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University of Washington

Abstract

Dynamic growth and yield modeling with climate:
A model for plantation Douglas-fir in the Pacific Northwest

by Kevin Robert Gehringer

Chair of Supervisory Committee

Assistant Professor Eric C. Turnblom
College of Forest Resources

A pair of nested, dynamic, stand level growth and yield models with an annual
base time step were developed to examine the potential effects of climate, represented
by the Palmer Drought Severity Index (PDSI), on the growth of untreated planta-
tion Douglas-fir ( Pseudotsuga menziesii) stands in the Pacific Northwest. The nested
models consist of a system of three autonomous, nonlinear, ordinary differential equa-
tions represented in a canonical mathematical formulation called an S-system. The
models project stand density, quadratic mean diameter, and top height. The models
assume only that size-density relationships exist coupling stand density and QMD,
that size-size relationships exist coupling QMD and top height, and that climate
modifies mortality and average growth rates.

A two step procedure was used to develop the nested models. First, a base model
without climate effects was defined and calibrated. Second, annual average PDSI
values were converted into a multiplicative modifier used to adjust stand mortality and
average growth rates. Parameters for both models were estimated using a least squares

criterion, keeping the base model parameters fixed when calibrating the climate model



to isolate the climate effects.

Data from 167 untreated Douglas-fir stands containing 270 research plots, and
spanning the region from southern Oregon to southern British Columbia, west of
the Cascade Mountains were used to calibrate the models. The PDSI based climate
modifier was then used to calibrate the extended model. The Douglas-fir measure-
ment data spanned the growing years 1969 through 1997, which included at least
one drought, with initial stand ages ranging from 4 to 113 years and measurement
histories ranging from 2 to 26 years.

The base model performed well and was generally unbiased, producing stand tra-
Jectories that were indistinguishable from the data. The extended model and the base
model were also indistinguishable, indicating that with these models and this data,
a direct climate effect was not detectable. Several factors contributing to this result
were identified, the most important being that average climate effects on mortality
and growth rates are already incorporated into the model through the measurement

data and the least squares parameter estimation process.
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Chapter 1

INTRODUCTION

In the United States, particularly in the Pacific Northwest. much federal forest land
has been removed from the harvestable pool to protect the habitat of various wildlife
species and to maintain existing reserves of old growth forest. Harvest restrictions are
also being placed on private land holders in the Pacific Northwest and elsewhere. This
reduction in the federal forest land available for harvest, and the removal of portions
of private land for habitat, have led to increased pressure on the remaining private
forest holdings to supply more of the demand for wood. In order to meet the increased
demand for wood, forest management practices on private forest lands will become
more intensive than ever before. In order to support the more intensive management
of forests and to address habitat concerns, better growth and yield models will need to
be developed for forest management and decision making. A new generation of forest
growth and yield models is necessary, and must provide more accurate and detailed
predictions than ever before to meet the demands that will be placed upon them.

The new generation of forest growth and yield models will need to better model
the growth dynamics of individual trees and the development of forest stands [2, 9,
23. 52, 54, 53, 76, 82]. These new models must eventually incorporate climate and
other environmental effects on forest growth [11, 35, 46, 86, 161, 171}, as do global
vegetation distribution models [100, 168], and the effects of the intensive management
practices used to enhance wood production, wood quality, or habitat suitability, to

adequately serve the needs of forest managers [44, 60, 70]. The new generation of
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forest growth and yield models will need to be dynamic, process based models that
do more than simply describe the data that were used to calibrate them, that is,
they will need to be models developed within a mathematical-explanatory modeling
framework (9, 10, 72, 79, 108, 113, 149, 150, 151]. The new generation of growth and
yield models must represent the best current understanding of the processes involved
in forest development {13, 12].

Growth and yield models may fail to meet the future needs of forest managers
because they dependence on a statistical-empirical, regression based modeling frame-
work [5, 8, 17, 19, 24, 27, 58, 65, 153], and have a limited scope of development and use
for wood production. A modeling framework is the combination of a methodology for
defining models and then calibrating them, for example fitting a polynomial to data
using least squares regression. Many of the original reasons for the use of a statistical-
empirical modeling framework, namely the large volume of data that needed to be
processed and the lack of high speed computers and appropriate mathematical soft-
ware, are no longer relevant, but this modeling framework is still the most common
(17, 40, 41, 155. 162].

The most critical factor influencing the future development of growth and yield
models is their potential for use in regional decision making processes [42, 48]. This
use demands that the models represent the cause-effect relationships for forest de-
velopment, tree growth, harvesting, and other forest attributes, that is, that the
models contain a simplified but correct representation of the real world. Representing
cause-effect relationships requires a shift away from the typical statistical-empirical
models. These models simply describe the data used in their calibration, and hence
cannot be used to deduce cause-effect relationships, to mathematical-explanatory or
process oriented models, which attempt to mimic the actual dynamic processes of
forest development and tree growth. There has been some success with incorporating
cause-effect relationships in forest simulation models, for example, gap models for

forest succession [13, 12, 130}, dynamic biogeochemical models [113], and models of



tree and forest development [10, 108, 151, 152, 161]. However, the acceptance of these
alternative model formulations as being of more than academic interest is, however,
slow, possibly due to the perception the their data requirements are excessive.
Three factors are critical for the development of more robust forest growth and
yield models. First, at all levels of model development and use the development of
forest ecosystems and tree growth must be recognized as dynamic processes. This
implies that changes to different components within a forest system occur simulta-
neously and with feedback, that is, one component may inhibit another, such as a
size-density relationship. Thus, there is a need to bring the modeling framework used
for growth and yield modeling into better alignment with the dynamic system being
modeled. Second, current growth and yield models use of a variety of convenience
parameters, such as site index, stand age, and maximum tree sizes, as fundamental
components of the models. These convenience parameters are generally unnecessary
(13, 12, 10, 130, 151, 152], and their ongoing use may hamper the effectiveness of
growth and yield, or forest simulation, modeling (82, 84, 83, 95]. Third. climate, rep-
resented as temperature and precipitation or some index such as the Palmer Drought
Severity Index [104], and other external factors, such as nutrient cycling, nitrogen

deposition, CO, concentrations, must eventually be incorporated into the models.

1.1 Research objectives

This research address three critical factors identified as important for the future de-
velopment of forest growth and yield models, the dynamic nature of forest stand de-
velopment. the use of convenience parameters, and the lack of climate effects. These
issues are addressed through the development of a nested pair of dynamic, stand level
growth and yield model for plantation Douglas-fir ( Pseudotsuga menziesii) in the Pa-
cific Northwest. The nested models consist of a base model, that does not include

climate effects. and an extended model that includes climate effects. Climate effects



are included in the extended model by using a simple climate index derived from the
Palmer Drought Severity Index (PDSI) [104].

The base Douglas-fir growth and yield model consists of three autonomous differ-
ential equations which project stand density as trees per hectare, quadratic mean di-
ameter (QMD), and top height, the average height of the 100 largest diameter trees per
hectare. The model is formulated as an S-system, a canonical mathematical represen-
tation for systems of nonlinear ordinary differential equations [118, 119, 120, 123. 158].
The S-system growth and yield model developed does not use any of the typical con-
venience parameters, such as site index, stand age, or maximum tree sizes. Although
not included in the model, site index values for the stand data used to calibrate the
model are reproduced by the model. Further, the model appears to capture the stand
dynamics and tree growth characteristics of plantation Douglas-fir, as represented by
the available data.

The base model is then extended to incorporate the effects of climate on stand
development and average tree growth. The model extension includes climate effects
through a climate index based on PDSI, and is performed in a nested manner, creating
two compatible growth and yield models, one with climate effects and one without
climate effects. The nested model extension, therefore, allows the recovery of the
base growth and yield model by using a nominal or average climate value of one. The
development of both a base model and an extended model with climate effects was
done to avoid the introduction of biases from a model calibrated for a different region
or to a different data set.

Chapter 2 addresses model representation and formulation issues for the base
model. The primary weaknesses in using the typical statistical-empirical modeling
framework for growth and yield modeling are identified, and a dynamic modeling
framework based on the S-system and a least squares criterion, called the S-system
modeling framework. is proposed as an alternative to the statistical-empirical model-

ing framework. Finally, 2 dynamic, stand level growth and yield model for plantation
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Douglas-fir in the Pacific Northwest is then developed within the S-system modeling
framework and shown to produce results that are consistent with the available stand
measurement data. Chapter 3 addresses the extension of the base Douglas-fir growth
and yield model to include climate effects. Finally, Chapter 4 presents some conclud-
ing remarks and several ideas for future work, including the extension of the dynamic

Douglas-fir growth and yield model to include an individual tree based submodel.



Chapter 2

A DYNAMIC, STAND LEVEL GROWTH AND YIELD
MODEL FOR PLANTATION DOUGLAS-FIR IN THE
PACIFIC NORTHWEST

A dynamic, stand level growth and yield model has been developed for plantation
Douglas-fir (Pseudotsuga menziesii) in the Pacific Northwest, west of the Cascade
Mountains, USA. The model may be used to project stand density, quadratic mean
diameter, and top height from a specified initial stand condition into the future.
The model has been formulated using a minimum number of biologically relevant
assumptions to define a tightly coupled system of three nonlinear ordinary differen-
tial equations, one for each state variable, which define the family of possible stand
trajectories. The coupled system of differential equations which comprise the model
is represented as an S-system, a canonical mathematical formulation for nonlinear or-
dinary differential equations (ODEs) based on a power-law formalism. The S-system
representation for the model was chosen for its flexibility, high representational power,
and its overall ease of use and interpretation. The canonical S-system representation
also leads naturally to the idea of model extraction from data, or system identifica-
tion. through the solution of a straightforward but nontrivial parameter estimation
problem. The stand level Douglas-fir growth and yield model requires a minimum
number of inputs: an initial stand density, quadratic mean diameter, top height, and
the length of the projection interval. The model performs quite well when compared
to available stand measurement data. Key features of the model are its ability to

reproduce site index without explicitly including it, and its ability to produce maxi-
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mum tree sizes that are within the range of the maximum observed Douglas-fir tree

sizes without e priori limiting the maximum tree size.

2.1 Introduction

Modern forest growth and yield modeling, as typically practiced, relies almost exclu-
sively on a statistical-empirical modeling framework [5, 8, 17, 19, 24, 27, 36, 58, 65,
140, 153, 154, 163]. Within this framework, a one dimensional perspective dominates,
despite the multidimensional nature of forest stand development and tree growth. The
equations representing the processes involved in stand development and tree growth
within a growth and yield model are treated independently [3, 24, 36, 58, 65, 94, 153,
although in an actual forest the processes represented by these equations occur simul-
taneously. Further, many statistical-empirical growth and yield models also include a
variety of convenience parameters, such as site index. stand age, or various measures
of inter-tree competition, e.g., crown competition factor or stand density index, that
are correlated with the main state variables to improve the fit of the model to the
calibrating data [24, 36, 65, 153], or maximum tree sizes to limit the potential size of
trees grown using a model (24, 36, 65, 153]. For these reasons, the statistical-empirical
growth and yield models do not provide the most appropriate representation for the
dynamics of forest stand development.

A brief overview of modern growth and yield modeling from the typical statistical-
empirical modeling framework follows. The overview identifies issues believed to
be hindering the effectiveness of growth and yield models. The issues fall into two
broad categories relating to the model formulation and representation, or the model
definition. and model use, and the statistical and biological assumptions necessary to
capture stand dvnamics and tree growth within a growth and yield model.

An alternative modeling framework is proposed for forest growth and yield mod-

eling. The alternative modeling framework represents forest stand dynamics as an



[v 4}

autonomous system of ordinary differential equations, represented in a canonical,
mathematical representation called an S-system. This alternative framework will be
called the S-system modeling framework. A stand level, growth and yield model for
plantation Douglas-fir is developed within the S-systemmodeling framework. The
model projects stand density, QMD, and top height, representing a forest stand as
a tree of average size and the number of trees per hectare. The formulation of the
S-system growth and yield model is justified in terms of its mathematical and bio-
logical relevance. The model was calibrated using stand measurement data from 167
Douglas-fir installations consisting of 270 research plots spanning the Pacific North-
west region west of the Cascade Mountains. The model appears to perform quite well

when compared with the available stand measurement data.

2.1.1 A brief overview of modern growth and yield modeling

Modern growth and yield models come in essentially three types: (1) stand level
models, which simulate diameter and height growth for an average tree and stand
density; (2) distance independent individual tree models, which simulate diameter and
height growth for individual trees and stand density without spatial information for
each tree; and (3) distance dependent individual tree models, which simulate diameter
and height growth for individual trees and stand density with spatial locations for each
tree {23, 24, 153]. The degree of detail contained within a growth and yield model
is greatest for distance dependent individual tree models, maintaining the spatial
location, the current size and growth history, and the species of each tree. The detail
is least for stand level models, maintaining the proportion of a stand in each of several
species and an average tree size, or size distribution, for each species. These models are
frequently used for monoculture, plantation forests. Distance independent individual
tree models are hybrid models maintaining the current size and growth history and
species of each tree. but not the spatial location, and are by far the most common type

of growth and yield model in use, particularly in the Pacific Northwest [36, 58, 94].



Each type of modern growth and yield model contains two or three increment
equations for each species, that are used to project tree size and stand density, where
increments are generally negative for stand density. representing mortality. The three
equations estimate increments for number of trees, or density, for each species, and,
hence, the stand as a whole, AN, diameter, AD, and height, AH, for a particular
time increment AT, generally one, five, or ten years [36, 58, 94]. The five and ten
year time increments are typical since they tend to correspond to management time
frames. Models that contain only two equations use tree diameter or height, and
volume only rather than both height and diameter [24, 153]. Models that use stand
density, diameter, and height increments rather than volume have become common,
due to the availability of high speed, large storage capacity computers, and because
tree volume is derivable from tree diameter and height.

The statistical-empirical approach to growth and yield modeling is illustrated us-
ing a typical growth and yield modeling scenario. The specific forms of the increment
equations are not important in this presentation, and will be treated generically. A
plethora of model formulations may be found in the literature for those interested in
the specifics [24, 36, 51, 65, 153]. The data commonly used in the growth and yield
models, generic model formulation, and the overall methodology are of specific inter-
est. The intent is to set the stage for a critique of the statistical-empirical growth
and yield modeling methodology, and to identify some of its weaknesses. The S-
system modeling framework is then be presented and shown to overcome the primary
weaknesses of the statistical-empirical modeling methodology, without additional as-
sumptions.

A tyvpical growth and yield model for a particular species consists of three equa-
tions. The three equations predict potential changes in stand density or tree growth
as increments AN, AD, AH, for a fixed time interval AT. It is convenient to think
of these increments in terms of an idealized single species stand, and either a stand

level model growing an average tree or an individual tree model growing one tree.
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Each of the three equations predicts its increment based upon the current conditions,

N, D, H, stand age, A, and site index, S,

AN = fN(N,D,H,A,S;aN) (2'1)
AD = fp(N,D,H, A,S;ap) (2.2)
AH = fua(N,D,H,A,S:an), (2.3)

where fn, fp, and fy, are the increment prediction functions and ay, ap, and ay
are vectors of unknown regression parameters estimated from data and calibrating
each increment function. It is assumed that the increment functions are derived in a
manner requiring them to reproduce shapes appropriate for the three components of
stand development or tree growth they are intended to represent. Generally, either the
equation for AD or AH is considered to be the primary size increment equation, the
other being secondary [5, 24, 36, 58, 94, 153]. The values obtained from the primary

size increment equation are then used in the secondary size increment equation, either
AH = fy(N,D,H, A, S,AD; ap) (2.4)

or

AD = fp(N,D,H, A,S,AH; ap) (2.5)

to obtain both of the size increments for the model. The equation for the density
increment or mortality, AN, is generally based on a size-density relationship, uses
only one size variable, usually D, and may or may not include age, A, explicitly. A

typical equation may then be represented as
AN = fn(N, D, S;an) (2.6)

which includes variables for a size-density relationship and site differences through
site index [24. 153]. When used as described, these three increment equations are

loosely coupled. or uncoupled in the case of mortality, which implies a weak feedback

mechanism.
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Once values for the potential growth increments AN, AD, AH are obtained, a

modifier my, mp, and my is applied to each potential increment

AN' = ANmy
AD = ADmD
AH' = AHmy,

to obtain adjusted increments AN’, AD', AH' [5, 36, 58, 94, 153]. The modifier
values will generally have a value in the range of zero to two, and all three modifiers
need not be used in any particular model. The modifiers are intended to bring the
potential increments into better agreement with actual increments by using additional
information that may be available in the model, such as a crown competition factor
[36], a size-density index [5. 36, 58], local crown competition for spatially explicit
models (94], tree vigor [36], or a limiting function to prevent increments from taking
on biologically unreasonable values [36]. For convenience, a single modifier is used
here, but a particular growth and yield model may have several modifiers applied in
sequence (36, 38, 94]

Yield values are obtained for a simulation beginning with a specified initial stand
condition, by computing the adjusted increment values for one time interval, AT,
and accumulating them for the average tree, or each individual tree, and the stand
density. This process is then repeated with the new values for the stand condition
for the next time increment, until the cumulative time exceeds the simulation length.
This process then produces simulated stand dynamics and tree growth.

As of yet, the regression parameters defined by the vectors ay, ap, and ag. in
the three increment functions fy, fp, and fg, respectively, have not been addressed.
These parameter vectors represent the unknown quantities that calibrate a particular
set of increment equation formulations to a particular set of data, given appropriate
formulations for each increment equation. The regression parameter vectors ay, ap,
and ay are typically obtained from separate, least squares regressions, one for each

equation, rather than from treating the equations simultaneously [24, 65, 153]. This is



necessitated by the fact that the secondary size increment equation, Equation 2.5 or
Equation 2.4 requires the predicted value from the primary size increment equation,
Equation 2.3 or Equation 2.2, respectively. In some cases, several regressions are
performed in a sequence in an attempt to improve the overall fit of the model [85].
These separate regressions will tend to reinforce the already loose coupling, further

weakening the feedback, among the three growth and yield model increment equations.

2.1.2 Typical growth and yield model assumptions

Consider a typical growth and yield model within a statistical-empirical modeling
framework, as defined by the set of three increment equations Equation 2.2, Equa-
tion 2.4, and Equation 2.6, or Equation 2.3. Equation 2.5, and Equation 2.6. Assume
that the specific model formulation agrees well with the available data. It is, again,
useful to think of this in terms of the stand dynamics for a single species stand of trees.
There are, then, two questions that are of significant importance when considering

the development or use of such a growth and yield model.

e What are the primary biological and statistical assumptions, whether explicit or

implicit, that are necessary in order to develop such a growth and yield model?

o Given the necessary assumptions, is the model formulation within the statistical-

empirical modeling framework the most appropriate?

The first question addresses issues of model definition, that is, the features of forest
stand dynamics and tree growth that a growth and yield model is intended to rep-
resent. The issues of primary interest are the biological properties to be represented
by the model. the data relationships involved in obtaining their desired represen-
tation, and the requisite statistical assumptions for the data. The second question

address the appropriateness of a particular mathematical or statistical representation
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or formulation for a growth and yield model. The issues of model interpretation and
parsimony in model formulation are the primary concerns.

There are four primary biological assumptions made for growth and yield models.
First, size-density relationships exist, i.e., stand density and average tree size are
coupled [24. 36, 37, 47, 66, 71, 74, 102, 143, 144, 158]. Second, size-size relationships
exist, i.e., tree diameter and height growth are coupled [34, 77, 78, 108, 149, 150, 151,
152, 159, 160, 167, 166]. Third, stand development and tree growth rates are based
on the current stand condition or tree size, that is, there is feedback within the forest
system. This is evident from the formulation of the increment equations. Fourth,
stand development and tree growth are dynamic processes, nominally continuous
time processes with feedback. These four biological assumptions are appropriate and
pose no significant difficulties when developing a growth and yield model. Specific
formulations of these four assumptions form the basis of the increment functions for
all growth and yield models. The relationships among the state variables, and primary
increments, within a growth and yield model are based on their statistical correlations,
or generally linear interactions, constrained by a particular model formulation given
by the increment equations to produce appropriately shaped curves.

Growth and yield models developed within a statistical-empirical modeling frame-
work also generally include site index, or a surrogate for site index such as vegetation
class [139]. and stand age in their increment equations [5, 36, 58, 94, 153]. Site in-
dex and age are included in the models for the benefits derived from their strong
correlations with size development and changes in stand density. They have only a
statistical relevance in the model, and no biological function [139, 10, 150, 151, 152].
Although site index is used a priori to differentiate site quality among for stands
in different locations. the growth and yield models may not reproduce it {26, 139].
This reinforces the purely correlational nature of site index within these growth and
yield models. Stand age, if included in a model, is not explicitly relevant within the

models due to the assumption that stand development and tree growth are based on
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the current stand density and tree size [139, 149, 150, 151, 152]. The direct inclusion
of site index and stand age in a growth and yield model are hence problematic. Site
index, in particular, becomes an additional parameter that is required a priori for
each stand in order to use a growth and yield model. The use of age or site index in a
growth and yield model, a priori, appears to add unnecessary additional assumptions
[140, 139, 12, 10, 154, 151, 152], benefitting only the model developer through their
strong correlations with the state variables of interest [24, 65, 153].

The three primary statistical assumptions made for growth and yield models devel-
oped within the statistical-empirical modeling framework are: the stand measurement
data are independent, the stand measurement data span the range of desired values,
and all factors not included in the model, e.g., climate, are constant [7, 153, 172]. The
first assumptions, that the data be independent, is known not to hold a prior [31}:
measurement data for a remeasured stand cannot be statistically independent. That
is, a stand trajectory consists of dependent measurement data. Stand trajectories, or
measurement data, from geographically different stands are statistically independent,
but the separate measurements within a trajectory are not independent. The failure
of the independence assumption within the statistical-empirical modeling framework
may cause a significant amount of difficulty due to the autocorrelation or dependencies
within each stand trajectory.

The second assumption, that the stand measurement data span the desired range
of values. may not be adequately satisfied in general, though it may be for the limited
range of stand densities, tree sizes, and rotations used commercially. This assumption
is necessary to ensure that the statistical-empirical growth and yield model is able to
reproduce the desired characteristics as represented by the stand measurement data.
A statistical-empirical growth and yield model is a purely descriptive representation of
a particular set, or sets, of data, and as such cannot necessarily be trusted to correctly
produce behavior beyond the range of the data used in its calibration [24, 65, 153, 172].

With careful model construction, problems stemming from this issue may, however,



be greatly reduced, but never eliminated.

The third assumption, that all factors not represented in a growth and yield model
are constant, or randomly varying about a mean value which average out, is of fun-
damental importance, but rarely explicitly stated. This assumption is a necessary
consequence of the static, descriptive nature of the parameter vector estimates in
the increment equations, as obtained from a least squares regression, or some other

parameter estimation method, because the parameter vectors are constant so is the

model relative to all factors not included.

2.1.3 Necessary growth and yield model assumptions

Given the general description of the three increment equations in a typical growth
and yield model, the parameter estimation procedures, and the biological and statisti-
cal assumptions just outlined, it is clear that the commonly used statistical-empirical
modeling framework is not the most appropriate modeling framework for two reasons.
First, the model formulation, parameter estimation, and model use have only superfi-
cial agreement with the actual development of a forest stand and tree growth. Second,
the statistical assumptions are inappropriate, possibly difficult to meet, or are side
effects of the statistical-empirical modeling framework. A set of necessary properties
for a more appropriate modeling framework is now derived through a consideration of
the shortcomings of the statistical-empirical modeling framework as typically applied
to forest growth and yield.

Forest stand development and tree growth are dynamic processes. This implies
that the fundamental characteristics of stand development and tree growth occur in
continuous time, relative to an appropriate time scale, and that these processes affect
each other through positive or negative feedback [15]. The fundamental stand level
processes are represented as size-density relationships and size-size relationships for
tree growth. The processes described by these relationships all occur simultaneously

for an actual forest stand, that is, the stand development and tree growth are tightly
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coupled in reality. As described, a typical growth and yield model represents these
processes as a set of three increment equations representing the simultaneous rates of
change in stand density, diameter, and height for a specified time increment, and the
rates are determined by the current stand density, diameter, and height values and
their interactions. This general representation poses no problems per se, but provides
the key that leads to a more appropriate modeling framework.

Difficulties with the typical approach arise due to the independent formulation
and use of the three increment equations through a sequential relationship that exists
for the primary and secondary size increment equations. Values for the parameter
vector of each equation are also determined independently. At best, this indepen-
dent formulation and parameter estimation allows a loose coupling, or weak feedback
mechanism, which is a poor approximation of the simultaneous nature of the actual
processes. A modeling framework that provides for tight coupling, or strong feedback,
and treats the three increment equations simultaneously is necessary for the formu-
lation of growth and yield models agreement with the actual development of forest
stands and tree growth. This modeling framework should also allow the simultaneous
estimation of the parameter vectors for the equations and the simultaneous generation
of the rates of change.

The explicit inclusion of age or site index in the formulation of the increment
equations introduces further difficulties for typical growth and yield models. Age is
a convenient attribute of a forest stand or tree from a human perspective, but it is
irrelevant in the context of stand development or tree growth. The physiology of tree
growth is not directly dependent on numerical tree age but is dependent upon tree size
(12. 10, 77. 78, 102, 154, 151, 152], which is strongly correlated with age [24, 65, 153].
Similarly for stand development mortality is not dependent upon stand age but is
dependent on inter-tree competition, site conditions, and climate. The time variable
of relevance for growth and yield modeling is the time increment, which allows the

projection of the current state. through the computation of the rates of change for



stand density and tree size, to a future state. A modeling framework based on time
increments, preferably for an arbitrary or user defined increment value, that captures
the essential characteristics of stand development and tree growth for a particular
reference time scale is necessary.

The explicit use of site index in the typical statistical-empirical growth and yield
models has been shown to be unnecessary, particularly where a greater emphasis is
placed on the biological and physiological processes, (13, 12, 10, 139, 149, 150, 151,
152]. Site index, defined as the average height of the dominant and codominant trees
for a specified reference age, was originally conceived as a simple to measure, direct
way to distinguish sites based upon their potential productivity [81, 95, 96]. Site
index was used in lieu of other more relevant, but difficult to obtain or use, measures
of site quality based on soil properties and other local site characteristics. Site index
was not originally intended to become the predominant indicator for site quality [S1].
Site index has frequently been decried as an indicator of site quality 81, 95, 96, 139],
and has been perceived as a stumbling block hindering the advancement of growth
and yield, or forest ecosystem, modeling. In particular, site index is generally not
applicable to mixed species forests or mixed age forests, and its ongoing use in these
situations is problematic (81, 95, 96, 139, 169].

The statistical nature of site index, as used within a typical growth and yield
model, becomes obvious when it is considered as a second, (pseudo)height measure-
ment. Site index then provides a constraint on stand height through the regression
process which calibrates the growth and yield model, standardized via the fixed ref-
erence year. So, when projecting stand development with a typical model, a forward
progression of the current state is not based solely on that state, but is modulated by
the additional (pseudo)height measurement given by site index. The use of site index
effectively turns the projection of stand development with a growth and yield model
from an initial value problem [15, 3], based on the current forest state and the interac-

tions of the state variables, into a two point boundary value problem [15, 3], at least
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in height. Forest stands develop and trees grow in a forward time process that is more
consistent with the initial value problem, thus making the additional objective of hit-
ting an a priori site index or (pseudo)height target apparently unnecessary. Thus, a
modeling framework that allows a forward time based representation for stand devel-
opment and tree growth, mimicking the actual processes, without explicitly including
site index is necessary.

The statistical assumptions for the typical growth and yield model also suffer
from weaknesses. The statistical independence assumption is violated a priori. A
modeling framework that automatically accounts for lack of independence for the
data within a stand or stand trajectory is necessary. The data requirements to meet
the necessary data coverage for a statistical-empirical growth and yield model may be
excessive. A modeling framework which minimizes the data requirements necessary
to achieve a good model is desirable. The assumption that all factors not included in
a typical growth and yield model are constant or average out over time or space is a by
product of the parameter estimation procedure in the statistical-empirical modeling
framework. A modeling framework which includes this assumption as a fundamental
attribute. rather than as a statistical side effect, is therefore preferred.

Finally, cause-effect relationships are not directly obtainable from growth and
yield models developed within a statistical-empirical modeling framework but must
be inferred by some external oracle [7, 64, 172]. However, obtaining an understanding
of the cause-effect relationships influencing the development of a forest stand is one of
the objectives of growth and yield modeling. So, a modeling framework which permits
the direct inference of cause-effect relationships, or which is closer to permitting the

direct representation of cause-effect relationships, is then highly desirable.

2.1.{ An alternative modeling framework for forest growth and yield

Modern growth and yield models attempt to represent the simultaneous rates of

change of stand density and tree size over time via their respective increment equa-
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tions and the current state variable values, Equation 2.3, Equation 2.5, and Equa-
tion 2.6, for example. The simultaneous rates of change for a dynamic phenomenon
as a function of the current state is ezactly what autonomous systems of ordinary
differential equations (ODEs) represent [15, 57]. An autonomous system of ODEs
inherently represents a dynamic system, and hence seems a natural choice for forest
growth and yield models based on size-density and size-size relationships.

An autonomous system allows for tight coupling among the growth equations and
the simultaneous estimation of the unknown model parameters, both of which mimic
the tightly coupled dynamics of actual forest stand development. An autonomous
system approach also allows for a minimum number of biological and statistical as-
sumptions. For example, the future state of a stand is predicted using only the
current state as an initial condition, and there is no a priori need for the explicit
inclusion of site index, age, or other correlated variables. The dependence of the re-
peated measurements within a stand trajectory is automatically taken into account
by the dynamic system representation, and need not be accounted for by additional
adjustments or the inclusion of additional correlated variables. Further, the param-
eter estimation procedure that calibrates an autonomous system based growth and
yield model. and the solution procedure, or integration, of such a system to obtain
stand trajectories involves only time increments, not age. The forward time solution
of an autonomous system based growth and yield model is consistent with the actual
forward time processes of stand development. Finally, the assumption that all factors
not included in the model are constant is now a fundamental part of the model formu-
lation. because by definition autonomous systems of ODEs are independent of time,
rather than a side effect of the parameter estimation procedure. This may enhance
the ability to determine cause-effect relationships or biologically relevant growth laws.

A simple example addressing the data requirements for an autonomous system
based growth and yield model and a typical statistical-empirical growth and yield

model, demonstrates the superiority of the autonomous system approach. Given



the set of three increment equations for a statistical-empirical model and the three
equation autonomous system model for stand development, both of which are at-
tempting to represent the vector field defining the simultaneous rates of change in a
forest stand. Consider the problem of estimating the unknown model parameters in
each case from a small set of complete stand trajectories spanning the operational
range of interest. Obtaining a model that represents stand development throughout
the operational range is theoretically impossible a priori for a statistical-empirical
growth and yield model, because only minimal data coverage has been used [7, 172].
A statistical-empirical model estimated for this situation would have uses limited to
conditions near the set of available stand trajectories. The behavior of the empirical-
statistical model away from the supplied stand trajectories is uncertain, and cannot
be guaranteed. Obtaining a model that represents stand development throughout
the operational range may be possible for the autonomous system growth and yield
model. An autonomous system model estimated for this situation should be usable
throughout most, if not all, of the operation range. The behavior of the autonomous
system model away from the supplied stand trajectories must conform to the vector
field defined by the autonomous system, and this is constrained to produce stand
trajectories within the envelope of the supplied stand trajectories by the parame-
ter estimation. This has been demonstrated empirically for a size-density simulation
model. In the case of the autonomous system model, the set of stand trajectories is
representative of the dynamics of the system, but in the statistical-empirical model

they are not necessarily representative of the system, but only of themselves.

2.1.5 A dynamic modeling framework for forest growth and yield

A mathematical-explanatory modeling framework that naturally includes the dy-
namic nature of forest growth and may be extended to include climate and other
environmental processes that affect forest development and tree growth is necessary

for the advancement of growth and yield, and forest ecosystem, modeling [9, 72].



A direct shift to dynamic, process oriented models is generally not feasible at this
time, due primarily to the inherent complexity of forest ecosystems, and the lack
of understanding of how processes at different spatial and temporal scales, such as
photosynthesis and nutrient cycling, interact and affect stand development and tree
growth (141, 103, 168], although some significant progress has been made in these
areas [13, 12, 10, 100, 112. 113, 130, 131, 150, 151, 152, 161].

An intermediate dynamic modeling framework, therefore, seems necessary to help
bridge the gap between the typical statistical-empirical growth and yield models and
the desired mathematical-explanatory process models of forest development and tree
growth. This intermediate modeling framework would provide a bridge by using the
standard mensurational data available for the typical growth and yield models, stand
density, tree diameter, and tree height, but in the natural dynamic model represen-
tation of an autonomous system of differential equations. In addition to directly cap-
turing the dynamics of forest growth, this intermediate modeling framework should
have the following characteristics of the statistical-empirical modeling framework.
First, its model definition should be straightforward and based essentially on vari-
able interaction or correlation. Second, the final model specification or calibration
should be performed through a straightforward parameter estimation process, e.g.,
least squares. These two features of the statistical-empirical modeling framework are
singled out because they are considered to be its most powerful attributes, and will
allow for a smoother transition to a dynamic modeling framework.

A dynamic modeling framework based on a system of first order, nonlinear or-
dinary differential equations, and the least squares estimation of parameter values,
was chosen for developing forest growth and yield models meeting the requirements
of accurately representing the dynamics of forest development and tree growth. This
type of representation seems quite natural for application to forest growth and yield
modeling, and has actually been in use for quite some time: the von Bertallanffy
equation [98. 153], the Chapman-Richards equation [24, 153], and the Lotka-Volterra
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predator-prey equations [57, 98], are all examples of this type of modeling approach.

A regional dynamic stand level growth and yield model for plantation Douglas-fir
in the Pacific Northwest is developed. The model spans the region from southern
Oregon to southern British Columbia, west of the Cascade Mountains. The dynamic
growth and yield model will represent stand density as trees per hectare (TPH), av-
erage diameter as quadratic mean diameter (QMD), and average stand height as top
height. The growth and yield model is developed within a dynamic modeling frame-
work using the concept of dynamic model extraction to specify the model through a
nonlinear least squares parameter estimation problem. The model is formulated as
an S-system with the dynamic relationships among the three state variables defined
through interactions derived from a size-density relationship coupling stand density
and QMD and a size-size relationship coupling QMD and top height.

Section 2.2 defines the canonical S-system representation for dynamic systems.
Section 2.3 defines the concept of dynamic model extraction and its use. Section 2.4
defines the S-system representation for the dynamic, stand level growth and yield
model for plantation Douglas-fir. In particular, this section identifies the specific
assumptions used to define the S-system growth and yield model, and demonstrates
the compatibility of the modeling assumptions and the development of an actual forest
stand. Section 2.5 describes the stand measurement data that were used to calibrate
and validate the model. Also identified are potential problems that may occur due to
some of the specific characteristics of this particular data set. Section 2.6 identifies
the methods used to estimate the S-system model parameters, and defines the model
validation procedures. Section 2.7 presents the results of the parameter estimation
procedures and the model validation results. Section 2.8 presents a brief consideration
of several stand management issues. First is the ability of the S-system model to
recover of site index. which was not explicitly included in the model. Second is the
potential of the growth and yield model to predict thinning response without the
explicit inclusion of thinning effects in the model. Third is the ability of the model



predictions to meet the expectations of forest managers. Finally, differences between
the variation of short term stand predictions and long term stand predictions are used

to hypothesize a possible climate based effect on stand development.

2.2 S-system definition, interpretation, and examples

An S-system is a canonical mathematical representation for coupled or uncoupled
systems of first order, linear or nonlinear ordinary differential equations (ODEs) based
on a power-law formalism [118, 119, 120, 121]. Each equation consists of two terms,
a growth term and a decay term. Within each term, juxtaposition of state variables
implies an interaction among those state variables. The “S” in S-system is intended
to indicate that S-systems may easily represent saturable, synergistic, and oscillatory
phenomena, e.g., plant growth and predator-prey relationships {122, 123, 124, 158,
98, 156, 159, 160]. For convenience, the term “S-system” is used to refer to any
single ODE or set of ODEs which conforms to the definition of an equation within an
S-system.

The S-system representation for systems of ordinary differential equations has
its origins in chemical kinetics, the dynamics of chemical reactions, {118, 119, 120,
123, 124], and is currently finding application both inside and outside of this original
domain [138]. S-systems have repeatedly been demonstrated to capture the types
of behavior observed in biological systems. S-system based models are capable of
exhibiting oscillatory behavior, asymptotically stable behavior. S-systems have been
successfully used to model a two variable, theoretical size-density relationship for
monoculture plant stands [158], and the actual size-density relationships of red pine
(Pinus resinosa) in the lake states region [148]. The S-system model formulation
has also been used to represent nutrient dynamics in a tropical forest [147], and
to compress or simplify the dynamics of a complex process models of forest stand

development to a few essential dynamic variables [88], to model forest growth {159,



160, 166], and to model a variety of biological systems [125, 126, 127, 156, 157].
Each equation in an S-system is represented mathematically as the difference
between two terms. The first term represents all of the influx or growth influencing
characteristics, and the second term represents all of the efflux or decay influencing
characteristics of a particular phenomenon [123, 158]. Symbolically an S-system model

is represented as the system of equations
Xi=FFr (X1, Xare ooy Xogm) = Fr (X0 X2y oo, Xnim)s i=1,2,...0m,  (2.7)

where X; is the time derivative, or rate of change, of state variable X;; F* and F~
are both positive functions which represent the influx and efflux for state variable
Xi, respectively. Xi,X,,...,X, are the n dependent, dynamic state variables and
Xns1; Xn42y+ - - Xnem are m independent state variables that are assumed to be un-
affected by the dynamics of the model. The n dependent state variables represent
the state of the phenomena of interest and its changes over time, which will gener-
ally include feedback effects, and the m independent variables represent factors which
may affect the phenomenon of interest but are not affected by it. The m independent
state variables may be thought of as representing forcing functions that modify the
trajectory that the phenomena of interest takes through the state space.

The canonical S-system representation for ODEs further specifies that the influx,
F;. and efflux, F, terms are represented as products of power law functions in each
state variable, e.g.. functions of the form az® [123, 124, 158]. Taylor’s theorem from
the Calculus and the general theory of function approximation guarantee that the
functions F;* and F;~ can be represented in this way even if their exact structure is not
known a priori {128, 158]). A complete understanding of the theory of approximating
functions is not required to use S-systems for modeling, but the fact that there is
a rigorous mathematical proof permitting the S-system representation of arbitrary
functions is encouraging, and lends strong support to the use of S-systems.

Each influx term and each efflux term consists of a product of power law functions,



one power law function for each variable, X, that directly contributes to a particular
influx or efflux term. Thus, each term requires 2 nonnegative multiplier, from the a
in each individual power-law, and an exponent for each contributing variable Xj, the
b in each individual power-law. For the influx term F:*, the nonnegative multiplier
is denoted a; and the exponents associated with the contributing variables X; are
denoted g;;. For the efflux term F~, the nonnegative multiplier is denoted 8; and
the exponents associated with the contributing variables X; are denoted A;;. So, a

generic S-system has the form

. n+m n$m
Xi=a; [[ X -6 [] XM i=12...,n, (2.8)
j=t i=1
where a; > 0and 3; 20,1 =1,2,....n.

The S-system parameters have easily understood and consistent interpretations
regardless of the context in which an S-system is used. The nonnegative coeficients
a; and f; are overall rates of influx, or growth, and eflux, or decay, respectively, for
the ith rate equation. The exponents g;; and h;; indicate the relative rates of change
of F;¥ or F; for a given small change in the variable X;. The S-system exponents
then provide a direct measure of the sensitivity of the influx and efflux terms in each
equation to small changes in the values of the variables.

As presented, an S-system is an autonomous system of differential equations, that
is. a system of equations in which time does not appear explicitly. Physically, this is a
system in which the parameters of the system are independent of time, and are, hence
constant [15]. Autonomous systems of differential equations have three characteristic

properties that are useful for modeling with S-systems [15].

1. Through any point in the phase or state space, there is at most one trajectory.

2. The trajectories of autonomous systems asymptotically approach a steady state

as time increases for any initial state that is not the steady state.



3. A trajectory that crosses itself must be a closed curve, providing a periodic

solution.

Properties 1 and 3 imply that for a nonperiodic solution, trajectories or solutions of
autonomous systems never cross, that is, there is nothing acting within the system
that would cause a trajectory to change. This is consistent with the “all other things
being equal” notion commonly applied when developing models. These features of
autonomous systems of ODEs form the basis for performing parameter estimation, or
system identification, through dynamic model extraction with S-systems.

A dynamic modeling framework based on the canonical S-system model formu-
lation is proposed. This dynamic modeling framework easily allows the addition of
climate or environmental variables to an S-system model, either directly, or as nested
submodels, in a forest growth and yield model. The S-system modeling framework
may therefore provide a unifying framework within which the components of forest
growth and yield models may be developed. In addition, efficient numerical algorithms
exist for the solution of S-system based models on digital computers [67, 68], and ef-
fective algorithms for identifying S-system model parameters also exist [89, 33, 4].
For these reasons, the S-system modeling framework should prove to be a useful tool

for forest growth and yield modeling.

2.3 Dynamic model extraction with S-systems

An objective of any modeling endeavor is to obtain a concise statement or representa-
tion which captures the essence of a particular complex phenomenon. This is true for
conceptual models, e.g., nutrient flow or carbon and water cycle diagrams [129]; for
statistical models, e.g., regression models predicting tree taper [73, 97], or standing
wood volume [18, 116]; for mathematical models, e.g., photosynthesis within a leaf
(77, 78, 69]. or simple exponential decay for radioactive compounds [15]. Some type

of model ertraction is involved to obtain each type of model. A primary objective
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of quantitative modeling is to use some form of model extraction to obtain a concise
" mathematical or empirical representation of some complex phenomenon.

Dynamic model extraction is the process of obtaining a concise mathematical rep-
resentation of a dynamic phenomenon from a collection of appropriate time series
data, with a minimum number of modeling assumptions, using a generic dynamic
model formulation {133]. The concise mathematical representation obtained should
capture the essential characteristics of the dynamic phenomenon. There are three
requirements for performing dynamic model extraction. First, an appropriate general
mathematical formulation for dynamic models must be selected to represent the dy-
namic phenomenon. Examples include the logistic equation [15, 98], a von Bertalanffy
equation [24, 98, 153], or system of linear or nonlinear differential equations or dif-
ference equations [15, 91, 98]. A wide variety of generic dynamic model formulations
are available through the literature and are in widespread use. Second, appropriate
time series data which characterize the state variables of interest for the dynamic
phenomenon must be obtained. The time series data implicitly define the dynamic
phenomenon of interest, the dynamic characteristics of interest, state variables that
represent those characteristics, and the sampling interval must all be considered to
obtain appropriate time series data. Third, a reliable parameter estimation or sys-
tem identification methodology must be available to transform the generic dynamic
model representation into a specific representation for the particular phenomenon
being modeled. The parameter estimation or system identification may be viewed
as an optimization problem and posed according to a least squares based perspec-
tive (24, 21. 63, 64, 65, 153], a maximum likelihood perspective [7, 64, 21], or an
information theoretic perspective [64, 6, 21].

The selection of a general mathematical representation for developing quantitative
dynamic models for dynamic phenomena is of utmost importance. Dynamic phenom-
ena are generally characterized by feedback relationships among their state variables

and continuous time [15. 53, 133]. A model representation that does not support,
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or incompletely supports, the feedback and continuous time properties of dynamic
systems makes less effective use of the information contained in the time series data
than a dynamic model representation. The canonical S-system formulation for ODEs
is a general mathematical representation for dynamic phenomena that has a wide
applicability [123, 124, 125, 126, 127, 128, 134, 136, 156]. An S-system model has
a consistent interpretation, regardless of domain of application, is extremely flexible
when defining a model, has a high representational power, and makes a small number
of necessary assumptions. All of these characteristics make the S-system representa-
tion an ideal candidate for dynamic model extraction, or system identification, from
time series data.

Presuming the availability of appropriate time series data, a least squares mini-
mization procedure may be used to estimate the parameters in a properly defined and
constrained S-system model. The S-system representation strongly suggests a least
squares problem formulation based on the differences between approximate rates of
change for each equation, ?., derived from the time series data, and the S-system
right hand side evaluated for a particular set of parameter values. Under perfect
conditions, the value of this difference should be zero for each data point and each
S-system equation,

- nt+m nm

X; - (a.— I x#-61] XJ’-‘") =0 i=1,2...,n,

=1 i=t
potentially making the least squares problem a small residual problem [33]. In prac-
tice, however, this problem will likely be a medium to large residual problem [33],
depending on the amount of variation in the time series data. The least squares prob-
lemn defined by these equations is straightforward but must include the nonnegativity
of the rate coefficients a; and 3; as constraints. These constraints pose no difficulty,
as algorithms and software for solving this type of problem are readily available [89].
The dynamic model extraction approach outlined above has been successfully

applied by the author to two simulated data sets using a least squares criterion. The
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first example data set was derived from a two-variable S-system model of a size-density
relationship (158], and the second example data set was derived from a predator-
prey model [57]. The two variables in the size-density model approach asymptotes,
an asymptote of zero for the density variable and a positive asymptote for the size
variable [158]. The two variables in the predator-prey model exhibit periodic behavior
as a limit-cycle [57]. These two models exhibit fundamentally different behavior, and
in each case the S-system based model extraction procedure recovered the parameter
values and, hence, the bebavior of each of these dynamic systems.

The modeling framework comprised of the S-system canonical formulation for
ODEs and least squares minimization for parameter estimation will be referred to as
the S-system modeling framework, and greatly facilitates the use of dynamic model
extraction to represent complex dynamic phenomena. The S-system modeling frame-
work will provide the foundation for developing a regional stand level, dynamic growth
and yield model for Douglas-fir in the Pacific Northwest.

The S-system modeling framework is used within the context of dynamic model
extraction [133], using time series stand measurement data or stand trajectories to
obtain a dynamic growth and yield model. Dynamic model extraction is based on
the premise that the measurement data implicitly represent the processes of stand
development and tree growth, and thus, with an appropriate model formulation and
representative data, the essential characteristics of the stand dynamics may be ex-
tracted from the data through the solution of a straightforward parameter estimation
problem {133]. This approach is appropriate for developing models where the underly-
ing physical or physiological process are not well understood, such as stand dynamics
and tree growth, given the overall complexity of forest ecosystems.

Dynamic model extraction using the S-system modeling framework provides a
means for maximizing the use of the readily available, standard mensurational data to
obtain dynamic growth and yield models. The models developed using this approach

may be though of as process models where the lower level processes influencing the
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state variables are implicit, having been integrated into the measurement data, and
are not directly represented. Only the direct relationships among the state variables
are represented in the differential equations. This interpretation is consistent with
the definition of an S-system as an autonomous system based representation for a

growth and yield model.

2.4 Growth and yield model assumptions and formulation

When developing quantitative models for physical or biological phenomena it is desir-
able to limit the number of assumptions to the minimum that are absolutely necessary.
This parsimony in assumptions can reduce or eliminate the inadvertent introduction
of biases into the model formulation, as well as allowing the data used in the calibra-
tion of the model to “speak for itself” within the constraints of a particular modeling
methodology. Thus, a modeling methodology with a small number of assumptions
and that is capable of representing a wide variety of phenomena is highly desirable for
model building. A stand level growth and yield model for monoculture Douglas-fir
plantations is developed using such a methodology. In developing the growth and
yield model, an attempt was made to minimize the number of assumptions made to
those that were deemed essential, through consideration of both model representa-
tion and biological relevance. Each assumption is justified as being mathematically
or biologically necessary before it is accepted and used as a part of the stand level
Douglas-fir growth and yield model.

Forest stand development and tree growth are simultaneous dynamic processes,
that is. processes that include feedback and are generally continuous in time [15].
Inter-tree competition and the well known size-density relationships, such as the —3/2
self-t-hinning rule (66, 74, 102, 173, 174], provide examples of feedback in forest stand
development. The processes involved in photosynthate partitioning and distribution

within a tree and respiration, provide examples of feedback within an individual tree
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[59, 77, 78, 87, 166, 167]. Further, at the spatial and temporal scales of interest
for growth and yield modeling, tree size growth and stand mortality are effectively
continuous. Photosynthesis and many of the processes and factors influencing it
occur at a much faster rate, fractions of a second to minutes or hours [37, 77, 78],
and much smaller spatial scale, the leaf or needle, than growth and yield models
typically represent. A typical growth and yield model has time increments on the
order of years and a spatial resolution on the order of one hectare [5, 36, 58, 94,
153], and at these resolutions stand development, tree growth, and tree mortality are
effectively continuous processes, that is, they occur on much smaller temporal and
spatial scales, allowing a fraction of a tree to be considered alive without introducing
any inconsistencies.

Given the dynamic nature of forest stand development and individual tree growth,
a dynamic model formulation is necessary for developing a model of Douglas-fir stand
dynamics and tree growth. Before defining the model, however, the assumptions
required of an S-system model are shown to be consistent with the modeling of forest
stand dynamics and tree growth.

The canonical S-system formulation for systems of differential equations makes
only four assumptions, when used for modeling complex dynamic phenomena such as
forest stand development and tree growth. Two of the four assumptions are explicit
in the mathematical representation of an S-system. The remaining two assumptions
are implicit and related to the particular phenomenon being modeled and the data
used for model calibration or parameter estimation or model validation.

The explicit assumptions made when using S-systems for modeling are:

1. The rate(s) of change of a dynamic phenomenon may be defined by the differ-
ence(s) between aggregate, nonnegative growth term(s) and aggregate, nonneg-

ative decay term(s);

2. Each term in an S-system rate equation may be represented as a product of
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power-law functions.

These two assumptions determine the types and shapes of functions that may be
represented by an S-system. Neither of these assumptions poses any difficulties for
using S-system models to represent forest stand development and growth and yield.
Tree size growth is a saturable phenomenon that is generally related to the difference
between photosynthesis and respiration, and as such, is representable as an S-system.
Changes in stand density are generally represented as a size coupled decay based
phenomenon, also easily represented as an S-system. Power laws have long been in
use for developing allometric relationships in forestry, e.g., the —3/2 self thinning rule
(66, T4, 102, 173, 174], and taper equations [75], and there is a strong mathematical
basis for an S-system based representation of functions [122, 123, 124]. Further, power
laws may play a fundamental role within biological systems which could a theoretical
basis for their use in modeling these types of systems [163].

The implicit assumptions made when using S-systems for modeling are:

1. Events affecting the phenomenon of interest, but occurring more slowly than it,

are considered to be constant relative to the state variables used in the model;

2. Events affecting the phenomenon of interest, but occurring more rapidly than

it, are considered to be integrated into the state variables used in the model.

These two assumptions also pose no difficulties for using S-systems to model forest
stand development and growth and yield. The first implicit assumption is common
and widely accepted within traditional forest stand development and growth and
vield modeling [24, 36, 58, 94, 153], as well as within the broader scope of modeling
biological systems [77, 161]. This assumption is generally presented as “all other
things being equal. ...” within a particular modeling situation, and is intended to
convey the idea that those elements not explicitly represented in the model are not

relevant or are averaged out at the relevant time scale. The second implicit assumption
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when applied to a forest is a straightforward statement of how forest stands actually
develop and trees grow when viewed on typical human oriented time scales. As a
forest stand develops and individual trees grow within it, all of the factors having an
influence, e.g., competition, climate, and nutrient availability, are integrated into the
current state of the system as it develops.

The two implicit assumptions are also related to the remeasurement or time se-
ries data that may be used to calibrate or validate a model. If events affecting the
phenomenon of interest occur on a much longer time span than the sampling inter-
val, they are effectively constant across the sampling periods, and do not affect the
values of the sampled state variables [158]. If events affecting the phenomenon of
interest occur with a time span much smaller than the sampling interval, their effects
are integrated or averaged into the sampled state variables [158]. Thus, the implicit
assumptions for modeling complex phenomena with S-systems have a consistent in-
terpretation both for an S-system model of the phenomena and for the sample data
that are used to calibrate or validate the model.

At this point, the S-system representation and its requisite modeling assumptions
have been shown to be compatible with the processes of forest development at the
stand level: stand dynamics and tree size growth. Now the particular characteristics
of forest stand development that are to be represented in the stand level Douglas-fir
growth and yield model must be defined. Only fundamental, biologically relevant
relationships and readily available state variables are desired for use in the growth
and vield model.

To develop the stand level Douglas-fir growth and yield model, two spatial scales
must be considered in order to select the particular forest stand characteristics to be
represented in the model. The first scale is that of the stand, and the second is that of
the individual tree. At the stand scale, the size-density relationship is the fundamen-
tal characteristic determining stand development. A classical size-density relationship

generally specifies a limiting relationship between average plant size, usually volume
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or weight, and the number of plants per unit area, or density, as an allometric power
law § = aN®, where a > 0 and b < 0 [158]. The size-density relationship specifies that
once a stand obtains the limiting relationship, or becomes near to it, stand density
must decrease in order for average plant size to increase [158]. This relationship iden-
tifies a coupling of stand density and average size growth that affects their respective
rates of change, so a size-density relationship should be a component in the stand
level Douglas-fir growth and yield model.

The second scale is that of the individual tree, which will determine the size com-
ponent. or components, of the size-density relationship. Size-density relationships
typically relate average plant volume or weight to stand density. For forestry appli-
cations, individual tree volume is usually a derived variable, obtained as a function
of the measured variables tree diameter and tree height [18, 24, 65, 153]. Thus, tree
diameter and tree height are the fundamental tree size measurements, and average
tree diameter and average tree height may be used to define the size component in a
size-density relationship.

Stand density affects tree diameter growth and tree height growth differently.
Dominant height growth is generally unaffected by stand density, particularly for
coniferous tree species [94, 102]. Diameter growth, however, is strongly affected by
stand density [5, 36, 153], and stand basal area and density are often used to create
density management charts that help determine optimal stocking levels for wood
production [37, 102]. Thus, a size density relationship emphasizing the relationship
between stand density and average tree diameter will be used to further specify the
stand level Douglas-fir growth and yield model.

Tree diameter and tree height, and their growth rates, are linked through a variety
of processes, e.g., photosynthate allocation, water transmission, transpiration, and
respiration. These relationships between tree diameter, tree height, and their growth
rates allows stand density to affect tree height growth indirectly through tree diameter

growth. Thus. it seems reasonable and appropriate to include a size-size relationship



relating average tree diameter and average tree height in the stand level Douglas-fir
growth and yield model.

Finally, plant growth rates must eventually decrease, and plant shape and growth
habit, or life history traits, affect the rate of plant growth [13, 12, 10, 150, 153, 151,
152]. This leads to the assumption that tree growth rates depend on current tree size
and morphology, as well as stand density via a size-density relationship as outlined
above. The stand level Douglas-fir growth and yield model then needs to account for
size effects on growth rates. Douglas-fir morphology is presumed to be accounted for
through the dynamic size growth characteristics exemplified by average tree diameter
and average tree height as included in the growth and yield model.

To recap, the growth and yield model will include size-density effects, by coupling
stand density, measured as trees per unit area, and average tree diameter. Further, the
model will also include a size-size relationship for average tree diameter and average
tree height. To complete the definition of the model, all that remains is to select
the specific state variables to be used for stand density, average tree diameter, and
average tree height, and to specify the exact model formulation as a three equation
S-system, one equation each for stand density, average tree diameter, and average
tree height.

The stand level growth and yield model for plantation Douglas-fir represents a
Douglas-fir stand as a vector of three state variables: the number of live trees per
hectare (TPH) as the stand density state variable, quadratic mean diameter (QMD)
as the average tree diameter state variable, and top height, the average height of the
100 largest diameter trees per hectare, as the average height state variable. These
three state variables were selected for a variety of biological and practical reasons.
First, QMD is proportional to the basal area of a tree having the average individual
tree basal area for a stand [24]. Thus, the product of stand density and QMD is
proportional to stand basal area. Second, the product of QMD? and top height is

proportional to the volume of an individual dominant or codominant tree. Thus, the



36

three term product of stand density, QMD?2, and top height is proportional to stand
volume, and more importantly commercially realizable stand volume. Third, top
height at a reference age, 50 years breast height age for Douglas-fir, is generally used as
an indicator of site quality and potential productivity, and is commonly used to define
site index values [16]. Fourth, these three state variables, TPH, QMD, and top height
provide a common, standard, and readily available set of stand level measurements.
Finally, if the stand level growth and yield model for Douglas-fir correctly reproduces
these three state variables for individual stands, all of the derived quantities and
relationships for this set of state variables are also correctly reproduced, e.g., stand
volume, average tree volume, and self-thinning relationships.

The final S-system growth and yield model formulation was obtained through a
trial and error process guided by the biology of forest stand development and tree
growth. The starting point was the full three dimensional S-system model, which
was systematically reduced to obtain the final model. The guiding biological princi-
ples were the existence of size-density interactions, and the assumptions that stand
density must remain constant or decrease and tree size must increase or remain con-
stant. The following six model selection heuristics, in order of their application, were
used to judge the quality of each S-system model formulation tried and its estimated
parameter values. If a lower numbered heuristic failed to be met, higher numbered

criteria could not be considered.

1. The estimated S-system model must be integrable for all of the Douglas-fir

stands used to estimate its parameters.

2. The integrated stand trajectories obtained from the S-system model must re-
main within, or near, the envelope defined by the Douglas-fir stand measurement

data.

3. The integrated stand trajectories must be consistent with the biology of forest
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stand development and tree growth: stand density may only remain constant

or decrease and tree size may only increase or remain constant.

4. Long term simulation results for 300 and 1000 year simulations for the S-system
model must produce biologically obtainable values for stand density, QMD, and
top height. That is, stand density must remain positive, and QMD and top
height must be within the range of observed values for maximum Douglas-fir

tree sizes for these stand ages.

5. The residuals for stand density, QMD, and top height must be centered at zero

and have symmetric distributions.

6. The estimated parameter values must be consistent, that is, for repeated pa-
rameter estimation attempts with different initial parameter values similar pa-

rameter values must be obtained.

The first two heuristics relate to issues of model parameterization. A model which
failed to meet these two criteria was considered to contain too many parameters. A
model failing to meet these two criteria would have its number of parameters reduced
through a consideration of the biological principles. The next two heuristics relate
to the biological consistency of a particular model formulation. A model failing to
meet one of these criteria was modified in a manner intended to resolve the particular
failure. Finally, the last two heuristics relate to the statistical properties or fit of
a particular model formulation. No models meeting the first four heuristic criteria
failed to meet these two criteria. The first S-system model formulation meeting all
six of these heuristic criteria was chosen as the model formulation for the Douglas-fir
growth and yield model.

A sequence of S-system model formulations were fit to the Douglas-fir growth
data described in Section 2.5 in an effort to obtain a biologically consistent growth

and yield model that was compatible with the data. State variable definitions for



Table 2.1: S-system state variable descriptions for the stand level, dynamic Douglas-fir
growth and yield model defined by Equations 2.13.

State variable | State variable description
Xi Stand density (TPH)
X2 Quadratic mean diameter, QMD (cm)
X3 Top height (m)

the S-system models may be found in Table 2.1. The first model tried was the full
S-system model Equations 2.9. This model was not expected to work, but was tried
to provide some insight into modeling with S-systems and the S-system parameter
estimation problem. There was also the off chance that it might work. The full
model formulation failed to meet the first heuristic criteria: the model could not be

integrated for each Douglas-fir stand used to estimate its parameters.

X, = o XPUXEIXES — B, X Xhe xhis
Y h h h ¢
X1 = apXPXEXE - Gy Xt Xhn xhas (2.9)

X, = asxfnxgazxgss - B X{mxgsz X:';ss

The full S-system model Equations 2.9 was then modified by removing the efflux
terms for the QMD and top height equations, X, and X;. This enforces the constraint
that tree sizes may only increase. The stand density equation X; was unchanged for
this model formulation, allowing stand density to change or remain the same. This
model, defined by Equations 2.10 satisfied the first two heuristic criteria, but failed
to satisfy the third and fourth criteria. The dynamics produced by the model were
generally correct within the envelope of the data except for stand density which began
to increase for large trees. Further, the both QMD and top height growth rates failed

to decrease over time, producing trees that were much larger than biologically possible.
X = o X{"X§PXIR - B Xpu XX
X) = o X XJRXEP (2.10)

g _ g3
X = agXiXE X
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The model defined by Equations 2.10 was then modified to produce the model
defined by Equations 2.11. Stand density and QMD are known to interact strongly
[24, 37, 65, 102, 153], and stand density and dominant tree height are known to not
interact [94, 102], so top height was removed from the stand density equation, X A
Chapman-Richards decay term was added to the QMD equation [24, 65, 153}, X3, to
reduce the QMD growth rate for larger, forcing it to decline eventually. This approach
was seen as superior to specifying a priori a maximum tree diameter in the model as
is commonly done [13, 12, 36, 58, 94, 153]. Two modifications were made to the top
height equation, X3. A Chapman-Richards decay term was added to the top height
equation, X;», and stand density, X,, was removed from the growth term. The former
was done to force a reduction in the top height growth rate for larger trees, and the
latter because the height growth rates of the dominant trees in a stand is generally
unaffected by stand density [94, 102]. Using the Chapman-Richards decay term in

this equation was also preferred to specifying an a priori a maximum top height.

X1 = o X{X3? - g XX
Xi = XPX{PXE - 3X, (2.11)
X, = asXPXES - B:X,

The model defined by Equations 2.11 performed much better than the others, but
again failed to meet the third and fourth heuristic criteria: stand density eventually
increased and tree size measured at 300 and 1000 years were not biologically possible.
An examination of these effects indicated that the QMD growth rate eventually be-
gan increasing, and at an accelerating rate, potentially causing both the increase in
stand density and the excessively large tree dimensions. Given the strong size-density
interaction for QMD, top height X; was removed from the equation for QMD, X,
to obtain the model formulation given by Equations 2.12. This model almost met
the first four heuristic criteria, failing only for stand density which eventually began

to increase. To resolve this problem. QMD X,. was removed from the stand density
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equation, X;, to obtain the final S-system model formulation Equations 2.13.

Xy = XM X§ - g Xk xhe
X1 = X X{? - 5,X, (2.12)
X1 = aaX§XPP - BsX,

The final S-system model formulation, Equations 2.13, met all six of the heuristic
criteria and was therefore chosen as the formulation for the Douglas-fir growth and
yield model. Recall that in an S-system, the juxtaposition of state variables in a term
indicates that those state variables are coupled in their effects on that term. Thus, the
forms of the influx and efflux terms in the S-system equate the juxtaposition of state
variables to the physical interaction of those state variables. This type of interaction
based modeling has been shown to be appropriate, both as a conceptual tool and in

applications [61, 80, 81. 91, 98, 120. 123, 125, 126, 127. 135. 134, 136, 137, 138, 156].

Xl = o Xfm - A X{‘“ X;'"
."(2 = Q2 ‘){.1921 X2922 - ﬁg Xg (213)
.).(3 = Q3 .Xg 32 X gg,“ - ,33 .Y3

The state variables in each term of the final S-system model are arranged in columns
to permit a straightforward visual identification of those variables which contribute to
a specific term. With this in mind, the state variables in each term for each equation
are justified in terms of their consistency with the biological phenomena they are
intended to represent.

The equation for X; defines the rate of change of stand density over time. The
decay term. 3, X" X212 defines the size-density effects influencing the rate of change
of stand density by including both stand density, X;, and QMD, X,. The growth
term. a; X{", includes only stand density, X;, and is considered to be an inertia term
that offsets the stand density component in the decay term. Stand density should

change only if acted upon through the size-density relationship. Given the form of
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this equation, h;; > 0, because stand density may promote a decline in stand density,
hi2 > 0, and because QMD promotes a decline in stand density, g1; > 0, to offset the
decay component of stand density, and gy, and ky; should be approximately equal,
they must offset the stand density components in the growth and decay terms. The
magnitudes of a; and f, should both be small, given that stand density is measured
in trees per hectare, a large number initially, and that mortality is generally much
smaller than the number of live trees.

The equation for X, defines the rate of change of QMD over time. The growth
term a, X{*' X3* defines the size-density effects influencing the QMD growth rate, and
includes stand density, X, and QMD, X,. The decay term, 3,.X,, is based on the
Chapman-Richards equation {24, 153], and includes only QMD, X;. This term acts as
a size dependent modifier for the QMD growth rate that will cause the growth rate to
decline to an asymptote, possibly zero, as QMD increases. Given the limited range of
data, this then causes QMD to approach an asymptote or maximum value. Given the
form of this equation, g;; < 0, because stand density should inhibit diameter growth,
g22 > 0, because QMD should promote QMD growth. The magnitudes of a; and 8,
are not expected to be large, but should be on the order of one.

The equation for X3 defines the rate of change of top height over time. The growth
term a3 X3 X§* defines the size-size effects influencing the top height growth rate,
and includes QMD, X;, and top height, X3. The decay term 33Xj, is also based on
the Chapman-Richards equation and includes only top height, X5. This term acts as
a size dependent modifier for the top height growth rate that will cause the growth
rate to asymptotically approach zero as top height increases. As for QMD, this then
causes the top height to approach an asymptote or maximum value. Given the form
of this equation. g3, could be positive or negative, promoting or inhibiting top height
growth, and ¢33 > 0, because top height should promote top height growth. The
magnitudes of a3 and J; are also not expected to be large, but should be on the order

of one.



The growth and yield model defined by Equations 2.13 is not yet complete. Appro-
priate initial conditions for the state variables still need to be defined. The selection
of live TPH, QMD, and top height as state variables imposes several additional con-
straints that must be incorporated into the S-system model or taken into consideration
when using the model.

The definitions of QMD and top height both require diameter at breast height
(DBH) measurements from the individual trees in a stand. So, the model cannot rep-
resent trees that are shorter than breast height, 1.3 m. Given this minimum top height
requirement, it seems reasonable to further assume that the stand is fully stocked,
that is, the number of live trees per hectare cannot increase. This is equivalent to
stating that a stand is modeled as a single cohort without recruitment of new trees,
which is an appropriate assumption for monoculture plantation forests. Finally, tree
size is assumed to only increase with time. Only external events that cause breakage
can reduce the height of a tree, and these events are not included in the model.

The constraints defining allowable initial conditions imply that stand density must
be positive, X, > 0, QMD must be positive, X2 > 0, and top height must be at least
breast height., X3 > 1.3 m. The stocking and size growth assumptions imply that
stand density may decrease or remain constant over time, X; < 0, QMD may increase
or remain constant over time, X; > 0, and top height may increase or remain constant
over time X3 > 0. The constraints on stand and tree size development are presented
as Equations 2.14, and are enforced in the model when it is integrated from a valid
initial condition.

X' ~ BXI XD i an XPM - B X X2 <0

.\.’[ =
0 otherwise
. X X2 - 6,X if X7 X532 - 3,X,>0
){2 - 259 2 :32 2 2401 2 M2 2 (2.14)
0 otherwise
% az X372 X5® - 5 X, if a3 X372 X532 — 52X, >0
A3 =

0 otherwise
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The dynamic, stand level, growth and yield model for monoculture, plantation
Douglas-fir integrates survivor growth to obtain the yield for the living trees [153],
accounting for mortality and size growth in continuous time. However, the model
definition is not quite complete: even though the model uses continuous time, a
base time step for the model must still be selected. The selection of the base time
step must take into consideration both the data available and the use of the model.
A typical use of growth and yield models involves the annual projection of stand
development to obtain wood volume and other stand characteristics for planning
purposes [24, 36, 58, 94, 153]. Thus, an annual base time step for the growth and
yield model seems quite reasonable.

The Douglas-fir growth and yield model is now completely defined. What remains
is to determine values for the 13 model parameters, a;, 8;, gi;, and h;; that will
complete its specification. The base time step for the model is set by the parameter
values. To obtain an annual base time step, some form of annualization will need
to be performed on the stand remeasurement data before estimating the parameter
values. see Section 2.5 for the details. Parameter values will be determined through
a least squares procedure using a wide variety of Douglas-fir stand measurement
data obtained from locations throughout the Pacific Northwest, west of the Cascade

Mountains.

2.5 Douglas-fir stand measurement data sources and description

Stand measurement data used to calibrate and test the stand level Douglas-fir growth
and yield model were provided by the Stand Management Cooperative (SMC), in
the College of Forest Resources at the University of Washington [26]. The SMC
maintains a high quality database of individual tree measurements for stands located
on commercial production forest lands in the Pacific Northwest. The SMC data span

the region from southern Oregon, to Southern British Columbia, west of the Cascade
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Mountains. The SMC database is composed primarily of Douglas-fir and western
hemlock (Tsuga heterophylla) measurements, some of which span approximately 30
years, with some representation of other tree species common to the Pacific Northwest.

The data in the SMC database are derived from two sources: the Regional Forest
Nutrition Research Project (RFNRP) and the SMC proper. The RFNRP was a
Pacific Northwest regional research project begun in 1969 and designed to investigate
the effects of fertilization, on wood production and wood quality for commercial forest
land west of the Cascade Mountains [111]. Most of the RFNRP installations were
in stands 25 to 60 years old, and the intent of the project was to determine whether
fertilization or fertilization and thinning would improve wood production by the end
of rotation harvest [111]. In 1985, when the SMC was established, the data obtained
from the RFNRP was absorbed by the SMC and became a part of its forest nutrition
project [26]. The SMC continued to measure the RFNRP plots until 1992, when the
project ended [111, 26].

The SMC has established its own research plots, again on commercial forest land
spanning the Pacific Northwest region west of the Cascade Mountains, to collect
growth data on very young stands, and stands which are at the stage where a pre-
commercial thinning, or even a commercial thinning, are possible [26]. The stand
ages for these stands are from 4 to 25 years. These data augment the older stand
data from the RENRP which generally lacked very young stands. The SMC has
implemented a wide variety of treatments within its young stands, including a wide
range of planting densities, fertilization regimes, thinning levels, and pruning levels
to investigate their effects on the development of the young stands, both singly and
in various combinations. The SMC database thus contains a sufficient range of data
to be considered representative of the Pacific Northwest region west of the Cascade
Mountains.

The stand density, measured as trees per unit area, QMD, and top height data used

to calibrate and test the Douglas-fir growth and yield model described in Section 2.4
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were obtained from the plot summary table of the SMC database. This table provides
a stand level summary of the individual tree measurements organized by research plot
and measurement. The SMC data are stored in its database using the Imperial units
system, measuring stand area in acres, tree diameter in inches, and tree height in feet.
The stand level data in the SMC plot summary table were derived from the number of
live trees on a plot, the plot sizes, and the individual DBH and height measurements
obtained for each tree on a plot.

The stand density values, in trees per acre (TPA), from the SMC plot summary
table were computed from the number of live trees per plot and the plot size according

to the formula
number of trees per plot

TPA = plot size (ac)

All trees on a plot are assumed to be Douglas-fir trees for the purposes of calibrating
the stand level Douglas-fir growth and yield model. This computation simply scales
the number of live trees to a standard area. Given the division by plot size, small plot
sizes will produce larger scale factors than larger plot sizes. Through this relationship,
plot size affects the accuracy of the derived TPA values: TPA values obtained from
larger plot sizes will be more accurate than TPA values obtained from smaller plot
sizes. Each tree on a smaller plot represents more trees when scaled to TPA, so the
plot size scaling will, in particular, inflate stand mortality values for small plot sizes.
In addition, the fact that not all trees on a plot are Douglas-fir trees is exacerbated by
the scaling effects of the small plots as well. These are issues that must be addressed
when selecting the Douglas-fir data from the SMC database.

The SMC measures the diameter, taken at breast height, for all live trees on each
researc.h plot for each measurement. These individual tree diameters were then used

to compute the QMD values in the SMC plot summary table using the formula
QMD = _ﬂ__d.zg.,
n

where n is the number of trees at or above breast height for that plot and measure-
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ment, and the d; are the individual diameter measurements from the live trees [24].
The QMD value, then, is a net value, and does not include any trees that died during
a measurement interval.

The SMC also measures individual tree heights for all trees in its younger stands
but only for a representative subset of trees in its older stands, because height mea-
surement is more difficult and time consuming than diameter measurement. Missing

tree heights are filled in by using a height-diameter relationship,

b

H = BH + bpexp (—BI;—H) ,
that is estimated for each plot and measurement that has missing heights [45]. In the
height-diameter relationship, BH is breast height, and by and b, are unknown parame-
ters for each measurement, generally estimated using least squares and the data from
trees with both DBH and height measurements. When estimating a height-diameter
relationship for each measurement, all tree species are assumed for convenience to
follow the same height-diameter curve. The fact that many tree heights are esti-
mated from height diameter relationships causes a reduction in the variability of tree
heights: all unmeasured heights lie on a single height-diameter curve, rather than be-
ing randomly distributed around the height-diameter curve. This reduction in height
variability should not affect the average stand height, but it may affect the stand top
height.

Top height values for the SMC plot summary table were then obtained by com-
puting the average height for the appropriate number of the largest diameter trees per
plot, Vs Top height is defined to be the average height of the 100 largest diameter
trees per hectare, or equivalently, the average height of the 40 largest diameter trees
per acre. The appropriate number of trees to use for a particular plot is determine us-
ing the plot size and the appropriate number of trees depending on the measurement

units, e.g.,

1
Neyp = [40 x plot size (ac) + ;J
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Table 2.2: Imperial to metric conversion factors used to convert the SMC plot sum-
mary data into metric units. To convert from Imperial units to metric units, multiply
by the conversion factor. To convert from metric units to Imperial units, divide by
the conversion factor. Conversion factors are from [65].

Conversion Conversion factor
Acres to hectares 0.4047
Inches to centimeters 2.5400
Feet to meters 0.3048

for Imperial units, or
Ny = lIOO x plot size (ha) + %J

for metric units, where | z| returns the largest integer less than z. Again, plot size can
be seen to affect a stand level attribute: smaller plot sizes will have greater uncertainty
than larger plots sizes when computing top height due to fewer trees being used in
the computation.

The stand density, QMD, and top height data were extracted from the plot sum-
mary table within the SMC database. A variety of ancillary information describing
the stands was also extracted from the SMC database for each stand, including site
index, elevation, Douglas-fir percentages in basal area and number of stems, and stand
total age. The data were then converted into metric units, hectares, centimeters, and
meters, respectively, for this modeling effort. The Imperial to metric units conver-
sions used are found in Table 2.2 [65]. Final data selection involved filtering the stand

measurement data were according to the following criteria:

o Selected stands must be untreated, pure Douglas-fir stands. A pure stand is a

stand in which the Douglas-fir basal area is at least 80% of the total stand basal

area.

o The plot size must be at least 0.0407 ha. This minimum plot size was chosen
to avoid the potential introduction of overlarge biases caused by scaling stand

density data for extremely small plots.
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o The site index value for the stand must be valid, i.e., nonzero, non blank.

e Both QMD and height measurements were present and nonzero.

These criteria selected only pure Douglas-fir stands using a basal area criterion. The
criteria also selected only the most reliable stand density and top height values by
filtering out the smallest plot sizes. Finally, the criteria removed any obviously er-
roneous stand measurements from the data set. These mechanically filtered stand
measurement data were then subjected to a visual inspection to discover, and re-
move, any remaining anomalous measurements or stands. At this stage, anomalous
measurements or stands were those that when plotted appeared to be visually very
different from the majority of the data set.

A straightforward approach was taken when selecting and filtering the extracted
data to obtain the final stand measurement data. Only simple inequalities were used
to obtain agreement of the data with the assumptions of the S-system growth and
yield model. This was done for three reasons. First, the database is large, and a hand
selection of the data would be an onerous and time consuming undertaking. Second,
the selection criteria were kept simple to avoid selecting only stands that were ideal
candidates for model calibration, for example by selecting stands which were very
similar. Thus, if the data set contains less appropriate data, the model can only
improve if these data are removed from the model calibration data set. Third, the
data selection approach taken is fairly typical of the data selection procedures used
for growth and yield model development [24, 65, 94, 153].

The data selection and filtering process yielded 167 SMC Douglas-fir installations
spanning the Pacific Northwest region from southern Oregon to southern British
Columbia, west of the Cascade Mountains, Figure 2.1. Douglas-fir remeasurement
data from 270 research plots were obtained from these installations, providing a set
of stand trajectories. The stand trajectories were comprised of 1238 sets of stand

density, QMD. and top height measurements with a total of 968 measurement in-
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tervals, spanning the time period from 1969 through 1997. Stand trajectory lengths
varied from 2 to 26 years. Measurement intervals were nominally two or four years.
Measurement intervals actually obtained were two, four, or six years, due to the data
selection criteria, and the fact that there were incomplete measurement sets for some
measurements on some plots.

Because an annual base time step is desired for the Douglas-fir growth and yield
model defined in Section 2.4, the remeasurement data must be annualized in some
way. A typical approach is to compute the periodic annual increment (PAI) for each
multiple year measurement interval [24, 153]. The PAI is defined as the difference
between the final and initial measurements of a measurement interval, divided by the
number of years separating the measurements,
X;-Xo

t; —to

PAl =

b

where Xj is the initial measurement, X s is the final measurement and ¢ and ¢; are
the initial and final times, in years, respectively. The PAI value provides the average
annual rate of change for the measurement interval, or the slope of the line connecting
the end points of a measurement interval. This line may then be used to interpolate

between the end points

X, = Xo + (t, — to) PAI

to obtain approximate measurement values for the years t,, tg < ¢, < t;.

The linear interpolation of stand measurements produced 3098 annualized mea-
surements or 2828 annualized measurement intervals. This annualization approach
was chosen, rather than simply using the actual measurement intervals and their
PAI values directly, for compatibility with the climate model development described
in Chapter 3. This annualization procedure also provided a natural data weight-
ing for each measurement interval in the parameter estimation procedure, giving one
annualized measurement for each year in the measurement interval. The augmented

annualized data set contains no more information than is contained in the 1238 actual
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SMC Douglas-fir installation locations
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Figure 2.1: SMC installation locations for the stand measurement data. The SMC
installations span the region from southern Oregon, through Washington, and into
southern British Columbia, west of the Cascade Mountains. No map projection was

used to correct for changes in latitude, hence the apparent elongation of Vancouver
Island.
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measurements, but it will be treated as though it were a real set of annual measure-
ments for convenience and consistency of presentation. In addition to the annualiza-
tion of the stand measurement data, the ancillary site index, elevation, Douglas-fir
percentages in both basal area and number of stems, and stand total age, were also
interpolated or replicated, as appropriate, to maintain a consistent data set.

A final filtering of the annualized measurement intervals was performed to remove
any intervals which violate the assumptions of the Douglas-fir growth and yield model

defined in Section 2.4. Specifically, annualized measurement intervals meeting any of

the three inequalities

X{-x >0
X{-x% <0 (2.15)
X/ -x% <0

were removed from the data set. The superscripts 0 and f indicate the initial and
final measurements of a measurement interval, and the subscripts identify the state
variables of the growth and yield model. Measurements meeting at least one of
these inequalities were removed because they violate the growth and yield model
assumptions that stand density may only remain constant or decrease, X, <0, and
that tree size may only remain constant or increase, X; > 0 and X; 2 0, respectively,

removing 317, 0, and 10 annualized measurement intervals. A fourth inequality
X{ -x® < -150, (2.16)

was also used to filter the data, and 70 annualized measurement intervals were re-
moved. Measurements meeting this inequality were excluded as having mortality that
was too large for an actual annual per hectare mortality for Douglas-fir stands. Mor-
tality is considered to be the rate of change in stand density over time, and hence
must be a number that is less than or equal to zero. Greater or lesser mortality, refers
to a larger or smaller magnitude negative number, respectively. This interpretation

of mortality was chosen for consistency with the size related variables with respect to



rates of change.

The value of -150 in Equation 2.16 represents the loss of 6 trees on a 0.0407 ha
plot, and was considered to be a very high, but possible, annual mortality level for
Douglas-fir. The highest mortality values in these data occurred in a range of stand
ages from 30 to 70 years. Mortality values ranging from -100 to -10 TPHper year are
typical for Site Class II Douglas-fir stands within this age range [30, 92, 142]. Greater
mortality than -150 trees per hectare per year was deemed to be highly unlikely,
and possibly a result of plot sizes that were too small to adequately represent the
natural variability in mortality within a stand. This final filtering of the data yielded
2431 annualized measurement intervals that will be used to calibrate and validate the
Douglas-fir growth and yield model.

The 2431 annualized stand measurement intervals and their associated ancillary
variables are the primary data used for the Douglas-fir growth and yield model fitting
and the subsequent analysis. The data are viewed first as independent measurement
intervals, the reasons for which will become obvious, and then as a contiguous set of
stand measurements defining a set stand trajectories. The V = 2431 stand measure-
ment intervals obtained are denoted by Y and Y/, the initial and final state variable
or yield measurements, with the initial and final measurements taken at stand ages
t? and t{, k = 1,2,..., V. The time differences t{ — 19 for the measurement inter-
val view of the data are all one year, since the data were annualized prior to the
final data filtering. The 2431 measurement intervals represent S = 270 stand mea-
surement trajectories whose measurements will be denoted by Y, for stand ages t,,
k=0.1,2,...,Ny—1land s = 1,2,...,S, where N, + 1 is the number of annualized
measurements for a particular stand trajectory. The time differences t5,.;,—i, will not
all be equal to one year because annualized measurements that did not meet the final
filtering criteria in Equations 2.15 and Equation 2.16 were removed. Each stand mea-
surement is a three element vector containing the stand density, QMD, and top height

values, i.e, Y = [V Y. YIT, ¥ = [V}, Vi}, VAAI” and Yis = [Viks, Yaus, YauslT, for
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Table 2.3: Douglas-fir numerical data summary for the annualized measurements.
The annualized sample size was 2431, except for stand elevation which was 2401 due
to missing elevations for a few plots. "M AD is mean absolute deviation.

Stand attribute Mean | Standard | Min. Med. Max. | MAD"
deviation
Initial age (years) 38.49 17.28 4.00 40.00 | 113.00 | 13.94
Site index 50 (m) 34.89 5.62 | 17.98 36.58 45.72 4.53
Elevation (m) 452.64 282.98 4.57 | 420.62 | 1341.12 | 229.51
Initial TPH 1322.17 866.01 | 123.55 | 1104.56 | 5337.48 | 618.45
Final TPH 1294.56 850.98 | 123.55 | 1082.32 | 5275.70 | 604.03
Initial QMD (cm) 21.50 9.20 1.98 21.29 68.57 7.29
Final QMD (cm) 22.16 9.06 3.49 21.84 68.83 7.20
Initial top height (m) 2491 10.09 2.80 26.91 51.74 8.36
Final top height (m) 25.59 9.96 3.69 27.61 51.94 8.25
% Douglas-fir (BA) 97 5 80 99 100 4
% Douglas-fir (stems) 90 14 38 97 100 11
Plot size (ha) 0.07 0.05 0.04 0.04 0.20 0.04

the initial and final measurements of an interval and a stand trajectory measurement,
respectively.

A brief summary highlighting some of the key features of these data follows. For
these summaries, the data should be interpreted as independent measurement inter-
vals. Table 2.3 presents a numerical summary of the annualized stand measurement
data and the ancillary variables of interest. Figure 2.2 through Figure 2.4 provide
histograms of the same information and characterize the distributions of the variables,
most of which are not symmetric and may be highly skewed.

Figure 2.2 presents histograms for the annualized stand ages, site index values,
and stand elevations. Stand ages range from 4 to 115 years. The bulk of the mea-
surements have stand ages between 25 and 60 years, with approximately 20% of the
measurements having stand ages less than 20 years, and 10% of the measurements
with stand ages greater than 60 years. This age distribution is not unexpected given

that the stand measurement data are from a commercially oriented cooperative in the
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Initial stand age, site index, and elevation histograms
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Figure 2.2: Histograms of annualized initial stand age (top), site index at age 50(mid-
dle). and elevation (bottom). The sample size is 2431 points for stand age and site
index. and 2401 points for elevation; several stands did not have valid elevation values.



Initial TPH, QMD, and top height histograms
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Figure 2.3: Histograms of annualized initial stand density (top), QMD(middle), and

top height (bottom). The sample size is 2431 points for each of initial stand density,
initial QMD, and initial height.
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Initial Douglas-fir percentage and plot size histograms
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Figure 2.4: Histograms of annualized initial Douglas-fir percentages (top and middle)
and plot size (bottom). The sample size is 2431 points for the Douglas-fir percentages
and the plot sizes.
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Pacific Northwest where Douglas-fir rotation ages are generally from 50 to 60 years.
Site index values, with a reference age of 50 years for Douglas-fir, range from 18 m
to 45 m. The bulk of the site index values lie between 33 m and 42 m, high site
class III to low site class I [73, 16], and are indicative of highly productive Douglas-fir
sites. The remaining site index values constitute less than 20% of the measurements,
with most of these being less than 33 m, indicating progressively lower productivity.
The distribution of Douglas-fir site index values is highly left skewed, and is gener-
ally consistent with what would be expected for a commercially oriented organization
such as the SMC; it is more difficult to make money on lower quality sites. Stand
elevations for the measurement data range from sea level to approximately 1350 m,
but are generally below 600 m. Less than 20% or the measurements are from plots at
elevations higher than 600 m. The higher elevation stands are generally located on
the western slopes of the Cascade Range.

Stand age is a somewhat tricky value to pin down, and it has historically been de-
rived from average breast height age, obtained from tree cores adjusted for differences
in site quality as indicated by site index values [92, 73, 16]. Stand ages are herein
defined to be the time since planting, for the recent SMC planted stands [26]. For the
older RFNRP stands, which may have been naturally regenerated but are generally of
unknown stand origin, stand ages will be interpreted as the average age for an initial
sample of trees from a plot adjusted for differences in site index (73, 16, 26], and
then incremented by the remeasurement interval for each subsequent measurement to
obtain current stand age. Historical stand ages are typically not known exactly, and
the newer SMC planted stands have different ages of planting stock, ranging from
one to four years old at planting, so even the new stand ages are not exact, though
ages from seed could be derived. The inexactness of stand age is not an issue for
the growth and yield model described in Section 2.4 because the model does not in-
clude stand age explicitly. The S-system model when integrated and the parameter

estimation procedures rely on only the time differences between measurements, and
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these are known, regardless of the stand origin or actual age. This is one benefit of
using an autonomous system for modeling forest dynamics. Stand age is used herein
as a common and convenient variable for displaying results, but is not fundamental
to obtaining the results.

Figure 2.3 presents histograms of the initial stand density, initial QMD, and initial
top height for each measurement interval. The initial stand densities ranged from ap-
proximately 120 TPH to over 5300 TPH, with the bulk of the measurements between
500 TPH and 1500 TPH. Less than 20% of the initial stand densities were outside this
range, but the distribution is strongly right skewed. The initial QMD values ranged
from 2 cm to 69 cm. The initial QMD distribution is nearly symmetric with a mean
near 20 cm, but slightly right skewed, with the bulk of the data between 10 cm and
35 cm. Less than 10% of the initial QMD values are less than 10 cm and approxi-
mately 5% are greater than 35 cm. Initial top heights ranged from approximately 3 m
to 52 m. The initial top height distribution is somewhat symmetric with a mean near
28 m. but is left skewed. The bulk of the measurements lie between 20 m and 38 m,
with approximately 25% of the initial top heights less than 20 m, and approximately
5% of the initial top heights greater than 38 m. Histograms for the distributions of
the final of stand density, QMD, and top height measurements were similar to those
presented and are omitted.

Figure 2.4 presents histograms of the initial percentage of live trees on a plot
that are Douglas-fir, measured by stand basal area and by number of trees, and the
distribution of plot sizes. By definition, pure Douglas-fir stands are those stands with
Douglas-fir representing at least 80% of the stand basal area. The SMC database,
being oriented toward plantation Douglas-fir, contains many stands with very high
Douglas-fir basal area percentages, and over 75% of the stand measurements have a
Douglas-fir basal area percentage greater than 90%. The percentage of Douglas-fir
by stems for these measurements is strongly left skewed, with a range from 38% to

100%. with approximately 80% of the measurements greater than 90% Douglas-fir.
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The stands with lower percentages of Douglas-fir by stem count fall in the range of
1000 TPH to 3500 TPH. Somewhat surprisingly, the very high density stands are
predominantly Douglas-fir. This variability in Douglas-fir percentage by number of
stems for pure stands supports the restriction of stand mortality values performed,
and may indicate that the value of -150 trees per hectare per year may still be too
large. The distribution of sample plot sizes is strongly right skewed, indicating that
smaller plot sizes are more common. Approximately 80% of the plot sizes are less
than 0.07 ha, with the majority of these being 0.04 ha. This predominance of very
small plot sizes necessarily introduces more uncertainty into the stand density and
mortality values, because large scaling factors are necessary to convert to a per hectare
basis. This, coupled with the greater variability in Douglas-fir percentages by stem
count, will in turn make the Douglas-fir stand density projections derived from these
data more uncertain.

From the data description there is a clear a priori quality assessment that may
be placed on these data. The highest quality data are the QMD values obtained
from a 100% tally of the live Douglas-fir tree diameters. The intermediate quality
data are the top height values, for two reasons: many tree heights were estimated
from height diameter relationships, and plot size affects the accuracy and precision of
top height values. The lowest quality data are the stand density values; the density
values are assumed to represent only Douglas-fir trees, and were scaled from small
plot sizes to a per hectare basis. The per hectare stand density values may, therefore,
not reflect the true stand density. The increased uncertainty in the stand density
values aside, this data set should be ideal, or nearly so, for modeling monoculture

Douglas-fir plantations in the Pacific Northwest.
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2.6 Model analysis and validation methods

The procedures used to complete and validate the specification of the S-system based,
stand level, Douglas-fir growth and yield model follow. The procedures must address
the following issues. First, a closed form solution to the S-system model will in gen-
eral not exist [15], so a numerical method for solving the S-system model must be
selected. Second, the parameter estimation procedures must be appropriate for the
type of data and model, without adding assumptions which are incompatible with the
sample data or model. Third, the stand density, QMD, and top height stand measure-
ment data must be treated as multidimensional data. Fourth, the nonlinear nature
of the model and the complex parameter estimation process make the computation
and interpretation of parameter standard errors using classical statistical approaches
difficult [39, 145]. Finally, given the large sample size, traditional statistical tests for
goodness-of-fit may produce spurious results [7, 172]. Each of these issues is addressed
in the discussion of the procedures used, and the particular procedures are justified

in terms of their applicability and their ability to address each of these concerns.

2.6.1 Solving S-systems

S-systems are first order systems of autonomous ODEs, which with a specified ini-
tial condition becomes an initial value problem, and there are a variety of methods
for solving, or integrating, these types of problems [15, 57, 20, 3]. The two most
common approaches for solving initial value problems are Runga-Kutta methods and
Adams-Bashforth-Moulton methods [57, 20]. Both methods use Taylor series expan-
sions of the unknown function about the current point in the state space and project
the current state based on a small time increment [57, 20]. High quality and efficient
implementations of these methods exist and are in common use [57, 90]. There is, how-
ever, a specialized algorithm for solving initial value problems specified as S-systems

[67, 68]. This method is also based on a Taylor series expansion about the current



61

state, but in logarithmic coordinates, and is generally more effective computationally
than the traditional Runga-Kutta or Adams-Bashforth-Moulton solution methods
when they are applied to S-systems [67, 68]. All of these methods perform the numer-
ical integrations based on time increments, not actual time, so an exact knowledge
of both the current state and time is not required for the integration process, only
knowledge of the current state and time interval are necessary [20, 15, 57, 67, 68].

A straightforward, variable order, variable step size S-system solver was imple-
mented in Matlab [90], and was used to integrate the S-system based Douglas-fir
growth and yield model. The integration algorithm allows the solver to increase the
order of the Taylor polynomial approximation, decreasing the local truncation error,
or to decrease the base step size, again to decrease the local truncation error, to obtain
or improve a solution to an initial value problem [67, 68, 57, 20]. All solutions of the
Douglas-fir growth and yield model used a default S-system Taylor polynomial order

of 7, a default time step of one year, and a default error tolerance of 10~3.

2.6.2 S-system parameter estimation procedures

Estimation of the S-system parameters is performed in two steps. The first step
attempts to obtain parameter estimates using the algebraic representation of the S-
system and approximate rates of change for stand density, QMD. and top height
obtained from a set of measurement intervals. This step presumes no a priori knowl-
edge of the parameter values, although if values are known a priori they may be used.
The second step uses the parameter values obtained in the first step and attempts to
refine them by integrating each stand from its initial condition to its final condition
obtaining vield values, i.e., integrating from (tos, Yos) to (tn,s, Ya,s)-

These two parameter estimation steps treat the stand measurement data in dif-
ferent but compatible ways given the underlying representation for the Douglas-fir
growth and yield model as an autonomous system of ODEs. In the first step, the

stand measurement data are treated as a set of independent measurement intervals



used to obtain estimates of growth for estimating the S-system parameter values. This
approach is based on the algebraic representation of the S-system and will be referred
to as the algebraic parameter estimation step. In the second step, the stand measure-
ments are treated as dependent stand trajectories, and are used as yield values for
refining the S-system parameter values obtained from the algebraic parameter esti-
mation step. This procedure is based on repeatedly solving the system the S-system
for each stand and will be referred to as the shooting parameter estimation step or
the parameter refinement step. The two steps of the S-system parameter estimation
procedure are presented in their general forms, and then specialized to the Douglas-fir
growth and yield model defined in Section 2.4.

To define the algebraic parameter estimation step, consider an S-system with n
equations and m independent state variables. Let V be the number of measurement
intervals obtained from one or more samples, and let Y2, Y, 9, ¢t/ k= 1,2,...,N
be the initial state variable or yield measurements, the final state variable or yield
measurements, the times of the initial yield measurements, and the times of the
final yield measurements for each interval. The time differences t{ — ¢ need not all
be equal. The S-system parameters are estimated by solving a simply constrained
nonlinear least squares minimization problem derived from the algebraic form of the
S-system representation in the following way. First, compute an approximate rate of
change for each S-system equation for each measurement interval,

= _Y-v
ik = —titt—g—’
to approximate the left-hand-side of the S-system. Next, compute approximate state

variable values or yields for these rates of change as the midpoint of each measurement

interval,
Y2+ Yd
5

-

Ak =
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Finally, solve the nonlinear least squares problem

N n — n+m 7 n+m A 2
minimize fo= Y Y | Xa—|ai [] X -6 11 X3¢
k=1 i=1 Jj=1 J=1
subject to:

a,->0, i=1,2,...,n

B:i >0, i=1,2,...,n

to determine the estimated S-system parameter values using a least squares mini-
mization algorithm. Notice, in particular, that this procedure does not use the time
variable explicitly, only the time differences. This is due to the fact that an S-system
is an autonomous system of ODEs and the rate approximations are based on time
differences. The solution to this minimization problem is a parameter vector p,.

Although the measurement interval data appear to be treated independently by
this least squares parameter estimation procedure, any dependencies among the mea-
surement intervals are automatically accounted for by the underlying autonomous
S-system model. This becomes clear after a consideration of what an autonomous
system of ODEs represents mathematically, and a consideration of the measurement
interval data and its use in this least squares procedure.

An autonomous system of ODEs compactly, concisely, and completely represents
the vector field of a dynamic process in the phase or state space [15, 57], providing
the simultaneous rates of change for a dynamic process for any point in the state
space. Stated another way, for any point in the state space, an autonomous system
defines the instantaneous direction and magnitude of the motion or flow of a dynamic
process. The image of a skier skiing down a bumpy mountain with many small peaks
and valleys may be useful. The way the skis point indicates the direction but not the
magnitude of motion, because that is gravity dependent, as the skier flows down the

mountain. The surface of the mountain, thus, represents the phase or state space.
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The measurement interval data are used to compute approximations to the simul-
taneous rates of change for a dynamic process, ;{;, and appropriate state variables
for those rates of change, X;;. These derived values provide a direct, empirical ap-
proximation to the vector field defined by some unspecified autonomous system, by
assumption since an S-system is being used to represent the process. The least squares
procedure is then simply attempting to identify which specific autonomous system
represents the approximate vector field, on average. The algebraic least squares pa-
rameter estimation procedure simultaneously performs the parameter estimation for
all equations, and thus treats the data as vectors of linked measurements. Thus,
the data used in the least squares procedure and the underlying mathematical repre-
sentation are compatible, and used in a consistent manner to estimate the S-system
parameters.

To define the stand trajectory or shooting parameter refinement estimation step,
again consider an S-system with n equations and m independent state variables. Let
S be the number of independent trajectories that have been sampled, each with N, +1
state variable or yield measurements Y}, obtained at times tis, £ = 0,1,..., N, and
s =1,2,...,5. The time differences ¢4, — tis need not all be equal. The S-system
parameter estimates are refined by solving the simply constrained nonlinear least
squares minimization problem derived as a shooting method applied to the S-system
model defined by the parameters obtained in the algebraic parameter estimation step

[57, 20, 3]. The nonlinear least squares problem is

5 N,+l n " 2
minimize fi= > Y Y (Y:'k.. - Y:'ks)
s=1 k=1 i=1

subject to:
a; > 0, 1= 1,2,...,71

ﬁizov i=1727'--7n1

where f’,—k, are predicted yield values obtained at the times i, by integrating the S-
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system identified in the algebraic parameter estimation step for each trajectory. The
trajectories are integrated from their initial measurement time, ¢o,, and initial stand
condition Yp, = (Yi0s, Ya0ss - - - » Ynos)?, to their final measurement time, ty,, and the
intermediate times f,, k = 1,2,..., N, — 1, for each stand,s = 1,2,..., S5, using the
S-system parameter value estimates p,. This procedure does not explicitly use the
time variables ¢, in the integration of the S-system, but it uses the time increments
tiyrs — ks, £ =0,2,..., N, to cumulatively generate the trajectories. The solution to
this minimization problem is a parameter vector p,.

The shooting parameter refinement step recognizes the fact that a dynamic process
moves forward in time through the integration process. It also explicitly accounts for
the dependencies among the state variable or yield measurements for each particular
trajectory sampled. This step attempts to modify the estimated parameters to ac-
count for the complete trajectories. The shooting least squares parameter refinement
procedure also simultaneously performs the parameter estimation for all equations,
and hence treats the data as vectors of linked measurements. This procedure and
its use of the trajectory data are also compatible with the underlying mathematical
representation of a dynamic process as an S-system, and are also used in a consistent
manner to refine the S-system parameter estimates.

The two step algebraic-shooting parameter estimation procedure was applied to
the stand level Douglas-fir growth and yield model defined in Section 2.4, using the
N = 2431 annualized measurement intervals obtained from the Douglas-fir stand
remeasurement data and the S = 270 stand density, QMD, and top height trajectories.
The 1sqnonlin procedure, in the Matlab Optimization Toolbox [90, 89], was used to

solve both of the least squares minimization problems for the 13 element parameter

vector

p = [alva'Z?a3v.Blvﬂ27ﬂ37glhg217g227g3279337hllvhl2]T
= [P1, P2, P3, P4, Ps, Pe, P, P8, Pos P10, Piis Prz, Pa] -
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Initial estimates for the first parameter estimation step were
po = [0.05,1.0,1.0,0.05,1.0,1.0,0.5,0.5,0.5,0.5,0.5,0.5,0.5)7,

and were chosen somewhat arbitrarily based upon some initial numerical experiments
with the parameter estimation procedures on a subset of the stand measurement data.
The intent was to select initial estimates for the parameter values that were a priort
not informative, but of a reasonable magnitude, and to let the least squares opti-
mization discover appropriate parameter values by extracting them from the stand
measurement data. The parameter values obtained from the algebraic parameter
estimation step, p,, were then used as the initial parameter guesses for the shoot-
ing parameter refinement step to obtain parameter values p,. The combination of
parameter estimation methods should remove any obviously incorrect model behav-
tor, such as loops, spirals, or periodic solutions. Stopping criteria used for the least
squares minimizations were 1076 and 1074 for the algebraic and shooting estimation
procedures, and they were chosen because the rates used in the algebraic parameter
estimation procedure were generally two orders of magnitude smaller than the yield
values used in the shooting based parameter refinement. These stopping criteria cause
1sqnonlin to halt if changes in the objective functions, f, or f, were less than their
respective tolerances, or if the magnitudes of the respective gradients were less than

the tolerances [3, 33, 89].

2.6.3 Bootstrap computation of parameter standard errors

The nonlinear nature of the S-system model and the least squares optimization process
used to obtain the parameter values makes the computation and interpretation of
parameter standard errors difficult [39, 145]. This is in large part due to the fact that
the predominant methodology for deriving standard errors for model parameters,
whether for linear or nonlinear models, assumes a priori that the distribution of

the model residuals follows a normal or multinormal distribution (4, 14, 7]. This



assumption about the as yet unknown distribution of the model residuals is made
solely for the purpose of obtaining an explicit formula for the standard errors because
it makes the mathematics tractable, and not out of any inherent general applicability
[39, 145]. If the model residuals are not normally distributed, as may happen with
some nonlinear models or models with poor fits, but standard errors are generally still
computed as though they were, then the interpretation of the standard errors may
become questionable or even misleading.

The purpose of the standard errors it to provide a quality assessment of the pa-
rameter values and an indication of the repeatability of the process used to obtain a
particular set of parameter values when using similar or augmented data sets. This
interpretation of parameter standard errors holds regardless of the final residual dis-
tribution. The bootstrap procedure is an alternative to the assumption of normally
distributed residuals which still maintains the spirit of the standard errors, as well as
being generally easy to understand and implement [39, 145).

The bootstrap procedure is a resampling based procedure that is commonly used
for estimating parameter standard errors [39, 145]. The underlying premise of the
bootstrap procedure is that the consistency and robustness of parameter estimates
may be determined by repeatedly performing the parameter estimation procedure for
randomly selected subsets of a larger data set. The mean and standard deviation may
then be computed for the multiple sets of parameter estimates, and will provide an
empirical estimate of the variation of the parameter estimates for a particular problem
[39. 145].

The algorithm for the bootstrap procedure may be stated quite simply. Let G(z)
be a function or process which returns a set of parameters, p = {p1,p2,...,pm},
estimated from a data set z = {z1,z2,...,2,}, where z; may be either a scalar or
vector. The function G may be thought of as an optimization procedure without any
loss in generality. Then, given a set of NV data values X;, X3, ..., Xn, a number B of

bootstrap trials, and a bootstrap sample size Np, the bootstrap procedure as defined
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by the following four steps may be used to compute parameter standard errors [39].

Step 1 Randomly select with replacement Np data values X, = { Xy, Xs2,. .-, Xong}
from the N available data values. This is called the bootstrap sample.

Step 2 Obtain estimated parameter values from the bootstrap sample, p, = G(X;).

Step 3 Repeat Step 1 and Step 2for b= 1,2,..., B, obtaining estimated parameter

vectors py,p2,...,PB.

Step 4 Compute the bootstrap mean parameter values, p; = %Zbil Pis, and the

standard deviations of the parameter estimates, s; = \/ B Y2, (P — 5i)?,

t=1,2,...,m, to get the bootstrap standard errors.

The bootstrap procedure was used to compute mean parameter values and pa-
rameter standard errors for the algebraic parameter estimation procedure, and for
the shooting based parameter refinement procedure. The algebraic parameter esti-
mation bootstrap procedure for the S-system parameters in the stand level Douglas-
fir growth and yield model used B = 100 bootstrap trials, and a bootstrap sample
containing 90% of the 2431 stand measurement intervals, giving a value of Ng =
{0.90.V] + 1 = 2188 measurement intervals. All of these trials began with the initial
parameter vector po. The 100 bootstrap parameter estimates were used to compute
the mean parameter vector 52 and the parameter bootstrap standard errors s2 for
the algebraic parameter estimation procedure. The shooting based parameter refine-
ment procedure for the S-system parameters in the model used B = 100 bootstrap
trials, and a bootstrap sample containing 90% of the 270 stand trajectories, giving a
value of Vg = |0.905] + 1 = 243 stand trajectories. All of these trials began with
the initial parameter vector p,. The 100 bootstrap parameter estimates were used
to compute the bootstrap mean parameter vector p© and the parameter bootstrap

standard errors s2 for the shooting parameter estimation procedure.
s gp p
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The decision to use a B = 100 bootstrap trials for the parameter estimation
procedures was made for convenience, and because it should be large enough for the
task at hand [39]. A bootstrap sample size of 90% of the number of measurement
intervals and stand trajectories was made because there are two distinct subsets in
the stand measurement data. The first, and larger, subset consists of older stands,
20 to 60 years old at the initial measurement, with annualized trajectories containing
10 or more measurements. The second, and smaller, subset consists of very young
stands, 4 to 14 years old at the initial measurement, with annualized trajectories
containing less than 10 measurements, and generally only two or four. Experiments
with a smaller bootstrap sample size, say 50% of the data, generally did not contain
enough data from the very young stands to influence the least squares optimization,
causing poorer fits for these stands. Bootstrap sample sizes containing 90% of the
measurement intervals or stand trajectories gave adequate representation for both

subsets of the Douglas-fir data.

2.6.4 Residual computation and interpretation

Growth and yield models, as indicated by the name, attempt to represent the growth,
or change per unit time, and the yield, or the cumulative growth over time of a forest
stand. The accuracy and precision of both growth and yield are therefore impor-
tant for the validation of any growth and yield model. Ascertaining the accuracy
and precision of the yield is, however, sufficient to demonstrate the validity of both
growth and yield, since yield is cumulative growth. If yield is incorrect, then the
cumulative growth is incorrect. If growth is incorrect, then cumulative growth or
vield will be incorrect. Therefore, the validation of the stand level Douglas-fir growth
and yield model will be based upon residual values determined from predicted yields.
Two residual computation scenarios are examined: an annual yield based scenario
and a stand trajectory based scenario. These residual computation scenarios consider

annual growth and cumulative growth, respectively. Both residual computation sce-
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narios use the parameter estimates, p,, obtained from the shooting based parameter
refinement procedure estimated with all of the data.

The first residual computation scenario computes residuals at an annual time step,
by integrating the S-system model using the parameter values defined by p, for one
year, to predict the final measurement, f’:{, from the initial measurement Y;], for each

of the N measurement intervals,
t‘k=};£_y:£9 i=172731 k=1121°"11v7

where ¢ indexes the state variable values for stand density, QMD, and top height,
respectively. The residuals computed for this scenario will be referred to as the single
step residuals, since only a single annual time step is involved, and will be indicated
by the superscript s. This residual computation scenario tests the ability of the model
to predict yield at an annual time step, the model calibration base time increment,
which simultaneously demonstrates the ability of the model to predict annual growth
or PAIL The single step residual values do not contain any zero values for the initial
conditions used to obtain the annual yield predictions, as these would be identically
zero. Any zero residual values are, therefore, actual zero values for the final annualized
measurements for each measurement interval.

The second residual computation scenario computes residuals by integrating the
S-system model using the parameter values defined by p,, from the initial stand state
Yios and stand age tq, to the final stand age ¢y, to get the cumulative growth or yield,

-~

Yiks. for each intermediate age, ti, for the S stand trajectories,

Rf’k,=}';’ks"yiksa i=172’37 k=1727"~7N37 S=1,2,...,S.

where : indexes the state variable values for stand density, QMD, and top height,
respectively. The residuals computed for this scenario will be referred to as the
lifetime residuals. since the entire simulated lifetime of the stand is involved, and will

be indicated by the superscript [. This residual computation scenario tests the ability
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of the model to predict yield for longer time spans than one year, demonstrating
the ability of the model to predict stand trajectories. The lifetime residual values
do not contain any zero values for the stand initial conditions used to obtain the
predicted stand trajectories, as these would be identically zero. Any zero residual
values are, therefore, actual zero values for the annualized stand measurements on a
stand trajectory.

These two yield based residual computation scenarios are singularly appropriate
for validating the Douglas-fir growth and yield model for two reasons. First, the sin-
gle step and lifetime stand yield predictions are computed in a forward time manner
through the integration of the S-system model [145]. This mathematical and compu-
tational process mimics the natural forward time manner in which tree growth and
stand dynamics actually occur. Second, given the variable step size nature of the
S-system solver, multiple time steps' may be required to integrate the model for a
single year, and so a direct comparison of growth rates may not be feasible. By far,

the first reason is the more important from a biological perspective [145].

2.6.5 Model validation procedures

No single model can be proven to be the correct model of a particular phenomenon.
Thus, the search is for a good model, as determined by a set of objective and subjec-
tive validation procedures (77, 101, 117, 153, 161, 176]. Model validation consists of
building a strong circumstantial case for the correctness or reasonability of a model.
Given a reasonable model specification, that is, a model definition that is consistent
in both its mathematical formulation and its interpretation of a phenomenon, the
quality of the model is determined quantitatively through a comparison of model pre-
dictions with actual data. This comparison of model predictions with actual data for
the same, or similar, set of conditions is paramount for building a case for the quality
of a particular model: if a model does not agree well with data that it was designed
to reproduce or predict. then it is not a high quality model.



The stand level Douglas-fir growth and yield model validation approach taken

presumes that the model definition given in Section 2.4, and further specified by the

estimated S-system parameter values, is a biologically and mathematically reasonable

model for the stand dynamics of plantation Douglas-fir. The model definition has been

shown to be consistent with the biology of the size-density and size-size relationships

of tree growth and forest stand development, and the mathematical representation

of the model is also consistent with these phenomena. Given this, a quantitative

definition of how to determine the quality of the model, through its agreement with

actual data, is needed. A good model must meet the following set of criteria.

(3]
H

[41]

. Residuals computed from model predictions and actual data must be symmet-

rically distributed around zero, and, hence, have approximately a zero mean.

The residual distributions should have small variances identifying the strength

of the distribution mode.

. Residuals computed from the model predictions and actual data should be un-

correlated with the specific variables used in the model, as well as ancillary

variables that are not explicitly represented in the model but are relevant.

. There should be a strong one-to-one linear agreement between the model pre-

dicted state variables and their actual values.

. The model must produce reasonable results for conditions beyond those repre-

sented in the model calibration or fitting data, and the model must not behave
inappropriately, that is, the model dynamics must be consistent with the biology

of Douglas-fir stand development.

For a particular model, criteria 1-4 imply that the information contained in the actual

data, whether used to calibrate the model or not, is well represented by the model.
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These five criteria, in particular, indicate for the fitting data set that all of the infor-
mation has been gleaned from the data during the model calibration and incorporated
into the model, and what remains is essentially random noise. The final criterion is
more heuristic in nature, but is also an important consideration, since models will
frequently be used beyond the range of the data used in their calibration.

The quality of the stand level Douglas-fir growth and yield model will be assessed
using these five model validation criteria, the single step and lifetimeresiduals, R}, and
R!,,, and the actual and predicted state variable values, f’.-k and f’.-k,, obtained from
the two residual computation scenarios. The following methods were used to assess
the quality of the Douglas fir model for each of the model validation criteria. The
numbers associated with the assessment methods agree with the numbers associated

with the model validation criteria, respectively.

1. Examine the distribution of the single step and lifetime residuals histograms
for the stand density, QMD, and top height state variables. Also examine the
distribution of residuals vs. stand age and initial top height to be sure that it
is symmetric, or nearly so, throughout the range of these variables by plotting

the residuals against the stand age and initial top height.

o

Compute a standard statistical summary of the residuals for each state vari-
able and residual computation scenario. The residual summary will contain:
the mean, standard deviation, minimum value, median, maximum value, mean

absolute deviation, and sample size.

3. Simple linear regression models and residual r? values are computed for stan-
dardized single step and lifetime residuals to assess whether there is a simple
dependence of the stand density, QMD, or top height residuals for a variety of
independent variables. The lifetime and single step residuals were standardized

by dividing the residuals by their standard deviation [172, 7]. This removes
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problems of scale when comparing the simple linear regression coefficients.

The independent variables used for the linear models and r? values are: initial
stand age, final stand age, initial stand density, initial QMD, initial top height,
site index, and elevation. Final stand age is simply the stand age for the pre-
dicted values. The linear model fits were obtained using the Matlab function

polyfit, which uses a least squares procedure to fit a line to the data.

In addition, the single step and lifetime residuals were plotted against final stand
age, the age for the model predictions, and top height to look for trends. The
figures will also include the straight line fits for these independent variables,
and a 51 point residual moving average plus or minus two moving standard

deviations, giving an empirical 95% confidence interval.

. Simple linear regression models and r? values were computed for predicted stand
density vs. actual stand density, predicted QMD uvs. actual QMD, and predicted
top height vs. actual top height, for both the single step and lifetime scenarios.
The linear model fits were obtained using the Matlab function polyfit, which

uses a least squares procedure to fit a line to the data.

In addition, the predicted state variable values for the lifetime scenario were
plotted against their respective actual values to visually assess the quality of
the agreement. These figures will also include the straight line fits for these
predicted vs. actual state variable plots, and a 51 point residual moving av-
erage plus or minus two moving standard deviations, giving a real world 95%

confidence interval.

The data. the line, and the moving average and standard deviation all fall on
top of each other, so figures for the single step predicted vs. actual state variable

results were omitted.



5. The Douglas-fir growth and yield model was used to project stands out as far
as 1375 years to visually detect anomalous behavior. In addition, the tree size
values predicted by the model for approximate stand ages of 150, 300, 1000 and
1375 years were compared with actual tree size values at these stand ages. Stand
density values were also compared, but there is a much greater uncertainty in
actual stand density values, and no actual stand density values were available
for stand ages of 300, 1000, and 1375 years. Douglas-fir tree size data for ages

100 and 300 are from [92], and tree sizes for ages 1000 and 1375 are from [106]
and [102], respectively.

Finally, a brief discussion of the error sources, the manner in which they were
controlled, if possible, and impacts on the validation of the stand level Douglas-fir
growth and yield model is in order. In order of increasing control over the error
source, they are: natural variation, sampling error, discretization error, model speci-
fication error, model definition error, and measurement error. These error sources are
unfortunately not mutually exclusive, and their interrelationships are also of import

for understanding and interpreting the model validation results.

o Natural variation exists and cannot be controlled directly.

¢ Sampling error may be controlled to the extent that the sampled data are consid-
ered to be representative of a larger population. The Douglas-fir stand measure-
ment data obtained from the SMC database are well distributed over the region

of interest and should be representative of the larger population of Douglas-fir

stands in the region.

¢ Discretization error, is linked to sampling error, and may be controlled to the
extent that data sampling occurs at appropriate temporal and spatial scales.
Again, the stand measurement data from the SMC database are sampled at two

to four year intervals, which are short time intervals relative to the commercial
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and natural lifespan of a Douglas-fir stand, so the temporal discretization error
should be small. Behavior at temporal scales that are shorter than the remea-
surement interval length, however, may not be represented adequately by these
data. The spatial scale, or plot size, of the sample plots were deemed to be of a
reasonable size to be representative of the stand dynamics, but if the plot sizes
are too small, this will adversely affect the ability to represent characteristics of
stand dynamics that occur at larger spatial scales, e.g., stand mortality. Both
the temporal and spatial scales are considered acceptable for a growth and yield

model] with an annual time step and a per hectare spatial scale.

Model specification error is generally associated with the estimation of unknown
model parameters from available data, and is linked to sampling error, dis-
cretization error, and model definition error. If the data are not representative,
the temporal or spatial scales are not commensurate, or the model definition is
not reasonable, the model specification may be inadequate. Given the repre-
sentative nature of the stand measurement data, and the generally reasonable
temporal and spatial scales for the measurements, the data sources should not
exacerbate this type of error. To help further control this error source, the stand
measurement data were annualized before they were used in a least squares pa-
rameter estimation procedure, giving a natural, annual weighting of the data.
A biologically reasonable model definition was provided to give even greater

control over this error source.

Model definition error is generally associated with the form and representation
of a model: the selection of what state variables to include in the model and
the dependencies or relationships among those variables. This error source was
controlled in the Douglas-fir growth and yield model by using a dynamic model
representation for the stand dynamics, and by defining the model equations

from a biological perspective, attempting to include only those relationships
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that were deemed biologically relevant.

¢ Measurement error was generally assumed to be insignificant, and hence unnec-
essary to control. Exceptions to this statement may occur, but they will most
likely be due to the influence of sampling error or discretization error upon the

measurement error.

2.7 Results

The parameter estimation, model behavior, and model validation analysis results
for the stand level Douglas-fir growth and yield model follow. First, the parameter
estimates obtained for the S-systemmodel are discussed. Second, the general behavior
of the model is shown to agree quite strongly with the stand measurement data used
to calibrate the model. Third, the model validation results will be presented, broken
down according to the five model validation criteria outlined in Section 2.6.

Table 2.4 displays the estimated parameter values, bootstrap means, and boot-
strap standard errors for both the algebraic parameter estimation method, pi,, 52,
sB, respectively, and for the shooting based parameter refinement method, p;,, 52, s3.
Notice that the refined parameters, p;, are nearly identical to those obtained from the
algebraic parameter estimation method, p;,. This indicates that the algebraic param-
eter estimation method produced excellent initial estimates for the S-system growth
and yield model parameter values. This is further evidenced by the very small boot-
strap standard errors for the shooting based parameter refinement method, and the
agreement to at least four decimal places between the parameter estimates obtained
using all of the data and the bootstrap mean parameter values for the para.meﬁer
refinement. The parameter values obtained from the algebraic parameter estimation
method and the shooting based parameter refinement method are all statistically sig-
nificant, having nonzero values, based on an examination of the bootstrap standard

errors, that is, the intervals p;, + s2 and p;, & s2 do not contain zero.
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A closer examination of the S-system parameter values estimated using the alge-
braic parameter estimation method, p;,, indicates that there are discrepancies between
some of these values and their corresponding bootstrap mean parameter values 2.
The greatest discrepancies are for the parameters of the QMD rate equation, X»: a2,
B2, g21, and ga;. The bootstrap standard errors for the algebraic parameter estimates
also identify these four parameter values as being the most variable. An examination
of the distributions for these four bootstrap parameter values indicated a bimodal
structure with a strong mode and a weak mode. These discrepancies, therefore, are
an indication that there are at least two distinct subgroups contained within the
measurement interval data.

In fact, there are three subgroups that may be identified a priori, see Section 2.5.
The first, and largest subgroup consists of somewhat older stands that are predom-
inantly Douglas-fir, greater than 80% Douglas-fir by stand density, with stand ages
ranging from 25 to 60 years. This subgroup comprises approximately 60% to 70%
of the stand measurement intervals. The second subgroup consists of fast growing,
young, generally 100% pure Douglas-fir stands, with stand ages in the range of 4 to
20 years. This subgroup comprises approximately 15% to 20% of the stand measure-
ment intervals. The third subgroup consists of stands identified as pure Douglas-fir
by being at least 80% Douglas-fir by basal area but which have Douglas-fir stand
density percentages less than 80%. This subgroup also comprises 15% to 20% of the
stand measurement intervals.

Aside from the discrepancies between the parameter values estimated using all of
the data with the algebraic method and their bootstrap mean values for the QMD
equation X,, the bootstrap mean values and standard errors indicate that the remain-
ing parameter values are generally consistent in magnitude and sign. Considering that
the algebraic parameter estimates were used only as initial guesses for the parameters
in the shooting parameter refinement, the discrepancies in algebraic parameter values

and bootstrap mean values may be ignored, particularly in light of the overall consis-
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Table 2.4: Estimated S-system parameter values, bootstrap means, and bootstrap
standard errors for the Douglas-fir growth and yield model defined by Equations 2.14.
A subscript a indicates that the parameter estimates are from the algebraic parameter
estimation procedure. A subscript s indicates that the parameter estimates are from
the shooting based parameter refinement procedure. The superscript B indicates that
the values were obtained using the bootstrap procedure.

Pi Pia e Sia Pis ﬁg Sg

o; | 0.0449 | 0.0637 | 0.0151 | 0.0451 | 0.0451 | 0.0003
oz | 3.2055 | 1.6083 | 0.7976 | 3.2056 | 3.2057 | 0.0003
az | 0.8371 | 0.9959 | 0.1187 | 0.8373 | 0.8372 | 0.0003
B, | 0.0451 | 0.0638 | 0.0151 | 0.0444 | 0.0444 | 0.0009
B2 | 0.0952 | 0.3150 | 0.1579 | 0.0952 | 0.0952 | 0.0001
B3 | 0.6373 | 0.7994 | 0.1239 | 0.6386 | 0.6381 | 0.0007
g1y | 1.6339 | 1.6360 | 0.0649 | 1.6140 | 1.6319 | 0.0361
g21 | -0.2059 | -0.1005 | 0.0564 | -0.2062 | -0.2060 | 0.0001
g22 | 0.4171 | 0.7190 | 0.1597 | 0.4173 | 0.4171 | 0.0002
gi2 | 0.0181 | 0.0154 | 0.0047 | 0.0180 | 0.0180 | 0.0001
gas | 0.9128 | 0.9269 { 0.0211 | 0.9128 | 0.9128 | 0.0002
hip | 1.6326 | 1.6350 | 0.0653 | 1.6139 | 1.6320 | 0.0361
hy2 | 0.0040 | 0.0035 | 0.0024 | 0.0085 | 0.0078 | 0.0037
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tency of the parameter values obtained by the shooting based parameter refinement.
The refined parameter values, p;,, have been shown to be consistent with the stand
measurement data, via the bootstrap procedure, and are the final parameter esti-
mates specifying the S-system based Douglas-fir growth and yield model. The refined
parameter values were used to obtain all of the subsequent results for the S-system
growth and yield model validation and analyses.

Figure 2.5 through Figure 2.7 present plots containing all of the annualized stand
measurement data and of 120 year model projections for 70 randomly selected stands
from the 270 available. Each stand projection was begun using the first stand density,
QMD, and top height measurement for each of the 70 selected stands. The same
70 stands were used for each of these three figures. For each figure, note that the
model projections generally span the envelope defined by the data, remaining within
the envelope, indicating the growth and yield model is capable of representing the
dynamics of Douglas-fir stand development for a wide range of stand conditions.

Figure 2.5 displays the stand density vs. stand age, and represents the number
of trees per hectare surviving. Note the generally good agreement with the data for
initial stand densities less than 2000 TPH. For intermediate stand densities, 1000 TPH
to 2000 TPH and stand ages between 50 and 100 years, the model appears to slightly
underpredict the number of surviving trees, i.e., it overpredicts mortality. This effect
is predominantly influenced by three factors. First, there are large scale factors,
averaging 19.5, involved in converting the number of trees per sample plot to TPH,
so the death of a single measured tree indicates, on average, the death of 20 TPH. So
the loss of multiple trees on a research plot may exaggerate the actual mortality for
the stand which contains it. Second, not all of the trees on the pure (by basal area)
Douglas-fir plots selected are Douglas-fir trees. This may influence the overprediction
of stand mortality due to a higher mortality rate for the tree species other than
Douglas-fir. Third, there are few data available beyond 60 years of age. This influences

the model predictions by giving more weight in the parameter estimation to younger



81

stands which will have a higher mortality rate.

The overprediction of stand mortality should pose little if any operational difficul-
ties for use of the S-system growth and yield model. The mortality overpredictions
generally appear after typical Douglas-fir rotation ages in the Pacific Northwest, which
are from 35 to 50 years [29]. The problem may be corrected by cleaning up the model
calibration data set and augmenting the calibration data set with older Douglas-fir
stands.

Figure 2.6 displays QMD vs. stand age, and represents the net QMD of the sur-
viving trees for each prediction year. Again, note the general agreement between
the model projections and the data for the entire range of QMD values. By approx-
imately age 80, all of the stand projections appear to become parallel, indicating
that they have the same, or nearly the same growth rates. This may be an arti-
fact of the model, or it may be a legitimate repreéentation of Douglas-fir average
diameter growth. The Douglas-fir growth rates eventually approach an asymptote of
approximately 0.2 cm/year. Whether these projections are consistent with old growth
Douglas-fir stands remains to be determined. The existence of the QMD growth rate
asymptote may, however, be considered an emergent feature of the model, that is, it
was not programmed into the model form or structure, but is derived from the data
and implicitly represented within the model [25]. These projections agree well for the
available data, out to a stand age of approximately 80 years.

The constant rate of the projected Douglas-fir QMD growth rates over very long
periods of time should also pose few if any operational difficulties for using the S-
system growth and yield model in practice. The constant growth rates occur well
after the typical Douglas-fir rotation ages in the Pacific Northwest, and the model
agrees well with the available data in this range. The constant QMD growth rate
issue may also be resolved by augmenting the model calibration data set with data
from older Douglas-fir stands, and by comparison of model predicted growth rates for

very old Douglas-fir trees.
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Figure 2.5: Predicted TPH wvs. stand age for a 120 year simulation time from the

initial stand ages and measurements for a random sample of 70 of the 270 available
stands.
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QMD vs. stand age
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Figure 2.6: Predicted QMD us. stand age for a 120 year simulation time from the
initial stand ages and measurements for a random sample of 70 of the 270 available

stands.



Figure 2.7 displays the top height vs. stand age, and represents the net dominant
height of the surviving trees. Again, note the general agreement between the model
projections and the data for the entire range of top height values. By approximately
age 80, all of the stand projections appear to be flattening out, which is expected,
indicating that their growth rates are slowing down. This model behavior is also an
emergent property of the Douglas-fir growth and yield model. It was not programmed
into the model form or structure, but is derived from the data and implicitly repre-
sented within the model [25].

The projected Douglas-fir top height growth rates are consistent with expectations,
and agree well with the available data. The top height projections agree very well
with the data, spanning the typical Douglas-fir rotation ages in the Pacific Northwest,
which are from 35 to 50 years [29].

Figure 2.8 and Figure 2.9 present the phase space, or state space, view of the
complete set of annualized stand measurement data and the same 120 year model
projections just described for the 70 randomly selected stands. The phase space or
state space view of the stand measurement data and the 70 growth and yield model
projections allows a visual assessment of the quality of the S-system based model
to be obtained. The S-system model is an autonomous system, and represents the
direction and magnitude of flow from any point in the phase or state space. The state
variable values produced by integrating the model, or those given by the annualized
stand measurement data, then provide a set of stand trajectories following a phase
manifold or surface defined by the S-system growth and yield model, or the biological
system that the model represents. If the phase manifolds defined by the data and the
model] agree, then the data and model agree in all three state variables simultaneously.

In these two figures, time moves from the nearest lower right corner to the left,
up, and into the figure. Key features to note are that the phase surfaces defined by
the data and the model projections both narrow from right to left and up. There

also appears to be a general agreement in the density of points or lines and the slopes
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Figure 2.7: Predicted top height vs. stand age for a 120 year simulation time from the

initial stand ages and measurements for a random sample of 70 of the 270 available
stands.
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for the same general region of the data and model based phase manifolds. Thus, the
stand measurement data and the model projections appear to agree quite well. Notice,
in particular, the twist in the phase surface that is readily apparent for the model
projections, but less so for the data. This twist in the surface represents the biological
phenomenon where trees planted less densely will simultaneously grow more rapidly
in diameter and more slowly in height than like trees at higher stand densities [102].
This is yet another emergent feature of Douglas-fir stand dynamics that is captured
by the S-system growth and yield model, yet was not explicitly programmed into the
model structure [25].

Figure 2.10 through Figure 2.12 provide plots of the three two dimensional phase
or state plane perspectives of the three dimensional phase manifolds. These figures
simply place the stand measurement data and the model projections on the same axes
to provide further evidence for the quality of their agreement. Again, notice that the
model projections generally span the envelope defined by the data and stay within this
envelope for each perspective. These perspective plots indicate the degree of overlap
between the measurement data and the model projections, which was difficult to
achieve if both the data and model projections were combined into a single three
dimensional plot.

The dynamic, stand level S-system model for Douglas-fir growth and yield appears
to perform qualitatively quite well. The parameter estimation procedures produced
consistent results with acceptable variability in the parameter estimates, as indicated
by the bootstrap standard errors. The stand projections produced from the S-system
model as specified by the parameter vector p, have the correct behavior over time, and
agree very strongly with the stand measurement data used to obtain the parameter
values. This initial examination of the model behavior indicates that its projections
are consistent with the stand measurement data. A more thorough validation of the

model using the five criteria outlined in Section 2.6 follows.
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Figure 2.8: TPH, QMD, top height phase manifold derived from the annualized stand
measurement data from the 270 stands. Time moves from the nearest lower right

corner to the left, up, and into the figure. Note in particular the strong agreement
with Figure 2.9.
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Figure 2.9: TPH, QMD, top height phase manifold obtained for a random sample of
70 of the 270 available stands for a 120 year simulation time from their initial stand
ages and measurements. Time moves from the nearest lower right corner to the left,
up, and into the figure. Note in particular the strong agreement with Figure 2.8.
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QMD vs. TPH
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Figure 2.10: QMD us. TPH size density plot obtained for a random sample of 70 of
the 270 available stands for a 120 year simulation time from their initial stand ages
and measurements.
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Top height vs. TPH
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Figure 2.11: Top height vs. TPH size density plot obtained for a random sample of

70 of the 270 available stands for a 120 year simulation time from their initial stand
ages and measurements.
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Top height vs. QMD
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Figure 2.12: Top height vs. QMD plot obtained for a random sample of 70 of the
270 available stands for a 120 year simulation time from their initial stand ages and
measurements.



2.7.1 Residual distribution

Figure 2.13 through Figure 2.15 present the single step or annual yield prediction
based residuals, R}, for stand density, QMD, and top height as a set of histograms
and scatterplots. The residuals are plotted against stand age and initial top height.
Figure 2.16 through Figure 2.18 present the lifetime, cumulative growth or stand
trajectory prediction based residuals, R,,, for stand density, QMD, and top height as
a set of histograms and scatterplots. Again, the residuals are plotted against stand age
and initial top height. Scatterplots of the residuals vs. initial QMD and initial stand
density demonstrated behavior comparable to initial top height and are omitted.
The single step residuals represent the lack of agreement between the actual and
predicted annual changes in a Douglas-fir stand; if the predicted annual yields agree
with the actual annual yields, the simultaneous rates of change for the state variables
are correct with respect to these data. The lifetime residuals represent the lack of
agreement between the actual and predicted stand trajectories, or cumulative growth,
for the Douglas-fir stands; if the predicted stand trajectories agree with the actual
stand trajectories, the evolution of the stand, as represented by the S-system model is
correct with respect to these data. Positive residual values indicate an underprediction
by the Douglas-fir growth and yield model, and negative residual values indicate an
overprediction by the model for each state variable. The residuals for each state
variable are displayed independently for convenience and ease of interpretation, but
they were computed simultaneously: (1) by integrating the growth and yield model
one year for each measurement interval to obtain the single step residuals, and (2) by
integrating the growth and yield model for the available time span for each stand, to
get vield values for each annualized measurement, and obtain the lifetime results.
Neither the single step residuals nor the lifetime residuals contain zero values for
the initial conditions used to obtain the predicted annual yields and predicted stand

trajectories. Any zero residual values are, therefore, actual zero values for the annual
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yields or annualized stand trajectories. Thus, there are 2431 annualized residual
values for each residual computation scenario.

The three residual histograms in Figure 2.13 clearly indicate that the stand density,
QMD, and top height residuals have strongly symmetric distributions. Zero is located
at or near the center, or mode, of each distribution as well. The stand density residual
distribution appears to be slightly left skewed, and the QMD residual distribution
appears to be slightly right skewed, indicating a small bias toward overprediction
and underprediction, respectively, for these state variables by the model. The top
height residual distribution has zero very nearly at its center, indicating that the
prediction of top height is generally unbiased. The distributions of the single step
residual values for the 2431 annualized measurement intervals and for the subset of
968 actual measurement intervals were statistically indistinguishable. Separate t-tests
were performed using a = 0.05 for the annualized and actual stand density, QMD, and
top height residuals, obtaining observed t-values (p-values) of -0.111 (0.456), -0.509
(0.305), and -0.111 (0.456), respectively.

Figure 2.14 and Figure 2.15 also show a generally symmetric distribution of the
stand density, QMD, and top height residuals throughout the range of stand ages and
initial top height values. In particular, for stand ages between 30 and 60 years and
initial top heights between 22 m and 38 m, where the bulk of the stand measurement
data are found, the symmetry of the residuals is very strong, with no obvious trend
toward overprediction or underprediction. For young stands, or stands with small
trees, both QMD and top height appear to be slightly underpredicted, and for older
stands and stands with larger trees, QMD and top height also appear to be slightly
underpredicted. Stand density does not appear to have any readily apparent depar-
tures from symmetry about zero. The underprediction of QMD and top height for
young stands with small trees fast growing trees and for older stands with large trees
is most likely an artifact of the least squares parameter estimation procedure caused

by the under representation of these two stand types in the data set.
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Residuals histograms (single step)
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Figure 2.13: Histograms of residuals for the single step residuals computation scenario
%- The TPH residuals, ¢t = 1, are on top, QMD residuals, i = 2, are in the middle,
and top height residuals, i = 3, are on the bottom.
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Model residuals vS. stand age (single step)
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Figure 2.14: Single step resxduals, R%, vs. stand age. The TPH residuals, ¢ = 1, are

on top, QMD residuals, ¢

= 2, are in the middle, and top height residuals, ¢ = 3, are
on the bottom. The dot density provides an indication of the number of data points.
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Model residuals vs. initial top height (single step)
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Figure 2.15: Single step residuals, Rf,, vs. top height. The TPH residuals, i = 1, are
on top. QMD residuals, i = 2, are in the middle, and top height residuals, i = 3, are
on the bottom. The dot density provides an indication of the number of data points.
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The three residual histograms in Figure 2.16 also clearly indicate that the stand
density, QMD, and top height residuals have strong symmetric distributions, though
with a wider range than for the single step residuals. Zero is located at or near the
center, or mode, of each distribution as well. The stand density residual distribution
may be slightly right skewed, indicating a small bias toward underpredicting stand
density. The top height residual distribution also appears to be slightly right skewed,
indicating a small bias toward underprediction of top height by the model. The
QMD residual distribution has zero very nearly at its center, indicating that the
prediction of QMD is generally unbiased. The distributions of the lifetime residual
values for the 2431 annualized stand measurements and for the subset of 968 actual
stand measurements were statistically indistinguishable. Separate two-sided ¢-tests
were performed using a = 0.05 for the annualized and actual stand density, QMD,
and top height residuals, obtaining observed t-values (p-values) of -1.41 (0.079), 0.965
(0.167), and 0.144 (0.443), respectively. The stand density residuals were almost
significantly different at this a-level. This seems to be related to the magnitude of
the residual values, small differences in the residual distributions near zero, and the
large sample size which can exaggerate small differences.

Figure 2.17 and Figure 2.18 also show a generally symmetric distribution of the
stand density, QMD, and top height residuals throughout the range of stand ages and
initial top height values. In particular, for stand ages between 30 and 60 years and
initial top heights between 22 m and 38 m, where the bulk of the stand measurement
data are found, the symmetry of the residuals is very strong, with no obvious trend to-
ward overprediction or underprediction. For young stands, both QMD and top height
appear to be slightly underpredicted, but for older stands they may be overpredicted,
when plotted against stand age, but may be underpredicted when plotted against
initial top height. For stands with smaller trees, QMD is slightly underpredicted and
top height appears symmetric about zero, whereas stands with larger trees, QMD

appears to be symmetric about zero and top height appears to be underpredicted.
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Stand density, again, does not appear to have any readily apparent departures from
symmetry about zero. Also apparent from these two figures is that stand trajectories
which disagree initially tend to continue to disagree, as evidenced by the tendrils
trending away from the central bulk of the residuals. Notice, however, that some of
the tendrils appear to be flattening, or curving toward zero, giving an indication that
although the model and data were initially different, they may be coming into better
agreement.

The single step and lifetime residuals have been shown to be essentially symmetri-
cally distributed about zero, indicating that the S-system Douglas-fir growth and yield
model is essentially unbiased, whether predicting annual growth or stand trajectories.
The single step and lifetime residuals have also been shown to be generally symmet-
rically distributed throughout the range of stand ages and initial top height values,
reinforcing the fact that the growth and yield model is generally unbiased. There were
no visible differences in the residual distributions when histograms of residuals for the
actual measurement data were compared to histograms of the augmented annualized
measurement data set. Further, the largest value of the differences in absolute rela-
tive frequency between the residuals for the actual and annualized data sets was only
2%, indicating a good overall agreement in the residual distributions. Finally, the
remaining residual scatterplots will use top height as the z-axis, because the residual

distributions through the ranges of stand age and top height are generally similar.

2.7.2 Residual statistics

Standard statistical summaries for the single step and lifetime residuals are presented
in Table 2.5 and Table 2.6. The single step average residuals for stand density, QMD,
and top height are 3.43 TPH, 0.013 cm, and 0.043 m, with standard deviations of
25.26 TPH, 0.28 cm, and 0.26 m, respectively. The stand density mean residual
and standard deviation are 0.18 and 1.30, respectively, when considered in terms of

measured trees, obtained by dividing by 19.5. The lifetime average residuals for stand
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Residuals histograms (lifetime)

1500 ] L3} T 1] 1 3 T ] 1 L
&= 10001 -
p=}
o
O 5ok J
0 2 1 e 1 1
-1000 -800 -600 -400 -200 0 200 400 600 800 1000
TPH residual
1000 L] l 1 1 1} LB )
g
[<} 500 - -
(&)
0 L :
-8 -6 -4 -2 0 2 4 6 8
QMD residual (cm)
1000 ] 1 1] ] ] ]
g
Q 500 o -
(&]
0 L )
-8 -6 -4 -2 ] 2 4 6 8

Top height residual (m)

Figure 2.16: Histograms of residuals for the lifetime residuals computation scenario

R!;,. The TPH residuals, i = 1, are on top, QMD residuals, i = 2, are in the middle,
and top height residuals, 1 = 3, are on the bottom.
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Model residuals vs. stand age (lifetime)
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Figure 2.17: Lifetime residuals, R.,,, vs. stand age. The TPH residuals, i = 1, are on
top. QMD residuals, ¢ = 2, are in the middle, and top height residuals, : = 3, are on
the bottom. The dot density provides an indication of the number of data points.
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Model residuals vs. initial top height (lifetime)
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Figure 2.18: Lifetime residuals, R, vs. top height. The TPH residuals, ¢ = 1, are
on top, QMD residuals, i = 2, are in the middle, and top height residuals, i = 3, are
on the bottom. The dot density provides an indication of the number of data points.



density, QMD, and top height are 12.85 TPH, -0.059 cm, and 0.093 m, with standard
deviations of 151.88 TPH, 1.49 cm, and 1.44 m, respectively. The stand density mean
residual and standard deviation are 0.66 and 7.79, respectively, when considered in
terms of measured trees, obtained by dividing by 19.5.

The mean residual values for QMD and top height are significantly less than one
unit for both the single step and lifetime residuals, indicating that the Douglas-fir
growth and yield model is accurately predicting the average tree sizes for both sce-
narios. For stand density, the per tree average residuals are within a single tree and
the per hectare average residuals are on the order of the average scale factor used to
convert sample plots to a hectare basis, indicating that the growth and yield model
is also accurately predicting stand density for the available data. The zero centered
symmetric distributions of the single step and lifetime mean residuals provides strong
evidence for the quality of the model specification: it is accurate both at the calibra-
tion time step of one year and for longer time spans, though the variability increases
for the longer time spans.

The precision of the Douglas-fir growth and yield model may be assessed by com-
paring the variation of the single step and lifetime residuals with the variation in
the state variables that were predicted. The variation comparisons are performed by
taking the ratios of the single step or lifetime standard deviations and the standard
deviations of the state variables. These ratios may be interpreted as the percentage of
variation in the data not accounted for by the model. The single step ratios of stan-
dard deviations are 0.030, 0.031, and 0.026 for stand density, QMD, and top height,
respectively, indicating that only two to three percent of the variation in the data is
not accounted for by the model. The lifetime ratios of standard deviations are 0.179,
0.165, and 0.145 for stand density, QMD, and top height, respectively, and indicate
that 14% to 18% of the variation in the data is not accounted for by the model. These
results indicate that the Douglas-fir growth and yield model is generally precise as

well as accurate.
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Table 2.5: Single step residuals summary for TPH, QMD, and top height. This
summary indicates the ability of the S-system growth and yield model to predict
Douglas-fir stand annual growth. *"MAD is mean absolute deviation.

TPH QMD | Top height
residual residual residual

Mean 3.434473 | 0.013365 0.042838
Standard deviation 25.261141 | 0.283599 0.260188
Minimum -104.740336 | -0.952858 | -0.703518
Median 6.138521 | -0.026796 0.032630
Maximum 88.993298 | 1.312038 1.415023
MAD* 17.956016 | 0.217416 0.209471
Number of points 2431 2431 2431

An interesting characteristic of the single step and lifetime residuals may be ob-
tained by examining the ratios of the residual standard deviations for the two residual
scenarios. Let the single step residual standard deviations be given by s;, and the
lifetime residual standard deviations be given by s;, ¢ = 1,2,3. Then, the ratio values
sit/sis are: 6.01, 5.32, and 5.54 for stand density, QMD, and top height respectively.
These large ratios are all statistically significant for @ = 0.05 when squared, repre-
senting an F-statistic [7, 172], but the differences in variability cannot be explained
in terms of the numerical integration and the time spans involved alone. A possible
interpretation of these ratios is given in Section 2.8.

Comparisons of the standard normal distribution with the single step and lifetime
stand density, QMD, and top height residuals are presented in Table 2.7 and Table 2.8,
respectively. The tables compare the normal probabilities P(|z| < m), with the
single step residual proportions f’(lRfkl < ms;,s) and the lifetime residual proportions
f’([R’,—kJ < msy), t =1,2,3, and m =0.5,1.0,1.5,2.0,3.0. These comparisons permit
an assessment of the amount of information potentially remaining in the residuals
[21], from the perspective that a standard normal distribution is considered to be
random noise, that is indicative of a totally random process with a mean of zero.

An examination of Table 2.7 indicates that the single step stand density residuals
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Table 2.6: Lifetime residuals summary for TPH, QMD, and top height. This summary
indicates the ability of the S-system growth and yield model to predict Douglas-fir

stand yield, or cumulative growth or stand trajectories. *MAD is mean absolute
deviation.

TPH QMD | Top height
residual residual residual

Mean 12.849642 | -0.059423 0.092699
Standard deviation | 151.881722 | 1.491796 1.442787
Minimum -928.280003 | -7.683184 | -7.489693
Median 15.212011 | -0.057689 0.157809
Maximum 770.522952 | 7.138518 5.444309
MAD" 91.275177 | 1.052275 1.023427
Number of points 2431 2431 2431

and QMD residuals have greater than expected proportions near zero, for m = 0.5, 1.0,
and 1.5, but slightly heavier tails, indicated by the reversal of this relationship for
m = 2.0,3.0. The top height residual proportions very closely resemble the normal
probabilities for this table. This is likely a result of the fact that most of the tree
heights used to compute the top height values were estimated from height diameter
relationships. An examination of Table 2.8 indicates that the lifetime stand density
residuals, QMD residuals, and top height residuals have greater than expected propor-
tions near zero than would be expected given a normal distribution for m = 0.5,1.0,
and 1.5, but, again, slightly heavier tails, indicated by the reversal of this relationship
for m = 2.0, 3.0.

The stronger central tendency of the single step and lifetime model residuals rela-
tive to the normal distribution provides additional evidence that the S-system growth
and yield model captures the essential characteristics of Douglas-fir stand dynamics.
Further, this comparison reinforces the conclusions that the S-system growth and
yield model is both accurate as well as precise. Given this comparison, the resid-
uals are essentially random noise, and it is, therefore, unlikely that any additional

improvement in the performance of the model will be possible with this data set and
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Table 2.7: Single step residuals comparison with standard normal distribution. Values
represent the probability, or proportion, of residuals in the range 0+ m for the normal
distribution, and 0 £ ms;,, i = 1,2, 3, where s;, is the standard deviation of the stand
density, QMD, or top height single step residuals, respectively.

N(0,1) TPH QMD top height
m__| P(lz| Sm) | P(IR],| < msi,) | P(I1R| < msa,) | P(IRS| < mss,)
0.5000 0.3829 0.4768 0.4192 0.3797
1.0000 0.6827 0.7491 0.7408 0.6565
1.5000 0.8664 0.8717 0.8762 0.8601
2.0000 0.9545 0.9325 0.9486 0.9609
3.0000 0.9973 0.9856 0.9881 0.9979

Table 2.8: Lifetime residuals comparison with the standard normal distribution. Val-
ues represent the probability, or proportion, of residuals in the range 0 + m for the
normal distribution, and 0 + msy, 1 = 1,2, 3, where s; is the standard deviation of

the stand density, QMD, or top height lifetime residuals, respectively.

N(0,1) TPH QMD top height

m__| P(lz| Sm) | P(IR{k| < msu) | P(IRY] < msu) | P(IRY,| < msa)
0.5000 0.3829 0.6059 0.5208 0.4977
1.0000 0.6827 0.8145 0.7483 0.7470
1.5000 0.8664 0.9120 0.8717 0.8791
2.0000 0.9545 0.9457 0.9350 0.9412
3.0000 0.9973 0.9786 0.9893 0.9864
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this model formulation.

2.7.8 Residual correlations

In Figure 2.19 through Figure 2.21 the single step stand density, QMD, and top height
residuals are plotted against initial top height along with the simple linear regression
line for each set of residuals. A 51 point moving average with plus or minus two
moving standard deviations is also plotted to provide an empirical 95% confidence
interval for each set of residuals. These figures are representative of the residual plots
for the other independent variables appearing in Table 2.9 through Table 2.11. Note
in particular that in each of these figures the value y = 0 is contained within the
confidence interval defined by the moving average and twice the moving standard
deviation, indicating an overall lack of bias in the model predictions. Also notice that
the line fits are all more or less horizontal. The QMD and top height figures show
a slight U-shaped structure in their respective residuals. This may be explained, in
large part, by the fact that the majority of the data lie between top heights of 22 m
and 38 m, and hence the agreement should be better within this interval than outside
it, as is the case. The nearly horizontal moving average within this range of top
height values supports this conclusion, though, on average, the model does slightly
overestimate QMD and top height within this range.

Table 2.9 through Table 2.11 provide simple linear regression coefficients and r?
values for standardized single step stand density, QMD, and top height residuals for
the independent variables: initial stand age, final stand age, initial TPH, initial QMD,
initial top height, site index, and elevation. The slopes and intercepts for the simple
linear regressions should have nominal values of @ = 0 and b = 0, indicating that there
is no trend and no bias, and the r? values should have nominal values of zero, r? = 0,
indicating that there is no correlation between the standardized residuals and each of
the independent variables. Regression intercept values within the range 0 &1 will be

considered acceptable, that is effectively zero. since they indicate that the regression
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intercept falls within one standard deviation of zero. Given the sample size, all of the
simple linear regression coefficients are statistically significant for & = 0.05, but what
must be determined is the relevance of the values obtained [6, 64, 145, 172]. Thus,
table values which are noticeably different from zero need to be explained.

Consider first the simple linear regression intercept values b. Almost all of the
intercept values are within the interval —1 < b < 1, and most of the values are actually
in the much smaller interval —0.50 < b < 0.50. Thus, most of the regression lines
pass near the origin, z = 0 and y = 0. The notable exceptions are for the independent
variable site index and the three sets of residuals, and the initial and final stand ages
for top height and possibly QMD. Only the initial stand age will be considered, as the
results are essentially identical for the final stand age. The regression line intercepts
for site index have values of 1.2, -2.1, and -3.2 for the TPH, QMD, and top height
residuals, respectively. The regression line intercepts for initial stand age have values
of 0.65, and 1.01 for the QMD, and top height, residuals respectively. Thus, these
intercept values may indicate that site index and stand age have relevant relationships
with the single step model residuals.

Consider the simple linear regression slope values a for the single step residuals.
Almost all of these values are in the interval —0.05 < a < 0.05, and indicate that
the regression lines are almost all horizontal. The notable exceptions occur for the
independent variable site index, with the QMD and top height slopes having values
of 0.06 and 0.10, respectively. The TPH slope for the independent variable site index
has a value of -0.03, and is the only slope for the standardized TPH residuals having
a magnitude greater than 0.01. So again, site index may have a relevant relationship
with one or more of the sets of single step model residuals.

Finally, consider the coefficients of determination, or r? values, which indicate the
strength of a straight line relationship between the residual values and the independent
variables. Values of r? near one indicate a strong linear relationship exists, and values

near zero indicate that no linear relationship exists. Most of the r? values are in the
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interval 0 < r? < 0.05, indicating that there is effectively no linear relationship
between the residuals and the independent variables. The notable exceptions are for
the independent variables site index and initial stand age and for the QMD and top
height residuals. The r? values of interest for site index are 0.12 and 0.30, for the
QMD and top height residuals, respectively. The r? values of interest for initial stand
age are 0.07 and 0.14, again for QMD and top height, respectively. Yet again, site
index and initial stand age are indicated as potentially having a relationship, though
a very weak one, with the single step residuals.

Site index and initial stand age have both been identified as being potentially
having linear relationships with the single step residuals from the Douglas-fir growth
and yield model. There are three reasons that these variables appear to stand out
in this analysis. First, the Douglas-fir stand measurement data set contains a small
subset of stands, approximately 20%, that are young and growing very rapidly, and a
larger data set of older stands growing more slowly. The growth on the young stands
is consistently underestimated, giving their residuals a large amount of leverage in the
simple regression analyses. Second, the majority of site index values, approximately
70%, fall within the rather limited range of 33 m to 40 m, but span a range from
17 m to 46 m. The residuals follow a predictable pattern relative to site index,
overestimating for lower site index values and underestimating for higher site index
values. Thus, the residuals for the site index values outside the range of 33 m to 40 m
also have a significant amount of leverage in the simple linear regression analyses.
Third, and compounding the first two reasons, the young fast growing stands are
nearly all within the upper portion of 33 m to 40 m site index range, and thus exert
significant leverage in the simple linear regression analyses.

Given the large amount of leverage exercised by a relatively small subset of the
stand measurement data, and the generally weak linear relationships discovered, it
seems reasonable to conclude that the single step residuals are generally uncorrelated

with site index and stand age. The fact that the single step residuals appear to be
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Table 2.9: Single step standardized TPH residual line fits and r? values. Regression
coefficients are for the model y = az +b applied to the standardized TPH residuals for
each z variable. Valuesof @ = 0 and b = 0 imply that there is not a linear relationship

or bias, and r? = 0 implies a lack of correlation with the z variable.

b

2

T a r

Initial stand age (years) | 0.007636 | -0.157956 | 0.017415
Final stand age (years) | 0.007636 |-0.165592 | 0.017415
Initial TPH -0.000036 | 0.183172 | 0.000956
Initial QMD (cm) 0.009937 | -0.077634 | 0.008364
Initial top height (m) 0.003615 | 0.045904 -| 0.001332
Site index (m) -0.031256 | 1.226326 | 0.030899
Elevation (m) 0.000655 | -0.165437 | 0.034084

uncorrelated with the majority of the other independent variables used in the simple
linear regression analyses lends credence to this conclusion as well. Thus, the Douglas-
fir growth and yield model again appears to perform well, predicting annual growth,
with generally small residuals, as evidenced by the single step residual analyses.
The regression coefficients obtained for the standardized residuals may be con-
verted into the original residual units by multiplying by the appropriate residual
standard deviation from Table 2.5. For example, to convert the standardized QMD
—0.013513 and b = 0.383773 into centimeters,
multiply them by s;, = 0.283599 obtaining a = —0.003832 and b = 0.108838, the

residual regression coefficients a =

values obtained for the least squares line in Figure 2.20.

The lifetime stand density, QMD, and top height residuals plotted against initial
top height appear in Figure 2.22 through Figure 2.24, respectively, along with the
simple linear regression line for each set of residuals vs. initial top height. A 51
point moving average plus or minus twice the moving standard deviation is also
plotted to provide an empirical 95% confidence interval for the mean residuals. These
figures are representative of the residual plots for the other independent variables
appearing in Table 2.12 through Table 2.14. Note in particular that in each of these
figures that y = 0 is contained within the confidence interval defined by the moving
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TPH residuals vs. initial top height (single step)
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Figure 2.19: Single step TPH residuals, R}, vs. top height. The figure also includes
the least squares line and the 51 point moving average + twice the moving standard
deviation. Regression coefficients for the model y = az + b applied to these data
yields the model y = 0.091316z + 1.159594 with r?= 0.001332. See Table 2.9 for the
other linear regression coefficients and residual r? values.
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QMD residuals vs. initial top height (single step)
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Figure 2.20: Single step QMD residuals, R.,,, vs. top height. The figure also includes
the least squares line and the 51 point moving average + twice the moving standard
deviation. Regression coefficients for the model y = az + b applied to these data
yvields the model y = 0 —0.003832z + 0.108838 with r>= 0.018608. See Table 2.10 for
the other linear regression coefficients and residual 72 values.
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Top height residuals vs. initial top height (single step)
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Figure 2.21: Single step top height residuals, R},,, vs. top height. The figure also
includes the least squares line and the 51 point moving average + twice the moving
standard deviation. Regression coefficients for the model y = az + b applied to these
data yields the model y = —0.003107z + 0.120234 with r?= 0.014528. See Table 2.11
for the other linear regression coefficients and residual r? values.
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Table 2.10: Single step standardized QMD residual line fits and r? values. Regression
coefficients are for the model y = az + b applied to the standardized QMD residuals
for each z variable. Values of a = 0 and b = 0 imply that there is not a linear
relationship or bias, and r? = 0 implies a lack of correlation with the r variable.

T a b r?
Initial stand age (years) | -0.015705 | 0.651607 | 0.073664
Final stand age (years) | -0.015705 | 0.667312 | 0.073664
Initial TPH -0.000156 | 0.252920 | 0.018169
Initial QMD (cm) -0.005573 | 0.166914 | 0.002631
Initial top height (m) -0.013513 | 0.383773 | 0.018608
Site index (m) 0.061473 | -2.097380 | 0.119523
Elevation (m) -0.000252 | 0.163574 | 0.005180

Table 2.11: Single step standardized top height residual line fits and r? values. Re-
gression coefficients are for the model y = az + b applied to the standardized top
height residuals for each z variable. Values of @ = 0 and b = 0 imply that there is
not a linear relationship or bias, and r? = 0 implies a lack of correlation with the z

variable.

T a b r?
Initial stand age (years) | -0.021868 | 1.006312 | 0.142816
Final stand age (years) | -0.021868 | 1.028180 | 0.142816
Initial TPH -0.000164 | 0.381394 | 0.020156
Initial QMD (cm) -0.012589 | 0.435242 | 0.013425
Initial top height (m) -0.011940 | 0.462103 | 0.014528
Site index (m) 0.097070 | -3.221717 | 0.298032
Elevation (m) -0.000759 | 0.510776 | 0.046829
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average and twice the moving standard deviation. This indicates an overall lack
of bias in the model predictions. Also notice that the line fits are all more or less
horizontal. The QMD and top height figures show a similar U-shaped structure to
the single step residuals, though it is less pronounced due to the greater range in the
residual values. This U-shape may also be explained in large part by the fact that
the majority of the data lie between top heights of 22 m and 38 m, and hence the
agreement should be better within this interval than outside it, as is the case. Further
complicating the interpretation of these residuals is the fact that the calibrating data
set contains both planted stands and naturally regenerating stands which may have
different growth characteristics. The nearly horizontal moving average within this
range of top height values supports this conclusion, though, on average, the model
does slightly overestimate QMD and top height within this range.

In general, the lifetime residuals indicate that stands having strong initial agree-
ment with the measured stand trajectories continued to have a strong agreement
throughout the projection. Similarly, stands which did not have strong initial agree-
ment with the actual trajectories tended to continue to disagree. This explains the
tendrils that may be seen in the three lifetime residual figures moving away from the
z-axis. The increasing trend of top height underprediction seen in Figure 2.24 is most
likely a result of the lack of data for stands with larger trees to help calibrate the
model. There were very few stands having a top height greater than 38 m, only about
10% of the available data. This lack of data for stands with large trees combined with
the Chapman-Richards decay term for top height may cause height growth to slow
somewhat prematurely.

The top height growth slowdown is then compounded by the integration process
for successive measurements, increasing the top height underestimation. Other fac-
tors which may be influencing this result are the stands whose composition is not
predominantly Douglas-fir by number of stems, which could have an effect through
the coupling of QMD and top height. The top height underestimation may also be
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due to properties of the stands involved, e.g., some of them may have been thinned
or fertilized at some point in their pre-measurement history. Finally, the top height
underestimation may be an artifact of the height estimation process used to fill in
unmeasured tree heights. Further investigation into the nature of the top height un-
derestimation is necessary. The fact that the QMD residuals do not show a similar
trend to the top height residuals for large trees lends some credence to the idea that
the slowdown is not simply due to the Chapman-Richards decay term formulation.
However, as will be seen shortly, long term top height projections fall within the ex-
pected range of values, and well within the maximum observed sizes for Douglas-fir
trees.

Table 2.12 through Table 2.14 provide simple linear regressions and r? values for
standardized lifetime stand density, QMD, and top height residuals for the indepen-
dent variables: initial stand age, final stand age, initial TPH, initial QMD, initial
top height, site index, and elevation. The slopes and intercepts for the simple linear
regressions should have nominal values of ¢ = 0 and b = 0, indicating that there is
no trend and no bias, and the r? values should have nominal values of zero, r2 = 0,
indicating that there is no correlation between the standardized residuals and each of
the independent variables.

There were no surprises in the simple linear regression residual analyses of the
standardized lifetime residuals. Site index and stand age were again identified as
potentially having relevant correlations, but were dismissed for the same reasons as

in the single step analyses, a high degree of leverage.

2.7.4 Predicted vs. actual values

Predicted stand density, QMD, and top height for the lifetime, or stand trajectory,
scenario, Yix,, 1 = 1,2, 3, are plotted against their actual values in Figure 2.25 through
Figure 2.27, respectively. The figures also contain the simple linear regression lines

and a 51 point moving average + twice the moving standard deviation. There is
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TPH residuals vs. lnltlal top height (lifetlme)
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Figure 2.22: Lifetime TPH residuals, R};,, vs. top height. The figure also includes

the least squares line and the 51 point moving average + twice the moving standard
deviation. Regression coefficients for the model y = az + b applied to these data
yields the model y = 0.040187z + 11.848495 with r2= 0.000007. See Table 2.12 for
standardized linear regression coefficients and residual 2 values.
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QMD residuals vs. lnmal top height (Ilfetlme)
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Figure 2.23: Lifetime QMD residuals, R}, vs. top height. The figure also includes
the least squares line and the 51 point moving average + twice the moving standard
deviation. Regression coefficients for the model y = az + b applied to these data
vields the model y = —0.002124z + 0.006502 with r2= 0.000207. See Table 2.13 for
standardized linear regression coefficients and residual r? values.
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Top height residuals vs. initial top height (lifetime)
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Figure 2.24: Lifetime top height residuals, R.,,, vs. top height. The figure also
includes the least squares line and the 51 point moving average + twice the moving
standard deviation. Regression coefficients for the model y = az + b applied to these
data yields the model y = 0.001482z + 0.055768 with r>= 0.000108. See Table 2.14
for standardized linear regression coefficients and residual r? values.
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Table 2.12: Lifetime standardized TPH residual line fits and r? values. Regression
coefficients are for the model y = az +b applied to the standardized TPH residuals for
each z variable. Values of ¢ = 0 and b = 0 imply that there is not a linear relationship
or bias, and r? = 0 implies a lack of correlation with the z variable.

T a b r?
Initial stand age (years) | 0.007447 | -0.202011 | 0.016561
Final stand age (years) | 0.007447 | -0.209457 | 0.016561
Initial TPH 0.000143 | -0.104195 | 0.015292
Initial QMD (cm) 0.002288 | 0.035427 | 0.000443
Initial top height (m) 0.000265 | 0.078011 | 0.000007
Site index (m) -0.037023 | 1.376174 | 0.043354
Elevation (m) 0.000676 | -0.223053 | 0.036196

Table 2.13: Lifetime standardized QMD residual line fits and r? values. Regression
coefficients are for the model y = az + b applied to the standardized QMD residuals
for each z variable. Values of a = 0 and b = 0 imply that there is not a linear
relationship or bias, and r? = 0 implies a lack of correlation with the z variable.

T a b r?
Initial stand age (years) | -0.012966 | 0.459230 | 0.050212
Final stand age (years) |-0.012966 | 0.472196 | 0.050212
Initial TPH -0.000196 | 0.219186 | 0.028783
Initial QMD (cm) 0.008686 | -0.226538 | 0.006391
Initial top height (m) -0.001424 | -0.004358 | 0.000207
Site index (m) 0.072730 | -2.577058 | 0.167307
Elevation (m) -0.000233 | 0.062391 | 0.004410
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‘Table 2.14: Lifetime standardized top height residual line fits and r? values. Regres-
sion coefficients are for the model y = az + b applied to the top height residuals for
each z variable. Values of a = 0 and b = 0 imply that there is not a linear relationship
or bias, and r? = 0 implies a lack of correlation with the z variable.

z a b r?
Initial stand age (years) | -0.019098 | 0.799322 | 0.108931
Final stand age (years) |-0.019098 | 0.818420 | 0.108931

Initial TPH -0.000166 | 0.283958 | 0.020709
Initial QMD (cm) 0.000296 | 0.057881 | 0.000007
Initial top height (m) 0.001027 | 0.038653 | 0.000108
Site index (m) 0.102415 | -3.508560 | 0.331755
Elevation (m) -0.000547 { 0.307332 | 0.024358

clearly a very strong one-to-one linear relationship represented by the data in these
figures. From the figures it is apparent that the majority of the data points are
symmetrically distributed about the regression lines and generally remain within the
confidence intervals defined by the 51 point moving averages and standard deviations.
This, yet again, indicates the quality of the S-system based Douglas-fir growth and
yield model. No figures are presented for the single step predicted stand density,
QMD, and top height values since the data, the regression lines, and the moving
averages + twice the standard deviations all overlapped, obscuring each other. No
initial stand values were used in the simple linear regression analyses, nor are any
plotted in the figures.

For each of the figures, note in particular that the widening of the confidence
intervals occurs where there is the smallest amount of data: for very high stand
densities and for stand with larger trees. The TPH and QMD moving averages track
the regression line extremely well throughout the range of the data. The top height
moving average tracks the regression line well until a top height of approximately 38 m,
where it then begins to fall below the regression line, indicating an underprediction
by the growth and yield model. This is also where the confidence interval widens due

to a lack of data for stands with larger trees. This underestimation in top height for
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stands having a top height greater than 38 m was already identified in the lifetime
residuals analysis as being largely data dependent: the lack of data for stands did not
permit an adequate calibration for this range of top height values.

The coefficients for the simple linear regressions of the predicted vs. actual values
and their corresponding r? values are presented in Table 2.15 and Table 2.16 for the
lifetime and single step scenarios, respectively. Nominal values for the simple linear
regression coefficients are a = 1 for the slopes and b = 0 for the intercepts, indicating
a strong one to one, unbiased, linear relationship. Nominal values of r? = 1 further
indicate a strong linear relationship with little variability.

The lifetime predicted vs. actual simple linear regression coefficients and r? values
indicate that the predicted stand trajectories are in very good agreement with the
actual stand trajectory data. Slope values for the lifetime predicted vs. actual values
are 0.9756, 0.9835, and 0.9964 for stand density, QMD, and top height, respectively.
All three values are very close to the nominal value a = 1. Intercept values for
the lifetime predicted vs. actual values are 18.683 TPH, 0.426 cm, and -0.001 m for
stand density, QMD, and top height. The top height intercept value is exceptionally
good, being almost zero. The QMD intercept value is also quite good, being within
half a centimeter of zero. The TPH intercept may seem large at first, but when
converted into measured trees, dividing by the average scale factor 19.5, it is within
one measured tree of zero, and is seen to be quite good. The lifetime predicted vs.
actual r? values are all in excess of 0.960, indicating very strong one-to-one linear
relationships with little variation about the line.

The single step predicted vs. actual simple linear regression coefficients and 72
values indicate that the predicted annual growth is in excellent agreement with the
actual stand measurement data. Slope values for the single step predicted vs. actual
values are 1.0001, 1.0006, and 1.0003 for stand density, QMD, and top height, re-
spectively, and are all very close to the nominal value a = 1. Intercept values for the

single step predicted vs. actual values are -3.587 TPH, -0.027 cm, and -0.110 m for
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Predicted TPH vs. actual TPH (lifetime)
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Figure 2.25: Lifetime predicted TPH, f’ik,, vs. actual TPH, Yjx,. The figure also
includes the least squares line and the 51 point moving average + twice the moving
standard deviation. Regression coefficients for the model y = ar + b applied to these
data yields the model y = 0.975642z + 18.682689 with r2= 0.968202. See Table 2.15

for the other lifetime linear regression coefficients and r? values, and Table 2.16 for
the single step coefficients and r? values.
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Predicted QMD vs. actual QMD (lifetime)
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Figure 2.26: Lifetime predicted QMD, f’gk,, vs. actual QMD, Yak,. The figure also
includes the least squares line and the 51 point moving average + twice the moving
standard deviation. Regression coefficients for the model y = az + b applied to these
data yields the model y = 0.983479z + 0.425565 with r?= 0.972990. See Table 2.15

for the other lifetime linear regression coefficients and r? values, and Table 2.16 for
the single step coefficients and r? values.
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Predicted top height vs. actual top height (lifetime)
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Figure 2.27: Lifetime predicted top height, f’},k,, vs. actual top height, Y3;,. The
figure also includes the least squares line and the 51 point moving average + twice
the moving standard deviation. Regression coefficients for the model y = az + b
applied to these data yields the model y = 0.983479z — 0.001399 with r?= 0.979312.
See Table 2.15 for the other lifetime linear regression coefficients and r? values, and
Table 2.16 for the single step coefficients and r? values.
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Table 2.15: Lifetime predicted vs. actual line fits and r2 values. Regression coefficients
are for the model y = az+b applied to the predicted state variable values, Yi,, vs. the
actual state variable values, Y;i,. Values of @ = 1 and b = 0 imply that there is strong
one-to-one linear relationship and no bias, and r? = 1 implies a strong correlation

between the predicted and actual values. See Table 2.16 for the single step coefficients
and r? values.

State variable a b r?

TPH 0.975642 | 18.682689 | 0.968202
QMD (cm) 0.983479 | 0.425565 | 0.972990
Top height (m) | 0.996432 | -0.001399 | 0.979312

stand density, QMD, and top height. The QMD and top height intercept values are
exceptionally good, being within one tenth of a unit of zero. The TPH intercept is
also quite good, and when converted into measured trees, by dividing by the scale
factor 19.5, it is well within one measured tree of zero, and also demonstrates excellent
agreement with the measured data. The single step predicted vs. actual r? values are
all in excess of 0.999, indicating exceptionally strong one-to-one linear relationships
with almost no variation about the line.

The predicted vs. actual value simple regression analyses clearly demonstrate the
excellent agreement between the Douglas-fir growth and yield model and the stand
measurement data. The single step results demonstrate that the growth and yield
model correctly predicts annual growth, and the lifetime results indicate that the

model correctly predicts cumulative stand development, or stand trajectories.

2.7.5 Long term simulations

Projections for the stand level Douglas-fir growth and yield model for 150, 300, 1000,
and 1375 years are presented in Table 2.17. Values for the growth and yield model
were taken as the average values of projections for the 270 available stands, beginning
from their initial measurements, and projecting to the desired stand age. The values

used for comparison were obtained from four independent sources [93, 92, 102, 106],
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Table 2.16: Single step predicted vs. actual line fits and 72 values. Regression coef-
ficients are for the model y = az + b applied to the predicted state variable values,
Y, vs. the actual state variable values, Y;.. Values of a = 1 and b = 0 imply that
there is strong one-to-one linear relationship and no bias, and r2 = 1 implies a strong
correlation between the predicted and actual values. See Table 2.15 for the lifetime
coefficients and r? values.

State variable a b r?

TPH 1.000118 | -3.586719 | 0.999120
QMD (cm) 1.000612 { -0.026923 | 0.999022
Top height (m) | 1.002622 | -0.109944 | 0.999328

and represent average values or maximum attained values for the tree sizes at the
specified stand ages. For stand ages of 150 and 300 years, the comparison values
represent average values for DBH and height, not QMD and top height [92]. Stand
density values were generally not obtainable for stands older than 150 years, and the
value for 150 years is only approximate due to the application of normal stocking to
the determination of stand densities [92].

The table clearly indicates the generally good agreement between the S-system
Douglas-fir growth and yield model and the observed data for QMD and top height.
As already indicated, the model may slightly underestimate top height, and that may
be reflected in the table as well. The long term size projections of the growth and
yield model demonstrate that the model does indeed approach asymptotic values for
tree diameter and dominant height that are reasonable, and in particular, values that
are not too large, the projections being less than observed maximum values. The
QMD and top height values predicted by the growth and yield model appear to be in
good agreement with typical tree sizes for Douglas-fir in the Pacific Northwest, which
generally attain maximum diameters of 250 cm to 275 ¢cm and heights of approxi-
mately 85 m [92]. The predicted stand density at 150 years seems reasonable, though
probably a bit low [92]. This is consistent with the assessment that the S-system
growth and yield model over predicts stand mortality. Stand densities for stand ages



Table 2.17: Long term simulation results. Projections for 150, 300, 1000, and 1375
years for the S-system based Douglas-fir growth and yield model. Values in parenthe-
ses were obtained form McArdle and Meyer for ages 150 and 300 [92], Van Pelt for age
1000 [106], and McWirtter for age 1375 [93] as referenced in Oliver and Larson [102],
and are provided for comparison. Values indicated by an asterisk (*) are maximum
observed values. A question mark, ‘?’, indicates that values were not readily available.

Age | QMD (cm) | Top height (m) TPH
150 | 79 (71) 54 (61) 100 (~150)
300 | 138 (165) 61.2 (65.7) 21 (7)
1000 | 345 (520%) 74.6 (1197) 2(M
1375 | 450 (550") 78 (1277) 1(9)

greater than 150 years were not available, but the values listed may be low by a factor
of about five. There were few data beyond a stand age of 80 years used in the model
calibration, so the long term values, particularly for stand density, are only gross
estimates.

To recap, the stand level Douglas-fir growth and yield model has been shown to
be in general agreement with the available stand measurement data. Model projec-
tions generally remained well within the envelope defined by the data. The TPH,
QMD, and top height residuals are symmetrically distributed about zero for both the
single step and lifetime residual computation scenarios. The single step and lifetime
residuals are also generally symmetrically distributed throughout the range of stand
ages and the range of top height values. The statistical summaries of the single step
and lifetime residuals indicate that the standard deviations are small relative to the
average magnitude of the state variables. The simple linear regression and correlation
analysis demonstrated that the single step and lifetime residuals are not correlated
with stand age, initial stand density, initial QMD, initial top height, and elevation
above sea level, but may be mildly correlated with site index. A very strong one-
to-one linear relationship between the predicted and actual state variable values was

also shown, for both the single step and lifetime model integrations. Long term pro-
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jections of the growth and yield model also appeared to produce reasonable values
when compared with values from independent sources.

The stand level Douglas-fir growth and yield model appears to be generally unbi-
ased, and it appears to be both accurate and precise, producing small residuals. The
model also appears to have made very effective use of the data, as indicated by the
lack of correlation with any of the variables considered in the correlation analyses, and
the greater than expected proportion of residuals near zero. These results indicate
that the residuals are effectively random noise, mean zero random errors, and that
no further information will be extractable from them. These results present a very
strong case for the validity of the stand level Douglas-fir growth and yield model,

and demonstrate the power of the S-system modeling framework for dynamic model

extraction.

2.8 Discussion

The stand level, dynamic Douglas-fir growth and yield model has been shown to be in
very good agreement with the available data, capturing the essential characteristics
of stand dynamics in Douglas-fir plantations in the Pacific Northwest, west of the
Cascade Mountains. The model has some surprising characteristics when considered
within the context of current, or typical, growth and yield modeling research and
development. First, the model does not contain site index as a fundamental parameter
to distinguish site quality, yet it is clearly in strong agreement with the data. Second,
although not specifically an objective of developing the dynamic growth and yield
model, the model produces appropriate stand level responses to thinning. Third, the
relative error in the model when projecting stand development is generally quite small
given the simple model representation. Finally, there is a large, and unexpected,
apparent discrepancy in the variability between the single step and lifetime model

residuals, s;, and s, i = 1,2,3, for stand density, QMD, and top height, respectively.
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This apparent discrepancy must be accounted for. Each of these model characteristics

will be addressed in turn.

2.8.1 Whither site indez?

A great deal of effort was expended in an attempt to include site index in the S-
system growth and yield model Equations 2.13 as an exogenous, i.e., nondynamic state
variable, due to its perceived biological relevance. None of these attempts succeeded.
In these attempts, either the S-system exponents became nearly zero, indicating no
site index effect, or a numerical feedback would occur between the S-system exponent
for site index and one or more of the other S-system parameters in each equation.
In this latter situation, though the parameter estimation process would converge
to a solution, the resulting dynamics of the S-system model were not appropriate,
diverging wildly from the expected dynamics when the model was integrated. These
results were somewhat surprising given the widespread use of site index in growth
and yield models, and warrant further discussion with regard to the S-system growth
and yield model.

Site index is generally defined to be the average height of the dominant and codom-
inant trees on a particular site at a specific reference age [24, 65, 153], a breast height
age of 50 years for Douglas-fir [16, 73]. Site index is also assumed to be constant for a
particular location. The top height of a forest stand, i.e., the average diameter of the
100 largest diameter trees per hectare, is considered to be an objective and concise
way of determining site index values [16, 153]. Site index is used as a surrogate for
site quality, e.g., soil characteristics, nutrient status, and climate, to account for the
differences in growth potential for forest stands in different locations [24, 65, 81, 153].
In traditional growth and yield modeling, site index is used as an index, as is stand
age, to differentiate among the possible growth or yield curves that are represented
by a set of regression equations [16, 24, 73, 92, 153]. The role of site index in this

context is to provide a second, fixed, consistent reference point that is used a priori
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to sort the stand measurement data into different classes through a common variable,
which helps the least squares regression procedures used to estimate growth and yield
model parameters.

Scatter plots of the stand density, QMD, and top height residuals for the single
step and lifetime residual computation scenarios are plotted against site index in
Figure 2.28 and Figure 2.29, respectively. There appear to be slight trends in these
residuals. The majority of the site index values, however, fall in the range of 33 m
to 40 m. Within this range, the residuals are generally symmetrically distributed
about zero. The simple linear regression analyses in Section 2.7 indicated only weak
linear relationships for both the single step and lifetime residuals with respect to
site index, with the stronger relationships being a result of the large influence of the
underrepresented extremes.

Top height, as a predictor of site index, provided the largest standardized slope
values and 72 values in the residual regression and correlation analyses, see Table 2.9
through Table 2.11 for the single step results and Table 2.12 through Table 2.14 for the
lifetime results. The unscaled simple linear regression slope coefficients of a = 0.0253
and b = 0.1478 were obtained for the single step and lifetime residuals, respectively.
These indicate 2.53% and 14.78% change per meter of site index, and over the entire
range of site index values amount to approximately 0.737 m and 4.29 m. A site class
is approximately 6 m wide, so over four and one half site classes, the single step top
height residuals are potentially in error by at most 12.3% and the lifetime residuals
are potentially in error by at most 71% of a site class. This latter result is not as bad
as it seems, as will become apparent, due to the large influence on the regression line
of the underrepresented, lower site index values.

Site index is generally perceived to be a fundamental biological parameter of forest
stands, and this is usually its justification for use within growth and yield models
or forest simulation models (5, 24, 65, 94, 153]. This research, and other recent

research, has demonstrated that it is not necessary to include site index explicitly in
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a forest growth and yield model [10, 108, 149, 150, 151, 152]. These models, as well
as the current dynamic, S-system based Douglas-fir growth and yield model are able,
generally, to reproduce the site index values for stands.

Figure 2.30 presents a scatterplot of predicted top height at stand age 55, an
approximate breast height (BH) age of 50, and actual or annualized top heights for
SMC stands that have surpassed a stand age of 55 years versus the historical site
index values associated with each stand by the SMC. The historical site index values
are for a BH reference age of 50 years [16, 73], and a 5 year adjustment was made to
approximately convert the 50 year BH age to stand total age [16]. The predicted top
heights are for the 257 of 270 stands which had initial stand ages less than 55 years,
and were computed by integrating the Douglas-fir growth and yield model from the
initial stand measurement and age to a stand age of 55 years, for an approximate
BH age of 50 years. Actual or annualized top height values for a stand age of 55
years were available for 53 of the 270 Douglas-fir stands. Note the overall agreement
between the S-system model predicted top heights at stand age 55 and the actual
top heights at stand age 55, and their generally linear, and approximately one-to-one
association with the historical site index values.

Of the 53 stands having actual or annualized top height measurements for a stand
age of 55 years there were 51 stands which had initial stand ages less than 55 years.
For these 51 stands r? values were computed to assess the strength of the linear
relationship among the historical site index values, the actual or annualized top height
values, and the S-system predicted top height values. The r? values are 0.8163 for
historical site index vs. actual top height values, 0.7660 for historical site index wvs.
S-system predicted top height values, and 0.9241 for the actual top height values vs.
the S-system predicted top height values. All three of these r? values indicate strong
linear relationships. and it is encouraging that the S-system based Douglas-fir growth
and yield model has a stronger agreement with reality, the actual measurements, than

it does with the historical site index values.
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The largest disagreements between the S-system predicted and historical site index
values appears for site index values between 17 m and 30 m, a subset of the data that
has already been identified as small. Further, these large site index differences, which
appear in the upper left of Figure 2.30 near 35 m, are for stands in the rain shadow
of the Olympic Mountains, or at the highest elevations in the data, greater than
800 m. Neither of these effects were accounted for explicitly in the model, and some
very localized, large deviations are to be expected when considering such a large data
set and region. Given this, the agreement between the predicted top heights and
historical site index values is quite strong, as is the agreement between the predicted
top heights and the actual top heights.

Figure 2.31 presents nonparametric probability density estimates for the predicted
top height values at age 50, actual top height values at age 50, and the historical
site index values [55, 56, 115, 114, 132, 146]. The three density estimates overlap
significantly, particularly those for the S-system predicted top height values at a
stand age of 53, breast height age of 50, and the historical site index values. They
differ only for the lower site index values, as already stated. The density estimate for
stands having actual or annualized top height values for a stand age of 55 appears to
be shifted to the left, relative to the other two density estimates. This is due to the
fact that actual top height values are available only for stands with lower historical
site index values, and hence lower expected top heights. Mean values and standard
deviations (in parentheses) are 34.8 m (5.5 m), 37.7 m (3.7 m), and 33.2 m (5.6 m),
for the historical site index values, the S-system predicted top height values, and the
actual top height values, respectively. The three mean site index values are all clearly
similar, and are representative of the same site class.

The S-system growth and yield model appears to be capable of reproducing site
index without explicitly including site index in the model. This result is quite sur-
prising at first. but upon reflection it becomes clear that the model must be capable

of this feat. The reason is a straightforward consequence of using an autonomous
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system to model the stand dynamics. The S-system model, as an autonomous sys-
tem, captures the essence of the three dimensional phase manifold defined by stand
density, QMD, and top height, and the simultaneous rates of change for these three
state variables. Therefore, the model implicitly includes site index as a component
of the phase manifold. In a sense, the phase manifold is indezed simultaneously by
stand density, QMD, and top height to select the appropriate simultaneous rates of
change for these state variables. Hence, the selection of an initial stand condition
defines the “site curve” that the top height component of the stand trajectory will
take.

This relationship becomes clear with a demonstration of how site index curves
are generally used. Given the age and current top height of a stand, the site index
is determined by finding the site index curve that passes through that age and top
height, projected out to the reference age. A stand at the same age and having a
larger top height would yield a higher site index value. Similarly, a smaller top height
would yield a smaller site index value. The key concept is that from a given age
and top height, the top height of a stand is projected into the future or the past to
obtain the site index value. Thus, site index curves provide a family of curves indexed

by age and top height that are used as an essentially dynamic model of top height

development over time.

2.8.2 Thinning response

Most managed stand growth and yield models have an independent set of equations
that are used to modify the initially predicted growth based upon treatments that
may have been applied to the stand, e.g., thinning or fertilization [5, 36, 58, 94, 153].
The S-system based Douglas-fir growth and yield model does not explicitly include
fertilization or thinning effects on stand dynamics. Changes in growth rates due to
fertilization effects must be added to the model, if desired, since they affect the soil

characteristics and hence the growth directly, and may be represented as modifications
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Model residuals vs. site index at 50 years (single step)
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Model residuals vs. site index at 50 years (lifetime)
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S-system and actual top height vs. historical site index
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values and the actual top height values.



137

Nonparametric density estimates for site index and top height
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Figure 2.31: Nonparametric probability density estimates for the S-system predicted
top height values, the actual top height values, and the historical site index values.
There is a generally strong agreement among these three distributions, particularly
the predicted top heights and the historical site index values.
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of site index. Changes in growth rates due to thinning effects, however, do not appear
to need explicit inclusion in the S-system model. The S-system based Douglas-fir
growth and yield model appears to automatically account for changes in growth rates
due to thinning. Again, as for site index, this is a result of the fact that the S-system
model represents simultaneously the phase manifold for stand density, QMD, and top
height.

Figure 2.32 through Figure 2.34 present model predictions for three thinned plots
in a single Douglas-fir stand from the SMC database. The three plots had widely vary-
ing initial stand densities and thinning levels. The thinnings on each plot were trig-
gered by reaching specified relative density values [28]. The plots were then thinned
to lower relative density values, with the relative density changes being indicative of
heavy, moderate, or light thinnings. Relative density is used to provide an index of
the degree of competition for a stand [28]. Thinnings occurred at stand ages of 19
years, for plot 3 and plot 12, 21 years for plot 2, and 28 years for a second thinning
on plot 3. In Figure 2.32, there is good general agreement between the stand density
model predictions and the data. After each thinning the slope of the stand density
trajectories becomes smaller, indicating that mortality will generally be lower after
a thinning. In Figure 2.33, there is also good agreement between the QMD model
predictions and the data. After each thinning the slope of the QMD trajectories in-
creases, indicating that QMD growth is initially greater after a thinning. Finally, in
Figure 2.34, there is good agreement between the top height model predictions and
the data. There is no visible change in the top height trajectories after a thinning,
but the model does generally track the data.

2.8.3 Management considerations

From a management perspective, growth and yield models are used to help make
economic decisions about harvesting schedules, investments, and economic returns

[24]. Land managers using growth and yield models are typically not experts in
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TPH vs. stand age for three thinned plots
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Figure 2.32: Predicted TPH response to thinning for three thinned plots in a stand.
Large symbols represent the measurement data. Small symbols with lines represent
the S-system growth and yield model.



140

QMD vs. stand age for three thinned plots
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Figure 2.33: Predicted QMD response to thinning for three thinned plots in a stand.
Large symbols represent the measurement data. Small symbols with lines represent
the S-system growth and yield model.
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Top height vs. stand age for three thinned plots
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Figure 2.34: Predicted top height response to thinning for three thinned plots in a
stand. Large symbols represent the measurement data. Small symbols with lines
represent the S-system growth and yield model.
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growth and yield modeling, and may not be aware of the variety of assumptions,
traps, or pitfalls contained within a particular growth and yield model, nor should
they necessarily need to be aware of them [139, 153]. Growth and yield models
should produce results to the degree of accuracy and precision required by forest land
managers, generally to within an error of plus or minus 5% to 10% in each state
variable [139]. Currently, the error of growth and yield models is on the order of plus
or minus 30% [139]. An indication of the proportion of prediction errors that should
be within the desired ranges is not mentioned. It is the responsibility of the model
developer to guarantee that the model meets the needs and expectation of those using
it, to ensure correct use, and current models may not be meeting the expectations
of the forest managers. For the sake of the following discussion, assume that an
acceptable model is one having at least 80% of its prediction errors within plus or
minus 10%, giving at most a 20% overall error rate. This proportion is consistent with
the Douglas-fir data set used to calibrate the growth and yield model: approximately
20% of the stand measurement data could not be considered to be pure Douglas-fir
by stems per hectare. A proportion of 90% to 95% would be expected for a model
calibrated with a less noisy data set.

The performance of the Douglas-fir growth and yield model is evaluated from a
management perspective having a maximum relative error tolerance of at most 10%
for the state variables, with maximum error rate of 20%. The single step, measurement
oriented, and lifetime, trajectory oriented, residuals from the S-system based Douglas-
fir growth and yield model were converted into relative errors in stand density, QMD,
and top height. The proportion of the individual relative errors falling within the
ranges 0 & p, for relative error bounds p = 0.20, 0.15,0.10, and 0.05 were computed.
These relative error bounds represent errors of 20% to 5%. The proportions were
computed at two levels for the single step and lifetime residuals. The first level is
that of the individual measurement, giving a short term assessment of the relative

errors. The second level is that of the stand, computed as the average relative error
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for each stand trajectory, giving a long term assessment of the relative errors. A
fourth proportion was also computed for each level: the proportion of measurements
or stands which simultaneously had their stand density, QMD, and top height relative
residuals within the ranges 0 £ p. This proportion provides a simultaneous estimate
of the overall quality of the S-system Douglas-fir growth and yield model from this
particular management perspective.

Table 2.18 and Table 2.19 present the single step, or annual growth prediction,
relative error results for the measurement and stand average proportions for stand
density, QMD, top height, and the three state variables considered simultaneously.
Clearly, the single step S-system based growth and yield model meets the 10% error
criterion for annual time steps. At least 98% of the measurement based relative errors,
taken individually or simultaneously, are within the management error tolerance, and
at least 95% of the stand average relative errors, again individually or simultaneously,
are within the management error tolerance. For annual predictions, the stand level
Douglas-fir growth and yield model appears to meet the expectations of forest land
managers.

Table 2.20 and Table 2.21 present the lifetime, or stand trajectory prediction,
relative error results for the measurement and stand average proportions for stand
density, QMD, top height, and all three state variables considered simultaneously.
Again, the S-system based growth and yield model meets the 10% error criterion at
the measurement level for the stand trajectories. At least 56% of the measurement
based relative errors, taken individually or simultaneously, are within the management
error tolerance, with the at least 71% of the individual relative errors being within
the tolerance. At least 62% of the stand average relative errors, again individually or
simultaneously, are within the management error tolerance, with at least 80% of the
individual relative errors being within the tolerance. These percentages increase to
78% and 83% if the management error tolerance is increased to a 15% relative error.

Given that the stand density values, and hence their residuals, have the greatest



144

Table 2.18: Single step relative error summary by measurement. The values are the
proportion of the single step residual relative errors that are within the range 0+ p for
TPH, QMD, or top height. The final column represents the proportion of the relative
errors which meet the tolerances p simultaneously.

p | TPH | QMD | Top height | Al
0.2000 | 1.0000 | 0.9992 | 1.0000 | 0.9992
0.1500 | 1.0000 | 0.9988 | 1.0000 | 0.9988
0.1000 | 0.9992 | 0.9918 | 0.9947 | 0.9877
0.0500 | 0.9823 | 0.9527 | 0.9494 | 0.9165

uncertainty, consider only the two size variables QMD and top height. If only QMD
and top height relative errors are considered simultaneously, then at least 77% of the
measurement based relative errors are within the 10% tolerance. If only QMD and
top height relative errors are considered simultaneously, then at least 72% of the stand
average relative errors are within the 10% tolerance. The stand trajectory predictions
of the Douglas-fir growth and yield model also appear meet the expectations of forest
land managers, performing better for the average tree size predictions than for stand
density and size combined because of the greater measurement uncertainty in the

stand density values.

2.8.4 Interpreting the lifetime - single step standard deviation ratios

The stand density, QMD, and top height residual standard deviations for the lifetime,
sii, and single step, s, residual computation scenarios, ¢ = 1,2, 3, respectively, have
been identified as having markedly different values for each of the state variables. In
fact. the ratios of the standard deviations s;/s;; had values of 6.01, 5.32, and 5.54
for stand density, QMD, and top height, respectively. All three of these values, when
squared to obtain F-statistics, are statistically significantly different for o« = 0.05.
These large relative differences in variability cannot be wholly explained by the
accumulated numerical integration error from the longer simulation lengths of the

lifetime residual computation scenario relative to the one year simulation lengths
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Table 2.19: Single step relative error summary by stand. The values are the average
proportion of the single step residual relative errors for a stand that are within the
range 0+ p for TPH, QMD, or top height. The final column represents the proportion
of the relative errors which meet the tolerances p simultaneously.

p | TPH | QMD | Top height | All
0.2000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
0.1500 | 1.0000 | 1.0000 | 1.0000 | 1.0000
0.1000 | 1.0000 | 0.9741 | 0.0815 | 0.9556
0.0500 | 0.9963 | 0.8556 | 0.8259 | 0.7963

Table 2.20: Lifetime relative error summary by measurement. The values are the
proportion of the lifetime residual relative errors that are within the range 0 £ p for
TPH, QMD, or top height. The final column represents the proportion of the relative
errors which meet the tolerances p simultaneously.

P TPH | QMD | Top height | All
0.2000 | 0.9272 | 0.9712 0.9815 0.8918
0.1500 | 0.8585 | 0.9288 0.9490 0.7824
0.1000 | 0.7158 | 0.8178 | 0.8782 0.5652
0.0500 | 0.4912 | 0.6055 0.6499 0.2583

Table 2.21: Lifetime relative error summary by stand. The values are the average
proportion of the lifetime residual relative errors for a stand that are within the range
0 = p for TPH, QMD, or top height. The final column represents the proportion of
the relative errors which meet the tolerances p simultaneously.

P TPH | QMD | Top height | All
0.2000 | 0.9778 | 0.9741 0.9852 0.9481
0.1500 | 0.9556 | 0.9259 0.9333 0.8370
0.1000 | 0.8704 | 0.8000 0.8074 0.6222
0.0500 | 0.6185 | 0.5370 0.5444 0.1815
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of the single step residual computation scenario. Residuals for both scenarios were
computed from model projections with a base time step of 0.1 years, and there were
no appreciable differences in the variability of the results from the annual time step.
Further, the greater range in the lifetime residuals was not seen to contribute to the
large ratios: the ratios of standard deviations did not change appreciably when the
most extreme values were trimmed from each set of residuals before performing the
ratio computations. This trimming of the residuals compares the variation for data
where the model performed well for both the single step and lifetime integrations.
Some of the differences in variation between the lifetime and single step residuals
is undoubtedly due to lack of model fit for some of the data, but given the overall
agreement of the model with the data lack of fit alone cannot completely account for
the differences.

Given that the same data and model were used in each residual computation sce-
nario, that the numerical integration error is not a factor, and that lack of model fit
can only explain part of the differences, how can the differences in variation between
the two residual computation scenarios be explained? Any explanation for this appar-
ent discrepancy must be consistent with the biology, the mathematical representation
of the model, and the stand measurement data.

To help gain an insight into the apparent discrepancy between the lifetime and
single step residual variation, consider a dynamic growth and yield model that incor-
porates both site and climate effects. In this situation, what value would be expected
for the standard deviation ratios s;i/s;;? The only unmodeled effects are related to
the natural variation of Douglas-fir plantations, which may be composed of microsite
variation and genetic variation among the stands or trees, or other natural variation.
Thus, the ratios of standard deviations for the lifetime and single step scenarios should
all have a nominal value of one, s;i/s;; = 1; the variation in each case should only be
the natural variation. The actual ratios of standard deviations have values greater

than five, so there must be a site or climate effect that is not taken into account
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by the Douglas-fir growth and yield model, and which becomes apparent through a
comparison of the lifetime or stand trajectory integration residuals and the single step
integration residuals.

The possible existence of an unmodeled site or climate effect is consistent with the
biology, the mathematical representation, and the data. The stand level Douglas-fir
growth and yield model represents only the dynamics of stand density, QMD, and
top height over time, and, hence, does not a priori contain effects of differences in
site characteristics or climate. Both site quality and climate are known to affect tree
growth. The interpretation of site and climate effects on stand development as initiat-
ing, and possibly maintaining, deviations from a nominal stand trajectory is consistent
with the biology and mathematical representation. Consistency with the data is ob-
tained by recognizing that the stand measurement data have integrated the site and
climate effects over the remeasurement intervals for each stand trajectory. The single
step integrations, beginning at the initial condition for each annualized measurement
interval, and projecting one year to the final measurement account, approximately,
for the site or climate effects through the changes in the initial conditions for each
measurement interval within a stand trajectory. Thus, the single step residuals take
into account the site or climate effects as integrated into the stand measurement data
for each measurement interval, through the changing initial conditions, whereas the
lifetime residuals accumulate differences using only the initial stand condition for a
stand trajectory and the average climate as represented by the autonomous S-system
model.

Which effect site or climate is the most likely contributor to the increase in vari-
ation for the lifetime integrations? A site effect may be ruled out for two reasons.
First, the correlation between the residuals, lifetime or single step, and the site index
values for each stand are low. The lack of correlation is due in part to the overall
uniformity of the Douglas-fir sites, as indicated by site index values predominantly

in the range 33 m to 40 m, essentially a single site class. Second, for a particular
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location, the site based effects are assumed to be constant over time, site index does
not change with time, or to vary with climate changes.

Therefore, it seems reasonable to assume that the lifetime residuals cannot account
for climate influences, except possibly for the first measurement interval, since they
are dependent upon only the initial stand condition and the autonomous S-system
model. Deviations from the projected stand trajectories due to climate for the lifetime
integrations will generally be larger than deviations for the single step integrations,
which include changes in climate through the changing initial stand conditions. This
appears to be the situation at hand, and leads to an investigation of whether the
addition of climate to the dynamic, stand level Douglas-fir growth and yield model
will improve its behavior when integrating stand trajectories.

In closing, the dynamic, stand level Douglas-fir growth and yield model appears to
work quite well. The use of an interaction based approach to define the model proved
to be straightforward, economical, and parsimonious, in terms of necessary assump-
tions and the number of parameters. The S-system modeling framework, and dynamic
model extraction using a least squares criterion also proved to be quite effective, pro-
ducing a growth and yield model that agreed well with the stand measurement data
used to calibrate the model. The model correctly reproduced the observed size density
relationships, as well as representing the relative differences between diameter growth
and height growth for low density and high density stands, an emergent feature of
the model that was not constrained to occur a priori. Finally, addition, differences in
the variability of the residuals computed using whole stand trajectories and separate

measurement intervals may indicate the existence of an unmodeled climate effect.
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Chapter 3

A DYNAMIC, STAND LEVEL GROWTH AND YIELD
MODEL WITH CLIMATE FOR PLANTATION
DOUGLAS-FIR IN THE PACIFIC NORTHWEST

Climate is known to affect the processes of stand development and tree growth
(77, 78, 107, 129, 161]. The typical forest growth and yield models developed within
a statistical-empirical modeling framework do not generally include climate effects
[24, 36, 58, 65, 94, 153]. Interest in extending the statistical-empirical models to
include climate effects has been growing recently [105, 164, 170]. These models, being
essentially descriptive models, cannot be used to obtain cause-effect relationships
between climate and stand development and tree growth. The S-system modeling
framework and dynamic model extraction with a least squares criterion are used to
extend the dynamic, stand level Douglas-fir growth and yield model of Chapter 2
to include climate effects. Climate is included in the growth and yield model using
a variable based on annual average Palmer Drought Severity Index (PDSI) values
(104]. The extension of the base growth and yield model to include climate is done
in a nested manner, so that the model without climate effects may be recovered
by using a nominal climate value of one. This automatically produces compatible
models with and without climate effects. The resulting S-system model with climate
was, unfortunately, indistinguishable from the base model. A variety of factors which
may have contributed to this result are discussed. A significant possibility is that the

base model already includes average climate effects.
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3.1 Introduction

Climate is known to affect the regional distribution of vegetation [100, 168], and the
processes of stand development and tree growth [77, 78, 102, 107, 129]. The variation
of temperature and precipitation patterns throughout the year and across regions
also influences the growth characteristics of vegetation [77, 78, 161]. One of the best
known examples of the influences of climate on vegetation and forest development is
the change in forest type and growth rates moving from the equator toward the north
or south poles [13, 12, 43, 130, 168]. More localized climate effects on vegetation and
forest development are also well known [77, 102, 107, 161].

The need for more realistic forest growth and yield models necessitates the inclu-
sion of the effects of climate on forest stand development and tree growth. Recently
several process based forest models that include the effects of climate have appeared
(10, 113, 151, 152, 161]. These models typically incorporate climate effects on the
rate of photosynthesis via a photosynthesis submodel, which subsequently modifies
growth rates or mortality. As early as 1972, climate effects were included in the forest
succession model JABOWA as direct multiplicative modifiers of tree growth [13, 12].
The JABOWA forest succession model was the progenitor for a wide variety of for-
est gap models, all of which include climate effects, though the specific methods of
incorporating climate vary [12, 130].

The typical, statistical-empirical forest growth and yield models however, do not
include climate effects (5, 24, 36, 58, 65, 94, 153]. These models generally assume that
the effects of climate average out over time, a reasonable assumption for long enough
time periods. With a decrease in rotation lengths, climate effects on growth will not
necessarily average out, and may have a significant impact on wood volume and value.
For these reasons, and others, interest in extending the statistical-empirical growth
and vield models to include climate effects has been growing recently [105, 164, 170].

Extending these models to include climate effects, however, is somewhat problematic;
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being correlational models, they cannot be used to obtain cause-effect relationships
between climate and stand development and tree growth [175].

The S-system modeling framework and an autonomous system approach to stand
level growth and yield modeling have been shown to be appropriate and to work well.
With this in mind, the S-system modeling framework and dynamic model extraction
with a least squares criterion are used to extend the dynamic, stand level Douglas-fir
growth and yield model of Chapter 2 to include climate effects. The growth and yield
model without climate will be referred to as the base model, and the model which
includes climate will be referred to the extended model or the climate model. The
extension of the base growth and yield model to include climate is done in a nested
manner (32, 78, 103, 164, 170], so that the base model may be recovered by using
an average or nominal climate value of one. This automatically produces compatible
models with and without climate effects.

Climate was included in the dynamic, stand level Douglas-fir growth and yield
model using a variable based on annual average Palmer Drought Severity Index
(PDSI) values [104]. Annual average PDSI values were chosen as the basis for the
climate variable because PDSI combines both temperature and precipitation into a
standardized climate variable, and PDSI values are readily available from the Na-
tional Climatic Data Center (NCDC) (104, 22]. The PDSI values are a measure of
meteorological drought, and provide an indication of the severity of dry or wet spells,
based on the temperature, precipitation and local available water content of the soil
[22, 99. 62, 104]. The PDSI values are generated by a model based on a simplified
representation of evapotranspiration {104], which though imperfect [1, 38], produces

reasonable results {99, 62].
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3.2 Extending the growth and yield model to include climate

The dynamic, stand level growth and yield model for Douglas-fir defined in Sec-
tion 2.4, the base model, is extended to include climate effects. Climate effects are
added to the base model using an exogenous or forcing S-system state variable, that
is, a state variable not represented by one of the differential equations in an S-system.
The climate variable is derived from the Palmer Drought Severity Index (PDSI) [104].
This approach is consistent with the idea that at the stand level, climate affects the
development of the stand and the growth of the trees, but the stand does not af-
fect climate. Local, within stand climate variation is not considered directly, but is
included indirectly through its integrated effect on tree size and mortality, as repre-
sented by the stand measurement data. The external climate is seen as modulating or
modifying the within stand climate, which then affects stand development and tree
growth (77, 78, 161, 168, 151]. Although technically not correct, the transpiration
and respiration of forests do influence climate, but generally on a much larger spatial
scale than the forest stand [77, 78, 102, 129, 161, 168]. A regional interpretation of
climate-forest-landform interaction, rather than stand level interaction, is also con-
sistent with the regional climate zone divisions of the National Climatic Data Center
[22], and some recent research [100, 164, 168, 170].

Climate effects are generally added to growth and yield or forest simulation models
via a multiplicative effect on the rates of change predicted by a base model [13,
12, 130, 164, 170]. More sophisticated, process based forest simulation models that
directly include climate also apply the climate effects in a multiplicative manner,
affecting the photosynthesis rates, which in turn affect growth rates and mortality
[10, 77, 78, 150. 151, 152, 161, 168]. This interpretation is consistent with a common
sense view of forest development and tree growth: there are average expected rates of
change for a particular locale which are modified by climate, rates of change improving

for beneficial climate changes, and rates of change worsening for detrimental climate
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changes. The multiplicative approach to adding climate effects is used here to extend
the base S-system growth and yield model from Chapter 2 to include climate effects.

The multiplicative approach of adding climate to a base growth and yield model
implies that climate effects are represented by a variable having a mean value of one,
representing nominal or average climate. The variability of this climate variable is
then presumed to be representative of the changes in climate, or the effects of climate
on the rates of change, which are assumed to be proportional; a similar approach is
used in dendrochronology {50]. This is a highly desirable feature from a modeling
point of view, since it easily permits the parsimonious extension of existing models
to include new information without the necessity of starting from scratch.

The S-system representation for a dynamic growth and yield model naturally ac-
commodates the inclusion of multiplicative climate effects, since it is based on prod-
ucts of power-law functions. Given the directly proportional nature of a multiplicative
climate modifier on the rates of change, and the form of an S-system equation which
has both a growth and a decay term, four approaches for incorporating the climate
multiplier present themselves. In each approach, an exponent for the climate multi-
plier in an equation is presumed to allow for differences in the effect of climate for
each term or equation.

The first approach uses the multiplier to adjust the predicted rates of change for
stand density, QMD, and top height, X;, i = 1,2,3, respectively. This approach
adds three new parameters, and applies the same climate effect simultaneously to
the growth and decay terms of the S-system growth and yield model. The three cli-
mate multiplier exponents for this approach must all be greater than or equal to zero,
due to the direct proportionality assumption. The second approach uses the climate
multiplier separately for each term of the stand density, QMD, and top height rate
equations, Fi¥ and F, i = 1,2,3, respectively. This approach adds six new param-
eters, but allows a separate climate modification for each of the growth and decay

rates. The three climate multiplier exponents for the growth terms, F¥, must all be
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Table 3.1: S-system state variable descriptions for the stand level, dynamic Douglas-fir
growth and yield model with climate as defined by Equations 3.1.

State variable | State variable description
Xi Stand density (TPH)
X, Quadratic mean diameter, QMD (cm)
Xs Top height (m)
X, Scaled Palmer drought severity index (PDSI)

greater than or equal to zero, due to the direct proportionality assumption, and the
three climate multiplier exponents for the decay terms, F;~, must all be less than or
equal to zero, for the same reason. The third approach uses the climate multiplier to
adjust only the decay terms of the stand density, QMD, and top height rate equations,
F7,1=1,2,3, respectively. The three climate multiplier exponents for this approach
must all have values less than or equal to zero, due to the direct proportionality as-
sumption. The fourth approach uses the climate multiplier for only the growth terms
of the stand density, QMD, and top height rate equations, Fi¥, i = 1,2,3, respec-
tively. This approach adds three new parameters, and allows climate to modify only
the growth terms. The three climate multiplier exponents for this approach must all
have values greater than or equal to zero, due to the direct proportionality assump-
tion. The last approach is the one taken, since it adds only three new parameters,
and has a plausible biological justification for each equation.

The S-system representation for the stand level Douglas-fir growth and vield model
with climate effects is presented as Equations 3.1, with state variable definitions
provided in Table 3.1. The state variables in each term of the S-system model are
arranged in columns to permit a straightforward visual identification of those variables

which contribute to a specific term in the S-system model.

)‘(l = & ‘\rfm X - Bl X'flu ‘thu
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The climate multiplier, Xj, is applied only to the growth terms. A brief biological
justification for this formulation of climate effect follows for each S-system equation.

Climate effects on stand density may best be understood in terms of inertia. For
a single cohort, stand density will tend to remain coastant unless acted upon by
an external stressor, such as climate or nutrient availability, or an internal stressor
such as a size-density relationship [37, 66, 102, 158]. Beneficial climate will tend
to increase the stand density inertia, decreasing the mortality rate, and detrimental
climate will tend to decrease the stand density inertia, increasing the mortality rate.
Thus the inclusion of the climate multiplier in the growth term of the stand density
rate equation: it acts to modify the stand density inertia by increasing or decreasing
the ability of the positive influence of the current stand density to offset the size-
density interaction in the decay term of the equation. So, climate affects the overall
mortality rate by exerting its influence to maintain the current stand density despite
a size-density relationship.

Climate is generally believed to affect the QMD and top height growth rates of
trees by modifying the rates of production and allocation of photosynthates to new
growth and tree maintenance (10, 77, 78, 102, 151]. Within the context of the S-system
growth and yield model, photosynthate allocation for new growth is controlled by the
growth terms in the QMD and top height rate equations. The climate multiplier
applied to these size growth terms adjusts the allocation of available photosynthate
for new growth, as measured by the QMD and top height growth rates for a given
tree size. The decay terms for the QMD and top height rate equations are not
modified. They represent the underlying average rates for the metabolic processes of
transpiration and respiration for a given tree size. These rates, though they may vary
with climate, are assumed to do so only through the use of photosynthates, removing
them from the pool available for new growth.

The S-system model with climate adds three new parameters, g;4 > 0,1 = 1,2, 3,

and only these new parameters were estimated for the growth and yield model with
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climate. The base model parameters, indicated by the parameters with hats, e.g., Gij
or &;, were held fixed, allowing the development of the nested models. In addition,
the constraints g4 > 0, i = 1,2,3, were imposed during the parameter estimation
procedures. This was done to ensure that the effects from the climate multipliers
were applied as directly proportional modifiers of the estimated growth rates. Without
these constraints, it would be possible for the exponents to take on negative values,
indicating an inversely proportional effect, which would be incorrect.

The additional constraints imposed by the base Douglas-fir growth and yield model
are also enforced for the extended growth and yield model which includes climate.
These constraints define the allowable initial conditions, and imply that stand density
must be positive, X; > 0, QMD must be positive, X; > 0, and top height must be at
least breast height, X3 > 1.3 m, and the allowable signs for the rates of change, and
imply that stand density may decrease or remain constant over time, X; < 0, QMD
may increase or remain constant over time, X, 2 0, and top height may increase or
remain constant over time X 2> 0. The constraints on the allowable rates of change
are enforced exactly as in Equations 2.14, with the addition of the climate modifier

as state variable X, in the growth term of each equation, and need not be repeated

here.

3.3 Climate and stand measurement data sources and description

The Douglas-fir stand measurement data for this modeling effort were obtained from
the Stand Management Cooperative in the College of Forest Resources at the Uni-
versity of Washington [26]. The SMC maintains a high quality database of individual
tree measurements for stands located on commercial production forest lands in the
Pacific Northwest. The SMC data span the region from southern Oregon, to Southern
British Columbia, west of the Cascade Mountains. The SMC database is composed

primarily of Douglas-fir and western hemlock measurements, some of which span ap-
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proximately 30 years, with a small component of other tree species common to the
Pacific Northwest.

The climate data were obtained from the National Climatic Data Center (NCDC)
via the World Wide Web. The NCDC climate data are provided on a regional basis,
and are associated with the major climatic divisions or climate zones for each state
[22]. The raw data obtained were monthly mean values for temperature and Palmer
Drought Severity Index, and monthly precipitation for the period of record, 1895
through 1997, the last growing year for which stand measurement data were available

for this research.

3.8.1 Douglas-fir stand measurement data

The Douglas-fir stand measurement data used to calibrate and validate the growth
and yield model which includes climate are the same data that were used in Chapter 2
to calibrate the base growth and yield model. No modifications to the data or the
data processing procedures were made for their use in extending the base growth
and yield model to include climate. Figure 3.1 shows a map of the locations for
the 167 SMC installation which supplied data for this modeling effort. The figure
also includes approximate boundaries for the NCDC climate zones for the region of
interest. The approximate climate zone boundaries were obtained by interactively
tracing the boundaries for the NCDC climate zone maps for Washington and Oregon,
and then scaling the resultant z — y data to obtain latitude and longitude values. See
Section 2.5 for a complete description of the Douglas-fir stand measurement data and

its initial processing.

3.3.2 Climate data

As obtained from the NCDC, the raw climate data were monthly mean or monthly
total values. Given the annual time step of the growth and yield model, climate
variables with an annual basis for the time period of interest, the 1969 through 1997
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SMC Douglas-fir installation locations and NCDC climate zones
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Figure 3.1: SMC installation locations for the stand measurement data with the
NCDC climate zones and climate zone IDs. The SMC installations span the region
from southern Oregon, through Washington, and into southern British Columbia,
west of the Cascade Mountains. No map projection was used to correct for changes
in latitude, hence the apparent elongation of Vancouver Island.
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growing years, were desired. Although the Palmer Drought Severity Index (PDSI) is
the climate variable of primary interest, the temperature and precipitation data were
also kept as ancillary, related variables that could be used in the model validation
procedures.

Three data processing steps were performed on the raw climate data to obtain
annual climate variables for the period of interest. First, the raw climate data were
converted to metric units, °C for temperature and centimeters for precipitation; PDSI
is a unitless variable and no conversion was necessary. Second, the data for the period
of interest were extracted from the data for the period of record. Third, annual
average values for the three climate variables were computed from the monthly values
to obtain the annual basis for climate desired for the growth and yield model. Two
other factors affecting the data processing must be considered at this time, one that
is related to the biology of Douglas-fir and the other related to the distribution of
rainfall throughout the year.

Douglas-fir exhibits a preformed growth pattern, that is, the growth for the current
growing year is set during the prior year [77, 102]. This means that the climate of
both the prior year and the current year have an affect on tree growth in the current
year. So, in the selection of the climate data used in the model, climate variable values
were obtained for both of these years. The prior year and current year climate values
were then averaged to obtain an estimate of the combined climate effects for the two
vears. This averaging of the climate variables from the prior year and current year
is consistent with the manner in which forest stands, and individual trees within a
stand. respond to climate changes. The response of forest stands and trees to changes
in climate is attenuated, that is, it is not an instantaneous response at the scale of the
stand or tree, but an average response integrated over time and space, though it may
appear instantaneous at the level of leaves and stomata [77, 78, 69, 103, 112, 165, 168].
The two year average of the annual average PDSI values will be referred to as the two

vear average PDSI value.
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The climate of the Pacific Northwest region is characterized by warm, dry summers
and cool, wet winters [49, 77], with the majority of rainfall between November through
March. This period of time is generally referred to as a water year, and is frequently
used as the basis for climate, primarily precipitation, in forest models rather than an
annual time period. Water year average PDSI was considered as a climate variable
rather than annual average PDSI, but it was shown to be effectively equivalent to
annual average PDSI for this situation. For the years of interest, 1968 through 1997,
the annual average PDSI values and the water year average PDSI values were strongly
related, having simple linear regression coefficients in the range of 0.87 to 1.04 for
the slope values, and -0.25 to -0.01 for the intercept values, using annual average
PDSI as the independent variable in the regressions. The r? values ranged from 0.55
to 0.66, indicating a moderate linear relationship with some variability. Given this
relationship, the simpler climate variable, annual average PDSI was used, along with
annual average temperature and precipitation as ancillary variables.

Table 3.2 presents the range of possible PDSI values and their nominal interpreta-
tion in terms of dry periods and wet periods [22, 104]. Loosely interpreted, negative
PDSI values indicate that the demand for water is greater than soil water availability,
positive PDSI values indicate that the demand for water is less than the soil water
availability. PDSI values near zero indicate that the demand for water and the avail-
ability of water are balanced. Larger negative values, therefore, represent periods
of drought, and larger positive values indicate periods of excessive moisture. The
nominal range for PDSI values is -6 to +6, with occasional larger values [22, 104].

Table 3.3 presents a summary of the annual average PDSI values for the time
period of interest, growing vears 1968 through 1997. The summary averages the
annual average PDSI values for Oregon and Washington, and the five NCDC climate
zones for each state. giving a regional indication of the climate for this period. The
table contains statistics for the year preceeding the current growing year, the current

growing year. and the average of the two growing years. The range of annual average
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PDSI values is roughly between -5 and +5, so the nominal interpretations from the
monthly PDSI values from Table 3.2 are generally applicable for the annual averages
as well. Notice from this table that the average climate is well within the normal
range, +0.5, for the prior and current growing years and for the two year average,
though there are some extremes represented as well.

Figure 3.2 plots the two year average PDSI values for each NCDC climate zone
for Washington and Oregon and the current growing years for the period of interest:
1969 through 1997. The values for Oregon and Washington are presented separately
because their climates differ; Washington is generally slightly cooler and wetter than
Oregon [49]. Clearly evident is the occurrence of a drought beginning approximately in
1985, and extending to approximately 1995. A smaller, shorter drought also appears
to have occurred in the middle to late 1970s. Also of note is the difference in the
variability of the two year average PDSI values for Oregon and Washington. The five
climate zones in Oregon appear to be strongly related, following the same general
course through time. The Washington climate zones appear to be more variable, not
tracking together as strongly, though there are some strong trends between 1975 and
1985. The appearance of strong wet and dry periods in both Oregon and Washington,
for all climate zones within the time span of interest, should enhance the ability to
detect climate effects and incorporate them into a growth and yield model.

Figure 3.3 and Figure 3.4 plot the single step and lifetime residuals for the base
model vs. growing year. A brief visual inspection of these two figures indicates that
there may be some slight variability in the average base model residuals from one
growing vear to the next. Further, there appears to be a decrease in the average
QMD residuals near 1984 to 1985, particularly for the single step residuals. This
is an indication that the base model is overpredicting QMD. This is the expected
behavior for the base model given the initiation of a drought at about the same time;
the base model should overpredict QMD for years in which there is a drier climate.

The base model residuals appear to contain trends that may be attributed to an
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Table 3.2: PDSI value interpretations. Monthly PDSI values nominally fall within the
interval —6 < PDSI < 6, with occasional values exceeding this range [22, 104]. The
PDSI values provide an indication of the severity of a dry or wet period, with negative
values indicating dry periods and positive values indicating wet periods [22, 104].

PDSI value range Interpretation
PDSI < —4 extreme dry period
-4 < PDSI < -3 severe dry period
—3 < PDSI € -2 | moderate dry period
-2<PDSIK -1 mild dry period
~1 < PDSI < —1/2 | incipient dry period

-1/2 < PDSI<L 1/2 normal
1/2<PDSI< 1 incipient wet period
1<PDSI<2 mild wet period
2<PDSIL3 moderate wet period
3<PDSI<4 severe wet period
4 < PDSI extreme wet period

Table 3.3: Summary of annual average PDSI values for the growing years 1969 to
1997. The PDSI value summaries are for the year preceeding the current growing
year, the current growing year, and the average value for the two growing years. The

sample size was 2431, one PDSI value for each stand and annualized measurement.
*MAD is mean absolute deviation.

PDSI value Mean | Standard | Min. | Med. | Max. | MAD"
deviation

Preceeding growing vear | 0.17 1.39 -3.68 | 0.12 | 4.78 | 1.09

Current growing year 0.25 1.47 -3.68 1 0.17 | 478 | 1.14

Average of growing years | 0.21 1.19 -2.71 | 0.12 | 425 | 091
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Oregon annual average PDSI values
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Figure 3.2: Two year average PDSI values vs. current growing year for Oregon and
Washington. The annual average PDSI values for the five NCDC climate zones west
of the Cascade Mountains for Oregon and Washington are shown. Note in particular

the strong dry period which begins near 1984, indicated by the shift from positive
values to negative values.



164

unmodeled climate effect.

To enable the association of the climate data with the Douglas-fir stand measure-
ment data, each SMC installation was visually assigned to an NCDC climate zone.
An interactive procedure was used, plotting the location, latitude and longitude, of
each SMC installation, and then assigning it to a climate zone based the boundaries
in Figure 3.1. Once the climate zone associations were obtained, average PDSI val-
ues for the current and preceeding growing years were associated with each stand
measurement and growing year in the Douglas-fir stand measurement data. Annual
average PDSI values for the SMC installations in British Columbia were obtained by
extending the adjacent NCDC climate zones from Washington. These installations
were a very small subset of the data, so this will have no noticeable effect on the
results.

Before the two year average PDSI values may be used in the growth and yield
model defined in Section 3.2 they must be converted to values which indicate a pro-
portional increase or decrease in predicted growth rates from the base growth and
yield model. The new variable should have a mean value of one, indicating normal
climate, and a range which represents the proportional variability in growth expected
from climate. A variability of 20% has been reported for the influence of climate on
diameter growth [12, 109, 175], and this is used as a basis for the scaling procedure.

The range of the two year average PDSI values is contained within the interval
from -5 to +5. Dividing the values within this interval by the interval width of ten,
produces a range of proportions spanning +50%. Though slightly wider than the
+20% that has been reported, this is the range of proportions used to represent the
effects of climate on the predicted rates of change from the base growth and yield
model. Specifically, scaled PDSI values, P,, are obtained from the formul'a.

0.5, ifl<-1

P, = 1+%, if—l<%s

1 L
2 ~= 2
- - I
1.5, 1f§<%,
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Model residuals vs. growing year (single step)
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Figure 3.3: Base model single step residuals, R}, vs. growing year. The TPH resid-
uals. ¢ = 1, are on top, QMD residuals, i = 2, are in the middle, and top height
residuals, { = 3, are on the bottom. The dot density provides an indication of the
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Model residuals vs. growing year (lifetime)
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where P, is the two year average PDSI value,

P2=_Pr’2f”=,

computed using the annual average PDSI values from the prior growing year, P,, and
the annual average PDSI value from the current growing year P.. The scaled two year
average PDSI values ranged from 0.52 to 1.37, with a mean of 1.01. 83% of the scaled
PDSI values were within the interval 0.8 < P, < 1.2, which is in strong agreement
with the £20% variability due to climate that has been reported.

The formula used to compute P, limits the direct effects of climate on growth rates
to +£50% of the nominal predicted growth rates from the base model. Within each
equation of the climate model, these P, values are modified by an exponent g;4 > 0,
t = 1,2,3, allowing the potential range of modification due to climate to be greater
than, or less than, the basic £50%, depending on the value of the exponent for each
equation and the value of the scaled PDSI value used, and the effects may be different
for each equation in the model. The values P, become the climate variable X, in the

extended S-system model.

3.4 Model analysis and validation methods

The parameter estimation procedures used to obtain values for the three S-system
parameters gi4, ¢ = 1,2,3, are identical to those described in section Section 2.6.
Only parameter values for the exponents of the scaled climate values were estimated,
all other parameter values remained fixed to isolate the effects of climate on the
base model. This permits the construction of nested models, having the base model
without climate as a submodel which was extended to include the climate effects.
The bootstrap procedure, outlined in Section 2.6, was also used to obtain boot-
strap means and standard errors for the three climate exponents. Again, B = 100
bootstrap trials were performed using 90% of the measurement intervals for the alge-

braic parameter estimation procedure and 90% of the stands for the shooting based
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parameter refinement procedure.

Finally, the model validation procedures for the Douglas-fir growth and yield
model which includes climate effects were identical to those described in Section 2.6.
Briefly, these procedures consisted of a visual inspection of the residuals, simple linear
regression analyses and the computation of r? values for the stand density, QMD, and
top height residuals and the annual average of PDSI, temperature, and precipitation
climate variables. These procedures were applied for both the single step residuals,
to determine growth related effects, and the lifetime residuals, to determine stand

trajectory effects.

3.5 Results

The results of the parameter estimation procedures for the extended stand level
Douglas-fir growth and yield model follow. The results indicate that there was no
detectable climate effect for these data and this time period. Simple linear regression
analyses, line fits and r? values for the single step and lifetime residuals obtained
from the base model, were performed to determine if another climate variable might
contribute a detectable effect for this model. The parameter estimates are presented
first, followed by the single step residuals analysis, and finally by the lifetime residuals
analysis.

Table 3.4 displays the estimated parameter values, bootstrap means, and boot-
strap standard errors for both the algebraic parameter estimation method, p;,, ﬁg,
58 respectively, and for the shooting based parameter refinement method, p;s, 52, s2.
Clearly the parameter estimates obtained using all of the stand measurement data
are nearly zero for both the algebraic parameter estimation method and the shooting
parameter refinement. The largest parameter values are on the order of 10~* and

1073, respectively, for these parameter estimation approaches. These results imply

that there is not a detectable, direct climate effect that is obtainable for the model



169

Table 3.4: Estimated S-system parameter values, bootstrap means, and bootstrap
standard errors for the extended Douglas-fir growth and yield model defined by Equa-
tions 3.1 which includes climate effects. A subscript a indicates that the parameter
estimates are from the algebraic parameter estimation procedure, and a subscript s
indicates that the parameter estimates are from the shooting based parameter esti-

mation procedure. The superscript B indicates that the values were obtained from
the bootstrap procedure.

Pi Pia P Sia Dis Py A

gia | 3.25x107* | 5.56x107* | 6.8x10™* | 2.56x1078 | 1.62x10~* | 2.07x10~*
Gaa | 7.53x10°19 | 8.07x1075 | 8.01x107° | 3.83x10~7 | 8.01x1073 | 2.36x10™2
gaa | 8.54x10~7 | 7.10x107° | 1.69x10=* | 1.77x1075 | 2.65x10~* | 3.96x10~*

and these data. The climate based effects, as determined from the scaled PDSI val-
ues and the S-system exponents, are all essentially equal to one, implying that the
Douglas-fir growth and yield model which includes climate is indistinguishable from
the base growth and yield model of Chapter 2.

The bootstrap parameter means and standard errors also support this conclusion.
The bootstrap means are all very near zero, though not always as close to zero as
the parameter estimates using all of the data. Further, the bootstrap standard errors
are at least twice as large of as their respective parameter estimates derived from all
of the data, and are generally at least an order of magnitude larger. The bootstrap
confidence intervals for these parameter values all contain zero, so zero cannot be ruled
out as a possible parameter value. Therefore, no direct climate effect is extractable

from theses data.

3.5.1 Base model residual plots vs. climate variables

Figure 3.5 and Figure 3.6 present plots of the single step and lifetime residuals for
the base Douglas-fir growth and yield model vs. their associated PDSI values. The
stand density, QMD. and top height residuals in each case are clearly symmetrically
distributed about zero throughout the range of PDSI values, for both the single step
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and lifetime residuals. This supports the conclusions derived from the estimated
parameter values and bootstrap standard errors. There is no detectable, direct climate
influence represented by the base model residuals and the scaled PDSI climate data.
So, relative to PDSI as an indicator of climate, the base model residuals are effectively
randomly distributed.

PDSI failed to have a detectable climate effect for this model and these data,
but might there be a temperature or precipitation? Figure 3.7 and Figure 3.8 plot
the single step and lifetime base model residuals vs. two year average temperature,
respectively. The distribution of the residuals throughout the range of the temper-
ature values is symmetric about zero for both sets of residuals, making it highly
unlikely that temperature would contribute to a detectable climate effect. Figure 3.9
and Figure 3.10 plot the single step and lifetime base model residuals vs. two year
average temperature and precipitation, respectively. Again, the distribution of the
residuals throughout the range of the precipitation values is symmetric about zero for
both sets of residuals, making it highly unlikely that precipitation would contribute
to a detectable climate effect. Thus, neither the use of temperature nor the use of

precipitation, rather than PDSI, would have produced a detectable climate effect.

3.5.2 Base model residual correlations with climate variables

Table 3.5 through Table 3.7 present the results for the simple linear regression analyses
of the single step stand density, QMD, and top height standardized residuals for
the base model vs. the climate variables two year average PDSI, two year average
temperature, and two year average precipitation. The temperature and precipitation
two year averages were derived in an identical manner to the two year average PDSI
values. An examination of these tables clearly shows that the base model residuals
are generally uncorrelated with the three climate variables. The regression intercepts
for the standardized residuals are generally near zero, ranging from b = —0.42 to

b = 0.39, and the regression slopes are also nearly zero, ranging from a = —0.08 to
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Model residuals vs. two year average PDSI (single step)
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Figure 3.5: Single step residuals, R, for the base model vs. two year average PDSI.
The TPH residuals, i = 1, are on top, QMD residuals, : = 2, are in the middle, and
top height residuals, i = 3, are on the bottom. The dot density provides an indication
of the number of data points.
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Model residuals vs. two year average PDSI (lifetime)
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Figure 3.6: Lifetime residuals, R.,,, for the base model vs. two year average PDSI.
The TPH residuals, i = 1, are on top, QMD residuals, : = 2, are in the middle, and
top height residuals, i = 3, are on the bottom. The dot density provides an indication
of the number of data points.
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Model residuals vs. two year average temperature (single step)
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perature. The TPH residuals, ¢ = 1, are on top, QMD residuals, i = 2, are in the
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an indication of the number of data points.
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Model residuals vs. two year average temperature (lifetime)
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Figure 3.8: Lifetime residuals, Ry,, for the base model vs. two year average tem-
perature. The TPH residuals, ¢ = 1, are on top, QMD residuals, 7 = 2, are in the
middle, and top height residuals, ¢ = 3, are on the bottom. The dot density provides
an indication of the number of data points.
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Model tesiduals vs. two year average precipitation (single step)
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Figure 3.9: Single step residuals, R}, for the base model vs. two year average pre-
cipitation. The TPH residuals, ¢ = 1, are on top, QMD residuals, i = 2, are in the
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an indication of the number of data points.
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Model residuals vs. two year average precipitation (lifetime)
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Figure 3.10: Lifetime residuals, Rl,, for the base model vs. two year average pre-
cipitation. The TPH residuals, i = 1, are on top, QMD residuals, : = 2, are in the
middle. and top height residuals, i = 3, are on the bottom. The dot density provides
an indication of the number of data points.
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Table 3.5: Single step standardized TPH residual line fits and r? values vs. the annual
average climate variables PDSI, temperature, and precipitation. Regression coeffi-
cients are for the model y = az + b applied to the standardized TPH residuals for
each z variable. Values of a = 0 and b = 0 imply that there is not a linear relationship
or bias, and r2 = 0 implies a lack of correlation with the z variable.

T a b r?
PDSI 0.027116 | 0.130307 | 0.001036
Temperature °C 0.041178 | -0.284798 | 0.001908
Precipitation (cm) | -0.018541 | 0.390654 | 0.007054

a = 0.06. The exception is for the QMD residuals and two year average temperature,
for which the slope is a = 0.18 and the intercept is b = —1.8. An examination
of the single step residuals plotted against the two year average temperature values
indicates that there are few very low temperatures, between 5°C and 7°C, where the
majority of the temperature data lie in the range 8°C and 12°C. The small number of
lower temperatures, coupled with the larger residuals being associated with the higher
temperature range, gives a large amount of leverage to these lower temperatures,
which in turn causes the larger slope and intercept values for QMD residuals and
temperature.

An examination of the r? values further supports the results of the simple linear
regression analyses. All of the r? values are less than 0.04, with the majority of the
values being less than 0.01. This indicates a general lack of correlation between the
stand density, QMD, and top height residuals with two year average PDSI, temper-
ature, and precipitation. The largest 2 value, r? = 0.04, was for the QMD residuals
and temperature, and is again appears to be a result of the strong leverage exerted
by a small number of lower temperature values.

Table 3.8 through Table 3.10 present the results for the simple linear regression
analyses of the lifetime, or stand trajectory, stand density, QMD, and top height
standardized residuals for the base model vs. the climate variables two year average

PDSI, two year average temperature, and two year average precipitation. There are
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Table 3.6: Single step standardized QMD residual line fits and r2 values vs. the
annual average climate variables PDSI, temperature, and precipitation. Regression
coefficients are for the model y = az+b applied to the standardized TPH residuals for
each z variable. Values of a = 0 and b = 0 imply that there is not a linear relationship
or bias, and r? = 0 implies a lack of correlation with the z variable.

T a b r?
PDSI -0.057858 | 0.059760 | 0.004717
Temperature °C 0.179733 | -1.788961 | 0.036346
Precipitation (cm) | -0.002349 | 0.079911 | 0.000113

Table 3.7: Single step standardized top height residual line fits and r? values vs. the
annual average climate variables PDSI, temperature, and precipitation. Regression
coefficients are for the model y = az +b applied to the standardized TPH residuals for
each z variable. Values of a = 0 and b = 0 imply that there is not a linear relationship
or bias, and r? = 0 implies a lack of correlation with the z variable.

z a b r?
PDSI -0.081927 | 0.181790 | 0.009458
Temperature °C 0.058028 | -0.428326 | 0.003789
Precipitation (cm) | 0.002912 | 0.124641 | 0.000174




179

Table 3.8: Lifetime standardized TPH residual line fits and 72 values vs. the annual
average climate variables PDSI, temperature, and precipitation. Regression coeffi-
cients are for the model y = az + b applied to the standardized TPH residuals for
each r variable. Values of a = 0 and b = 0 imply that there is not a linear relationship
or bias, and r? = 0 implies a lack of correlation with the z variable.

T a b r2
PDSI 0.060023 | 0.072054 | 0.005077
Temperature °C 0.049776 {-0.424016 | 0.002788
Precipitation (cm) | -0.026631 | 0.450406 | 0.014552

no surprises here. The regression intercepts are generally near zero, ranging from
b = —0.42 to b = 0.45, and the regression slopes are also nearly zero, ranging from
a = —0.06 to a = 0.06. The exception is for the QMD residuals and two year average
temperature, for which the slope is a = 0.16 and the intercept is b = —1.7. Again, the
discrepancy for QMD residual and temperature is due to the strong leverage exerted
by the small number of lower temperature values.

Finally, all of the r? values for the lifetime stand density, QMD, and top height
residuals are less than 0.03, with the majority of the values being less than 0.01.
This indicates a general lack of correlation between the stand density, QMD, and top
height residuals with PDSI, temperature, and precipitation. The largest r value,
r? = 0.03, was for the QMD residuals and temperature, and is again a result of the
strong leverage exerted by a small number of lower temperature values.

The single step and lifetime residual analyses clearly demonstrate, counter to
expectations, that a direct, detectable climate effect, based upon the inclusion of
PDSI. temperature, or precipitation, in the Douglas-fir growth and yield model would
be unlikely. The single step, or annual yield, residuals would be the most likely to
demonstrate a climate effect, due to the annual base time step, but they show no
such relationship. The lifetime, or stand trajectory, residuals, though they have some
relatively large deviations for the actual stand measurements, would be expected to

demonstrate a consistent bias due to the lack of climate effects within the growth and
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Table 3.9: Lifetime standardized QMD residual line fits and r? values vs. the annual
average climate variables PDSI, temperature, and precipitation. Regression coeffi-
cients are for the model y = az + b applied to the standardized TPH residuals for
each z variable. Values of a = 0 and b = 0 imply that there is not a linear relationship
or bias, and r? = 0 implies a lack of correlation with the z variable.

T a b r?
PDSI -0.060212 | -0.026804 | 0.005109
Temperature °C 0.157816 | -1.652063 | 0.028022
Precipitation (cm) | 0.001089 | -0.054366 | 0.000024

Table 3.10: Lifetime standardized top height residual line fits and r? values vs. the
annual average climate variables PDSI, temperature, and precipitation. Regression
coefficients are for the model y = az +b applied to the standardized TPH residuals for
each r variable. Values of a = 0 and b = 0 imply that there is not a linear relationship
or bias, and r? = 0 implies a lack of correlation with the z variable.

T a b r2
PDSI -0.060773 | 0.077001 | 0.005204
Temperature °C 0.034793 |-0.291258 | 0.001362
Precipitation (cm) | -0.002699 | 0.101348 | 0.000149
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yield model, but they also demonstrate no consistent climate related effects. Given
these results and the fact that climate does affect stand development and tree growth,

an explanation of these counterintuitive results is necessary.

3.6 Discussion

The inability to include a direct climate effect in the stand level Douglas-fir growth
and yield model is somewhat surprising, given that climate has a definite effect on
both stand development and tree growth [77, 78, 102, 107, 161]. There is some
evidence that climate effects alone may not significantly affect the yields obtained for a
particular forest stand, at least not without including the effects from increased levels
of CO? [151, 152]. Accepting this as a possible explanation, however, is somewhat
dissatisfying. There should be a more compelling interpretation of these results.

A consideration of the data, the model and its requisite assumptions, and the
parameter estimation methodology provides six possible contributing factors that
could potentially have cqnfounded the ability to incorporate a direct climate effect
into the Douglas-fir growth and yield model. The six factors, listed in increasing order

of potential influence or relevance to these results, are given in the following list.

—

. The Douglas-fir research plots are buffered.

o

Climate effects are small, on average.
3. Stand density effects may dominate climate effects.

4. The stand level attributes average out climate effects.

.Oi

Climate effects are masked by young, fast growing trees.

6. The base model already includes average climate effects.
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The confounding factors listed are not necessarily mutually exclusive, and in particular
the first five are related. A brief discussion of each factor, identifying its relevance
as a confounding factor, and a possible resolution, if possible, are be presented for

future investigation.

3.6.1 Buffered research plots

The majority of the research plots used for the model calibration or parameter esti-
mation were buffered, that is surrounded by a border of trees, isolating the research
plot within the center of a much larger plot. Tree measurements taken from trees
within the buffered research plots may not show the full effects of climate, due to
an amelioration or reduction in the severity of climatic extremes which occurs from
being centrally located within a larger stand [107, 102]. The effects of climate are
most noticeable near the edges of stands, where effects of the buffering are minimized
[102]. A resolution to this problem involves sampling trees that are near the edges of
the stands containing the research plots to maximize the climate effects, at least for
some trees. Using individual tree measurements from the research plots to develop
and calibrate an individual tree model that is then coupled with stand density, may

also provide better access to the climate information within the data.

3.6.2 Climate effects are small relative to the data variability

Climate effects on growth generally represent a small fraction of the nominal expected
growth that would have occurred for the average climate. The stand level Douglas-
fir growth and yield model was intended to span the region from southern Oregon
to southern British Columbia, west of the Cascade Mountains. The raw variability
contained within this wide ranging data set may swamp the variability due to climate,
rxza.king it undetectable at this scale. This problem may be addressed by identifying
smaller regions within which climate effects are investigated, possibly for each NCDC

climate zone separately.
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3.6.3 Stand density effects may dominate climate effects

Climate effects on tree growth are known to be small, generally +20% or less of
the actual annual growth [109, 110, 175]. It seems likely that stand density effects,
particularly for younger stands as in some of the data used here, may dominate the
climate effects, making them undetectable. This seems particularly reasonable, given
that the largest QMD and top height residuals occurred for the youngest stands in the
data set, and these stands were growing during a drought, 1984-1995. There is also
evidence to support the existence of a strong stand density effect on the growth rates
of young Douglas-fir stands. Further, stand density effects are generally not included
in dendrochronological analyses of tree rings [50, 175]; trees selected for these studies
are chosen based on whether or not they were potentially isolated trees, presumably to
minimize stand density effects. This could potentially exaggerate the effects of climate
on tree growth, if the stand density effect is large relative to a climate effect. Further
investigation on the relative effects of stand density and climate on tree growth is

necessary to sort out this issue.

3.6.4 The stand level attributes average out climate effects

The stand level Douglas-fir growth and yield model uses average tree size information,
QMD and top height, derived from individual trees on a research plot. Averaging the
individual tree diameters and the tree heights to obtain these average size values may
effectively eliminate the effects of climate on the changes in tree size. The climate
effects will generally vary for each tree based on its own local microsite conditions
and growing space [102, 107]. A possible solution to this problem is to develop an
individual tree based Douglas-fir growth and yield model as a submodel of the stand
level growth and yield model. Climate effects may be detectable for a dynamic model
based on individual trees and individual tree measurements.

The Douglas-fir measurement data are also averaged in time due to the multi-
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year remeasurement intervals, usually 2 or 4 years. Thus, the size increments for the
individual trees, when computed, provide only an indication of average size growth
over the remeasurement interval. This issue could be resolved by obtaining annual
measurements on some plots, but the cost to do this would be prohibitive. The use
of multi-year remeasurement intervals is most likely less important than the issue of
using average tree dimensions for the development and calibration of a growth and
yield model, because the number of years between measurements is small. Further,
climate effects on tree growth being cumulative, it may be possible to determine
appropriate annual weights to scale the growth increments for each year in a multi-

year remeasurement interval.

3.6.5 Young, fast growing stands

Recall that the Douglas-fir stand measurement data set used to calibrate the S-system
growth and yield model contained a significant subset consisting of very young, rapidly
growing stands. These stands comprised approximately 20% of the data. The base S-
system growth and yield model generally underpredicted the growth for these stands,
as seen in Section 2.7. The residuals for both the single step and lifetime scenar-
ios showed no appreciable linear relationships or correlations with any of the initial
state variables, stand density, QMD, and top height, nor were there appreciable rela-
tionships with the ancillary variables, site index, elevation, and stand age. However,
when the average residuals for both scenarios are plotted against the growing year, as
for climate, a strong trend becomes readily apparent for both QMD and top height,
though not for stand density.

Figure 3.11 and Figure 3.12 plot the average stand density, QMD, and top height
model residuals for the single step and lifetime residuals scenarios, respectively. These
two figures separate the average residuals for Oregon and Washington to identify
any state specific trends. Notice first that there are no readily apparent differences

between the average residuals for Oregon and Washington. From 1969 through 1985,
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the average residuals for both QMD and top height are nearly zero. But, beginning
in 1985, there is a strong upward trend in the average QMD and top height residuals,
indicating a consistent, and increasing though possibly slowing, underprediction of
both QMD and top height for this period of time.

This dramatic underprediction of QMD and top height for this time span is being
driven by a reduction in the stand ages available within the SMC database during
the period 1985 to the present. Figure 3.13 plots the stand ages, with the mean
and standard deviation for each year, for the SMC database vs. growing year. The
downward trend after 1985 is clearly demonstrated. The younger stands demonstrate
faster growth, and Figure 3.14 plots the QMD growth rates, again with the mean and
standard deviation for each year. Notice, in particular, that the dramatic decrease in
average stand age and the increase in average QMD growth rate occur simultaneously
in 1985. A gradual shift to younger stands may have begun somewhat earlier, but
the rate of the decrease in stand ages became significant at about 1985. The results
for the rate of change of top height are similar to those for QMD, and are omitted.

Unfortunately, from the perspective of adding climate effects to a growth and
yield model, this shift to younger, faster growing stands occurred during a dry period,
extending from 1985 to approximately 1995. The effects on average growth due to the
dry climate may have been obliterated over this time period by the rapid growth rates
of the younger stands. Given the generally small average effects of climate on growth,
particularly diameter growth and height growth, this long term systematic trend of
underestimation swamps the least squares parameter estimation process, making the
resolution of the climate effects effectively impossible, as was discovered. Further,
considering the regional nature of the stand level Douglas-fir growth and yield model,
even these trends are swamped by the residual variation, indicated by the fact that
zero is contained within the interval defined by the mean residual value plus or minus
twice the standard deviation for each growing year.

A closer examination of the two average residuals figures indicates that average
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Figure 3.11: Single step average residuals, Rf;, for the base model without climate
vs. growing year. The TPH residuals, ¢ = 1, are on top, QMD residuals, : = 2, are in
the middle, and top height residuals, i = 3, are on the bottom. Standard deviations
are 25.26, 0.28, and 0.26. respectively for stand density, QMD, and top height. Note
the increasing trend in the residuals after 1985.
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Figure 3.12: Lifetime average residuals, R, for the base model without climate vs.
growing year. The TPH residuals, i = 1, are on top, QMD residuals, ¢ = 2, are in the
middle, and top height residuals, i = 3, are on the bottom. Standard deviations are
151.98. 1.49, and 1.44. respectively for stand density, QMD, and top height. Note
the increasing trend in the average residuals after 1985.
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Figure 3.13: Stand age vs. growing year with yearly mean and standard deviation.
Notice that at approximately 1984 the average stand age begins to decrease. The dot
density provides an indication of the number of data points.
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Figure 3.14: Actual QMD PAI vs. growing year with the annual mean and standard
deviation. Notice that at approximately 1984 the average QMD growth rate begins
to increase. The dot density provides an indication of the number of data points.
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climate effects may be seen in the plots of the average QMD residual, even if they
could not estimated and directly incorporated into the growth and yield model. The
lifetime QMD residuals in Figure 3.12 appear to show the correct behavior given the
minor drought which occurred in the late 1970s, consistently over estimating QMD,
on average, until 1985. The single step QMD residuals in Figure 3.11 show a similar
behavior, though more localized and not as pronounced, over predicting QMD near
1975, and again overpredicting just prior to 1985. These results suggest that it may
be possible to eventually incorporate climate effects into the Douglas-fir growth and
yield model, although with this data set, on average, the climate effects are too small

to be detected with any authority.

3.6.6 The base model may already include average climate effects

Recall the discussion of the stand density, QMD, and top height residual standard
deviation ratios for the lifetime and single step residual computation scenarios, the
ratios si/sis, ¢ = 1,2,3, respectively. The larger than expected values for these three
ratios were used as an argument for a potential climate effect on growth rates. The
reasoning was that something must be shifting the trajectories for the individual,
annual measurement intervals away from the nominal stand trajectory defined by the
S-system model and the initial stand condition. This reasoning is still valid, and
through an examination of the model, the least squares parameter estimation process
applied to the stand measurement data, and the stand measurement data, it forms
the basis for an explanation of why the base model performs so well without the direct
inclusion of climate effects.

The actual stand measurement data integrate the climate changes which occurred
during the measurement interval into the stand mortality and tree size growth for
each stand. The annualized measurement data, then, represent the average annual
yield values for the longer measurement period, for each stand. Thus, the annualized

stand measurement data already contain, on average, the relevant effects on stand
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density, QMD, and top height from climate.

The algebraic least squares parameter estimation procedure minimizes the dis-
crepancies among the simultaneous rates of change for stand density, QMD, and
top height, and the average stand density, QMD, and top height, for the specified
autonomous S-system model. The model specified through this procedure then repre-
sents an average phase surface in stand density, QMD, and top height, as in Figure 2.9.
This average phase surface approximates the actual phase surface, Figure 2.8, which
has a certain amount of thickness, or variability, in each coordinate direction, some
of which is attributable to climate, among, possibly, other things.

So, for any particular set of stand density, QMD, and top height values within
the actual phase manifold or surface, the model reproduces the average, simultaneous
rates of change for the nearby stand density, QMD, and top height values, and when
integrated produces the average phase surface. An averaging occurs in the parameter
estimation process across all factors not explicitly included in the model, but which
are reflected in the stand measurement data, such as site effects or climate. Thus,
the least squares estimation procedure averages the site and climate, as integrated
into the stand measurements, and, hence, the base S-system growth and yield model
implicitly includes average climate effects, indexed simultaneously by stand density.
QMD, and top height. This interpretation is also consistent with the mathematical
representation of the growth and yield model as an S-system.

Diameter growth is known to be strongly affected by both stand density and cli-
mate [24, 77, 78, 102, 12, 153]. Figure 3.15 and Figure 3.16 present intensity contours
for actual and estimated periodic annual increment (PAI) values for QMD plotted
against log(stand density) and the two year average PDSI values. The actual values
were computed from the annualized stand measurement data, and the estimated val-
ues were computed using the base growth and yield model given by Equations 2.14,
and the average stand density, QMD, and top height values obtained as the midpoints

of the annualized stand measurement intervals, to directly predict the simultaneous
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rates of change. The actual and estimated QMD rates were then binned and averaged,
using 20 uniformly spaced bins spanning the range of both log(stand density) and the
two year average PDSI values. The contour surfaces were then produced using the
Matlab function interp2, which performs a recursive interpolation in three dimen-
sions. Three recursion levels were used to fill in the surfaces, interpolating between
the binned values. The color scale in each figure is the same, and was determined
from the actual QMD rate bin averages. Red indicates the largest QMD rates, dark
blue indicates the smallest QMD rates, light green indicates the average QMD rates,
and black indicates an absence of data.

The apparent, implicit inclusion of average climate, as represented by two year
average PDSI values, on the QMD growth rates of base Douglas-fir growth and yield
model becomes clear through a comparison of these two figures. The strong effects of
stand density are also readily apparent. Notice the strong correlation in the locations
of the peaks and valleys in the QMD rate values, indicated by the red and blue regions
in the two figures. The peaks are not as strong for the estimated QMD rates, but
this is to be expected, due to the averaging of the least squares procedure. It appears
that the base model represents the QMD growth rates quite well, relative to the
stand density and climate variables. This final view of the base model results clearly
demonstrates the quality of the dynamic, stand level Douglas-fir growth and yield
model represented as an S-system; the model strongly identifies almost every feature
contained in the actual data. Those features not identified strongly by the model are
generally for under-represented stand conditions from the stand measurement data
set.

The dynamic, stand level Douglas-fir growth and yield model from Chapter 2 was
extended to include the effects of climate. Climate was represented in the model as
a scaled, two year average PDSI value, having a mean value of one, indicating the
nominal or average climate, and variability representative of the effects of climate

on stand development and tree growth. Climate was incorporated into the growth
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Figure 3.15: Actual QMD PAI vs. log(TPH) and two year average PDSI. Red indicates
a peak, deep blue indicates a valley, and light green indicates zero. Regions with no
data are black. The minimum and maximum actual QMD PAI values are 0.06 cm/year
and 2.13 cm/year, respectively. The color scale is determined by these minimum and
maximum QMD PAI values, and is identical to that in Figure 3.16.
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with no data are black. The minimum and maximum predicted QMD PAI values are
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Figure 3.15.
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and yield model as a directly proportional multiplicative modifier of the individual
growth terms of the S-system growth and yield model. The scaled PDSI values were
allowed to be modified independently by S-system exponents for each of the three
rate equations, potentially allowing the climate effect to vary among the equations.
This manner of extending the base growth and yield model to include climate nests
the base model, with out climate, within the broader model which includes climate.
The base model may be recovered, seamlessly, by using the nominal climate value of
one. This approach produces models which are guaranteed to be consistent.

The results of this modeling effort indicate that average climate effects were not
detectable in a manner that would permit their direct inclusion in the dynamic, stand
level Douglas-fir growth and yield model, using these data and the specific methods
employed. Seven factors were identified as contributing to the inability to directly
incorporate climate effects for a stand level, average tree growth and yield model.

Some of the results, however, indicate that it may be possible to extract the climate
effects using individual tree measurements and the scaled PDSI values, rather than
the stand averages QMD and top height. The stand level model slightly overpredicted
QMD and slightly underpredicted top height, on average, but the effects were very
small relative to the inherent variability of the tree size residuals. This is promising,
and an individual tree model could easily be developed for Douglas-fir in the same
Pacific Northwest region, again using the S-system modeling framework, and then
extended to incorporate climate effects. The stand level model and the individual
tree model could then be used in conjunction to project the growth of the individual
trees, which would be aggregated to obtain QMD and top height, and then used to
project the development of a forest stand.

The overall approach used, that of creating nested dynamic models and using a
least squares model extraction criterion, is still believed to be appropriate for this sit-
uation, and although this specific application was not entirely successful, the method-

ology is still sound. In particular, dynamic model extraction with S-systems worked
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quite well, appearing to include average climate effects. Finally, an issue was raised
concerning the relative importance of stand density and climate on tree growth. This
issue deserves further investigation, as it could have ramifications for dendrochrono-

logical research.
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Chapter 4

CONCLUDING REMARKS AND FUTURE WORK

A pair of nested, dynamic, stand level growth and yield models were developed
for plantation Douglas-fir in the Pacific Northwest to assess the effects of climate
on stand development and tree growth. The nested models were formulated as an
autonomous system of nonlinear ordinary differential equations represented as an S-
system, and consisted of a base model without climate effects and an extended model
that included climate effects through a multiplicative modifier based on PDSI. The
growth and yield model was defined by assuming only that size-density relationships
exist for forest stands, that size-size relationships exist within a tree, and that climate
modifies stand mortality and tree growth rates.

The growth and yield model projects stand density, QMD, and top height, rep-
resenting a forest stand as the number of trees per hectare and an average tree size.
The base model was calibrated using a wide variety of stand measurement data for
Douglas-fir plantations in the Pacific Northwest and performed surprisingly well when
stand projections were compared to the calibration data. The base growth and yield
model did not explicitly include site index or maximum tree sizes for Douglas-fir, yet
it was able to reproduce site index values, measured as top height at an approxi-
mate breast height age of 50 years, as well as plausible maximum tree dimensions for
Douglas-fir in the Pacific Northwest. Further, the base model did not include any
potential growth modifiers to adjust the model projections, as are commonly found
in current growth and yield models.

Although climate is known to affect stand development and tree growth rates,
the extended growth and yield model was indistinguishable from the base model,
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indicating that climate effects on growth could not be detected for these data and the
stand level model. Both temperature and precipitation were examined to determine
whether they could possibly have provided a detectable climate effect, but neither of
these variables demonstrated identifiable trends with the base model residuals. These
results may indicate that climate effects are not extractable from aggregated stand
attributes such as QMD and top height.

Several data based issues were identified as factors which could have confounded
the ability to detect a direct climate effect. First, changes in the SMC database
composition, in particular a shift to younger fast growing stands that occurred coin-
cidentally with a drought, may have obscured climate effects. Second, not all of the
Douglas-fir stands selected were pure Douglas-fir based on the number of stems per
hectare, and this would have affected the stand density and QMD rate equations, and
may have also contributed to the masking of climate effects. Third, small plot sizes
may have exaggerated mortality when the number of trees on a plot were scaled to
trees per hectare, again affecting the stand density and QMD equations and possibly
masking climate effects. Finally, tree growth patterns in Oregon and Washington
are different, and there could have been some cancellation of climate effects caused
by combining the data for these two states. Each of these issues may be addressed
through a careful consideration of the Douglas-fir data set to select stands which may

maximize the ability to detect climate effects, and this work is underway.

4.1 Implications for current growth and yield models

Possibly the most important implication of this research for current growth and yield
models is that site index is not a necessary variable for growth and yield modeling.
This is not to say that site effects on stand development do not exist, but only that the
direct inclusion of site index provides no guarantee that site effects have actually been

included in a model. In fact, the role of site index in current growth and yield models
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may be solely as a second pseudo-height measurement, creating a relative calibration
of the increment predictions in a model. Thus, site index may not be providing the
a priori information on differences in site quality that it was originally intended to
do. Further, site index is of limited use for mixed species or mixed age forests, and
its ongoing use in these areas of growth and yield modeling may be limiting the
effectiveness or applicability of the models developed.

The base growth and yield model did not assume, and incorporate, maximum tree
sizes for Douglas-fir, nor were shapes of the growth curves explicitly defined. Instead,
the rates of change in QMD and top height were modified by a Chapman-Richards
like decay term, and a least squares procedure was used to estimate the parameters
of the autonomous S-system model, extracting the shapes of the growth curves from
the Douglas-fir stand measurement data. Without maximum tree sizes and the a
priori determination of growth curve shapes, the base model reproduced tree sizes
that were consistent with observed maximum Douglas-fir tree sizes for ages up to and
beyond 1000 years, and growth curves consistent with the Douglas-fir data, and the
Pacific Northwest in general, were also reproduced by the model. Thus inclusion of
maximum tree sizes and the a priori definition of growth curve shapes may not be
necessary, and, further, may introduce biases into growth and yield models.

The base growth and yield model performs quite well without the application of
modifiers, as commonly used in current growth and yield models, to adjust its growth
projections in order to obtain better agreement with the stand measurement data used
for the model calibration. The primary reason for this is most likely the simultaneous
nature of the S-system growth and yield model. Within the S-system growth and yield
model, the three state variables are always considered simultaneously. The model
definition and parameter estimation or calibration were performed simultaneously
for the three model equations, and the use of the model to project stand attributes
into the future is also a simultaneous process. In contrast, many current growth

and yield models treat their model equations independently, obtaining separate fits



for each equation. The simultaneous treatment of the three state variables in the
S-system growth and yield model is consistent with the actual biology of forest stand
development and tree growth, and may explain the quality of the base S-system model.

Finally, the failure of the extended growth and yield model to detect, and hence
incorporate climate effects, is also significant. This may imply that improvement in
the current statistical-empirical growth and yield models obtained by the addition of
climate variables may not be attributable to actual climate effects. The improvement
may simply be a statistical artifact caused by the addition of one or more new vari-
ables that are correlated with the model errors, and not indicative of a cause-effect
relationship. The development of an individual tree S-system model may help to

clarify this issue.

4.2 Future work

Several factors were identified as contributing to the inability to obtain a direct climate
effect on tree growth in the stand level growth and yield model. The development
of an individual tree submodel that could be used in conjunction with the stand
level model may allow the direct inclusion of climate effects. The growth response of
individual trees to climate, even within the buffered research plots, should be more
pronounced than the average climate response for a group of trees, some of which
may have done better, some of which may have done worse.

The next step in applying the S-system modeling framework to growth and yield
modeling is the development of an individual tree model, whether it permits the
direct addition of climate or not. The individual tree model may then be used with
the stand level model to project stand development through a three step procedure.
First, compute the current QMD and top height for the stand and obtain the future
stand density by projecting the current stand density, QMD, and top height one year.
Second, grow each tree in the stand for one year. Third, kill the trees that are the least



vigorous to obtain the projected stand density. The least vigorous trees are typically
determined by considering both tree size and growth rate. Initial experiments with
estimating an individual tree S-system model appear promising.

The S-system modeling framework, as presented for the Douglas-fir growth and
yield model, is not specialized in any way to Douglas-fir. Application of the techniques
and model developed here to other tree species should be performed to see how widely
applicable this approach may be. In particular, the method should be applied to tree
species which do not have strong pre-formed growth patterns to determine whether
the allometric assumptions of the size-density and size-size relationships in the model
remain valid for these types of trees.

The base growth and yield model may be extended to include effects derived from
the long term nutrient status of a site in a similar manner to that used for climate
effects. A new S-system state variable may be defined as a directly proportional
nutrient effect using some set of soil or site characteristics, e.g., carbon-nitrogen ratio
and soil type. Two approaches for including this modifier readily present themselves.
First, and simplest, is to add soil nutrient status as a decay process which is based on
the nutrient uptake by the trees. This involves the addition of a fourth rate equation,
.’i’s, having the form

Xs = —Bs X1 (4.1)

for the nutrient decay process. This variable may then be included in the S-system
model in the same manner as the climate effect. The second approach recognizes
that nutrient deposition may occur, and adds an exogenous S-system state variable
representing nutrient deposition in addition to the decay process, yielding an equation

of the form

.X.s = ang“ - Bng“ (4.2)

Again, this variable may then be included in the growth and yield model in the same

manner as the climate effect.



The S-system modeling framework allows the development of highly localized
growth and yield models with minimal effort. All that is required is stand mea-
surement data and standard least squares optimization software. The use of this
technique to develop highly customized growth and yield submodels for different ar-
eas within a larger stand is conceivable, allowing for the development of customized
treatment regimes for the smaller areas.

The failure to obtain a direct climate effect in the Douglas-fir growth and yield
model could imply that stand density effects on tree growth, via size-density relation-
ships, are much stronger than climate effects on tree growth. A better understanding
of the relative importance of size-density effects and climate effects on tree growth is
therefore necessary to correctly identify the type of growth influence.

Finally, work to extend the dynamic S-system based growth and yield modeling
framework to include other treatments, such as fertilization or pruning will continue.
In addition, the development of a software system for stand projection allowing the

inclusion of a variety of silvicultural practices is planned.

4.3 Closing remarks

The S-system modeling framework has the two primary features which make the
statistical-empirical modeling framework so popular. First, the S-system model-
ing framework permits the straightforward definition of models based on state vari-
able interactions, much like the typical statistical-empirical modeling framework does
through correlation among the state variables. The S-system modeling framework
therefore retains the convenience and flexibility of the statistical-empirical modeling
framework for model definition. Second, model calibration is achieved through the
solution of a straightforward optimization problem, generally a least squares or maxi-
mum likelihood problem. The S-system modeling framework has the additional bene-

fit of automatically accounting for temporal autocorrelation among repeated measure-



ments for a forest stand or tree, something the typical statistical-empirical modeling
framework cannot do directly. This added benefit is derived solely from the fact that
the S-system modeling framework uses a mathematical representation that concisely
represents dynamic systems.

The S-system modeling framework is not a panacea, as for all dynamic modeling
situations, as it is not a substitute for understanding. It does, however, provide a
consistent and powerful methodology for constructing dynamic models which inherit
the essential characteristics of the dynamic behavior represented by the data for a par-
ticular phenomenon, here forest stand dynamics and tree growth. In situations where
a model for a complex dynamic process is unavailable or a dynamic process is poorly
understood, the S-system modeling framework may provide a means for capturing
the essential dynamics of the process. Dynamic models produced in this manner are
not substitutes for detailed process based models and the understanding necessary to
produce them, but they do provide a bridge from the descriptive, statistical-empirical
models to the dynamic, mathematical-explanatory models.

The path that forest growth and yield modeling must take in the future leads from
a descriptive, statistical-empirical modeling framework to a dynamic, mathematical-
explanatory modeling framework. This path, if followed, will lead to a better un-
derstanding of forest ecology, and to the development of more realistic forest models.
This research provides but one step on the path toward this goal. As with any journey
and the first steps upon it, though the goal is clear, the path ahead is not. As more is
demanded of forests, the stewards of those forests, their understanding of the forests,
and the tools they use must be up to the task of meeting the demands. At the present
time, forest growth and yield modeling research appears to be at a fork in the path.
One branch leads down a path which limits growth and yield modeling research by
adhering to the classical applications of wood production and a statistical-empirical
modeling framework. The other path offers limitless opportunity for growth and yield

modeling research by broadening the scope of the research to include the dynamic



nature of forest ecosystems in their entirety. The choice of branch is clear: a forest
ecosystem model may be used as a growth and yield model if it produces tree dimen-

sions, but a growth and yield model which only produces tree dimensions cannot be

a forest ecosystem model.
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[ have excellent problem solving and analytical skills. I have a strong background
in applied mathematics, statistics, and computer science, and am currently apply-
ing these skills in forestry. I am developing a regional dynamic growth and yield
model for plantation Douglas-fir in the Pacific Northwest. I have also developed a
customized tree list generation database for growth and yield modeling. I have a
demonstrated track record in understanding complex problems, and determining ap-
propriate solutions in a broad spectrum of areas related to mathematics and computer
programming. [ am highly goal oriented, with an insatiable desire to learn. I work well
individually or in a group setting. I have excellent verbal and written communication

skills and experience in public speaking and lecturing.

Professional Experience

September 1998 - July 2000 The Stand Management Cooperative, University of
Washington Forest Resources, University of Washington, Seattle. I designed, de-
veloped. implemented, tested, and documented a set of programs and a portable
subroutine library to create and manage a customized database for tree list gen-
eration. The programs were written in portable Fortran 90/95. The tree list
generation database currently supports the generation of stands dominated by

Douglas-fir, western hemlock, and mixtures of these two species for the Pacific
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Northwest, including Oregon, Washington and southern British Columbia, west
of the Cascade Mountains. The tree list generation database software may be
extended to include other dominant species, and the methodology is not limited

to any particular location.

February 1992 - August 1996 Jet Propulsion Laboratory, Pasadena, California.
Member of the Technical Staff. Navigation and Ancillary Information Facility
(NAIF), Navigation Systems Section. [ was involved in all aspects of software
development: design, implementation, documentation, customer support, and
software maintainance. The software supported an information system devel-
oped to support the space science community by easily allowing the correlate
spacecraft and planetary position and velocity information with the scientific
data collected by a variety of instruments. The NAIF group develops and dis-
tributes programs and a portable subroutine library for correlating spacecraft

position and orientation information with scientific data.

Summer 1990 Computer Programmer. IBM Corporation, Systems Integration Di-
vision, Houston, Texas. Developed prototype client and server applications for
a remote data acquisition product using the C programming language and the

socket interface of the TCP/IP communications protocol.

Summer 1989 Computer Programmer. Amoco Production Company, Research
Center, Tulsa, Oklahoma. Developed a graphical user interface for use with ge-
ologic well log data and extended the capabilities of existing software to support
conversion of files and automatic generation of scripts for third party geologic

well log analysis software.

Summer 1988 Summer Intern. MPSI Americas, Inc., Tulsa, Oklahoma. Examined

the numerical optimization methods used in a retail market analysis model.
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Identified problems and proposed alternative optimization strategies. Imple-
mented various methods to test the ideas and presented results and recommen-

dations to the director of research and development.

Education

June 2001 Ph.D. in Forest Management, specializing in growth and yield modeling.
College of Forest Resources, University of Washington, Seattle, Washington.
Dissertation title: “Dynamic growth and yield modeling with climate: A model
for plantation Douglas-fir in the Pacific Northwest.”

December 1998 - Present University of Washington, Seattle, Washington. Ph.D.
Candidate Quantitative Resources Management, College of Forest Resources.

Research topics included tree list generation methodologies and growth and

yield modeling.

September 1996 - December 1998 University of Washington, Seattle, Washing-
ton. Graduate student in the Doctoral Program in Quantitative Resources

Management, College of Forest Resources. Cumulative G.P.A.: 3.80/4.00.

September 1990 - December 1991 Rice University, Houston, Texas. Doctoral
program in Mathematical Sciences, Cumulative G.P.A. 4.04/4.33. No degree

obtained.

Summer 1991 Rice University, Houston, Texas. Investigated model formulation
and solution methods for large scale mixed integer programming problems with

applications to minimizing flight delay times in the United States air traffic

system.

September 1989 - May 1990 Rice University, Houston, Texas. Doctoral program
in Statistics, Cumulative G.P.A. 4.07/4.33. No degree obtained.



September 1987 - May 1989 The University of Tulsa, Tulsa, Oklahoma. Applied
Mathematics M.S. degree obtained May 1990, with an emphasis on numeri-
cal analysis and numerical computing. Graduate GPA: 4.000/4.000. Master’s
Thesis: “Nonparametric Probability Density Estimation Using Normalized B-
Splines.”

September 1983 - May 1987 The University of Tulsa, Tulsa, Oklahoma. Mathe-
matics B.S. degree obtained May 1987, Magna Cum Laude, with a Computer
Science minor. Cumulative GPA: 3.808/4.000. Senior Honors Thesis: “The
Calculation of Pharmacokinetic Parameters through the use of Symbolic Com-

putation and Rotational Discrimination Non-Linear Regression Analysis.”

Computing and Software

Programming languages Fortran 95, Fortran 90, Fortran 77, the C Programming
language, MATLAB (matrix-vector oriented computation and analysis), S-Plus
(statistical data analysis), VAX 11/750 and 11/780 assembly language, Intel
x86 assembly language (8088, 8086, 80286), MACSYMA and MAPLE (symbolic
computation). Also mixed language programming in C and Fortran 77 program-

ming on UNIX platforms: Sun, Hewlett-Packard, Silicon Graphics, NeXT.

Software systems Matlab, TeX and LaTeX for document preparation; graphical
user interface development with the X-Window System and the MOTIF toolkit
on UNIX platforms Dreamweaver, by Macromedia, for web site development

and maintenance; and Microsoft Office products: Word, Access, Powerpoint.

Hardware and operating systems Sun workstations and Sparcstations under the
UNIX operating system (Solaris and SunOS), NeXT workstations under the
NeXTStep operating system, Silicon Graphics workstations under the UNIX
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operating system, Hewlett-Packard workstations under HP-UX, IBM style PCs
under Windows, Windows 9x/NT, PC-DOS or MS-DOS, IBM mainframes un-
der the CMS and TSO/MVS operating systems, DEC Micro VAX II, VAX
11/750, and VAX 11/780 under the VMS operating system.

Awards and Honors

Jet Propulsion Laboratory Certificate of Recognition for the NAIF Toolkit, Na-

tional Aeronautics and Space Administration, September 19, 1997.

Jet Propulsion Laboratory Mention in NASA Tech Briefs, “The SPICE System,”
October 1997, Vol. 21, No. 10.

University of Washington, Seattle, Washington Full tuition Scholarship in the

Quantitative Resources Management Ph.D. Program in the College of Forest

Resources.

Member: Alpha Chapter, Xi Sigma Pi, Forestry Honor Society.

Rice University; Houston, Texas Full tuition scholarship in the Ph. D. program
of the Department of Mathematical Sciences, now the Department of Compu-
tational and Applied Mathematics.

Teaching assistantship and full tuition scholarship in the Ph.D. program in the

Department of Statistics.

The University of Tulsa; Tulsa, Oklahoma Teaching assistantship and full tu-
ition scholarship in the Department of Mathematics and Computer Sciences.
Honors Scholarship, University Scholar Scholarship. Graduated magna cum
laude, G.P.A. 3.808/4.000, May 1987.
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Member: University of Tulsa Honors Program; Phi Gamma Kappa honor soci-

ety.

Publications

. Gehringer, Kevin R. (1990) Master’s Thesis, Department of Mathematics and

Computer Science, The University of Tulsa. Nonparametric Probability Density
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. Gehringer, Kevin R and Richard A. Redner (1992) " Nonparametric Probability

Density Estimation Using Normalized B-Splines.” Communications in Statis-

tics, Part B: Simulation and Computation, Vol. 21, No. 3, pp 849-878.

Gehringer, Kevin R., Gonyea, Bob, Turnblom, Eric C. (1997) Growth response
of thinned Douglas-fir stands to fertilization at Foley Ridge. A technical report
prepared for the Stand Management Cooperative, College of Forest Resources,

University of Washington.

. Gehringer, Kevin R. and Turnblom, Eric C. (1997) Pruning response in Douglas-

fir, an initial analysis. Stand Management Cooperative 1997 Annual Report.

Gehringer, Kevin R. and Turnblom, Eric C. (1998) "An Evaluation of the Tree
and Stand Simulator (TASS) Fertilization Response.” A technical report pre-
pared for the British Columbia Ministry of Forests, Research Division.

Presentations and Conferences

. Dynamic Growth and Yield Modeling: An application of S-systems to Planta-

tion Douglas-fir in the Pacific Northwest. Stand Management Cooperative Fall
Meeting 2000, a joint meeting with the Virgina Tech Cooperative. Worthington
Conference Center, St. Martin College, Lacey, Washington.



. Tree list generation for growth and yield modeling. Project final report. Stand
Management Cooperative Spring Meeting 2000. McMenamins, Troutdale, Ore-

gon.

. Constructing a virtual forest: A nearest neighbor tree list generation procedure.
Invited presentation at the Tree List Generation Symposium, January 21, 2000,
University of British Columbia, BC, Canada.

. Tree list generation for growth and yield modeling. Project status report. Stand
Management Cooperative Fall Meeting 1999. Pacific Forestry Center, Canadian

Forest Service, Victoria, British Columbia, Canada.

. Is site index necessary for growth and yield modeling? Silviculture Lab Brown
Bag Lunch, November 29, 1999, College of Forest Resources, University of Wash-

ington.

. An Evaluation of the Fertilization Response of the Tree and Stand Simulator
(TASS). Western Mensurationsists Conference, 1998, Port Ludlow, Washington.



