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University of Washington
Abstract
Wing flexibility and design for animal flight
Stacey A. Combes

Chair of the Supervisory Committee:
Professor Thomas L. Daniel
Zoology

The wings of flying animals change shape dramatically during flight, yet the
control and effects of these shape changes have received little attention. In Chapter 1, [
discuss the potential effects of wing flexibility and dynamic shape changes in flying
vertebrates (who can actively control wing shape) and in insects (whose wings deform
passively).

In Chapter 2 (Combes and Daniel, 2001), we use an unsteady potential flow
analysis to explore how unsteady motion and wing flexion affect flight performance. We
compare our model predictions to aquatic flight in the ratfish Hydrolagus colliei, and
assess the performance of various wing shapes. We find that wing flexibility increases
efficiency and interacts with flapping frequency and wing shape to generate local
performance optima.

In Chapter 3, I explore how insect wing architecture contributes to the control of
wing deformations by measuring flexural stiffness (which incorporates both material and
structural features) and quantifying patterns of supporting veins in 16 insect species. I
find that average spanwise and chordwise stiffness scale strongly with wing size, and that

spanwise stiffness is significantly larger than chordwise stiffness. Independent contrasts



of stiffness residuals are uncorrelated with contrasts of wing venation traits, but a finite
element model of a wing reveals that leading edge veins may generate the spanwise-
chordwise anisotropy measured in real wings.

In Chapter 4, I estimate spatial variation in flexural stiffness in the wings of a
hawkmoth (Manduca sexta) and a dragonfly (Aeshna multicolor). In both species,
stiffness declines sharply (approximately exponentially) from wing base to tip and from
the leading to the trailing edge. Finite element models suggest that this pattern of
stiffness transfers bending to the edges of the wing.

In Chapter 5, I explore the relative contributions of fluid-dynamic and inertial-
elastic forces to passive wing deformations by comparing bending in fresh Manduca
wings flapped in normal air versus helium (15% air density). I find that a substantial
reduction in air density produces only slight changes in bending patterns, and that a
simple damped finite element model may be able to predict patterns of wing deformation

independent of calculations of aerodynamic force production.
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Chapter 1

Introduction to wing flexibility and design for animal flight

Animal flight is a complex behavior in which animals manipulate air flowing
around their wings and process enormous amounts of sensory information to control
what is inherently an unstable form of locomotion. Many animals also perform complex
aerial maneuvers in pursuit of prey or mates, to escape threats, or to avoid collisions. All
of these behaviors involve the integration of neural control, musculoskeletal dynamics,
aerodynamic and inertial forces, and the three-dimensional shape of flexible wings. A
thorough understanding of animal flight requires knowledge not only of the biological
processes and physical forces involved, but also of the interactions between these
constituent parts.

Unfortunately, many the biological and physical processes involved in animal
flight are dauntingly complex. Neural control of flight involves multiple motor pathways
controlling the motions of not only the wings, but also the legs, body and head of an
animal (Kammer, 1985; Arbas et al., 1997). Sensory feedback from visual, olfactory and
mechanical receptors allows the nervous system to rapidly adjust these motions via
muscles and skeletal elements, each of which contains its own morphological, material
and dynamic complexities (i.e., Tu and Dickinson, 1994; Trimble, 2001). The motions
and three-dimensional shape of flapping wings determine the details of acrodynamic
force production; for rapidly flapping wings, a description of these forces is provided by

a solution to the full Navier-Stokes equations (for each point in space and time), which



requires numerical methods and is computationally intensive, even for simple problems
(i.e., Liu et al., 1998). Finally, the three-dimensional shape of wings (which changes
continuously throughout each flight stroke) is determined by a combination of muscular,
aerodynamic and inertial-elastic forces, as well as by the structure of the wing itself,
including the arrangement and stiffness of supporting and deformable elements
(Wootton, 1992).

Although the complexity of each system would seem to preclude a full integrative
approach to animal flight, some may be more approachable than previously thought and
amenable to simplifications. For example, while many flying animals collect an
enormous amount of sensory information each second, certain sensory subsystems often
dominate in control processes (Kammer, 1985). Insects that flap their wings up to
several hundred times per second may take advantage of the dynamic properties of flight
muscles to automatically regulate wing beat amplitude (thus simplifying neural control).
Muscles that are stretched further (as when a wing has moved up or down a bit too far)
produce more force, moving the wing back into a favorable position (Tu and Daniel, in
prep). Even the extremely complex aerodynamics of hovering insect flight appear to be
amenable to some simplification; recent work has shown that a revised analytical model
(which is far less computationally-intensive than numerical methods) can predict
temporal patterns of force production reasonably well for flapping model wings (Sane
and Dickinson, 2002).

The control of three-dimensional wing shape and its effects on animal flight

performance have received considerably less attention than neural, musculoskeletal and



aerodynamic aspects of flight. Yet, an understanding of dynamic wing shape is crucial to
a full understanding of flight, as even simple changes in wing shape (i.e., a slight change
in camber, or curvature of the wing) can have dramatic effects on force production
(Batchelor, 1967). Many models of animal flight have assumed that the three-
dimensional shape of wings does not change during flight, and have thus applied the
rules and design principles developed for man-made flight vehicles to animals. In certain
cases (such as for gliding birds), these efforts have been successful in explaining the
mechanics of animal locomotion and the evolution of morphological traits (for a review,
see Spedding, 1992). However, unlike airplane wings, animal wings often change shape
dramatically during flight, particularly while flapping. These shape changes involve a
combination of active muscular control (at the wing base in insects or throughout the
wing in vertebrates) and passive deformations that are affected by flight forces and the
structural and material properties of wings.

The biological materials that comprise animal wings are inherently flexible;
values of Young's modulus (which describes material stiffness) are generally at least an
order of magnitude less for materials such as cuticle and bone as for metals such as steel
and aluminum alloys (Wainwright et al., 1982). Nevertheless, biological structures can
be quite stiff, if enough material is present and that material is distributed in a way that
maximizes structural rigidity (the total bending stiffness of a structure is described by its
flexural stiffness (EI), the product of Young's modulus (E) and the second moment of

area (/), a measure of how material is distributed in the cross-section of a structure).



However, the elements that support animal wings are often elongated and slender
as compared to the same elements in non-aerial relatives (i.e. arm and finger bones of
bats vs. other mammals; Kent, 1992). In addition, the diameter and thickness of
supporting elements in animal wings generally decreases towards the wing tips. This
design may reduce energy expenditure and stresses on the supporting elements during
flapping flight by reducing mass in the distal portion of the wing (Papadimitriou et al.,
1996, Wootton, 1992), but also leads to increased flexibility by reducing the local second
moment of area (Wainwright et al., 1982). Wing flexibility may thus be an inevitable
consequence of design constraints on flapping wings; slender wing elements that reduce
mass at the tips are beneficial to flight performance, but most biological materials are not
particularly stiff unless deposited in appreciable quantities.

However, wing flexibility may prove to be more than an inevitable liability in
animal flight. Several studies suggest that flexibility could provide benefits in terms of
aerodynamic force production, efficiency, maneuverability or control. Wu (1971) has
analyzed the fluid-dynamic performance of a flexible, oscillating strip (analogous to a
chordwise section of a wing, running from the leading to the trailing edge), and Daniel
(1987) extended this work to find that wing bending may augment aerodynamic
performance (thrust production and/or efficiency) in unsteady, flapping flight. The
effects of flexibility on maneuverability have been examined in aquatic animals, for
which increased body flexibility appears to increase both maneuverability (measured in
terms of the space required to complete a turn; Walker, 2000) and agility (angular

velocity of turns; Fish, 1999). Finally, the concept that the design of some biological



structures may provide passive control and stability (without the active intervention of
the nervous system) has been demonstrated in rapid, rhythmic terrestrial locomotion
(Full and Koditschek, 1999; Kubow and Full; 1999). and Sneyd et al. (1982) propose that

wing flexibility may have provided analogous passive stability in gliding Pteranodons.

Flexibility and planform wing shape

Because animal wings are flexible, they are able to assume a variety of dynamic
three-dimensional shapes that are not seen in the fixed wings of airplanes. In addition,
the planform shape of animal wings (two-dimensional shape when viewed from above)
varies widely in comparison to the plantorm shape of airplane wings. Most airplane
wings are designed to have a high aspect ratio (where wings are long and skinny), as this
design reduces induced drag during steady flight, allowing wings to produce more force
per area and perform more efficiently than low aspect-ratio (short, blunt) wings (for a
review, see Spedding, 1992).

This raises the question of why planform wing shape varies so widely in animal
wings. One possibility is that because flapping flight increases the mechanical stresses
on wings, very high aspect-ratio wings might be prohibited by the mechanical limits of
supporting structures in the wing. In addition, these long, skinny wings may be a
hindrance to animais living in complex environments (such as the forest canopy), where
animals must maneuver through tight spaces. Finally, traditional aerodynamic
predictions of optimal wing shape fail to account for the effects of unsteady fluid

dynamics and wing flexibility on aecrodynamic performance. Previous work with an



unsteady potential flow analysis that incorporates wing flexibility has suggested that
unsteady effects and wing flexion may be important additional factors that affect the
performance of various wing shapes (Daniel, 1987).

In Chapter 2, Daniel and I use this unsteady potential flow analysis (Wu, 1971;
Daniel, 1987) to investigate the effects of wing flexibility and planform wing shape on
fluid-dynamic performance, in an attempt to understand some of the factors driving
variability in animal wing design (Combes and Daniel, 2000). In this model, wing
flexion is specified (independent of fluid and mechanical forces) by the speed of a
bending wave traveling rearward along chordwise strips of the wing. The fluid-dynamic
performance of the strips is summed along the length of the wing to determine total
performance in terms of thrust and fluid-dynamic efficiency.

To test the model, we examine the underwater flight of the spotted ratfish,
Hydrolagus colliei. This animal relies entirely on flapping its large, flexible pectoral fins
for routine locomotion, and generates fluid-dynamic forces by the same mechanisms as
animals flying in air. In addition, the pattern of chordwise bending in the fins is
measurable, allowing us to estimate wave speed and use the model to generate
performance predictions. We find that the model provides a good estimate of thrust for
both a juvenile and an adult ratfish.

We then used the model to assess the performance of a range of theoretical
planform wing shapes under varying levels of unsteady motion and wing flexibility. We
find that high aspect-ratio wings generate more thrust and perform more efficiently in

some cases (as suggested by traditional aerodynamic analyses). However, when flapping



frequency is higher (motion is more unsteady) or more area is distributed to the outer
portion of the wing (a feature of wing shape not described by the aspect ratio), these
predictions break down. Distinct local peaks in performance appear for certain
combinations of wing shape and unsteady motion, and low aspect-ratio wings sometimes
perform better than high aspect-ratio wings. In addition, wing flexibility increases
overall efficiency and accentuates these local performance optima, interacting with other
traits (such as planform shape and flapping frequency) to generate a landscape of
evolutionary pressures that could influence morphological and kinematic features in

flying animals.

Passive wing bending and the design of insect wings

The results of the potential flow analysis suggest that wing flexibility and the
dynamic, three-dimensional shape of wings during flight may have important effects on
fluid-dynamic force production. Even in steady flight, subtle changes in the three-
dimensional shape of a wing can have an enormous impact on force production. For
example, increasing chordwise camber by five degrees can lead to a six-fold increase in
lift production (Batchelor, 1967). The potential importance of dynamic wing shape
raises the question of how animals control the bending and twisting of their wings during
flight.

Flying vertebrates, such as birds and bats, can actively control many aspects of
wing shape by muscular contractions that alter the alignment of wing bones, the position

of feathers, or the tautness of wing membranes (Kent, 1992). The control of these subtle



movements on the timescale of a single flap involves a complex system of feedback and
neural control that has not yet been thoroughly investigated.

An equally intriguing control problem is presented by flying insects, which have
far less active control over the three-dimensional shape of their wings. Insect wings are
largely passive structures, in which muscular forces applied at the base interact with
aerodynamic and inertial forces generated by the wing's motions. The architecture of the
wing (vein arrangement, three-dimensional relief, flexion lines, etc.) and the material
properties of its elements determine how it will change shape in response to these forces
(Wootton, 1992).

In insects, wing flexibility is critical because it enhances force asymmetry
between strokes and allows wings to twist and generate force on both strokes during slow
flight and hovering (Wootton, 1990a). Insects display huge variability in the
arrangement and complexity of supporting veins in their wings. In fact, the arrangement
of wing veins can often be used to characterize insect orders and families. Given the
phylogenetic changes in the extent of cross-venation, vein thickness, and distribution of
veins throughout the wing, one might expect that insect wings would display large
mechanical differences that might affect how they bend during flight. Yet, our
understanding of how insect wing design affects wing stiffness is limited.

In Chapter 3, I examine the effects of changes in insect wing venation on wing
flexibility by measuring the flexural stiffness (EI) and venation pattern of 16 insect
species from six orders. I measure overall flexural stiffness in the spanwise and

chordwise direction of wings and develop methods to quantify aspects of wing venation



ranging from average vein thickness and complexity of branching to distribution of veins
throughout the wing. To control for the effects of phylogeny, I calculate standardized
independent contrasts (Felsenstein, 1985) of these measures and examine correlations
between the contrasts to assess the functional relationship between wing venation and
stiffness.

Although the species examined display enormous variability in wing venation
patterns, these differences have surprisingly little effect on overall stiffness. Nearly all of
the variability in measured wing stiffness is explained by wing size; spanwise stiffness
scales with the cube of wing span and chordwise stiffness scales with the square of
maximum chord length. Thus, the scaling of overall flexural stiffness may be an
important design feature in insect wings, which has been maintained despite dramatic
changes in wing venation.

All species tested also display a large spanwise-chordwise anisotropy, with
spanwise stiffness one to two orders of magnitude higher than chordwise stiffness. To
investigate the role of wing veins in generating this anisotropy, I created a simple finite
element model of the wing of a hawkmoth, Manduca sexta. This computational
approximation of a real wing allows me to alter design features and perform "virtual”
experiments on model wings, which parallel measurements made on real wings.

Manipulations of vein stiffness in the model reveal that the presence of
supporting veins, particularly along the leading edge of the wing, can generate the
spanwise-chordwise anisotropy measured in real wings. As leading edge veins are

present in nearly all insect wings, the observed spanwise-chordwise bending anisotropy
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may be a universal trait among insects. This anisotropy would serve to strengthen the
wing from bending in the spanwise direction while allowing chordwise bending to
generate camber. It may also facilitate spanwise torsion, which is seen in many species

during supination (Ennos, 1988; Wootton, 1981).

Distribution of wing stiffness and consequences to wing bending

The fact that overall stiffness and spanwise-chordwise anisotropy appear to be
highly conserved in insect wings suggests that wings may be designed not only to
minimize detrimental bending, but also to permit beneficial passive deformations during
flight. Although changes in three-dimensional wing shape (i.e. camber or waves of
bending) can have dramatic effects on aerodynamic force production, few models of
insect flight have successfully incorporated passive wing flexibility or examined the
effects of flexibility on force production.

One of the difficulties in modeling passive wing flexibility is that forces applied
at the wing base lead to bending and twisting that is influenced not only by overall
stiffness and gross anatomical features (i.e. flexion or fold lines), but also by the
distribution of flexibility throughout the wing (Wootton, 1999). Qualitative trends in the
stiffness distribution of insect wings have been noted for some time. Most wings are
composed of stiffer, supporting zones near the wing base and leading edge, as well as
deformable areas near the edges of the wing (Wootton, 1981), and most insect wing veins

taper from base to tip (Wootton, 1992). Yet quantitative measurements of local stiffness
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in insect wings are scarce, and no studies to date have demonstrated a reliable method of
measuring continuous variation in the bending stiffness of intact insect wings.

In Chapter 4, I develop a method of approximating continuous variation in
flexural stiffness along two axes of a wing (in the spanwise and chordwise direction) and
measure spatial variation in flexural stiffness in two insects, the hawkmoth Manduca
sexta and the dragonfly Aeshna multicolor. Although these species are distantly related
and display large differences in wing venation pattern, [ find that wing flexural stiffness
declines sharply towards the edges of the wing in both species. This spatial variation can
be approximated by an exponential decline in the spanwise and chordwise directions. |
also find that the wings of both species behave non-linearly: average flexural stiffness
increases as wings are deformed further.

To assess the consequences of the measured stiffness patterns to wing bending, I
created two finite element models based on a Manduca sexta wing. These models
simulate major features of Manduca wings and allow a more detailed view of three-
dimensional patterns of bending than is possible with real wings. Both models are
designed to reproduce the tip or trailing edge deflections measured in real Manduca
wings subjected to a point force. However, the models differ in the spatial distribution of
stiffness throughout the wing (one recreates the exponential stiffness distribution
measured in real wings while the other does not). Static and dynamic tests reveal that
patterns of bending in the two models differ dramatically. An exponential decline in
flexural stiffness (as measured in real wings) localizes bending to the tip and trailing

edge of the wing, despite the fact that bending moments are significantly higher near the
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base (Ennos, 1989). This serves to maintain essential rigidity in the proximal portions of
the wing and transfer bending to the distal edges, where aerodynamic force production is

most sensitive to subtle alterations in shape.

Contributions of aerodynamic and inertial forces to passive wing bending

Although finite element models allow one to explore how structural and material
properties of wings determine bending in response to theoretical loads, these models do
not calculate fluid-dynamic forces and thus cannot predict how real wings bend during
flight. Accurately predicting wing deformations during tlight requires a knowledge not
only of the stiffness distribution of a wing, but also of the forces that act on the wing to
cause deformations.

During flight, insect wings generate (and must withstand) fluid-dynamic forces
that provide the lift and thrust necessary for flight. Rapid acceleration and deceleration
of wings during flapping flight also generates inertial forces related to both the mass of
the wings (inertial-elastic effects) and the mass of the fluid being accelerated by the
wings (virtual mass effects; see Ellington, 1984d). Fluid-related forces can produce
noticeable bending in wings (i.e. bending in the wing tips of gliding birds and airplanes),
and have been assumed to be important in producing bending and torsion in flapping
insect wings (for example, Ennos, 1988; Ennos and Wootton, 1989). Predicting passive
shape changes in insect wings due to fluid forces involves solving a coupled aeroelastic
problem; if aerodynamic forces at any given time in the flight stroke cause the wing to

change shape, this new shape must be used to calculate the aerodynamic forces in the
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next time step, which lead to further shape changes, and so on. In contrast, shape
changes caused by the inertia of flapping wings themselves (inertial-elastic effects) could
be predicted from the kinematics, mass distribution and stiffness distribution of the wing,
prior to calculations of aerodynamic force production.

A variety of theoretical approaches suggest that the inertial-elastic forces
produced by flapping wings are at least as large as the fluid-dynamic forces generated by
these motions (Ennos, 1988; Ennos, 1989; Daniel and Combes, ). Nevertheless, we still
do not have a basic understanding of how the mass of a wing and the fluid it moves
through contribute to the patterns of bending observed in insect wings. In Chapter 5, |
use an experimental approach to examine the relative contributions of inertial-elastic and
fluid-dynamic forces to wing bending. [ attach fresh Manduca sexta wings to an
oscillator inside a chamber, rotate them at realistic flight frequencies and amplitudes, and
compare bending patterns of wings rotating in normal air versus helium (approximately
15% air density); the lower density of helium should substantially reduce the
contribution of fluid-dynamic forces to the observed wing deformations.

[ find that the overall motions and extent of bending in Manduca wings are
similar in both normal and low air density, with the exception of higher-frequency
components of motion that appear in the wings rotating in helium. A simplified finite
element model of a Manduca wing (which simulates the measured flexural stiffness
distribution, see above) rotated in the same way as real wings produces similar patterns

of bending; high-frequency motions are apparent in the model initially, but these motions
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disappear when damping is added to the model. These results suggest that fluid damping
alone may explain the bending differences seen in real wings.

The overall similarity in Manduca wing trajectory and bending magnitude despite
an 85% decrease in fluid density indicates that the contribution of aeroelasticity to wing
deformations in flying insects may be relatively minor compared to the contribution of
inertial-elastic effects. This suggests that developing an integrative model of insect flight
that incorporates passive wing flexibility may be easier than previously thought. Given
that overall flexural stiffness scales with wing size (Chapter 3) and declines sharply
towards the tip and ‘railing edge of wings (Chapter 4), measurements of mass
distribution in a wing should allow one to make a reasonable prediction of the patterns
and magnitude of wing deformation during flight with a simple damped finite element
model of a wing. This information could then be incorporated into a variety of models of
insect flight to understand how passive wing flexibility affects flight performance.

An understanding of how the dynamic, three-dimensional shape of flapping
wings contributes to flight performance will be critical in future attempts aimed at
integrating the components of animal flight. Studies of wing morphology suggest that
some aspects of wing motion and control may occur automatically, without the
monitoring or input of the nervous system (for a review, see Wootton, 1990a). Results of
this study provide further evidence of smart design; non-linear behavior in insect wings
may help prevent excessive deformations, and a sharp decline in flexural stiffness
towards the edges of wings may limit bending in core wing regions while enhancing

bending in zones critical to aerodynamic control. The future discovery of additional
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broad trends and smart-design features will facilitate an integrative view of animal flight;
this view may ultimately add to our understanding of how the interplay between

morphology and environment leads to diversity in animal design.
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Summary

Both kinematics and morphology are critical determinants of performance in
flapping flight. However, the functional consequences of changes in these traits are not yet
well understood. Traditional aerodynamic studies of planform shape have suggested that
high-aspect-ratio wings generate more force per area and perform more efficiently than low-
aspect-ratio wings, but these analyses may neglect critical components of flapping flight
such as unsteady fluid dynamics and wing or fin flexion. In this paper, we use an unsteady
potential flow analysis that incorporates wing flexion to test predictions of optimal wing
shape under varying degrees of unsteady motion and wing flexion. We focus on forward
flapping flight and examine the effects of wing/fin morphology and movements on thrust
generation and efficiency. We test the model by comparing our predictions with kinematic
data derived from the aquatic flight of the ratfish Hydrolagus colliei. Our analyses show
that aspect ratio and the proportion of area in the outer one-fifth of the wing can characterize
wing shape in terms of aero- or hydrodynamic performance. By comparing the

performance of wings that vary in these two parameters, we find that traditional predictions
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of optimal wing shape are valid only under limited circumstances (when flapping frequency
is low, wings are stiff or wings are tapered at the tips). This indicates a complex
relationship between locomotor traits and performance and helps explain the diversity of

wing kinematics and morphologies observed in nature.

Key words: locomotion, wing shape, flexion, unsteady effect, flapping flight, aquatic flight,

swimming, ratfish, Hydrolagus colliei

Introduction

Swimming and flying animals generate fluid-dynamic forces by flapping flexible
appendages such as wings or fins. The stresses generated by motions of these structures
can be resolved into vertical forces that support an animal’s weight and horizontal forces
that provide thrust for forward motion. Both aerial and aquatic animals that propel
themselves with wing-like appendages generate these vertical and honzontal forces. Aerial
animals, which must support their weight, generate a larger net upward force than aquatic
animals, which often generate vertical forces that cancel over a stroke. Despite such
differences, the principles governing fluid flow around a flapping appendage remain the
same. The key issues involve understanding how the motion and shape of an appendage
determine the timing and magnitude of forces derived from the various fluid stresses.

These structural and kinematic traits determine the locomotor performance of flying
and swimming animals. Locomotor performance can have an enormous impact on an

animal’s survival by providing varying levels of speed, maneuverability and endurance in
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escaping from predators, capturing prey or foraging for food. The large variety of wing
morphologies and kinematics observed in flying animals (both aerial and aquatic forms)
suggests that no single ‘optimal’ combination of locomotor traits exists, but rather that
different performance requirements lead to different combinations of these traits.

Attempts to explain the diversity of locomotor traits in flying and swimming animals
require an understanding of the functional consequences of changes in morphology and
kinematics. Two features of wing morphology that are likely to affect performance are
planform wing shape and wing flexion. Both may be altered by active muscular bending
and passive deformation of wings arising from inertial and fluid-dynamic loads. These
traits, along with the time-dependent flow phenomena that result from the kinematics of
flapping, contribute to crucial details of the flow and, thus, to the magnitude of
instantaneous fluid-dynamic stresses on the wing.

Wing planform shape, in particular, has commonly been associated with locomotor
performance during steady flight because of the higher induced drag associated with low-
aspect-ratio wings (aspect ratio=span’/area). Low-aspect-ratio wings generally have blunter
tips and, thus, may lose more circulation in this region (manifest as tip vortices). This
results in a backward tilt to the force vector, or induced drag. Thus, predictions derived
from steady-state aerodynamics suggest that long, thin Wings (with a high aspect ratio and
less induced drag) can produce more force per area and perform more efficiently than low-
aspect-ratio wings (for a review, see Spedding, 1992).

These results are, at first glance, disconcerting in that they seem to suggest that

selection for locomotor performance would drive wings, as well as fins that generate force
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by lift-based mechanisms, to become more similar through time and eliminate the
morphological variation seen in nature. This view is often countered with suggestions that
low-aspect-ratio wings have, generally, a lower wing loading and thus that the mechanical
stresses may be lower. Similarly, there is a notion that exceedingly high-aspect-ratio wings
are prohibited by the mechanical limits of the wing and fin structures that support the
animal’s weight.

In addition, these steady-state predictions of optimal wing shape may change when
unsteady motions such as flapping are considered. As flapping frequency increases, the
magnitude of bound circulation on the wing and the forces that result from this circulation
decrease (because circulation has less time to develop before stroke reversal). Alternatively,
accelerational forces rise with increasing unsteadiness. Finally, while not a focus here,
nove!l unsteady mechanisms such as clap-and-fling, leading-edge vortices, wake capture and
rotational circulation (e.g. Dickinson et al., 1999; Ellington, 1995; Ellington et al., 1996) will
further complicate simple analyses of wing shape.

Moreover, it is important to realize that aspect ratio provides a rather crude
description of wing shape in that it reflects only the average chord length (1,,,.) in wings of
the same area. Wings with the same average chord length and total area can have that area
distributed quite differently, and their aerodynamic performance can vary widely in
response to that shape distribution (Ellington, 1984b).

The functional consequences of wing shape, wing flexion and unsteady motion

could most easily be understood by examining changes in the pressure distribution over

flapping wings during flight. In the absence of appropriate technology, however, one must



resort to a variety of alternative experimental approaches. Physical measurements of the
forces generated during animal flight generally either average the forces over a wingbeat
(e.g. wake analysis, Ellington, 1984e; Rayner, 1979) or sum steady forces for each time step
of a flap (e.g. quasi-steady analysis, Blake, 1983a; Blake, 1983b; Blake, 1983c; Clark and
Bemis, 1979; Ellington, 1984a; Pennycuick, 1972; Webb, 1973; Weis-Fogh, 1975). Other
techniques such as flow visualization and simulation via physical or robotic models have
been used to test theoretical analyses of flight and to suggest novel mechanisms underlying
the fluid dynamics of swimming and flight (Dickinson, 1996; Dickinson et al., 1999;
Ellington et al., 1996), but have not yet been used in a broad, comparative context.

Efforts are increasingly focusing on computational methods for solving the
Navier-Stokes equations and calculating force production (e.g. Liu et al., 1998, and the
immersed elastic boundary method of Peskin, 1995). While these approaches can validate
theories of flight and suggest novel mechanisms, they are computationally intensive and
thus may restrict the range of variables one can explore. For this reason, a simpler
analytical model that accounts for important morphological and kinematic features is a
valuable tool that can be used to identify critical features that warrant further examination.

In this paper, we investigate factors that may influence the evolution of flapping
wings and fins using an unsteady potential flow analysis and measured kinematics to
calculate the forces produced by a flapping wing. This analysis predicts the forces
generated by pressure differences across the surface of a wing resulting from acceleration-
and circulation-based phenomena. It accounts for unsteady effects such as added-mass

forces and the growth of bound circulation. Because the analysis requires that fluid leave
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the wing smoothly at the trailing edge (the Kutta condition), it does not predict forces
derived from separated flow, attached vortices or fast rotations at stroke reversal. While the
model assumes that fluid is inviscid (and therefore does not apply to animals moving at low
Reynolds numbers), it is appropriate for a broad range of aerial and aquatic animals in
forward, flapping flight.

A critical feature of the analysis is its inclusion of chordwise wing flexion, specified
by a rearward traveling wave on the wing. In a flexing wing or fin, the peak of this wave
corresponds to the highest point (maximum amplitude) in the stroke, and wave speed
represents the speed at which this peak travels from the leading to the trailing edge as the
wing bends at stroke reversals. In a flexible wing with no active control, wave speed will be
low (because the wing bends considerably at stroke reversals), while in a stiff wing, wave
speed will be high because the entire wing reaches the point of stroke reversal at nearly the
same time.

Defining flexion by a traveling wave, rather than by flexural stiffness or a spring
constant, allows the model to be applied not only to animals whose wings or fins bend
passively as a result of inertial forces, but also to those that actively pass waves rearward on
their appendages (e.g. skates; see Daniel, 1987). A similar approach has been used by
Tong et al. (Tong et al., 1993) to analyze the performance of a variety of caudal fin shapes;
these are quite unlike the shapes of the wings and lift-generating pectoral fins that constitute
the focus of this study.

We examine underwater flight in the spotted ratfish (Hydrolagus colliei) to test the

model. This animal relies entirely on flapping its large, flexible pectoral fins for routine
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locomotion. We chose the ratfish because it affords a number of advantages. The relatively
modest amplitude of fin motions and low reduced frequency at which they operate suggest
that the Kutta condition is satisfied. In addition, the presence of a measurable chordwise
bending pattern on the fin permits us to examine the consequences of wing deformation.

Fin flexion in the ratfish may be the result of passive and/or active processes. The
muscles controlling the pectoral fin do not extend out into the fin rays, but the muscles at
the fin base may fire in temporal succession (Bestor, 1993), conferring some degree of
active control. Because the model we use describes wing flexion by a physically observed
wave speed, it is not necessary to unravel the contributions of active and passive flexion to
calculate hydrodynamic forces.

We ask three questions. (i) Can an unsteady potential flow model that incorporates
wing flexion reasonably predict performance (measured in terms of power, thrust and
efficiency) in forward, flapping flight? (ii) What variables can be used to classify wing
shape in terms of locomotor performance? (iii) What is the relative performance of wings
with different shapes under varying levels of unsteady motion and wing flexion?

Although traditional aerodynamic analyses find that high-aspect- ratio wings
perform better, previous work with the unsteady potential flow analysis has suggested that
unsteady effects and wing flexion may be important additional factors that affect the
performance of various wing shapes (Daniel, 1987). A better understanding of how these
factors interact may provide insight into the functional consequences of the diverse wing

morphologies and kinematics seen in nature.
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Materials and methods
Calculation of fluid forces

The motion of a flexible, flapping wing can be approximated by a three-dimensional
harmonically oscillating surface (Daniel, 1987; Wu, 1971). The motion of this surface is
given by the following equation for a wing centered on the origin (for a movie of the motion
simulated by this equation, see http://faculty.washington.edu/danielt/ Wingmovies.html):

h(x,z,8) = &{[h, + &(x + 1)]expliw(t—(x + 1) /c)]}] - [y(x +1)] 2.1)
where the function h(x.z.f) describes the instantaneous location of all points on the wing.
The wing coordinates in the spanwise (x) and chordwise (z) directions are both
dimensionless (-1 < x< I; 0<z< 1); tis time. The amplitude of the leading-edge
oscillation at any given point along the span is described by A, and linear amplitude
variation in the spanwise direction is specified by &. The circular frequency of wing
oscillation is described by w (0 = 2ntf, where fis the flapping frequency); i is \/-_1 A
traveling wave of deformation moves rearward at speed c, simulating the bending that results
from flapping a flexible structure such as a wing or fin. Linear amplitude variation in the
chordwise direction is given by €, and the mean angle of attack averaged over a stroke is
specified by ¥.

To compute the fluid forces generated by a flapping wing, we divide the wing into
chordwise strips and treat each strip as a harmonically oscillating flexible plate with its
motion prescribed by Equation 1. We calculate the fluid forces generated by this segment
with a two-dimensional solution to Euler’s equation (Daniel, 1987; Wu, 1971), and sum the

strips to determine the total fluid forces (Daniel, 1987).



The harmonic motion of flapping wings underlies an important non-dimensional
measure of unsteady motion, the reduced frequency parameter (6 = w//U, where lis a
characteristic length, e.g. half chord length, and U is the forward velocity); this parameter
describes the amount of vertical oscillation relative to forward steady motion. Because the
growth of circulation around the wing is time-dependent (Dickinson, 1996, Dickinson et al.,
1999; Ellington, 1995; Fung, 1990), increases in the reduced frequency parameter lead to a
reduction in bound circulation and a temporal lag between wing motion and force
generation. At the same time, however. this increased unsteadiness generates larger
accelerations and inertial forces. Thus, pressures across the wing are not related to the
reduced frequency parameter in any simple way.

All these effects are absorbed into four coefficients: the coefficient of power (C,),
which describes the rate at which energy is expended to produce thrust and create vorticity
in the wake, the coefficient of energy (C;), which describes the rate of energy loss to the
wake, the coefficient of thrust (C;), which is defined as the difference between the rates of
energy expenditure and energy loss (C,-Cg), and an efficiency parameter (1), defined as the
ratio of useful work done (thrust produced) to the power expended (C,/C;) (Daniel, 1987;
Wu, 1971; Appendix 1).

From these dimensionless coefficients, the power expended by a chordwise strip of
the wing can be calculated as:

Psmp.i = ';'pCP.iUSSi 2.2
where p is fluid density, S, is the area of the strip i (S=2/w,, where [, is the half strip length

and w;, is the strip width). Similarly, thrust can be calculated for each strip as:
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These measures for each strip of the wing, with its unique motions, chord length and area,

can be summed and multiplied by 2 (to account for both wings) to give the total power and

thrust generated: n
Pou = 22(’;'pCP.iUSSi)
i=l 2.4)
Tow = 22(;'pCT.iUISi)
i=l (2.5)
where n = the number of strips in each wing.
The Froude efficiency of a strip (1) is defined as:
n - Tsm’p.iU - &
stnp.t R‘mp’i CPJ (2.6)
and total efficiency of the wing is:
n 1 )
Tmme g(TpCT.iU Si )U
nto(al = P = n )
w Y (G US)
i=l .7

Ratfish kinematics and modeling
We collected spotted ratfish (Hydrolagus colliei; Lay and Bennett, 1839) by
trawling near the San Juan Islands in Puget Sound, Washington, USA, and maintained the
fish in a large, covered outdoor tank wiih a continuous flow of fresh sea water. We filmed
the animals swimming at constant velocity in a continuous-flow flume with a working area
of 97 cm x 34 cm x 36 cm. Two Hi-8 video cameras filming at 30 frames s™' recorded

simultaneously the lateral view and the dorsal view, which was reflected by a mirror placed
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at 45 ° to the top of the flume. We filmed at flow speeds of 0.08-0.15 ms', speeds that
induced the ratfish to swim but allowed them to maintain position in the flume.

We analyzed the kinematics of two ratfish, a large female and a juvenile, to represent
the extremes in size of this species. From the lateral view, we measured fin tip amplitude,
flapping frequency and wave speed (Fig. 2.1). We computed tip amplitude (H) by
averaging over 21 half-strokes in a continuous sequence for the female and over six half-
strokes in two sequences for the juvenile. We measured the period (¢) of a flap and
calculated flapping frequency (f=1/1) in the adult female over 17 complete flaps in two
sequences and in the juvenile over 2.5 flaps in one sequence.

We determined wave speed (c) by recording the total time required for a wave peak
(bend) to travel from the leading edge (near the fin base) to the trailing edge and dividing
this time by the length of the base. We measured wave speed only at the end of the
upstroke, as this is when the wave is most visible, and calculated an average wave speed for
each fish (over 17 upstrokes in two sequences for the female and four upstrokes in two
sequences for the juvenile).

We analyzed chordwise amplitude change (€) in the two fish by comparing the
amplitude of the leading and trailing edges at several different spanwise positions
(measured in four frames in the female and six frames in the juvenile). In addition, we
measured the amplitude of several points on the leading edge and plotted amplitude against
spanwise position to determine whether there was any significant spanwise bending.

We measured span (z ), the total area of one pectoral fin (S,) and chord length

distribution along the span (Fig. 2.2A) in dorsal views of the female and juvenile. From
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these measurements, we calculated the aspect ratio of each fish’s pectoral fins. We also
used span and tip amplitude to calculate the angle (®) subtended by the flapping fin (Fig.
2.10).

We calibrated the measurements made from video images with a grid on the back
wall of the flume, and scaled our results in each frame by the distance of the fish from this
wall (as revealed by the dorsal view). To avoid edge effects, we did not analyze sequences
in which the ratfish was touching the sides or bottom of the flume.

We used the measured parameters in the potential flow model described above (with
10 chordwise strips) and compared the calculated thrust with an estimate of drag on a
ratfish body and fins because drag should equal thrust when an animal is swimming at
constant velocity. We obtained drag coefficients for a ratfish body (C,,,,=2-54) and fin
(Cp 5,=0.28) from Sullivan (Sullivan, 1979), who measured forces on submerged ratfish
bodies (with fins removed) towed at a fixed velocity and drag on an isolated fin with force
transducers in a steady-flow flume.

We used these coefficients to calculate the total drag on the body and both fins of

swimming ratfish as:
Doy = (:PCopoey U S.s) (2.8)
D, = (‘l!pCD.ﬁnUzsP) (2.9)
where S is the maximum cross-sectional area of the fish’s body.

We also calculated the forces produced by a flapping ratfish fin with a wave speed

of 100 ms™ to simulate a stiff pectoral fin. Comparing these results with the forces
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produced by a fin with the measured wave speed demonstrates the effects of fin flexion on

calculated force production.

Generation of theoretical wing shapes

To compare the performance of wings with different planform shapes, we generated
a variety of theoretical wings with mathematical equations (see Appendix 2). We divided
the wings into 30 chordwise strips and calculated fluid forces generated by the wings when
flapping with identical kinematics. By conserving wing area throughout our simulations, we
were able to examine changes in performance due purely to the redistribution of area.

We fixed span (as well as area) to create sets of theoretical wings that have the same
aspect ratio, but vary in their chord length distribution and in their apparent shape (Fig.
2.2B-F). By using several different equations to generate the wings, we were able to

examine the effects of subtle differences in wing shape on flight performance.

Wing shape parameters and relative performance of theoretical wings
Before comparing the performance of theoretical wings, we asked whether wings
could be classified by general shape parameters. We focused on two shape parameters:
aspect ratio and the proportion of area in the outer part of the wing. Aspect ratio provides a
useful description of how long and skinny wings are on average (in wings of the same area,

aspect ratio essentially describes the average chord length of the wing, |__; average chord

:wg;
length increases as aspect ratio decreases), but aspect ratio does not contain any information

about how area is distributed within the wing. The proportion of area in the outer part of
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the wing is a simple measure of how area is distributed, but may provide valuable
information; in flapping wings where the stroke amplitude increases spanwise, the outer part
of the wing undergoes greater accelerations and, thus, may contribute more to unsteady
force production.

To determine whether the proportion of area in the outer part of the wing is a useful
shape parameter, we examined the relationship between performance (thrust and efficiency)
and the amount of area in the outer part of the wing in a variety of wings with fixed area and
aspect ratio. We also compared the performance of wings that have similar values of both
shape parameters, but slightly different chord length distributions (because they were
generated by different equations). If the two shape parameters are sufficient to describe
wing shape in terms of aerodynamic performance, these wings should perform similarly.
We examined the effects of aspect ratio on performance by changing aspect ratio while the
proportion of area in the outer part of the wing remained fixed, and varied flapping
frequency and wave speed to determine the effects of unsteady flow and wing flexion on the

relative performance of wings with different planform shapes.

Results
Ratfish performance and verification of the fluid model
Both ratfish swam at the same forward velocity, and the aspect ratio and wave speed
of their pectoral fins are similar (Table 2.1). The adult ratfish has a larger pectoral fin and
flaps with a larger tip amplitude, bui the angle subtended by the pectoral fins of the two fish

is nearly identical. The juvenile flaps its fins at a higher frequency than the adult, as



predicted by mass/frequency scaling relationships noted in aerial animals. The amplitude of
the leading edge increases linearly with spanwise position in both the female and the
juvenile (r*>0. 98), indicating no significant spanwise bending. The amplitude of the
trailing edge of the wing was the same as that of the leading edge at several positions
spanwise, so chordwise amplitude change was taken to be zero. Because the movement of
the leading edge and chordwise bending of the wing are symmetrical on the up- and
downstrokes, the mean angle of attack over the stroke is also zero, so the ratfish do not
generate any net vertical force.

The potential flow model indicates that both fish swim with approximately the same
locomotor efficiency, but that the adult generates more total thrust (Table 2.2). This
increased thrust may be due to the larger area of the adult’s pectoral fins and to the fact that
the thrust coefficient for its fins is larger (1.63 in the adult versus 1.18 in the juvenile). The
thrust calculated using the model is comparable with predicted drag when the measured
wave speeds are used, but the thrust calculated for stiff pectoral fins (c=100 ms") is
considerably higher (Table 2.2). While the coefficient used to estimate fin drag was
measured in steady flow (and thus may not accurately represent the drag on a flapping,
bending fin), fin drag accounted for only approximately 10% of total drag. Thus, evena

doubling or tripling of this coefficient will not influence the total drag significantly.

Wing shape parameters
For all wing shapes tested, flapping wings generate more thrust but are less efficient

as the proportion of area in the outer part of the wing increases (Fig. 2.3). This relationship
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is strongest when performance is plotted against the proportion of area in the outer one-fifth
of the wing. The relationship is similar for all four average chord lengths tested, although
thrust and efficiency have different asymptotes for each aspect ratio (Fig. 2.3).

Wings with different shapes but the same amount of area in the outer one-fifth of
the wing generate the same amount of thrust and perform with nearly identical efficiency
over a range of different average chord lengths (Fig. 2.4). Thus, aspect ratio and the
proportion of area in the outer one-fifth of a wing are sufficient to describe a wing in terms
of aerodynamic performance, regardless of the specific details of wing shape.

[t should be noted that only wings in which the maximum chord length occurs
within the inner one-third of the wing span converge onto the curves in Fig. 2.3. The
performance of wings that continue to increase in chord length past this point diverges from
these curves. For the present analyses, we used only wings with the maximum chord

located within the inner one-third of the wing.

Relative performance of theoretical wings
High-aspect-ratio wings generate more thrust and are generally more efficient than
low-aspect-ratio wings (Fig. 2.3A,B). Wings with more area distributed to the outer portion
of the wing also generate more thrust, but are less efficient than wings with less area in the
outer portion (Fig. 2.3A,B).
As flapping frequency rises. thrust production increases and efficiency generally
decreases (Fig. 2.5), although at higher frequencies and in wings with more area at the tip,

efficiency rises and falls with increasing average chord length (Fig. 2.5D,F). As a result,
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low-aspect-ratio wings can perform more efficiently than some higher-aspect-ratio wings
(in this case, increasing their efficiency by several per cent). In addition, low-aspect-ratio
wings flapping at higher frequencies not only can produce more thrust but can also
sometimes perform more efficiently than if they were flapping at lower frequencies.
Wings with high wave speeds (e.g. stiffer wings) generate more thrust (Fig. 2.6A),
but are less efficient than those with lower wave speeds (Fig. 2.6B). In wings with lower
wave speeds, efficiency rises and falls by several per cent with increasing average chord
length, again showing that low-aspect-ratio wings can be more efficient than high-aspect-
ratio wings. The locations of the efficiency peaks (e.g. the locally optimal average chord

length) vary with wave speed.

Discussion
Ratfish performance and shape parameters
The potential flow analysis applied to ratfish swimming provides a good estimate of

thrust and demonstrates the importance of considering wing and fin flexion in models of
animal flight and swimming (because thrust production is overestimated when the fin is
assumed to be stiff). Our analyses based on theoretical wing shapes show that aspect ratio
and the proportion of area distributed to the outer one-fifth of the wing are sufficient to
characterize wing shape in terms of performance in forward, flapping flight. Thus, aero-
and hydrodynamic force generation in forward flight appear to be relatively insensitive to

subtle differences in planform wing shape.
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While the analyses provide insight into the effects of wing shape on flight
performance, the two-dimensional assumption of the fluid-dynamic model places limitations
on some of the results. Because the model is essentially a summation of two-dimensional
force calculations on strips running from the leading to the trailing edge, spanwise flow is
not included. Without this three-dimensional flow, the model cannot predict the effects of
tip vortices, which contribute induced drag and influence overall force production. In
addition, strong spanwise flow, which may occur at high flapping frequencies, would alter
both the overall direction and magnitude of forces and the direction of traveling waves on
the wings.

Low-aspect-ratio wings are expected to have larger tip vortices and stronger
spanwise flow, so the two-dimensional assumption may become more problematic as
average chord length increases (aspect ratio declines). Higher induced drag on these wings
will decrease both thrust and efficiency. Including induced drag would affect the values
calculated by the model, but will not change the result that multiple peaks in efficiency arise
from the interaction between planform shape, unsteady motion and wing or fin flexion.

Interestingly, the impact of induced drag will depend on the reduced frequency
parameter. As the reduced frequency parameter increases, bound circulation is expected to
decrease because there is not enough time for bound circulation to develop fully before
stroke reversal. Thus, induced drag, which is caused by the shedding of bound circulation,
will have less of an effect on performance.

Similarly, the predicted values of thrust and efficiency will change when wings are

flapped with a non-zero angle of attack (as in aerial flyers that need to support their weight).
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However, flapping flight with a non-zero mean angle of attack still produces multiple peaks
in both efficiency and the thrust coefficient (see Daniel, 1987), although the locations of
these peaks may be different from those shown in the figures.

Because the model includes the Kutta condition (in which flow must leave the wing
smoothly at the trailing edge), the performance of wings or fins that move with extremely
high angles of attack, large amplitudes, high reduced frequency parameters or fast rotations

at stroke reversal (motions causing separated flow) cannot be predicted.

Relative performance of wings

We find that thrust and efficiency generally increase in wings with lower average
chord lengths (higher aspect ratios), similar to what has been predicted by traditional
aerodynamics. However, when flapping frequency is higher and more area is distributed to
the outer portion of the wing, efficiency rises and falls with increasing average chord length,
causing these predictions to break down and suggesting that local performance optima
exist.

Both higher flapping frequencies and more area in the outer one-fifth of the wing
lead to an increase in the reduced frequency parameter (6=w//U) in the outer portion of the
wing, a region that contributes strongly to unsteady force production. The effects of this
change on thrust production and efficiency can most easily be understood by examining the
non-dimensional power and thrust produced by an oscillating strip. As strip length

increases (increasing ), the non-dimensional power and thrust increase initially and then
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fall into a decaying oscillation (Fig. 2.7A). Efficiency shows a similar, but complementary,
pattern (Fig. 2.7B), demonstrating a trade-off between thrust and efficiency.

These oscillatory behaviors can be explained by the unsteady fluid dynamics
inherent in forward, flapping flight. As wing motion becomes more unsteady (for example,
as flapping frequency or chord length increases), forces arising from the inertial
components of fluid motion increase, causing a rise in inertial thrust production. However,
as the reduced frequency parameter increases, the time available for bound circulation to
develop decreases, and at some point bound circulation will begin to fall below its full value,
causing a decline in total thrust production. As the reduced frequency continues to rise,
multiple waves form on the wing and further complicate force production.

While the performance of non-dimensional strips indicates a trade-off between
thrust and efficiency, this relationship changes when the strips of a wing are given a finite
area and summed. In even the simplest case of rectangular wings (with all strips of equal
chord length), the relationship between thrust production and average chord length is not the
same as the relationship between non-dimensional thrust production and strip length.
While non-dimensional thrust initially rises with increasing chord length and then oscillates
as chord length increases further (Fig. 2.7A), total thrust production by rectangular wings
falls continuously as average chord length is increased (Fig. 2.7C).

This decrease in thrust production can be explained by the fact that. as the average
chord length of the wings increases (aspect ratio decreases) with area held constant, more of
the wing area is distributed near the base of the wing (because span is decreased). Parts of

the wing that are closer to the base undergo smaller accelerations and produce relatively less
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unsteady, inertial force. Distributing more wing area close to the base (as in low-aspect-
ratio wings) therefore results in lower total force production and outweighs the non-
dimensional predictions of optimal chord length. In contrast, whole-wing efficiency retains
the oscillatory behavior seen in individual strips because efficiency is the ratio of thrust to
power; the area terms in the power and thrust equations cancel, and efficiency is determined
by the ratio of coefficients, as in the non-dimensional case (Fig. 2.7D).

The reversal of the relationship between non-dimensional thrust production and
strip length when performance is summed over the whole wing changes the non-
dimensional prediction of a trade-off between thrust and efficiency into the familiar result
that high-aspect-ratio wings generate more thrust and are more efficient than low-aspect-
ratio wings. This relationship proves to be more complex, however, in several cases. When
the reduced frequency parameter is raised by increasing flapping frequency, oscillations in
efficiency become more apparent, and wings with high average chord lengths (low-aspect-
ratio wings) can perform more efficiently than those with lower average chord lengths.
Distributing more area to the outer portion of the wing (even when average chord length
remains the same) produces the same effect. In addition, flapping low-aspect-ratio wings at
higher frequencies can actually increase both thrust production and efficiency in some
cases.

As wave speed decreases, efficiency again rises and falls with increasing average
chord length. The overriding effect of decreases in wave speed (e.g. more flexible fins) is
to increase efficiency and decrease thrust. But, at lower wave speeds, the local optima in

efficiency become more significant, giving some low-aspect-ratio wings a selective
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advantage over higher-aspect-ratio wings. In addition, the locations of these optima (the
average chord lengths that perform best) depend on the wave speed, providing a landscape

of evolutionary pressures that could influence various morphological and kinematic

features.

Concluding remarks

Our analysis points to several important issues that should be considered in
aerodynamic models of flapping flight. First, it reinforces the growing understanding that
unsteady effects must be incorporated into models of swimming and flight. Traditional
aerodynamic predictions concerning the relative performance of different wing shapes were
upheld in this analysis only when the flapping frequency was low or the wing had a
relatively tapered tip (a small proportion of area in the outer one-fifth of the wing).

Second, the analysis demonstrates the importance of considering wing flexion in
models of flight. While there may be cases where wing flexion is less important (e g. at
lower Reynolds numbers), we find that the thrust generated by a wide range of wings with
differing aspect ratios and area distributions will be overestimated and the efficiency
underestimated if wings are assumed to be rigid. Furthermore, unsteady effects combined
with wing flexion clearly complicate efficiency calculations for flapping wings.

Most importantly, the results point to one possible source of the diversity of wing
morphologies and kinematics that exist in nature. The repeated rising and falling of
efficiency with increasing chord length suggests that multiple local performance optima

exist that may exert subtle selective pressures on the kinematics and morphology of flying
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and swimming animals. While the predicted changes in efficiency may seem small (Fig.
2.5D/F, Fig. 2.6B), an increase in efficiency of a few per cent could, in fact, be critical for
animals in many different situations. For example, animals with low energy reserves or
those that regularly travel long distances could gain a large selective advantage if an increase
in efficiency allowed them to travel slightly further or decrease their weight by using less
fuel than their competitors. In addition, the magnitude of these local optima will vary with
different combinations of morphological and kinematic parameters.

The interactions between flight variables (such as wing shape, reduced frequency
parameter and wing flexion) show that animals can change many different aspects of
kinematics or morphology to reach local peaks in performance. Of course, these selective
pressures will interact with many others, such as physical constraints on wing morphology
and the interaction between appendage size and maneuverability in complex habitats, to
influence the suite of characters that any given animal will display.

The potential importance of wing flexion raises the question of how animals control
the bending of their wings and fins during flight. Many vertebrate flyers and swimmers
control the bending and flexing of their wings or fins at least partially by muscular activity;
the control of these subtle movements on the timescale of a single flap must involve a
complex system of feedback and neural control.

Animals with little or no muscular control of wing or fin flexion, such as insects,
present an equally interesting challenge. How do these animals control the pattern and
timing of the wing deformations that affect flight performance? In animals with little

muscular control of wing bending, the evolution of wing shape and the passive flexibility of
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wings may be linked, and this evolution may be related to the flight style and kinematics of
each animal.

Although our analyses focus on planform shape as a determinant of flight
performance, the results illustrate that no single feature of flight kinematics or morphology
can be studied in isolation. Planform shape, unsteady fluid effects and wing flexion interact
in a complex way during flapping flight. In addition, we have not yet explored the effects of
unsteady flight mechanisms involving separated flow on the evolution of wing design.
However, this study suggests that there are other general patterns in the functional
consequences of wing shape that may clarify the relationship between wing morphology,

kinematics and flight performance.
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Fig. 2.1. Kinematic variables in the potential flow analysis and measurement of
variables in the ratfish, Hvdrolagus colliei. A) Two-dimensional strip oscillating
with amplitude 4, and moving forward at velocity U while a wave passes rearward at
velocity ¢. The amplitude changes from the leading to the trailing edge by a factor €,

the ratio of Ah to h,. The instantaneous location of a point (x) on the strip is

described by A(x,r), where ¢ is time. (B) A ratfish with a wave (highlighted) traveling
backwards on its pectoral fin at wave speed c. (C) Diagram of a ratfish illustrating
the angle (P) subtended by a flapping fin and tip amplitude (H).
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Fig. 2.2. Chord length distributions of theoretical wings and a ratfish pectoral fin.
(A) Chord length distribution of the pectoral fin of the adult ratfish. Total area is
0.0069 m?; aspect ratio is 2.2. (B) Sample chord length distributions generated
with a 1st-degree polynomial. (C) Chord length distributions generated with a
2nd-degree polynomial. (D) Chord length distributons generated with a 3rd-
degree polynomial. (E) Chord length distributions generated with a beta
distribution. (F) Chord length distributions generated with an exponential
function. Chord length distributions in B-F represent wings of the same aspect
ratio (2.5) and area (0.0069 m?). See Appendix 2 for mathematical equations used

to generate the theoretical wings.
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Fig. 2.3. Performance of theoretical wings generated with the five shape equations
versus the proportion of area in the outer one-fifth of the wing. Each point repre-
sents the performance of one theoretical wing shape. Each point represents the per-
formance of one theoretical wing shape. The area of each wing tested is 0.0069 m2
(multiplied by 2 to give the total performance of an animal). U=0.15 ms-1, c=0.3 s-1,
H=0.058 m and f=2.27s-l. Wing area was fixed, and span was adjusted to create
wings with the four specified aspect ratios (AR). (A) Thrust versus the proportion of
area in the outer one-fifth of the wing. (B) Efficiency versus the proportion of area
in the outer one-fifth of the wing. U, velocity; c, wave speed; H, fin tip amplitude; f,
flapping frequency; /5y, average chord length
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Fig. 2.4. Thrust and efficiency versus average chord length for theoretical wings with
different shapes, but the same proportion of area in the outer one-fifth of the wing.
Wings were generated with three different shape equations: a beta distribution, a first-
degree polynomial and a third-degree polynomial. All wings have 9% of area in the
outer one-fifth of the wing. Chord length distributions are also shown. Sp=0.0069 m2,
U=0.15 ms-!, ¢ =0.3ms-!, H=0.058 m and f=2.27s-1. Sp, total area of one pectoral fin;
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Fig. 2.5. Performance of theoretical wings at varying flapping frequencies. Sp=0.0069
m2, U=0.15 ms-!, ¢=0.3 ms-1, and H=0.058 m. All wings were generated with first-
degree polynomials. (A,B) Thrust and efficiency versus average chord length for trian-
gular wings that have 4% of the wing area in the outer one-fifth of the wing. (C,D)
Thrust and efficiency versus average chord length for wings that have 12% of the wing
area in the outer one-fifth of the wing. (E,F) Thrust and efficiency versus average chord
length for rectangular wings that have 20% of the wing area in the outer one-fifth of the
wing. Sp, total area of one pectoral fin; U, velocity; ¢, wave speed; H, fin tip amplitude;
£, flapping frequency.
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Fig. 2.6. Performance of theoretical rectangular wings with varying wave
speeds. Wings were generated with a first-degree polynomial (20% of the
wing area in the outer one-fifth). Sp=0.0069 m2, U=0.15 ms-!, H=0.058 m
and f=2.27s-1. (A) Thrust versus average chord length. (B) Efficiency
versus average chord length. Sp, total area of one pectoral fin; U, velocity;
¢, wave speed; H, tin tip amplitude; f, flapping frequency.
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Fig. 2.7. Thrust and efficiency of a two-dimensional strip and a rectangular wing. (A)
Non-dimensional power and thrust versus strip length. Non-dimensional power and
thrust are calculated by multiplying the power or thrust coefficient by strip length and
unit width (w = 1) and dividing by amplitude squared. (B) Efficiency versus strip
length. (C) Total thrust produced versus average chord length for rectangular wings.
(D) Whole-wing efficiency versus average chord length for rectangular wings. Each
point in parts ¢ and d represents the performance of a single wing with the given
average chord length. For all graphs, U=0.15 ms !, c=0.3 ms !, H=0.058 m and
=227, U, velocity; ¢, wave speed; H, fin tip amplitude; f, flapping frequency; Cp,
power coefficient; Cr, thrust coefficient; h,, amplitude; /, strip length.
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Table 2.1. Kinematic and morphological parameters of ratfish. Kinematic variables
measured from the lateral view of a swimming ratfish include the forward velocity (),
tip amplitude (H), flapping frequency (f), and wave speed (c) (see Fig. 2.1). Chordwise

amplitude change (¢) was measured by comparing the amplitudes of the leading and

trailing edges at several points spanwise. The mean angle of attack (y) was taken to be

zero because the kinematics and bending of the fin are symmetric when averaged over a
stroke. Span (z,) and the area of one fin (Sp) were measured from the dorsal view of

the ratfish and were used to calculate aspect ratio (AR). Span and tip amplitude were
used to calculate the angle subtended by the fin (®). The cross section of the body at its
widest point was assumed to be an oval, and the cross-sectional area (S was calculated

from measurements of maximum body width (from the dorsal view) and depth (from
the lateral view).

Adult Juvenile

Forward velocity, U (ms-1) 0.15 0.15
Tip amplitude, H (m) 0.058 0.033
Flapping frequency, f (s-!) 1.1 1.6
Wave speed, ¢ (ms-!) 0.302 0.306
Chordwise amplitude change, € 0 0
Mean angle of atttack, y(degrees) 0 0
Span, z, (m) 0.124 0.068
Angle subtended by fin, ®(degrees) 27.1 28.1
Fin area, S, (m?) 0.0069 0.0022
Aspect ratio, AR(z, 2/Sp) 2.2 2.1

Body cross-sectional area, S;s(m?) 0.00551 0.00157
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Table 2.2. Model results and calculated drag of ratfish. The results of the fluid-
dynamic model for power output, thrust and efficiency of the female and juvenile ratfish
are shown together with the results when a wave speed of 100 ms-! is used.

*For comparison, the calculated drag (based on measured coefficients and kinematic
variables) for the body plus fins is displayed..

Female Juvenile

Flexible fin (measured wave speeds):

Power (W) 0.05 0.01

Efficiency 0.77 0.78

Thrust (N) 0.26 0.06

Dragpogy + fins (N)* 0.18 0.05
Stiff fin (c=100 ms™!):

Power (W) 0.12 0.03

Efficiency 0.58 0.60

Thrust (N) 0.47 0.11

Dragpody + fins (N)* 0.18 0.05
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Chapter 3
Flexural stiffness in insect wings:

Scaling of wing stiffness and the influence of wing venation

Summary

Insect wings deform passively during flight in response to aerodynamic and
inertial forces generated by flapping. These deformations are controlled largely by the
architecture of the wing (arrangement of veins, three-dimensional relief, and stiffness of
veins and membrane). The pattern of supporting veins in wings varies widely among
insect orders and families (Wootton, 1990a), but the functional significance of
phylogenetic trends in wing venation remains unknown. Although our understanding of
the functional wing morphology of a few species (i.e. dragonflies and locusts) is very
good and qualitative information about wing morphology is widespread, quantitative
measurements of wing stiffness for a broad range of species are lacking. This study
addresses the relationship between venation pattern and wing flexibility by measuring
flexural stiffness (in both the spanwise and chordwise direction) and quantifying wing
venation in 16 insect species from six orders. These measurements reveal that spanwise
stiffness scales strongly with the cube of wing span, whereas chordwise stiffness scales
with the square of chord length. In addition, spanwise stiffness is generally 1 to 2 orders
of magnitude greater than chordwise stiffness. Standardized independent contrasts of
wing venation and stiffness traits reveal a significant relationship between the residuals

of spanwise and chordwise stiffness (with the effects of wing size and phylogeny
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removed), but venation characters are uncorrelated with wing stiffness. A finite element
model of a hawkmoth wing demonstrates that leading edge veins are necessary and

sufficient to generate the spanwise-chordwise anisotropy measured in real wings.

Key words: insect flight, wing flexibility, flexural stiffness, insect wing veins,

independent contrasts, finite element model

Introduction

The foiccs produced during flight depend on both the motion of a wing and its
three-dimensional shape. Whereas airplane wings are built of materials that minimize
unsteady passive shape changes and allow only controlled movements, animal wings are
composed of biological materials that are often inherently flexible.

Flying vertebrates, such as birds and bats, can actively control many aspects of
wing shape by muscular contractions that alter the alignment of wing bones, the position
of feathers, or the tautness of wing membranes. However, the elements that make up
vertebrate wings are still subject to large strains (in bird bones, Biewener and Dial, 1995;
in bat bones, Swartz et al., 1992; in bird feathers, Corning and Biewener, 1998) and can
bend appreciably during flight.

Flying insects have far less active control over the three-dimensional shape of
their wings, as insect flight muscles are restricted to the wing base. Contractions of these
muscles determine the kinematics of the wing and exert some control over the angle of

attack at the leading edge. In some cases, these muscles may influence the relative
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positions of hinged areas of the wing (Wootton, 1992). However, insect wings are
largely passive structures, in which muscular forces transmitted by the wing base interact
with aerodynamic and inertial forces generated by the wing's motions. The architecture
of the wing (vein arrangement, three-dimensional relief, flexion lines, etc.) and the
material properties of its elements determine how the wing will change shape in response
to these forces (Wootton, 1992).

In insects, wing flexibility enhances the force asymmetry between strokes that
leads to thrust generation, and is necessary for wings to twist and generate force on both
strokes in slow flight and hovering (Wootton, 1990a). In addition, the dramatic bending
and twisting seen in many insect wings during flight (Wootton, 1990a) may affect air
flow and the direction and magnitude of aerodynamic force production. The remarkable
flight performance of insects suggests that their wing architecture permits beneficial
passive deformations while minimizing detrimental bending, yet our understanding of
how insect wing design affects flexibility is limited.

Insect wing veins act as the primary supporting structures in wings. These
hollow tubes are sclerotized (or hardened), appear to contain chitin (Smith et al., 2000),
and may be filled with hemolymph, although the effect of hydraulic pressure on vein
stiffness is unknown (Wootton, 1981). The arrangement of veins and complexity of vein
branching varies widely among insects. Venation pattern can often be used to
characterize insect orders and families, and displays an overall phylogenetic trend in
which large numbers of cross-veins (present in fossil wings and odonates) are lost and

the main wing support shifts anteriorly in more derived species (Wootton, 1990a).
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Several studies have demonstrated the functional significance of vein
arrangements in insect wings. For example, the pleated, grid-like arrangement of leading
edge veins in dragonfly wings helps strengthen the wing to spanwise bending (Newman
and Wootton, 1986; Wootton, 1991), posteriorly-curved veins in flies generate chordwise
camber when a force is applied to the wing (Ennos, 1988), and the fan-like distribution of
veins in the locust hindwing causes the wing margin to bend downwards when the wing
is extended (Wootton, 1995; Wootton et al., 2000; Herbert et al., 2000). However,
beyond these specialized mechanisms, the functional significance of the enormous
differences in overall venation pattern in insect wings (see Fig. 3.1 for a small sample of
these differences) remains unclear. Given the phylogenetic changes in the extent of
cross-venation, vein thickness, and distribution of veins throughout the wing, one might
expect that insect wings would display large mechanical differences that affect how they
bend during flight. On the other hand, differences in venation pattern may reflect
alternative designs that provide insect wings with similar overall mechanical and bending
properties while allowing veins to be rearranged for other reasons.

Quantitative measurements of wing stiffness that would allow us to distinguish
between these hypotheses remain limited to a small number of studies in which point
forces were applied to isolated wing sections (in dragonflies, Newman and Wootton,
1986; in locusts, Wootton et al., 2000), or at the center of pressure to promote torsion (in
flies, Ennos, 1988; in butterflies, Wootton, 1993). Steppan (2000) measured bending
stiffness in dried butterfly wings, and Smith et al. (2000) completed the first reliable

measurements of material stiffness (Young's modulus) of insect wing membrane from
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locust hindwings. Although each of these studies provides insight into the functional
wing morphology of the insects examined, the measurements are difficult to compare in a
broader context because of variations in technique.

To assess the relationship between insect wing venation and wing flexibility, this
study examines the flexural stiffness (E7) and venation pattern of 16 insect species from
six orders. Flexural stiffness is a composite measure of the overall bending stiffness of
the wing, and reflects both the stiffness of the wing material itself (Young's modulus, E)
as well as that arising from the wing's cross-sectional structure (second moment of area,
). Because insect wings bend spanwise (from wing base to wing tip) and chordwise
(from leading to trailing edge) during flight, I measure flexural stiffness in both
directions.

Correlations between venation pattern and wing flexural stiffness may arise either
from a functional relationship between these traits or simply as a result of the shared
phylogenetic history of the species studied. To remove the effects of phylogeny from
this study, I calculate standardized independent contrasts (Felsenstein, 1985; Garland et
al., 1999) of quantitative measures of wing venation and flexural stiffness, and examine
the correlations between these contrasts to assess the relationship between wing venation
and stiffness.

Finally, I construct a simplified finite element model of the wing of a hawkmoth
(Manduca sexta) and perform numerical experiments in which I change the stiffness of

various wing veins and measure the resulting flexural stiffness of the whole wing. This
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modeling approach allows me to examine the functional significance of various wing

veins in generating the patterns of flexural stiffness observed in real wings.

Materials and Methods
Insect collection and handling

To measure wing stiffness, I chose 16 species from six orders. I avoided insects
with wings that are extensively pleated (such as the hindwings of locusts or
grasshoppers), as determining how far to extend these wings for measurement was
difficult. I used insects from the following orders: Odonata - two dragonfly species,
Aeshna multicolor and Pachydiplax longipennis, and two damselfly species, Lestes spp.
and Ischnura spp.; Isoptera - one termite species, Zootermopsis angusticollis: Neuroptera
- one lacewing species, Hemerobius spp.; Hymenoptera - two wasp species, Sceliphron
spp. and Pepsis spp., and one bee species, Bombus spp.; Diptera - four fly species from
different families, Tipula spp., Villa spp, Eristalis spp., and Calliphora spp.; Lepidoptera
- two butterfly species, Ochlodes sylvanoides and Pieris rapae, and one hawkmoth
species, Manduca sexta.

I collected most insects on the University of Washington campus or adjacent
Montlake Fill in Seattle, Washington between July and October 1999. Zootermopsis
angusticollis and Hemerobius spp. were collected in residential areas of Seattle. I
collected Pepsis spp. in the foothills of the Sierra Nevada mountains in central California
in August 1999. Manduca sexta are raised in a colony at the University of Washington,

and I obtained Pieris rapae from the Kingsolver lab at the University of Washington. [



measured spanwise and chordwise stiffness in 2-10 individuals of each species,
depending on availability.

After collecting insects, I placed them in a humidified container at 4°C. Within
one week of capture, I further anaesthetized an insect by placing it in the freezer for 1 to
5 minutes, recorded its weight, and removed one forewing. [ measured stiffness on the
forewings because all of the species tested had either larger forewings or fore- and
hindwings of similar size. I then placed the insect back in the refrigerator, photographed
the wing for shape measurements, and measured the stiffness of the wing (which rapidly
warms to room temperature). I concluded these measurements within one hour of
removing the wing from the insect (during which time the stiffness of the wing does not
change appreciably, according to trials). After completing measurements on the first
wing, [ re-anaesthetized the insect and repeated the process for the other forewing,

measuring stiffness in the opposing direction.

Wing stiffness measurements
I measured stiffness of wings by applying a point force to bend the wing in either
the spanwise or chordwise direction, and using the measured force and wing
displacement to calculate flexural stiffness (£7/) with a simple beam equation. I glued
wings to glass slides with cyanoacrylate glue and baking soda, at either the wing base
(for spanwise measurements) or the leading edge (for chordwise measurements), using a

minimal amount of the wing for attachment (no more than 3 mm; see Fig. 3.2A).
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I fixed the slide to the left side of the apparatus shown in Figure 3.2B and
adjusted the right arm so that the pin coming down from the flexible beam contacted the
wing on its dorsal surface. I measured spanwise stiffness at 70% of wing span (because
the pin slipped from the wing if it was placed too close to the edge) and applied the point
force on or just behind the leading edge veins so that the entire wing bent in the spanwise
direction, with minimal torsion (see Fig. 3.2A). I performed chordwise measurements
approximately halfway between the wing base and tip, and applied the point force at 70%
of the wing chord (Fig 3.2A). I lowered the right side of the apparatus with a micrometer
to load the wing at four different force magnitudes, measuring force and displacement
and returning to the zero (unloaded) position between each measurement (Fig 3.2B). 1
then flipped the slide over and repeated the measurements, loading the wing from the
ventral side.

Next, [ removed the slide and measured the distance from the point of attachment
to the point where the force was applied to determine the effective beam length (L). I
calculated ET over this distance as (Gordon, 1978):

ElI=FL /36 3.1)
where F is applied force and 8 is wing displacement. This equation provides a measure
of the flexural stiffness over the entire beam length, and assumes that the beam is
homogeneous (see Discussion for an analysis of this assumption). Because the equation
applies only to small displacements (6 < 0.05 L), I removed any measurements where the
wing displacement exceeded this limit (comparing this magnitude of displacement to

actual deflections experienced during flight is difficult, as measurements of wing
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deflections during flight are extremely rare; see Song et al., 2001). [ averaged the
repeated measurements on each side into a single dorsal and a single ventral value and
tested for a significant difference (p < 0.05) between dorsal and ventral values with a
Wilcoxon signed rank test.

I plotted spanwise and chordwise stiffness against several measures of wing and
body size: wing span and maximum chord length (measured in NIH Image), wing area
(measured in Matlab; see below), and body mass. I also combined these measures using
principal components analysis (in Statview 5.0.1) into a measure of overall size
(including all four variables) and a measure of wing size (including wing span, chord and
area).

To check calibrations and verify the apparatus, | measured force and
displacement of a rectangular glass coverslip (a homogeneous beam of linearly elastic
material, approximately the same stiffness as the largest wings measured) at three
different lengths (with 3, 4, and 4.85 cm of the slide extending past the point of
attachment). [ then calculated EI for each length, measured the thickness and width of
the coverslip, and calculated /, the second moment of area as (Gordon, 1978):

I1=wr/12 3.2)
where w is width and ¢ is thickness. Finally, I compared the resulting value of E,

Young's modulus, with known values for glass.
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Wing shape and venation measurements

From photographs of each wing, I created a black silhouette in Photoshop and
then used NIH Image to measure wing span, chord, and planform area. For one wing 6f
each species, I created a precise drawing of the wing veins using Photoshop (Fig. 3.1).
In Lepidopterans, I removed the scales from the wings to visualize the veins. I counted
the number of vein intersections in each wing as a measure of the complexity of vein
branching. I also imported black and white images of the wing silhouette and veins into
Matlab and determined the proportion of planform wing area occupied by veins (vein
density) as the area of wing veins divided by the area of the silhouette (Appendix 3).

I determined average vein thickness by finding the total length of veins in the
wing and dividing vein area by vein length. To calculate vein length, I used Matlab to
create a skeletonized image of the veins, in which the veins are only one pixel wide. In
this image matrix, vein pixels are represented by ones and non-vein pixels by zeros. [
determined the total length of all veins in the wing by manipulating the image matrix;
moving the matrix one pixel to the right and multiplying the original matrix by this
shifted matrix cancels out any vein pixels that do not have a neighbor to their right. [
took the sum of this new matrix to determine how many vein pixels have horizontal
neighbors. I repeated this process for vertical neighbors by moving the original matrix
down one pixel, and for diagonal neighbors by moving the matrix down and right, then
down and left (Appendix 3). To determine total vein length, [ multiplied the number of
horizontal and vertical neighbors by the length of a pixel side, and multiplied the number

of diagonal neighbors by the length of a pixel diagonal (pixel length times the square root



of 2). Finally, I divided vein area by total vein length to determine average vein
thickness, and divided this by wing span to scale for overall wing size.

[ measured two characteristics related to the leading edge of the wing: the
proportion of veins in the leading edge and the density of veins in the leading edge. [
defined the leading edge visually, by looking for a cohesive unit of veins running
spanwise along the leading edge. For most species, I included all veins anterior to a
particular radial vein (R in termite, R, in odonates, lacewing, Villa, and Eristalis, R,_; in
Manduca and Calliphora, R, in Tipula, and R, in butterflies; nomenclature from Borror
etal., 1989). For bees and wasps, I included the costal and subcostal veins (Borror et al.,
1989) in the leading edge. I imported drawings of these leading edge veins and the
silhouette of the wing area they surround into Matlab. I then calculated the proportion of
veins in the leading edge as the leading edge vein area divided by total vein area, and
calculated leading edge vein density as the area of leading edge veins divided by the area

of the leading edge silhouette (Appendix 3).

Phylogenetic analysis of correlated characters
Because the species tested share a phylogenetic history, some characters (i.e.
wing venation or stiffness) may be correlated in closely related groups simply because
these species share a common ancestor that possessed these characters, and not because
the characters are related in any functional way. The species used in this study cannot

be treated as independent data points for statistical analysis, but the contrasts (or
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differences) between traits in adjacent groups can be used, because the changes in these
groups occurred independently (Felsenstein, 1985; Garland et al., 1999).

For example, the four odonate species (top four species in Fig. 3.5) cannot be
treated as fully independent, but the contrast between traits in the dragonflies (Aeshna
and Pachydiplax) is independent from the contrast between traits in the damselflies
(Lestes and Ischnura), because these changes occurred independently. Once these
contrasts are calculated, one can take the difference between these as another
independent contrast. In this way, (n-1) independent contrasts can be found for a trait
measured in n different species. After dividing each contrast by its standard deviation.
the standardized contrasts of one trait can be plotted against those of another trait to see if
a relationship exists between the two when the effect of phylogeny has been removed
(Felsenstein, 1985; Garland et al., 1999).

To analyze relationships between wing venation and stiffness data in a
phylogenetic context, I used the Phenotypic Diversity Analysis Programs (PDAP),
version 6.0, developed by Garland, Midford, Jones, Dickerman, and Diaz-Uriarte. This
program originally accompanied Garland et al. (1993), and contains modifications made
in Garland et al. (1999) and Garland and Ives (2000). The program allows one to
construct a phylogenetic tree and enter tip values for traits; it then calculates independent
contrasts and performs various diagnostics on the output.

Some aspects of the phylogenetic relationships of the pterygotes (winged insects)
are under debate, and the divergence times of groups and families are far from certain.

However, I constructed a phylogeny of the species used in this study by combining the
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available information, and in some cases averaging or choosing midpoints between
estimates of branching times (Fig. 3.5). To determine how sensitive the analysis is to
branch length, I also calculated independent contrasts using arbitrary branch lengths (see
Pagel, 1992), in which all internode branches are equal to one, but the tips of the tree are
contemporaneous (line up with one another). I tested for correlations between contrasts

in JMP 4 on a Macintosh computer.

Finite Element Modeling

To explore how wing veins contribute to the flexural stiffness of a wing, I used
MSC Marc/Mentat 2001 to create a finite element model of the Manduca wing shown in
Fig. 3.1. The model is composed of 345 thin shell elements of uniform thickness (110
im), and mimics the planform projection of a Manduca wing (with no three-dimensional
camber; see Chapter 4 for a discussion of the effects of wing camber on stiffness).

The model can be subjected to virtual static bending tests that mimic the tests
performed on actual wings; the base is fixed with zero displacement or rotation, and a
point force is applied to the wing tip (Fig. 3.6A). The model provides the tip
displacement expected due to the point force (and given the material properties of the
wing). [ used the applied force, predicted displacement, and wing span to calculate
spanwise EI for the model wing as above (Eq. 3.1). Similarly, I fixed the model wing at

the leading edge and applied a point force at the trailing edge to calculate chordwise

flexural stiffness.
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[ adjusted the Young’s modulus (E), or material stiffness, of the vein elements
separately from the material stiffness of the membrane elements to test the effect of the
veins on overall flexural stiffness. Because the veins are flat and of the same thickness
as the membrane, increasing Young's modulus mimics the increased second moment of
area (/) of a tubular vein (which can be over three orders of magnitude larger than for a
flat plate), as well as accounting for changes in thickness and material stiffness between
wing veins and membrane.

In all simulations, I set the Young's modulus of the wing membrane at
I x 10'Nm™. The actual Young’s modulus of Manduca wing membranes is unknown
(the only reliable measurements of Young’s modulus in insect wing membranes were
performed in locust hindwings and vary widely within the wing; see Smith et al., 2000).
However, for the current argument, the actual value of this parameter is less critical than
the difference between vein and membrane elements. In the first set of simulations, |
chose the modulus of all the vein elements to also be 1 x 10’ Nm™ (thus the wing
essentially had no veins in these simulations). I then increased the modulus of the veins
by orders of magnitude up to 1 x 10"* Nm™, while membrane stiffness remained at 1 x
10’ Nm™. Finally, to test the effect of the leading edge veins alone, I increased the
stiffness of just the leading edge veins (in pink, Fig. 3.5A) by orders of magnitude to 1 x

10" Nm™, while leaving the modulus of the membrane and the rest of the veins at 1 x 10’

Nm=.
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Results
Stiffness Measurements

The glass slide has a second moment of inertia (I) of 6.75 x 10°m®. Dividing the
measured values of EI by I gives a value for E of 7.3 x 10", 6.9 x 10", and 7.5 x 10"
Nm? for the slide at lengths of 3, 4, and 4.85 cm, respectively. These values are very
close to the reported Young's modulus of ordinary glass, 7 x 10'° N/m* (Gordon, 1978).

The measurements performed in this study do not reveal a significant dorsal-
ventral difference in spanwise or chordwise stiffness in any species tested (Wilcoxon
signed rank test, p < 0.05). In addition, neither side of the wing was consistently stiffer
than the other. I therefore averaged dorsal and ventral meaurements of EI in each
direction.

The resulting flexural stiffness values are significantly correlated with all size
variables; spanwise stiffness is most strongly correlated with wing span, whereas
chordwise stiffness is most strongly correlated with chord length (Table 3.1, Fig. 3.3).
The first principal component of overall size accounted for 89% of the variance in the
traits (with loadings of 0.952, 0.952, 0.985 and 0.876 for wing span, chord, area and
body mass, respectively). The first principal component of wing size accounted for 95%
of the variance in wing size traits (with loadings of 0.965, 0.959 and 0.998 for wing span,
chord and area, respectively). Although the correlations between flexural stiffness and
these principal components measures are significant, the relationships with individual
traits (spanwise stiffness/wing span and chordwise stiffness/chord length) are stronger, so

I chose to use the latter relationships for further analysis.
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Wing flexural stiffness of individuals within a species also appears to be related
to wing size; these relationships were not tested due to small sample sizes, but are
apparent in Fig. 3.4 (note that the slopes of the size regressions are similar if species
averages are used instead of individuals; see Fig. 3.4). Finally, measurements of flexural
stiffness reveal a large structural anisotropy in all of the insect wings tested, with
spanwise flexural stiffness approximately 1 to 2 orders of magnitude greater than

chordwise flexural stiffness (Fig. 3.3).

Phylogenetic Analysis of Correlated Characters

By calculating standardized independent contrasts of log-transformed spanwise
stiffness, wing span, chordwise stiffness, and chord length, the effect of phylogeny can
be removed from the regressions between wing stiffness and size. The relationships
between the contrasts of wing stiffness and span/chord length are significant, and the
slopes remain nearly the same as in the original data (span: y = 3.04x, r* = 0.96; chord: y
=2.02x, r' = 0.96). The residuals from these relationships can be used as an estimate of
wing stiffness with the effect of size (and phylogeny) removed (for examples of similar
uses in correcting for body size, see Garland and Janis, 1993, and Rezende et al., 2002).

Plotting these stiffness residuals against standardized independent contrasts of
wing venation characters reveals no significant relationships between flexural stiffness
and wing venation pattern. However, the residual of spanwise stiffness is positively
correlated with the residual of chordwise stiffness (> = 0.37, p = 0.016). In addition,

several contrasts of vein characters are correlated with each other: as vein thickness/span
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increases, the number of vein intersections (log-transformed) decreases (r' =0.28, p =
0.045) and the density of veins in the leading edge increases (r* = 0.64, p = 0.0003).
These correlated changes in wing venation are apparent visually in Fig. 3.1. When
Pagei's (1992) arbitrary branch lengths are used, all relationships remains the same, with
the exception of the correlation between vein thickness/span and the number of vein

intersections, which is no longer significant (r* = 0.06, p = 0.37).

Finite Element Modeling

Virtual static bending tests on the finite element wing reveal that chordwise
stiffness is higher than spanwise stiffness when membrane and vein moduli are the same
(when no veins are present) (Fig. 3.6B). As the vein modulus increases, both spanwise
and chordwise stiffness increase, but spanwise stiffness increases more rapidly. By the
time the vein modulus is two orders of magnitude higher than the membrane modulus,
spanwise stiffness has surpassed chordwise stiffness. When only the leading edge vein
modulus is increased, spanwise stiffness shows an almost identical increase, while

chordwise stiffness does not change appreciably from the veinless model (Fig. 3.6B).

Discussion
During flight, the wings of many insects undergo dramatic deformations, over
which the insect has little active control (Wootton, 1990a). These large deformations are
likely to affect flight performance, and appear to be controlled primarily by the structure

of the wing, including the arrangement of supporting veins (Wootton, 1990a). Although



71

insect wings display enormous variation and phylogenetic trends in the arrangement of
veins, this study reveals that vein arrangement has surprisingly little effect on average
wing stiffness. However, all species tested display a large anisotropy between spanwise
and chordwise stiffness, and stiffness in both directions scales strongly with wing size,
even when the effects of phylogeny are controlled. Size scaling appears to be the
dominant factor determining average flexural stiffness in insect wings; however, several
factors that may underlie this trend should be considered before exploring the

implications of the scaling relationships.

Scaling of Wing Stiffness

Because independent contrasts of wing size and stiffness traits were used. the
observed relationships are unlikely to be the result of common ancestry. Furthermore,
the constant EI measured in a glass slide at a range of lengths (Fig. 3.4) indicates that the
scaling is not due to a systematic measurement error.

However, the assumption in Eq. 1 that flexural stiffness is homogeneous across a
wing could potentially lead to a systematic error in the reported values. If flexural
stiffness is not constant, but varies along the wing span or chord, the reported values of
EI represent some weighted integration of EI along the length measured. If this integral
varies systematically as beam length increases, it could account for part of the size
scaling in the data.

To assess the likelihood of this explanation, I performed a numerical experiment

to explore the effects of integrating various simple functions (that represent how stiffness
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might vary in the wing) over increasing beam length. I proposed that the spatial pattern
of stiffness in the spanwise or chordwise direction might be approximated by either a

linear, exponential, or second-degree polynomial equation:

El(x)=mx+b (3.3)
EI(x) = c*Exp*” (3.4)
Elx)=pX +qgx+r 3.5)

For each proposed distribution, I integrated along the beam length from the point of
attachment (x,) to the point of force application (x,,,):
— 1

El= (.tmax——x:))-"““ El(x)dx

(3.6)

I explored the effect of integrating along lengths ranging from 0.001 t0 0.04 m
(the range of beam lengths used in calculating EI of insect wings). Over this scale of
lengths, EI increases or decreases (depending on the parameters varied), but rarely
changes by more than 50%, a very small change compared to the variation in E/ (over
three orders of magnitude) observed in insect wings over this length scale.

The scaling of flexural stiffness has been examined previously in dried butterfly
wings (Steppan, 2000) and in the primary flight feathers of birds (Worcester, 1996).
Both studies found that flexural stiffness increases with size. The authors compared the
observed scaling relationships with the theory of geometric similarity (see Alexander et
al., 1979), where structures maintain a similar shape regardless of size, as well as with
the theory of elastic similarity (see McMahon, 1973), in which loaded structures

maintain a similar angular deflection regardless of size.
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Neither study (Steppan, 2000; Worcester, 1996) found scaling patterns that could
be explained by geometric similarity. The scaling of insect wing stiffness observed in
this study appears to agree with these conclusions. The exponents of the relationship
between insect wing stiffness and body mass (0.91 spanwise and 0.61 chordwise; see
Table 3.1) are far from the expected value of 1.67 proposed by Worcester (1996) for
geometric similarity, and the exponents of the relationship between wing stiffness and
wing area (1.50 spanwise and 0.99 chordwise; see Table 3.1) are also far from the
expected value of 2.0 proposed by Steppan (2000). Because the slopes are smaller than
expected by geometric similarity, insect wing stiffness appears to displays negative
allometry. Thus larger insects have relatively more flexible wings than smaller ones, a
relationship similar to that found in the primary flight feathers of birds (Worcester,
1996).

If the scaling of wing stiffness provides functional, rather than geometric
similarity across a range of body sizes, displacement divided by length should remain
constant, as in elastic similarity (McMahon, 1973). If we take tip displacement divided
by wing span (or trailing edge displacement divided by chord length) as a rough measure
of strain or curvature in the wing, we can rearrange Eq. 3.1 as:

8/L=FL/EI (3.7)
Spanwise stiffness scales approximately with L* and chordwise stiffness with L*. This
suggests that in the chordwise direction, 6/ L is proportional to force, regardless of the
chord length of the wing. In the spanwise direction, 8 /L is proportional to F /L, so

spanwise curvature would be smaller in large wings for a given force.



74

To assess whether &/ L remains constant in flying insects over a range of sizes,
we need to know how the forces on flapping insect wings scale with size. If we assume
that the primary forces on an insect's wings are aerodynamic, then force is proportional to
body mass. However, several studies have suggested that the inertial forces generated by
flapping wings are considerably larger than the aerodynamic forces generated (Zanker
and Gotz, 1990; Ennos, 1989; Daniel and Combes, in prep), and therefore inertial forces
may be more important in determining wing deformations. A generalized scaling
argument for inertial force in insect wings is difficult to derive because wingbeat
frequency does not scale strongly with size in the insects studied here. However, smaller
insects often have significantly higher wingbeat frequencies, so the ratio of inertial to
aerodynamic forces on their wings may be as high or higher than in larger insects (Daniel

and Combes, in prep: see Chapter 5).

Effects of wing venation on stiffness
The measurements of flexural stiffness reveal a strong spanwise-chordwise
anisotropy, with spanwise stiffness 1 to 2 orders of magnitude higher than chordwise
stiffness in all species tested (Fig. 3.3). Because spanwise stiffness increases as L’ and
chordwise stiffness only as L?, this anisotropy is generally bigger in larger-winged insects
(Fig. 3.3).
The finite element model of a Manduca wing reveals that the basic planform

geometry (or outline) of the wing would lead to similar spanwise and chordwise bending
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stiffness if no veins were present (Fig 3.6B). The leading edge veins clearly play a
crucial role in increasing spanwise stiffness to generate anisotropy (Fig. 3.6B).
Clustered or thickened veins in the leading edge of the wing are common in
nearly all insects (see Fig. 3.1); even insects that have lost all other wing veins (such as
some hymenopterans and small flies) possess a leading edge vein. This suggests that
spanwise-chordwise anisotropy may be a universal trait among insects. This anisotropy
would serve to strengthen the wing from bending in the spanwise direction while
allowing chordwise bending to generate camber. It may also facilitate spanwise torsion,
which is seen in many species during supination (Ennos, 1988; Wootton, 1981).
Although the measurements of wing venation reflect phylogenetic changes in the
arrangement of veins, surprisingly none of the vein characters is correlated with the
residuals of flexural stiffness. The only significant relationship between measured traits
(beyond size scaling) is a correlation between the contrasts of the spanwise and
chordwise stiffness residuals. This correlation indicates that some insects have wings
that are generally stiffer (in both directions) than expected for their size, while others
have wings that are more flexible than expected. The residuals from the original data
reveal that species that are strong, versatile fliers (able to hover and fly forward at a
range of speeds), such as dragonflies, Manduca, flies (except for the cranefly), and
bumblebees, all have wings that are stiffer than expected for their size. Damselflies,

craneflies, and lacewings have more flexible wings than expected, while butterflies and

wasps are intermediate.
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Despite this relationship between stiffness residuals, the residuals themselves are
quite small. Wing size alone seems to largely determine average flexural stiffness,
accounting for over 90% of the measured variability (Fig. 3.4). This scaling of overall
stiffness, as well as the anisotropy between spanwise and chordwise stiffness, have
persisted despite dramatic changes in wing venation, and thus may be important design
features in insect wings.

The functional significance of the correlated changes in venation (such as loss of
cross veins and increased vein thickness) remains unclear. Perhaps more derived groups
of insects have simply evolved a venation pattern that allows them to maintain the
essential scaling of wing stiffness in a more economical way (i.e., using less vein
material), or perhaps the venation patterns are related to something entirely different,
such as the distribution of sensory receptors on the wing (Kammer, 1985).

Alternatively, venation pattern may in fact affect wing stiffness, but in ways that
could not be detected in this study. For example, venation pattern may not affect overall
stiffness, but could influence how stiffness varies along the wing (see Chapter 4). In
addition, the stiffness measurements in this study exclude the outer 30% of the wing,
which is likely to be the most flexible region. Differences in wing stiffness between
insects with veins that extend to and delineate the trailing edge (such as odonates: see Fig
3.1) and insects with primarily unsupported membrane in the trailing edge (such as
hymenopterans) would most likely be found in this region.

Subtle details of vein configuration can also have dramatic effects on how insect

wings function in a more dynamic context. For example, the angle at which veins branch
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from the leading edge spar can affect the degree of chordwise camber generated by
torsion at the leading edge of fly wings (Ennos, 1988). Thin, curved veins in the troughs
of locust hindwing fans seem to be designed to buckle under strain to depress the trailing
edge of the wing (Wootton, 1995; Wootton et al., 2000). And during flight, wings often
bend in numerous directions at once; bending in the chordwise direction during flight, for
example, would be likely to stiffen the wing in the spanwise direction beyond the static

values measured in this study.

Concluding remarks

This study reveals two major findings: overall flexural stiffness is strongly
correlated with wing length, and spanwise stiffness is significantly larger than chordwise
stiffness. Remarkably, these patterns in wing design persist despite large changes in
venation. Leading edge veins, which are present in nearly all insect wings, appear to be
important in generating the observed spanwise-chordwise anisotropy.

The next step in adding to our quantitative knowledge of functional wing
morphology is to determine how wing stiffness varies throughout an insect wing, and
how such patterns differ between species. Armed with this more detailed information,
we may come to understand how common features of insect wing design control passive
deformations in flapping wings, and ultimately how these deformations interact with and

affect force generation and flight performance.
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Fig. 3.1. Drawings of forewings from insects used in this study. Veins are drawn at
actual thickness; wings are not shown to scale. (A) Order Odonata. (B) Orders
Isoptera (Zootermposis) and Neuroptera (Hemerobius). (C) Order Hymenoptera. (D)
Order Diptera. (E) Order Lepidoptera
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Fig. 3.2. Positions of force application and apparatus to measure displacement and
applied force. (A) Fresh wings are fixed to slides with cyanoacrylate glue at either the
wing base or leading edge. For spanwise measurements, a point force is applied near
the leading edge at approximately 70% wing span (upper panel). For chordwise
measurements, a point force is applied (midway between the wing base and tip) at
approximately 70% chord length (lower panel). (B) To measure force and
displacement, slides are attached to the left side of the apparatus and the right arm is
lowered with a micrometer, contacting the wing with a pin attached to a flexible beam.
In response, the wing moves down and the flexible beam moves up. A sensor across
from an LED light source tracks the movement of the flexitle beam and encodes this
movement as a voltage change (collected by a MacLab 400 and displayed in Chart 3.5.7
on a Macintosh computer). After calibrating for beam stiffness, this voltage change
indicates the force required to move the beam up (and the wing down). The
displacement of the wing is the difference between total downward motion of the
micrometer and upward motion of the beam.
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Fig. 3.3. Spanwise and chordwise flexural stiffness versus size measurements.
Stiffness is measured from the wing base (or leading edge) to 70% of wing span (or
chord length). See Table 3.1 for regressions. (A) Flexural stiffness versus wing span.
(B) Flexural stiffness versus chord length. (C) Flexural stiffness versus wing area.
(D) Flexural stiffness versus body mass. (E) Flexural stiffness versus size (1st
principal component of span, chord and area). (F) Flexural stiffness versus wing size
(1st principal coomponent of span, chord, area and body mass).
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Fig. 3.4. Flexural stiffness versus span/chord length in 16 insect species. Individuals
of each species are plotted in the same color. Axes are on a logarithmic scale. (A)
Spanwise stiffness versus wing span; for log-log transformed data, y = 2.97x + 0.08, r*
= 0.95 (using species averages, y = 2.93x + 0.03, r* = 0.96). Measured flexural
stiffness of a glass coverslip (at varying lengths) is shown in black. (B) Chordwise
stiffness versus chord length; for log-log transformed data y = 2.08x - 1.73, > = 0.91
(using species averages, y = 2.01x - 1.8, r* = 0.96).



87

Aeshna
Odonata | S Pachydiplax
Lestes
Ischnura
Zootermopsis
Hemerobius

— Isoptera

Neuroptera

Hymenoptera Pepsis

Sceliphron
T P

Dip(cra Bombus
u i Tipula
Villa

[ Eristalis
Calliphora

Lepidoptera Manduca

Ocholodes

—1 ieris

I ¥ 1

I 1 1 T T
-350 -300 -250 -200 -150 -100 -50 0
time (million years)

Fig. 3.5. Phylogenetic tree used to calculate independent contrasts. Genera used in
this study are in italics; orders are listed at their branching points. Branching of the
orders is derived from Kristensen (1991), Kukalova-Peck (1991), and Whiting et al.
(1997). Divergence dates of the orders are based on fossil evidence from Kukalova-
Peck (1991) and Wootton (1990b). Branching patterns within the following orders are
taken from the Tree of Life Web Project: Odonata (Trueman and Rowe, 2001);
Hymenoptera (Maddison, 1995a); Lepidoptera (Maddison, 1995b), and Diptera
(Wiegmann and Yeates, 1996). Divergence dates within orders are based on fossil
evidence (Benton, 1993).
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Fig. 3.5. Finite element model of a Manduca sexta wing and resulits of virtual bending
experiments. (A) Finite element model (FEM) with leading edge vein elements in
pink, other vein elements in green, and membrane elements in yellow. For
calculations of spanwise flexural stiffness, the wing is fixed at the base (with no
displacement or rotation, blue arrows) and a point force is applied to the tip (blue dot).
For calculations of chordwise flexural stiffness, the wing is fixed at the leading edge
and a point force is applied to the trailing edge (orange dot). (B) Wing flexural
stiffness (calculated from applied force and wing displacement) versus Young's
modulus of vein elements. In all simulations, the modulus of the wing membrane is 1
x 10 Nm=. Trials in which the modulus of all wing veins is increased are in green;
trials in which only the leading edge vein modulus is increased (while the other veins
remain at 1 x 107 Nm™) are in pink.



Table 3.1. Regressions of flexural stiffness versus size measurements. Regressions are
calculated from measurements of individual insects from 16 species (n = 96). All

regressions are significant, with p-values < 0.0001.

log spanwise EI r log chordwise El r
 log wing span y =2.97x + 0.08 0.95 y = 1.68x — 3.45 0.60
log wing chord y=2.64x +0.84 0.74 y=2.08x-1.73 0.91
log wing area y = L.50x + 1.07 0.92 y=0.99x —2.32 0.79
log body mass y=091x-4.13 0.70 y=0.61x-5.74 0.63
log size (PC1) y =0.50x - 0.75 0.92 y=0.33x - 3.49 0.81
log wing size (PC1) | y=0.77x + 1.02 0.92 y=0.51x-2.33 0.80
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Chapter 4
Flexural stiffness in insect wings:

Distribution of wing stiffness and effects on wing bending

Summary

The dynamic, three-dimensional shape of flapping insect wings may influence
many aspects of flight performance. Insect wing deformations during flight are largely
passive, and are controlled primarily by the architecture and material properties of the
wing. Although many details of wing structure are well understood, the distribution of
flexural stiffness in insect wings and its effect on wing bending is unknown. [n this
study, I develop a method to estimate variation in flexural stiffness in both the spanwise
and chordwise direction of insect wings. I measure displacement along the wing and
model stiffness variation as a simple mathematical function capable of approximating the
measured displacement. I use this method to estimate stiffness variation in the
hawkmoth, Manduca sexta, and in the dragonfly, Aeshna multicolor. In both species,
stiffness declines sharply from wing base to tip and from the leading to the trailing edge;
this variation can be approximated by an exponential decline. Moreover, the wings of
both species display non-linear behavior, in which stiffness increases as the applied force
rises. A dramatic dorsal/ventral asymmetry in wing stiffness is present in M. sexta, but
absent in A. multicolor. In addition, male and female M. sextza display significant
differences in chordwise stiffness. Finite element models based on the wings of M. sexta

demonstrate that the sharp decline in spanwise and chordwise flexural stiffness preserves
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rigidity in proximal regions of the wing, while transferring bending to the edges, where

aerodynamic force production is most sensitive to subtle shape changes.

Key words: insect flight, wing flexibility, flexural stiffness, stiffness distribution,

Manduca sexta, Aeshna multicolor, finite element model

Introduction

During flapping flight, insects wings accelerate and decelerate masses of air,
generating the forces necessary to support an insect's weight and to perform complex
maneuvers. At the same time, these ultralight airfoils (generally only 0.5-3% of body
mass; Ellington, 1984b) must withstand the forces imposed on them by the surrounding
air, as well as the inertial forces caused by accelerating and decelerating their own mass
up to several hundred times per second.

Insect wings perform these roles extremely successfully, despite the fact that they
are largely passive structures (Wootton, 1992), with no muscular control past the wing
base. Although they are strengthened by a network of tubular veins, the wings of many
species deform noticeably during flight, especially during slow flight and hovering
(Willmott and Ellington, 1997a). These dynamic changes in the three-dimensional shape
of wings could potentially affect many aspects of force production, yet few models of
insect flight have successfully incorporated passive wing flexibility or examined the

effects of flexibility on force production.
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In the past two decades, models of insect flight, both mathematical (Ellington,
1984a; Wilkin and Williams, 1993; Smith et al., 1996; Sane and Dickinson, 2002) and
physical (Ellington et al., 1996; Dickinson et al., 1999; Birch and Dickinson, 2001), have
contributed enormously to our understanding of basic mechanisms of force production,
despite assuming that insect wings are rigid structures. Some aspects of wing flexibility
have been mimicked in models by altering the relative positions of wing regions (i.e.
altering fore and hindwing position to generate camber, Liu et al., 1998, or varying angle
of attack at the leading edge to generate spanwise torsion, Vest and Katz, 1996) or by
modeling deformations as harmonic waves (Wu, 1971; Daniel, 1987; Combes and
Daniel, 2001). Each of these approaches provides unique insights into the mechanisms
of force generation during flight, but they often neglect one or more critical components
of wing deflection (i.e., spanwise bending, chordwise bending, or torsion), which can
have large effects on aerodynamic force production (for example, increasing chordwise
camber by only five degrees can lead to a six-fold increase in lift production; Batchelor,
1967).

The dynamic, three-dimensional shape of flapping wings could be reproduced by
measuring the precise locations of multiple parts of the wing during a stroke and
specifying these coordinates in a model wing. However, a simpler and more robust
approach would be to construct a model wing that deforms passively; once constructed,
this type of model couid be used not only to reproduce the motions of a flying insect, but

also to experiment with kinematics and loading regimes that are not seen in nature.
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Smith (1996) simulated the aerodynamics of flapping flight in the hawkmoth,
Manduca sexta, by using an unsteady aerodynamic panel method coupled with a finite
element model of the wings that accounts for wing flexibility. This finite element model
incorporated varying wing thickness and accurately reproduced the center of mass and
radius of gyration for a Manduca wing. However, the model neglected several features
of vein structure and was not able to predict force production as well as a model wing in
which the coordinates of the entire wing were specified in advance.

One of the difficulties in modeling passive wing flexibility is that forces applied
at the wing base lead to bending and twisting that are influenced not only by overall
stiffness and gross anatomical features (i.e. flexion or fold lines), but also by the
distribution of flexibility throughout the wing (Wootton, 1999). Extremely detailed finite
element models of insect wings (incorporating vein configuration, three-dimensional
relief, and variations in vein radius, vein wall thickness, and membrane thickness) can
sometimes reproduce the distribution of bending stiffness in real wings by accounting for
the precise wing structure and material properties of the wing. These types of models
have been used to study the behavior of wings subjected to steady loads (Kesel et al.,
1998) or undergoing transient motions (Herbert et al., 2000). However, measuring and
duplicating the precise geometry of wing veins and membranes is time-consuming. In
addition, many models assume that the elastic modulus of the wing (E, stiffness of wing
material) is equivalent to that of insect chitin and constant throughout the wing (Smith,
1996; Kesel et al., 1998), but recent measurements reveal that E varies by almost two

orders of magnitude in the membrane regions of the locust hindwing (Smith et al., 2000).
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The extent of variation in the elastic modulus of wing veins is unknown, and the
assumption that wings are composed solely of chitin is no longer valid, as other proteins
such as resilin have been found in the wing vein joints of many species (Gorb, 1999;
Haas et al., 2000a; Haas et al., 2000b).

Highly detailed finite element models of insect wings will undoubtedly continue
to add to our understanding of functional morphology and specific wing mechanisms in
pivotal, well-studied species. At the same time, a more general understanding of how
overall stiffness (due to both architecture and material properties) varies throughout
insect wings would allow essential components of passive flexibility to be included in
models of insect flight, and would facilitate comparative studies of wing stiffness that
may help explain broad evolutionary trends in insect wing design (see Chapter 3).

Qualitative trends of how overall stiffness varies throughout insect wings have
been noted for some time. Most wings have relatively stiff, supporting zones near the
wing base and leading edge, and relatively deformable areas near the edges of the wing
(Wootton, 1981). Insect wing veins taper in diameter from base to tip (Wootton, 1992),
and the presumed reduction in stiffness this taper provides could potentially serve many
purposes, including reducing the inertial load at wing tips (thus reducing energy
expenditure and stress at the wing base) and allowing wing tips to buckle and rebound
from collisions without damage (Wootton, 1992). In fact, a wing that is stiff at the base
and more flexible at the tip would seem perfectly suited to withstand the bending torques

(which decline sharply from base to tip) generated by flapping (Ennos, 1989).
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Whereas qualitative information about wing stiffness distributions is available for
a wide range of species, quantitative measurements of local stiffness in insect wings are
scarce. Steppan (2000) measured profiles of flexural stiffness (E/, the product of
Young's modulus and the second moment of area) in dried butterfly wings by applying a
load at several locations along the length. He found that stiffness declines towards the
wing tip, as expected, and also measured an unexpected decline in stiffness near the wing
base (a region that he explains may be more prone to measurement errors). Wootton et
al. (2000) measured average flexural stiffness in three different zones of the locust
hindwing by cutting the wing apart, and Smith et al. (2000) measured variation in
Young's modulus in membranes of the locust hindwing. Yet no studies to date have
demonstrated a reliable method of measuring continuous variation in the bending
stiffness of intact insect wings.

In this study, I develop a method of approximating continuous variation in
flexural stiffness along two axes of the wing (in the spanwise and chordwise direction). |
focus on variation in flexural stiffness (EJ) rather than Young's modulus (E), because
flexural stiffness provides an overall measure of how the wing will bend in response to
an applied load, without unraveling the contributions of complex geometry or variation
in material stiffness that lead to this behavior.

[ measure variation in flexural stiffness in two insects, the hawkmoth Manduca
sexta and the dragonfly Aeshna multicolor. These insects have wings of similar size, and
are both agile fliers, capable of hovering as well as fast, forward flight. However, they

are very distantly related and display large differences in wing shape and venation
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pattern (see Chapter 3) that might underlie differences in the distribution of stiffness in
their wings. In addition, the wing structure and flight performance of both hawkmoths
and dragonflies has been extensively analyzed and modeled (for example, Kesel et al.,
1998; Liu et al., 1998; Smith, 1996; Somps and Luttges, 1985; Sunada et al., 1998;
Wakeling and Ellington 1997a,b,c; Wilkin and Williams, 1993; Willmott and Ellington,
1997a,b; Wootton, 1991).

To assess the spatial pattern of flexural stiffness in wings, I first develop a
method to measure displacement (due to a point force) along the wing in the spanwise
and chordwise directions. Next, I propose various alternatives for how stiffness might
vary along the wing (represented by simple mathematical functions) and predict the
pattern of displacement that a loaded wing with these theoretical stiffness distributions
would display. Finally, I find the stiffness distribution that produces a pattern of
displacement most similar to the pattern of displacement measured in a real wing. I use
this method to estimate the stiffness distribution of the wing to forces applied from both
the dorsal and the ventral side of the wing, as dorsal/ventral asymmetry has been noted in
previous studies (Ennos, 1988; Steppan, 2000; Wootton, 1993; Wootton et al., 2000)

Finally, I create two finite element models of insect wings, using Manduca sexta
as a model. Rather than realistically reproducing the structure and behavior of Manduca
wings, these generalized models provide a method of assessing the consequences of
stiffness distributions to wing bending. I attempt to capture major elements of wing
structure in the models (i.e. vein position and flexural stiffness distribution) while

avoiding detailed structural features, such as variation in wing thickness and three-
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dimensional relief. I use these models to assess the effects of flexural stiffness

distribution on wings subjected to both static and dynamic loads.

Materials and Methods
Insect collection and handling

For measurements of wing stiffness. I used hawkmoths (Manduca sexta) from a
colony at the University of Washington and collected dragonflies (Aeshna multicolor) on
the campus of the University of Washington. I measured wing stiffness on hawkmoths
immediately after removing them from the colony, and on dragonflies within 2 to 3 days
of capture (during which time [ stored them in a humidified chamber at 4 C). Before
removing wings, [ anaesthetized insects by placing them in the freezer for 1 to 5 minutes,
then weighed the entire insect, removed one wing at the base, and placed the insect back
in the refrigerator. I weighed the wing and attached it to a glass slide with cyanoacrylate
glue and baking soda, at either the wing base (for spanwise measurements) or the leading
edge (for chordwise measurements), using a minimal amount of the wing for attachment
(no more than 2 mm). I completed all measurements on a wing within one hour of
removing the wing from the insect (during which time the stiffness of the wing does not
change appreciably).

After measuring stiffness of the first wing, I retrieved the insect from the
refrigerator, removed another wing, and repeated the procedure. In each hawkmoth, I
measured spanwise stiffness on one forewing and chordwise stiffness on the other. I did

not measure the stiffness of the hindwings, which are much smaller and overlap with the
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forewings to varying degrees during flight. In dragonflies (which have independent fore-
and hindwings of similar size), I measured spanwise stiffness on one forewing and one

hindwing, and chordwise stiffness on the other forewing and hindwing.

Measurement of wing stiffness: force and static wing deformations

I measured continuous displacement of wings in the spanwise direction along a
line running from the wing base to the tip, and in the chordwise direction along a line
running from the leading edge to the trailing edge (approximately midway between the
base and tip). I first attached a slide with a wing projecting from it to the left side of the
apparatus shown in Fig. 3.2 (see Chapter 3) and lowered the right arm of the apparatus
until the pin contacted the tip or trailing edge of the wing on its dorsal surface. I applied
a small drop of cyanoacrylate glue with a 30-gauge syringe to prevent the pin from
sliding off the edge of the wing, and illuminated the wing with a laser split into sheets of
light. The sheets of light appear as lines on the wing, and can be adjusted so that one line
illuminates a strip of the wing from the base to the tip (as in Fig. 4.1A) or from the
leading to the trailing edge (intersecting the pin).

Before applying the point force, I photographed wings with a Nikon Coolpix

900 angled approximately 45° from the surface of the wing, using the "fine" quality
setting (resolution of 2048 x 1536 pixels). I photographed wings with overhead lights on
and with lights off (so only the laser lines were visible; Fig 4.1A). I then lowered the
right arm of the apparatus to apply a point force to the tip or trailing edge of the wing;

when this force is applied, the laser lines follow the surface of the wing, shifting their
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position in proportion to the displacement of the wing downwards (Fig. 4.1B). After
applying the point force, I photographed the loaded wing with lights on and lights off,
while an LED sensor on the apparatus encoded the applied force and displacement of the
wing at the tip or trailing edge as a voltage change (see Fig. 3.2).

In early trials, I found that wing displacement is not a linear function of applied
force, so I measured displacement at several different loads, returning to the unloaded
position to photograph the wing before applying each new load. I checked the
repeatability of displacement measurements on the wings of a hawkmoth (in both the
spanwise and chordwise direction) by applying five different loads to the dorsal surface
of the wing and repeating each load three times (applying loads in random order).

For all other hawkmoth and dragonfly wings. I measured displacement on the
dorsal surface of the wing at four different loads, gently removed the glued pin from the
edge of the wing (without tearing the wing membrane), flipped the slide over, and
measured displacement on the ventral side of the wing at four different loads. Dorsal
stiffness in this study describes the stiffness of the wing in response to loading on the
dorsal surface (resulting in a dorsally convex surface; see Steppan, 2000), which is
equivalent to ventral flexion in other studies (Ennos and Wootton, 1989; Wootton, 1981;
Wootton, 1992).

Before moving the camera, | photographed a 2-mm grid in the position the wing
occupied to provide a spatial calibration. I also photographed a series of slides glued
together to form steps of known height; with laser lines projecting down the steps, this

image provides a calibration for how far the line in the image shifts given a known
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change in the height of the object (Fig 4.1C). Finally, I photographed the wing on a
white background from above and measured wing area, span, and maximum chord length
in NIH Image. For Manduca sexta (whose wing morphology may depend on gender;
Willmott and Ellington, 1997b), I also calculated aspect ratio (span*/area) of the
forewings and wing loading (body mass divided by the area of both forewings).

I calculated the applied force for each loading (see Fig 3.2) and found continuous
displacement along a laser line by analyzing the unloaded and loaded images of the wing.
I converted the images to grayscale and used a Matlab program (Appendix 4) to find the
center of the horizontal laser line running from wing base to tip or leading to trailing
edge (Fig. 4.1A,B); this program finds the center of the line one pixel at a time by
sampling the intensity of a column of pixels surrounding the line and applying a
Gaussian least squares fit to find the peak of the intensity gradient, which is taken to be
the center of the line at that position (method developed by A. Trimble, see Appendix 4).

The laser lines begin at the same position in the two images (near the point of
attachment to the slide), but the line in the loaded image is shorter (in the x-direction)
than the line in the unloaded image (Fig. 4.1B). To be sure that [ was comparing the
same points on the unloaded and loaded wing, I used the lighted images to find the edge
of the wing in each image (dotted lines in Fig. 4.1B), and used this position as the end
point for sampling the lines.

Finally, I used Matlab to filter noise from the line position data and splined the
unloaded and loaded data to an equal number of points for comparison (Appendix 4). |

found the difference in line position between the two data sets (y(x)) and converted this
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difference to actual wing displacement (8(x)) with a factor derived from analysis of the

calibration image (Fig. 4.1C, Appendix 4).

Measurement of wing stiffness: calculation of local flexural stiffness
To calculate local flexural stiffness, I treated each wing as a heterogeneous, two-
dimensional beam in the spanwise (or chordwise) direction, and used a continuous beam
equation to estimate stiffness along this axis. With the beam attached at one side and a
point force applied at the other end, flexural stiffness at any point along the beam is the
moment at that position divided by the local curvature (or the 2nd derivative of

displacement):
M(x)

Elx= d’8 / dx* @.1)

where M(x) is the moment at position x along the beam and § is the displacement (in the
z-direction) at position x. If we assume that the point force is applied at an angle
approximately 90° from the beam, then the moment is the product of the applied force

and the distance between the point of force application and position x on the beam:
F(L-x)

El(x)= d*8/dx? 4.2)

where F is the applied force and L is the total length of the beam.
Although continuous displacement (&(x)) is known from analyzing the wing
images, differentiating these data to solve Eq. 4.2 may lead to an erroneous solution. If

the displacement data is differentiated over a very small interval, individual pixel noise in
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the images overwhelms the solution; as the interval is increased, the solution for E/
continues to change, and there is no objective justification for choosing one interval size
over another.

To avoid these problems, I solved the equation in reverse; I posed a functional
distribution for El(x), calculated the expected displacement (&(x)), and used a simplex
minimization program to adjust the coefficients of the functional EY distribution to
minimize the difference between predicted and measured wing displacement.

I proposed that stiffness in the spanwise or chordwise direction might be constant,
or that its spatial pattern might be approximated by a linear, exponential, or 2nd-degree

polynomial equation:

El(x)=d 4.3)
Ellx)=mx+b “4.4)
El(x) = c*exp™ 4.5)

El(x)=pX +qgx+r (4.6)

Each of the proposed EI distributions (Eq. 4.3-4.6) can be inserted into the

following equation to find the expected displacement along the span or chord given an

e F(L-x) ]d.:
5(x) = [ D) g
?[ J«: EIx) @.7)

[ used a simplex minimization program in Matlab that tests various values of the

applied moment (F(L-x)):

coefficients (for example, m and b in Eq. 4.4) to find the specific EI distribution (for each
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equation type) that most successfully predicts wing displacement along the span or chord
(Fig. 4.2).

To verify the method of measuring local flexural stiffness, [ measured 8(x) for a
rectangular glass coverslip, which is made of homogeneous material and has a known
Young's modulus (£) and second moment of area (/). I attached the coverslip to a glass
slide at one end, dusted its surface lightly with baking soda (to visualize the laser line),
and used the same apparatus as above to apply a point force to the opposite end. |
photographed the unloaded and loaded coverslip, used the Matlab code to find
displacement along the length, and used simplex minimization to solve for the
distribution of flexural stiffness.

While the spatial variation in flexural stiffness along a wing provides valuable
information about wing structure, average flexural stiffness in the spanwise and
chordwise directions may also be useful for comparisons between individuals and
species. To calculate average flexural stiffness (Elyofa wing, [ integrated the
continuous distribution El(x):

— 1

El = T j EI(x)dx (4.8)

where x, is the starting point (near the base or leading edge) and x,, is the end point of
data collection.

As mentioned previously, the relationship between applied force and wing
displacement in hawkmoth and dragonfly wings appears to be non-linear. Because of

this, estimated wing stiffness varies with wing strain (approximated by tip or trailing
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edge displacement divided by span or chord length). To test whether wing stiffness
varies in a predictable, directional manner with increasing loads (which would suggest
non-linear behavior), I plotted El against strain (with dorsal, ventral, spanwise and
chordwise measurements plotted separately for each individual). I fitted a line to each
relationship and used a non-parametric one sample sign test in Statview to determine if
the slopes (from all individuals) of each relationship are significantly different from zero,

the slope expected for a linear wing in which stiffness is independent of strain.

Comparisons of wing stiffness

Determining the relationship between wing stiffness and strain also allowed me to
standardize stiffness measurements, facilitating comparisons between individuals.
Because I did not know the applied force or displacement of wings until after
experiments were completed, [ was unable to perform the bending experiments at set
levels of strain or applied force. However, I was able to later determine the stiffness
distribution and average stiffness of all wings at the same level of strain by calculating
the slopes of the relationships between wing distribution coefficients and strain.

For both the spanwise and chordwise direction, I standardized measurements at a
strain that fell within the range of values measured on wings. Spanwise strain (tip
displacement divided by wing span) varied from 0.014 to 0.07 in Manduca sexta, and
from 0.018 to 0.086 in Aeshna multicolor. I chose to calculate spanwise wing stiffness at

a strain of 0.05 for comparison. In the chordwise direction, strain varied from 0.034 to
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0.176 in Manduca sexta and from 0.031 to 0.161 in Aeshna multicolor. 1 chose to
compare wings at a chordwise strain of 0.08.

In Manduca sexta, 1 collected spanwise data from 9 males and 4 females, and
chordwise data from 10 males and 9 females. In Aeshna multicolor, | used only males,
but tested both fore and hindwings (which have different morphologies), so I examined
stiffness separately in the two sets of wings. I collected spanwise and chordwise data on
both fore and hindwings from 8 individuals.

Within each group, [ tested for differences between the dorsal and ventral side of
the wing with a Wilcoxon signed rank test. I also tested for differences between male

and female Manduca sexta with a Mann-Whitney U-test.

Static finite element modeling

To investigate how the distribution of stiffness in a wing affects bending, I
constructed two finite element models based on a Manduca sexta wing using MSC
Marc/Mentat 2001. Both models are created from a planform image of a male Manduca
wing and consist of 345 thin shell elements (with a mixture of 3- and 4-node elements)
representing the veins and membrane of the wing.

The models are composed of flat elements with a uniform thickness of 110 pm
(an approximation of average wing stiffness). In one of the models, I assigned all vein
elements a single (homogeneous) material stiffness (£, Young's modulus), and all
membrane elements a different homogeneous material stiffness (Fig.4.3A). I performed

virtual bending experiments similar to those performed on real Manduca wings; I fixed
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the nodes at the base of the wing (with no displacement or rotation), applied a point force
to the tip of the wing, and recorded the calculated tip displacement. Similarly, to
measure displacement in the chordwise direction, I fixed the wing at the leading edge and
applied a point force to the trailing edge. I then adjusted vein and membrane stiffness so
that the tip and trailing edge displacements due to a given force were similar to
displacements seen in real wings (final membrane and vein moduli are 2 x 10’ Nm™ and 2
x 10" Nm?, respectively).

In the other model, I mimicked the pattern of flexural stiffness measured in
Manduca wings (Fig. 4.3B). A declining exponential function provides the best
approximation of local flexural stiffness in both the spanwise and chordwise direction of
Manduca wings (see Results). [ therefore applied declining values of Young's modulus
to the model wing in 12 strips oriented diagonally (so that stiffness declines in both the
spanwise and chordwise direction; see Fig. 4.3B). Within each strip, the vei-n elements
are several orders of magnitude stiffer than the membrane elements (to preserve
spanwise-chordwise anisotropy - see Chapter 3). As in the model with homogeneous
vein and membrane stiffness, I adjusted the moduli until calculated tip and trailing edge
displacement matched values measured in real wings (Young's modulus varies from 2.86
x 10"> Nm™at the base to 1.65 x 10'® Nm™ at the tip in vein elements, and from 9.85 x 10
Nm™ to 5.71 x 10° Nm?in membrane elements).

Because the two finite element models share the same geometry and exhibit the
same overall bending performance (tip and trailing edge displacement are nearly

identical for a given load), they provide an ideal opportunity to investigate the effects of
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stiffness distribution on patterns of bending. To determine the spanwise stiffness
distribution of the model wings, I fixed each wing at its base and applied a point force at
the tip. I recorded the displacement of 18 nodes aligned from the base of the wing to the
tip and used this information to estimate stiffness distribution with the Matlab simplex
minimization program (in the same way that [ used continuous wing displacement to
estimate stiffness distribution in real wings). I determined chordwise stiffness
distribution similarly, by fixing each wing at the leading edge (from the base to
approximately 2/3 wing span), applying a point force at the trailing edge, and recording
displacement at 18 nodes between the leading and trailing edge.

To determine how these different stiffness distributions affect wing bending, I
first applied static loads to the model wings. I fixed each wing at its base and applied a
point load of 0.005 N at the tip (within the range of loads applied to real wings) or a
pressure load of -14.43 Pa to the wing surface (equivalent to the lift force that the wing

would experience during steady flight). [ then compared the patterns of displacement in

the two models.

Dynamic finite element modeling
Although static tests provide some information about how wing stiffness
distributions affect bending, real wings are unlikely to experience anything like a point
force during flight. And although wings may experience steady aerodynamic forces at
certain points in a wing stroke, other forces (such as the inertia of the wing itself) may be

more important in determining how wings bend during flapping flight (see Chapter 5).
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I used a simple kinematic pattern to examine how rapid, unsteady motions affect
bending in the two model wings. I rotated each model wing around one axis (the y-axis,
see Fig. 4.3) at the base, with no displacement at the base nodes. I started the wing from
rest and gradually increased the amplitude of motion to a sinusoidal curve with the
following equation:

O=(1-e"")*sin(ax) (4.9)
where 0 is the rotation at the base nodes (standardized to an amplitude of +/-1 radian), ¢
is time in seconds, T is the time constant and ® is the angular frequency (2ntf, where fis
the flapping frequency). I rotated the wing at 26 Hz (a realistic wing beat frequency for
Manduca) and multiplied the standardized amplitude by 0.9245 radians to rotate the wing
through a total amplitude of 108.5°. [ adjusted the time constant (T = 1/50) to minimize
the effects of initial conditions at the base.

[ set the density of elements at 500 kg/m’ to provide the correct total wing weight
of 0.035 g (given the element thickness and total area of the model wing). This density
may be lower and the average thickness higher than in real Manduca wings, but because
the mass distribution is uniform, these values should have little effect on the results. The
uniform mass distribution may also cause bending in the distal regions to be
overestimated, but the qualitative differences in wing bending between the two models
should not be affected by this assumption. I set the Poisson's ratio of wing elements at
0.495 (consistent with measured values of biological materials; Wainwright et al., 1982)

Because the model does not calculate aerodynamic forces acting on the wing, a

damping factor must be applied. I use a mass damping factor of 300 on the elements of
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the wing, a value which produces wing motions that most closely match those measured
in real Manduca wings undergoing the same rotation (see Chapter 5).

I used the large-displacement solution option and tested for convergence using
the relative/absolute displacement option with tolerances of 0.05 and 0.005, respectively.
[ ran the model for 1200 time steps, simulating a total flapping time of 0.24 seconds.
Within this time, the wing rotates through 6.25 cycles, with the last 3.5 cycles at full

amplitude. I compared bending in the two model wings during the last rotation cycle.

Results
Calculation of local flexural stiffness
The patterns of wing displacement measured in Manduca sexta are significantly
different from those predicted for a wing with constant flexural stiffness or with stiffness
that varies linearly in the spanwise direction (Fig. 4.2A,B). Displacement patterns in the
chordwise direction of Manduca wings, as well as in the spanwise and chordwise
directions of Aeshna multicolor wings, also differ from those predicted by constant or
linear stiffness distributions.

Both exponential and 2nd-degree polynomial distributions of flexural stiffness
provide a relatively good prediction of wing displacement (Fig. 4.2C,D, right panels).
However, the 2nd-degree polynomial distributions that provide the best fit for wing
displacement sometimes increase in stiffness towards the tip or trailing edge (Fig. 4.2D,
left panel), and often pass below zero, particularly for stiffness in the chordwise

direction. On the other hand, an exponential stiffness distribution provides results that
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are consistent among individuals, and effectively predicts displacement in the spanwise
and chordwise directions in both Manduca sexta and Aeshna multicolor. 1 therefore
chose an exponential equation as the best approximation for patterns of wing stiffness in
the insects tested.

Applying repeated loads (in random order) to the dorsal surface of a Manduca
wing revealed that these estimates of stiffness distribution are generally repeatable (i.e.
lines of the same color in Fig. 4.4), particularly for larger loads where image resolution is
better. In addition, control measurements on a glass coverslip provide an approximation
of constant stiffness along the length (as expected), validating the method of estimating
local flexural stiffness (Fig. 4.4).

Averages of local flexural stiffness along the length of wings (EI ) are related to
the effective strain (displacement per length) of the wing. The slopes of the relationship
between EI and strain are significantly different from zero in nearly all cases (Table
4.1), indicating that much of the variability in these stiffness estimates may be due to
non-linear behavior of the wings. In addition, the slopes are nearly always positive
(Table 4.1), suggesting that wings of both species become effectively stiffer when

subjected to larger loads (see Fig. 4.4).

Comparisons of wing stiffness
Wing stiffness and morphological measurements of both species are shown in
Tables 4.2-4.4. Female Manduca sexta are heavier and have larger wings than males, but

aspect ratio and wing loading are the same in the individuals sampled (Table 4.5).
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Although overall wing stiffness scales with wing size across a broad range of species (see
Chapter 3), spanwise El is not significantly different between male and female
hawkmoths (Table 4.5). In the chordwise direction, El is higher in females on the
dorsal side of the wing, but not on the ventral side. The exponents of the stiffness
distribution in the chordwise direction are also higher in females than in males, but
exponents in the spanwise direction are the same in males and females (Table 4.5, Fig.
4.5A).

The wings of all Manduca sexta are stiffer on the dorsal side than on the ventral
side, in both the spanwise and chordwise direction (Table 4.6). In contrast, Aeshna
multicolor has no dorsal/ventral difference in its hindwings or in the chordwise direction
of its forewings (Table 4.6, Fig. 4.5B). In the spanwise direction, the forewings are
stiffer on the dorsal side than on the ventral side, but the difference between dorsal and

ventral stiffness is less than half of that seen in Manduca (Table 4.3,4.4).

Finite Element Modeling
Although the two finite element models have the same tip or trailing edge
displacement in response to a point force, the distribution of flexural stiffness in the
spanwise and chordwise direction is radically different in the two wings (Fig. 4.6). The
flexural stiffness distribution of the exponential wing matches measured distributions in
real Manduca wings fairly well (although the model has no dorsal/ventral asymmetry -

see Discussion). The model with homogeneous vein and membrane regions has a nearly



112

constant stiffness in the spanwise direction and increasing stiffness in the chordwise
direction (Fig. 4.6).

The effects of these differences are apparent in static tests on the model wings
(Fig. 4.7). Although an applied point force results in the same tip displacement, bending
in the exponential wing is localized to the outer third of the wing, while the
homogeneous wing bends gradually along much of its span (Fig. 4.7A). When subjected
to a pressure load, the homogeneous wing again bends along a large portion of its length,
and its maximum displacement is nearly twice as large as the displacement of the
exponential wing (Fig. 4.7B). In the exponential wing, displacement is localized to the
tip and trailing edge of the wing, and bending is apparent in both the spanwise and
chordwise directions (Fig. 4.7B).

The effects of an exponential decline in stiffness are further illustrated by
dynamic tests on the models (Fig. 4.8; for a movie of the model wings in motion, see

http://faculty.washington.edu/danielt/movies). The exponential wing bends considerably

in the chordwise direction during the middle of the stroke, and bending in the spanwise
direction is confined mainly to the outer portion of the wing (Fig. 4.8, left panels). In
contrast, the homogeneous wing shows little chordwise bending and spanwise bending is
largest near the base, while the outer portion of the wing remains somewhat rigid (Fig.

4.8, right panels).
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Discussion

Flexural stiffness declines sharply from wing base to tip and from the leading to
the trailing edge in the wings of both Manduca sexta and Aeshna multicolor.
Displacement in the spanwise and chordwise directions of these wings can be predicted
fairly well when the stiffness distribution is approximated by an exponential equation.
The observed similarities in flexural stiffness distribution in these two species (despite
their dramatic differences in wing shape and venation pattern), suggest that a sharp
decline in wing stiffness towards the tip and trailing edge may be a common pattern in
many insect wings.

In addition, the wings of both species display a non-linear response to loading.
where average stiffness increases in response to larger loads. This behavior could
provide insect wings with an automatic control mechanism to resist excessive wing

deformations during flight.

Comparisons of wing stiffness
The measurements of wing stiffness in male and female Manduca sexta suggest
that the two sexes may differ in their patterns of chordwise flexural stiffness. Although
the slight difference in wing size between males and females could have an effect on
overall wing stiffness, it does not provide an explanation for the different patterns of
chordwise stiffness seen in the two sexes; the wings of male Manduca sexta decline in
stiffness far more sharply than those of females (as indicated by the more negative

exponents). The functional significance of these differences is unclear; but other aspects
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of Manduca wing morphology, such as the physical coupling of fore and hindwings also
display sexual dimorphism (Eaton, 1988), which could be related to the higher wing
loading measured in females carrying eggs (Willmott and Ellington, 1997b). The higher
average stiffness and more gradual decline in chordwise flexural stiffness measured in
females could potentially allow their wings to maintain the same level of performance as
the wings of male moths despite higher wing loading, for example by providing similar
chordwise deflections during flight.

The wings of both male and female Manduca sexta display a large dorsal/ventral
difference, while those of Aeshna multicolor do not. Dorsal stiffness is greater than
ventral stiffness in both directions of Manduca wings. In the spanwise direction, this
difference is greatest near the base: Steppan (2000) found a similar dorsal/ventral
asymmetry near the base of butterfly wings. Higher dorsal stiffness has also been found
in the leading edge spar of locust hindwings (Wootton et al., 2000).

Although measurements of such bending asymmetry are rare, theoretical studies
have suggested that insect wings might display dorsal/ventral stiffness asymmetry due to
the camber inherent in most wings (Ennos, 1995; Ennos, 1997; Wootton, 1993).
However, these arguments predict that wings should be stiffer to forces from the ventral
(concave) side than from the dorsal (convex) side, contrary to what I observed. [
therefore explored the effects of camber on bending asymmetry in both the finite element
model of a Manduca wing (adding 5% spanwise and chordwise camber, as measured in
real wings), and in a finite element model of a more strongly cambered beam attached at

one end (Fig. 4.9).
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In both models, the response to a point force applied at the tip in the dorsal or
ventral direction was exactly the same (Fig. 4.9). Although the deformed shape was
quite different depending on the direction of force application, the maximum
displacement (as well as the magnitude of displacement at each point on the surface, i.e.
green arrows in Fig. 4.9A) was identical in both cases. Maximum displacement due to a
pressure load (Fig. 4.9B) or to an off-axis load resulting in torsion (not shown) was also
symmetric. In a more dynamic situation (such as in flapping flight), camber may in fact
lead to dorsal/ventral differences in wing deformation, but it does not seem to explain the
large differences measured in this study for wings subjected to static point loading.

Although Manduca wings have none of the gross anatomical features often
associated with bending asymmetry (i.e., a ventral flexion line), their veins may contain
one-way hinges or other micro-structural features that facilitate asymmetric bending in
other insect wings (Wootton, 1981; Wootton, 1992). In addition, the stress-stiffening
effect explored by Kesel et al. (1998) in models of dipteran wings could potentially apply
to Manduca. When unloaded, the membranes of Manduca wings lay rather loosely
between the veins extending to the trailing edge. When a point force is applied to the
dorsal side of the trailing edge (which is cambered downwards), it appears to pull the
trailing edge veins apart. This should first remove any slack in the membrane, and might
then increase the stiffness of the wing as force is applied to the already-taut membrane
(the stress-stiffening effect). When a point force is applied to the ventral side of the
trailing edge (which is cambered upwards), the veins are pushed together and the

membranes between them become looser.
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The direction of dorsal/ventral asymmetry measured in Manduca wings might at
first seem counter-productive to force production, as lower ventral stiffness would
suggest that the wings bends upwards during the powerful downstroke. However,
tracings from high-speed video of hovering Manduca sexta show that the most dramatic
wing deformations actually occur at stroke reversals, particularly during supination (Fig.

4.10; for a movie of a hovering hawkmoth, see http://faculty. washington.edu/danielt/

movies).

The wings of many insects display torsional asymmetry, in which they supinate
more easily than pronate (Ennos, 1988; Wootton, 1993). This pronounced supination is
necessary to generate useful force on the upstroke, which is required for hovering flight
(Wootton, 1990a). However, the coupling of fore and hindwings in Manduca may limit
twisting at the wing base, which occurs in dipterans (Ennos, 1988) and other insects with
uncoupled wings (such as odonates).

Although torsional stiffness was not measured in this study, bending and torsion
are necessarily related. The torsion a Manduca wing undergoes during supination
involves ventral bending (resulting in a ventrally convex surface- see Fig. 4.10), and thus
would be facilitated by lower ventral stiffness. In contrast, the torsion and bending
during pronation (which would involve dorsal bending) appear to be relatively small

(Fig. 4.10, bottom and top panel).
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Finite element modeling

The finite element models reveal that the distribution of flexural stiffness in
wings is a critical in determining how wings bend. Despite undergoing the same tip
deflections in response to a point force, the two model wings display radically different
patterns of bending. The sharply declining stiffness measured in real wings (modeled as
an exponential decline) localizes bending to the tip and trailing edge of the wing. This
serves to maintain essential rigidity in the proximal portions of the wing (despite larger
bending moments), and transfers bending to the distal edges of the wing. where
aerodynamic force generation is most sensitive to subtle alterations in shape. In addition
to these potential aerodynamic effects, lower stiffness at the wing tips may provide other
advantages, including lowering inertial costs and reducing damage in collisions (Ennos,

1989; Wootton, 1992).

Concluding remarks

This study demonstrates that the distribution of flexural stiffness in the spanwise
and chordwise direction of insect wings can be estimated by measuring local
displacement and using a simple mathematical function to approximate local stiffness.
Flexural stiffness in the wings of both Manduca sexta and Aeshna multicolor declines
sharply from base to tip and from leading edge to trailing edge; this pattern of stiffness
can be modeled as an exponential decline. Modeling stiffness distributions as simple
mathematical functions allows comparisons within individuals (i.e. pronounced

dorsal/ventral asymmetry in Manduca), within species (i.e. potential sexual dimorphism
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in Manduca), and may ultimately allow comparisons between species, as more
measurements are completed. Measurements of stiffness in the two species, as well as
generalized finite element models, suggest mechanisms by which the structure of insect
wings may automatically control wing deformations: non-linear behavior may help
prevent excessive deformations, and a sharp decline in flexural stiffness towards the
edges of wings (which appears to be preserved despite large changes in wing venation)
may limit bending in core wing regions while enhancing bending in zones critical to

aerodynamic control.
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Fig. 4.1. Manduca sexta wing and calibration slide illuminated with laser lines. (A)
Unloaded Manduca sexta wing illuminated with a laser. A Matlab program is used
to find the center of a laser line running from the base of the wing to the tip (shown
in yellow). (B) Loaded Manduca sexta wing illuminated with a laser. A point force
is applied to the tip of the wing and the new position of the line is found (in red).
The end positions of the lines are recorded (dotted lines) and the change in position
of the laser line (W(x)) is used to find displacement of the wing in the z-axis (&(x)).

(C) Calibration slide with steps of known height. Change in position of a laser line
(¥(x)) is used to determine the relationship between line position and height in the z-

axis.
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Fig. 4.2. Proposed distributions of flexural stiffness and predicted versus measured
displacement in a Manduca wing. Proposed spanwise distributions are shown on left
and predicted displacement due to a point force at the tip are shown on right (in gray).
Predicted wing displacement is compared to actual displacement of a Manduca sexta
wing (right, in black) for four possible approximations cf the stiffness distribution: (A)
constant along the span, (B) linear, (C) exponential, or (D) 2nd degree polynomial.
Simplex minimization was used to find the parameter values of each equation that
produced the best fit between actual and predicted displacement; panels on the left
show the best approximation of wing stiffness for each stiffness distribution.
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lcm

Fig. 4.3. Finite element models of Manduca wings. (A) Model of a Manduca wing
with membranes (blue) and veins (pink) each of homogeneous material stiffness
(Young’s modulus). (B) Model of a Manduca wing in which declining material
stiffness of membranes (memb 1-12) and veins (vein 1-12) results in an exponential
decline in flexural stiffness. Each color represents a different value of Young’s
modulus (see text for range of values).



126

e 0ad |
IE-2 == [cad 2
: o= [oud 3
w load 4
1E-3 — l?):dS
p - coverslip
“ 1E4 :
Z
& |E-5
< b
1E-6 : _ _ spanwise
: chordwise
IE-7
IE-8 -

0 0.01 0.02 0.03 0.04 0.05
distance along span/chord (m)

Fig. 4.4. Local flexural stiffness of a single Manduca wing subjected to repeated
loads. Each line represents a large series of points (from several hundred to several
thousand) measured on the wing. Flexural stiffness declines exponentially in both the
spanwise and chordwise directions, and varies with the magnitude of the applied force.
Point loads of varying strength were applied to the dorsal surface at the wing tip
(spanwise) or trailing edge (chordwise). Tip deflections varied from approximately
1.8% of wing span (load 1) to 7.1% span (load 5) and trailing edge deflections varied
from 4.4% chord length (load 1) to 15% chord length (load 5). Loads were applied in
random order and each load was repeated three times. Local flexural stiffness of a
glass coverslip (with constant geometry and homogeneous material properties) was
measured as a control.
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Fig. 4.5. Local flexural stiffness in wings of Manduca sexta and Aeshna multicolor.
In each graph, spanwise stiffness is shown above (longer lines) and chordwise
stiffness below. Each line represents a large series of points (from several hundred to
several thousand) measured on a wing. Spanwise stiffness is shown for a tip
deflection of 5% wing span and chordwise stiffness for a trailing edge deflection of
8% chord length in all individuals; dorsal stiffness is in black and ventral stiffness in
grey. (A) Local flexural stiffness of male Manduca sexta forewings (n = 9 spanwise,
n = 10 chordwise). (B) Local flexural stiffness of female Manduca sexta forewings
(n = 4 spanwise, n =9 chordwise). (C) Local flexural stiffness of male Aeshna
multicolor forewings (n = 8). (D) Local flexural stiffness of male Aeshna multicolor
hindwings (n = 8).
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Fig. 4.6. Comparison of local flexural stiffness in finite element model (FEM) and
real Manduca wings. Local stiffness in male Manduca wings is shown in black and
gray as in Fig 4.5a. FEM wings are fixed at the base (or leading edge) while a point
force is applied to the tip (or trailing edge). Calculated displacement at nodes along
the span or chord is used to estimate the distribution of £/ with the Matlab simplex
minimization program used for real wings.
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Fig. 4.7. Results of static loading tests on FEM wings. Wings are fixed at the base;
displacement from original position (black outline) in the z-direction is shown (in
meters). FEM wing with homogeneous membrane/veins is shown on the left and wing
with exponential membrane/veins is shown on the right. (A) Displacement due to a
point force of 0.005 N (green arrow) at the wing tip. Note that displacement at the tip
is the same in both models. (B) Displacement due to a normal face load of -14.43 Pa
(green arrows), the approximate pressure on a wing during steady flight (for a moth
with a total mass of 1.882 g, the pressure on one wing is 1/2 body weight divided by
the area of one wing (6.4 x 10~ m>)). Note that maximum displacement in the
homogeneous wing is nearly twice as large as in the exponential wing.
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Fig. 4.8. Sequence of images from flapping FEM wings. Wing is moving to the right,
viewed from its leading edge; time steps proceed down the page. Wings are shown at the
same time steps. The center of the stroke plane is shown with a straight line. (A) FEM
wing with exponentially declining membrane and vein stiffness. (B) FEM wing with
homogeneous membrane and vein stiffness.
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Fig. 4.9. Resuits of bending tests on a finite element model of a cambered plate. The
plate is fixed at the left side (brown arrows), and displacement from the original
position (black outline) is shown. (A) Bending due to a point force applied at the
center of the tip. Note that the magnitude of displacement at each point on the
surface (i.e. green arrows) is the same whether the force is applied to the convex side
(left panel) or the concave side (right panel). (B) Bending due to a normal face load
applied on the convex side (left panel) or concave side (right panel). The magnitude
of displacement at each point on the surface is the same in each case.



132

0 %Z é ){
10 : ; downstroke
E v
= 20 ;
g % ; }
° i supination
E E
R U
26 §
k : } upstroke
A
v : v

Fig. 4.10. Sketches of Manduca sexta hovering freely while feeding at an artificial
flower. Images are drawn from high-speed footage (500 frames/sec) from two
cameras; lateral view is shown on left and dorsal view on right. Dorsal surface of the
wing is shown in dark gray and ventral surface in light gray.
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Table 4.1. One sample sign test on slopes of EI versus strain. Significant values are
shown in bold type.

p-value n n>0
Manduca sexta forewing spanwise dorsal 0.2668 13 9
spanwise ventral 0.0005 12 12
chordwise dorsal 0.0007 19 17
chordwise ventral 0.0044 19 16
Aeshna multicolor forewing spanwise dorsal 0.0078 8 8
spanwise ventral 0.0078 8 8
chordwise dorsal 0.0078 8 8
chordwise ventral 0.0078 8 8
Aeshna multicolor hindwing | spanwise dorsal 0.0078 8 8
spanwise ventral 0.0078 8 8
chordwise dorsal 0.0156 7 7
chordwise ventral 0.0703 8 7
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Table 4.2. Morphological measurements of Manduca sexta and Aeshna multicolor.

individual | wing area | span chord body wing
(cm?) (cm) (cm) mass (g) | mass (g) |
Manduca sexta Mi 7.55 5.21 2.01 2.310 0.0440
M2 7.00 4.96 1.93 2.284 0.0425
M3 7.19 4.99 1.99 2.207 0.0425
M4 6.51 4.58 1.89 1.882 0.0350
M5 7.81 5.04 2.10 1.948 0.0425
M6 7.32 5.25 2.07
M7 6.71 4.99 1.96 1.929 0.0375
Fl 8.66 5.35 2.21 2.610 0.0485
F2 7.78 5.26 2.04 2.756 0.0480
F3 8.31 5.33 2.16 2.640 0.0490
F4 8.12 5.34 2.12 2.565 0.0425
F5 8.00 5.65 2.27
F6 8.65 5.54 2.25 2.774 0.0520
F7 8.77 5.64 2.27 2.437 0.0475
Aeshna multicolor Dl 3.61 4.22 1.02 0.575 0.0070
forewing
D2 4.06 4.52 1.07 0.619 0.0085
D3 4.06 4.52 1.07 0.698 0.0100
D4 4.06 4.57 1.07 0.665 0.0075
DS 4.00 4.47 1.07 0.683 0.0075
D6 4.45 4.75 1.09 0.733 0.0085
D7 4.39 4.72 1.09 0.715 0.0080
D8 4.32 4.70 1.09 0.763 0.0080
hindwing DI 4.52 4.01 1.30 0.575 0.0095
D2 5.03 4.29 1.35 0.619 0.0080
D3 4.97 4.37 1.32 0.698 0.0150
D4 4.97 4.29 1.32 0.665 0.0110
D5 4.90 4.24 1.30 0.683 0.0095
D6 5.61 4.55 1.42 0.733 0.0105
D7 5.61 4.57 1.40 0.715 0.0095
D8 5.42 4.45 1.42 0.763 0.0095
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Table 4.3. EI and flexural stiffness exponents of Manduca sexta. M indicates male
moths and F female moths. Spanwise values are calculated at a tip displacement of 0.05
span and chordwise values at a trailing edge displacement of 0.08 chord.

ID span span span span chord chord chord chord
dors EI | vent EI | dors vent dors EI | vent EI | dors vent
(x10") | (x10™) |exp exp (x10% [ (x10°% |exp exp

Mi 3.834 0.298 | -156.2 -109.5 2.248 0.619 -192.5| -183.0
M2 0.847 0.208 | -144.4| -108.9 1.592 1.420| -149.6| -227.2
M3 1.394 0.250 | -135.9| -117.4 3.093 0.879 | -140.6| -235.5
M4 0.709 0.155| -147.1 -119.7

M5 0.772 0.242 | -124.0 -87.5 2.401 1.357 -120.5 | -209.7
M6 2.004 0.329 | -160.5| -104.8 3.220 1.871 -96.1 | -317.7
M7 1.174 -152.0 4.740 1.185| -100.5| -336.4
M8 2.785 0.465| -167.4| -100.2 5.464 1.160 -58.7 | -185.2
M9 1.496 0.203| -136.0( -100.8 3.928 1.274| -110.8| -134.0
MI10 5.216 0.935 2.9 -87.9
Ml1 4.282 0.899 | -174.1| -202.7
Fl 1.910 0.585 | -127.0 -113.9 5.384 0.390 -22.6 -86.3
F2 2.201 0.542 | -129.8 -124.8 8.892 1.425 -21.6 ) -143.1
F3 2.695 0.307 | -136.0| -107.6 4.300 1.794 -73.8| -135.7
F4 2.335 0.151 | -145.3 -120.4 8.538 0.255 30.5| -152.4
F5 15.710 0.511 101.0 -99.5
F6 2.940 1.877 -70.7 | -133.0
F7 4.358 2.489 -87.4| -146.0
F8 8.292 2.807 -12.3| -31.1
F9 3.918 1.236 -28.4| -117.3




Table 4.4. EI and flexural stiffness exponents of Aeshna multicolor. F indicates
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forewing and H hindwing of same individual. Spanwise values are calculated at a tip
displacement of 0.05 span and chordwise values at a trailing edge displacement of 0.08

chord.
ID span span span span chord chord chord chord
dors EI | vent EI | dors vent dors EI | vent EI | dors vent
(x10%) | (x 10%) | exp exp x 107) | (x107) |exp exp

F1 1.993 1.672 | -110.3 -60.7 7.098 1.305 -460.2 | -481.2
F2 3.315 2.067 | -102.4 -95.9 7.716 3.491 -487.5 | -392.8
F3 3.655 0.742 -99.4 -79.8 4.846 2.878 -329.5 | -264.7
F4 4.215 0.596 | -106.2 -69.4 7.466 1.689 -470.4 | -325.6
F5 3.335 0.623 -99.0 -91.0 1.708 3.928 -440.3 [ -397.0
Fé6 3.750 1.128 -78.9 -85.2 2.803 3.908 -316.1 | -120.6
F7 4.795 -84.1 -62.2 3.296 1.595 -197.2| -412.8
F8 3.735 2.078 | -104.5 -99.1 8.284 1.620 -388.4 | -346.5
H1 2.350 1.133 -98.5 -62.8 5.634 9.270 -2545| -168.4
H2 1.905 2.145 -87.2 -93.0 6.632 7.492 -236.9 | -218.2
H3 2.830 1.481 -50.8 -55.5 4.809 13.812 -38.2 22.4
H4 2.291 1.303 -63.8 -64.4 12.076 10.666 91.2| -181.8
HS 1.426 1.534 -79.6 -81.6 7.191 3.670 58.9 -13.4
H6 3.395 1.452 -83.5 -98.9 127.5 35.3
H7 2.011 4.440 -89.9 -98.9 8.280 3.036 -13.8 | -221.9
HS8 3.180 0.920 -85.9 -56.9 11.800 6.892 -69.3 -13.5




Table 4.5. Mann-Whitney U-test on male versus female Manduca sexta traits.

Significant values are shown in bold type.
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p-value |n n
(male) (female)

Morphological traits: wing area 0.0027 7 7
wing span 0.0017 7 7

chord length 0.0040 |7 7

body mass 00039 |6 6

wing mass 0.0115 6 6

aspect ratio 0.9461 7 7

wing loading 0.2623 6 6

Wing stiffness: spanwise dorsal El 0.1649 |9 4
spanwise dorsal exponent 0.1649 |9 4

spanwise ventral El 0.3082 8 4

spanwise ventral exponent 0.0894 8 4

chordwise dorsal EI 0.0209 10 8

chordwise dorsal exponent 0.0059 10 8

chordwise ventral EI 04772 | 10 8

chordwise ventral exponent | 0.0077 10 8
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Table 4.6. Wilcoxon signed rank test on dorsal versus ventral wing stiffness. Significant
values are shown in bold type.

p-value n
Manduca sexta forewing spanwise El 0.0022 12
spanwise exponent 0.0022 12
chordwise EI 0.0001 19
chordwise exponent 0.0002 19
Aeshna multicolor forewing spanwise El 0.0180 7
spanwise exponent 0.0251 8
chordwise EI 0.0687 8
chordwise exponent 0.2076 8
Aeshna multicolor hindwing spanwise El 0.3270 8
spanwise exponent 0.6744 8
chordwise EI 0.7353 7
chordwise exponent 0.3270 8
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Chapter 5

Contributions of inertial and aerodynamic forces to wing bending in Manduca sexta

Summary

During flapping flight, insect wings deform in response to the dynamic forces
acting upon them. Although the three-dimensional shape of flapping wings can have a
large effect on force production, few models of insect flight incorporate passive wing
flexibility, in part because the precise forces that determine wing bending are unknown.
Flapping wings must withstand both fluid-dynamic forces as well as inertial-elastic
forces generated by the rapid acceleration and deceleration of their own mass. Although
many theoretical studies suggest that inertial forces are larger than aerodynamic forces in
flapping insect wings, the relative importance of these forces in determining wing
deformations is unclear. In this study, I use an experimental approach to examine the
contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth
Manduca sexta. 1 rotate fresh Manduca wings at realistic flight frequencies and
amplitudes and compare wing bending in normal air versus helium (~15% air density), in
which the contribution of fluid-dynamic forces to wing deformations should be
significantly reduced. I find that an 85% reduction in air density produces only slight
changes in the pattern of Manduca wing deformations, suggesting that fluid-dynamic
forces have a relatively minor effect on wing bending. I then use a simplified finite
element model of a Manduca wing to recreate the motions of wings. I find that a damped

finite element model (with no fluid-dynamic forces included) may be able to predict
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overall patterns of wing deformation independent of calculations of aerodynamic force
production. These predicted shape changes could then be incorporated into models of

insect flight to assess the effects of wing flexibility on flight performance.

Key words: insect flight, wing flexibility, wing bending, aerodynamic forces, inertial

forces, finite element model, Manduca sexta

Introduction

Insect wings are flexible structures that bend and twist during flight. These three-
dimensional shape changes can have dramatic effects on force production. For example,
increasing the chordwise camber of a wing by only 10 degrees can lead to a five-fold
increase in lift (Batchelor, 1967), and waves of bending (which are commonly seen in
insects; Ellington, 1984c) can have dramatic effects on thrust production and
aerodynamic efficiency (Wu, 1971; Daniel, 1987, Combes and Daniel, 2001 - see
Chapter 1). In addition, wing flexibility may increase maneuverability (as suggested in
aquatic animals, Fish, 1999; Walker, 2000) or enhance passive stability (Sneyd et al.,
1982).

A model of insect flight that incorporates passive wing deformations would allow
us to examine the effects of wing flexibility on many different aspects of insect flight
performance. To predict deformations, this type of model would require a knowledge of
both the structural properties of the wing as well as the forces that act on the wing to

cause deformations. Overall structural and material properties of some insect wings are
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now available (see Chapters 3 and 4), but the forces responsible for wing deformations
during flight remain unknown.

During flight, wings generate aerodynamic forces (pressure stresses due to the
movement of fluid) that provide the lift and thrust necessary for flight. In fixed-wing
aircraft and in gliding birds, these aerodynamic forces cause wings to bend up noticeably
at their tips (i.e. the wing tips of a B-52 bomber can rise 32 feet from their resting
position during flight; Bisplinghoff and Ashley, 1975). Flapping animal wings also
experience inertial-elastic forces due to oscillations of the mass of the wing. Although
insect wings are small and light, they are accelerated and decelerated anywhere from 10
to over 1000 times per second, suggesting that inertial-elastic forces may be large enough
to play a role in wing bending.

If the effects of fluid-dynamic forces on wing bending are small relative to the
effects of inertial-elastic forces, predictions of the three-dimensional shape of insect
wings could be made from the kinematics, mass distribution and stiffness distribution of
the wing, prior to calculations of aerodynamic force production. On the other hand, if
fluid-dynamic forces are important in determining dynamic wing shape, predictions of
wing shape would have to be coupled (in each time step) to calculations of the fluid
forces generated by these shapes.

This coupled problem has been addressed by those studying aeroelastic
interactions in airplane design (particularly the aeroelastic "flutter” that was at one time
common in airplane wings; Bisplinghoff and Ashley, 1975). The study of aeroelasticity

has become an entire discipline and presents an extremely challenging problem, even in
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man-made structures with fixed wings and known forces. Aeroelastic effects in insect
wings would depend not only on the stiffness distribution and motions of the wing, but
also on the temporal and spatial patterns of aerodynamic forces acting on the wing.
These forces cannot be measured with current technology, but the time-dependent
vortical structures produced by flapping wings (Ellington et al., 1996; Liu et ai., 1998;
Liu and Kawachi, 1998) suggest that the pattern of aerodynamic forces acting on wings
may be very complex, and determining these forces would be a challenge in itself.

The difficulties presented by an aeroelastic analysis of insect flight have
undoubtedly hindered the study of passive wing flexibility and its effects on flight
performance. However, if inertial-elastic forces dominate wing bending, we may be able
to predict the dynamic shape of flapping wings without solving the coupled aeroelastic
problem or determining the temporal and spatial patterns of forces acting on the wing.
This predicted dynamic wing shape could then be used in a variety of fluid-dynamic
models to assess its effects on aerodynamic force production, (for example, Daniel and
Combes, in prep.)

Several studies have estimated the magnitudes of inertial and aerodynamic forces
in insect flight to calculate total power (Ellington, 1984f; Lehmann and Dickinson, 1997;
Wakeling and Ellington, 1997c¢) or to separate the aerodynamic and inertial portions of
force measurements on flying insects (Zanker and Gotz, 1990; Wilkin and Williams,
1993). In most cases, the contribution of wing inertia is estimated to be higher than the
contribution of aerodynamic forces, sometimes by a factor of more than 30 (Ellington,

1984f). Wing inertia thus may play an important role in wing bending, but we still lack a
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basic understanding of how the mass of the wing and the fluid it moves through
contribute to the patterns of bending observed in insect wings.

In this study, I use an experimental approach to examine the relative contributions
of inertial-elastic and fluid-dynamic forces to wing bending. I attach fresh Manduca
sexta wings to an oscillator and rotate them at realistic flight frequencies and amplitudes.
I film wings rotating in normal air and in helium (~15% air density); the lower density of
helium should substantially reduce the contribution of fluid-dynamic forces to the
observed wing deformations.

I then recreate the motions of real wings with a simplified finite element model of
a Manduca wing. The model does not include any fluid-dynamic forces and thus
predicts patterns of wing bending due solely to structural features and inertial-elastic

effects. I compare patterns of bending in the model with bending measured in real

Manduca wings.

Materials and Methods
Dynamic bending experiments
For dynamic bending tests, I used wings from Manduca sexta raised in a colony
at the University of Washington (see Discussion for an analysis of how the size and
weight of insect wings may affect wing bending). [ anaesthetized moths by placing them
in the freezer for 1 to 5 minutes. I then removed one forewing at the base and recorded
wing and body weight. I marked three spots on the wing (on both the dorsal and ventral

sides) with a small dot of reflective white paint: the wing tip, the trailing edge (where
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chord length is maximum, approximately 50% wing span) and the leading edge (at the
same spanwise position). I used cyanoacrylate glue and baking soda to attach the base of
the wing to a brass rod extending from an oscillator. The oscillator (pen motor of a
Gould chart recorder using the existing Gould amplifier) is capable of high-frequency
motions in one axis, and was modified to rotate a brass rod with a wing attached (Fig.
5.1).

I fixed the oscillator to a platform inside a 30-cm Plexiglass cube (with I-cm
thick walls) and controlled its motions with a function generator. I rotated wings
sinusoidally through a total amplitude of approximately 110° (see Table 5.1) at room
temperature. I recorded wing motions with two high-speed video cameras (Redlake Inc.)
filming at 1000 frames per second, one from above (viewing the wing from its leading
edge) and the other from the front (viewing the wing from its tip).

[ filmed each wing rotating at approximately 0.5 Hz (as a calibration for the shape
and position of the wing when no dynamic bending occurs) and at approximately 26 Hz,
which is close to the normal flight frequency of Manduca (see Table 5.1). I then lowered
the density of fluid inside the chamber by repeatedly removing air and adding helium. I
used a vacuum pump with a pressure transducer attached to remove approximately 50%
of the air from an opening near the bottom of the box and replaced that air with pure
helium from an opening near the top of the box (Fig. 5.1). I repeated this process five
times (which results in ~97% of the air inside the box being replaced with helium). I
then filmed the wing rotating at 26 Hz in helium, which has a density of 0.164 g/l

(approximately 14% of normal air density; CRC, 2001). Finally, I opened the lid of the
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box to release the helium and filmed the wing rotating again at 26 Hz in normal air (as a

control for wing damage). I completed all filming within one hour to prevent the wing

from stiffening.

Wing bending analysis

For each wing, I analyzed video sequences of the calibration (0.5 Hz) and
experimental (26 Hz) rotations in normal air and in helium. I analyzed video frames
from three complete rotation cycles in the middle of each filming sequence. I found the
coordinates of the wing tip, leading edge and trailing edge in each frame (Fig. 5.2) using
a Matlab program (PointNClick2, provided by M. S. Tu) and converted the coordinates
to centimeters using images of 2-cm grids from each camera. [ converted the three-
dimensional Cartesian coordinates to spherical coordinates in Matlab, using the base of
the wing as the origin and measuring the rotation of the wing (viewed from above) in
degrees (with zero degrees at the center of the rotation).

Because the settings on the function generator provide only approximate
measures of wing motion, [ found the actual rotation frequency and amplitude from video
sequences of the wings. I calculated the rotation frequency in each sequence as the
inverse of the number of frames in a complete rotation divided by 1000 (Table 5.1). [
found the rotation amplitude for all sequences of a given wing from the motions of the
leading edge in the calibration sequence (because at 26 Hz the leading edge bends
slightly and moves through a larger amplitude). To determine whether rotation

amplitude varies between 0.5 and 26 Hz, I measured the amplitude of an inflexible,
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hollow brass rod (attached in the same way as a wing and of equivalent weight) rotating
at both frequencies (Table 5.1).

To quantify wing bending in the spanwise direction, I calculated the difference
(in degrees) between the leading edge and wing tip (Fig. 5.2). Although the wing bends
along its entire span, the majority of bending occurs between the leading edge marker (at
~50% span) and the tip. To quantify chordwise bending, I calculated the difference in
position between the leading and trailing edge. Because of the inherent camber of
Manduca wings, the position of these points often differs slightly, even in calibration
sequences with no dynamic bending (Fig. 5.3). I therefore subtracted the leading
edge/tip and leading edge/trailing edge differences in calibration sequences from the
differences in the same wing when rotating at 26 Hz. I used the position of the leading
edge in time to align the start and stop points of the sequences and used a Matlab
program to spline the data to an equal number of points for comparison (Appendix 5).

Finally, I corrected the calculated differences in position for the direction of
motion of the wing. I used the derivative of the position of the leading edge to determine
if the wing was rotating to the left or the right, and multiplied the values calculated when
the wing was moving to the right by -1. The resulting differences in position are
negative if the tip or trailing edge follows the leading edge and positive if the tip or

trailing edge precedes (moves in front of) the leading edge.
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Finite element modeling

I created a finite element model (FEM) based on the planform image of a male
Manduca wing (see Chapter 4). The model is composed of 345 thin shell elements of
uniform thickness (110 pm), with a mixture of 3- and 4-node (triangular and square)
elements. I adjusted the material stiffness (Young's modulus) of the elements to provide
an exponential decline in flexural stiffness in both the spanwise and chordwise directions
(approximating patterns of stiffness in real wings, see Chapter 4); vein elements are
stiffer than membrane elements to mimic the increased flexural stiffness of tubular veins
(and to provide the measured spanwise-chordwise anisotropy, see Chapter 3). [ used a
Poisson's ratio of 0.495 (consistent with measured values of biological materials;
Wainwright et al., 1982) and set the density of wing elements at 500 kg/m’, which gives
the correct total wing weight of 0.035 g (this density estimate may be lower and the
average thickness higher than in real Manduca wings, but because the mass distribution
is uniform, these values should have little effect on the resuits).

Because the modeling program cannot calculate unsteady fluid forces, the
predicted motions of the model wing approximate the motions of a wing rotating in a
vacuum (with no fluid present), and thus depend on inertial-elastic forces alone. Because
fluid generally damps high-frequency motions, a damping factor is often applied to finite
element models to simulate the effects of a fluid medium. I used a mass damping factor
(mass matrix multiplier of 300) and compared the motions of the model wing with and

without this damping.
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I rotated the model wing around its base (with no displacement) at a frequency of
26 Hz, as in the experiments on real wings. I started the wing from rest and gradually
increased the amplitude of motion to a sinusoidal curve with the following equation:

6= (1-¢e"")sin(wr) S.h

where 8 is the rotation at the base nodes (in radians, standardized to an amplitude of +/-
1), t is time in seconds, T is the time constant and w is the angular frequency (27tf, where f
is the flapping frequency). I multiplied the standardized amplitude by 0.9245 radians to
rotate the base through a total amplitude of 108.5° and adjusted the time constant (T =
1/50) to minimize the effects of initial conditions at the base.

I ran the model for 4800 steps, simulating a total flapping time of 0.24 seconds.
Within this time, the wing rotated through 6.25 cycles, with the last 3.5 cycles at full
amplitude. I measured displacement of nodes at the wing tip, leading edge, and trailing
edge (in the same locations as on real wings) through the last three cycles of rotation and
calculated spanwise bending (leading edge/tip difference) and chordwise bending

(leading/trailing edge difference) as above.

Results
Measured values of rotation frequency and amplitude in the three Manduca wings
are similar, with an average amplitude of 108°, calibration frequency of 0.56 Hz and
experimental frequency of 26.2 Hz (Table 5.1). The control performed on a hollow brass

rod reveals that rotation amplitude does not change dramatically with frequency (Table
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5.1), so amplitudes measured on calibration sequences of each wing can be used to
approximate rotation amplitudes at 26 Hz.

The trajectories of the wing tip, leading edge, and trailing edge of wings rotated
in normal air at the end of the experiment are indistinguishable from those of wings
rotated in normal air at the beginning (data not shown), indicating that the experimental
procedure does not damage the wings and that wings do not stiffen appreciably during
the procedure. Data from the initial rotation in normal air (as well as the rotation in
helium) are presented in Figures 5.4 and 5.5.

The positions of the wing tip and trailing edge reveal that the motions of the
wings in normal air and in helium are remarkably similar (top panels, Fig. 5.4, 5.5).
Overall patterns of spanwise bending (leading edge/tip differences) and chordwise
bending (leading/trailing edge differences) are also similar (bottom panels, Fig. 5.4, 5.5).
The wings display some dorsal/ventral asymmetry, but bending patterns are comparable
in both directions.

In both normal air and in helium, the tip and trailing edge follow the leading edge
through much of the rotation (as indicated by the negative values in bottom panels of Fig.
5.4,5.5). However, as the wing slows to change direction, the tip and trailing edge tend
to move in front of the leading edge (as indicated by positive values in Fig. 5.4, 5.5; see
also position of arrow in Fig. 5.2).

Simulations with the FEM wing reveal a similar pattern. The positions of the
wing tip and trailing edge are similar to those measured in real wings, and the tip and

trailing edge move in front of the leading edge as the wing slows to reverse direction
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(Fig. 5.6). For movies of wing bending in real and model wings, see

http://faculty. washington.edu/danielt/movies.

Discussion

Manduca wings bend appreciably when rotated at normal flight frequencies, with
the wing tip and trailing edge following the leading edge by up to 20 degrees. Overall
wing motions and patterns of bending are similar in both normal air and in helium. In
both cases, the tip and trailing edge follow the leading edge for much of the rotation, but
as the wing slows, the tip and trailing edge swing in front of the leading edge.

The similarity in Manduca wing trajectory and bending patterns, despite an 85%
decrease in fluid density, suggests that the contribution of aeroelasticity to wing
deformations may be relatively minor compared to the contribution of wing inertia.
These experimental results agree with several previous theoretical analyses of the effects
of wing inertia on bending. Ennos (1989) estimated that spanwise local bending
moments due to the inertia of flapping wings may be at least twice as large as those due
to aerodynamic forces, and showed that wing inertia alone could cause the tip-to-base
torsional wave seen in many insect wings during supination (Ennos, 1988). Daniel and
Combes (in prep.) examined chordwise local bending moments in oscillating, flexible
strips of wings and found that when these motions occur in air, bending moments
generated by elastic wave propagation (inertial-elastic effects) are significantly larger

than the moments exerted on the strip by the fluid (fluid-dynamic effects).



151

Although overall patterns of bending in the wings tested appear to be dominated
by inertial-elastic forces, some aspects of wing motion differ in normal air versus helium.
The most obvious difference is the presence of higher-frequency components of motion
in the wings rotating in helium. Both the tip and trailing edge oscillate around the
position of the leading edge, particularly after swinging in front of the leading edge as the
wing changes direction (Fig. 4.4, 4.5). This type of motion is also present (to a lesser
degree) in wings rotating in normal air. However, because these oscillations are smaller,
the tip and trailing edge of wings rotating in normal air tend to fall farther behind the
leading edge during the middle of a rotation than wings in helium (i.e. shaded areas of
Fig. 4.4, 4.5).

Simulations of wing bending in the model wing suggest that fluid damping could
explain why these higher-frequency motions are reduced in normal air. The undamped
model displays high-frequency motions similar to those seen in real wings rotating in
helium (Fig. 5.6). However, mass damping removes these oscillations and causes the
wing tip and trailing edge to fall farther behind the leading edge during the middle of
each rotation (Fig. 5.6), as in real wings rotated in normal air (Fig. 5.4, 5.5). These
results suggest that a damped finite element model could be successful in predicting the
overall pattern and magnitude of wing deformations. This model would require knowing
only the wing’s stiffness distribution (see Chapter 4), its mass distribution (which was
absent in the current model), and the boundary conditions (torques or angular excursions)

at the base.
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The current analysis focuses on Manduca sexta, a relatively large insect with
heavy wings. The large size and weight of Manduca wings might suggest that inertial-
elastic effects would be more important in determining wing bending in this species than
in other species with smaller, lighter wings. A simple analysis of average bending
moments can be used to assess the relative magnitudes of inertial-elastic and
aerodynamic moments on flapping wings (Daniel and Combes, in prep):

R=(m,/m,)40w’L/3g (5.2)
where R is the ratio of inertial-elastic to aerodynamic bending moments, m,, is mass of
the wing, m, is mass of the body, © is stroke amplitude, @ is angular frequency (27 *
flapping frequency), L is wing span and g is earth's gravitational acceleration. The ratio
of wing to body mass is relatively conserved in many insects, falling between
approximately 0.5% and 3% (Ellington, 1984b), but wing span (L) varies widely.
However, because the frequency term in Eq. 5.2 is squared, flight frequency has a large
effect on the moment ratio. Thus, many smaller insects (with higher flight frequencies;
Dudley, 2000) may actually have higher ratios of inertial-elastic to aerodynamic bending
moments. Estimates suggest that this ratio is large in insects over a broad size range
(R=5 in Manduca and R=4 in Drosophila melanogaster), indicating that inertial-elastic
effects may be critical in determining wing bending in many species.

Because aeroelastic effects appear to play a relatively minor role in determining
dynamic wing shape, an integrative model of insect flight that incorporates passive wing
flexibility may be easier to develop than previously thought. Numerical methods that

provide detailed calculations of fluid-solid interactions in each time step will
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undoubtedly continue to contribute to our understanding of three-dimensional fluid flow
and force production in insect flight. However, recent work suggests that far simpler
analytical methods are able to predict the temporal patterns of force production in
flapping wings remarkably well (Sane and Dickinson, 2002). Inserting the dynamic
shape of wing sections (as determined by a simple damped FEM analysis) into quasi-
steady models of flight that account for some unsteady effects (such as wing rotation and
added mass) may yield a tractable modeling tool that could be used to explore the effects

of passive wing flexibility on aerodynamic force production.

Concluding remarks

The results of this study suggest that aeroelastic interactions between insect wings
and the fluid-dynamic forces they generate may play a relatively minor role in
determining wing deformations, when compared to the inertial-elastic forces generated
by flapping wings themselves. This finding greatly simplifies the process of predicting
dynamic wing shape, and brings us one step closer to developing a tractable model of
insect flight that incorporates passive wing flexibility. Given that overall flexural
stiffness scales with wing size (Chapter 3) and declines sharply towards the tip and
trailing edge of wings (Chapter 4), measurements of mass distribution in a wing should
allow one to make a reasonable prediction of the patterns and magnitude of wing
deformations during flight, using a simple damped finite element model of a wing. This

information could then be incorporated into a variety of models of insect flight to
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understand how passive wing flexibility affects aspects of flight performance ranging

from force production to maneuverability and control.
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Fig. 5.1. Apparatus used to test Manduca wing bending in low air density. A wing is
attached to an oscillator that rotates the wing around its base. The wing is rotated at
26 Hz through a total amplitude of 110 degrees and filmed at 1000 frames per second
from orthogonal views. Then approximately half the air is removed from the box and
replaced with helium. This process is repeated until the box is filled with helium
(~15% normal air density) and the wing is again filmed while rotating.
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Fig 5.2. Frames from high-speed video of a Manduca wing rotating at 26 Hz in low
air density. The wing is viewed from above and the positions of the leading edge
(star), trailing edge (arrow) and tip are digitized in each frame. In this sequence,
the wing is rotating to the left, with the dorsal side of the wing leading the motion.
Note that the leading edge precedes the wing tip and trailing edge for most of the
rotation, but as the wing slows, the wing tip (D and E) and trailing edge (E) move in
front of the leading edge.
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Fig 5.3. Frames from high-speed video of a Manduca wing rotating in normal air at
26 Hz and 0.5 Hz. In this sequence, the wing (viewed from above) is rotating to the
left with its dorsal surface leading the motion. To quantify wing bending, the position
of the leading edge, trailing edge, and wing tip are found (in degrees) for the same
wing rotating at 26 Hz (A) and 0.5 Hz (B). The difference between the position of the
leading edge (solid line) and trailing edge (dashed line) is used to quantify bending in
the chordwise direction. Differences due to the inherent camber of the wing are
removed by subtracting the leading/trailing edge difference in a slowly rotating wing
(in which no dynamic bending occurs, B) from the leading/trailing edge difference in
a wing rotating at Manduca flight frequency (A)..
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Fig. 5.4. Spanwise bending of Manduca wings rotated in normal versus low air density.
Wings from three different individuals (A,B,C) are shown. Wings were rotated around
one axis at ~26 Hz through a total amplitude of ~110°. For each individual, the top panel
shows the position of the wing tip (in degrees) and the bottom panel shows the difference
in position between the leading edge and the wing tip (in degrees). This difference is
adjusted for the direction of motion; values less than zero indicate that the wing tip
follows the leading edge, while values greater than zero indicate that the tip precedes the
leading edge. Segments in which the dorsal surface of the wing is leading the motion are
shaded.
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Fig. 5.5. Chordwise bending of Manduca wings rotated in normal versus low air density.
Wings from three different individuals (A,B,C) are shown. Wings were rotated around
one axis at ~26 Hz through a total amplitude of ~110°. For each individual, the top panel
shows the position of the trailing edge (in degrees) and the bottom panel shows the
difference in position between the leading edge and the trailing edge (in degrees),
measured at approximately 50% wing span. This difference is adjusted for the direction
of motion; values less than zero indicate that the trailing edge follows the leading edge,
while values greater than zero indicate that the trailing edge precedes the leading edge.
Segments in which the dorsal surface of the wing is leading the motion are shaded.
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Fig. 5.6. Wing bending in undamped and damped finite element models of a rotating
Manduca wing. (A) Spanwise bending in the model wing; top panel shows tip position
and bottom shows difference in position between the leading edge and tip. (B)
Chordwise bending in the model wing; top panel shows trailing edge position and
bottom shows difference in position between the leading and trailing edge. Models were
rotated around one axis at 26 Hz through an total amplitude of 108.5°. Results are
shown for a model with no damping and a model with mass damping (mass matrix
multiplier=300).



Table 5.1. Measured rotation frequency and amplitude in Manduca wings and brass rod

control. Wing rotation amplitude in experimental sequences was estimated from the
measured amplitude in calibration sequences of each wing.

calibration experimental | experimental | experimental
sequence sequence sequence sequence
(0.5 Hz) (normal air) | (helium) (normal air,
post helium)

brass rod 0.57 Hz 26.3 Hz
123.7° 125.8°

individual A 0.56 Hz 25.8 Hz 269 Hz 26.6 Hz
109.9

individual B 0.56 Hz 25.5Hz 255Hz 25.5Hz
107.1

individual C 0.57 Hz 26.6 hz 26.6 Hz 26.6 Hz

107.1
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Appendix 1: Derivation of fluid-dynamic equations for Chapter 2
(Combes and Daniel, 2001; from Daniel, 1987)

Each segment of the wing is treated as a harmonically oscillating flexible plate
centered at the origin. Its motion is prescribed by equation (2.1). The solution of Wu
(Wu, 1971) to Euler’s equation requires a Fourier representation of the position and
velocity of all points on the wing:

h(x.t)= %"- + iﬂn cos(n6)
n=l

(Al)
where
2 pn
B.== | h(x.0cos(nB)do A2
and
Vix,t)= b—" + Zb,, cos(n@)
b)
- n=l (A3)
where
2 prn
b, = —J. Vix,t)cos(nB)dO
rdo (A4)

B represents the Fourier coefficients for wing position, b represents the Fourier
coefficients for wing velocity, 0 is a variable in the Fourier representation and V(x,r) is
the vertical velocity at all points on the surface of the wing, which is given by the
material derivative of the instantaneous wing position:

d d
V(x,t)=(—+ U —)h(x,t
(x,0) (at E)x) (x,2) (AS)
where U is the forward velocity. From these Fourier representations, Wu (Wu, 1971)

provides equations for the time-averaged thrust, energy and power coefficients, here
defined as:

IJav —'0‘
Cp = :-pnlj:"l = Re{(l?)(bo +b)[(B, *-B,*)O(c) + B,*]} (A6)

where the asterisk denotes the complex conjugate of the parameter. P, is the mean
power expenditure, ©(0) is Theodorsen's function (defined below), Re indicates the real
part of the enclosed function and p is the density of the fluid. C; is a dimensionless
coefficient that represents the total rate at which energy is expended to produce thrust
and create vorticity in the wake behind the wing. This latter form of energy dissipation
arises from the existence of a jump in the tangential velocity of flow at the trailing edge
of the wing. The coefficient for the rate of energy loss by this mechanism is given by:
c = _Em__ BO)by+b) (b *+b*)
® tpnU3l U’
where E,, is the mean energy expended in the wake and B(0) is a modified Theodorsen's
function. Two functions in Equations A6 and A7 depend on the degree of unsteadiness

(A7)
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in the motion. This unsteadiness is given by the parameter o, called the reduced
frequency parameter, which is a measure of the amount of vertical oscillation relative to

forward steady motion:

wl
o=—

U (A8)
The two functions of this parameter, B(G) and ©(0), set the time lag in the growth of
circulation around the wing. The latter is called Theodorsen's function and is a complex
combination of Bessel functions. The former represents portions of Theodorsen's
function:

OC)=F +iG= ,K‘(ia) -
Ko(ld)‘{*Kl(lO') (A9)
and
B(o)=F —(F*+G?) (A10)

where F is the real part of Theodorsen's function, G is the imaginary part of Theodorsen's
function, i is equal to the square root of -1, and K, and K, are modified Bessel functions.
The function ©(0) declines asymptotically from a value of 1 at =0 to a value of 0.5 as
o tends to infinity (see Lighthill, 1975). Finally, a coefficient of thrust may be defined
by the difference in the coefficients for total power expended and energy lost:

C:=C-C¢ (ALl)
with an efficiency parameter defined as the rate of useful work done to total power
expended:

Ce (Al2)
Following the appropriate manipulations of the above equations, we arrive at

expressions for the coefficients in terms of various Bessel functions. Below are
simplified versions of the resultant equations:

.- CAlCART )
E - el
U- (A13)
C.= 4oy ¢, +o0v,)
P - =l
U (Al4)
where
¢, = Uel (@) + (1= U I c)ad (@)(hy + 2¢) (A15)
0, =-Uel (@) + (1- U / c)w[Ch, + €)J,(a) + ] (A16)
§ =(hy +e)J(a)~u (A17)
&, =-J(@)h, (A18)
Wi=6F-8.G+pu (A19)
v, =8G+0,F +(hy +€)J () (A20)

U= S[Jo(a) - Jz(a)]
2 (A21)
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o

c (A22)
and where J, is a Bessel function of order n. The central point of these equations is that
the performance of this two-dimensional strip, as defined by the coefficients in Equations
All, Al3, and Al4, depends in a complex manner upon Bessel functions of the

parameter o.. This parameter is a meaure of the number of propulsive waves present on
the wing at any instant in time.

a=
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Appendix 2: Derivation of wing shape equations for Chapter 2
(Combes and Daniel, 2001)

Wings generated with a polynomial distribution were created using equations
from Ellington (1984b):

¢=ay+ar+a,;’ +a,f’ (A23)

where ¢ is the non-dimensional chord length at any position 7 along the non-
dimensional span. The coefficients a,-a, are found by solving the set of simultaneous
equations:

-k a q, a, a,

= + A24

TRl k2 k3 T k+a (A28)
with k=0, 1, 2 and 3 and where 7 is the radius of the kth moment of area. The first
moment of area was taken to be 0.4 (as measured on the ratfish fins) and the second and
third moments of area were found from the equations (Ellington, 1984b):

7 =0.929(7)"™ (A25)
;.3 = 0'900(;;)0.581 (A26)

Wings generated with a Beta distribution were also created with equations from Ellington
(1984b). The Beta distribution is defined for x from O to 1 as:

fgy=2_4=0

B(p.9) (A27)
where the Beta function B(p.q) is
_ p-ley _ 91

integrated from O to 1. Ellington (1984b) equated fto ¢, the non-dimensional chord
length and x to 7, the non-dimensional span. He then defined the parameters p and q as:
r(l-r)
l[ ST g2 -1]
") (A29)
L l r
=a- A .(, AN

- i) (A30)
where 7| is the radius of the first moment of area and 7, is the radius of the second
moment of area (found using equation (25), as above).

The last series of wings was created with an exponential equation of the form
(Daniel, 1987):
l(z)=11-(z/2,)°] (A31)
where [ is the half chord length at the base, z, is the span of the wing, and /(z) describes
the half chord length at various local positions along the span. The exponent a was varied
from 0.01 to 4 to change the shape of the wing.



Appendix 3: Matlab code for Chapter 3

calculation of vein density
veindensity.m
last modified 4/10/00

clear all;

A = imread('Manduca_veins.bmp','bmp");
Q =double(A);

[i,j]1=findQ==1);

clear Q;

veinpixels = length(i)

[a,b] = find(A > 1);

clear A;

veinmistakes = length(a)

A = imread('Manduca_area.bmp','bmp");
Q = double(A);

(ijl=findQ==1);

clear Q;

areapixels = length(i)

{a,b] = find(A > 1);

clear A;

areamistakes = length(a)

A = imread('Manduca_scale.bmp','bmp’):
Q =double(A);

[ij]=findQ==1);

clear Q;

scalepixels = length(i)

[a,b] = find(A > 1);

clear A;

scalemistakes = length(a)

pixellength = 0.5/scalepixels;

pixelarea = pixellength*pixellength;
veinarea = veinpixels*pixelarea

area = areapixels*pixelarea

veindens = veinarea/area

sfe sk sk o e 3¢ ke ok ke K o 3 e ke sk sk o 3 ke sk 3 e ok sk e ke ok s ke ok s o ke ok sk o o e ke e ok sk o e ke e ok o o ke ok

calculation of vein thickness
skeletonize.m
last modified 4/6/00

%read image, convert from unit8 to 0/1 and skeletonize
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clear all;

A = imread('Manduca_veins.bmp','bmp");
C = double(A);

%clear A,

M = double(bwmorph(C,'thin’,Inf));
clear C;

%shift to the right, multiply by original, and sum
[m,n] = size(M);

Mrcut = M(,l:n - 1);

Mr = [zeros(m,1) Mrcut];

clear Mrcut;

Mrmuit = M.*Mr;

clear Mr;

meigh = sum(sum(Mrmult))

clear Mrmult;

%oshift down, multiply, and sum
Mdcut=M(l:m - 1.:);

Md = [zeros(1,n); Mdcut];

clear Mdcut;

Mdmult = M.*Md;

clear Md;

dneigh = sum(sum(Mdmult))

clear Mdmult;

%shift to the right diagonal down, multiply, and sum
Mdrcut=M(l:m - 1,1:n- 1);

Mdrl = [zeros(l.n-1); Mdrcut];

clear Mdrcut;

Mdr = [zeros(m, 1) Mdrl];

clear Mdrl;

Mdrmult = M.*Mdr;

clear Mdr;

drmeigh = sum(sum(Mdrmult))

clear Mdrmuit;

%shift to the left diagonal down, multiply, and sum
Mdlcut = M(1:m - 1,2:n);

Mdlcut(:,n) = zeros(m-1,1);

Mdl = [zeros(1,n); Mdlcut];

clear Mdlcut;

Mdimult = M.*Mdl;

clear Mdl;

dlneigh = sum(sum(Mdlmult))

%find length of pixel side and diagonal
A = imread('Manduca_scale.bmp','bmp’);
B = double(A); clear A;
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[i,j] = find(B == 1 ); clear B;

scalepixels = length(i);

pixellength = 0.5/scalepixels

pixeldiag = pixellength*(sqrt(2))

%find total vein length

veinlength =
(meigh*pixellength)+(dneigh*pixellength)+(drneigh*pixeldiag)+(dlneigh*pixeldiag)
%find area of veins

A = imread('Manduca_veins.bmp','bmp’);
Q =double(A);

[ij]=findQ==1);

clear Q;

veinpixels = length(i)

[a,b] = find(A > 1);

clear A;

veinmistakes = length(a)

pixelarea = pixellength*pixellength;
veinarea = veinpixels*pixelarea
veinthick = veinarea/veinlength
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calculation of percent lead veins
leadveinpercent.m
last modified 6/7/00

clear all;

A = imread('Manduca_leadveins.bmp','bmp’);
Q =double(A);

[i,jl=findQ==1);

clear Q;

leadveinpixels = length(i)

[a,b] = find(A > 1);

clear A;

leadveinmistakes = length(a)

A = imread('Manduca_veins.bmp’,'bmp’);
Q =double(A);

[ijl=findQ=1);

clear Q;

veinpixels = length(i)

[a,b] = find(A > 1);

clear A;

veinmistakes = length(a)

A = imread('Manduca_scale.bmp’,'bmp’);



Q = double(A);
[ij]=find(Q==1);

clear Q;

scalepixels = length(i)

[a,b] = find(A > 1);

clear A;

scalemistakes = length(a)
pixellength = 0.5/scalepixels;
pixelarea = pixellength*pixellength;
leadveinarea = leadveinpixels*pixelarea
veinarea = veinareapixels*pixelarea

percentveins = leadveinarea/veinarea
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calculation of leading edge vein density
leadveindensity.m
last modified 5/24/00

clear all;

A = imread('Manduca_leadveins.bmp’,'bmp');
Q = double(A);

[ij]=findQ=1);

clear Q;

leadveinpixels = length(i);

[a,b] = find(A > 1);

clear A;

leadveinmistakes = length(a);

A = imread('Manduca_leadarea.bmp’,'bmp");
Q = double(A);

[i,jl=find(Q==1);

clear Q;

leadareapixels = length(i);

[a,b] = find(A > 1);

clear A;

leadareamistakes = length(a);

A = imread('Manduca_scale.bmp’,'’bmp’);
Q =double(A);

[ij]=find(Q==1);

clear Q;

scalepixels = length(i);

[a,b] = find(A > 1);

clear A;

scalemistakes = length(a);

pixellength = 0.5/scalepixels;
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pixelarea = pixellength*pixellength;
leadveinarea = leadveinpixels*pixelarea
leadarea = leadareapixels*pixelarea
leadveindens = leadveinarea/leadarea
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Appendix 4: Matlab code for Chapter 4

code to find the center of laser lines on z-calibration steps
findcaliblines.m

by S.A. Combes and A.C. Trimble

last modified 4/28/01

clear all;
colormap(gray);

bugnumber = 19;

cs = 'span’;

dv ='vent’;

Ir="R";

bug = 'manduca’;

bugabb = ‘mand’;
computer = 'Combseyland'’;

imageplace =
[computer,':Stacey:wing/laser2000:',bug,num2str(bugnumber),":'cs," :cut_images'];
image_name = [bugabb,num2str(bugnumber),cs,’ _calib3'Ir,dv,’.jpg'];

calib_name = [bugabb,num2str(bugnumber),cs,’_calib3',Ir,dv, .jpg'];
cd(imageplace);

params = [736 1159 142 1214 1650 79 1 60 3.15];
column_start = params(1);

column_end = params(2);

start_row = params(3);

column_start2 = params(4);

column_end2 = params(3);

start_row2 = params(6);

all_lines = params(7);

line_pixel_width = params(8);

sheet_thick = params(9);

%READ THE IMAGE

image = imread(image_name,'jpg");

%READ THE CALIBRATION IMAGE

% calib_name = input('What calibration do you want? ','s’);
calib = imread(calib_name,’jpg’);

home = 'Combseyland:Stacey:wing/laser2000:bending_code";
cd(home);
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%DISPLAY THE IMAGE
imagesc(image)

%GET ONE COMPONENT OF THE IMAGES
oneband = image(:,:,1);
calib_oneband = calib(:,:,1);

%WE NEED PLACES TO STORE SOME STUFF

global line_xsection;
global yin;

global initguess;
global COLM;

line_xsection = ones(line_pixel_width,2,(column_end - column_start + 2));
lines = zeros((column_end - column_start), 2, all_lines);

calib_lines = zeros((column_end2 - column_start2), 2, all_lines);
%*******FOR LEF‘[‘ LINE % s ¢ 3¢ e ok ok ek

%START LINE DETECTION AT LINE #!1 (=incr)
%LOOP FOR ALL LINES
incr=1;
while incr <= all_lines;
column = column_start;
COLM=3;
meanCOLM = mean(line_xsection(:,1,COLM));
meanCOLM?2 = meanCOLM;
%jump forward to the correct row to begin searching at the beginning of each line
(incr)
ifincr==1;
row = start_row;,
else;
row = round(lines(1, 2, (incr - 1)) + (0.2 * line_pixel_width));
end;
% set the initial guess for the fmins to be near the right place
initguess = [(row + (0.2 * line_pixel_width)) 1 2];
%while column <= column_end;
while ((meanCOLM / meanCOLM?2) > 0.4); %GO until mean test fails...
%READ A LINE X_SECTION
patch = 0;
while patch < line_pixel_width;
line_xsection((patch+1),1,COLM) = oneband((row + patch), column);
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line_xsection((patch+1),2,COLM) = (row + patch);
patch = patch + 1;
end;

%COMPUTE THE PEAK OF THIS PATCH
%CALCULATE A GAUSSIAN LEAST_SQUARES FIT TO THE PIXEL
INTENSITIES
[final_Mu, nextguess] = gausstest(line_xsection, initguess, COLM);
local_peak_row = final_Mu;
initguess = nextguess;

%check for nonsensical return from fmins...
%and check again... for a peak pos. outside the sample range.
%if (local_peak_row - row) < 0O; it really shouldn't be outside the sample...
if (local_peak_row < row); %it really shouldn't below the sample...
lines(((column+1)- column_start), 1, incr) = 0;
lines(((column+1)- column_start), 2, incr) = 0;
column = column + I;
COLM =COLM + |;
break;
end;
if (local_peak_row - row) > line_pixel_width:
%it really shouldn't be outside the sample...
lines(((column+1)- column_start), 1, incr) = 0;
lines(((column+1)- column_start), 2, incr) =0,
column = column + 1;
COLM =COLM + |;
break;
end;
%end;

%WRITE LOCAL LINE POSITION
% as (column, row, line) where column and line are integers and row is the "height"”
lines(((column+1)- column_start), 1, incr) = (column);
lines(((column+1)- column_start), 2, incr) = (local_peak_row);
%RE-ESTIMATE THE LOCATION OF THE PATCH SEARCH BASED ON THE
CURRENT PEAK LOCATION
row = round(local_peak_row - (0.2 * line_pixel_width));
if COLM >=17;
meanCOLM = mean(line_xsection(:,1,COLM));
meanCOLM2 = mean(line_xsection(:,1,COLM-4));
end;
column = column + 1
if column == column_end;



break;
end;
COLM =COLM +1;
end;

%SETUP FOR NEXT LINE
incr =incr + 1;
hold on;

% TEST HERE FOR NON_ZERO DATA TO PLOT
nonzeroX = find(lines(:,1,(incr - 1)) > 0);

plot(lines(nonzeroX,1,(incr - 1)), lines(nonzeroX,2,(incr - 1)), 'r')

drawnow;
end;

%****** END OF LEF’[‘ L[NE MEASURE #¢ e ¢ A o o o e ke ok
%
%**********************************************
%
Po******START RIGHT LINE MEASURE*******x**
line_xsection(:,:,:) = 1;
%START LINE DETECTION AT LINE #1 (=incr)
%1.OOP FOR ALL LINES
incr = 1;
while incr <= all_lines;
column = column_start2;
COLM=3;
meanCOLM = mean(line_xsection(:,1,COLM));
meanCOLM?2 = meanCOLM;

%jump forward to the correct row to begin searching at the beginning of each line

(incr)
ifincr==1;
row = start_row?2;
else;
row = round(calib_lines(1, 2, (incr - 1)) + (0.2 * line_pixel_width));
end;

% set the initial guess for the fmins to be near the right place
initguess = [(row + (0.2 * line_pixel_width)) 1 2];
%while column <= column_end; fixed line search end point...

while ((meanCOLM / meanCOLM2) > 0.35); %GO until mean test fails...

%READ A LINE X_SECTION
patch = 0;
while patch < line_pixel_width;

line_xsection((patch+1),1,COLM) = calib_oneband((row + patch), column);

line_xsection((patch+1),2,COLM) = (row + patch);
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patch = patch + 1;
end;

%COMPUTE THE PEAK OF THIS PATCH
%CALCULATE A GAUSSIAN LEAST_SQUARES FIT TO THE PIXEL
INTENSITIES
[final_Mu, nextguess] = gausstest(line_xsection, initguess, COLM);
local_peak_row = final_Mu;
initguess = nextguess;

%check for nonsensical return from fmins...
%and check again... for a peak pos. outside the sample range.
if (local_peak_row < row); %:it really shouldn't be outside the sample...
calib_lines(((column+1)- column_start2), 1, incr) = 0;
calib_lines(((column+1)- column_start2), 2, incr) = O;
column = column + I;
COLM =COLM + 1;
break;
end;
if (local_peak_row - row) > line_pixel_width;
%it really shouldn't be outside the sample...
calib_lines(((column+1)- column_start2), 1, incr) = O;
calib_lines(((column+1)- column_start2), 2, incr) = 0;
column = column + 1;
COLM =COLM + 1;
break;
end;
%end;

%WRITE LOCAL LINE POSITION
% as (column, row, line) where column and line are integers and row is the "height”
calib_lines(((column+1) - column_start2), 1, incr) = (column);
calib_lines(((column+1) - column_start2), 2, incr) = (local_peak_row);
%RE-ESTIMATE THE LOCATION OF THE PATCH SEARCH BASED ON THE
CURRENT PEAK LOCATION
row = round(local_peak_row - (0.2 * line_pixel_width));
if COLM >=7,
meanCOLM = mean(line_xsection(:,1,COLM));
meanCOLM?2 = mean(line_xsection(:,1,COLM-4));
end;
column = column + 1
if column == column_end2;
break;
end;
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COLM = COLM +1;
end;

%NEXT LINE
incr =incr + 1;
hold on;
%TEST HERE FOR NON_ZERO DATA TO PLOT
calib_nonzero = find(calib_lines(:,1,(incr - 1)) > 0);
plot(calib_lines(calib_nonzero, 1 ,(incr - 1)), calib_lines(calib_nonzero,2,(incr - 1)), 'g")
drawnow;
end;

fileplace =
[computer,':Stacey:wing/laser2000:',bug,num2str(bugnumber),':’,cs,":calibrations'];
filename = [bugabb,num2str(bugnumber),cs,’_calib3',Ir.dv,".mat’]

cd(fileplace)

save(filename, 'lines’, ‘calib_lines’, 'sheet_thick’');
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calculation of z-displacement calibration
caliblinestodepth.m
last modified 11/21/01

%COMPUTE CALIBRATION OFFSETS
%TO CALCULATE THE PIXEL OFFSET IN THE Y-DIRECTION FOR MICRON
DEPTH IN THE Z DIRECTION:

clear all;

bugnumber = 8;

cs = 'chord’;
dv ="'vent’;
Ir="R"

bug = 'manduca’;
bugabb = 'mand’;
computer = '‘Combseyland’;

midpoint = 1095;

dataplace =
[computer,:Stacey:wing/laser2000:',bug,num2str(bugnumber),":'cs, :calibrations’];
cd(dataplace);

dataname = [bugabb,num2str(bugnumber),cs,’_calib3',Ir,dv,".mat’];
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load(dataname);

%IF THERE IS ONLY ONE LINE:
%fit a first degree polynomial the first half of one line, then second half

linelx = lines(:.1);

linely = lines(:,2);

polyorder = I;

polylinel = polyfit(linelx, linely, polyorder);

slopelinel = polylinel(1);

xpolylinel = linelx(1):5:linelx(size(linelx));

ypolylinel = polyval(polylinel, xpolylinel);

caliblinelx = calib_lines(:,1);

caliblinely = calib_lines(:,2);

polycaliblinel = polyfit(caliblinelx, caliblinely, polyorder);
slopecalibl = polycaliblinel(1);

xpolycaliblinel = caliblinelx(1):5:calibline1x(size(caliblinelx));
ypolycaliblinel = polyval(polycaliblinel, xpolycaliblinel);
avgslope = (slopelinel + slopecalibl)/2;

figure

title ('polynomial fit to calibration slide’)

plot(linelx, linely, caliblinelx, caliblinely, xpolylinel, ypolylinel, xpolycaliblinel,
ypolycaliblinel)

yposlinel = (polylinel(1)*midpoint) + polylinel(2);
yposcaliblinel = (polycalibline1(1)*midpoint) + polycaliblinel(2);
offset]l = abs(yposlinel - yposcaliblinel)

mic_per_Z1 = (sheet_thick * 1000.0) / offsetl

fileplace =
[computer,':Stacey:wing/laser2000:',bug,num2str(bugnumber),"’,cs, :calibrations'];
filename = [bugabb,num2str(bugnumber),cs,’_cal3'.Ir.dv,'depth.mat’];
cd(fileplace)

save(filename, 'slopelinel’, 'slopecalibl’, 'avgslope', 'polylinel’, 'polycaliblinel’,
‘'midpoint’, 'offsetl’, ‘mic_per_Z1");
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code to prepare wing images for Matlab (trim and change to grayscale)

prepimage.m
last modified 11/12/01
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clear all;
colormap(gray);

bug = 'manduca’;

bugabb = 'mand;
bugnumber = 11;

cs = 'span’;

dv ='vent';

computer = ‘Combseyland’;

newheight = 900,
newheightfixtop = 400;
newwidth = 1800;
newwidthfixright = 1800;

cameraimages =
[computer,’:Stacey:wing/laser2000:',bug,num2str(bugnumber),"’,cs,".camera_images'];
cd(cameraimages);

%READ THE IMAGE AND CHANGE TO GRAYSCALE
image_name =input('What image do you want? ','s");
image = imread(image_name,'jpg");

imagegray = (image(:,:,1));

width = length(imagegray(l,:));

height = length(imagegray(:,1));

%CLIP WIDTH (L/R)
clipLR = (width - newwidth)/2;
imageclipwidth = imagegray(:,(1+clipLR):(length(imagegray(1,:))-clipLR));

%CLIP WIDTH (FIX RIGHT)

clipLRfixR = newwidth - newwidthfixright;

% imageclipfixR = imageclipwidth(:,1:(length(imageclipwidth(1.:))-clipLRfixR));
imageclipfixR = imageclipwidth(:,clipLRfixR:(length(imageclipwidth(1,:))));

%CLIP HEIGHT (TOP/BOTTOM)

cliptopbot = (height - newheight)/2;

imagecliptopbot = imageclipfixR((1+cliptopbot):(length(imageclipfixR(:, 1))-
cliptopbot),:);

%CLIP HEIGHT (FIX TOP)
clipfixtop = newheight - newheightfixtop;
% imageclipfixtop = imageclipfixR(1:(length(imagecliptopbot(:,1))-clipfixtop),:);



%(FIX BOTTOM):

imageclipfixtop = imageclipfixR(clipfixtop:(length(imagecliptopbot(:,1))),:);

%LOOP FOR ALL IMAGES:

imagel = [bugabb,num2str(bugnumber),cs,’_zerol'.dv,".jpg'l;
image2 = [bugabb,num2str(bugnumber),cs,’_zerol'dv,'_It.jpg'l;
image3 = [bugabb,num2str(bugnumber),cs,’_loadl'.dv,".jpg'l;
image4 = [bugabb,num2str(bugnumber),cs,’_loadl',dv, _It.jpg'];
image5 = [bugabb,num2str(bugnumber),cs,'_zero2'.dv,".jpg'];
image6 = [bugabb,num2str(bugnumber),cs,'_zero2'.dv,'_It.jpg'];
image7 = [bugabb,num2str(bugnumber),cs,'_load2'.dv,".jpg'];
image8 = [bugabb,num2str(bugnumber),cs,’_load2'.dv,'_It.jpg'];
image9 = [bugabb,num2str(bugnumber),cs,'_zero3',dv,".jpg'l;
image10 = [bugabb,num2str(bugnumber),cs,’_zero3'.dv, _It.jpg']l;
imagell = [bugabb,num2str(bugnumber),cs,'_load3'.dv, .jpg'];
imagel2 = [bugabb,num2str(bugnumber),cs,’_load3'.dv,'_It.jpg'];
image |3 = [bugabb,num2str(bugnumber),cs,’_zero4'.dv,'.jpg'l;
imagel4 = [bugabb,num2str(bugnumber),cs,'_zero4'dv,'_It.jpg'];
imagel5 = [bugabb,num2str(bugnumber),cs,’_load4'.dv.,".jpg'];
image 16 = [bugabb,num2str(bugnumber),cs,’_load4'.dv,'_It.jpg'];
imagel7 = [bugabb,num2str(bugnumber),cs,'_calib3L'.dv,".jpg'};
image 18 = [bugabb,num2str(bugnumber),cs,’_calib3R',dv,".jpg'];
image19 = [bugabb,numn2str(bugnumber),cs,_4mmgrid'.dv,".jpg'];
image20 = [bugabb,num2str(bugnumber),cs,’_2mmgnd'.dv,".jpg'];
% imagel7 = [bugabb,num2str(bugnumber),cs,'_calib3',dv,".jpg'l;
% imagel8 = [bugabb,num2str(bugnumber),cs,’_4mmgrid'.dv,".jpg'];
% imagel9 = [bugabb,num2str(bugnumber),cs,’_2mmgnd'.dv,".jpg'];

image_id{1} = imagel;
image_id{2} = image2;
image_id{3} = image3;
image_id{4} = image4;
image_id{5} = image5;
image_id{6} = image6;
image_id{7} = image7;
image_id{8} = imageS8;
image_id{9} = image9;
image_id{ 10} = imagelO;
image_id{11} = imagell;
image_id{12} = imagel?2;
image_id{ 13} = imagel3;
image_id{ 14} = imagel4;
image_id{ 15} = imagelS5;
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image_id{16} = imagel6;
image_id{17} = imagel7;
image_id{ 18} = imagel8;
image_id{ 19} = imagel9;

image_id{20} = image20;

i=1;

fori=1:20;
image_name = image_id{i};
cd(cameraimages);

%READ THE IMAGE AND CHANGE TO GRAYSCALE
image = imread(image_name,’jpg");

imagegray = (image(:,:,1));

width = length(imagegray(1,:));

height = length(imagegray(:,1));

%CLIP WIDTH (L/R)
clipLR = (width - newwidth)/2;
imageclipwidth = imagegray(:,(1+clipLR):(length(imagegray(1,:))-clipLR));

%CLIP WIDTH (FIX RIGHT)

clipLRfixR = newwidth - newwidthfixright;

%imageclipfixR = imageclipwidth(:,1:(length(imageclipwidth(1,:))-clipLRfixR));
imageclipfixR = imageclipwidth(:,clipLRfixR:(length(imageclipwidth(1,:))));

%CLIP HEIGHT (TOP/BOTTOM)

cliptopbot = (height - newheight)/2;

imagecliptopbot = imageclipfixR((1+cliptopbot):(length(imageclipfixR(:,1))-
cliptopbot),:);

%CLIP HEIGHT (FIX TOP)

clipfixtop = newheight - newheightfixtop;

%imageclipfixtop = imageclipfixR(1:(length(imagecliptopbot(:, 1))-clipfixtop),:);
%(FIX BOTTOM):

imageclipfixtop = imageclipfixR (clipfixtop:(length(imagecliptopbot(:,1))).:);

size(imageclipfixtop)
imagesc(imageclipfixtop)

fixedimages =
[computer,':Stacey:wing/laser2000:',bug,num2str(bugnumber),’:',cs, :cut_images'];
cd(fixedimages);
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imwrite(imageclipfixtop, image_name, 'jpg');
i=i+l;
end;
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code to locate the center of laser lines on wing images
findlineloop.m

by S.A. Combes and A.C. Trimble
last modified 11/13/01

clear all;

.......

bugnumber = 11;

bug = 'manduca’;

bugabb = 'mand’;
computer = '‘Combseyland';
istart = 1;

istop = 16:

To****first set: chord dorsal******x*ik:ix*x

fixchdors = 'fixed’;

params{ 1} =200 55 1 160 16.2309 12.4429 0.00063358 1700 1686 99 1748 1831];
params{2} = {200 55 I 160 16.2309 12.4429 0.00152772 1700 1676 99 1748 1831];
params{3} =[200 55 1 160 16.2309 12.4429 0.00264437 1700 1661 99 1748 1831};
params{4} =[200 55 1 160 16.2309 12.4429 0.00390424 1700 1647 99 1748 1831];

dorschordplace =
[computer,':Stacey:wing/laser2000:',bug,num2str(bugnumber),":chord:cut_images'];
imagelocation{ 1 } = dorschordplace;

imagelocation{2} = dorschordplace;

imagelocation{3} = dorschordplace;

imagelocation{4} = dorschordplace;

imageload1chdors = [bugabb,num2str(bugnumber), chord_load 1dors'.fixchdors,.jpg'];
imageload2chdors = [bugabb,num2str(bugnumber),'chord_load2dors',fixchdors,'.jpg'];
imageload3chdors = [bugabb,num2str(bugnumber), chord_load3dors' fixchdors, .jpg'];
imageload4chdors = [bugabb,num2str(bugnumber), chord_load4dors' fixchdors, .jpg'l;
imagezerolchdors = [bugabb,num2str(bugnumber),'chord_zeroldors'.fixchdors,'.jpg'];
imagezero2chdors = [bugabb,num2str(bugnumber),'chord_zero2dors',fixchdors,'.jpg'};
imagezero3chdors = [bugabb,num2str(bugnumber),'chord_zero3dors',fixchdors,'.jpg'];
imagezero4chdors = [bugabb,num2str(bugnumber), chord_zero4dors',fixchdors,".jpg'];
names{ 1,1} = imageloadlchdors;
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names{ 1,2} = imagezerolchdors;
names{2,1} = imageload2chdors;
names{2,2} = imagezero2chdors;
names(3,1} = imageload3chdors;
names{3,2} = imagezero3chdors;
names{4,1} = imageload4chdors;
names{4,2} = imagezerodchdors;

folderpath Ichdors =

[computer,’:Stacey:wing/laser2000:' bug,num2str(bugnumber),:chord:load 1dors’];
folderpath2chdors =

[computer,':Stacey: wing/laser2000:' ,bug,num2str(bugnumber),:chord:load2dors'];
folderpath3chdors =

[computer,’:Stacey:wing/laser2000:' bug,num2str(bugnumber),:chord:load3dors'];
folderpath4chdors =
[computer,’:Stacey:wing/laser2000:',bug,num2str(bugnumber),:chord:load4dors'];
foldername( 1} = folderpathlchdors;

foldername(2} = folderpath2chdors;

foldername{3} = folderpath3chdors;

foldername ({4} = folderpath4chdors;

savelchdors = [bugabb,num2str(bugnumber),'chord_load 1dors.mat'];
save2chdors = [bugabb,num2str(bugnumber),'chord_load2dors.mat'];
save3chdors = [bugabb,num2str(bugnumber),'chord_load3dors.mat'};
savedchdors = [bugabb,num2str(bugnumber),'chord_load4dors.mat'];
savename( 1 } = savelchdors;
savename {2} = save2chdors;
savename{3} = save3chdors;
savename (4} = saved4chdors;

To*****xxxx*xsecond set: chord ventral*******xxxx

fixchvent = 'fixed';

params{5} =[16595 1 150 14.0757 12.0706 0.00029944 1651 1647 70 1671 1738];
params{6} =[16595 1 150 14.0757 12.0706 0.00092774 1651 1638 70 1671 1738]};
params{7} =[16595 1 150 14.0757 12.0706 0.00185336 1651 1627 70 1671 1738];
params{8} =[16595 1 150 14.0757 12.0706 0.00295428 1651 1617 70 1671 1738];

ventchordplace =
[computer,':Stacey:wing/laser2000:',bug,num2str(bugnumber),":chord:cut_images'];
imagelocation{5} = ventchordplace;

imagelocation{6] = ventchordplace;

imagelocation{7} = ventchordplace;

imagelocation{8} = ventchordplace;
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imageload1chvent = [bugabb,num2str(bugnumber),'chord_load1vent',fixchvent,'.jpg'];
imageload2chvent = [bugabb,num2str(bugnumber),'chord_load2vent',fixchvent,'.jpg'];
imageload3chvent = [bugabb,num2str(bugnumber),'chord_load3vent'.fixchvent,'.jpg'];
imageload4chvent = [bugabb,num2str(bugnumber),’chord_load4vent'fixchvent,'.jpg']:
imagezerolchvent = [bugabb,num2str(bugnumber),’chord_zerol vent',fixchvent,'.jpg'];
imagezero2chvent = [bugabb,num2str(bugnumber),’chord_zero2vent'.fixchvent,'.jpg'];
imagezero3chvent = [bugabb,num2str(bugnumber),’chord_zero3vent'fixchvent,'.jpg'];
imagezerod4chvent = [bugabb,num2str(bugnumber),'chord_zerodvent'.fixchvent,'.jpg'];
names{5,1} = imageload1chvent;
names{5,2} = imagezerolchvent;
names{6,1 } = imageload2chvent;
names({6,2} = imagezero2chvent;
names{7,1} = imageload3chvent;
names{7,2} = imagezero3chvent;
names (8,1} = imageload4chvent;
names{ 8,2} = imagezero4chvent;

folderpathlchvent =
[computer,':Stacey:wing/laser2000:',bug,num2str(bugnumber),:.chord:load L vent'];
folderpath2chvent =
[computer,":Stacey:wing/laser2000:',bug,num2str(bugnumber), :chord:load2vent'];
folderpath3chvent =
[computer,’:Stacey:wing/laser2000:',bug,num2str(bugnumber),:chord:load3vent'];
folderpath4chvent =
[computer,:Stacey:wing/laser2000:’,bug,num2str(bugnumber),:chord:load4vent'};
foldername {5} = folderpathlchvent;

foldername (6} = folderpath2chvent;

foldername{7} = folderpath3chvent;

foldername {8} = folderpath4chvent;

savelchvent = [bugabb,num2str(bugnumber), chord_load 1 vent.mat'];
save2chvent = [bugabb,num2str(bugnumber),'chord_load2vent.mat'];
save3chvent = [bugabb,num2str(bugnumber),'chord_load3vent.mat'};
savedchvent = [bugabb,num2str(bugnumber),’chord_load4vent.mat'];
savename{S5} = savelchvent;
savename{6} = save2chvent;
savename{7} = save3chvent;
savename ({8} = saved4chvent;

%****thifd set: Span dorsal***********

fixspdors = 'fixed’;

params{9} = [125 30 1 65 34.8428 28.4841 0.00168455 1710 1702 29 1757 1772];
params{ 10} = [125 30 1 65 34.8428 28.4841 0.00353109 1710 1693 29 1757 1772];
params{11} =[125 30 1 65 34.8428 28.4841 0.0053747 1710 1683 29 1757 1772];
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params{12} =[125 30 1 65 34.8428 28.4841 0.00727722 1710 1673 29 1757 1772];

dorsspanplace =
[computer,:Stacey:wing/laser2000:',bug,num2str(bugnumber),":span:cut_images'];
imagelocation{9} = dorsspanplace;

imagelocation{ 10} = dorsspanplace;

imagelocation{ 11} = dorsspanplace;

imagelocation (12} = dorsspanplace;

imageload | spdors = [bugabb,num2str(bugnumber),'span_loadldors',fixspdors,'.jpg'];
imageload2spdors = [bugabb,num2str(bugnumber),'span_load2dors'.fixspdors,'.jpg'];
imageload3spdors = [bugabb,num2str(bugnumber),'span_load3dors'.fixspdors,".jpg'l;
imageload4spdors = [bugabb,num2str(bugnumber),'span_load4dors'.fixspdors,’.jpg'];
imagezerolspdors = [bugabb,num2str(bugnumber),'span_zeroldors'.fixspdors,'.jpg'];
imagezero2spdors = [bugabb,num2str(bugnumber), span_zero2dors'.fixspdors,'.jpg'];
imagezero3spdors = [bugabb,num2str(bugnumber),'span_zero3dors',fixspdors,'.jpg'];
imagezero4spdors = [bugabb,num2str(bugnumber),'span_zeroddors'.fixspdors,'.jpg'l;
names{9.1} = imageload lspdors;

names({9,2} = imagezerolspdors;

names{ 10,1} = imageload2spdors;

names{ 10,2} = imagezero2spdors;

names{ 11,1} = imageload3spdors;

names{ 11,2} = imagezero3spdors;

names{ 12,1} = imageload4spdors;

names{ 12,2} = imagezero4spdors;

folderpathlspdors =
[computer,’:Stacey:wing/laser2000:',bug,num2str(bugnumber),:span:load Idors'];
folderpath2spdors =

[computer,':Stacey:wing/laser20C0:' bug,num2str(bugnumber),":span:load2dors'];
folderpath3spdors =
[computer,’:Stacey:wing/laser2000:',bug,num2str(bugnumber), :span:load3dors'];
folderpath4spdors =
[computer,':Stacey:wing/laser2000:',bug,num2str(bugnumber),':span:load4dors'];
foldername ({9} = folderpathlspdors;

foldername( 10} = folderpath2spdors;

foldername( 11} = folderpath3spdors;

foldername( 12} = folderpath4spdors;

savelspdors = [bugabb,num2str(bugnumber),'span_load1dors.mat’];
save2spdors = [bugabb,num2str(bugnumber), span_load2dors.mat'];
save3spdors = [bugabb,num2str(bugnumber),'span_load3dors.mat'];
saved4spdors = [bugabb,num2str(bugnumber),'span_load4dors.mat'};
savename(9} = savelspdors;
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savename( 10} = save2spdors;
savename( 11} = save3spdors;
savename( 12} = saved4spdors;

%*********founh set: Span venu-al***********

fixspvent = 'fixed';

params{13} =[130 65 1 65 34.6673 29.5593 0.00030489 1725 1720 4 1743 1757};
params{ 14} = [130 65 1 65 34.6673 29.5593 0.00072776 1725 1713 4 1743 1757];
params{ 15} =[130 65 1 65 34.6673 29.5593 0.00148786 1725 1707 4 1743 1757];
params{ 16} = [130 65 1 65 34.6673 29.5593 0.00261126 1725 1699 4 1743 1757];

ventspanplace =
[computer,':Stacey:wing/laser2000:',bug,num2str(bugnumber), :span:cut_images'];
imagelocation{ 13} = ventspanplace;

imagelocation{ 14} = ventspanplace;

imagelocation{ 15} = ventspanplace;

imagelocation{ 16} = ventspanplace;

imageloadlspvent = [bugabb,num2str(bugnumber),'span_load 1 vent'.fixspvent,'.jpg'];
imageload2spvent = [bugabb,num2str(bugnumber),'span_load2vent',fixspvent,'.jpg'];
imageload3spvent = [bugabb,num2str(bugnumber),'span_load3vent'fixspvent,'.jpg'];
imageload4spvent = [bugabb,num2str(bugnumber),'span_load4vent'.fixspvent,'.jpg'];
imagezerolspvent = [bugabb,num2str(bugnumber),'span_zerolvent'.fixspvent,'.jpg'];
imagezero2spvent = [bugabb,num2str(bugnumber),'span_zero2vent' fixspvent,'.jpg'];
imagezero3spvent = [bugabb,num2str(bugnumber),'span_zero3vent',fixspvent,'.jpg'];
imagezero4spvent = [bugabb,num2str(bugnumber),'span_zerod4vent',fixspvent,'.jpg'l;
names{ 13,1} = imageloadlspvent;
names{ 13,2} = imagezerolspvent;
names{ 14,1} = imageload2spvent;
names{ 14,2} = imagezero2spvent;
names{ 15,1} = imageload3spvent;
names{ 15,2} = imagezero3spvent;
names{ 16,1} = imageload4spvent;
names{ 16,2} = imagezero4spvent;

folderpathlspvent =
[computer,':Stacey:wing/laser2000:',bug,num2str(bugnumber),":span:load 1 vent'];
folderpath2spvent =
[computer,':Stacey:wing/laser2000:',bug,num2str(bugnumber),":span:load2vent'];
folderpath3spvent =
[computer,':Stacey:wing/laser2000:',bug,num2str(bugnumber),":span:load3vent'];
folderpath4spvent =
[computer,':Stacey:wing/laser2000:',bug,num2str(bugnumber),':span:load4vent'];
foldername( 13} = folderpathlspvent;



foldername{ 14} = folderpath2spvent;
foldername( 15} = folderpath3spvent;
foldername( 16} = folderpathdspvent;

savelspvent = [bugabb,num2str(bugnumber),'span_load1vent.mat'];
save2spvent = [bugabb,num2str(bugnumber),'span_load2vent.mat'];
save3spvent = [bugabb,num2str(bugnumber),'span_load3vent.mat'];
savedspvent = [bugabb,num2str(bugnumber),'span_load4vent.mat'];

savename( 13} = savelspvent;
savename( 14} = save2spvent;
savename( 15} = save3spvent;
savename({ 16} = savedspvent;

%celldisp(names)

197

Cllp e 6 3 e e e s 2k 2k e s 3 e 3¢ 3 e 3¢ e ok ke e e e e e e 3k 3k e 3 2k 3 3¢ e 3k 3 e 36 e 3¢ s o e e s ke s o e e o ¢ o o ke e e s ke e e o ok ke ke ok e sk ok

i = istart;

for i = istart:istop
imageplace = imagelocation{i};
folderplace = foldername(i};
image_name = names{i,l};
calib_name = names{i,2};
savefilename = savename({i};
column_start = params{i}(1);
start_row = params{i}(2);
all_lines = params{i}(3);
line_pixel_width = params{i }(4);
mic_per_Z = params{i}(5);
mic_per_XY = params{i}(6);
force = params{i}(7);
pin_calib = params{i}(8);
pin = params(i}(9);
wingbasex = params{i}(10);
pinapp = params{i}(11);
endwing = params{i}(12);

%***following code by A.C. Trimble*****x*
%READ THE IMAGES
cd(imageplace);
image = imread(image_name, jpg);
calib = imread(calib_name,'jpg');

home = [computer,":Stacey:wing/laser2000:bending_code'];

cd(home);
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%DISPLLAY THE IMAGE
colormap(gray);
imagesc(image)

%GET ONE COMPONENT OF THE IMAGES
oneband = image(:,:,1);
calib_oneband = calib(:,:,1);

%WE NEED PLACES TO STORE SOME STUFF

global line_xsection;
global yin;

global initguess;
global COLM;

line_xsection = ones(line_pixel_width,2,(pin - column_start + 2));
lines = zeros((pin - column_start), 2, all_lines);

calib_lines = zeros((pin - column_start), 2, all_lines);
%*******FOR LOADED [MAGE*********

%START LINE DETECTION AT LINE #1 (=incr)

%1.00P FOR ALL LINES

incr = 1;

while incr <= all_lines;
column = column_start;
COLM=3;
meanCOLM = mean(line_xsection(:,1,COLM));
meanCOLM2 = meanCOLM;

%jump forward to the correct row to begin searching at the beginning of each line (incr)
if incr == 1;
row = start_row;,
else;
row = round(lines(l, 2, (incr - 1)) + (0.45 * line_pixel_width));

end;
% set the initial guess for the fmins to be near the right place
initguess = [(row + (0.5 * line_pixel_width)) 1 2];
while column <= pin;
patch =0;
while patch < line_pixel_width;
line_xsection((patch+1),1,COLM) = oneband((row + patch), column);
line_xsection((patch+1),2,COLM) = (row + patch);
patch = patch + 1;
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end;

%COMPUTE THE PEAK OF THIS PATCH
%CALCULATE A GAUSSIAN LEAST_SQUARES FIT TO THE PIXEL
INTENSITIES
[final_Mu, nextguess] = gausstest(line_xsection, initguess,
COLM);
local_peak_row = final_Mu;
initguess = nextguess;

%check for nonsensical return from fmins...
%and check again... for a peak pos. outside the sample range.
%if (local_peak_row - row) < 0; it really shouldn't be outside the sample...
if (local_peak_row < row);
%it really shouldn't below the sample...

lines(((column+1)- column_start), 1, incr) =0;
lines(((column+1)- column_start), 2, incr) =0;
column = column + I;
COLM =COLM + |;
break;

end;

if (local_peak_row - row) > line_pixel_width;
%it really shouldn't be outside the sample...

lines(((column+1)- column_start), 1, incr) = 0;
lines(((column+1)- column_start), 2, incr) = 0;
column = column + 1;
COLM =COLM + |;
break;

end;

%end;

%WRITE LOCAL LINE POSITION
% as (column, row, line) where column and line are integers and row is the "height”
lines(((column+1)- column_start), 1, incr) = (column);
lines(((column+1)- column_start), 2, incr) = (local_peak_row);
%RE-ESTIMATE THE LOCATION OF THE PATCH SEARCH BASED ON THE
CURRENT PEAK LOCATION
row = round(local_peak_row - (0.5 * line_pixel_width));
if COLM >=7;
meanCOLM = mean(line_xsection(:,1,COLM));
meanCOLM2 = mean(line_xsection(:,1,COLM-4));
end;
column = column + 1
i
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COLM = COLM +1;
end;

%SETUP FOR NEXT LINE
incr = incr + 1;
hold on;
%TEST HERE FOR NON_ZERO DATA TO PLOT
nonzeroX = find(lines(:,1,(incr - 1)) > 0);
plot(lines(nonzeroX, 1.(incr - 1)), lines(nonzeroX,2,(incr - 1)), 'r')
drawnow;
end;

YDo****** END OF LOADED IMAGE MEASURE ***#**x%%k**x
%
%**********************************************
%
PDo******START CALIBRATION IMAGE (UNLOADED)
MEASURE*********
line_xsection(:,:,:) = 1;
%START LINE DETECTION AT LINE #1 (=incr)
%1.O0P FOR ALL LINES
incr=1;
while incr <= all_lines;
column = column_start;
COLM=3;
meanCOLM = mean(line_xsection(:,1,COLM));
meanCOLM2 = meanCOLM;
%jump forward to the correct row to begin searching at the beginning of each line (incr)
if incr == 1;
row = start_row;
else;
row = round(calib_lines(l, 2, (incr - 1)) + (0.45 *
line_pixel_width));
end;
% set the initial guess for the fmins to be near the right place
initguess = [(row + (0.5 * line_pixel_width)) 1 2];
while column <= pin_calib;
patch =0;
while patch < line_pixel_width;
line_xsection((patch+1),1,COLM) = calib_oneband((row + patch),
column);
line_xsection((patch+1),2,COLM) = (row + patch);
patch = patch + 1;
end;
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%COMPUTE THE PEAK OF THIS PATCH
9% CALCULATE A GAUSSIAN LEAST_SQUARES FIT TO THE PIXEL
INTENSITIES
[final_Mu, nextguess] = gausstest(line_xsection, initguess,
COLM);
local_peak_row = final_Mu;
initguess = nextguess;

%check for nonsensical return from fmins...
%and check again... for a peak pos. outside the sample range.
if (local_peak_row < row);
%it really shouldn't be outside the sample...
calib_lines(((column+1)- column_start), 1, incr) =
0;
calib_lines(((column+1)- column_start), 2. incr) =
0;
column = column + I;
COLM =COLM + 1;
break;
end;
if (local_peak_row - row) > line_pixel_width;
%it really shouldn't be outside the sample...
calib_lines(((column+1)- column_start), 1, incr) =
0;
calib_lines(((column+1)- column_start), 2, incr) =
0;
column = column + I;
COLM =COLM + I;
break;
end;
%end;

%WRITE LOCAL LINE POSITION
% as (column, row, line) where column and line are integers and row is the "height”
calib_lines(((column+1)- column_start), 1, incr) = (column);
calib_lines(((column+1)- column_start), 2, incr) = (local_peak_row);
%RE-ESTIMATE THE LOCATION OF THE PATCH SEARCH BASED ON THE
CURRENT PEAK LOCATION
row = round(local_peak_row - (0.5 * line_pixel_width));
if COLM >=17,
meanCOLM = mean(line_xsection(:,1,COLM));
meanCOLM2 = mean(line_xsection(:,1,COLM-4));
end;
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column = column + 1

i

COLM =COLM +1;
end;

%NEXT LINE

incr = incr + 1;

hold on;

%TEST HERE FOR NON_ZERO DATA TO PLOT

calib_nonzero = find(calib_lines(:,1,(incr - 1)) > 0);

plot(calib_lines(calib_nonzero, 1,(incr - 1)),
calib_lines(calib_nonzero,2,(incr - 1)), 'c')

drawnow;

cd(folderplace)

print loadimage.tif -f1 -dtiff
end;
cd(folderplace)

save(savefilename, 'lines’, 'calib_lines', 'mic_per_Z', 'mic_per_XY', 'force’,
'wingbasex', 'pinapp’, 'endwing');

clear lines;

clear calib_lines;

clear image;

clear calib;

i=i+1;
end;
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code to filter raw line data and convert to wing displacement
linestozdiff.m
last modified 11/28/01

% CODE TO FILTER AND FIND EI FROM ONE LASER LINE
Yuses calib_lines and lines from findline

clear all;

close all;

bugnumber = 4,

cs = 'chord’;

%manducafilt = 0.0005 span/ 0.001 chord
Yedragonfilt = 0.001 span/ 0.003 chord
filter = .001;

dv ='vent';
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dvabb = 'vt’;

loadnumber = 3;

computer = '‘Combseyland’;
bug = 'manduca’;

bugabb = 'mand’;

home = [computer,:Stacey:wing/laser2000:bending_code'];

Inpath =

[computer,’:Stacey:wing/laser2000: bug,num2str(bugnumber),":'cs,":load',num2str(loadnu
mber),dv}];

cd(Inpath);

loadfilename = [bugabb,num2str(bugnumber),cs,’_load',num2str(loadnumber),dv,".mat'];
load(loadfilename);

%split calibration and loaded lines into x and y components,
calib_linesx = calib_lines(:,1);

calib_linesy = calib_lines(:,2);

linesx = lines(:,1);

linesy = lines(:,2);

loadpoints = length(linesx)

calibpoints = length(calib_linesx)

%FILTER NOISE OUT OF RAW DATA:

%FilteredSignal=bwfilter(RawSignal ,Order,Cutoff,SampleRate)
cd(home);

SampleRate = 1/mic_per_XY;

Order = 2;

Cutoff = filter;

filteredcalib_linesy = bwfilter(calib_linesy, Order, Cutoff, SampleRate);
filteredlinesy = bwfilter(linesy, Order, Cutoff, SampleRate);

%look at raw vs. filtered data

startpoint = 1;
endpoint = length(linesy);
figure

plot(linesx(startpoint:endpoint), linesy(startpoint:endpoint), 'g',
linesx(startpoint:endpoint), filteredlinesy(startpoint:endpoint), 'b’,
calib_linesx(startpoint:endpoint), calib_linesy(startpoint:endpoint), 'y’,
calib_linesx(startpoint:endpoint),filteredcalib_linesy(startpoint:endpoint), 'b")

title('raw vs. filtered data- 1st filter’)

%SPLINE FILTERED LOAD AND CALIBRATION LINES TO EVEN NUMBER OF
POINTS:
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%calculate the number of points to spline
splinepoints = loadpoints;

%define in and out indices of calibration spline (change 1st entry to zero):
inptscalib = length(calib_linesx);

inindexcalib = l:inptscalib;

outptscalib = splinepoints;

outindexcalib = 1:((inptscalib-1)/(outptscalib-1)):inptscalib;

%create a spline of the y-points of the calibration curve:

calibspline = spline(inindexcalib, filteredcalib_linesy, outindexcalib);

%define in and out indices of loaded spline:

inptsload = length(linesx);

inindexload = l:inptsload;

outptsload = splinepoints;

outindexload = 1:((inptsload-1)/(outptsload-1)):inptsload;
%create a spline of the y-points of the calibration curve:
loadspline = spline(inindexload, filteredlinesy, outindexload);

%CALIBRATE SO WINGBASE IS AT PIXEL O:

xcalibpixel = outindexcalib + (calib_linesx(1) - wingbasex) - 1;
ycalibpixel = calibspline;

xloadpixel = outindexload + (linesx(l) - wingbasex) - 1;
yloadpixel = loadspline;

pinx = pinapp - wingbasex;

endx = endwing - wingbasex;

splinepoints = length(xcalibpixel)

%COMPUTE DISPLACEMENTS FROM LINES- in pixels
diff = yloadpixel - ycalibpixel;

%CONVERT Z - DIFFS TO METERS
yload = (diff * mic_per_Z * 0.000001);

%CONVERT CALIBRATION (ZERO) AND LOADED LINE X-POSITION TO
METERS

xcalib = (xcalibpixel * mic_per_XY * 0.000001);

xload = (xloadpixel * mic_per_XY * 0.000001);

xpin = (pinx * mic_per_XY * 0.000001);

xend = (endx * mic_per_XY * 0.000001);

startpoint = 1;
endpoint = length(yload);
figure
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plot(xload(startpoint:endpoint), yload(startpoint:endpoint))
%axis([{0 0.014 -0.0005 0.0035])
title('z-position difference vs. distance’)

cd(Inpath)

savefilename =
[bugabb,num2str(bugnumber),cs,’_load'.,num2str(loadnumber),dvabb,’_zdiffs'];
save(savefilename, 'xload’, 'xcalib’, 'yload', 'xpin’, 'xend’, 'force’);
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code to convert wing displacement to local EI
(assuming exponential EI distribution)
Elminexp.m

last modified 4/19/02

close all;

clear all;

global ¢

global a

global xcalibc
global xpinc
global forcec
global yloadc
global ypredictedc

bugnumber = 15;

cs = ‘chord’;

dv ='dors’;

dvabb ='drs';

loadnumber = 1;

computer = ‘Combseyland’;
bug = 'manduca’;

bugabb = 'mand’;

9oload the data

Inpath =
{computer,’:Stacey:wing/laser2000:',bug,num2str(bugnumber),’:’,cs,":load’,num2str(loadn
umber),dv];

cd(Inpath)

loadfilename =
[bugabb,num2str(bugnumber),cs,’_load',num2str(loadnumber),dvabb,’_zdiffs'];
load(loadfilename);

home = [computer,':Stacey:wing/laser2000:bending_code'];
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cd(home)

Joconvert values if necessary
conversion = 1;

xcalibc = xcalib*conversion;
Xpinc = xpin*conversion;
forcec = force*conversion;
yloadc = yload*conversion;

%enter initial guess and error tolerance

initguess = [0.0005 -100];

foptions(1) = 0;

foptions(2) = 1.e-8;

foptions(3) = 1.e-8;

foptions(14) = 10000;

[Pfiddle,out] = fmins('Elcompareexp’, initguess, foptions);
Pfiddle

%CALCULATE SOME STUFF
format long e;

ypredicted = ypredictedc/(conversion);
intercept = Pfiddle(1)

exponent = Pfiddle(2)

figure

title ('predicted and actual displacement vs. span/chord’)
plot(xcalib, yload, k', xcalib, ypredicted, 'r')

h = findobj('type’, 'line’);

blueline = h(1l);

redline = h(2);

set(blueline, 'LineWidth', 3);

set(redline, 'LineWidth', 5);

box('off’);

set(gca, 'FontSize', 24);

% folderpath =
[computer,":Stacey:wing/laser2000:',bug,num2str(bugnumber),:',cs,:load’,num2str(loadn
umber),dv];

% cd(folderpath)

% print fitimage.tff -f1 -dtiff

%FIND PROPORTIONAL ERROR IN DISPLACEMENT FIT
n=1;
prop_error = ones(length(ypredicted), 1);
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while n <= length(ypredicted);
prop_error(n) = (yload(n) - ypredicted(n))/yload(n);
n=n+1;

end;

abs_error = abs(prop_error);

med_error = median(abs_error)

avg_error = sum(abs_error)/length(abs_error)

%output error data
dataname = ['load’',num2str(loadnumber),dv,'_errorexp'];
namel = ['avgerr/mederr/int/exp T

dataplace = [computer,":Stacey:wing/laser2000:' ,bug,num2str(bugnumber).":'cs};
cd(Inpath)

WriteTextFile(dataname, namel, 'w’, ' ', '%s\n’)

equationdata = [avg_error 0; med_error O;intercept O;exponent 0;];
WriteTextFile(dataname, equationdata, 'a', ' ', '%5.10f %5.10f\n")
middle = zeros(length(xcalib),1);

figure

title('proportional error vs. span/chord’)

plot(xcalib, prop_error,'b’, xcalib, middle, 'k--')

j = findobj(‘type’, 'line');

blackline = j(1);

blueline = j(2);

set(blackline, 'LineWidth', 5);

set(blueline, 'LineWidth', 5);

box('off);

set(gca, 'FontSize', 24);

axis([O xcalib(length(xcalib)) -1 1])

cd(folderpath)

print errorimage.tif -f2 -dtiff

%FIND El

n=1;

Ellocalc = ones(length(xcalibc), 1);

while n <= length(xcalibc);
Ellocalc(n) = c*(exp(a*xcalibc(n)));
n=n+l;

end;

Ellocal = Ellocalc/(conversion”3);

xpoints = [xcalib, xpin, xend];

xtip = [xpin O; xend 0];

figure
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plot(xcalib, Ellocal, ')
axis([0 0.06 -0.0001 0.0004))
h = findobj('type’, 'line’);
blueline = h(1);

set(blueline, 'LineWidth', 3);
box('off’);

set(gca, 'FontSize', 24);

% %SAVE FILE

cd(Inpath)

savefilename =
[bugabb,num2str(bugnumber),cs,’_load',num2str(loadnumber),dvabb,’_expfit'];
save(savefilename, 'intercept’, 'exponent’, 'Ellocal’, 'xpoints', 'yload', 'ypredicted’,
‘prop_error’, ‘avg_error','med_error’, 'xpin’, 'xend");

%output EI data

dataname = ['load',num2str(loadnumber),dv,'_data'];

namel = ['int/exp/avgerr/mederr T

name?2 = ['xcalib El_load',num2str(loadnumber),dv];

errorname = [bugabb,num2str(bugnumber),cs.dv,’_error'];

name3 = ['x(load'num2str(loadnumber),dv,/" ,bugabb,num2str(bugnumber).cs,’)  yload
ypredicted'];

cd(Inpath)

WriteTextFile(dataname, namel, 'w', ' ', '%s\n’)

equationdata = {intercept 0; exponent 0; avg_error 0; med_error 0];
WriteTextFile(dataname, equationdata, 'a’, ' ', '%5.10f %5.10f\n")

WriteTextFile(dataname, name2, 'a’, ' ', '%s\n")

exportdata = [xcalib' Ellocal];

WriteTextFile(dataname, exportdata, 'a', ' ', '%5.16f %5.16f\n’)
WriteTextFile(dataname, xtip, 'a’, ', '%5.16f %5.16f\n’)

%output displacement error data

WriteTextFile(errorname, name3, 'a’, ' ', '%s\n’)

errordata = [xcalib’ yload' ypredicted’];

WriteTextFile(errorname, errordata, 'a’, ' ', '%5.10f %5.10f %5.10f\n")
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code to run simplex minimization on actual vs. predicted displacement
(assuming exponential EI distribution)

Elcompareexp.m

last modified 11/16/00
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function [C] = Elcompareexp(Pfiddle)

global ¢

global a

global xcalibc
global xpinc
global forcec
global yloadc
global ypredictedc

%FOR AN EXPONENTIAL EI DISTRIBUTION

¢ = Pfiddle(1);

a = Pfiddle(2);

ypredictedc = -((2*exp(-(a*xcalibc))*forcec)/(a*3*c)) + ((exp(-
(a*xcalibc))*forcec*xpinc)/(a*2*c)) - (((-(2*forcec)) + (a*forcec*xpinc))/(a*3*c)) -
((exp(-(a*xcalibc))*forcec.*xcalibc)/(a”2*c)) - (((forcec -
(a*forcec*xpinc))*xcalibc)/(ar2*c));

%COMPUTE SUM-SQUARED ERROR
C = sum((yloadc - ypredictedc).*2)
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code to convert wing displacement to local EI
(assuming 2nd degree polynomial EI distribution)
Elminpoly2.m

last modified 4/19/02

close all;

clear all;

global a

global b

global c

global xcalibe
global xpinc
global forcec
global yloadc
global ypredictedc

bugnumber = 15;
¢s = 'chord’;

dv ='dors’;
dvabb = 'drs";



210

loadnumber = 1;
computer = 'Combseyland';
bug = 'manduca’;
bugabb = 'mand’;

%load the data

Inpath =
[computer,':Stacey:wing/laser2000:',bug,num2str(bugnumber),’:',cs.":load’,num2str(loadn
umber),dv];

cd(Inpath)

loadfilename =
[bugabb,num2str(bugnumber),cs,’_load’,num2str(loadnumber),dvabb,'_zdiffs'];
load(loadfilename);

home = [computer,":Stacey:wing/laser2000:bending_code'];

cd(home)

Joconvert values if necessary
conversion = |;

xcalibc = xcalib*conversion,;
xpinc = xpin*conversion;
forcec = force*conversion;
yloadc = yload*conversion;

%enter initial guess and error tolerance

initguess =[1 -.01 0.0005];

foptions(l) = 0;

foptions(2) = 1.e-8;

foptions(3) = 1.e-8;

foptions(14) = 10000;

[Pfiddle,out] = fmins('EIcomparepoly?2’, initguess, foptions);
Pfiddle

%CALCULATE SOME STUFF
format long e;

ypredicted = ypredictedc/(conversion);
constl = Pfiddle(1)

const2 = Pfiddle(2)

const3 = Pfiddle(3)

%FIND PROPORTIONAL ERROR IN DISPLACEMENT FIT
n=1;
prop_error = ones(length(ypredicted), 1);
while n <= length(ypredicted);
prop_error(n) = (yload(n) - ypredicted(n))/yload(n);



211

n=n+1l;
end;
abs_error = abs(prop_error);
med_error = median(abs_error)
avg_error = sum(abs_error)/length(abs_error)

%FIND EI

n=1;

Ellocalc = ones(length(xcalibc), 1);

while n <= length(xcalibc);
Ellocalc(n) = (a*(xcalibc(n)”2)) + (b*xcalibc(n)) + c;
n=n+1;

end;

Ellocal = Ellocalc/(conversion”*3);

xpoints = [xcalib, xpin, xend];

xtip = [xpin 0; xend 0];
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code to run simplex minimization on actual vs. predicted displacement
(assuming 2nd degree polynomial EI distribution)

Elcomparepoly2.m

last modified 4/18/02

function [C] = Elcomparepoly2(Pfiddle)

global a

global b

global ¢

global xcalibc
global xpinc
global forcec
global yloadc
global ypredictedc

%FOR A 2ND DEGREE POLYNOMIAL EI DISTRIBUTION

a = Pfiddle(1);

b = Pfiddle(2);

¢ = Pfiddle(3);

ypredictedc = (1/(2*a”2*(sqrt(-b~2+(4*a*c)))))*(forcec*((
2*(b*2+(a*b*(xpinc+xcalibe))+(2*a*(-c+(a*xpinc*xcalibc))))*atan(b/(sqrt(-
bA2+(4*a*c))))) + (2* (b 2+(a*b*(xpinc+xcalibc))+(2*a*(
c+(a*xpinc*xcalibc)))). *atan((b+(2*a*xcalibc))/(sqrt(-b*2+(4*a*c))))) + (sqrt(-
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bA2+(4*a*c))*((2*a*xcalibc)+((b+(a*(xpinc+xcalibc)))*log(c))-
((b+(a*(xpinc+xcalibc))). *log(c+(xcalibc. *(b+(a*xcalibc))))))))):

%COMPUTE SUM-SQUARED ERROR
C = sum((yloadc - ypredictedc).A2)
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code to convert wing displacement to local EI
(assuming linear EI distribution)
Elminlinear.m

last modified 4/19/02

clear all;

global b

global m

global xcalibconv
global xpinconv
global forceconv
global yloadconv
global ypredictedconv

bugnumber = 15;

cs = 'chord’;
dv ='dors’;
dvabb ='drs’;

loadnumber = 1;

computer = 'Combseyland';
bug = 'Manduca’;

bugabb = 'mand’;

%load the data

Inpath =
[computer,:Stacey:wing/laser2000:',bug,num2str(bugnumber),:',cs,":load’,num2str(loadn
umber),dv];

%Inpath = [computer,':Stacey:wing/laser2000:',bug,num2str(bugnumber),”’,cs,];
cd(Inpath)

loadfilename =
[bugabb,num2str(bugnumber),cs,'_load’,num2str(loadnumber),dvabb,’_zdiffs'];
load(loadfilename);

home = [computer,':Stacey:wing/laser2000:bending_code'];

cd(home)
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Joconvert values if necessary
conversion =0.1;

xcalibconv = xcalib*conversion;
Xpinconv = xpin*conversion;
forceconv = force*conversion,;
yloadconv = yload*conversion;

%enter initial guess and error tolerance

initguess = [ -0.0001 0.001];

foptions(1) = 0;

foptions(2) = 1.e-8;

foptions(3) = 1.e-8;

foptions(14) = 10000;

[Pfiddle,out] = fmins('Elcomparelinear’, initguess, foptions);
Pfiddle

%CALCULATE SOME STUFF

format long e;

ypredicted = ypredictedconv/(conversion);
intercept = Pfiddle(1)

slope = Pfiddle(2)

%FIND EI

n=1;

Ellocalconv = ones(length(xcalibconv), 1);

while n <= length(xcalibconv);
Ellocalconv(n) = (m*xcalibconv(n)) + b;
n=n+1l;

end;

Ellocal = Ellocalconv/(conversion”*3);

%FIND PROPORTIONAL ERROR IN DISPLACEMENT FIT

n=1;

prop_error = ones(length(ypredicted), 1);

while n <= length(ypredicted);
prop_error(n) = (yload(n) - ypredicted(n))/yload(n);
n=n+l;

end;

abs_error = abs(prop_error);

med_error = median(abs_error)

avg_error = sum(abs_error)/length(abs_error)
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code to run simplex minimization on actual vs. predicted displacement

(assuming linear EI distribution)
Elcomparelinear.m
last modified 11/26/00

function [C] = Elcomparelinear(Pfiddle)

global b

global m

global xcalibconv
global xpinconv
global forceconv
global yloadconv
global ypredictedconv

%FOR A LINEAR EI DISTRIBUTION:
b = Pfiddle(1);
m = Pfiddle(2);

ypredictedconv = -(1/(2*m”3))*(forceconv*(((m*xcalibconv).*((2*b) +
(m*((2*xpinconv) + xcalibconv)))) + (2*(b + (m*xpinconv))*(b +
(m*xcalibconv))*log(b)) - (2*(b + (m*xpinconv))*(b + (m*xcalibconv)).*log(b +

(m*xcalibconv)))));

%COMPUTE SUM-SQUARED ERROR

C = sum((yloadconv-abs(ypredictedconv)).2)
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code to convert wing displacement to local EI

(assuming constant El distribution)
ElIminconst.m
last modified 4/19/02

clear all;

global ¢

global xcalibconv
global xpinconv
global forceconv
global yloadconv
global ypredictedconv

bugnumber = 15;
cs = 'chord’;
dv ='dors'’;
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dvabb = 'drs";

loadnumber = 1;

computer = 'Combseyland’;
bug = ‘Manduca';

bugabb = 'mand’;

%load the data

Inpath =
[computer,':Stacey:wing/laser2000:',bug,num2str(bugnumber),’:',cs,":load',num2str(loadn
umber),dv];

%Inpath = [computer,':Stacey:wing/laser2000:',bug,num2str(bugnumber),"' cs.];
cd(Inpath)

loadfilename =
[bugabb,num2str(bugnumber),cs,’_load',num2str(loadnumber),dvabb, _zdiffs'];
load(loadfilename);

home = [computer,':Stacey:wing/laser2000:bending_code'];

cd(home)

%convert values if necessary
conversion = |;

xcalibconv = xcalib*conversion;
Xpinconv = xpin*conversion;
forceconv = force*conversion;
yloadconv = yload*conversion,;

%enter initial guess and error tolerance

initguess = [ 0.001];

foptions(1) = 0;

foptions(2) = 1.e-8;

foptions(3) = 1.e-8;

foptions(14) = 10000;

[Pfiddle,out] = fmins('EIcompareconst’, initguess, foptions);
Pfiddle

%CALCULATE SOME STUFF

format long e;

ypredicted = ypredictedconv/(conversion);
const = Pfiddle(1)

%FIND EI

n=1;

Ellocalconv = ones(length(xcalibconv), 1);

while n <= length(xcalibconv);
Ellocalconv(n) =c;
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n=n+1l;
end;
Ellocal = Ellocalconv/(conversion”*3);

%FIND PROPORTIONAL ERROR IN DISPLACEMENT FIT

n=1;

prop_error = ones(length(ypredicted), 1);

while n <= length(ypredicted);
prop_error(n) = (yload(n) - ypredicted(n))/yload(n);
n=n+l;

end;

abs_error = abs(prop_error);

med_error = median(abs_error)

avg_error = sum(abs_error)/length(abs_error)
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code to run simplex minimization on actual vs. predicted displacement
(assuming constant EI distribution)

Elcompareconst.m

last modified 4/17/02

function [C] = Elcomparelinear(Pfiddle)

global c

global xcalibconv
global xpinconv
global forceconv
global yloadconv
global ypredictedconv

%FOR A CONSTANT EI DISTRIBUTION:

¢ = Pfiddle(1);

ypredictedconv = ((forceconv*xpinconv*(xcalibconv.*2))/(2*c)) -
((forceconv*(xcalibconv.A3))/(6*c));

% COMPUTE SUM-SQUARED ERROR
C = sum((yloadconv-abs(ypredictedconv))./2)



Appendix 5: Matlab code for Chapter 5

code to spline points and calculate theta difference between lead/trail or
lead/tip minus same difference in slow wing

vacboxspline.m

last modified 5/14/02

% PROVIDE: thetalead, timelead, thetat, timet,
% thetaslowlead, timeslowlead, thetaslowt, timeslowt

clear all;

% LOAD DATA

home = {'Combseyland:Stacey:vacuum_box2001:April2_vacbox'];
cd(home);

load mothd_slowtrail;

load mothd_helvactrail;

% THETALEAD

%define in and out indices of leading edge spline:

wholenumlead = round(timelead(length(timelead)));

outptslead = wholenumlead + 1;

outindexlead = [(1:1:wholenumlead), timelead(length(timelead))];
Yocreate a spline of the y-points of the leading edge curve:
splinelead = spline(timelead, thetalead, outindexlead);

% THETAT

%define in and out indices of trailing edge or tip spline:
wholenumt = round(timet(length(timet)));

outptst = wholenumt + I;

outindext = [(1:1:wholenumt), timet(length(timet))};

%create a spline of the y-points of the trailing edge or tip curve:
splinet = spline(timet, thetat, outindext);

% THETASLOWLEAD

%define in and out indices of slow leading edge spline:

wholenumslowlead = round(timeslowlead(length(timeslowlead)));

outptsslowlead = wholenumslowlead + 1;

outindexslowlead = [(1:1:wholenumslowlead), timeslowlead(length(timeslowlead))];
%create a spline of the y-points of the slow leading edge curve:

splineslowlead = spline(timeslowlead, thetaslowlead, outindexslowlead);

% THETASLOWT
%define in and out indices of slow trailing edge or tip spline:
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wholenumslowt = round(timeslowt(length(timeslowt)));

outptsslowt = wholenumslowt + 1;

outindexslowt = [(1:1:wholenumslowt), timeslowt(length(timeslowt))];
%create a spline of the y-points of the slow trailing edge or tip curve:
splineslowt = spline(timeslowt, thetaslowt, outindexslowt);

% find lowest number of even points to use:

wholepoints = [wholenumlead, wholenumt, wholenumslowlead, wholenumslowt];
wholepointssort = sort(wholepoints);

totalpoints = wholepointssort(1);

% create new vectors with even numbers of points:
thetaleadnew = splinelead(l:totalpoints);
thetatnew = splinet(1:totalpoints);
thetaslowleadnew = splineslowlead(1:totalpoints);
thetaslowtnew = splineslowt(1:totalpoints);

% multiply by -1 for downstroke, | for upstroke, duplicate last posneg
deriv = diff(thetaleadnew);

posneg = deriv’;

posneg(find (posneg>0)) = 1; posneg (find(posneg<=0)) = -1;
posnegall = [posneg’, posneg(length(posneg))];

% subtract trail from lead, then slow from fast
timesteps = 1:1:totalpoints;

flapdiff = (thetaleadnew - thetatnew)';

slowdiff = (thetaslowleadnew - thetaslowtnew)'’;
thetadiff = flapdiff - slowdiff;

thetadifffinal = (thetadiff' .*posnegall)*-1;

timesteps’'
thetadifffinal’

% find inflection points:
[max,min] = findpeakindex(thetaleadnew)

plot(timelead, thetalead, ‘o', timesteps, thetaleadnew, '*')

plot(timet, thetat, ‘o', timesteps, thetatnew, '*")

plot(timeslowlead, thetaslowlead, ‘o', timesteps, thetaslowleadnew, '*')
plot(timeslowt, thetaslowt, '0’', timesteps, thetaslowtnew, *')

plot(timesteps, flapdiff, 'g', timesteps, slowdiff, 'c', timesteps, thetadiff, 'b’, timesteps,
thetadifffinal, 'r')
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