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Statistical divergences have been widely used in statistics and artificial intelligence to measure

the dissimilarity between probability distributions. The applications range from generative

modeling to statistical inference. Early works in statistics have focused on discrete and

low-dimensional probability distributions. We choose to tackle problems emerging in mod-

ern applications of statistics and artificial intelligence in which the sample space is either

discrete with a large alphabet (e.g., natural language processing) or continuous of high di-

mension (e.g., computer vision). This dissertation revisits statistical divergences in modern

applications and addresses challenges arising from the complex nature of the data.

Chapter 2 studies the minimum Kullback-Leibler divergence estimation which is equiva-

lent to the widely used maximum likelihood estimation. While the classical asymptotic theory

is well established in a rather general setting, high-dimensional problems reveal several of its

limitations. We develop finite-sample bounds characterizing the asymptotic behavior in a

non-asymptotic fashion, allowing the dimension to grow with the sample size. Unlike previ-

ous work that relies heavily on the strong convexity of the objective function, we only assume

the Hessian is lower bounded at optimum and allow it to gradually become degenerate. This

is enabled by the notion of self-concordance originating from convex optimization.



Chapter 3 investigates the framework of divergence frontiers, a notion of trade-off curves

built upon statistical divergences, for comparing generative models. These trade-off curves

are analogous to operating characteristic curves in statistical decision theory. Due to the

complex and high-dimensional nature of the input space, an effective approach used by

practitioners to estimate divergence frontiers involves a quantization step followed by an

estimation step. We establish non-asymptotic bounds on the sample complexity of this

estimator. We also show how smoothed distribution estimators such as Good-Turing or

Krichevsky-Trofimov can overcome the missing mass problem and lead to faster rate of

convergence.

Chapters 4 and 5 explore the Schrödinger bridge problem—an information projection

problem which projects a reference measure onto a linear subspace of probability distributions

in terms of the Kullback-Leibler divergence. This problem is equivalent to the entropy-

regularized optimal transport problem that recently attracted a huge attention from the

statistics and machine learning communities. We develop limit laws and non-asymptotic

bounds for its empirical estimators. Unlike the unregularized optimal transport, our results

enjoy a parametric rate of convergence that does not suffer from the curse of dimensionality.

We also propose statistical tests for testing homogeneity and independence based on the

Schrödinger bridge problem.
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Chapter 1

INTRODUCTION

Statistical divergences, which quantify the discrepancy between probability distributions,

are ubiquitous in statistics and machine learning. In statistical learning, they have been

used to estimate, either parametrically or non-parametrically, the density from which the

data are generated via minimizing the discrepancy between the data distribution and the

model distribution. This includes the classical maximum likelihood estimation, the minimum

distance estimation, and the modern adversarial generative modeling. In statistical inference,

statistical divergences provide a principled way to design test statistics to determine whether

two samples are coming from the same population known as the homogeneity (or two-sample)

testing problem. In the same spirit, they can also be applied to the independence testing

problem by reformulating the independence of two random elements into the equivalence of

the joint distribution and the product of marginal distributions.

Early works in statistics focus on discrete and one-dimensional probability distributions

where statistical divergences are defined via the probability mass function (Pearson, 1900;

Bhattacharyya, 1946) and the cumulative distribution function, respectively (Cramér, 1928;

von Mises, 1931; Kolmogorov, 1933; Smirnov, 1939; Anderson and Darling, 1954). They

are not applicable in modern statistics and machine learning applications where the sample

space is either discrete with a large alphabet or continuous of high dimension. For instance,

when testing the independence of two documents (Gretton et al., 2007b), the observations

are natural languages which live in a discrete space of nearly infinite size. When learning a

generative model on images (Goodfellow et al., 2014), the observations are images consisting

of hundreds of thousands of pixel values. This raises challenges both in their statistical

analysis and computation.
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This dissertation revisits statistical divergences in modern applications and addresses

challenges arising from the complex nature of the data. In particular, we use the well-known

Kullback-Leibler (KL) divergence to estimate model parameters, build trade-off curves for

generative models, and study the Schrödinger problem. To facilitate the exposition of the

results, we introduce in the following several concepts involving statistical divergences. First,

we review in Section 1.1 the KL divergence and its extension which we call information

divergences. We then in Section 1.2 explain how the KL divergence can be applied to

parameter estimation which coincides with the celebrated maximum likelihood estimation.

Next, in Section 1.3, we review two types of errors and trade-off curves in statistical decision

theory which serves as the basis of modern trade-off curves for generative models. Finally, we

consider in Section 1.4 a structured information projection problem with marginal constraints

which leads to the so-called Schrödinger problem. It can be reformulated as an entropy-

regularized optimal transport problem which is closely related to the optimal transport

distance. Moreover, it induces the so-called Sinkhorn divergence. Both the optimal transport

distance and the Sinkhorn divergence are statistical divergences adapted to the metric of the

sample space. We conclude with a summary of the main contributions and an outline of the

rest of the thesis.

1.1 Information Divergences

In their seminal work, Kullback and Leibler (1951) introduced the KL divergence (or the

relative entropy) while studying generalizations of the Shannon entropy (Shannon, 1948).

Definition 1.1 (Kullback-Leibler divergence). Let X be some measurable space andM1(X )

be the space of probability measures on X . For any P,Q ∈ M1(X ), the KL divergence

between P and Q is defined as

KL(P‖Q) :=


∫

log dP
dQ

dP if P � Q

∞ otherwise.
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An important feature of the KL divergence is that it is indeed a divergence, i.e., a metric

without the triangle inequality, which behaves similarly as the squared Euclidean distance.

Property 1.1 (Lemma 3.1 in Kullback and Leibler (1951)). For any P,Q ∈ M1(X ), we

have KL(P‖Q) ≥ 0 with equality iff P = Q Q-a.s.

Remark 1.2. Note that the KL divergence is asymmetric. In fact, as noted by Kullback and

Leibler (1951), its symmetrized version, i.e., KL(P‖Q) + KL(Q‖P ), has appeared earlier in

Jeffreys (1946).

Beyond information theory, the KL divergence has found its wide applications in statis-

tics and probability. For instance, it can be used to estimate parameters of a statistical

model which corresponds to the famous maximum likelihood estimation as demonstrated in

Section 1.2. Moreover, in large deviation theory, it characterizes the rate at which the rare

event probability converges to zero (see, e.g., Dembo and Zeitouni, 2009). In particular,

according to Sanov’s theorem, given a subset of distributions P ⊂ M1(X ), the log of the

probability that the empirical measure of an i.i.d. sample from Q ∈M1(X ) belongs to P is

asymptotically close to

min
P∈P

KL(P‖Q) (1.1)

with a factor of −n, where n is the sample size. The above variational problem of the KL

divergence is later studied by Csiszár (1975) which is referred to as the information projection

(or I-projection) of Q onto P .

A case of special interest to us is when P := ∩Kk=1Pk for some linear subsets {Pk}Kk=1 of

M1(X ). Under these linear constraints, the solution (if exists) admits a special structure

involving these constraints (Csiszár, 1975, Theorem 3.1). Furthermore, it can be obtain by

the iterative proportional fitting procedure (IPFP)—projecting Q onto each linear subset

iteratively—which can be dated back to Deming and Stephan (1940): for t ≥ 1,

Qt = arg min
P∈Pk

KL(P‖Qt−1) if t mod K = k,
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where Q0 := Q. This variational problem and the IPFP form the backbone of the Schrödinger

problem as we will see in Section 1.4.

Finally, we note that the KL divergence was generalized by Csiszár (1967) to a class of

divergences known as the f -divergence.

Definition 1.2 (f -divergence). Let f : (0,∞) → R+ be a convex function with f(1) = 0.

For any P,Q ∈M1(X ), the f -divergence between P and Q is defined as

Df (P‖Q) :=

∫
f

(
dP

dQ

)
dQ

with the convention that f(0) := limt→0+ f(t) and 0f(p/0) = pf ∗(0), where f ∗(0) ∈ [0,∞]

is the limit of f ∗ : t 7→ tf(1/t) at 0+. We call f the generator to Df and f ∗ the conjugate

generator1 of f since Df∗(P‖Q) = Df (Q‖P ).

Remark 1.3. When P and Q are dominated by µ ∈M1(X ) with densities p and q, respec-

tively, we have

Df (P‖Q) =

∫
q>0

f(p(x)/q(x))q(x)dµ(x) + f ∗(0)P [q = 0]

with the agreement that the last term is taken to be zero if P [q = 0] = 0 no matter what

value f ∗(0) takes (which could be infinity).

Example 1.4. We illustrate a number of examples.

(a) KL divergence: f(x) = x log x− x+ 1.

(b) Total variation: f(x) = |x− 1| /2,

TV(P,Q) :=
1

2

∫ ∣∣∣∣dPdQ
− 1

∣∣∣∣ dQ.
(c) χ2-divergence: f(x) = (x− 1)2,

χ2(P‖Q) :=

∫ (
dP

dQ
− 1

)2

dQ.

1The conjugacy between f and f∗ is unrelated to the usual Fenchel or Lagrange duality in convex
analysis, but is related to the perspective transform (Rockafellar, 1970).
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1.2 Parameter Estimation with the Kullback-Leibler Divergence

Let Z be a random element following some unknown distribution P . Consider a parametric

family of distributions PΘ := {Pθ : θ ∈ Θ ⊂ Rd} which may or may not contain P . For

simplicity of the presentation, we assume that P and Pθ are absolutely continuous w.r.t. some

dominating measure with densities p and pθ, respectively. We are interested in finding the

parameter θ∗ so that the model Pθ? best approximates the underlying distribution P . For

this purpose, one strategy is to minimize the KL divergence, i.e.,

θ? ∈ arg min
θ∈Θ

KL(P‖Pθ). (1.2)

Note that, when P � Pθ,

KL(P‖Pθ) = E

[
log

p(Z)

pθ(Z)

]
= E[− log pθ(Z)] + E[log p(Z)].

Consequently, minimizing KL(P‖Pθ) over θ is equivalent to maximizing the expected log-

likelihood E[log pθ(Z)], which is known as the maximum likelihood method; see, e.g., (Casella

and Berger, 2001).

Remark 1.5. The KL minimization problem (1.2) is reminiscent of the information projec-

tion problem (1.1). However, they are not exactly the same due to the asymmetry of the KL

divergence. In fact, problems of the form (1.2) are often referred to as the reverse information

projection.

In many real applications, we do not have access to the underlying distribution P . In-

stead, we have an i.i.d. sample {Zi}ni=1 from P . To learn the parameter θ? from the data, we

maximize the data log-likelihood to obtain the maximum likelihood estimator (MLE)

θn ∈ arg max
θ∈Θ

1

n

n∑
i=1

log pθ(Zi).

Due to its flexibility and effectiveness, it has become a dominate approach in statistical in-

ference and has wide applications in economics (Hendry and Nielsen, 2012), survey statistics

(Chambers et al., 2012), and social sciences (Ward and Ahlquist, 2018).
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To evaluate the performance of the estimator, we use the excess KL divergence, i.e.,

EKL(θn) := KL(P‖Pθn)− inf
θ∈Θ

KL(P‖Pθ) = KL(P‖Pθn)−KL(P‖Pθ?). (1.3)

For instance, Rigollet (2012, Theorem 3.1) used the excess KL divergence in aggregation

problems. The (symmetrized) KL divergence is also used in Gu (2013, Chapter 9) to quantify

the convergence rate of penalized likelihood estimates.

The classical asymptotic theory of maximum likelihood estimation is well established in

a rather general setting under the assumption that the parametric model is well-specified,

i.e., the underlying data distribution belongs to the parametric family. We mention here,

among many of them, the monographs by Ibragimov and Has’ Minskii (1981); van der Vaart

(2000); Geer et al. (2000). One of the main result is

√
nH1/2

? (θn − θ?)⇒ N (0, Id), (1.4)

where⇒ represents weak convergence (or convergence in distribution), H? := ∇2
θ KL(P‖Pθ?)

is the Hessian of the population objective, and d is the parameter dimension. Model misspec-

ification has been considered in, e.g., Huber (1967), where the weak limit of
√
nH

1/2
? (θn−θ?)

becomes Nd(0, H−1/2
? G?H

−1/2
? ). Here G? := E[∇θ KL(P‖Pθ?)∇θ KL(P‖Pθ?)>] is the second

moment of the gradient of the population objective.

The weak limit in (1.4) allows us to do statistical inference via the construction of a

confidence set for θ? if we equip it with a consistent estimator Hn of H?. By Slutsky’s

lemma, we have n(θn − θ?)>Hn(θn − θ?)⇒ χ2
d and thus P(θ? ∈ Cn(δ))→ 1− δ, where

Cn(δ) :=
{
θ : n(θn − θ?)>Hn(θn − θ?) ≤ qχ2

d
(δ)
}

and qχ2
d
(δ) is the upper δ-quantile of χ2

d. That is, the probabiliy that θ? belongs to the

confidence set Cn(δ) is approximately 1−δ for large enough n. However, due to its asymptotic

nature, it does not tell us how large n should be for this approximation to be accurate.

Another limitation of classical asymptotic theory is its asymptotic regime where n→∞

and the parameter dimension d is fixed. This is inapplicable in the modern context where
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the data are of rather high dimension involving a huge number of parameters. We establish

non-asymptotic bounds for both the excess KL divergence and the estimator in Chapter 2.

These bounds hold for any n and d such that d = O(n) as n→∞. We also obtain confidence

bounds for θ? in a non-asymptotic fashion and characterize the critical sample size that is

enough to enter the asymptotic regime.

1.3 Two Types of Errors and Tradeoff Curves

In statistical hypothesis testing, the goal is to decide between the null hypothesis H0 and

the alternative hypothesis H1 given a sample of observations (see, e.g., Casella and Berger,

2001). A typical procedure for such problems consists of the following procedure. First,

we choose a quantity T ∈ R depending on H0 and H1 so that a large value of T favors

H1. Second, we estimate T from the data to obtain a test statistic Tn. Finally, we select

a threshold tn and adopt the decision rule (or test) 1{Tn > tn}, that is, we reject the null

hypothesis if the test statistic exceeds the threshold.

The performance of a test is usually evaluated by two types of errors. A type I error (or

false positive) occurs if the null hypothesis is wrongly rejected when it is true, and a type II

error (or false negative) occurs if the null hypothesis fails to be rejected when the alternative

hypothesis is true. The rates at which each of the two errors occur, i.e., the type I error

rate P(Tn > tn | H0) and the type II error rate P(Tn ≤ tn | H1), constitute the operating

characteristics of the test. Note that it is also common to use the statistical power (or true

positive rate), i.e., 1 − P(Tn ≤ tn | H1) = P(Tn > tn | H1) instead of the type II error rate.

Often, one prescribes a significance level α ∈ (0, 1) and selects tn to minimize the type II

error rate under the constraint that the (asymptotic) type I error rate does not exceed α.

Example 1.6 (Neyman-Pearson test). Let {Xi}ni=1 be an i.i.d. sample from some dis-

tribution µ. Consider two simple hypotheses H0 : µ = µ0 and H1 : µ = µ1, where

µ0 and µ1 are two continuous distributions. In the Neyman-Pearson test, one chooses

T := EX∼µ[log [µ1(X)/µ0(X)]], that is, the expected log likelihood ratio. A large value of
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T favors H1 since T = KL(µ1‖µ0) ≥ 0 under H1 and T = −KL(µ0‖µ1) ≤ 0 under H0. We

can estimate T by Tn := 1
n

∑n
i=1 log [µ1(Xi)/µ0(Xi)]. The type I error rate and type II error

rate are then given by, respectively,

Pµ0

(
1

n

n∑
i=1

log [µ1(Xi)/µ0(Xi)] > tn

)
and Pµ1

(
1

n

n∑
i=1

log [µ1(Xi)/µ0(Xi)] ≤ tn

)
.

Instead of considering a fixed threshold tn, the receiver operating characteristic (ROC)

curve plots the statistical power versus the type I error rate for all possible choices of t

(see, e.g., Pepe, 2000). By construction, it is an increasing function mapping from [0, 1] to

[0, 1], where higher curves correspond to better tests. It displays the trade-offs between the

type I error rate and the statistical power. It is particularly useful for comparing tests on

different scales where comparisons based on the test statistics are not meaningful. The ROC

curve was originally developed in electrical engineering and became increasingly popular in

statistical machine learning (Cortes and Mohri, 2004; Clémençon and Vayatis, 2009; Flach,

2012).

In deep generative modeling, where the goal is to train generative models to generate

artificial samples from the real data distribution, it is of great interest to develop quantitative

evaluation tools to measure their statistical performance and diagnose where and why they

fail (Salimans et al., 2016; Lopez-Paz and Oquab, 2017; Heusel et al., 2017; Sajjadi et al.,

2018; Karras et al., 2019). There is a quality-diversity trade-off inherent to deep generative

modeling. In particular, a good generative model must not only produce high-quality samples

that are likely under the target distribution but also cover the target distribution with diverse

samples.

To quantify this trade-off, similar notions of the type I error and type II error can be

defined in the context of generative modeling (Sajjadi et al., 2018; Kynkäänniemi et al.,

2019; Simon et al., 2019; Djolonga et al., 2020; Naeem et al., 2020; Pillutla et al., 2021). A

type I error occurs if a generated sample point is unlikely under the real data distribution,

i.e., it is unrealistic. A type II error occurs if a real data point is unlikely under the model

distribution, i.e., it can rarely be generated by the model. Now a model with high type I
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error rate generates samples of low quality and a model with high type II error rate generates

samples of low diversity. Choosing a reference measure R that interpolates between the data

distribution P and model distribution Q, these two types of errors can be quantified by

KL(Q‖R) and KL(P‖R), respectively. By sweeping through all adequate reference measures,

we arrive at a curve, called the divergence frontier (Djolonga et al., 2020), that displays the

quality-diversity trade-off of a generative model. This will be the main subject of Chapter 3.

1.4 The Schrödinger Problem and the Sinkhorn Divergence

We introduce the Schrödinger problem in modern terms. Given ε ∈ R+ and a cost function

c : Rd × Rd → R+, we assume that the following Markov transition density is well-defined:

pε(x, y) :=
1

Zε(x)
exp

[
−1

ε
c(x, y)

]
,

where Zε(x) is the normalizing constant. For instance, when c is the quadratic cost, this is

the transition density of the Brownian motion with diffusion ε considered in Schrödinger’s

lazy gas experiment (Schrödinger, 1932). Suppose that (W0,W1) is a pair of random vectors

distributed according to this Markov transition kernel. Let P and Q be two probability mea-

sures on Rd. Informally, the (static) Schrödinger bridge connecting P and Q at temperature

ε is the joint distribution of (W0,W1) conditioned to have W0 ∼ P and W1 ∼ Q. In contin-

uum, when P and Q have densities w.r.t. the Lebesgue measure, it can be made precise as

the solution to the following information projection problem (Föllmer, 1988; Léonard, 2012,

2014):

min
ν∈Π(P,Q)

KL(ν‖Rε), (1.5)

where Π(P,Q) is the set of couplings (joint distributions) with marginals P and Q and2

Rε(x, y) := P (x)pε(x, y). We refer to (1.5) as the Schrödinger problem.

With this formulation, the Schrödinger bridge has a geometry interpretation—we first

construct the reference measure Rε by starting from the initial configuration P and jumping

2We follow the standard abuse of keeping the same notation for an absolutely continuous measure and
its density.
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according to the Markov transition kernel pε, and we then project Rε onto the space of

couplings Π(P,Q) since Rε may not belong to Π(P,Q). Note that Π(P,Q) is the intersection

of two linear marginal constraints. This will be important in characterizing and computing

the Schrödinger bridge in Chapter 4.

The Schrödinger problem is closely related to the optimal transport (OT) problem (see,

e.g., Villani, 2021):

min
ν∈Π(P,Q)

∫
c(x, y)dν(x, y), (1.6)

where the goal is to find the optimal coupling (or transport plan) which minimizes the

transport cost. When the cost is chosen to be c(x, y) := ‖x− y‖p for p ≥ 1, the OT cost

induces a metric on M1(Rd) which is known as the Wasserstein-p distance (Santambrogio,

2015, Chapter 5). To see the connection, note that, for any ν ∈ Π(P,Q),

KL(ν‖Rε) =
1

ε

∫
c(x, y)dν(x, y) +H(ν) +

∫
logZε(x)dP (x)−H(P ),

where H(ν) is the differential entropy of ν defined as H(ν) :=
∫

log ν(x, y)dν(x, y) if ν is a

density and infinity otherwise. As a result, the Schrödinger problem (1.5) is equivalent to

Sε(P,Q) := min
ν∈Π(P,Q)

[∫
c(x, y)dν(x, y) + εH(ν)

]
(1.7)

which is known as the entropy-regularized optimal transport (EOT) problem. Whereas

the OT problem usually admits a degenerate solution given by a transport map with zero-

measure support (Santambrogio, 2015, Theorem 1.17), the entropy term in the EOT problem

prevents such solutions from existing. Moreover, as ε→ 0, the minimum of the Schrödinger

problem converges to the one of the OT problem and the minimizer (if exists) as well

(Léonard, 2012, Theorem 3.3). In other words, the Schrödinger problem can be viewed

as a smooth approximation to the OT problem which quantifies how close two distributions

are. As opposed to the OT problem, the Schrödinger problem can not only be solved effi-

ciently but also be estimated without suffering from the curse of dimensionality as shown in

Chapters 4 and 5.
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While Sε is close to the OT distance when ε → 0, it is not a statistical divergence for a

fixed ε since Sε(P,Q) is not necessarily 0 when P = Q. A remedy to this issue is to consider

the centered version

S̄ε(P,Q) := Sε(P,Q)− 1

2
Sε(P, P )− 1

2
Sε(Q,Q).

This defines a semi-metric on the space of probability measures which is known as the

Sinkhorn divergence (Feydy et al., 2019) and has been applied to two-sample testing (Ramdas

et al., 2017) and generative modeling (Genevay et al., 2018). We will use it to measure

independence in Chapter 5.

1.5 Contributions and Outline

In the remainder of this dissertation, we study the aforementioned problems in each of the

four chapters. We conclude with a discussion on future research directions.

Non-asymptotic analysis of the maximum likelihood estimator. In Chapter 2 we

present an excess KL divergence bound and a confidence bound for the maximum likelihood

estimator (or the minimum KL divergence estimator). Our analysis allows the dimension

to grow with the sample size and the model to be mis-specified. The complexity of the

parameter space is measured by the effective dimension d?, i.e., the trace of the asymptotic

covariance H
−1/2
? G?H

−1/2
? of

√
nH

1/2
? (θn−θ?), which can be much smaller than the parameter

dimension in some regimes. Moreover, we obtain a novel non-asymptotic confidence bound

for the estimator whose shape is adapted to the optimization landscape induced by the loss

function. Along the way, we demonstrate how the effective dimension can be estimated from

data and characterize its estimation accuracy. Compared to classical asymptotic theory, our

results recover the limiting behavior in a non-asymptotic fashion whenever the sample size

n grows linearly in the “dimension” d+ d?. In other words, they provide a characterization

of the critical sample size sufficient to enter the asymptotic regime. Compared to previous

works in the non-asymptotic theory, our approach avoids strong global assumptions on the
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data likelihood by restricting ourselves to generalized self-concordant losses, a tool borrowed

from convex analysis, while being more general than the generalized linear models.

This chapter is joint work with Zaid Harchaoui. A preliminary version was presented

at the NeurIPS 2022 Workshop on Score-Based Methods (Liu and Harchaoui, 2022) and

a longer version is under review. The part on detecting changes in model parameters is

joint work with Joseph Salmon and Zaid Harchaoui which was published at ICASSP 2021

(Liu et al., 2021b). In a collaboration with Carlos Cinelli and Zaid Harchaoui that was

published at COLT 2022 (Liu et al., 2022a), the results are extended to double machine

learning/orthogonal statistical learning for semi-parametric models. In a collaboration with

Jillian Fisher, Krishna Pillutla, Yejin Choi, and Zaid Harchaoui that is under review (Fisher

et al., 2022), the techniques are applied to analyze influence functions.

Non-asymptotic analysis of the divergence frontiers. In Chapter 3 we focus on the

notion of divergence frontiers which was recently proposed as an evaluation framework for

generative models to quantify the quality-diversity trade-offs inherent to deep generative

modeling. Due to the complex and high-dimensional nature of the input space (e.g., images

or text), we conform to the recipe used by practitioners to estimate divergence frontiers:

(a) jointly quantize the data and model distributions into disjoint groups, (b) estimate the

quantized distributions from samples, and (c) compute the divergence frontier between the

estimated distributions. We establish non-asymptotic bounds for the sample complexity of

this estimator in the large-alphabet regime, i.e., the quantization level is large compared

to the sample size. Along the way, we introduce frontier integrals which provide summary

statistics of divergence frontiers. The frontier integral itself turns out to be a symmetric

f -divergence. We discuss the choice of quantization level by balancing the two types of

approximation errors arise from the computation. We also show how smoothed distribution

estimators such as Good-Turing or Krichevsky-Trofimov can overcome the missing mass

problem and lead to faster rates of convergence.

This chapter is joint work with Krishna Pillutla, Sean Welleck, Sewoong Oh, Yejin Choi,
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and Zaid Harchaoui. It was published at NeurIPS 2021 (Liu et al., 2021a) and a journal-

length version is in preparation.

Asymptotics of discrete Schrödinger bridges. In Chapter 4 we turn our attention

to the Schrödinger problem. In light of Schrödinger’s lazy gas experiment, we propose the

discrete Schrödinger bridge as an estimator of the Schrödinger bridge in continuum. We

establish its asymptotic consistency as the sample size goes to infinity while the dimension

kept fixed. We prove limiting Gaussian fluctuations for this convergence in the form of

central limit theorems for integrated test functions. This suggests a parametric rate of

convergence O(n−1/2) that does not suffer from the curse of dimensionality. A result of

independent interest is the limit law of a two-sample U-statistic of infinite order constructed

from the permanent of the Gram matrix of a bivariate function. The proofs are based on a

novel chaos decomposition of the discrete Schrödinger bridge consisting of functions of the

empirical distributions as Taylor approximations in the space of measures. This is achieved

by extending the Hoeffding decomposition from the classical theory of U-statistics. The

kernels in the first order chaos are given by an alternating conditional expectation procedure

induced by Markov operators associated with the Schrödinger bridge which is reminiscent

of the IPFP. Finally, we design an efficient algorithm to compute the discrete Schrödinger

bridge and apply it to homogeneity testing.

This chapter is joint work with Soumik Pal and Zaid Harchaoui. A preliminary version

was presented at the NeurIPS 2021 Workshop on Optimal Transport and Machine Learning,

and a journal-length version is under revision at Bernoulli (Harchaoui et al., 2022).

Entropy-regularized optimal transport independence criterion. In Chapter 5 we

introduce an independence criterion based on the entropy-regularized optimal transport

which uses the Sinkhorn divergence to quantify the discrepancy between the joint distri-

bution and the product of marginals. The plug-in estimator can be used as a statistic to

test for independence. We establish non-asymptotic bounds for our test statistic and study
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its statistical behavior under both the null hypothesis and the alternative hypothesis. The

rate of convergence is O(σ3dn−1/2) where σ is some problem-specific constant. In other

words, it enjoys a parametric rate of convergence where the dimension only appears in a

problem-specified constant. A result of independent interest is a metric entropy bound for

degenerate two-sample U-processes. The theoretical results involve tools from U-process

theory and optimal transport theory. We propose an efficient algorithm based on random

feature approximations and symbolic matrices to compute the test statistic in large-scale

problems, which admits a quadratic time complexity and a linear space complexity. Finally,

we show how to differentiate through the proposed independence criterion in a differentiable

programming framework.

This chapter is joint work with Soumik Pal and Zaid Harchaoui. A major part of it was

published at AISTATS 2022 (Liu et al., 2022c) and the implementational aspects for large-

scale problems were presented at the International Conference on Computational Statistics

in Summer 2022.

Other explorations. This dissertation does not include (1) the work on meta-learning

with heterogeneous covariate spaces (Liu et al., 2022b) where the dissertation author is the

primary author and conducted during an internship, (2) a collaborative work on spectral risk

measures (Mehta et al., 2022).
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Chapter 2

INFORMATION DIVERGENCES FOR
ESTIMATION AND INFERENCE

2.1 Introduction

The problem of statistical inference on learned parameters is regaining the importance it

deserves as machine learning and data science are increasingly impacting humanity and so-

ciety through a large range of successful applications from transportation to healthcare. The

classical asymptotic theory of minimum KL divergence estimation (or maximum likelihood

estimation) is well established in a rather general setting under the assumption that the

parametric model is well-specified, i.e., the underlying data distribution belongs to the para-

metric family. From this theory a Wald-type confidence set, which relies on the weighted

difference between the estimator and the target parameter, can be constructed to quantify

the statistical uncertainty of the estimator. The main tool is the local asymptotic normality

(LAN) condition introduced by Le Cam (1960) (see also Geyer, 2013). We mention here,

among many of them, the monographs Ibragimov and Has’ Minskii (1981); van der Vaart

(2000); Geer et al. (2000).

In many real problems, the parametric model is usually an approximation to the data

distribution, so it is too restrictive to assume that the model is well-specified. To relax this

restriction, model mis-specification has been considered by Huber (1967); see also Wakefield

(2013); Dawid et al. (2016). Another limitation of classical asymptotic theory is its asymp-

totic regime where n → ∞ and the parameter dimension d is fixed. This is inapplicable in

the modern context where the data are of rather high dimension involving a huge number of

parameters.

The non-asymptotic viewpoint has been fruitful to address higher dimensional problems—
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the results are developed for fixed n so that it also captures the asymptotic regime where

d grows with n. Early works in this line of research focus on specific models such as Gaus-

sian models (Beran, 1996; Beran and Dumbgen, 1998; Laurent and Massart, 2000; Baraud,

2004), ridge regression (Hsu et al., 2012), logistic regression (Bach, 2010), and robust M-

estimation (Zhou et al., 2018; Chen and Zhou, 2020); see Bach (2021) for a survey. Spokoiny

(2012) addressed the non-asymptotic regime in full generality in a spirit similar to the classi-

cal LAN theory. The approach of Spokoiny (2012) relies on heavy empirical process machin-

ery and requires strong global assumptions on the deviation of the empirical risk process.

More recently, Ostrovskii and Bach (2021) focused on risk bounds, specializing their discus-

sion to linear models with (pseudo) self-concordant losses and obtained a more transparent

analysis under neater assumptions.

A critical tool arose from this line of research is the so-called Dikin ellipsoid, a geometric

object identified in the theory of convex optimization (Nesterov and Nemirovskii, 1994; Ben-

Tal and Nemirovski, 2001; Boyd and Vandenberghe, 2004; Tunçel and Nemirovski, 2010;

Bubeck and Lee, 2016; Bubeck and Eldan, 2019). The Dikin ellipsoid corresponds to the

distance measured by the Euclidean distance weighted by the Hessian matrix at the optimum.

This weighted Euclidean distance is adapted to the geometry near the target parameter and

thus leads to sharper bounds which do not depend on the minimum eigenvalue of the Hessian.

This important property has been used fruitfully in various problems of learning theory and

mathematical statistics (Zhang and Lin, 2015; Yang and Mohri, 2016; Faury et al., 2020).

The remainder of this chapter is organized as follows. In Section 2.2 we recall several

definitions preliminary to our results. In Section 2.3 we introduce the framework of minimum

KL divergence estimation and the Wald-type confidence set from classical asymptotic theory.

In Section 2.4 we establish non-asymptotic bounds to characterize this confidences set, whose

size is controlled by the effective dimension, in a non-asymptotic fashion. Our results hold

for a general class of models encompassing generalized linear models characterized by the

notion of generalized self-concordance. Along the way, we show how the effective dimension

can be estimated from data and establish its estimation accuracy. This is a novel result and
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Table 2.1: Examples of generalized linear models.

Model Data Parameter Conditional probability

Linear X ∈ Rd, Y ∈ R θ ∈ Rd ∝ exp (−(y − θ>x)2/2σ2)

Poisson X ∈ Rd, Y ∈ N θ ∈ Rd ∝ exp(yθ>x)/y!

Logistic X ∈ Rd, Y ∈ {−1, 1} θ ∈ Rd = (1 + exp(−yθ>x))−1

Softmax X ∈ Rp, Y ∈ [K] (wk)
K
k=1 ⊂ Rp ∝ exp(w>y x)

is of independent interest. We apply our results to compare Rao’s score test, the likelihood

ratio test, and the Wald test for goodness-of-fit testing in Section 2.5. Finally, in Section 2.6,

we illustrate the interest of our results on synthetic data.

2.2 Preliminaries

2.2.1 Generalized linear models

As an extension of linear models, generalized linear models (GLM) introduced by Nelder and

Wedderburn (1972) provide a class of models that are of broader applicability and maintain

desirable statistical properties of linear models; see, e.g., also Wakefield (2013, Chapter 6.3).

Given a pair of independent and response variables (X, Y ) ∈ X × Y , a GLM assumes that

the condition distribution Y | X follows an exponential family. To be more concrete,

pθ(y | x) =
exp [〈θ, t(x, y)〉+ h(x, y)]∫

exp [〈θ, t(x, ȳ)〉+ h(x, ȳ)]dµ(ȳ)
dµ(y), (2.1)

where µ is a dominating measure on Y , t : X × Y → Rd, and h : X × Y → R.

To show the broad applicability of GLMs, we give below several popular examples and

summarize them in Table 2.1.

(a) Linear regression. The conditional probability is pθ(y | x) ∝ exp (−(y − θ>x)2/2σ2)

for y ∈ R. This can be rewritten in the form of (2.1) with t(x, y) := xy/σ2 and
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h(x, y) := −y2/2σ2.

(b) Poisson regression. The conditional probability is pθ(y | x) ∝ exp(yθ>x)/y! for y ∈

N. This can be rewritten in the form of (2.1) with t(x, y) := xy and h(x, y) := − log y!.

(c) Logistic regression. The conditional probability is pθ(y | x) = (1 + exp(−yθ>x))−1

for y ∈ {−1, 1}. This can be rewritten in the form of (2.1) with t(x, y) := x1{y = 1}

and h(x, y) ≡ 0.

(d) Softmax regression. The conditional probability is pθ(y | x) ∝ exp(w>y x) for y ∈

[K] := {1, . . . , K} and {wk}Kk=1 ⊂ Rp. This can be rewritten in the form of (2.1) with

θ> := (w>1 , . . . , w
>
K) ∈ RKp, t(x, y)> := (0>p , . . . , 0

>
p , x

>, . . . , 0>p ) ∈ RKp whose elements

from (y − 1)τ + 1 to yτ are given by x> and 0 elsewhere, and h(x, y) ≡ 0.

2.2.2 Self-concordance

We will use the notion of self-concordance from convex optimization in our analysis. Self-

concordance originated from the analysis of the interior-point and Newton-type convex op-

timization methods (Nesterov and Nemirovskii, 1994). It is later modified by Bach (2010),

which we call the pseudo self-concordance, to derive finite-sample bounds for the general-

ization properties of the logistic regression. This is later extended by Ostrovskii and Bach

(2021) to a larger class of models. Recently, Sun and Tran-Dinh (2019) proposed the gener-

alized self-concordance which unifies these two notions. In a different line of research, pseudo

self-concordance has also been utilized to analyze logistic bandits (Faury et al., 2020; Abeille

et al., 2021; Jun et al., 2021; Mason et al., 2022).

For a function f : Rd → R, we define Df(x)[u] := d
dt
f(x + tu)|t=0, D2f(x)[u, v] :=

D(Df(x)[u])[v] for x, u, v ∈ Rd, and D3f(x)[u, v, w] similarly.

Definition 2.1 (Generalized self-concordance). Let X ⊂ Rd be open and f : X → R be a

closed convex function. For R > 0 and ν > 0, we say f is (R, ν)-generalized self-concordant

on X if ∣∣D3f(x)[u, u, v]
∣∣ ≤ R ‖v‖ν−2

∇2f(x) ‖v‖
3−ν
2 ‖u‖2

∇2f(x) , for all x ∈ X , u ∈ Rd,
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Figure 2.1: Strong convexity versus self-concordance. Black curve: objective function; col-

ored dot: reference point; colored dashed curve: quadratic approximation at the correspond-

ing reference point.

where ‖u‖2
∇2f(x) := u>∇2f(x)u.

Remark 2.1. When ν = 2 and ν = 3, this definition recovers the pseudo self-concordance

and the standard self-concordance, respectively. For our purposes, we focus on the case when

ν ∈ [2, 3].

In contrast to strong convexity which imposes a gross lower bound on the Hessian, gen-

eralized self-concordance specifies the rate at which the Hessian can vary, leading to a finer

control on the Hessian; see Figure 2.1 for a illustration. This property is characterized by

the following proposition. Let

dν(x, y) :=

R ‖y − x‖2 if ν = 2

(ν/2− 1)R ‖y − x‖3−ν
2 ‖y − x‖ν−2

x if ν > 2

and

ων(τ) :=

e
τ if ν = 2

(1− τ)−2/(ν−2) if ν > 2.
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Proposition 2.1 (Proposition 8 in Sun and Tran-Dinh (2019)). Assume that f is (R, ν)-

generalized self-concordant. For any x, y ∈ dom(f), we have

1

ων(dν(x, y))
∇2f(x) � ∇2f(y) � ων(dν(x, y))∇2f(x),

where it holds if dν(x, y) < 1 for the case ν > 2.

One useful property of generalized self-concordant functions is that the sum of generalized

self-concordant functions is also generalized self-concordant.

Proposition 2.2 (Proposition 1 in Sun and Tran-Dinh (2019)). Let {fi}ni=1 be a set of

generalized self-concordant functions on X with parameters {(Ri, ν)}ni=1. Then, for any

{ai} ⊂ R+, the function f :=
∑n

i=1 aifi is (R, ν)-generalized self-concordant on X with

R := maxi∈[n] a
1−ν/2
i Ri.

Another useful property is that the local distance between the minimizer of f and x

only depends on the geometry at x. It can be used to localize the maximum likelihood

estimator as shown in Proposition 2.10. The proof is inspired by Ostrovskii and Bach (2021,

Proposition B.4) and deferred to Appendix A.3. Let λmin := λmin(H(x)) and

Rν :=

λ
−1/2
min R if ν = 2

(ν/2− 1)λ
(ν−3)/2
min R if ν ∈ (2, 3].

Proposition 2.3. There exists Kν ∈ (0, 1/2] such that, whenever Rν ‖∇f(x)‖∇2f(x)−1 ≤ Kν,

the function f has a unique minimizer x̄ and

‖x̄− x‖∇2f(x) ≤ 4 ‖∇f(x)‖∇2f(x)−1 .

2.2.3 Sub-Gaussian random vectors

The exposition of this section largely follows Vershynin (2018). We start by recalling the

definition of sub-Gaussian random variables.
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Definition 2.2 (Sub-Gaussian random variables). Let X be a mean-zero random variable.

We say X is sub-Gaussian with parameter σ2, denoted by subG(σ2), if E[exp(X2/σ2)] ≤ 2.

The sub-Gaussian norm of X is defined by

‖X‖ψ2
:= inf

{
σ : E[exp(X2/σ2)] ≤ 2

}
.

It is well-known that the tail of a sub-Gaussian random variable is as least as light as a

Gaussian. Concretely, there exists an absolute constant c > 0 such that, for every t ≥ 0,

P(|X| ≥ t) ≤ 2 exp(−ct2/ ‖X‖2
ψ2

).

The notion of a sub-Gaussian random vector is simply requiring all the one-dimensional

projections to be sub-Gaussian.

Definition 2.3 (Sub-Gaussian random vectors). Let S ∈ Rd be a mean-zero random vector.

We say S is sub-Gaussian if 〈S, s〉 is sub-Gaussian for every s ∈ Rd. Moreover, we define

the sub-Gaussian norm of S as

‖S‖ψ2
:= sup
‖s‖2=1

‖〈S, s〉‖ψ2
.

We call a random vector S ∈ Rd isotropic if E[S] = 0 and E[SS>] = Id. The following

theorem provides a tail bound for quadratic forms of isotropic sub-Gaussian random vectors.

Theorem 2.4 (Theorem A.1 in Ostrovskii and Bach (2021)). Let S ∈ Rd be an isotropic

random vector with ‖S‖ψ2
≤ K, and let J ∈ Rd×d be positive semi-definite. Then,

P
(
‖S‖2

J − Tr(J) ≥ t
)
≤ exp

(
−cmin

{
t2

K2 ‖J‖2
2

,
t

K ‖J‖∞

})
, for all t ≥ 0,

where ‖S‖2
J := X>JX and c is an absolute constant. In other words, with probability at least

1− δ, we have

‖S‖2
J − Tr(J) . K2

[
‖J‖2

√
log (e/δ) + ‖J‖∞ log (1/δ)

]
,

where . omits an absolute constant.
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2.2.4 Matrix Bernstein condition

The exposition of this section largely follows Wainwright (2019). Before we introduce the

matrix Bernstein condition, let us review the Bernstein condition for random variables. The

Bernstein condition is a way to characterize the tail behavior of heavy tail random variables.

Definition 2.4 (Bernstein condition). Let X be a mean-zero random variable with variance

σ2. We say that X satisfies a Bernstein condition with parameter b > 0 if, for all j ≥ 2,

∣∣E[Xj]
∣∣ ≤ 1

2
j!bj−2σ2.

When X satisfies the Bernstein condition, its tail probability can be controlled by the

Bernstein inequality

P(|X| ≥ t) ≤ 2 exp(−t2/(2(σ2 + bt))), for all t ≥ 0.

The matrix Bernstein inequality is an extension of the Bernstein inequality to random

matrices. A key challenge in establishing such type of results is that matrices do not nec-

essarily commute. Thanks to recent developments in random matrix theory, we have the

following matrix Bernstein inequality. Let ‖J‖ :=
√
λmax(J>J) be the spectral norm for a

squared matrix. Note that, when J is symmetric, we have ‖J‖ = max{λmax(J), λmin(J)}.

When J is random, we define Var(J) := E[JJ>]− E[J ] E[J ]>.

Definition 2.5 (Matrix Bernstein condition). Let H ∈ Rd×d be a zero-mean symmetric

random matrix. We say H satisfies a matrix Bernstein condition with parameter b > 0 if,

for all j ≥ 3,

E[Hj] � 1

2
j!bj−2 Var(H).

Theorem 2.5 (Theorem 6.17 in Wainwright (2019)). Let {Hi}ni=1 be a sequence of indepen-

dent zero-mean symmetric random matrices that satisfy the matrix Bernstein condition with



23

parameter b > 0. Then, for all t > 0, it holds that

P

(∥∥∥∥∥ 1

n

n∑
i=1

Hi

∥∥∥∥∥ ≥ t

)
≤ 2 Rank

(
n∑
i=1

Var(Hi)

)
exp

{
− nt2

2(σ2 + bt)

}
,

where σ2 := 1
n
‖
∑n

i=1 Var(Hi)‖.

2.3 Minimum Kullback-Leibler Divergence Estimation

Let Z be a measurable space. Let Z ∈ Z be a random element following some unknown

distribution P . Consider a parametric family of distributions PΘ := {Pθ : θ ∈ Θ ⊂ Rd} which

may or may not contain P . For simplicity of the presentation, we assume that P and Pθ are

absolutely continuous w.r.t. some dominating measure with densities p and pθ, respectively.

We are interested in finding the parameter θ∗ so that the model Pθ? best approximates the

underlying distribution P .

For this purpose, one strategy is to minimize the KL divergence KL(P‖Pθ) over θ ∈ Θ.

Note that

KL(P‖Pθ) = E

[
log

p(Z)

pθ(Z)

]
= E[− log pθ(Z)] + E[log p(Z)].

Consequently, minimizing KL(P‖Pθ) over θ is equivalent to maximizing the expected log-

likelihood E[log pθ(Z)], which is known as the maximum likelihood method (Fisher, 1922).

More broadly, the minimum KL divergence method fits into the framework of statistical

learning—one selects a loss function ` : Θ × Z → R and obtains θ? by minimizing the

population risk L(θ) := E[`(θ;Z)]. To maintain full generality, we work with the statistical

learning framework while keeping in mind that we can recover the minimum KL divergence

method by choosing `(θ;Z) = − log pθ(Z). Throught out this chapter, we assume that

θ? = arg min
θ∈Θ

L(θ)

uniquely exists and satisfies θ? ∈ int(Θ), ∇θL(θ?) = 0, and ∇2
θL(θ?) � 0.
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Consistent loss function. We focus on loss functions that are consistent in the following

sense.

Assumption 2.1. When the model is well-specified, i.e., there exists θ0 ∈ Θ such that

P = Pθ0, it holds that θ? = θ0. We say such a loss function is consistent.

In the statistics literature, such loss functions are known as proper scoring rules (Dawid

et al., 2016). Due to the property of the KL divergence, the loss function `(θ;Z) = − log pθ(Z)

corresponding to the minimum KL divergence estimation (or maximum likelihood estima-

tion) is consistent. We give here another popular choice of consistent loss functions.

Example 2.2 (Score matching estimation). One important example of consistent loss func-

tions appears in score matching (Hyvärinen, 2005). Assume that Z = Rp. Let pθ(z) =

qθ(z)/Λ(θ) where Λ(θ) is an unknown normalizing constant. We can choose the loss

`(θ; z) := ∆z log qθ(z) +
1

2
‖∇z log qθ(z)‖2 + const.

Here ∆ :=
∑p

k=1 ∂
2/∂z2

k is the Laplace operator. Since (Hyvärinen, 2005, Theorem 1)

L(θ) =
1

2
E
[
‖∇zqθ(z)−∇zp(z)‖2] ,

it follows that when p = pθ0 we have θ0 ∈ arg minθ∈Θ L(θ). In fact, when qθ > 0 and there is

no θ such that pθ =a.s. pθ0, the true parameter θ0 is the unique minimizer of L (Hyvärinen,

2005, Theorem 2).

Empirical risk minimization. In many real applications, we do not have access to the

underlying distribution P . Instead, we have an i.i.d. sample {Zi}ni=1 from P . To learn the

parameter θ? from the data, we minimize the empirical risk to obtain the empirical risk

minimizer

θn ∈ arg min
θ∈Θ

1

n

n∑
i=1

`(θ;Zi).
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Figure 2.2: Dikin ellipsoid and Euclidean ball.

In Section 2.4, we will prove that, with high probability, the estimator θn exists and is

unique under a generalized self-concordance assumption. To evaluate the performance of

the estimator, we use the excess risk, i.e., L(θn)− L(θ?) which is the difference between the

population risk of θn and the best risk we can achieve. One of the main results in Section 2.4

is a non-asymptotic bound for the excess risk.

Remark 2.3. When L(θ) = E[− log pθ(Z)] is the expected negative log-likelihood, the excess

risk exactly equals the excess KL divergence defined in (1.3).

Confidence set. In statistical inference, it is of great interest to quantify the uncer-

tainty in the estimator θn. In classical asymptotic theory, this is achieved by construct-

ing an asymptotic confidence set. We review here the commonly used Wald confidence

set, assuming the model is well-specified. From classical asymptotic theory, we know that

n(θn − θ?)>Hn(θn)(θn − θ?) →d χ
2
d, where Hn(θ) := ∇2Ln(θ). Hence, one may consider a

confidence set {θ : n(θn − θ)>Hn(θn)(θn − θ) ≤ qχ2
d
(δ)} where qχ2

d
(δ) is the upper δ-quantile

of χ2
d. This confidence set enjoys two merits: 1) its shape is an ellipsoid (known as the Dikin

ellipsoid) which is adapted to the optimization landscape induced by the population risk; 2)

it is asymptotically valid, i.e., its coverage is exactly 1 − δ as n → ∞. However, due to its

asymptotic nature, it is unclear how large n should be in order for it to be accurate.
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Non-asymptotic theory usually focuses on developing finite-sample bounds for the excess

risk, i.e., P(L(θn) − L(θ?) ≤ Cn(δ)) ≥ 1 − δ. To obtain a confidence set, one may assume

that the population risk is twice continuously differentiable and λ-strongly convex. Conse-

quently, we have λ ‖θn − θ?‖2
2 /2 ≤ L(θn)−L(θ?) and thus we can consider the confidence set

Cfinite,n(δ) := {θ : ‖θn − θ‖2
2 ≤ 2Cn(δ)/λ}. Since it is originated from a finite-sample bound,

it is valid for fixed n, i.e., P(θ? ∈ Cfinite,n(δ)) ≥ 1 − δ; however, it is usually conservative,

meaning that the coverage is strictly larger than 1− δ. Another drawback is that its shape

is a Euclidean ball which remains the same no matter which loss function is chosen. We il-

lustrate this phenomenon in Figure 2.2. Note that a similar observation has also been made

in the bandit literature (Faury et al., 2020).

We are interested in developing non-asymptotic confidence sets. However, instead of using

excess risk bounds and strong convexity, we construct in Section 2.4 the Wald confidence set

in a non-asymptotic fashion, under a generalized self-concordance condition. This confidence

set has the same shape as its asymptotic counterparts while maintaining validity for fixed n,

which is achieved by characterizing the critical sample size enough to enter the asymptotic

regime.

Effective dimension. A quantity that plays a central role in our analysis is the effective

dimension. Define G(θ) := E[∇θ`(θ;Z)∇θ`(θ;Z)>] and H(θ) := E[∇2
θ`(θ;Z)].

Definition 2.6 (Effective dimension). Let Ω(θ) := H(θ)−1/2G(θ)H(θ)−1/2. We define the

effective dimension to be

d? := Tr(Ω(θ?)) = Tr
{
H(θ?)

−1/2G(θ?)H(θ?)
−1/2

}
. (2.2)

The effective dimension appears recently in non-asymptotic analyses of (penalized) M-

estimation (see, e.g., Spokoiny, 2017; Ostrovskii and Bach, 2021). It provides a charac-

terization of the complexity of the parameter space Θ that is adapted to both the data

distribution and the loss function. When the model is well-specified, it can be shown that

H(θ?) = G(θ?) and thus d? = d. When the model is mis-specified, it can be much smaller
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than d depending on the spectra of H(θ?) and G(θ?); see Section 2.4.3 for a thorough dis-

cussion. The effective dimension is also closely connected to classical asymptotic theory of

M-estimation under model misspecification. According to Huber (1967, Section 4), under

suitable regularity conditions,
√
n(θn−θ?) is asymptotically normal with mean 0 and covari-

ance H(θ?)
−1G(θ?)H(θ?)

−1. This implies that H(θ?)
1/2(θn − θ?) has asymptotic covariance

H(θ?)
−1/2G(θ?)H(θ?)

−1/2. Hence, the effective dimension is simply the trace of the limiting

covariance matrix of H(θ?)
1/2(θn − θ?).

Dikin ellipsoid. Our analysis is local to a Dikin ellipsoid of the parameter θ? defined as

Θr(θ?) :=
{
θ ∈ Θ : ‖θ − θ?‖H(θ?) < r

}
, (2.3)

where, unlike Euclidean balls, the radius is quantified by the Hessian-weighted Euclidean

distance ‖θ − θ?‖H(θ?) :=
√

(θ − θ?)>H(θ?)(θ − θ?). As illustrated in Figure 2.2, while the

Euclidean ball is agnostic to the risk function, the Dikin ellipsoid is adapted to the geometry

of the underlying optimization landscape around θ?. The Dikin ellipsoid was, up to our

knowledge, first put to use in machine learning by Abernethy et al. (2008) in the context

of sequential allocation of experiments and multi-armed bandits. The key observation is

that, within the Dikin ellipsoid, the variation of the Hessian can be easily controlled. More

recently, it is used to obtain finite-sample analysis of the maximum likelihood estimator

(Spokoiny, 2012; Ostrovskii and Bach, 2021). Our results and proof techniques also rely

on this observation. We show how to leverage this observation to obtain risk bounds and

confidence sets for a broad class of statistical models under a generalized self-concordance

assumption owing to the use of the matrix Bernstein inequality. For instance, we obtain

confidence bounds for parameter estimation using score matching and generalized linear

models under possible model misspecification as provided in Section 2.5.
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2.4 Non-Asymptotic Analysis

We provide non-asymptotic analysis for the empirical risk minimization. We give in Sec-

tion 2.4.1 the assumptions required by our analysis. In Section 2.4.2 we state our main

results which include an excess risk bound and a confidence bound for the estimator. We

sketch their main proof ideas in Section 2.4.4.

2.4.1 Assumptions

Notation. We denote by S(θ; z) := ∇θ`(θ; z) the gradient of the loss at z and H(θ; z) :=

∇2
θ`(θ; z) the Hessian at z. Their population versions are S(θ) := E[S(θ;Z)] and H(θ) :=

E[H(θ;Z)], respectively. We assume standard regularity assumptions so that S(θ) = ∇θL(θ)

and H(θ) = ∇2
θL(θ). Note that the two optimality conditions then read S(θ?) = 0 and

H(θ?) � 0. It follows that λ? := λmin(H(θ?)) > 0. Furthermore, we let G(θ; z) :=

S(θ; z)S(θ; z)> and G(θ) := E[S(θ;Z)S(θ;Z)>] be the autocorrelation matrices of the gradi-

ent. We define their empirical quantities as `n(θ) := 1
n

∑n
i=1 `(θ;Zi), Sn(θ) := 1

n

∑n
i=1 S(θ;Zi),

Hn(θ) := 1
n

∑n
i=1H(θ;Zi), and Gn(θ) := 1

n

∑n
i=1G(θ;Zi).

Our key assumption is that the loss function is globally generalized self-concordant. Recall

its definition in Definition 2.1.

Assumption 2.2 (Pseudo self-concordance). For any z ∈ Z, the loss `(·; z) is (R, ν) gen-

eralized self-concordant on Θ with R > 0 and ν ∈ [2, 3).

Remark 2.4. According to Proposition 2.2, both the empirical risk `n and the population

risk are generalized self-concordant on Θ with the same order ν.

We then make local distributional assumptions on the gradient and the Hessian. In order

to control the empirical gradient Sn(θ), we assume that the standardized gradient at θ? is a

sub-Gaussian random vector defined in Definition 2.3.

Assumption 2.3 (Sub-Gaussian gradient). There exists a constant K1 > 0 such that the

standardized gradient G(θ?)
−1/2[S(θ?;Z)− S(θ?)] is sub-Gaussian with parameter K1.
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Remark 2.5. When the loss function is of the form `(θ; z) = `(y, θ>x), we have S(θ;Z) =

`′(Y, θ>X)X. As a result, Assumption 2.3 holds true if (i) `′(Y, θ>? X) is sub-Gaussian and

X is bounded or (ii) `′(Y, θ>? X) is bounded and X is sub-Gaussian. For least squares with

`(y, θ>x) = 1
2
(y − θ>x)2, the derivative `′(Y, θ>? X) = θ>? X − Y is the negative residual.

Assumption 2.3 is guaranteed if the residual is sub-Gaussian and X is bounded. For lo-

gistic regression with `(y, θ>x) = − log σ(y · θ>x) where σ(u) = (1 + e−u)−1, the derivative

`′(Y, θ>? X) = [σ(Y · θ>? X)− 1]Y ∈ [−1, 1] is bounded. Thus, Assumption 2.3 is guaranteed if

X is sub-Gaussian.

In order to control the empirical Hessian Hn(θ), we assume that the standardized Hessian

satisfies the matrix Bernstein condition (Definition 2.5) in a neighborhood of θ?.

Assumption 2.4 (Matrix Bernstein of Hessian). There exist constants K2, r > 0 such that,

for any θ ∈ Θr(θ?), the standardized Hessian

H(θ)−1/2H(θ;Z)H(θ)−1/2 − Id

satisfies the matrix Bernstein condition with parameter K2. Moreover,

σ2
H :=

∥∥Var
(
H(θ?)

−1/2H(θ?;Z)H(θ?)
−1/2

)∥∥ <∞.
2.4.2 Main results

We now give the simplified versions of our main theorems. We use Cν to represent a constant

depending only on ν that may change from line to line; and CK1,ν similarly. We use . and

& to hide constants depending only on K1, K2, σH , ν. Recall that λ? := λmin(H(θ?)) and the

effective dimension d? from Definition 2.6. The precise versions and proofs can be found in

Appendix A.1.

Theorem 2.6. Under Assumptions 2.2, 2.3, and 2.4 with r = 0, whenever

n & log (2d/δ) + λ−1
?

[
R2d? log (e/δ)

]1/(3−ν)
, (2.4)
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the empirical risk minimizer θn uniquely exists and satisfies, with probability at least 1− δ,

‖θn − θ?‖2
H(θ?) .

d? + log (e/δ) ‖Ω(θ?)‖2

n
. (2.5)

Moreover, it holds that

L(θn)− L(θ?) .
d? + log (e/δ) ‖Ω(θ?)‖2

n
. (2.6)

Remark 2.6. When the loss `(θ; z) = − log pθ(z) is the negative log-likelihood, the bound in

(2.6) also holds for the excess KL divergence defined in (1.3).

Remark 2.7. Note that ‖Ω(θ?)‖2 is (usually much) smaller than d? = Tr(Ω(θ?)). In fact,

when the model is well-specified ‖Ω(θ?)‖2 = 1 and d? = d. Hence, the leading term in (2.5) is

d?/n, which matches the misspecifed Cramér-Rao lower bound (e.g., Fortunati et al., 2016,

Thm. 1) up to a constant factor.

Remark 2.8. The results in Theorem 2.6 can be extended to semi-parametric models as

demonstrated in Liu et al. (2022a).

With a local matrix Bernstein condition, we can replace H(θ?) by Hn(θn) in (2.5) and

obtain a non-asymptotic version of the Wald confidence set.

Theorem 2.7. Suppose Assumptions 2.2, 2.3, and 2.4 with r = Cνλ
(3−ν)/2
? /R hold true. Let

Cn(δ) :=

{
θ ∈ Θ : ‖θ − θn‖2

Hn(θn) ≤ CK1,ν
d? + log (e/δ) ‖Ω(θ?)‖2

n

}
. (2.7)

Then we have P(θ? ∈ Cn(δ)) ≥ 1− δ whenever n satisfies

n & log
2d

δ
+ d log n+ λ−1

?

[
R2d? log

e

δ

] 1
3−ν

. (2.8)

Theorem 2.7 suggests that the tail probability of ‖θn − θ?‖2
Hn(θn) is governed by a χ2

distribution with d? degrees of freedom, which coincides with the asymptotic result. In fact,

according to Huber (1967, Section 4), under suitable regularity assumptions, it holds that
√
nHn(θn)1/2(θn − θ?)→d W ∼ N (0,Ω(θ?)) which implies that

n(θn − θ?)>Hn(θn)(θn − θ?)→d W
>W.
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This induces an asymptotic confidence set with a similar form of (2.7) whose radius is given

by O(E[W>W ]/n) = O(d?/n). Our result characterizes the critical sample size enough to

enter the asymptotic regime.

When the model is misspecified, the effective dimension d? is unknown and thus we cannot

construct the confidence set in Theorem 2.7. Alternatively, we use the following empirical

counterpart

dn := Tr
(
Hn(θn)−1/2Gn(θn)Hn(θn)−1/2

)
.

The next result implies that we do not lose much if we replace d? by dn. This result is

novel and of independent interest since one also needs to estimate d? in order to construct

asymptotic confidence sets under model misspecification.

Assumption 2.3’. There exist constants K1, r > 0 such that, for any θ ∈ Θr(θ?), we have∥∥G(θ)−1/2S(θ;Z)
∥∥
ψ2
≤ K1.

Assumption 2.5. There exists r > 0 such that M := E[M(Z)] <∞ where

M(z) := sup
θ1 6=θ2∈Θr(θ?)

∥∥G(θ?)
−1/2[G(θ1; z)−G(θ2; z)]G(θ?)

−1/2
∥∥

2

‖θ1 − θ2‖H(θ?)

.

Remark 2.9. Assumption 2.5 is a Lipschitz-type condition for G(θ; z). This assumption was

previously used by (Mei et al., 2018, Assumption 3) to analyze non-convex risk landscapes.

Proposition 2.8. Let ν ∈ [2, 3). Under Asms. 2.2, 2.3’, 2.4 and 2.5 with r = Cνλ
(ν−3)/2
? /R,

it holds that

1

Cν
d? ≤ dn ≤ Cνd?,

with probability at least 1− δ, whenever n is large enough (see Appendix A.1 for the precise

condition).

Remark 2.10. The precise version of Proposition 2.8 in Appendix A.1 implies that dn is a

consistent estimator of d.
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Table 2.2: Comparison between the effective dimension d? and the parameter dimension

d in different regimes of eigendecays of G(θ?) and H(θ?) assuming they share the same

eigenvectors.

Eigendecay Dimension Dependency Ratio

G(θ?) H(θ?) d? d d?/d

Poly-Poly i−α i−β d(β−α+1)∨0 d d(β−α)∨(−1)

Poly-Exp i−α e−νi d1−αeνd d d−αeνd

Exp-Poly e−µi i−β 1 d d−1

Exp-Exp e−µi e−νi

d if µ = ν

1 if µ > ν

e(ν−µ)d if µ < ν

d

1 if µ = ν

d−1 if µ > ν

d−1e(ν−µ)d if µ < ν

With Proposition 2.8 at hand, we can obtain non-asymptotic confidence sets involving

dn, which can be computed from data.

Corollary 2.9. Suppose the same assumptions in Proposition 2.8 hold true. Let

C ′n(δ) :=

{
θ ∈ Θ : ‖θ − θ?‖2

Hn(θn) ≤ CK1,ν log (e/δ)
dn
n

}
.

Then we have P(θ? ∈ C ′n(δ)) ≥ 1− δ whenever n satisfies the same condition as in Proposi-

tion 2.8.

2.4.3 Discussion

Fisher information and model misspecification. When the model is well-specified,

the autocorrelation matrix G(θ) coincides with the well-known Fisher information I(θ) :=

EZ∼Pθ [S(θ;Z)S(θ;Z)>] at θ?. The Fisher information plays a central role in mathematical
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statistics and, in particular, M-estimation; see (Pennington and Worah, 2018; Kunstner

et al., 2019; Ash et al., 2021; Soen and Sun, 2021) for recent developments in this line of

research. It quantifies the amount of information a random variable carries about the model

parameter. Under a well-specified model, it also coincides with the Hessian matrix H(θ) at

the optimum which captures the local curvature of the population risk. When the model is

misspecified, the Fisher information deviates from the Hessian matrix. In the asymptotic

regime, this discrepancy is reflected in the limiting covariance of the weighted M-estimator

which admits a sandwich form H(θ?)
−1/2G(θ?)H(θ?)

−1/2; see, e.g., (Huber, 1967, Section 4).

Effective dimension. The counterpart of the sandwich covariance in the non-asymptotic

regime is the effective dimension d?; see, e.g., (Spokoiny, 2017; Ostrovskii and Bach, 2021).

Our bounds also enjoy the same merit—its dimension dependency is via the effective di-

mension. When the model is well-specified, the effective dimension reduces to d, recovering

the same rate of convergence O(d/n) as in classical linear regression; see, e.g., (Bach, 2021,

Proposition 3.5). When the model is misspecified, the effective dimension provides a char-

acterization of the problem complexity which is adapted to both the data distribution and

the loss function via the matrix H(θ?)
−1/2G(θ?)H(θ?)

−1/2. To gain a better understanding

on the effective dimension d?, we compare it with d in Table 2.2 under different regimes of

eigendecay, assuming that G(θ?) and H(θ?) share the same eigenvectors. It is clear that,

when the spectrum of G(θ?) decays faster than the one of H(θ?), the dimension dependency

can be better than O(d). In fact, it can be as good as O(1) when the spectrum of G(θ?) and

H(θ?) decay exponentially and polynomially, respectively.

Comparison to classical asymptotic theory. Classical asymptotic theory of M-estimation

is usually based on two assumptions: (a) the model is well-specified and (b) the sample size

n is much larger than the parameter dimension d. These assumptions prevent it from being

applicable to many real applications where the parametric family is only an approximation

to the unknown data distribution and the data is of high dimension involving a large amount
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of parameters. On the contrary, our results do not require a well-specified model and the di-

mension dependency is replaced by the effective dimension d? which captures the complexity

of the parameter space. Moreover, they are of non-asymptotic nature—they hold true for

any n as long as it exceeds some constant factor of d?. This allows the number of parameters

to potentially grow with the same size.

Comparison to recent non-asymptotic theory. Recently, Spokoiny (2012) achieved a

breakthrough on finite-sample analysis of parametric M-estimation. Although being fully

general, their results require strong global assumptions on the deviation of the empirical

risk process and are built upon advanced tools from empirical process theory. Restricting

ourselves to generalized self-concordant losses, we are able to provide a more transparent

analysis with neater assumptions only in a neighborhood of the optimum parameter θ?.

Moreover, our results maintain some generality, covering several interesting examples in

statistical machine learning as provided in Section 2.5.1.

Ostrovskii and Bach (2021) also considered self-concordant losses for M-estimation. How-

ever, their results are limited to generalized linear models whose loss is (pseudo) self-

concordant and admits the form `(θ;Z) := `(Y, θ>X). While sharing the same rate O(d?/n),

our results are more general than theirs in two aspects. First, the loss need not be of the

form `(Y, θ>X), encompassing the score matching loss in Example 2.13 below. Second, we

go beyond pseudo self-concordance via the notion of generalized self-concordance. Moreover,

they focus on bounding the excess risk rather than providing confidence sets, and they do

not study the estimation of d?.

Regularization. Our results can also be applied to regularized empirical risk minimization

by including the regularization term in the loss function. Let θλn and θλ? be the minimizers

of the regularized empirical and population risk, respectively. Let

dλ? := Tr
(
(H(θ?)

λ)−1/2G(θ?)
λ(H(θ?)

λ)−1/2
)
.
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where H(θ?)
λ and G(θ?)

λ are the regularized Hessian and the autocorrelation matrix of the

regularized gradient at θλ? , respectively. Then our results characterize the concentration of

θλn around θλ? : ∥∥θλn − θλ?∥∥2

H(θ?)λ
≤ O(dλ?/n).

This result coincides with Spokoiny (2017, Theorem 2.1). If the goal is to estimate the unreg-

ularized population risk minimizer θ?, then we need to pay an additional error
∥∥θλ? − θ?∥∥2

H(θ?)λ

which is referred to as the modeling bias (Spokoiny, 2017, Section 2.5). One can invoke a

so-called source condition to bound the modeling bias and a capacity condition to bound

dλ? . An optimal value of λ can be obtained by balancing between these two terms (see, e.g.,

Marteau-Ferey et al., 2019).

2.4.4 Proof sketches

We give the proof sketch of Theorems 2.6 and 2.7 here. We start with showing the existence

and uniqueness of θn. The next result shows that θn exists and is unique whenever the

quadratic form Sn(θ?)
>H−1

n (θ?)Sn(θ?) is small. Note that this quantity is also known as the

Rao’s score statistic for goodness-of-fit testing. This result also localizes the empirical risk

minimizer to a neighborhood of the optimal parameter θ?.

Proposition 2.10. Under Assumption 2.2, whenever

‖Sn(θ?)‖H−1
n (θ?) ≤ Cν [λmin(Hn(θ?))]

(3−ν)/2/(Rnν/2−1),

the estimator θn uniquely exists and satisfies

‖θn − θ?‖Hn(θ?) ≤ 4 ‖Sn(θ?)‖H−1
n (θ?) .

The main tool used in the proof of Proposition 2.10 is a strong convexity type result for

generalized self-concordant functions recalled in Appendix A.3. In order to apply Propo-

sition 2.10, we need to a bound for ‖Sn(θ?)‖H−1
n (θ?) which is summarized in the following

proposition.
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Proposition 2.11. Under Assumptions 2.3 and 2.4 with r = 0, it holds that, with probability

at least 1− δ,

‖Sn(θ?)‖2
H−1
n (θ?) .

d? + log (e/δ) ‖Ω(θ?)‖2

n

whenever n & log (2d/δ).

The proof of Proposition 2.11 consists of two steps: (a) lower bound Hn(θ?) by H(θ?)

up to a constant using the Bernstein inequality and (b) upper bound ‖Sn(θ?)‖H−1(θ?) us-

ing a concentration inequality for isotropic random vectors, where the tools are recalled in

Theorem 2.4 and Theorem 2.5. Combining them completes the proof.

Note that Proposition 2.11 implies that ‖Sn(θ?)‖H−1
n (θ?) can be arbitrarily small and thus

satisfies the requirement in Proposition 2.10 for sufficiently large n. This not only proves

the existence and uniqueness of the empirical risk minimizer θn but also provides an upper

bound for ‖θn − θ?‖Hn(θ?) through ‖Sn(θ?)‖H−1
n (θ?). Now using the result from step (a) above

gives the bound (2.5). To prove the excess risk bound (2.6), we use the Taylor expansion

L(θn)− L(θ?) = (θn − θ?)>S(θ?) +
1

2
‖θn − θ‖2

H(θ̄)

for some θ̄ ∈ Conv{θn, θ?}. The first order optimality condition implies that S(θ?) = 0 and

thus L(θn)−L(θ?) ≤ 1
2
‖θn − θ‖2

H(θ̄). Moreover, due to Proposition 2.1, we can upper bound

H(θ̄) by H(θ?) paying a factor of eR‖θ̄−θ?‖. Combining it with (2.5) leads to (2.6).

To prove Theorem 2.7, it remains to upper bound ‖θn − θ?‖Hn(θn) by ‖θn − θ?‖H(θ?) up

to a constant factor. This can be achieved by the following result.

Proposition 2.12. Under Assumptions 2.2 and 2.4 with r = Cνλ
(ν−3)/2
? /R, it holds that,

with probability at least 1− δ,

1

2Cν
H(θ?) � Hn(θ) � 3

2
CνH(θ?), for all θ ∈ Θr(θ?),

whenever whenever n & {log (2d/δ) + d(ν/2− 1) log n}.

Remark 2.11. Our proof techniques developed here can also be harnessed to analyze influ-

ence functions. This has been done in a follow-up work (Fisher et al., 2022).
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2.5 Applications

We give several examples whose loss function is generalized self-concordant so that our results

can be applied. We also provide non-asymptotic analysis for Rao’s score test, the likelihood

ratio test, and the Wald test in goodness-of-fit testing. All the proofs and derivations are

deferred to Appendix A.2.

2.5.1 Examples

Example 2.12 (Generalized linear models). Let Z := (X, Y ) be a pair of input and output,

where X ∈ X and Y ∈ Y. Let t : X × Y → Rd and µ be a measure on Y. Consider the

statistical model

pθ(y | x) ∼ exp(θ>t(x, y) + h(x, y))∫
exp(θ>t(x, ȳ) + h(x, ȳ))dµ(ȳ)

dµ(y)

with ‖t(X, Y )‖2 ≤a.s. M . It induces the loss function

`(θ; z) := −θ>t(x, y)− h(x, y) + log

∫
exp(θ>t(x, ȳ) + h(x, ȳ))dµ(ȳ),

which is generalized self-concordant for ν = 2 and R = 2M . Moreover, this model satisfies

Assumptions 2.3, 2.4, 2.5 and 2.3’.

Example 2.13 (Score matching with exponential families). Assume that Z = Rp. Consider

an exponential family on Rd with densities

log pθ(z) = θ>t(z) + h(z)− Λ(θ).

The non-normalized density qθ then reads log qθ(z) = θ>t(z) + h(z). As a result, the score

matching loss becomes

`(θ; z) =
1

2
θ>A(z)θ − b(z)>θ + c(z) + const,

where A(z) :=
∑p

k=1
∂t(z)
∂zk

(∂t(z)
∂zk

)>
is p.s.d, b(z) :=

∑p
k=1

[
∂2t(z)

∂z2
k

+ ∂h(z)
∂zk

∂t(z)
∂zk

]
, and c(z) :=∑p

k=1

[
∂2h(z)

∂z2
k

+
(∂h(z)
∂zk

)2
]
. Therefore, the score matching loss `(θ; z) is convex. Moreover,

since the third derivatives of `(·; z) is zero, the score matching loss is generalized self-

concordant for all ν ≥ 2 and R ≥ 0.
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2.5.2 Rao’s score test and its relatives

We discuss how our results can be applied to analyze three classical goodness-of-fit tests. In

this subsection, we will assume that the model is well-specified. Due to Assumption 2.1, we

will use θ? to denote the true parameter of P and reserve θ0 for the parameter under the null

hypothesis.

Given a subset Θ0 ⊂ Θ, a goodness-of-fit testing problem is to test the hypotheses

H0 : θ? ∈ Θ0 ↔ H1 : θ? /∈ Θ0.

We focus on a simple null hypothesis where Θ0 := {θ0} is a singleton. A statistical test

consists of a test statistic T := T (Z1, . . . , Zn) and a prescribed critical value t, and we

reject the null hypothesis if T > t. The performance is quantified by the type I error rate

P(T > t | H0) and statistical power P(T > t | H1). Classical goodness-of-fit tests include

Rao’s score test, the likelihood ratio test (LRT), and the Wald test. Their test statistics are

TRao := ‖Sn(θ0)‖2
H−1
n (θ0), TLR := 2[`n(θ0)− `n(θn)], and TWald := ‖θn − θ0‖2

Hn(θn), respectively.

Our approach can be applied to analyze the type I error rate of these tests as summarized

in the following proposition.

Proposition 2.13 (Type I error rate). Suppose that Assumptions 2.3 and 2.4 with r = 0

hold true. Under H0, we have, with probability at least 1− δ,

TRao . log (e/δ)
d

n

whenever n & log (2d/δ). Furthermore, if Assumptions 2.2 to 2.4 with r = Cνλ
(ν−3)/2
? /R

hold true, we have, with probability at least 1− δ,

TLR . log (e/δ)
d

n
and TWald . log (e/δ)

d

n

whenever n satisfies (2.8).

This result implies that the three test statistics all scale as O(d/n) under the null hypoth-

esis. Consequently, for a fixed significance level α ∈ (0, 1), we can choose the critical value
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t = tn(α) = O(d/n) so that their type I error rates are below α. With this choice, we can

then characterize the statistical powers of these tests under alternative hypotheses θ? 6= θ0

where θ? may depend on n. Recall Ω(θ) := G(θ)1/2H(θ)−1G(θ)1/2 and let h(τ) := min{τ 2, τ}.

Proposition 2.14 (Statistical power). Let θ? 6= θ0. The following statements are true for

sufficiently large n.

(a) Suppose that Assumptions 2.2 to 2.4 hold true with r = 0. When θ? − θ0 = O(n−1/2)

and τn := tn(α)/4− ‖S(θ0)‖2
H(θ0)−1 − Tr(Ω(θ0))/n > 0, we have

P(TRao > tn(α)) ≤ 2de−CK2,σH
n + e−CK1

h(nτn/‖Ω(θ0)‖2).

When θ∗ − θn = ω(n−1/2), we have

P(TRao > tn(α)) ≥ 1− 2de−CK2,σH
n − e−CK1

nτ̄n/‖Ω(θ0)‖2 ,

where τ̄n = Θ(‖θ? − θn‖2).

(b) Suppose that the assumptions in Theorem 2.7 hold true. When θ?− θ0 = O(n−1/2) and

τ ′n := tn(α)/384− ‖θ? − θ0‖2
H(θ?) /64− d/n > 0, we have

P(TLR > tn(α)) ≤ e−CK1
h(nτ ′n/‖Ω(θ?)‖2) + e−CK1,ν

(λ?n)3−ν/(R2d).

When θ∗ − θn = ω(n−1/2), we have

P(TLR > tn(α)) ≥ 1− e−CK1

nτ̄ ′n
‖Ω(θ?)‖2 − e−

CK1,ν
(λ?n)3−ν

R2d ,

where τ̄ ′n = Θ(‖θ? − θn‖2).

(c) The same statements replacing TLR by TWald.

According to Proposition 2.14, when θ? − θ0 = O(n−1/2), the powers of the three tests

are asymptotically upper bounded; when θ? − θ0 = ω(n−1/2), the power of Rao’s score test

tends to one at rate O(e−n‖θ?−θ0‖
2

) and the ones of the other two tests tend to one at rate

O(e−n‖θ?−θ0‖
2∧n3−ν

).
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2.5.3 Score-based change detection

Rao’s score test can also be used to detect changes in model parameters. To be more

concrete, we consider a well-specified model with the true parameter θ?. Under abnormal

circumstances, this true value may not remain the same for all observations. Hence, we allow

a potential parameter change in the model—the model parameter θ = θk may evolve over

time, i.e., Zk ∼ Pθk . A time point τ ∈ [n − 1] := {1, . . . , n − 1} is called a changepoint if

there exists ∆ 6= 0 such that θk = θ? for k ≤ τ and θk = θ? + ∆ for k > τ . We say that

there is a jump (or change) in the data sequence if such a changepoint exists. We aim to

determine if there exists a jump in this sequence, which we formalize as a hypothesis testing

problem.

(P0) Testing the presence of a jump

H0 : θk = θ? for all k = 1, . . . , n

H1 : after some time τ , θk jumps from θ? to θ? + ∆.

Likelihood score and score-based testing. Let 1{·} be the indicator function. Given

τ ∈ [n− 1] and 1 ≤ s ≤ t ≤ n, we define the partial log-likelihood under the alternative as

`s:t(θ,∆; τ) :=
t∑

k=s

`(θ + ∆1{k > τ};Zk).

We will write `s:t(θ,∆) for short if there is no confusion. Under the null, we denote by

`s:t(θ) := `s:t(θ, 0;n) the partial log-likelihood. The score function w.r.t. θ is defined as

Ss:t(θ) := ∇θ`s:t(θ), and the Hessian w.r.t. θ is denoted by Hs:t(θ) := ∇2
θ`s:t(θ).

Let us design a test for Problem (P0). We start with the case when the changepoint τ is

fixed. A standard choice is the generalized score statistic given by

Rn(τ) := S>τ+1:n(θn)Hn(θn; τ)−1Sτ+1:n(θn), (2.9)

where Hn(θn; τ) is the partial observed information w.r.t. ∆ (Wakefield, 2013, Chapter 2.9)
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Figure 2.3: Illustration of detecting changes in model parameters.

defined as

Hn(θn; τ) := Hτ+1:n(θn)−Hτ+1:n(θn)>H1:n(θn)−1Hτ+1:n(θn). (2.10)

To adapt to an unknown changepoint τ , a natural statistic is Rlin := maxτ∈[n−1]Rn(τ).

And, given a significance level α, the decision rule reads ψlin(α) := 1{Rlin > Hlin(α)}, where

Hlin(α) is a prescribed threshold. We call Rlin the linear statistic and ψlin the linear test.

Sparse alternatives. There are cases when the jump only happens in a small subset of

components of θ?. The linear test, which is built assuming the jump is large, may fail to

detect such small jumps. Therefore, we also consider sparse alternatives.

(P1) Testing the presence of a small jump:

H0 : θk = θ? for all k = 1, . . . , n

H1 : after some time τ , θk jumps from θ? to θ? + ∆,

where ∆ has at most M nonzero entries.

Here M is referred to as the maximum cardinality, which is set to be much smaller than d,

the dimension of θ. We denote by T the changed components, i.e., ∆T 6= 0 and ∆[d]\T = 0.
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Given a fixed T , we consider the truncated statistic

Rn(τ, T ) = S>τ+1:n(θn)T
[
Hn(θn; τ)T,T

]−1
Sτ+1:n(θn)T .

Let Tm be the collection of all subsets of size m of [d]. To adapt to unknown T , we use

Rn(τ,M ;α) := max
m∈[M ]

max
T∈Tm

Hm(α)−1Rn(τ, T ), (2.11)

where we use a different threshold Hm(α) for each m ∈ [M ]. Finally, since τ is also un-

known, we propose Rscan(α) := maxτ∈[n−1]Rn(τ,M ;α), with the decision rule ψscan(α) :=

1{Rscan(α) > 1}. We call Rscan(α) the scan statistic and ψscan the scan test.

To combine the respective strengths of these two tests, we consider the test

ψauto(α) := max{ψlin(αl), ψscan(αs)}, (2.12)

with αl + αs = α, and we refer to it as the auto-test. The choice of αl and αs should be

based on prior knowledge regarding how likely the jump is small. We illustrate how to detect

changes in model parameters with auto-test in Fig. 2.3. Statistical properties of the auto-test

and choices of the thresholds can be found in Liu et al. (2021b).

Differentiable programming. A näıve implementation of the auto-test statistic involves

materializing and inverting the Hessian matrix Hn(θn; τ) ∈ Rd×d with O(nd2 + d3) time and

O(d2) space. This approach does not scale to modern applications in deep learning with

dense Hessians and large n, d. Instead, we rely on iterative algorithms to approximately

minimize the quadratic

fn(u) :=
1

2
u>Hn(θn; τ)u+ u>Sτ+1:n(θn).

Indeed, the unique minimizer u? of fn satisfies 0 = ∇fn(u?) = Hn(θn; τ)u? + Sτ+1:n(θn)

and thus u? = Hn(θn; τ)−1Sτ+1:n(θn) as desired. Modern automatic differentiation software

supports the efficient computation of the Hessian-vector product u 7→ Hn(θn; τ)u without

materializing the Hessian. Several iterative algorithms that can achieve this are the conjugate

gradient method, stochastic gradient descent, the LiSSA algorithm (Agarwal et al., 2017),

and a low-rank approximation (Schioppa et al., 2022).
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Figure 2.4: Absolute error of the empirical effective dimension. (Left): least squares;

(Right): logistic regression.

2.6 Simulation Study

We run simulation study to illustrate our theoretical results. We start by demonstrating the

consistency of dn and the shape of the Wald confidence set defined in Corollary 2.9, i.e.,

Cn(δ) =

{
θ ∈ Θ : ‖θ − θn‖2

Hn(θn) ≤ CK1,ν
dn
n

log (e/δ)

}
. (2.13)

Note that the oracle Wald confidence set should be constructed from ‖θn − θ?‖H? and d?;

however, Corollary 2.9 suggests we can replace H? and d? by Hn(θn) and dn without losing

too much. To empirically verify our theoretical results, we calibrate the Wald confidence

set in Corollary 2.9 with the threshold from the oracle Wald confidence set and compare its

coverage with the one calibrated by the multiplier bootstrap—a popular resampling-based

approach for calibration. In all the experiments, we generate n i.i.d. pairs by sampling X and

then sampling Y | X. The code to reproduce the experiments is available online (confset,

2022).
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Figure 2.5: Confidence set in (2.13) under a logistic regression model. Left: Σ = (2, 0; 0, 1);

Middle: Σ = (2, 1; 1, 1); Right: Σ = (2,−1;−1, 1).

2.6.1 Numerical illustrations

Approximation of the effective dimension. By Proposition 2.8, we know that dn is a

consistent estimator of d?. We verify it with simulations. We consider two models. For least

squares, the data are generated from X ∼ N (0, Id) and Y |X ∼ N (1>X, 1). For logistic

regression, the data are generated from X ∼ N (0, Id) and Y | X ∼ p(Y | X) = σ(Y 1>X)

for Y ∈ {−1, 1} where σ(u) := (1+e−u)−1. We then estimate d? = d (since the model is well-

specified) by dn and quantify its estimation error by E |dn/d? − 1|. We vary n ∈ [2000, 10000]

and d ∈ {5, 10, 15, 20}, and give the plots in Figure 2.4. For a fixed d, the absolute error

decays to zero as the sample size increases as predicted by Proposition 2.8. For a fixed n, the

absolute error raises as the dimension becomes larger in logistic regression, but it remains

similar in least squares.

Shape of the Wald confidence set. Note that the Wald confidence set in (2.13) is an

ellipsoid whose shape is determined by the empirical Hessian Hn(θn) and thus can effectively

handles the local curvature of the empirical risk. We illustrate this feature on a logistic

regression example. We generate data from X ∼ N (0,Σ) with different Σ’s and Y | X ∼
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Table 2.3: Coverage of the oracle and bootstrap confidence sets.

Model Confidence set δ = 0.95 δ = 0.9 δ = 0.85 δ = 0.8 δ = 0.75

Well-specified LS
Oracle 0.957 0.908 0.868 0.792 0.770

Bootstrap 0.947 0.908 0.855 0.791 0.735

Misspecified LS
Oracle 0.972 0.916 0.882 0.841 0.764

Bootstrap 0.968 0.924 0.865 0.779 0.727

Well-specified LR
Oracle 0.961 0.915 0.868 0.809 0.776

Bootstrap 0.938 0.885 0.826 0.781 0.706

p(Y | X) = σ(Y θ>0 X) for Y ∈ {−1, 1} where θ0 = (−1, 2)>. We then construct the

confidence set with d? = d. As shown in Figure 2.5, the shape of the confidence set varies

with Σ and captures the curvature of the empirical risk at θ0.

2.6.2 Calibration

We investigate two calibration schemes. Inspired by the setting in Chen and Zhou (2020,

Sec. 5.1), we generate n = 100 i.i.d. observations from three models with true parameter

θ0 whose elements are equally spaced between [0, 1]—1) well-specified least squares with

X ∼ N (0, Id) and Y | X ∼ N (θ>0 X, 1), 2) misspecified least squares with X ∼ N (0, Id)

and Y | X ∼ θ>0 X + t3.5, and 3) well-specified logistic regression with X ∼ N (0, Id) and

Y | X ∼ p(Y | X) = σ(Y θ>0 X) for Y ∈ {−1, 1}. For each δ ∈ {0.95, 0.9, 0.85, 0.8, 0.75}, we

construct a confidence set using either oracle calibration or multiplier bootstrap. We repeat

the whole process for 1000 times and report the coverage of each confidence set in Table 2.3.
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Oracle calibration. According to Theorem 2.6, if we have access to H? and d?, we can

construct a confidence set of the form C?(δ) := {θ : ‖θn − θ‖H? ≤ d?/n+ cn(δ)}. Now Corol-

lary 2.9 suggests that H? and d? can be accurately estimated by Hn(θn) and dn, respectively,

leading the confidence set Cn(δ) := {θ : ‖θn − θ‖Hn(θn) ≤ dn/n + cn(δ)}. To calibrate Cn(δ),

we use the data generating distribution to estimate cn(δ) so that P(θ? ∈ C?(δ)) ≈ 1 − δ,

and then plug it into Cn(δ). We call it the oracle confidence set. As shown in Table 2.3,

its coverage is very close to the prescribed confidence level in the well-specified case and it

tends to be more conservative in the misspecified case.

Multiplier bootstrap. To further evaluate the oracle calibration, we compare its cov-

erage with the one calibrated by the multiplier bootstrap (e.g., Chen and Zhou, 2020)—a

popular resampling-based calibration approach that is widely used in practice. We construct

a bootstrap confidence set with B = 2000 bootstrap samples in the following steps. For

each b ∈ {1, . . . , B}, we 1) generate weights {W b
i }ni=1

i.i.d.∼ N (1, 1), 2) compute the bootstrap

estimator

θbn = arg min
θ

[
Lbn(θ) :=

1

n

n∑
i=1

W b
i `(θ;Zi)

]
,

3) compute the bootstrap statistic T bWald :=
∥∥θbn − θn∥∥2

Hb
n(θbn)

where Hb
n(θ) := ∇2

θL
b
n(θ). Fi-

nally, we compare ‖θn − θ0‖2
Hn(θn) with the upper δ quantile of {T bWald}Bb=1 to decide if the

confidence set covers the true parameter. It is clear that the bootstrap confidence set per-

forms similarly as the oracle confidence set in least squares, but it is more liberal in logistic

regression.
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Chapter 3

INFORMATION DIVERGENCES FOR
COMPARING DISTRIBUTIONS

3.1 Introduction

Deep generative models have recently taken a giant leap forward in their ability to model

complex, high-dimensional distributions. Recent advances are able to produce incredibly

detailed and realistic images (Kingma and Dhariwal, 2018; Razavi et al., 2019; Karras et al.,

2020), strikingly consistent and coherent text (Radford et al., 2019; Zellers et al., 2019;

Brown et al., 2020), and music of near-human quality (Dhariwal et al., 2020). The advances

in these models, particularly in the image domain, have been spurred by the development

of quantitative evaluation tools which enable a large-scale comparison of models, as well as

diagnosing of where and why a generative model fails (Salimans et al., 2016; Lopez-Paz and

Oquab, 2017; Heusel et al., 2017; Binkowski et al., 2018; Sajjadi et al., 2018; Karras et al.,

2019).

Divergence frontiers were recently proposed by Djolonga et al. (2020) to quantify the

trade-offs between quality and diversity in generative modeling with modern deep neural

networks (Sajjadi et al., 2018; Kynkäänniemi et al., 2019; Simon et al., 2019; Naeem et al.,

2020; Pillutla et al., 2021). In particular, a good generative model must not only produce

high-quality samples that are likely under the target distribution but also cover the target

distribution with diverse samples.

While the framework of divergence frontiers is mathematically elegant and empirically

successful (Kynkäänniemi et al., 2019; Pillutla et al., 2021), its statistical properties are not

well understood. The recipe taken by practitioners to estimate divergence frontiers from data

for large generative models usually involves two approximations: (a) joint quantization of the
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model distribution and the target distribution into discrete distributions with quantization

level k, and (b) statistical estimation of the divergence frontiers based on the empirical

estimators of the quantized distributions.

Djolonga et al. (2020) argue that the quantization in the first approximation often intro-

duces a positive bias, making the distributions appear closer than they really are; while a

small sample size can result in a pessimistic estimate of the divergence frontiers. The latter

effect is due to the missing mass of the samples, causing the two distributions to appear

farther than they really are because the samples do not cover some parts of the distributions

especially when the support size is large. The first consideration favors a large k, while the

second favors a small k.

We are interested in answering the following questions in this chapter: (a) Given two

distributions, how many samples are needed to achieve a desired estimation accuracy, or in

other words, what is the sample complexity of the estimation procedure? (b) Given a sample

size budget, how to choose the quantization level to balance the errors induced by the two

approximations? (c) Can we have estimators better than the näıve empirical estimator?

The remainder of this section is organized as follows. In Section 3.2 we recall the problem

of KL estimation and the missing mass problem. We review in Section 3.3 the definition of

divergence frontiers and propose a novel statistical summary. We establish in Section 3.4

non-asymptotic bounds for the estimation of divergence frontiers as well as frontier integrals

which characterizes the sample complexity. We discuss the choice of the quantization level

by balancing the errors induced by the two approximations. We show in Section 3.5 how

smoothed distribution estimators, such as the add-constant estimator and the Good-Turing

estimator, improve the estimation accuracy. We also generalize our results to a large class

of f -divergences satisfying some regularity assumptions. Finally, we demonstrate in Sec-

tion 3.6, through simulations on synthetic data as well as generative adversarial networks on

images and transformer-based language models on text, that our bounds exhibit the correct

dependence of the estimation error on the sample size n and the support size k.
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3.2 Preliminaries

3.2.1 Estimation of KL divergence in the large-alphabet regime

A closely related problem is the estimation of KL divergence between two discrete distri-

butions (Cai et al., 2006; Zhang and Grabchak, 2014; Bu et al., 2018; Han et al., 2020).

To be more concrete, let P and Q be two distributions supported on a common alpha-

bet [k] := {1, . . . , k} such that P � Q. We denote by D([k]) the collection of such

pairs of distributions. Given two independent i.i.d. samples {Xi}ni=1 and {Yj}mj=1, a nat-

ural way to estimate KL(P‖Q) is based on the empirical distributions Pn and Qm, where

Pn(a) = Na/n := |{i : Xi = a}| /n and Qm(a) = Ma/m := |{j : Yj = a}| /m for each a ∈ [k].

However, the minimax quadratic risk of this type of estimators over the set D([k]) is infinite

for all k ≥ 2 (Bu et al., 2018, Theorem 1). The main challenge is that when Q has a long

tail, its tail masses contribute significantly to the KL divergence but requires a large amount

of observations to estimate accurately. In other words, it is highly likely that some masses

are missing in the sample. This phenomenon is especially prominent in the large-alphabet

regime, i.e., k →∞.

This challenge can be addressed in two steps. First, we restrict the class of distributions

so that the mass ratio between P and Q is bounded, i.e., we consider

D([k], Ck) :=

{
(P,Q) : |P | = |Q| = k,

P (a)

Q(a)
≤ Ck,∀a ∈ [k]

}
.

Second, we smooth the empirical distribution Qn so that there is no missing mass. A popular

choice is the technique called add-constant smoothing (Krichevsky and Trofimov, 1981; Braess

and Sauer, 2004). It adds a small constant to the counts of the alphabet and normalize these

pseudo counts to form a distribution. Precisely, the add-b estimator of Q is defined as

Qm,b(a) := (Ma + b)/(m+ kb), for each a ∈ [k]. (3.1)

Now, the so-called augmented plug-in estimator KL(Pn‖Qm,b) can achieve the following

worst-case quadratic risk. In fact, as shown by Bu et al. (2018, Theorem 3), this risk is

minimax optimal up to a logarithmic factor log k.
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Theorem 3.1 (Theorem 2 in Bu et al. (2018)). For any k ≥ 1, n ≥ k and m ≥ 10kCk, we

have

sup
(P,Q)∈D([k],Ck)

E
[
(KL(Pn‖Qm,b)−KL(P‖Q))2] � (k

n
+
kCk
m

)2

+
log2Ck
n

+
Ck
m
.

3.2.2 The Good-Turing estimator and the missing mass

The missing mass problem is of interest in many applications involving sampling from a large

alphabet, e.g., species in a population and words in a language corpus. The study of this

problem can be dated back to Turing’s work on solving the Enigma cypher during World

War II, which later developed by Good (1953) in the context of estimating the population

frequency of species. To be more precise, consider an i.i.d. sample {Xi}ni=1 drawn from a

large alphabet [k]. Let Na be the number of times symbol a ∈ [k] appears in the sample and

ϕr :=
∑k

a=1 1{Na = r} be the number of distinct symbols which appear exactly r ∈ N times

in the sample. It is clear that

∞∑
r=1

rϕr = n.

Let Pr :=
∑k

a=1 P (a)1{Na = r} be the masses of the symbols which appear exactly r times in

the sample. Note that it is a random variable since it depends on the sample. In particular,

the quantity P0 is called the missing mass. The basic Good-Turing estimator estimates Pr

by (r + 1)ϕr+1/n.

The Good-Turing estimator induces an estimator of the distribution P . Take a symbol

a ∈ [k]. By definition, it appears in the sample exactly Na times. Intuitively, it makes sense

to assume that the symbols appearing exactly Na (there are ϕNa ≥ 1 such symbols) times in

the sample share the same mass, i.e., P (a) ≈ PNa/ϕNa . Hence, the Good-Turing distribution

estimator is defined as

Pn,GT(a) =
(Na + 1)ϕNa+1

nϕNa
, for each a ∈ [k].

This estimator has been widely studied in language modeling (Katz, 1987; Church and Gale,

1991; Chen and Goodman, 1999) and in theory (McAllester and Schapire, 2000; Orlitsky
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et al., 2003; Orlitsky and Suresh, 2015). An inspiring result coming from this line of work

is that the missing mass itself concentrates around its expectation (McAllester and Ortiz,

2003) which decays as O(k/n) (Berend and Kontorovich, 2012).

3.3 Divergence Frontiers and Frontier Integrals

We introduce the notion of divergence frontiers for comparing two distributions in Sec-

tion 3.3.1. We also propose a statistical summary of the divergence frontiers in Section 3.3.2.

3.3.1 Evaluating generative models via divergence frontiers

Let X be a measurable space in which the data live. Consider a generative model Q ∈M1(X )

which attempts to model the target distribution P ∈M1(X ). It has been argued in Sajjadi

et al. (2018) and Kynkäänniemi et al. (2019) that one must consider two types of costs to

evaluate Q with respect to P : (a) a type I cost (loss in precision), which is the mass of Q

that has low or zero probability mass under P , and (b) a type II cost (loss in recall), which

is the mass of P that Q does not adequately capture.

Suppose P and Q are uniform distributions on their supports, and R is uniform on

the union of their supports. Then, the type I cost is the mass of Supp(Q) \ Supp(P ), or

equivalently, the mass of Supp(R) \ Supp(P ). We measure it using the surrogate KL(Q‖R),

which is large if there exists x ∈ X such that Q(x) is large but R(x) is small. Likewise,

the type II cost is measured by KL(P‖R). When P and Q are not constrained to be

uniform, it is not clear what the measure R should be. Djolonga et al. (2020) propose

to vary R over all possible probability measures and consider the Pareto frontier of the

multi-objective optimization minR
(

KL(P‖R),KL(Q‖R)
)
. This leads to a curve called the

divergence frontier, and is reminiscent of the precision-recall curve in binary classification.

See Cortes and Mohri (2005); Clémençon and Vayatis (2009); Flach (2012) and references

therein on trade-off curves in machine learning.
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Figure 3.1: Left: Comparing two distributions P and Q. Here, Rλ = λP + (1− λ)Q is the

interpolation between P and Q for λ ∈ (0, 1) and R′ denotes some arbitrary distribution.

Right: The corresponding divergence frontier (black curve) between P and Q. The interpo-

lations Rλ for λ ∈ (0, 1) make up the frontier, while all other distributions such as R′ must

lie above the frontier.

Formally, the divergence frontier of probability measures P and Q is defined as

F(P,Q) :=
{(

KL(P‖R),KL(Q‖R)
)

: @R′ ∈M1(X ) such that

KL(P‖R′) < KL(P‖R) and KL(Q‖R′) < KL(Q‖R)
}
.

(3.2)

It admits the closed-form expression (Djolonga et al., 2020, Propositions 1 and 2)

F(P,Q) =
{(

KL(P‖Rλ),KL(Q‖Rλ)
)

: λ ∈ (0, 1)
}
,

where

Rλ := arg min
R∈M1(X )

{
λKL(P‖R) + (1− λ) KL(Q‖R)

}
= λP + (1− λ)Q. (3.3)

Intuitively, each point on the divergence frontier compares the two individual distributions

against a linear mixture of the two. By sweeping through mixtures, the curve interpolates

between measurements of the two types of costs. See Figure 3.1 for an illustration.

In practical applications, P is usually a complex, high-dimensional distribution which

could either be discrete, as in natural language processing, or continuous, as in computer
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vision. Likewise, Q is often a deep generative model such as GPT-3 (Brown et al., 2020) for

text and variants of GANs (Goodfellow et al., 2014) for images. It is infeasible to compute

the divergence frontier F(P,Q) directly because we only have samples from P and the

integrals or sums over Q are intractable. Therefore, the recipe used by practitioners (Sajjadi

et al., 2018; Djolonga et al., 2020; Pillutla et al., 2021) has been to (a) jointly quantize P

and Q over a partition S = {St}kt=1 of X to obtain discrete distributions PS = (P (St))
k
t=1

and QS = (Q(St))
k
t=1, (b) estimate the quantized distributions from samples to get P̂S

and Q̂S , and (c) compute F(P̂S , Q̂S). In practice, the best quantization schemes are data-

dependent transformations such as k-means clustering or lattice-type quantization of dense

representations of images or text (Sablayrolles et al., 2019).

3.3.2 Statistical summary of divergence frontiers

In the minimax theory of hypothesis testing, where the goal is also to study two types of

errors (yet different from the ones considered here), it is common to theoretically analyze

their linear combination; see, e.g., Ingster and Suslina (2003, Sec. 1.2) and Cai et al. (2011,

Thm. 7). In the same spirit, we consider a linear combination of the two costs, quantified

by the KL divergences,

Lλ(P,Q) := λKL(P‖Rλ) + (1− λ) KL(Q‖Rλ). (3.4)

Recall from (3.3) that Rλ is exactly the minimizer of the linearized objective λKL(P‖R) +

(1− λ) KL(Q‖R). This linear combination Lλ is also known as the λ-skew Jensen-Shannon

Divergence (Nielsen and Bhatia, 2013).

The linearized cost Lλ depends on the choice of the interpolation parameter λ. To remove

this dependency, we define a novel statistical summary, called the frontier integral, as

FI(P,Q) := 2

∫ 1

0

Lλ(P,Q) dλ . (3.5)

We can interpret the frontier integral as the average linearized cost over λ ∈ (0, 1). As shown

in Section 3.6, it can also be used to evaluate generative models which is more convenient

than the divergence frontier when comparing a large number of models.
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The frontier integral is always bounded in [0, 1] thanks to the factor 2 in front of the

integral. Moreover, it is a symmetric f -divergence. We summarize these properties below.

Property 3.1. Let P and Q be dominated by some probability measure µ with densities p

and q, respectively. Then,

FI(P,Q) =

∫
X
1{p(x) 6= q(x)}

(
p(x) + q(x)

2
− p(x)q(x)

p(x)− q(x)
log

p(x)

q(x)

)
dµ(x) , (3.6)

with the convention 0 log 0 = 0. Moreover, FI is an f -divergence generated by the convex

function

fFI(t) =
t+ 1

2
− t

t− 1
log t ,

with the understanding that fFI(1) = limt→1 fFI(t) = 0.

Proof. Let λ̄ := 1 − λ. By Tonelli’s theorem, we have FI(P,Q) = 2
∫
X h(p(x), q(x))dµ(x),

where

h(p, q) =

∫ 1

0

(
λp log p+ λ̄q log q − (λp+ λ̄q) log(λp+ λ̄q)

)
dλ.

When p = q, the integrand is 0 and thus h(p, q) = 0. If q = 0, then the second term inside

the integral is 0, while the rest of the terms is∫ 1

0

λp log
1

λ
dλ =

p

4
.

Finally, when p 6= q are both non-zero, we evaluate the integral to get

h(p, q) =
p

2
log p+

q

2
log q − 2p2 log p− p2 − 2q2 log q + q2

4(p− q)
,

Rearranging the expression completes the proof.

Property 3.2. The frontier integral satisfies the following properties:

(a) FI(P,Q) = FI(Q,P ).

(b) 0 ≤ FI(P,Q) ≤ 1 with FI(P,Q) = 0 if and only if P = Q.
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Proof. The first part follows from the closed form expression in Property 3.1. For the second

part, we get the upper bound as

FI(P,Q) ≤
∫
X

p(x) + q(x)

2
dµ(x) = 1 .

We have FI(P,Q) ≥ 0 with FI(P, P ) = 0 since FI is an f -divergence. Further, since fFI is

strictly convex at 1, we get that FI(P,Q) = 0 only if P = Q.

Although the frontier integral in (3.5) involves an integral w.r.t. λ, thanks to Property 3.1,

when we have access to P and Q, computing FI(P,Q) is computationally no worse than

computing
(

KL(P‖Rλ),KL(Q‖Rλ)
)

which is a point on the divergence frontier. In practice,

when we have samples from P and Q, it can be estimated using the same recipe as the

divergence frontier, i.e., FI(P̂S , Q̂S).

3.4 Non-Asymptotic Analysis

This section is devoted to deriving the rate of convergence for the overall error in estimating

the frontier integral. We decompose the overall estimation error into two components: the

statistical error of estimating the quantized distribution and the quantization error. We

control the statistical error in Section 3.4.1. The strategy is to use a different treatment for

the masses that appear in the sample and the ones that never appear (i.e., the missing mass).

We obtain a high probability bound as well as a bound for its expectation, leading to a rate

of convergence in both the small-alphabet and large-alphabet regimes. These results carry

over to the divergence frontiers as well. The quantization error is discussed in Section 3.4.2.

We construct a distribution-dependent quantization scheme whose error is at most O(k−1)

where k is the quantization level. In Section 3.4.3 we combine these two bounds to obtain

the sample complexity of estimating frontier integrals, shedding light on the optimal choice

of the quantization level.

For P,Q ∈ M1(X ), let {Xi}ni=1 and {Yi}ni=1 be two i.i.d. samples from P and Q, respec-

tively, and denote by Pn and Qn the respective empirical measures. Note that our results

hold for two samples with different sizes, and the same size is assumed here for simplicity
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of the presentation. We use . and & to represent ≤ and ≥ omitting an absolute constant

factor. The precise statements and proofs can be found in Appendix B.

3.4.1 Statistical error

We focus on in this section distributions P and Q supported on a countable alphabet. Here

P and Q should be understood as the quantized distributions in the estimation pipeline of

frontier integrals. We are interested in deriving a non-asymptotic bound for the absolute

error of the empirical estimator, i.e.,
∣∣FI(Pn, Qn)−FI(P,Q)

∣∣. A natural strategy is to exploit

the smoothness properties of FI, giving a näıve upper bound O(L
√
k/n) where L = log 1/p∗

with p∗ = mina∈Supp(P ) P (a) reflecting the smoothness of FI. The dependency on p∗ requires

P to have a finite support and a short tail. However, in many real-world applications,

the distributions can either be supported on a countable set or have long tails (Chen and

Goodman, 1999; Wang et al., 2017). By considering the missing mass in the sample, we are

able to obtain a high probability bound that is independent of p∗. Define

αn(P ) :=
∑
a∈X

√
P (a)

n
and βn(P ) := E

 ∑
a:Pn(a)=0

P (a) max

{
1, log

1

P (a)

} .
Theorem 3.2. Let k = max{|Supp(P )| , |Supp(Q)|} ∈ N∪ {∞}. For any δ ∈ (0, 1), it holds

that, with probability at least 1− δ,

|FI(Pn, Qn)− FI(P,Q)| .
(√

log (1/δ)

n
+ αn(P ) + αn(Q)

)
log n+ βn(P ) + βn(Q) , (3.7)

Furthermore, if the support size k < ∞, then αn(P ) ≤
√
k/n and βn(P ) ≤ k log n/n. In

particular, with probability at least 1− δ,

|FI(Pn, Qn)− FI(P,Q)| .

[√
log (1/δ)

n
+

√
k

n
+
k

n

]
log n . (3.8)

There are several merits to Theorem 3.2. First, (3.7) holds for any distributions with a

countable support. Second, it does not depend on p∗ and is adapted to the tail behavior of

P and Q. For instance, if P is defined as P (a) ∝ a−2 for a ∈ [k], then αn(P ) ∝ (log k)/
√
n,
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which is much better than
√
k/n in (3.8) in terms of the dependency on k. This phenomenon

is also demonstrated empirically in Section 3.6. Third, it captures a parametric rate of

convergence, i.e., O(n−1/2), up to a logarithmic factor. In fact, as discussed in Section 3.2.1,

this rate is not improvable in a related problem of estimating KL(P‖Q), even with the

assumption that P/Q is bounded. The bound in (3.8) is a distribution-free bound, assuming

k is finite. Note that it also gives an upper bound on the sample complexity by setting the

right hand side of (3.8) to be ε and solving for n, this is roughly O((
√

log 1/δ +
√
k)2/ε2).

The proof of Theorem 3.2 relies on two new results: (a) a concentration bound around

E[FI(Pn, Qn)], which can be obtained by McDiarmid’s inequality, and (b) an upper bound

for the expected statistical error, i.e.,

E |FI(Pn, Qn)− FI(P,Q)| . [αn(P ) + αn(Q)] log n+ βn(P ) + βn(Q)

. (
√
k/n+ k/n) log n, if k <∞ .

(3.9)

The concentration bound gives the term
√
n−1 log (1/δ). The expected statistical error bound

is achieved by splitting the masses of P and Q into two parts: one that appears in the sample

and one that never appears. The first part can be controlled by a Lipschitz-like property of

the frontier integral, leading to the term αn(P )+αn(Q), and the second part, βn(P )+βn(Q),

falls into the missing mass framework. In addition, the rate k/n for βn shown here matches

the rate for the missing mass.

While Theorem 3.2 establishes the consistency of the frontier integral, it is also of great

interest to know whether the divergence frontier itself can be consistently estimated. In fact,

similar bounds hold for the worst-case error of F(Pn, Qn).

Corollary 3.3. Under the same assumptions as in Theorem 3.2, for any λ0 ∈ (0, 1), the

bounds in (3.7) and (3.8) hold for

sup
λ∈[λ0,1−λ0]

∥∥(KL(Pn‖Rλ,n),KL(Qn‖Rλ,n)
)
−
(

KL(P‖Rλ),KL(Q‖Rλ)
)∥∥

1
,

where Rλ,n := λPn + (1 − λ)Qn, with an additional factor of 1/λ0. In particular, if λ0 is

chosen as λn = o(1) and λn = ω(
√
k/n log n), then the expected worst-case error above

converges to zero at rate O(λ−1
n

√
k/n log n).
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The truncation in Corollary 3.3 is necessary without imposing additional assumptions,

since KL(P‖Rλ) is close to KL(P‖Q) for small λ and it is known that the minimax quadratic

risk of estimating the KL divergence over all distributions with k bins is always infinity (Bu

et al., 2018, Theorem 3).

3.4.2 Quantization error

Recall from Section 3.3 that computing the divergence frontiers in practice usually involves

a quantization step. Since every quantization will inherently introduce a positive bias in

the estimation procedure, it is desirable to control the error, which we call the quantization

error, induced by this step. We show that there exists a quantization scheme with error

proportional to the inverse of its level.

We say S is a partition of X if {Si}ki=1 are mutually disjoint and ∪ki=1Si = X . The

quantization of P associated with S is defined as a distribution PS on k bins satisfying

PS(i) = P (Si) for each i ∈ [k].

The quantization error of S is the difference |FI(PS , QS)− FI(P,Q)|. It can be shown that

there exists a distribution-dependent partition whose quantization error is no larger than the

inverse of its level.

Proposition 3.4. For any k ≥ 1, we have

sup
P,Q

inf
|S|≤2k

|FI(P,Q)− FI(PS , QS)| ≤ k−1.

Moreover, there exists S? := S?(P,Q) with |S?| = k such that

|FI(P,Q)− FI(PS? , QS?)| . k−1. (3.10)

We call S? the oracle quantization.

The key idea behind the construction of this oracle quantization is to partition X accord-

ing to the value of the generator fFI in Property 3.1 at the likelihood ratio dP (x)/dQ(x)



59

x

f
(p(x)
q(x)

)

T0

T1

T2

T3

Figure 3.2: Oracle quantization into 3 bins: blue, yellow and red. Bin i is given by the set

{x : f(dP (x)/dQ(x)) ∈ [Ti−1, Ti)}.

which is visualized in Figure 3.2. To be more concrete, we focus here the set X1 := {x ∈ X :

dP (x)/dQ(x) ≤ 1}. Since FI is symmetric, its complement can be handled similarly. Recall

from Property 3.1 that fFI ∈ [0, fFI(0)] on [0, 1]. Thus, we can select k − 1 cutoff points

0 < T1 < · · · < Tk−1 < fFI(0) and partition X1 into

S?,s :=

{
x ∈ X : Ts−1 ≤ fFI

(
dP (x)

dQ(x)

)
< Ts

}
, for s ∈ [k],

where T0 := 0 and Tk+1 := f(0). For instance, one reasonable choice is to set Ts = sfFI(0)/k.

On each S?,s, the frontier integral FI(P,Q) can be controlled by

k∑
s=1

Ts−1Q(S?,s) ≤
∫
S?,s

fFI

(
dP (x)

dQ(x)

)
dQ(x) ≤

k∑
s=1

TsQ(S?,s).

On the other hand, since fFI is non-increasing on (0, 1], the term in FI(PS? , QS?) associated

with S?,s can be controlled by

Ts−1Q(S?,s) ≤ fFI

(
P (S?,s)
Q(S?,s)

)
Q(S?,s) ≤ TsQ(S?,s).

Hence, the quantization error |FI(PS? , QS?)− FI(P,Q)| is small as long as Ts−Ts−1 is small.

It scales as O(1/k) for the choice of Ts = sfFI(0)/k.
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3.4.3 Sample complexity for estimating frontier integrals

Combining the bound in Theorem 3.2 with the bound in Proposition 3.4 leads to the following

bound for the total estimation error.

Theorem 3.5. Assume that Sk is a partition of X such that |Sk| = k ≥ 2. Then, with

probability at least 1− δ, the total error |FI(PSk,n, QSk,n)− FI(P,Q)| is upper bounded by (up

to a constant factor)(√
log (1/δ)

n
+ αn(P ) + αn(Q)

)
log n+ βn(P ) + βn(Q) + |FI(P,Q)− FI(PSk , QSk)| .

(3.11)

Moreover, if the quantization error satisfies the bound in (3.10) and k < ∞, we have, with

probability at least 1− δ,

|FI(PSk,n, QSk,n)− FI(P,Q)| .

[√
log (1/δ)

n
+

√
k

n
+
k

n

]
log n+

1

k
. (3.12)

Based on the bound in (3.12), a good choice of k is Θ(n1/3) which balances between the

two types of errors. We illustrate in Section 3.6 that this choice works well in practice. This

balancing is enabled by the existence of a good quantizer with a distribution-free bound in

(3.10). In practice, this suggests a data-dependent quantizer using nonparametric density

estimators. However, directions such as kernel density estimation (Hulle, 1999; Meinicke

and Ritter, 2002; Hegde et al., 2004) and nearest-neighbor methods (Alamgir et al., 2014)

have not met empirical success, as they suffer from the curse of dimensionality common in

nonparametric estimation. In particular, Wang et al. (2005); Silva and Narayanan (2007,

2010) propose quantized divergence estimators but only prove asymptotic consistency, and

little progress has been made since then. On the other hand, modern data-dependent quan-

tization techniques based on deep neural networks can successfully estimate properties of

the density from high dimensional data (Sablayrolles et al., 2019; Hämäläinen et al., 2020).

Theoretical results for those techniques could complement our analysis. We leverage these

powerful methods to scale our approach on real data in Section 3.6.
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Figure 3.3: The empirical estimator with missing mass and the Krichevsky-Trofimov esti-

mator.

3.5 Towards Better Estimators and General f-Divergences

In Section 3.5.1 we investigate the estimation error of the frontier integral estimated by

smoothed distribution estimators. We show that the upper bound for the add-constant

estimator improves the one for the empirical estimator, especially in the large-alphabet

regime. In Section 3.5.2 we extend our results to general f -divergences satisfying some

regularity conditions. The proofs are deferred to Appendix B.

3.5.1 Smoothed distribution estimators

When the support size k is large, the empirical estimator usually performs poorly due to the

missing mass phenomenon. To overcome this challenge, practitioners often use more sophis-

ticated distribution estimators such as add-constant estimators (Krichevsky and Trofimov,

1981; Braess and Sauer, 2004) and the Good-Turing estimator (Good, 1953; Orlitsky and

Suresh, 2015) as we have seen in Section 3.2. We focus on the add-constant estimators de-

fined in (3.1) and state here its estimation error when it is applied to estimate the frontier

integral from data. We investigate and compare the performance of various distribution

estimators in Section 3.6.

For notational simplicity, we assume that P and Q are supported on a common finite

alphabet with size k <∞. Note that this is true for the quantized distributions PS and QS .
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Thanks to the smoothing, there is no mass missing in the add-constant estimator. This

effect is illustrated for the Krichevsky-Trofimov (add-1/2) estimator in Figure 3.3. As a

result, we can directly utilize the smoothness properties of the frontier integral to get the

following bound. Note that both PS and QS are estimated by the add-constant estimators.

This is different from the augmented plug-in estimator for the KL divergence in Section 3.2.1

since KL is asymmetric but the frontier integral is symmetric.

Theorem 3.6. Assume that Sk is a partition of X such that |Sk| = k ∈ [2,∞). Then, with

probability at least 1− δ, the total error |FI(PSk,n,b, QSk,n,b)− FI(P,Q)| is upper bounded by

(up to a constant factor)(
n(
√

log (1/δ)/n+ αn(P ) + αn(Q))

n+ bk
+ γn,k(P ) + γn,k(Q)

)
log (n/b+ k)

+ |FI(P,Q)− FI(PSk , QSk)| ,

(3.13)

where γn,k(P ) = (n+bk)−1bk
∑

a∈X |P (a)− 1/k|. Moreover, if the quantization error satisfies

the bound in (3.10), it can be further upper bounded by

√
nk + bk

n+ bk
log (n/b+ k) +

1

k
. (3.14)

Let us compare the bounds in Theorem 3.6 with the ones in Theorem 3.5. For the

distribution-dependent bound, the term αn(P ) in (3.11) is improved by a factor n/(n+ bk)

in (3.13). The missing mass term βn(P ) is replaced by γn,k(P ) which is the total variation dis-

tance between P and the uniform distribution on [k] with a factor bk/(n+bk). The improve-

ments in both two terms are most significant when k/n is large. As for the distribution-free

bound, when k/n is small, the bound in (3.14) scales the same as the one in (3.12); when k/n

is large (i.e., bounded away from 0 or diverging), it scales as O(log n+ log (k/n) +k−1) while

the one in (3.12) scales as O(k log n/n+ k−1). Given the improvement, it would be an inter-

esting venue for future work to consider adaptive estimators in the spirit of Goldenshluger

and Lepski (2009).
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3.5.2 Generalization to f -divergences

Estimation of the χ2 divergence is useful for variational inference (Dieng et al., 2017) and

GAN training (Mao et al., 2017; Tao et al., 2018). More generally, estimating f -divergences

from samples is a fundamental problem in machine learning and statistics (Nguyen et al.,

2010; Im et al., 2018; Chen et al., 2018; Rubenstein et al., 2019). The same two-step procedure

used to estimate frontier integrals can be applied to estimate general f -divergences as well.

Our previous results can be extend to general f -divergences as long as they satisfy some

regularity conditions.

We start by recalling f -divergences defined in Definition 1.2. Let f : (0,∞) → R be a

nonnegative and convex function with f(1) = 0. Let P,Q ∈ P(X ) be dominated by some

measure µ ∈ P(X ) with densities p and q, respectively. The f -divergence generated by f is

defined as

Df (P‖Q) =

∫
X
q(x)f

(
p(x)

q(x)

)
dµ(x) ,

with the convention that f(0) = f(0+) and 0f(p/0) = pf ∗(0), where f ∗(0) = f ∗(0+) ∈ [0,∞]

for f ∗(t) = tf(1/t). We call f ∗ the conjugate generator to f . The function f ∗ also generates

an f -divergence, which is referred to as the conjugate divergence to Df since Df∗(P‖Q) =

Df (Q‖P ). In particular, the generator of the frontier integral is fFI in Property 3.1 whose

conjugate generator is also fFI.

We then state and discuss the regularity assumptions required to extend the results in

Section 3.4 to f -divergences. We use the convention that all higher order derivatives of f

and f ∗ at 0 are defined as the corresponding limits as x→ 0+ (if they exist).

Assumption 3.1. The generator f is twice continuously differentiable with f ′(1) = 0. More-

over,

(A1) We have C0 := f(0) <∞ and C∗0 := f ∗(0) <∞.

(A2) There exist constants C1, C
∗
1 <∞ such that for every t ∈ (0, 1), we have,

|f ′(t)| ≤ C1 (1 ∨ log 1/t) , and, |(f ∗)′(t)| ≤ C∗1 (1 ∨ log 1/t) .
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(A3) There exist constants C2, C
∗
2 <∞ such that for every t ∈ (0,∞), we have,

t

2
f ′′(t) ≤ C2 , and,

t

2
(f ∗)′′(t) ≤ C∗2 .

Assumption (A1) ensures boundedness of the f -divergence. Indeed, f(0) = ∞ leads

to Df (P‖Q) = ∞ if there exists an atom a ∈ X such that P (a) = 0 but Q(a) 6= 0. This

happens, for instance, with the reverse KL divergence whose generator is f(t) = − log t+t−1.

By symmetry, f ∗(0) =∞ leads to a case where Df (P‖Q) =∞ if there exists an atom a ∈ X

such that Q(a) = 0 but P (a) 6= 0, as in the (forward) KL divergence.

Since f ′ is monotonic nondecreasing and f ′(1) = 0, we have that f ′(0) ≤ 0 (with strict

inequality if f is strictly convex at 1). In fact, f ′(0) = −∞ for most of the commonly used

divergences such as the KL divergence, the Jensen-Shannon divergence, and etc. Assump-

tion (A2) requires f ′(t) to behave as log 1/t when t→ 0. Analogously for (f ∗)′.

Likewise, we have that f ′′(0) = ∞ and f ′′(∞) = 0 for most of the commonly used

divergences. Assumption (A3) imposes additional constraints on the rates of these limits.

Namely, f ′′ should diverge no faster than 1/t as t→ 0 and f ′′ should converge to 0 at least

as fast as 1/t2 as t→∞. We can summarize the implied asymptotics of f ′′ as

f ′′(t) =

Ω(1/t) , if t→ 0 ,

O(1/t2) , if t→∞ .

In particular, both the linearized cost Lλ in (3.4) and the frontier integral FI in (3.5)

satisfy these assumptions. In Appendix B.2, we consider other f -divergences, e.g., the inter-

polated KL divergence, and verify or falsify these assumptions.

Proposition 3.7. The linearized cost Lλ satisfies Assumption 3.1 with

C0 = λ̄ log
1

λ
, C∗0 = λ log

1

λ
, C1 = λ, C∗1 = λ̄, C2 =

λ

2
, C∗2 =

λ̄

2
,

where λ̄ := 1− λ. Moreover, the frontier integral FI satisfies Assumption 3.1 with

C0 = C∗0 =
1

2
, C1 = C∗1 = 4, C2 = C∗2 =

1

2
.
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Figure 3.4: Tail decay of the Zipf(1/2), the Step, and the Dir(1/2).

The quantization error bound in Proposition 3.4 holds for all f -divergences which satisfy

Assumption (A1). The statistical bounds in Theorem 3.2 and its counterpart for add-

constant estimators also hold for f -divergences satisfy Assumption 3.1. In the Appendix,

we prove all the results for general f -divergences, recovering all the results in Section 3.4 as

special cases due to Proposition 3.7.

3.6 Experiments

We investigate the empirical behavior of the divergence frontier and the frontier integral

on both synthetic and real data. Our main findings are: (a) the statistical error bound

approximately reveals the rate of convergence of the empirical estimator; (b) the smoothed

distribution estimators improve the estimation accuracy; (c) the quantization level suggested

by the theory works well empirically. In all the plots, we visualize the average absolute error

computed from 100 repetitions with shaded region denoting one standard deviation around

the mean. The results for the divergence frontier and the frontier integral are almost identical.

We focus on the latter here. Results for the divergence frontier can be founded in Liu et al.

(2021a, Appendix G). The code to reproduce the experiments is available online (df, 2021).
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3.6.1 Experimental setup

We work with synthetic data in the case when k = |X | < ∞ as well as real image and text

data.

Synthetic data. Following the experimental settings in Orlitsky and Suresh (2015), we

consider three types of distributions: (a) the Zipf(r) distribution with r ∈ {0, 1, 2} where

P (i) ∝ i−r. Note that Zipf(r) is regularly varying with index −r; see, e.g., Shorack (2000,

Appendix B); (b) the Step distribution where P (i) = 1/2 for the first half bins and P (i) = 3/2

for the second half bins; (c) the Dirichlet distribution Dir(α) with α ∈ {1/2,1}; see Figure 3.4

for an illustration. In total, there are 6 different distributions, giving 21 different pairs of

(P,Q). For each pair (P,Q), we generate i.i.d. samples of size n from each of them, and

estimate the frontier integral from these samples.

Real data. We consider two domains: images and text. For the image domain, we train

a StyleGAN2 (Karras et al., 2020) on the CIFAR-10 dataset (Krizhevsky and Hinton, 2009)

using the publicly available code1 with default hyper-parameters. To evaluate the frontier

integrals, we use the test set of 10k images as the target distribution P and we sample

10k images from the generative model as the model distribution Q. For the text domain,

we fine-tune a pretrained GPT-2 (Radford et al., 2019) model with 124M parameters (i.e.,

GPT-2 small) on the Wikitext-103 dataset (Merity et al., 2017). We use the open-source

HuggingFace Transformers library (Wolf et al., 2020) for training, and generate 10k 500-token

completions using top-p sampling and 100-token prefixes.

We take the following steps to compute the frontier integral. First, we represent each

image/text by its features (Heusel et al., 2017; Sajjadi et al., 2018; Kynkäänniemi et al.,

2019). Second, we learn a low-dimensional feature embedding which maintains the neigh-

borhood structure of the data while encouraging the features to be uniformly distributed on

the unit sphere (Sablayrolles et al., 2019). Third, we quantize these embeddings on a uniform

1 https://github.com/NVlabs/stylegan2-ada-pytorch.

https://github.com/NVlabs/stylegan2-ada-pytorch
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Figure 3.5: Statistical error of the estimated frontier integral on synthetic data. (a): Zipf(2)

and Zipf(2) with k = 103; (b): Zipf(2) and Zipf(2) with n = 2× 104; (c): Dir(1) and Zipf(r)

with k = 103 and n = 104; (d): Zipf(2) and Zipf(r) with k = 103 and n = 104. The bounds

are scaled by 100.

lattice with k bins. For each support size k, this gives us quantized distributions PSk and

QSk . Finally, we sample n i.i.d. observations from each of these distributions and consider

the empirical distributions PSk,n and QSk,n as well as the smoothed distribution estimators

computed from these samples.

Performance metric. We are interested in the estimation of the frontier integral FI(P,Q)

using estimators FI(Pn, Qn) for the empirical estimator as well as the smoothed distribution

estimator. We measure the quality of estimation using the absolute error, which is defined as

|FI(Pn, Qn)− FI(P,Q)|. For the real data, we measure the error of estimating FI(PSk , QSk)

by FI(PSk,n, QSk,n) with |FI(PSk,n, QSk,n)− FI(PSk , QSk)|.

3.6.2 Tightness of the statistical bound

In order to verify the validity of the theory in practically relevant settings, we investigate

the tightness of the statistical error bounds in Theorem 3.2 with respect to the sample size

n and the support size k.
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Figure 3.6: Statistical error of the estimated frontier integral on real data. (a): Image data

(CIFAR-10) with k = 128; (b): Text data (WikiText-103) with k = 2048; (c): Image data

(CIFAR-10) with n = 1000; (d): Text data (WikiText-103) with n = 10000. The bounds

are scaled by 30.

We estimate the expected absolute error E |FI(Pn, Qn) − FI(P,Q)| from a Monte Carlo

estimate using 100 random trials. We compare it with the following bounds in2 Theorem 3.2:

(a) Bound: the distribution independent bound (
√
k/n+ k/n) log n.

(b) Oracle Bound: the distribution dependent bound (αn(P ) + αn(Q)) log n + βn(P ) +

βn(Q). We assume that the quantities αn and βn defined in Theorem 3.2 are known.

We fix k, plot each of these quantities in a log-log plot with varying n and compare their

slopes.3 We then repeat the experiment with n fixed and k varying. We often scale the bounds

by a constant for easier visual comparison of the slopes; this only changes the intercept and

leaves the slope unchanged.

Theorem 3.2 is tight for synthetic data. Figure 3.5 gives the Monte Carlo estimate and

the bounds of the statistical error for various synthetic data distributions. In Figure 3.5(a),

we observe that the bound has approximately the same slope as the Monte Carlo estimate,

2 Specifically, we use the expected bounds in (3.9), from which Theorem 3.2 is derived.

3 A log-log plot of the function f(x) = cxγ is a straight line with slope γ and intercept log c. The slope
thus captures the degree of a polynomial rate.
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Figure 3.7: Statistical error of the estimated frontier integral with smoothed distribution

estimators on synthetic data. (a): Zipf(0) and Dir(1/2) with k = 103; (b): Zipf(0) and

Dir(1/2) with n = 2× 104; (c): Dir(1) and Zipf(r) with k = 103 and n = 104; (d): Zipf(2)

and Zipf(r) with k = 103 and n = 104.

while the oracle bound has a slightly worse slope. In Figure 3.5(b), we observe that the

oracle bound captures the correct rate for k > 300, while the distribution-independent bound

captures the correct rate at small k. For the right two plots, both bounds capture the right

rate over a wide range of tail decay. The oracle bound is tighter for fast decay, where the

distribution-independent bounds on αn(Q) and βn(Q) can be very pessimistic.

Theorem 3.2 is somewhat tight for real data. Figure 3.6 contains the analogous plot

for real data, where the observations are similar. In Figure 3.6(b), we see that the oracle

bound captures the right rate for small sample sizes where k/n > 1. However, for large

n, the distribution-independent bound is better at matching the slope of the Monte Carlo

estimate. The same is true for Figure 3.6(c), where the oracle bound is better for large k.

For parts (a) and (d), however, both bounds do not capture the right slope of the Monte

Carlo estimate; Theorem 3.2 is not a tight upper bound in this case. That being said, it is

still a valid upper bound on the estimation error.
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Figure 3.8: Statistical error of the estimated frontier integral with smoothed distribution

estimators on real data. (a): Image data (CIFAR-10) with k = 128; (b): Text data

(WikiText-103) with k = 2048; (c): Image data (CIFAR-10) with n = 1000; (d): Text

data (WikiText-103) with n = 10000. The bounds are scaled by 15.

3.6.3 Effect of smoothed distribution estimators

We now show that smoothed estimators can lead to improved estimation over the empirical

estimator and thus improved sample complexity as shown in Theorem 3.6. This is practically

significant in the context of generative models, since one can have an equally good estimate

of the divergence frontier with fewer samples using smoothed estimators (Sajjadi et al., 2018;

Djolonga et al., 2020).

Concretely, we compare the Monte Carlo estimates of the absolute error E |FI(Pn, Qn)−

FI(P,Q)| for the empirical estimator (denoted “Empirical”) as well as smoothed estimators.

We consider 4 smoothed estimators as in Orlitsky and Suresh (2015): the (modified) Good-

Turing estimator, as well as three add-constant estimators: the Laplace, Krichevsky-Trofimov

and Braess-Sauer estimators.

Smoothed estimators are more efficient than the empirical estimator. We com-

pare the smoothed estimators to the empirical one in Figure 3.7 on synthetic data and

Figure 3.8 on real data. In general, the smoothed distribution estimators reduce the abso-
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Figure 3.9: Total error of the estimated frontier integral with quantization level k ∝ n1/r on

2-dimensional continuous data. (a): N (0, I2) and N (1, I2); (b): N (0, I2) and N (0, 5I2); (c):

t4(0, I2) and t4(1, I2) (multivariate t-distribution with 4 degrees of freedom); (d): t4(0, I2)

and t4(0, 5I2).

lute error. For parts (a) and (b) of Figure 3.7, the Good-Turing and the Krichevsky-Trofimov

estimators have the best absolute error. For parts (c) and (d), the Good-Turing estimator

is adapted to various regimes of tail-decay, outperforming the empirical estimator. The

Krichevsky-Trofimov and Braess-Sauer estimators, on the other hand, exhibit small absolute

error for particular decay regimes. The results are similar for real data in Figure 3.8.

Practical guidance on choosing a smoothed estimator. While the smoothed estima-

tors offer a marked improvement when k/n is large (that is, close to 1), the best estimator

is problem-dependent. As a rule of thumb, we suggest the Krichevsky-Trofimov estimator

which works well in the large k/n regime but is still competitive when k/n is small.

3.6.4 Quantization error

Next, we study the effect of the quantization level k on the total error. We consider a

simple 2-dimensional synthetic setting where the distributions P,Q are either multivariate

normal distributions or t-distributions. We use data-driven quantization with k-means to
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obtain a quantization Sk: each component of the partition is the region corresponding to one

cluster. Finally, we plot the expected absolute error E |FI(P,Q) − FI(PSk,n, QSk,n)|, where

the FI(P,Q) is computed using numerical integration and the expectation is estimated with

Monte Carlo simulations.

The choice k = Θ(n1/3) works the best. We compare k = n1/r for r = 2, 3, 4, 5 in

Figure 3.9. For small n, the orders r ≥ 3 all perform similarly, but r = 3 clearly outperforms

other choices for n ≥ 104. While our theory does not directly apply for data-dependent

partitioning schemes, the choice k = Θ(n1/3) suggested by Theorem 3.5 nevertheless works

well in practice. This gives a convenient rule of thumb for practical application of divergence

frontiers.
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Chapter 4

OPTIMAL TRANSPORT DISTANCES FOR
TESTING HOMOGENEITY

4.1 Introduction

In 1932, Schrödinger (Schrödinger, 1932) considered the following lazy gas experiment; see,

e.g., Chen et al. (2021) for a review. Image n indistinguishable particles in Rd moving

independently as Brownian motion at temperature ε. At time t = 0, we observe that the

empirical distribution of their initial locations approximately equals some density p. At time

t = 1, we observe that the empirical distribution of their terminal locations approximately

equals another density q, which differs significantly from what it should be by the law of

large numbers, i.e.,

q(y) 6=
∫

1

(2π)d/2
exp

(
−‖x− y‖

2

2ε

)
p(x)dx.

It is clear that this situation is unlikely to happen. Schrödinger then inquires for, among

all unlikely ways in which this could happen, the most likely path for each particle. As

Föllmer (1988) shows, the paths are determined by first solving for the (static) Schrödinger

bridge (which is introduced in Section 1.4) and then connecting the two end points by a

Brownian bridge with diffusion ε.

Although Schrödinger’s lazy gas experiment is typically defined in the dynamic setting for

Brownian motion, its static counterpart, Schrödinger bridges (Föllmer, 1988; Léonard, 2012),

can be defined more generally. In continuum, the Schrödinger bridge can be made precise as

the solution to the entropy-regularized optimal transport (EOT) between two densities p and

q (Léonard, 2014), where the entropy is given by the negative differential entropy. Recently,

Schrödinger bridges have been used in score-based generative modeling (De Bortoli et al.,
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2021) and Markov chain Monte Carlo (Bernton et al., 2019).

In its entropy-regularized form, the Schrödinger bridge problem is closely related to the

EOT between two discrete distributions (Cuturi, 2013; Ferradans et al., 2014), where the

entropy is given by the negative Shannon entropy. This discrete EOT is particularly attrac-

tive both from a computational viewpoint (Cuturi, 2013) and from a statistical viewpoint

(Rigollet and Weed, 2018). When we only have access to i.i.d. samples from p and q, one

may use the solution to the discrete EOT between the empirical distributions to estimate

the Schrödinger bridge. However, it remains largely unclear if this estimation is consistent.

Existing works either focus on the case when both p and q are discrete (Bigot et al., 2019;

Klatt et al., 2020) or is limited to the regularized cost rather than the solution (Genevay

et al., 2019; Mena and Weed, 2019).

The remainder of this chapter is organized as follows. In Section 4.2 we review the

Schrödinger bridge problem and its connection to the entropy-regularized optimal transport

problem. In Section 4.3 we introduce as an estimator of the Schrödinger bridge in continuum

the so-called discrete Schrödinger bridge which recovers Schrödinger’s original discrete set-

up as the Schrödinger bridge connecting two empirical distributions. We show that it is the

solution to a modified discrete EOT problem. In Section 4.4 we demonstrate how to apply

the Schrödinger bridge to homogeneity testing. In Section 4.5 we prove its convergence

towards the Schrödinger bridge in continuum as well as limiting Gaussian fluctuations for

this convergence. We also derive the second order Gaussian chaos limit in Appendix C.5. In

Section 4.6 we outline the proof sketches of our results. Finally, in Section 4.7, we compare

the Schrödinger bridge based test with other alternatives on both synthetic and real data.

4.2 Schrödinger Bridge and Entropy-Regularized Optimal Transport

We review the Schrödinger problem and its connection to the information projection (or I-

projection). We show that, through the lens of the KL divergence, the Schrödinger problem

and the discrete entropy-regularized optimal transport problem considered by Cuturi (2013)

can be written in a unified framework.



75

4.2.1 Schrödinger bridge in continuum

Given ε ∈ R+ and a cost function c : Rd × Rd → R+, we assume that the following Markov

transition density is well-defined:

pε(x, y) :=
1

Zε(x)
exp

[
−1

ε
c(x, y)

]
,

where Zε(x) is the normalizing constant. For instance, when c is the quadratic cost, this is

the transition density of Brownian motion with diffusion ε considered in Schrödinger’s lazy

gas experiment. Suppose that (W0,W1) is a pair of random vectors distributed according to

this Markov transition kernel. Let P and Q be two probability measures on Rd. Informally,

the (static) Schrödinger bridge connecting P and Q at temperature ε is the joint distribution

of (W0,W1) conditioned to have W0 ∼ P and W1 ∼ Q. In continuum, when P and Q have

densities w.r.t. the Lebesgue measure, it can be made precise as the solution to the following

entropy-regularized optimal transport (EOT) problem (Föllmer, 1988; Léonard, 2012, 2014):

min
ν∈Π(P,Q)

[∫
c(x, y)dν(x, y) + εH(ν)

]
, (4.1)

where Π(P,Q) is the set of couplings with marginals P and Q, and H(ν) is the entropy of ν

defined as H(ν) :=
∫

log ν(x, y)dν(x, y) if ν is a density1 and infinity otherwise. We refer to

(4.1) as the Schrödinger problem.

When ε = 0, the Schrödinger problem reduces to the optimal transport (OT) prob-

lem. Whereas the latter usually admits a degenerate solution given by a transport map

with zero-measure support (Santambrogio, 2015, Theorem 1.17), the entropy term in the

former prevents such solutions from existing. Moreover, as ε → 0, the minimum of the

Schrödinger problem converges to the one of the OT problem and the minimizer (if exists)

as well (Léonard, 2012, Theorem 3.3). In other words, the Schrödinger problem can be viewed

as a smooth approximation to the OT problem which quantifies how close two distributions

are. As shown in Section 4.4, it can be used to test for homogeneity.

1We follow the standard abuse of keeping the same notation for an absolutely continuous measure and
its density.
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4.2.2 Characterization of the Schrödinger bridge

The Schrödinger problem (4.1) admits an alternative form that are connected to the KL

divergence. With a probability measure Rε defined as Rε(x, y) := P (x)pε(x, y), we have

KL(ν‖Rε) =
1

ε

∫
c(x, y)dν(x, y) +H(ν) +

∫
logZε(x)dP (x)−H(P )

for all ν ∈ Π(P,Q). Thus, the minimizer of the problem (4.1) is the same as the one of

min
ν∈Π(P,Q)

KL(ν‖Rε).

Therefore, the Schrödinger bridge has the following geometry interpretation—it is the I-

projection (Csiszár, 1975) of the reference measure Rε onto the set of couplings Π(P,Q).

Since KL(·‖Rε) is strictly convex, the Schrödinger problem (4.1) has a unique solution

µε (if it exists). Using results on I-projections developed by Csiszár (1975), it can be shown

that, when there exists ν ∈ Π(P,Q) such that KL(ν‖Rε) < ∞, the solution µε exists and

admits the following expression (Rüschendorf and Thomsen, 1993, Theorem 3): there exists

two measurable functions aε and bε, to be called the Schrödinger potentials, such that

dµε
d(P ⊗Q)

(x, y) = ξ(x, y) := exp

{
−1

ε
[c(x, y)− aε(x)− bε(y)]

}
. (4.2)

Note that µε ∈ Π(P,Q). This implies∫
ξ(x, y)dP (x) = 1 Q-a.s. and

∫
ξ(x, y)dQ(y) = 1 P -a.s. (4.3)

We assume throughout this chapter that the Schrödinger bridge µε exists.

4.2.3 Connection to Cuturi’s entropy-regularized optimal transport

Cuturi (2013) considered a discrete EOT problem between two discrete measures P and Q

min
ν∈Π(P,Q)

[∫
c(x, y)dν(x, y) + εEnt(ν)

]
, (4.4)

where, for a discrete measure ν, Ent(ν) is the negative Shannon entropy of ν defined as∑
a∈Supp(ν) ν(a) log ν(a); see also (Ferradans et al., 2014). This problem was initially intro-

duced as an approximation to the OT problem between two discrete measures which can be
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solved efficiently using the Sinkhorn algorithm (Sinkhorn, 1967). It has now been popular in

machine learning due to other advantages, for instance, it fits into a differentiable program-

ming framework (Genevay et al., 2018; Salimans et al., 2018; Sanjabi et al., 2018). We will

give a thorough discussion on this topic in Chapter 5. Due to its popularity, we refer to (4.4)

as the discrete EOT problem and its solution the discrete EOT plan which also satisfies the

property (4.2).

The discrete EOT problem can be viewed as a discrete counterpart of the Schrödinger

problem through the lens of the KL divergence. Consider the problem

min
ν∈Π(P,Q)

[∫
c(x, y)dν(x, y) + εKL(ν‖P ⊗Q)

]
. (4.5)

When P and Q are densities, we have

KL(ν‖P ⊗Q) =


∫
ν(x, y) log ν(x,y)

P (x)Q(y)
dxdy = H(ν)−H(P )−H(Q) if ν has a density

∞ otherwise.

Consequently, the solution to the Schrödinger problem is the same as the one to (4.5).

Analogously, when P and Q are discrete measures, the solution to the discrete EOT problem

is the same as the one to (4.5). Hence, the problem (4.5) unifies the Schrödinger problem and

the discrete EOT problem. We call it the EOT problem and, for convenience, the solution

to it the Schrödinger bridge even if P and Q are not densities. We focus on this problem in

the remainder of this chapter.

4.3 Estimating the Schrödinger Bridge

We propose an empirical estimator of the Schrödinger bridge, called the discrete Schrödinger

bridge, when we have i.i.d. samples from the two marginal distributions P and Q. This

estimator is based on a convex combination of all Monge couplings between the two empirical

marginal measures. It recovers Schrödinger’s original discrete set-up as the Schrödinger

bridge connecting the two empirical marginal measures. Finally, we show that it is the

solution to a discrete EOT problem which is slightly different from the one considered by

Cuturi (2013).
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4.3.1 Discrete Schrödinger bridge

Let {Xi}ni=1 and {Yi}ni=1 be two independent i.i.d. samples from two distributions P and Q on

Rd with Pn := 1
n

∑n
i=1 δXi and Qn := 1

n

∑n
i=1 δYi being the empirical measures, respectively.

Since the EOT problem (4.5) can be viewed as a smooth approximation to the OT problem

between P and Q. It is natural to construct an estimator of the Schrödinger bridge µε by

approximating the optimal transport plan between Pn and Qn, i.e., the solution to

min
ν∈Π(Pn,Qn)

n∑
i=1

n∑
j=1

c(Xi, Yj)ν(Xi, Yj). (4.6)

We first recall some results regarding the empirical OT problem (4.6). Let Sn be the

set of permutations on [n] := {1, . . . , n}. Every σ = (σ1, . . . , σn) ∈ Sn can be viewed as a

matching between these two sets of random vectors, i.e., Xi is matched to Yσi for each i ∈ [n].

It induces a Monge coupling Mσ := 1
n

∑n
i=1 δ(Xi,Yσi )

which belongs to Π(Pn, Qn). Hence, the

empirical OT problem (4.6) is a convex relaxation of the following optimal matching problem:

min
σ∈Sn

1

n

n∑
i=1

c(Xi, Yσi) = min
σ∈Sn

n∑
i=1

n∑
j=1

c(Xi, Yj)Mσ(Xi, Yj). (4.7)

According to Peyré and Cuturi (2019, Proposition 2.1), the two problems (4.6) and (4.7)

share the same minimum. Moreover, the problem (4.7) always has a solution σ? whose

associated Monge map Mσ? solves the problem (4.6). Thus, a natural way to construct a

smooth approximation to the solution Mσ? is to consider a convex combination of all Monge

maps, i.e., consider
∑

σ∈Sn γ(σ)Mσ for some probability distribution γ over Sn.

The empirical estimator we study is based on a particular distribution γε defined as

follows. For every σ ∈ Sn, its associated cost is given by
∑n

i=1 c(Xi, Yσi). Since the objec-

tive is to minimize the cost, we assign each permutation σ the (random) weight w(σ) :=

exp(−
∑n

i=1 c(Xi, Yσi)/ε) so that a permutation with a large cost gets an exponentially small

weight. Now we obtain a Gibbs measure on Sn, i.e.,

γε(σ) :=
w(σ)∑
τ∈Sn w(τ)

=
exp (−

∑n
i=1 c(Xi, Yσi)/ε)∑

τ∈Sn exp (−
∑n

i=1 c(Xi, Yτi)/ε)
=

ξ⊗(X, Yσ)∑
τ∈Sn ξ

⊗(X, Yτ )
, (4.8)
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where ξ is defined in (4.2) and ξ⊗(X, Yσ) :=
∏n

i=1 ξ(Xi, Yσi). This leads to the estimator

µε,n :=
∑
σ∈Sn

γε(σ)Mσ =
1
n!

∑
σ∈SnMσξ

⊗(X, Yσ)
1
n!

∑
σ∈Sn ξ

⊗(X, Yσ)
. (4.9)

It can be shown that µε,n recovers Schrödinger’s original discrete set-up as the Schrödinger

bridge connecting Pn and Qn at temperature ε. To see this, consider a realization Xi = xi

and Yi = yi for i ∈ [n]. Then Pn and Qn are (nonrandom) discrete distributions supported

on n categories. Imagine n independent particles {W i}ni=1, starting from positions W i
0 = xi,

i ∈ [n], and making jumps according to the Markov transition kernel pε(xi, ·), i ∈ [n]. Let

Ln(1) := 1
n

∑n
i=1 δW i

1
be the empirical distribution of their terminal locations and Ln(0, 1) :=

1
n

∑n
i=1 δ(W i

0,W
i
1) be the joint empirical distribution at two time points. According to Pal and

Wong (2020, Section 3.2), the law of Ln(0, 1) given Ln(1) = Qn is exactly given by µε,n (with

Xi = xi and Yi = yi, i ∈ [n]). In other words, for each permutation σ ∈ Sn,

P

(
Ln(0, 1) =

1

n

n∑
i=1

δ(xi,yσi )

∣∣∣ Ln(1) =
1

n

n∑
i=1

δyi

)
= γε(σ).

We refer to µε,n as the discrete Schrödinger bridge.

4.3.2 Reformulation as a discrete entropy-regularized optimal transport

It turns out that the discrete Schrödinger bridge µε,n is the solution to a discrete EOT

problem that is different from the one of Cuturi (2013).

Lemma 4.1. Let M1(Sn) be the set of probability measures on Sn. We have

γε = arg min
γ∈M1(Sn)

[
n∑
i=1

n∑
j=1

c(Xi, Yj)νγ(Xi, Yj) +
ε

n
Ent(γ)

]
, (4.10)

where νγ :=
∑

σ∈Sn γ(σ)Mσ ∈ Π(Pn, Qn). In particular, µε,n = νγε.

Proof. We claim that minimizing (4.10) is equivalent to minimizing KL(γ‖γε) which is
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uniquely minimized at γ = γε. In fact,

KL(γ‖γε) =
∑
σ∈Sn

γ(σ) log
γ(σ)

γε(σ)
=
∑
σ∈Sn

γ(σ) log

(
γ(σ)

∑
τ∈Sn w(τ)

w(σ)

)

= Ent(γ) + log

[∑
τ∈Sn

w(τ)

] ∑
σ∈Sn

γ(σ) +
1

ε

∑
σ∈Sn

c(X, Yσ)γ(σ)

=
n

ε

n∑
i=1

n∑
j=1

c(Xi, Yj)νγ(Xi, Yj) + Ent(γ) + log
∑
τ∈Sn

w(τ),

and thus the claim follows.

Due to Birkhoff (1946), every doubly stochastic matrix can be written as a convex combi-

nation of permutation matrices. As a result, every coupling M ∈ Π(Pn, Qn) can be expressed

as M =
∑

σ∈Sn γM(σ)Mσ for some γM ∈ M1(Sn). Note that such convex combinations are

generally not unique. Hence, the problem (4.10) without the regularization term admits the

same minimum as the empirical OT problem, i.e.,

min
γ∈M1(Sn)

n∑
i=1

n∑
j=1

c(Xi, Yj)νγ(Xi, Yj) = min
ν∈Π(Pn,Qn)

n∑
i=1

n∑
j=1

c(Xi, Yj)ν(Xi, Yj).

This suggests that the problem (4.10) adds an entropy regularization term to the empirical

OT problem in the space of probability measures on permutations.

4.3.3 Relationship to the plug-in estimator

Another estimator one may consider is based on the minimizer of the EOT problem (4.5)

with Pn and Qn plugged in, i.e.,

min
ν∈Π(Pn,Qn)

[∫
c(x, y)dν(x, y) + εKL(ν‖Pn ⊗Qn)

]
. (4.11)

We refer to it as the discrete EOT plan. This problem is the discrete EOT problem (4.4)

specialized to the empirical measures Pn and Qn which adds an entropy regularization term

in the original space of couplings. Even though there is a rich literature on the statistical

properties of (4.11), they mainly focus on the minimum rather than the minimizer, i.e., the
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discrete EOT plan (Bigot et al., 2019; Genevay et al., 2019; Mena and Weed, 2019). Klatt

et al. (2020) prove a Gaussian limit for the discrete EOT plan but is limited to the case when

P and Q are discrete with finite supports. We will give a thorough discussion on this topic

in Chapter 5.

The relationship between the discrete Schrödinger bridge and the discrete EOT plan re-

mains unclear as of today. However, they are connected through the lens of matrix balancing;

see (Beichl and Sullivan, 1999) and references therein. To see this, we define an n×n matrix

K with (i, j)-th element being Kij = exp(−c(Xi, Yj)/ε). Let |K| denote the permanent of

K, i.e.,

|K| =
∑
σ∈Sn

n∏
i=1

Kiσi =
∑
σ∈Sn

exp

(
−

n∑
i=1

c(Xi, Yσi)/ε

)
,

which is exactly the denominator in the second expression of γε in (4.8). Define a matrix

Adsb ∈ Rn×n+ by, for each i, j ∈ [n],

(Adsb)i,j = nµε,n(Xi, Yj) =
∑
σ:σi=j

γε(σ) =

∑
σ:σi=j

exp(−
∑n

i=1 c(Xi, Yσi)/ε)∑
σ∈Sn exp(−

∑n
i=1 c(Xi, Yσi)/ε)

.

That is, Adsb is the probability matrix associated with the discrete Schrödinger bridge µε,n

scaled by n. A little bit of algebra omitted here shows that the numerator of (Adsb)i,j is

exactly given by exp(−c(Xi, Yj)/ε) |Kij|, where Kij is the minor of K obtained by deleting

the i-th row and j-th column. Hence, we have (Adsb)i,j = Kij |Kij| / |K|. The matrix Adsb is

doubly stochastic and called the matrix balance of K (Beichl and Sullivan, 1999, Section 3).

In the same spirit, we can define a doubly stochastic matrix associated with the discrete EOT

plan scaled by n. This matrix is known as the Sinkhorn balance of K (Beichl and Sullivan,

1999, Section 4). In Section 4.1, Beichl and Sullivan (1999) shows that the Sinkhorn balance

of a 0-1 matrix approximates the matrix balance of it. However, a more in-depth investigation

on the relationship of these two objects is needed. As an illustration, we visualize the discrete

Schrödinger bridge and the discrete EOT plan as heatmaps in Figure 4.1.
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Figure 4.1: Heatmaps of the discrete Schrödinger bridge (top) and the discrete EOT plan
(bottom) with n = 200 at decreasing values of ε (from left to right). The two marginals
are both normal distributions with mean 0 and standard deviation 0.05. The cost function
is chosen as the quadratic cost. The observations are ordered so that the optimal Monge
coupling is the diagonal line.

4.3.4 Relationship to the optimal transport plan

When the regularization parameter is chosen to be ε = εn = o(1), it is desirable that the

discrete Schrödinger bridge µn := µεn,n converges to the optimal transport plan. We show

in this section that it is true at rate O(n−2/d(log n)2/d). By the Kantorovich duality (Villani,

2009, Theorem 5.10), there exists a pair of functions (φ, ψ), known as the Kantorovich

potentials, such that

D[y | x] := c(x, y)− φ(x)− ψ(y) ≥ 0, for all x, y ∈ Rd. (4.12)

Assumption 4.1. We make the following assumptions.
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(a) There exist α > 2 and γ > 0 such that E[exp(γ ‖Z‖α)] <∞ for Z ∼ P and Z ∼ Q.

(b) For Y ∼ Q, each of its coordinates is sub-Gaussian with parameter K.

(c) The unique solution to the OT problem is µ? := (id, T?)]P where T? is a Monge map;

see (Villani, 2009, Theorem 10.38) for sufficient conditions on c.

(d) There exists L,L′ > 0 such that, P -a.s.,

L ‖y − T?(x)‖2 ≤ D[y | x] ≤ L′ ‖y − T?(x)‖2 . (4.13)

Remark 4.1. Due to the existence of the Monge map T?, we have D[y | x] = 0 iff y = T?(x).

This implies that T?(x) is the unique minimizer of the function D[· | x]. By Taylor’s theorem,

D[· | x] is quadratic in a neighborhood of T?(x), which justifies the quadratic approximation

in (4.13).

The next result shows that µn converges to µ? in W2
2 at rate O(n−2/d log n) as n → ∞.

The proof is deferred to Appendix C.1.

Proposition 4.2. Let d > 4 and εn = n−2/d. Under Assumption 4.1, it holds for all large

enough n that, with probability at least 1− δ,

W2
2(µn, µ?) . C

[(
log (1/δ)

n

)2/d

+
log n

n2/d

]
,

where C is a problem-specific constant.

A closely related problem is estimating the optimal transport map T?. Hütter and Rigollet

(2021) considered this problem in the minimax estimation framework. Assuming that T? is

α-smooth for some α ≥ 1, they showed that the minimax estimation error measured by

the L2(P ) distance is at rate O(n−2α/(2α−2+d)), which can be achieved up to a logarithmic

factor. This rate is reminiscent of the standard nonparametric minimax estimation rate. Let

T̂ be the minimax near-optimal estimator constructed in their paper. Since T̂ also defines a

coupling (id, T̂ )]P , it follows that

W2
2

(
(id, T̂ )]P, µ?

)
≤
∫ ∥∥∥T̂ (x)− T?(x)

∥∥∥2

dP (x) . n−
2α

2α−2+d log2 (n).

Hence, our estimator achieves the same rate with α = 1.
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4.4 Schrödinger Bridge for Homogeneity Testing

We demonstrate how the Schrödinger bridge can be used to test homogeneity of distributions.

4.4.1 Two-sample homogeneity testing

Given two independent i.i.d. samples {Xi}ni=1 and {Yi}ni=1 from distributions P and Q, re-

spectively, we are interested in determining whether they come from the same distribution.

This can be formulated as a two-sample homogeneity testing problem:

H0 : P = Q↔ H1 : P 6= Q. (4.14)

That is, we test the null hypothesis that they come from the same distribution against the

alternative hypothesis that they do not.

A typical procedure for solving such problems consists of the following steps. First, we

choose a functional T : M1(Rd) × M1(Rd) → R so that T (P,Q) quantifies the distance

between P and Q. Second, we estimate T (P,Q) from the data to obtain a test statistic Tn.

Since the statistic Tn approximates the metric T (P,Q), the larger it is the less likely H0 is

true. Finally, we choose a threshold tn and adopt the decision rule (or test) 1{Tn > tn}, that

is, we reject the null if the test statistic exceeds the threshold. The performance of a test can

be measured by two quantities: the type I error rate P(Tn > tn | H0), i.e., the probability of

rejecting the null given that the null is true, and the statistical power P(Tn > tn | H1), i.e.,

the probability of rejecting the null given that the null is not true.

4.4.2 Centered Schrödinger bridge cost

Since the Schrödinger bridge µε is a smoothed approximation to the optimal transport plan,

its cost of transport Tε(P,Q) :=
∫
cdµε can be used to measure the distance between P and

Q. In fact, it is known as the Sinkhorn distance (Cuturi, 2013) when P and Q are discrete

which satisfies all distance axioms except for the coincidence axiom, i.e., Tε(P,Q) = 0 iff
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P = Q. Hence, we use the centered version

T ε(P,Q) := Tε(P,Q)− 1

2
Tε(P, P )− 1

2
Tε(Q,Q), (4.15)

which we refer to as the centered Schrödinger bridge cost. Note that this centering trick also

appears in (Ramdas et al., 2017, Section 3.3) to relate the EOT cost to the energy distance.

The centered Schrödinger bridge cost is symmetric and equals zero if P = Q. Moreover,

it has the following property which justifies its use as a probability metric. The proof is

deferred to Appendix C.2.

Proposition 4.3. The centered Schrödinger bridge cost T ε(P,Q) is continuous in ε ∈ (0,∞).

Moreover, if c is bounded and continuous, then

T∞(P,Q) := lim
ε↑∞

T ε(P,Q) =

∫
cd(P ⊗Q)− 1

2

∫
cd(P ⊗ P )− 1

2

∫
cd(Q⊗Q). (4.16)

Remark 4.2. The limit at ε = ∞ in (4.16) is half the energy distance w.r.t. c introduced

by Székely and Rizzo (2004) and generalized by Lyons (2013). Moreover, under appropriate

assumptions, the limit at ε = 0, i.e., limε↓0 T ε(P,Q), is exactly the OT distance between

P and Q; see Léonard (2012, Theorem 3.3) for the continuous case and Peyré and Cuturi

(2019, Proposition 4.1) for the discrete case. Hence, the centered Schrödinger bridge cost

interpolates between the OT distance and the energy distance.

4.4.3 Schrödinger bridge statistic

We show in Section 4.5 that the discrete Schrödinger bridge µε,n is a consistent estimator of

µε, so it is natural to estimate T ε(P,Q) by

T ε,n := T ε(Pn, Qn) = Tε(Pn, Qn)− 1

2
Tε(Pn, Pn)− 1

2
Tε(Qn, Qn), (4.17)

where Tε(ν1, ν2) is the transport cost of the discrete Schrödinger bridge connecting ν1 and

ν2 for ν1, ν2 ∈ {Pn, Qn}. For instance,

Tε(Pn, Qn) :=

∫
c dµε,n =

∑
σ∈Sn

1

n

n∑
i=1

c(Xi, Yσi)γε(σ), (4.18)
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Algorithm 1 Gibbs sampling for the Schrödinger bridge statistic

1: Input: samples {Xi}ni=1 and {Yi}ni=1, functions c, burn-in B and number of iterations L.

2: Initialization: σ(0) ← id.

3: for t = 0, . . . , L− 1 do

4: Randomly select i 6= j ∈ [n].

5: Compute r ← exp
{

[c(Xi, Yσ(t)
i

) + c(Xj, Yσ(t)
j

)− c(Xi, Yσ(t)
j

)− c(Xj, Yσ(t)
i

)]/ε
}

.

6: Generate a ∼ Bern(r/(1 + r)).

7: if a = 1 then

8: Obtain σ(t+1) from σ(t) by swapping the entries σ
(t)
i and σ

(t)
j .

9: else

10: Set σ(t+1) ← σ(t).

11: end if

12: end for

13: Output: 1
L−B

∑L
t=B+1

1
n
c(X, Yσ(t)).

where γε is defined in (4.8). We refer to T ε,n as the centered Schrödinger bridge statistic.

Since the space of permutations Sn is prohibitively large, it is infeasible to compute the

Schrödinger bridge statistic exactly. We adopt here a Gibbs sampling approach to sample

from the distribution γε and estimate the Schrödinger bridge statistic by the empirical average

on the sample. We mention here among many others the monograph by Wakefield (2013,

Chapter 3) for a review on Gibbs sampling. The procedure is summarize in Algorithm 1.

Let σ(t) be the current sample. We choose the proposal distribution as

g(σ | σ(t)) =


2

n(n−1)
if σ and σ(t) differ in exactly two indices

0 otherwise.

In other words, we randomly select i 6= j ∈ [n] and swap σ
(t)
i and σ

(t)
j to obtain a candidate
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σ(t+1). We then accept the candidate σ(t+1) with probability

r :=
γε(σ

(t+1))

γε(σ(t)) + γε(σ(t+1))
= exp

{
1

ε

[
c(Xi, Yσ(t)

i
) + c(Xj, Yσ(t)

j
)− c(Xi, Yσ(t)

j
)− c(Xj, Yσ(t)

i
)
]}

.

Hence, for all σ 6= σ′, the transition probability reads

h(σ′ | σ) =


2

n(n−1)
q∗ε (σ′)

q∗ε (σ)+q∗ε (σ′)
if σ′ and σ differ in exactly two indices

0 otherwise.

It satisfies the detailed balance equation h(σ′ | σ)γε(σ) = h(σ | σ′)γε(σ′), and thus the

samples generated from Algorithm 1 can be used to approximate the distribution γε as well

as the Schrödinger bridge statistic.

4.5 Asymptotics of the Discrete Schrödinger Bridge

In this section, we summarize asymptotic properties of the discrete Schrödinger bridge µε,n

in (4.9). Given a probability measure ν and an integer p ≥ 1, let Lp(ν) be the space

of functions that have finite p-th norm under ν and Lp
0(ν) be the subset of Lp(ν) whose

expectation under ν is zero. We follow the standard abuse of keeping the same notation for

an absolutely continuous measure and its density.

We express our results in their full generality. Let P and Q be two probability measures

on Rd. Let µ ∈ Π(P,Q) such that µ has density ξ w.r.t. P ⊗Q satisfying∫
ξ(x, y)dP (x) = 1 Q-a.s. and

∫
ξ(x, y)dQ(y) = 1 P -a.s. (4.19)

Given two independent i.i.d. samples {Xi}ni=1 and {Yi}ni=1 from P and Q, respectively, we

consider the random measure

µn :=
1
n!

∑
σ∈Sn

1
n

∑n
i=1 δ(Xi,Yσi )

ξ⊗(X, Yσ)
1
n!

∑
σ∈Sn ξ

⊗(X, Yσ)
, (4.20)

where ξ⊗(X, Yσ) :=
∏n

i=1 ξ(Xi, Yσi). As a special case, when both P and Q are densities

(or discrete measures), the Schrödinger bridge (if exists) µε satisfies (4.19) with ξ(x, y) =

exp(−(c(x, y)− aε(x)− bε(y))/ε), and µn coincides with the discrete Schrödinger bridge.
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4.5.1 Consistency of the measure

Our first result shows that µn is a consistent estimator of µ. Let us start by defining two

operators on L2(P ) and L2(Q) induced by µ whose validity follows from Jensen’s inequality.

Definition 4.1. Define a linear operator A : L2(P )→ L2(Q) and its adjoint A∗ : L2(Q)→

L2(P ) by

(Af)(y) :=

∫
f(x)ξ(x, y)dP (x) and (A∗g)(x) :=

∫
g(y)ξ(x, y)dQ(y). (4.21)

We call A : (x, y) 7→ ξ(x, y) the kernel of A and A∗ : (y, x) 7→ ξ(x, y) the kernel of A∗.

Assumption 4.2. All the results stated below hold under the following assumptions.

(a) ξ ∈ L2(P ⊗ Q). As a consequence (Bickel et al., 1998, Appendix A.4), the operator

A is compact. Then the operators A∗A and AA∗ admit eigenvalue decomposition

A∗Aαk = s2
kαk and AA∗βk = s2

kβk for all k ≥ 0 with s0 = 1, α0 = β0 = 1 and

0 ≤ sk ≤ 1 for all k ≥ 0. Moreover, it holds that Aαk = skβk and A∗βk = skαk; see

(Gohberg et al., 1990, Chapter 6.1). We call {sk}k≥0 the singular values of A and A∗,

and call {αk}k≥0 and {βk}k≥0 the singular functions.

(b) The operators A∗A and AA∗ have positive eigenvalue gap, i.e., sk ≤ s1 < 1 for all

k ≥ 1. By Jentzsch’s Theorem (Rugh, 2010, Theorem 7.2), a sufficient condition is

that ξ is bounded.

Theorem 4.4. As n→∞, µn converges weakly to µ, in probability. That is, for any δ > 0,

we have P(D(µn, µ) > δ)→ 0 as n→∞, where D is the Lévy-Prokhorov metric induced by

weak convergence.

Towards the proof of Theorem 4.4, a critical result is the limit law of the denominator in

(4.20) which we denote as Dn. We state it here since it is of independent interest.
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Theorem 4.5. As n→∞, the denominator in (4.20) has the following limiting distribution:

Dn →d D :=
1√∏∞

k=1(1− s2
k)

exp

{
1

2

∞∑
k=1

[
− s2

k

1− s2
k

(U2
k + V 2

k ) +
2sk

1− s2
k

UkVk

]}
, (4.22)

where {Uk}k≥1 and {Vk}k≥1 are independent standard normal random variables.

It is noteworthy that DN is a two-sample U-statistic of infinite order—a generalization of

classical U-statistics introduced by Halmos (1946) and Hoeffding (1948a), where the kernel

of the U-statistic depends on the sample size. Infinite-order U-statistics were first considered

by Halász and Székely (1976) as a special class of elementary symmetric polynomials of

random variables; see also (Móri and Székely, 1982; van Es, 1986; van Es and Helmers, 1988;

Major, 1999) in this line of research. The limiting distribution of general infinite-order U-

statistics was obtained by Dynkin and Mandelbaum (1983, Theorem 1) using randomization

of the sample size and multiple Wiener integrals. Theorem 4.5 extends previous work on

one-sample infinite-order U-statistics to two-sample infinite-order U-statistics.

Another closely related topic is the asymptotics of random permanents; see the mono-

graph (Rempa la and Weso lowski, 2007) for a review. An elementary symmetric polynomial

is the permanent of a random matrix with identical rows (Rempa la and Weso lowski, 2005,

Page 2). The limiting behavior of general random permanents has been studied in the case of

i.i.d. entries (Rempa la and Weso lowski, 1999) as well as independent columns (Rempa la and

Weso lowski, 2005), where the limit law is the exponential of a Gaussian distribution. The de-

nominator DN can be viewed as the permanent of the random matrix (ξ(Xi, Yj))N×N scaled

by N !. Hence, Theorem 4.5 characterizes the asymptotic behavior of the permanent of a

random matrix induced by a bivariate function whose rows and columns are dependent—the

limit law is given by the exponential of a weighted sum of products of Gaussians.
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4.5.2 Central limit theorem of the linear functional

To conduct more refined analysis on the convergence of µn, we let η be any function on

Rd × Rd integrable under µ and investigate the convergence of

Tn := Tn(η) :=

∫
ηdµn =

1
n!

∑
σ∈Sn

1
n

∑n
i=1 η(Xi, Yσi)ξ

⊗(X, Yσ)
1
n!

∑
σ∈Sn ξ

⊗(X, Yσ)
(4.23)

towards θ := θ(η) :=
∫
ηdµ. A particularly important example is when η = c is the cost

function and µ = µε is the Schrödinger bridge. In this case Tn is the cost of the discrete

Schrödinger bridge and θ is the cost of the Schrödinger bridge, which are used for homogeneity

testing in Section 4.4.

The estimator Tn is a rather complicated function of the two empirical distributions Pn

and Qn. Our next result shows that it can be well approximated by linear functions of the

two distributions. We further make the following assumptions.

Assumption 4.3. All the results stated below hold under the following additional assump-

tions: η2ξ ∈ L1(P ⊗Q) and ηξ ∈ L2(P ⊗Q).

We denote by Iν : L2(ν)→ L2(ν) the identity operator on L2(ν), and, by convention, its

kernel is given by the Dirac delta function. When the context is clear, we will write I for

short. Define

κ1,0(x) :=

∫
[η(x, y)− θ]ξ(x, y)dQ(y)

κ0,1(y) :=

∫
[η(x, y)− θ]ξ(x, y)dP (x).

(4.24)

Theorem 4.6. It holds that Tn − θ = Ln + op
(
1/
√
n
)
, where

Ln :=
1

n

n∑
i=1

[(I −A∗A)−1(κ1,0 −A∗κ0,1)(Xi) + (I −AA∗)−1(κ0,1 −Aκ1,0)(Yi)].

We call Ln the first order chaos of Tn. In particular, we have
√
n(Tn−θ)→d N (0, ς2), where

ς2 :=

∫
(I −A∗A)−1(κ1,0 −A∗κ0,1)(x)2dP (x) +

∫
(I −AA∗)−1(κ0,1 −Aκ1,0)(y)2dQ(y).
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The first order chaos Ln admits a more compact expression using the notion of tensor

product of operators. Let A1 ∈ {A,A∗, IP , IQ} be an operator mapping from L2(ν1) to L2(γ1)

with kernel A1. And define A2, A2 similarly. The tensor product A1 ⊗ A2 : L2(ν1 ⊗ ν2) →

L2(γ1 ⊗ γ2) is defined by, for all f ∈ L2(ν1 ⊗ ν2),

(A1 ⊗A2)f(v1, v2) =

∫∫
f(v′1, v

′
2)A1(v′1, v1)A2(v′2, v2)dν1(v′1)dν2(v′2).

For instance, IP ⊗A : L2(P ⊗ P )→ L2(P ⊗Q) is defined by

(IP ⊗A)f(v1, v2) =

∫∫
f(v′1, v

′
2)δv1(v′1)ξ(v′2, v2)dP (v′1)dP (v′2)

=

∫
f(v1, v

′
2)ξ(v′2, v2)dP (v′2).

In particular, when f := f1 ⊕ f2, we have (A1 ⊗A2)(f1 ⊕ f2)(v1, v2) = A1f1(v1) +A2f2(v2).

Finally, define the swap operator T by T f(u, v) = f(v, u) for any f on Rd × Rd. It is clear

that T (A1 ⊗A2) = (A2 ⊗A1)T on L2(ν1 ⊗ ν2).

Definition 4.2. Define the following operator on the space L2(P ⊗Q):

B := T (A⊗A∗) = (A∗ ⊗A)T .

Remark 4.3. In terms of this new operator B, the first order chaos of Tn can be alternatively

expressed as:

Ln =
1

n

n∑
i=1

(I + B)−1(κ1,0 ⊕ κ0,1)(Xi, Yi).

Both expressions come from the following system of linear equations. Assume the first order

chaos in Theorem 4.6 is given by 1
n

∑n
i=1[f(Xi) + g(Yi)], then f and g are (almost surely)

solutions to:

κ1,0(x) = f(x) +A∗g(x) and κ0,1(y) = Af(y) + g(y).

Remark 4.4. When ς = 0 in Theorem 4.6, we can further obtain the second order chaos of

Tn. We give the full derivation in Appendix C.5.
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4.6 Proof Sketches

We outline the proof strategies of the results in Section 4.5. The complete proofs can be

found in Appendix C. In Section 4.6.1 we prove a novel contiguity result that allows us to

change the model to {(Xi, Yi)}ni=1
i.i.d.∼ µ based on the limiting distribution of the denomi-

nator in Theorem 4.5. This change-of-measure brings in a more natural analysis for µn and

Theorem 4.4 then follows from the martingale convergence theorem. Next in Section 4.6.2

we derive the first order approximation of Tn and prove Theorem 4.6 by a variance bound

of the remainder. We show that this approximation is the first order chaos of Tn under

the change of measure µ. Essentially, we extend the classical Hoeffding decomposition for

U-statistics to the case of paired samples, which, by itself is a new result in the literature.

In Section 4.6.3 we derive the asymptotic distribution of the denominator and the variance

bound of the remainder used in the previous two sections. Both of them are two-sample

U-statistics of infinite order that have not been studied in the literature. We develop novel

techniques for analyzing this type of U-statistics.

4.6.1 Consistency and contiguity

We prove the weak convergence of µn in Theorem 4.4. By definition, it suffices to show the

convergence of Tn :=
∫
ηdµn to θ :=

∫
ηdµ for any continuous bounded function η : Rd → R.

In fact, the convergence holds for all η that is integrable under µ.

Recall from (4.23) that Tn admits a complicated expression which is difficult to analyze.

Thanks to Proposition 4.8 below, it is a simple conditional expectation under a change of

measure—we assume that {(Xi, Yi)}ni=1 is an i.i.d. sample from µ rather than P ⊗Q. Hence,

it is natural to ask if there is a way to do analysis under the changed measure µ and carry

the results over to the original measure P ⊗Q. The contiguity (van der Vaart, 2000, Chapter

6) is exactly a tool for such purposes. When ξ 6= 1, the law of the entire i.i.d. sequence

{(Xi, Yi)}ni=1 under the two measures P ⊗ Q and µ are singular as n → ∞. However, since

Tn is symmetric under permutations of Xi’s and Yi’s separately, it is measurable w.r.t. the
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σ-algebra generated by the pair of empirical measures (Pn, Qn). Restricted to this σ-algebra,

we show that the two measures are mutually contiguous in Theorem 4.7 below.

We first set-up a measure-theoretic framework. We use the term “under the model

γ” to indicate that the sample {(Xi, Yi)}ni=1
i.i.d.∼ γ and use Eγ to denote the expectation

under this model. When γ = P ⊗ Q, we write E for short. Let Fn denote the σ-algebra

generated by {(Xi, Yi)}ni=1. Let Gn denote the sub-σ-algebra of Fn generated by (Pn, Qn).

Let Rn := (P ⊗Q)n|Gn and Sn := µn|Gn .

According to Le Cam’s first lemma (van der Vaart, 2000, page 88), the contiguity holds

true if the likelihood ratio dSn/dRn converges weakly, under Rn, to a random variable that

is almost surely positive. It turns out that dSn/dRn is precisely Dn, i.e., the denominator

of Tn, whose weak limit is almost surely positive according to Theorem 4.5.

Fact 4.5. The likelihood ratio dSn/dRn admits the following expression:

dSn

dRn
= Dn :=

1

n!

∑
σ∈Sn

ξ⊗(X, Yσ). (4.25)

Proof. Note that the likelihood ratio of µn and (P ⊗Q)n is given by

fn :=
dµn

d(P ⊗Q)n
=

n∏
i=1

ξ(Xi, Yi), on
(
Rd × Rd

)n
. (4.26)

Hence, by the property of conditional expectation,

dSn

dRn
=

dµn|Gn
d(P ⊗Q)n|Gn

= E [fn | Gn] ,

It follows from exchangeability under P ⊗ Q that E[fn | Gn] = E[ξ⊗(X, Yσ) | Gn] for each

σ ∈ Sn. Hence,

E [fn | Gn] = E

[
1

n!

∑
σ∈Sn

ξ⊗(X, Yσ)
∣∣∣ Gn] =

1

n!

∑
σ∈Sn

ξ⊗(X, Yσ). (4.27)

Theorem 4.7. Under Assumption 4.2, the sequences (Rn, n ≥ 1) and (Sn, n ≥ 1) are

mutually contiguous, i.e., Rn /.Sn. Explicitly, for a sequence of events (An ∈ Gn, n ≥ 1), we

have limn→∞ S
n(An) = 0 iff limn→∞R

n(An) = 0.
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Proof. According to Le Cam’s first lemma (van der Vaart, 2000, page 88), Rn/Sn if and only

if the following statement holds true: if Dn, under P ⊗ Q, converges weakly to D, along a

sub-sequence, then P (D > 0) = 1. This statement follows directly from Theorem 4.5 (whose

proof is deferred to Section 4.6.3), so we have Rn / Sn. By a standard computation, it can

be shown that E[D] = 1. Hence, it follows from Le Cam’s first lemma again that Sn / Rn,

that is, Rn and Sn are mutually contiguous.

With Theorem 4.7 at hand, we can work under the model µ. The next result rewrites

Tn as a simple conditional expectation and verifies its consistency whose proof is deferred to

Appendix C.2.

Proposition 4.8. Suppose that {(Xi, Yi)}ni=1
i.i.d.∼ µ. For any η ∈ L1(µ), it holds that

Tn = E [η(X1, Y1) | Gn]. In particular, E[Tn] = θ for all n and limn→∞ Tn = θ almost surely.

Proof of Theorem 4.4. As shown in Proposition 4.8, for any η ∈ L1(µ), Tn :=
∫
ηdµn →a.s.

θ :=
∫
ηdµ under the model µ. In particular, Proposition 4.8 holds for any bounded con-

tinuous function η. Thus, except for a null set, the convergence in Proposition 4.8 holds for

a countable collection of bounded continuous functions. By separability of Rd, almost sure

weak convergence follows (Varadarajan, 1958, Theorem 3.1) by choosing such a countable

collection judiciously. This shows almost sure weak convergence under the model µ. Weak

convergence in probability under the model P ⊗Q now follows from Theorem 4.7.

4.6.2 Limit law and chaos decomposition

This subsection is devoted to the limit law of Tn in Theorem 4.4. Following the standard

strategy, our goal is to find the first order approximation Ln of Tn in the form of a sum

of i.i.d. terms. Now, provided that the remainder Tn − θ − Ln = op(n
−1/2), it follows from

the CLT and Slutsky’s lemma that
√
N(Tn − θ) converges weakly to a normal distribution.

However, there are two main challenges. First, the statistic Tn has a rather complicated

expression involving a ratio of two infinite-order U-statistics. This prevents us from utiliz-

ing the Hoeffding decomposition to derive the first order approximation. Second, due to
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its complicated nature, it is extremely challenging to control the remainder—the variance

computation for classical U-statistics does not apply here.

To address the first challenge, the key observation is that Tn admits a simple expression

under the model µ as shown in Proposition 4.8. This allows us to obtain a linear approxi-

mation of Tn under the model µ which we call the first order chaos. Due to the contiguity

result in Theorem 4.7, the first order chaos can be viewed as the first order approximation

of Tn under P ⊗ Q. As for the second challenge, we develop a novel approach to control

the remainder using the spectral gap of the operators A and A∗. Since this approach is also

used to establish the limit law of Dn in Theorem 4.5, we discuss the treatment of Dn and

the remainder together in Section 4.6.3.

First order approximation

We first give a informal derivation of the first order approximation Ln and prove the asymp-

totic normality of Tn. Recall from Proposition 4.8 that Tn = Eµ[η(X1, Y1) | Gn], where

Eµ[· | Gn] represents the conditional expectation under µ. Hence, in order to obtain the first

order approximation of Tn, it is natural to approximate η(X, Y ) − θ by some linear term

f(X) + g(Y ) under (X, Y ) ∼ µ and then use

Eµ[f(X1) + g(Y1) | Gn] =
1

n

n∑
i=1

[f(Xi) + g(Yi)]

as the first order approximation of Tn. A good linear approximation f(X) + g(Y ) should

satisfy

Eµ[η(X, Y )− θ | X] = Eµ[f(X) + g(Y ) | X]

Eµ[η(X, Y )− θ | Y ] = Eµ[f(X) + g(Y ) | Y ].
(4.28)

Recall that dµ
d(P⊗Q)

(x, y) = ξ(x, y) and κ1,0 from (4.24). It holds that

Eµ[η(X, Y )− θ | X](x) =

∫
[η(x, y)− θ]ξ(x, y)dQ(y) = κ1,0(x).
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Similarly, we have Eµ[η(X, Y )− θ | Y ](y) = κ0,1(y). Moreover, by Definition 4.1, we obtain

Eµ[g(Y ) | X](x) =

∫
g(y)ξ(x, y)dQ(y) = (A∗g)(x)

Eµ[f(X) | Y ](y) =

∫
f(x)ξ(x, y)dP (x) = (Af)(y).

(4.29)

As a result, the condition (4.28) becomes

κ1,0(X) = f(X) +A∗g(X) and κ0,1(Y ) = Af(Y ) + g(Y ). (4.30)

Formally, we can solve the linear system (4.30) to get

f = (I −A∗A)−1(κ1,0 −A∗κ0,1) and g = (I −AA∗)−1(κ0,1 −Aκ1,0).

We will make this rigorous later in this section. This suggests that the first order approxi-

mation of Tn should be

1

n

n∑
i=1

[
(I −A∗A)−1(κ1,0 −A∗κ0,1)(Xi) + (I −AA∗)−1(κ0,1 −Aκ1,0)(Yi)

]
which is exactly the first order chaos Ln in Theorem 4.6. In fact, the next result shows that,

after subtracting Ln from Tn − θ, the variance of the numerator is of order O(n−2).

By some standard algebra, it can be shown that the remainder Tn − θ − Ln = Un/Dn,

where Dn is defined in (4.25) and

Un :=
1

n · n!

∑
σ∈Sn

n∑
i=1

η̃(Xi, Yσi)ξ
⊗(X, Yσ) (4.31)

with η̃(x, y) defined as

η(x, y)− θ − (I −A∗A)−1(κ1,0 −A∗κ0,1)(x)− (I −AA∗)−1(κ0,1 −Aκ1,0)(y). (4.32)

Proposition 4.9. Under Assumptions 4.2 and 4.3, we have E[U2
n] = O(n−2).

Similar to Dn, the numerator Un is also a two-sample U-statistic of infinite order. We

again defer the proof of Proposition 4.9 to Section 4.6.3. Let us prove the main result.

Proof of Theorem 4.6. According to Theorem 4.5 and Proposition 4.9, we have Dn = Op(1)

and Un = op(n
−1/2). By Slutsky’s Lemma, it holds that Tn − θ − Ln = Un/Dn = op(n

−1/2).

Now, the asymptotic normality follows from the standard Lindeberg CLT (Billingsley, 1995,

Section 27).
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Chaos decomposition for paired samples

We then derive Ln rigorously as the first order chaos of Tn. The key technique used to analyze

U-statistics is the Hoeffding decomposition. Given an independent sample, it decomposes

the statistic into terms of increasing complexity by projecting the statistic onto orthogonal

L2 subspaces spanned by subsets of the sample. However, under the model µ, Xi and Yi

are dependent for each i ∈ [n]. Moreover, the statistic is not explicit but expressed as a

conditional expectation on Gn := σ(Pn, Qn). To address these challenges, we consider what

we call the chaos decomposition where each term in the expansion is a polynomial function

of (Pn, Qn). This decomposition can be computed using orthogonal projections in L2(µn).

We change throughout this section the measure so that (X1, Y1), . . . , (Xn, Yn)
i.i.d.∼ µ.

Let H0 ⊂ L2(µn) be the subspace spanned by constant functions and H1 ⊂ L2(µn) be the

subspace spanned by functions of the type

n∑
i=1

[f1,0(Xi) + f0,1(Yi)] (4.33)

that is orthogonal to H0. It is clear that the (orthogonal) projection of Tn onto H0 is given

by ProjH0
(Tn) = θ. It turns out that Ln is the projection of Tn onto H1 (see Appendix C.3

for the proof), which we refer to as the first order chaos. Note that the elements in L2 spaces

are only defined up to zero-measure sets (or equivalent classes). For two elements f and g

in L2, f = g should be understood as f equals g up to equivalent classes.

Proposition 4.10. Under Assumptions 4.2 and 4.3, the first order chaos of the statistic Tn

is given by

Ln :=
1

n

n∑
i=1

[(I −A∗A)−1(κ1,0 −A∗κ0,1)(Xi) + (I −AA∗)−1(κ0,1 −Aκ1,0)(Yi)].

We then derive a more compact expression of Ln using the operator B in Definition 4.2.

We start by providing an identity regarding A and B in the following lemma. Given a

probability measure ν, let L2
0(ν) be the subspace of L2(ν) consisting of mean-zero functions.
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Lemma 4.11. Under Assumption 4.2, for any f ∈ L2
0(P ) and g ∈ L2

0(Q), it holds that

(I + B)−1(f ⊕ g) = [(I −A∗A)−1(f −A∗g)]⊕ [(I −AA∗)−1(g −Af)]. (4.34)

Corollary 4.12. Under Assumptions 4.2 and 4.3, the first order chaos of Tn admits an

alternative expression Ln = 1
n

∑n
i=1(I + B)−1(κ1,0 ⊕ κ0,1)(Xi, Yi).

Remark 4.6. Note that the above expression of Ln is permutation symmetric, i.e.,
∑n

i=1(I+

B)−1(κ1,0 ⊕ κ0,1)(Xi, Yi) =
∑n

i=1(I + B)−1(κ1,0 ⊕ κ0,1)(Xi, Yσi) for all σ ∈ Sn.

Remark 4.7. Another way to see this is: due to (4.30), κ1,0 ⊕ κ0,1 = f ⊕ g +A∗g ⊕Af =

(I + B)(f ⊕ g).

4.6.3 Analysis of the denominator and the remainder

Recall from Section 4.6.2 that the first order remainder R1 := Tn − θ −Ln = Un/Dn, where

Un :=
1

n · n!

∑
σ∈Sn

n∑
i=1

η̃(Xi, Yσi)ξ
⊗(X, Yσ) and Dn :=

1

n!

∑
σ∈Sn

ξ⊗(X, Yσ), (4.35)

with η̃(x, y) defined in (4.32). We will prove the limit law of Dn in Theorem 4.5 and the

variance bound of Un in Proposition 4.9. The strategy is to decompose Dn and Un into

orthogonal pieces using the Hoeffding decomposition, and then bound the higher order terms

using the spectral gap of the operators A and A∗. Note that both Dn and Un can be viewed

as two-sample U-statistics of infinite order. Techniques for U-statistics of fixed order and one-

sample U-statistics of infinite order do not directly apply here. We develop new techniques

for such U-statistics.

We work throughout this section with the original model assuming that {(Xi, Yi)}ni=1
i.i.d.∼

P ⊗Q and use E to denote the expectation. We first derive the Hoeffding decomposition of

Dn and Un. The proof can be found in Appendix C.4.1. We denote ξ̃ := ξ − 1 and h := η̃ξ.
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Proposition 4.13. The following Hoeffding decompositions hold:

Dn = 1 +
∑

A,B⊂[n]
|A|=|B|>0

1

n!

∑
σ∈Sn:σA=B

∏
i∈A

ξ̃(Xi, Yσi)

Un =
∑

A,B⊂[n]
|A|=|B|>0

1

n · n!

∑
σ∈Sn:σA=B

∑
i∈A

h(Xi, Yσi)
∏

j∈A\{i}

ξ̃(Xj, Yσj),
(4.36)

where σA := {σi : i ∈ A}. Moreover,

E[D2
n] = 1 +

n∑
r=1

∑
σ∈Sr

E
[ r∏
j=1

ξ̃(Xj, Yj)ξ̃(Xj, Yσj)
]

E[U2
n] =

1

n2

n∑
r=1

r

r!

∑
σ∈Sr

r∑
i=1

E
[
h(X1, Y1)

r∏
j=2

ξ̃(Xj, Yj)h(Xi, Yσi)
∏

j∈[r]\{i}

ξ̃(Xj, Yσj)
]
.

We then bound the variance of Dn and Un using the spectral gap of operators A and A∗.

Assumption 4.2 guarantees that such spectral gap does exist. We start with a contraction

property; see Appendix C.4.2 for a proof. For ν1, ν2 ∈ M1(Rd), we let L2
0,0(ν1 ⊗ ν2) be the

set of functions such that

E[f(Z1, Z2) | Z1]
a.s.
= 0 and E[f(Z1, Z2) | Z2]

a.s.
= 0

where (Z1, Z2) ∼ ν1 ⊗ ν2.

Lemma 4.14. Recall s1 from Assumption 4.2. For any f ∈ L2
0,0(P⊗P ), we have (IP⊗A)f ∈

L2
0,0(P⊗Q) and ‖(IP ⊗A)f‖L2(P⊗Q) ≤ s1 ‖f‖L2(P⊗P ). Similar results hold for IP⊗A∗, A⊗IQ

and A∗ ⊗ IQ.

According to Proposition 4.13, the key quantity in the variances of Dn and Un is

E

f(X1, Y1)
n∏
j=2

ξ̃(Xj, Yj)f(Xi, Yσi)
∏

j∈[n]\{i}

ξ̃(Xj, Yσj)

 (4.37)

for some f ∈ L2(P⊗Q), where f = ξ̃ = ξ−1 forDn and f = h = η̃ξ for Un. In order to control

it, we decompose a permutation into disjoint cycles. By independence, the expectation then
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equals the product of expectations w.r.t. each cycle. We then simplify each expectation by

iteratively integrating w.r.t. a single variable, while keeping the rest of them being fixed.

This procedure brings about operators in Lemma 4.14. Applying their contraction property

then gives the following bound for (4.37). We defer its proof to Appendix C.4.2.

Lemma 4.15. Let ς0 := ‖ξ̃‖L2(P⊗Q) and ςh := ‖h‖L2(P⊗Q). Under Assumption 4.2, for any

n ∈ N+, σ ∈ Sn and i ∈ [n], we have

E

h(X1, Y1)
n∏
j=2

ξ̃(Xj, Yj)h(Xi, Yσi)
∏

j∈[n]\{i}

ξ̃(Xj, Yσj)

 ≤ s
2(n−#σ)
1 ς2

hς
2(#σ−1)
0 ,

where #σ is the number of cycles of the permutation σ.

Now we are ready to prove Proposition 4.9.

Proof of Proposition 4.9. Recall from Proposition 4.13 that

E[U2
n] =

1

n2

n∑
r=1

r

r!

∑
σ∈Sr

r∑
i=1

E

h(X1, Y1)
r∏
j=2

ξ̃(Xj, Yj)h(Xi, Yσi)
∏

j∈[n]\{i}

ξ̃(Xj, Yσj)

 .
By Lemma 4.15, we know

E[U2
n] ≤ 1

n2

n∑
r=1

r2

r!

∑
σ∈Sr

s
2(r−#σ)
1 ς

2(#σ−1)
0 ς2, (4.38)

where ς0 := ‖ξ̃‖L2(P⊗Q), ς := ‖η̃ξ‖L2(P⊗Q), and #σ is the number of cycles of σ.

Now, let σ∗ be a random permutation uniformly sampled from Sr. It is well-known (Ar-

ratia et al., 2003, Chapter 1) that the moment generating function of #σ∗ is given by

E[u#σ∗ ] =
∏r

i=1(1− 1
i

+ u
i
). Thus,

r2

r!

∑
σ∈Sr

s
2(r−#σ)
1 ς

2(#σ−1)
0 = r2 E

[
s

2(r−#σ∗)
1 ς

2(#σ∗−1)
0

]
= r2s2r

1 ς
−2
0

r∏
i=1

(
1− 1

i
+
ς2
0

s2
1i

)
.

Let m := dς2
0/s

2
1 − 1e. Then, for every r ≥ m,

r∏
i=1

(
1− 1

i
+
ς2
0

s2
1i

)
≤

r∏
i=1

(1 +m/i) =

∏r
i=1(i+m)

r!
=

∏r
i=r−m(i+m)

m!
≤ (r +m)m

m!
,
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and thus

n∑
r=m

r2

r!

∑
σ∈Sr

s
2(r−#σ)
1 ς

2(#σ−1)
0 ≤

n∑
r=m

1

m!ς2
0

r2(r +m)ms2r
1

converges as n→∞. It follows from (4.38) that E[U2
n] = O(N−2).

With the same proof techniques, a similar result holds for Dn. Recall from Proposi-

tion 4.13 that Dn = 1 +
∑n

r=1Dn,r where

Dn,r :=
1

n!

∑
|A|=|B|=r

∑
σ∈Sn:σA=B

∏
i∈A

ξ̃(Xi, Yσi). (4.39)

Proposition 4.16. Under Assumptions 4.2 and 4.3, we have, for any integer R ≥ 0,

E

(Dn − 1−
R∑
r=1

Dn,r

)2
 ≤ n∑

r=R+1

1

r!

∑
σ∈Sr

s
2(r−#σ)
1 ς2#σ

0 ,

which can be arbitrarily small as R→∞.

Finally, we establish the limiting distribution of Dn. For any integer R ≥ 1, the finite sum

1 +
∑R

r=1Dn,r is a two-sample U-statistic of order R whose asymptotic distribution, given

by Gaussian chaoses (i.e., Hermite polynomials of independent Gaussians), can be obtained

using standard argument in the literature; see, e.g., (Serfling, 1980a, Chapter 5.5.2). Note

that the variance of the remainder Dn − 1 −
∑R

r=1Dn,r can be arbitrarily small as R → ∞

by Proposition 4.16. Now Theorem 4.5 follows from expanding D in terms of Hermite

polynomials. The full proof can be found in Appendix C.4.3.

4.7 Experiments

In this section, we apply the (centered) Schrödinger bridge (SCB) statistic to test for ho-

mogeneity on both synthetic and real data. We compare its type I error rate and statistical

power with the centered discrete EOT considered by Ramdas et al. (2017) and the maximum

mean discrepancy (MMD) proposed by Gretton et al. (2012). For comparison purposes, all

the thresholds are determined by permutation test: we 1) randomly permute the pooled
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Figure 4.2: Statistical power versus parameter for a pair of Gaussian distributions. Top:

N (0, 1) and N (µ, 1); Bottom: N (0, 1) and N (0, σ2).

sample (X1, . . . , Xn, Y1, . . . , Yn) and split them equally into two subsets, 2) compute the test

statistic for the permuted sample, and 3) repeat previous two steps for 500 times and choose

the threshold as the upper 5-percentile of these statistics. This procedure guarantees that

the type I error rates of the three tests are all close to 0.05. The code to reproduce the

experiments is available online (dsb, 2022).

4.7.1 Synthetic data

Settings. We consider 4 different pairs of distributions: 1) N (0, 1) v.s. N (µ, 1), 2) N (0, 1)

v.s. N (0, σ2), 3) VM(0, 1) v.s. VM(µ, 1), and 4) VM(0, 1) v.s. VM(0, κ), where VM(µ, κ) is
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Figure 4.3: Statistical power versus parameter for a pair of Gaussian distributions. Top:

VM(0, 1) and VM(µ, 1); Bottom: VM(0, 1) and VM(0, κ).

the von Mises distribution with location µ and concentration κ. For each pair of distributions

(P,Q), we independently generate n = 50 i.i.d. observations from each of the distributions.

Then we perform the three tests and store their decisions. For the SCB test and EOT test, we

use the quadratic cost and set ε ∈ {0.01, 0.1, 1, 10, 100}. For the MMD test, we use the RBF

kernel k(x, x′) = exp(−‖x− x′‖2 /ε) and set ε ∈ {0.01, 0.1, 1, 10, 100}. We repeat the whole

procedure 200 times and compute the rejection frequency. We plot the rejection frequency

as we vary the parameter (e.g., µ in the first pair). When P = Q, the rejection frequency is

an estimate of the type I error rate; when P 6= Q, it is an estimate of the statistical power.
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Figure 4.4: Type I error rate versus sample size for digits 3 and 3.

Normal distribution. The results for normal distributions are in Figure 4.2. When the

two distributions differ in mean, the SCB test demonstrates similar performance across

different values of ε. The EOT test shows a similar behavior except for ε = 0.01: the

statistical power increases in the beginning and then decreases as µ increases. This decline

is due to the computational instability of the Sinkhorn algorithm used to compute the EOT

when ε is relatively small. As for the MMD test, its performance largely depends on the

parameter in the RBF kernel. The three tests perform analogously with their best parameter.

When the two distributions differ in variance, most of the findings are the same. The

parameter ε = 100 gives significantly worse performance and the instability issue in the

EOT test is more prominent.

Von Mises distribution. The results for von Mises distributions are in Figure 4.3. The

SCB test and EOT test performs similarly without the instability issue. The performance of

the MMD test heavily depends on the parameter ε, and its statistical power with the best

parameter is close to the ones of the SCB test and the EOT test.
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Figure 4.5: Statistical power versus sample size for digits 3 and 5.

4.7.2 Real data

Settings. We compare the three tests on the MNIST dataset (LeCun et al., 1998). Given

two digits m1 and m2, we randomly sample n ∈ {5, 10, 15, 20, 25, 30} images from each of

the two classes. For the SCB test and EOT test, we define the cost on images as follows:

for each image M , we normalize it and view it as a discrete distribution; the cost between

two images is then chosen as the Wasserstein-2 distance between the corresponding discrete

distributions. Again, we set the regularization parameter ε ∈ {0.01, 0.1, 1, 10, 100}. For the

MMD test, we use k(M1,M2) := exp(−c(M1,M2)/ε) as the kernel on images, where c is

the cost defined above. We repeat the whole procedure 200 times and plot the rejection

frequency as we vary the sample size.

Results. The results for m1 = m2 = 3 is shown in Figure 4.4. The type I error rate of all

the tests are close to 0.05 with different parameters. The results for m1 = 3 and m2 = 5 is

presented in Figure 4.5. All the tests performs similarly with the MMD test with ε = 0.01

being slightly better. All the tests achieve power 1 with a relatively small sample size, and

their performance is robust to the value of parameters considered in the experiments.
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Chapter 5

OPTIMAL TRANSPORT DISTANCES FOR
MEASURING INDEPENDENCE

5.1 Introduction

Statistical independence measures have been widely used in machine learning and statistics,

ranging from independent component analysis (Bach and Jordan, 2002; Gretton et al., 2005)

to causal inference (Pfister et al., 2018; Chakraborty and Zhang, 2019), and recently in self-

supervised learning (Li et al., 2021) and representation learning (Ozair et al., 2019). Classical

dependence measures such as Pearson’s correlation coefficient, Spearman’s ρ, and Kendall’s

τ (Hoeffding, 1948b; Kruskal, 1958; Lehmann, 1966) focus on real-valued one dimensional

random variables and thus are not suitable for high dimensional data; see also (Schweizer

and Wolff, 1981; Nikitin, 1995). Modern dependence measures designed for high-dimensional

applications rely heavily on statistical divergences to compare the joint distribution and the

product of marginals.

One popular approach to compare distributions is to embed them into reproducing kernel

Hilbert spaces (Gretton et al., 2007a, 2012), leading to the Hilbert-Schmidt independence

criterion (HSIC) and the associated independence test (Gretton et al., 2005, 2007b). Several

extensions of HSIC are available, such as a relative dependency measure (Bounliphone et al.,

2015) and a joint independence measure among multiple random elements (Pfister et al.,

2018). Another approach is to compare distributions defined on Euclidean spaces via their

characteristic functions or the energy distance (Székely and Rizzo, 2004), leading to the

distance covariance (dCov) of Székely et al. (2007). It was later generalized to metric spaces

of negative type by Lyons (2013). In fact, in their most general form, HSIC and dCov are

equivalent as shown by Sejdinovic et al. (2013). Their corresponding empirical estimators
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all admit a U-statistics expression, and enjoy a convergence rate that is independent of the

dimension. These results can be established using tools from U-statistics theory (see, e.g.,

Serfling, 1980b).

A different line of research explored optimal transport to measure dependence. The

Wasserstein distance naturally defines a dependence measure when it is used to quantify

the dissimilarity between the joint distribution and the product of marginals (see, e.g., Ci-

farelli and Regazzini, 2017). The normalized version—the so-called Wasserstein correlation

coefficient—has recently gained attention in Mordant and Segers (2021); Nies et al. (2021);

Wiesel (2021). Following the classical rank-based tests such as Pearson’s ρ, optimal trans-

port is also used to define multivariate ranks and the subsequent independence tests (Shi

et al., 2020; Deb and Sen, 2021). However, these tests can suffer from the curse of dimen-

sionality (Dudley, 1969; Fournier and Guillin, 2015; Weed and Bach, 2019; Lei, 2020) or high

computational complexity (Peyré and Cuturi, 2019), limiting their practical usefulness.

A remedy to this challenge is to use the entropy regularized formulation of optimal

transport. This is particularly attractive from both a computational viewpoint (Cuturi, 2013)

and a statistical viewpoint (Rigollet and Weed, 2018). Moreover the empirical counterpart of

entropy regularized optimal transport enjoys as an estimator a parametric rate of convergence

and thus appears to overcome the curse of dimensionality (Genevay et al., 2019; Mena and

Weed, 2019). The centered version, the Sinkhorn divergence (Feydy et al., 2019), defines a

semi-metric on probability measures which metrizes weak convergence. Ramdas et al. (2017)

used it for two-sample testing and Genevay et al. (2018) for generative modeling; see also

Salimans et al. (2018); Sanjabi et al. (2018).

The independence criterion we propose uses entropy regularized optimal transport to

compare the joint distribution and the product of marginals. The empirical counterpart

involves a product of two empirical measures, leading to a two-sample U-process on paired

samples. The resulting U-process requires a sophisticated analysis of its statistical behavior;

common tools from empirical processes are ineffective here. Using the decoupling technique

(Peña and Giné, 1999) and duality theory (Peyré and Cuturi, 2019), we prove a rate of
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convergence roughly O(σ3dn−1/2), where n is the sample size, d is the ambient dimension,

and σ is the sub-Gaussian parameter, recovering previous results for two sample statistics.

The remainder of this chapter is organized as follows. In Section 5.2 we recall several def-

initions preliminary to our results. In Section 5.3 we review the entropy-regularized optimal

transport problem with a focus on its computational aspects. In Section 5.4 we introduce

the entropy-regularized optimal transport independence criterion (ETIC) and discuss its key

properties. We propose the Tensor Sinkhorn algorithm with a random feature approxima-

tion to compute ETIC, which admits a quadratic scaling in time and space. We also show

how to approximate ETIC using random features, and how to differentiate through ETIC in

a framework of differentiable programming. In Section 5.5, we give our main theoretical

results, i.e., non-asymptotic bounds, characterizing the statistical behavior of the empirical

estimator of ETIC under both the null and alternative hypotheses. These results, derived

from U-process theory and optimal transport theory tools, extend previous ones from a single

measure to tensor products of measures. In Section 5.6, we compare the empirical behavior

of ETIC with HSIC on both synthetic and real data.

5.2 Preliminaries

We introduce the independence testing problem and explain its connection to the homo-

geneity testing problem. We then define a few existing independence tests which we use in

our experiments. Finally, we briefly recall the notion of metric entropy from the empirical

process theory which is used in our proofs.

5.2.1 Independence testing

Let Z := (X, Y ) be a pair of random vectors from a distribution µXY on Z := X × Y

with marginals µX and µY . Given i.i.d. copies {Zi := (Xi, Yi)}ni=1 of Z, we are interested

in determining whether X and Y are independent or not. This can be formulated as an
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independence testing problem:

H0 : X ⊥⊥ Y ↔ H1 : X 6⊥⊥ Y. (5.1)

That is, we test the null hypothesis that X and Y are independent against the alternative

hypothesis that they are not.

The procedure for solving this independence testing problem is essentially the same as

the one for homogeneity testing in Section 4.4.1. The only difference is that, rather than

quantifying the distance between the marginals µX and µY , we choose an independence

criterion T such that T (X, Y ) measures the dependence between X and Y , that is, the

“more dependent” X and Y are, the larger T (X, Y ) should be. To be more precise, we give

a definition of a valid independence criterion.

Definition 5.1. Let P be a set of distributions on X ×Y. We say an independence criterion

T is valid if, for any (X, Y ) ∼ µXY ∈ P, it holds that T (X, Y ) ≥ 0 and T (X, Y ) = 0 iff

X ⊥⊥ Y .

The independence testing problem (5.1) is closely related to the homogeneity testing

problem. To see this connection, we note that X ⊥⊥ Y if and only if µXY = µX ⊗ µY .

Consequently, we can rewrite the problem (5.1) in its equivalent form:

H0 : µXY = µX ⊗ µY ↔ H1 : µXY 6= µX ⊗ µY . (5.2)

In other words, determining the independence between X and Y is equivalent to determining

the equality between the joint distribution µXY and the product of marginals µX⊗µY , where

both of them are measures on Z. Now, a natural way to measure the independence between

X and Y is to quantify the distance between µXY and µX ⊗ µY .

Remark 5.1. The independence testing problem is not equivalent to the homogeneity testing

problem. In homogeneity testing, we have two independent i.i.d. samples from the two distri-

butions of interest. However, in the equivalent formulation (5.2) of the independence testing

problem, the two distributions of interest are µXY and µX ⊗ µY with samples {(Xi, Yi)}ni=1
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and {(Xi, Yj)}i 6=j, respectively. The second sample is not an i.i.d. sample and the two sam-

ples are not independent. This imposes challenges in the statistical analysis as we will see in

Section 5.5.

5.2.2 Kernel based independence criterion

A popular choice of independence criterion in high dimension is the Hilbert-Schmidt indepen-

dence criterion proposed by Gretton et al. (2005) which we recall here. Let k1 : X ×X → R

and k2 : Y × Y → R be two psd kernels. Due to Steinwart and Christmann (2008, Lemma

4.6),

k((x, y), (x′, y′)) := k1(x, x′)k2(y, y′)

is a psd kernel on the product space X × Y . The Hilbert-Schmidt independence criterion

(HSIC) between X and Y is then defined as the MMD between µXY and µX ⊗ µY with

kernel k, i.e.,

HSIC(X, Y ) := HSIC(X, Y )k1,k2

:= MMDk(µXY , µX ⊗ µY ) =

∫
kd[(µXY − µX ⊗ µY )⊗ (µXY − µX ⊗ µY )].

Following Smola et al. (2007, Section 2.3), it can be expanded as

HSIC(X, Y ) = E[k1(X,X ′)k2(Y, Y ′)] + E[k1(X,X ′)] E[k2(Y, Y ′)]

− 2 E[E[k1(X,X ′) | X] E[k2(Y, Y ′) | Y ]],
(5.3)

where (X ′, Y ′) is an independent copy of (X, Y ). When X and Y are compact metric

spaces, it is shown by Gretton et al. (2005, Theorem 6) that HSIC is a valid independence

criterion on M1(X × Y) when both k1 and k2 are universal. Here universality is defined by

Steinwart (2001, Definition 4) which we recall below; see also (Steinwart and Christmann,

2008, Chapter 4) for more background materials on universal kernels.

Definition 5.2. A continuous kernel k on a compact metric space X is called universal if

the space of all functions induced by k is dense in C(X ), the space of continuous functions

on X , with respect to the infinity norm.
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Given an i.i.d. sample {(Xi, Yi)}ni=1 from µXY , we can estimate HSIC(X, Y ) by

1

n2

n∑
i,j=1

k1(Xi, Xj)k2(Yi, Yj) +
1

n4

n∑
i,j,s,t=1

k1(Xi, Xj)k2(Ys, Yt)−
2

n3

n∑
i,j,s=1

k1(Xi, Xj)k2(Yi, Ys),

We refer to it as the HSIC statistic. It can be shown that (Gretton et al., 2007b, Theorems

1 and 2) the HSIC statistic converges to HSIC(X, Y ) at rate O(n−1) and O(n−1/2) under H0

and H1, respectively. This suggests that the properly calibrated HSIC-based test has power

converging to one as n→∞.

5.2.3 Distance based independence criterion

Another widely used independence criterion is the distance covariance (dCov) introduced by

Székely and Rizzo (2004) on Euclidean spaces and later generalized to semi-metric spaces of

negative type (Lyons, 2013; Sejdinovic et al., 2013). Let (X , ρ1) and (Y , ρ2) be semi-metric

spaces of negative type. The dCov of X and Y is defined to be

dCov(X, Y ) := dCov(X, Y )ρ1,ρ2 :=

∫
ρ1ρ2d[(µXY − µX ⊗ µY )⊗ (µXY − µX ⊗ µY )],

where ρ1ρ2 is viewed as a function on (X × Y) × (X × Y). While this definition suggests

that the distance covariance and the energy distance are closed related, it is not true that

dCovρ1,ρ2(X, Y ) equals ED−ρ1ρ2(µXY , µX ⊗ µY ) since −ρ1ρ2 is not a semi-metric. How-

ever, due to Sejdinovic et al. (2013, Corollary 26), there exists a semi-metric ρ̃ such that

dCovρ1,ρ2(X, Y ) = EDρ̃(µXY , µX ⊗ µY ). When (X , ρ1) and (Y , ρ2) are metric spaces of

strong negative type, Lyons (2013, Theorem 3.20) shows that the distance covariance is a

valid independence criterion.

The distance covariance and HSIC inherit the equivalence between the energy distance

and MMD. To be more specific, there exist (Sejdinovic et al., 2013, Theorem 24) psd kernels

k1 and k2 on X and Y , respectively, such that dCovρ1,ρ2(X, Y ) = 4 HSICk1,k2(X, Y ). For this

reason, we only consider HSIC in our experiments.
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5.2.4 Sub-Gaussian processes and metric entropy

The presentation of this section mainly follows Wainwright (2019, Section 5). The sub-

Gaussian process is an extension of the sub-Gaussian random variable to stochastic processes.

Intuitively, a sub-Gaussian process is a stochastic process with sub-Gaussian increments. We

give its precise definition here. Let (F , ρ) be a metric space.

Definition 5.3. Let {Zf : f ∈ F} be a collection of mean-zero random variables. We call it

a sub-Gaussian process with respect to ρ if

E[exp(λ(Zf − Zf ′))] ≤ exp[λ2ρ2(f, f ′)/2], for all λ > 0.

A well-known result for sub-Gaussian processes is Dudley’s entropy integral bound. Be-

fore we state it, let us review the notions of covering number and metric entropy. The

covering number of a metric space is the number of balls of a fixed radius τ > 0 required to

cover it, which provides a way to measure the size of this space.

Definition 5.4. Let {f 1, . . . , fN} ⊂ F . We call it a τ -cover of F w.r.t. ρ if for each f ∈ F

there exists i ∈ [N ] such that ρ(f, fi) ≤ τ . The τ -covering number, denoted by N(τ,F , ρ),

is the cardinality of the smallest τ -cover.

Typically, the covering number diverges as τ → 0+, and the growth rate on a logarithmic

scale is of interest to us. This is characterized by logN(τ,F , ρ) which is known as the metric

entropy. Now we are ready to give Dudley’s entropy integral bound.

Theorem 5.1 (Theorem 5.22 in Wainwright (2019)). Let {Zf : f ∈ F} be a mean-zero

sub-Gaussian process w.r.t. ρ. Then we have

E

[
sup
f,f ′∈F

(Zf − Zf ′)
]
≤ 32

∫ D

0

√
logN(τ,F , ρ)dτ,

where D := supf,f ′∈F ρ(f, f ′) is the diameter of F .
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5.2.5 Empirical processes

Let {Xi}ni=1 be an i.i.d. sample from some distribution P on X . Denote Pn := 1
n

∑n
i=1 δXi

the empirical measure. Given a collection F of real-valued measurable functions on X , the

F -indexed empirical process Gn is defined as

f 7→ Gnf :=
√
n(Pn − P )f =

1√
n

n∑
i=1

[f(Xi)− Pf ],

where Qf :=
∫
fdQ for a signed measure Q. Given a function f such that Pf 2 < ∞, it

follows from the LLN and CLT that

Pnf →a.s. Pf and Gnf →d N (0,VarP (f)).

The empirical process theory aims to study these two convergences uniformly in f over F

(see, e.g., van der Vaart and Wellner, 1996). The key quantity to control is

‖Pn − P‖F := sup
f∈F

1

n

∣∣∣∣∣
n∑
i=1

f(Xi)− Pf

∣∣∣∣∣ . (5.4)

One of the main approaches towards such results is based on the symmetrization trick

reviewed below. The symmetrized empirical process is defined as

f 7→ Snf :=
1

n

n∑
i=1

εif(Xi),

where {εi}ni=1 are i.i.d. Rademacher random variables that are independent of {Xi}ni=1.

Lemma 5.2 (Lemma 2.3.1 in van der Vaart and Wellner (1996)). For every non-decreasing

and convex Φ : R→ R, we have

E[Φ(‖Pn − P‖F)] ≤ E[Φ(2 ‖Sn‖F)].

The symmetrized empirical process is, conditioned on {Xi}ni=1, a sub-Gaussian process,

and thus Dudley’s entropy integral bound can be applied. Take a realization Xi = xi for

i ∈ [n]. We define the mean-zero random variable Xf := 1√
n

∑n
i=1 εif(xi) and consider the
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stochastic process {Xf : f ∈ F}. It can be shown that (Wainwright, 2019, Example 5.24)

this process is sub-Gaussian w.r.t. the metric

‖f − g‖L2(Pn) :=

√√√√ 1

n

n∑
i=1

[f(xi)− g(xi)]2.

Moreover, it holds that

Eε sup
f∈F
|Xf | ≤ 24

∫ supf,g∈F‖f−g‖L2(Pn)

0

√
logN(τ,F , ‖·‖Pn)dτ. (5.5)

5.3 Entropy-Regularized Optimal Transport

Recall the EOT problem (4.5) from Section 4.2:

Sε(P,Q) := min
ν∈Π(P,Q)

[∫
c(z, z′)dν(z, z′) + εKL(ν‖P ⊗Q)

]
. (5.6)

Note that we have changed the notation (x, y) to (z, z′) for the sake of presentation in this

section where z, z′ ∈ Z. In the following, we will take a closer look at this problem.

5.3.1 Dual formulation

According to Genevay et al. (2016, Proposition 2.1), the EOT problem (5.6) admits a dual

formulation

sup
f,g∈C(Z)

[∫
f(z)dP (z) +

∫
g(z′)dQ(z′) + ε− ε

∫
e[f(z)+g(z′)−c(z,z′)]/εdP (z)dQ(z′)

]
, (5.7)

where C(Z) is the set of real-valued continuous functions on Z. Let (fε, gε) be a solution pair

to (5.7). Even though it is not unique, their sum fε + gε is unique. Moreover, the coupling

µε defined via dµε(z, z
′) = ξε(z, z

′)dP (z)dQ(z′) is the unique solution to the EOT problem,

where ξε(z, z
′) := exp {[c(z, z′)− fε(z)− gε(z′)]/ε} satisfies∫

ξε(z, z
′)dP (z)

a.s.
= 1 and

∫
ξε(z, z

′)dQ(z′)
a.s.
= 1. (5.8)

Note that the coupling µε is exactly the Schrödinger bridge defined in Section 4.2.2.
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5.3.2 Sinkhorn algorithm

When P and Q are discrete measures supported on {zi}si=1 and {z′j}tj=1, respectively, we

can efficiently solve the EOT problem (5.6) by the so-called Sinkhorn algorithm. Before we

introduce it, let us give a matrix formulation of the EOT problem between two discrete

measures. Since P and Q have finite support, they can be represented by probability vectors

p ∈ ∆s and q ∈ ∆t, respectively, where ∆k := {p ∈ Rk+ : p> 1 = 1} is the probability

k-simplex. Moreover, the set of couplings Π(P,Q) can be represented by the set of matrices

U(a, b) :=
{
M ∈ Rs×t+ : M 1 = a,M> 1 = b

}
.

Hence, the matrix formulation of the EOT problem reads

min
M∈U(a,b)

[〈M,C〉+ εEnt(M)] , (5.9)

where C ∈ Rs×t is the pairwise cost matrix such that Cij := c(zi, z
′
j) and Ent(M) :=∑s

i=1

∑t
j=1 Mij logMij. Due to Peyré and Cuturi (2019, Proposition 4.3), the solution to

(5.9) is unique and has the form

Mε = Diag(u)K Diag(v) (5.10)

for two (unknown) scaling variables u ∈ Rs+ and v ∈ Rt+, where K ∈ Rs×t+ is the Gram matrix

defined as Kij := e−Cij/ε. Since Mε ∈ U(a, b), the variables u and v must satisfy

u� (Kv) = a and v � (K>u) = b, (5.11)

where � represents the element-wise product. It can be solved by the Sinkhorn algorithm

summarized in Algorithm 2, where � represents the element-wise division. Intuitively, this

algorithm iteratively solves the two constraints in (5.11).

Remark 5.2. The problem (5.10) is known as the matrix scaling problem in the literature

of numerical analysis; see Peyré and Cuturi (2019, Chapter 4.2) for a historical perspective

on this topic.
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Algorithm 2 Sinkhorn Algorithm

Input: a, b, and K.

Initialize u← 1s and v ← 1t.

while not converge do

u← a� (Kv) and v ← b� (K>u).

end while

Output: u and v.

5.3.3 Random feature approximation

There has been a line of work on accelerating the Sinkhorn algorithm. We review here the

random feature technique introduced by Scetbon and Cuturi (2020). On a high level, we

approximate the Gram matrix K by its low-rank approximation ξζ>, where ξ ∈ Rs×p+ and

ζ ∈ Rt×p+ are the matrices of random features. Concretely, let ρ be a probability measure

on a measurable space W . Consider a cost function c such that its induced Gibbs kernel

k := e−c/ε admits the following form:

k(z, z′) =

∫
φ(z, w)φ(z′, w)dρ(w),

where φ : Rd ×W → R+. Note that the Gibbs kernel induced by the quadratic cost admits

this expression (Scetbon and Cuturi, 2020, Lemma 1). For p ∈ N+, we first obtain an

i.i.d. sample {wi}pi=1 from ρ. We then denote w := (w1, . . . , wp) and approximate k(z, z′) by

kw(z, z′) :=
1

p

p∑
l=1

φ(z, wl)φ(z′, wl).

In other words, we approximate the Gibbs matrix by ξζ> where ξil := 1√
p
φ(zi, wl) and

ζjl := 1√
p
φ(z′j, wl) for i ∈ [s], j ∈ [t], and l ∈ [p]. Now, if we replace K by ξζ> in Algorithm 2

and compute, e.g., Kv in two steps (i.e., ζ>v and ξ(ζ>v)), then we reduce the time complexity

of each Sinkhorn iteration from O(st) to O((s+t)p). According to Scetbon and Cuturi (2020,

Theorem 3.1), it suffices to choose p = O(log (s+ t)) to achieve a good accuracy.
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5.3.4 Sinkhorn divergence

Since the EOT objective Sε in (5.6) is an approximation to the OT cost when ε is small, it

is tempting to use it to quantify the distance between probability measures. However, it is

not centered in the sense that Sε(P, P ) is not necessarily zero. One remedy is to center it by

subtracting two diagonal terms:

S̄ε(P,Q) := Sε(P,Q)− 1

2
Sε(P, P )− 1

2
Sε(Q,Q). (5.12)

This centered version is known as the Sinkhorn divergence which first appears in Ramdas

et al. (2017). In a follow-up work, Genevay et al. (2018) applied it to generative modeling.

It is shown by Feydy et al. (2019, Theorem 1) that S̄ε defines a semi-metric (metric without

the triangle inequality) on the space of probability measures with bounded support if the

Gibbs kernel induced by the cost is positive universal.

5.4 Entropy-Regularized Optimal Transport for Independence Testing

We introduce in this section a new independence criterion based on the entropy-regularized

optimal transport. We develop an independence test whose test statistic is the plug-in

estimator of the independence criterion. Finally, we design an efficient algorithm to compute

the test statistic which scales quadratically both in time and space. All the proofs are

deferred to Appendix D.1.

5.4.1 Entropy-regularized optimal transport independence criterion

Let c : Z × Z → R+ be a continuous cost function satisfying c((x, y), (x′, y′)) = 0 iff

(x, y) = (x′, y′). We introduce the entropy regularized optimal transport independence crite-

rion (ETIC):

T (X, Y ) := Tε(X, Y ) := S̄ε(µXY , µX ⊗ µY ), (5.13)

where S̄ε is the Sinkhorn divergence defined in (5.12). That is, we use the Sinkhorn divergence

to quantify the distance between µXY and µX⊗µY which measures the independence between
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X and Y .

As we will show later, it is computationally convenient to work with additive cost func-

tions, i.e., c((x, y), (x′, y′)) = c1(x, x′) + c2(y, y′). For this type of cost functions, we prove

that the resulting ETIC is a valid independence criterion as long as the induced Gibbs kernels

k1(x, x′) = e−c1(x,x′)/ε and k2(y, y′) = e−c2(y,y′)/ε (5.14)

are positive universal.

Proposition 5.3. Let X and Y be compact metric spaces equipped with Lipschitz costs c1

and c2, respectively. Assume that the Gibbs kernels defined in (5.14) are positive universal.

Then ETIC is a valid independence criterion onM1(X ×Y). Moreover, the claim holds true

for measures with a bounded support on X × Y = Rd with the costs c1(x, x′) = ‖x− x′‖p /λ1

and c2(y, y′) = ‖y − y′‖p /λ2 for p ∈ {1, 2} and for all λ1, λ2 > 0.

A running example we consider in this chapter is the weighted quadratic cost.

Example 5.3 (Weighted quadratic cost). Let λ1, λ2 ∈ (0,∞). Consider the cost function

c((x, y), (x′, y′)) =
1

λ1

‖x− x′‖2
+

1

λ2

‖y − y′‖2
. (5.15)

This cost induces two universal kernels

k1(x, x′) = e−‖x−x
′‖2/(ελ1) and k2(y, y′) = e−‖y−y

′‖2/(ελ2).

They play a similar role as the two kernels used in HSIC, and ελ1 and ελ2 serve as two

kernel parameters.

5.4.2 ETIC-based independence test

In order to use ETIC for independence testing, we use the plug-in estimator of T (X, Y ) as

the test statistic, that is,

Tn(X, Y ) := Tε,n(X, Y ) := S̄ε(µ̂XY , µ̂X ⊗ µ̂Y ), (5.16)
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Algorithm 3 Tensor Sinkhorn Algorithm

1: Input: A, B, K1, and K2.

2: Initialize U ← 1n×n and V ← 1n×n.

3: while not converge do

4: U ← A� (K1V K
>
2 ) and V = B � (K>1 UK2).

5: end while

6: Output: U and V .

where µ̂XY := 1
n

∑n
i=1 δ(Xi,Yi) is the empirical measure of the pairs, and µ̂X := 1

n

∑n
i=1 δXi

and µ̂Y := 1
n

∑n
i=1 δYi are the empirical measures of the two samples, respectively. Note that

this is different from the plug-in estimator in the two-sample case since the product measure

µX ⊗ µY is estimated by n2 dependent (rather than independent) pairs {(Xi, Yj)}ni,j=1. It

raises challenges in the analysis of its statistical behavior as elaborated in Section 5.5. The

statistical test (or decision rule) is then defined as

ψ(α) := 1{Tn(X, Y ) > Hn(α)}, (5.17)

where α is a prescribed significance level, e.g., α = 0.05, and Hn(α) is a threshold chosen

such that the type I error rate P(ψ(α) = 1 | H0) is bounded by α.

To avoid tuning the regularization parameter ε, we also consider an adaptive version of

the test:

ψa(α) := 1

{
max
ε∈E

T̄n,ε(X, Y ) > Hn,E(α)

}
, (5.18)

where E is a finite set of positive numbers selected by the user and T̄n,ε(X, Y ) := [Tn,ε(X, Y )−

E[Tn,ε(X, Y )]]/Sd(Tn,ε(X, Y )) is the studentized version of Tn,ε(X, Y ). In practice, the two

quantities E[Tn,ε(X, Y )] and Sd(Tn,ε(X, Y )) can be estimated via resampling.

5.4.3 Efficient computation of the ETIC statistic

We then derive an efficient algorithm to compute the test statistic. When µXY admits a

density, µ̂X ⊗ µ̂Y is supported on n2 items {Xi}ni=1 × {Yi}ni=1 almost surely. If we compute
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the ETIC statistic naively using the Sinkhorn algorithm (i.e., Algorithm 2), each iteration

costs O(n4) time and space due to the matrix-vector product of sizes n2×n2 and n2× 1. To

speed up its computation, we adopt here a variant of the Sinkhorn algorithm to solve the

EOT problem between two measures supported on the Cartesian product {xi}ni=1 × {yi}ni=1.

Let A and B be two probability measures on {xi}ni=1 × {yi}ni=1, where xi ∈ X and

yj ∈ Y . For convenience, both A and B are represented as matrices, i.e., Aij = A(xi, yj).

For instance, if we choose A = µ̂XY and B = µ̂X ⊗ µ̂Y , then, in its matrix form, A = In/n

and B = 1n×n/n
2. Consider an additive cost function c, e.g., the weighted quadratic cost,

such that c((x, y), (x′, y′)) = c1(x, x′) + c2(y, y′) for x, x′ ∈ {xi}ni=1 and y, y′ ∈ {yj}nj=1. Let

C1 and C2 be the cost matrices of {xi}ni=1 and {yj}nj=1, respectively. Define Gibbs matrices

K1 := e−C1/ε and K2 := e−C2/ε, where the exponential function is element-wise. We show

in the following proposition that Algorithm 3 can be used to compute Sε(A,B), where �

represents element-wise division. We refer to it as the Tensor Sinkhorn algorithm. The proof

can be found in Appendix D.1. Each iteration in the Tensor Sinkhorn algorithm takes O(n3)

time and O(n2) space, thanks to the additive cost function being used. This algorithm can

be generalized to measures supported on the Cartesian product of p > 2 sets, which is also

noted in Peyré and Cuturi (2019, Remark 4.17).

Proposition 5.4. Define some constants κ1 := maxi,i′ k
−1
1 (xi, xi′), κ2 := maxj,j′ k

−1
2 (yj, yj′),

and κ3 := maxi,j{a−1
ij , b

−1
ij }. The Tensor Sinkhorn algorithm outputs an τ -accurate estimate

of the entropic cost Sε(A,B) in O (n3 log(κ1κ2κ3)/τ) arithmetic operations.

To further speed up the computation, we apply the random feature technique introduced

in Section 5.3.3. To be more concrete, let ρ1 and ρ2 be two probability measures on measur-

able spaces U and V , respectively. Consider cost functions c1 and c2 such that their induced

Gibbs kernels k1 := e−c1/ε and k2 := e−c2/ε are of the form

k1(x, x′) =

∫
ϕ(x, u)ϕ(x′, u)dρ1(u) and k2(y, y′) =

∫
ψ(y, v)ψ(y′, v)dρ2(v),

where ϕ : X × U → R+ and ψ : Y × V → R+. Note that the Gibbs kernels induced by

the weighted quadratic cost admit this expression. For p ∈ N+, we obtain two i.i.d. sam-
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ples {ui}pi=1 and {vi}pi=1 from ρ1 and ρ2, respectively. We denote u := (u1, . . . , up) and

approximate k1(x, x′) by

k1,u(x, x′) :=
1

p

p∑
k=1

ϕ(x, uk)
>ϕ(x′, uk).

We denote by K1,u the Gram matrix of k1,u. Similarly, we define v, k2,v, and K2,v. Replacing

K1 and K2 by their random feature approximations K1,u and K2,v in Algorithm 3 leads to

an algorithm with O(pn2) time complexity and O(n2) space complexity in each iteration.

It is clear that this new algorithm is exactly the Sinkhorn algorithm that solves the EOT

problem between A and B with cost cu,v((x, y), (x′, y′)) := c1,u(x, x′) + c2,v(y, y′), where

c1,u := −ε log k1,u and c2,v := −ε log k2,v. Let Sε,cu,v(A,B) be the minimum of this EOT

problem and Sε,c(A,B) be the minimum of the same EOT problem with cost c. The next

proposition provides a high-probability guarantee for this random feature approximation.

Assumption 5.1. There exists a constant C > 0 such that, for all x, x′ ∈ {xi}ni=1, y, y′ ∈

{yj}nj=1, u ∈ U , and v ∈ V, it holds that

ϕ(x, u)ϕ(x′, u)/k1(x, x′) ≤ C and ψ(y, v)ψ(y′, v)/k2(y, y′) ≤ C.

Proposition 5.5. Let δ > 0, τ > 0, and p = Ω
(
C2

τ2 log n
δ

)
. Under Assumption 5.1, with

probability at least 1− δ, it holds that

∣∣Sε,cu,v(A,B)− Sε,c(A,B)
∣∣ ≤ τ.

Remark 5.4. If one applies the random feature technique directly to the original Sinkhorn

algorithm, then the resulting algorithm would have the same O(pn2) time complexity but

O(pn2) space complexity.

For large-scale applications, the O(n2) space complexity can sometimes be infeasible.

Therefore, we also provide a memory-efficient implementation of the ETIC computation

using symbolic matrices (Feydy et al., 2020). The key idea is that: when constructing the
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Table 5.1: Comparison of complexities, in time and in space, of Sinkhorn, Tensor Sinkhorn

(TS), and large-scale Tensor Sinkhorn (LS) algorithms, exact or with random features ap-

proximation.

Sinkhorn TS LS

Exact RF Exact RF Exact RF

Time O(n4) O(pn2) O(n3) O(pn2) O(n3) O(pn2)

Space O(n4) O(pn2) O(n2) O(n2) O(dn) O(pn)

Gibbs matrix K1 := (k1(Xi, Xj))
n
i,j=1, instead of storing K1 as a full matrix, we store it as

a symbolic matrix linked by the kernel k1 and data {Xi}ni=1. Moreover, we only evaluate

the symbolic link if the matrix K1 is involved in a reduction operation such as K1v. This

implementation improves the space complexity of the Tensor Sinkhorn algorithm from O(n2)

to O(np) or O(nd) depending on whether the random feature approximation is used or not.

We call it the large-scale Tensor Sinkhorn algorithm. We summarize the time and space

complexities of different implementations of ETIC in Table 5.1. We also compare the runtime

and memory of variants of the Tensor Sinkhorn algorithm in Figure 5.1. As expected, the

large-scale Tensor Sinkhorn algorithm outperforms others both in time and memory.

5.4.4 Gradient backpropagation through ETIC

We describe here how ETIC can fit into a differentiable programming framework, i.e., how

one can run the reverse mode automatic differentiation through statistical quantities based

on ETIC. Recently, Li et al. (2021) proposed a self-supervised learning approach using HSIC

which we summarize below. Let (W,Y ) be a pair of image and its identity. Given an

i.i.d. sample {(Wi, Yi)}ni=1, the goal is to learn a feature embedding model φθ such that the
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Figure 5.1: Runtime and memory comparison of Tensor Sinkhorn (TS), Tensor Sinkhorn with

random feature (TS-RF), and large-scale Tensor Sinkhorn with random feature (LS-RF). The

number of random features is set to O(log n).

dependence between the image feature X := φθ(W ) and its identity Y is maximized, i.e.,

maxθ∈Θ HSICn(φθ(W ), Y ). Similarly, one could also maximize the dependence measured by

ETIC instead. This boils down to gradient backpropagation through Tn(φθ(W ), Y ). We

use the strategy in Peyré and Cuturi (2019, Section 9.1.3) and illustrate it on the entropy

regularized OT Sε(µ̂XY , µ̂X ⊗ µ̂Y ) defined in (5.6). For the forward pass, we construct

the computational graph via the following steps. Firstly, we run Algorithm 3 (or its ran-

dom feature variant) with A = In/n, B = 1n×n/n
2, K1 =

(
k1(φθ(Wi), φθ(Wj))

)
n×n, and

K2 =
(
k2(Yi, Yj)

)
n×n for L iterations to get U (L) and V (L). Secondly, we obtain the associated

Schrödinger potentials F (L) := ε logU (L) and G(L) := ε log V (L). Thirdly, we approximate

Sε(µ̂XY , µ̂X ⊗ µ̂Y ) by S
(L)
ε (θ) := 〈F (L), A〉F + 〈G(L), B〉F where 〈·, ·〉F is the Frobenius inner

product. For the backward pass, we call the reverse mode automatic differentiation to eval-

uate ∇θS
(L)
ε (θ). Since computing S

(L)
ε (θ) only requires simple operations between matrices,

the time complexity of the above procedure is of the same order as the one of Algorithm 3

for the computation of S
(L)
ε (θ).
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5.5 Finite-Sample Analysis

We characterize the statistical behavior of the ETIC test by providing non-asymptotic

bounds. We present the main results and their proof sketches here. We use C to denote a

constant whose value may change from line to line, where subscripts are used to emphasize

the dependency on other quantities. For instance, Cd represents a constant depending only

on the dimension d. The detailed proofs are deferred to Appendix D.

5.5.1 Consistency

We first show that the ETIC statistic is a consistent estimator of its population counterpart

under both the null and alternative.

Assumption 5.2. We make the following assumptions:

(i) X × Y = Rd1 × Rd2 and d := d1 + d2.

(ii) c is chosen as the quadratic cost.

(iii) µX and µY are subG(σ2).

The quadratic cost is chosen for the sake of concision. We extend the results to weighted

quadratic cost in Appendix D.

Theorem 5.6. Under Assumption 5.2, we have

E |Tn(X, Y )− T (X, Y )| ≤ Cd

(
1 +

σd5d/2e+6

εd5d/4e+3

)
ε√
n
.

The bound in Theorem 5.6 coincides with the one obtained by Mena and Weed (2019) in

the two-sample case. In terms of the sample size, it scales as O(n−1/2) which is the standard

parametric rate of convergence. As for the dimension, it contains two dimension-dependent

terms. The first term Cd is a constant that only depends on the dimension. The second one

involving σ2 and ε has exponential dependency on the dimension. If we choose ε = σ2, the

bound simplifies to Cdσ
2/
√
n which only depends on the dimension via the constant Cd.
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We then outline the proof ideas of this theorem. Given a probability measure µ on Rd

and a set of real-valued functions F on Rd, we denote

‖µ‖F := sup
f∈F

∣∣∣∣∫ fdµ

∣∣∣∣ .
We start by upper bounding the above L1 loss E |Tn(X, Y )− T (X, Y )| by the supremum of

an empirical process and a U-process

‖µ̂XY − µXY ‖2
Fs and ‖µ̂X ⊗ µ̂Y − µX ⊗ µY ‖2

Fs ,

respectively, where F s is the set of real-valued functions satisfying

|f(x, y)| ≤ Cs,d(1 + ‖(x, y)‖2) and |Dαf(x, y)| ≤ Cs,d(1 + ‖(x, y)‖|α|),

for any multi-index α with 1 < |α| ≤ s. Mena and Weed (2019) used a similar strategy in

their proofs. Empirical process theory has a long history in statistics and there are well-

established tools to control them (see, e.g., van der Vaart and Wellner, 1996). However, the

theory of U-processes is much less well-developed. Moreover, many of the previous works

focus on one-sample U-processes (see, e.g., Peña and Giné, 1999). The second U-process

here is a two-sample U-process on a paired sample, bringing about additional challenges in

its analysis compared to the first empirical process. In order to control it, we develop the

following results.

The first result is a metric entropy bound for degenerate two-sample U-processes. The

main challenge comes from the dependence among the summands in
∑n

i,j=1 f(Xi, Yj). We

get around that using the decoupling technique presented in Peña and Giné (1999). Given

a function f : Rd → R, we say it is degenerate under µX ⊗ µY if

EµX⊗µY [f(X, Y ) | X]
µX -a.s.

= 0 and EµX⊗µY [f(X, Y ) | Y ]
µY -a.s.

= 0.

Proposition 5.7. Let F be a class of real-valued functions that are degenerate under µX⊗µY .

Under Assumption 5.2, we have

E ‖µ̂X ⊗ µ̂Y − µX ⊗ µY ‖2
F ≤

C

n
E

(∫ B

0

√
logN(τ,F ,L2(µ̂X ⊗ µ̂Y ))dτ

)2

,

where B is any measurable upper bound of 2 maxf∈F ‖f‖L2(µ̂X⊗µ̂Y ).
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Remark 5.5. In classical two-sample U-statistics literature, it is usually assumed that the

two samples are independent, i.e., X is independent of Y . However, Proposition 5.7 allows

the sample to be paired since (X, Y ) ∼ µXY .

With Proposition 5.7 at hand, we can control the U-process ‖µ̂X ⊗ µ̂Y − µX ⊗ µY ‖2
Fs by

upper bounding its covering number N(τ,F s,L2(µ̂X ⊗ µ̂Y )). The proof is inspired by Mena

and Weed (2019) and relies on a result in van der Vaart and Wellner (1996, Chapter 2.7) to

control the covering number of a class of smooth functions.

Proposition 5.8. Under Assumption 5.2, there exists a random variable L ≥ 1 depending

on the samples {(Xi, Yi)}ni=1 with E[L] ≤ 2 such that, for any s ≥ 2,

logN(τ,F s,L2(µ̂X ⊗ µ̂Y )) ≤ Cs,dτ
−d/sLd/2s(1 + σ2d)

and

max
f∈Fs
‖f‖2

L2(µ̂X⊗µ̂Y ) ≤ Cs,d(1 + Lσ4).

In particular, when s > d/2, we have

E ‖µ̂X ⊗ µ̂Y − µX ⊗ µY ‖2
Fs ≤ Cs,d(1 + σ2d+4)

1

n
.

5.5.2 Exponential tail bound

We also prove an exponential tail bound for the ETIC statistic. It follows from Theorem 5.6

and the McDiarmid inequality.

Theorem 5.9. Let c be the quadratic cost. Assume that µX and µY are supported on a

bounded domain of radius R. Then we have, with probability at least 1− δ,

|Tn(X, Y )− T (X, Y )| ≤ Cd

(
1 +

R5d+16

ε5d/2+8

√
log

6

δ

)
ε√
n
.

Under H0, we have T (X, Y ) = 0, so Theorem 5.9 implies that

|Tn(X, Y )| > Cd

(
1 +

R5d+16

ε5d/2+8

√
log

6

δ

)
ε√
n



127

with probability at most δ. It gives an estimate of the tail behavior of Tn(X, Y ) which

suggests that the critical value Hn(α) in (5.17) should be of order O(n−1/2). Under H1,

Theorem 5.9 implies that

Tn(X, Y ) > T (X, Y )− Cd

(
1 +

R5d+16

ε5d/2+8

√
log

6

δ

)
ε√
n

with probability at least 1− δ. When T (X, Y ) > 0, it is clear that the right hand side in the

above inequality exceeds the threshold Hn(α) for large n. Hence, the ETIC test has power

converging to 1 as n→∞.

5.6 Experiments

We examine the empirical behavior of the proposed ETIC test for independence testing on

both synthetic and real data. The code to reproduce the experiments is available online

(etic, 2022).

We focus on the weighted quadratic cost

c((x, y), (x′, y′)) =
1

λ1

‖x− x′‖2
+

1

λ2

‖y − y′‖2
.

For convenience, we absorb the regularization parameter ε in ETIC into the weights {λi}2
i=1

and set ε = 1. It then induces two Gibbs kernels

k1(x, x′) = e
−‖x−x

′‖2
λ1 and k2(y, y′) = e

−‖y−y
′‖2

λ2

with λi being the parameter of kernel ki for i ∈ {1, 2}. To select the weights, we apply the

median heuristic (Gretton et al., 2007b) widely used for HSIC, i.e.,

λ1 = r1Mx and λ2 = r2My

with r1 and r2 ranging from 0.25 to 4, where Mx and My are the medians of the quadratic

costs {‖Xi −Xj‖2}ni,j=1 and {‖Yi − Yj‖2}ni,j=1, respectively. We also examine its random

feature variant, which we call ETIC-RF, discussed in Section 5.4.3, where the number of

random features is set to be 100 unless otherwise stated. We compare them with the HSIC
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Figure 5.2: Power versus dimension in the linear dependency model (5.19).

statistic with kernels k1 and k2. For a fair comparison, we calibrate these tests by a Monte

Carlo resampling technique (Feuerverger, 1993) with 200 permutations. For each of the

experiment, we repeat the whole procedure 200 times and report the rejection frequency as

either the type I error rate (when the null is true) or power (when the null is not true). Note

that, even though we are using the same λ1 and λ2 in the cost and kernels, that does not

mean we should compare ETIC and HSIC under the same hyper-parameters. Our goal is

to explore their performance over a range of values of the hyper-parameters controlling the

regularization penalties.

Our main findings are: 1) Both ETIC and ETIC-RF are consistent in power as the

sample size approaches infinity. 2) In some scenarios, ETIC and ETIC-RF outperforms

HSIC significantly; in the linear dependency model in particular, their power is much more

robust than HSIC to the value of the hyper-parameters. 3) ETIC-RF performs reasonably

good compared to ETIC with a moderate number (i.e., 100) of random features. 4) All three

tests benefit from large hyper-parameters in detecting simple linear dependency, but smaller

values lead to higher power when the dependency is more complicated.
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Figure 5.3: Power versus sample size in the Gaussian sign model (5.20).

5.6.1 Synthetic data

We first compare the performance of ETIC and ETIC-RF with HSIC on synthetic data. We

consider synthetic benchmarks from Gretton et al. (2007b), Jitkrittum et al. (2017), and

Zhang et al. (2018). To facilitate the comparison, we set r1 = r2 = r ∈ {0.25, 0.5, 1, 2, 4} in

this section.

Linear dependency. We begin with a simple linear dependency model. Concretely,

X ∼ Nd(0, Id) and Y = X1 + Z, (5.19)

where X1 is the first coordinate of X, and Z ∼ N (0, 1) is independent with X. We fix n = 50

and plot the power versus d ∈ [1, 10] in Figure 5.2. All the tests have decaying power as the

dimension increases. This is as expected since larger dimension results in weaker dependency

between X and Y . It is clear that the power of both ETIC and HSIC increases as r increases,

with the former more robust than the latter. While the performance of HSIC is similar to

ETIC when r is large, it is much worse than ETIC when r is small. As for ETIC-RF, it has

similar power curves as ETIC.
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Figure 5.4: Power versus parameter in the subspace dependency model.

Gaussian sign. We then consider a Gaussian sign model, i.e.,

X ∼ Nd(0, Id) and Y = |Z|
d∏
i=1

sgn(Xi), (5.20)

where sgn(·) is the sign function and Z ∼ N (0, 1) is independent with X. This problem is

challenging since Y is independent with any strict subset of {X1, . . . , Xd}. We fix d = 3 and

plot the power versus n ∈ [100, 500] in Figure 5.3. All the tests have improved power as the

sample size increases. Additionally, they all benefit from a small regularization parameter,

with HSIC performs the best and the other two perform similarly in this particular example.

Subspace dependency. One important application of independence testing is indepen-

dent component analysis (Gretton et al., 2005), which involves separating random vari-

ables from their linear mixtures. The next example mimics this application. We construct

our data by i) generating n i.i.d. copies of two random variables following independently

0.5N (0.98, 0.04) + 0.5N (−0.98, 0.04), ii) mixing the two random variables by a rotation ma-

trix parameterized by θ ∈ [0, π/4] (larger θ leads to stronger dependency), iii) appending
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Figure 5.5: Heatmap of power on the bilingual data. The x-axis is for r1 and y-axis is for r2.
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indicates larger power.

Nd−1(0, Id−1) to each of the two mixtures, and iv) multiplying each vector by an indepen-

dent random d-dimensional orthogonal matrix. We refer to it as the subspace dependency

model. We fix n = 64, d = 2, and plot the power versus θ ∈ [0, π/4] in Figure 5.4. As

expected, the power of all three tests improves as θ becomes closer to π/4. Moreover, they

all have improved power as r decreases. ETIC and ETIC-RF performs similarly, and they

are outperformed by HSIC in this example.

5.6.2 Dependency between bilingual text

Inspired by Gretton et al. (2007b), we now investigate the performance of the proposed tests

on bilingual data using recent developments in natural language processing. Our dataset is

taken from the parallel European Parliament corpus (Koehn, 2005) which consists of a large

number of documents of the same content in different languages. For the hyper-parameters,

we consider different values of r1 and r2 ranging from 0.25 to 4.

Settings. To be more specific, we randomly select n = 64 English documents and a para-

graph in each document from the corpus. We then pair each paragraph with a random
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Figure 5.6: Heatmap of power for ETIC-RF with p random features and d′ PCs on the

bilingual data (top: p = 700; bottom: d′ = 10). The x-axis is for r1 and y-axis is for r2.

The indices from 0 to 11 correspond to equally spaced values from 0.25 to 4. Lighter color

indicates larger power.

paragraph in the same document in French to form the sample. This sample is partially

dependent in the sense that the two paragraphs, even though not correspond to the same

paragraph, are in the same document. Finally, we use LaBSE (Feng et al., 2020) to embed

all the paragraphs into a common feature embedding space of dimension 768 and perform in-

dependence testing on these feature vectors. LaBSE is a state-of-the-art, language agnostic,

sentence embedding model based on Bidirectional Encoder Representations from Transform-

ers. This allows us to revisit the idea of Gretton et al. (2007b) yet with modern feature

embeddings.
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Results. The results for ETIC and HSIC are shown in Figure 5.5. ETIC performs better

than HSIC when one of r1 and r2 is large; while HSIC has larger power when r1 or r2 is

small. Overall ETIC appears to perform better than HSIC for large amounts of regularization

parameters.

As for ETIC-RF, the high-dimensional nature ofthe feature embeddings imposes chal-

lenges on the random feature approximation. For its performance to be comparable, we

first use dimension reduction (principal component analysis) on the English embeddings and

French embeddings separately to reduce the dimension to d′ � 768, and then perform ETIC-

RF on the low-dimensional embeddings. Since the dimension reduction step does not utilize

information about the joint distribution µXY , it will not violate the level consistency of the

test.

As shown in the first row of Figure 5.6, The number of PCs d′ has an interesting effect

on the power. Intuitively, the larger d′ is the less information we lose, and thus the larger

power the test has. This can be seen at the lower right corner where both r1 and r2 are large.

However, larger d′ also means the random feature approximation is harder, especially when

r1 and r2 are small. This is reflected at the upper left corner where the power decreases as

d′ increases. We then investigate the effect of p—the number of random features. As shown

in the second row of Figure 5.6, the power increases with the number of random features.

Overall, the random feature approximation demonstrates similar performance as the exact

ETIC with enough random features.
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Chapter 6

CONCLUSION

In this dissertation, we addressed some challenges of statistical divergences arising from

complex and high-dimensional data in modern applications including parameter estima-

tion, generative models comparison, and the Schrödinger bridge problem. There are several

promising venues for future work.

In Chapter 2 we studied the minimum KL divergence estimator in a non-asymptotic fash-

ion using the notion of self-concordance. In a related work (Liu et al., 2022a), the techniques

were utilized to obtain excess risk bound on double machine learning/orthogonal statistical

learning (DML/OSL) estimators for semi-parametric models. Relying on the Neyman or-

thogonality, we can achieve a parametric rate of convergence even if the non-parametric part

is estimated less accurately, i.e., at rate O(n−1/4). However, in some cases such as the case of

a partially linear model with non-Gaussian residual, the DML/OSL estimator can still suffer

from a large bias. To address this challenge, Mackey et al. (2018) considered the notion of k-

orthogonality, recovering the Neyman orthogonality at k = 1, and allowed the non-parametric

part to be estimated at rate O(n−1/(2k+2)). However, their analysis is asymptotic and it would

be interesting to explore this direction with our techniques from a non-asymptotic viewpoint,

e.g., a risk bound for the DML/OSL estimator under k-orthogonality.

In Chapter 3 we investigated the divergence frontiers for comparing generative models and

established sample complexities for its two-step estimation procedure taken by practitioners.

In the first quantization step, we showed the existence of an oracle quantization whose

quantization error scales linearly with the inverse of the quantization level. However, it is

common in practice to use data-dependent quantization schemes with deep neural networks

(see, e.g., Sablayrolles et al., 2019; Hämäläinen et al., 2020) whose statistical behavior is to
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date unclear. Provided new theoretical results on this line of research, it would be interesting

to specialize our bounds to such quantization schemes. Furthermore, while our results hold

for a large class of f -divergences, it is also interesting to go beyond f -divergences and extend

them to, e.g., β-divergences—a class of statistical divergences that is known to be robust

against outliers (Samek et al., 2013).

In Chapter 4 we characterized the asymptotic behavior of the discrete Schrödinger bridge

by developing novel theoretical tools such as the chaos decomposition and variance analy-

sis of infinite-order U-statistics. Note that the standard two-sample first-order U-statistic

with kernel η is 1
n2

∑n
i=1

∑n
j=1 η(Xi, Yj) which can be rewritten as a conditional expecta-

tion EP⊗Q[η(X1, Y1) | Gn], and the statistic Tn also admits a conditional expectation form

Eµ[η(X1, Y1) | Gn]. Hence, we can view the statistic Tn as a first-order U-statistic for paired

samples. It would be interesting to extend our results to high-order U-statistics for paired

samples such as Eµ[η(X1, X2, Y1, Y2) | Gn]. Another interesting direction for future work is

the regime when ε = εn = o(1) as n → ∞. We proved preliminary results in Section 4.3.4

showing the convergence of the discrete Schrödinger bridge towards the OT plan. It is in-

teresting to conduct a more refined analysis by imposing smoothness conditions on the OT

plan in the same spirit as Hütter and Rigollet (2021).

In Chapter 5 we proposed an independence test based on the entropy-regularized optimal

transport and established finite-sample bounds for its empirical estimator. One promising

venue to explore is the extension to joint independence testing, that is, testing joint indepen-

dence of d random elements. Existing works have generalized distance covariance (dCov) and

Hilbert-Schmidt independence criterion (HSIC) to this setting, e.g., the dCov-based measure

of mutual dependence (Jin and Matteson, 2018), the distance multivariance (Böttcher et al.,

2019), the joint dCov (Chakraborty and Zhang, 2019), and the d-variable HSIC (Pfister

et al., 2018). It would be interesting to generalize ETIC to this setting and compare it with

these methods. Another direction that is worth exploring is to compare our test with other

independence tests and identify the family of alternatives under which our test performs the

best. One framework for this purpose is the asymptotic efficiency (see, e.g., Nikitin, 1995).
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actions of the American Mathematical Society, 348(2), 1996.

Corinna Cortes and Mehryar Mohri. Confidence intervals for the area under the ROC curve.

In NIPS, 2004.

Corinna Cortes and Mehryar Mohri. Confidence intervals for the area under the ROC curve.

In NIPS, 2005.



141

Harald Cramér. On the composition of elementary errors. Skandinavisk Aktuarietidskrift,

11, 1928.

Imre Csiszár. Information-type measures of difference of probability distributions and indi-

rect observation. Studia Scientiarum Mathematicarum Hungarica, 2, 1967.

Imre Csiszár. I-divergence geometry of probability distributions and minimization problems.

The Annals of Probability, 3(1), 1975.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Ad-

vances in Neural Information Processing Systems, 2013.

A. Philip Dawid, Monica Musio, and Laura Ventura. Minimum scoring rule inference. Scan-

dinavian Journal of Statistics, 43(1), 2016.

Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion

schrödinger bridge with applications to score-based generative modeling. NeurIPS, 34,

2021.

Nabarun Deb and Bodhisattva Sen. Multivariate rank-based distribution-free nonparametric

testing using measure transportation. Journal of the American Statistical Association,

2021.

Amir Dembo and Ofer Zeitouni. Large Deviations Techniques and Applications. Springer

Science & Business Media, 2009.

William E. Deming and Frederick F. Stephan. On a least squares adjustment of a sampled

frequency table when the expected marginal totals are known. Annals of Mathematical

Statistics, 11, 1940.

Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, and Ilya

Sutskever. Jukebox: A generative model for music. arXiv Preprint, 2020.



142

Adji Bousso Dieng, Dustin Tran, Rajesh Ranganath, John W. Paisley, and David M. Blei.

Variational inference via χ upper bound minimization. In NeurIPS, 2017.

Josip Djolonga, Mario Lucic, Marco Cuturi, Olivier Bachem, Olivier Bousquet, and Sylvain

Gelly. Precision-recall curves using information divergence frontiers. In AISTATS, 2020.

R. M. Dudley. The speed of mean Glivenko-Cantelli convergence. The Annals of Mathemat-

ical Statistics, 40(1), 1969.

Pavel Dvurechensky, Alexander Gasnikov, and Alexey Kroshnin. Computational optimal

transport: Complexity by accelerated gradient descent is better than by Sinkhorns algo-

rithm. In ICML, 2018.

Eugene B Dynkin and Avi Mandelbaum. Symmetric statistics, Poisson point processes, and

multiple Wiener integrals. The Annals of Statistics, 11(3), 1983.
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Jean Feydy, Thibault Séjourné, François-Xavier Vialard, Shun-ichi Amari, Alain Trouvé,
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quantique. Annales de l’Institut Henri Poincaré, 2, 1932.
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Appendix A

APPENDIX TO CHAPTER 2

A.1 Proof of Main Results

Our proofs are inspired by Ostrovskii and Bach (2021). However, there are two key dif-

ferences. First, since they focus on loss functions of the form `(Y, θ>X), the Hessian is

`′′(Y, θ>X)XX> where `′′(y, ȳ) := d2`(y, ȳ)/dȳ2. As a result, they can control the de-

viation of the empirical Hessian using inequalities for sample second-moment matrices of

sub-Gaussian random vectors (Ostrovskii and Bach, 2021, Thm. A.2). In contrast, we use

matrix Bernstein inequality which allows us to work with a larger class of loss functions.

Second, we extend their localization result from pseudo self-concordant losses to generalized

self-concordant losses (Proposition 2.10). This is enabled by a new property on the existence

of a unique minimizer for generalized self-concordant functions (Proposition 2.3). We also

establish the concentration of the effective dimension.

In the remainder of this section, we first prove the localization result Proposition 2.10 and

the score bound Proposition 2.11 in Appendix A.1.1. It not only guarantees the existence

and uniqueness of θn but also localizes it. We then, in Appendix A.1.2, control the empirical

Hessian at θn as in Proposition 2.12 using a covering number argument. Finally, we prove

Theorem 2.6, Theorem 2.7, and Proposition 2.8.

We write G? := G(θ?) and H? := H(θ?) for short. We use the notation C to denote a

constant which may change from line to line, where subscripts are used to emphasize the

dependency on other quantities. For instance, Cd represents a quantity depending only on

d.
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A.1.1 Localization

We start by showing that the empirical risk Ln is generalized self-concordant.

Lemma A.1. Under Assumption 2.2, the empirical risk Ln is (nν/2−1R, ν)-generalized self-

concordant.

Proof. By Assumption 2.2, the loss `(·;Zi) is (R, ν)-generalized self-concordant for every

i ∈ [n] := {1, . . . , n}. Note that Ln is the empirical average of {`(·;Zi)}ni=1. Hence, it follows

from Proposition 2.2 that Ln is (nν/2−1R, ν)-generalized self-concordant

Applying Proposition 2.3 to Ln leads to the localization result. Let λn,? := λmin(Hn(θ?))

and λ?n := λmin(Hn(θ?)). Recall Kν from Proposition 2.3. Define

R?
n,ν :=


λ
−1/2
n,? R if ν = 2

(ν/2− 1)λ
(ν−3)/2
n,? nν/2−1R if ν ∈ (2, 3]

(ν/2− 1)(λ?n)(ν−3)/2nν/2−1R if ν > 3.

(A.1)

We can then prove Proposition 2.10.

Proposition 2.10. Under Assumption 2.2, whenever R?
n,ν ‖Sn(θ?)‖H−1

n (θ?) ≤ Kν, the esti-

mator θn uniquely exists and satisfies

‖θn − θ?‖Hn(θ?) ≤ 4 ‖Sn(θ?)‖H−1
n (θ?) .

Proof. The claim follows directly from Lemma A.1 and Proposition 2.3.

Proposition 2.10 implies that the ERM θn uniquely exists if ‖Sn(θ?)‖H−1
n (θ?) is small.

Hence, it remains to bound ‖Sn(θ?)‖H−1
n (θ?), which can be achieved by controlling ‖Sn(θ?)‖H−1

?

and Hn(θ?). Let Ω(θ) := G(θ)1/2H(θ)−1G(θ)1/2 and Ω? := Ω(θ?) Recall from Definition 2.6

that d? = Tr(Ω?).

Lemma A.2. Under Assumption 2.3, it holds that, with probability at least 1− δ,

‖Sn(θ?)‖2
H−1
?
≤ d?

n
+ CK2

1 log (e/δ)
‖Ω?‖2

n
.
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Proof. By the first order optimality condition, we have S(θ?) = 0. As a result,

X :=
√
nG−1/2(θ?)Sn(θ?;Z)

is an isotropic random vector. Moreover, it follows from Lemma A.11 that ‖X‖ψ2
. K1.

Define J := G
1/2
? H−1

? G
1/2
? /n. Then we have

‖Sn(θ?)‖2
H−1
?

= ‖X‖2
J .

Invoking Theorem 2.4 yields the claim.

The next result characterizes the concentration of Hn(θ?). Let

tn := tn(δ) :=
2σ2

H

−K2 +
√
K2

2 + 2σ2
Hn/ log (4d/δ)

. (A.2)

Note that it decays to 0 at rate O(n−1/2) as n→∞.

Lemma A.3. Under Assumption 2.4 with r = 0, it holds that, with probability at least 1−δ,

(1− tn)H? � Hn(θ?) � (1 + tn)H?.

Furthermore, if n ≥ 4(K2 + 2σ2
H) log (2d/δ), we have tn ≤ 1/2 and thus

1

2
H? � Hn(θ?) �

3

2
H?.

Proof. Due to Assumption 2.4, the standardized Hessian at θ?

H−1/2
? H(θ?;Z)H−1/2

? − Id

satisfies a Bernstein condition with parameter K2. It then follows from Theorem 2.5 that

P
(∥∥H−1/2

? Hn(θ?)H
−1/2
? − Id

∥∥
2
≥ t
)
≤ 2d exp

{
− nt2

2(σ2
H +K2t)

}
.

As a result, it holds that, with probability at least 1− δ, (1− tn)Id � H
−1/2
? Hn(θ?)H

−1/2
? ≤

(1 + tn)Id, or equivalently,

(1− tn)H? � Hn(θ?) � (1 + tn)H?.
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Hence, whenever n ≥ 4(K2 + 2σ2
H) log (2d/δ), we have

1

2
H? � Hn(θ?) �

3

2
H?.

We then prove Proposition 2.11. Recall tn from (A.2).

Proposition 2.11. Under Assumptions 2.3 and 2.4 with r = 0, if n ≥ 4(K2 +

2σ2
H) log (4d/δ), then we have tn ≤ 1/2 and, with probability at least 1− δ,

‖Sn(θ?)‖2
H−1
n (θ?) ≤

d?
n(1− tn)

+ CK2
1 log (e/δ)

‖Ω?‖2

n(1− tn)
.

Proof. Define two events

A :=

{
‖Sn(θ?)‖2

H−1
?
≤ d?

n
+ CK2

1 log (2e/δ)
‖Ω?‖2

n

}
B := {(1− tn)H? � Hn(θ?) � (1 + tn)H?} .

According to Lemmas A.2 and A.3, we have P(A) ≥ 1 − δ/2 and P(B) ≥ 1 − δ/2. On the

event AB, we have

‖Sn(θ?)‖2
H−1
n (θ?) ≤

1

1− tn
‖Sn(θ?)‖2

H−1
?
≤ d?
n(1− tn)

+ CK2
1 log (2e/δ)

‖Ω?‖2

n(1− tn)
.

Since P(AB) ≥ 1− P(Ac)− P(Bc) ≥ 1− δ, we have, with probability at least 1− δ,

‖Sn(θ?)‖2
H−1
n (θ?) ≤

d?
n(1− tn)

+ CK2
1 log (e/δ)

‖Ω?‖2

n(1− tn)
.

If n ≥ 4(K2 + 2σ2
H) log (4d/δ), then tn ≤ 1/2 and thus

‖Sn(θ?)‖2
H−1
n (θ?) ≤

2d?
n

+ CK2
1 log (e/δ)

‖Ω?‖2

n
.
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A.1.2 Proof of the main theorems

Before we prove the main theorem, we control the empirical Hessian as in Proposition 2.12.

A näıve approach is to invoke Lemma A.3 to bound Hn(θ) by Hn(θ?). However, this would

not work since the generalized self-concordance parameter of Ln, i.e., nν/2−1R, is diverging

as n → ∞. Hence, we use a covering number argument: 1) we take a covering with radius

O(n1−ν/2); 2) we boundHn(θ) byHn(π(θ)) where π(θ) is the projection of θ onto the covering.

The factor n1−ν/2 in the radius will cancel out with the factor nν/2−1 in the generalized self-

concordance parameter; 3) we bound Hn(π(θ)) by H(π(θ)) using matrix concentration; 4)

we bound H(π(θ)) by H(θ?) where the generalized self-concordance parameter of L is R.

Recall tn from (A.2), λ? := λmin(H?) and λ? := λmax(H?). Let ων(τ) := eτ if ν = 2 and

(1− τ)−2/(ν−2) if ν > 2.

R?
ν :=


λ
−1/2
? R if ν = 2

(ν/2− 1)λ
(ν−3)/2
? R if ν ∈ (2, 3]

(ν/2− 1)(λ?)(ν−3)/2R if ν > 3.

(A.3)

Proposition 2.12. Fix ε ∈ (0, Kν ] and let sn := tn
(
3−d[1.5ων(ε)n]d(1−ν/2)δ/2

)
. Under

Assumptions 2.2 and 2.4 with r = Kν/R
?
ν, it holds that, with probability at least 1− δ,

1

2ω2
ν(ε)

H? �
1− sn
ω2
ν(ε)

H? � Hn(θ) � (1 + sn)ω2
ν(ε)H? �

3

2
ω2
ν(ε)H?, for all θ ∈ Θε/R?ν (θ?),

whenever n ≥ 4(K2 + 2σ2
H)
{

log (4d/δ) + d log [3(1.5ων(ε)n)ν/2−1]
}

.

Proof. We prove the result in the following steps.

Step 1. Take a τ -covering and relate Hn(θ) to Hn(θ̄) for some θ̄ in the covering. Let

τ := ε/R?
ν [1.5ων(ε)n]ν/2−1. Take an τ -covering Nτ of Θε/R?ν (θ?) w.r.t. ‖·‖H? , and let π(θ) be

the projection of θ onto Nτ . Let

dn,ν(θ1, θ2) :=

n
ν/2−1R ‖θ2 − θ1‖2 if ν = 2

(ν/2− 1)n(ν/2−1)R ‖θ2 − θ1‖3−ν
2 ‖θ2 − θ1‖ν−2

Hn(θ1) otherwise.
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By Lemma A.1 and Proposition 2.1, we have, for all θ ∈ Θε/R?ν (θ?),

1

ων(dn,ν(π(θ), θ))
Hn(π(θ)) � Hn(θ) � ων(dn,ν(π(θ), θ))Hn(π(θ)), (A.4)

where it holds if dn,ν(π(θ), θ) < 1 for the case ν > 2.

Step 2. Relate Hn(θ) to H? for all θ in the covering. Fix an arbitrary θ ∈ Nτ . Following

the same argument as Lemma A.3, we have, with probability at least 1− δ,

(1− tn)H(θ) � Hn(θ) � (1 + tn)H(θ). (A.5)

It follows from Assumption 2.2 and Lemma A.7 that

1

ων(R?
ν ‖θ − θ?‖H?)

H? � H(θ) � ων(R
?
ν ‖θ − θ?‖H?)H?, (A.6)

since R?
ν ‖θ − θ?‖H? ≤ ε ≤ Kν < 1. By the monotonicity of ων , we get

1

ων(ε)
H? � H(θ) � ων(ε)H?,

and thus, with probability at least 1− δ,

1− tn(δ/2)

ων(ε)
H? � Hn(θ) � [1 + tn(δ/2)]ων(ε)H?.

Let sn := tn
(
(τR?

ν/3ε)
dδ/2

)
and

A :=

{
1− sn
ων(ε)

H? � Hn(π(θ)) � (1 + sn)ων(ε)H?, for all θ ∈ Θε/R?ν (θ?)

}
.

Since |Nτ | ≤ (3ε/τR?
ν)
d (Ostrovskii and Bach, 2021), by a union bound, we have P(A) ≥ 1−δ.

Step 3. Combine the previous two steps. On the event A, we have Hn(π(θ)) � (1 +

sn)ων(ε)H? for all θ ∈ Θε/R?ν (θ?). A similar argument as Lemma A.7 shows that

dn,ν(π(θ), θ) ≤


λ
−1/2
? Rτ if ν = 2

(ν/2− 1)λ
(ν−3)/2
? [(1 + sn)ων(ε)]

(ν−2)/2nν/2−1Rτ if ν ∈ (2, 3]

(ν/2− 1)(λ?)(ν−3)/2[(1 + sn)ων(ε)]
(ν−2)/2nν/2−1Rτ otherwise,
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which is equal to [(1 + sn)ων(ε)]
ν/2−1nν/2−1R?

ντ . When

n ≥ 4(K2 + 2σ2
H)
{

log (4d/δ) + d log [3(1.5ων(ε)n)ν/2−1]
}
,

we have sn ≤ 1/2, and thus substituting τ gives dn,ν(π(θ), θ) ≤ ε ≤ Kν < 1. Hence, by

(A.4), we obtain

1− sn
ω2
ν(ε)

H? � Hn(θ) � (1 + sn)ω2
ν(ε)H?, for all θ ∈ Θε/R?ν (θ?).

on the event A.

We give below the precise version of Theorem 2.6. Recall Kν and R?
ν from Corollary A.9

and (A.3).

Theorem 2.6. Let ν ∈ [2, 3). Under Assumptions 2.2 to 2.4 with r = 0, we have, whenever

n ≥ max

{
4(K2 + 2σ2

H) log (4d/δ), C

[
(R?

ν)
2K2

1d? log (e/δ)

K2
ν

]1/(3−ν)
}
,

the empirical risk minimizer θn uniquely exists and satisfies, with probability at least 1− δ,

‖θn − θ?‖2
H?
≤ 16d?

n
+ CK2

1 log (e/δ)
‖Ω?‖2

n
.

Proof. Similar to the proof of Proposition 2.11, we define two events

A :=

{
‖Sn(θ?)‖2

H−1
?
≤ d?

n
+ CK2

1 log (2e/δ)
‖Ω?‖2

n

}
and B :=

{
1

2
H? � Hn(θ?) �

3

2
H?

}
.

In the following, we let

n & max

{
4(K2 + 2σ2

H) log (4d/δ),

[
(R?

ν)
2K2

1d? log (e/δ)

K2
ν

]1/(3−ν)
}
.

Following the same argument as Proposition 2.11, we have P(AB) ≥ 1− δ and

‖Sn(θ?)‖2
H−1
n (θ?) ≤

2d?
n

+ CK2
1 log (e/δ)

‖Ω?‖2

n
≤ CK2

1 log (e/δ)
d?
n
.

Now, it suffices to prove, on the event AB,

‖θn − θ?‖2
H?
≤ 16d?

n
+ CK2

1 log (e/δ)
‖Ω?‖2

n
.
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Recall R?
n,ν and R?

ν from (A.1) and (A.3). It is straightforward to check that R?
n,ν ≤

√
2nν/2−1R?

ν for all ν ∈ [2, 3]. Consequently, it holds that

R?
n,ν ‖Sn(θ?)‖H−1

n (θ?) . R?
νn

(ν−3)/2
√
K2

1 log (e/δ)d? ≤ Kν

since n3−ν & (R?
ν)

2K2
1 log (e/δ)d?/K

2
ν . As a result, by Proposition 2.10, we have that θn

uniquely exists and satisfies

‖θn − θ?‖Hn(θ?) ≤ 4 ‖Sn(θ?)‖H−1
n (θ?) ,

and thus, using the event B,

‖θn − θ?‖2
H?
≤ 2 ‖θn − θ?‖2

Hn(θ?) ≤
16d?
n

+ CK2
1 log (e/δ)

‖Ω?‖2

n
.

We give below the precise version of Theorem 2.7.

Theorem 2.7. Let ν ∈ [2, 3) and rn :=
√
CK2

1 log (e/δ)d?/n. Suppose the same assumptions

in Theorem 2.6 hold true. Furthermore, suppose that Assumption 2.4 holds with r = Kν/R
?
ν.

Let

Cn(δ) :=

{
θ ∈ Θ : ‖θn − θ‖2

Hn(θn) ≤ 24ω2
ν(rnR

?
ν)
d?
n

+ CK2
1ω

2
ν(rnR

?
ν) log (e/δ)

‖Ω?‖2

n

}
.

Then we have P(θ? ∈ Cn(δ)) ≥ 1− δ whenever n satisfies

n ≥ C max

{
(K2 + σ2

H) [log(2d/δ) + d log (ων(Kν)n)] ,

[
(R?

ν)
2K2

1d? log (e/δ)

K2
ν

]1/(3−ν)
}
.

Here C is an absolute constant which may change from line to line.

Proof. We start by defining some events:

A :=

{
‖Sn(θ?)‖2

H−1
?
≤ d?

n
+ CK2

1 log (3e/δ)
‖Ω?‖2

n

}
B :=

{
1

2
H? � Hn(θ?) �

3

2
H?

}
C :=

{
1

2ω2
ν(rnR

?
ν)
H? � Hn(θ) � 3

2
ω2
ν(rnR

?
ν)H?, for all θ ∈ Θrn(θ?)

}
.

(A.7)
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In the following, we let

n ≥ C max

{
(K2 + σ2

H) [log(2d/δ) + d log (ων(Kν)n)] ,

[
(R?

ν)
2K2

1d? log (e/δ)

K2
ν

]1/(3−ν)
}
.

It then follows that rnR
?
ν ≤ Kν . According to Lemma A.2, Lemma A.3, and Proposition 2.12

(with ε = rnR
?
ν), it holds that P(A) ≥ 1 − δ/3, P(B) ≥ 1 − δ/3, and P(C) ≥ 1 − δ/3. This

implies that P(ABC) ≥ 1− δ. Now, it suffices to prove, on the event ABC,

‖θn − θ?‖2
Hn(θn) ≤ 24ω2

ν(rnR
?
ν)
d?
n

+ CK2
1ω

2
ν(rnR

?
ν) log (e/δ)

‖Ω?‖2

n
.

Following the same argument as Theorem 2.6, we obtain

‖θn − θ?‖2
H?
≤ 2 ‖θn − θ?‖2

Hn(θ?) ≤
16d?
n

+ CK2
1 log (e/δ)

‖Ω?‖2

n
≤ r2

n.

Therefore, using the event C, we have

‖θn − θ?‖2
Hn(θn) ≤

3

2
ω2
ν(rnR

?
ν) ‖θn − θ?‖

2
H?
≤ 24ω2

ν(rnR
?
ν)
d?
n

+ CK2
1ω

2
ν(rnR

?
ν) log (e/δ)

‖Ω?‖2

n
,

which completes the proof.

A.1.3 Consistency of dn

Now we are ready to prove Proposition 2.8. Recall tn from (A.2) and rn from Theorem 2.7.

Proposition 2.8. Let ν ∈ [2, 3) and sn := CMrn + CK2
1(1 + Mrn)(d/n) log (Mnrn/δ).

Under Assumptions 2.2, 2.3’, 2.4, and 2.5 with r = Kν/R
?
ν, it holds that, with probability at

least 1− δ,

1− tn
ω2
ν(rnR

?
ν)(1 + sn)

dn ≤ d? ≤
(1 + tn)ω2

ν(rnR
?
ν)

1− sn
dn

whenever n satisfies

n ≥ C max
{

(K2 + σ2
H +K2

1) [log (2d/δ) + d log (ων(Kν)n/δ)] ,[
(M +R?

ν/Kν)
2K2

1d? log (e/δ)
]1/(3−ν)

}
.



169

Proof. Let τ := δ/(Mn). Take a τ -covering of Nτ of Θrn(θ?) w.r.t. ‖·‖H? , and let π(θ) be

the projection of θ onto Nτ . For simplicity of the notation, we define

‖A‖B :=
∥∥B1/2AB1/2

∥∥
for a symmetric matrix A and a psd matrix B. We start by defining some events. Let

A :=

{
‖Sn(θ?)‖2

H−1
?

.
1

n
K2

1 log (5e/δ)d?

}
B := {(1− tn)H? � Hn(θ?) � (1 + tn)H?}

C :=

{
1− tn

ω2
ν(rnR

?
ν)
H? � Hn(θ) � (1 + tn)ω2

ν(rnR
?
ν)H?, for all θ ∈ Θrn(θ?)

}
D :=

{
sup

θ∈Θrn (θ?)

‖Gn(θ)−Gn(π(θ))‖G−1
?
≤ 5Mτ/δ

}

E :=

{
sup

θ∈Θrn (θ?)

‖Gn(π(θ))−G(π(θ))‖G−1
?

. K2
1(1 +Mrn)h

(
d log (36rn/τ) + log (10/δ)

n

)}
,

where h(t) := max{t2, t}. In the following, we let

n ≥ C max
{

(K2 + σ2
H +K2

1) [log (2d/δ) + d log (ων(Kν)n/δ)] , (A.8)[
(M +R?

ν/Kν)
2K2

1d? log (e/δ)
]1/(3−ν)

}
.

It then follows that tn ≤ 1/2, rn ≤ Kν/R
?
ν = r and sn < 1. According to Lemma A.2,

Lemma A.3, and Proposition 2.12, it holds that P(A) ≥ 1 − δ/5, P(B) ≥ 1 − δ/5, and

P(C) ≥ 1− δ/5. In the following, we prove the claim in three steps.

Step 1. Control the probability of D. By Markov’s inequality, it holds that

P(Dc) ≤ δ

5Mτ
E

[
sup

θ∈Θrn (θ?)

‖Gn(θ)−Gn(π(θ))‖G−1
?

]
Jensen’s

≤ δ

5Mτ
sup

θ∈Θrn (θ?)

‖G(θ)−G(π(θ))‖G−1
?
.
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According to Assumption 2.5, we have

M ‖θ1 − θ2‖H? ≥ E[‖G(θ1;Z)−G(θ2;Z)‖G−1
?

], for all θ1, θ2 ∈ Θr(θ?). (A.9)

It follows from Jensen’s inequality that

M ‖θ1 − θ2‖H? ≥ ‖G(θ1)−G(θ2)‖G−1
?
, for all θ1, θ2 ∈ Θr(θ?). (A.10)

As a result,

P(Dc) ≤ δ

5τ
‖θ − π(θ)‖H? ≤

δ

5
.

Step 2. Control the probability of E. According to Vershynin (2018, Exercise 4.4.3), we

have

‖Gn(π(θ))−G(π(θ))‖G−1
?
≤ 1

2
sup
v∈V1/4

∣∣v>G−1/2
? [Gn(π(θ))−G(π(θ))]G−1/2

? v
∣∣ , (A.11)

where V1/4 is a 1/4-covering of the unit ball in Rd. Note that

v>G−1/2
? (Gn(π(θ))−G(π(θ)))G−1/2

? v =
1

n

n∑
i=1

[Wi − E[Wi]],

where Wi := [v>G
−1/2
? S(π(θ);Zi)]

2. Let v̄ := G(π(θ))1/2G
−1/2
? v. By Assumption 2.3’,

∥∥v>G−1/2
? S(π(θ);Zi)

∥∥
ψ2

=
∥∥v̄>G(π(θ))−1/2S(π(θ);Zi)

∥∥
ψ2

≤ ‖v̄‖2K1 ≤
∥∥G(π(θ))1/2G−1/2

?

∥∥K1.

Since π(θ) ∈ Θrn(θ?) ⊂ Θr(θ?), it follows from (A.10) that

∥∥G−1/2
? G(π(θ))G−1/2

? − Id
∥∥ ≤M ‖π(θ)− θ?‖H? ≤Mrn.

and thus

∥∥v>G−1/2
? S(π(θ);Zi)

∥∥
ψ2
≤
√

1 +MrnK1.
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This implies, by Vershynin (2018, Lemma 2.7.6), Wi is sub-Exponential with ‖Wi‖ψ1
≤

K2
1(1 +Mrn). It then follows from the Bernstein inequality that

P

(∣∣∣∣∣ 1n
n∑
i=1

[Wi − E[Wi]]

∣∣∣∣∣ > t

)
≤ 2 exp

(
−cmin

{
t2

K4
1(1 +Mrn)2

,
t

K2
1(1 +Mrn)

})
.

Since |Nτ | ≤ (3rn/τ)d and V1/4 ≤ 12d, by a union bound, we get

P

(
1

2
sup

θ∈Θrn (θ?)

sup
v∈V1/4

∣∣v>G−1/2
? [Gn(π(θ))−G(π(θ))]G−1/2

? v
∣∣ > t

)

≤ 2 |Nτ |
∣∣V1/4

∣∣ exp

(
−cmin

{
4t2

K4
1(1 +Mrn)2

,
2t

K2
1(1 +Mrn)

})
≤ 2(36rn/τ)d exp

(
−cmin

{
4t2

K4
1(1 +Mrn)2

,
2t

K2
1(1 +Mrn)

})
.

Hence, it follows from (A.11) that P(Ec) ≤ δ/5.

Step 3. Prove the bound on the event ABCDE. Following the same argument as Theo-

rem 2.6, we obtain

‖θn − θ?‖H? . ‖θn − θ?‖Hn(θ?) . n−1/2
√
K2

1 log (e/δ)d? = rn. (A.12)

Using the event C, we have

1

(1 + tn)ω2
ν(rnR

?
ν)
Hn(θn) � H? �

ω2
ν(rnR

?
ν)

1− tn
Hn(θn),

and thus

d? ≤ (1 + tn)ω2
ν(rnR

?
ν) Tr

(
Hn(θn)−1/2G?Hn(θn)−1/2

)
d? ≥

1− tn
ω2
ν(rnR

?
ν)

Tr
(
Hn(θn)−1/2G?Hn(θn)−1/2

)
.

(A.13)

Now it remains to control

‖Gn(θn)−G?‖G−1
?
≤ ‖G(θn)−G?‖G−1

?
+ ‖Gn(θn)−G(θn)‖G−1

?
.

We first control ‖G(θn)−G?‖G−1
?

. It follows from (A.10) and (A.12) that

‖G(θn)−G?‖G−1
?
≤M ‖θn − θ?‖H? .Mrn.
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We then control ‖Gn(θn)−G(θn)‖G−1
?

. By (A.12), we have

‖Gn(θn)−G(θn)‖G−1
?
≤ sup

θ∈Θrn (θ?)

‖Gn(θ)−G(θ)‖G−1
?
.

It then follows from the triangle inequality that

sup
θ∈Θrn (θ?)

‖Gn(θ)−G(θ)‖G−1
?
≤ A1 + A2 + A3,

where

A1 := sup
θ∈Θrn (θ?)

‖G(π(θ))−G(θ)‖G−1
?

A2 := sup
θ∈Θrn (θ?)

‖Gn(π(θ))−G(π(θ))‖G−1
?

A3 := sup
θ∈Θrn (θ?)

‖Gn(θ)−Gn(π(θ))‖G−1
?
.

To control A1, note that, for all θ ∈ Θrn(θ?),

‖G(π(θ))−G(θ)‖G−1
?

(A.10)

≤ M ‖π(θ)− θ‖H? ≤Mτ.

Consequently, we obtain A1 ≤Mτ . To control A2, we use the event E to obtain

A2 . K2
1(1 +Mrn)h

(
d log (36rn/τ) + log (10/δ)

n

)
.

To control A3, we use the event D to obtain A3 ≤ 5Mτ/δ. Therefore,

‖Gn(θn)−G?‖G−1
?

≤ CMrn +Mτ + 5Mτ/δ + CK2
1(1 +Mrn)h

(
d log (36rn/τ) + log (10/δ)

n

)
= CMrn +

5 + δ

n
+ CK2

1(1 +Mrn)h

(
d log (36Mnrn/δ) + log (10/δ)

n

)
.

This yields that

(1− sn)G? � Gn(θn) � (1 + sn)G?,

and thus

1− tn
ω2
ν(rnR

?
ν)(1 + sn)

dn ≤ d? ≤
(1 + tn)ω2

ν(rnR
?
ν)

1− sn
dn.
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A.2 Examples and Applications

A.2.1 Examples

Example A.1 (Generalized linear models). Let Z := (X, Y ) be a pair of input and output,

where X ∈ X ⊂ Rτ and Y ∈ Y ⊂ R. Let t : X ×Y → Rd and µ be a measure on Y. Consider

the statistical model

p(y | x) ∼ exp(〈θ, t(x, y)〉)∫
exp(〈θ, t(x, ȳ)〉)dµ(ȳ)

dµ(y)

with ‖t(x, Y )‖2 ≤M a.s. under p(y | x) for all x. It induces the loss function

`(θ; z) := −〈θ, t(x, y)〉+ log

∫
exp(〈θ, t(x, ȳ)〉)dµ(ȳ).

We first verify Assumption 2.2, i.e., show that it is generalized self-concordant for

ν = 2 and R = 2M . We denote by EY |x the expectation w.r.t. p(y | x). Note that

log
∫
〈θ, t(x, ȳ)〉dµ(ȳ) is the cumulant generating function. It follows from some computation

that

Dθ`(θ; z)[u] = −〈u, t(x, y)〉+ EY |x 〈u, t(x, Y )〉

D2
θ`(θ; z)[u, u] = EY |x[〈u, t(x, Y )〉2]− [EY |x 〈u, t(x, Y )〉]2

D3
θ`(θ; z)[u, u, v] = EY |x[〈u, t(x, Y )〉2〈v, t(x, Y 〉]− EY |x[〈u, t(x, Y )〉2] EY |x 〈v, t(x, Y )〉

− 2 E[〈u, t(x, Y )〉〈v, t(x, Y )〉] E[〈u, t(x, Y )〉]− 2[E 〈u, t(x, Y )〉]2 E 〈v, t(x, Y )〉.

As a result,

∣∣D3
θ`(θ; z)[u, u, v]

∣∣
=
∣∣∣EY |x {[〈u, t(x, Y )〉 − EY |x 〈u, t(x, Y )〉

]2 [〈v, t(x, Y )〉 − EY |x 〈v, t(x, Y )〉
]}∣∣∣

≤ 2M ‖v‖2 EY |x
{[
〈u, t(x, Y )〉 − EY |x 〈u, t(x, Y )〉

]2}
, by ‖t(x, Y )‖2

a.s.

≤ M

= 2M ‖v‖2D
2
θ`(θ; z)[u, u],

which completes the proof.



174

We then verify Assumption 2.3 and Assumption 2.3’. By Lemma A.10, it suffices to show

that ‖S(θ?;Z)‖2 is a.s. bounded. In fact,

S(θ?; z) = −t(x, y) + Epθ? (Y |x)[t(x, Y )].

Since |t(X, Y )|2
a.s.

≤ M , we get ‖S(θ?;Z)‖2

a.s.

≤ 2M and thus the claim follows. Assump-

tion 2.3’ can be verified similarly.

Next, we verify Assumption 2.4. According to Lemma A.12, it is enough to prove that

‖H(θ;Z)‖2 is a.s. bounded. In fact,

H(θ; z) = EY |x[t(x, Y )t(x, Y )>]− EY |x[t(x, Y )] EY |x[t(x, Y )]>.

Since
∥∥t(X, Y )t(X, Y )>

∥∥
2
≤ ‖t(X, Y )‖2

2

a.s.

≤ M2, it follows that ‖H(θ, Z)‖2

a.s.

≤ M2.

Finally, we verify Assumption 2.5. It suffices to show that

‖G(θ1;Z)−G(θ2;Z)‖2 / ‖θ1 − θ2‖2 is a.s. bounded. Note that

G(θ1; z)−G(θ2; z)

= Epθ1 (Y |x)[t(x, Y )] Epθ1 (Y |x)[t(x, Y )]> − Epθ2 (Y |x)[t(x, Y )] Epθ2 (Y |x)[t(x, Y )]>

− 2t(x, y)
{

Epθ1 (Y |x)[t(x, Y )]− Epθ2 (Y |x)[t(x, Y )]
}>

.

For the second term, we have∥∥∥∥−2t(x, y)
{

Epθ1 (Y |x)[t(x, Y )]− Epθ2 (Y |x)[t(x, Y )]
}>∥∥∥∥

2

≤ 2 ‖t(x, y)‖2

∥∥∥Epθ1 (Y |x)[t(x, Y )]− Epθ2 (Y |x)[t(x, Y )]
∥∥∥

2
.

Note that

Epθ1 (Y |x)[t(x, Y )]− Epθ2 (Y |x)[t(x, Y )]

=

∫
t(x, y) exp(〈θ1, t(x, y)〉)dµ(y)∫

exp(〈θ1, t(x, y)〉)dµ(y)
−
∫
t(x, y) exp(〈θ2, t(x, y)〉)dµ(y)∫

exp(〈θ2, t(x, y)〉)dµ(y)
.
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Since |〈θ, t(X, Y )〉|
a.s.

≤ [‖θ − θ?‖2 + ‖θ?‖2]M ≤ [λ
−1/2
? r + ‖θ?‖2]M for all θ ∈ Θr(θ?), it holds

that
∫

exp(〈θ, t(X, y)〉)dµ(y)
a.s.

≥ c for some c > 0 and θ ∈ {θ1, θ2}. Now it remains to control

A1 :=
∥∥∥∫ t(x, y) exp(〈θ1, t(x, y)〉)dµ(y)

∫
exp(〈θ2, t(x, y)〉)dµ(y)

−
∫
t(x, y) exp(〈θ2, t(x, y)〉)dµ(y)

∫
exp(〈θ1, t(x, y)〉)dµ(y)

∥∥∥
2
.

By the triangle inequality, we get A1 ≤ B1 +B2 where

B1 :=

∥∥∥∥∥
[∫

t(x, y) exp(〈θ1, t(x, y)〉)dµ(y)−
∫
t(x, y) exp(〈θ2, t(x, y)〉)dµ(y)

]
∫

exp(〈θ2, t(x, y)〉)dµ(y)

∥∥∥∥∥
2

B2 :=

∥∥∥∥∥
[∫

exp(〈θ2, t(x, y)〉)dµ(y)−
∫

exp(〈θ1, t(x, y)〉)dµ(y)

]
∫
t(x, y) exp(〈θ2, t(x, y)〉)dµ(y)

∥∥∥∥∥
2

.

Since |〈θ2, t(X, Y )〉| and d is a.s. bounded,

Remark. As a special case, the negative log-likelihood of the softmax regression with

X ⊂ {x ∈ Rτ : ‖x‖ ≤M} and Y = {1, . . . , K} is generalized self-concordant with ν = 2 and

R = 2M . In fact, the statistical model of the softmax regression is

p(y = k | x) ∼ exp 〈wk, x〉∑K
j=1 exp 〈wj, x〉

.

Define θ> := (w>1 , . . . , w
>
K) and t(x, y)> := (0>τ , . . . , x

>, . . . , 0>τ ) whose elements from (y −

1)τ + 1 to yτ are given by x> and 0 elsewhere. Then we have

p(y = k | x) ∼ exp 〈θ, t(x, k)〉∑K
y=1 exp 〈θ, t(x, y)〉

.

The claim then follows from the example above and ‖t(x, Y )‖2 = ‖x‖2 ≤M .

Remark. The conditional random fields (Lafferty et al., 2001) also fall into the category of

generalized linear models. For simplicity, we consider a conditional random field on a chain,
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i.e., for x = (xt)
T
t=1 and y = (yt)

T
t=1,

p(y | x) ∝ exp

{
T−1∑
t=1

λtft(x, yt, yt+1) +
T∑
t=1

µtgt(x, yt)

}
.

Define θ> := (λ1, . . . , λT−1, µ1, . . . , µT ) and

t(x, y)> := (f1(x, y1, y2), . . . , fT−1(x, yT−1, yT ), g1(x, y1), . . . , gT (x, yT )) .

Then we have

p(y | x) ∼ exp 〈θ, t(x, y)〉∫
exp 〈θ, t(x, ȳ)〉dȳ

.

Example A.2 (Score matching with exponential families). Assume that Z = Rp. Consider

an exponential family on Rd with densities

log pθ(z) = θ>t(z) + h(z)− Λ(θ).

The non-normalized density qθ then reads log qθ(z) = θ>t(z) + h(z). As a result, the score

matching loss becomes

`(θ; z) =

p∑
k=1

[
θ>
∂2t(z)

∂z2
k

+
∂2h(z)

∂z2
k

+
1

2

(
θ>
∂t(z)

∂zk
+
∂h(z)

∂zk

)2
]

+ const

=
1

2
θ>A(z)θ − b(z)>θ + c(z) + const,

where A(z) :=
∑p

k=1
∂t(z)
∂zk

(∂t(z)
∂zk

)>
is p.s.d, b(z) :=

∑p
k=1

[
∂2t(z)

∂z2
k

+ ∂h(z)
∂zk

∂t(z)
∂zk

]
, and c(z) :=∑p

k=1

[
∂2h(z)

∂z2
k

+
(∂h(z)
∂zk

)2
]
. Therefore, the score matching loss `(θ; z) is convex. Moreover,

since the third derivatives of `(·; z) is zero, the score matching loss is generalized self-

concordant for all ν ≥ 2 and R ≥ 0. When the true distribution P is supported on the

non-negative orthant Rp+, the score matching loss does not apply. Fortunately, a generalized

score matching (Hyvärinen, 2007; Yu et al., 2019) loss can be used to address this issue.

Let w1, . . . , wm : R+ → R+ be functions that are absolutely continuous in every bounded

sub-interval of R+. Then the generalized score matching loss reads

`(θ; z) =
d∑
j=1

[
w′j(zj)∂j log q(z) + wj(zj)∂jj log q(z) +

1

2
wj(zj)(∂j log q(z))2

]
+ const, (A.14)
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which consists of a weighted version of the original score matching loss with weights

{wj(xj)}dj=1 (the last two terms in (A.14)) and an additional term (the first term in (A.14)).

According to (Yu et al., 2019, Theorem 5), the loss (A.14) admits a quadratic form:

`(z,Qθ) =
1

2
θ>Ā(z)θ − b̄(z)>θ + c̄(z) + const,

where Ā(z) is p.s.d. Hence, it is generalized self-concordant. Note that a particular example

is the pairwise graphical models studies in (Yu et al., 2016, 2020).

Example A.3 (Generalized score matching with exponential families). When the true dis-

tribution P is supported on the non-negative orthant, Rd+, the Hyvärinen score does not apply.

Hyvärinen (Hyvärinen, 2007) proposed the non-negative score matching to address this issue,

which is later generalized in (Yu et al., 2019, Section 2.2). Let h1, . . . , hm : R+ → R+ be

positive functions that are absolutely continuous in every bounded sub-interval of R+. Then

the generalized Hyvärinen score reads

`(z,Q) =
d∑
j=1

[
h′j(zj)∂j log q(z) + hj(zj)∂jj log q(z) +

1

2
hj(zj)(∂j log q(z))2

]
, (A.15)

which is a weighted version of the original Hyvärinen score with weights {hj(xj)}dj=1 (the last

two terms in (A.15)) with an additional term (the first term in (A.15)).

We then consider an exponential family on Rd+ with densities

log qθ(z) = θ>t(z)− S(θ) + b(z).

According to (Yu et al., 2019, Theorem 5), the score (A.15) admits the quadratic form:

`(z,Qθ) =
1

2
θ>Γ(z)θ − g(z)>θ + C,

where Γ(z) is p.s.d. Hence, this score is self-concordant. Note that a particular example is

the pairwise graphical models studies in (Yu et al., 2016, 2020).
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A.2.2 Applications to goodness-of-fit testing

Before we start, we note that a simple modification to the confidence bound in Theorem 2.7

leads to the following risk bound that can be utilized to analyze the likelihood ratio test.

Corollary A.4. Under the same assumptions in Theorem 2.7, we have, with probability at

least 1− δ,

L(θn)− L(θ?) . K2
1ω

2
ν(ε) log (e/δ)

d?
n

whenever n satisfies (2.8).

Proof. By Taylor’s expansion, we have

L(θn)− L(θ?) = S(θ?)
>(θn − θ?) +

1

2
‖θn − θ?‖2

Hn(θ̄n)

for some θ̄n ∈ Conv{θn, θ?} ⊂ Θε/R?ν (θ?). By S(θ?) = 0 and Theorem 2.7, we get

L(θn)− L(θ?) . K2
1ω

2
ν(ε) log (e/δ)

d?
n
.

We begin with the type I error rates of Rao’s score test, the likelihood ratio test, and the

Wald test. Note that d? = d under H0.

Proposition 2.13. Suppose that Assumptions 2.3 and 2.4 with r = 0 hold true. Under H0,

we have, with probability at least 1− δ,

TRao . K2
1 log (e/δ)

d

n

whenever n ≥ 4(K2 + 2σ2
H) log (4d/δ). Furthermore, if Assumptions 2.2 and 2.4 with r =

Kν/R
?
ν hold true, we have, with probability at least 1− δ,

TLR, TWald . K2
1ω

2
ν(ε) log (e/δ)

d

n

whenever n satisfies (2.8).
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Proof. Under H0, we have θ? = θ0. It then follows from Proposition 2.11 that, with proba-

bility at least 1− δ,

TRao := ‖Sn(θ0)‖2
H−1
n (θ0) .

1

n
K2

1 log (e/δ)d

whenever n ≥ 4(K2 + 2σ2
H) log (4d/δ).

By Taylor’s theorem, there exists θ̄n ∈ Conv{θn, θ?} such that

TLR = 2S>n (θn)(θ0 − θn) + ‖θ0 − θn‖2
Hn(θ̄n) = ‖θ0 − θn‖2

Hn(θ̄n) .

Following a similar argument as Theorem 2.7, we obtain, with probability at least 1− δ,

TLR . K2
1ω

2
ν(ε) log (e/δ)

d

n

whenever n satisfies (2.8). The statement for TWald follows directly from Theorem 2.7.

We then prove the result for statistical power given in Proposition 2.14.

Proposition 2.14 (Statistical power). Let θ? 6= θ0 that may depend on n. The following

statements are true for sufficiently large n.

(a) Suppose that S(θ0) 6= 0, H(θ0) � 0, and Assumptions 2.2 to 2.4 hold true with r = 0.

When θ? − θ0 = O(n−1/2) and τn := tn(α)/4 − ‖S(θ0)‖2
H(θ0)−1 − Tr(Ω(θ0))/n > 0, we

have

P(TRao > tn(α))

≤ 2d exp

(
− n

4(K2 + 2σ2
H)

)
+ exp

(
−cmin

{
n2τ 2

n

K2
1 ‖Ω(θ0)‖2

2

,
nτn

K1 ‖Ω(θ0)‖∞

})
.

When θ∗ − θn = ω(n−1/2), we have

P(TRao > tn(α))

≥ 1− 2d exp

(
− n

4(K2 + 2σ2
H)

)
− exp

(
−cmin

{
n2τ̄ 2

n

K2
1 ‖Ω(θ0)‖2

2

,
nτ̄n

K1 ‖Ω(θ0)‖∞

})
,

where τ̄n :=
[
‖S(θ0)‖H(θ0)−1 −

√
3tn(α)/4

]2

− Tr(Ω(θ0))/n.
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(b) Suppose that the assumptions in Theorem 2.7 hold true. When θ?− θ0 = O(n−1/2) and

τ ′n := tn(α)/384− ‖θ? − θ0‖2
H(θ?) /64− d/n > 0, we have

P(TLR > tn(α)) ≤ exp

(
−cmin

{
n2(τ ′n)2

K2
1 ‖Ω(θ?)‖2

2

,
nτ ′n

K1 ‖Ω(θ?)‖∞

})
+ exp

(
−c ε2n3−ν

(R?
ν)

2K2
1d

)
.

When θ∗ − θn = ω(n−1/2), we have

P(TLR > tn(α))

≥ 1− exp

(
−cmin

{
n2(τ̄ ′n)2

K2
1 ‖Ω(θ?)‖2

2

,
nτ̄ ′n

K1 ‖Ω(θ?)‖∞

})
− exp

(
−c ε2n3−ν

(R?
ν)

2K2
1d

)
,

where

τ̄ ′n :=
[
‖θ? − θ0‖H(θ?) /8−

√
tn(α)/4

]2

− d/n.

(c) Suppose that the assumptions in Theorem 2.7 hold true. When θ?− θ0 = O(n−1/2) and

τ ′n := tn(α)/384− ‖θ? − θ0‖2
H(θ?) /64− d/n > 0, we have

P(TWald > tn(α)) ≤ exp

(
−cmin

{
n2(τ ′n)2

K2
1 ‖Ω(θ?)‖2

2

,
nτ ′n

K1 ‖Ω(θ?)‖∞

})
+ exp

(
−c ε2n3−ν

(R?
ν)

2K2
1d

)
.

When θ∗ − θn = ω(n−1/2), we have

P(TWald > tn(α))

≥ 1− exp

(
−cmin

{
n2(τ̄ ′n)2

K2
1 ‖Ω(θ?)‖2

2

,
nτ̄ ′n

K1 ‖Ω(θ?)‖∞

})
− exp

(
−c ε2n3−ν

(R?
ν)

2K2
1d

)
,

where

τ̄ ′n :=
[
‖θ? − θ0‖H(θ?) /8−

√
tn(α)/4

]2

− d/n.

Proof of Proposition 2.14. We are mostly interested in local alternatives, i.e., θ? → θ0 as

n→∞.
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Rao’s score test. Define four events

A := {TRao > tn(α)}

B :=

{
1

2
H(θ0) � Hn(θ0) � 3

2
H(θ0)

}
C :=

{
4 ‖Sn(θ0)− S(θ0)‖2

H(θ0)−1 > tn(α)− 4 ‖S(θ0)‖2
H(θ0)−1

}
D :=

{
‖Sn(θ0)− S(θ0)‖H(θ0)−1 < ‖S(θ0)‖H(θ0)−1 −

√
3tn(α)/4

}
.

Note that

S(θ0) = S(θ0)− S(θ?) = H(θ̄)(θ0 − θ?),

where θ̄ ∈ Conv{θ0, θ?}. Due to Assumption 2.2, we have

e−R‖θ̄−θ0‖2H(θ0) � H(θ̄) � eR‖θ̄−θ0‖2H(θ0). (A.16)

Therefore, we conclude that, as n→∞,

S(θ0) = H(θ̄)(θ0 − θ?) = Θ(θ? − θ0). (A.17)

We first consider the case when θ? − θ0 = O(n−1/2). On the event B, it holds that

TRao ≤ 2 ‖Sn(θ0)‖2
H(θ0)−1 ≤ 4 ‖Sn(θ0)− S(θ0)‖2

H(θ0)−1 + 4 ‖S(θ0)‖2
H(θ0)−1 .

This implies AB ⊂ AC and thus

P(A) = P(AB) + P(ABc) ≤ P(AC) + P(Bc) ≤ P(C) + P(Bc)

It follows from Theorem 2.5 that, when n is large enough,

P(Bc) ≤ 2d exp

(
− n

4(K2 + 2σ2
H)

)
.

Moreover, note that C = {‖Sn(θ0)− S(θ0)‖2
H−1(θ0) − Tr(Ω(θ0))/n ≥ τn}, where

τn = tn(α)/4− ‖S(θ0)‖2
H(θ0)−1 − Tr(Ω(θ0))/n.
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By Theorem 2.4, we have, whenever τn > 0,

P(C) ≤ exp

(
−cmin

{
n2τ 2

n

K2
1 ‖Ω(θ0)‖2

2

,
nτn

K1 ‖Ω(θ0)‖∞

})
.

Consequently, it holds that, whenever τn > 0 and n is large enough,

P(A) ≤ 2d exp

(
− n

4(K2 + 2σ2
H)

)
+ exp

(
−cmin

{
n2τ 2

n

K2
1 ‖Ω(θ0)‖2

2

,
nτn

K1 ‖Ω(θ0)‖∞

})
.

Note that, for large enough n, it holds that Tr(Ω(θ0)) → d and thus tn(α) > Tr(Ω(θ0))/n.

Hence, it follows from (A.17) that, as long as θ?− θ0 = o(n−1/2), τn > 0 for sufficiently large

n.

We then consider the case when θ? − θ0 = ω(n−1/2). On the event B, it holds that

TRao ≥ 2 ‖Sn(θ0)‖2
H(θ0)−1 /3 ≥ 4[‖S(θ0)‖H(θ0)−1 − ‖Sn(θ0)− S(θ0)‖H(θ0)−1 ]2/3.

By Theorem 2.4, it holds that ‖Sn(θ0)− S(θ0)‖H(θ0)−1 = O(n−1/2). By (A.17), we know that

‖S(θ0)‖H(θ0)−1 = ω(n−1/2) and thus, for sufficiently large n,

‖S(θ0)‖H(θ0)−1 > ‖Sn(θ0)− S(θ0)‖H(θ0)−1 +
√
tn(α).

This implies that BD ⊂ AB and hence

P(A) ≥ P(AB) ≥ P(BD) ≥ 1− P(Bc)− P(Dc).

Following a similar argument as above, we have, whenever n is large enough,

P(A) ≥ 1− 2d exp

(
− n

4(K2 + 2σ2
H)

)
− exp

(
−cmin

{
n2τ̄ 2

n

K2
1 ‖Ω(θ0)‖2

2

,
nτ̄n

K1 ‖Ω(θ0)‖∞

})
,

where

τ̄n :=
[
‖S(θ0)‖H(θ0)−1 −

√
3tn(α)/4

]2

− Tr(Ω(θ0))/n.
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The Wald test. Notice that d? = d since the model is well-specified. Fix ε = εν so that

ων(ε) ≤ 2. Let δ := exp
(
−c ε2n3−ν

(R?ν)2K2
1d

)
. Define the following events

A :=

{
‖Sn(θ?)‖2

H−1(θ?) ≤ CK2
1 log (e/δ)

d

n

}
B :=

{
1

2
H(θ?) � Hn(θ?) �

3

2
H(θ?)

}
C :=

{
1

2ω2
ν(ε)

H(θ?) � Hn(θ) � 3

2
ω2
ν(ε)H(θ?), for all θ ∈ Θε/R?ν (θ?)

}
D := {TWald > tn(α)}

E :=
{
‖Sn(θ?)‖2

H(θ?)−1 > tn(α)/384− ‖θ? − θ0‖2
H(θ?) /64

}
F :=

{
‖Sn(θ?)‖2

H(θ?)−1 < ‖θ? − θ0‖H(θ?) /8−
√
tn(α)/4

}
.

(A.18)

Following the proof of Theorem 2.7, we get P(ABC) ≥ 1 − δ and, on the event ABC, we

have, for sufficiently large n,

1

4
H(θ?) �

1

2ω2
ν(ε)

H(θ?) � Hn(θn) � 3

2
ω2
ν(ε)H(θ?) � 3H(θ?)

and

‖θn − θ?‖H(θ?) ≤ 4
√

2 ‖Sn(θ?)‖Hn(θ?)−1 ≤ 8 ‖Sn(θ?)‖H(θ?)−1 . (A.19)

We first consider the case θ? − θ0 = O(n−1/2). On the event ABC, it holds that

‖θn − θ0‖2
Hn(θn) ≤ 3 ‖θn − θ0‖2

H(θ?) ≤ 6 ‖θn − θ?‖2
H(θ?) + 6 ‖θ? − θ0‖2

H(θ?)

≤ 384 ‖Sn(θ?)‖2
Hn(θ?)−1 + 6 ‖θ? − θ0‖2

H(θ?)

This implies that ABCD ⊂ ABCE and thus

P(D) = P(ABCD) + P((ABC)cD) ≤ P(E) + P((ABC)c).

Moreover, note that E = {‖Sn(θ0)− S(θ0)‖2
H−1(θ0) − d/n ≥ τ ′n}, where

τ ′n = tn(α)/384− ‖θ? − θ0‖2
H(θ?) /64− d/n.
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By Theorem 2.4, we have, whenever τ ′n > 0,

P(E) ≤ exp

(
−cmin

{
n2(τ ′n)2

K2
1 ‖Ω(θ?)‖2

2

,
nτ ′n

K1 ‖Ω(θ?)‖∞

})
.

Since P((ABC)c) ≤ δ = exp
(
−c ε2n3−ν

(R?ν)2K2
1d

)
, it holds that

P(D) ≤ exp

(
−cmin

{
n2(τ ′n)2

K2
1 ‖Ω(θ?)‖2

2

,
nτ ′n

K1 ‖Ω(θ?)‖∞

})
+ exp

(
−c ε2n3−ν

(R?
ν)

2K2
1d

)
.

We then consider the case θ? − θ0 = ω(n−1/2). On the event ABC, we get

‖θn − θ0‖2
Hn(θn) ≥ ‖θn − θ0‖2

H(θ?) /4 ≥ [‖θ? − θ0‖H(θ?) − ‖θn − θ?‖H(θ?)]
2/4.

According to (A.19) and the event A, we have ‖θn − θ?‖H(θ?) = O(n−1) and thus

‖θn − θ?‖H(θ?) < ‖θ? − θ0‖H(θ?) for sufficiently large n. As a result, it holds that

‖θn − θ0‖2
Hn(θn) ≥

[
‖θ? − θ0‖H(θ?) − 8 ‖Sn(θ?)‖H(θ?)−1

]2

/4.

This implies that ABCF ⊂ ABCD and thus

P(D) ≥ P(ABCD) ≥ P(ABCF) ≥ 1− P((ABC)c)− P(F c).

Let

τ̄ ′n :=
[
‖θ? − θ0‖H(θ?) /8−

√
tn(α)/4

]2

− d/n.

It is positive for sufficiently large n since θ? − θ0 = ω(n−1/2). By Theorem 2.4 and

P((ABC)c) ≤ δ, it holds that

P(D) ≥ 1− exp

(
−cmin

{
n2(τ̄ ′n)2

K2
1 ‖Ω(θ?)‖2

2

,
nτ̄ ′n

K1 ‖Ω(θ?)‖∞

})
− exp

(
−c ε2n3−ν

(R?
ν)

2K2
1d

)
.

The likelihood ratio test. Note that

`n(θ0)− `n(θn) = ‖θn − θ0‖2
Hn(θ̄)

for some θ̄ ∈ Conv{θn, θ0}. The claim can be proved with the same argument as the one for

the Wald test.
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A.3 Technical Tools

In this section, we first recall and prove some key properties of generalized self-concordant

functions. We then review some key results regarding the concentration of random vectors

and matrices.

A.3.1 Properties of generalized self-concordant functions

Throughout this section, we let f : Rd → R be (R, ν)-generalized self-concordant as in

Definition 2.1, where R > 0 and ν ≥ 2. For simplicity of the notation, we denote ‖·‖x :=

‖·‖∇2f(x). Let

dν(x, y) :=

R ‖y − x‖2 if ν = 2

(ν/2− 1)R ‖y − x‖3−ν
2 ‖y − x‖ν−2

x if ν > 2

(A.20)

and

ων(τ) :=

(1− τ)−2/(ν−2) if ν > 2

eτ if ν = 2

(A.21)

with dom(ων) = R if ν = 2 and dom(ων) = (−∞, 1) if ν > 2.

The next proposition gives bounds for the Hessian of f .

Proposition A.5 (Sun and Tran-Dinh (2019), Prop. 8). For any x, y ∈ dom(f), we have

1

ων(dν(x, y))
∇2f(x) � ∇2f(y) � ων(dν(x, y))∇2f(x),

where it holds if dν(x, y) < 1 for the case ν > 2.

We then give the bounds for function values. Define two functions

ω̄ν(τ) :=

∫ 1

0

ων(tτ)dt =


τ−1(eτ − 1) if ν = 2

−τ−1 log (1− τ) if ν = 4

ν−2
ν−4

1−(1−τ)(ν−4)/(ν−2)

τ
otherwise

(A.22)
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and

¯̄ων(τ) :=

∫ 1

0

tω̄ν(tτ)dt =



τ−2(eτ − τ − 1) if ν = 2

−τ−2[τ + log (1− τ)] if ν = 3

τ−2[(1− τ) log (1− τ) + τ ] if ν = 4

ν−2
ν−4

1
τ

[
ν−2

2(3−ν)τ

(
(1− τ)2(3−ν)/(2−ν) − 1

)
− 1
]

otherwise.

(A.23)

Proposition A.6 (Sun and Tran-Dinh (2019), Prop. 10). For any x, y ∈ dom(f), we have

¯̄ων(−dν(x, y)) ‖y − x‖2
x ≤ f(y)− f(x)− 〈∇f(x), y − x〉 ≤ ¯̄ων(dν(x, y)) ‖y − x‖2

x ,

where it holds if dν(x, y) < 1 for the case ν > 2.

In the following, we fix x ∈ dom(f) and assume ∇2f(x) � 0. We denote λmin :=

λmin(∇2f(x)) and λmax := λmax(∇2f(x)). The next lemma bounds dν(x, y) with the local

norm ‖y − x‖x. Let

Rν :=


λ
−1/2
min R if ν = 2

(ν/2− 1)λ
(ν−3)/2
min R if ν ∈ (2, 3]

(ν/2− 1)λ
(ν−3)/2
max R if ν > 3.

(A.24)

Lemma A.7. For any ν ≥ 2 and y ∈ dom(f), we have

dν(x, y) ≤ Rν ‖y − x‖x . (A.25)

Moreover, it holds that

1

ων(Rν ‖y − x‖x)
∇2f(x) � ∇2f(y) � ων(Rν ‖y − x‖x)∇

2f(x),

where it holds if Rν ‖y − x‖x < 1 for the case ν > 2.

Proof. Recall the definition of dν in (A.20). If ν = 2, then, by the Cauchy-Schwarz inequality,

dν(x, y) = R ‖y − x‖2 ≤
∥∥[∇2f(x)]−1/2

∥∥
2
R ‖y − x‖x ≤ λ

−1/2
min R ‖y − x‖x .

The case ν > 2 can be proved similarly.
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We then prove some useful properties for the function ¯̄ω.

Lemma A.8. For any ν ≥ 2, the following statements hold true:

(a) The function ϕ(τ) := ¯̄ων(−τ) is strictly decreasing on [0,∞) with ϕ(0) = 1/2 and

ϕ(τ) ≥ 0 for all τ ≥ 0.

(b) The function ψ(τ) := ¯̄ων(−τ)τ is strictly increasing on [0,∞) with ψ(0) = 0.

Proof. (a). By definition, ων is strictly increasing on (−∞, 1). As a result, for any τ ∈

(−∞, 1),

ω̄′ν(τ) =

∫ 1

0

tω′ν(tτ)dt > 0.

It then follows that, for any τ ≥ 0,

ϕ′(τ) = − ¯̄ω′ν(−τ) = −
∫ 1

0

t2ω̄′ν(−tτ)dt < 0,

and thus ϕ is strictly decreasing on [0,∞). Note that ων(0) = 1 and ων(τ) > 0 for all

τ ∈ (−∞, 1). It is straightforward to check that ϕ(0) = 1/2 and ϕ(τ) > 0 for all τ ≥ 0.

(b) Due to (A.22), it is clear that τ 7→ τ ω̄ν(−τ) is strictly increasing on [0,∞) and equals

0 at τ = 0. Note that, for any τ ≥ 0,

ψ(τ) =

∫ 1

0

tτ ω̄ν(−tτ)dt =
1

τ

∫ τ

0

tω̄ν(−t)dt.

We get

ψ′(τ) =
1

τ 2

[
τ 2ω̄ν(−τ)−

∫ τ

0

tω̄ν(−t)dt
]
.

By the monotonicity of τ 7→ τ ω̄ν(−τ), it follows that ψ′(τ) > 0.

Corollary A.9. Let τ ≥ 0. For any ν ≥ 2, there exists Kν ∈ (0, 1/2] such that

¯̄ων(−τ)τ ≤ Kν ⇒ τ < 1 + 1{ν = 2} and ¯̄ων(−τ) ≥ 1/4.

In particular, Kν = 1/2 if ν = 2 and Kν = 1/4 if ν = 3.
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Proof. The existence of Kν follows directly from the strict monotonicity of ϕ and ψ shown

in Lemma A.8. For ν = 2,

¯̄ων(−τ)τ =
e−τ + τ − 1

τ
≤ 1/2⇒ τ < 2.

As a result, we have ¯̄ων(−τ) ≥ 1/4. The case for ν = 3 can be proved similarly.

Now we are ready to prove Proposition 2.3.

Proof of Proposition 2.3. Consider the level set

Lf (f(x)) := {y ∈ X : f(y) ≤ f(x)} 6= ∅.

Take an arbitrary y ∈ Lf (f(x)). According to Proposition A.6, we have

0 ≥ f(y)− f(x) ≥ 〈∇f(x), y − x〉+ ¯̄ων(−dν(x, y)) ‖y − x‖2
x .

By the Cauchy-Schwarz inequality and Lemmas A.7 and A.8, we get

¯̄ων(−Rν ‖y − x‖x) ‖y − x‖
2
x ≤ ‖∇f(x)‖H−1(x) ‖y − x‖x

This implies

¯̄ων(−Rν ‖y − x‖x)Rν ‖y − x‖x ≤ Rν ‖∇f(x)‖H−1(x) ≤ Kν .

Due to Corollary A.9, it holds that Rν ‖y − x‖x < 1+1{ν = 2} and ¯̄ων(−Rν ‖y − x‖x) ≥ 1/4.

It follows that dν(x, y) < 1 + 1{ν = 2} and

‖y − x‖x ≤ 4 ‖∇f(x)‖∇2f(x)−1 .

Hence, the level set Lf (f(x)) is compact so that f has a minimizer x̄. Moreover, by Propo-

sition A.5 and ∇2f(x) � 0, we obtain ∇2f(y) � 0 for all y ∈ Lf (f(x)). This yields that x̄ is

the unique minimizer of f and it satisfies

‖x̄− x‖x ≤ 4 ‖∇f(x)‖∇2f(x)−1 .

Remark A.4. A similar result also appears in (Ostrovskii and Bach, 2021, Prop. B.4). We

extend their result from ν ∈ {2, 3} to ν ≥ 2.



189

A.3.2 Concentration of random vectors and matrices

Recall the definition of sub-Gaussian random vectors from Definition 2.3.

Remark A.5. Let S be a sub-Gaussian random vector. When S is not mean-zero, we have

‖S − E[S]‖ψ2
= sup
‖s‖2=1

‖〈S − E[S], s〉‖ψ2
= sup
‖s‖2=1

∥∥s>S − E[s>S]
∥∥
ψ2
.

According to Vershynin (2018, Lemma 2.6.8), we obtain

‖S − E[S]‖ψ2
≤ C sup

‖s‖2=1

∥∥s>S∥∥
ψ2

= C ‖S‖ψ2
,

where C is an absolute constant.

It follows from Vershynin (2018, Eq. (2.17)) that a bounded random vector is sub-

Gaussian.

Lemma A.10. Let S be a random vector such that ‖S‖2 ≤ M for some constant M > 0.

Then X is sub-Gaussian with ‖X‖ψ2
≤M/

√
log 2.

As a direct consequence of Vershynin (2018, Prop. 2.6.1), the sum of i.i.d. sub-Gaussian

random vectors is also sub-Gaussian.

Lemma A.11. Let S1, . . . , Sn be i.i.d. random vectors, then we have ‖
∑n

i=1 Si‖
2

ψ2
.∑n

i=1 ‖Si‖
2
ψ2

.

Recall the definition of the matrix Bernstein condition from Definition 2.4. The next

lemma, which follows from Wainwright (2019, Eq. (6.30)), shows that a matrix with bounded

spectral norm satisfies the matrix Bernstein condition.

Lemma A.12. Let H be a zero-mean random matrix such that ‖H‖2 ≤M for some constant

M > 0. Then H satisfies the matrix Bernstein condition with b = M and σ2
H = ‖Var(H)‖2.

Moreover, σ2
H ≤ 2M2.
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Appendix B

APPENDIX TO CHAPTER 3

B.1 f-Divergence: Review and Examples

We review the definition of f -divergences and give a few examples.

Let f : (0,∞) → R be a convex function with f(1) = 0. Let P,Q ∈ M1(X ) be

dominated by some measure µ ∈ M1(X ) with densities p and q, respectively. The f -

divergence generated by f is

Df (P‖Q) =

∫
X
q(x)f

(
p(x)

q(x)

)
dµ(x) ,

with the convention that f(0) := limt→0+ f(t) and 0f(p/0) = pf ∗(0), where f ∗(0) =

limx→0+ xf(1/x) ∈ [0,∞]. Hence, Df (P‖Q) can be rewritten as

Df (P‖Q) =

∫
q>0

q(x)f

(
p(x)

q(x)

)
dµ(x) + f ∗(0)P [q = 0] ,

with the agreement that the last term is zero if P [q = 0] = 0 no matter what value f ∗(0)

takes (which could be infinity). For any c ∈ R, it holds that Dfc(P‖Q) = Df (P‖Q) where

fc(t) = f(t) + c(t− 1). Hence, we also assume, w.l.o.g., that f(t) ≥ 0 for all t ∈ (0,∞). To

summarize, f is convex and nonnegative with f(1) = 0. As a result, f is non-increasing on

(0, 1] and non-decreasing on [1,∞).

The conjugate generator to f is the function f ∗ : (0,∞)→ [0,∞) defined by1

f ∗(t) = tf(1/t) ,

where again we define f ∗(0) = limt→0+ f ∗(t). Since f ∗ can be constructed by the perspective

transform of f , it is also convex. We can verify that f ∗(1) = 0 and f ∗(t) ≥ 0 for all t ∈ (0,∞),

1 The conjugacy between f and f∗ is unrelated to the usual Fenchel or Lagrange duality in convex
analysis, but is related to the perspective transform.
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so it defines another divergence Df∗ . We call this the conjugate divergence to Df since

Df∗(P‖Q) = Df (Q‖P ) .

The divergence Df is symmetric if and only if f = f ∗, and we write it as Df (P,Q) to

emphasize the symmetry.

Example B.1. We illustrate a number of examples.

(a) KL divergence: It is an f -divergence generated by fKL(t) = t log t− t+ 1.

(b) Interpolated KL divergence: For λ ∈ (0, 1), the interpolated KL divergence is defined

as

KLλ(P‖Q) = KL((‖P )‖λP + (1− λ)Q) ,

which is a f -divergence generated by

fKL(,‖λ)(t) = t log

(
t

λt+ 1− λ

)
− (1− λ)(t− 1) .

(c) Jensen-Shannon divergence: The Jensen-Shannon Divergence is defined as

DJS(P,Q) =
1

2
KL1/2(P‖Q) +

1

2
KL1/2(Q‖P ).

More generally, we have the λ-skew Jensen-Shannon Divergence Nielsen and Bhatia

(2013), which is defined for λ ∈ (0, 1) as DJS,λ = λKLλ(P‖Q) + (1− λ)KL1−λ(Q‖P ).

This is an f -divergence generated by

fJS,λ(t) = λt log

(
t

λt+ 1− λ

)
+ (1− λ) log

(
1

λt+ 1− λ

)
.

Note that this is the linearized cost defined in (3.4)

(d) Frontier Integral: From Property 3.1, FI is an f -divergence generated by

fFI(t) =
t+ 1

2
− t

t− 1
log t .

(e) Interpolated χ2 divergence: Similar to the interpolated KL divergence, we can define

the interpolated χ2 divergence Dχ2,λ and the corresponding convex generator fχ2,λ for

λ ∈ (0, 1) as

Dχ2,λ(P‖Q) = Dχ2(P‖λP + (1− λ)Q) , and, fχ2,λ(t) =
(t− 1)2

λt+ 1− λ
.
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The usual Neyman and Pearson χ2 divergences are respectively obtained in the limits

λ→ 1 and λ→ 0.

(f) Squared Le Cam distance: The squared Le Cam distance is, up to scaling, a special

case of the interpolated χ2 divergence with λ = 1/2:

DLC(P,Q) =
1

4
Dχ2,1/2(P‖Q) .

(g) Squared Hellinger Distance: It is an f -divergence generated by fH(t) = (1−
√
t)2.

B.2 Regularity Assumptions

In this section, we discuss the regularity assumptions in Assumption 3.1 required for the

statistical error bounds. Throughout, we assume that X is a finite set (for instance, on

the quantized space). We upper bound the expected error of the empirical f -divergences

estimated from data.

We use the convention that all higher order derivatives of f and f ∗ at 0 are defined as

the corresponding limits as x→ 0+ (if they exist). Further, we use the notation

ψ(p, q) = qf(p/q) = pf ∗(q/p), (B.1)

so that Df (P‖Q) =
∑

a∈X ψ(P (a), Q(a)).

B.2.1 Examples satisfying the assumptions

We now consider the examples in Example B.1. The constants are summarized in Table B.1.

KL divergence. We have

fKL(t) = t log t− t+ 1 and f ∗KL(t) = − log t+ t− 1 .

We have f(0) = 1 but f ∗(0) = ∞. Therefore, the KL divergence does not satisfy our

assumptions. Indeed, this is because the KL divergence can be unbounded.
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Table B.1: Examples of f -divergences and whether they satisfy Assumptions (A1)-(A3).

Here, λ ∈ (0, 1) is a parameter of the interpolated or skew divergences, and we define

λ̄ := 1− λ.

f -divergence
Satisfies

Assumptions?
C0 C∗0 C1 C∗1 C2 C∗2

KL No 1 ∞

Interpolated KL Yes λ̄ log 1
λ
− λ̄ 1 λ̄2

λ
1
2

λ̄
8λ

JS Yes 1
2

log 2 1
2

log 2 1
2

1
2

1
4

1
4

Skew JS Yes λ̄ log 1
λ̄

λ log 1
λ

λ λ̄ λ
2

λ̄
2

Frontier integral Yes 1
2

1
2

4 4 1
2

1
2

LeCam Yes 1
2

1
2

2 2 8
27

8
27

Interpolated χ2 Yes 1
λ̄

1
λ

2
λ̄2

2
λ2

4
27λλ̄2

4
27λ2λ̄

Hellinger No 1 1 ∞ ∞

Interpolated KL Divergence. Let λ ∈ (0, 1) be a parameter and denote λ̄ = 1 − λ. We

have

fKL(,‖λ)(t) = t log

(
t

λt+ λ̄

)
− λ̄(t− 1) and f ∗KL(,‖λ)(t) = − log(λ̄t+ λ) + λ̄(t− 1) .

The corresponding derivatives are

f ′KL(,‖λ)(t) =
λ̄

λt+ λ̄
+ log

(
t

λt+ λ̄

)
− λ̄, (f ∗KL(,‖λ))

′(t) = λ̄− λ̄

λ̄t+ λ
,

f ′′KL(,‖λ)(t) =
λ̄2

t(λt+ λ̄)2
, (f ∗KL(,‖λ))

′′(t) =
λ̄2

(λ̄t+ λ)2
.

Proposition B.1. The interpolated KL divergence generated by fKL(,‖λ) satisfies Assump-
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tion 3.1 with

C0 = 1− λ, C∗0 = log
1

λ
− 1 + λ, C1 = 1, C∗1 =

(1− λ)2

λ
, C2 =

1

2
, C∗2 =

1− λ
8λ

.

Proof. First, C0, C
∗
0 can be computed directly. Second, it is clear that

−f ′KL(,‖λ)(t) = log
1

t
+ log(λt+ λ̄)− λ̄

λt+ λ̄
+ λ̄ ≤ log

1

t
+ log 1− λ̄+ λ̄ = log

1

t

for all x ∈ (0, 1). Moreover, since f is convex and f ′KL(,‖λ)(1) = 0, it holds that f ′KL(,‖λ)(x) ≤ 0

for all x ∈ (0, 1), and thus C1 = 1. Next, we note that |(f ∗KL(,‖λ))
′(x)| ≤ λ̄2/λ holds uniformly

on (0, 1) (or equivalently that f ∗KL(,‖λ) is Lipschitz); this gives C∗1 . Next, we have

C2 = sup
t>0

{
1

2
tf ′′KL(,‖λ)(t)

}
≤ 1

2
,

since the function inside the sup is monotonic decreasing on (0,∞). Finally, we have

C∗2 = sup
t>0

{
1

2
t(f ∗KL(,‖λ))

′′(t)

}
=

λ̄

8λ
,

since the term inside the sup is maximized at t = λ/λ̄.

Skew Jensen-Shannon Divergence. Let λ ∈ (0, 1) be a parameter and λ̄ = 1 − λ. We

have,

fJS,λ(t) = λt log

(
t

λt+ λ̄

)
+ λ̄ log

(
1

λt+ λ̄

)
= f ∗JS,1−λ(t) .

Its derivatives are

f ′JS,λ(t) = λ log

(
t

λt+ λ̄

)
and f ′′JS,λ(t) =

λλ̄

t(λt+ λ̄)
.

Proposition B.2. The λ-skew JS divergence generated by fJS,λ above satisfies Assump-

tion 3.1 with

C0 = (1− λ) log
1

1− λ
, C∗0 = λ log

1

λ
, C1 = λ, C∗1 = 1− λ, C2 =

λ

2
, C∗2 =

1− λ
2

.
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Proof. For C1, we have

−f ′JS,λ(t) = λ log
1

t
+ λ log(λt+ λ̄) ≤ λ log

1

t

for x ∈ (0, 1). Next, we have

C2 =
λλ̄

2
sup
t>0

1

λt+ λ̄
=
λ

2
.

Frontier integral. We have

fFI(t) =
t+ 1

2
− t

t− 1
log t = f ∗FI(t) .

Its derivatives are

f ′FI(t) =
(1− t)(3− t) + 2 log t

2(1− t)2
and f ′′FI(t) =

2t log t− t2 + 1

t(1− t)3
.

Proposition B.3. The frontier integral satisfies Assumption 3.1 with

C0 =
1

2
= C∗0 , C1 = 1 = C∗1 , C2 =

1

2
= C∗2 .

Proof. We get C0 by calculating the limit as t → 0 using L’Hôpital’s rule. For C2, we note

that the term inside the sup below is decreasing in t to get

C2 = sup
t>0

2t log t− t2 + 1

(1− t)3
=

1

2
.

By definition,

fFI(t) = 2

∫ 1

0

fJS,λ(t)dλ ,

so that, by Proposition B.2,

−f ′FI(t) = −2

∫ 1

0

f ′JS,λ(t)dλ ≤ 2

∫ 1

0

λ log
1

t
dλ = log

1

t
.
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Interpolated χ2 divergence. Let λ ∈ (0, 1) be a parameter and denote λ̄ = 1 − λ. We

have,

fχ2,λ(t) =
(t− 1)2

λt+ 1− λ
= f ∗χ2,1−λ(t) .

Its derivatives are

f ′χ2,λ(t) =
(t− 1)(λt+ λ̄+ 1)

(λt+ λ̄)2
and f ′′χ2,λ(t) =

2

(λt+ λ̄)2
.

Proposition B.4. For λ ∈ (0, 1), the interpolated χ2-divergence satisfies Assumption 3.1

with

C0 =
1

1− λ
, C∗0 =

1

λ
, C1 =

2

(1− λ)2
, C∗1 =

2

λ2

C2 =
4

27λ(1− λ)2
, C∗2 =

4

27λ2(1− λ)
.

Proof. Note that 0 ≥ f ′χ2,λ(0) = −(1 + λ̄)/λ̄2 ≥ −2/λ̄2 is bounded. Since f ′χ2,λ is monotonic

increasing with f ′χ2,λ(1) = 0, this gives the bound on C1. Next, we bound

C2 = sup
t>0

t

(λt+ λ̄)3
=

4

27λλ̄2
,

since the supremeum is attained at t = λ̄/(2λ).

Squared Hellinger distance. We have,

fH(t) = (1−
√
t)2 = f ∗H(t), f ′H(t) = 1− 1√

t
, f ′′H(t) =

1

2
t−3/2 .

The squared Hellinger divergence does not satisfy our assumptions since for t < 1, |f ′H(x)| ≈

1/
√
t diverges faster than the log 1/t rate required by Assumption (A2).

B.2.2 Properties and useful lemmas

We state here some useful properties and lemmas that we use throughout the paper.
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First, we express the derivatives of ψ(p, q) = qf(p/q) in terms of the derivatives of f :

∂ψ

∂p
(p, q) = f ′

(
p

q

)
= f ∗

(
q

p

)
− q

p
(f ∗)′

(
q

p

)
(B.2a)

∂ψ

∂q
(p, q) = f

(
p

q

)
− p

q
f ′
(
p

q

)
= (f ∗)′

(
q

p

)
(B.2b)

∂2ψ

∂p2
(p, q) =

1

q
f ′′
(
p

q

)
=
q2

p3
(f ∗)′′

(
q

p

)
≥ 0 (B.2c)

∂2ψ

∂q2
(p, q) =

p2

q3
f ′′
(
p

q

)
=

1

p
(f ∗)′′

(
q

p

)
≥ 0 (B.2d)

∂2ψ

∂p∂q
(p, q) = − p

q2
f ′′
(
p

q

)
= − q

p2
(f ∗)′′

(
q

p

)
≤ 0 , (B.2e)

where the inequalities f ′′, (f ∗)′′ ≥ 0 followed from convexity of f and f ∗ respectively.

The next lemma shows that the function ψ is nearly Lipschitz, up to a log factor. This

lemma can be leveraged to directly obtain a bound on statistical error of the f -divergence in

terms of the expected total variation distance, provided the probabilities are not too small.

Lemma B.5. Suppose that f satisfies Assumption 3.1. Consider ψ : [0, 1]× [0, 1]→ [0,∞)

given by ψ(p, q) = qf(p/q). We have, for all p, p′, q, q′ ∈ [0, 1] with p∨p′ > 0, q∨ q′ > 0, that

|ψ(p′, q)− ψ(p, q)| ≤
(
C1 max

{
1, log

1

p ∨ p′

}
+ C∗0 ∨ C2

)
|p− p′|

|ψ(p, q′)− ψ(p, q)| ≤
(
C∗1 max

{
1, log

1

q ∨ q′

}
+ C0 ∨ C∗2

)
|q − q′| .

Proof. We only prove the first inequality. The second one is identical with the use of f ∗

rather than f . Suppose p′ ≥ p. From the fact that ψ is convex in p together with a Taylor

expansion of ψ(·, q) around p′, we get,

0 ≤ ψ(p, q)− ψ(p′, q)− (p− p′)∂ψ
∂p

(p′, q) =
1

2

∫ p

p′

∂2ψ

∂p2
(s, q)(p− s)ds

= −p
2

∫ p′

p

∂2ψ

∂p2
(s, q)ds+

1

2

∫ p′

p

s
∂2ψ

∂p2
(s, q)ds

≤ 0 + C2(p′ − p) ,
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where we used ∂2ψ/∂p2 is non-negative due to convexity and, by (B.2c) and Assump-

tion (A3),

s
∂2ψ

∂p2
(s, q) =

s

q
f ′′ (s/q) ≤ 2C2 .

This yields

−(p′ − p)∂ψ
∂p

(p′, q) ≤ ψ(p, q)− ψ(p′, q) ≤ −(p′ − p)∂ψ
∂p

(p′, q) + C2(p′ − p) .

We consider two cases based on the sign of ∂ψ
∂p

(p′, q) = f ′(p/q) (cf. Eq. (B.2a)).

Case 1. ∂ψ
∂p

(p′, q) ≥ 0. Since q 7→ f ′(p/q) is decreasing in q, we have

0 ≤ (p′ − p)∂ψ
∂p

(p′, q) = (p′ − p)f ′(p/q) ≤ lim
q→0

(p′ − p)f ′(p/q) = (p′ − p)f ∗(0) ,

where we used f ′(∞) = f ∗(0) from Lemma B.6. From Assumption (A1), we get the bound

|ψ(p, q)− ψ(p′, q)| ≤ (C∗0 ∨ C2)(p′ − p) .

Case 2. ∂ψ
∂p

(p′, q) < 0. By Assumption (A2), it holds that∣∣∣∣∂ψ∂p (p′, q)

∣∣∣∣ ≤ C1 max{1, log(q/p′)} ≤ C1 max{1, log(1/p′)} ,

and thus

|ψ(p, q)− ψ(p′, q)| ≤
(
C1 max

{
1, log

1

p′

}
+ C2

)
(p′ − p) .

With the above lemma, the estimation error of the empirical f -divergence can be upper

bounded by the total variation distance between the empirical measure and its population

counterpart up to a logarithmic factor, where:

‖Pn − P‖TV =
∑
a∈X

|Pn(a)− P (a)| . (B.3)

Next, we state and prove a technical lemma.

Lemma B.6. Suppose the generator f satisfies Assumptions (A1) and (A2). Then,

lim
t→∞

f ′(t) = f ∗(0) , and lim
t→∞

(f ∗)′(t) = f(0) .
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Proof. We start by observing that

lim
t→0

t|f ′(t)| ≤ C1 lim
t→0

t ∨ t log
1

t
= 0 .

Next, a direct calculation gives

(f ∗)′(1/t) = f(t)− tf ′(t) ,

so that taking the limit t→ 0 gives

lim
t→∞

(f ∗)′(t) = f(0)− lim
t→0

tf ′(t) = f(0) .

The proof of the other part is identical.

B.3 Plug-in Estimator: Statistical Error

In this section, we prove the high probability concentration bound for the plug-in estimator.

There are two keys steps: bounding the statistical error and giving a deviation bound.

Throughout this section, we assume that P and Q are discrete. Let {Xi}ni=1 and {Yj}mj=1

be two independent i.i.d. samples from P and Q, respectively. We consider the plug-in

estimator of the f -divergences, i.e., Df (Pn‖Qm). The main results are (a) an upper bound

for its statistical error, and (b) a high probability concentration bound. They all hold for

the linearized cost Lλ(Pn, Qm) and the frontier integral FI(Pn, Qm) due to Proposition B.2

and Proposition B.3.

B.3.1 Statistical error

Proposition B.7. Suppose that f satisfies Assumption 3.1 and k := |Supp(P )|∨|Supp(Q)| ∈

N ∪ {∞}. Let n,m ≥ 3. Let c1 = C1 + C∗1 and c2 = C2 ∨ C∗0 + C∗2 ∨ C0. We have,

E |Df (P‖Q)−Df (Pn‖Qm)| ≤
(
C1 log n+ C∗0 ∨ C2

)
αn(P ) +

(
C∗1 logm+ C0 ∨ C∗2

)
αm(Q)

+
(
C1 + C∗0 ∨ C2

)
βn(P ) +

(
C∗1 + C0 ∨ C∗2

)
βm(Q) , (B.4)
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where αn(P ) =
∑

a∈X

√
n−1P (a) and βn(P ) = E

[∑
a:Pn(a)=0 P (a) max {1, log (1/P (a))}

]
.

Furthermore, if k <∞, then

E |Df (P‖Q)−Df (Pn‖Qm)| ≤
(
c1 log (n ∧m) + c2

)(√ k

n ∧m
+

k

n ∧m

)
. (B.5)

The proof relies on two key lemmas—the approximate Lipschitz lemma (Lemma B.5)

and the missing mass lemma (Lemma B.9). The argument breaks into two cases in P (and

analogously for Q) for each atom a ∈ X :

(a) Pn(a) > 0: Since Pn is an empirical measure, we have that Pn(a) ≥ 1/n. In this case

the approximate Lipschitz lemma gives us the Lipschitzness in ‖P − Pn‖TV up to a

factor of log n.

(b) Pn(a) = 0: In this case, the mass corresponding to P (a) is missing in the empirical

measure and we directly bound its expectation following similar arguments as in the

missing mass literature; see, e.g., Berend and Kontorovich (2012); McAllester and Ortiz

(2003).

For the first part, we further upper bound the expected total variation distance of the

plug-in estimator, which is

‖Pn − P‖TV =
∑
a∈X

|Pn(a)− P (a)| .

Lemma B.8. Assume that P is discrete. For any n ≥ 1, it holds that

E ‖Pn − P‖TV ≤ αn(P ).

Furthermore, if k = |Supp(P )| <∞, then

E ‖Pn − P‖TV ≤ αn(P ) ≤
√
k

n
.
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Proof. Using Jensen’s inequality, we have,

E
∑

a∈Supp(P )

|Pn(a)− P (a)| ≤
∑

a∈Supp(P )

√
E(Pn(a)− P (a))2

=
∑

a∈Supp(P )

√
P (a)(1− P (a))

n
≤ αn(P ) ,

If k < ∞, then it follows from Jensen’s inequality applied to the concave function t 7→
√
t

that

1

k

k∑
i=1

√
ak ≤

√√√√1

k

k∑
i=1

ak .

Hence, αn(P ) ≤
√
k/n and it completes the proof.

For the second part, we treat the missing mass directly.

Lemma B.9 (Missing Mass). Assume that k = |Supp(P )| <∞. Then, for any n ≥ 3,

E

[∑
a∈X

1
{
Pn(a) = 0

}
P (a)

]
≤ k

n
(B.6)

βn(P ) := E

[∑
a∈X

1
{
Pn(a) = 0

}
P (a)

(
1 ∨ log

1

P (a)

)]
≤ k log n

n
, (B.7)

where a ∨ b := max{a, b}.

Proof. We prove the second inequality. The first one is identical. Note that E[1{Pn(a) =

0}] = P(Pn(a) = 0) = (1 − P (a))n. Therefore, the left hand side (LHS) of the second

inequality is

LHS =
∑
a∈X

(1− P (a))nP (a) max{1,− logP (a)}

≤
∑
a∈X

1

n
∨ log n

n
=
k log n

n
,

where we used Lemma B.19 and Lemma B.20.

Remark B.2. According to (Berend and Kontorovich, 2012, Prop. 3), the bound k/n in

(B.6) is tight up to a constant factor.
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Now, we are ready to prove Proposition B.7.

Proof of Proposition B.7. Define ∆n,m(a) :=
∣∣ψ(P (a), Q(a)

)
− ψ

(
Pn(a), Qm(a)

)∣∣. We have

from the triangle inequality that

∆n,m(a) ≤
∣∣ψ(P (a), Q(a)

)
− ψ

(
Pn(a), Q(a)

)∣∣︸ ︷︷ ︸
=:T1(a)

+
∣∣ψ(Pn(a), Q(a)

)
− ψ

(
Pn(a), Qm(a)

)∣∣︸ ︷︷ ︸
=:T2(a)

.

Since Pn(a) = 0 or Pn(a) ≥ 1/n, the approximate Lipschitz lemma (Lemma B.5) gives

T1(a) ≤

P (a) (C1 max{1, log(1/P (a))}+ C∗0 ∨ C2) , if Pn(a) = 0,

|P (a)− Pn(a)|
(
C1 log n+ C∗0 ∨ C2

)
, else.

Consequently, Lemma B.8 yields∑
a∈X

E[T1] ≤
∑
a∈X

E [1{Pn(a) = 0}P (a) (C1 max{1, log(1/P (a))}+ C∗0 ∨ C2)]

+
∑
a∈X

E [|Pn(a)− P (a)|]
(
C1 log n+ C∗0 ∨ C2

)
≤ (C1 + C∗0 ∨ C2) βn(P ) +

(
C1 log n+ C∗0 ∨ C2

)
αn(P ) .

Since ψ(p, q) = qf(p/q) = pf ∗(q/p), an analogous bound holds for T2 with the appropriate

adjustment of constants. Hence, the inequality (B.4) holds. Moreover, when k < ∞, the

inequality (B.5) follows by invoking again Lemma B.9 and Lemma B.8.

Invoking Proposition B.1 and Proposition B.7 for the interpolated KL divergence leads

to the following result.

Proposition B.10. Assume that k = |Supp(P )| ∨ |Supp(Q)| < ∞. For any λ ∈ (0, 1), it

holds that

E |KLλ(Pn‖Qm)−KLλ(P‖Q)|

≤
[(

1 +
(1− λ)2

λ

)
log (n ∧m) +

(
log

1

λ
− 1 + λ

)
∨ 1

2
+ (1− λ) ∨ 1− λ

8λ

]
×

(√
k

n ∧m
+

k

n ∧m

)
.
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Moreover, for any λn,m ∈ (0, 1/2),

E

[
sup

λ∈[λn,m,1−λn,m]

{|KLλ(Pn‖Qm)−KLλ(P‖Q)|+ |KL1−λ(Qm‖Pn)−KL1−λ(Q‖P )|}

]

≤ 2

(
(1 + 1/λn,m) log n+ log

1

λn,m
∨ 1

2
+ 1 ∨ 1

8λn,m

)(√
k

n ∧m
+

k

n ∧m

)
.

Proof. We only prove the second inequality. The first one is a direct consequence of Propo-

sition B.1 and Proposition B.7. From the proof of Proposition B.7 we have

|KLλ(Pn‖Qm)−KLλ(P‖Q)|

≤
∑
a∈X

1{Pn(a) = 0}P (a) (C1 max{1, log(1/P (a))}+ C∗0 ∨ C2)

+
∑
a∈X

1{Qm(a) = 0}Q(a) (C∗1 max{1, log(1/Q(a))}+ C0 ∨ C∗2)

+
∑
a∈X

∣∣P (a)− Pn(a)
∣∣(C1 log n+ C∗0 ∨ C2

)
+
∑
a∈X

∣∣Q(a)−Qm(a)
∣∣(C∗1 logm+ C0 ∨ C∗2

)
.

Note that, for the interpolated KL divergence, we have

C0 = 1− λ ≤ 1, C∗0 = log
1

λ
− 1 + λ ≤ log

1

λn,m

C1 = 1, C∗1 =
(1− λ)2

λ
≤ 1

λn,m

C2 = 1/2, C∗2 =
1− λ

8λ
≤ 1

8λn,m

for all λ ∈ [λn,m, 1−λn,m]. The claim then follows from the same steps of Proposition B.7.

B.3.2 Concentration bound

We now state and prove the concentration bound for general f -divergences which satisfy our

regularity assumptions. We start by considering concentration around the expectation.

Proposition B.11. Consider the f -divergence Df where f satisfies Assumptions (A1)-

(A3). For any t > 0 and any discrete distributions P,Q, we have,

P (|Df (Pn‖Qm)− E[Df (Pn‖Qm)]| > ε) ≤ 2 exp

(
− (n ∧m)ε2

2(c1 log (n ∧m) + c2)2

)
,
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where c1 = C1 + C∗1 and c2 = C2 ∨ C∗0 + C∗2 ∨ C0.

Proof. We first establish that Df satisfies the bounded deviation property and then invoke

McDiarmid’s inequality.

We start with some notation. As before, define ψ(p, q) = qf(p/q). Without loss of

generality, let X = Supp(P ) ∪ Supp(Q). Define the function Φ : X n+m → R so that

Φ(X1, · · · , Xn, Y1, · · · , Ym) = Df (Pn‖Qm) .

We show the bounded deviation property of Φ. Fix some T = (x1, · · · , xn, y1, · · · , ym) ∈

X n+m and let T ′ = (x′1, · · · , x′n, y′1, · · · , y′m) ∈ X n+m be such that T and T ′ differ only on

xi = a 6= a′ = x′i. Suppose the number of occurrences of a in the x-component of T is l

and of a′ is l′, while their corresponding y-components are mq and mq′ respectively. We now

have

|Φ(T ′)− Φ(T )| =
∣∣∣∣ψ(s− 1

n
, q

)
− ψ

( s
n
, q
)

+ ψ

(
s′ + 1

n
, q′
)
− ψ

(
s′

n
, q′
)∣∣∣∣

≤
∣∣∣∣ψ(s− 1

n
, q

)
− ψ

( s
n
, q
)∣∣∣∣+

∣∣∣∣ψ(s′ + 1

n
, q′
)
− ψ

(
s′

n
, q′
)∣∣∣∣

≤ 2

n
(C1 log n+ C∗0 ∨ C2) =: Bi ,

where we used the triangle inequality first and then invoked Lemma B.5. Likewise, if A and

A′ differ only in yi and y′i, an analogous argument gives

|Φ(T ′)− Φ(T )| ≤ 2

m
(C∗1 logm+ C0 ∨ C∗2) =: B∗i .

With this we can use McDiarmid’s inequality (cf. Theorem B.18) to bound

P (|Df (Pn‖Qm)− E[Df (Pn‖Qm)]| > ε) ≤ h(ε) ,

where

h(ε) = 2 exp

(
− 2ε2∑n

i=1B
2
i +

∑n+m
i=n+1(B∗i )

2

)
≤ 2 exp

(
− (n ∧m)ε2

2(c1 log (n ∧m) + c2)2

)
.
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Hence, the concentration bound around the population f -divergence follows directly from

Proposition B.7 and Proposition B.11.

Theorem B.12. Assume that P and Q are discrete and let k = |Supp(P )| ∨ |Supp(Q)| ∈

N ∪ {∞}. For any δ ∈ (0, 1), it holds that, with probability at least 1− δ,

|Df (Pn‖Qm)−Df (P‖Q)| ≤
(
c1 log (n ∧m) + c2

)√ 2

n ∧m
log

2

δ

+
(
C1 log n+ C∗0 ∨ C2

)
αn(P ) +

(
C∗1 logm+ C0 ∨ C∗2

)
αm(Q)

+
(
C1 + C∗0 ∨ C2

)
βn(P ) +

(
C∗1 + C0 ∨ C∗2

)
βm(Q) .

Furthermore, if k <∞, then, with probability at least 1− δ,

|Df (Pn‖Qm)−Df (P‖Q)| ≤
(
c1 log (n ∧m) + c2

)(√ 2

n ∧m
log

2

δ
+

√
k

n ∧m
+

k

n ∧m

)
.

Proof of Theorem B.12. We only prove the second inequality. The first one follows from a

similar argument. According to Proposition B.7, we have

|Df (Pn‖Qm)− E[Df (Pn‖Qm)]|

≥ |Df (Pn‖Qm)−Df (P‖Q)| − |E[Df (Pn‖Qm)]−Df (P‖Q)|

≥ |Df (Pn‖Qm)−Df (P‖Q)| −
(
c1 log (n ∧m) + c2

)(√ k

n ∧m
+

k

n ∧m

)
.

By Proposition B.11, it holds that

P

(
|Df (Pn‖Qm)−Df (P‖Q)| > ε+

(
c1 log (n ∧m) + c2

)(√ k

n ∧m
+

k

n ∧m

))
≤ h(ε) ,

where

h(ε) = 2 exp

(
− (n ∧m)ε2

2(c1 log (n ∧m) + c2)2

)
.

The claim then follows from setting h(ε) = δ and solving for ε.
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B.4 Add-Constant Smoothing: Statistical Error

In this section, we apply add-constant smoothing to estimate the f -divergences and study

its statistical error. All the results hold for the linearized cost Lλ(Pn, Qm) and the frontier

integral FI(Pn, Qm) due to Proposition B.2 and Proposition B.3.

For notational simplicity, we assume that P and Q are supported on a common finite

alphabet with size k < ∞. Without loss of generality, let X be the support. Consider

P ∈ M1(X ) and an i.i.d. sample {Xi}ni=1 ∼ P . The add-constant estimator of P is defined

by

Pn,b(a) =
Na + b

n+ kb
, for all a ∈ X ,

where b > 0 is a constant and Na = |{i ∈ [n] : Xi = a}| is the number of times the symbol

a appears in the sample. In practice, b = ba could be different depending on the value of

Na, but we use the same constant b for simplicity. Similarly, We define Qm,b with Ma =

|{i ∈ [m] : Yi = a}|. The goal is to upper bound the statistical error

E |Df (P‖Q)−Df (Pn,b‖Qm,b)| (B.8)

under Assumption 3.1.

Compared to the statistical error of the plug-in estimator, a key difference is that each

entry in the add-constant estimator is at least (n + kb)−1 ∧ (m + kb)−1. Hence, we can

directly apply the approximate Lipschitz lemma without the need to control the missing

mass part. Another difference is that the total variation distance is now between the add-

constant estimator and its population counterpart, which can be bounded as follows.

Lemma B.13. Assume that k = Supp(P ) <∞. Then, for any b > 0,∑
a∈X

E |Pn,b(a)− P (a)| ≤
∑
a∈X

√
nP (a)(1− P (a)) + bk |P (a)− 1/k|

n+ kb
≤
√
kn+ 2b(k − 1)

n+ kb
.

Proof. Note that

|Pn,b(a)− P (a)| =
∣∣∣∣Na − nP (a)

n+ kb
+
b(1− kP (a))

n+ kb

∣∣∣∣ ≤ ∣∣∣∣Na − nP (a)

n+ kb

∣∣∣∣+

∣∣∣∣b(1− kP (a))

n+ kb

∣∣∣∣ .
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Using Jensen’s inequality, we have

∑
a∈X

E |Pn,b(a)− P (a)| ≤
∑
a∈X

√E

∣∣∣∣Na − nP (a)

n+ kb

∣∣∣∣2 +
c |1− kP (a)|

n+ kb


=
∑
a∈X

[√
nP (a)(1− P (a))

n+ kb
+
bk |1/k − P (a)|

n+ kb

]
.

We claim that ∑
a∈X

∣∣∣∣P (a)− 1

k

∣∣∣∣ ≤ 2(k − 1)

k
.

If this is true, we have ∑
a∈X

E |Pn,b(a)− P (a)| ≤
√
kn+ 2b(k − 1)

n+ kb
,

since
∑

a∈X

√
P (a)(1− P (a)) ≤

√
k It then remains to prove the claim. Take a1, a2 ∈ X

such that P (a1) ≥ k−1 ≥ P (a2). It is clear that∣∣∣∣P (a1)− 1

k

∣∣∣∣+

∣∣∣∣P (a2)− 1

k

∣∣∣∣ ≤ ∣∣∣∣P (a1) + P (a2)− 1

k

∣∣∣∣+

∣∣∣∣P (a2)− P (a2)− 1

k

∣∣∣∣
= P (a1) + P (a2).

Repeating this argument gives∑
a∈X

∣∣∣∣P (a)− 1

k

∣∣∣∣ ≤ 1− 1

k
+
k − 1

k
=

2(k − 1)

k
.

The next proposition gives the upper bound for the statistical error of the add-constant

estimator.

Proposition B.14. Suppose that f satisfies Assumption 3.1 and k = |X | < ∞. We have,
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for any n,m ≥ 3,

E
∣∣Df (P‖Q)−Df (Pn,b‖Qm,b)

∣∣ ≤ [nαn(P )

n+ kb
+ γn,k(P )

] (
C1 log(n/b+ k) + C∗0 ∨ C2

)
+

[
mαm(Q)

m+ kb
+ γm,k(Q)

] (
C∗1 log(m/b+ k) + C0 ∨ C∗2

)
≤
(
C1 log(n/b+ k) + C∗0 ∨ C2

)√kn+ 2b(k − 1)

n+ kb

+
(
C∗1 log(m/b+ k) + C0 ∨ C∗2

)√km+ 2b(k − 1)

m+ kb
,

where γn,k(P ) = (n+ bk)−1bk
∑

a∈X |P (a)− 1/k|.

Proof. Following the proof of Proposition B.7, we define

∆n,m(a) := |ψ(P (a), Q(a))− ψ(Pn,b(a), Qm,b(a))| .

We have from the triangle inequality that

∆n,m(a) ≤
∣∣ψ(P (a), Q(a)

)
− ψ

(
Pn,b(a), Q(a)

)∣∣︸ ︷︷ ︸
=:T1(a)

+
∣∣ψ(Pn,b(a), Q(a)

)
− ψ

(
Pn,b(a), Qm,b(a)

)∣∣︸ ︷︷ ︸
=:T2(a)

.

Since Pn,b(a) ≥ b/(n+ kb), the approximate Lipschitz lemma (Lemma B.5) gives

T1(a) ≤ |P (a)− Pn,b(a)|
(
C1 log(n/b+ k) + C∗0 ∨ C2

)
,

By Lemma B.13, it holds that∑
a∈X E[T1(a)]

C1 log(n/b+ k) + C∗0 ∨ C2

≤
∑
a∈X

[√
nP (a)

n+ kb
+
bk |1/k − P (a)|

n+ kb

]
=
nαn(P )

n+ kb
+ γn,k(P )

≤
√
kn+ 2b(k − 1)

n+ kb
.

Since ψ(p, q) = qf(p/q) = pf ∗(q/p), an analogous bound holds for T2(a) with the appropriate
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adjustment of constants and the sample size. Putting these together, we get,

E
∣∣Df (P‖Q)−Df (Pn,b‖Qm,b)

∣∣ ≤ E

[∑
a∈X

|∆n(a)|

]

≤
[
nαn(P )

n+ kb
+ γn,k(P )

] (
C1 log(n/b+ k) + C∗0 ∨ C2

)
+

[
mαm(Q)

m+ kb
+ γm,k(Q)

] (
C∗1 log(m/b+ k) + C0 ∨ C∗2

)
≤
(
C1 log(n/b+ k) + C∗0 ∨ C2

)√kn+ 2b(k − 1)

n+ kb

+
(
C∗1 log(m/b+ k) + C0 ∨ C∗2

)√km+ 2b(k − 1)

m+ kb
.

The concentration bound for the add-constant estimator can be proved similarly.

B.5 Quantization Error

In this section, we study the quantization error of f -divergences, i.e.,

inf
|S|≤k
|Df (P‖Q)−Df (PS‖QS)| , (B.9)

where the infimum is over all partitions of X of size no larger than k, and PS and QS are

the quantized versions of P and Q according to S, respectively. Note that we do not assume

X to be discrete in this section. All the results hold for the linearized cost Lλ(Pn, Qm) and

the frontier integral FI(Pn, Qm) due to Proposition B.2 and Proposition B.3.

Our analysis is inspired by the following result, which shows that the f -divergence can

be approximated by its quantized counterpart; see, e.g., (Györfi and Nemetz, 1978, Theorem

6).

Theorem B.15. For any P,Q ∈M1(X ), it holds that

Df (P‖Q) = sup
S
Df (PS‖QS), (B.10)

where the supremum is over all finite partitions of X .
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The next theorem holds for general f -divergences without the requirement of Assump-

tion 3.1.

Theorem B.16. For any k ≥ 1, we have

sup
P,Q

inf
|S|≤2k

|Df (P‖Q)−Df (PS‖QS)| ≤ f(0) + f ∗(0)

k
.

Proof. Assume f(0)+f ∗(0) <∞. Otherwise, there is nothing to prove. Fix two distributions

P,Q over X . Partition the measurable space X into

X1 =

{
x ∈ X :

dP

dQ
(x) ≤ 1

}
, and, X2 =

{
x ∈ X :

dP

dQ
(x) > 1

}
,

so that

Df (P‖Q) =

∫
X1

f

(
dP

dQ
(x)

)
dQ(x) +

∫
X2

f ∗
(

dQ

dP
(x)

)
dP (x) =: D+

f (P‖Q) +D+
f∗(Q‖P ) .

We quantize X1 and X2 separately, starting with X1. Define sets S1, · · · , Sk as

Sm =

{
x ∈ X1 :

f(0)(m− 1)

k
≤ f

(
dP

dQ
(x)

)
<
f(0)m

k

}
,

where the last set Sk is also extended to include {x ∈ X1 : f((dP/dQ)(x)) = f(0)}. Since

f is non-increasing on (0, 1], it follows that supx∈X1
f((dP/dQ)(x)) ≤ f(0). As a result, the

collection S = {S1, · · · , Sk} is a partition of X1. This gives

f(0)

k

k∑
m=1

(m− 1)Q[Sm] ≤ D+
f (P‖Q) ≤ f(0)

k

k∑
m=1

mQ[Sm] . (B.11)

Further, since f is non-increasing on (0, 1], we also have

f(0)(m− 1)

k
≤ f

(
sup
x∈Fm

dP

dQ
(x)

)
≤ f

(
P [Fm]

Q[Fm]

)
≤ f

(
inf
x∈Fm

dP

dQ
(x)

)
≤ f(0)m

k
.

Hence, it follows that

f(0)

k

k∑
m=1

(m− 1)Q[Sm] ≤ D+
f (PS1‖QS1) ≤ f(0)

k

k∑
m=1

mQ[Sm] . (B.12)
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Putting (B.11) and (B.12) together gives

inf
|S1|≤k

∣∣D+
f (P‖Q)−D+

f (PS1‖QS1)
∣∣ ≤ f(0)

k

k∑
m=1

Q[Sm] ≤ f(0)

k
, (B.13)

since
∑k

m=1Q[Sm] = Q[X1] ≤ 1. Repeating the same argument with P and Q interchanged

and replacing f by f ∗ gives

inf
|S2|≤k

∣∣D+
f∗(Q‖P )−D+

f∗(QS2‖PS2)
∣∣ ≤ f ∗(0)

k
. (B.14)

To complete the proof, we upper bound the infimum of S over all partitions of X with

|S| = k by the infimum over S = S1 ∪ S2 with partitions S1 of X1 and S2 of X2, and

|S1| = |S2| = k. Now, under this partitioning, we have, D+
f (PS‖QS) = D+

f (PS1‖QS1) and

D+
f∗(QS‖PS) = D+

f∗(QS2‖PS2). Putting this together with the triangle inequality, we get,

inf
|S|≤2k

∣∣∣Df (P‖Q)−Df (PS‖QS)
∣∣∣

≤ inf
S=S1∪S2

{∣∣D+
f (P‖Q)−D+

f (PS‖QS)
∣∣+
∣∣D+

f∗(Q‖P )−D+
f∗(QS‖PS)

∣∣}
= inf
|S1|≤k

∣∣D+
f (P‖Q)−D+

f (PS1‖QS1)
∣∣+ inf

|S2|≤k

∣∣D+
f∗(Q‖P )−D+

f∗(QS2‖PS2)
∣∣

≤ f(0) + f ∗(0)

k
.

Now, combining Proposition B.7 and Theorem B.16 leads to an upper bound for the

overall estimation error.

Theorem B.17. Let Sk be a partition of X such that |S| = k ≥ 2 and its quantization error

satisfies the bound in Theorem B.16, i.e.,

|Df (P‖Q)−Df (PSk‖QSk)| ≤
f(0) + f ∗(0)

k
.
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Then, for any n,m ≥ 3,

E
∣∣∣Df (P̂Sk,n‖Q̂Sk,m)−Df (P‖Q)

∣∣∣
≤
(
C1 log n+ C∗0 ∨ C2

)
αn(P ) +

(
C∗1 logm+ C0 ∨ C∗2

)
αm(Q)

+
(
C1 + C∗0 ∨ C2

)
βn(P ) +

(
C∗1 + C0 ∨ C∗2

)
βm(Q) +

f(0) + f ∗(0)

k

≤
(
c1 log (n ∧m) + c2

)(√ k

n ∧m
+

k

n ∧m

)
+
f(0) + f ∗(0)

k
,

where c1 = C1 + C∗1 and c2 = C2 ∨ C∗0 + C∗2 ∨ C0.

According to Theorem B.17, a good choice of quantization level k is of order Θ(n1/3)

which balances between the two types of errors.

B.6 Technical Lemmas

We state here some technical results used in the paper.

Theorem B.18 (McDiarmid’s Inequality). Let X1, · · · , Xm be independent random variables

such that Xi has range Xi. Let Φ : X1 × · · · × Xn → R be any function which satisfies the

bounded difference property. That is, there exist constants B1, · · · , Bn > 0 such that for

every i = 1, · · · , n and (x1, · · · , xn), (x′1, · · · , x′n) ∈ X1 × · · · Xn which differ only on the ith

coordinate (i.e., xj = x′j for j 6= i), we have,

|Φ(x1, · · · , xn)− Φ(x′1, · · · , x′n)| ≤ Bi .

Then, for any t > 0, we have,

P (|Φ(X1, · · · , Xn)− E[Φ(X1, · · · , Xn)]| > t) ≤ 2 exp

(
− 2t2∑n

i=1 B
2
i

)
.

Property B.3. Suppose f : (0,∞) → [0,∞) is convex and continuously differentiable with

f(1) = 0 = f ′(1). Then, f ′(x) ≤ 0 for all x ∈ (0, 1) and f ′(x) ≥ 0 for all x ∈ (1,∞).

Proof. Monotonicity of f ′ means that we have for any x ∈ (0, 1) and y ∈ (1,∞) that

f ′(x) ≤ f ′(1) = 0 ≤ f ′(y).
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Lemma B.19. For all x ∈ (0, 1) and n ≥ 3, we have

0 ≤ (1− x)nx log
1

x
≤ log n

n
.

Proof. Let h(x) = (1 − x)nx log(1/x) be defined on (0, 1). Since limx→0 h(x) = 0 < h(1/n),

the global supremum does not occur as x → 0. We first argue that h obtains its global

maximum in (0, 1/n]. We calculate

h′(x) = (1− x)n−1

(
−nx log

1

x
+ (1− x)

(
log

1

x
− 1

))
≤ (1− x)n−1(1− nx) log

1

x
.

Note that h′(x) < 0 for x > 1/n, so h is strictly decreasing on (1/n, 1). Therefore, it must

obtain its global maximum on (0, 1/n]. On this interval, we have,

(1− x)nx log
1

x
≤ x log

1

x
≤ log n

n
,

since x log(1/x) is increasing on (0, exp(−1)).

The next lemma comes from (Berend and Kontorovich, 2012, Theorem 1).

Lemma B.20. For all x ∈ (0, 1) and n ≥ 1, we have

0 ≤ (1− x)nx ≤ exp(−1)/(n+ 1) < 1/n .
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Appendix C

APPENDIX TO CHAPTER 4

C.1 From the Schrödinger Bridge to the Optimal Transport Plan

In this section, we show that the discrete Schrödinger bridge converges to the optimal trans-

port plan with a decaying ε := εn as n → ∞. We denote by c and C absolute constants

which may change from line to line. We start by proving two useful lemmas.

Lemma C.1. Let Z be a random vector in Rd whose coordinates are sub-Gaussian with

parameter K. Let {Zi}ni=1 be i.i.d. copies of Z. Then we have

P

(
1

n

n∑
i=1

‖Zi‖2 − E[‖Z‖2] > CdK2h

(
log (1/δ)

n

))
≤ δ,

where h(t) := max{
√
t, t}.

Proof. According to Vershynin (2018, Lemma 2.7.6), we know that the k-th coordinate Z(k)

is sub-exponential with parameter K2 for each k ∈ [d]. Since the sub-exponential norm ‖·‖ψ1

is a norm, by the triangle inequality, it holds that∥∥‖Z‖2
∥∥
ψ1

=

∥∥∥∥∥
d∑

k=1

(Z(k))2

∥∥∥∥∥
ψ1

≤
d∑

k=1

∥∥(Z(k))2
∥∥
ψ1
≤ dK2.

By Vershynin (2018, Exercise 2.7.10), we get ‖Z‖2−E[‖Z‖2] is sub-exponential with param-

eter CdK2. Now the claim follows from the Bernstein inequality.

Lemma C.2. Let Z ∼ ν on Rd with d > 4 such that E[exp(γ ‖Z‖α)] < ∞ for some α > 2

and γ > 0. Let {Zi}ni=1 be i.i.d. copies of Z and νn be the empirical measure. Fix δ ∈ (0, 1).

For sufficiently large n, we have

P
(
W2

2(νn, ν) ≥ C̄n−2/d log2/d (1/δ)
)
≤ δ,

where C̄ and c̄ only depend on d, α, γ, ν.
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Proof. Due to Fournier and Guillin (2015, Theorem 2), for all n ≥ 1 and t > 0, we have

P
(
W2

2(νn, ν) ≥ t
)
≤ C̄ exp(−c̄ntd/2)1{t ≤ 1}+ C̄ exp(−c̄ntα/2)1{t > 1},

where C̄ and c̄ only depend on d, α, γ, ν. Let t = [log (C̄/δ)/(c̄n)]2/d. For sufficiently large

n, we have t ≤ 1 and thus

P
(
W2

2(νn, ν) ≥ C̄n−2/d log2/d (1/δ)
)
≤ δ.

Now we are ready to prove Proposition 4.2. The argument is inspired by Pal and Wong

(2020, Theorem 10).

Proof of Proposition 4.2. Recall that T? is the optimal transport map from P to Q and µn is

the discrete Schrödinger bridge defined in (4.9). For each random sample Xi, let X?
i = T (Xi)

be the image of Xi under T . For each n, let µ′n denote the empirical distribution

µ′n =
1

n

n∑
i=1

δ(Xi,X?
i ).

Since W2 is a metric, so, by the triangle inequality,

W2
2(µn, µ?) ≤ 2W2

2(µn, µ
′
n) + 2W2

2(µ′n, µ?). (C.1)

Note that {(Xi, X
?
i }) is an i.i.d. sample of µ?. Define the following events

E1 :=

{
1

n

n∑
i=1

‖Yi‖2 ≤ E[‖Y ‖2] + CdK2h

(
log (1/δ)

n

)}

E2 :=

{
1

n

n∑
i=1

‖X?
i ‖

2 ≤ E[‖Y ‖2] + CdK2h

(
log (1/δ)

n

)}
E3 :=

{
W2

2(Qn, Q) ≤ C̄n−2/d log2/d(1/δ)
}

E4 :=
{
W2

2(Q′n, Q) ≤ C̄n−2/d log2/d(1/δ)
}

E5 :=
{
W2

2(µ′n, µ?) ≤ C̄n−2/d log2/d(1/δ)
}
,
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where Qn := n−1
∑n

i=1 δYi and Q′n := n−1
∑n

i=1 δX?
i
. By Lemmas C.1 and C.2, each of these

events holds with probability at least 1−δ/5. Therefore, it suffices to prove the upper bound

on the event E1E2E3E4E5 which boils down to an upper bound for W2
2(µn, µ

′
n) since we already

have an upper bound for W2
2(µ′n, µ?) on the event E5.

Step 1. Express the weights γε(σ) in terms of the divergence D in (4.12). Fix ε > 0.

Recall that

γε(σ) :=
exp

[
−1
ε

∑n
i=1 c (Xi, Yσi)

]∑
τ∈Sn exp

[
−1
ε

∑n
i=1 c (Xi, Yτi)

]
=

exp
[
−1
ε

∑n
i=1[c (Xi, Yσi)− φ(Xi)− ψ(Yσi)]

]∑
τ∈Sn exp

[
−1
ε

∑n
i=1[c (Xi, Yτi)− φ(Xi)− ψ(Yτi)]

]
=

exp
[
−1
ε

∑n
i=1D[Yσi | Xi]

]∑
τ∈Sn exp

[
−1
ε

∑n
i=1D[Yτi | Xi]

] .
(C.2)

We denote by ω(σ) = exp{−ε−1
∑n

i=1 D[Yσi | Xi]} for each σ ∈ Sn.

Step 2. Bound ω(σ). Since empirical measures do not depend on the labeling of indices,

we will relabel {Yi, i ∈ [n]} such that

1

n

n∑
i=1

‖Yi −X?
i ‖

2 = min
σ∈Sn

1

n

n∑
i=1

‖Yσi −X?
i ‖

2 =: W 2
n . (C.3)

That is, after the relabeling, the identity permutation id minimizes the L2-matching distance

in (C.3).

We now use the quadratic approxmation of D from Assumption 4.1. Note that, for any

σ 6= id we have

n∑
i=1

D[Yσi | Xi] ≥ L
n∑
i=1

‖Yσi −X?
i ‖

2 ,

giving us

ω(σ) = exp

[
−1

ε

n∑
i=1

D[Yσi | Xi]

]
≤ exp

(
−1

ε
L

n∑
i=1

‖Yσi −X?
i ‖

2

)
.

On the other hand, by a similar argument, we can get a lower bound for the identity
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permutation:

ω(id) = exp

[
−1

ε

n∑
i=1

D[Yi | Xi]

]
≥ exp

[
−1

ε
L′

n∑
i=1

‖Yi −X?
i ‖

2

]
, by Assumption 4.1

= exp

(
−1

ε
L′nW 2

n

)
, by (C.3).

Therefore, for any σ ∈ Sn, we have

ω(σ)

ω(id)
≤ exp

(
−1

ε
L

n∑
i=1

‖Yσi −X?
i ‖

2 +
1

ε
L′nW 2

n

)
. (C.4)

Step 3. Bound W2
2(µn, µ

′
n). Let {δn}n≥1 be a positive decreasing sequence, to be chosen

later, such that limn→∞ δn = 0. Partition Sn into two disjoint subsets based on the L2-

matching distance:

Gn :=

{
σ ∈ Sn :

1

n

n∑
i=1

‖Yσi −X?
i ‖2 ≤ δn

}
, Gcn = Sn \ Gn.

Consider σ ∈ Gn and the probability measures Mσ and µ′n on Rd×Rd. There is a coupling

between them that couples the atom (Xi, Yσi) of Mσ with the atom (Xi, X
?
i ) of µ′n with mass

1/n. The squared Euclidean distance (in R2d) between these two atoms is exactly ‖Yσi−X?
i ‖2,

which implies that

W2
2(Mσ, µ

′
n) ≤ n−1

n∑
i=1

‖Yσi −X?
i ‖2 ≤ δn → 0.

For σ /∈ Gn we have the bound

W2
2(Mσ, µ

′
n) ≤ 2

n

n∑
i=1

‖X?
i ‖

2 +
2

n

n∑
i=1

‖Yi‖2 , by the triangle inequality

≤ C

[
E[‖Y ‖2] + dK2h

(
log (1/δ)

n

)]
, by the events E1 and E2

=: βn

Since µn is the mixture of {Mσ} with weights {γε(σ)}, the natural mixture coupling, i.e.,

couples the atom (Xi, Yσi) of µn with the atom (Xi, X
?
i ) of µ′n with mass γε(σ)/n gives

W2
2(µn, µ

′
n) ≤

∑
σ∈Sn

γε(σ)

n

n∑
i=1

‖Yσi −X?
i ‖2 ≤ δn

∑
σ∈Gn

γε(σ) + βn
∑
σ∈Gcn

γε(σ)

≤ δn + βn
∑
σ∈Gcn

γε(σ).

(C.5)
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We then control
∑

σ∈Gcn
γε(σ).

To this end, note that from (C.2), we have

∑
σ∈Gcn

γε(σ) =

∑
σ∈Gcn

ω(σ)

ω(id) +
∑

σ 6=id ω(σ)
≤
∑
σ∈Gcn

ω(σ)

ω(id)

≤
∑
σ∈Gcn

exp

(
−1

ε
L

n∑
i=1

‖Yσi −X?
i ‖

2 +
1

ε
L′nW 2

n

)
, by (C.4)

≤ n! exp

[
1

ε
L′nW 2

n −
1

ε
Lnδn

]
,

(C.6)

where the last inequality uses the crude estimate |Gcn| ≤ |Sn| = n! as well as the fact that,

for σ ∈ Gcn,
n∑
i=1

‖Yσi −X?
i ‖2 > nδn.

Step 4. Bound W 2
n in (C.3). We now let ε = εn depend on n. By the trivial bound

n! ≤ nn, we can bound (C.6) above by

exp

[
1

εn
L′nW 2

n −
1

εn
Lnδn + n log n

]
. (C.7)

We will choose δn and εn suitably such that (C.7) tends to zero exponentially fast as n→∞.

Before that, let us obtain a bound for W 2
n . By the triangle inequality, we have

W 2
n ≤ 2

[
W2

2(Qn, Q) + W2
2(Q′n, Q)

]
≤ C̄n−2/d log2/d (1/δ). (C.8)

where the last inequality follows from the events E3 and E4. Combining everything, it follows

from (C.5) that

W2
2(µn, µ

′
n) ≤ δn + βn exp

[
C̄L′n

εn

( log (1/δ)

n

)2/d

− Lnδn
εn

+ n log n

]
. (C.9)

Step 5. Choose δn and εn. For εn = n−2/d, we now choose δn so that the upper bound in

(C.9) is minimized. For this choice of εn, the exponent in the upper bound reads

C̄L′n(log (1/δ))2/d − Ln1+2/dδn + n log n.
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For this term to be negative, we choose δn = 3n−2/d log n/L. Therefore, for all large enough

n,

C̄L′n(log (1/δ))2/d − Ln1+2/dδn + n log n ≥ −n log n,

and thus

W2
2(µn, µ

′
n) ≤ 3n−2/d log n/L+ βne

−n logn ≤ CL,d,K,Qn
−2/d log n. (C.10)

C.2 Properties of the Schrödinger Bridge Statistic

We prove in this section two propositions regarding the Schrödinger bridge statistic—the

continuity in Proposition 4.3 and the conditional expectation expression in Proposition 4.8.

To prove Proposition 4.3, we first establish the continuity for the Schrödinger bridge cost.

In fact, Proposition 4.3 is a direct consequence of the following Lemma C.3.

Lemma C.3. The Schrödinger bridge cost Tε(P,Q) is increasing and continuous in ε on

(0,∞). Moreover, if c is bounded and continuous, then

T∞(P,Q) := lim
ε↑∞

Tε(P,Q) =

∫
c d(P ⊗Q). (C.11)

Proof. Take any 0 < ε < ε′ <∞. By the optimality, we have∫
c(x, y)dµε(x, y) + εKL(µε‖P ⊗Q) ≤

∫
c(x, y)dµε′(x, y) + εKL(µε′‖P ⊗Q),

and thus

Tε′(P,Q)− Tε(P,Q) ≥ ε [KL(µε‖P ⊗Q)−KL(µε′‖P ⊗Q)] .

Similarly, we obtain

Tε′(P,Q)− Tε(P,Q) ≤ ε′ [KL(µε‖P ⊗Q)−KL(µε′‖P ⊗Q)] .

Combining these two inequalities implies

εDε,ε′ ≤ Tε′(P,Q)− Tε(P,Q) ≤ ε′Dε,ε′ , (C.12)
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where Dε,ε′ := [KL(µε‖P ⊗Q)−KL(µε′‖P ⊗Q)]. It then follows from ε < ε′ that Dε,ε′ ≥ 0,

or equivalently,

KL(µε′‖P ⊗Q) ≤ KL(µε‖P ⊗Q). (C.13)

This yields Tε(P,Q) ≤ Tε′(P,Q) and thus Tε(P,Q) is increasing in ε.

To prove the continuity, it suffices to show that ε′Dε,ε′ − εDε,ε′ → 0 as ε′ → ε for any

ε ∈ (0,∞). Fix ε ∈ (0,∞) and consider a neighborhood of ε so that |ε′ − ε| ≤ ε/2. Note

that

|ε′Dε,ε′ − εDε,ε′ | = |(ε′ − ε)Dε,ε′| ≤ |ε′ − ε|max{KL(µε‖P ⊗Q),KL(µε′‖P ⊗Q)}

≤ |ε′ − ε|KL(µε/2‖P ⊗Q), by (C.13).

Now the claim follows from the fact that KL(µε/2‖P ⊗Q) <∞.

We then study the limit of Tε as ε → ∞. Let C := supν∈Π(P,Q)

∫
cdν < ∞ since c is

bounded. Note that

sup
ν∈Π(P,Q)

∣∣∣∣1ε
∫
cdν + KL(ν‖P ⊗Q)−KL(ν‖P ⊗Q)

∣∣∣∣ ≤ C

ε
<∞.

It follows that

inf
ν∈Π(P,Q)

[
1

ε

∫
cdν + KL(ν‖P ⊗Q)

]
→ inf

ν∈Π(P,Q)
KL(ν‖P ⊗Q) = 0, as ε→∞.

Furthermore, the problem on the LHS has a unique minimizer µε and the one one the RHS

has a unique minimizer µ∞ := P ⊗Q. Due to the tightness of Π(P,Q) (Santambrogio, 2015,

Theorem 1.7) and Prokhorov’s theorem, every sequence of measures in {µε} has a weakly

converging subsequence whose limit must be µ∞. Hence, the equality (C.11) follows from

the definition of weak convergence.

We then prove Proposition 4.8.

Proof of Proposition 4.8. For simplicity of the notation, let η̄(X, Yσ) := 1
n

∑n
i=1 η(Xi, Yσi)

for each σ ∈ Sn. By exchangeability of {(Xi, Yi)}ni=1, it holds that Eµ[η(Xi, Yi) | Fn] =
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Eµ[η(Xj, Yj) | Fn] for all 1 ≤ i, j ≤ n which implies that Eµ[η(X1, Y1) | Fn] = Eµ[η̄(X, YI) |

Fn] where I is the identity permutation. Since η̄(X, YI) is Fn-measurable, it follows that

Eµ [η(X1, Y1) | Fn] = η̄(X, YI). By the tower property of conditional expectations,

hn := Eµ [η(X1, Y1) | Gn] = Eµ [Eµ [η(X1, Y1) | Fn] | Gn] = Eµ [η̄(X, YI) | Gn] .

By definition, the last expression is the a.s. unique Gn-measurable function such that for any

bounded Gn-measurable φ, it holds that Eµ[η̄(X, YI)φ] = Eµ[hnφ]. By (4.26), we have

Eµ [η̄(X, YI)φ] = E [fnη̄(X, YI)φ] = E [E [fnη̄(X, YI) | Gn]φ]

= Eµ

[
dRn

dSn
E [fnη̄(X, YI) | Gn]φ

]
,

which implies that hn = dRn

dSn
E [fnη̄(X, YI) | Gn]. Similar to (4.27), we have

E [fnη̄(X, YI) | Gn] =
1

n!

∑
σ∈Sn

η̄(X, Yσ)ξ⊗(X, Yσ)

Now, according to Fact 4.5,

hn =
1

Dn

1

n!

∑
σ∈Sn

η̄(X, Yσ)ξ⊗(X, Yσ) = Tn.

Hence, the unbiasedness of Tn under µ follows by the tower property of conditional

expectations. Now consider the reverse σ-algebra Gn = σ (Gn, (Xi, Yi), i ≥ N + 1). Since

{(Xi, Yi)}i≥n+1 are independent of {(Xi, Yi)}ni=1, we have Tn = Eµ
[
η(X1, Y1) | Gn

]
. Thus,

(Tn,Gn)n≥1 is a reverse martingale and Tn converges almost surely to Eµ[η(X1, Y1)] = θ.

C.3 First Order Chaos

We verify in this section the first order chaos given in Proposition 4.10. Before that, we give

some useful properties for the operators A and A∗. We denote by Eµ the expectation under

the model µ.

Lemma C.4. Let (X, Y ) ∼ µ. Under Assumption 4.2, the following statements hold true:
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(a) For any f ∈ L2(P ) and g ∈ L2(Q), it holds Eµ[f(X) | Y ](y) = Af(y) and Eµ[g(Y ) |

X](x) = A∗g(x). In particular, Af ∈ L2(Q) and A∗g ∈ L2(P ).

(b) The largest eigenvalue of A and A∗ is 1, and A1 = A∗ 1 = 1.

(c) The operator A maps L2
0(P ) to L2

0(Q), and A∗ maps L2
0(Q) to L2

0(P ).

(d) The operators (I − A∗A)−1 : L2
0(P ) → L2

0(P ) and (I − AA∗)−1 : L2
0(Q) → L2

0(Q) are

well-defined.

(e) It holds that A(I − A∗A)−1 = (I − AA∗)−1A and A∗(I − AA∗)−1 = (I − A∗A)−1A∗

on their domains defined above. Moreover, for any f ∈ L2
0(P ) and g ∈ L2

0(Q), we have

Eµ
[
(I −A∗A)−1(f −A∗g)(X) + (I −AA∗)−1(g −Af)(Y ) | X

]
= f(X)

Eµ
[
(I −A∗A)−1(f −A∗g)(X) + (I −AA∗)−1(g −Af)(Y ) | X

]
= g(Y ).

(C.14)

Proof. (a) According to (4.29), it holds that Af(y) = Eµ[f(X) | Y ](y) and thus, by Jensen’s

inequality,

‖Af‖2
L2(Q) = Eµ[(Af)2(Y )] = Eµ[Eµ[f(X) | Y ]2] ≤ Eµ[f 2(X)] = ‖f‖2

L2(P ) <∞, (C.15)

which implies Af ∈ L2(Q). A similar argument holds for A∗g.

(b) Since µ ∈ Π(P,Q), we get, for any y ∈ Rd,

A1(y) =

∫
1(x)ξ(x, y)dP (x)

a.s.
= 1.

This implies (1,1) is a (eigenvalue, eigenvector) pair of A. It then follows from (C.15) that

1 is the largest eigenvalue of A.

(c) For any f ∈ L2
0(P ), it holds∫

Af(y)dQ(y) =

∫
dQ(y)

∫
f(x)ξ(x, y)dP (x) =

∫
f(x)dP (x) = 0.

It then follows that Af ∈ L2
0(Q).

(d) From (b) and (c) we know A∗A maps from L2
0(P ) to L2

0(P ) with the largest eigenvalue

being 1. Recall that we assume A∗A has positive eigenvalue gap, in other words, 1 is the

only eigenfunction corresponds to the eigenvalue 1. Given f, g ∈ L2
0(P ), if (I − A∗A)f =
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(I −A∗A)g, then f − g = c1 for some constant c. Since f − g ∈ L2
0(P ) is orthogonal to 1,

it holds that f = g and thus I −A∗A is injective on L2
0(P ). Moreover, for every f ∈ L2

0(P ),

f̃ :=

[
I +

∑
k≥1

(A∗A)k

]
f

converges in L2(P ) and (I−A∗A)f̃ = f . It follows that I−A∗A is also surjective. Therefore,

(I −A∗A)−1f is well-defined and is equal to f̃ .

(e) From (d) we get, for any f ∈ L2
0(P ),

A(I −A∗A)−1f = A

[
I +

∑
k≥1

(A∗A)k

]
f =

[
I +

∑
k≥1

(AA∗)k
]
Af = (I −AA∗)−1Af.

This implies A(I −A∗A)−1 = (I −AA∗)−1A. The other identity can be proved analogously.

Finally, we prove the first equation in (C.14). In fact,

Eµ
[
(I −A∗A)−1(f −A∗g)(X) + (I −AA∗)−1(g −Af)(Y ) | X

]
= (I −A∗A)−1(f −A∗g)(X) +A∗(I −AA∗)−1(g −Af)(X)

= (I −A∗A)−1(f −A∗g)(X) + (I −A∗A)−1A∗(g −Af)(X) = f(X),

where the last equality follows from a simple algebra.

Now we are ready to give the first order chaos of Tn, i.e., ProjH1
(Tn).

Proof of Proposition 4.10. By the definition of orthogonal projection, it suffices to show that,

for any i ∈ [n],

Eµ[Tn − θ − Ln | Xi] = 0 and Eµ[Tn − θ − Ln | Yi] = 0

almost surely. We will prove it for X1, and the rest of them can be proved similarly. Note

that κ1,0 ∈ L2
0(P ) and κ0,1 ∈ L2

0(Q). By (c) and (d) in Lemma C.4, we know, for every

i ∈ [n],

Eµ
[
(I −A∗A)−1(κ1,0 −A∗κ0,1)(Xi) + (I −AA∗)−1(κ0,1 −Aκ1,0)(Yi)

]
= 0.
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It then follows from (C.14) that Eµ[Ln | X1] is equal to

1

n
Eµ
[
(I −A∗A)−1(κ1,0 −A∗κ0,1)(X1) + (I −AA∗)−1(κ0,1 −Aκ1,0)(Y1) | X1

]
=
κ1,0(X1)

n
.

We only need to show Eµ[Tn − θ | X1] = 1
n
κ1,0(X1). Let h(x) := Eµ[Tn − θ | X1](x). Since

Tn − θ is invariant to a permutation on {Xi}ni=1, we get Eµ[Tn − θ | Xi](x) ≡ h(x) for all

i ∈ [n]. As a result, for any φ ∈ L2(P ), it holds that

Eµ

[
(Tn − θ)

n∑
i=1

φ(Xi)

]
=

n∑
i=1

Eµ[(Tn − θ)φ(Xi)] = nEµ[h(X1)φ(X1)].

Recall from Proposition 4.8 that Tn = Eµ[η(X1, Y1) | Gn]. Since
∑n

i=1 φ(Xi) is Gn measurable,

by the tower property of conditional expectation, we get

Eµ

[
(Tn − θ)

n∑
i=1

φ(Xi)

]
= Eµ

[
(η(X1, Y1)− θ)

n∑
i=1

φ(Xi)

]
= Eµ[κ1,0(X1)φ(X1)].

It follows that Eµ[κ1,0(X1)φ(X1)] = NEµ[h(X1)φ(X1)]. Hence, we have h(X1) = 1
n
κ1,0(X1).

We then prove some properties for the operator B, including the identity in Lemma 4.11.

Lemma C.5. Under Assumption 4.2, the following statements hold true:

(a) Let (X1, Y1), (X2, Y2)
i.i.d∼ µ. It holds that Eµ[f(X1, Y2) | X2, Y1](x, y) = Bf(x, y) for

any f ∈ L2(P ⊗Q). In particular, Bf ∈ L2(P ⊗Q).

(b) The operator B maps L2
0(P ⊗Q) to L2

0(P ⊗Q).

(c) For any f ⊕ g ∈ L2(P ⊗Q), we have B(f ⊕ g) = A∗g ⊕Af .

(d) The operator (I + B)−1 is well-defined on L2
0(P ⊗Q).

(e) For any f ∈ L2
0(P ) and g ∈ L2

0(Q), it holds that

(I + B)−1(f ⊕ g) = [(I −A∗A)−1(f −A∗g)]⊕ [(I −AA∗)−1(g −Af)]. (C.16)

Proof. (a) Let f ∈ L2(P ⊗Q). By the definition of B, we have

Bf(x, y) =

∫∫
f(x′, y′)ξ(x′, y)ξ(x, y′)dP (x′)dQ(y′) = Eµ[f(X1, Y2) | X2, Y1](x, y).
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By Jensen’s inequality, ‖Bf‖2
L2(P⊗Q) = Eµ[Eµ[f(X1, Y2) | X2, Y1]2] ≤ Eµ[f 2(X1, Y2)] < ∞,

and thus Bf ∈ L2(P ⊗Q).

(b) Take any f ∈ L2
0(P ⊗Q), we have, by (a),

Eµ[Bf(X, Y )] = Eµ[Bf(X2, Y1)] = Eµ[Eµ[f(X1, Y2) | X2, Y1]] = Eµ[f(X1, Y2)] = 0,

and thus Bf ∈ L2
0(P ⊗Q).

(c) Recall B = T (A⊗A∗). Take any f ⊕ g ∈ L2(P ⊗Q), we have

B(f ⊕ g)(x, y) = (A⊗A∗)(f ⊕ g)(y, x) = Af(y) +A∗g(x) = (A∗g ⊕Af)(x, y).

(d) Recall from Assumption 4.3 that A admits a singular value decomposition: Aαk =

skβk and A∗βk = skαk for all k ≥ 0 with s0 = 1 and α0 = β0 = 1, where {αk} and {βk} are

orthonormal bases of L2(P ) and L2(Q), respectively. Take any f ∈ L2
0(P ⊗ Q). According

to (Berezansky and Kondratiev, 2013, Page 90), {αi ⊗ βj}i,j≥0 forms an orthonormal basis

of L2(P ⊗Q). As a result, we get that f has an expansion

f =
∑

i,j≥0,i+j>0

γij(αi ⊗ βj),

where
∑

i,j≥0,i+j>0 γ
2
ij <∞. Define a function

f̃ :=
∑

i,j≥0,i+j>0

γij
1 + sisj

(αi ⊗ βj).

Since sk ≥ 0 for all k ≥ 0, it holds that f̃ ∈ L2(P ⊗Q). Furthermore, we have (P ⊗Q)[f̃ ] = 0

as αi ∈ L2
0(P ) and βi ∈ L2

0(Q) for all i > 0. This implies f̃ ∈ L2
0(P ⊗Q). Moreover, we have

(I + B)f̃ =
∑

i,j≥0,i+j>0

γij
1 + sisj

(αi ⊗ βj) +
∑

i,j≥0,i+j>0

γij
1 + sisj

sisj(αi ⊗ βj) = f, (C.17)

and thus I +B : L2
0(P ⊗Q)→ L2

0(P ⊗Q) is a surjective. On the other hand, if (I +B)f = 0

for some f ∈ L2
0(P ⊗ Q), then we must have 〈Bf, f〉L2

0(P⊗Q) = −‖f‖L2
0(P⊗Q). However, we

also know 〈Bf, f〉L2
0(P⊗Q) =

∑
i,j≥0,i+j>0 sisjγ

2
ij ≥ 0. Consequently, it holds f ≡ 0 and thus

I+B is also an injective. Hence, the inverse operator (I+B)−1 is well-defined on L2
0(P ⊗Q).
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(e) Take any f ⊕ g ∈ L2
0(P ⊗Q), it follows from (d) that (I +B)−1(f ⊕ g) exists. It then

suffices to verify

(I + B)
[
(I −A∗A)−1(f −A∗g)⊕ (I −AA∗)−1(g −Af)

]
= f ⊕ g.

By (c), we know

B
[
(I −A∗A)−1(f −A∗g)⊕ (I −AA∗)−1(g −Af)

]
= A∗(I −AA∗)−1(g −Af)⊕A(I −A∗A)−1(f −A∗g)

= (I −A∗A)−1A∗(g −Af)⊕ (I −AA∗)−1A(f −A∗g),

where the last equality follows from (e) in Lemma C.4. Consequently,

(I + B)
[
(I −A∗A)−1(f −A∗g)⊕ (I −AA∗)−1(g −Af)

]
= f ⊕ g.

C.4 The Denominator and the Remainder

C.4.1 Hoeffding decomposition under the product measure

Definition C.1. Given A,B ⊂ [n], we denote by HAB the subspace of L2((P ⊗Q)n) spanned

by functions of the form f(XA, YB) such that

E[f(XA, YB) | XC , YD]
a.s.
= 0, for all C ⊂ A,D ⊂ B and |C|+ |D| < |A|+ |B| . (C.18)

We say such an f(XA, YB) is completely degenerate. In particular, when |A| = |B| = 1, we

write f ∈ L2
0,0(P ⊗ Q). By definition, for distinct choices of the pair (A,B), the subspaces

HAB are orthogonal. Take an arbitrary mean-zero statistic T ∈ L2
0((P ⊗ Q)n). If T can be

decomposed as

T =
∑

A,B⊂[n]

TAB, with TAB ∈ HAB, (C.19)

then we call it the Hoeffding decomposition of T (van der Vaart, 2000, Chapter 11). Its

variance can then be computed as E[T 2] =
∑

A,B⊂[n] E[T 2
AB].
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For example, both ξ̃(X1, Y1) := ξ(X1, Y1) − 1 and h(X1, Y1) := η̃(X1, Y1)ξ(X1, Y1) are

completely degenerate according to the following lemma.

Lemma C.6. Assume that ξ, ηξ ∈ L2(P ⊗Q), then ξ̃, η̃ξ ∈ L2
0,0(P ⊗Q).

Proof. The claim ξ̃ ∈ L2
0,0(P ⊗Q) follows from E[ξ(Xi, Yj) | Xi]

a.s.
= E[ξ(Xi, Yj) | Yj]

a.s.
= 1 for

all i, j ∈ [n] since µ := ξ · (P ⊗Q) ∈ Π(P,Q). To prove the other claim, note that, by (C.14),

κ1,0(x) =

∫ [
(I −A∗A)−1(κ1,0 −A∗κ0,1)(x) + (I −AA∗)−1(κ0,1 −Aκ1,0)(y)

]
ξ(x, y)dQ(y).

By definition, κ1,0(x) =
∫

[η(x, y) − θ]ξ(x, y)dQ(y). This yields
∫
η̃(x, y)ξ(x, y)dQ(y) = 0.

Similarly,
∫
η̃(x, y)ξ(x, y)dP (x) = 0 and thus η̃ξ ∈ L2

0,0(P ⊗Q).

We then derive the Hoeffding decompositions of Dn and Un as in Proposition 4.13. We

start with two useful lemmas.

Lemma C.7. Let A1, A2, B1, B2 ⊂ [n] be such that A1 ∩ A2 = B1 ∩ B2 = ∅. Assume

T1 := f1(XA1 , YB1) ∈ L2((P ⊗ Q)n) and T2 := f2(XA2 , YB2) ∈ L2((P ⊗ Q)n) are completely

degenerate. Then T1T2 ∈ L2((P ⊗Q)n) is also completely degenerate.

Proof. Take any A′ ⊂ A1∪A2 and B′ ⊂ B1∪B2 such that |A′|+|B′| < |A1|+|A2|+|B1|+|B2|.

Let A′1 := A′ ∩ A1, A′2 := A′ ∩ A2, B′1 := B′ ∩ B1 and B′2 := B′ ∩ B2. Then A′ = A′1 ∪ A′2
and B′ = B′1 ∪ B′2. Furthermore, without loss of generality, we may assume |A′1| + |B′1| <

|A1|+ |B1|. By independence, we have

E[T1T2 | XA′ , YB′ ] = E[T1 | XA′1
, YB′1 ] E[T2 | XA′2

, YB′2 ] = 0,

since E[T1 | XA′1
, YB′1 ] = 0.

Lemma C.8. Let A ⊂ [n] be a subset. For any σ ∈ Sn, the following identity holds:∏
i∈A

ξ(Xi, Yσi) =
∑
C⊂A

∏
i∈C

ξ̃(Xi, Yσi), (C.20)

where
∏

i∈∅ ξ̃(Xi, Yσi) := 1. Moreover, (C.20) gives the Hoeffding decomposition of∏
i∈A ξ(Xi, Yσi).
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Proof. By Lemma C.7,
∏

i∈C ξ̃(Xi, Yσi) is completely degenerate for each C ⊂ A. It then

suffices to prove the identity (C.20). Without loss of generality, we prove it for A = [n] by

induction. For n = 1, the identity reduces to ξ(X1, Y1) = 1 + ξ̃(X1, Y1). Assume the identity

holds for n− 1. Consequently,

n∏
i=1

ξ(Xi, Yσi) =
∑

C⊂[n−1]

∏
i∈C

ξ̃(Xi, Yσi)× ξ(Xn, Yσn)

=
∑

C⊂[n],n∈C

∏
i∈C

ξ̃(Xi, Yσi) +
∑

C⊂[n−1]

∏
i∈C

ξ̃(Xi, Yσi) =
∑
C⊂[n]

∏
i∈C

ξ̃(Xi, Yσi).

Thus, the identity holds for n.

Proof of Proposition 4.13. We only prove the results for Un. The proof for Dn is similar. By

definition,

Un :=
1

n · n!

∑
σ∈Sn

n∑
i=1

h(Xi, Yσi)
∏

j∈[n]\{i}

ξ(Xj, Yσj)

=
1

n · n!

∑
σ∈Sn

n∑
i=1

h(Xi, Yσi)
∑

C⊂[n]\{i}

∏
j∈C

ξ̃(Xj, Yσj), by Lemma C.8.

Take A,B ⊂ [n] such that |A| = |B| > 0. We will write Un as a sum of terms that only

contain XA := (Xi)i∈A and YB := (Yi)i∈B. The terms corresponding to XA in the above

decomposition are

1

n · n!

∑
σ∈Sn

∑
i∈A

h(Xi, Yσi)
∏

j∈A\{i}

ξ̃(Xj, Yσj).

Consequently, the terms corresponding to (XA, YB) are

1

n · n!
UAB :=

1

n · n!

∑
σ∈Sn:σA=B

∑
i∈A

h(Xi, Yσi)
∏

j∈A\{i}

ξ̃(Xj, Yσj).

Hence, the identity (4.36) follows. Moreover, since h ∈ L2
0,0(P ⊗Q), we get, by Lemma C.7,

that

h(Xi, Yσi)
∏

j∈A\{i}

ξ̃(Xj, Yσj) ∈ HAB, for any i ∈ A and σ ∈ Sn such that σA = B.
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This implies UAB ∈ HAB, and thus (4.36) is the Hoeffding decomposition of Un.

Let us compute E[U2
n]. For any A,B ⊂ [n] such that |A| = |B| = r > 0, we get, by the

exchangeability X[n] and Y[n] under the measure (P ⊗Q)n, E[U2
AB] = E[U2

[r][r]]. Furthermore,

since there are (n− r)! permutations that map [r] to [r], we get

E[U2
[r][r]] = (n− r)!2 E

∑
σ∈Sr

r∑
i=1

h(Xi, Yσi)
∏

j∈[r]\{i}

ξ̃(Xj, Yσj)

2

.

As a result, E[U2
[r][r]] is equal to

(n− r)!2
∑
τ∈Sn

r∑
i=1

E

h(Xi, Yτi)
∏

k∈[r]\{l}

ξ̃(Xk, Yτk)×
∑
σ∈Sr

r∑
i=1

h(Xi, Yσi)
∏

j∈[r]\{i}

ξ̃(Xj, Yσj)

 .
By symmetry, the contribution from every τ is the same, so E[U2

[r][r]] is equal to

(n− r)!2r! E

[
r∑
l=1

h(Xl, Yl)
∏

k∈[r]\{l}

ξ̃(Xk, Yk)
∑
σ∈Sr

r∑
i=1

h(Xi, Yσi)
∏

j∈[r]\{i}

ξ̃(Xj, Yσj)

]
.

It then follows from the exchangeability of {(Xi, Yi)}i∈[n] that

E[U2
[r][r]] = (n− r)!2r!r E

h(X1, Y1)
r∏

k=2

ξ̃(Xk, Yk)
∑
σ∈Sr

∑
i∈A

h(Xi, Yσi)
∏

j∈A\{i}

ξ̃(Xj, Yσj)

 .
As a result,

E[U2
n] =

1

n2(n!)2

n∑
r=1

∑
|A|=|B|=r

E[U2
AB] =

1

n2(n!)2

n∑
r=1

(
n

r

)2

E[U2
[r][r]]

=
1

n2

n∑
r=1

r

r!

∑
σ∈Sr

r∑
i=1

E

h(X1, Y1)
r∏
j=2

ξ̃(Xk, Yk)h(Xi, Yσi)
∏

j∈[r]\{i}

ξ̃(Xj, Yσj)

 .

C.4.2 Variance bound

We then bound the variance of Dn and Un using the spectral gap of operators A and A∗.

Assumption 4.2 guarantees that such spectral gap does exist. We first prove the contraction

property in Lemma 4.14.
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Proof of Lemma 4.14. Take f ∈ L2
0,0(P ⊗ P ). By definition, we have (IP ⊗ A)f(x, y) =∫

f(x, x′)ξ(x′, y)dP (x′), and thus

E[(IP ⊗A)f(X1, Y1) | X1] =

∫
f(X1, x

′)

[∫
ξ(x′, y)dQ(y)

]
dP (x′)

=

∫
f(X1, x

′)dP (x′)
a.s.
= 0.

Similarly, E[(IP ⊗ A)f(X1, Y1) | Y1]
a.s.
= 0. Consequently, (IP ⊗ A)f ∈ L2

0,0(P ⊗ Q). Now,

by Berezansky and Kondratiev (2013, Page 90), {αi ⊗ βj}i,j≥0 forms an orthonormal basis

of L2(P ⊗ Q), and thus f admits the following expansion f =
∑

i,j≥1 γijαi ⊗ αj where∑
i,j≥1 γ

2
ij <∞. It then follows that

‖(IP ⊗A)f‖2
L2(P⊗Q) =

∥∥∥∥∥∑
i,j≥1

γijsjαi ⊗ βj

∥∥∥∥∥
2

L2(P⊗Q)

=
∑
i,j≥1

γ2
ijs

2
j ≤ s2

1 ‖f‖
2
L2(P⊗P ) .

In order to control the expectation in Lemma 4.15, we decompose a permutation into

disjoint cycles. By independence, the expectation then equals the product of expectations

with respect to each cycle. We first give a simple example to illustrate the idea.

Example C.1. Consider the case when r = 3, i = 3, and σ is given by σ1 = 2, σ2 = 1 and

σ3 = 3. We are interested in bounding the following expectation:

E[h(X1, Y1)ξ̃(X2, Y2)ξ̃(X3, Y3)h(X3, Y3)ξ̃(X1, Y2)ξ̃(X2, Y1)]. (C.21)

By construction, σ contains two cycles, 1 → 2 → 1 and 3 → 3, and the above expectation

reads

E[h(X1, Y1)ξ̃(X2, Y2)ξ̃(X1, Y2)ξ̃(X2, Y1)] · E[h(X3, Y3)ξ̃(X3, Y3)].

The second expectation is upper bounded by ‖h‖L2(P⊗Q)

∥∥∥ξ̃∥∥∥
L2(P⊗Q)

by the Cauchy-Schwarz

inequality. It then suffices to bound the first expectation. We simplify this expectation by
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iteratively integrating with respect to a single variable, while keeping the rest being fixed. We

first integrate with respect to X1 given X2, Y1, Y2. This gives us

E[h(X1, Y1)ξ̃(X1, Y2) | X2, Y1, Y2] · ξ̃(X2, Y2)ξ̃(X2, Y1)

= (A⊗ IQ)h(Y2, Y1) · ξ̃(X2, Y2)ξ̃(X2, Y1),

where we have used E[h(X1, Y1)ξ̃(X1, Y2) | X2, Y1, Y2] = E[h(X1, Y1)ξ(X1, Y2) | Y1, Y2] =

(A⊗ IQ)h(Y2, Y1). We then integrate with respect to Y2 given X2 and Y1. This yields

E[(A⊗ IQ)h(Y2, Y1)ξ̃(X2, Y2) | X2, Y1] · ξ̃(X2, Y1) = (A∗ ⊗ IQ)(A⊗ IQ)h(X2, Y1) · ξ̃(X2, Y1).

By the Cauchy-Schwarz inequality and Lemma 4.14, its expectation is upper bounded by

‖(A∗ ⊗ IQ)(A⊗ IQ)h‖L2(P⊗Q)

∥∥∥ξ̃∥∥∥
L2(P⊗Q)

≤ s2
1 ‖h‖L2(P⊗Q)

∥∥∥ξ̃∥∥∥
P⊗Q

.

Hence, the expectation in (C.21) is upper bounded by s2
1 ‖h‖

2
L2(P⊗Q) ‖ξ̃‖2

L2(P⊗Q).

The following lemma generalizes this example to an arbitrary cycle k1 → k2 → · · · →

kl → k1.

Lemma C.9. Suppose Assumption 4.2 holds and f, g ∈ L2
0,0(P⊗Q). Define ςf := ‖f‖L2(P⊗Q)

and ςg := ‖g‖L2(P⊗Q). For any l > 0 and l distinct indices {k1, . . . , kl} ⊂ [n], we have, for

all t, t′ ∈ [l],

E

[
f(Xkt , Ykt)g(Xkt′

, Ykt′+1
)
∏
i 6=t

ξ̃(Xki , Yki)
∏
j 6=t′

ξ̃(Xkj , Ykj+1
)

]
≤ s

2(l−1)
1 ςf ςg. (C.22)

Proof. There are two cases to consider: t = t′ and t 6= t′. The proofs are similar so we only

prove it for t = t′. By exchangeability, it suffices to consider t = t′ = 1. The strategy is

again to iteratively take expectation with respective to one variable, while keeping the rest

being fixed. Note that

E[f(Xk1 , Yk1)ξ̃(Xkl , Yk1) | Xk1 , Xkl ]

= E[f(Xk1 , Yk1)ξ(Xkl , Yk1) | Xk1 , Xkl ] = (IP ⊗A∗)f(Xk1 , Xkl).
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Taking expectation with respect to Yk1 in (C.22), while keeping others being fixed, we get

E

[
E[f(Xk1 , Yk1)ξ̃(Xkl , Yk1) | Xk1 , Xkl ]g(Xk1 , Yk2)

l∏
i=2

ξ̃(Xki , Yki)
l−1∏
i=2

ξ̃(Xki , Yki+1
)

]

= E

[
(IP ⊗A∗)f(Xk1 , Xkl)g(Xk1 , Yk2)

l∏
i=2

ξ̃(Xki , Yki)
l−1∏
i=2

ξ̃(Xki , Yki+1
)

]
.

Now taking expectation with respect to Xkl , while keeping others being fixed, we get

E

[
E[(IP ⊗A∗)f(Xk1 , Xkl)ξ̃(Xkl , Ykl) | Xk1 , Ykl ]g(Xk1 , Yk2)

l−1∏
i=2

ξ̃(Xki , Yki)ξ̃(Xki , Yki+1
)

]

= E

[
(IP ⊗AA∗)f(Xk1 , Ykl)g(Xk1 , Yk2)

l−1∏
i=2

ξ̃(Xki , Yki)ξ̃(Xki , Yki+1
)

]
,

since

E[(IP ⊗A∗)f(Xk1 , Xkl)ξ̃(Xkl , Ykl) | Xk1 , Ykl ]

= E[(IP ⊗A∗)f(Xk1 , Xkl)ξ(Xkl , Ykl) | Xk1 , Ykl ]− E[(IP ⊗A∗)f(Xk1 , Xkl) | Xk1 ]

= (IP ⊗AA∗)f(Xk1 , Ykl).

Keep repeating this argument, we ultimately get

E

[
f(Xk1 , Yk1)g(Xk1 , Yk2)

l∏
i=2

ξ̃(Xki , Yki)ξ̃(Xki , Yki+1
)

]
≤
∥∥(IP ⊗AA∗)l−1f

∥∥
L2(P⊗Q)

‖g‖L2(P⊗Q) ≤ s
2(l−1)
1 ςf ςg.

Now we are ready to prove Lemma 4.15.

Proof of Lemma 4.15. We first consider the case when i 6= 1. It is well-known that every

permutation can be decomposed as disjoint cycles. Take a cycle k1 → k2 → · · · → kl → k1

of σ. If it contains both 1 and i, then we assume, w.l.o.g., k1 = 1 and k2 = i. Consequently,

all the terms that involve Xk[l]
and Yk[l]

are

h(X1, Y1)h(Xi, Yσi)
l∏

j=2

ξ̃(Xkj , Ykj)
∏

j∈[l]\{2}

ξ̃(Xkj , Ykj+1
).
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Using Lemma C.9 with f = h and g = h, it holds that

E

h(X1, Y1)h(Xi, Yσi)
l∏

j=2

ξ̃(Xkj , Ykj)
∏

j∈[l]\{2}

ξ̃(Xkj , Ykj+1
)

 ≤ s
2(l−1)
1 ς2

h.

If this cycle only contains 1, then a similar argument gives

E

[
h(X1, Y1)

l∏
j=2

ξ̃(Xkj , Ykj)
l∏

j=1

ξ̃(Xkj , Ykj+1
)

]
≤ s

2(l−1)
1 ςhς0.

If this cycle only contains i, with k1 = i, then we have

E

[
h(Xi, Yσi)

l∏
j=1

ξ̃(Xkj , Ykj)
l∏

j=2

ξ̃(Xkj , Ykj+1
)

]
≤ s

2(l−1)
1 ςhς0.

Finally, if this cycle does not contain either 1 or i, then it holds

E

[
l∏

j=1

ξ̃(Xkj , Ykj)ξ̃(Xkj , Ykj+1
)

]
≤ s

2(l−1)
1 ς2

0 .

Here we are invoking Lemma C.9 with f = g = ξ − 1. Putting all together, we obtain

E

h(X1, Y1)
n∏
j=2

ξ̃(Xj, Yj)h(Xi, Yσi)
∏

j∈[n]\{i}

ξ̃(Xj, Yσj)

 ≤ s
2(n−#σ)
1 ς2

hς
2(#σ−1)
0 .

When i 6= 1, we can invoke Lemma C.9 to get the same bound, since we allow t = t′ in this

lemma.

C.4.3 Limit Law of the Denominator

Finally, we prove Theorem 4.5 regarding the limiting distribution of Dn. According to the

singular value decomposition in Assumption 4.2, it holds that

ξ(x, y) = 1 +
∞∑
k=1

skαk(x)βk(y), in L2(P ⊗Q),

where 0 ≤ sk < 1 is decreasing in k. Hence, we start by considering a truncated version of

ξ, i.e., ξK(x, y) := 1 +
∑K

k=1 skαk(x)βk(y) for some integer K and derive the limit law of

DK
n :=

1

n!

∑
σ∈Sn

n∏
i=1

ξK(Xi, Yσi).
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Note that all the results in Sections C.4.1 and C.4.2 hold for UK
n with ξ being replaced by

ξK .

Proposition C.10. Under Assumption 4.2, it holds that

DK
n →d D

K :=
1√∏K

k=1(1− s2
k)

exp

{
1

2

K∑
k=1

[
− s2

k

1− s2
k

(U2
k + V 2

k ) +
2sk

1− s2
k

UkVk

]}
, (C.23)

where {Uk}Kk=1 and {Vk}Kk=1 are independent standard normal random variables.

Proof. We will prove the convergence using characteristic functions, i.e., E[eitD
K
n ]→ E[eitD

K
].

Step 1. Truncation. Recall from (4.39) that Dn = 1 +
∑n

r=1 Dn,r. Applying it to DK
n

yields DK
n = 1 +

∑n
r=1D

K
n,r where DK

n,r is Dn,r. We further truncate DK
n so that it becomes

a two-sample U-statistic of fixed order R > 0, that is, we consider DK,R
n := 1 +

∑R
r=1D

K
n,r.

We then truncate the limit DK . By the multi-linear Mehler formula (see, e.g., Foata, 1981),

we have

DK =
∑

p1,...,pK≥0

K∏
k=1

spkk
pk!

Hpk(Uk)Hpk(Vk), (C.24)

where {Hp}p≥0 are the Hermite polynomials satisfying∫
Hp(x)Hp(x)e−x

2/2dx =
√

2πp!1{p = q}. (C.25)

Therefore, it is natural to define

DK,R := 1 +
R∑
r=1

∑
p1+···+pK=r

K∏
k=1

spkk
pk!

Hpk(Uk)Hpk(Vk).

By the triangle inequality,
∣∣∣E[eitD

K
n ]− E[eitD

K
]
∣∣∣ ≤ C1 + C2 + C3 where

C1 :=
∣∣∣E[eitD

K
n − eitD

K,R
n ]
∣∣∣ , C2 :=

∣∣∣E[eitD
K,R
n − eitDK,R ]

∣∣∣ , C3 :=
∣∣∣E[eitD

K,R − eitDK ]
∣∣∣ .

We fix some arbitrary δ > 0 and show that C1, C2, C3 ≤ δ for sufficiently large N and R.

Step 2. Control C1 and C3. Using the inequality |eiz − 1| ≤ |z|, we get

C1 ≤ E
∣∣∣eitDKn − eitDK,Rn

∣∣∣ ≤ |t|E ∣∣DK
n −DK,R

n

∣∣ ≤ |t|√E
∣∣∣DK

n −D
K,R
n

∣∣∣2.
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Invoking Proposition 4.16 for DK
n implies that, for sufficiently large R, we have C1 ≤ δ.

Similarly, it holds that C3 ≤ |t|
√

E |DK,R −DK |2 where

E
∣∣DK,R −DK

∣∣2 = E

∣∣∣∣∣
∞∑

r=R+1

∑
p1+···+pK=r

K∏
k=1

spkk
pk!

Hpk(Uk)Hpk(Vk)

∣∣∣∣∣
2

=
∞∑

r=R+1

∑
p1+···+pK=r

K∏
k=1

s2pk
k ≤

∞∑
r=R+1

s2r
1 , since sk ≤ s1.

Here the two equations follow from (C.24) and (C.25), respectively. Since s1 < 1, we have

C3 ≤ δ for sufficiently large R.

Step 3. Control C2. It suffices to show that DK,R
n →d D

K,R as n → ∞ for any R > 0.

Note that

DK
n,r :=

1

n!

∑
|A|=|B|=r

∑
σA=B

∏
i∈A

ξ̃(Xi, Yσi) =
(n− r)!
n!

∑
1≤i1<···<ir≤n
1≤j1<···<jr≤n

∑
σ∈Sr

r∏
t=1

ξ̃(Xit , Yjσt )

=
(n− r)!
r!n!

∑
i1 6=···6=ir
j1 6=···6=jr

r∏
t=1

ξ̃(Xit , Yjt) =
(n− r)!
r!n!

∑
i1 6=···6=ir
j1 6=···6=jr

K∑
k1,...,kr=1

r∏
t=1

sktαkt(Xit)βkt(Yjt)

=
1

r!

K∑
k1,...,kr=1

(
r∏
t=1

skt

)
(n− r)!
n!

[ ∑
i1 6=···6=ir

r∏
t=1

αkt(Xit)

][ ∑
j1 6=···6=jr

r∏
t=1

βkt(Xjt)

]
.

The last term above can be rewritten as follows. Take an arbitrary sequence (kt)
r
t=1 ⊂

[K]r. For each k ∈ [K], let pk be the number of times k appears among (kt)
r
t=1, then,

for any permutation symmetric f : [K]r → R, we have 1
r!

∑K
k1,...,kr=1 f(k1, . . . , kr) =∑

p1+···+pK=r
1

p1!...pK !
f(l1, . . . , lr), where l1, . . . , lr is an arbitrary sequence such that k appears

exactly pk times for all k ∈ [K]. Moreover, it follows from (van der Vaart, 2000, Theorem

12.10) that √
(n− r)!
n!

∑
i1 6=···6=ir

r∏
t=1

αkt(Xit) =
K∏
k=1

Hpk(G
(X)
n αk) + op(1)

√
(n− r)!
n!

∑
j1 6=···6=jr

r∏
t=1

βkt(Yjt) =
K∏
k=1

Hpk(G
(Y )
n βk) + op(1),
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where G(X)
n α := 1√

n

∑n
i=1 α(Xi) and G(Y )

n β similarly. As a result,

DK
n,r =

∑
p1+···+pK=r

K∏
k=1

spkk
pk!

Hpk(G
(X)
n αk)Hpk(G

(Y )
n βk) + op(1),

and thus DK,R
n = 1 +

∑R
r=1

∑
p1+···+pK=r

∏K
k=1

s
pk
k

pk!
Hpk(G

(X)
n αk)Hpk(G

(Y )
n βk) + op(1). Ac-

cording to the multivariate CLT (Billingsley, 1995, Section 29), the random vector

(G(X)
n αk,G

(Y )
n βk)

K
k=1 converges in distribution to \2K(0, I2K) by the orthonormality of {αk}Kk=1

and {βk}Kk=1. It then follows from the continuous mapping theorem that

DK,R
n →d 1 +

R∑
r=1

∑
p1+···+pK=r

K∏
k=1

spkk
pk!

Hpk(Uk)Hpk(Vk) = DK,R,

which completes the proof.

Proof of Theorem 4.5. We again prove the convergence using the characteristic functions.

Step 0. Verify the validity of the limit. We first show 1/
∏∞

k=1(1− s2
k) <∞. In fact,

1∏∞
k=1(1− s2

k)
= exp

{
∞∑
k=1

log
1

1− s2
k

}
≤ exp

{
∞∑
k=1

s2
k

1− s2
k

}
≤ exp

{∑∞
k=1 s

2
k

1− s2
1

}
<∞,

(C.26)

where the first inequality follows from log (1 + x) ≥ x
1+x

for all x > −1 and the last inequality

follows from the square summability of {sk}k≥1. It suffices to show that D ∈ L2(P ⊗Q). For

any k ≥ 1, let

Zk :=
1√

1− s2
k

exp

{
− s2

k

2(1− s2
k)

(U2
k + V 2

k ) +
sk

1− s2
k

UkVk

}
. (C.27)

Then {Zk}k≥1 are mutually independent and D =
∏∞

k=1 Zk. By a standard computation, we

get E[Z2
k ] = 1/(1− s2

k). Therefore, by (C.26), E[D2] =
∏∞

k=1 E[Z2
k ] = 1/

∏∞
k=1(1− s2

k) <∞.

Step 1. Control the difference between the characteristic functions. Recall DK
n and DK be

from Proposition C.10. By the triangle inequality, we have
∣∣E[eitDn ]− E[eitD]

∣∣ ≤ C1 +C2 +C3

where

C1 :=
∣∣∣E[eitDn ]− E[eitD

K
n ]
∣∣∣ , C2 :=

∣∣∣E[eitD
K
n ]− E[eitD

K

]
∣∣∣ , C3 :=

∣∣∣E[eitD
K

]− E[eitD]
∣∣∣ .
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Fix δ > 0. By Proposition C.10, C2 ≤ δ for sufficiently large n. It then remains to control

C1 and C3.

Step 2. Control C1. By construction, it holds that

Dn −DK
n =

n∑
r=1

1

n!

∑
|A|=|B|=r

∑
σA=B

∏
i∈A

ξ−K(Xi, Yσi),

where ξ−K := ξ − ξK ∈ L2
0,0(P ⊗ Q) and ς2

K := (P ⊗ Q)[(ξ−K)2] =
∑

k≥K+1 s
2
k. Invoking

Proposition 4.16 for ξ−K , we obtain E[(Dn − DK
n )2] ≤

∑n
r=1

1
r!

∑
σ∈Sr s

2(r−#σ)
1 ς2#σ

K . For

sufficiently large K, since ς2
K can be arbitrarily small, we have C1 ≤ |t|E[(Dn −DK

n )2] ≤ δ.

Step 3. Control C3. Again, it suffices to control E[(DK −D)2]. Recall Zk in (C.27). By

independence,

E[(DK −D)2] = E

( K∏
k=1

Zk −
∞∏
k=1

Zk

)2
 = E

[
K∏
k=1

Z2
k

]
E

(1−
∏

k≥K+1

Zk

)2


=
1∏K

k=1(1− s2
k)

[
1∏

k≥K+1(1− s2
k)
− 1

]
, since E[Zk] = 1.

It follows from (C.26) that
∏K

k=1(1− s2
k)
−1 <∞ and

1 ≤ 1∏
k≥K+1(1− s2

k)
≤ exp

{
1

1− s2
1

∑
k≥K+1

s2
k

}
→ 1, as K →∞.

Hence, we have E[(DK −D)2]→ 0 as K →∞, which completes the proof.

C.5 Second Order Chaos

We derive in this section the second order chaos of Tn. Before that, we define the operator

C which appears in the second order chaos.

Definition C.2. Define the operator C on L2(P ⊗Q) by

C := (I −A∗A)⊗ (I −AA∗).

We will prove later that the operator C is well-defined.
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Assumption C.1. We make the additional assumptions that ξ ∈ L2p(P ⊗Q) and C−1(η̃ξ) ∈

L2p/(p−2)(P ⊗Q) for some1 p ∈ [2,∞].

Let κ2,0 := −(IP ⊗A∗)C−1(η̃ξ), κ0,2 := −(A⊗ IQ)C−1(η̃ξ), and κ1,1′ := (I + B)C−1(η̃ξ).

Theorem C.11. Assume, for some η ∈ L2(µ), ς2 = 0 in Theorem 4.6. Let θ1,1′ :=∫∫
κ1,1′(x, y)dµ(x, y). Then

Tn − θ +
θ1,1′

n
=

1

n(n− 1)

[∑
i 6=j

(κ2,0(Xi, Xj) + κ0,2(Yi, Yj)) +
n∑

i,j=1

κ1,1′(Xi, Yj)

]
+ op(n

−1).

Furthermore, suppose that the function (η − θ)ξ has a spectral expansion in L2(P ⊗Q) with

respect to the orthonormal basis {αk ⊗ βl}k,l≥0 of L2(P ⊗Q) with coefficients (γkl, k, l ≥ 0),

i.e., (η − θ)ξ =
∑

k,l≥0 γkl(αk ⊗ βl). Then, as n → ∞, the sequence of random variables

n(Tn − θ) + θ1,1′ converges in law to the mean-zero random variable∑
k,l≥1

γkl
(1− s2

k)(1− s2
l )

{
UkVl + skslUlVk − sl(UkUl − 1{k = l})− sk(VkVl − 1{k = l})

}
,

where {Uk}k≥1 and {Vl}l≥1 are independent i.i.d. standard normal random variables.

C.5.1 Second order chaos

We first prove that the operator C is well-defined. Given a measure ν on Rd × Rd, let

L2
0,0(ν) := {f ∈ L2(ν) : E[f(X, Y ) | Y ]

a.s.
= E[f(X, Y ) | X]

a.s.
= 0 for all (X, Y ) ∼ ν}. (C.28)

For f ∈ L2
0,0(ν), we say f is degenerate with respect to ν. For example, we will show in the

next lemma that the function η̃ defined in (4.32),

η̃(x, y) := η(x, y)− θ − (I −A∗A)−1(κ1,0 −A∗κ0,1)(x)− (I −AA∗)−1(κ0,1 −Aκ1,0)(y),

belongs to L2
0,0(µ), and then, by Assumption 4.3, η̃ξ ∈ L2

0,0(P ⊗Q).

1When p = 2, we assume ξ ∈ L4(P ⊗ Q) and C−1(ηξ) ∈ L∞(P ⊗ Q); when p = ∞, we only assume
ξ ∈ L∞(P ⊗Q), i.e., ξ is bounded.
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Lemma C.12. Under Assumption 4.3, the inverse operator C−1 : L2
0,0(P⊗Q)→ L2

0,0(P⊗Q)

is well-defined. Moreover, it is equal to (I − A∗A)−1 ⊗ (I − AA∗)−1. In particular, η̃ξ ∈

L2
0,0(P ⊗Q) so that C−1(η̃ξ) is well-defined.

Proof of Lemma C.12. We will prove that C : L2
0,0(P ⊗ Q) → L2

0,0(P ⊗ Q) is bijective. On

the one hand, take any f ∈ L2
0,0(P ⊗Q), since {αi ⊗ βj}i,j≥0 forms an orthonormal basis of

L2(P ⊗Q), we know f must admit the following expansion:

f =
∑
i,j≥1

γijαi ⊗ βj, where
∑
i,j≥1

γ2
ij <∞.

Recall from Assumption 4.2 that sk < 1 for all k ≥ 1. Define

f̃ :=
∑
i,j≥1

γij
(1− s2

i )(1− s2
j)
αi ⊗ βj,

then, similar to (C.17), we have Cf̃ = f and f̃ ∈ L2
0,0(P ⊗ Q). Hence, C is surjective. On

the other hand, if Cf = 0, then Cf =
∑

i,j≥1(1− s2
i )(1− s2

j)γij(αi ⊗ βj) = 0. It follows that

γij = 0 for all i, j ≥ 1, and thus C is injective.

By (C.14) we get

Eµ
[
(I −A∗A)−1(κ1,0 −A∗κ0,1)(X1) + (I −AA∗)−1(κ0,1 −Aκ1,0)(Y1) | X1

]
= κ1,0(X1).

By definition, κ1,0(X1) =
∫

[η(X1, y)− θ]ξ(X1, y)dQ(y) = Eµ[η(X1, Y1)− θ | X1]. This yields

Eµ[η̃(X1, Y1) | X1] = 0. Similarly, Eµ[η̃(X1, Y1) | Y1] = 0. We obtain η̃ ∈ L2
0,0(µ), and then,

by Assumption 4.3, η̃ξ ∈ L2
0,0(P ⊗Q) since

0 = Eµ[η̃(X1, Y1) | X1](x) =

∫
η̃(x, y)ξ(x, y)dQ(y)

0 = Eµ[η̃(X1, Y1) | Y1](y) =

∫
η̃(x, y)ξ(x, y)dP (x).

From Lemma C.12 we know C preserves the degeneracy with respect to P ⊗ Q. The

following lemma verifies similar properties for other operators under consideration.
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Lemma C.13. Let Ak ∈ {A,A∗, IP , IQ} be an operator mapping from L2(νk) to L2(ν ′k) for

k ∈ {1, 2}. Then A1 ⊗A2 maps L2
0,0(ν1 ⊗ ν2) to L2

0,0(ν ′1 ⊗ ν ′2). In particular, the operator B

maps L2
0,0(P ⊗Q) to L2

0,0(P ⊗Q).

Proof. We prove the claim for A1 = A : L2(P ) → L2(Q) and A2 = A∗ : L2(Q) → L2(P ).

The rest follows similarly. Take any f ∈ L2
0,0(P ⊗ Q), we know (A ⊗ A∗)f(Y1, X2) =

Eµ[f(X1, Y2) | X2, Y1]. Hence, by the tower property, it holds that

Eµ[(A⊗A∗)f(Y1, X2) | X2] = Eµ[f(X1, Y2) | X2] = Eµ
[
Eµ[f(X1, Y2) | X2, Y2] | X2

]
= 0.

Analogously, Eµ[(A ⊗ A∗)f(Y1, X2) | Y1] = 0. This implies (A ⊗ A∗)f(Y1, X2) ∈ L2
0,0(Q ⊗

P ), and the claim follows. Now, observe that (A ⊗ A∗)f(Y1, X2) ∈ L2
0,0(Q ⊗ P ) yields

T (A ⊗ A∗)f(X2, Y1) ∈ L2
0,0(P ⊗ Q) and B = T (A ⊗ A∗), we get B maps L2

0,0(P ⊗ Q) to

L2
0,0(P ⊗Q).

Unlike the first order chaos, we will give an approximation to the second order chaos,

i.e., the projection onto H2, of Tn. According to Lemma C.12, we know η̃ξ ∈ L2
0,0(P ⊗ Q)

and C−1(η̃ξ) is well-defined. We define

Qn :=
1

n(n− 1)

{∑
i 6=j

[κ2,0(Xi, Xj) + κ0,2(Yi, Yj)] +
n∑

i,j=1

κ1,1′(Xi, Yj)−
n∑
i=1

`1,1′(Xi, Yi)

}
,

(C.29)

where `1,1′(X1, Y1) is an affine function such that κ1,1′ − `1,1′ ∈ L2
0,0(µ). We will show in the

next lemma that κ1,1′ ∈ L2(µ), so `1,1′ can be derived the same way we obtain η̃. Note that

Qn is permutation symmetric due to the affineness of `1,1′ .

Lemma C.14. The functions κ2,0, κ0,2 and κ1,1′ are degenerate, i.e., κ2,0 ∈ L2
0,0(P ⊗ P ),

κ0,2 ∈ L2
0,0(Q ⊗ Q) and κ1,1′ ∈ L2

0,0(P ⊗ Q). Under Assumption C.1, the function κ1,1′ also

belongs to L2(µ), and thus Qn ∈ H2. Moreover, the following identities hold:

(I + T )[κ2,0 + (A∗ ⊗A∗)κ0,2 + (IP ⊗A∗)κ1,1′ ] ≡ 0

(I + T )[(A⊗A)κ2,0 + κ0,2 + (A⊗ IQ)κ1,1′ ] ≡ 0

(IP ⊗A)(I + T )κ2,0 + (A∗ ⊗ IQ)(I + T )κ0,2 + (I + B)κ1,1′ ≡ η̃ξ.
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Proof. Since η̃ξ ∈ L2
0,0(P ⊗ Q), we know from Lemma C.12 and Lemma C.13 that κ2,0 ∈

L2
0,0(P ⊗ P ), κ0,2 ∈ L2

0,0(Q ⊗ Q) and κ1,1′ ∈ L2
0,0(P ⊗ Q). Let f := C−1(η̃ξ). Recall from

Assumption C.1 that ξ ∈ L2p(P ⊗Q) and f ∈ L2q(P ⊗Q). As a result,

µ
[
f 2
] Hölder

≤
[∫

f 2q(x, y)dP (x)dQ(y)

] 1
q
[∫

ξp(x, y)dP (x)dQ(y)

] 1
p

<∞. (C.30)

Furthermore,∫
(Bf)2q(x, y)dP (x)dQ(y) =

∫ [∫
f(x′, y′)ξ(x′, y)ξ(x, y′)P (x′)Q(y′)dx′dy′

]2q

dP (x)dQ(y)

Jensen

≤
∫∫

f 2q(x′, y′)ξ(x′, y)ξ(x, y′)dP (x′)dQ(y′)dP (x)dQ(y)

(i)
=

∫
f 2q(x′, y′)dP (x′)dQ(y′) <∞,

where (i) follows from
∫
ξ(x′, y)dQ(y)

a.s.
=
∫
ξ(x, y′)dP (x)

a.s.
= 1. Similar to (C.30), it then

holds that

µ[(Bf)2] ≤
[∫

(Bf)2q(x, y)dP (x)dQ(y)

] 1
q
[∫

ξp(x, y)dP (x)dQ(y)

] 1
p

<∞.

This yields that κ1,1′ := (I + B)f ∈ L2(µ). Now, by the degeneracy (C.28) of κ2,0, κ0,2 and

κ1,1′ , we obtain Qn ∈ H⊥0 ∩H⊥1 . It then follows from the permutation symmetry of Qn that

Qn ∈ H2.

Notice that (A∗ ⊗A∗)κ0,2 = −(A∗A⊗A∗)C−1(η̃ξ) and

(IP ⊗A∗)κ1,1′ = ((IP ⊗A∗) + (IP ⊗A∗)B)C−1(η̃ξ)
(i)
= −κ2,0 + T (A∗ ⊗ IP )(A⊗A∗)C−1(η̃ξ)

= −κ2,0 + T (A∗A⊗A∗)C−1(η̃ξ),

where we have used B = T (A⊗A∗) in (i). It then follows that

(I + T )[κ2,0 + (A∗ ⊗A∗)κ0,2 + (IP ⊗A∗)κ1,1′ ] = (I + T )(T − I)(A∗A⊗A∗)C−1(η̃ξ) ≡ 0,

since (I + T )(T − I) = T − I + T T − T = 0. Similarly, (I + T )[(A⊗A)κ2,0 + κ0,2 + (A⊗

IQ)κ1,1′ ] ≡ 0.
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Let us verify the last identity in the statement of Lemma C.14. Note that

(IP ⊗A)(I + T )κ2,0 = [(IP ⊗A) + T (A⊗ IP )]κ2,0 = −[(IP ⊗AA∗) + T (A⊗A∗)]C−1(η̃ξ)

= −[(IP ⊗AA∗) + B]C−1(η̃ξ).

Analogously, (A∗ ⊗ IQ)(I + T )κ0,2 = −[(A∗A⊗ IQ) + B]C−1(η̃ξ) and

(I + B)κ1,1′ = (I + B)(I + B)C−1(η̃ξ) = [I + 2B + (A∗ ⊗A)T T (A⊗A∗)]C−1(η̃ξ).

Hence,

(IP ⊗A)(I + T )κ2,0 + (A∗ ⊗ IQ)(I + T )κ0,2 + (I + B)κ1,1′

= [I − (IP ⊗AA∗)− (A∗A⊗ IQ) + (A∗A⊗AA∗)]C−1(η̃ξ) = η̃ξ,

where the last equality follows from C := (I −A∗A)⊗ (I −AA∗) = I − IP ⊗AA∗ −A∗A⊗

IQ +A∗A⊗AA∗.

The next proposition shows that Qn is equal to the second order chaos of Tn up to an

op(n
−1) term.

Proposition C.15. Suppose Assumption C.1 holds and {(Xi, Yi)}ni=1
i.i.d.∼ µ. Let the second

order chaos of Tn be ProjH2
(Tn). Then we have ProjH2

(Tn) = Qn + op(n
−1).

Proof. Define

Q̃n :=
1

n(n− 1)

∑
i 6=j

[κ2,0(Xi, Xj) + κ0,2(Yi, Yj) + κ1,1′(Xi, Yj)]. (C.31)

It follows from LLN that Qn − Q̃n = op(n
−1). It then suffices to show Q̃n − ProjH2

(Tn) =

op(n
−1). According to the degeneracy in Lemma C.14, we know Eµ[Q̃n] = 0 and Eµ[Q̃n |

Xi] = Eµ[Q̃n | Yi] = 0 for all i ∈ [n], which implies Q̃n ∈ H⊥0 ∩ H⊥1 . Note that Q̃n is

not permutation symmetric since it lacks the diagonal terms κ1,1′(Xi, Yi), so it is not in H2.

Moreover, we have

Eµ[Qn | Xi, Yi] = 0, for all i ∈ [n]. (C.32)
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Step 1. We show ProjH2
(Tn) = ProjH2

(T̃n), where

T̃n :=
1

n

n∑
i=1

[η(Xi, Yi)− θ]− Ln =
1

n

n∑
i=1

η̃(Xi, Yi). (C.33)

In fact, since θ ⊥ H2 and Ln ⊥ H2, we have, for any U ∈ H2,

Eµ[(T̃n − Tn)U ] = Eµ

[(
1

n

n∑
i=1

η(Xi, Yi)− Tn

)
U

]
.

By exchangeability of {(Xi, Yi)}i∈[n], it holds that Eµ
[

1
n

∑n
i=1 η(Xi, Yi)U

]
= Eµ[η(X1, Y1)U ],

and thus

Eµ[(T̃n − Tn)U ] = Eµ[η(X1, Y1)U ]− Eµ[TnU ]

(i)
= Eµ[η(X1, Y1)U ]− Eµ[Eµ[η(X1, Y1)U | Gn]] = 0,

where (i) follows from the tower property. Hence, T̃n − Tn ∈ H⊥2 and thus the claim follows.

Moreover, since η̃ ∈ L2
0,0(µ), we have T̃n ∈ H⊥0 ∩H⊥1 ,

Eµ[T̃n | Xi, Yi] =
1

n

n∑
k=1

Eµ[η̃(Xk, Yk) | Xi, Yi] =
1

n
η̃(Xi, Yi), for all i ∈ [n], (C.34)

and

Eµ[T̃n | Xi, Xj] = Eµ[T̃n | Yi, Yj] = Eµ[T̃n | Xi, Yj] = 0, for all i 6= j. (C.35)

Step 2. We show ProjH2
(Tn) = ProjH2

(Q̃n). By Step 1, it suffices to prove T̃n−Q̃n ∈ H⊥2 .

We will prove Eµ[(T̃n − Q̃n)U ] = 0 for every

U :=
∑
i<j

[f2,0(Xi, Xj) + f0,2(Yi, Yj)] +
n∑

i,j=1

f1,1(Xi, Yj) ∈ L2(µn).

We first compute Eµ[T̃n − Q̃n | X1, X2]. Since κ2,0 ∈ L2
0,0(P ⊗ P ), so it holds

Eµ

[∑
i 6=j

κ2,0(Xi, Xj)
∣∣∣ X1, X2

]
= Eµ

 ∑
{i,j}={1,2}

κ2,0(Xi, Xj)
∣∣∣ X1, X2

 (C.36)

= (I + T )κ2,0(X1, X2). (C.37)
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Since κ0,2 ∈ L2
0,0(Q ⊗ Q) and Eµ[f(Y1, Y2) | X1, X2] = (A∗ ⊗ A∗)f(X1, X2) for any f ∈

L2(Q⊗Q), we get

Eµ

[∑
i 6=j

κ0,2(Yi, Yj)
∣∣∣ X1, X2

]
= (I + T )(A∗ ⊗A∗)κ0,2(X1, X2). (C.38)

Furthermore, since Eµ[f(X1, Y2) | X1, X2] = (IP ⊗A∗)f(X1, X2), we have

Eµ

[∑
i 6=j

κ1,1′(Xi, Yj)
∣∣∣ X1, X2

]
= (I + T )(IP ⊗A∗)κ1,1′(X1, X2). (C.39)

Putting (C.36), (C.38) and (C.39) together, we get Eµ[Q̃n | X1, X2] = 0 by the first identity

in Lemma C.14. Consequently, by (C.35),

Eµ[T̃n − Q̃n | X1, X2] = Eµ[T̃n | X1, X2] = 0.

By the exchangeability of {(Xi, Yi)}ni=1, we obtain Eµ[T̃n − Q̃n | Xi, Xj] = 0 for all i 6= j.

Similarly, Eµ[T̃n − Q̃n | Yi, Yj] = 0 for all i 6= j. Hence, we only need to prove

Eµ

[
(T̃n − Q̃n)

∑
i,j

f1,1(Xi, Yj)

]
= 0.

For that purpose, we will compute Eµ[Q̃n | Xi, Yj]. We have shown in (C.32) that Eµ[Q̃n |

Xi, Yi] = 0 for all i ∈ [n]. For (i, j) = (1, 2), it holds that

Eµ

[∑
i 6=j

κ2,0(Xi, Xj)
∣∣∣ X1, Y2

]
= (IP ⊗A)(I + T )κ2,0(X1, Y2)

Eµ

[∑
i 6=j

κ0,2(Yi, Yj)
∣∣∣ X1, Y2

]
= (A∗ ⊗ IQ)(I + T )κ0,2(X1, Y2)

Eµ

[∑
i 6=j

κ1,1′(Xi, Yj)
∣∣∣ X1, Y2

]
= (I + B)κ1,1′(X1, X2).

It then follows from the third identity in Lemma C.14 that

Eµ[Q̃n | X1, Y2] =
1

n(n− 1)
η̃(X1, Y2)ξ(X1, Y2).



245

By the exchangeability of {(Xi, Yi)}ni=1 again, we get

Eµ

[
Q̃n

n∑
i,j=1

f1,1(Xi, Yj)

]
=
∑
i 6=j

Eµ[Q̃nf1,1(Xi, Yj)] = Eµ[η̃(X1, Y2)ξ(X1, Y2)f1,1(X1, Y2)]

= Eµ [η̃(X1, Y1)f1,1(X1, Y1)] ,

since ξ is the Radon-Nikodym derivative of µ with respect to P ⊗Q under Eµ. On the other

hand, we also have, by (C.34) and (C.35),

Eµ

[
T̃n

n∑
i,j=1

f1,1(Xi, Yj)

]
= nEµ[T̃nf1,1(X1, Y1)] = Eµ[η̃(X1, Y1)f1,1(X1, Y1)].

Hence, Eµ
[
(T̃n − Q̃n)

∑n
i,j=1 f(Xi, Yj)

]
= 0 and the claim follows.

Step 3. We control the variance of ProjH2
(Tn)−Q̃n. From Step 2 we know ProjH2

(Q̃n) =

ProjH2
(Tn). By the definition of L2 projection, it holds

Eµ[(ProjH2
(Tn)− Q̃n)2] = Eµ[(ProjH2

(Q̃n)− Q̃n)2] = min
V ∈H2

Eµ[(Q̃n − V )2] ≤ Eµ[(Q̃n −Qn)2],

since Qn ∈ H2. Note that

Qn − Q̃n =
1

n(n− 1)

n∑
i=1

[κ1,1′(Xi, Yi)− `1,1′(Xi, Yi)].

By independence, we get

Eµ[(Q̃n −Qn)2] =
1

n2(n− 1)2

n∑
i=1

Eµ[(κ1,1′(Xi, Yi)− `1,1′(Xi, Yi))
2] = O(n−3).

It follows that Q̃n = ProjH2
(Tn) + op(n

−1).

C.5.2 Variance bound for the second order remainder

Npte that the second order remainder is R2 := Tn− θ−Ln−Qn = (Un−QnDn)/Dn, where

Qn :=
1

n(n− 1)

{∑
i 6=j

[κ2,0(Xi, Xj) + κ0,2(Yi, Yj)] +
n∑

i,j=1

κ1,1′(Xi, Yj)−
n∑
i=1

`1,1′(Xi, Yi)

}
.
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is an approximate second order chaos of Tn by Proposition C.15. We will decom-

pose QnDn into manageable pieces. Let K2,0(x, x′, y, y′) := κ2,0(x, x′)ξ(x, y)ξ(x′, y′) and

K0,2(x, x′, y, y′) := κ0,2(y, y′)ξ(x, y)ξ(x′, y′). Then we have∑
i 6=j

κ2,0(Xi, Xj)Dn =
1

n!

∑
i 6=j

∑
σ∈Sn

K2,0(Xi, Xj, Yσi , Yσj)
∏

k∈[n]\{i,j}

ξ(Xk, Yσk) (C.40)

∑
i 6=j

κ0,2(Yi, Yj)Dn =
1

n!

∑
i 6=j

∑
σ∈Sn

κ0,2(Yi, Yj)ξ(Xσ−1
i
, Yi)ξ(Xσ−1

j
, Yj)

∏
k∈[n]\{σ−1

i ,σ−1
j }

ξ(Xk, Yσk)

=
1

n!

∑
i 6=j

∑
σ∈Sn

K0,2(Xi, Xj, Yσi , Yσj)
∏

k∈[n]\{i,j}

ξ(Xk, Yσk). (C.41)

Furthermore, let K1,1′(x, x
′, y, y′) := κ1,1′(x, y

′)ξ(x, y)ξ(x′, y′), then

1

n!

n∑
i,j=1

∑
σi 6=j

κ1,1′(Xi, Yj)ξ
⊗(X, Yσ)

=
1

n!

n∑
i,j=1

∑
j′∈[n]\{i}

∑
σj′=j

K1,1′(Xi, Xj′ , Yσi , Yσj′ )
∏

k∈[n]\{i,j′}

ξ(Xk, Yσk)

=
1

n!

∑
i 6=j′

∑
σ∈Sn

K1,1′(Xi, Xj′ , Yσi , Yσj′ )
∏

k∈[n]\{i,j′}

ξ(Xk, Yσk). (C.42)

Note that
∑n

i=1 `1,1′(Xi, Yi) =
∑n

i=1 `1,1′(Xi, Yσi) by affineness, and

1

n!

n∑
i,j=1

∑
σi=j

κ1,1′(Xi, Yj)ξ
⊗(X, Yσ) =

1

n!

n∑
i=1

∑
σ∈Sn

κ1,1′(Xi, Yσi)ξ
⊗(X, Yσ).

It follows that

1

n!

n∑
i,j=1

∑
σi=j

κ1,1′(Xi, Yj)ξ
⊗(X, Yσ)−

n∑
i=1

`1,1′(Xi, Yi)Dn

=
1

n!

∑
σ∈Sn

n∑
i=1

[κ1,1′ − `1,1′ ](Xi, Yσi)ξ
⊗(X, Yσ).

Repeating the argument in Proposition 4.9 for η̃ replaced by κ1,1′ − `1,1′ ∈ L2
0,0(µ) gives

1

n(n− 1)

1

n!

n∑
i,j=1

∑
σi=j

κ1,1′(Xi, Yj)ξ
⊗(X, Yσ)−

n∑
i=1

`1,1′(Xi, Yi)Dn = O(n−2). (C.43)
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Here we say a random variable φn = O(n−2) if Var(φn) = O(n−4). Putting (C.40), (C.41),

(C.42) and (C.43) together, we know that QnDn is equal to

1

n(n− 1)

1

n!

∑
σ∈Sn

∑
i 6=j

(K2,0 +K0,2 +K1,1′)(Xi, Xj, Yσi , Yσj)
∏

k∈[n]\{i,j}

ξ(Xk, Yσk) +O(n−2).

In the following, we further decompose K2,0 +K0,2 +K1,1′ into second, third and fourth order

terms using Hoeffding decomposition, and show that the second order terms cancel out Un

and the rest of the terms are negligible.

The following lemma gives the second order terms of K2,0, K0,2 and K1,1′ .

Lemma C.16. Let

k2,0(x, x′, y, y′) := κ2,0(x, x′) + (A⊗A)κ2,0(y, y′) + (IP ⊗A)κ2,0(x, y′)

+ (IP ⊗A)T κ2,0(x′, y)

k0,2(x, x′, y, y′) := (A∗ ⊗A∗)κ0,2(x, x′) + κ0,2(y, y′) + (A∗ ⊗ IQ)κ0,2(x, y′)

+ (A∗ ⊗ IQ)T κ0,2(x′, y)

k1,1′(x, x
′, y, y′) := (IP ⊗A∗)κ1,1′(x, x

′) + T (A⊗ IQ)κ1,1′(y, y
′) + κ1,1′(x, y

′) + Bκ1,1′(x
′, y).

For any i 6= i′ and j 6= j′, the function K̄I(Xi, Xi′ , Yj, Yj′) := (KI − kI)(Xi, Xi′ , Yj, Yj′) is

2-degenerate for every I = {2, 0}, {0, 2}, {1, 1′}.

Proof. We only prove the claim for I = {2, 0}. The rest of them can be proved similarly.

Recall that K2,0(x, x′, y, y′) := κ2,0(x, x′)ξ(x, y)ξ(x′, y′). Conditioning on Xi, Xi′ , we have

E[K2,0(Xi, Xi′ , Yj, Yj′) | Xi, Xi′ ]

= κ2,0(Xi, Xi′) E[ξ(Xi, Yj) | Xi] E[ξ(Xi′ , Yj′) | Xi′ ] = κ2,0(Xi, Xi′).

It then follows from degeneracy that E[(K2,0 − k2,0)(Xi, Xi′ , Yj, Yj′) | Xi, Xi′ ] = 0. Condi-

tioning on Xi, Yj, we have

E[K2,0(Xi, Xi′ , Yj, Yj′) | Xi, Yj]

= ξ(Xi, Yj) E[κ2,0(Xi, Xi′) | Xi, Yj] = 0 = E[k2,0(Xi, Xi′ , Yj, Yj′) | Xi, Yj].
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Conditioning on Xi, Yj′ , we have

E[K2,0(Xi, Xi′ , Yj, Yj′) | Xi, Yj′ ] = E[κ2,0(Xi, Xi′)ξ(Xi′ , Yj′) | Xi, Yj′ ] = (IP ⊗A)κ2,0(Xi, Yj′)

= E[k2,0(Xi, Xi′ , Yj, Yj′) | Xi, Yj′ ].

The rest follows analogously.

Now, we get

QnDn = Wn + Vn +O(n−2), (C.44)

where

Wn :=
1

n(n− 1)

1

n!

∑
σ∈Sn

∑
i 6=j

(K̄2,0 + K̄0,2 + K̄1,1′)(Xi, Xj, Yσi , Yσj)
∏

k∈[n]\{i,j}

ξ(Xk, Yσk) (C.45)

Vn :=
1

n(n− 1)

1

n!

∑
σ∈Sn

∑
i 6=j

(k2,0 + k0,2 + k1,1′)(Xi, Xj, Yσi , Yσj)
∏

k∈[n]\{i,j}

ξ(Xk, Yσk). (C.46)

We will show that E[(Un − Vn)2] = O(n−4) and E[W 2
n ] = O(n−4). As a result, E[(Un −

QnDn)2] = O(n−4), which implies R2 := R1 −Qn = op(n
−1).

Lemma C.17. The following algebraic identity holds:

Vn =
1

n(n− 1)

1

n!

n∑
i,j=1

∑
σi 6=j

η̃(Xi, Yj)ξ(Xi, Yj)
∏

k∈[n]\{i,σ−1
j }

ξ(Xk, Yσk). (C.47)

Moreover, under Assumptions 4.2 and 4.3, E[(Un − Vn)2] = O(n−4).

Proof. We consider the terms involving (Xi, Xj) and (Yσi , Yσj) in
∑

i 6=j(k2,0 + k0,2 +

k1,1′)(Xi, Xj, Yσi , Yσj). By Lemma C.14, we get∑
i 6=j

[κ2,0(Xi, Xj) + (A∗ ⊗A∗)κ0,2(Xi, Xj) + (IP ⊗A∗)κ1,1′(Xi, Xj)] = 0

∑
i 6=j

[(A⊗A)κ2,0(Yσi , Yσj) + κ0,2(Yσi , Yσj) + (A⊗ IQ)κ1,1′(Yσi , Yσj)] = 0.
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We then consider the terms involving (Xi, Yσj) and (Xj, Yσi). Notice that∑
i 6=j

∑
σ∈Sn

(IP ⊗A)κ2,0(Xi, Yσj)
∏

k∈[n]\{i,j}

ξ(Xk, Yσk)

=
∑
i 6=j

n∑
j′=1

∑
σj=j′

(IP ⊗A)κ2,0(Xi, Yj′)
∏

k∈[n]\{i,j}

ξ(Xk, Yσk)

=
n∑

i,j′=1

∑
σi 6=j′

(IP ⊗A)κ2,0(Xi, Yj′)
∏

k∈[n]\{i,σ−1
j′ }

ξ(Xk, Yσk).

A similar argument gives∑
i 6=j

∑
σ∈Sn

(IP ⊗A)T κ2,0(Xj, Yσi)
∏

k∈[n]\{i,j}

ξ(Xk, Yσk)

=
n∑

i′,j=1

∑
σj 6=i′

(IP ⊗A)T κ2,0(Xj, Yi′)
∏

k∈[n]\{j,σ−1
i′ }

ξ(Xk, Yσk).

Hence∑
i 6=j

∑
σ∈Sn

[(IP ⊗A)κ2,0(Xi, Yσj) + (IP ⊗A)T κ2,0(Xj, Yσi)]
∏

k∈[n]\{i,j}

ξ(Xk, Yσk) (C.48)

=
n∑

i,j=1

∑
σi 6=j

(IP ⊗A)(I + T )κ2,0(Xi, Yj)
∏

k∈[n]\{i,σ−1
j }

ξ(Xk, Yσk).

Analogously,∑
i 6=j

∑
σ∈Sn

[(A∗ ⊗ IQ)κ0,2(Xi, Yσj) + (A∗ ⊗ IQ)T κ0,2(Xj, Yσi)]
∏

k∈[n]\{i,j}

ξ(Xk, Yσk) (C.49)

=
n∑

i,j=1

∑
σi 6=j

(A∗ ⊗ IQ)(I + T )κ0,2(Xi, Yj)
∏

k∈[n]\{i,σ−1
j }

ξ(Xk, Yσk),

and ∑
i 6=j

∑
σ∈Sn

[κ1,1′(Xi, Yσj) + Bκ1,1′(Xj, Yσi)]
∏

k∈[n]\{i,j}

ξ(Xk, Yσk) (C.50)

=
n∑

i,j=1

∑
σi 6=j

(I + B)κ1,1′(Xi, Yj)
∏

k∈[n]\{i,σ−1
j }

ξ(Xk, Yσk).
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Hence, the identity (C.47) follows from the third identity in Lemma C.14.

Let us compute E[(Un − Vn)2]. Denote h := η̃ξ. Recall from (4.35) that

Un :=
1

n!

∑
σ∈Sn

1

n

n∑
i=1

η̃(Xi, Yσi)ξ
⊗(X, Yσ) =

1

n · n!

n∑
i,j=1

∑
σi=j

h(Xi, Yj)
∏

k∈[n]\{i}

ξ(Xk, Yσk).

By Lemma C.8, we get

Un =
1

n · n!

n∑
i,j=1

∑
σi=j

h(Xi, Yj)
∑

A⊂[n]\{i}

∏
k∈A

[ξ(Xk, Yσk)− 1]. (C.51)

Similarly,

Vn =
1

n(n− 1)

1

n!

n∑
i,j=1

∑
σi 6=j

h(Xi, Yj)
∑

A⊂[n]\{i,σ−1
j }

∏
k∈A

[ξ(Xk, Yσk)− 1]. (C.52)

Define the set of sequences of length r to be

Sn,r := {(ki)ri=1 : ki ∈ [n], |{k1, . . . , kr}| = r}, for r ∈ [n].

Take r ∈ [n] and (ki)
r
i=1, (k

′
i)
r
i=1 ∈ SN,r. Let us count the number of times the term

h(Xk1 , Yk′1)
r∏
s=2

[ξ(Xks , Yk′s)− 1] (C.53)

appears in (C.51) and (C.52), respectively. In order to get this term, we must have i = k1,

j = k′1, A = {k2, . . . , kr} and σks = k′s for all s ∈ {2, . . . , r}. Note that σi = j in (C.51), so

there are (n − r)! such terms in (C.51). Similarly, there are (n − r)(n − r)! such terms in

(C.52). Hence, the coefficient of this term in Un − Vn is

Cn,r =
(n− r)!
n · n!

− (n− r)(n− r)!
n(n− 1) · n!

=
r − 1

n− 1

(n− r)!
n · n!

.

We claim that

Un − Vn =
1

n(n− 1)

1

n!

n∑
r=1

(r − 1)
∑

|A|=|B|=r

∑
σ∈Sn:σA=B

∑
i∈A

h(Xi, Yσi)
∏

j∈A\{i}

[ξ(Xj, Yσj)− 1].

(C.54)
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To see this, we only need to prove that the coefficient of the term (C.53) on the right hand

side of (C.54) is exactly Cn,r. In other words, it appears (n− r)! times in the following sum:∑
|A|=|B|=r

∑
σ∈Sn:σA=B

∑
i∈A

h(Xi, Yσi)
∏

j∈A\{i}

[ξ(Xj, Yσj)− 1].

To get this term, we must have A = {k1, . . . , kr}, B = {k′1, . . . , k′r}, i = k1 and σks = k′s

for all s ∈ [r]. There are (n − r)! permutations satisfy this condition, and thus it appears

(n− r)! times.

A derivation analogous to the one for Proposition 4.13 implies that E[(Un − Vn)2] equals

1

n2(n− 1)2

n∑
r=1

r(r − 1)2

r!

∑
σ∈Sr

r∑
i=1

E

[
h(X1, Y1)

r∏
j=2

[ξ(Xj, Yj)− 1]

h(Xi, Yσi)
∏

j∈[n]\{i}

[ξ(Xj, Yσj)− 1]

]
.

Repeating the argument in Proposition 4.9, we know E[(Un − Vn)2] = O(n−4).

Before we bound E[W 2
n ], let us give a result similar to Lemma C.9 for functions with 3 and

4 arguments. Let φ ∈ L2(P ⊗P ⊗Q⊗Q) and ψ ∈ L2(P ⊗P ⊗Q) such that φ(X1, X2, Y1, Y2)

and ψ(X1, X2, Y1) are completely degenerate under the measure (P ⊗Q)n.

Lemma C.18. Assume ‖φ‖L2(P⊗P⊗Q⊗Q) < ∞ and ‖ψ‖L2(P⊗P⊗Q) < ∞. Under Assump-

tions 4.2, 4.3 and C.1, there exists a constant C such that, for any σ ∈ Sn and i 6= j ∈ [n],

E

φ(X1, X2, Y1, Y2)
n∏
k=3

[ξ(Xk, Yk)− 1]φ(Xi, Xj, Yσi , Yσj)
∏

k∈[n]\{i,j}

[ξ(Xk, Yσk)− 1]


≤ s

2(N−#σ−2)
1 C#σ

E

ψ(X1, X2, Y1)
n∏
k=3

[ξ(Xk, Yk)− 1]ψ(Xi, Xj, Yσi)
∏

k∈[n]\{i,j}

[ξ(Xk, Yσk)− 1]


≤ s

2(N−#σ−2)
1 C#σ,

where #σ is the number of cycles of σ ∈ Sn.
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The proof of Lemma C.18 is similar to Lemma C.9—we iteratively take expectation with

respect to a single variable, while keeping the rest being fixed. In consideration of the space,

we only give an example here.

Example C.2. Consider n = 4, i = 2, j = 3 and σ given by σi = i + 1 for i ∈ [3]. By

construction, σ only has one cycle 1 → 2 → 3 → 4 → 1. The expectation of interest then

reads

E
[
φ(X1, X2, Y1, Y2)[ξ(X3, Y3)− 1][ξ(X4, Y4)− 1]

φ(X2, X3, Y3, Y4)[ξ(X1, Y2)− 1][ξ(X4, Y1)− 1]
]
.

Let A4 be a shorthand notation for IP ⊗ IP ⊗ IQ ⊗A, and A∗4 similarly. Taking expectation

with respect to Y4, while keeping others being fixed, we get

E [φ(X1, X2, Y1, Y2)[ξ(X3, Y3)− 1](A∗4φ)(X2, X3, Y3, X4)[ξ(X1, Y2)− 1][ξ(X4, Y1)− 1]] ,

since

E [φ(X2, X3, Y3, Y4)[ξ(X4, Y4)− 1] | X2, X3, X4, Y3] (C.55)

= E [φ(X2, X3, Y3, Y4)ξ(X4, Y4) | X2, X3, X4, Y3]

= A∗4φ(X2, X3, Y3, X4). (C.56)

Now taking expectation with respect to X4, while keeping others being fixed, we get

E [φ(X1, X2, Y1, Y2)[ξ(X3, Y3)− 1](A4A∗4φ)(X2, X3, Y3, Y1)[ξ(X1, Y2)− 1]]

Now, both X1 and Y2 in ξ(X1, Y2) − 1 appears in φ(X1, X2, Y1, Y2), and both X3 and Y3

in ξ(X3, Y3) − 1 appears in φ(X2, X3, Y3, Y4), so we stop here and use the Cauchy-Schwarz

inequality to get an upper bound

√
E[(A4A∗4φ)2(X2, X3, Y3, Y1)[ξ(X1, Y2)− 1]2]× E [φ2(X1, X2, Y1, Y2)[ξ(X3, Y3)− 1]2]

= ‖(A4A∗4)φ‖L2(P⊗P⊗Q⊗Q) ‖φ‖L2(P⊗P⊗Q⊗Q) ‖ξ − 1‖2
L2(P⊗Q) , by independence. (C.57)
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Let C := ‖φ‖2
L2(P⊗P⊗Q⊗Q) ‖ξ − 1‖2

L2(P⊗Q). Then (C.57) can be further bounded above by Cs2
1.

For the expectation associated with ψ, we view ψ as a function with four arguments such

that it is constant in its fourth argument and then repeat the argument for φ. It only makes

a difference at places where we apply A4 or A∗4 to φ—instead of applying this operator, the

expectation is exactly zero, and thus the bound holds trivially. To be more specific, in the

first step of the above example, where we take expectation with respect to Y4, we should have,

in (C.56), that

E [ψ(X2, X3, Y3)[ξ(X4, Y4)− 1] | X2, X3, X4, Y3] = ψ(X2, X3, Y3) E[ξ(X4, Y4)− 1 | X4]
a.s.
= 0.

Recall from (C.45) that

Wn :=
1

n(n− 1)

1

n!

∑
σ∈Sn

∑
i 6=j

(K̄2,0 + K̄0,2 + K̄1,1′)(Xi, Xj, Yσi , Yσj)
∏

k∈[n]\{i,j}

ξ(Xk, Yσk).

To prove E[W 2
n ] = O(n−4), we again use Hoeffding decomposition. From Lemma C.16 we

know (K̄2,0 + K̄0,2 + K̄1,1′)(Xi, Xj, Yσi , Yσj) is 2-degenerate, so each term in its Hoeffding

decomposition should contain at least 3 variables. We assume it is given by the following

form:

φ(Xi, Xj, Yσi , Yσj) + ψ0(Xi, Xj, Yσi) + ψ1(Xi, Xj, Yσj) + ψ2(Xi, Yσi , Yσj) + ψ3(Xj, Yσi , Yσj).

Define

W φ
n :=

1

n(n− 1)

1

n!

∑
σ∈Sn

∑
i 6=j

φ(Xi, Xj, Yσi , Yσj)
∏

k∈[n]\{i,j}

ξ(Xk, Yσk)

Wψ0
n :=

1

n(n− 1)

1

n!

∑
σ∈Sn

∑
i 6=j

ψ0(Xi, Xj, Yσi)
∏

k∈[n]\{i,j}

ξ(Xk, Yσk),

and Wψ1
n , Wψ2

n and Wψ3
n , similarly. Consequently, Wn = W φ

n + Wψ0
n + Wψ1

n + Wψ2
n + Wψ3

n .

It then suffices to show E[(W φ
n )2] = O(n−4) and E[(Wψi

n )2] = O(n−4) for i ∈ {0, 1, 2, 3}. The

strategy here is the same as Proposition 4.9.
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Corollary C.19. Suppose the same assumptions in Lemma C.18 hold. Then

E[(W φ
n )2] ≤ 1

n2(n− 1)2

n∑
r=2

r2(r − 1)2

r!

∑
σ∈Sr

s
2(r−#σ−2)
1 C#σ

E[(Wψi
n )2] ≤ 1

n2(n− 1)2

n∑
r=2

r2(r − 1)2

r!

∑
σ∈Sr

s
2(r−#σ−2)
1 C#σ, for i ∈ {0, 1, 2, 3}

In particular, E[(W φ
n )2] = O(n−4) and E[(Wψi

n )2] = O(n−4) for i ∈ {0, 1, 2, 3}.

Proof. We only prove the bound for E[(W φ
n )2]. Notice that, using Lemma C.8 for A =

[n]\{i, j}, we have
∏

k∈[n]\{i,j} ξ(Xk, Yσk) =
∑

C⊂[n]\{i,j}
∏

k∈C [ξ(Xk, Yσk) − 1] for every pair

i 6= j. As a result,

W φ
n =

1

n(n− 1)

1

n!

∑
σ∈Sn

∑
i 6=j

φ(Xi, Xj, Yσi , Yσj)
∑

C⊂[n]\{i,j}

∏
k∈C

[ξ(Xk, Yσk)− 1]. (C.58)

Because φ(Xi, Xj, Yσi , Yσj) is completely degenerate, an argument similar to the one in Propo-

sition 4.13 shows that the Hoeffding decomposition of W φ
n is given by

W φ
n :=

1

n(n− 1)

1

n!

∑
|A|=|B|>1

W φ
AB,

where

W φ
AB :=

∑
σ∈Sn:σA=B

∑
i 6=j∈A

φ(Xi, Xj, Yσi , Yσj)
∏

k∈A\{i,j}

[ξ(Xk, Yσk)− 1].

Consequently,

E[(W φ
n )2] =

1

n2(n− 1)2(n!)2

n∑
r=2

∑
|A|=|B|=r

E[(W φ
AB)2]

=
1

n2(n− 1)2(n!)2

n∑
r=2

(
n

r

)2

E[(W φ
[r][r])

2], (C.59)

where the last equality follows from exchangeability. Using a derivation similar to the one
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for Proposition 4.9,

E[(W φ
[r][r])

2] = ((n− r)!)2 E

∑
σ∈Sr

∑
1≤i 6=j≤r

φ(Xi, Xj, Yσi , Yσj)
∏

k∈[r]\{i,j}

[ξ(Xk, Yσk)− 1]

2

=
(
(n− r)!

)2
r!r(r − 1)

∑
σ∈Sr

∑
1≤i 6=j≤r

E

[
φ(X1, X2, Y1, Y2)

r∏
k=3

[ξ(Xk, Yk)− 1]

φ(Xi, Xj, Yσi , Yσj)
∏

k∈[r]\{i,j}

[ξ(Xk, Yσk)− 1]

]

≤
(
(n− r)!

)2
r!r(r − 1)

∑
σ∈Sr

∑
1≤i 6=j≤r

s
2(r−#σ−2)
1 C#σ, by Lemma C.18. (C.60)

Now, putting (C.59) and (C.60) together, we get

E[(W φ
n )2] ≤ 1

n2(n− 1)2(n!)2

n∑
r=2

(
n

r

)2(
(n− r)!

)2
r!r(r − 1)

∑
σ∈Sr

∑
1≤i 6=j≤r

s
2(r−#σ−2)
1 C#σ

=
1

n2(n− 1)2

n∑
r=2

r2(r − 1)2

r!

∑
σ∈Sr

s
2(r−#σ−2)
1 C#σ.

Proposition C.20. Under Assumptions 4.2, 4.3 and C.1, the second order remainder R2 =

op(n
−1).

Proof. Let f := C−1(η̃ξ). Recall p and q from Assumption C.1. Note that

E[κ2q
2,0(X1, X2)] =

∫
[(IP ⊗A∗)f(x, x′)]2qdP (x)dP (x′)

=

∫ [∫
f(x, y′)ξ(x′, y′)dQ(y′)

]2q

dP (x)dP (x′)

Jensen

≤
∫∫

f 2q(x, y′)ξ(x′, y′)dQ(y′)dP (x)dP (x′).

Since
∫
ξ(x′, y′)dP (x′)

a.s.
= 1, integrating with respect to x′ in the above upper bound gives∫
f 2q(x, y′)dQ(y′)dP (x) = E[f 2q(X1, Y1)] <∞.
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As a result,

‖K2,0‖2
L2(P⊗P⊗Q⊗Q) = E

[
κ2

2,0(X1, X2)ξ2(X1, Y1)ξ2(X2, Y2)
]

Hölder

≤ E[κ2q
2,0(X1, X2)]

1
q E[ξ2p(X1, Y1)ξ2p(X2, Y2)]

1
p

= E[κ2q
2,0(X1, X2)]

1
q E[ξ2p(X1, Y1)]

2
p <∞.

Analogously, we have ‖K0,2‖L2(P⊗P⊗Q⊗Q) < ∞ and ‖K1,1′‖L2(P⊗P⊗Q⊗Q) < ∞. As discussed

before Corollary C.19, we can then decompose (K̄2,0 +K̄0,2 +K̄1,1′)(Xi, Xj, Yσi , Yσj) into third

and fourth order terms using Hoeffding decomposition and invoke Corollary C.19 to show

E[W 2
n ] = O(n−4). Recall from (C.44) that E[(QnDn − Wn − Vn)2] = O(n−4). Hence, by

Lemma C.17,

E[(Un −QnDn)2] ≤ 3
{

E[(Un − Vn)2] + E[W 2
n ] + E[(QnDn − Vn −Wn)2]

}
= O(n−4).

It then follows from Theorem 4.5 that R2 = op(n
−1).

C.5.3 Proof of Theorem C.11

Proof of Theorem C.11. By the assumption that ς2 = 0, we know the first order chaos Ln = 0

almost surely. According to Proposition C.20, it holds that Tn − θ −Qn = op(n
−1). Recall

from (C.29) that

Qn :=
1

n(n− 1)

{∑
i 6=j

[κ2,0(Xi, Xj) + κ0,2(Yi, Yj)] +
n∑

i,j=1

κ1,1′(Xi, Yj)−
n∑
i=1

`1,1′(Xi, Yi)

}
,

where `1,1′ is an affine function such that κ1,1′−`1,1′ ∈ L2
0,0(µ). This implies (P⊗Q)[`1,1′ ]

affine
=

µ[`1,1′ ] = µ[κ1,1′ ] = θ1,1′ . By LLN, we know 1
n

∑n
i=1 `1,1′(Xi, Yi) = θ1,1′ + op(1). Therefore,

Tn − θ +
θ1,1′

n
=

1

n(n− 1)

{∑
i 6=j

[κ2,0(Xi, Xj) + κ0,2(Yi, Yj)] +
n∑

i,j=1

κ1,1′(Xi, Yj)

}
+ op(n

−1).

We then prove the limit law of the second order chaos. Recall from (C.14) that κ1,1′ ∈

L2
0,0(P ⊗ Q), so it holds that 1

n(n−1)

∑n
i=1 κ1,1′(Xi, Yi) = op(n

−1) by LLN. Hence, we will

ignore this term in the following derivation.
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To begin with, we show the limiting distribution is well-defined. Since ς2 = 0 in Theo-

rem 4.6, we know

(I −A∗A)−1(κ1,0 −A∗κ0,1)(x)
a.s.
= 0 and (I −AA∗)−1(κ0,1 −Aκ1,0)(y)

a.s.
= 0,

which implies

η̃(x, y) := η(x, y)− θ − (I −A∗A)−1(κ1,0 −A∗κ0,1)(x)− (I −AA∗)−1(κ0,1 −Aκ1,0)(y)

a.s.
= η(x, y)− θ.

Consequently, (η − θ)ξ ∈ L2
0,0(P ⊗Q) and thus it has expansion

(η − θ)ξ =
∑
k,l≥1

γkl(αk ⊗ βl), in L2(P ⊗Q), (C.61)

where
∑

k,l≥1 γ
2
kl < ∞. Recall from Assumption 4.2 that 0 ≤ sk ≤ s1 < 1 for all k ≥ 1, we

have ∑
k,l≥1

γ2
kl

(1− s2
k)

2(1− s2
l )

2
≤
∑
k,l≥1

γ2
kl

(1− s2
1)4

<∞. (C.62)

Let {Uk}, {Vl} be independent sequences of i.i.d. standard normal random variables. We

define

Z :=
∑
k,l≥1

γkl
(1− s2

k)(1− s2
l )
{UkVl + skslUlVk − sl(UkUl − 1{k = l})− sk(VkVl − 1{k = l})}

=
∑
k,l≥1

1

(1− s2
k)(1− s2

l )

{
(γkl + skslγlk)UkVl

− slγkl(UkUl − 1{k = l})− skγkl(VkVl − 1{k = l})
}
,

where the sum converges in L2. We will show Zn := nQn →d Z by using characteristic

functions, i.e., by showing that, for each t ∈ R,

E[exp(itZn)]→ E[exp(itZ)], as n→∞.

The following proof is inspired by Serfling (1980a, Chapter 5.5.2).
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Step 1. We expand Zn on {αk ⊗ βl}k,l≥0. For k ≥ 1, we denote

α̃k := (I −A∗A)−1αk = (1− s2
k)
−1αk and β̃k := (I −AA∗)−1βk = (1− s2

k)
−1βk.

By Lemma C.12 it holds that C−1(αk ⊗ βl) = α̃k ⊗ β̃l, and then we get

C−1[(η − θ)ξ] =
∑
k,l≥1

γkl(α̃k ⊗ β̃l) =
∑
k,l≥1

γkl
(1− s2

k)(1− s2
l )

(αk ⊗ βl).

It follows that

κ1,1′(Xi, Yj) := (I + B)C−1(η̃ξ)(Xi, Yj)

a.s.
=
∑
k,l≥1

γkl
(1− s2

k)(1− s2
l )

[αk(Xi)βl(Yj) + skslαl(Xi)βk(Yj)]

κ2,0(Xi, Xj) := (IP ⊗A∗)C−1(η̃ξ)(Xi, Xj)
a.s.
=
∑
k,l≥1

γkl
(1− s2

k)(1− s2
l )
slαk(Xi)αl(Xj)

κ0,2(Yi, Yj) := (A⊗ IQ)C−1(η̃ξ)(Yi, Yj)
a.s.
=
∑
k,l≥1

γkl
(1− s2

k)(1− s2
l )
skβk(Yi)βl(Yj).

Hence, Zn admits the following expansion:

Zn =
1

n− 1

∑
i 6=j

∑
k,l≥1

γkl[αk(Xi)βl(Yj) + skslαl(Xi)βk(Yj)− slαk(Xi)αl(Xj)− skβk(Yi)βl(Yj)]
(1− s2

k)(1− s2
l )

=
1

n− 1

∑
i 6=j

∑
k,l≥1

(γkl + skslγlk)αk(Xi)βl(Yj)− slγklαk(Xi)αl(Xj)− skγklβk(Yi)βl(Yj)
(1− s2

k)(1− s2
l )

.

Step 2. We truncate the inner infinite sum. Fix an arbitrary integer K > 0. Let

ZK
n :=

1

n− 1

∑
i 6=j

K∑
k,l=1

(γkl + skslγlk)αk(Xi)βl(Yj)− slγklαk(Xi)αl(Xj)− skγklβk(Yi)βl(Yj)
(1− s2

k)(1− s2
l )

ZK :=
K∑

k,l=1

[(γkl + skslγlk)UkVl − slγkl(UkUl − 1{k = l})− skγkl(VkVl − 1{k = l})]
(1− s2

k)(1− s2
l )

.

By triangle inequality, we have

∣∣E[eitZn ]− E[eitZ ]
∣∣ ≤ ∣∣∣E[eitZn ]− E[eitZ

K
n ]
∣∣∣+
∣∣∣E[eitZ

K
n ]− E[eitZ

K

]
∣∣∣+
∣∣∣E[eitZ

K

]− E[eitZ ]
∣∣∣

=: A+B + C (C.63)
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Fix arbitrary t ∈ R and ε > 0, it now suffices to show that A,B,C ≤ ε for all sufficiently

large n with an appropriate choice of K.

Step 3. We bound A and C. Using the inequality |eiz − 1| ≤ |z|, we get

A ≤ E
∣∣∣eitZn − eitZKn ∣∣∣ ≤ |t|E ∣∣Zn − ZK

n

∣∣ ≤ |t| [E(Zn − ZK
n )2]1/2. (C.64)

We rewrite Zn − ZK
n as 1

n−1

∑
i 6=j[g

αβ
K (Xi, Yj)− gααK (Xi, Xj)− gββK (Yi, Yj)], where

gαβK (x, y) :=
∑
k,l>K

γkl + skslγlk
(1− s2

k)(1− s2
l )
αk(x)βl(y)

gααK (x, x′) :=
∑
k,l>K

γklsl
(1− s2

k)(1− s2
l )
αk(x)αl(x

′)

gββK (y, y′) :=
∑
k,l>K

γklsk
(1− s2

k)(1− s2
l )
βk(y)βl(y

′).

By the orthogonality of {αk}k≥0 and {βk}k≥0, we know E[αk(Xi)βl(Yj)αk′(Xi)βl′(Yj)] = 0

for all k, l ≥ 1 and i 6= j. This implies gαβK (Xi, Yj) and gααK (Xi, Xj) are uncorrelated.

Analogously, we have gαβK (Xi, Yj), g
αα
K (Xi, Xj) and gββK (Yi, Yj) are mutually uncorrelated for

all i 6= j. As a result, E[(Zn − ZK
n )2] reads

E[(Zn − ZK
n )2] (C.65)

=
1

(n− 1)2
E


[∑
i 6=j

gαβK (Xi, Yj)

]2

+

[∑
i 6=j

gααK (Xi, Xj)

]2

+

[∑
i 6=j

gββK (Yi, Yj)

]2
 . (C.66)

Notice that E[αk(X1)βl(Y2) | X1] = E[αk(X1)βl(Y2) | Y2] = 0 for all k, l ≥ 1, then

E[gαβK (X1, Y2) | X1] = E[gαβK (X1, Y2) | Y2] = 0.

As a result,

E

[∑
i 6=j

gαβK (Xi, Yj)

]2

= N(n− 1) E[gαβK (X1, Y2)2] = N(n− 1)
∑
k,l>K

[
γkl + skslγlk

(1− s2
k)(1− s2

l )

]2

.

Let δ > 0 be such that |t| δ < ε. It then follows from (C.62) that, for all sufficiently large K,

we have

1

(n− 1)2
E

[∑
i 6=j

gαβK (Xi, Yj)

]2

≤ n

n− 1

∑
k,l>K

[
γkl + skslγlk

(1− s2
k)(1− s2

l )

]2

≤ n

6(n− 1)
δ2.
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The same bound for the rest of the two terms in (C.65) can be shown using similar arguments.

Therefore, by (C.64),

A ≤ |t| [E(Zn − ZK
n )2]1/2 ≤

√
n

2(n− 1)
|t| δ < ε, for all n ≥ 2.

Repeating the above argument for ZK and Z gives C < ε for all n ≥ 2.

Step 4. We bound B by proving ZK
n →d Z

K as n→∞. Consider Wn := (W>
α ,W

>
β ) with

Wα :=
1√
n

(
n∑
i=1

αk(Xi)

)K

k=1

and Wβ :=
1√
n

(
n∑
i=1

βk(Yi)

)K

k=1

.

According to the multivariate CLT (Billingsley, 1995, Section 29), it holds Wn →d

N2K(0, I2K), where the covariance matrix I2K follows from the orthonormality of {αk}k≥1

and {βk}k≥1. We then rewrite ZK
n as a quadratic form of Wn. Notice that

1

n

∑
i 6=j

K∑
k,l=1

1

(1− s2
k)(1− s2

l )
(γkl + skslγlk)αk(Xi)βl(Yj)

=
1

n

K∑
k,l=1

(γkl + skslγlk)

(1− s2
k)(1− s2

l )

{[
n∑
i=1

αk(Xi)

][
n∑
i=1

βl(Yi)

]
−

n∑
i=1

αk(Xi)βl(Yi)

}

= 2W>
α ΣαβWβ −

K∑
k,l=1

(γkl + skslγlk)

(1− s2
k)(1− s2

l )

1

n

n∑
i=1

αk(Xi)βl(Yi),

where Σαβ
kl = (γkl+skslγlk)

2(1−s2k)(1−s2l )
is the (k, l)-element in the matrix Σ. Similarly, it holds that

1

n

∑
i 6=j

K∑
k,l=1

γkl
(1− s2

k)(1− s2
l )
slαk(Xi)αl(Xj)

= W>
α ΣααWα −

K∑
k,l=1

γklsl
(1− s2

k)(1− s2
l )

1

n

n∑
i=1

αk(Xi)αl(Xi)

1

n

∑
i 6=j

K∑
k,l=1

γkl
(1− s2

k)(1− s2
l )
skβk(Yi)βl(Yj)

= W>
β ΣββWβ −

K∑
k,l=1

γklsk
(1− s2

k)(1− s2
l )

1

n

n∑
i=1

βk(Yi)βl(Yi),
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where Σαα
kl = γklsl

(1−s2k)(1−s2l )
and Σββ

kl = γklsk
(1−s2k)(1−s2l )

. Hence,

ZK
n :=

n

n− 1
W>
n

−Σαα Σαβ

[Σαβ]> −Σββ

Wn −
n

n− 1

K∑
k,l=1

1

(1− s2
k)(1− s2

l )

1

n

n∑
i=1

[
(γkl + skslγlk)αk(Xi)βl(Yi)− slγklαk(Xi)αl(Xi)− skγklβk(Yi)βl(Yi)

]
.

Since E[αk(Xi)βl(Yi)] = 0 and E[αk(Xi)αl(Xi)] = E[βk(Yi)βl(Yi)] = 1{k = l} for all k, l ≥ 1

and i ∈ [n], we know from LLN that

1

n

n∑
i=1

[(γkl + skslγlk)αk(Xi)βl(Yi)− slαk(Xi)αl(Xi)− skβk(Yi)βl(Yi)]

→p −sl1{k = l} − sk1{k = l}.

By Slutsky’s lemma, it holds ZK
n →d Z

K , and thus we have B < ε for all sufficiently large

N . Now, by (C.63), we get
∣∣E[eitZn ]− E[eitZ ]

∣∣ ≤ 3ε for all sufficiently large n. Since ε is

arbitrary, this completes the proof.
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Appendix D

APPENDIX TO CHAPTER 5

D.1 Properties of Entropy-Regularized Optimal Transport Independence Cri-
terion

In this section, we prove the properties of ETIC discussed in Section 5.4. For the sake of

generality, we state the problem for general notations P and Q while keeping in mind that

P,Q ∈ {µXY , µX⊗µY } in our case. Let P ∈M1(Rd1×Rd2) and PX and PY be the marginals

on Rd1 and Rd2 , respectively. Define Q, QX , and QY similarly. We are interested in the EOT

cost between P and Q under the cost function c:

Sε(P,Q) := inf
γ∈Π(P,Q)

[∫
cdγ + εKL(γ‖P ⊗Q)

]
. (D.1)

When ε = 0, S0(P,Q) is the optimal transport cost between P and Q. When ε > 0, it

admits a dual representation:

Sε(P,Q) := sup
f,g∈C(Rd1×Rd2 )

[∫
fdP +

∫
gdQ+ ε− ε

∫
e

1
ε

[f(z)+g(z′)−c(z,z′)]dP (z)dQ(z′)

]
.

(D.2)

The Schrödinger bridge potentials (fε, gε) satisfy the optimality conditions:∫
e

1
ε

[fε(z)+gε(z)−c(z,z′)]dQ(z′)
a.s.
= 1∫

e
1
ε

[fε(z)+gε(z)−c(z,z′)]dP (z)
a.s.
= 1.

(D.3)

We first prove the validity of ETIC as a dependence measure as stated in Proposition 5.3.

Proof of Proposition 5.3. Due to Blanchard et al. (2011, Lemma 5.2), the Gibbs kernel

kε(z, z
′) := e−c(z,z

′)/ε = k1(x, x′)k2(y, y′)
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is universal since both kx and ky are. It is also clear that kε is positive since both kx and

ky are. Consequently, the Sinkhorn divergence S̄ε defines a semi-metric on M1(X × Y)

according to Feydy et al. (2019, Theorem 1). Hence, if µXY , µX ⊗ µY ∈ M1(X × Y), then

Tε(X, Y ) := S̄ε(µXY , µX ⊗ µY ) = 0 iff µXY = µX ⊗ µY .

Next, we analyze the computational complexity of the Tensor Sinkhorn algorithm for

additive cost functions, i.e.,

c(z, z′) := c1(x, x′) + c2(y, y′), (D.4)

where z = (x, y) and z′ = (x′, y′).

Let {xi}ni=1 and {yj}nj=1 be two sets of atoms. Note that the two sets are assumed to be of

the same size for convenience. Let A and B be two probability measures on {xi}ni=1×{yj}nj=1.

For convenience, both A and B are represented as a matrix, i.e., Aij = A(xi, yj). For instance,

if we choose A = µ̂XY and B = µ̂X⊗µ̂Y , then, in its matrix form, A = In/n and B = 1n×n/n
2.

Denote C1 and C2 as the cost matrices of {xi}ni=1 and {yj}nj=1, respectively. Define Gibbs

matrices K1 := e−C1/ε and K2 := e−C2/ε, where the exponential function is applied element-

wisely. Let K := K2 ⊗K1 ∈ Rn
2×n2

be the Gibbs matrix associated with the cost matrix on

the pairs {(x1, y1), (x2, y1), . . . , (xn, yn)}, where ⊗ is the Kronecker product.

Proof of Proposition 5.4. Let a := Vect(A) ∈ Rn
2

and b := Vect(B) ∈ Rn
2

be the probability

vectors corresponding to A and B, respectively. Denote u := Vect(U) ∈ Rn
2

and v :=

Vect(V ) ∈ Rn
2
. The Sinkhorn algorithm to solve Sε(a, b) has the following two update steps:

u = a�Kv and v = b�K>u.

By the identity Vect(MNL) = (L>⊗M) Vect(N) for matrices M , N , and L of compatible

dimensions, we obtain

Vect(K1V K
>
2 ) = (K2 ⊗K1) Vect(V ) = Kv.

Thus, the update U = A � (K1V K
>
2 ) is equivalent to u = a � Kv. Similarly, the up-

dated V = B � (K>1 UK2) is equivalent to v = b � K>u. Due to Dvurechensky et al.
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(2018, Theorem 1), the Tensor Sinkhorn algorithm therefore outputs an τ -accurate estimate

in O(log(κ1κ2κ3)/τ) iterations. Since each iteration costs O(n3) time, it has overall time

complexity O(n3 log(κ1κ2κ3)/τ).

Remark D.1. A direct application of the Sinkhorn algorithm leads to O(n4 log(κ1κ2κ3)/τ)

time complexity, which is n times slower than the Tensor Sinkhorn algorithm.

We then characterize the convergence of the Tensor Sinkhorn algorithm with the random

feature approximation as presented in Proposition 5.5.

Proof of Proposition 5.5. The proof is heavily inspired by Scetbon and Cuturi (2020, Proof

of Theorem 3.1). In consideration of the space, we only present the part that is significantly

different from theirs, i.e., a counterpart of Scetbon and Cuturi (2020, Proposition 3.1).

This proposition gives a uniform tail bound for the ratio between the approximated kernel

and the original kernel. In our case, we are approximating the kernel K := K2 ⊗ K1 by

Ku,v := K2,v ⊗K1,u. Hence, it suffices to bound

sup
x,x′∈{xi}ni=1,y,y

′∈{yi}ni=1

∣∣∣∣k1,u(x, x′)k2,v(y, y′)

k1(x, x′)k2(y, y′)
− 1

∣∣∣∣ .
Note that

k1,u(x, x′)

k1(x, x′)
=

1

p

p∑
k=1

ϕ(x, uk)
>ϕ(x′, uk)

k1(x, x′)

is a sum of nonnegative i.i.d. random variables with mean 1. Due to Assumption 5.1, they

are also bounded. It follows from the Hoeffding inequality that

P

(∣∣∣∣k1,u(x, x′)

k1(x, x′)
− 1

∣∣∣∣ ≥ t

)
≤ 2 exp

(
−pt

2

C2

)
.

The same inequality holds for the ratio k2,v(y, y′)/k2(y, y′). Since∣∣∣∣k1,u(x, x′)k2,v(y, y′)

k1(x, x′)k2(y, y′)
− 1

∣∣∣∣
≤
∣∣∣∣k1,u(x, x′)

k1(x, x′)
− 1

∣∣∣∣ ∣∣∣∣k2,v(y, y′)

k2(y, y′)
− 1

∣∣∣∣+

∣∣∣∣k1,u(x, x′)

k1(x, x′)
− 1

∣∣∣∣+

∣∣∣∣k2,v(y, y′)

k2(y, y′)
− 1

∣∣∣∣ ,
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it follows that

P

(∣∣∣∣k1,u(x, x′)k2,v(y, y′)

k1(x, x′)k2(y, y′)
− 1

∣∣∣∣ ≤ t2 + 2t

)
≥ P

({∣∣∣∣k1,u(x, x′)

k1(x, x′)
− 1

∣∣∣∣ ≤ t

}⋂{∣∣∣∣k2,v(y, y′)

k2(y, y′)
− 1

∣∣∣∣ ≤ t

})
= P

(∣∣∣∣k1,u(x, x′)

k1(x, x′)
− 1

∣∣∣∣ ≤ t

)
P

(∣∣∣∣k2,v(y, y′)

k2(y, y′)
− 1

∣∣∣∣ ≤ t

)
≥ 1− 4 exp

(
−pt

2

C2

)
.

Equivalently,

P

(∣∣∣∣k1,u(x, x′)k2,v(y, y′)

k1(x, x′)k2(y, y′)
− 1

∣∣∣∣ ≥ t

)
≤ 4 exp

(
−p(
√
t+ 1− 1)2

C2

)
.

A uniform bound yields

P

(
sup

x,x′∈{xi}ni=1,y,y
′∈{yi}ni=1

∣∣∣∣k1,u(x, x′)k2,v(y, y′)

k1(x, x′)k2(y, y′)
− 1

∣∣∣∣ ≥ t

)
≤ 4n4 exp

(
−p(
√
t+ 1− 1)2

C2

)
.

Remark D.2. Let Ŝε,cu,v(A,B) be the cost computed from Algorithm 3. Follow-

ing Dvurechensky et al. (2018, Theorem 1), we can get that∣∣∣Ŝε,cu,v(A,B)− Sε,cu,v(A,B)
∣∣∣ ≤ τ

in O (pn2 log(κ1κ2κ3)/τ) arithmetic operations, where κ1 := maxi,i′ k
−1
1,u(xi, xi′), κ2 :=

maxj,j′ k
−1
2,v(yj, yj′), and κ3 := maxi,j{a−1

ij , b
−1
ij }.

Finally, we derive the limit of ETIC as ε→ 0 and ε→∞.

Proposition D.1. Let c be a continuous cost function. If either c is bounded or P and Q

have compact support, it holds that

Tε(X, Y )→

0 if c = c1 ⊕ c2

−1
2

HSICc1,c2(X, Y ) if c = c1 ⊗ c2,

as ε→∞. (D.5)

Moreover, if both P and Q are densities (or discrete measures), then

Tε(X, Y )→ S0(µXY , µX ⊗ µY ), as ε→ 0. (D.6)
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Proof. To show (D.5), we claim that, for all P,Q ∈M1(Rd),

S0(P,Q) ≤ Sε(P,Q) ≤ (P ⊗Q)[c], (D.7)

and

lim
ε→∞

Sε(P,Q) = (P ⊗Q)[c]. (D.8)

In fact, for any ε1 < ε2, we have∫
cdγ + ε1 KL(γ‖P ⊗Q) ≤

∫
cdγ + ε2 KL(γ‖P ⊗Q), for all γ ∈ Π(P,Q).

This yields that

Sε1(P,Q) ≤ Sε2(P,Q), for all ε1 ≤ ε2,

and thus (D.7) follows.

We then study the limit of Sε as ε→∞. By the assumption that c is bounded or P and

Q have compact support, there exists M > 0 such that supγ∈Π(P,Q)

∫
cdγ ≤ M < ∞. As a

result,

sup
γ∈Π(P,Q)

∣∣∣∣1ε
∫
cdγ + KL(γ‖P ⊗Q)−KL(γ‖P ⊗Q)

∣∣∣∣ ≤ M

ε
,

which implies that

inf
γ∈Π(P,Q)

[
1

ε

∫
cdγ + KL(γ‖P ⊗Q)

]
→ inf

γ∈Π(P,Q)
KL(γ‖P ⊗Q) = 0, as ε→∞.

By the strict convexity of KL, the problem on the LHS has a unique minimizer γε and the

problem on the RHS has a unique minimizer γ∗ = P ⊗Q. Now, by the tightness of Π(P,Q)

(e.g., (Santambrogio, 2015, Theorem. 1.7)), every sequence of {γε} has a weakly converging

subsequence whose limit must be γ∗. Therefore, the claim (D.8) holds true.

Let c = c1 ⊕ c2. According to (D.8), we have

lim
ε→∞

Sε(µXY , µX ⊗ µY ) = (µXY ⊗ µX ⊗ µY )[c] = (µX ⊗ µX)[c1] + (µY ⊗ µY )[c2].
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Similarly, it holds that

lim
ε→∞

Sε(µXY , µXY ) = (µX ⊗ µX)[c1] + (µY ⊗ µY )[c2]

lim
ε→∞

Sε(µX ⊗ µY , µX ⊗ µY ) = (µX ⊗ µX)[c1] + (µY ⊗ µY )[c2].

Consequently, limε→∞ Tε(X, Y ) = 0. An analogous argument implies that, when c = c1 ⊗ c2

lim
ε→∞

Tε(X, Y ) = EµXY [EµX [c1(X,X ′) | X] EµY [c2(Y, Y ′) | Y ]]

− 1

2
Eµ2

XY
[c1(X,X ′)c2(Y, Y ′)]− 1

2
E(µX⊗µY )2 [c1(X,X ′)c2(Y, Y ′)] = −1

2
HSICc1,c2(X, Y ).

Note that

lim
ε→0

Sε(P,Q) = S0(P,Q)

when both P and Q are densities (Léonard, 2012) and when both of them are discrete mea-

sures (Peyré and Cuturi, 2019, Proposition 4.1). The statement (D.6) follows immediately

from the fact that S0(P, P ) = 0 for all P .

D.2 Consistency of the Test Statistic

In this section, we prove the main results in Section 5.5. For the sake of generality, we start

by considering the formulation in (D.1). We focus on the weighted quadratic cost function

c(z, z′) := w1 ‖x− x′‖2
+ w2 ‖y − y′‖2

,

where z = (x, y), z′ = (x′, y′) and w1, w2 ∈ R+. Denote w := max{w1, w2}. Due to

Lemma D.17, we assume, w.l.o.g., that ε = 1 and write S(P,Q) := S1(P,Q).

D.2.1 Smoothness Properties of the Schrödinger Potentials

We start by deriving some smoothness properties of the Schrödinger potentials. Our proofs

are deeply inspired by Mena and Weed (2019). Our results generalize theirs to weighted

quadratic cost functions.
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Assumption D.1. We assume that PX , PY , QX , and QY are all subG(σ2).

Proposition D.2. Under Assumption D.1. there exist smooth Schrödinger potentials (f, g)

for S(P,Q) such that the optimality conditions (D.3) hold for all z, z′ ∈ Rd. Moreover, we

have

f(z) ≥ −dσ2
[
2w1 + 2w2 + 4w2

1(
√

2d1σ + ‖x‖)2 + 4w2
2(
√

2d2σ + ‖y‖)2
]
− 1

f(z) ≤ w1(‖x‖+
√

2d1σ)2 + w2(‖y‖+
√

2d2σ)2,

and for g similarly.

Proof. Let (f0, g0) be a pair of Schrödinger potentials. Since (f0 + C, g0 − C) is also a pair

of Schrödinger potentials for any constant C ∈ R, we assume, w.l.o.g., that P [f0] = Q[g0] =

1
2
S(P,Q) ≥ 0. Define

f(z) := − log

∫
eg0(z′)−c(z,z′)dQ(z′) and g(z′) := − log

∫
ef(z)−c(z,z′)dP (z). (D.9)

We claim that the pair (f, g) satisfies the requirements.

Since (f0, g0) is a pair of Schrödinger potentials, it holds that

g0(z′)
a.s.
= − log

∫
ef0(z)−c(z,z′)dP (z) ≤ −P [f0] + w1 EPX [‖X − x′‖2

] + w2 EPY [‖Y − y′‖2
],

by Jensen’s inequality. Note that P [f0] ≥ 0 and, by Lemma D.11, EPX [‖X‖2] ≤ 2d1σ
2. It

follows that

g0(z′)− c(z, z′) ≤ w1

[
2d1σ

2 + 2 ‖x′‖ (
√

2d1σ + ‖x‖)
]

+ w2

[
2d2σ

2 + 2 ‖y′‖ (
√

2d2σ + ‖y‖)
]
,

and thus∫
eg0(z′)−c(z,z′)dQ(z′)

≤ e2(w1d1+w2d2)σ2

[∫
e4w1‖x′‖(

√
2d1σ+‖x‖)dQX(x′)

∫
e4w2‖y′‖(

√
2d2σ+‖y‖)dQY (y′)

]1/2

≤ 2e2(w1d1+w2d2)σ2

e4d1σ2w2
1(
√

2d1σ+‖x‖)2+4d2σ2w2
2(
√

2d2σ+‖y‖)2

<∞, by Lemma D.11.
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Hence, f(z) is well-defined for all z ∈ Rd. Moreover, we have the lower bound

f(z) ≥ −d1σ
2
[
2w1 + 4w2

1(
√

2d1σ + ‖x‖)2
]
− d2σ

2
[
2w2 + 4w2

2(
√

2d2σ + ‖y‖)2
]
− 1

≥ −dσ2
[
4w + 4w2

1(
√

2d1σ + ‖x‖)2 + 4w2
2(
√

2d2σ + ‖y‖)2
]
− 1

For the upper bound, by Jensen’s inequality, it holds that

f(z) ≤ −Q[g0] + w1 EQX ‖x−X ′‖
2

+ w2 EQY ‖y − Y ′‖
2

≤ w1(‖x‖+
√

2d1σ)2 + w2(‖y‖+
√

2d2σ)2.

Similar arguments prove the claim for g. Now, it remains to show that (f, g) satisfies the

optimality conditions (D.3) for all z, z ∈ Rd. By definition, it is clear that∫
ef(z)+g(z′)−c(z,z′)dP (z) = 1 and

∫
ef(z)+g0(z′)−c(z,z′)dQ(z′) = 1, ∀z, z′ ∈ Rd.

Since (f0, g0) is a pair of Schrödinger potentials, we also have∫
ef0(z)+g0(z′)−c(z,z′)dP (z)dQ(z′) = 1.

Consequently, by Jensen’s inequality∫
(f − f0)dP +

∫
(g − g0)dQ

≥ − log

∫
ef0−fdP − log

∫
eg0−gdQ

= − log

∫
ef0(z)+g0(z′)−c(z,z′)dP (z)dQ(z′)− log

∫
ef(z)+g0(z′)−c(z,z′)dP (z)dQ(z′)

= 0.

Since both (f0, g0) and (f, g) are Schrödinger potentials, the above equality holds true. This

implies that
∫

(g0− g)dQ = log
∫
eg0−gdQ, and thus g = g0 +C Q-almost surely by the strict

concavity of log. Therefore, we have∫
ef(z)+g(z′)−c(z,z′)dQ(z′) = eC

∫
ef(z)+g0(z′)−c(z,z′)dQ(z′) = eC , ∀z, z′ ∈ Rd.

Taking integrals with respect to P implies that C = 0, which completes the proof.
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The next proposition shows that there exist Schrödinger potentials satisfying Hölder-type

conditions.

Definition D.1. For any σ ∈ R+, d ∈ N+, and w = (w1, w2) ∈ R2
+, let Fσ := Fσ,d,w be the

set of smooth functions such that, for any k ∈ N+ and any multi-index α with |α| = k,

∣∣Dα
(
f(x, y)− w1 ‖x‖2 − w2 ‖y‖2)∣∣ ≤ Ck,d,w

(1 + σ4) if k = 0

σk(1 + σ)k otherwise,

(D.10)

if ‖z‖ ≤
√
dσ, and

∣∣Dα
(
f(x, y)− w1 ‖x‖2 − w2 ‖y‖2)∣∣ ≤ Ck,d,w

[1 + (1 + σ2) ‖x‖2] if k = 0

σk(
√
σ ‖x‖+ σ ‖x‖)k otherwise,

(D.11)

if ‖z‖ >
√
dσ, where Ck,d,w is a constant depending on k, d, and w.

Proposition D.3. Under Assumption D.1, there exist Schrödinger potentials (f, g) such

that the optimality conditions (D.3) hold for all z, z′ ∈ Rd and f, g ∈ Fσ.

Proof. Let (f, g) be a pair of Schrödinger potentials satisfying the requirements in Proposi-

tion D.2. Denote f̄(x, y) := f(x, y)− w1 ‖x‖2 − w2 ‖y‖2. Note that

f̄(z) = − log e−f̄(x,y) = − log

∫
ew1‖x‖2+w2‖y‖2+g(z′)−c(z,z′)dQ(z′)

= − log

∫
eg(z

′)−w1‖x′‖2−w2‖y′‖2+2w1〈x,x′〉+2w2〈y,y′〉dQ(z′).

The desired inequalities for k = 0 follow directly from Proposition D.2. We focus on k > 0.

According to the multivariate Faá di Bruno formula (Constantine and Savits, 1996), we have

Dαf̄(z) =
∑

λ1+···+λk=α

Cα,λ1,...,λk

k∏
i=1

Mλi ,

where

Mλ =

∫
(z̃′)λ exp

{
g(z′)− w1 ‖x′‖2 − w2 ‖y′‖2 + 2w1〈x, x′〉+ 2w2〈y, y′〉

}
dQ(z′)∫

exp
{
g(z′)− w1 ‖x′‖2 − w2 ‖y′‖2 + 2w1〈x, x′〉+ 2w2〈y, y′〉

}
dQ(z′)

. (D.12)
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Here z̃′ = (2w1x
′; 2w2y

′) and zλ =
∏d

i=1 z
λi
i . By Lemma D.4 below, it holds that

∣∣Dαf̄(z)
∣∣ ≤ Ck,d,w

σ
k(1 + σk) if ‖z‖ ≤

√
dσ

σk(σ ‖z‖+
√
σ ‖z‖)k if ‖z‖ >

√
dσ,

which proves the claim.

Lemma D.4. Recall Mλ in (D.12). Under Assumption D.1, for |λ| > 0, we have

|Mλ| ≤ C|λ|,d,w

σ
|λ|(σ + σ2)|λ| if ‖z‖ ≤

√
dσ

σ|λ|(σ ‖z‖+
√
σ ‖z‖)|λ| if ‖z‖ >

√
dσ

.

Proof. We first bound the denominator. By the optimality conditions (D.3), it holds that(∫
exp

{
g(z′)− w1 ‖x′‖2 − w2 ‖y′‖2

+ 2w1〈x, x′〉+ 2w2〈y, y′〉
}
dQ(z′)

)−1

= ef(x,y)−w1‖x‖2−w2‖y‖2 ≤ ew1(2d1σ2+2
√

2d1σ‖x‖)+w2(2d2σ2+2
√

2d2σ‖y‖),

where the last inequality follows from Proposition D.2. To bound the numerator, we use the

truncation technique. Let A := {(x′, y′) : ‖2w1x
′‖ ≤ K, ‖2w2y

′‖ ≤ K} for some constant K

to be determined later. On the set A, it is clear that (z̃′)λ ≤ ‖z̃′‖|λ| ≤ K |λ|, and thus∫
A

(z̃′)λ exp
{
g(z′)− w1 ‖x′‖2 − w2 ‖y′‖2 + 2w1〈x, x′〉+ 2w2〈y, y′〉

}
dQ(z′)∫

exp
{
g(z′)− w1 ‖x′‖2 − w2 ‖y′‖2 + 2w1〈x, x′〉+ 2w2〈y, y′〉

}
dQ(z′)

≤ K |λ|.

On the set Ac, we proceed as follows. According to Proposition D.2, we have

eg(x
′,y′)−w1‖x′‖2−w2‖y′‖2 ≤ ew1(2d1σ2+2

√
2d1σ‖x′‖)+w2(2d2σ2+2

√
2d2σ‖y′‖),

which yields∫
Ac

(z̃′)λ exp
{
g(z′)− w1 ‖x′‖2 − w2 ‖y′‖2

+ 2w1〈x, x′〉+ 2w2〈y, y′〉
}
dQ(z′)

≤ e2(w1d1+w2d2)σ2

[∫
Ac

(z̃′)2λdQ(z′)

∫
Ac
e2w1‖x′‖(‖x‖+

√
2d1σ)+2w2‖y′‖(‖y‖+

√
2d2σ)dQ(z′)

]1/2

.
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For any z′ ∈ Ac, we have either ‖2w1x
′‖ > K or ‖2w2y

′‖ > K. If the former is true, then∫
Ac

(z̃′)2λdQ(z′) ≤
∫
Ac
e
− K2

16w2
1d1σ

2 e
‖2w1x

′‖2
16w2

1d1σ
2 (z̃′)2λdQ(z′) ≤ C|λ|,d,we

− K2

16w2dσ2 σ2|λ|,

where w = max{w1, w2}. The same bound holds if the latter is true. Furthermore, by the

Cauchy-Schwartz inequality and Lemma D.11 in Appendix D.4, we have∫
Ac
e2w1‖x′‖(‖x‖+

√
2d1σ)+2w2‖y′‖(‖y‖+

√
2d2σ)dQ(z′) ≤ e4w2

1d1σ2(‖x‖+
√

2d1σ)2+4w2
2d2σ2(‖y‖+

√
2d2σ)2

Putting all together, we get∫
Ac

(z̃′)λ exp
{
g(z′)− w1 ‖x′‖2 − w2 ‖y′‖2 + 2w1〈x, x′〉+ 2w2〈y, y′〉

}
dQ(z′)∫

exp
{
g(z′)− w1 ‖x′‖2 − w2 ‖y′‖2 + 2w1〈x, x′〉+ 2w2〈y, y′〉

}
dQ(z′)

≤ C|λ|,d,we
− K2

32w2dσ2 e2w2
1d1σ2(‖x‖+

√
2d1σ)2+2w2

2d2σ2(‖y‖+
√

2d2σ)2

σ|λ|

≤ C|λ|,d,we
− K2

32w2dσ2 e2w2dσ2[(‖x‖+
√

2dσ)2+(‖y‖+
√

2dσ)2]σ|λ|

When ‖z‖ ≤
√
dσ, it holds that ‖x‖ ≤

√
2dσ and ‖y‖ ≤

√
2dσ. Hence, if we choose

K2 = C|λ|,d,w(σ4 + σ6) for some sufficiently large constant C|λ|,d,w, then we have

|Mλ| ≤ C|λ|,d,wσ
|λ|(σ + σ2)|λ|.

When ‖z‖ >
√
dσ, if we choose K2 = C|λ|,d,w(σ4 ‖z‖2 + σ3 ‖z‖), then we have

|Mλ| ≤ C|λ|,d,wσ
|λ|
(
σ ‖z‖+

√
σ ‖z‖

)|λ|
.

When P and Q have bounded support, we can further show that the Schrödinger poten-

tials can be chosen to be bounded.

Proposition D.5. Assume that P and Q are supported on a bounded domain of radius D.

Then there exist Schrödinger potentials (f, g) such that 1) the optimality conditions (D.3)

hold for all x, y ∈ Rd and 2) ‖f‖∞ ≤ 8wD2 and ‖g‖∞ ≤ 8wD2.



273

Proof. Let (f, g) the Schrödinger potentials defined in (D.9). By the proof of Proposition D.2,

they satisfy (D.3) everywhere. Moreover, we have

f(z) ≤ w1 EQX ‖x−X ′‖
2

+ w2 EQY ‖y − Y ′‖
2 ≤ 8wD2

and g similarly.

D.2.2 Controlling the Empirical Process and the U-Process

We then upper bound the L1 loss E |Tn(X, Y )− T (X, Y )| by empirical processes and U-

processes.

Proposition D.6 (Corollary 2 (Mena and Weed, 2019)). Let P,Q, P ′, Q′ ∈ M1(Rd) be

subG(σ2). Then we have

|S(P ′, Q′)− S(P,Q)| ≤ sup
f∈Fσ

∣∣∣∣∫ f(dP ′ − dP )

∣∣∣∣+ sup
g∈Fσ

∣∣∣∣∫ g(dQ′ − dQ)

∣∣∣∣ ,
where Fσ is defined in Definition D.1.

To simply the function class Fσ, we show in Lemma D.15 in Appendix D.4 that (1 +

σ3s)−1Fσ ⊂ F s for F s defined below. Consequently, we can separate the sub-Gaussian

parameter σ from the function class Fσ.

Definition D.2. For any s ≥ 2, d ∈ N+, and w = (w1, w2) ∈ R2
+, let F s := F s,d,w be the set

of functions satisfying

|f(z)| ≤ Cs,d,w(1 + ‖z‖2)

|Dαf(z)| ≤ Cs,d,w(1 + ‖z‖|α|), ∀1 ≤ |α| ≤ s,

where Cs,d,w is a constant depending on s, d, and w.

In order to handle the U-process, we also need a variant function class of F s which we

also define below.
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Definition D.3. For any σ ∈ R+, s ≥ 2, d ∈ N+, and w = (w1, w2) ∈ R2
+, let F sσ := F s,d,wσ

be the set of functions satisfying

|f(z)| ≤ Cs,d,w(1 + max{‖z‖2 , σ2})

|Dαf(z)| ≤ Cs,d,w(1 + max{‖z‖|α| , σ|α|}), ∀1 ≤ |α| ≤ s,

where Cs,d,w is a constant depending on s, d, and w.

Let us control the complexity of F s and F sσ, which is achieved by the following covering

number bound.

Proposition D.7. Let P ∈M1(Rd) be subG(σ2). Let {Zi}ni=1
i.i.d.∼ P and Pn be the empirical

measure. There exists a random variable L ≥ 1 depending on the sample {Zi}ni=1 with

E[L] ≤ 2 such that

logN(τ,F s,L2(Pn)) ≤ Cs,d,wτ
−d/sLd/2s(1 + σ2d) and max

f∈Fs
‖f‖2

L2(Pn) ≤ Cs,d,w(1 + Lσ4).

Moreover, the same bounds hold for F sσ.

Proof of Proposition D.7. Define L := 1
n

∑n
i=1 e

‖Zi‖2/2dσ2 ≥ 1. By the sub-Gaussianity of P ,

we have E[L] ≤ 2. In order to apply (van der Vaart and Wellner, 1996, Corollary 2.7.4), we

partition Rd into ∪j≥1Bj where B1 := [−σ, σ]d and Bj := [−jσ, jσ]d\[−(j − 1)σ, (j − 1)σ]d

for j ≥ 2. Since Bj is not convex for j ≥ 2, we further partition it into disjoint hypercubes

{Bj,k}2d
k=1, e.g.,

Bj,1 = [(j − 1)σ, jσ]× [−jσ, jσ]d−1.

Take any j ≥ 2 and k ∈ [2d]. Firstly, it holds that

λ{x : d(x,Bj,k) ≤ 1} ≤ (σ + 2)(2jσ + 2)d−1 ≤ Cd(1 + jdσd),

where λ is the Lebesgue measure. Secondly, the mass that Pn assigns to Bj,k can be bounded

as follows:

Pn(Z ∈ Bj,k) ≤ Pn
(
‖Z‖2 > dσ2(j − 1)2

)
≤ Pn

[
e‖Z‖

2/2dσ2
]
e−(j−1)2/2 = Le−(j−1)2/2. (D.13)
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Finally, we prove that F s ⊂ CsM(Bj,k) with M = Cs,d,w(1 + jsσs), where CsM(Bj,k) is the set

of continuous functions satisfying

‖f‖s := max
|α|≤s

sup
z∈Bj,k

|Dαf(z)|+ max
|α|=s

sup
z,w∈Bj,k

|Dαf(z)−Dαf(w)| ≤M.

In fact, for any f ∈ F s, we have

max
|α|≤s

sup
z∈Bj,k

|Dαf(z)| ≤ Cs,d,w sup
z∈Bj,k

(1 + ‖z‖s) ≤ Cs,d,w(1 + jsσs),

and

max
|α|=s

sup
z,w∈Bj,k

|Dαf(z)−Dαf(w)| ≤ 2 max
|α|=s

sup
z∈Bj,k

|Dαf(z)| ≤ Cs,d(1 + jsσs).

Note that the same argument holds for any f ∈ F sσ since we can simply replace 1 + ‖z‖s by

1 + max{‖z‖s , σs}. Now, applying (van der Vaart and Wellner, 1996, Corollary 2.7.4) with

r = 2 and V = d/s leads to

logN(τ,F s,L2(Pn))

≤ Cs,d,wτ
−d/sLd/2s

(
1 +

∞∑
j=2

2d∑
k=1

(1 + jdσd)
2s
d+2s (1 + jsσs)

2d
d+2s e−

d(j−1)2

d+2s

) d+2s
2s

≤ Cs,d,wτ
−d/sLd/2s(1 + σ2d)

(
2d

∞∑
j=1

j
4ds
d+2s e−

d(j−1)2

d+2s

) d+2s
2s

≤ Cs,d,wτ
−d/sLd/2s(1 + σ2d), by the summability.

To verify the second inequality, we obtain

max
f∈Fs
‖f‖2

L2(Pn) = max
f∈Fs

Pn[|f(Z)|2] ≤ Cs,d,wPn[(1 + ‖Z‖4)]. (D.14)

Note that ‖Z‖4 ≤ Cde
‖Z‖2/2dσ2

σ4. It follows that Pn[‖Z‖4] ≤ CdLσ
4, and thus

max
f∈Fs
‖f‖2

L2(Pn) ≤ Cs,d,w(1 + Lσ4).

Again, the same argument hold for F sσ by replacing ‖Z‖4 with max{‖Z‖4 , σ4}.
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With this covering number bound at hand, we can control the empirical process by the

metric entropy.

Proposition D.8. Let P ∈M1(Rd) be subG(σ2). Let {Zi}ni=1
i.i.d.∼ P and Pn be the empirical

measure. Then,

E ‖Pn − P‖2
Fs ≤ Cs,d,w(1 + σ2d+4)

1

n
, for all s > d/2.

Moreover, the same bound holds for F sσ.

Proof. Define the symmetrized version of ‖Pn − P‖Fs by∥∥∥Ŝn
∥∥∥
Fs

:= sup
f∈Fs

∣∣∣∣∣ 1n
n∑
i=1

εif(Zi)

∣∣∣∣∣ , (D.15)

where {εi}ni=1 are i.i.d. Rademacher random variables that are independent with {Zi}ni=1.

According to (Wainwright, 2019, Proposition 4.11), it holds that

E ‖Pn − P‖2
Fs ≤ 4 E

∥∥∥Ŝn
∥∥∥2

Fs
.

Conditioning on {Zi}ni=1, the random variable Z(f) := 1√
n

∑n
i=1 εif(Zi) is a linear combina-

tion of independent Rademacher random variables. Hence, Z(f) is a sub-Gaussian process

(see Definition 5.3) with respect to

‖f − g‖L2(Pn) =

√√√√ 1

n

n∑
i=1

[f(Zi)− g(Zi)]2.

It then follows from Proposition D.9 below that

Eε sup
f∈Fs
|Z(f)|2 ≤ C

(∫ 2 maxf∈Fs‖f‖L2(Pn)

0

√
logN(τ,F s,L2(Pn))dτ

)2

≤ Cs,d,w

(∫ Cs,d
√

1+Lσ4

0

τ−d/2sLd/4s
√

1 + σ2ddτ

)2

, by Proposition D.7

= Cs,d,w(1 + σ2d)Ld/2s(1 + Lσ4)1−d/2s, by s > d/2

≤ Cs,d,w(1 + σ2d+4)L, by L ≥ 1.
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Note that E
∥∥∥Ŝn

∥∥∥2

Fs
= 1

n
E supf∈Fs |Z(f)|2. Consequently, we have

E ‖Pn − P‖2
Fs ≤ Cs,d,w(1 + σ2d+4)

1

n
. (D.16)

The same argument holds for F sσ since Proposition D.7 holds true for F sσ.

The following proposition controls the L2 norm of the supremum of a sub-Gaussian

process. It can be obtained from Giné and Nickl (2015, Exercise 2.3.1). We give its proof

here for self-completeness.

Proposition D.9. Let {Z(θ)}θ∈Θ be a sub-Gaussian process with respect to a metric ρ in Θ

such that
∫∞

0

√
logN(τ,Θ, ρ)dτ <∞. Then it holds that, for any separable version of Z,∥∥∥∥sup

θ∈Θ
|Z(θ)|

∥∥∥∥
L2

≤ ‖Z(θ0)‖L2 + C

∫ D

0

√
logN(τ,Θ, ρ)dτ, (D.17)

where θ0 ∈ Θ is arbitrary and D is the ρ-diameter of Θ.

Proof. Due to the separability, it suffices to prove∥∥∥∥sup
θ∈Θ′
|Z(θ)|

∥∥∥∥
L2

≤ ‖Z(θ0)‖L2 + C

∫ D

0

√
logN(τ,Θ, ρ)dτ (D.18)

for any finite Θ′ ⊂ Θ. When the diameter D = 0, the claim holds trivially and thus we

only need to focus on the case when |Θ′| ≥ 2. By considering (Z(θ)− Z(θ0))/(1 + δ)D and

ρ/(1 + δ)D instead of Z(θ) and ρ for some any small δ > 0, we may assume that Z(θ0) = 0

and D ∈ (1/2, 1). Our proof relies on the classical chaining argument.

Step 1. Construct a chain of projections. Let r1 ∈ N be such that, for any θ ∈ Θ, the ball

B(θ, 2−r1) centered at θ of radius 2−r1 contains at most 1 element in Θ′. Denote Θr1 := Θ′

and Θ0 := {θ0}. For each 1 ≤ r < r1, we take a 2−r covering of Θ and let Θr be the collection

of these centers. By definition, we get |Θr| ≤ N(2−r,Θ, ρ) for all 0 ≤ r ≤ r1. For each θ ∈ Θ′,

we construct a chain (πr1(θ), πr1−1(θ), . . . , π0(θ)) such that πr(θ) ∈ Θr as follows. For r = r1,

we let πr(θ) = θ. For any 0 ≤ r < r1, we define πr(θ) to be a point in Θr for which the

ball B(πr(θ), 2
−r) contains πr+1(θ). Note that there may be multiple points satisfying this

requirement, but we select the same one for θ and θ′ as long as πr+1(θ) = πr+1(θ′).
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Step 2. Telescoping. By the triangle inequality, we have∥∥∥∥max
θ∈Θ′
|Z(θ)|

∥∥∥∥
L2

=

∥∥∥∥max
θ∈Θ′
|Z(πr1(θ))− Z(π0(θ))|

∥∥∥∥
L2

≤
r1∑
r=1

∥∥∥∥max
θ∈Θ′
|Z(πr(θ))− Z(πr−1(θ))|

∥∥∥∥
L2

.

Note that

|{(πr(θ), πr−1(θ)) : θ ∈ Θ′}| = |{πr(θ) : θ ∈ Θ′}| ≤ |Θr| ≤ N(2−r,Θ, ρ).

According to (Giné and Nickl, 2015, Lemma 2.3.3), we obtain∥∥∥∥max
θ∈Θ′
|Z(πr(θ))− Z(πr−1(θ))|

∥∥∥∥
L2

≤ C
√

logN(2−r,Θ, ρ) max
θ∈Θ′
‖Z(πr(θ))− Z(πr−1(θ))‖

≤ C2−r+1
√

logN(2−r,Θ, ρ).

Consequently, it holds that∥∥∥∥max
θ∈Θ′
|Z(θ)|

∥∥∥∥
L2

≤ C

r1∑
r=1

2−r+1
√

logN(2−r,Θ, ρ) ≤ C

∫ 1

0

√
logN(τ,Θ, ρ)dτ,

which completes the proof.

D.2.3 Proofs of Main Results

We now prove the main consistency results in Section 5.5. For simplicity of the notation,

we focus on the quadratic cost function, i.e., w1 = w2 = 1, and drop the dependency on w

(e.g., we write Cs,d = Cs,d,w. The proofs can be adapted to weighted quadratic costs with

minor modifications. Let µX ∈M1(Rd1) and µY ∈M1(Rd2) with d := d1 +d2. Suppose that

{(Xi, Yi)}ni=1 is an i.i.d. sample from some joint distribution µXY with marginals µX and µY ,

where µXY may or may not equal µX ⊗ µY . Let Pn and Qn be the empirical measures of

{Xi}ni=1 and {Yi}ni=1, respectively.

Proof of Proposition 5.7. Step 1. Decoupling. Due to the degeneracy, it suffices to bound

E ‖µ̂X ⊗ µ̂Y ‖2
F = E

sup
f∈F

∣∣∣∣∣ 1

n2

n∑
i,j=1

f(Xi, Yj)

∣∣∣∣∣
2
 . (D.19)
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We prove in the following that it boils down to control (D.19) under the product measure

µX⊗µY . When µXY = µX⊗µY , the claim holds trivially. When µXY 6= µX⊗µY , we use the

decoupling technique (Peña and Giné, 1999). Note that, by the Cauchy-Schwarz inequality,

E

sup
f∈F

∣∣∣∣∣ 1

n2

n∑
i,j=1

f(Xi, Yj)

∣∣∣∣∣
2
 ≤ C E

sup
f∈F

∣∣∣∣∣ 1

n2

n∑
i 6=j

f(Xi, Yj)

∣∣∣∣∣
2

+ sup
f∈F

∣∣∣∣∣ 1

n2

n∑
i=1

f(Xi, Yi)

∣∣∣∣∣
2
 .

Note that the second term on the RHS is a lower order term and can be taken care

of by Proposition D.8. Hence, it suffices to upper bound the first term. Let {εi}ni=1

be i.i.d. Rademacher random variables and {(X ′i, Y ′i )}ni=1 be an independent copy of

{(Xi, Yi)}ni=1. Define

Ai :=

Xi if εi = 1

X ′i if εi = −1

and Bi :=

Y
′
i if εi = 1

Yi if εi = −1

.

For any functional F : F → R+, let Φ(F ) := supf∈F F (f)2. For instance, we define

UX,Y (f) := 1
n2

∣∣∣∑i 6=j f(Xi, Yj)
∣∣∣. It is clear that Φ is convex and increasing, and the tar-

get reads

E [Φ(UX,Y )] = E

[
Φ

(∣∣∣∣∣ 1

n2

∑
i 6=j

E
[
f(Xi, Yj) + f(X ′i, Yj) + f(Xi, Y

′
j ) + f(X ′i, Y

′
j ) | Z

]∣∣∣∣∣
)]

,

where Z := {(Xi, Yi)}ni=1. Since, for any i 6= j,

f(Xi, Yj) + f(X ′i, Yj) + f(Xi, Y
′
j ) + f(X ′i, Y

′
j ) = 4 E [f(Ai, Bj) | Z,Z ′] ,

it follows from the convexity and the monotonicity of Φ that

E [Φ(UX,Y )] ≤ E [Φ(4UA,B)] .

Finally, the joint distribution of (X1, . . . , Xn, Y
′

1 , . . . , Y
′
n) is the same as the one of

(A1, . . . , An, B1, . . . , Bn), so we have

E [Φ(UX,Y )] ≤ E [Φ(4UX,Y ′)] .
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Adding back the diagonal terms proves the claim since (Xi, Y
′
i ) ∼ µX ⊗ µY .

Step 2. Randomization. We work under the measure µXY = µX ⊗ µY . Note that

E

sup
f∈F

∣∣∣∣∣ 1

n2

n∑
i,j=1

f(Xi, Yj)

∣∣∣∣∣
2


= EY EX

sup
f∈F

∣∣∣∣∣ 1

n2

n∑
i=1

[
n∑
j=1

f(Xi, Yj)− EX′
[ n∑
j=1

f̄(X ′i, Yj)
]]∣∣∣∣∣

2
 , by (D.23)

≤ EY EX,X′

sup
f∈F

∣∣∣∣∣ 1

n2

n∑
i=1

[
n∑
j=1

f(Xi, Yj)−
n∑
j=1

f̄(X ′i, Yj)

]∣∣∣∣∣
2
 , by Jensen’s inequality

= EY EX,X′,ε

sup
f∈F

∣∣∣∣∣ 1

n2

n∑
i=1

εi

[
n∑
j=1

f̄(Xi, Yj)−
n∑
j=1

f̄(X ′i, Yj)

]∣∣∣∣∣
2


≤ C E

sup
f∈F

∣∣∣∣∣ 1

n2

n∑
i=1

n∑
j=1

εif(Xi, Yj)

∣∣∣∣∣
2
 , by the Cauchy-Schwarz inequality.

Repeating above arguments gives

E

sup
f∈F

∣∣∣∣∣ 1

n2

n∑
i,j=1

f(Xi, Yj)

∣∣∣∣∣
2
 ≤ C E

sup
f∈F

∣∣∣∣∣ 1

n2

n∑
i,j=1

εiε
′
jf(Xi, Yj)

∣∣∣∣∣
2


≤ C E

sup
f∈F

∣∣∣∣∣ 1

n2

n∑
i,j=1

εiε
′
jf(Xi, Yj)

∣∣∣∣∣
2
 ,

where the last inequality follows from the Cauchy-Schwarz inequality and Jensen’s inequality.

Hence, it suffices to bound

A := E sup
f∈F

∣∣∣∣∣ 1

n2

n∑
i,j=1

εiε
′
jf(Xi, Yj)

∣∣∣∣∣
2

.

Step 3. Metric entropy. Define the process Z(f) := 1
n3/2

∑n
i,j=1 εiε

′
jf(Xi, Yj) for any

f ∈ F . We claim that it is a sub-Gaussian process with respect to

‖f − g‖L2(Pn⊗Qn) =

√√√√ 1

n2

n∑
i,j=1

[f(Xi, Yj)− g(Xi, Yj)]2. (D.20)
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To prove it, let us control the moment generating function of the increment Z(f) − Z(g).

Denote ai :=
∑n

j=1 ε
′
j[f(Xi, Yj)− g(Xi, Yj)]. Conditioning on {Xi, Yi, ε

′
i}ni=1,

Z(f)− Z(g) =
1

n3/2

n∑
i=1

aiεi

is a linear combination of independent Rademacher random variables. Consequently,

Eε exp {λ[Z(f)− Z(g)]} ≤ exp

{
λ2
∑n

i=1 a
2
i

2n3

}
. (D.21)

Note that, by the Cauchy-Schwarz inequality,

a2
i ≤

[
n∑
j=1

(ε′j)
2

][
n∑
j=1

[f(Xi, Yj)− g(Xi, Yj)]
2

]
= n

[
n∑
j=1

[f(Xi, Yj)− g(Xi, Yj)]
2

]
.

This yields that

Eε exp {λ[Z(f)− Z(g)]} ≤ exp

{
λ2
∑n

i,j=1[f(Xi, Yj)− g(Xi, Yj)]
2

2n2

}

= exp

{
λ2 ‖f − g‖2

L2(Pn⊗Qn)

2

}
,

and thus the claim follows. Therefore, the conclusion in Proposition 5.7 holds true due to

Proposition D.9.

Proof of Proposition 5.8. The proof of the first part is similar to Proposition D.7. Define

L1 := µ̂X [e‖X‖
2/2dσ2

] ≥ 1 and L2 := µ̂Y [e‖Y ‖
2/2dσ2

] ≥ 1. By the sub-Gaussian assumption, it

is clear that E[L1] ≤ 2 and E[L2] ≤ 2. There are two places in the proof of Proposition D.7

where the measure is involved. The first place is (D.13), where we replace it by

(µ̂X ⊗ µ̂Y ){(X, Y ) ∈ Bj,k}

≤ (µ̂X ⊗ µ̂Y )
{
‖X‖2 + ‖Y ‖2 > dσ2(j − 1)2

}
≤ (µ̂X ⊗ µ̂Y )

[
exp

(
‖X‖2 + ‖Y ‖2

4dσ2

)]
e−(j−1)2/4, by the Chernoff bound

= L1L2e
−(j−1)2/4.
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The second place is (D.14), where we replace it by

max
f∈Fs
‖f‖2

L2(µ̂X⊗µ̂Y ) = max
f∈Fs

(µ̂X ⊗ µ̂Y )[|f(X, Y )|2] ≤ Cs,d(µ̂X ⊗ µ̂Y )[1 + ‖X‖4 + ‖Y ‖4].

Note that ‖Z‖4 ≤ Cde
‖Z‖2/2dσ2

σ4. It follows that (µ̂X ⊗ µ̂Y )[‖X‖4 + ‖Y ‖4] ≤ Cd(L1 +L2)σ4.

Hence, the claim holds true for L := (L1 + L2)/2.

For the second part, we define θf := EµX⊗µY [f(X, Y )],

f1,0(X) := EµX⊗µY [f(X, Y ) | X] and f0,1(Y ) := EµX⊗µY [f(X, Y ) | Y ] (D.22)

for each f ∈ F s. As a result, f̄(x, y) := f(x, y)− f1,0(x)− f0,1(y) + θf satisfies

EµX⊗µY [f̄(X, Y ) | X]
a.s.
= 0

a.s.
= EµX⊗µY [f̄(X, Y ) | Y ]. (D.23)

Note that

E ‖µ̂X ⊗ µ̂Y − µX ⊗ µY ‖2
Fs

= E

 sup
f∈Fs

∣∣∣∣∣ 1

n2

n∑
i,j=1

(
f(Xi, Yj)− θf

)∣∣∣∣∣
2


≤ C E

 sup
f∈Fs

∣∣∣∣∣ 1

n2

n∑
i,j=1

f̄(Xi, Yj)

∣∣∣∣∣
2

+ sup
f∈Fs

∣∣∣∣∣ 1n
n∑
i=1

f1,0(Xi)− θf

∣∣∣∣∣
2

+ sup
f∈Fs

∣∣∣∣∣ 1n
n∑
i=1

f0,1(Yi)− θf

∣∣∣∣∣
2


≤ C E

 sup
f∈Fs

∣∣∣∣∣ 1

n2

n∑
i,j=1

f̄(Xi, Yj)

∣∣∣∣∣
2

+ ‖µ̂X − µX‖2
Fsσ

+ ‖µ̂Y − µY ‖2
Fsσ

 , by Lemma D.16.

(D.24)

Since the last two terms above can be controlled by Proposition D.8, it remains to consider

the first term. Analogous to the proof of Proposition D.8, we obtain, by Proposition 5.7 and

the first part, that

E

 sup
f∈Fs

∣∣∣∣∣ 1

n2

n∑
i,j=1

f̄(Xi, Yj)

∣∣∣∣∣
2
 ≤ Cs,d(1 + σ2d+4)

1

n
.

Therefore, by (D.24), we have

E ‖Pn ⊗Qn − P ⊗Q‖2
Fs ≤ Cs,d(1 + σ2d+4)

1

n
.
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Now we are ready to prove Theorem 5.6.

Proof of Theorem 5.6. We prove the statement for ε = 1 and write S := S1. The result for

general ε > 0 follows immediately from Lemma D.17. By the triangle inequality, it holds

that

|Tn(X, Y )− T (X, Y )|

≤ |S(µ̂XY , µ̂X ⊗ µ̂Y )− S(µXY , µX ⊗ µY )|+ 1

2
|S(µ̂XY , µ̂XY )− S(µXY , µXY )|

+
1

2
|S(µ̂X ⊗ µ̂Y , µ̂X ⊗ µ̂Y )− S(µX ⊗ µY , µX ⊗ µY )| . (D.25)

We begin with deriving the bound for the first term

A := |S(µ̂XY , µ̂X ⊗ µ̂Y )− S(µXY , µX ⊗ µY )| . (D.26)

Step 1. Upper bound via empirical processes. According to Lemma D.12 and Lemma D.13,

the joint distribution µXY is subG(2σ2), and thus there exist a zero-measure set SµXY ⊂

Ω and a random variable σ2
µXY

such that µ̂XY (ω) and µXY are subG(σ2
µXY

(ω)) for every

ω ∈ ScµXY . Similarly, by Lemma D.14, there exist a zero-measure set SµX ,µY ⊂ Ω and a

random variable σ2
µX ,µY

such that µ̂X(ω)⊗ µ̂Y (ω) and µX ⊗ µY are subG(σ2
P,Q(ω)) for every

ω ∈ ScµX ,µY . Take S := ScµXY ∩S
c
µX ,µY

and σ̄2 := max{σ2
µXY

, σ2
µX ,µY

}. It follows that µ̂XY (ω),

µ̂X(ω)⊗µ̂Y (ω), µXY , and µX⊗µY are subG(σ̄2(ω)) for every ω ∈ S. Now, by Proposition D.6,

|S(µ̂XY (ω), µ̂X(ω)⊗ µ̂Y (ω))− S(µXY , µX ⊗ µY )|

≤ sup
f∈Fσ̄(ω)

∣∣∣∣∫ f(dµ̂XY (ω)− dµXY )

∣∣∣∣+ sup
g∈Fσ̄(ω)

∣∣∣∣∫ g(dµ̂X(ω)⊗ µ̂Y (ω)− dµX ⊗ µY )

∣∣∣∣ , ∀ω ∈ S.

Note that P(S) = P(ScµXY ∩ S
c
µX ,µY

) = 1. This implies, almost surely,

A ≤ sup
f∈Fσ̄

∣∣∣∣∫ f(dµ̂XY − dµXY )

∣∣∣∣+ sup
g∈Fσ̄

∣∣∣∣∫ g(dµ̂X ⊗ µ̂Y − dµX ⊗ µY )

∣∣∣∣ . (D.27)

According to Lemma D.15, we have

E[A] ≤ E
[
(1 + σ̄3s) ‖µ̂XY − µXY ‖Fs

]
+ E

[
(1 + σ̄3s) ‖µ̂X ⊗ µ̂Y − µX ⊗ µY ‖Fs

]
≤
√

E[(1 + σ̄3s)2]

[√
E ‖µ̂XY − µXY ‖2

Fs +

√
E ‖µ̂X ⊗ µ̂Y − µX ⊗ µY ‖2

Fs

]
.
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Step 2. Control empirical processes via metric entropy. Let s = dd/2e + 1. Since the

joint probability PXY is subG(2σ2), it follows from Proposition D.8 that√
E ‖µ̂XY − µXY ‖2

Fs ≤ Cd(1 + σd+2)
1√
n
. (D.28)

The same bound holds for
√

E ‖µ̂X ⊗ µ̂Y − µX ⊗ µY ‖2
Fs by Proposition 5.7. Note that

E[(1 + σ̃3s)2] ≤ C(1 + E σ̃6s) ≤ Cs(1 + Eσ6s
PXY

+ Eσ6s
PX ,PY

) ≤ Cs(1 + σ6s),

where the last inequality follows from Lemma D.12 and Lemma D.14. Recall that we have

chosen s = dd/2e+ 1. As a result, E[A] ≤ Cd(1 + σd5d/2e+6)n−1/2. A similar argument shows

that the same bound hold for the second and third term in (D.25). Hence,

E |Tn(X, Y )| ≤ Cd(1 + σd5d/2e+6)
1√
n
. (D.29)

D.3 Exponential Tail Bounds

We now prove the exponential tail bound in Theorem 5.9. For simplicity of the notation,

we focus on the quadratic cost function, i.e., w1 = w2 = 1, and drop the dependency on w

(e.g., we write Cs,d = Cs,d,w. The proofs can be adapted to weighted quadratic costs with

minor modifications. Let µX ∈M1(Rd1) and µY ∈M1(Rd2) with d := d1 +d2. Suppose that

{(Xi, Yi)}ni=1 is an i.i.d. sample from some joint distribution µXY with marginals µX and µY ,

where µXY may or may not equal µX ⊗ µY . Let µ̂X and µ̂Y be the empirical measures of

{Xi}ni=1 and {Yi}ni=1, respectively.

Proposition D.10. For any b-uniformly bounded class of functions F , we have

P {‖µ̂X ⊗ µ̂Y − µX ⊗ µY ‖F − E ‖µ̂X ⊗ µ̂Y − µX ⊗ µY ‖F > t} ≤ exp

(
−nt

2

8b2

)
,

for any t ≥ 0.
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Proof. For any function f defined on Rd, we define f̄(x, y) = f(x, y) − (µX ⊗ µY )[f ]. As a

results, we have ‖µ̂X ⊗ µ̂Y − µX ⊗ µY ‖F = supf∈F

∣∣∣ 1
n2

∑n
i,j=1 f̄(Xi, Yj)

∣∣∣. Consider the func-

tion

F (z1, . . . , zn) := sup
f∈F

∣∣∣∣∣ 1

n2

n∑
i,j=1

f̄(xi, yj)

∣∣∣∣∣ , (D.30)

where zi = (xi, yi) ∈ Rd. We claim that F satisfies the bounded difference property required

in the McDiarmid inequality. Since F is permutation invariant, it suffices to verify the

property for the first coordinate. Let z′1 6= z1 and z′i = zi for all i 6= 1. It holds that∣∣∣∣∣ 1

n2

n∑
i,j=1

f̄(xi, yj)

∣∣∣∣∣− F (z′1, . . . , z
′
n) ≤

∣∣∣∣∣ 1

n2

n∑
i,j=1

f̄(xi, yj)

∣∣∣∣∣−
∣∣∣∣∣ 1

n2

n∑
i,j=1

f̄(x′i, y
′
j)

∣∣∣∣∣
≤ 1

n2

∑
i=1 or j=1

∣∣f̄(xi, yj)− f̄(x′i, y
′
j)
∣∣ ≤ 4b

n
,

where the last inequality uses the boundedness of f . Taking the supremum over

F yields that F (z1, . . . , zn) − F (z′1, . . . , z
′
n) ≤ 4b/n. By symmetry, it follows that

|F (z1, . . . , zn)− F (z′1, . . . , z
′
n)| ≤ 4b/n. Note that {Zi := (Xi, Yi)}ni=1 is an i.i.d. sample.

According to the McDiarmid inequality, it holds that, for any t ≥ 0,

P {‖µ̂X ⊗ µ̂Y − µX ⊗ µY ‖F − E ‖µ̂X ⊗ µ̂Y − µX ⊗ µY ‖F > t} ≤ exp

(
−nt

2

8b2

)
.

Proof of Theorem 5.9. We prove the statement for ε = 1 and write S := S1. The result for

general ε > 0 follows immediately from Lemma D.17. By the bounded support assumption,

it holds that µX and µY are both subG(D2/d). According to the proof of Lemma D.12, we

have {µ̂X}n≥1, {µ̂Y }n≥1, µX , and µY are uniformly subG(τ 2) for τ 2 := D2e1/2/d ≤ 2D2/d.

Moreover, it follows from Lemma D.13 that {µ̂XY }n≥1 and µXY are uniformly subG(2τ 2).

As a result, we obtain, by Proposition D.6,

A := |S(µ̂XY , µ̂X ⊗ µ̂Y )− S(µXY , µX ⊗ µY )|

≤ sup
f∈F2τ

∣∣∣∣∫ f(dµ̂XY − dµXY )

∣∣∣∣+ sup
g∈F2τ

∣∣∣∣∫ g(dµ̂X ⊗ µ̂Y − dµX ⊗ µY )

∣∣∣∣ .



286

Fix s = dd/2e+ 1. According to Lemma D.15, we have

A ≤ Cd(1 +D3d+12) [‖µ̂XY − µXY ‖Fs + ‖µ̂X ⊗ µ̂Y − µX ⊗ µY ‖Fs ] , (D.31)

where we have used τ 3s ≤ CdD
3d+12. Proposition D.5 shows that we can further constraint

the function class F s to F sb := {f ∈ F s : ‖f‖∞ ≤ b} for b = 2D2. Hence, by (Wainwright,

2019, Theorem 4.10), it holds that

P
{
‖µ̂XY − µXY ‖Fsb − E ‖µ̂XY − µXY ‖Fsb > t

}
≤ exp

(
−nt

2

2b2

)
, for any t ≥ 0.

It is clear from Proposition D.8 that

E ‖µ̂XY − µXY ‖Fsb ≤ E ‖µ̂XY − µXY ‖Fs ≤ Cd(1 +D2d+4)
1√
n
.

Consequently, we get

P

{
‖µ̂XY − µXY ‖Fsb > t+ Cd(1 +D2d+4)

1√
n

}
≤ exp

(
−nt

2

2b2

)
, for any t ≥ 0.

Similarly, using Proposition 5.7 and Proposition D.10, we obtain

P

{
‖µ̂XY − µXY ‖Fsb > t+ Cd(1 +D2d+4)

1√
n

}
≤ exp

(
−nt

2

8b2

)
, for any t ≥ 0.

Now it follows from (D.31) that

P

{
A ≥ Cd(1 +D3d+12)

[
t+ (1 +D2d+4)

1√
n

]}
≤ 2 exp

(
−nt

2

8b2

)
, for any t ≥ 0.

Analogously, we have, for any t ≥ 0

P

{
B ≥ Cd(1 +D3d+12)

[
t+ (1 +D2d+4)

1√
n

]}
≤ 2 exp

(
−nt

2

8b2

)
P

{
B′ ≥ Cd(1 +D3d+12)

[
t+ (1 +D2d+4)

1√
n

]}
≤ 2 exp

(
−nt

2

8b2

)
,

where B := |S(µ̂XY , µ̂XY )− S(µXY , µXY )| and

B′ := |S(µ̂X ⊗ µ̂Y , µ̂X ⊗ µ̂Y )− S(µX ⊗ µY , µX ⊗ µY )| .
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Since |Tn(X, Y )− T (X, Y )| ≤ A+ B
2

+ B′

2
, it holds that

P

{
|Tn(X, Y )− T (X, Y )| ≥ Cd(1 +D3d+12)

[
t+ (1 +D2d+4)

1√
n

]}
≤ 6 exp

(
−nt

2

8b2

)
.

(D.32)

Therefore, we have, with probability at least 1− δ,

|Tn(X, Y )− T (X, Y )| ≤ Cd

(
1 +D2d+2

√
log

6

δ

)
D3d+14

√
n

.

D.4 Technical Lemmas

In this section, we give several technical lemmas used to prove the main results. We use C

to denote a constant whose value may change from line to line.

Lemma D.11. If P ∈M1(Rd) is subG(σ2), then, for any k ∈ N+,

EP [‖Z‖2k] ≤ (2dσ2)kk!.

Moreover, for any v ∈ Rd, it holds that

EP e
〈v,Z〉 ≤ EP e

‖v‖‖Z‖ ≤ 2edσ
2‖v‖2/2. (D.33)

Proof. By Taylor’s expansion, we have

e‖Z‖
2/2dσ2 − 1 ≥ ‖Z‖2k

(2dσ2)kk!
.

Taking the expectation on both sides gives

EP [‖Z‖2k] ≤ (2dσ2)kk!.

The inequalities (D.33) follows from the Cauchy-Schwarz inequality and the sub-gaussianity

of P .
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Lemma D.12. Let P ∈M1(Rd) be subG(σ2) and Pn be the empirical measure. There exist

a zero-measure set SP ⊂ Ω and a random variable σ2
P depending on the sample {Zi}ni=1 such

that Pn(ω) and P are subG(σ2
P (ω)) for any ω ∈ ScP , and, for any k ∈ N+,

Eσ2k
P ≤ 2kkσ2k.

Proof. By the strong law of large numbers, there exists a zero-measure set SP ⊂ Ω such that,

for all ω ∈ SP ,

Pn(ω)
[
e‖Z‖

2/2dσ2
]
→ P

[
e‖Z‖

2/2dσ2
]
≤ 2, as n→∞. (D.34)

Let τ 2 := supn Pn

[
e‖Z‖

2/2dσ2
]
. It follows from (D.34) that τ 2(ω) is finite for all ω ∈ SP .

Since τ 2(ω) ≥ 1, by Jensen’s inequality, we obtain, for all ω ∈ SP

Pn(ω)
[
e‖Z‖

2/2dσ2τ2(ω)
]
≤
(
Pn(ω)

[
e‖Z‖

2/2dσ2
])1/τ2(ω)

=
(
τ 2(ω)

)1/τ2(ω)
< 2.

As a result, Pn(ω) is subG(σ2τ 2(ω)). Moreover, P is also subG(σ2τ 2(ω)) since τ 2(ω) ≥ 1.

Applying the same argument to τ 2
k := supn Pn

[
e‖Z‖

2/2kdσ2
]

implies that Pn(ω) and P are

both subG(kσ2τ 2
k (ω)). Define σ2

P := mink≥1 kσ
2τ 2
k . Then we have, for each k ≥ 1,

EP [σ2k
P ] ≤ EP

[
Pn

[
kkσ2ke‖Z‖

2/2dσ2
]]

= kkσ2k EP [e‖Z‖
2/2dσ2

] ≤ 2kkσ2k.

The sub-Gaussianity of two marginals implies the sub-Gaussianity of the joint.

Lemma D.13. If µX and µY are subG(σ2), then µXY is subG(2σ2) for any µXY ∈

Π(µX , µY ).

Proof. By the Cauchy-Schwarz inequality,

EµXY e
‖Z‖2/4dσ2

= EµXY [e‖X‖
2/4dσ2

e‖Y ‖
2/4dσ2

] ≤
√

EµX [e‖X‖
2/2dσ2 ] EµY [e‖Y ‖

2/2dσ2 ].

Since µX and µY are subG(σ2), it follows that EµXY e
‖Z‖2/4dσ2 ≤ 2 and thus µXY is subG(2σ2).
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The next result is for the uniform sub-Gaussianity of the product of two empirical mea-

sures.

Lemma D.14. If µX and µY are subG(σ2), then there exist a zero-measure set SµX ,µY ⊂ Ω

and a random variable σ2
µX ,µY

depending on the sample {(Xi, Yi)}ni=1 such that µ̂X(ω)⊗µ̂Y (ω)

and µX ⊗ µY are subG(σ2
µX ,µY

(ω)) for any ω ∈ ScµX ,µY , and, for any k ∈ N+,

Eσ2k
µX ,µY

≤ 2k+1kkσ2k.

Proof. Similar to Lemma D.12.

The sub-Gaussian processes play an central role in our analysis. We give its definition

here; see, e.g., (Wainwright, 2019, Section 5.3).

Definition D.4 (Sub-Gaussian process). Let {Z(θ) : θ ∈ Θ} be a collection of mean-zero

random variables. We call it a sub-Gaussian process with respect to a metric ρ in Θ if

E[eλ(Z(θ)−Z(θ′))] ≤ exp
[
λ2ρ2(θ, θ′)/2

]
.

To facilitate the analysis of Fσ defined in Definition D.1, it is convenient to separate

the sub-Gaussian parameter from the function class by the following lemma. Note that this

result is used in (Mena and Weed, 2019) without proof.

Lemma D.15. For any σ > 0 and s ≥ 2. we have 1
1+σ3sFσ ⊂ F s, where F s := F s,d,w is

defined in Definition D.2.

Proof. Take any f ∈ Fσ, it suffices to show f/(1 +σ3s) ∈ F s. According to Proposition D.3,

it holds that

|f(z)| − w1 ‖x‖2 − w2 ‖y‖2 ≤
∣∣f(z)− w1 ‖x‖2 − w2 ‖y‖2

∣∣
≤ Ck,d,w

(1 + σ4) if ‖z‖ ≤
√
dσ

[1 + (1 + σ2) ‖z‖2] if ‖z‖ >
√
dσ.
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Consequently,

∣∣∣∣ f(z)

1 + σ3s

∣∣∣∣ ≤ Ck,d,w


1+σ4

1+σ3s if ‖z‖ ≤
√
dσ

1+(1+σ2)‖z‖2
1+σ3s if ‖z‖ >

√
dσ.

Since s ≥ 2, it is clear that 1+σ4

1+σ3s ≤ C and 1+σ2

1+σ3s ≤ C, and thus∣∣∣∣ f(z)

1 + σ3s

∣∣∣∣ ≤ Ck,d,w(1 + ‖z‖2).

The other inequality can be proved analogously.

Lemma D.16. Let P ∈M1(Rd1) and Q ∈M1(Rd2) be subG(σ2). Denote d := d1 + d2. For

any s ≥ 1 and f ∈ F s, there exist constants Cs,d,w such that f1,0 ∈ F sσ and f0,1 ∈ F sσ, where

F sσ is defined in Definition D.3,

f1,0(x) :=

∫
f(x, y)dQ(y) and f0,1(y) :=

∫
f(x, y)dP (x).

Proof. We only prove it for f1,0. By Jensen’s inequality, it holds that

|f1,0(x)| ≤
∫
|f(x, y)| dQ(y) ≤ Cs,d,w

(
1 + ‖x‖2 +

∫
‖y‖2 dQ(y)

)
≤ Cs,d,w(1 + max{‖x‖2 , σ2}),

where the last inequality follows from Lemma D.11. The inequality for |Dαf1,0(x)| can be

verified similarly.

The next lemma suggests that it is enough to consider the case ε = 1 for Sε.

Lemma D.17. Let ε > 0. For any P,Q ∈M1(Rd), it holds that

Sε(P,Q) = εS(P ε, Qε),

where P ε and Qε are the pushforwards of P and Q under the map x 7→ ε−1/2x, respectively.

Proof. By a change of variable argument.
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