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University of Washington
Abstract

APPLICATION OF MULTIVARIATE ANALYSIS
TECHNIQUES IN UNDERSTANDING COMPLEX
INDUSTRIAL PROCESSES - A PULP MILL EXAMPLE

by Saket Kumar

Chairperson of the Supervisory Committee:
Chairman, Prof. Richard Gustafson
Department of Paper Science and Engineering

The financial and process benefits of improving the mill fiber line are widely
acknowledged. However, process optimization of the fiber line is difficult due to the
complex behavior of pulp and paper systems. The dissertation project focused on
application of multivariate analysis techniques for understanding and improving fiber
line performance. Models for prediction and variability analysis of kappa number and
total bleaching cost were developed using data generated by pulping and bleaching
operations. The research project led to refinement of earlier methods of data
preprocessing and development of algorithmic solution for the data time shifting

problem.

Multivariate statistical techniques were used to analyze sources of kappa and
bleaching cost variability for Weyerhaeuser Longview mill and Georgia Pacific
Ashdown mill. For the Weyerhaeuser Longview mill, factor analysis allowed
development of models that successfully predict kappa number out of a continuous
digester and O, delignification stage. The most important cause of kappa variability
in the continuous digester was found to be mischarges in alkali. Variations in kappa
number can be reduced by 45% in the digester and 40% in the O delignification

reactor if variables correlating with the important factors are brought under control.



None of the multivariate techniques were successful in predicting K-number for the
Georgia Pacific Ashdown mill. The main reason for poor prediction was that the
digester was already under tight control as evident from low (6.12%) coefficient of
variation of K-number. Processes under tight control appear to generate datasets with
minimal correlation structures. Such datasets are not suitable candidates for the

purposes of predicting output variables such as K-number.

In the bleaching study, principal component analysis as well as factor analysis models
with fourteen upstream variables successfully predicted bleaching cost trend.
However, neural networks bleaching cost predictions were poor. Factor analysis and
PCA models of the bleaching cost indicated that most of the bleaching cost variability
was either due to lignin factor (which represents pulping and washing variables) or
due to digester column stability represented by outlet device amperage. A method to
compare results from various multivariate methodologies was also developed. The
factor model with fourteen variables achieved the highest score on comparison scale

for bleaching cost study.

Both the lignin and digester stability factor point at the digester being the major
source of bleaching cost variability. It appears that there are variations in pulp lignin
content (or some latent variable) that are not measured by the K number test at the
Decker, but results in changes in the chlorine requirements at the D/C stage. In this
situation, bleaching cost predicted by the model may be used as a soft sensor to
manipulate temperature, steam flow in digester to produce pulp with uniform bleach
chemical requirements (i.e., consistent latent variable variation). This way cost
variability will be reduced, as presumably the variation in lignin content will be

minimized.
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CHAPTER 1: INTRODUCTION

1.1 PULPING AND BLEACHING OVERVIEW

Modemn pulp and paper mills use wood chips as the basic raw material to produce
paper. Inside wood, papermaking fibers are cemented together by an amorphous,
highly polymerized substance called lignin. The objective of pulping is to degrade
and dissolve away the lignin and leave most of the cellulose and hemicelluloses in the
form of intact fibers. The task can be accomplished mechanically, thermally,
chemically, or by the combination of these processes. The most prevalent pulping
process, called kraft process, involves cooking the wood chips in a solution of sodium
hydroxide (NaOH), and sodium sulfide (Na;S). The alkaline attack causes
fragmentation of the lignin molecules into smaller segments whose sodium salts are
soluble in the cooking liquor. "Kraft" is the German word for strong, and kraft pulps
produce strong paper products; but the unbleached pulp is characterized by a dark
brown color. The dark color of unbleached pulp is attributed to "chromophoric
groups" on the lignin. The approach followed to produce white paper, from
unbleached pulp, is to completely remove the “chromophoric groups™ and residual
lignin using bleaching chemicals. Pulp bleaching is achieved through a continuous
sequence of process stages using different chemicals such as chlorine dioxide,
chlorine, oxygen, and hydrogen peroxide usually with washing between stages.
Finally, the bleached pulp is transferred to paper machine to manufacture paper.
Mills refer to the set of operations from pulping to paper machine as the fiber line. In
terms of investment, a 1000 ton per day integrated bleached kraft mill is estimated to
cost in excess of 1 billion dollars (typically exceeding one million dollars per worker)
[1]. Such a high investment cost coupled with rising raw material costs has

necessitated increased impetus on process optimization efforts.



Pulp and paper mills engage in high volume operation. For example, a 1000-ton per
day kraft pulp mill uses 2200-ton wood chips per day (assuming a pulp yield of 45%
from wood chips). The amount of pulping chemicals charged, heat energy used, and
bleaching chemicals used are all based on 2200-ton wood chip consumption. In such
a high investment, high volume operation, small process improvements can amount to
significant dollar savings for mills. For exampie, assume a small process
improvement results in reduction of kappa number (a measure of residual lignin in
pulp) variability by two points. This reduction in kappa variability can lead to an
approximately 1% increase in pulp yield (22 tons more pulp per day ~ $10000 in
increased profits per day). The decrease in kappa variability will also enable the
bleach plant to charge bleach chemicals assuming lower incoming kappa (Figure 1-1).
The lower bleach chemical charge per ton of pulp will result in savings in total bleach
chemical cost. Additionally, the pulp product will be of higher quality due to reduced

pulp strength loss.

It is evident from this discussion that there is room for improvement in a mill fiber
line that can lead to monetary and process benefits. However, a better process
understanding is a prerequisite for making such an improvement. In other words, a
complete understanding of the behavior of the system is essential to modify and
optimize an existing process and to develop new ones. At present, the quantitative
knowledge of the processes involved in the mill fiber line is generally incomplete and

is in a state of continuous evolution [2,3].
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Figurel-1 Benefits of fiber line optimization

1.2 PROBLEMS IN ANALYZING PULPING OPERATIONS

There are several reasons for the incomplete understanding of the fiber line
operations. Most of the problems in understanding fiber line operations can be
attributed to the inherent nature of the pulping process. Pulp and paper mills periorm
complex physical and chemical unit operations on a daily basis. These operations
involve numerous interacting variables, i.e., a change in one input variable affects
more than one output variable. Multivariate interactions result in varying degrees of
correlations in the data generated by the process. Numerous process control loops
present in pulp mills also result in highly correlated data. The process analysis is
further complicated by the presence of unknown disturbances such as chip quality

variations coming into the system.



A number of other factors make it difficult to understand mill operations. These
factors are related to the design of the equipment used. In the case of reactors like the
digester and bleaching towers, there are long delay times due to the design of the
process equipment. As a result, the process data contains timeshifted variables trends
that can’t be easily used to model process behavior. Another complicating factor is
the presence of non-linear relationships among variables in the dataset generated by
the process. Most importantly, it is quite difficuit to get a dataset representative of the
process as fiber lines run under unsteady states for a significant portion of the time.
All these factors in conjunction with the complex nature of the process itself make it

difficult to get useful information about the process. Table 1-1 provides a summary of

problems in analyzing pulping operations.

Table 1-1. Process and analysis problems while analyzing pulping operations.

Process problems Analysis problems
Complex physical and chemical unit ®» Multiva_riate interqction_s,
operations. correlations, non-linearity.
Unknown incoming disturbances - o

Poor prediction models

e.g., chip quality changes

Highly correlated variables,

Numerous process control loops. - controlled process

Time-shifted variables, loss
Large dead-time, time lag in the process

of predictive information.




1.3 PROCESS OPTIMIZATION REQUIREMENTS

Knowledge of the process is a prerequisite to successful design and implementation
of fiber line optimization. Many pulp and paper processes are based on quite complex
physical and chemical operations involving many interacting variables. With
increasing access to computers, there has been development of quantitative process

knowledge in the form of mathematical model [2].

1.3.1 PROCESS MODELING

These are two basic ways of modeling process dynamics. The first method is to
derive a mechanistic model (or first principle model) using laws of physics and
chemistry. Mechanistic models are based on mass and energy balances as well as
kinetics and thermodynamics of processes. The resulting model usually consists of a
set of differential equations. These equations can be numerically integrated to
simulate, on a computer, the behavior of the process. The parameters of the
differential equation depend on the chosen operating points such as throughput or
grade. Process simulations, which are based on these models, are useful for testing
control strategies at the design stage. Theoretical pulping models have the advantage
of being able, at least in theory, to accurately describe the complex behavior of
pulping systems. A disadvantage is that it is difficult to obtain sufficiently reliable
parameter estimates for deriving and applying the model. Also such models require
substantial computing resources to perform the lengthy numerical integration of
simultaneous partial differential equations. For these reasons, empirical models are

frequently developed and used.

1.3.2 EMPIRICAL MODELS



Unfortunately, our understanding of the physics and chemistry of many processes
such as pulping and bleaching is not sufficient to derive detailed mechanistic models.
In this case, a model may be obtained through the analysis of data acquired when the
process is operating. This method is referred to as empirical modeling and will be
dealt with later in the chapter. Experimental data from the process is also used to
verify mechanistic models and/or to provide the estimates of unknown process

parameters in such mechanistic models.

Empirical models explicitly relate such dependent variables as yield, kappa number,
and pulp viscosity to controllable pulping variables such as alkali charge, H-factor,
sulfidity, and liquor-to-wood ratio. Hatton [4, S] succeeded in correlating a large
amount of kraft pulping data with simple relationships that relate pulp yield and
kappa number to H-factor and effective alkali charge. These equations are applicable
to the pulping of thin chips at unspecified and presumably constant values of sulfidity

and liquor-to-wood ratio. The form of relationship is

Y =A- B-(logioH) - (Ea"') (Eq. 1-1)

K=a- B (logioH) - (Ea™) (Eq. 1-2)

where Y is yield, K is kappa number, H is H-factor, EA is effective alkali
charge and A, B, a, B, n;, n; are parameters assumed to be constant for a

given species.

The Hatton equations provide a very compact description of the pulping behavior of
several species. Their most obvious shortcomings are that they cannot predict the

effects of changing sulfidity or liquor-to-wood ratio and that their predictive power



for hardwoods is not very great, owing to poorer fits to the original data. Models also

have limited range where these can be used.

Tasman [6,7] analyzed several sets of pulping data in the literature with a view of
deriving a model that would account for changes in sulfidity as well as in H-factor

and alkali charge. He derived the following equations:

a—b(EdlogwS/logwEd)

J1-3
T, (Eq. 1-3)

logY =

where
[=(c + d log)0S)/log;0EA) for softwoods;
I=c - d log;oEA for hardwoods.

Y is yield, EA is effective alkali charge, S is sulfidity, H is H-factor,

and a, b are constant for a particular species.

Similar to Hatton equations, Tasman’s equations arc useful for estimating tradeoffs

between pulping variables and predicting unbleached pulp properties.

Lin et al. [8] reported that the following equations could be used to predict the kappa

number of kraft cook from hardwoods from Taiwan and the Ivory Coast:
Kappa =(A’D¢" '*)/(Qo""" H®'7%) (Eq. 1-4)

where Dy is the liquor-to-wood ratio, Qo is the alkali-to-wood ratio, H is

H-factor, and A’ is a constant for each wood species.



Lin’s equation offers the advantage of being able to predict the effect of varying the
liquor-to-wood ratio but doesn’t account for sulfidity. The same form of equations

may not be applicable to North American species.

Empirical models have their own set of disadvantages. Because they are entirely
without theoretical basis they lack generality. A model based on a given set of
experimental data is unlikely to be able to predict the outcome of cooks performed
under conditions that differ from those used in the particular set of experiments that
gave that data. A change in wood species, lignin content, chip size distribution or
wood specific gravity is likely to seriously affect the applicability of the model. A
theoretical model, on the other hand, can be more readily adapted to new conditions
by substituting new values of one or more fundamental parameters such as lignin
content, delignification rate constant or diffusivity. Significant improvements in the
fiber line using empirical models is not possible due to the lack of generality of these

models.

1.3.3 MULTIVARIATE ANALYSIS

Most of the empirical models discussed above involve some variation of linear
regression on raw or transformed process data. In the recent past, there has been
considerable interest in the use of more sophisticated multivariate analysis techniques
to model complex industrial processes. Multivariate techniques such as principal
component analysis, factor analysis, and neural networks have been successfully used
in pulp and paper industry. Applications cover a wide range of processes including

chip refining, continuous and batch digesters, and paper machine operation [9-15].

A number of researchers have used multivariate dimension-reduction techniques such
as principal component analysis (PCA) and factor analysis (FA). Arkun and

Rigopoulos [9] have used PCA to compress and filter data from on-line sensors in



paper machines. Using PCA they identified the most significant features of cross
machine direction profile while filtering out the random noise. The filtered data was
used for predictive control in a closed-loop system. Strand [10] has used factor
analysis to analyze the effects of raw material variation on mechanical pulp
properties. He has also modeled the behavior in newsprint wood refiners [11, 12, 13].

The application of factor analysis has mostly been limited to mechanical pulping.

Neural network is a non-linear multivariate analysis technique. These networks have
also been used to discover hidden patterns inside data generated by mill operations.
Rudd used [14] a neural network to predict the mat consistency and soda loss of the
pulp leaving a bleached washer. The neural network used was based on 14 variables
available in an existing control system. While working with the washer networks,
Rudd found that a single network to predict consistency, density, and soda losses was
not the most effective approach. The network tried to average the accuracy with
which it could predict these variables. As a result, he used two networks which
predicted different output variables using many common input variables.
Additionally, he found that training networks for various operating conditions, such

as pulp grade changes could result into much higher accuracy.

Dumont, et al. [15] examined a neural network developed using data from an
industrial chip refiner. The research investigated the feasibility of using a feed-
forward neural network as an alternative to mathematical modeling of complex
processes. Outputs predicted by the network compared favorably with industrial
refiner data. In addition, it was shown that the network structure could be modified to
optimize refiner operation and product quality. Khorasani [16] proposed a
backpropagation neural network-based controller to replace the self-tuning regulator
(STR) for closed-loop control of specific energy in the refining process. Miyanishi

[17] applied artificial neural networks to the diagnosis of paper web breaks in a
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commercial newsprint paper machine. He proposed a three-stage multilayer neural

network and backpropagation method to extract essential causes of paper web breaks.

1.4 DISSERTATION OBJECTIVE

It is evident from previous discussions that multivariate tools are effective in
analyzing paper machines as well as smaller unit operations (e.g., washing, refining)
in the pulp mill. If multivariate techniques were used to analyze a pulp mill, an
improved understanding of the kraft fiber line could be expected along the lines

successes achieved in similar efforts in other areas of pulping and papermaking.

A pulp mill fiber line is a complex network of storage tanks and unit operations.
Upsets due to shutdowns, slowdowns, rate, and species changes in one process tend to
propagate through the network and hence influence the operation of other unit
operations. A complete study of a mill fiber line, with an objective of understanding
and optimization, has not been not been done before. Multivariate techniques, not
first principle or empirical models, appear to be a well suited tool to analyze this
complex system. Thus, the dissertation approach involved use of a spectrum or

combination of multivariate techniques to study the kraft pulping process.

The main objective of the dissertation was to investigate the use of multivanate
statistics for analyzing and optimizing pulr: mill fiber line. The efficacy of different

multivariate techniques, in analyzing the fiber line, was also compared.
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CHAPTER 2: MULTIVARIATE ANALYSIS METHODS

Pulp mill operations generate datasets with hundreds of measurements. However,
relatively few events may be occurring despite the number of measurements being
large. The data from these measurements must therefore be mapped into meaningful
descriptions of event(s). m The multivariate techniques principal component
analysis, factor analysis, and neural networks were used in our project to describe
fiber line operations. An overview of multivariate techniques is presented before our
project approach and results can be discussed. The goal of all multivariate analysis
techniques is to predict output variables (called response vaﬁables) using input
variables to the process (called explanatory variables) using as few independent
characteristics as possible. The problem is not trivial because explanatory variables as
well as response variables are intercorrelated. A detailed discussion of the

multivariate techniques is presented in the following sections.

2.1 PRINCIPAL COMPONENT ANALYSIS

Principal Component Analysis (PCA) has been extensively used to reduce the number
of explanatory variables. About a century ago, the idea of PCA appeared in
psychology and some social science fields [18]. Today, a great deal of research is still
being done in the general area of PCA and PCA is being used in engineering. PCA
has been extensively applied in many disciplines, including chemistry, biology,
meteorology, and chemical engineering. In chemical engineering, it has been used in
data visualization, correlation and prediction, quality control, sensor calibration, and
processes monitoring [19, 20, 21]. Wise and co-workers [22] give a theoretical basis
for the use of PCA for monitoring processes. They find that under most circumstances

the PCA model will span the same space as a linear state-space model.
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Conventional PCA can be viewed as a technique for linearly mapping
multidimensional data onto lower dimensions with minimal loss of information [23].
Let X = [xi, X2, ..., Xa] be a normalized n dimensional data set. PCA is a method to
transform X into lower dimensional latent structures. The set X would typically
contain the measurements of a process. In many real-world processes, €.g., pulp mill
data, the measurements are correlated; that is, knowledge of a subset of measurements
defines the rest to some degree. With PCA, one can develop a linear model that

explains the maximum variance of the X data for a given model complexity.

Linear PCA involves the orthogonal decomposition of X along directions that explain
the maximum variation of the data. The largest eigenvector t; of the covariance
matrix of X is usually called the first principal component loading. The eigerivector 4
gives the direction of the first principal component. The projection of an original data
point onto the t; eigenvector defines a point in the subspace. Projections of all
original data points in the subspace on first eigenvector, constitute principal
component scores along the dimension p,. The second principal component is defined
by the second largest eigenvector and so on. If the variables in X are correlated, as
often is the case, most of the variation in the data set X after calculating m principal
components with m << n will have been explained. Mathematically, X can be written

as

X= pltl"*' p2t2'+~~-- + Pmim' + E (EQ- 2-1)

where X is the normalized data set of process measurements or variables.
t; (i=1,2,..., m) are eigenvectors of the covariance matrix of X. p;
(i=1,2,..., m) are m dimensions in the subspace also called principal

components. E is the residual data matrix.

More generally, we can write:
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X=PTT+E (Eq. 2-2)

where P is defined as principal component scores, and T is defined as
principal component loadings or eigenvector of the covariance matrix of

X.

By summarizing the information in X using the new variables (p;, 1=1, ..., m), one has
reduced the dimensionality of the space from n to m. In geometrical terms this is
equivalent to approximating the n-dimensional observation space by the projections
of the observations down onto a much smaller m-dimensional space. Selecting m is
very important in the PCA calculation. Ideally m is chosen such that there is no
significant process information left in the residual E. Rather E should represent
random error, and adding one more principal component would only resuit in fitting
some of this random error. There are several ways for selecting m; one can proceed
until the percent of the variation explained by adding an additional principal
component is small. A better procedure is to use cross validation [24, 25] whereby
one holds back a certain fraction of the observations (say 1/3) and then performs a
PCA analysis on the remaining data. Following the PCA analysis the Square

Prediction Error (SPE) for those observations is computed.

SPE = || X -PT |’ (Eq. 2-3)

This calculation is repeated until every observation has been left out once. The
optimal order of the principal components medel, m, is taken as that order minimizing
the sum of the SPE values from the data used for the model development and the

testing data.
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2.2 FACTOR ANALYSIS

Another data reduction technique that is often used is factor analysis (FA). Although
very similar to PCA, FA is different from PCA in one important aspect. FA assumes
that the variability of a variable has two parts [26]. The first part, called common
variability, is influenced by other variables in the data set. The second part of
variability is independent of the effect of other variables (i.e., it is random). So, in a
sense FA may be better at describing systems such as the pulping fiber line where not

all the variations of the fiber line come from variable interactions alone.

Mathematically speaking factor analysis assumes that the variance of a variable can
be broken down into two additive parts. The fundamental partition is one between
that portion of the variance that a variable shares with other variables, its common
variance, and that portion which is not shared, its unique variance. The factor

analysis model can be described as

X=fit +Ht°+ ...+t + U (Eq. 2-4)

where X is normalized data set of process measurements or variables.
t; (i=1,2,..., m) are eigenvectors of the modified covariance matrix of
X. £ (i=1,2,..., m) are m dimensions in the subspace also called
factors. U is called the uniqueness matrix. The U matrix represents the

unique portion of the variance of variables.

The factor analysis model for ith observation of a single variable j would be

Xij = aF1i + appFai + ... + jmFmitUji (Eq. 2-5)

Where X;; =normalized score of the ith observation on variable j.



15

ajx = regression weight of the kth factor for predicting the jth variable.
Fi; = score of ith observaticn on kth factor.
Uji= uniqueness score for the observation on variable j.

The contribution of each factor to the variation in Xj is given by the square of its
regression weight for predicting that variable. The sum of the squares of these factor
loadings (called communality, symbol hjz) is the proportion of the variance of variable

j that is accounted for by the set of factors. Mathematically speaking,

Communality =h} = a;, (Eq. 2-6)
k=1
Uniqueness = uj" =]- hj” (Eq. 2-7)

The total variance of normalized variable j follows from the above equation and is

given by

o =l=u’+ h/’ (Eq. 2-8)

There are two problems associated with factor analysis. The first problem is finding
out the optimum number of factors. The second problem is related to the reduction of
correlation matrix (also known as estimating communalities of the variables). The
decision about the optimal number of factors is based in part on estimates of common
variance, and estimates of the communalities (common variance) depend in part on
the number of factors one chooses to retain. In other words, these two problems are
closely related and thus difficult to separate. The frequently used solution is to make
an arbitrary decision about one feature, either number of factors or communality, and

to obtain the solution of other by direct computation. In our project communality was
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estimated and number of factors was obtained by direct computation. The main
reason for this choice was unavailability of any information about the number of

independent events (i.e., number of factors) occurring in the process data.

Another important characteristic of factor analysis is factor rotation. Factor rotation
can be defined as a process of finding an optimal reference frame to clarify the
meaning of the factors. A number of computational algorithms such as quartimax and
varimax have been developed that rotate the factors to simple structure without the
intervention of personal bias. Each of these procedures involves finding a rotation
that maximizes the variance in factor loadings across rows of the factor matrix. The
criterion of meaningfulness of factors is, ultimately, a necessary condition for an
adequate factor solution, but it is far from sufficient, unless the meaning derives from
an understanding of the process, e.g., fiber line operation in our project. Note that the

communalities of the variable remains unchanged by the process of rotation.

2.3 NEURAL NETWORKS

Both PCA and FA are good at describing a dataset containing linear interactions [23,
26]. To investigate non-linearities present in pulping and bleaching processes a non-
linear multivariate technique such as neural network analysis is desirable. For many
years linear modeling has been the commonly used technique in most modeling
domains. Linear models have well-known optimization strategies. Where the linear
approximation was not valid (which was frequently the case) the models suffered
accordingly. Artificial neural networks have shown usefulness for making of non-
linear models. Neural networks grew out of research in artificial intelligence;
specifically, attempts to mimic the fault-tolerance and capacity to leamm of biological
neural systems by modeling the low-level structure of the brain [27]. These networks
have been used to solve problems of prediction, classification or control in areas as

diverse as finance, medicine, engineering, geology, and physics [28]. This sweeping
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success can be attributed to the capability of neural networks to model extremely
complex non-linear functions. Neural networks are relatively easy to use as they learn
by example. The user gathers representative data, and then invokes training
algorithms, which assist neural networks in automatically learning the structure of the
data. The user does need to have heuristic knowledge of the selection and preparation
of data. For the selection an appropriate neural network, and interpretation of results,
the level of user knowledge needed to successfully apply neural networks is much

lower than would be the case using (for example) more traditional statistical methods.

Artificial neural networks can achieve some remarkable results using a simplified
model of biological brain. Artificial Neural networks are mathematical systems that
are comprised of a number of "processing units" that are linked via weighted
interconnections. A processing unit is essentially an equation, which is often referred
to as a "transfer or activation function" (Fig. 3.1). A processing unit takes weighted
signals from other neurons, possibly combines them, transforms them and outputs a

numeric result.
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where xi, X3, ..., Xy are input signals to the neural network (NN).

Wij, waj, ..., Wy; are connection weights inside the NN which are adjusted

during NN training.
0; is the bias factor that can be adjusted during NN training process.

f(act) is the activation function which transforms set of input signals into

output signal.

Figure 2-1. Details of an artificial neuron.

For any useful network, there must be inputs (which carry the values of input
variables of the process) and outputs (which form predictions, or control signals).
There must also be hidden neurons, which play an intemnal role in the network. The
input, hidden, and output neurons need to be connected together. The layers have
similar characteristics and execute their transfer simultaneously. A simple network
has a feedforward structure [28]: signals flow from inputs, forwards through any
hidden units, eventually reaching the output units. A typical feedforward network is

shown in the Figure 2-2.
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The behavior of neural networks, how they map input data to output data, is
influenced primarily by the transfer functions of neurons, how they are interconnected
and the weights of those interconnections. The Figure 2-3 shows three commonly
used transfer functions, i.e., linear, nonlinear, and semi-linear (sigmoid). Typically, an
architecture or structure of a neural network is established and one of a variety of
mathematical algorithms are used to determine what the weights of the
interconnections should be used to maximize the accuracy of the outputs produced.
Neural networks are "trained”, meaning they use previous examples to learn the
relationships between the input variables and the predicted variables by setting these
weights. Once these relationships are established, the neural network can be presented

with new input variables and it will generate predictions.

Y

[nput laycr Hidden layers Output layer

Figure 2-2. Neural network with input, hidden, and output layers
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Figure 2-3. Commonly used transfer or activation function in neural networks.

A number of nonlinear dynamic models have been built by applying neural network
techniques for chemical industries. Bhat et al. [29] used backpropagation technique to
train a feedforward neural network. Schweiger [30] and Rudd used neural networks to

predict and control paper machine parameters.

Similar work was done for an industrial chip refiner by Dumont, et al. [15]. The
outputs of neural networks developed by Dumont compared favorably with industrial
refiner data. For closed-loop control of specific energy in the refining process,
Khorasani [16] proposed a backpropagation neural network-based controller to
replace the self-tuning regulator (STR). In a commercial newsprint paper machine,
Miyanishi [17] applied artificial neural networks to the diagnosis of paper web
breaks. He extracted the essential causes of paper web breaks by using a three-stage

neural network and backpropagation method.

2.4 TIME SERIES ANALYSIS

Time series (TS) is commonly used to investigate the dynamic relationship among

variables when data are collected over a regular time interval or are time dependent
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[31]. Time series provided insights into timelags and deadtime problems that are

present in the dataset acquired from a pulp mill.

Mathematical model creation using time series is an extremely involved process.
Much exploratory data analysis must take place before modeling is even attempted.
This exploratory data analysis begins by looking at the probabilistic structure of the
data set. If the probabilistic structure of dataset is unaffected by a shift in the time
origin or a data series looks the ‘same’ at whatever point in time the observations are
started and it shows similar behavior throughout its duration, then the time series is
said to be stationary. Alternatively, a time series is said to be stationary if the mean
and standard deviation of successive series do not change significantly with time.
Time series have characteristics, which cannot be measured by the mean and standard
deviation. For example, two kappa number time series (associated with two
production runs) can have similar mean and standard deviation but have different

short-term and long-term variations. Time Series procedures include the following:

1. AUTO CORRELATION: This is a method for comparing a sequence to itself to
determine the correlation between successive measurements. It determines the
degree of continuity of the data, if it is cyclic or periodic, i.e., if it repeats itself, if
a trend is present or if the data are random. This is done by passing the sequence
over itself and determining the goodness of fit at successive positions. This

goodness of fit is the measure of similarity and dissimilanty.

CROSS CORRELATION: This procedure compares one sequence with another

9

to identify and locate positions of high correlations between the two sequences.
The techniques involved are slightly different to the autocorrelation procedure.
Cross-correlations for positive and negative lags must be calculated as the entire
length of one series must be moved past the other and the position of the

theoretical lags zero is not known. The successive comparisons are called match

positions and not lags.
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For continuous processes where dynamics are important, as in pulp and paper mills,
time series analysis techniques are particularly suited to analyze process vanability.
The process data routinely collected can be used to monitor control performance and
identify the source of product quality variations. Croteau [32] et al. reviewed time
series techniques and procedures with examples from various mill applications.
Applications range from correlating the active alkali change to a continuous kraft
digester with the pulp's kappa number in the blowline to the air/solids ratio with the

carbon monoxide concentration in recovery-furnace flue gas.

Allison [33] et al. used closed-loop time series identification to develop the process
model of chip level in a Kamyr digester. Based on model predictions, a generalized
predictive controller (GPC) was designed. A significant reduction in chip level and P-
no. (covariance matrix) variability was observed after GPC installation. Ritala [33]
used time series analysis to develop a process analysis system. This system identified
causes of quality variations by accommodating irregular signals as well as long

process dead times.
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CHAPTER 3: PROJECT APPROACH

Multivariate data analysis techniques were used in this research project to provide a
concise mathematical description (model) of the fiber line. Models of the fiber line
were developed to improve the process as well as to study the sources of product

variability. The project approach consisted of following four steps

1. Preprocessing of raw data acquired from fiber line operations.

(L]

Analysis of preprocessed data using multivariate techniques to predict important
process output variables.
Interpretation of analysis results from step 2.

4. Comparison of the results from various multivariate methodologies.

Project steps are described in detail in the following paragraphs.

3.1 RAW DATA PREPROCESSING

There are always problems with real world data. Data problems are situations that
prevent efficient use of data analysis tools or that result in generating unacceptable
results. It is reasonable to either rectify the data problems ahead of time or recognize
the effects of data problems on the results. Data problems in pulp mill data can be
caused by the changes in process characteristics and operating conditions, as well as
in the data collection process itself. For example, pulp mill process equipment such
as continuous digesters, bleach towers and storage vessels often have large timelags
and deadtimes as these hold large volumes of chips/pulp and liquor. In the context of
data analysis, a great deal of predictive information is lost unless the deadtime present

in the raw data set is accounted for.
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Data from process operations undergoes various transformations and changes before
they are acquired for analysis. A necessary condition to get any useful result from a
data analysis involves elimination of effects of transformations and changes implicit
in the raw data. Data preprocessing consists of all the actions taken before the actual
data analysis process started. It can be defined as a transformation T that transforms

the raw mill data vectors Xix, to a set of new data vectors Yj;
Yi =T Xi) (Eq. 3.1)
such that: (i) Yj; preserves the “valuable predictive information™ in Xi,
(ii) Y;; is more useful than Xi.
In the above relation:
i =1, ...n where n = number of observations,
j=1,...m where m = number of variables after preprocessing,
k =1, ...1where | = number of variables before preprocessing,

and in general, m <l.

Data preprocessing is performed to achieve a number of objectives. In addition to
solving data problems, such as corrupt, noisy data or irrelevant data in the data sets, it
helps in learning more about the nature of the data. Some of the data problems in the
pulp mill study were related to the size of the dataset, data filtering, and choice of
variables for predicting output variables. These problems are discussed in detail in the

following sections.
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1 SIZE OF DATASET

The size of a dataset acquired for analysis from a pulp mill and bleach plant is quite
important. A comprehensive analysis of a large volume of data was difficult as the
dataset represented a variety of process upsets and disturbances as well as a number
of different production runs. Additionally, the dataset may have contained a number
of production runs with different operational campaigns. Efforts were made to reduce
the size of the dataset so that only few important campaigns could be modeled.
Production runs, based on constant chip meter RPM or production rate, were chosen
as representative of pulp mill operations. Similarly, constant production runs were
chosen for the bleach plant. The time duration for pulp mill and bleach plant datasets
were similar as the research project focused on determining upstream variables (i.e.,

pulp mill variables) that were affecting important output variables in the bleach plant.

2 IRRELEVANT DATA

A large number of irrelevant variables were present in the preliminary stages of the
multivariate analysis. The number of variables in the preliminary analysis could be up
to 150 for pulp mill and over 200 variables for bleach plant. Extraction of meaningful
variables from a large set of variables was not a trivial task. The main goal of
eliminating irrelevant data was to nairow the search space in the data analysis. An
important criterion in removing irrelevant variables was the presence or absence of
predictive information about important output variables such as kappa number or
bleaching cost in the variables. Some of the steps taken to remove irrelevant

variables from the analysis were the following:

(i) Variables related to mechanical equipment such as mixers, pumps etc. were
removed from the analysis. These variables did not have any significant, direct impact

on process operations.
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(i1) Variables whose trend did not change significantly in a production run were
removed. Variables that were removed had a coefficient of variation (COV) of less

than 3%.

(iii) Variables were removed from the analysis based on the change of accuracy in the
developed model. Variables with the least predictive ability for kappa number or

bleach cost were removed from the analysis.

3.1.3 DATA FILTERING

The raw dataset from the mill contained noisy trends for process variables. Since the
study was focused on long-term variations of important output variables, data filtering

was required. Some of the most common filtering techniques are the following:

(1) Time domain filtering, where the mean or median of the measured data in a

window of predetermined size is taken.

(ii) Frequency domain filtering, where data are transformed via Fourier analysis

and high frequency contributions are eliminated from the data.

(ili)  Time-frequency domain filtering, where the measured data are transformed

simultaneously in the time and frequency domain.

For our study, time domain filtering was used with a five-hour window. In other

words, five-hour moving average of variables was used in the multivariate analysis.

3.1.4 TIMESHIFTING IN RAW DATA
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The fact that large quantities of process data are readily available leads one to
consider using these data to improve process operations. However, there exist several
problems inherent in the pulping and bleaching processes that serve as obstacles in
using such data. Pulp and paper processes often have large timelags and deadtimes.
Process equipment such as continuous digesters, bleach towers and storage vessels
hold large volumes of chips/pulp and liquor, which may be conveyed as a plug (“plug
flow”) through the equipment. Additionally, large storage tanks (high-density tanks)
often separate process units (pulp mill, bleach plant, paper machine, etc.). These
storage tanks isolate one area from upsets in other areas. The resulting timelags may
vary from minutes to several hours, depending on the production rate and other
processing variables. When analyzing pulp and paper process data, a great deal of
predictive information is lost unless the deadtime present in the raw data set is

accounted for.

The loss of predictive information in kappa number trend with respect to total
bleaching cost trend is shown in Table 3-1. Theoretically total bleaching cost should
be strongly correlated with kappa number, as the cost of bleaching pulp is directly
proportional to the amount of lignin in the pulp (kappa number). However, the
correlation between kappa number and total bleaching cost for raw data is quite low (-
0.36). In other words, it is difficult to predict total bleaching cost from kappa if the
data are not conditioned. The low correlation is due to time shifting of total bleaching
cost with respect to kappa number. As the effects of time shifting are progressively
removed, the correlation between kappa number and total bleaching cost increases
(Table 3-1, Figure 3-1). Figure 3-2 illustrates approximate retention times in the
Georgia Pacific Ashdown pulp mill fiber line at a chip meter speed of 12 rpm (900
TPD). Looking at this figure, one can easily understand why time shifting of process

data was required before any sensible analysis could be performed.
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Time-synchronization

The raw data set implicitly contains the dynamics of the digester, diffusers, high-
density tanks, and bleaching towers. In time synchronization, the dynamic effects of
process equipment and storage towers, on individual variables, are eliminated from
the raw data. The timeshifted dataset contains only correlations among variables, not

auto correlation of each variable (which represents the process dynamics).

For time synchronizing correlated variables such as kappa number at the end of
cooking and kappa number after washing, the cross-correlation function of time series
analysis can be used. However most of the variables in pulping are not correlated in a
similar manner. For time synchronizing all variables an algorithm was developed and

implemented in the VBA (Visual Basic Application) language that comes with

Table 3-1. Effect of timelag on correlation coefficient between kappa number and
total bleaching cost.

Correlation with Kappa

number (filtered)
Total Bleach Cost (filtered) ~0.360
Total Bleach Cost (timeshift, 30 hr) 0.184
Total Bleach Cost (timeshift, 60 hr) 0.749

Total Bleach Cost (timeshift, 90 hr) 0.510
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Figure 3-1. Effects of timeshifting on correlation between kappa number and total
bleaching cost.
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Figure 3-2. Transport delays in Ashdown pulp mill at 12 chip meter rpm.
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the MS-Excel program. In the algorithm mill, the fiber line is divided into different
areas based on retention time of pulp in those areas. Essentially there were two types
of mill areas. In the first type of mill area, pulp retention time was directly related to
the production rate, e.g., continuous cooking section and bleach plant towers. In the
continuous cooking section, chip meter RPM determines the time pulp sample spends
in that area (actual time is related to design volumes of the pulping equipment as well
as chip column compaction in the digester). Similarly, bleach plant production

determines the time pulp spends in bleach plant towers.

In the second type of mill area, pulp retention time was variable and could not be
directly from fiber line production rate. High-density (HD) storage vessels are an
example of this type of mill area. Different area types in Ashdown fiber line are

shown in Figure 3-3.

Knotting, @

Retention :

i

32 ° ~12min=__ ?? = Bleachplanf 777
production

y
F e

Figure 3-3. Different area types (based on pulp retention time) in Ashdown fiber line. (*
circle represent variable time areas.)
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Finding retention time in high density (HD) towers was the most difficult aspect of
the time synchronization calculation. In the case of HD towers, the retention time is
determined by the entry and withdrawal rate of pulp, which can be highly variable.

The method for calculation of retention time towers is described below.

When a sample enters a HD tower the level of the tank in tons is recorded. Assuming
that the pulp moves as a plug through the tower, the retention of the pulp sample is
determined by the rate the plug moves downwards, as determined by the tag value of
the flow meter just after the HD. Mathematically speaking, the retention time would

be given by the difference of the limits of the following integral.

tr
Mo = J-Fldt = Favg(tr —tO) (Eq. 3-1)

to

where,

M, is the amount of pulp in the HD tower when a pulp sample comes into
the tower, in tons.

F. is the rate at which pulp is drawn off the tower, in tons per hour.

to represents the time pulp sample comes into the HD tower.

t. represents the time when this pulp sample leaves the HD tank.
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The retention time for the pulp sample coming into HD tower at t hour is (t-to)
hours. For calculating retention time, one needs to know either t. or Fy,. Both t, and
Fave are functionally related as F.,; depends on the pulp flow profile between time
periods t. and t,. Since both t. and F.,; are unknown, the algorithm calculates the
approximate part of the equation by assuming a value for t. and then iterating to reach
the solution (detailed iteration algorithm is presented in Appendix A). The retention

time in a tank is a variable

° Time , t —» T

Retention time
* Note that retention time in HD
changes as F(machine pull) profile changes.

Figure 3-4. Retention calculation for a particular pulp sample

quantity as it depends on the flow rate profile of flow into and out of tank, which
changes over the period of time (Figure 3-4). All time-synchronization steps

discussed so far pertain only to a particular pulp sample. In order to time-synchronize
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a large dataset, several retention time calculations were performed. These calculations
were quite computationally intensive. The exact time (varying from twenty minutes to
several hours on a Pentium 300 MHz machine) and number of iterations depended on

the number of observations in the dataset.

3.2 MULTIVARIATE ANALYSIS OF PREPROCESSED DATA

In the dataset generated by pulp mill operations, there may be hundreds of
measurements. Although the number of measurements is large, only few events may
be driving the pulping process. In the second step of the process analysis, data from
process measurements were mapped into meaningful descriptions of event(s)
occurring in the pulp mill. The multivariate techniques principal component analysis,
factor analysis, and neural networks were used to describe process characteristics of
the pulping process. These techniques were also used for predicting important output
variables such as kappa number and bleaching cost. The goal of using all multivanate
analysis techniques was to predict important output variables (called response
variables) as function of input variables to the process (called explanatory variables)
using as few independent characteristics as possible. The problem was not trivial
because explanatory variables as well as response variables were correlated among
themselves. A strong correlation structure between input and output variables is also

needed to mathematically represent pulp mill operations.

The goal of pulp mill operations is to produce pulp of the best available quality with
minimum costs. However, quality variations do occur due to several types of
disturbances coming into the pulp mill. For digester, quality variations are measured

in terms of kappa variations (i.e., deviation of kappa number from its mean value).
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3.2 INTERPRETATION OF ANALYSIS RESULTS

Results from the multivariate models were interpreted in the third step of the project.
Predictions of important output variables from multivariate models were analyzed to
see if these made sense from a process operations point of view. In addition to this,
the underlying patterns in the dataset were identified from the variability analysis.
The main goal of variability analysis is to be able to understand, and therefore reduce,
variability of important variables such as kappa number. The variations in output
variables such as kappa number can be split into two important components. The first
component is variation in kappa attributable to other process variables. The second is
random variations around mean kappa number that are not attributable to process
variables. Controlling the variability of input variables that covary with kappa can

reduce variations in kappa number.

3.3 COMPARISON OF METHODOLOGIES

A comparison of results from the application of multivariate techniques was done in
the final step of the dissertation project. The performance of each of the multivariate
analysis techniques in understanding and optimizing mill fiber line was compared. A
basis to compare the utility of multivariate tools was developed. The evaluation was
based on several criteria. These criteria were data preprocessing ability, ease of use,
and accuracy of prediction of important output variables and amount of useful
information obtained through the use of methodology. The ability of a methodology
to provide predictive information about important output variables like kappa number
and total bleaching cost was of considerable value from a process operations point of
view. An ability to improve process understanding (eventually leading to
optimization) was another important criterion. When combined together these criteria

helped in assessing the utility of data analysis techniques.
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CHAPTER 4: RESULTS OF KAPPA ANALYSIS

Two case studies were performed based on the project approach described in Chapter
3. The first case study focused on the pulping portion of the fiber line. The pulp
digester is a major unit operation in the pulp mill. Its proper control is very important
to pulp production in the entire fiber line. The main objective of digester operation is
to produce the same quality pulp from differing chips as they pass through the
digester. A decrease in pulp quality variations results in economic fiber line

operation.

Kappa number is the main quality control variable in digester operation. It is a
measure of residual lignin in the pulp. A pulp sample with uniform kappa number
distribution represents uniform quality pulp. All pulp mills strive for tight kappa
number control. In many cases, however, kappa number is not tightly controlled and
the sources of kappa variability are unknown. In the first case study of the
dissertation, kappa number prediction models were developed using multivariate
techniques. Prediction models were used to analyze sources of kappa variability in

two pulp mills.

Weyerhaeuser Longview mill data was used to develop models for predicting kappa
number of pulp out of the continuous digester and oxygen delignification reactor.
Prediction models were developed using factor analysis. Results from the Longview
analysis indicated the presence of deterministic relationships (for kappa rniumber
prediction) among process variables. Sources of digester kappa variability were also
found. The Longview study was followed by a detailed study which used the dataset
acquired from Georgia Pacific’s Ashdown mill. In this study, the multivariate

techniques principal-component analysis, factor analysis, and neural network analysis
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were used to develop models for K-number (equivalent of kappa number at Ashdown
mill) prediction. Details of Weyerhaeuser Longview mill and Georgia Pacific mill

study are presented in the following paragraphs.

4.1 WEYERHAEUSER KAPPA STUDY

The Weyerhaeuser Longview pulp mill uses softwoods, Douglas fir, Hemlock/Pine
mix and hardwoods to produce bleached paperboard and fine paper products. It has a
capacity of about 1250 tons per day (TPD). The mill fiber line has a Kamyr
continuous digester with an extended modified continuous cooking (EMCC) section.
The digester also has capability of running in losolids mode which like EMCC
cooking, can produce pulp with a very low lignin concentration and high fiber
strength. The pulp, cooked in the continuous digester, is washed in a pressure
diffuser and then stored in one of two blow tanks with capacity of 175 tons each.
From the blow tanks pulp goes to knotting and screening sections. The screened pulp
is washed in brownstock washers before it is sent to an oxygen delignification stage.
After O delignification, pulp is washed once again before it is stored in brown stock

high-density storage tanks.

The digester throughput or production rate is determined by chip meter revolutions
per minute (rpm). For the Longview mill, a digester chip meter rpm of 9.5
corresponds to a production rate of 1431 air-dried tons of pulp per day (ADST/D).
White liquor is used to transport chips, impregnate chips, and is added to the digester
at various points in the cooking process. White liquor is distributed throughout the

pulping system in the following approximate proportions:

e 60% - Chip Feed System (chip chute, high pressure feeder, top well of

impregnation vessel)

e 10%- Bottom Circulation System
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e 10%- Modified Cook System
e 20%- Wash Circulation System

After being used in the digester, white liquor is colored with the lignin and other
solids from the wood chips, and becomes black liquor. Pulp is sent to the bleach plant

section and finally to paper machine.

Kappa number is used to determine the extent of lignin present in the pulp after
cooking. The data from Longview pulp mill was used in the first phase of kappa
number case study. Factor analysis was used to see if there was a deterministic
process present in the acquired mill data that caused kappa number vary. The study
focused on the development and application of factor analysis models to analyze
kappa variability for the Kamyr continuous digester and oxygen delignification

reactors.

4.1.1 DATA PREPROCESSING
A dataset, consisting of 93 variables and 750 observations representing three days of
production, was acquired from the Longview mill. For the analyzed dataset, the mean
kappa number was 24.04 with a standard deviation of 4.1 units. The coefficient of
variation of kappa was 16.9%. For the oxygen delignification reactor, post O2 kappa
number had a mean value of 11.74 with standard deviation 0.79 units. The coefficient

of variation of post O, kappa was 6.77%.

Douglas fir production runs at the Longview mill were chosen for the kappa number
study as it had the highest kappa variability (COV of 16.9 %). Several variables were
removed from the original dataset in the data preprocessing stage. Most of the
mechanical control variables such as differential pressures (DP) of digester screens,
DP of pressure diffuser were removed from the analysis. A number of flows around

digester, which contained redundant information, were also dropped in the
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preprocessing stage. Other variables with low variability (coefficient of variation less
than 2%) were also removed from the analysis. In the end, forty-one variables were
selected for the digester kappa number study whereas thirty-two variables were used
for O, kappa study. Datasets for the digester and O> stage were time synchronized
using time delays shown in Table 4-1. The conditioned and time synchronized
datasets were used for prediction and variability analysis of kappa number. The
results of the kappa variability study for Weyerhaeuser Longview mill are discussed

in detail in the following sections.

Table 4-1.Time delays in the Longview mill fiber line.

Time, in
S. No. Section minutes
1 Impregnation vessel 55
2 Digester, trim section 60
3 Digester, extraction section 48
4 |Digester, MC section 66
5 |Digester, Wash section 103
6 Digester, bottom section 41
7 |Pressure diffuser 10
8 |Blow tanks 150
9 |Screen room 10
10 |Brown stock press 10
11 02 reactor 60
12 |Post O2 press 10

4.1.2 MULTIVARIATE ANALYSIS
The pulp mill was divided into two sections to study them separately. These sections
were the digester and oxygen delignification reactor. Two separate models were
developed for these sections. The data analysis flow sheet is shown in Figure 4-1.

Time synchronized and conditioned data, representing 3-4 days of fir production, was
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analyzed using factor analysis. For development of the model, the conditioned data
were partitioned into two separate parts. One part was used to analyze the data and
build a factor model, while the second part was used to validate the model. In other
words, the resulting model was applied to the second part of data to test the accuracy
and robustness of the model. The exact division of a dataset into model development
and model validation datasets was based on two criteria. “60% of data for
development and 40% for validation,” being the first criterion. Approximately sixty
percent of data is used for model development and the remaining dataset for model
validation. The exact division of dataset is based on the extent of kappa variation,
which was the second criterion. Since multivariate models are databased models, the
dataset with the largest variation were used for model development. The partitioning

information for the two sections is summarized in Table 4-2.

Table 4-2. Partitioning of data for factor models.

Section Total Observations | Observations for
observations | for model model validation
development
Digester 600 400 200
O, delignification | 330 230 100
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Figure 4-1. Flow sheet of Longview mill kappa prediction and variability analysis.

The time synchronized and conditioned data could now be analyzed. The presence of
non-linear relationships was determined by looking at xy plots. Because of the limited
data range in the single grade, the non-linear relationships were found to be negligible
and thus not used. In addition, the presence of cross interrelationships among the
process variables was determined. Several significant cross interrelationships were
detected and included in the model. For example, Pre O, stage kappa number strongly
correlated with digester kappa number; therefore, only pre O; kappa was included in

the analysis for the O, delignification reactor.

In the next step, several variables were eliminated from the analysis for the sake of
parsimony. In this step, it was determined that a large number of the variables were
not significant as these had low coefficient of variation and low average correlation
coefficients. Approximately one half of the available process variables were removed
from the analysis for pulping and O, delignification. The remaining 41 varables

(digester) and 32 variables (O, stage) were used in factor analysis.
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Kamyr digester
All factor analysis modeling was done using FactNet (a statistical analysis software
developed by Pacific Simulation based in Moscow, ID). A factor model using forty-
one variables was created for the digester. The resulting accuracy for the factor model
for all observations is shown in Figure 4-2 and Figure 4-3. The R-square value for the
plot in Figure 4-2 is approximately 70%. The model predicted the kappa number
reasonably well for the data used in the model development stage as well as model

validation stage.
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Figure 4-2. Factor analysis kappa number predictions for the digester (development and
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Figure 4-3. Digester kappa number trend for factor analysis predictions.
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The model predicted kappa number for the data not used in the model development
(more than 200 observations) as shown in Figure 4-3. As can be seen in Figure 4-3,
the model tracked the behavior of the measured kappa over the entire time period.
The model doesn’t track spikes (large but brief excursions) in kappa number due to

process upsets, which have been filtered out in the data conditioning stages.

O: Delignification reactor

A factor model of the O, reactor, using thirty-two variables, was created. The
resulting accuracy for the factor model for all observations is shown in Figure 4-4.
The R-square value for plot in Figure 4-4 is approximately 70%. The model predicted
the kappa number well for the data used in the model development stage as well as
model validation stage. The model predicted the kappa number for the data not used

in the model development (more than 100 observations) as shown in Figure 4-5.
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Figure 4-4. Factor analysis kappa number predictions for the O; reactor (development
and validation dataset).



45

model
14 validation

model i
development |

|

— Post O2 Kappa

02 kappa number

— Pst O2 Kappa(model)

6
12/10/95 12/10/95 12/10/95 12/11/95 1211/95 12/11/85 1212/95 12/12/95
7.20 14:.00 20:40 3:20 10:00 16:40 0:50 7:30

Time

Figure 4-5. O, reactor kappa number trend for factor analysis predictions.

4.1.3 INTERPRETATION OF RESULTS

Kamyr digester
After modeling the kappa number, the underlying patterns in the dataset were
identified from the variability analysis. The variability analysis indicated that there
were four major patterns underlying the process variables used in the analysis. The
patterns are shown in Table 4-3 in the order of importance in the factor analysis

model.

Table 4-3. Common factors and primary patterns present in digester data from mill.

Factor Primary pattern

Residual Alkali Factor | As MCC residual alkali increases, kappa number
decreases.

Chip factor As chip moisture and bulk density increase, kappa
number increases.

Wash Factor As wash white liquor, wash circulation increases,
kappa number increases.

Heating control factor | As BC temperature, Upper extraction screen
temperature increase, kappa number decreases.
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The factor analysis showed that 45% of the variation in kappa number was due to
variations in residual alkali, chip, wash, and heating control factors. These factors are
not true mechanistic parameters as used in first principle modeling. Instead the factors
are statistical representations of mechanistic parameters calculated by the factor

network.

As shown in Table 4-3, MCC residual alkali increases lead to kappa number
decreases. Kappa variations will track liquor alkalinity if other process variables were
causing kappa variability, i.e., higher residual alkali will correlate with pulp having
higher kappa numbers. This was not the case, indicating that kappa deviations were a

result of variation in alkali to wood ratio.

Chip factor is highly correlated with chip bulk density and chip moisture. An increase
in chip bulk density results in a kappa increase. This is explainable as the digester
control at Longview is based on the volumetric feed rate of chips (i.€., on chip meter
speed). For the same chip meter speed, higher bulk density chips will result in more
chip weight through the digester at a chemical charge similar to that of lower bulk
density chips. As a result, the chemical to wood ratio decreases causing higher kappa
pulp. Similarly, higher moisture chips will result in more water going into the digester
and thus diluting incoming white liquor. The liquor to wood ratio goes up resulting in

higher kappa number.

The heating control factor showed that an increase in BC temperature and upper
extraction screen temperature result in a decrease in kappa. This result reinforces the

importance of good temperature control.

Factor analysis shows that by controlling variables correlated with residual alkali
factor, chip factor, wash factor, and heating control factor, the variations in kappa

number can be reduced by 45%. The remaining 55% variations in kappa number was
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partly due to random variations and partly due to variables not included in this
analysis such as chip quality variables. In terms of mill operations, a reduction in
kappa number variability by 45% can be quite significant. Such a reduction in the
case of the Longview mill would bring kappa coefficient of variation to under 10%

resulting in improved product uniformity for unit operations downstream from

pulping.

Delignification reactor

After factor analysis modeling the O kappa number, the underlying patterns in the
dataset were identified to do the variability analysis. The analysis indicated that there
are three patterns underlying the process variables used in the analysis that affect
kappa number after O, stage. The patterns are shown in Table 4-4 in the order of
importance in the model. Sixty percent of the post O, kappa variation was either
random or due to variables not included in the analysis. The factor analysis indicates
that 40% of the variations in kappa number after the O stage were contributed to by
the variations in digester factor, stage factor, and pulp-flow factor. Pre O; stage kappa
is strongly related to post O, kappa (Table 4-4). In other words, the variability of
kappa out of the digester was a major source of variation in kappa after the O, reactor.

It appears that the feed-forward control on the O; reactor is unable to handle all the

Table 4-4. Common factors and primary patterns present in O, delignification stage data

from mill.
Factor Primary pattern
Digester factor As Pre O; kappa increases, kappa number increases.
Stage factor As O, reactor zone temperature increases, kappa number
decreases.
Pulp flow This factor is strongly correlated to differential pressures

factor of screens and knotters.
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incoming kappa variability. The absence of a correlation between -caustic
concentration and post O kappa suggest caustic charges in O; reactor is not having
much effect in controlling kappa variability. Only O, temperature seems to have some
effect on kappa variability. The stage factor indicates the importance of temperature
control in the O, reactor. The pulp flow factor suggests the influence of screens and
knotter operations in oxygen delignification. The pulp flow factor could be suggesting

effects of pulp uniformity on kappa variability.

The factor analysis shows that by controlling variables correlated with the digester
factor, stage factor, pulp-flow factor, the variations in kappa number could be reduced
by 40%. The remaining 60% of the variations in kappa number was partly due to

random variations and partly due to variables not included in this analysis.

GEORGIA PACIFIC K-NUMBER STUDY

Results from the Weyerhaeuser study showed that kappa variations could be related
to the input variables in the data. These results led to a larger study involving detailed
analyses of the data acquired from the Georgia Pacific (GP) Ashdown mill. The
objectives of study were to test the effectiveness of all multivariate techniques in

predicting K-number and to give insight into kappa number variability.
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The pulp mill at Ashdown uses southern pine to produce bleached kraft pulp. Witha
capacity of about 1000 TPD, the fiber line has a Kvaerner continuous digester system
followed by a five-stage bleach plant (See Figure 4-6). The washed pulp coming out
of the digester goes into a pressure diffuser followed by two-stage atmospheric
diffusion washing. The atmospheric diffuser sits at the top of a high-density tank.
Brownstock pulp is then stored in a high-density tank before it is bleached. At the
time of study, the bleaching sequence was D/CEoDIE2D2 with 50% target

substitution in the D/C stage.

Chipbin gy,
HP feeder, é

Ira pre gnation .

vessel Digester,  pressure
diffuser

From pulp mill
——
To HD towers
D/C Eg D1 E2 D2

Figure 4-6. Fiber line at Georgia Pacific Ashdown mill.
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4.2.1 DATA PREPROCESSING

The pulping data, consisting of 137 variables and 5000 observations representing
three months of production, was acquired from the mill databases. For the acquired
dataset, digester K-number average was 18.46 with a standard deviation of 1.42 units.

The coefficient of variation of K-number was 7.7%.

The acquired pulp mill data consisted of multiple production runs with several
startups and shutdowns interspersed between them. The focus of the K-number study
was to analyze only steady state operations of the fiberline. To represent steady
operations, three production runs were selected from the available dataset. Each of
these datasets represented different production runs and operational strategies.
Combined together, three pulping data sets represented approximately one month of
mill production. In the next step of data preprocessing, a number of variables were
removed from the dataset. Most of the removed variables were lower level control
variables such as levels in tanks, silos or current flowing to pumps and mixers. A
number of variables that were not very important from K-number modeling
perspectives (e.g., reject flow out of high pressure feeder) were also removed. Other
variables were removed from dataset based on their lower process importance and
low variability (coefficient of variation less than 2%). In all eighty variables were
removed from the pulping datasets. Data from the remaining fifty-seven variables
were carefully edited to remove outliers, incorrect observations, and blank rows. The
resulting dataset was then time synchronized using method described in Chapter 3.
Each time-stamped set of observations was time synchronized separately to account
for variable time delay present in the mill dataset. Table 4-5 presents representative
time delays in different areas of the fiberline at a chip meter rpm of thirteen or pulp

production rate of 975 TPD. Cleaned and time synchronized datasets were filtered in
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Table 4-5. Time delays in different areas of pulp mill fiber line at chip meter rpm 13.

Time delay,
S. No. Section in min

1 To chip silo 5

2 Hula bin 35

3 Chip feeders 2

4 v 25

Co-current cook

5 zone 107
6 Wash zone 100
7 Pressure Diffuser 15

8 Atm. Diffuser 76

9 Knotters

10 Screens

11 Decker

12 UBLch HDTower 60

Table 4-6. Datasets for K-number analysis (BCH is bottom circulation heater).

K-number

Number of Number of |AverageStdev COV (important operational
Dataset variables observations trategy change
Digester 1 57 373 18.65 | 1.40 | 7.49 BCH installed
Digester 2 57 270 18.44 | 1.31 | 7.09 [Chip meter RPM 13
Digester 3 57 183 18.11 | 1.05 | 5.77 |Chip meter RPM 13.5
Composite 57 725 1854 | 1.14 | 6.12 All of the above
Digester set

the next step of preprocessing. A five-hour moving average filter was used to filter
time-synchronized datasets. At this stage there were three preprocessed datasets
representing three production runs in the pulp mill. These three datasets had different
operational strategies. A fourth dataset containing all three datasets was also created.

It represents a combination of operational strategies. Details of preprocessed datasets
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are presented in Table 4-6. These datasets were used for prediction and variability
analysis of K- number. Results of the multivariate analysis of all four pulping datasets
were quite similar. Only results from the composite pulping dataset are presented in

the following paragraphs.

.2 MULTIVARIATE ANALYSIS

The preprocessed composite pulping dataset was used to develop multivariate models
using three techniques; factor analysis, principal component analysis, and neural
network analysis. Fifty-seven pulping variables were used in all three multivariate
models for the purposes of K-number prediction and variability analysis. In addition,
a smaller set of thirty-five pulping variables was also used to develop another set of
multivariate models. The smaller set of variables was used to see if K-number
prediction improved with a simpler variable structure. The thirty-five variables were a
subset of original list of fifty-seven variables. The smaller list of variables was
obtained by removing strongly controlled variables (e.g., temperature around
digester) and variables containing redundant information (e.g., flows at the bottom of
the digester). Variables were removed from the analysis based on the change of
accuracy of the developed model. The accuracy of the model was based on its
predictive ability for K-number. A list of the developed models with their codes and
descriptions is presented in Table 4-7. Tables 4-8, 4-9, and 4-10 present detailed list

of variables used in different multivariate models for the K-number case study.
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Table 4-7. Model code and description for K-number multivariate models.

S.No.| Model code Model description

1 FA 57 Factor analysis model with fifty-seven variables.
2 FA 35 Factor analysis model with thirty-five variables.

Principal component analysis mode! with fifty-
3 PCA 57 iseven variables.

Principal component analysis model with thirty-
4 PCA 35 five variables.

Neural network analysis model with fifty-seven
5 NN 57 variables.

Neural network analysis model with thirty-fiv
6 NN 35 variables.

Table 4-8. Pre-digester variables used in K-number case study.

S.No. Tag Code Description model_57|model_35
1 |20-FC003 . wi_flo iey.3 WHITE LIQUOR FLOW Y Y
2 [P0-FC008 . fedr_prg  |ry.3a HP FEEDER PURGE FLOW Y Y
3 Po-Fcoos . Reswiflo |, 35 RES WHITE LIQ FLW Y
4 DO-FC027. v_sluce Ity 61 |v SLUICE FLOW Y
5 [R0-FI012. lop_circ  |e 6 ToP CIRC FLOW Y Y
6 DO-FI013 . MWL _flo |- 7 mAKE-UP LIQUOR FLOW Y Y
7 bo-Fio22. chut fl e 54 CHIP CHUTE CIRC FLOW Y
8 0-LCO41 . L0V} 40 DIG CHIP GAMMA LVL Y Y
9 b0-L1042. Srgevl 51 CHIP SG LVL CALC Y Y
10 20-SC005 CM_rom  |o11p METER SPEED Y
11_po-TI157. wi_temp by WHITE LIQUOR TEMP Y Y
12 |k2-CAUST .PE_[fYS-S!" ko MILL CAUSTIC STRENGTH Y
13 Jk2-SULF PE VS L puLp WHITE LIQ SULFIDIY Y Y
14 |k2-wLsULF.PE MU WHITE LIQUOR SULF TEST Y
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Table 4-9. Digester variables used ir K-number case study.

S.No. Tag Code Description model_57|model_35
1 bochpuq. €99 IpiG cHIP-LIQ LVL DIFF CALC y Y
2 [p0-DPIO71. ed_DP  |5p.11 DIG OUTLET DEV DP Y Y
3 boppio72. BP9  Ibp.16A EXTRACT SCRN DP Y Y
4 bo-DPI073. exB_dP  |hp 168 EXTRACT SCRN DP Y Y
5 [20-DPI125. wash_dp  \yasH SCREEN DIFF PRESS Y Y
6 bo-Fcooza.  BAf |F.16A EXTRACT FLOW UPPER Y Y
7 bo-Fcoozs.  FBA k168 EXTRACT FLOW LOWER Y Y
8 [P0-FCO16 . blo_flo  iry_128 DIG 'B' BLOW FLW Y Y
9 Po-FCO17. cblo_flo iry.13 coLD BLOW FLOW Y Y
10 [20-FC019. cnt_wash |ey,_18 COUNTER WASH FLOW Y Y
11_po-Fci1s52. botc_byp  |jy.31 BOT CIRC FLOW BYPASS Y Y
12 |0-FI1001 . dig160  ir 1 160# STM TO DIG FLOW Y Y
13 D0-FI135. fish2 i |5,GESTER DILUTION FACTOR Y Y
14 bo-Hco7o .co Plo-diV .87 BLOW LINE DILUTION Y
15 [20-11369 . 0d_amps g QUTLET DEVICE AMPS Y Y
16 [20-TC480 . botcheat g 5T CIRC HTR DISC TEMP Y Y
17_o-Ti075. digstemp  |604 STM TO DIG TEMP Y Y
18 [20-TI085A. 12_tmP It 12 BLOW LINE TEMP Y
19 [20-TI085B. blo_tmp |y _128 BLOW LINE TEMP Y
20 [20-Ti089 . wahC_tmp |y 50 wWASH CIRC HTR IN TMP Y
21 [0-Ti092 . botC_tmp |+ 50 BOTTOM CIRC TEMP Y
22 bo-Ti128 . topS_tmp  trop SEP INLET TEMP Y
23 D0-TI156 . blowtemp g ow LINE TEMP Y
24 D0-WASHRT.PE [VSNSCR  bpM WASH CIRC RATIO Y
25 |k2-DIKNUMPE [FO-XMUM ik AMYR DIG. LOWER K NUMBER Y Y
26 |k2-soLave.pe WP'SO  bo wBL % SOLIDS 8 HR AVG Y
27 |K2-UPKNUM.PE [MPKNUM b AMYR DIG. UPPER K NUMBER Y
28 |k2-wBLRES.PE [YP'-"®S i MILL WBL RESIDUAL Y Y
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Table 4-10. Post-digester variables used in K-number case study.

S.No. Tag Code Description model_57|model_35
1 D0-AI242 . was_cdC  hyASH HTR 160# COND CONDUCT Y Y
b boccats.  F™PP  IsTK TO PRESS DIFF CONSIST Y

3 bo-Fc13s. ptagetwsh [y, 57 4T STAGE WASH FLW Y Y
4 POFC144. [stage2wsh |, 37 5ND STAGE WASH FLW Y Y
5  bo-Fca14. dillia 51 uTiON LIQ FLW Y Y
6  D0-Fc423. was_PD  \wAsH LIQ TO PD FLW Y

7 PRO-FI021. Washcirc |- 50 wASH CIRC FLOW Y Y
s bo-HcogeA.  [¥SD'  MASH SCREEN BACKFLUSH FLOW| Y Y
o bo-pc3s2. hb_steam |on biSCHARGE PRESS Y

Btm_dfsr [TIME DELAY IN ATMOSPHERIC

10 Atm. diffuser DIFFUSER Y

1 |Brown HD prownHD |BROWN HD TIME DELAY »

12 |k2-BSKNUM.PE BSK"U™M  L» MiLL BROWN STK K NUMBER Y Y
13 |K2-DKCOND.MI 9€9"d L pECKER CONDUCTIVITY Y v
14 |k2-pwCoND.mi [PTW_cnd 5 FrysiON WASHER CONDUCT. Y Y
15 |K2-DWCONS.MI [PTWEONS | rEySION WASHER CONSIST. Y

Factor analysis

The time synchronized and preprocessed pulping data was analyzed using factor

analysis. All factor analysis modeling was done using FactNet. The conditioned data

with, 725 observations, was partitioned into two separate parts. The data partitioning
was based on “60% of data for development and 40% for validation™ criterion. The

first 425 observations were used in building factor model while remaining 300

observations was used to validate the model. The model development dataset had

coefficient of variation slightly higher than that of model validation data.
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The presence of significant non-linear relationships was determined by looking at xy
plots. For the purposes of factor analysis, K-number is assumed to be linearly related
to input variables. The factor model (FA_S7), with fifty-seven variables, was
developed for K-number prediction. FA_57 model, with eight factors, represented
pulping operations as inferred from dataset generated by the process. Details of
factor model are shown in Table 4-11. The accuracy of the resulting factor analysis
model for all observations is shown in Figure 4-7 and Figure 4-8. The coefficient of
correlation (R-square) values for the plot in Figure 4-8 is approximately 49% (33%
for model validation data). It is evident from Figures 4-7 and 4-8 that the factor model
does a poor job of predicting K-number in the validation dataset. Poor K-number
prediction can be explained in terms of low variability of actual K-number. The
digester is under a tight control as evident from low (6.12%) coefficient of variation
of K-number. With such low coefficient of variation, most of K-number variability
probably came from random factors such a testing variations or from unknown factors
such as wood quality variability. As information about testing variations and wood
quality were not included in the analysis, factor model couldn’t predict K-number

variability or the test was not variable enough.

In the next step, the input variable space was reduced to thirty-five variables in order
to produce a simplified representation of the pulping process. The variable
elimination process has been described earlier in the data preprocessing section.
Tables 4-8, 4-9, 4-10 show all thirty-five variables used to develop the second factor
model (FA_35) for K-number case study. Details of factor model FA_35 are shown in
Table 4-11. The K-number predictions of this model, built from five factors, are
shown in Figure 4-7, Figure 4-9. The R-square value for the plot in Figure 4-9 is
approximately 38% (27% for model validation data). This correlation value is lower
than correlation value in case of fifty-seven-variable factor model. The correlation
coefficient for K-number predictions is low in both cases. Both factor models were

unsuccessful when trying to predict K-number variability around the mean.
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Table 4-11. Factor analysis models of K-number for GP mill.

Model [FA _57[FA_35
Number of factors 8 S

ntercept 18.63] 18.63
Factor 1 coeff. -0.31 -0.31
Factor 2 coeff. -0.31] -0.
[Factor 3 coefl. 0.21 0.23
[Factor 4 coeff. -0.39f -0.26
Eactor 5 coeff. -0.0 0.32
IFactor 6 coeff. -0.23 _ 0.00
[Factor 7 coefl. -0.34 0.00
[Factor 8 coeff. 0.25  0.00)
IR? (all data) 49 38§
IR,? (validation data) 33 27
L’Error standard

eviation 0.84 0.99
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Figure 4-7. Factor analysis predictions of brown stock K-number (BSKNUM).
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Figure 4-8.Correlation between factor analysis model (FA_57) predictions and actual
brown stock (BS) K-number for continuous digester.
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Figure 4-9.Correlation between factor analysis model (FA_35) predictions and actual
brown stock (BS) K-number for continuous digester.

Principal component analysis

Factor analysis models assume that variations in K-number can be split into two
components; (1) variation in K-number attributable to other process variables, and (2)
random variations around the mean K-number that are not attributable to process
variables. Principal component analysis models assume that variations in K-number
are entirely due to other process variables. In the next phase of the study, PCA

models were developed for K-number prediction using the pulping dataset.

Statictica, a software package developed by Statsoft Inc., was used for principal
component modeling. The time synchronized and preprocessed pulping data was
analyzed using principal component analysis. The data partitioning for principal

component analysis was the same as that used for factor analysis. The first part with
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425 observations was used to analyze the data and build a principal component

model, while the second part with 300 observations was used to validate the model

For the purposes of principal component analysis (PCA), K-number was assumed to be a
linear related to input variables. The principal component model (PCA_57), with fifty-
seven variables with eight components, was developed for K-number prediction. PCA_57
model. Details of PCA model are shown in Table 4-12. The accuracy of the resulting
PCA model for all observations is shown in

Figure 4-10 and Figure 4-11. The coefficient of correlation (R-square) value for the
plot in Figure 4-11 is approximately 40% (21% for model validation data). It can be
seen that much of the variability comes from brief excursions of K-number which the
model is unable to simulate. Similar to the factor analysis model, the principal
component model fails to predict K-number in the validation dataset. The poor K-
number prediction for the PCA model can be explained in terms of the low variability
of actual K-number. The digester is under a tight control as evident from low (6.12%)
coefficient of variation of K-number. Most of the variability in K-number is either
due to testing variations or due to variables such as wood quality. As the information
about testing variations and wood quality was not included in the PCA analysis, it
was impossible to predict K-number using PCA models. The next step in the PCA
was to reduce input variable space to thirty-five variables to facilitate simplified

representation of the pulping process. The variable elimination process has been
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described earlier in the data preprocessing section. Tables 4-8, 4-9, and 4-10 show all
thirty-five variables used to develop the second principal component model
(PCA_35). Details of principal component model PCA_35 are shown in Table 4-12.
The K-number predictions of this model, built from five components, are shown in
Figure 4-10 and Figure 4-12. The R-square value for the plot in is approximately
32% (18% for model validation data). The correlation value for PCA_57 model was
higher than that for the PCA_35. In fact, correlation value for K-number predictions
is low in both cases. None of the PCA models were successful in predicting K-

number.

Table 4-12. Principal component analysis models of K-number for GP mill.

Model > A S7[FA 35
Eumber of
omponents 8 5

[Component 1 coeff. |-0.313 0.290
[Component 2 coeff. |-0.078 -0.263
{Component 3 coeff. | 0.260] 0.144
IComponent 4 coeff. [-0.157| 0.072
IComponent 5 coeff. |[-0.021] -0.127
[Component 6 coeff. [-0.077] 0.000
[Component 7 coeff. |-0.1721 0.000)
[Component 8 coeff. |-0.189 0.000

R?* (all data) 38 27
R,’ (validation data) 32 18]
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Figure 4-10. Principal component analysis predictions of brown stock K-number
(BSKNUM).
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Figure 4-11.Correlation between principal component analysis model (PCA_57)
predictions and actual brown stock (BS) K-number for continuous digester.
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Figure 4-12.Correlation between principal component analysis model (PCA_35)
predictions and actual brown stock (BS) K-number for continuous digester.

Neural network analysis

The failure of FA and PCA to predict K-number motivated the use of neural
networks, a non-linear multivanate technique. Both PCA and FA models assume a
dataset containing only linear interactions among variables. In order to investigate the

presence of non-linearities in the pulping dataset a non-linear multivariate technique,

neural network, was used.

The time synchronized and preprocessed data, representing about one month of pine
production at the mill were analyzed using neural network (NN) analysis. Process
Insights, a neural network software developed by Pavilion Technologies based at

Austin, TX, was used for neural network modeling. The conditioned data was
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partitioned into two separate parts. The split in the dataset for model development and
validation for NN is different from PCA and FA models. More data was required for
training neural networks. However, the exact division into model development and
validation parts was done by looking at K-number trend and choosing the portion
with higher K-number variability. First 547 observations were used to build a NN
model, while remaining 176 observations were used to validate the model. The model

validation was done to test the accuracy and robustness of the developed NN model.

A NN analysis model was developed using fifty-seven variables for K-number
prediction. The sensitivity list of variables in the NN_57 model is presented in Table
4-13. This list shows the twenty most important variables for predicting K-number.
The accuracy for the resulting NN model for all observations is shown in Figure 4-13
and Figure 4-14. The R-square value for the plot in Figure 4-15 is approximately
64% (50% for model validation data). Similar to the PCA and FA models, the NN
model didn’t predict K-number well as evident from low correlation coefficient for
model validation dataset. The poor K-number prediction can again be explained in
terms of the tightly controlled process K-number (coefficient of variation = 6.12 %).
However, the behavior of the NN model in model development stage is quite different
from that of the FA and PCA models. NN model better approximates the raw K-
number trend in comparison with FA, PCA models. The reason for this is that NN,
being a nonlinear modeling technique, does a great job of fitting a model to unknown
variations (testing variations and chip quality) of K-number in the model
development dataset. The NN_57 model falls in the validation stage as testing and
chip quality variations of K-number, in this dataset, are different from that in

development dataset (by the very definition of being random).

Similar to FA and PCA modeling, a NN with smaller input variable space was
developed using thirty-five variables. Variables were eliminated as described earlier
in the data preprocessing section. The list of thirty variables used in the NN_35 K-
number case study is presented in Tables 4-4, 4-5, 4-6. The sensitivity list of NN
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Table 4-13. Sensitivity list of neural network models of K-number.

[NN_57 INN_35
Rank [Sensitivity [ |Rank {[Sensitivity
# |Input Variable Value # Input Variable Value
WHITE LIQUOR SULF FV-37 2ND STAGE
1 |[TEST -0.368 1 |WASH FLW 0.582
#2 DECKER FV-3A HP FEEDER
2 [ICONDUCTIVITY 0.347 2 JPURGE FLOW -0.512
DIGESTER DILUTION #2 DECKER
3 [FACTOR -0.254 3 |ICONDUCTIVITY 0.495
HV-31 BOT CIRC FLOW
4 [DILUTION LIQ FLW 0.248 4 BYPASS -0.486
DIG OUTLET DEVICE
5 [Fv-13COLD BLOW FLOW| -0.242 5 JAMPS -0.422
DIG CHIP-LIQ LVL DIFF
6 BLOW LINE TEMP 0.228 6 |CALC -0.428
DIGESTER DILUTION
7 {Brown HD 0.209 7 [FACTOR -0.314
T-20C WASH CIRC HTRIN L-10 DIG CHIP GAMMA
8 [TMP -0.217 8 [LVL 0.191
2 WBL % SOLIDS 8 HR DP-16B EXTRACT SCRN
9 JAVG 0.203 9 P -0.250
HV-31 BOT CIRC FLOW F-16A EXTRACT FLOW
10 |BYPASS 0.196 10 JUPPER 0.302
DP-16A EXTRACT SCRN WASH HTR 160# COND
11 [DP -0.196 11 ICONDUCT -0.220
DIG CHIP-LIQ LVL DIFF #2 PULP WHITE LIQ
12 ICALC -0.194 12 [SULFIDIY -0.094
DIFFUSION WASHER
13 |DIG CHIP SG LVL CALC -0.184 13 ICONDUCT. 0.139
WASH HTR 160# COND
14 |CONDUCT -0.179 14 @2 MILL WBL RESIDUAL | -0.006
2 PULP WHITE LIQ DP-16A EXTRACT SCRN
15 [SULFIDIY 0.174 15 DP -0.141
FV-3A HP FEEDER
16 |PURGE FLOW -0.169 16 |DIG CHIP SG LVL CALC -0.230
DIG OUTLET DEVICE
17 |AMPS -0.163 17 DILUTION LIQ FLW 0.242
18 [TOP SEP INLET TEMP 0.160 18 |F-6 TOP CIRC FLOW -0.200
FV-13 COLD BLOW
19 2 MILL WBL RESIDUAL 0.155 19 [FLOW -0.150
F-1 160# STM TO DIG WASH SCREEN
20 |FLOW 0.148 20 BACKFLUSH FLOW 0.126
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model NN_35 is shown in Table 4-9. The K-number predictions of this model are
shown in Figure 4-13 and Figure 4-15. The R-square value for the plot in the Figure
4-15 is approximately 70% (20% for model validation data). This correlation value is
lower than the correlation value for the NN 357 model. In fact, the correlation value

for K-number predictions for validation dataset is quite low in both cases.
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Figure 4-13. Neural network prediction of brown stock K-number (BSKNUM).
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Figure 4-14.Correlation between neural network model (PCA_57) predictions and actual
brown stock (BS) K-number for continuous digester.
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Figure 4-15.Correlation between neural network model (PCA_35) predictions and actual
brown stock (BS) K-number for continuous digester.

4.2.3 INTERPRETATION OF THE RESULTS

All three multivariate techniques were unable to model K-number prediction using
the dataset acquired from the Ashdown mill as evident from low correlation
coefficients for model validation datasets. Only the neural network could fit K-
number variability in the model development dataset. Models developed using data
acquired from the process failed to capture inherent processes driving the pulping at
the GP mill. Some of the reasons for poor performance of multivariate models could
be lack of predictive correlation structure in the preprocessed dataset or absence of

important process information such as chip quality variables.
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The goal of the dissertation was to understand the pulping process from the data
generated from process operations. The pulping process happens to be strongly
controlled and poorly understood. Additionally, the application of various control
strategies masks the behavior of the process (as inferred from the generated dataset)
partly or sometimes completely. The relationships, which are expected from general
pulp and paper theory, are only partly valid or quite different for the controlied
process (Figure 4.16). As a result, the analysis of the data, which comes out of
controlled process, doesn’t give the understanding of the process. An interesting
situation arises when important output variables such as kappa number are strongly
controlled by process operations. The dataset generated by a strongly controlled
process has an insignificant correlation structure. Insignificant correlation structures
are not suitable candidates for developing data based models for the purposes of
predicting output variables such as kappa number or total bleaching cost. This

happens to be the case in GP pulping dataset.

The poor modeling ability of the pulping dataset can also be explained if one looks
carefully at Ashdown mill modus operandi. The mill operates by setting a constant
production rate (using constant chip meter RPM). Every other input variable is
ratioed to the chip meter RPM (pulp mill production rate). In other words, alkali
charge is fixed and operators try to keep temperature around digester within a narrow
band (coefficient of variation very less than 2% for project dataset). The K-number of
pulp coming out of the digester also has a low coefficient of variation. As a result the
pulping dataset has a poor correlation structure. The poor correlation structure is
further evident from low correlation values among variables in the correlation matrix.
The poor correlation structure leads to poor predictive models as evident from the

multivariate results.

The K-number case study didn’t include any information about testing variations and
chip quality variations, as no pertinent variables were available in the mill databases.

In other words, the correlation structure of pulping dataset had unknown disturbances
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such as testing and chip quality variations implicit in it. There was no way of isolating
unknown disturbances implicit in the correlation structure. This could also have led to

poor prediction models.

Open loop Controlled

Process

Control
Strategies

Process

Data
acquisition

Multivariate analysis

Objective: predicting
controlled output variable

Figure 4-16. Process control strategies change/mask the behavior of process as

inferred from acquired dataset.
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4.4 CONCLUSIONS OF KAPPA STUDY

Two sets of studies were done to investigate kappa number prediction and variability
using data from a pulp mill. The first study used data from the Weyerhaeuser
Longview mill to predict kappa number out of the digester and O: delignification
reactor. In the Longview study, factor analysis allowed development of models that
successfully predict kappa number out of a continuous digester and O; delignification
stage. The most important cause of kappa variability in case of the continuous
digester was found to be mischarges in alkali. The major source of kappa variability
in the O, delignification reactor is variability of the pulp kappa out of the digester.
Better feedforward digester control might lead to improved O- reactor performance.
Factor analysis results can be used in control of kappa number as they point out
factors and in turn the variables, which if controlled, will reduce kappa number
variability. Variations in kappa number can be reduced by 45% in case of the digester
and 40% in case of the O, delignification reactor if variables correlating with the

important factors are brought under control.

In the second study, the multivariate techniques principal component analysis, factor
analysis, and neural networks were used to develop K-number prediction models for
the Georgia Pacific Ashdown mill. None of these models were successful in
predicting K-number. The main reason for poor prediction was that the digester was
already under tight control as evident from low (6.12%) coefficient of vanation of K-
number. The dataset generated by such a strongly controlled process doesn’t have
significant correlation structure, which is necessary to develop predictive models. In
other words, datasets with insignificant correlation structures are not suitable
candidates for the purposes of predicting output variables such as K-number. Another
reason for poor prediction models could be the absence of important variables such as

chip quality.
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CHAPTER 5: RESULTS OF COST ANALYSIS

Two case studies were performed based on the project approach described in Chapter
3. The first case study focused on the pulping portion of the fiber line. The second
case study focused on total bleaching cost. The objective of the bleaching process is
to achieve the desired pulp brightness at a desired production rate with minimum
expenditure in bleaching chemicals and energy. Bleaching also strives to maintain
pulp strength while meeting environmental constraints. The process is subject to
several disturbances including incoming K-number variations, washing losses, long
delays, channeling, and improper mixing. Manual control therefore commonly uses
chemicals dosed in excess of the actual demand. Using improved models of
bleaching, the excess may be diminished, leading to a decrease in variability of the
quality variables (mostly brightness), and a decrease in total cost of bleaching

chemicals and improved environmental performance.

Pulp brightness is the main quality control variable in the bleaching operation. Mill
operators control pulp brightness within specifications by changing chemical charges
in different bleaching stages. The total cost of bleaching chemicals is what determines
the economics of bleach plant operations. The second case study in the research
involved developing models, using multivariate techniques, for total bleaching cost in

the bleach plant.

The total bleaching cost study was done in two phases. The bleaching stage
contributing most to total bleaching cost variability was determined in the first phase
of the project. In the second phase of the study, upstream variables in the fiberline

(i.e., variables from pulping and washing sections) were used in predictive modeling
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of bleaching cost. Principal component analysis, factor analysis, and neural network

analysis were used in second phase to develop models for bleaching cost prediction.

5.1 BLEACH PLANT AT GEORGIA PACIFIC MILL

The pulp mill at Ashdown uses southern pine to produce bleached kraft pulp. With a
capacity of about 1000 TPD, the fiber line has a Kvaemer continuous digester system
followed by five-stage bleach plant (See Figure 5-1. Bleach plant at Georgia Pacific
Ashdown mill.). The washed pulp coming out of pulping and washing areas is stored
in brown stock high-density tank. At the time of study, the bleaching sequence was
D/CEoD1E2D2 with 50% target substitution in the D/C stage. Various bleach plant

operating parameters are shown in Table 5-1.

From pulp

miil
——
Q f i g f i M __‘0 paper
. machine
D/C Eo DI E2 D

2

Figure 5-1. Bleach plant at Georgia Pacific Ashdown mill.
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Table 5-1. Bleach plant operating parameters for bleaching stages

D/C stage Min. Target Max.
CI2 brightness 34 36 38
Vat Resid. trace
% Cl02 sub. 10 50 100
EO stage
Vat pH 9.5 10.0 10.4
Steam Mixer Temp. 160 F
D1 stage
D1 brightness 82 84 86
Vat pH 3.5 3.7 3.9
D1 tube temp. 145 150 155
E2 stage
Vat pH 9.5 10.0 10.4
Steam mixer Temp. 170 F
D2 stage
Final brightness 88.5 89.5| 90.5
Final pH 3.7 4.0 4.2
Vat pH 3.5 37 3.9
Vat Residual trace — 0.02
Steam Mixer Temp. 185 F

5.2 TOTAL BLEACHING COST STUDY: PHASE |

The bleaching stage contributing most to total bleaching cost variability was
determined in the first phase of the project. In this phase, factor analysis models were
developed to see if a deterministic relationship existed among input variables for

predicting total bleaching cost.
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5.2.1 DATA PREPROCESSING

The bleaching data, consisting of more than 160 variables and 5000 observations
representing three months of production, was acquired from the mill. For the acquired
dataset, total bleaching cost had a mean value of 40.29 $/ton with standard deviation
6.25 S/ton. The coefficient of variation (COV) of total bleaching cost was 15.32%.
The pulp mill would like to see total bleaching cost COV to be under 10%.

The acquired bleach plant data consisted of multiple production runs with several
startups and shutdowns interspersed between them. The focus of the bleaching cost
study was to analyze only steady state operations of the fiberline. To represent steady
operations, five production runs were selected from the available dataset. Combined
together these production runs consisted of 1170 observations. In the next step of data
preprocessing, a number of variables were removed from the dataset. Most of the
removed variables were lower level control variables such as current flowing to
pumps and mixers. A number of variables, which contained redundant process
information, e.g., process flows, were also removed. Other variables were removed
from dataset based on their lower process importance and low variability (coefficient
of variation less than 2%). Approximately, 65% of available process tags (variables)
from the bleach plant were removed from the analysis. The trend from remaining
fifty-five variables were carefully edited to remove outliers, incorrect observations,
and blank rows. The resulting dataset was then time synchronized using method
described in Chapter 3. Each time-stamped set of observations was time
synchronized separately to account for variable time delay present in the mill dataset.
Table 5-2 presents representative time delays in different areas of the fiberline at a
chip meter rpm of thirteen. Cleaned and time synchronized datasets were filtered in
the next step of preprocessing. A five-hour moving average filter was used to filter
time-synchronized datasets. Results of the first phase of the total bleaching cost study

are presented in the following section.
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Table 5-2. Time delays in different areas of bleach plant at chip meter rpm 13.

Time delay,
Sr. No. Section in min
1 #2 Cl2 25
2 E1 Pre tube 20
3 E1 Tower 46
4 D1 Pre tube 33
5 D1 Tower 70
6 E2 Pre tube 20
7 E2 Tower 46
8 D2 Pre tube 33
9 D2 Tower 92

5.2.2 MULTIVARIATE ANALYSIS

After going through time synchronization and other preprocessing steps, a dataset
with 1170 observations was chosen for factor analysis. For model development, the
conditioned data were partitioned into two separate parts. One part was used to
analyze the data and build a factor model, while the second part was used to validate
the model. One part (consisting of 690 observations) was used to analyze the data and
build a factor model, while the second part (remaining 480 observations) was used to
validate the model. The division of the dataset into model development and model
validation datasets was based on the 60/40 criteria, i.e., “60% of data for development
and 40% for validation”. The last 60% of the dataset was chosen for model

development as it had larger bleaching cost variation.
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A factor model using fifty-five variables was created for the bleaching section. The
resulting accuracy for the factor model for all observations is shown in Figure 5-2 and
Figure 5-3. The coefficient of correlation (R?) value for plot in Figure 5-2 is

approximately 72% (69% for validation dataset). The correlation coefficient for the
validation dataset is denoted by R’. The model predicted the total bleaching cost well
for the data used in the model development stage as well as for the data used for

model validation. The model predicted the total bleaching cost for the data not used

in the model development (more than 470 observations) as shown in Figure 5-3.
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Figure 5-2. Correlation between factor analysis model predictions and actual total
bleaching cost at Ashdown mill.
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Figure 5-3. Factor analysis prediction of total bleaching cost at Ashdown mill

3.2.3 INTERPRETATION OF RESULTS

After modeling the total bleaching cost, the underlying patterns in the dataset were
identified by variability analysis. The results indicated that there were three patterns
underlying the process variables used in the analysis that affect the total bleaching
cost. The patterns are shown in Table 5-3 in the order of importance in model. The
factor analysis indicates that 65% of the variations in total bleaching cost can be
attributed to variations in the Dioxide factor and the First Stage Chlorine factor. As
evident from the factors, a large portion of the total bleaching cost variability can be

attributed to the first stage of bleaching.
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Table 5-3. Common factors and primary patterns present in data from bleaching section
of mill.

Factor Primary pattern

Dioxide factor Strong positive correlation with chlorine dioxide flow to first
stage mixers and decker kappa factor. As dioxide factor

increases total bleaching cost increases.

First stage Strong positive correlation with chlorine flow to first stage.

chlorine factor

pH control This factor is strongly correlated to D/ C stage stock pH and

factor vat pH (some relation with first stage Cl, and ClO- charge).

5.3 TOTAL BLEACHING COST STUDY: PHASE II

In the second phase of the bleaching study, upstream variables in the fiberline were
used in the predictive modeling of bleaching cost. Bleach plant upstream variables
refer to variables from pulping and washing sections. Results from the first phase of
bleaching cost study indicated that most of the variability in total bleaching cost came
from the first stage of bleaching, i.e., D/C stage. The second phase of bleaching study
focused only on developing multivariate models of D/C bleaching cost using

upstream variables.

5.3.1 DATA PREPROCESSING

The bleaching data, consisting of 160 variables and 5000 observations representing

three months of production, was acquired from the mill databases. For the acquired
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dataset, total bleaching cost had a mean value of 40.29 $/ton with standard deviation

6.25 S/ton. The coefficient of variation of total bleaching cost was 15.32%.

The acquired pulp mill data consisted of multiple production runs with several
startups and shutdowns interspersed between them. To represent steady operations,
three production runs were selected from the available dataset. Combined together,
the three bleaching data sets represented approximately one month of mill production.
In the next step of data preprocessing, a number of variables were removed from the
dataset as described in Section 5.2.1. In all ninety-seven variables were removed from
chosen bleaching datasets. Trends from remaining sixty-three variables were carefully
edited to remove outliers, incorrect observations, and blank rows. The resulting
dataset was then time synchronized using method described in Chapter 3. Each time-
stamped set of observations was time synchronized separately to account for variable
time delay present in the mill dataset. Table 5-4 presents representative time delays in
different areas in the mill fiberline at a chip meter rpm of thirteen (equivalent to
production rate of 975 tons per day). Cleaned and time synchronized datasets were
filtered in the next step of preprocessing. A five-hour moving average filter was used
to filter time-synchronized datasets. At this stage there were three preprocessed
datasets representing three production runs in the pulp mill (Table 5-5). These three
datasets had different operational strategies. A composite dataset containing all three
datasets was created. It represented all operational strategies following during model

development period.

The composite dataset with sixty-three upstream variables and 825 observations
(approximately one month of mill production) was used to find deterministic
relationship between upstream variables and D/C stage bleaching cost (D/C stage
bleaching cost will be referred to as bleaching cost hereafter). Results from the

bleaching cost study are presented in the following discussion.
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Table 5-4. Time delays in Georgia Pacific fiberline at chip meter rpm 13.

Lection

Time delay, in

S. No. min
1 To chip silo 5
2 Hula bin 35
3 Chip feeders 2
4 1\ 25
5 Co-current cook zone 107
6 Wash zone 100
7 Pressure Diffuser 15
8 Atm. Diffuser 76
9 Knotters 5
10 Screens 5
11 Decker 2
12 UBLch HDTower 60
13 #2 Cl2 25
14 E1 Pre tube 20
15 E1 Tower 46
16 D1 Pre tube 33
17 D1 Tower 70
18 E2 Pre tube 20
19 E2 Tower 46
20 D2 Pre tube 33
217 D2 Tower 92

Table 5-5. Datasets for bleaching cost analysis.

Bleach [Bleach [Bleach [important
Number of Number of cost cost cost |operational strategy
Dataset variables observations AverageStdev COV_change
Bleach 1 63 344 24.49 | 4.60 | 19.57 BCH installed
Bleach 2 63 285 25.61 | 6.49 | 26.35 Chip meter RPM 13
Bleach 3 63 186 23.14 | 2.63 | 11.35 [Chip meter RPM 13.5
Composite | &3 825 2506 | 6.35 | 25.30 Al of the above
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35.3.2 MULTIVARIATE MODELS

The preprocessed composite bleaching dataset was used to develop multivariate
models using three techniques; facior analysis, principal component analysis, and
neural network analysis. Sixty-three variables, upstream from bleaching, were used in
all three multivariate models for the purposes of bleaching cost prediction and
variability analysis. In addition to this, a number of smaller subsets of sixty-three
upstream variables were used to develop other multivariate models. The smaller sets
of variables were used to see if bleaching cost prediction improved with simpler
variable structure in the models. Both process knowledge as well as process
variability were important factors in the variable elimination/selection step of model

building. Following steps were taken to obtain smaller sets of upstream variables.

1. Removing strongly controlled variables (COV < 4%). Thirty-eight variables

remained in the dataset.

o

Eliminating variables with least average correlation with other variables. Twenty-

one variables remained in the dataset.

3. Retaining only variables with high COV and process importance in the model.

Fourteen variables remained in the dataset.

A list of developed models with their codes and descriptions is presented in Table 5-
6. Tables 5-7, 5-8, 5-9 present detailed list of variables used in the different
multivariate models. All the variables excluded from the analysis were

mathematically insignificant from model accuracy point view.
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Table 5-6. Model code and description for bleaching cost multivariate models.

S.No.| Model code Model description

1 FA 63 Factor analysis model with sixty-three variables.
2 FA 38 Factor analysis model with thirty-eight variables.
3 FA 21 Factor analysis model with twenty-one variables.
4 FA 14 Factor analysis model with fourteen variables.

Principal component analysis model with sixty-
5 PCA_63 three variables.

Principal component analysis model with thirty-
6 PCA_38 eight variables.

Principal component analysis model with twenty-
7 PCA 21 one variables.

Principal component analysis model with
8 PCA 14 fourteen variables.
9 NN 63 iNeural network model with sixty-three variables.
10 NN 38 Feural network model with thirty-eight variables.
11 NN 21 Neural network model with twenty-one variables.
12 NN 14 Neural network model with fourteen variables.

Table 5-7. Pre-digester variables used in bleaching cost study.

iSr.
No. Tags Description LA 63FA_38FA _21FA_14
1 R0-FC003 . V-3 WHITE LIQUOR FLOW y
2 R0-FC008. |FV-3A HP FEEDER PURGE FLOW| vy y Y
3 R0-FC027 . |FV-61 1V SLUICE FLOW y
4 PO-FIO11. F-5 CHIP CHUTE RELIEF FLOW y
5 RO-FI012. |F-6 TOP CIRC FLOW Yy
6 [20-FI1013. [|F-7 MAKE-UP LIQUOR FLOW y
7 R0-FI022 . [F-24 CHIP CHUTE CIRC FLOW y y y
8 20-LC484 . [ICHIP METER CHUTE LEVEL y
9 R20-PC352 . 60# STM TO HB y
10 20-SC005 |CHIP METER SPEED 'y
11 P0-TI157 . RPM WHITE LIQUOR TEMP y y
12 [K2-SULF.PE #2 pulp white liq sulfidiy y y y y




Table 5-8. Digester variables used in bleaching cost study.
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Sr.

No. [Tags Description ,FA 63LA 38'FA 21FA_14
1 _R0-CHPLIQ. DIG CHIP-LIQ LVL DIFF CALC y y y y
2 [20-DPIO71. DP-11 DIG OUTLET DEV DP y y
3 [20-DPl072. DP-16A EXTRACT SCRN DP y y y y
4 20-DPI073. DP-16B EXTRACT SCRN DP y y y y
5 [R0-FCO002A. F-16A EXTRACT FLOW UPPER y y
6 20-FC002B. F-16B EXTRACT FLOW LOWER y
7 [R0-FC009 . FV-3B RES WHITE LIQ FLW y
8 20-FC016. FV-12B DIG 'B' BLOW FLW y y
9 [R0-FC017. FV-13 COLD BLOW FLOW y y
10 [20-FC152 . HV-31 BOT CIRC FLOW BYPASS y y
11 _[20-FI001 . F-1 160# STM TO DIG FLOW y
12 20-F1021 . F-20 WASH CIRC FLOW y
13 [20-FI135. F-24 FILT/#2 FLSH TNK FLW y y
14 20-HCOS58 . HV-11 KAMYR PAD AIR PRESS y y
15 20-HC070 .CO  |HV-87 BLOW LINE DILUTION y y
16 [20-11369 . DIG OUTLET DEVICE AMPS y y oy y
17 _20-LC045. L-15 DIG LIQUOR LVL CNTRL y
18 20-LC046 . LV-16 1A FLASH TANK LVL y y y
19 20-LC114. LV-168 #1B FLASHTANK LVL y y y

20 [20-L1042 . DIG CHIP SG LVL CALC y y y

21 _20-PC049. P-1 160# STM TO DIG PRES y y

22 20-PC062 . PV-17 2 FLSH TNK REL PRESS y

23 20-TC480. BOT CIRC HTR D!SC TEMP y y

24 20-TIO75 . 160# STM TO DIG TEMP y y y

25 [20-TI085B. T-12B BLOW LINE TEMP y

26 20-TI089 . T-20C WASH CIRC HTR IN TMP y

27 20-TI092 . T-60 BOTTOM CIRC TEMP y y

28 20-TI128 . TOP SEP INLET TEMP y y

29 20-TI156 . BLOW LINE TEMP y y

30 K2-DIKNUM.PE [KAMYR DIG. LOWER K NUMBER y y y y

31 [K2-SOLAVG.PE #2 WBL % SOLIDS 8 HR AVG Y y
32 K2-UPKNUM.PE KAMYR DIG. UPPER K NUMBER y y y y
33 K2-WBLRES.PE #2 MILL WBL RESIDUAL y
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Table 5-9. Post-digester variables used in bleaching case study.

Sr
. [Tags Description IFA 63 IFA 38/FA_21 L‘A 14

20-Al242 . WASH HTR 160# COND CONDUCT y y y
20-FC019. FV-18 COUNTER WASH FLOW y y y y
20-FC138 . FV-27 1ST STAGE WASH FLW y y y y
20-FC144 . FV-37 2ND STAGE WASH FLW y y y y
20-FC423 . WASH LIQ TO PD FLW
20-WASHRT.PE 2PM WASH CIRC RATIO
33-CD$ .PE 2L CD STAGE TOTAL COST y y y
33-FC006 .PE  #2 BLCH PLNT ACT RATE T/DY
Atm. diffuser Atmospheric diffuser retention time
Brown HD Brown HD retention time y y y

K2-BSCONS.MI_#2 BROWNSTOCK CONSISTENCY
K2-BSKNUM.PE #2 MILL BROWN STK K NUMBER
K2-DKCOND.M!_#2 DECKER CONDUCTIVITY
K2-DWCOND.MI DIFFUSION WASHER CONDUCT.
K2-DWCONS.MI DIFFUSION WASHER CONSIST.
K2-SPKCNT.MI #2 PM BS SPECK COUNT
KZ-WHDTON.PE PPM WASH HD LEVEL IN TONS
20-CC415. STK TO PRESS DIFF CONSIST
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5.3.3 FACTOR ANALYSIS

Modeling results

The time synchronized and preprocessed data, representing about one month of
southern pine production at the mill, were analyzed using factor analysis. The
bleaching data was partitioned into two separate parts. One part, consisting of 425
observations, was used to analyze the data and build a factor model, while the other
part with 400 observations was used to validate the model. The initial division of the
dataset into model development and model validation datasets was based on 60/40

criteria, i.e., “60% of data for development and 40% for validation”. The 60/40
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criterion was, however, modified in case of bleaching study as a deterministic model
could be built using smaller number of observations (only 425 observations). A
smaller dataset for model building also facilitated using a larger dataset for testing the
accuracy and robustness of the developed model. The last 425 observations of the
preprocessed dataset were used for model building whereas first 400 observations

were used for model validation.

For the purposes of factor analysis, K-number is assumed to be a linearly related to
input variables. A factor analysis model (FA_63) was developed using sixty-three
variables (listed in Tables 5-6,7,8) for bleach cost prediction. The factor model, with
eight factors, represented pulping and washing operations upstream from the D/C
bleaching stage. The accuracy of the resulting factor analysis model for all
observations is shown in Figure 5-4 and Figure 5-5. The coefficient of correlation (R-
square) value for plot in Figure 5-5 is approximately 88% (74% for model validation
data). It quite evident that FA_63 model successfully predicts bleaching cost. The
model predicted bleaching cost for the data not used in the model development (more

than 400 observations) as shown in Figure 5-5.

The sixty-three variables factor model (FA_63) was quite successful at predicting the
bleaching cost, but interpretation of eight factors in terms of sixty-three variables is
difficult. Thus, a number of other factor models with smaller number variables were
developed (details in Table 5-9). The first row in Table 5-9 shows the number of
factors in different factor models. Factor coefficients represent the quantitative
importance of different factors in a model. Variables in the smaller factor models

were carefully chosen from sixty-three varniables used in FA_63 model to retain
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Figure 5-4. Factor analysis prediction of bleaching cost for factor model with sixty-
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Figure 5-5.Correlation between factor analysis model predictions and actual
bleaching cost for factor model with sixty-three upstream variables.
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Table 5-10. Factor analysis models of bleaching cost for GP mill.

Model > [FA 63 JFA 38 [FA 21 [FA 14
Number of factors 8 5 3 2
Intercept 25.05 25.08 25.08 25.05
Factor 1 coefl. 1.55 3.15 3.60 5.02
Factor 2 coeff. 3.55 2.07 1.36 -0.75
Factor 3 coeff. 3.32 3.17] 2.96)

IFactor 4 coeff. 0.19 -1.15

iFactor § coeff. 1.00) 1.76

Factor 6 coeff. 0.58

Factor 7 coeff. -0.18

Factor 8 coeff. -2.11

important predictive information. The variable selection process for these models is
described in the previous section (section 5.3.2). In all, three smaller factor models
for predicting bleaching cost were developed. These models used 38, 21, 14 upstream
variables respectively (listed in Tables 5-6,7,8) to predict bleaching cost. For all
models, data partitioning into the model development and model validation sets was

similar to that of FA_63 model.

Using factor analyses, three prediction models (with five, three, and two factors) were
developed to represent pulping and washing operations. The accuracy of the resulting
factor analysis models for all observations is shown in Figures 5-6, 5-7, 5-8. The
coefficients of correlation (R-square) for the three smaller models and FA_63 model
are presented in Table 5-11. It is quite clear from the Table 5-11 that all three smaller
factor models as well as FA_63 model were able to predict bleach cost successfully.
However, for simpler representation of mill operations, the model with smallest

number of variables (FA_14) was chosen for next stage of the analysis.



91

Tablc $-11. Correlation coefficients of various bleach cost factor models.

INumber Number R.’, quared

Factor |of ‘I:f factors Il:’, validationEesid ual
Model  jvariable lldata data verage
FA 63 63 8 0.88 0.74 21.58
FA 38 38 5 0.83 0.74 23.04
FA 21 21 3 0.74 0.70 13.81
FA 14 14 2 0.75 0.74 10.41
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Figure 5-6. Factor analysis prediction of bleaching cost for FA_38 model.
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Interpretation of factor model

After modeling the bleaching cost, the underlying patterns in the dataset were
identified from the variability analysis. The variability analysis indicated that there
were approximately two patterns underlying the upstream process variables used in
the bleaching cost analysis. The patterns are shown in Table 5-12 in order of

importance in the model.

The factor analysis indicated that 65% of the variations in bleaching cost were
contributed by variations in lignin factor and digester stability factors. These factors
were not true mechanistic parameters as used in first principle modeling. Instead the
factors were statistical representations of mechanistic parameters calculated by the

factor analysis.

The lignin factor can be thought of as a latent variable that combines the effects of
pulping as well as washing. As shown in Table 5-12, digester K-number increases

lead to increase in bleach cost. This follows from the fact that higher K-number pulp

Table 5-12. Common factors and primary patterns present in digester data from mill.

Factor Primary pattern
Lignin Factor As digester K-number increases, bleaching cost
increases.

As atmospheric diffusion flow rate increases,
bleaching cost decreases.

Digester stability Related to outlet device amperage and counter
factor wash flow rate at the bottom of the digester.
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has higher lignin content thus requiring more bleaching chemical in the D/C stage.
Increased bleach chemical usage results in increased bleach cost. The lignin factor is
also strongly comrelated to the wash water flows to first and second stages of
atmospheric diffusion washing. As the flow rates increase, pulp is washed better
which decreases bleach cost. Digester stability factor is the other pattern present in
the prediction dataset. This factor is strongly correlated to outlet device (OD)
amperage, which is the amount of current drawn by the outlet device. OD amperage
is a sign of column stability inside the digester. It is related to brown stock
consistency and is also a function of K-number. Stable OD amperage is a prerequisite
for good digester operation. Variation in OD signifies unsteady state operation and

result in varying bleach cost.

Factor analysis shows that by controlling variables correlated with lignin factor and
digester stability factor, the variations in bleaching cost can be reduced by 65%. The
remaining 35% variations in bleach cost was partly due to random variations and

partly due to variables not included in this analysis such as chip quality vanables.

5.3.4 PRINCIPAL COMPONENT ANALYSIS

Modeling results

The time synchronized and preprocessed pulping data, representing about one month
of pine production at the mill, were analyzed using principal component analysis
(PCA). Data partitioning in PCA modeling was identical to that in factor analysis
modeling. A PCA analysis model was developed using sixty-three variables (listed in
Tables 5-6,7,8) for bleach cost prediction. A multivariate model with eight principal

components was chosen to represent the set of upstream variables predicting bleach
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cost. The accuracy for the resulting PCA model for all observations is shown in
Figure 5-9. It is evident that the PCA model does not predict bleach cost for the first
seventy observations. The PCA_63 model bleach cost trend does track actual bleach
cost trend from observation 70 onwards. The coefficient of correlation for bleach cost
model predictions is 35% for the validation dataset (excluding the first seventy

observations). This correlation value is very low if these 70 observations are included.

The question arises what is happening in first seventy observations that leads to poor
prediction for bleach cost in PCA_63 model. As mentioned earlier, a composite
dataset from three different productions runs was used for multivariate analysis
(Table 5-4). The first production run in the dataset contained an important shift in
operational strategy. A bottom circulation heater (BCH) was installed which lead to
change in distribution of heat energy going into pulping system. As a result of BCH
installation, steam consumption at the top of the digester decreased as black iiquor in
the bottom circulation was heated indirectly in the BCH. This resulted in a big change
in bottom circulation temperature (after first seventy observations) as shown in Figure

5-10.

There is an assumption about common variability of variables in PCA. The PCA
model assumes that all variability of a variable can be attributed to other variables.
PCA_63 model was developed using observations 400-825. As per PCA assumption,
all variability of bottom circulation temperature (BC Temp) was functionally related
to bleaching cost. As a result when BC Temp changed significantly in the model
validation dataset, bleaching cost prediction changed significantly as well. This is not
the case with the FA model as FA assumes that only part of variability of a variable is

attributed to other variables.

Similar to factor analysis, a number of other PCA models were developed with
smaller number of variables for better interpretation of PCA models. Variables in the

smaller PCA models were carefully chosen from sixty-three variables used in the first
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PCA model to retain important predictive information (details in Section 5.3.2). In all,
three smaller PCA models for predicting bleaching cost were developed. These
models used 38, 21, 14 upstream variables (listed in Tables 5-7, 8, 9) to predict
bleaching cost. The variable selection process for these models is described in Section

5.3.2. For all models, data partitioning was same as in case of PCA_63 model.
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Figure 5-9. Principal component analysis predictions of bleaching cost for PCA_63

model with sixty-three upstream variables .
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Figure 5-13. Principal component analysis predictions of bleaching cost for PCA_14

Details of the PCA models are presented in Table 5-13. The accuracy of the resulting
principal component analysis models for all observations is shown in Figures 5-11, 5-
12, and 5-13. The coefficients of correlation (R-square) for the three smaller models
and PCA_63 model are presented in Table 5-13. Bleaching cost predictions from
model PCA_38 could not predict first seventy observations for the reasons similar to
PCA_63 model. Principal component analysis models PCA_21 and PCA_14 were
able to predict bleach cost successfully for all the observations (Table 5-14). These
models performed well for the first seventy observations as well. The main reason for
improved cost prediction of these smaller models is exclusion of temperature
variables for PCA_21, PCA_14 models. For simpler representation of mill
operations, the model with the smallest number of variables (PCA_14) was chosen

for next stage of the analysis.
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Table 5-13. Principal component analysis models of bleaching cost for GP mill.

Model>  [PCA 63 [PCA 38 [PCA 21 [PCA_14
IComponent 1 0.41 0.52 0.15 0.43
Component 2 -0.22 -0.11 0.52] -0.54]
Component 3 0.53 0.12 -0.47|
IComponent 4 -0.02 -0.39

Component S -0.15 0.27]

IComponent 6 0.06

Component 7 0.29

Component 8 0.12

Table 5-14. Correlation coefficients of various bleach cost PCA models.

R2, for Equared

Number of Number of R2, all validation Fesidual
variables components data data verage

PCA_63 63 8 0.76" 0.34* 14.08"
PCA 38 38 5 0.71* 0.44° 13.35°
PCA 21 21 3 0.68 0.50 16.33
PCA 14 14 2 0.68 0.73 13.66

* refers to values excluding first seventy observi.tions

Interpretation of PCA models

After modeling the bleaching cost, the underlying patterns in the dataset were
identified for the sources of variability. There were two patterns underlying the
upstream process variables used in the bleaching cost analysis. First pattern (Lignin
component) was strongly correlated to digester K-number and wash flow rates to
atmospheric diffusion washers. In essence, first pattern represented the importance of
cooking and washing in determining the bleaching cost of pulp. The second pattern in
PCA_14 dataset, DigStability component is related to digester column stability as it
was strongly correlated to outlet device current consumption and differential

pressures of extraction screens. Column stability is a very important factor as a stable
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column represents steady state operation. If the digester is operating under unsteady
state condition pulping is performed under non-uniform cooking conditions, thus
resulting into varying pulp-bleaching cost. PCA_14 has essentially same variable
structure when compared to FA model FA_14. However exact weights of different
variables on factors/components are different. This is to be expected from differing
assumptions about common variability of variables when developing FA and PCA

models.

5.3.5 NEURAL NETWORK ANALYSIS

Both PCA and FA models assume a dataset contain only linear interactions among
variables. In order to investigate the presence of non-linearities present in bleaching
cost dataset a non-linear multivariate technique, neural network, was used. The time
synchronized and preprocessed data, representing about one month of pine production
at the mill, were then analyzed using neural network (NN) analysis. The conditioned
data was partitioned into three separate parts. The first part, with 520 observations,
was used to train and build a NN model, while the second part with 200 observations
was used to validate the model. Another part consisting of 105 observations was used
as a testing dataset for the NN model. Testing refers to a process of preventing the
neural network from over fitting the dataset. The model validation was done to test
the accuracy and robustness of the NN model. The split in the dataset for model
development and validation for NN is different from PCA, FA models as more data
are required for training neural networks. However, the exact division of data into
model development, testing, and validation parts was done by looking at bleaching

cost trend and choosing the portion with higher bleaching cost variability.

Similar to factor analysis and principal component analysis, several NN models were
developed using sets of upstream variables. In all four NN models were developed
using 63, 38, 21, and 14 upstream variables. The training and testing results of all

these NN models are presented in Table 5-15. Table 5-15 shows that neural network
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with sixty-three variables, NN_63, has no predictive capability for bleaching cost. In
fact most of the neural network models didn’t predict bleaching cost. Only the neural
network model (NN_14) with fourteen variables had some reasonable prediction of
bleaching cost as shown in Figure 5-20. This could be because a neural network with
a large number of input variables tries to model complex relationships among all the
input variables. The actual predictive structure for bleaching cost is masked by noise
and disturbances that neural networks (with large number of input variables) try to
model. It is noticeable that even for the NN_14 model the coefficient of correlation
(R? value) for the validation dataset was lower than R? values for principal
component analysis and factor analysis models using same variables. A non-linear
model of upstream variables to predict bleaching cost doesn’t seem to work. In
contrast, both PCA, FA models with 14 upstream variables were able to predict

bleaching cost quite well.

It appears that linear modeling techniques such as FA, PCA are quite effective in
ignoring noise, disturbances present in the dataset while managing to capture
predictive structures present in the process dataset. The case is different for neural
networks which try to model all variations present in the dataset including noise. As a
result NN do a poor job of predicting bleaching cost. If the number of variables is
large, then more noise and disturbances are present in the dataset. The NN will try to
model the noise while ignoring important predictive structure. When the number of
variables in NN is small, there is less noise present in the dataset. In such cases, NN
models do a relatively better job of predicting bleaching cost as shown by higher

coefficient of correlation for the validation dataset (Table 5-15).
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Table 5-15. Training and validation results of the neural network models for bleaching

cost.
Observations IR2 value
Squared
residual
Model train test validation | average | all data | Validation
NN 63 520 105 1-200 30.76 0.58 0.01
NN 38 520 105 1-200 21.38 0.50 0.31
NN 21 520 105 1-200 21.20 0.41 0.33
NN 14 520 105 1-200 16.09 0.51 0.48
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Figure 5-14. Neural network prediction of bleach cost using fourteen variables.

5.3.6 COMPARISON OF RESULTS USING DIFFERENT METHODOLOGIES

In the previous sections, three multivariate methodologies were used to develop

bleaching cost prediction models using the pulping dataset. The comparison of these

methodologies was necessary to see which one of the muitivariate techniques was
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better at modeling process characteristics. A basis for comparing the utility of
multivariate techniques was developed. Each of the multivariate methodology was

given a score on the following criteria

1. Accuracy of bleaching prediction in the validation dataset.
2. Ease of use.

3. Effort to build model.

4. Robustness to data preprocessing.

5. Explanation of process behavior.

Each criterion was assigned a arbitrary weight as per its importance, and a score on a
scale of five (1-5) was given to each category for each multivariate model. The
overall score of a multivariate methodology was its weighted average of scores in

each of the five categories.

The overall scores of all models are given in Table 5-16. Table 5-17 shows average
squared residuals for different models’ validation datasets along with their 95%
confidence interval. F_14 model has the best overall score of 4.2, followed by
PCA 14 with score of 3.6. NN model with fourteen variables (NN_14) has the lowest
score of 3.2. The score for “accuracy’ is based on the magnitude of the average
residuals (Table 5-17). As it is evident from the Table 5-17, PCA and FA models

with fourteen variables give the best prediction of bleaching cost.

In terms of model building efforts, it was easier to build models with larger number of
variables. Selecting variables for models with smaller number of upstream variables
was quite difficult. Scores for “ease of use” were assigned based on personal

experience. PCA models were fairly easy to use, but NN models were hard to operate.
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PCA as well as FA models with smaller number of variables were easier to use and

understand.

“Robust to data processing” refers to the ability of being able to construct models
without sophisticated data preprocessing. PCA were very sensitive to the data
preprocessing steps. FA models were slightly better than PCA models in this respect.
Using NN didn’t need detailed data preprocessing when compared to PCA and FA
models. Choice of dataset, however, was quite important for NN compared to
required for PCA and FA models. PCA and FA were better at extracting predictive
relationships from noisy dataset. NN was not so flexible. As a result, using different
datasets for NN yielded vastly different results. “Explanation of process behavior”
refers to the ability to reconcile model interpretation to process knowledge. For the
upstream dataset it was easiest for FA models followed by PCA models. NN models
were black box models, as a result the explanation of process behavior was rather

difficult.

Table 5-16 Overall scores of comparison of multivariate models for bleach cost

prediction.
Weight 4.0 2.0 3.0 2.0 3.0 14.0
Effort to | Robustness to | Explanation of
Easeof | build data process
Model | Accuracy | use. model. | preprocessing. |  behavior. Overall
FA 14 4.0 4.0 5.0 4.0 4.0 4.2
PCA 14 4.0 4.0 3.0 3.0 4.0 3.6
NN 14 3.0 2.0 5.0 4.0 2.0 3.2

Table 5-17 Squared residual average in bleaching cost prediction for validation

datasets of different models.

Squared residual

Model average 95% C.l.
FA_14 10.41 10.41+1.54
PCA_14 9.20 9.20+1.34

NN_14 16.09 16.09+2.46
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5.4 FIBERLINE VARIABILITY: K-NUMBER AND BLEACHING COST

The dissertation, so far, has focused on studying bleaching cost variability and K-
number variability for the Georgia Pacific mill. Since the fiber line consists of a pulp
mill followed by the bleach plant, there should be a link between kappa number
variations and bleaching cost variations. The exact quantitative effect of K-number

variations on the bleaching cost variability is determined in this section.

Bleaching cost predictions for all observations for PCA_14 model is shown in the
Figure 5-18. The coefficient of correlation (R?) is 68% for this plot. Figure 5-19
shows bleaching cost predictions for PCA_14 when K-number variables (bsknum,
lo_knum) are excluded from the model. The coefficient of correlation (R?) is 45% for
bleaching cost predictions. It is evident that bleaching cost variability, as predicted
by model, is reduced by 23% when information about K-number variations is not
included in the analysis. It was evident from the discussions in Chapter 4 that K-
number variability can’t be predicted reliably for the Georgia Pacific mill digester. As
a result not much can be done about controlling a significant portion of bleaching cost
variations as predicted by the PCA_14 model. Controlling other sources of bleaching
cost variability, i.e., washing variables and DigStability factor, can lead, however, to

reduction in the cost variations and thus economic operations of the bleach plant.
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Figure 5-15. Predicted vs. Observed Values for bleaching cost (with K-number in model).
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Figure 5-16. Predicted vs. Observed Values for bleaching cost (without K-number in
model).

5.5 CONCLUSIONS OF BLEACHING COST STUDY

The bleaching cost study was done in two phases. The first phase determined the
bleaching stage that was contributing most to total bleaching cost variability. Results
from the first phase indicated that most of the variability in total bleaching cost came
from the first stage of bleaching, i.e., D/C stage. In the second phase of the bleaching
study, upstream variables in the fiberline were used to develop predictive models of
bleaching cost. A number of models were developed using principal component

analysis, factor analysis, and neural network analysis.

For principal component analysis as well as factor analysis, models with fourteen

variables successfully predicted the bleaching cost trend. Neural networks bleaching
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cost predictions were poor. Factor analysis and PCA models of the bleaching cost
indicated that most of the bleaching cost variability was either due to lignin factor
(which represents pulping and washing variables) or due to digester column stability
represented by outlet device amperage. A method to compare results from various
multivariate methodologies was also developed. The factor model with fourteen

variables achieved the highest score of all the models.
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CHAPTER 6: CONCLUSIONS

The financial and process benefits of improving the mill fiber line are widely
acknowledged. However, process optimization of the fiber line is difficult due to the
complex behavior of pulp and paper systems. The dissertation project focused on the
application of multivariate analysis techniques for understanding and improving fiber
line performance. More specifically, the research applied different methods for
prediction and variability analysis of kappa number and total bleaching cost. These
models were developed using data generated by pulping and bleaching operations.
The research project led to refinement of earlier methods of data preprocessing. A
number of concepts relating to the analysis of data generated by mill operations were
proposed. Also a method of comparing results from different multivariate techniques

was proposed. Detailed conclusions are described in the following sections.

6.1 DATA PREPROCESSING

Large quantities of process data are readily available in pulp mills for improving
process operations. However, there exist several problems inherent in the pulping and
bleaching processes that serve as obstacles in using such data. A number of steps to
eliminate effects of transformations and changes implicit in the raw process data were

proposed in the dissertation.

An algorithmic solution for time shifting problems present in the mill dataset was
developed. Pulp tracking led to models with a more realistic correlation structure and

better prediction of kappa number and bleaching cost.
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6.2 KAPPA STUDY CONCLUSIONS

Two studies were done for kappa number prediction using data from a pulp mill. In
the first study, the Weyerhaeuser Longview mill data was used to predict kappa
number out of digester and O, delignification reactor. In the Longview study, factor
analysis allowed development of models that successfully predict kappa number out
of a continuous digester and O, delignification stage. The most important cause of
kappa variability in case of the continuous digester was found to be mischarges in
alkali. The major source of kappa variability in the O, delignification reactor is
variability of the pulp out of the digester. Better digester control can lead to improved
O, reactor performance. Factor analysis results can be used to reduce kappa
variability as they point out factors and in turn the variables that cause kappa
variability. Variations in kappa number can be reduced by 45% in case of the digester
and 40% in case of the O2 delignification reactor if variables correlating with the

important factors are brought under control.

In the second study, principal component analysis, factor analysis, and neural network
were used to develop K-number prediction models for the Georgia Pacific Ashdown
mill. None of these models were successful in predicting K-number. The main reason
for poor prediction was that the digester was already under tight control as evident
from the low (6.12%) coefficient of variation of K-number. It appears that the dataset
generated by a strongly controlled process doesn’t have significant correlation

structure, which is necessary to develop predictive models.
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6.3 BLEACHING COST CONCLUSIONS

The bleaching cost study was done in two phases. The first phase determined the
bleaching stage which was contributing most to total bleaching cost variability.
Results from the first phase of the bleaching cost study indicated that most of the
variability in total bleaching cost came from the first stage of bleaching. In the second
phase of the bleaching study, upstream variables in the fiberline were used in the
predictive modeling of bleaching cost. A number of models were developed using
principal component analysis, factor analysis, and neural network analysis for

predicting bleaching cost.

For principal component analysis as well as factor analysis, models with fourteen
upstream variables successfully predicted bleaching cost trend. However, in case of
neural networks bleaching cost predictions however were poor. Factor analysis and
PCA models of the bleaching cost indicated that most of the bleaching cost variability
was either due to lignin factor (which represents pulping and washing variables) or
due to digester column stability represented by outlet device amperage. A method to
compare results from various multivariate methodologies was also developed. The
factor model with fourteen variables achieved the highest score on a comparison scale

for the bleaching cost study.

6.4 WHAT ALL THIS MEANS TO MILL?

It is evident from K-number and bleach plant case studies that upstream variables for
bleaching have a linear predictive structure for bleaching cost. However, two
important components of the bleaching cost predictive model are the lignin factor and

digester stability factor. Both of these factors point at the digester as being major
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source of bleaching cost variability. At the same time, the K-number case study
shows that digester is operating smoothly as evident by small coefficient of variation
of quality variable, K-number. It seems impossible to predict or correlate digester K-
number with input variables to the pulping process for the Georgia Pacific mill. The

question arises, “what mill can do to reduce cost variability?”

It appears that either something is happening in the digester that is not picked up by
the K number test or some unknown disturbances (such as chip quality) are passing
through the digester causing bleach cost to vary. If the first hypothesis is correct, then
K number determined at the end of digester is not sensitive enough to assess
variations in lignin content. One can say that there are variations in pulp lignin
content that are not measured by the K number test, but are picked up by changes in
the chlorine requirements at the D/C stage. In this situation, the bleaching cost
predicted by the model may be used as a soft sensor to manipulate temperature, steam
flow in digester to produce pulp with uniform quality (i.e., consistent latent variable
variation). This way cost variability will be reduced, as presumably the variation in

bleach cost will be minimized although lignin content may stay constant.

In case of unknown disturbances such as chip quality variations passing through the
digester, there are no other choices than installing systems to monitor chip quality

which will enable better digester control in terms of low bleaching cost variability.
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APPENDIX A: Pulp tracking algorithm

VISUAL BASIC CODE FOR PULP
TRACKING PROGRAM.

“author: Saket Kumar :University of washington

‘ phone: 206 543 8142 (email : saket@u.washington.edu)

' Author would like to thank pulp mill and technical dept. engineers

' for extending their full support and cooperation in this project. Thanks
' georgia pacific, Ashdown operations

Public calcSheet As Object

Public numVar As Integer

Public msg As String

Public NewLine As String ' New-line.

Public Const ObsInterval As Integer = 60 ' interval in min between two
observations

Public Const maxSyncTime As Integer = 2600 ' time in minutes

Public Const one_day As Integer = 1440 'minutes in a day

Public probTag As String

Public mySheet As Object

Public probTime As Date

Public adjProbTime As Date

Sub Auto_Open()
ThisWorkbook.Sheets("Pulp tracking").Select

End Sub
Sub Auto_close()

ActiveWorkbook.Close (False)
End Sub

'following functions handles time spent in HD towers
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Function RetnTime(sTagname As String, flowRateTag As String, sTime As
Date)

Dim eTime As Date

Dim eLTime As Date

Dim sLTime As Date

Dim deadTime As Integer ' dead time in minutes

Dim avgValveOpenTime As Integer ' for flow from #2BP to HDs, in minutes

Dim tankLevel ' don't dimension otherwise lose precision

Dim machineFlow ' don't dimension otherwise lose precision

Dim avgFlowInGPM

Dim avgConsistency

Dim mySheet As Object

Dim pulpToMachine As Long

Dim machineFlow62

Dim machineFlow63

Dim machineFlow64

Dim tagArea 'As Integer

Dim convFac

avgValveOpenTime = 20

" what will happen if this value is non-numeric use value ten minutes after
sLTime = adjustTime(sTime, -avgValveOpenTime / 2)

eLTime = adjustTime(sTime, avgValveOpenTime / 2)

tankLevel = VarTolnt(TagCalAvgVal(sTagname, sLTime, eLTime))

' This code handles the conversion of TPD flow to TPH in case of bleach tag
convFac =1

If Not (Left(sTagname, 8) = "30-WI023") Then
tagArea = Left(flowRateTag, 2)
If tagArea = 33 Then

convFac =24 "' as bleach plant rate is in TPD

End If

End If

1i=1
deadTime =1
Do

start = Timer

eTime = adjustTime(sTime, deadTime)
'what happens if this value is non-numeric
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' handles the atm diffuser case where there is no flowrate.PE tag
If Left(sTagname, 8) = "30-WI1023" Then "30-WI1023."
avgFlowInGPM = VarTolnt(TagCalAvgVal("30-FI001 .", sTime, eTime))

avgConsistency = VarTolnt(TagCalAvgVal("30-CC025 .", sTime, eTime))
machineFlow = avgFlowInGPM * (8.34 * 60 / 2000) * (avgConsistency / 100) ' flow out to machine in TPH
Elself sTagname = "36-L1050 .” Then ° deals with HD tower #6 (three pulp lines out of HD#7)

MsgBox "pulp came out HD#7"

machineFlow62 = VarTolnt(TagCalAvgVal("36-FI058 .PE", sTime, eTime)) / convFac

machineFlow63 = VarTolni(TagCalAvgVal("36-FI052 .PE", sTime, c¢Time)) / convFac

machineFlow64 = VarTolnt(TagCalAvgVal("36-FI137 .PE", sTime, eTime)) / convFac

machineFlow = machineFlow62 + machineFlow63 + machineFlow64

Else
'for HD #2 , HD #6
machineFlow = VarTolnt(TagCalAvgVal(flowRateTag, sTime, €Time)) /
convFac
End If

pulpToMachine = (machineFlow * deadTime / 60)
pulpInTank = tankLevel - pulpToMachine

‘determines dead time step size based on the pulp left in

If pulpInTank > 30 Then
deadTime = deadTime + 100
Elself pulpInTank <= 30 And pulpInTank > 10 Then
deadTime = deadTime + 10
Elself pulpInTank <= 10 Then
deadTime = deadTime + 1
End If
i =1+ 1'counter to prevent infinte looping
If 1> 2000 Then
MsgBox "Please check flow rate" & flowRateTag & " profile.”
Exit Do
End If
Loop Until pulpInTank < 0.1
RetnTime = deadTime
End Function

Function timeSpentInTank(sTagname As String, flowRateTag As String, eTime As Date)
Dim avgConsistency
Dim avgFlowInGPM
Dim avgValveOpenTime As Integer ' for flow from #2BP to HDs, in minutes
Dim convFac As Integer
Dim deadTime As Integer ' dead time in minutes
Dim eLTime As Date
Dim loopsTime As Date
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Dim machineFlow ' don't dimension otherwise lose precision
Dim machineFlow62

Dim machineFlow63

Dim machineFlow64

Dim pulpToMachine As Long

Dim sLTime As Date

Dim sTime As Date

Dim tagArea 'As Integer

Dim tankLevel ' don't dimension otherwise lose precision

avgValveOpenTime = 20
deadTime = 10 'guessed deadtime
Do
start = Timer
loopsTime = adjustTime(eTime, -deadTime)
sLTime = adjustTime(loopsTime, -avgValveOpenTime / 2)

eLTime = adjustTime(loopsTime, avgValveOpenTime / 2)
tankLevel = VarTolny(TagCalAvgVal(sTagname, sLTime, cLTime)) * pulp in HD when pulp sample came in

' what will happen if this value is non-numeric use value ten minutes after
' This code handles the conversion of TPD flow to TPH in case of bleach tag
convFac =1
If Not (Left(sTagname, 8) = "30-WI1023") Then

tagArea = Left(flowRateTag, 2)

If tagArea = 33 Then

convFac =24 ' as bleach plant production rate is in TPD not TPH

End If

End If

'what happens if this value is non-numeric
'handles the atm diffuser case where there is no flowrate.PE tag
If Left(sTagname, 8) = "30-WI1023" Then "30-WI1023."

avgFlowInGPM = VarTolnt(TagCalAvgVal("30-FI001 .", loopsTime,
eTime))

avgConsistency = VarTolnt(TagCalAvgVal("30-CC025 .", loopsTime,
eTime))

machineFlow = avgFlowInGPM * (8.34 * 60 / 2000) * (avgConsistency / 100) ' flow out to knotters in TPH
Elself sTagname = "36-L1050 ." Then ' deals with HD tower #6 (three pulp lines out of HD#7)
' MsgBox "pulp came out HD#7"
machineFlow62 = VarTolnt(TagCalAvgVal("36-FI0S8 .PE", loopsTime, cTime)) / convFac
machineFlow63 = VarTolnt(TagCalAvgVail("36-FI052 .PE", loopsTime, eTime)) / convFac
machineFlow64 = VarTolnt(TagCalAvgVal("36-F1137 .PE", loopsTime, eTime)) / convFac

machineFlow = machineFlow62 + machineFlow63 + machineFlow64
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Else
'for HD #2 , HD #6

machineFlow = VarTolnt(TagCalAvgVal(flowRateTag, loopsTime, eTime)) / convFac

End If
pulpToMachine = (machineFlow * deadTime / 60)
pulpInTank = tankLevel - pulpToMachine

'determines dead time step size based on the pulp left in tank goto
If pulpInTank > 30 Then

deadTime = deadTime + 20
Elself pulpInTank <= 30 And pulpInTank > 10 Then

deadTime = deadTime + 10

Elself pulpInTank <= 10 Then

deadTime = deadTime + 1
End If

Loop Until pulpInTank <0.1
timeSpentInTank = deadTime

End Function
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Function timeSpentSmiHD(sTagname As String, flowRateTag As String, eTime As Date)
Dim sTime As Date
Dim loopsTime As Date
Dim bestStartTimel As Date
Dim bestStartTime2 As Date
Dim bestStartTime3 As Date
Dim bestStartTime4 As Date
Dim calcDeadTime As Integer ‘' dead time in minutes
Dim tankLevel
Dim machineFlow
Dim mySheet As Object
Dim pulpToMachine As Long
Dim guess As Integer
Dim guessRetnTime ' As Integer
Dim errTime
Dim timeStep
Dim errSign As Boolean
Dim ¢ As Object

'ActiveWorkbook.Save
'Application.ScreenUpdating = False

errSign = True: i = 1 ' Initialize variables.
Do
loopsTime = eTime -1 * 30/ 60/ 24
calcDeadTime = RetnTime(sTagname, flowRateTag, loopsTime)
pulpOutTime = adjustTime(loopsTime, calcDeadTime)
errTime = (eTime - pulpOutTime) * 24 * 60
If errTime > 0 Then
errSign = False
bestStartTimel = loopsTime + 30/ 60 / 24 ' when error changes sign
End If
i=i+1
Loop Until errSign = False 'Or errTime =0 ' Exit outer loop immediately.

If Abs(errTime) <1 Then
timeSpentSmIHD = calcDeadTime
Application.ScreenUpdating = True
Exit Function

End If
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errSign = True: i = 0 ' Initialize variables.
Do
loopsTime = bestStartTimel -1 * 15/60/24
calcDeadTime = RetnTime(sTagname, flowRateTag, loopsTime)
pulpOutTime = adjustTime(loopsTime, calcDeadTime)
errTime = (eTime - pulpOutTime) * 24 * 60
If errTime > 0 Then
errSign = False
bestStartTime2 = loopsTime + 15 / 60 / 24 ' when error changes sign
End If
i=i+1
Loop Until errSign = False ' Exit outer loop immediately.

If Abs(errTime) < 1 Then
timeSpentSmIHD = calcDeadTime
Application.ScreenUpdating = True
Exit Function

End If

errSign = True: i =0 ' Initialize variables.
Do
loopsTime = bestStartTime2 -i* 5/ 60/ 24
calcDeadTime = RetnTime(sTagname, flowRateTag, loopsTime)
pulpOutTime = adjustTime(loopsTime, calcDeadTime)
errTime = (eTime - pulpOutTime) * 24 * 60
ferrTime > 0 Then
errSign = False
bestStartTime3 = loopsTime + 5 / 60 / 24 ' when error changes sign
End If
i=i+1
Loop Until errSign = False 'Or errTime =0 ' Exit outer loop immediately.

If Abs(errTime) < 1 Then
timeSpentSmIHD = calcDeadTime
Application.ScreenUpdating = True

Exit Function
End If

errSign = True: i = 0 ' Initialize variables.

Do

loopsTime = bestStartTime3 -i* 1/60/24

calcDeadTime = RetnTime(sTagname, flowRateTag, loopsTime)



125

pulpOutTime = adjustTime(loopsTime, calcDeadTime)
errTime = (eTime - pulpOutTime) * 24 * 60
If errTime > 0 Then
errSign = False
bestStartTime4 = loopsTime + 1 / 60 / 24 ' when error changes sign
End If
1=i+1
Loop Until errSign = False 'Or Abs(errTime) < 1 ' Exit outer loop immediately.

If Abs(errTime) < 1 Then
timeSpentSmIHD = calcDeadTime
Application.ScreenUpdating = True
Exit Function
End If
timeSpentSmIHD = RetnTime(sTagname, flowRateTag, bestStartTime4)
' Application.ScreenUpdating = True

End Function



126

' following subroutine finds the retention time in various sections for problem 1 as
' well as problem 2

Sub GetRetentionTime()
Application.ScreenUpdating = False
NewLine = Chr(13) + Chr(10)
Set mySheet = Sheets("Pulp tracking")
clearEntry ' erases old retention values from tracking sheet

mySheet. Activate
Call TrackPulp(mySheet.Range("prob1Cell"),mySheet. Range("prob [ Retn Time™), myShect. Range("probihd™))
Call TrackPulp(mySheet. Range("prob2Cell"), mySheet.Range("prob2RetnTime"), mySheet.Range("prob2hd™))

Range("f20").Select
Application.ScreenUpdating = True
msg = " Pulp tracker has found retention time in" & NewLine
msg = msg + " various areas. Please check if these " & NewLine
msg = msg + " look OK and then click on topTenMacro to " & NewLine
msg = msg + "get top ten variables that have changed." & NewLine
MsgBox msg, 48, " Pulp tracking Info"
End Sub

' lists top ten changed variables in pulping/bleaching/ k2 sections
Sub Display_Top_Ten_Variable()

Dim hrColnNum As Integer

Dim DBox As Object

Dim CombolList As Object

NewLine = Chr(13) + Chr(10)

Set DBox = ThisWorkbook.DialogSheets("ComboDlg")

Set ComboList = DBox.DropDowns("ComboList")

' Clear the list

If CombolList.ListCount <> 0 Then ComboList. Removeltem Index:=1, Count:=CombolList.ListCount

" Fill the list
ComboList. AddItem Text:="1 Hour"
CombolList.AddItem Text:="4 Hour"
ComboList.AddItem Text:="12 Hour"
ComboList.AddItem Text:="24 Hour"
ComboList.AddItem Text:="7 days"
CombolList.AddItem Text:="20 days"

' Display the dialog
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DBoxOK = DBox.Show

' If not canceled, show the selection
Number = ComboList.ListIndex ' Initialize variable.
Select Case Number ' Evaluate Number.

Case 1 ' 1 hour difff.
hrColnNum = 8
Mystring="1 hr. "

Case 2 ' 4 hour difff.
hrColnNum = 11
Mystring ="4 hr. "

Case 3 ' 12 hour difff.
hrColnNum = 14
Mystring="12 hr. "

Case 4 24 hour difff.
hrColnNum =17
Mystring = "24 hr. "

Case 5 ' 7 day difff.
hrColnNum = 20
Mystring = "7 day "

Case 6 20 day difff.
hrColnNum = 23
Mystring = "20 day "

Case Else ' Other values.

Mystring=""
End Select

msg = " Plcase be patient as excel gets values from PI" & NewLine
msg = msg + " Average program time : 5-9 min(depends on computer speed)” & NewLine
MsgBox msg, 48, " Program information™

'updates column top

Set mySheet = Sheets("Pulp tracking")
mySheet.Range("G35") = Mystring + " before"
mySheet.Range("H35") = Mystring + " after”

mySheet.Range("G49") = Mystring + " before"
mySheet.Range("H49") = Mystring + " after”

mySheet.Range("G65") = Mystring + " before”
mySheet.Range("H65") = Mystring + " after”

mySheet.Range("G79") = Mystring + " before"
mySheet.Range("H79") = Mystring + " after”
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mySheet.Range("G95") = Mystring + " before”
mySheet.Range("H95") = Mystring + " after”

mySheet.Range("G109") = Mystring + " before"
mySheet.Range("H109") = Mystring + " after”

Application.ScreenUpdating = False

' calculate the variable information based on retention time
Sheets("Pulp tracking™).Select
Range("A131:AB900").Select

Selection.Calculate

‘problem 1 top ten
Call GetTopTags(Sheets("Pulp tracking”).Range("keyBleachinfoCell"), hrColnNum, 36) ' (data rownum, hour

coln num, display position)

Call GetTopTags(Sheets("Pulp tracking™).Range("keyPulpinfoCell™), hrColnNum, 66) * (data rownum, hour coln
num, display position)

Call GetTopTags(Sheets("Pulp tracking™).Range("keyK2InfoCell"), hrColnNum. 96) * (data rownum, hour coin
num, display position)

' problem 2 top ten
Call GetTopTags(Sheets("Pulp tracking”).Range("keyBleachinfoTwo"), hrColnNum, 50) ' (data rownum, hour coln num,

display position)
Call GetTopTags(Sheets("Pulp tracking™).Range("keyPulpInfoTwo"), hrColnNum, 80) ' (data rownum, hour coin num.

display position)
Call GetTopTags(Sheets("Pulp tracking”).Range("keyK2InfoTwo"), hrColnNum, 110) ' (data rownum, hour coln num,

display position)
Application.ScreenUpdating = True
End Sub

' prints the report

Sub PrintReport()
Sheets("Pulp tracking").Activate
Application.DisplayAlerts = False
ActiveSheet.PageSetup.CenterHeader = "Pulp Tracking Report”
ActiveWindow.SelectedSheets.PrintOut From:=2, To:=5, Copies:=1
Application.DisplayAlerts = True

End Sub

L

Private Sub clearEntry()
Sheets("Pulp tracking™).Select
' clears the retention time cells and hd tower numbers
Range("C16").Select
Selection.ClearContents
Range("C22").Select
Selection.ClearContents



Range("F20:F26").Select
Selection.ClearContents
Range("G20:G26™).Select
Selection.ClearContents
Range("F15:F16").Select
Selection.ClearContents
Range("G15:G16").Select
Selection.ClearContents

' clears the topt ten lists
Range("B36:K45").Select
Selection.ClearContents
Range("B50:K60").Select
Selection.ClearContents
Range("B66:K76").Select
Selection.ClearContents
Range("B80:K90").Select
Selection.ClearContents
Range("B96:K106").Select
Selection.ClearContents
Range("B110:0120").Select
Selection.ClearContents
Range("B114").Select
Range("C8").Select

End Sub

Private Sub TrackPulp(ProbInfoCell As Object, RetninfoCell As Object, hdCell As Object)
Dim sTagname As String
Dim syncTime As Integer
Dim myVal ' As Vanant
Dim tagCell As Object
Dim tagArea As Integer
Dim flowRateTag As String
Dim twoDaysAgo As Date
Dim whenPulpLeftHDBot As Date
Dim whenPulpLeftPineHDBot As Date
Dim whenPulpLeftAtmDifBot As Date
Dim whenPulpLeftSilo As Date
Dim whenPulpEntersHD As Date
Dim whenPulpEntersPineHD As Date
Dim whenPulpEntersAtmDif As Date
Dim hdTowerNum As Integer
Dim timeInMachineArea As Integer
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Dim timeInPineHD As Integer
Dim timelnAtmDif As Integer
Dim avgCMRpm As Integer

Dim avgBleachProdn As Integer
Dim varAreaTime As Integer
Dim totPulpingTime As Integer
Dim totBleachingTime As Integer

' Application.ScreenUpdating = False
NewLine = Chr(13) + Chr(10)
ActiveWorkbook.Save

Set mySheet = Sheets("Pulp tracking")
probTag = mySheet.Range("C8").Value
probTime = ProbInfoCell.Value

'find average bleach prodn., avg. CM RPM for last two days

twoDaysAgo = adjustTime(probTime, -one_day * 2)

avgCMRpm = VarTolnt(TagCalAvgVal("20-SC005 .", twoDaysAgo, probTime))

avgBleachProdn = VarTolInt(TagCalAvgVal("33-FC006 .PE", twoDaysAgo,
probTime))

'enter and change CM_rpm and Unbleached production values in sync sheets
'get time spent in each of the sections

Sheets("DigSyncInfo").Select

Range("CM_rpm").Value = Fix(avgCMRpm)

ActiveSheet.Calculate

totPulpingTime = -(ActiveSheet.Range("f6").Value)

Sheets("BleSyncInfo").Select
Range("UB_production").Value = Fix(avgBleachProdn)
ActiveSheet.Calculate

totBleachingTime = -(ActiveSheet.Range("f6").Value)

'find HD time using paper machine tag in question << which HD pulp came from
'need to know paper machine for real as that will determine the HD tower and fiber
line
tagArea = whichArea(probTag) ' area where problem arose
Select Case tagArea ! based on where problem arose we determine if need to forccasvbackcast

Case Is =27, 41, 42,43, 44, 48, 49, 61, 62, 63, 64




131

'if problem arose in papermachine, stock prep, or pulp dryer then
‘we need to backcast all the variables

'following if statements determine which HD pulp sample came from

If tagArea = 61 Or tagArea = 41 Or tagArea = 42 Then * papermachine 61
area>>HD#2

hdTowerNum =2

sTagname = "36-L1009 ."

flowRateTag = "36-FI008 .PE"

Elself tagArea = 27 Then ' pulp dryer pulp comes from HD#6

hdTowerNum =6

sTagname = "36-L1032 ."

flowRateTag = "36-FI054 .PE"

' MsgBox "Problem in PD section”

Elself tagArea = 64 Or tagArea = 63 Then ' machine 64 pulp comes from

HD#7
hdTowerNum =7
sTagname = "36-L1050 ."
flowRateTag = "36-FI137 .PE"
Elself tagArea = 48 Or tagArea = 49 Then ' machine 63 pulp comes from

HD#7
hdTowerNum =7
sTagname = "36-L1050 ."
flowRateTag = "36-FI052 .PE"
Elself tagArea = 43 Or tagArea = 44 Or tagArea = 62 Then machine 62 pulp >> HD#7
hdTowerNum = findTower(probTime, probTag) ' find where pulp came

from

If hdTowerNum =7 Then
sTagname = "36-LI050 ." ' for HD#7
flowRateTag = "36-FI058 .PE"

Elself hdTowerNum =4 Then
sTagname = "36-L1016 ." ' for HD#4
flowRateTag = "36-FI015 .PE"

End If

End If

timelnMachineArea = timeToMachine(probTag) * from HD bottom to problem tag point
whenPulpLeftHDBot = adjustTime(probTime, -timeInMachineArea)

' time spent in HD depends on tank level when sample came in and machine pull afterthat

timeInHD = timeSpentInTank(sTagname, flowRateTag, whenPulpLeftHDBot)

' following codes are common to al! tags if problem is in machine
whenPulpLeftPineHDBot = adjustTime(whenPulpLeftHDBot, -(timeinHD + totBleachingTime))
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timeInPineHD = timeSpentSmIHD("33-L1346B.7, "33-.FC006.PE", whenPulpLeftPineHDBot)’
timeUBIchdHD

Sheets("DigSyncInfo").Select
Application.Goto Reference:="knot_scm"
totScrngTime = Application.Sum(Selection)

whenPulpLeftAtmDifBot = adjustTime(whenPulpLeftPineHDBot, -(timelnPineHD + totScmgTime))
timeInAtmDif = timeSpentSmIHD("30-WI1023 ., flowRateTag, whenPulpLeftAtmDi{Bot)

' update digester sheet for changes in atm diffuser retention time

Sheets("DigSyncInfo").Select

Range("d21").Value = Fix(timelnAtmDif)

ActiveSheet.Calculate

totPulpingTime = -(ActiveSheet.Range("f6").Value) ' updates the total pulping
time

' time at for chip sample at silo
whenPulpLeftSilo = adjustTime(whenPulpLeftAtmDifBot, -(timelnAtmDif + totPulping Time))

‘now we have tracked that sample all the way back to chip silo for problem in machine
' display important retention times in different zone and different HD

' with a possibility of changing them changing the sheet calculation

RetnInfoCell. Offset(-5, 0).Value = avgCMRpm
RetnInfoCell.Offset(-4, 0).Value = avgBleachProdn
hdCell.Value = hdTowerNum

RetnInfoCell.Value = timeInMachineArea
RetnInfoCell.Offset(1, 0).Value = timelnHD
RetnInfoCell.Offset(2, 0).Value = totBleachingTime
RetnInfoCell.Offset(3, 0).Value = timelnPineHD
RetninfoCell.Offset(4, 0).Value = totScrmgTime
RetnInfoCell.Offset(5, 0).Value = timelnAtmDif
RetnInfoCell.Offset(6, 0).Value = totPulpingTime

CaseIs =33

" if problem arose in bleachplant then need to forecast papermachine variable if
' possible and backcast into variables of pulping section

' MsgBox "the problem is in bleaching section”
varAreaTime = -varSyncTime(probTag)




133

THITTITIIrIeY

'forecasting "

nererItIeReeY

whenPulpEntersHD = adjustTime(probTime, varAreaTime) * time adjusted to reflect when
' pulp enters in one of the bleached HD tower

'backcasting "'

LU L]

whenPulpLeftPineHDBot = adjustTime(probTime, (totBleachingTime - varAreaTime))

timelnPincHD = timeSpentSmIHD("33-L1346B.", "33-FC006.PE", whenPulpleftPineHDBot) ' time UBIchdHD

time

Sheets("DigSyncInfo”).Select
Application.Goto Reference:="knot_scrm"

totScrngTime = Application.Sum(Selection)
whenPulpLeftAtmDifBot = adjustTime(whenPulpLeftPineHDBot, -(timelnPineHD + totScmgTime))
timelnAtmDif = timeSpentSmiHD("30-W1023 ., flowRateTag, whenPulpLeftAtmDifBot)

" update digester sheet for changes in atm diffuser retention time
Sheets("DigSyncInfo").Select

Range("d21").Value = Fix(timeInAtmDif)

ActiveSheet.Calculate

totPulpingTime = -(ActiveSheet.Range("'f6").Value) ' updates the total pulping

whenPulpLefiSilo = adjustTime(whenPulpLeftAtmDifBot, -(timeInAtmDif + totPulpingTime))

'now we have tracked that sample all the way back to chip silo
' display important retention times in different zone and different HD
' with a possibility of changing them changing the sheet calculation

RetnInfoCell.Offset(-5, 0).Value = avgCMRpm
RetnInfoCell.Offset(-4, 0).Value = avgBleachProdn
hdCell.Value = "Not Known"

RetnInfoCell.Value = timeInMachineArea
RetnInfoCell.Offset(1, 0).Value =0
RetnInfoCell.Offset(2, 0).Value = totBleachingTime
RetnInfoCell.Offset(3, 0).Value = timeInPineHD
RetnInfoCell.Offset(4, 0).Value = totScrmgTime
RetnInfoCell.Offset(5, 0).Value = timelnAtmDif
ReinInfoCell.Offset(6, 0).Value = totPulpingTime

Case Is =20
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' if problem arose in bleachplant then need to forecast papermachine &
bleaching ‘variables if possible and backcast variables of pulping

section

! MsgBox "the problem is in pulping section”
varAreaTime = -varSyncTime(probTag)

'forecasting "

UL LA L L LL
whenPulpEntersAtmDif = adjust Time(probTime, varArcaTime) ' time adjusted to reflect when

timeInAtmDif = RetnTime("30-W1023 .", flowRateTag, whenPulpEntersAtmDif) ' please note that
' function Retn time ignores the flowRateTag when sTagName is 30-W1023

Sheets("DigSyncInfo").Select
Application.Goto Reference:="knot_scm"

totScrngTime = Application.Sum(Selection)
whenPulpEntersPineHD = adjustTime(whenPulpEntersAtmDif, (timelnAtmDif + totSemgTime))
timeInPineHD = RetnTime("33-LI346B.", "33-FC006.PE", whenPulpEntersPineHD) 'time in UBIchdHD

whenPulpEntersHD = adjustTime(whenPulpEntersPineHD, (totBleachingTime + timelnPineHD))
' pulp enters in one of the bleached HD tower

LU UL AT L)

‘backcasting "'

LALLM ]

L

' update digester sheet for changes in atm diffuser retention time

Sheets("DigSyncInfo").Select
Range("d21").Value = Fix(timelnAtmDif)

ActiveSheet.Calculate
totPulpingTime = -(ActiveSheet.Range("f6").Value) ' updates the total pulping

time

whenPulpLeftSilo = adjustTime(probTime, -(totPulpingTime - varAreaTime))

' now we have tracked that sample all the way back to chip silo

' display important retention times in different zone and different HD
' with a possibility of changing them changing the sheet calculation
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RetnInfoCeli.Offset(-5, 0).Value = avgCMRpm
RetnInfoCell.Offset(-4, 0).Value = avgBleachProdn
hdCell.Value = "Not Known"

RetnInfoCell.Value = timeInMachineArea
RetnInfoCell.Offset(1, 0).Value =0
RetnInfoCell.Offset(2, 0).Value = totBleachingTime
RetnInfoCell.Offset(3, 0).Value = timeInPineHD
RetnInfoCell.Offset(4, 0).Value = totScrngTime
RetnInfoCell.Offset(5, 0).Value = timelnAtmDif
RetnInfoCell.Offset(6, 0).Value = totPulpingTime

End Select

' display important retention times in different zone and different HD
' with a possibility of changing them changing the sheet calculation

'mySheet.Range("f15").Value = avgCMRpm
'mySheet.Range("f16").Value = avgBleachProdn
'mySheet.Range("c16™).Value = hdTowerNum

' mySheet.Range("Prob1RetnTime").Value = timeInMachineArea
'mySheet.Range("Prob1RetnTime").Offset(1, 0).Value = timelnHD

' mySheet.Range("Prob1RetnTime").Offset(2, 0).Value = totBleachingTime

' mySheet.Range(""Prob1RetnTime").Offset(3, 0).Value = timelnPineHD

' mySheet.Range("Prob1RetnTime").Offset(4, 0).Value = totScrngTime

' mySheet.Range("Prob1RetnTime").Offset(5, 0).Value = timelnAtmDif

' mySheet.Range("ProblRetnTime").Offset(6, 0). Value = totPulpingTime

Sheets("Pulp tracking").Select
Range("B5:N30").Select
Selection.Calculate
Range("c13").Select

Sheets("DigSyncInfo™).Select
ActiveSheet.Calculate
Sheets("BleSyncInfo").Select
ActiveSheet.Calculate
Sheets("K2SyncInfo").Select
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ActiveSheet.Calculate
Sheets("PMcSyncInfo").Select
ActiveSheet.Calculate
Sheets("HDtSyncInfo").Select
ActiveSheet.Calculate

Sheets("Pulp tracking").Activate

' Application.ScreenUpdating = True

End Sub

' finds out which area tag came from [in case of K2 tags it looks for
"area information in sheet "K2Syncinfo” column "N"
Private Function whichArea(sTagname As String) As Integer
Dim ¢ As Object
Dim probArea 'As String

probArea = Left(sTagname, 2) ' area where problem arose

Select Case probArea ' tag area.
Case Is = "K2" ' pulping/ bleaching manual tests
Set ¢ = Sheets("K2SyncInfo").Range("K12")
counter =0
Do While (c.Value < sTagname) ' Inner Loop.
counter = counter + 1 ' Increment Counter.
If counter > 70 Then ' as there are not more than 70 K2 variables
Exit Do
End If
Set ¢ = ¢.Offset(1, 0)
Loop
If c.Value = sTagname Then
whichArea = ¢.Offset(0, 3).Value

Else
MsgBox "No such tag in my database” ' 48
whichArea =0
End If
Case Else

whichArea = CInt(Left(sTagname, 2)) ' if problem is not in K2 area then it is in
area
' given by first two entries of tag
End Select
End Function

Private Function findTower(probTime As Date, probTag As String)
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Dim eTime As Date

Dim avgValveOpenTime As Integer ' for flow from #2BP to HDs, in minutes
Dim deadTime As Integer ' dead time in minutes

Dim eLTime As Date

Dim loopsTime As Date

Dim whenPulpLeftHDBot As Date

Dim machineFlow ' don't dimension otherwise lose precision
Dim machineFlow624

Dim machineFlow627

Dim machineFlow637

Dim machineFlow647

Dim pulpToMachine4 As Long

Dim pulpToMachine7 As Long

Dim sLTime As Date

Dim sTime As Date

Dim tagArea 'As Integer

Dim tankLevelHD7 ' don't dimension otherwise lose precision
Dim tankLevelHD4 ' don't dimension otherwise lose precision
Dim timeInMachineArea As Integer

timeInMachineArea = timeToMachine(probTag) ' from HD bottom to problem tag
point

whenPulpLeftHDBot = adjustTime(probTime, -timeInMachineArea)

eTime = whenPulpLeftHDBot

avgValveOpenTime = 20
deadTime = 10 'guessed deadtime
Do
start = Timer
loopsTime = adjustTime(eTime, -deadTime)
sLTime = adjustTime(loopsTime, -avgValveOpenTime / 2)
eLTime = adjustTime(loopsTime, avgValveOpenTime / 2)

' calculates pulp in HD 4

tankLevelHD4 = VarTolnt(TagCalAvgVal("36-LI016 .", sLTime, eLTime)) ' pulp
in HD

machineFlow624 = VarToln(TagCalAvgVal("36-FI0O15 .PE", loopsTime,

eTime))
pulpToMachine4 = (machineFlow624 * deadTime / 60)

pulpInTank4 = tankLevelHD4 - pulpToMachine4

' calculates pulp in HD 7
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tankLevelHD7 = VarTolnt(TagCalAvgVal("36-L1050 .", sLTime, eLTime)) ' pulp
in HD

machineFlow627 = VarTolny(TagCalAvgVal("36-FI05S8 .PE", loopsTime,
eTime))

machineFlow637 = VarTolnt(TagCalAvgVal("36-FI052 .PE", loopsTime,
eTime))

machineFlow647 = VarTolnt(TagCalAvgVal("36-FI137 .PE", loopsTime,
eTime))

machineFlow7 = machineFlow627 + machineFlow637 + machineFlow647
pulpToMachine7 = (machineFlow7 * deadTime / 60)
pulpInTank7 = tankLevelHD7 - pulpToMachine7

If pulpInTank4 >= pulpInTank7 Then
pulpInTank = pulpInTank4

Else
pulpInTank = pulpInTank7

End If

'determines dead time step size based on the pulp left in tank goto
If pulpInTank > 30 Then ' if machine draw is zero (machine is down)
'MsgBox " pulp in tank is : " & pulpInTank
deadTime = deadTime + 20
Elself pulpInTank <= 30 And pulpInTank > 10 Then
deadTime = deadTime + 10
Elself pulpInTank <= 10 Then
deadTime = deadTime + 1
End If

Loop Until pulpInTank7 + pulpInTank4 < 0.2

' calculates which HD send more pulp to # 62 machine HD#7 or HD#4
sTime = adjustTime(eTime, -deadTime)
machineFlow624 = VarTolnt(TagCalAvgVal("36-FI015 .PE", sTime, eTime))
machineFlow647 = VarTolnt(TagCalAvgVal("36-FI137 .PE", sTime, eTime))
If machineFlow624 >= machineFlow647 Then
findTower =4
Else
findTower =7
End If
' MsgBox "our pulp came from HD#" & findTower
End Function

' following functions finds out how much time is spent by pulp from HD bottom to
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' the point where probiem is noted

Private Function timeToMachine(sTagname As String) ' As Integer
Dim tagString As String
Dim tagTable As Range

tagString = sTagname

' first two digits of tag and find out whether tag is from bleach or digest
' and then look for appropriate sheet

tagArea = Left(tagString, 2)

Select Case tagArea 'tag area.
Case Is = ("27") 'Pulp dryer”
Set tagTable = ThisWorkbook.Sheets("PMcSyncinfo™).Range("pmc_sync_table™)
tagString = "PD" + Left(sTagname, 2)
Case Is ="41", "42", "61" ' papermachine
Set tagTable = ThisWorkbook.Sheets("PMcSyncinfo™).Range("pmc_sync_table™)

tagString = "PM61"

Case I[s = "43", "44", "62" ' papermachine
Set tagTable = ThisWorkbook.Sheets("PMcSyncInfo™).Range("pmc_sync_table”)

tagString = "PM62"
Case Is = "48", "49" ', "63" ' papermachine
Set tagTable = ThisWorkbook.Sheets("PMcSyncinfo™).Range("pmc_sync_table")

tagString = "PM63"
Case [s ="63", "64" ' papermachine
Set tagTable = ThisWorkbook.Sheets("PMcSyncinfo™).Range("pmc_sync_table™)

tagString = "PM64"
Case Else
timeToMachine = 0 ' no machine time incase problem arose in bleaching
plant or before that
Exit Function
End Select

timeToMachine = -1 * Application.VLookup(tagString, tagTable, 2, False) * gets time lag value from table

End Function

Function totSyncTime(sTagname As String)
Dim varAreaTime As Integer
Dim curCell As Object

Set mySheet = Sheets("Pulp tracking")
Set curCell = mySheet.Range("prob1RetnTime")



140

timeInHD = curCell.Offset(1, 0).Value
totBleachingTime = curCell.Offset(2, 0).Value
timeInPineHD = curCell.Offset(3, 0).Value
totScrngTime = curCell.Offset(4, 0).Value
timeIlnAtmDif = curCell.Offset(5, 0).Value
totPulpingTime = curCell.Offset(6, 0).Value

varAreaTime = -varSyncTime(sTagname)
tagArea = whichArea(sTagname) 'Left(sTagname, 2) ' where is problem

Select Case tagArea 'tag area.
Case IS —_ "64", "63"’ "62", "61", "49", "48"’ "44"’ "43"’ "42"’ "41"’ "27" '"36"

' paper machine 64; have to shift tags all the way back
totSyncTime = varAreaTime + timelnHD + totBleachingTime + timeinPineHD +
totScmgTime + timelnAtmDif + totPulpingTime

Case Is = "33" ' Bleaching
totSyncTime = (totBleachingTime - varAreaTime) + timelnPineHD + totScmgTime +
timelnAtmDif + totPulpingTime

Case Is = "30" ' screening
totSyncTime = (totScrngTime - varAreaTime) + timelnAtmDif +
totPulpingTime .
Case Is ="20","19" ' pulping
totSyncTime = (totPulpingTime - varAreaTime)
Case Else
totSyncTime =0
End Select
End Function

Function varSyncTime(sTagname As String)
Dim tagString As String
Dim tagTable As Range

tagString = sTagname

' first two digits of tag and find out whether tag is from bleach or digest
' and then look for appropriate sheet

tagArea = Left(tagString, 2)

Select Case tagArea 'tag area.
Case Is="19", "20" ' chip supply area
Set tagTable =

ThisWorkbook.Sheets("DigSyncInfo").Range("dig_sync_table")
Case Is = "33" ' bleach plant
Sct tagTable = ThisWorkbook.Sheets("BleSyncInfo").Range("ble_sync_table")

Case Is = ("27") 'Pulp dryer"
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Set tagTable = ThisWorkbook.Sheets("PMcSyncinfo™).Range("pmc_sync_table™)
tagString = "PD" + Left(sTagname, 2)
Case Is = "K2" ' pulping tests
Set tagTable = ThisWorkbook.Sheets("K2SyncInfo”).Range("k2_sync_table™)

Case [s ="11" ' retention towers
Set tagTable = ThisWorkbook.Sheets("HDtSyncInfo™).Range("hd_sync_table™}

Case Is = "41", "42", "61" ' papermachine
Set tagTable = ThisWorkbook.Sheets("PMcSyncinfo™).Range("pmc_sync_table™)

tagString = "PM61"

Case Is = "43", "44", "62" ' papermachine
Set tagTable = ThisWorkbook.Sheets("PMcSyncinfo™).Range("pmc_sync_table™)

tagString = "PM62"
Case Is ="48", "49" ', "63" ' papermachine
Set tagTable = ThisWorkbook.Sheets("PMcSyncinfo™).Range("pmc_sync_table™)

tagString = "PM63"

Case [s = "63", "64" ' papermachine
Set tagTable = ThisWorkbook.Sheets("PMcSyncinfo™).Range("pmc_sync_table®)

tagString = "PM64"
Case Else
MsgBox "No sync value available for -->> " & tagString
Exit Function
" miscellaneous
End Select

varSyncTime = Application.VLookup(tagString, tagTable, 2, False) ' gets time lag value from table

End Function

Function pulpK2SyncTime(sTagname As String)
Dim varAreaTime As Integer
Dim mySheet As Object

Set mySheet = Sheets("Pulp tracking")
totPulpingTime = mySheet.Range("prob1RetnTime").Offset(6, 0).Value

varAreaTime = -varSyncTime(sTagname) * time from the end of pulping where variable was recorded

pulpK2SyncTime = (totPulpingTime - varAreaTime)
End Function
Function bleachK2SyncTime(sTagname As String)
Dim varAreaTime As Integer
Dim mySheet As Object
Dim curCell As Object

Set mySheet = Sheets("Pulp tracking™)
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Set curCell = mySheet.Range("prob1RetnTime")
timeInHD = curCell.Offset(1, 0).Value
totBleachingTime = curCell.Offset(2, 0).Value
timeInPineHD = curCell.Offset(3, 0).Value
totScrgTime = curCell.Offset(4, 0).Value
timelnAtmDif = curCell.Offset(5, 0).Value
totPulpingTime = curCell.Offset(6, 0).Value

varAreaTime = -varSyncTime(s Tagname) * time from the end of bleaching where variable was recorded
bleachK2SyncTime = (totBleachingTime - varAreaTime) + timelnPineHD + totScrngTime +
timelnAtmDif + totPulpingTime '

End Function

Function totSyncTime2(sTagname As String)
Dim varAreaTime As Integer
Dim curCell As Object

Set mySheet = Sheets("Pulp tracking")
Set curCell = mySheet.Range("prob2RetnTime")

timeInHD = curCell.Offset(1, 0).Value
totBleachingTime = curCell.Offset(2, 0).Value
timeInPineHD = curCell.Offset(3, 0).Value
totScrmgTime = curCell.Offset(4, 0).Value
timeInAtmDif = curCell.Offset(5, 0).Value
totPulpingTime = curCell.Offset(6, 0).Value

varAreaTime = -varSyncTime(sTagname)
tagArea = whichArea(sTagname) 'Left(sTagname, 2) ' where is problem

Select Case tagArea 'tag area.
Case Is _ "64", "63"’ "62", "61", "49"’ "48"’ "44", "43", "42"’ "41", "27" l"36"
' paper machine 64; have to shift tags all the way back

totSyncTime2 = varArcaTime + timelnHD + totBleachingTime + timelnPineHD + totScmgTime +
timeInAtmDif + totPulpingTime

Case Is = "33" ' Bleaching
totSyncTime2 = (totBleachingTime - varAreaTime) + timeinPineHD + toiScmgTime +
timeInAtmDif + totPulping Time

Case Is = "30" ' screening
totSyncTime2 = (totScmgTime - varAreaTime) + timelnAtmDif + totPulpingTime

Case Is = "20", "19" ' pulping

totSyncTime2 = (totPulpingTime - varAreaTime)
Case Else

totSyncTime2 =0
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End Select
End Function

Function pulpK2SyncTime2(sTagname As String)
Dim varAreaTime As Integer
Dim mySheet As Object

Set mySheet = Sheets("Pulp tracking")
totPulpingTime = mySheet.Range("prob2RetnTime").Offset(6, 0).Value

varAreaTime = -varSync Time(s Tagname) * time from the end of pulping where variable was recorded
pulpK2SyncTime2 = (totPulpingTime - varAreaTime)
End Function

Function bleachK2SyncTime2(sTagname As String)
Dim varAreaTime As Integer
Dim mySheet As Object
Dim curCell As Object

Set mySheet = Sheets("Pulp tracking”)

Set curCell = mySheet.Range("prob2RetnTime")
timeInHD = curCell.Offset(1, 0).Value
totBleachingTime = curCell.Offset(2, 0).Value
timeInPineHD = curCell.Offset(3, 0).Value
totScrngTime = curCell.Offset(4, 0).Value
timelnAtmDif = curCell.Offset(5, 0).Value
totPulpingTime = curCell.Offset(6, 0).Value

' MsgBox "bleachingtime :" & totBleachingTime

varAreaTime = -varSyncTime(s Tagname) * time from the end of bleaching where variable was recorded
bleachK2SyncTime2 = (totBleaching Time - varAreaTime) + timelnPineHD + totScmgTime +~ timelnAtmDif + totPulpingTime

End Function

' PI FUNCTIONS CALLED BY VBA

' returns the PIArcVal based on a tagname and time

Function TagArcVal(sTagname As String, arcTime As Date) As Variant
Dim sTime As String  'start Timestamp
sTime = Format((arcTime), "dd-mmm-yy h:mm") '<<< PI timeformat
TagArcVal = Application.Run("PIArcVal", sTagname, sTime, 0, "ASHPI")
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End Function

' returns the PICalcVal based on a tagname and time
Function TagCalAvgVal(sTagname As String, sTime As Date, eTime As Date) As Variant

Dim avgStime As String
Dim avgEtime As String

avgStime = (Format((sTime), "dd-mmm-yy h:mm")) '<<< PI timeformat

avgEtime = (Format((eTime), "dd-mmm-yy h:mm")) '<<<PI timeformat
TagCalAvgVal = Application.Run("PICalcVal”, sTagname, avgStime, avgEtime, "average”. 1, 0, "ASHPI™)

End Function

' returns the PI calculates average value based on a tagname and stime and interval in

' minutes (between start and end times
Function CalAvgVal(sTagname As String, sTime As Date, difTime As Integer) As Variant

Dim avgStime As String
Dim avgEtime As String
Dim temp As String
avgStime = (Format((sTime), "dd-mmm-yy h:mm")) '<<<PI timeformat
avgEtime = Format(adjustTime(sTime, (difTime)), "dd-mmm-yy h:mm") '<<<PI timeformat
If difTime <0 Then
temp = avgEtime
avgEtime = avgStime
avgStime = temp
End If
CalAvgVal = Application.Run("PICalcVal", sTagname, avgStime, avgEtime, "average”, |, 0, "ASHPI")
End Function

“ this function shifts the probtime by the varSyncTime (in minutes)

' and returns time stamp in PI format, i.e., as string [note that negative

' varSyncTime means timeshifting backwards]

Function adjustTime(probTime As Date, varSyncTime As Integer) As Date
Const one_hour As Date =1/ 24
Dim addedTime As Date

addedTime = probTime + one_hour * varSyncTime / 60

adjustTime = Format((addedTime), "dd-mmm-yy h:mm") '<<< PI timeformat
End Function

1

' converts variant data type into integer by writing and then reading from worksheet
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Private Function VarTolnt(inVar As Variant) 'As Integer
Set calcSheet = ActiveSheet
calcSheet.Range("IV9000") = (inVar)
VarTolnt = Val(calcSheet.Range("IV9000").Value)
calcSheet.Range("IV9000").Clear

End Function

' converts variant data type into string by writing and then reading from worksheet
Private Function VarToString(inVar As Variant) As String
Set calcSheet = ActiveSheet
calcSheet.Range("IV9000") = (inVar)
VarToString = calcSheet.Range("IV9000").Value
calcSheei.Range("I[V9000").Clear
End Function

' following gets the first data row number, first hour column number(column number
for

'which data is to be sorted(e.g., column K for four hour avg. difference))

' and displays top ten variables that have changed in writeHere row (starting in
column B)

Sub GetTopTags(keyPulplinfoCell As Object, hrColnNum As Integer, writeHere As Integer)
Dim numVar As Integer
Dim arrayl() ' Tags
Dim array2() 'tag descriptors
Dim array3() As Long '% change in variable
Dim array4() 'time when sample was there
Dim array5() 'value of variable when our problem sample was there << based on array4
Dim array6() 'avg. four hour before
Dim array7() 'avg. four hour after
Dim array8() 'tag units
Dim Key_cell As Object, CurrCell As Object, FirstCell As Object

keyCellRowNum = keyPulpInfoCell.Row

Set mySheet = Sheets("Pulp tracking")

Set FirstCell = mySheet.Range("cc1000")

Set Key_cell = mySheet.Cells(keyCellRowNum, 1)

mySheet.Select

' counts number of observations
Key cell. Activate

anchor_cell = ActiveCell. Address
ActiveCell.End(xIDown).Select
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Range(anchor_cell, ActiveCell).Select
numVar = Application.Count(Selection)

ReDim arrayl(1 To numVar)
ReDim array2(1 To numVar)
ReDim array3(1 To numVar)
ReDim array4(1 To numVar)
ReDim array5(1 To numVar)
ReDim array6(1 To numVar)
ReDim array7(1 To numVar)
ReDim array8(1 To numVar)

‘get range from worksheet to the VBA array

Fori=1 To numVar First To Last
Set CurrCell = Key_cell.Offset(i - 1, hrColnNum - 1)
Ifi> 32 Then

End If
If Not Application.IsNonText(CurrCell) Or Not
Application.IsNonText(CurrCell.Offset(0, 1)) Then 'Or (CurrCell.Value = 0 And
CurrCell.Offset(0, 1).Value = 0) Then 'Or Not IsNumeric(CurrCell.Value) Then '=0
Or TypeName(CurrCell) Then
array3(i) =0
ElselIf (CurrCell.Value = 0) Then
array3(i) =0
Else ' calculates absolute percentage change
array3(i) = 100 * Abs((CurrCell.Value - CurrCell.Offset(Q, 1).Value) / CurrCell. Value)

End If

arrayl(i) = Key_cell.Offset(i - 1, 1).Value ' Tags
array2(i) = Key_cell.Offset(i - 1, 2).Value "tag descriptors
array4(i) = Key_cell.Offset(i - 1, 4).Value 'time when sample was there
array5(i) = Key_cell.Offset(i - 1, 5).Value 'value of variable when our problem

sample was there << based on array4
array6(i) = Key_cell.Offset(i - 1, hrColnNum - 1).Value 'avg. four hour before
array7(i) = Key_cell.Offset(i - 1, hrColnNum).Value ‘avg. four hour after
array8(i) = Key_cell. Offset(i - 1, 3).Value 'tag units

Next 1

First = LBound(array3)
Last = UBound(array3)

' Transfer array to worksheet
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For i = First To Last
FirstCell.Offset(i - 1, 1).Value = arrayl(i)
FirstCell.Offset(i - 1, 2).Value = array2(i)
FirstCell.Offset(i - 1, 3).Value = array3(i)
FirstCell.Offset(i - 1, 4).Value = array4(i)
FirstCell.Offset(i - 1, 5).Value = array5(i)
FirstCell.Offset(i - 1, 6).Value = array6(i)
FirstCell.Offset(i - 1, 7).Value = array7(i)
FirstCell.Offset(i - 1, 8).Value = array8(i)

Next i

' Sort the worksheet range
FirstCell.CurrentRegion.Sort Key1:=FirstCell.Offset(0, 3), Orderl:=xIDescending,

Orientation:=x|TopToBottom

" Present top 10 values
Set newCell = mySheet.Cells(writeHere, 1) 'write top ten variables that have
changed
Fori=1To 10
newCell.Offset(0, 1).Value = FirstCell.Offset(i - 1, 1).Value
newCell.Offset(0, 2).Value = FirstCell.Offset(i - 1, 2).Value
newCell.Offset(0, 3).Value = FirstCell.Offset(i - 1, 3).Value
newCell.Offset(0, 4).Value = FirstCell.Offset(i - 1, 4).Value
newCell.Offset(0, 5).Value = FirstCell.Offset(i - 1, 5).Value
newCell.Offset(0, 6).Value = FirstCell.Offset(i - 1, 6).Value
newCell.Offset(0, 7).Value = FirstCell.Offset(i - 1, 7).Value
newCell.Offset(0, 8).Value = FirstCell.Offset(i - 1, 8).Value

Set newCell = newCell.Offset(1, 0) ' go to next row
Next i

' clears the worksheet range that contains sorted data
Range(FirstCell. Address, FirstCell.Offset(numVar + 1, 9)).Clear
Range("c36").Select
End Sub

Sub ShowComboBox()
Dim DBox As Object
Dim CombolList As Object

Set DBox = ThisWorkbook.DialogSheets("ComboDlg")
Set ComboList = DBox.DropDowns("ComboList")
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' Clear the list
If ComboList.ListCount << 0 Then ComboList.Removeltem Index:=1,
Count:=ComboList.ListiCount

" Fill the list
ComboList. AddItem Text:="1 Hour"
CombolList. Additem Text:="4 Hour"
ComboList. AddItem Text:="12 Hour"
CombolList. AddItem Text:="24 Hour"
ComboList. AddItem Text:="7 days"
ComboList. AddItem Text:="20 days"

' Display the dialog

DBoxOK = DBox.Show

' If not canceled, show the selection
Number = ComboList.ListIndex ' Initialize variable.
Select Case Number ' Evaluate Number.
Case 1' 1 hour difff.
hrColnNum = 8
Mystring ="1 hr. "
Case 2 ' 4 hour difff.
hrColnNum = 11
Mystring = "4 hr. "
Case 3 ' 12 hour difff.
hrColnNum = 14
Mystring ="12 hr. "
Case 4 24 hour difff.
hrColnNum =17
Mystring = "24 hr. "
Case 5' 7 day difff.
hrColnNum = 20
Mystring = "7 day "
Case 6 20 day difff.
hrColnNum = 23
Mystring = "20 day "
Case Else ' Other values.
Mystring=""
End Select
MsgBox Mystring & " column : " & hrColnNum
Set mySheet = Sheets("Pulp tracking")
mySheet.Range("G35") = Mystring + " before"
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mySheet.Range("H35") = Mystring + " after”
mySheet.Range("G49") = Mystring + " before”
mySheet.Range("H49") = Mystring + " after”

mySheet.Range("G65") = Mystring + " before”
mySheet.Range("H65") = Mystring + " after”

mySheet.Range("G79") = Mystring + " before"
mySheet.Range("H79") = Mystring + " after”

mySheet.Range("G95") = Mystring + " before"”
mySheet.Range("H95") = Mystring + " after”

mySheet.Range("G109") = Mystring + " before"
mySheet.Range("H109") = Mystring + " aficr”
End Sub
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