 1)!(n)k ⋅ ∑
B1⊔⋯⊔Bj

j

∏
i=1

h(∣Bi∣)

= s3(n, k).

Proof of Theorem 6.2.1. From Lemma 6.2.6 and Lemma 6.2.7, the coefficient of xntk in

1
n+1(g(x, t))n+1 is equal to both s2(n, k) and s3(n, k). Hence, s2(n, k) = s3(n, k).

Corollary 6.2.8. The numbers
bn,k

(n−k+1)! are integers for any 1 ≤ k ≤ n.
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n

k
0 1 2 3 4 5 6 7 8 9 10

1 1 1

2 1 3 1

3 1 7 7 1

4 1 15 29 15 1

5 1 31 96 96 31 1

6 1 63 282 440 282 63 1

7 1 127 771 1688 1688 771 127 1

8 1 255 2011 5803 8089 5803 2011 255 1

9 1 511 5074 18520 33721 33721 18520 5074 511 1

10 1 1023 12488 55998 127698 166325 127698 55998 12488 1023 1

Figure 6.3: Table of s1(n, k).

n

k
1 2 3 4 5 6 7 8 9 10

1 2

2 1 4

3 2 6 8

4 3 18 24 16

5 4 40 100 80 32

6 5 78 305 440 240 64

7 6 140 798 1750 1680 672 128

8 7 236 1876 5838 8400 5824 1792 256

9 8 378 4056 17136 34524 35616 18816 4608 512

10 9 580 8190 45480 122682 175896 137760 57600 11520 1024

Figure 6.4: Table of s2(n, k) = s3(n, k).
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6.3 Further enumerative results

All results in this section are due to Christian Krattenthaler1. These results are also given

in [BW22b, Appendix]. The constant given in Theorem 6.3.5 was also found separately by

Omer Angel and Sergi Elizalde.

In this appendix, we derive explicit formulas in terms of single respectively double sums

for the number s(n) of smooth positroids on the ground set [n] (see Theorem 6.3.1), for the

number s2(n, k) of smooth decorated permutations in Sn,k with exactly k components in its

SIF decomposition (and thus, by Theorem 6.2.1, for s3(n, k); see Theorem 6.3.3), and for

the number s1(n, k) of smooth positroid varieties in Gr(k,n) (or, by (6.2.1), equivalently,

for the number of smooth decorated permutations in Sn,k; see Theorem 6.3.4). Furthermore,

we find a linear recurrence of order 4 with polynomial coefficients for the numbers s(n)
(see Theorem 6.3.2), which allows for a quick and efficient computation of these numbers.

Finally, we confirm the conjecture from the end of Chapter 6 on the asymptotic growth of

the numbers s(n) and determine the growth constant exactly (see Theorem 6.3.5).

Theorem 6.3.1. For all non-negative integers n, the number of smooth positroids on the

ground set [n] is given by

s(n) = 1

n + 1

⌊(n+1)/2⌋

∑
r=0

(−1)r2r(n + 1

r
)(3n − 3r + 1

n − 2r
). (6.3.1)

1Address: Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, A-1090 Vienna,
Austria. WWW: http://www.mat.univie.ac.at/~kratt.
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Proof. Starting from (6.1.1), we compute

s(n) = 1

n + 1
⟨xn⟩ (1 + 2x +

∞

∑
i=2

(i − 1)xi)
n+1

= 1

n + 1
⟨xn⟩ ( 1

(1 − x)2
− 2

x2

1 − x)
n+1

(6.3.2)

= 1

n + 1
⟨xn⟩

n+1

∑
r=0

(−1)r2r(n + 1

r
)x2r(1 − x)−2(n+1−r)−r

= 1

n + 1
⟨xn⟩

n+1

∑
r=0

(−1)r2r(n + 1

r
)x2r∑

s≥0

((2n − r + 2) + s − 1

s
)xs

= 1

n + 1

⌊(n+1)/2⌋

∑
r=0

(−1)r2r(n + 1

r
)(3n − 3r + 1

n − 2r
).

Theorem 6.3.2. The sequence (s(n))n≥0 satisfies the recurrence relation

2(n − 2)(n + 1)(2n + 1)(26n − 33)s(n)

− (1118n4 − 3343n3 + 2092n2 + 367n − 66)s(n − 1)

+ 2(n − 1)(2002n3 − 6181n2 + 4435n + 18)s(n − 2)

− 4(n − 2)(n − 1)(1586n2 − 3547n + 555)s(n − 3)

+ 152(n − 3)(n − 2)(n − 1)(26n − 7)s(n − 4) = 0, (6.3.3)

with initial conditions s(0) = 1, s(1) = 2, s(2) = 5, and s(3) = 16.

Proof. In (6.3.1), we may (artificially) extend the sum up to r = n,

s(n) = 1

n + 1

n

∑
r=0

(−1)r2r(n + 1

r
)(3n − 3r + 1

n − 2r
),

by adopting the convention that (m
j
) = 0 for m ≥ 0 and j < 0. In this form, the sum may be fed

into the Gosper–Zeilberger algorithm [PWZ96; Zei90; Zei91] to find a recurrence relation for

the sequence s(n). (We used the Mathematica implementation by Paule and Schorn [PS95].)

It finds the recurrence in (6.3.3).

Theorem 6.3.3. For all integers n and k with n ≥ k > 0, the number of smooth decorated

permutations in Sn,k with exactly k components in its SIF decomposition is given by

s2(n, k) = s3(n, k) =
1

n + 1
(n + 1

k
)

k

∑
l=0

2k−l(k
l
)(n − k + l − 1

n − k − l ). (6.3.4)
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Proof. Here our starting point is Theorem 6.2.1, which says that

s2(n, k) = s3(n, k) =
1

(n − k + 1)!Bn,k(2 ⋅ 1!,1 ⋅ 2!,2 ⋅ 3!, . . . , (n − k) ⋅ (n − k + 1)!) (6.3.5)

(cf. (6.1.5)). The Bell polynomials Bn,k have the following generating function (cf. [Com74,

Sec. 3.3]):

∑
n≥k≥0

Bn,k(x1, . . . , xn−k+1)
tn

n!
uk = exp(u∑

j≥1

xj
tj

j!
) .

By substituting the values of the xi’s from (6.3.5), we get

∑
n≥k≥0

Bn,k(2 ⋅ 1!,1 ⋅ 2!,2 ⋅ 3!, . . . , (n − k) ⋅ (n − k + 1)!) t
n

n!
uk = exp(u(2t +∑

j≥2

(j − 1)tj))

= exp(u(2t + t2

(1 − t)2
))

= ∑
k≥0

uk

k!
(2t + t2

(1 − t)2
)
k

= ∑
k≥0

uk

k!

k

∑
l=0

(k
l
)2k−ltk+l(1 − t)−2l

= ∑
k≥0

uk

k!

k

∑
l=0

(k
l
)2k−ltk+l∑

i≥0

(2l + i − 1

i
)ti.

By extracting the coefficient of tn

n!u
k on both sides, we obtain

Bn,k(2 ⋅ 1!,1 ⋅ 2!,2 ⋅ 3!, . . . , (n − k) ⋅ (n − k + 1)!) = n!

k!

k

∑
l=0

2k−l(k
l
)(n − k + l − 1

n − k − l ).

The claim now follows by dividing this expression by (n − k + 1)!.

Theorem 6.3.4. For all integers n and k with n ≥ k ≥ 0, the number of smooth positroid

varieties in Gr(k,n) is given by

s1(n, k) =
1

n + 1
∑

k1,k2≥0

(−1)k1+k2(n + 1

k1, k2

)(2n − k − 2k1 − k2

n − k − 2k1

)(n + k − k1 − 2k2

k − 2k2

), (6.3.6)

where the multinomial coefficient is defined by ( n+1
k1,k2

) ∶= (n+1)!
k1!k2! (n+1−k1−k2)!

.

Proof. We have to count non-crossing partitions of {1,2, . . . , n} in which each block carries

the structure of a spirograph permutation, and where the arising “compound” permutation
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has exactly k anti-exceedances. We do this by computing the generating function ∑σ t
#I1(σ),

where #I1(σ) denotes the number of anti-exceedances of σ, and where the sum is over all

these objects σ.

To prepare for this, we first consider a weighted generating function for non-crossing

partitions of {1,2, . . . , n}. We define the weight w(π) of a noncrossing partition π by

w(π) ∶=
n

∏
i=1

x
#(blocks of π of size i)
i .

Then it is not difficult to see by standard generating function calculus and the use of Lagrange

inversion (alternatively, one may use [Kre72, Théorème 4]) that

∑
π

w(π) = ⟨xn⟩ 1

n + 1
(1 +∑

i≥1

xix
i)
n+1

.

We must replace xi by the generating function ∑ρ t
#I1(ρ) of spirograph permutations ρ of

i elements. Now, it is straightforward that this generating function equals 1+ t for i = 1 and

otherwise

(t + t2 + ⋅ ⋅ ⋅ + ti−1) = 1

1 − t(t − t
i).
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Hence, the generating function ∑σ t
#I1(σ) for our compound permutations equals

⟨xn⟩ 1

n + 1
(1 + (1 + t)x +∑

i≥2

1

1 − t(t − t
i)xi)

n+1

= ⟨xn⟩ 1

n + 1
(1 + (1 + t)x + tx2

(1 − x)(1 − tx))
n+1

= 1

n + 1
⟨xn⟩ ( 1

(1 − x)(1 − tx) −
x2

1 − x −
t2x2

1 − tx)
n+1

= 1

n + 1
⟨xn⟩ ∑

k1,k2≥0

(−1)k1+k2(n + 1

k1, k2

) t2k2x2(k1+k2)

(1 − x)n+1−k2(1 − tx)n+1−k1

= 1

n + 1
⟨xn⟩ ∑

k1,k2≥0

(−1)k1+k2(n + 1

k1, k2

)t2k2x2(k1+k2)

⋅ ∑
l1,l2≥0

(n − k2 + l2
l2

)(n − k1 + l1
l1

)tl1xl1+l2

= 1

n + 1
∑

k1,k2≥0

(−1)k1+k2(n + 1

k1, k2

)

⋅ ∑
l1≥0

(2n − 2k1 − 3k2 − l1
n − 2k1 − 2k2 − l1

)(n − k1 + l1
l1

)t2k2+l1 .

If we now extract the coefficient of tk on both sides, then we obtain (6.3.6).

Theorem 6.3.5. The asymptotic growth of the number of smooth positroids on the ground

set [n] is given by

s(n) ∼ ρn+1

n3/2
√

2πξ
= (5.61071 . . . )n+1

(8.74042 . . . ) ⋅ n3/2
, as n→∞, (6.3.7)

where ρ = 5.61071 . . . is the real root of

4x3 − 35x2 + 84x − 76 = 0,

and ξ = 12.15864 . . . is the real root of

38x3 − 425x2 − 416x − 416 = 0.

Proof. We use the formula for s(n) in (6.3.2) together with the large powers theorem (cf.

[FS09, Theorem VIII.8]):

⟨zN⟩A(z)Bn(z) ∼ A(ζ) Bn(ζ)
ζN+1

√
2πnξ

, as n→∞,
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where A(z) and B(z) are power series satisfying certain properties (given as L1–L3 in [FS09,

p. 586]), λ = N/n, ζ is the unique real root of zB′(z)/B(z) = λ, and

ξ = d2

dz2
( logB(z) − λ log z)

RRRRRRRRRRRz=ζ
.

For our purposes, we choose λ = 1 and A(z) = B(z) = 1
(1−z)2 − 2 z2

1−z , which satisfies L1–L3.

Thus, ζ = 0.39660 . . . is the real root of

2z3 − 2z2 + 3z − 1 = 0,

ρ ∶= B(ζ)/ζ = 5.61071 . . . (the growth rate) is the real root of

4z3 − 35z2 + 84z − 76 = 0,

and ξ = 12.15864 . . . is the real root of

38z3 − 425z2 − 416z − 416 = 0.

Altogether, we obtain the claimed result.
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Chapter 7

MORE ON PATTERN AVOIDANCE IN
DECORATED PERMUTATIONS

So far, we have described all decorated permutations using the two-line notation w =
(w, co) and the one-line notation which includes orientation decorations for all fixed points,

e.g. w = 895
←Ð
4 7
Ð→
6 132. We now define the flattened one-line notation for w as a length n

string which incorporates the information from both the permutation w and the co function.

We learned of this technique from Brendon Rhoades, and this notation for decorated permu-

tations first appeared in [BRT21]. To write decorated permutations using this notation, we

think of fixed points as decorated (↻) or undecorated (↺). In the flattened one-line notation

for w, we first replace all decorated fixed points with zeros to mark their locations. Then,

if the remaining nonzero entries occur in positions L = {`1 < ⋯ < `j}, we replace them with

the entries of the permutation fl(wL) ∈ Sj, using the notation for a flattened permutation

defined in Section 2.1.4. For an example of converting a decorated permutation from the

(w, co) notation to flattened one-line notation, see Example 7.0.1 below. For the rest of this

section, assume that all decorated permutations are given in flattened one-line notation.

We note that writing decorated permutations in flattened one-line notation leads to an

easy way to count #Sn . We partition Sn according to the number of nonzero elements in

each decorated permutation. A decorated permutation in Sn with j nonzero elements is

determined by the unique set in ([n]
j
) giving the positions of the nonzero elements and the

unique permutation in Sj occurring in the nonzero positions. Therefore,

#Sn =
n

∑
j=0

(n
j
)j! =

n

∑
j=0

n!

j!
.
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From this enumeration, observe that

lim
n→∞

#Sn
n!

= lim
n→∞

n

∑
j=0

1

j!
= e.

Thus the sequence #Sn is in Θ(n!). See Section 2.1.4 for the definition of Θ notation. Recall

from Theorem 6.3.5 the asymptotic growth of the number of smooth decorated permutation

in Sn , s(n) ∼ (5.61071... )n+1

(8.74042... )⋅n3/2 . In particular, the set of smooth decorated permutations is

asymptotically a very small fraction of the set of all decorated permutations.

In general, given a subset L ⊆ [n], define fl(wL) to be the decorated permutation in S○●
∣L∣

obtained from wL by preserving all zeros and flattening the set of nonzero entries. Then,

for m ≤ n and a decorated permutation v ∈ Sm, say that w contains the pattern v if

fl(wL) = v for some subset L ⊆ [n]. If there is no such L, then w avoids v .

Example 7.0.1. Let w = (w, co) be defined by

w = 5231764, co ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2↦↻

3↦↺

6↦↻

.

The two fixed points with clockwise orientation are 2 and 6, so we first rewrite w as 5031704.

Then fl(53174) = 42153 ∈ S5. Thus, in flattened one-line notation, w = 4021503. Then w

contains the pattern v = 1020 since for L = {1,2,5,6}, we have fl(wL) = fl(4050) = 1020.

For v ∈ Sm with m ≤ n, let Sn(v ) be the set of decorated permutations in Sn that avoid

the pattern v . We consider Sn to be the subset of decorated permutations in Sn with no

zeros. Therefore, if v ∈ Sm, then Sn(v ) = Sn(v ) ∩ Sn. We have considered avoidance of

certain patterns of small length and corresponding enumerations.

7.1 Avoiding permutations in Sn

Let v ∈ Sm, and set aj(v ) = #Sj(v ). As with counting #Sn , we partition the set Sn(v )
according to the number of zeros contained in each decorated permutation. Any w ∈ Sn(v )
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with j nonzero elements is determined uniquely by the locations of the j nonzero elements

and the permutation u ∈ Sj(v ) occupying the nonzero entries of w . Since the nonzero

elements may be placed in (n
j
) ways, then #Sn(v ) is the binomial transform of the aj(v )

sequence.

Proposition 7.1.1. The number of decorated permutations in Sn avoiding v ∈ Sm is

#Sn(v ) =
n

∑
j=0

(n
j
)aj(v ).

7.1.1 Permutations of length 3

For v ∈ S3, recall that aj(v ) = #Sj(v ) = Cj, where Cj is the jth Catalan number. The

enumeration aj(v ) = Cj provides the following enumeration for decorated permutations

avoiding v .

Corollary 7.1.2. The number of decorated permutations in Sn avoiding any v ∈ S3 is

#Sn(v ) =
n

∑
j=0

(n
j
)Cj.

The binomial transform of the Catalan numbers can be found in the OEIS at [OEIS,

A007317]. Other objects counted by ∑n
j=0 (nj)Cj include the following examples.

● Rooted plane trees with nodes that have positive integer weights and whose total weight

is n + 1, where total weight is the sum of the node weights. Noted by Brad Jones.

● Complete rooted binary trees of weight n + 1, where the leaves have positive integer

weights. Noted by Michael Somos.

● Symmetric hex trees with 2n edges. A hex tree is an ordered, rooted tree where each

vertex has 0, 1, or 2 children, and when only one child is present, it is a left, median,

or right child. See [HR70] and [KS16]. Noted by Emeric Deutsch.
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● 321-avoiding set partitions of [n + 1]. Given a partition P of [n], write the entries of

each block in increasing order, and then arrange the blocks of P in increasing order

of their first entries. Then fl(P) is the permutation in Sn obtained by removing the

divisors between blocks. We say that P is v-avoiding if fl(P) is v-avoiding. See [Cal09].

7.1.2 Permutations of length 4

There are three Wilf equivalence classes for permutations in S4. The enumerations found for

two of the classes give the following corollaries.

Corollary 7.1.3. [Ges90] [OEIS, A005802] The number of decorated permutations in Sn

avoiding 1234 is

#Sn(1234) =
n

∑
j=0

(n
j
)aj(1234),

where

aj(1234) = 2
j

∑
k=0

(2k

k
)(j
k
)

2 3k2 + 2k + 1 − j − 2kn

(k + 1)2(k + 2)(j − k + 1) .

Corollary 7.1.4. [Bón97] [OEIS, A022558] The number of decorated permutations in Sn

avoiding 1342 is

#Sn(1342) =
n

∑
j=0

(n
j
)aj(1342),

where

aj(1342) = (7j2 − 3j − 2)
2

(−1)j−1 + 3
j

∑
k=2

2k+1 (2k − 4)!
k!(k − 2)!(

j − k + 2

2
)(−1)j−k.

The sequence #Sj(1324) can be found at [OEIS, A061552]. The exact formula for this

sequence is still an open problem. A recursive formula is given in [MR03].

7.2 More enumerations for decorated permutations

Proposition 7.2.1. We have the following enumerations for #Sn(v ) for the given decorated

permutations v .
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(i) v = 0m [OEIS, A334156]:

#Sn(0m) = n!
m−1

∑
j=0

1

j!

(ii) v = 1:

#Sn(1) = 1

(iii) v = 01 or 10 [OEIS, A003422]:

#Sn(01) = #Sn(10) =
n

∑
j=0

j!

(iv) v = 12 or 21 [OEIS, A000079]:

#Sn(12) = #Sn(21) =
n

∑
j=0

(n
j
) = 2n

(v) v = 001 or 100 or 010 [OEIS, A334155]:

#Sn(001) = #Sn(100) = n! +
n−1

∑
j=0

(j + 1)!

(vi) v = 012 or 210 [OEIS, A334154]:

#Sn(012) = n! +
n

∑
j=1

n−j+1

∑
`=1

(n − `
j − 1

)(n − j
` − 1

)(` − 1)!.

(vii) v = 102 or 201 [OEIS, A051295]:

#Sn(102) = n! +
n

∑
j=1

(j − 1)! ⋅ (#S○●n−j(102)).

From the OEIS entry, this sequence also counts

● w ∈ Sn+1 that contain a 132 pattern only as part of a 4132 pattern.

● w ∈ Sn+1 such that the elements of each cycle of w form an interval. Noted by

Michael Albert.
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Proof.

(i) Observe that w ∈ Sn(0m) ⇔ w has at most m − 1 zeros. Therefore,

#Sn(0m) =
m−1

∑
j=0

(n
j
)(n − j)! =

m−1

∑
j=0

n!

j!
= n!

m−1

∑
j=0

1

j!
.

(ii) Observe that w ∈ Sn(1) ⇔ w = 00⋯0.

(iii) Observe that w ∈ Sn(01) ⇔ w = u0⋯0 for some u ∈ Sm, m ≤ n. Then w is com-

pletely determined by the permutation u.

(iv) Observe that w ∈ Sn(12) ⇔ the nonzero entries of w are decreasing. Therefore, w

is completely determined by the positions of its zeros.

(v) Partition Sn according to the number of nonzero entries appearing in a decorated

permutation. Consider w ∈ Sn(001) with j nonzero entries. If j = n, then w ∈ Sn.

If j ∈ [0, n − 1], then w has the form w = u10u20⋯0, where the concatenation of the

words u1 and u2 in flattened one-line notation, u = u1u2, is in Sj. There are j! choices

of the permutation u, and there are j +1 ways to partition u into u1 and u2. Summing

over all j,

#Sn(001) = n! +
n−1

∑
j=0

(j + 1)!.

Now consider decorated permutation pattern 010. Note that w ∈ Sn(010) ⇔ w

does not have two nonadjacent strings of zeros. Again, partition Sn according to

the number of nonzero entries appearing in a decorated permutation. Assume w

has j nonzero entries. If j = n, then w ∈ Sn. For j ∈ [0, n − 1], w has the form

w = w1⋯wi0⋯0wi+1⋯wj, where w = w1⋯wj ∈ Sj and 0 ≤ i ≤ j. The following map gives
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a bijection between decorated permutations in Sn(010) with n− j zeros and decorated

permutations in Sn(001) with n − j zeros:

w = w1⋯wi 0⋯0
´¸¶
n−j

wi+1⋯wj ↦ σ○● = w1⋯wi0wi+1⋯wj 0⋯0
´¸¶
n−j−1

.

Therefore #Sn(010) = #Sn(001).

(vi) Partition Sn according to the number of zeros appearing in a decorated permutation.

Consider w ∈ Sn(012) with j zeros. If j = 0, then w ∈ Sn, and Sn(012) = Sn. For

j > 0, let ` be the index of the first zero. If the first zero occurs at index ` > n − j + 1,

then by the pigeonhole principle, w must have fewer than j zeros. Therefore ` must

be in [1, n − j + 1]. Choose the positions of the remaining zeros in (n−`
j−1

) ways. The

first ` − 1 entries of w may be chosen in (n−j
`−1

) ways and arranged in any order. All

nonzero entries after the first zero must be decreasing, so they can only be arranged

in one way. Therefore, there are (n−`
j−1

)(n−j
`−1

)(` − 1)! decorated permutations in Sn(012)
containing j > 0 zeros whose first zero occurs at index `. Summing over all j ∈ [0, n]
all ` ∈ [1, n − j + 1] yields

#Sn(012) = n! +
n

∑
j=1

n−j+1

∑
`=1

(n − `
j − 1

)(n − j
` − 1

)(` − 1)!.

(vii) Partition Sn according to the number of zeros appearing in a decorated permutation.

Let w ∈ Sn(102) contain j zeros. If j = 0, then w ∈ Sn, and Sn(102) = Sn. For

j > 0, assume that the first zero of w occurs at index n− j + 1. Then we can write w

as w = u10u2, where the elements of u1 are all greater than the elements of u2, and

u2 ∈ S○●n−j(102). The elements of u1 can be arranged in any order since there are no

zeros among the entries of u1. Summing over all j yields the recursive formula

#Sn(102) = n! +
n

∑
j=1

(j − 1)! ⋅ (#S○●n−j(102)).
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Similar logic can be used for the other two objects listed to show that they also satisfy

this recursive formula.

The sequences A334154, A334155, and A334156 are new to the OEIS and were added by the

author. We note that all of the sequences given in Section 7.1 and Section 7.2 are distinct

sequences.
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