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We have carefully read the thesis entitled M8P Transforxmations of
Geographic Space . . submitted by

‘Valdo Rudolph Tobler in partial fulfillment of

the requirements of the ~ 2OCLOT OL THLIOSVPIT. . :
and recommend its acceptance. In support o( lhlS rccommendauon we prcsem the
following joint statement of evaluation to be filed with the thesis.

Mr. Waldo Rudolph Tobler's thesis is an important contribution to the
field of geographical cartography. Maps and cartographic representations
have been distinctive and much used descriptive and analytical tools of
the geography profession. A major and continuing problem facing the geog-
rapher is that of devising ways and meant of obtaining accurate represen-
tation of the earth and selected phenomena upon a plane. Work in map pro-
jections is addressed to various facets of this problem. Comparatively
recently, cartographic geographers have also become concerned with the use
of projections as analytical tools. In this connection, work has been
premised on the appreciation of various kinds of spatial relationships
which result from differences in the map users' concepts of space in terms
of time, distance, cost, convenience, etc. Consequently, in problems
where such concepts are important, e.g., industrial location, it should be
possible to develop and use suitable cartographic ideas and techniques in
their aralysis.

In the first portion of Mr. Tobler's study he reviews the more conventional
aspects of cartography, namely, the representation of the earth's surface
on a plane, and develops an original, still tentative, classification of
map projections including a simple graphic technique which is effective in
describing and comparing them,

The second and majocr part of the thesis is concerned with the analytical
use of map projections. Distortion inevitably results from the represen-
tation of the spheroidal earth on a plane. With great originality,

Mr. Tobler relates these distortions, cartographically and graphically,
with alternative conceptual distortions, or transformations, of various
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relationships having spatial qualities which are susceptible to more
effective analysis when represented on other than conventional, physically-
oriented map projections. He has provided numerous examples of transfor-
mations to demonstrate the usefulness of the techniques, particularly as
they relate to research carried on in economic geography. He has also in-
dicated further applications of his ideas and techiniques to other areas of
geographical research as well as ways in which they may be refined and
developed.

The members of the reeding committee have pleasure in recommending
Mr. Tobler's dissertation as an example of the best kind of imaginative,
thorough, and scholarly research in geography.
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CHAPTER I
INTRODUCTION

Inagine a simplified geographic arrangement as shown in the acoom-
panying figure (Fig. 1.1). The double lines represent roads; the alrplane
symbols, P] and P2, are airports; the dashed line is an air route; the

dots A and B are two locations.

A Simplified Geographical Arrangement

Figure 1.1

It is clear from this map that the shortest distance from A to B 1s along
the road connecting the two. Suppose, however, that it 1s desired to tra-
vel from A to B in the most rapid manner possible. Under certain oonditions
it requires less tise to travel to the airport (Py), walt for a plane, fly
to Py, wait for a bus, and then ric- to B, than it would require to travel

the shortest distance directly. Situstions of this general naturs are



frequent and well known, resulting in expressions such as the phrase "as

iho orow flies.” It would be desirable to be able to draw a map on which
the shortest time-distance betwsen two places is the straight line connecte
ing those two places. For the simple situation given, this does not appear
difficult. The geographic environment is to be transformed into an arrange-
ment which looks somewhat as follows (Fig. 1.2):

A Tronsformation of the Geographical Arrangement

Figure 1.2

This simple example repressents one type of problem which might be
exanined. The questions, jnter alis, for which answers are desirable would
seen to be: Under what oonditions are such transformations possible? Is
more than one such transformation possible? Can rules be established for
performing such transformations in more complex situations?

A second example is to be found in J. H. v. Thinen's theory of agrie-
cultural location. The relevant postulates of this theory are a mavket
place located in a uniform region of agriculturally productive land and a

method of transport which ig free travel anywhere in this region. Fure



ther, the method of transport has the characteristic that {reight costs
are directly proportional to the distance traveled. The resulting pattern
of land use is one in which different agricultural crops are produced in
ooncentric rings around the center of the oity.1 This idealized scheme 1is
depicted in the following figure (Fig. 1.3)s

CCHEMATIC OF «Or THUNEN LAND USE RINGS

Figure 1.3

Von Thinen now changes his postulates slightly by introducing a
river into the region. He allows the transport of agricultural goods to

lthis is a mch sinpli.t‘led vcrsion or von Thinen's work. See J. H.
von Thilnen, D S0Li¢ at in Beziehu nf Landwirtschi md

g 24 +tio .
W, H, %zlon tranulation. (New Haven: Yale University Press, 195 L9;
and E. S. Dunn, Jr., %MMW (Gainesville:
University of Florida, 1954). The figures (1.3 and 1.4) are modilications
of those given in T. Palander, Beitrage zur Standortstheorie (Uppsala:
Almqvist and Wiksells, 1935), p. 75.




occur on this river but at a cost which is less than that incurred on land.
The concentric pattern of land use is now distorted because of changes in

the cost-distance relations (Pig. 1.%).

SCHEMATIS OF VON THUNER RINGS MODIFIED BY RIVER

Figure 1.4

If it were possible to transform the geographic background in the
von Thinen model into a cost-distance space, the land use pattern should
again oxhibit the ooncentric ring structure. As is apparent.\the earlier
exﬁmpi;-and the von Thinen situation are quite similar and comparable ques-
tions are appropriately examined.

The von Thinen model can also be modified so as to relate urban

land use, land values, and rents, to distances from the center of



cities.? Cost-distance concepts are also to be found in discussions of in-
dustrial and of retall site location, of the distribution of cities, and
of international trade.’ The application of mapping transformations hence
appears to be widespread. In the work which follows, occasional reference
to these applications is made from what may be broadly classed as location
theory. These brief accounts are not intended by any stretch of the imagi-
nation to be comprehensive or complete reviews of the subject. They serve
merely to indicate potential uses of the mapping transformations developed.
for example, it 1s assumed that the von Thinen model of land use is genere
ally valid, though the empirical evidence is certainly not conclusive.u
When the realities of transportation are considered, the von Thinen scheme
can be used to accqunt for arrangements of land use which diff'er quite

radically from the conceniric zone pattern, but no formulation as simple

as this can hope to explain ‘he complexly dynamic interplay of the many

%4. Alonso, "A Hodel of the Urban Land Market" (Ph.D. dissertation;
University of Pennsylvania, 170). H. Mohring, et al., The Nature and
Measurement of Highwas/ Benefits (Evanston: Northwestern University [lrans-

portation Center, 1960). L. wWingo, Transportation aid tne Utiligation of
Urban Land (manuscript; Twentieth Century Fund, 19355.

M. Isard, Lgggg;gn_gg§L§2§gg_§%ggggx (New York: Wiley and Sons,
1955); C. Ponsard, Economie et Espace (Paris: Sedes, 1955); W. L. Garrison,
"The Spatial Structure of the Economy," s, Assoclation of American
Geographers (XLIX, 2, &4, 1959; L, 3, 1960); C. W. Baskin, "W. Christaller's
Die Zentralen Orte in Suddeutschland: Critique and Translation® (Ph.D. dis-
sertation, University of Virginia, 1957).

-

“gg., W. L. Garrison, ihe eficts of Rural | to Rural Propert
(Part IV of atiop of Street Costs: Olydpia: Washington State
Council for Highway Research, June, 1755); W. L. Garrison and M. E. Marts,
Geggrgphic Impact of Highway I%grgvemegts (Highway Economic Studies, Seattle:
University of Washington, 1358); B. O. Wheeler, Effect of ‘reeway Access
upon Suburban Real Property Values (Seattle: Washington State Council for
Highway Research, June, 1955); S. R. Wiley, "The Eflect of Limited Access
Highways upon Suburban Land Use" (Master's thesis, University of Washington,
1958).




factors involved. Seattle is not simply a homeomorphism of Boston; but
such observations are obvious and hardly require speclal emphasis.

The thought of transforming ground-distanoces into time- or cost-
distences is not original with this writer. It appears in explicit form
in Alfred Weber's Theory of ths Location of Industries® and perhaps earlier.
Weber considered that "real" distances should be replaced by "fictitlous"
distances, composed in part of transport costs. Many subsequent writers
have_recognized similar conospts. Wingo writes of the 'Mm of apace.;'
Isard of effective distance, others of accusibmt.y.6

In a recent work, Bunge presents two maps which further illustrate
the ooncepts.” The first map (Fig. 1.5) indicates time-distances from the
conter of the city of Seattle to various locations by isochrones, the tra-

ditional method.8 The isolines are on a base map which can be said to be

5c. J. Freidrich, ' £ op of I 8
(Chicago: University of Chicago, 1926), pp. 33=35, 4.

6Wingo, gps git., p. 31; Isard, t., pp. 200-201; W. G. Hansen,
"How Acoessibility Shapes Land Use," , American Institute of Planners,

v, 2 (1959), 73=76. Application of these concepts to urban transportation
planning is well illustratsd in J. D. Carroll, Jr., st 8l., Final Report:

i (Vols. I-IXI; Chicago: Chicago Area Trans-
portation Study, 1960).

7W. Bunge, "Theoretical Geography" (Ph.D. dissertation, University
of Washington, 1960). The possibility of such maps is also noted in
E. Ralsz, Oeperal Cartography (New York: MoOraw-Hill, 1938), p. 2%%.

8an isochrone is a line passing through all places to (or f{rem)
which it requires an equal amount of time for a commodity to be transported.
Isoline is the general term used to describe any line passing through points
having some quantity in common. Ocoasionally used synonyms are contour and
level curve. See J. K. Wright, "The Terminology of Certaln Map Symbols,"
Ihe Geosrsphical Keview, XXXIV (1944), 653-654. The first use of the term
jsochrone is attributed to Francis Galton. £f., ¥. Eckert, "Eine Neue Iso-

chronenkarte der Erde," Petermann's Geographische Mitteilungen, LV, 9 (1909),
209,
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true to scale, in the conventional sense of the word. The second map
(Fig. 1.6) is a transformation of the first so that distances, as measured
in mputes from the center of the city (only), are correct to alt other
locations. Bunge does not indicate by what method such transformations
are to be undertaken. The current work presents an investigation of this
problen.

Having indicated a few simple cases in which the geographic notion
of distance, measured along a geodssic on a sphers, is to be modified by
the substitution of temporal or monetary units for yardsticks, it is not
difficult to gengralize the concept of distance further. As one example,
evidence for a metrogenic substitution of psychological distance for
spherical distance will be presented and brlefly examined. It is then
only a short step from distance to area and an examination ol a number of
published maps, which in cartographic parlance are referred to as carto-
grams, leads to what can be considered a generalizatlion of the concept of
an equal-area map.

vhen area is considered it is important to recall that the distri-
bution of resources and human activity over the surlace of the earth is
quite uneven. The importance of a region can rarely be measured by its
size., Theorctical ‘reatises which assume a uniformly fertile plain, or
an even distribution of population, etc., are to this extent deliclent.
As one writer has put it:

The theoretical conceptions, based on hypotheses of homo-
genesous distritation must be adapted tc geographical reality.
This implies, in practice, the introduction of corrections
with regard to the existence of blank districts, deseris ol

ohenomenon, massives or special points. That is to say that
in practice we have to take into especial oonsideration the
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anisotropical qualities of the grea geographica.?
To a certain extenf variations in the geographic distribution of phenomena
can be eliminated from the maps by appropriate transformations.

The Approach -

The present approach to these topices is through the theory of map
projections, as avallable to geographers. This is naturally only one of
several related but possible approaches. One could begin with the theory
of groups or very primitive notions of simple transformations and lead up
to transformaticns of the plane onto itseli. The entire topic can, of
course, also be considered by making explicit use of Gauss' fundamental
forms, as in differential geometry. The approach 1s hence perhaps back-
wards but provides a point of departure with which geographers are most
familiar. Working from the point of view of map projecticna has a further
advantage; not only is the theory of map projections fairly complete, ad-
vantage can also be taken of two thousand years of previous work wnich
has resulted in numerous particular soluticns to a wide variety of prob-
lems. For example, Alfred Weber has been cited as having been desirous
of substituting "fictitious" distance; for real distances. This notion
has been criticized several times.® Taks the case of a location at
point P in relation to two further locations, A and B (Fig. 1.7). Assume
that the fictitious distance from A to P is less than the real distance;

P 18 hence dislocated to P!'. Assume further that the fictitious distance

IE. Kant, "Umland Studies and Sector Analysis," Studies in Rural-
Urban Interaction (Lund Studies in Geography; University of Lund, Ser. B,
3, 1951), p. 5.

101sard, gp. cit., p. 109; Palander, op, cit., pp. 192-220.
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from B to P is greater than the real distance; P 1s hence dislocated to
P". The conclusion is that P must be dislocated to two distinct loca-
tions, an apparently absurd situation.

oD

a o - ob
Modification of Distances from Two Points

Figure 1.7

An acquaintance with the literature of map projections, however, immedi-
ately indicates how the apparsnt absurdity is to bde resolved. A varlant
of the doubly equidistant projection is required. The correct relocated
position P''' should bs at the point of intersection of the circles of
radii AP' and BP" centered on A and B respectively. The azimuths are
distorted but Weber is not ooncerned with direction. Chamberlin's tri-
metric projection can be used to approximate the case of three polnts,

and extensions of the notion for larger numbers of pointa.ll

111, general the fiectitious distance AB requires modification to
AB' and BA'. If AB' # BA', set AB" = BA" = #AB' + iBA'. The circles
are to be drawn with radii AP' and B"P" intersecting at P'''. These
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Similarly, it 1s known that only special surfaces are isometric
with a plane. JComplete isometric transformations are therefore not ex-
pected to be possible in general. Mappings preserving distanoces froa a
point or curve, however, would a priori seem possible from a knowledge
of the conventional theory of map projections.

In a broader context, the notion of tranaformations is of extreme
importance to large portions of modern mathematics and has application in
almost every field. An attempt is made to point out some geographic ap-
plications of this notion. Any pretense to a complete coverage of the .
topic suggested by the title, however, would be absurd. There is, never-
theless, a departure from the traditional cartographic problem of finding
2 "best” representation of the surfaoe of a sphere on a flat sheet of
paper. The transformations emphasized are not attempts to minimize dis-
tortion but contain deliberate distortion of spherical distances. The
distortion is chosen to simplify the solution to certain probleas or to
fit empirical data. The first context is well known from Merocator's pro-
Jection, which provides nomographic solutions to the navigator's problen
by mapping the loxodrome on the sphere into a geodesic on the plane. The

second context is lesas well rscognized but is not completely unknown.

Ihe Flap of the Discugsion
In Chapter II the concern is with the general theory of map pro-

Jections. This serves both aa a review and as an introduction to the

circles often intersect in two points, which causes little difliculty.
Yet, under certain conditions the circles may not intersect.

The trimetrigon projection uses the center of the curvilinear
polygon defined by the circular arcs as an average distance. Extension
to more than ihree locations can proceed by analogy but becomes increas-
ingly difficult and approximate.
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chapters which follow. A complete development of Gausslan surface theory
is not presented, but map projections can still be attacked {rom several
directions. Projective construcotc are widely avallable to geographers

and in popular accounts. The treatment here glven in the initial chapter
is largely algebraic rather than projective. While projective models are
historically important and occasionally suggest lines of development, they
do not always provide a sufficient framework for further extensions of the
topic. Chapter II also establishes the foundation for simple graphic
techniques which will be used in thes ensuing chapters.

The reader is assumed to have a modsst, but not detailed, prior know-
ledge of the subject of map projections.lz' The reader whose acquaintance
with map projections is less than that of the average geographer may at
times £ind the terminology slightly obscure but this is not a serious dif-
ficulty. A sphere is taken as the general model of the earth. The reader
is cautioned that the results do not all apply to a spheroid or other models
of the earth.

The next chapter, Zhapter III, considers a particular class of map
projections, the azimuthal projections, in somewhat greater detail. Here
the relation between the resulis of Chapter 1II, simple projective models,
and graphic procedures is established. Using these methods, a presentatlion
ie then given of a few of the traditional problems which have concerned

cartographers in their treatment of this class of map projections. Finally,

1270 excellent non-mathematiocal introductions are: 1. Fisher and
0. . Miller, World Maps and JQlobes (New York: Essential 3ooks, 1944), and
W Chanberlin. The Round Earth on Flat Paper {(Washington: National Geogra=-
phic Society, 1347). The simplesi and most concise discussion ol the mathe-
matical theory 1s probably that in H. Merkel, G d7e de venprojektion-
slehr (ﬁunchen Deutsche Geoditische Kommission. Relhe A Helt 17, 1855).
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the assumptions of tne previocus chapter are examined in greater detail and
then relaxed. By proceeding in a manner oonsistent with the earlier estab-
lished techniques, but with relaxed assumptions, new projections are created.
These projeotions exhibit rather unusual 'propox-t.iu but are not entirely new
to the literature of oartography. Oeeographic interpretation and valid uses
for projections with some of these propertlies, Ahmnver. have hitherto been
lacking. Ia Chapter IV such interpretation is attempted when attacking the
-problem of metrogenic substitution cited earller.

The chapter (IV) begins with simple analogues of transportation situ-
ations and oontinues by increasing the cozplexity of these situations. Ex-
amples serve to indlocate po—uiblo applications of the mappings developed
using the concepts elicited from the previous chapter on azimuthal projec-
tions. These examples are drawn primarily froa the oontext of what has
loossly been referred to as location theory. It is not intended, however,
that the application be restricted to this subject.

The transformations themselves can be considered either as being
from the surface of the earth to another "sphere,® or as mappings of the
earth to a plam.'cr as mappings from ons plane to another. The latter in-
terpretation is justifiable and useful for restricted reglons of the earth.

The discussion makes use of isolines and is in many respects quite
similar to statements by LOsch and particularly Palander. A conscious ate
tempt is made to avold repetition of Palander's work but a certain amount
of overlap appears inevitable. Where possible examples have been chosen
80 as to extend, rather than duplicate, the notions and sxoellant isoline
maps presented by Palander. Palander's oonoept of a transport surface is
clarified and extended. Certain topological configurations of transport
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systems are examined and transport characteristics identified. An isomor-
phisa is established between transport isolines and map projections. From
the point of view of map projections it is also clear that Tissot's indioca-
trix (Chapter II) can serve as 2 measure of the distortion introduced by
transport systems. This certainly suggests the possidbility of classifying
geographic environments on the basis of the amount of departure from an
1dealized homogensous geographic space. The {inal portions of the chapter
indicate further geographic applications; distanoce models and the conoept
of distance are also briefly examined. The entire discussion is restricted
to azimuthal projections.

In Chapter V the inadequacies introduced by oconsideration of only
azimathal projections are examined. The addition of conditions of equal-
area and conformality to transformations preserving distance {rom a point
are discussed.

An attempt s then made 4o dsmonstrate that distortion of area on
maps oan be most meaningful and useful (Chapter VI). The stage is set by
g examination of select cartograms and common cartographic problema. The
solution is shown to lie in tranaformations of multiple integrals and the
application and relsvances of these to geography is explored.

The final chapter reviews a few of the major results and shortoomings.



CHAPTER II
MAP PRCJECTIONS

One general notion of a transformation of a two-dimensional sur-
face, such as the surface of a sphere, is given by a pair of equations

of the form:
u= fl(‘a >\)

v h),
vhere u and v are ocoordinates used to describe the location of positions
on the transforwed surface, phi (¢) and lambda (.) are coordinates used
to desoribe the location orf positions on the original surface, and f] and
f, are any functions whatever.l For the discussion of the conventional
theory of &ap projections it will be assumed that {] and 2 are real,
single-valued, continuous, and differentiable functions of é and » in
some domain and that the Jaocobian determinant does not vanish.Z This late
ter condition can be interpreted as requiring that the lines ¢ s constant

and » = constant do not cocincide on the transformed surface. The u and v

1A function is a rule assocliating elements of one set with elements
of another set. This definition of a function is used as we will later in-
clude functions whose domain is a finite collection of points. Many=-to
ons and one-to-many mappings will also be encountered. The subscripts in
the functional notation will in the future be omitted. It is to be under-
stood that in general f3 # f2; f will be used for both unless special em-
phasis is desired.

2Tne detalled oconditions for an allowable mapping and definitions of
surfaces, etc., in terms of squivalence ciasses have been omitted. The
reader is referred to: E. Kreyszig, Differential Oeometry (Toronto: Iniver-
sity of Toronto, 1959), pp. 39, 18420, 72-79. The Jacobian determinant

(J) is given by: J.%g_v_ggg.
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are to be interpreted as independent coordinates on a plane surface, and

# and A are to be interpreted as geographical coordinates on a sphere.

The assumptions are suffiocient to ensure 2 one-to=-one mapping of some por=
tion of the surface of the sphere to a plane so that each position (¢, A )
on the surface of the sphere (in the domain under consideration) corres-
ponds to one, and only one, position (u,v) on the plane. Conversely, each
position (u,v) within some region on the plane corresponds to one, and only
one, position (¢, ) ) on the surface of the sphers. In practice the equa-
tions for a map projection are not always given in explicit form; there
are also a few map projections whose construction is relatively simple
using graphic scaling and plotting techniques but for which equations have
never appeared in the literature. The term map projection is used in the
conventional cartographic sense, where it is closer to the general concept

of a transformation than to that of projective geometry.

Notation

In the fellowing discussion all angles are assumed to be measured
in radians; exceptions are specifically mentioned. The latitude (¢) has
the interval - /2 ¢ = + /2 as its domain. The longitude () has the
interval -7« > =+ 7Tas its domain. It will frequsntly be oconvenient to
use spherical oocordinates for positions on the surface of the sarth. These
are defined by o= T/2 - ¢, * = » . It is also oconvenient to require the
origin of the u, v system of coordinates to coincide with the respective
origins of the paramstric curves of the surface of the sphere. Hence,
when the ¢, ) parameterizatiorn is used the u, v ooordinates are to be in-
terpreted as rectangular coordinates (x,y) in the plane. Wwhen the spheri-
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cal coordinates o , A are employsd, the u, v coordinates are to be con-
sidered polar coordinates (r,0) in the plans. Rectangular coordinates

are hence used when the map is centered on the intersection of the equa-

tor and the prime meridian. Polar coordinates are used when the map is
centered on the north pole. Wwhen the map 1s not centered on elther of

these two positions but at some arbitrary point (do, o), the origins of

the system of parametric curves will be moved to this new position. The
new values ¢°, »* and o®, »* can be related to the earlier systems by
equations given in standard cartographic texts. The notation used will

be simply x = £(§, A ), y= €(§,A) andr =£(p, ), 0= £(po,A), where

1t 1s to be understood that x = £(§,A), y = £(4, \) may imply x = £(§*, \'),
y = £(¢®, A*) and similarly for r, © as functions of r*, ). Note that

the functional notation ignores scalars. These constants do not in any

way arfect>the classification which follows, though they may alter the prope
erties of individual projections as in the case of the gnomonic and stereo=
graphic, or orthographic and Lambert equal-area azimuthal projections.

The earth radius (R) is the most frequent value sncountered, hers assumed
equal to unity,

All this juggling is necessary in order to treat the projections in
their so-called normal cases. For planar and conic projections this is the
polar aspect, and polar coordinates are used. For cylindrical projections
it is the equatorial aspect, and rectangular coordinates are used. Thus
it is not necessary to distinguish oblique aspects of projections, for the
geographical or spherical coordinates are sinply shifted to a new origin.
The rationale for the entire procedure is best demonstratsd by an example.

The equations for the polar aspect of the stereographic projection are:
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r=f(p) = 2R tan p/p
o= 2()) =),
The general oblique aspect in rectangular coordinates on the other hand
requires the mors compliocated equations:
o8 § sin( X -Xp)

x = £(4,A) = 2R
1+ 8ind, sin ¢ + 008 $o cos ¢ 008( ) = Ag)

L) zne-‘.'.-. o 2in 4 = sin 4, ooz 4 cos( A = )
y’ » =

1 +s8ind, sin g + cos §, cos ¢ coa( )= Ap).
To oconsider oblique or transverse versions of the same projection as en-
tirely different projections when a spherical modsl is used, as many
authors have done, is an unnecessary compliocation.

In addition to rectangular and polar coordinates more obscure co=-
ordinate systems (oblique, parabolic, elliptic) oould be used. In fact,
any systeam of coordinates in a plane (meeting rather simple requirements) |
can be oonsidered to be a map projection. The azimuthal equidistant pro-
Jection (r = p, ® = A\) 13 the system of polar ooordinates, and the rec-
tangular projection (x = A, y = §) 4s the system of rectangular coordi-
nates introduced by Descartes. Msasuremsnt in these systems, however, no
longer haz the same meaning as measurement in the plane. Thus, though,
the metric must be modified, the u, v coordinates could be interpreted
as the normal case of soms projecticn in each instance. Such an inter-

pretation requires as many systems of coordinates as there are projections.3

Jn terms of ths classification to be presented this would have a
consequence that all map projections belong to category D. This can also
be achleved by defining a different set of parametric curves on the origi-
nal surface for each projection, an approach used by Kreyszig (Ibid.,
pe 175). Hap distance contours as defined in Chapter III are similar.
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Bmploying both polar and rectangular coordinates is clearly not necessary;
at times it is awkward; in other instances the treatment is simplified.

The Classification of Msp Projections
The desire for a classification of map projections stems from the

fact that there are an infinite number of projections, each with different
properties. The fundaasntal problem of classification with regard to map
projections hence appears to be the discovery of a partitioning of this
infinite set into a comprehensible and useful fimite number of alleinclu-
sive and preferahly non-overlapping classes.

Several classifications of map projections are to be found in the
cartographic literature. The advantages and disadvantages of each, of
oourse, depend on the purpose, just as the property by which classes are
to be distinguished depends on the purpose. The classification based on
geometric models separating projections into oonis, aylindric, planar,
polyoonic, etc., is convenient and is often used. Another most important
method of classification, bassd on the preservation of certain geometric
properties of the surface of the sphere, separates ths oonformal projec-
tions from the equal-area projections, leaving a third class which 1is
neither (Tissot's aphylatic projestions). Other classifications are based
on the appearance of the meridians and parallels, i.e., whether these con-
sist of circles, ellipses, quartics, etc. Projections can also be classi-
fied acoording to the form of the equations; whether these are algebraic,
transoendental, linear, and so forth. Maurer, in his study of map pro-
Jections, attempts to partition 237 map projections into classes and sub-
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classes based on combinations of these lyntons.“ Several of the problems
of classification are discussed by Maurer, and a most interesting but very
involved Venn diagram is presented showing the overlap and interrelations
of the various classes. Tissot is another who recognized fine distinctions
and obtained an elaborate classification of map projections.

For the purposes of the present discussion a simple parametric clas-
sification of projections is employed. This classification is not common
in the clrtographio-litoraturo but has the advantage of being very simple
and including all map projections. In addition to the overview afforded,
the parametric classification suggests the simple graphic methods which
are to be used in the ensuing chapters. There are, of course, still many
alternate methods of classifying map projections.

A ) n

The paramstric classification is based on the fact that the equa-
tions for the location of lines of latitude and of longitude on the map
in some cases depend on only one of these qua.n‘tities. For example, in
the truly cylindrical projectione, the lines of longlitude depend on longie
tude alone, x = f{A), and the lines of latitude depend only on latltude,
y = £{4). Hera it is immediately apparent that the parametric classifi-
cation tacitly assumes the normal case for each projection. That is, it
assumes that centrally symmetric azimuthal projections are centered on a
pole, that cylindrical projections are onto cylinders normal to the equa-

torial plane, and that oconic projections have the axis of the cone paral-

by, Maurer, "Ebene Kugelbilder, ein Linnesches System der Karten-

entwirfe,"” kgkmFR Nr. 221 gu Petermann's Mitteilungen (Gotha:
Justus Perthes, 1935).
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lel to the earth axis. Other cases of these projections will fall into
different oategories of the classificatory scheme.’ Since the projece
tion properties are invarisnt under rotations of the reference sphers,
this drawback is not important for the present p\u'pon.5

Two equations are required to specify the location of both curves of
equal latitude and of equal longitude on the map. Since each equation oan
be a funotion of twe parsmeters, there are logically only sixteen possible
combinations of the general transformation u = f£(¢,r), v = £(¢,)), elimi-

nating paramsters one after another. These special cases are:

us=£(¢g,2) us £()) u = £(é) u= £(C)
ve f(‘oA) Ve f(‘v>‘) vse t(‘ox) vs f(‘lf\)
u=£(é,2) u= £(r) u= f£(4) u = £(C)
v = f(\) ve £(A) vaf()) v e f£(A)
us=f(é,N) ua £(A) u = f£(g) u = £(C)
v = £(4) vaf(é) v e £(d) v = £(4)
u = £(g,)) u= £(3) u = £(g) u = £(C).
v = £(C) vz £(C) v = f(C) v = £(C),

5The normal case of the gnomonic projestion has the form @ = A,
r = £(0) but the equatorial aspect has the form x = £f(A), y = £(4,N). As
already mentioned, each projeotion aspect has a normal form if special
coordinates are used.

A rhumb line on the earth (assumed spherical) is a straight line
on the equatorial case of the Mercator projection, but not on the oblique
(transverse) Mercator. However, the loxodrome in oblique spherical coordi-
nates does become a straight line on the oblique Mercator. As the oblique
pole 1s not used in navigation, the terrestrial rhumb line is no longer a

traight line. [his point oiten causes confusion.
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vhere C is a constant. The sixteen cases have been arranged in the form
of a matrix which can be said to be interchange-symmetrioc. The symmetry
results in simple interchanges of the u, v ooordinates which are indis-

tinguishable from the symmetric cases. The interchange of position a23

(second row, third column) is position aj2 (third row, second column).

Thus, Af the u and v ooordinates are interpreted as polar coordinates, the

intershange of
o = £(4)
B e
becomes
8= (1))
ks r = £(4),

which oould, of course, have been achieved by giving a different inter-
pretation to the u and v coordinates, interchanging r and €. A map drawn
in the system @ = f(4), r = £(A), position a23 withu=9, v=r, in

which the parallels are rays {rom the center and the meridians conoentric
circles, illustrates the procedure and is given in a paper by Brown.?7 If
the u, v coordinates are interpreted as rectangular ocoordinates, the inter-
changes amount to rotations of ninety degrees. TI'he Plat Caree projection
xX=3p, y=sX, more generally x = f(F)' y = I(»), is a variant. An alter=-
nate variant is r = d, @ = A\, The distinotion betwsen sense preserving

and sense reversing proJjections need not ve discussed.B

78. H. Brown, "Conformal and Equiareal World Maps," American Maths-
matieg Monthly, XXXXII (April, 1935), 212-223.

8Those which reverse directions, as on a map seen from the reverse
side of the paper.
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‘Several of the sixteen cases (nine to be exact) can usually also
be eliminated from consideration, for geographic interpretation generally
has not been demonstrated. These include the last row and column which
map the entire domain (sphere) into a line or point.9 As Miller and
Fisher indicate, the doubly equidistant projection, when centered on a
point and its antipodal point, mapr the entire sphere onto the straight
1ine of length T R connecting these two points.l® Such projections have
to date found littls szpplication in geography.

Elimination of the interchanges and the dogener#tg cases (J = 0)

leaves four valid classes of map projections:

us= £(é,r) us=£(r)
A) B)
ve £(é,A) ve ()
us= £($, 1) u= (N
) D)
vaf(4) v = £(g)

For the sake of brevity these have been labelled A, B, C, and D, respectively.
Bescause of the present dusl interpretation of the u and v values as rectangu-
lar or polar coordinates, it is convenient to treat two situations in each
category, & total of eight:

X = f(é, A) 0= f(/’.’\)

A)
y = £(é, A) r = {(o,))

JHowever, see note I, Chapter IV.

100, M. Miller and I. Fisher, World Maps and QGloves (New York:
Esssntial Books, 1944), p. o7.
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5) x = £(A) o= £())
y= £(d, 2) rs=f(p,N
o x = £(f,A) 0= £(p,))
y = £($) r = £(p)
x = £(A) ®=£(\)
D)
y = £($) r=1(p).

The coordinates are not to be interpreted as a relabelling, for in
this event even the projections of category D, @ = £(>»), r = £(r), belong
to oategory A, 1.e., x = £(p)cos £(») = £($, > ).

The relation of the parametric classification to the more common
classification based on projective models is simple but ths nomenclature
is somewhat confusing. To establish the connection to the geometric clas~

sification a brief overview is presented.

Rslation to the Geometric Classification

Catsgory D of the classificatory scheams is clearly the simplest of
the four. Most map projecticns studied in elementary texts oover only
this class of projections. To give realization to these projections, the
cylindric projections can be obtained by interpreting the u-coordinate as
abscissa and the v-coordinate as ordinate in a Cartesian or rectangular
coordinate system, x = £{*), y = £{$). The meridians and parallels are
orthogonal straight lines. Ths conventional cylindric projections are
further restricted to the very special case x = £(*) = R+, which implies
8 right circular cylinder. Elliptic, parabolic, hyperbolic, and more
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general cylinders never seea to have been oconsidered.ll If the right
circular cylinder is taken as basic, then the spacing of the parallels is
all that can be varied on the projection. The most important projections
in this category are Mercator's conformal, the equal-area cylindricai,
the equi-rectangular, and Miller's cylindrical projection. Symmetry is
invariably taken about the equator, obviously not a mathematical require-
mant.

The conic projections are another realization of category D in
polar coordinates, with ¢ = £(») = C A , where C is a constant restricted
to the interval 0 < C< 1, implying a right circular cone. These projec-
tions have straight lines as meridians and arcs of concentric circles as
parallels. The maps are ple or fan-shaped. The constant C is often called
the constant of the oone; the vertex angle of the faneshaped map depends
on this oonstant. DMNon-constant (one parametric) functions for the spacing
of the meridians, or the use of oonstants greater than unity, are only
rarely mentioned in the cartographic literature. The center of the con-
oentric ocircles which define the lines of latitude may be ths north pole
(normal case), or this pole may itself be one of the circular arcs--a
truncated conic prcjection. The most used of the conic projections are
Lambert's conformal and Alber's equal-area, usually with two standard
parallels.

The centrally symmetric azimuthal projections also appear in cate-
gory D, using polar coordinates as the special case @ = £(A) = A, This

11The Oauss-Kruger projection of the ellipsoid uses an elliptic
cyiinder; L. Hlaser, (Mathematische-Physi-
kalische Bibliothek, Reihe 1, Nr. 8l1; Leipzig: Teubner, 1951), p. 57.
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is clearly a limiting position of the conic projections with C = 1. The
more important of these azimuthal projections are the gnomonic, stereo-
graphic, equidistant, equal-area, and orthographic.

Category C oontains some of the so-called oval projections, the
pseudoconic projections, and several lesser known varileties. The oval
projections with straight parallels and curved meridians (sinusoidal,
Nollweide, Eckert) are of the form x = £(¢,* ), y = £(¢), and, in virtually
all cases eneouhtered. the simpler situation x = A £(g), y = £(¢). These
can also be shown to be polyavlindrical developments. The pseudoconic
projections (Bonne, Werner, Weichel) are of the form 8 = £(p,>), r = £(p)
with curved meridians and concentric circular arcs as parallels. Category
C aiso includes the pseudoazimuthal projections, as recognized in the
Soviet litarature.l2

Projections belonging to category B are mot at all well known.

This oategory does, however, oontain azimuthal projections as the special
case @ = ). The azimuthal projections used in practice have the simpler
form of category D.

Category A includes the polyoonic projections, the oval projections
with ourved parallels, and generally the projections with curved meridians
and parailela. These projections are often reisrred Lo as conventional
projections or unclassified projections. A few of the other projections
in this categorfar&Lagrango'a projection of the sphere within a circle,

Aitoff!'s projection, Hammer's projection, August's conformal projection

123e¢ A. V. Graur, Matemgtischeskaya Kartografja (Leningrad:
Leningrad University Press, 1956), pps 65=35, or D. Haling, "A Review of
Some Russian Map Projections,” Bmpire Survey Review, XV, 115, 116, 117,
(1950).
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within a two-cusped spicyclold, and the elliptic projections of Guyou
and Adams.

Sraphic Reoressntation of Projections
It is not the purpose of this paper to analyse the classificatory

schems nor to attempt to fit a large number of projections into this
schems, although this can be acoomplished without too great difficulty.
The parametric classification includes all map projections; this is suf-
ficlent for the purpose at hand. The graphic implications of the para-
metric classification are more valusble. We can now turn to this more
stimulating subject with immediate results.

Every map projection can be analyzed or represented by means of at
most two diagrams. This follows directly from the faot that the equations
for category A, the most involved possibility, can be rewritten in the
form:

Fi(#sA, u) = 0

Fa(é, h, v) = 0
which can be interpreted as two separate surfaces in space. Each such
surface can be represented diagrammetrically by level curves or by a block
diagram. This may appear somewhat involved, only one diagram being re-
quired to show the entire projection as a map. However, as an ald to anal-
ysis and undsrstanding, the graphs are very useful.

The two diagrams for category A map projections will of necessity
be "threse-dimensional," or, equivalently, the level curves for these dia-
grams. Categories B and C will require only one three-dimensional

drawing and one graph each. Category D requires only two simple graphs
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(one of the partial derivatives is zero; the level ourves ooincide).
Map projections which fall into this category can be completely charac-
terized by two curves, one on a u-graph and one on a vegraph. Thus as
the projections become less complex in terms of the classificatory schemes,
their diagrammatic repressntation becomes less complex. The oonverse ques-
tion, wvhether any graph can be interpreted as a aap projection, is more
diffioult.

The graphic proocedure is most easily demonstrated by projections of
category D. The graphs corresponding to Mercator's projection are shown
in the acoompanying figure (Fig. 2.1). This ocylindrical projection has as

GRAPHS FOR THE MERCATOR PROJECTION

Figure 2.1

its mapping equations (normal or equatorial case):
x= f(r) = RA

y = £(¢) = R 1n tan (/4 + ¢/2)
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where we take R = 1. The one graph, that specilying the location of the
lines of latitude, can be glven different forms, depending on whether one
employs geographlcal or spherical oocordinates for the latitude. The sym-
metry about the equator can clearly be seen and is typical of ¢ylindrical
projections.

The graph corresponding to an equalearea conic projection with two
standard parallels is shown in the next figure (Fig. 2.2). The truncated
form of this projection appears in an intercept of the axis (f(p)) which
is not at the origin.

GRAPHS FOR ALBER'S EQUAL-AREA PROJECTION

Figure 2.2

Centrally symmetric azimuthal projections are also contained in
category D. The two graphs for such a projection, the stereographic,
are presented in Figure 2.3. The curves oould also have bsen plotted in

polar, rather than rectangular, coordinates.



GRAPHS FOR THE STEREOGRAPHIC PROJECTION

Figure 2.3

The sinusoidal projection has been chosen to treat a more compli-

~

ocated case. This projection belongs to category C and has as its mapping

equations:
x= f(d,») =R »cos ¢

y=f(4) =R4.
The graph (Fig. 2.4) which represents the former of these equations is

GRAPHS FOR THE SINUSOIDAL PROJECTION

Figure 2.4
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symastric in all four quadrants, and it is therefore only neoessary to
show one quadrant. This graph is shown in both forms, as a ialcck dia-
gram and as level ourves. Since the surface F($, ), u) = 0 specifies
three sets of level curves, this example can be drawn in a variety of
orientations. The pictorial representation of the sinusoidal projection
should suffios to illustrate the procedurs for extending the graphic
moethod to further cases. In the representation shown the block diagram
has been drawn in rectangular coordinates; a representation in cylindrical
coordinates may occasionally be more coanvenient. The level curves are
then no longer traces of intersections of parallel planes but profiles
along the parametric surfaces.

The usefulness of the graphic representation of the equations for
map projections will be more apparent in the ensuing chapters, particu-
larly the chapter on azimuthal projections. Four variables (u,v,4,2)
appear in the pair of equations used to specify a map projection, hence
a complete graphic representation would require a four-dimensional dia-
gram,13 Nevertheless, by assuming one of the equations to be fixed, the
effects of changes in the other equation can be studied. Observations
regarding the properties of projections are partiocularly easily deduced
from the one-parameter graphs. The block diagrams are less susceptible

to rapid visual analysis, at least without practice. The results to be

13mhe pair of equations can be reducsd to one equation by the use
of complex variables and then a diagrammatic representation can be
achieved. The traditional method of illustrating map projections by a
drawing of the graticule does this by comparing a u,ve-plane with a
#,1r-sphere. See K. Knopp, £ £ ng, trans.
F. Bagemihl (New York: Dover, 1952).
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established for azimuthal projections naturally can be modified to cone
sider the oylindric, oonie, and more difficult situations.

Ristertion on Projeqtions

Certain properties of the surface of a sphere can be preserved
vhen such a surface is transformed to a plane. Incidence relations, for
example, are generally invariant. Several other properties cannot be
maintained and are said to be distorted. Distance relations between all
points on a sphere are among the properties which cannot be shown on a
plane map without distortion. Of the inevitable modification of proper=
ties recognized as occurring during the transformation from a sphere to
& plane several can be measured. Other modifications, such as changes of
shape in the large, have not been successfully measured to date.l% "The
most discussed distortions concern the modification of distances, areas,
and angles. Transformations which preserve angles in the small are called
conformal: those which preserve areas are called cunm:l-ax-o&.l5 A simple
method of measuring several types of distortion at any point (exnept sin--
gular points) on a map 1s dus to Tissot.l® Only a very brief review of
Tissot's results is given here; more detailed treatments are avallable in
the literature.l?

1y promising numerical characterization of shapes is given in
« Bunge, op, cit., Chapter III.

15For conformal, occasionally also orthomorphic, isogonal, or
autogonal. For equal-area, also orthembadic, authalic, equivalent, or
homalographic.

16M, Auguste Tissot,

,

17Merkel, gp. git., or L. Driencourt and J. Laberde,

Projections des Cartes geographiaues (Vol. I; Paris: Herman, 1934/-
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Tissot noted that ths sphere and map are locally affinely con-
nected so that an infinitesimal circle on the sphere is transformed into
an ellipse. This ellipse is now known as Tissot's indicatrix. Tissot
further showed that every real, single-valued, ocontirmuous transformation
preserves the orthogonality of at least one pair of intersecting curves.
If the transformation is not conformal, then there is one, and only one,
such pair. The orthogonal directions of this intersecting pair of ocurves
are used for the major (b) and minor (a) semi-axes of the indicatrix, for
it can be shown that the maximum and minimum scale distortion ocours in
these two directions. Tissot's ellipse henoe provides a measure of the
distortion at any point on the map. The areal distortion is the ratio of
the area of the ellipse to the area of the infinitesimal circle. A condi-
tion for an equal-area map is therefore that the product of the scale dis-
tortion in the two orthogonal directions is unity (ab = 1). A conformal
map distorts in equal amounts in all directions about a point (but in dif-
ferent amounts at different points), hence the ellipse has zero ecoentri-
oity, ora=b, a cirole.18 Since conformality and proportionality of
area are mutually exclusive properties for plane maps of the surface of a
sphers, the area of this cirole on a conformal map is of necessity enlarged
or diminished (except at singular points). Maps on which are drawn small
ellipses have appeared in the literature to illustrate the distortion on
specific projections. An alternate presentation has been to draw lines of
equal deformation on the maps. Tissot's four measures of distortion can,

at most, be funotions of both latitude and longlitude. A simple oorollary

laThe angular distortion, however, is not the eccentriocity.
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is then that, as two-parametric functions, each can be illustrated by a
diagram similar to those used for the projections themselves. The gra-
phic procedure is very simple and it may be desirable to include such
diagrams on published maps. Total diltort;on. which has occasionally
been oconsidered, can be defined as the volume (area) under these graphs,
and average distortion by appropriate division of the total distortlion.

Latitude and longitude on the sphere fora an orthogonal systenm.
If they form such a system on the map, we know immediately that they form
the axes for Tissot's indicatrix. Conversely, if the latitude and longi-
tude do not meet at right angles on the map (such a map cannot be oon-
formal), the axes of the ellipse do not ooincide with latitude and longi-
tude. These are useful results.

Measurement of the departure from invariance (i.e., distortion) of
a property is of course only important if that property is to be used.
Only those properties which occur in the problea for which a map is pre-
pared need be invariant. The preparation of maps, however, is a slow pro-
cess, and it is often desired that a map be used for graphic solutions of
several problems. The difficulty here is that distortion of some proper-
ties lnoviiably occurs. Invariably maps are used for purposes for which
they are not intended.

Sel on of P

There are an infinite number of map projections, as can easily be
demonstrated. A natural question is to ask how one should select a spe-
cific projection from this infinite variety. In a very few cases the
geometry of the problem immediately suggests the solution. This, for

example, occurs in the photography of the earth from s rocket or satellite
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and in radar mapping.19 Usually, however, the question is more difficult
to anewer.

If one arbitrarily chooses one equation, u = f£(4, » ), to satisfy
certain oconditions (the general assumptions of differentiability, non-
vanishing Jacobian, etc., are normally to be retained), the sscond equation
can still be chosen in a wide variety of ways. If the one equation is speci-
fied, then a oconformal projection can be obtained only by choosing the seoond
equation in such a manner that the two together satisfy the conditions for
oonforuality.20 Similarly, equalearea projections are obtain~d if, and only
if, the indicatrix values of Tissot satisfy the relation a times b equals
nnity.21 More generally, given some a priorl conditions which a map pro-
Jection is to satisfy, these conditions are translated into differential ro-.
quirements. The selection of a projection then becomes a problem involving
the solution of partial differential equations, often a difficult task.
Fortunately, many solutions are already available. Another difficulty

arises from the specification of the a priori conditions.?? Since each of

199, Levine, et al., Radargrammetry (New York: McGraw-Hill, 1960);
C. H. Barrow, "Very Accurate Correction of Aerial Photographs for the
Bffects of Atmospheric Refraction and Barth's Curvature," Photo etric
Engdneering, XXVI, 5 (1960), 798-804.

20The condition for conformality can be expressed in several ways,
8.g., a = b, or

(32*§2)0036=%3+%2. orﬁ';}z%mﬁhm %{. or

using Gauss' first fundamental forms, E:~i1G = E':F':3', and several others.
2lor J = R2008 $, or 5G -~ 72 = E'G' - F!2,
227.are are also more practical problems; e.g.. fitting a partioular

page format., A discussion can be found in A. Robinson, Elements of Cartoge
raphy (2d ed.; New York: Wiley and Sons, 1950).
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several fields has diveru objeotives, requirements for projections differ
considerably.23 Requiring too much (e.g., & geodesic mapping of the en-
tire sphere or a projection which is both conformal and equal-area) may
lead to no solutions. More commonly, the person requiring the map is not
oluax" or not specific about the types of problems which are to be solved.
In such cases it is difficult to find satisfactory solutions.

Tissot defines a method leading to a solution of a portion of the
problanm by requiring the conformal map chosen (Af conformality is required)
%o be that which has the least areal distortion.?* Similarly, the equal-
area map used should be that which has the least angular distortion.
Mackay has recently suggested other solutions by noting that mathematical
conformality and equal-area are not directly proportional to the visual
oconosptualization of these eonstrncta.zf’ Miller has used the concept of
a tallor-made projection designed specifically for a particular portion
of the globe so that the distortion is distributed about the area in ques-
tion, minimizing the total distortion.26 Miller attritutes the term to
Boggs but the oonocept is well known, in less refined form, from the use

of oonic projections for areas of latitudinal extent, cylindric projections

23mhis aspect is emphasized in F. Reignier, lap Systemes de Pro-
m_omssumm (Vol. I; Paris: Institut Géographique
National, 1957).

2UAn oversimplification; see the references cited under note 27.

25J. Ross Mackay, "Geographic Cartography,” The C
pher. & (1954), 1-1%, and J. R. Mackay, "Conformality: Mathematical and
Visual," The Professiopal Geographer, (N.S.), X, 5 (September, 1958),
12-130

. Miller, "A New Conformal Projection for Burope and Africa,”
mmw XLIII, 3 (1953), 405-409.
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for areas of longitudinal extent, and agimuthal projections for approxi-
mately circular areas. Tissot, Laborde, and Young have contridbuted
greatly to the clarification of this difficult problem.?? Somewhat re-
lated is the notion of Usbegiffern as recently used in the German carto-
graphic literature.28 Basically, this consists of defining a small num-
ber of equal-area or conformal mappings éf the surface of the sphere to &
plane, and then arriving at new projections by transformations of the plane
onto itself. The approach appears very promising because of its simplicity.

At one time the drawing of a projection or projection grid consti-
tuted a major problem. This led to a searoh for projections on which the
merdidians and parallels are curves of specific classes. The solutions now
available are: all oconformal projections with paramstric curves (§,” ) as
circles (the straight line as a special case), solved by Lagrange; all
equal-area projections with parametric curves as circles (Gravé); all oone
formal projections with parametric curves as conios (the circle being a
special case), solved by Von der Mihll; all equal-area projections with
parametric ocurves as conics (Brown).2?

Definition of the problem {rom zn alternate point of view naturaily
leads to different results. The technical capabilities of soclety are
also important. Increased air travel trought the long neglected azimuthal

2774ss0t, op. git.; Driencourt and Laborde, gp, cit., particularly
Volume IV; A. E. Toung, "Conformal Map Projections," The Geographical
Journal, LXXVI (October, 1930), 343-351; also. A. R. Hinks, ef al., "A
3?" Treatise on Map Projections,” Ihe COeographicsal Journal, LXXXIII (1934),
145-150.

2. vagner, &%Me_k&m&ﬂf_e (Leipzig: mibliogra-
phisches Institut, 1949).

29Brown, log. cit.
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projections into prominenoce as air age maps. One of the advantages of

the American polyconic projection is the oconvenlenoce by which maps can

be plotted from standard tables.® Today it is often simpler to dispense
with tables completely, generating data as required on a digital oomputer,
with map display if desired. The use of projections in a real time com-
puter syastem has recently led Kao to an analysis using linear algebra.3?2
The simplicity of the perspective projections proves a considerable advan-
tage in these situations.

A oomplete enumeration of criteria for the choice of a particular
projection would be quite lengthy. Equally tedlous would be a complete
listing of the properties which obtain on the specific individual projec-
tions proposed to date. The reader is referred to the literature with a
reminder from Robinson: "There are some projections for which no useful
purpose 1s known, but there is nc such thing as a bad projection--there
are only poor choices."3?

This rather brief discussion of map projections must suffice. An
attempt has been made to emphasize materials which are not readily avail-
able in the American literature on cartography. we now turn to a study

of a particular class of projections.

Xc. H. Deetz and 0. S. Adaas, m%wm U, S.
Coast and Geodetic Survey Special Publication 5th ed.; Washington:
U. S. Government Printing Office, 1745), p. 60.

Ry, 2. lobler, "Automation and Cartography," The Geographical
Review, XLIX, 4 (October, 1959), 525=53.

3R, C. Kao, Geonetris brolections ond fadar Dens (Santa Monica:
System Development Corp., 1957).

33Rotinson, 9D. cit., p. 7.

et ———————



" CHAPTRR III
AZIMUTHAL PROJECTIONS

Azimuthal projections are perhaps the simplest of all map projec-
tions and are well suited to the present purpose. The graphic methods sug-
gested in the previous chapter can be used effectively in reviewing some
of the problems which have oconcerned past cartographers in dealing with
this class of projections. These graphic methods provide a somewhat sim-
pler overview than those available in the cartographic literature and
facilitate the transition to the umusual azimathal projections which are
germane to the main problen.

‘The name azimuthal derives from the characteristic fact that bear-
ings, or azimuths, from the center of the map are correct to all points
on the map.l The well known azimuthal projections are the stereographic,
the orthographic, and the gnomonic. Less well known but still not obscure
are the Lambert equal-area and the azimuthal equidistant. Variations of
these projections and a considerable number of other azimuthal projections
have also bean developed. The only difference between the various azimu=
thal projections is in the spacing of lines of equal spherical distance

from the center of the map. This relation is quite clearly shown by

1In England also zenithal. In Jerman some oonfusion exists regard-
ing the use of the term. Some authorz consider the term zenithal synony-
mous with centrally symmetric. The term planar occasionally also is used
for azimuthal projections. Although agzimmthal projections can be con-
sidered planar, planar projections are not neocessarily azisuthal.
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azimuthal maps centered on ons of the geographic poles. Although the
equatorial and oblique projection aspects retain the same qualities with
respect to the center of ths map, or point of tangency, the polar aspect

is oonventionally used. It is simple and well suited to demonstration as
the geographic system of lsatituds and longitude can be employed with only
minor modification. This convention is adopted here without loss in gen-
erality. A polar or circular diagram (Fig. 3.1) is commonly drawn to il-
lustrate the differences between several azimuthal projections--a difference

in the spacing of parallels--and performs this task in an exocellent manner.
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Figure 3.1

Another method of illustrating the same relation is to plot spherical dis-
tanoez (in radians) from the point of projection against map distances

on a graph (Fig. 3.2). This graph is more suited to the present purpose
and has certain pedagogic, as well as analytic, advantages. If one con-
siders the graph as representing a rectangular plot of ground ascross which

one is free to wander in almost any mamner ons choosas, it is obvious that
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an infinite number of "paths" may be followed.

GNOMONIC STEREOGRAPHIC
" EQUIDISTANT

EFUAL -AREA

DETHCGRAPH

r
[

AZIMUTHAL PROJECTIONS - REPRESENTATION USING RECTANGULAR GRAPH

Figure 3.2

The five "paths® shown (Fig. 3.2) represent the gnomonic, stereographic,
equidistant, equal-area, and orthographic projections, all, of course,
azimuthal.
Analytically, azimuthal projections are characterized by equations
of the form
r=f(, i 8=,
the latter of this pair being the condition for azimuthality. A special
case 13 represented by centrally symmetric azimuthal projections given by
raf(:), o= -,
The cartographic literature, almost without exception, has restricted dis-
cussion of azimuthal projections to this special centrally symmetric case.
In this instance the circular diagram is appropriate. The rectangular

graph 1s seen to be one of the graphs for projections of category D as
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established in the previous chapter.

The assumptions oonocerning differentiability, independence, etc.,
‘are initially retained. It is first desirable to establish the simple
relation between the rectangular graph and the geometrioc perspective or
projective construction of centrally symmetric azimuthal projections often
given in cartographic texts.

The development of a geometric perspective projection onto a tan-
gent plane is shown in the acoompanying figure (Fig. 3.3). On the left is
an arbitrarily motionless and positioned point of projection. Hays are
conoeived as being projected from this point through a transparent sphere,
on which are drawn lines of latitude and longitude (and geographic data),
to a plane tangent to this sphere. Taking the point of tangency as the
north pole, the normal case for planar projections, simplifies matters
somevwhat. The map whioch is "projected” to the tangent plane can be seen
by rotating this plane or can be constructed by drawing the lines of lati-
tude as circles with radii as indicated by the intersection of the rays
with the tangent plane. Continuing further to the right (Fig. 3.3), these
same radii can be plotted on a graph against their spherical distance (in
radians) from the north pole. The graph and the circular diagram, or nap,
are in a certain sense equivalent. The curve on the graph, of course,
shows the so-called radius equation for the particular centrally symmetrio
azimuthal map chosen. The reader should study this figure carefully and
fully understand the transition from the polar case map to the rectangular

graph and the reverse procedurs of going from the rectangular graph to the
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areation of a map. The transition from the graph to the map will be ex-
tensively referred to later. The transition {rom map back to the projec-
tive situation, however, will not always be meaningful. The dotted line on
the graph represents that portion of the sphere which is not represented
on the map, a spherical cap excluded because we take only the intersection
of the ray and the transparent sphere lying closest to the tangent plane.2
Three of the oconventional asimuthal projections (the gnomonic, ster-
eographioc, and orthographic) can be obtained by this projective method

(Fig. 3.4).

PERSPECTIVE DEVELOPMENT OF THE COMMON AZIMUTHAL PROJECTIONS

GriDre DMIT
STEREQGRAPHIC

CONSTRUCTION 'S
D=0, f=2 GNOMONIC GENERAL Cact
DR, F=2R HTEREOGRAPHIC CoRRNg
O+ @ ORTHOGRAPHIC ’ D-0C0%p
[3
o4
-——— R ———n—y r
DRIMOGRAPHIC
14
. * »
point of projection \ o
tongent plone
.
Figure 3.4

The gnomonic, of course, shows all great circles as straight lines but
can be used cnly for areas of less thun a2 hemisphere. The stereographic

2In practice it is clear which hemisphere is intended. ror a more
precise definition, see Kao, op, cit., pp. 9-10.
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is oonformal but will not quite show the entire sphere (on a map of fi-
nite extent). The orthographic, limited to a hemisphers, is generally
not considered to have any special properties but the polar case shows
the parallels in their true length.

In order to restriot the discussion to ocentrally symmetric azimu-
thal projections, the point of projection is required to be on an axis of
the sphere representing the earth and the projection plane is to lie at
right angles to this axis. Having selected a fixed point of projection
but varying the position of the plane of projection along this axis changes
the scale of the map (;xoopt in the case of the orthographic projection).
Requiring the projection plane to be tangent to the sphere and changing
the position of the point of projection on the axis results in map projec-
tions having different properties. As any position, from minus to plus
infinity, along the axis can be chosen for the point of projectlion, there
is obviously an infinitude of centrally symmsetric azimuthal projections.
Clearly, the criteria for the choioe of a projection or projection point
are ones of usefulness. Projection from select points intermediate to the
stereogrephic and orthographic, with characteristic graphs, are shown in
Figure 3.5. Virtually all projections in this category have been selected
to balance, distribute, average, or minimize various types of distortion.
Clarke's mininmum error projections, and the projection oI Sir Henry James,
are of this type. Airy's projection, though not geometrically perspective,
is arrived at by a comparahle minimiratlion of errors. Similarly, Breusing
produced a projection by using the geometric mean between the conformal
and equal-area azimthal projections. Young later gave evidence that the

harmonic mean produces even less errors. Other intermediate azimuthal
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projections of interest are the approximate equidistant and approximate
equal-area suggested by Kellawvay. These are typical exa.ples of a search
for perspective or projective models which approximste projections derived
from analytical considerations. Maurer lists many further centrally sym-
metric azimuthal projections, some of which are dsrived from geometric
models, others by manipulation of the radius equation. The intermediate
projections have occasionally been used for atlas and wall maps; maps of
the lunar surface now also are being prepared on an intermediate azimuthal

projocﬁon. 3

PERSPECTIVE DEVELOPMENT OF INTERMEDIATE AZIMUTHAL PROJECTIONS
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Figure 3.5

3L. {. Dameron, Jr., "Projection for Lunar Map," Ihe Miljtary
Engineer, (Jamuary-February, 1950), p. 5. Tables for several of these

projections are given by Hammer and by Herz: K. Hammer, %’m‘
graphisch Wichtigsten Xartenpro jektionen (Stuttgart: Hetzler, 1889);
N. Herz, Lehrbuch der Lapdkarten Projektionen (Leipzig: Ta' ~-er, 1335).
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The Soviets are reputed to have objected to the map projection
used by R. E. Harrison in his atlas, Look at the World, on the grounds
that the projection is 'unacientifio.'u Certainly the projection 1s not
one of the standard projections, but it is nevertheless a valid projec-
tion. This so-called unscientific and certainly unconventional proJjec-
tion has recently become signifiocant, for it, in fact, shows the earth as
it might be seen from an orbiting satellite. A similar geometry obtains
in conventional low altitude photogrammetry. As the distortion due to the
earth's curvature is in this lai.ter case negligible, it is normaliy ignored.
If one assumes the earth to be a sphere and that the camera is directed in
the vertical (the nadir point and the principal point coincide), the equa-
tions for this projection are easily derived. The relation tc the general
equation for perspective azimuthal projections is also quite simple. As
the camera distance from the earth becomes infinitely large, the map con-
verges to an orthographic projection. If the camera is not directed in
the vertical, the projection is no longer azimuthal and converges on
Lecoq's projection.5 This corresponds to a ?lanar projection with a pro-
Jjection point not on a spherical axis perpendicular to the plane of pro-
Jection. Planar projections and azimuthal projections are not synonymous,

as many authors would have one believe.

4R. E. Harrison, Look st the World (New York: iA. A. Knopf, 1944).
Chiao-Min Hsieh, "The Status of Geography in Communist China," The Geogra-

phical Review, XLIX (Ootober, 1959), 543.

S5Reignier, op, git., Vol. I, p. 259. Equations for a mors general
case are derived in H. Merkel, "Die Allgemeine Perspektivische Abbildung

der Erdkugel," Fegtgchrift Eduard Dolezal (Sonderheft §l4 der Oesterrei-
chischen Zeitschrift fuer Vermessungswesen; Vienna, 1952), pp. 179-182.
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It is also possible to project points on the surface of a sphere
to some other surface and then to the map plane. A centrally symmetric
aziqnthal projection can be achieved by projecting gnomonically to a
tangent cone (with vertex on the axis of projection) and then orthogra-

phically to the map plane (Pig. 3.5).

A DOUBLE PERSPECTIVE PROJECTION

‘gnomonic)

fin? projection
gnomonic 1o tongent cone - a5

‘\\\\ r s

A

plane of recons
vrojechion

second projection

osthogrophic 1o plone

cone o* fiar
grojection

Figure 3.6

Similar projecticns can be achieved by varying the first and/or second
method of projection. Maurer credits the invention of projections onto

a cone, then plane, in this fashion to Lidman (1877).6 Comparable double
projections can be developed by using a paraboloid rather than a cone.

Projection onto ellipsoids, hyperbaloids, spheres, etc., secant, tangent,

6Maurer. Qp. cit., (System Humber 22),
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or disjoint, in gnomonic, stereographic, orthographic, or intermediate
versions 1s also quite possible. These projections, of course, are quite
similar to Raisz' orthoapsoidal projections.? The double projection onto
spheres of radii of multiples of that of the reference globe in particu-
lar has been mVQstigated by M. Solovyev.3 oOne of these cases (Mig. 3.7)
is rfound to be a geometric model for the Lambert equsl-area projection.

It was previously believed that this projection could not be constructed

LAMBERT'S AZIMUTHAL EQUAL-AREA AS A DOUBLE PERSPECTIVE PROJECTION

fiesr projection r
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Figure 3.7

7E. Ralsz, "Orthoapsoidal World Maps,” Ths Geographical Review,
XXXIII (1943), 132-134.

SNoted in Graur, gp. cit., pp. 198=13).
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froa a perspective situation.? The Hammer projection (not azimuthal) can
be developed by further projecting the l.ambert azimuthal equal-area map
of a hemisphere onto a new plane tilted at sixty degrees from the first.
Adtoff's projection is similarly dlvalopod.m The two point azimuthal
projection, on which all great circles are straight lines, can also be ob-
tained by projecting the gnomonic orthographically onto a tilted plane.ll
Multiple projection (above the second order) will result in many more azi-
muthal maps. The mapping equations for these projections are normally
quite easily derived. |

Another simple method of "inventing® azimuthal projections is to
space the parallels (in the polar case) arbitrarily or according to some
cylindric or conlc projection. Selection of radii acoording to the Mercator
projection is possible, for instance. The valuable properties of the Mer-
cator projection are understandably lost in this azimuthal version. This

90, P. Kellaway, Mao Projections (2d ed.; London: Meuthuen, 1949),
PP 16‘&‘ Deetz and Ad‘l‘. Mo. P wo

If the general equaticn for perspective asimuthal projections 1is
solved for a point of projection in the case of the azimuthal equal-area,
it is found that the location of the point of projection is & function of
the latitude being projected. That is, projection must be considered to
be from a moving point. The cartographic literature is not consistent
vhen it accepts moving points of projection for cylindrical projections
(Driencourt and Laborde, gp_,_;?g.. Vol. I, p. 73), but rejects such an in-
finituds of projections for planar projections. From a different point
of view, the question should be whether this projeotion satisfies the axi-

oms of the projective group (see F. Klein, M%’ﬁ&mw
Advanoed Standpoint: OQeometry (New York: Dover, 1939), pp. 130 et seq.

10yt from an szimuthal equidistant map. See J. B. Leighly,
"Aitoff and Hammer: An Attsmpt at Clarification,” The Geographical Review,
XLV, 2 (1955), 240-249.

11Mi11er and Fisher, oit., p. 66. This projection is also

referred to as the orthodronicmﬂmhm;m) and is a simple
linear transformation of the g nioc.
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would normally be the case. Similarly, the radial distances given for
the centrally symmetric azimuthal projestions can be interpreted as dise
tances of parallels from the equator on equatorial aspects of oylindrical
projections. Thus, the herein suggested modifications can be applied to
invent new cylindric or oonic projesctions. A choice must then still be
made for the spacing of the meridians. An example of this procedure is
gilven by Adams,12

Centrally symmetric projections are also easily and advantageously
studied without any reference to perspective models. It is only necessary
to refer to the radius equation, or equivalently, to the graph of this
function. While it is true that gny arbitrary line drawn on the graph
can be interpreted as a centrally symmetric azimuthal projection in the
manner desoribed, 1. e., interpreted by working backwards {rom the graph
to the map, certain curves do not meet ths requiremsnts earlier stated and
involve difficulties of geographic interpretation. These are omitted for
the moment. The graphs presented in Figure 3.8 should cause no trouble
and all represent valid map projestions. FKEquivalently, any equation involve
ing two variables can easily be interpreted as a map projection.l3 These
results follow rather immediately from the classificatory scheme used here.
There 1s clearly no nesd to restrict consideration to trigonometric functions,

120, s, Adans, MWM' u. s.
Coast and Oeodetic Survey Special Publication 2 Washington: U, S.

Government Printing Office, 1945), p. & e} geq.

13Rather as half of a map projection because it represents only
one family of parametric curves, just as only the one graph has been
illustrated. The restrictione on the equations are discussed below.
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as has been {airly common in the cartographic literature .1'"

GRAPHIC EXAMPLES OF TRANSFORMATION EQUATIONS

s
s

Figure 3.8

I these one parameter equations are to be interpreted as the radius
equation of centrally symmetric azimuthal projections, then the other
family of lines is {ixed and the projection given by: 9 =4, r = £(a),
For example, the generating equations r = R., @ = - for the azimuthal
equidistant projection can be generalized to create a larger class of
projections, namely, r = R.A, & = +, where the exponent q 1s an arbitrary
positive element from the set of real numbers. In this formulation the
azimuthal equidistant projection 18 the special case, q = 1. A few

"paths® from this family ol curves are shown in Figure 3.9.

l'*However. given objectives of equalearea or conlformality, trig-
onometric functions of necessity occur.
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SAMPLE GRAPHS

Figure 3.9

As an 1llustration, a map (Fig. 3.10) centered on New York has been pre-
pared using the projection: r = gp§, ¢ =/, a square-root azimthal pro-
Jeotion. An indication of the distortion which occurs acoompanies the
map.15 Thus, map projections are particularly easy to creats by arbitrar-
11y writing down equations which satisfy oertain simple requirements. Such
a procedure nmay be interesting and occasionally fruitful, but is somewhat
foolish as there are infinitely many; it is also mce;uary to demonstrate

15ror some projections, inoluding the azimuthal projections with
central symmetry, Tissot's measures of distortion are also only functions
of one parameter. As the diagrammatic procedure is quite simple, it seems
desirable to include such graphs when the maps are published. For azimu-
thal projections with a one-parametric radius equstion, the values are

given by:

a-f(é)-%gfsb'f(ﬁ)'g—;fntzs'f(‘)*lb

- -1 (b=2a),
o 2-ain (H) £(é).
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SQUARE - ROOT PROJECTION

An Azimutha! Projection of the World
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some property, relation or uso.15 Farther aszimuthal maps can be developed
by fitting a map to an arbitrary theoretical or empirical curve.

Graphic Methoda of Anslysis

In addition to simple visualization and comparison of centrally syme
metric azimuthal projections the graphs provide a rapid method of analyzing
certain properties of these projections. Only a few examples need to be
mentioned for extensions of this method are simple. The azimuthal equi-
distant projection (r = Re, @ =~ ), which has gained increased popularity
in recent years, is perhaps the most basic, for the radius equation can be
represented as a straight line on the graph.l7? If the diagram is socaled in
radians, this line is a forty-five degree line (of slope +i). As the name
implies, all places are represented on the map at their correct spherical
distance from the center. If{ the curve representing the radius equation
of any other centrally symmetric azimuthal projection crosses this line,
the intersection point will also lie at its true distance from the center
of the map. Similarly, whenever the radius equation of an azimuthal pro-
Jection of category D intersects the graph of the corresponding equation
for the equal-area azimuthal projection twice, the projection in question
has an area in some sector which is equal in area to the corresponding sec-

tor on the globe. Similar ocomments can be related to the lengths of the

1 Nehari appropriately remarks that the investigation or particular
functions, though ylelding much insight, is of necessity a plecemeal pro-
cedure. Much more fruitful are investigations akin to those of Bernhard
Riemann which examine general exlstence oonditions. Z. Neharl, Conlormal
¥Mapping (New York: McCraw-Hill, 1952), p. 173.

177or a detailed discussion of this projection, see C. Hagen, "The
Azimuthal Equidistant Projection,” (Master's thesis, University of Wash-

ington, 1957).
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parallels and intersections with the graph of the orthographic projection.
Projections with some of these properties have been sought from time to
time. It is also easy to demonstrate why the most used azimuthal projec-
tions can have only one atand;;d parallel and why the conic projections
can have two standard parallels.

A change of scale on an azimuthal equidistant projection corres-
ponds to a raising or lowering of the straight lins on the graph, keeping
the origin intersection fixed. This can also be seen from the equations
as a constant change in slope. Changes of scale on other projections are
similar.

To areate oomposite projections, ons need only join projections
where their graphs intersect. This is illustrated for the equal-.area and
conformal azimuthal projections (Fig. 3.11), the scale of the stereogra-
phic having been reduced to achieve intersection (ocombination of an equal-

area and oonformal map is not recommended, but used only as an illustration).

Figure 3.11

A similar, non-azimuthal, composite is Goode's famous homolosine, oombining

the homolographic (Mollweide) and sinusoidal equal-area projections. Some-
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what comparable is Wray's combination of the azimuthal equidistant and
the sz authal equal-area projection into a star-shaped map.13 A composite
p:: .., with large scale near the oenter, has recently been employed f{or the
use of aviators in the vioinity of airports.l9 The figure (Fig. 3.1llc)
illustrates the technique, but not the specific projections employed.

The radial scale distortion on an arbitrary azimuthal projection of
category D can be estimated by noting the departure of the graph of the
radius equation from that of the azimuthal equidistant projection; actu~
ally, it is the slope of the radius equation which is important. Cwrves
which are concave downward in gensral expand the central area of the map
and diminish the per}pheral areas., The reverse is generally true of curves
which are concave upward. This is approximately correct for the radial
scale of the map but for areal distortion it is true to only a limited ex-
tent due to the spherical model of the earth (compare Ffig. 3.10). The
graphic analysis, of course, should only be undertaken when the analytic
considerations are understood and can be demonstrated. A graphic demon-
stration ol oonditions relating to conlormality and equai-area, particu-
larly the differential relations between the pairs of equations seems dif-

ficult.

Asrwsotrio Agimythal Projections
The classiticatory scheme employed here makes it obvious that azi-

muthal projections lacking central symmetry are also possible, though they

l88. C. Gilrilian, “wWorld Projections for ihe Air Age,"™ Surveying
and Mapping, VI, 1 (Jamuary, 1943), 12-18.

19L. Y. Dameron, Jr., "Terminal Area Charts ior Jet Aircrafts,"
The Military Bngineer (May-dJune, 1960), p. 6.
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can be neither conformal nor equal-area. The condition for azimuthality
i3 6 =), and the seocond, or radius, equation has the form r = r(,o.x).

The maps obtained are without doubt somewhat unusual; their relevance to
the present problem is indicated in the following chapter. The parallels
(polar case) no longer appear as concentric circles. Hammer dismlisses
these projections in the same sentence in which he recognizes their exist-
ence, and there is no cartographic history to review.

The graphic methods can be employed as with all projections of cate-
gory B. To obtain a map from the graph, one can proceed as before except
that a different radius equation applies to each azimuth. A few examples
from this infinite set are shown in the accompanying figure, both as map

diagrans and as level curves on a graph (Fig. 3.12).

Rekaxed Asgumptions
To attempt to specify which equations or curves can validly and
without difficulty be intarpreted as map projections, the reader is again
referred to the figure showing the radius curves for the well known azimu-
thal projections of category D (Fig. 3.2). It is immediately apparent that
these curves are of a very special nature. The restrictions can be stated
quite explicitly. A specification of the domain is clearly quite important.
Concern is only with curves which eppesar in the first quadrant, i.e.,
0 - r<w; 0<0¢T. The closed upper end on the abscidsa 18 not necessary, for
many projections can cycle endlessly. The orthographic projection, with
equations @ = A, r = R sin: 4is restricted to ths interval {0, B /2] .
The equations for the stereographic projection are @ = 4, r = 2R tan - /2,

with domain [0, 7 ), a semi-closed interval. The gnomonic is @ = -,



ASYMMETRIC AZIMUTHAL PROJECTIONS

Figure 3.12
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r=Rtanc, and has the semi-closed interval [0, T7/2) as its domain.

In order to specify more explicitly the important restrictions on
the radius equation of oonventional azimuthal map projections of category
D, the end points of the interval for which the map projection is defined
are labelled e°® and ¢*®. The same restriotions apply with slight modifi-
cations to the cylindric and oonio projections of category D, and, with
further modifications, to the projections of categories A, B, and C. The
restrictions, in addition to those cited in the previous chapter, are:

a) dr/de:>0, except dr/d.>0 at e°® and ¢** in the closed interval
lo*,6**|. This condition can be restated as dr/dp>0 in the
open interval (e*, ¢®*®). Although the five azimuthal projec-
tions of Figure 3.2 conform to this restriction, it is unneces-
sarily severe. A requirement that r = f(p) be strictly mono-
tone increasing is sufficient for more general azimuthal maps.
This allows singular points at which dr/dr = 0.

b) d%r/dp2>0, gor dr/dp2:0, except in the case of the azimuthal
equidistant projection, all in the interval [e*, e** . This
condition can be dropped completely without leading to diffi-
culties of interpretation.

c) r(0)=0

d) dr/dp exists; 1.e., f(p) 18 of class o®, m > 2, in the open
interval (e®, o **).

Conditions (a), as modified, (c¢), and (d) are sufficient to insure that
r = £f(p) is continuous, is single-valued, and has a single-valued inverse,
all in the domain under oconsideration. The domain for which a map projece

tion is validly defined ie in practice not known in advance; rather, it
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is determined by the above conditions as applied to the particular funotion
being examined.

A few curves which the restrictions preclude are shown in figure 3.13.

TRANSFORMATIONS VIOLATING USUAL ASSUMPTIONS

B

~
L~

~

Figure 3.13

The strategy is to examine such transiormations, assuming them to be valid
map projections, and to proceed graphically by translating the curves into
maps in exactly the same manner as has already been demonstrated. The
reasons for the restrictions appear rather obviously in this examinatlion
and need not be discussed. For the sake of simplicity linear cases are
used and generally only one property is examined at a .time. The task of
assembling the separate and non-linear cases into one map is left to the
reader. The discussion focuses on centrally symmetric azimuthal projec-

tions as the transition from graph to map is quite easily understood in
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this case; this device does not diminish the generality of the discussion.
Right specific situations will be recognized. These are not all autually
exclusive and may ocour in various combinations. Where well known projec-
tions violate some of the restrictions, and this occurs surprisingly often,
they will be cited to facllitate understanding.

Bacticular Cages

Figures 3.14 through 3.21 show individual cases which violate the
conventional restrioctions. One should note that each position on the ab-
soissa of the graph is interpreted &s a circumference on the ground. For
the polar case map this is a circle of constant latitude. The 6rd1nato of
the graph becomes a radius on the transtformed map. Included with some of
the figures are graphs showing variants of the specific situation being
examined. The reader will be able to imagine the appearance ol the maps

generated by these variants.

Interruption

Interruption of map projections is fairly common, Goode's interrup-
tion of the homolosine projection perhaps being the best known example.20
The concept has also been applied to other projections such as thes star-

shaped maps and occurs on Cahill's butterfly projection, Jefferson's six-

20y, P. Goods, "Studiss 4in Projection: Adapting the Homalographic
Projection to the Portrayal of the Earth's Surface Entire,” Bulletin of
the Ogographical Society of Philadelohia, XVII (1919), 103-113.

A. H. Robinson, "Interrupting a Map Projection: A Partial Analy-
sis of its Value," 8, Association of American Geographers, XXXXIII,
3 (September, 1953), 216=225.

J. W. Stewart, "The Use and Abuse of Map Projections,” The Oeo-
graphical Review, XXXIIT (1943), 589-604.
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six map, and the polyhedral projections.Zl Interruption also occurs on
conis projections, and at the boundary of any map, since the sphere has
no boundaries.
The graph r = ap + C (rig. 3.14) violates the third condition for
r(0) # 0.
INTERRUPTION

/

7
~

Variont

Figure 3.14

Here C, a constant greater than zero, is the r-intercept of the curv.,
This yields a ring-shaped azimuthal map with a hole in the center. Such
maps have been noted in the cartographic literature, the constant occurring
naturally in integration.zz The origin of the map, a point on the ground,
becomes a circle of radius C on the map. A line passing through this
point on the ground is interrupted by the open circle on the map.

The variant is simple, the interruption occurring at different places

A3, J, 5. Cahill, "Static and Dynamic world Maps," Bulletin of the
logic » XV (1934), 251-245.
M. Jelferson, "The Six-Six World Map," Annals, Association ¢f Ameri-
can Geographers, XX, 1 (March, 1330), 1l=5.
Miller and risher, gp, cit., op. 72-105.

2217 it is required that the projection be azimuthal and equidis-
tamt, then:

a=1=%§£. whence Rdp = dr and r = Rp + J.
P
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on the map. The variant can bé written as r = ap, 02p2P1; r = ap+ C,
P1> p3p2s etc., defining the interval for each equation.

Elimination

A space elimination occurs when some areas of the spherical surfece
do not appear on the map. This is well known from the Mercator projection
which cannot show the poles, or the orthographis and gnomonic projections
which exclude at least a hemisphere.

The graph r = ap + C, (C<0) again violates the third condition for

r(0) # 0.

ELIMINATION
e o o
Variant A Variant B
®
°
°®
Variant C Variant D

Figure 3.15

The result is a map which cannot show the area in the interval [0. £ols

where £, 1s the c-intercept of the carve. The circumference of the circle
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of radius po on the sphere becomes a point on the map. The variants are
somewhat interesting. In each case a vertical extension of soms point(s)
on the p-axis does not intersect the graph of the radius equation. Here
again, the equation must be acoompanied by a specification of the domain.
When the graph consists of lines or lins segments the proocedure is obvious.
When the domain consists of only a finite number of points (Fig. 3.13d),
the radius equation takes the appearance of a table:

r P

r %!
r2 P2
r3 r3

It is not meaningful to speak of alements which are not in the domain
thualy defined. The last variant shows the logarithmic function.

Repetition
A case of space repetition will occur when r is a multivalued rela-

tion of p« Some places appear on the map in several positions, a one-to-
many mapping. It is well known that cylindrical projections can cycle
endlessly along the equator. This repetition of positions can occur on
many projections, occasionally in several directions. Several cycles

of an azimuthal projection are shown as a varlant.
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REPETITION

~
-
— .

Figure 3.16

Collapsing

In this situation areas are collapsed into lines (or points), a
many-to-one mapping. The curve shown (Fig. 3.17) violates the first oon-
dition for the function, though monotone, is not strictly monotone in-
creasing. Restated, dr/dp = 0 for an interval rather than only at singu-
lar points. In terms of an azimuthal map, the entire area represented by
the interval for which dr/dp = 0 is collapsed into a circular line. The

annulus of area maps into the ocircumference of a circle. The radius

COLLAPSING

Variant

Figure 3.17



equation is of the form:
r=r L 0 ) p>rfl
r2 A P15 p> P2
rq AL Py p> p3 etc.

Expansion

On many asimuthal projections the antipodal point 1s expanded into
a ciroumference, and cylindrical projections map the pole into a line. The
function shown in Figure 3.18 is somewhat similar. The fourth condition 1s
violated for dr/dp is undefined at singular points or becomes infinite.
The distance from the center at which this occurs, a circular line of in-
finitesimal width on the ground, is infinitely distorted to become an area
on the map. Other areas may be omitted. Such functions are rost easily

written in inverse form.

EXPANSION

Figure 3.18

Dislocation
Items are sald to be dislocated when they do not appear in their

proper relative location on the map. In their simplest form such situa-
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tions can be characterized by a disruption of order relations. The

graph is self explanatory.

DISLOCATION

/

/

Figure 3.19

Superimposition
An overlapping or superimposition of areas appears on the map when

the inverse function is multivalued (Fig. 3.20).

SUPERIMPOSITION

Figure 3.20

One or more positions on the original surface take identical positions on
the map. The collapsing of space cited earlier is a similar many-to-one

mapping. Conic projections in which the constant of the cone 1s greater
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than unity would result in superimposition of areas on a map. It is dif-
ficult to draw maps when two (or more) places occur at the same positicn.
Such maps are equally difficult to read or use, being somewhat comparable
to multiply exposed photographs. The graph, however, is easily understood.

Inversion
An inversion of space results from an equation which has an interval

for which the derivative is negative (Fig. 3.21).

INVERSION

Variant A Variant B

Variant C

Figure 3.21

This implies that order relations are disrupted in sﬁch a way that places
which are at greater distances on the ground are closer on the map. The
simplest case, r = -2 + T, (variant a), can be interpreted as an azimu-
thal equidistant map with no difficulty except that it is centered on the

antipodal point of what was previously the point of tangency. Such a map
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actually has been used.23 sSimilarly, the function r = ap + 77, a¢ -1,
(variant b), can be interpreted as an interruption (Fig. 3.14), but cen-
tered on the antipodal point. This manner of interpretation can be ap-
plied to any function which is strictly monotone doorouing.z“ The graphs
are again easily understood, but the multivalued relations, combining ine
version and superimposition, involve maps whioch are difficult to draw.

Qrder Relations

The eight situations which have been identified can all be charao-
terized by rearrangement of the order relationships. Assign numbers to
positions on the c-axis beginning with those closest to the origin and
then examine these order relations on the image or map, as follows:

a) Interruption (1234567) > (12 385 6 7)
b) Elimination (1234567) - (1267)
¢) Repetition (1234567) - (12323456657)
d) Collapsing (1234567) — (1257)

"

5
e) Expansion (1234567) d (12333333334557)
£) Dislocation (1234567) - (1534725)
g) Superimposition (1234567) - (l§3“g)

b 7

237, W. Michels, "Drie Nieuwe [urtvorun. ft van he
Kond nk Nederland A hap, LXXVI, 2 (1959),
2032093 D. M. Duout.tor. "Projoction by Introupoction. Aeronautics,
XL, 2 (April, 1959), 42-i4.

24)1 ternate interpretation of negative slope graphs is possible;
see Chapter IV. Inversion of a plane (1/f>) is somewhat different.
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h) Inversion (1234567) - (1276543)

It 1s clear from the order relations, and from the graphs, that the
eight cases are not 2ll mutually exclusive and may ocour in various come
binations. A ocollapsing, for instance, implies a superimposition, but the
converse is not necessary. The figurea already presented also show some
of the cases combined. The occurrence of many of the situations on conven-
tional projections is at the margins of the lnps.25

Mtivalued Maps
Functions (relations) which are not strictly monotone but have mul-
tiple values of r for Jome o, or the reverse, are difficult to conceive as
maps. They may result in superimpositions (of points, lines, or areas) on
the map. The most striking example in the cartographic literature is
A. R. Hinks' retro-azimuthal squidistant projeotion, which coabines inter-
ruption and superimposition (Fig. 3.22). The projection was received with
aOl§ frivolity when first introduced, and one critic wrote: "Mr. Hinks

has succeeded in producing a projection on which it is impossible to draw

a .‘p.-26

To cdlarify the situation, refer to variant ¢ of Figure 3.21. All
the difficulty can be eliminated by an appropriate truncation of the domain.

This is what in practice is done for ths orthographic and other perspective

-

250rder relations on a sphere are cyclic; polar coordinates would
show this better. Also note that the orders 123, 27, 213, are all cor-
rect for a sphere.

25w pnon., "Recent Developmenis in Map Projecticns," The Geographi-
cal Review, XXIX (1920), 587. The uses of this class of projections is
given by A. R. Hinks, "A Retro-azimuthal Eguidistant Projection of the

Whole Sphere," IThe Geogrsphioal Review, LXXIII, 3 (March, 1929), 245-247.
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projections. I, however, it is desired to use the muitiplicity ol values,
they can be shown on maps by the use of halftones or a system of transpar-
ent overlays. Occasiocnally the pasting or folding of separate map pleces
into sheets is possible. Strictly speaking, a collapsing would require an
infinite number of shests (or overlays), but the situations are generally
not this involved.

Agymmetrio Case with Relaxed Asgumptions
The agimuthal maps thus far discussed have all assumed central sym-

metry; that is, they belong to category D and are of the form g = A,

r = f(p). By considering individual profiles along particular azimuths,
the preceding examination can be sxtended to the asymmetric azimuthal pro-
Jections @ = A, r = f(p, ) ). This extension is too simple to require de-
talled repetition. The eight cases can again be recognized, the possibil-
ity of ocourrense in this instance being in either of the directions A = C
or P= C, As an exarple a step function is used. This agaln corresponds
to a collapsing.

It has alresdy been noted that the radius equation of azimuthal
projections of category B can be illustrated by a block diagram type draw-
ing. For step functions this appears as a histogram. Figure 3.23 shows
the level curves, r = C, a plan view of such a drawing with the height of
each step indicated, and with a selected profile shown as a graph. The

map generated by this equation is shown in the left portion of the figurs.
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ASYMMETRIC EXAMPLE VIOLATING CONVENTIONAL RESTRICTIONS

Plon Vi.ew of Cumuigtive Distonce Funciion

Figure 3.23

Soherdcsal Distances snd Map Distapoces
If equal intervals are marked off on the p-axis, these correspond

to equal spherical distances from the origin on the globe. If these are
mapped onto a plane using a centrally symmetric azimuthal projection,
they appear as concentric circles (Mg. 3.24). In the polar case map,
these lines can be considered lines of equal latitude and result in the
familiar circular diagram. Such lines are conveniently called spherical
distance contours.

Il equal intervals are taken on the r-axis and are mapped back to
corresponding positions on the original surface, we obtaln map distance
ocontours, which can be shown as circles on an azimuthal equidistant pro-

Jection (7ig. 3.24).
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SPHERICAL AND MAP DISTANCE CONTOURS

Sphetical Ditonce Contowrs on Mop Equol Distonce Intervols on Sphere

tqual Diorce

Intervaly on Map

LI 'S

trap Distonce “ontoun or phete

Figure 3.24

Only in the case of this projection do spherical and map distance contours
coincide. ~or the asymmetrical azismuthal projections the spherical dis-

tanoe contours are no longer circles on the map. Similarly, the map dis-

E
g
z
f
;

ntours are nol circles when examined on the original surlace. The

concept of spherical and map distance contours is useful in examining re-
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lations on the transformations which do not meet the requirements of the
conventional theory of projections. For example, on a map which collapses
areas (Fig. 3.17) the spherical distanoe ocontours ocoincide. The map dis-
tances, on the other hand, may correspond to no positions on the original
surface (they do not intersect the function), or they may correspond to
an area. Howsver, iAf the step function is drawn as a oonnected line

(Fig. 3.17a), the map distance contours are superimposed, ocorresponding to
a "alAff.® In the case of an inversion the spherical distance contours
overlap, which one can think of as an overhang. The drawing of spherical
distance oontours is generally simpler than the drawing of a complete map
with a large amount of geographic data, particularly in the cases of inver-
sion and superimposition.



CHAPTER IV
COST AND TIME DISTANCES

In this chapter the relevance of the transformations obtained in
Chapter III by relaxing the assumptions of the oonventional theory of map
projecstions is to be demonstrated. Having previously indicated how a wide
variety of functions can be transiated into azimuthal maps, it is now only
necessary to point out situations for which the use of these maps is appro-
priate. Since the possible examples which might be given are far too nu-
merous, they tend to obscure the presentation and are kept to a minimun.
Simple models of transportation systems are used in the diacusai&n. but it
is not intended that application be restricted to these situations. The
graphic methods and other concepts developed in the previous chapters have
already provided the groundwork.

Tran £

Consider first a uniform surface and a person walking on this sur-
face. It is to be assumed that this person begins walking at a given
point and proceeds to each position by the most direct possible route,
always walking at a constant rate of speed. This situation can be repre-
sented as a line on a graph (Fig. 4.1) where the abscissa is taken to be
the distance (p) along the ground, the ordinate (r) is the elapsed time,
and the slope of the line is the amount of time consumed per unit of dis-

tance. The speed is initially taken so that one unit of distandse can be
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Elapsed Time as a Function of Distance

elapsed time

r

distance p

Figure 4.1

covered in one unit of time. It should be quite apparent that this graph
can be considered an azimuthal map projection, in partioular, the azimuthal
equidistant projection. The assumptions regarding a starting point and a
uniform surface imply central symmetry and the figure can be regarded as a
profile relating points at distance o and the time it takes to reach these
positions from the ocenter (the origin on the graph). The azimuthal equi-
distant map hence shows correct time distances under the given conditions.
By changing the assumptions slightly it is possible to investigate
the resultis of innovations in transport technology. In the first instance
the uniform surface and the starting point are retained as assumptions
(implying central symmstry), but the constant rate of travel is increased.
This might correspond to a man running or riding a bicycle. The units of
time oconsumed in covering a unit of distance are nence reduced, which cor-
responds to a lessening of the slope of the line on the graph. Translated,
as before, into an azimuthal map this is simply a change of scale. The
effect of an increase in the speed of transport media hence implies a

change of scale or a reduction in the total size of the map. The reader
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may recall representations intended to demonstrate ooncepts of a "shrinking
world® which use this devios.l Lotka uses the same concept to indicate
how the soological range of a species may be increased by such changes in
toohnolozy.z As 1s well lmown, this is too simple a conception for the
effects are quite unevenly distributed.

The impact of a non-uniform surface can also be considered. The
condition of central symmetry is retained for the moment in the interest
of simplicity. A non-uniform transport surface is most easily understood
by examining the uniform surface condition in somewhat greater detail. In
the previous examples the units of time consumed per unit of distance froa
the center were constant. A uniform suriface hence implies a line of zero

slope on a graph as shown in the next figure (Fig. 4.2), where the abscissa

Constant Consumption of Time per Unit of Distance

consumption
of time

r

distance p

Figure 4.2

again represents distance (r) from the origin, and the ordinate (r') repre-

lFor example, Raisz, 9p. git., pp. 252-253.

2Brief1y. one can define the eoological range of a specles as the
area which is accessible within a fixed time limit. On a uniform plane
this increases in proportion to the square of the radius. A. lotka,

Elements of Mathematical Biology (New York: Dover, 1955).
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sents units of time. An increase in speed results in a lowering of this
line without a change in slope. Elapsed time is the cumulative time froa
the origin to the point o; that is, the area under the curve r!' = C (C a
constant) froam the origin too. This is clearly the integral v ap.
Using the integral to obtain the graph of elapsed time as a function of
distance yields r = Co, as desired (the oconstant of integration being
taken as zero). A non-uniform surface is thus one which can be repre-
sented as having a slope different from zero in at least one instance.’
Ellpiod time as a function of distancs is the integral of a profile of
this surface. |

To give the reader some indication of cases in which a non-uniform
surface might occur, the walking man example is again employed. On a
surface such as that of our planet earth there are many irregularitles.
One vould enoounter hills, swamps and forests, to mention only a few of
the obstacles, which would retard progress in walking. Central symmetry
has been assumed so that there is no going around these obstacles. A man
walking at a rate of five miles per hour on ‘irm ground might be able to
progress at only two miles per hour over sandy terrain. The accompanying
figure (rig. 4.3) shows a strip map of an imaginary plece of ground con-
taining typical situations which might be encountered, with estimates of
the rate of time consumption over the different portions of the terrain,
and with a cumulative time profile along the path. OIomparable traffica=-

bllity maps of different portions of the world have actually bLesn pub-

3Perhaps better: a surface of variable curvature.
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STRIP MAP WITH ESTIMATED CONSUMPTION OF TIME AND ELAPSED TIME AS FUNCTIONS OF DISTANCE

Time Comumed per
Unit of Distonce
{dv/dp)

Dutonce  ip}

Cumuiotive
Time
'

Distance (p)

Figure 4.3
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1ished.” The elapsed time profile is s graph similar to that earlier
used for azimuthal projections and by using the sanme prooedure as used
in the previous chapter--working backwards from the graph to a map-=it
is possible to obtain a map scaled in units of time so that equal inter=
vals of time are represented by equal units of map distaonce.

The cost of traveling a particular distance and the time it takes
to travel this distance are not unrelated. Rather than attempting to ine
vestigate this relation, it will be assumed that they are 1ndependent.5
Nevertheless, costs as a function of distance display characteristics
which are quite similar to those indicated for the time and distance re-
lations. The preceding examples of a person walking on a uniform or none
uniform surface can all be rephrased in terms of monetary rather than tem-
poral uvnits simply by substituting the word cost (or some monetary unit)
at each occurrence of the word time. KElapsad time is to be translated as
cumulative cost, speed as distance rate of consumption, constant rate of
speed as equal costs per unit of distance. The 1llustrations accompanying
the strip map (Fig. %.3) are then to be interpreted as showing the cost
oi traversing a particular unit of ground and a cumulative cost profils.
Using the cumulative cost profile as the radius equation of an azimuthal
map, the’'graphic procedures imuediately permit a transformation {rom ground
distance to cost distance so that equal intervals f{rom the center of the

map represent equal monetary units. As an indication of reasons for {luce

uTbo classic examples are the German Hindernis-, Befahrbarkeits-,
or Gelaendebeurtellungaskarten. See W. E. Davies, "Axis War Maps,"
Surveying and Maoping, VIII, 3 (July=September, 1943), 120-134,

50ne of the possible relations is postulated in Wingo, op. _olt.,
pp. 50=57.



84

tuating costs per unit distance, it is clear that the differential natural
endowment and characteristios of the environment give rise to differential
costs of transportation. Maps attesmpting to illustrate this notion have
been prepared by Boggs, Figure 4.4 being an example.’

Costs are normally not associated with a person walking but rather
with more advanced methods of transportstion. In addition to differential
over-the-road, construction, and maintenance ocosts, transport systems are
characterized by ocosts which depend on such factors as frequency of service,
amount of use of the route, and on type, size, value, weight, quantity and
other characteristics of the commodity being shipped. Competitive, leglis-
lative, institutional, and historical factors are also frequently involved.
The literature on this difficult topic is extensive and it is not the pre-
sent intent to delve deeply into the subject.’ The cumulative time or
cost functions will be taken as given without detailed att-mpt at explana-
tion exoept as required for reader orientation. These functions can be
translated directly into maps by the prooedures already given and without
integration. In order to maintain a sufficient degree of generality, cum-
ulative time or ccst distanoes will hereafter be used almost interchangeably.
The readsr is at liberty to substitute other generalized measures of dis-

6s. W. Boggs, "Mapping the Changing World: Suggested Developments
iln;l;g;. Annals, Association of American Geographers, XXXI, 2 (June, 1941),

7See, i.?..er.m E. Troxel, Economics of Iransoort (New York:
Rinehart, 1955)s M. L. Fair and E. W. Williams, Economics of Transporta-
tion (New York: Harper, 1950); S. Daggett, Pringiples of Inlsnd Transporta-

(New York: Harper, 1955)i P. D. Looklin, Econosics of Transportation
Homewood: Irwin, 1§5%); K. T. Healy, Ecomemlics of Trangporiation 4n Asmerica

(New York: Ronald, 1940); National Academy of Sciences, g%%mggm-
portation Researol, National Research Council, publication ; Washington,
1900.
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tance at his pleasure as long as the functions have the same character-
istics as those being discussed. Costs may be considered to be operating
oosts, or charges assessed the user (fares, tariffs), or unspecified
utiles. Consideration of utiles has the advantage of including general
factors such as convenience or perscnal preferencs but is less amenable
to empirical measurement.

The simple cases thus far'givon apply only to distances {rom one
point; they meet several conditions, and, because of central symmetry,
oorrespond to azimuthal maps of category D. Before extending the applica~
tions, it 1s necessary to examine more closely the nature of transporta-
tion systems. The terms transport structure and transport characteristic
are to be defined, but in a techniocal sense whioch only roughly corresponds
to the common usage of the words. Transport strusture relates to the
gsneral arrangement of the transportation system. Several structures are
to be ldentified; the frequently occurring types of transportation in pre-
sent use can then be classified as belonging to a specific structure. By
this device several methods of transportation can be discussed simultane-
ously. Transport characteristics relate to the measure function associ-
ated with distance and are permitted to vary within a structure; the same
characteristics may also appear in different structures.

Iransport Structures

Transportation systems are structured in such a way that their oper-
ation is restricted to particular domains. Thus, ocean vessels are re-
stricted to waters of oertain depths; walking is restricted to land areas;

airplanes are restriocted to the troposphere. A transport medium is iree
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to travel anyvhere in its domain. Roadways, rallroad tracks, footpaths,
rivers, etc., can be considered as being particularly narrow domains but
will be called routes, other domains simply areal domains.® A route may
be directed, as a one-way street, but these vul not be oonsidered. A
domain may also be a subedomain of a larger domain. The domain of rail-
roads, for example, consists of railroad tracks:; the domain of railroad
tracks, however, 1s gensrally oonfined to land areas. For purposes of
extension of a railroad systeam, it is important to consider the domain
of land areas. For discussions of travel by rail, however, it is neces-
sary to recognize that the valid domain oonsists only of the existing
tracks. The extent of a domain may fluctuate frequently, of course.

The edge of a domain is referred ¢to as the boundary. An unbounded
dozain is taken to mean the entire terrestrial surface, a two-dimensional
domain. A simplye-connected domain is one which is all in one piece and
encloses no areas inadmissible to the transport medium. Typical multiply-
connected domains might oorrespond to a body of water containing islands
or shallow areas, or land areas containing lakes, swamps, and mountains.

Although it is today true (technologically, at least) that any
position on the surface of the earth can be reached, given sufficient ex-
penditure, it is necessary to oconsider combinations of the doaains of
several media to achieve this objective. Entry to and exit {roa domains,
therefore, is of partioular importance. With each domain is assoclated a
disutility upon crossing the boundary. This disutility can be oonsidered

84hat are here called routed domains are often also called net-
works; in general, these are multiply-comnected. See W, L. Garrison,
*Comectivity of the Interstate Highway System," Proceedings, Regional
Science Association, VI (1960), 121-17%7. .
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a oontinuous function of arc length ranging from zero to infinity, which
also need not be symmetric in direction and fluctuates with time and

many other factors. It is simpler, however, to be somewhat less general
and to consider only two cases, the first case admitting of entry and/or
exit anywhere along the boundary at a finite oonstant disutility (which
may be zero). Such boundaries, for lack of a better term, can be sald

to be permeable. The second case permits entry and/or exit only at fixed
points, the transition points, at some finite disutility. The distinction
is easily brought out by an example. A person driving a private auto-
mobile is usually permitted to stop and walk away from the road at any
point. The boundary of the domain (the edge of the road) is in this sense
permesable. A passenger on a bus, subway, ship, airplane, or train, is
permitted (or prefers) to leave the vehicle only at seleot positions, the
transition points. Similarly, the shipment of freight by ons mediua
usually terminates only at specific locations and not anywhere in the
domain, The disutility incurred upon crossing the boundary in both cases
will be taken as a part of the transport characteristic (infra).

The uss of alrplanes would appear to complicate the classification,
for their domainsg are properly three-dimensional, though the altitudinal
linits are of no concern here. Nevertheless, the domain of airplanes can
be considered as being a region which touches the earth only at airports--
the ooncern, after all, is only with positions which have terrestrial
meaning. In this sense, the case of airplane travel ocorresponds -to an
areal domain with transition points. The only portions of the domain
vhich correspond to a ground location are the transition points (alrports).
To consider any other ground positions as existing on an airplane distanoe
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map is usually not mesaningful. Also note that when discussing cost-dis-
tances, it is occasionally preferable to consider the domain of defined
costs rather than the actual domain of the transport medium. To continue
the previous example, airplane fares are usually quoted only for alrports;
the cost domain oonsists only of this finite collection of locatlons.
When transforming spherical distance into time- or cost-distance, it is
important to recall that the domain must be specified.

The foregoing discussion of tranaport siructures has attempted to
isolate the topological factors which all transport systems have in com-
mon and which appear important for the present purpose. Four types of
transport structure have been reocognized: areal domains and routed domains,
with permeable boundaries or with transition points. The majority of trans-
poi't necﬁ.a can be assigned to one of these four structures although the ace

tual situation is obviously complicated (Fig. 4.5).

FIGURE 4.5
CLASSIFICATION OF COMMON TRANSPORT SYSTEMS ACCORDING TO STRUCTURE

o — —  ———  ——— — ——— — — —
- s

VYehicle or Domain Boundary or
Mode of Travel Transition Points

I. Areal Domains

a. With permeable boundaries

Small boats Water areas Shoreline
Walking Land areas Shoreline, other
obatructions

b. With transition points

Commercial vessels Deep waters Docks, ports
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FIGURI l". SCOMQ
Vehicle or Boundary or
Mode of Travel Domain Transition Points
Airplanes?® Troposphare Airports, fields
Sound, light, radio "Ether" (range Receptors
television oftan limited)

II. Routed Domains
a. With permeable boundaries
Automobiles; including Roads Edge of roadb
trucks, taxicabs,
private buses

b. WAth transition points

Railroads; including Tracks Stations
subways, streetcars
Buses (commercial, Scheduled route, Scheduled stops
public), trolleys road, wires
lelephones, telegraphs, Aires Receptors
power lines
Automobiles Ixpressway, - Expressway exits®
limited access
hi ghway
Pipe line Pipe Terminal s

dExcludes dropning of materials, and crash landings.
Pixcept where prohibited by congestion or legislative restraints.

“The domain then changes {rom IIb to IIa.

Characteristios

As the reader may have anticipated, transport characteristics are
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to be identified with oumulative disutilities as a function of distance.
Many of the graphs examined in the previous chapter can be shown to be
very typical of time or cost distance relations for transport media. Sube
stitution effects, for example, can readily be shown to yield inversions,
and multiply-oonnected domains result in space eliminations. To discuss
the relsvance of all of the functions illustrated in Chapter III would be
tedious and hardly fruitful. Rather than to attempt this in detall a few
symetric examples are given and then substitution effects and arrwmetric
situations are examined.

Cumulative transport charges are often characterized as increasing
at a decreasing rate with distance. The cost curves in this case are such
that the costs of transport are less per unit of distance at long distances
than at lesser distances. This implies a cummlative ocost curve which is
concave downward. There are many such funotions, one of which has already
been demonstrated by the square-root projection (Fig. 3.10). The map, of
course, assumes that the domain is unbounded and simply-connected. To
this extent the cost-distance map is unrealistioc, exactly as is the un-
qualified statement that cumulative costs as a function of distance are
characterized by the form d2r/d.2(0, for transport media with an unbounded
simply-connected domain (the entire terrestrial surface) are (at present)
rare. Nevertheless, a two-point cost-distance map of the world (no longer
azimuthal) using a similar relation might be centered on dual pricing
points to illustrate a further conoept of freight rates.

Transport systems are also often characterized by terminal charges.
To travel any distance, however small, involves an expenditure, usually a
fixed cbargo, which bears no relation to distanoe and is in addition to
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the distance rate. Arising from costs of oonstrustion and maintenance of
terminals, loading costs, or overhead, these terminal charges result in
an reinteroept which is different from zero (Fig. 3.1%4), ocorresponding to
the ring-shaped asimuthal maps. This ocan be interpreted either as an inter-
ruption or expansion. When the transport nodlun operates on a schedule,
the average walting perlod may be taken to be comparable to terminal charges.
Similar waiting periods (or costs) may ooccur at intermediate points along a
route, or at a destination. At intermediate points one may have to trans-
fer from one transportation systea to another, or pass through toll gates,
or customs, or wait for refueling, etc. In the movement of freight, break-
in-bulk, transshipment, loading and unloading, and the like, have all along
been reoognized as interruptions incurring cssts.

In many transport systems a strictly monotone distance function
does not prevail. One often finds what are known as zonal rates. in these
instances, contignous places are lumped into groups and the same rate ap-
plies tp all places within that rate zone. Fares of this nature are step
functions and can be mapped as indicated in the previous chapter. Such
rates ocour very frequently, step functions being convenient and easily
tabulated in the practical process of establishing rates. The parcel post
charges in the United 3tates are of this form. A map obtained {rom the
Seattle post office shows the system (Fig. 4.5). The United States is
| divided into eight zones of varying size, as shown by the ooncentric aros
on the map. The cost of sending a package from Seattle to any plaoce 1is
the same for all places within sach zone, but the cost varies f{rom zone
to zone, increasing as the zones increase in distance from Seattle. The

actual cost function is tabulated below for a specific parcel weight
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FIGURE 4.7
PARCEL POST CHARGES IN [HE UNITED STATES
For a parocel of more than one but less than two pounds, 1960

S — —

Charge Distance

in Cents in Miles Zone
24 0¢ p £"1local" 1
33 "local™< p <150 2
35 150< p =300 3
X 0< p <300 4
45 600< £ <1000 5
51 1000< p <1400 5
55 1400< £ <1800 7
A4 1800 < p £Remainder 8

Source: Rates furnished by the Seattle Post Qffice. Distances obtained
from: 1959 World Almanac, New York World-Telegraam, H. Hansen

(ed.), New York, 1959, p. 705.
Based on these rates a cost-distance map has been prepared of the United
States as it appears to a person wishing to mail a package from Seattle
(Fig. 4.8). The scale of the map is in cents. Measurement, of course, is
meaningful only from the center of the map, as on an azimuthal equidistant
projection; this 1s more obvious on the post of’ice map. One notices
immediately that areas are transformed into arcs of circles corresponding

to a coilapsing as discussed in the previous chapter. The areas between
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arcs do not correspond to any places in the United States and must be left
blank. Thus, il one asks: "where is Lake iichigan?" the answer must be
that it lies on a portion of the circular arc between the azimuths of
Chicago and Duluth, Postal rates are identical in all directions and the
map hence ocorresponds to an azimuthal projection of category D, with equa-
tions 8 =2 A®, r = £(p); £(p) being defined by the table (Fig. 4.7).

The domaln is the nited States, more preclsely, the set of all mailing
addresses in the continental United States. The map, of course, is com-
modity specific. A map of the letter rate would be different, the entire
United States being mapped onto a circle at a distance of four or seven
ccnts.9

The reader will be able to exercise his lmagination and, depending
on his familiarity with transport characteristics, will note the application
of additional functions. The isolated dots (rfig. 3.15d), for example,
might correspond to railroad stations, airports, bus stops, expressway
exits, and the 1ik§. 1" radio or television communication systems are con=
sidered as transporting informetion with virtually instantaneous velocliy,
the points can al#o be thought of as receivers (fig. 3.l5c).

Parcel post rates are unusual in that they are independent of locae
tion; i.e., the same characteristic applies no matter where one begins in
the United States. By analogy to a sphere or plane the transport surface
might be said to be of "constant curvature." urthermore, -ne cost-dis-

tance for parcel post {rom Seatile to liew York is ldentical to the cost-

7The current regular and airmall rates, respectively. Note that
this 1s actually one of the cases excluded in Chapter II {(J = 2J). The
map oould be further collapsed, setting & = C.
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distance from New York to Seattle. Directional symmstry also occurs only
rarely in practioe and it is more advantageous to examine the asymmetric
situations in greater detail and to establish general procedures. Sube
stitution effects, however, are advantageously inspected along a profile,
adding directional asymmetry somewhat later.

Substitytion Effects
wWnile it is certainly true that any position on the surface of the

earth can be attained with a finite disutility, this in general cannot be
achieved without employing several transport media. Only in cértain cases
does a single transport domain include a large simply-connected portion of ‘
the terrestrial surface. The interest, however, usually is in attaining

all positions within a given region. The differing media which must be
employed will have varying characteristics and structures. The consequences
of considering several media simultaneously are referred to as substitution
effects,

If one considers all the possible wavs in which one position on a
sphsre can be reached from another, it is clear that there must be infi-
nitely many. In a more practical sense, there are usually several feasible
ways to travel to an objective. Bach such path will require some effort
or time and, in general, the expenditures will vary along each path. This
corresponds to a case of space repetition. It is only natural, however,
to consider only that time- or cost-distance which is the minimum. In the
present context the ooncern is only with the cumlative timé- or cost-dis-
tance and there 1s no necessity to inquire whether the geodesic i3 unique.

It is assumed that the minimum can be found.
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Substitution effects are perhaps best explained by an example.
The accompanying figure illustrates costs of transporting a commodity over
various distances by three different systems (Fig. 4.9). If substitution

COMBINATION OF Trept teaneOet oL Teas il C R IPLY - DMNECTED DOMAIN

A

JNading intoter mirimor tamport diutilty mo 0 T teon of divtonce

Figure 4.9

between systems is allowed everywhere and at no cost, the minimum trans-
fer gradient is the piecewise ocontinuous segment shaded in the illustration.
The substitution results in a lessening of the total area under the curve,
which can be interpreted as a lessening of the total scale on a map. Sime
ilar diagrams are ococasionally used to illustrate competitive distance re-
lations between truck, rall, and water transport. Extension to non-linear
functions is simple. The illustration, however, tacitly and unrealisti-
cally assumes that all transport media operate in the same simply-connected
domain. If this assumption is removed, ths situation changes considerably.
The existence of transition points results in particularly striking modi-
fications.

Consider the case of transportation in an open areal domain, on a
uniform surface and at a constant rate of speed (system A). Assume also
that a further transport system (system B) is available, having a conside

erably higher rate of speed, but which is structured so that exit is re-
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siricted to transition points. Illustrating the situation on a graph,
with system A as a dashed line and system B as a solid line, brings out
the relations (Fig. 4.10). Up to a certain point it is more advantageous

SUBSTITUTION EFFECTE

tramtion point

Shoding nticatesy ~oramum tonyort autila, mog toe hor of dtoe

Figure 4.10

to travel directly by system A. Beyond that point, however, it is more
advantageous to travel by system B and then travel in the reverse direc-
tion using system A. Emphasizing the minimum time distance to each posi-
tion on the dlagram, it is apparent that this function translates into
multiole inversions and superimpositions of space, as well as a lessening
of the total scale. If detalls of the domain are ignored, system A might
be identified with automobile or truck travel and systam B with travel by
rail or air. Or system A might correspond to travel on minor city streets
and system B to travel on urban expressways. Decisions whether or not to
walk or take a bus are similar. Examples are easily found in both time-
and cost-distances. Cognizance of the domsin(s) is always appropriate,
however. The conssquences of substitution between media and domains are
considerable. The situation becomes more complicated when there is a
cost asscclated with the crossing of a boundary between domains. The de-

tails, however, can all be included in the more general procedure given
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in the next section.

Asyametric Situations

Directional symmetry, as exhibited by post office rates, only
rarely occurs in practice. More typical ars asituations in which the dis-
tance measure is a function of the direction in which travel is undertaken.
In relating these cases to azimithal projections of category B, advantage
can be taken of a correspondence between isolines and map distance contours.

An iesoline 1s a line comnecting positions having some assigned num-
ber in common, as ocontours on a topographic map. The isolines of present
concern are known as isochrones, connecting places of equal time-distance
to or from some point, and isovectures, connecting places at equal coste
distance to or from some point. Similar are isodistantes, lines connect-
ing places at equal ground-distance. 7o avoid overly complicated terai-
nology only the generic term isoline is employed here.10 Isolines are
constructed by empirical measursment of time- or cost-distances to a fi-
nite number of points, with subsequent interpolation and drawing in a man.
ner comparable to the construction of contours cn a topographic map. The
proocedure is well known and the details need not be given hore.ll Maps
using this technique are common; a few examples are given in the accom-

107, Palander, gp, git., Chapter XII, gives detailed definitions
of several types of isolines. Also, W. Horn, "Die Geschichte der Isarithe
menkarten, " Petermann's Geographische Mitteilungen, CIII, 3 (1959) 225-232.

Lgobinson, gp. git., p. 201; G. Chabot, "La Determination des

Courbes Isochrones en géographie Urbaine,* 2
Interpationsl de Géographis (Toms 2, Sec. ITrer IeFtiries 17T

PPs 110-113; National Committee on Urban Transportation,
avel Time, Procedure Manual 3B (Chicago: Public Acministration Service,
1958),
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panying illustration (Fig. 4.11).12

To establish the correspondence between isolines and map distanoce
contours, the readsr can refer to the previous chapter and substitute cum~
Wative time or cost on the ordinate for the term map distance (fig. 3.24).
The map distance contours can be identified as isolines and the‘comrerse.
This simple procedure allows any set of isolines to be translated into an
azimuthal map projection, the only restriction obviously being that one
consider only isolines which have meaning when so translated. It is also
important to take careful note of the domain of the isolines. Many studies
implicitly assume the domain to be simply-connected and to have at least
the same areal extent as the study area. Substitution and boundary effects
also are only rarely recognized, and the isolines are shown as monotonic
functions. This is particularly true of the Ameriocan literature. Certaine
ly there are instances in which such details are unimportant, but it is ap-
propriate to recognize that assumptions are being made.

Examination in greater detall of one map with isolines corresponding
to asymmetric cumulative trt;nsport disutilities suffices. Map distances
on a transformation of this map could be made to ocorrespond to isolines by
taking profiles along different azimuths as the radius equation for that
azimuth. The sample map (Fig. 4.12) is a portion of a larger map published

12The different asswsptions employed in the preparation of each of
the maps (Fig. 4.11) are particularly interesting. Additional isoline
maps can be found in C. 0. Paullin, £ [ Iy
- he Unlted Jtates, ed. J. K. Wright (Washington: Carnegle Institute and
American Geographical Society, 1932), plate 3B; State of Illinois, Atlas

M%,Fm. Part IV, "Transportation® (Urbana: University of
Ilinois, 1960); E. Fels, JEras Welt » Vol. Vi Der Wirtsohaft-
ende Mensqh als Oegtalter der Rrde (Stuttgart, 1956), pp. 223-227.
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in 1909 by the German cartographer Max Eckert.l2 The average travel time
from Berlin, using generally avallable transportation facilitles, is ine
dicated on the map by isolines. Bckert recognized that the projection to
be used is the azimuthal equidistant and that the 1solines may consist of
disjoint segments, which, of course, indicate inversions. The accuracy of
the data, including travel by camel, native safari, canoe, railroad and
steamship, but not airplane or automobile, ic not realiy of ooncern here.
Inaccuracies in the location of the isolines would translate into inaccur-
acies of position on a transformed map. The isoline interval also may obe
scure minor inverslons.

It is clear from Bckert's map that, {rom Berlin, the coastal areas
of Africa could be achisvad in less time than the interior portions of the
continent. The interior hence is further away in time-distance. The ine
versions show clearly on the profile interpolated {rom the azimth inters
section of isolines (Fig. 4.13). A similar profile today would probably
be on the average lower but would also show even greater oscillations.

An azimuthal map, centered on Berlin, with map scale in days {rom
Berlin, is difficult to draw, there being multiple inversions and super-
impositions, but could be attempted. Africa would literally be turned in=-
side out with respect to Berlin. More easily drawn and yet indicative of

the distortion would be the spherical distance contours.

13y, Eckert, "Eine Neue Isochronenkarte der Erde,* Petermann's
Geographische Mittellupzen, LV (1%05), 209-219, 255-253.
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NORTH-SOUTH ELAPSED TIME PROFILE FROM BERLIN
(based on Fig. 4.12)
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The inverse of a function u = f(#) is given by the function

¢ = #(u). In the present context it can be said that locations {u,v) on
the map oorrespond to locations (é,.) on the surface of the earth, i.e.:

$ = £1(u,v)

A= fa{u,v).
4ithout belaboring the assumptions and restrictions applying to the domain
and the functions, the traditional map can be said to be such that (almost)
every point on the map corresponds to one, and only one, position on tne
sarth. I the transformations which were sxaminsd in the previous chapter

are allowed, this is no longer necessarily true. The dilliculties to navi-
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gation or information storage created by maps which have positions which
oorrespond to several terrestrial positions, or to no terrestrial position,
are rather obvious. Hence it is to be expeoted that the lack of single-
valued inverses will csuse difficulties. This is not necessarily the
case, as can easily be demonstrated.

The graphic method of examining inverses most appropriate to the
present context is a movement from a picture of the map at the left of the
graph of the radius equation, across to the function and downward to the
plcture of the ground. That is, the direction of movement is the reverse
of that previcusly used. In the first illustration (Fig. 4.14) a

LAND USE EXAMPLE OF INVERSE TRANSFORMATION
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Figure 4.14

von Thunen systea of land use is postulated and the cumulative transport
cost function is taken to be a step function. When the land use pattern
is mapped from the cost surface back to the original surface it no longer

has the identical form. The actual form will depend on the specific cumu-
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lative transport cost function employed. Any function would serve for
purposes of illustration; the centrally symastrio non-monotonic step func-
tion has been chosen quite arbitrarily and the reader may substitute other
functions. When transport costs are proportiomal to distance, as in the
original von Thinen model, the graph of the cwmulative transport costs is
a sloping straight line. We note that a highly complicated pattern of land
uses may still fit the von Thunen model of circular rings. In the illustra=
tion (Fig. 4.14), one land use does not appear on what has been taken to

be a picture of the ground. This is because the interruption on the cost
distance map does not ocorrespond to any position on the surface of the
ground, i.e., & lins drawn from the ordinate parallel to the p-axis does
not intercept the funotion. This can be shoun to be a land use excluded
from production because of transport oosts. Similarly, the boundary be-
tween two land uses may map back into an area of mixed land use. This can
also be demonstrated by the von Thinen modsl as an area where the rate
curves coincide. An inversion has also been shown, resulting in the mul-
tiple appearance of a land use. An example without central symmetry would
yield an even more compliocated pattern of land uses.

The limitations of the von Thinen scheme are made clearer by oon-
sideration of the inverse. In particular, if the transport cost is such
that the cumulative ocost curve has zero slope--as with the letter rate--
the unrealistic result is that only one type of land use can occur. The
assumption of uniform agricultural productivity has also not been relaxed
(however, see Chapter VI). Burgess' concentric zone theory, and Hoyt's

sector theory of urban land use, nevertheless, can be shown to be compa-
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tible by similar consideration of inverses.ll

Taking another sxample, population density is postulated--for pur-
poses of illustration only--to be a decreasing linear function of time-
distance from the center of a city, with a piecewise oontinuous cumulative
transport characteristic (Pig. 4.15). This transport characteristic may

POPULATION DENSITY EXAMPLE OF INVERSE TRANSFORMATION

PogLiation Deniity or the Ground

Figure 4.15

be taken to represent a combination of automotile travel on minor streets

and on an urban expressway, as previously discussed under substitution.

liMany authors have recognized this oompatibility. BE. Kant, for
example, remarks:

The sector theory has been held up besids the circle theory. . . .
We may question whether the sector scheme can be regarded as an
independent theory. It is rather a case of deviations {rom the
concentric structure.

(E. Kant, @ps cit., pp. 7-8). Also see C. D. Harris and E. Ullman, "The

Nature of CTitles," W_Qmi_mgm. ed. H. “ayer and .. Xohn
(Chicago: University of Chicago Press, 1959), pp. 277-285.
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As 13 to be expected, identical results are obtained by oconsidering the
1solines only. Both cases are simple manifestations of the function of a
funoction rule.l5 The validity of this method, of oourse, is identical to
that of the postulates employed.
Fyrther Geograchic Applications

In the preceding pages the oonocern has been largely with transport
situsticns and models similar to that of von Thinen. The importance of
transport is widely reocognized by geographers; transportation, for example,
is oentral to Ullman's oconoept of spatial interaction.l® With regard to
the notion of intervening opportunity it becomes clear that opportunities
may be located at greater spherical distances and still intervene because
of inversions.l? Centrally orisnted projections can be expected to be
useful in any study of a nodal rogion.m Reilly's law and similar potene
tial or gravity models all incorporate conoepts of distance.l9 Political

1516t L represent land use; c costi o, as before. Postulate
L= f3(c), o = £2(p,4), then L = 3(fp( SR (For)e
P 3

163. L. mun "The Role of Trmlpomtion and the Bases for In-
teraction,” Ms Face of the Eartl

175, Stoufier, "Intervening Opportunities: A Theory Relating
Mobility and Distance,” Am, S0g, Rev., XV (December, 1940), 845-857.

lsFor definitions of the several types of regions reoognized by
geographers, see D. Whittlesey, "The Regional Conospt and the Regional

Method, " %uzmm'_ﬁm%m- ed. P. James and
C. Jones (Syracuse: Syracuse versity, 195%), pp. 19-69.

19G, P. Carrothers, "An Historical Review of the Gravity and
Potential Concepts of Human Interaction,” Jowrnal., American Institute
of Planners, XXII, 2 (3pring, 1956); S. C. Dodd, "The Interactance
Hypothesis: A Gravity Model Fitting Physical Masses and Human Groups,”
«» XV (April, 1950), 245«255; #. Q. Stewart, "Expirical
Mathematical Rules Conoerniny the Distribution and Eguilibrium of Popu-
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geography appears extremsly rich in pc;uiblo spplications of transforma-
tions, with Oottman's concept of ciroulation, the notion that political
oontrol diminishes wiih distance [rom a center of power, Jones' circula-
tion fields, and many other stimulating ideas.?0 Higerstrand's studies
of the migration of peoples, ideas, and innovation provide further areas
of application.Zl

The following brief paragraphs attempt to suggest mlem;ntation
of the transformations in a few of these areas. The discussion begins
vith psychologiocal-distance, which, as a oonoept, is very similar to cost-
or time-distance, and therefore quite simple.

Eavsholocioal Matance
If the thesis of cognitive bshaviorisam is aot:cpt.ed.?'2 the notion

of psychological distance also seems valid. If a person is asked the dis-
tance to some far-off place, his answer, if any, may be couched in terms

of minutes, hours, or days, or in dollars, or in miles. The answer nay

lation," The Geographical Review, XXIVII, 3 (July, 1947), 461-485;
W. Isard, (Wew York: Massachusetts Institute

of Technology and J. ey, 1960), pp. 493-568.

20y,A.D. Jackson, "whither Political Geography,” Anngls, Associa-
tion of American Geographers, XLVIII, 2 (1958), 178-183; F. Ratzel,
(3rd ed.; Berlin: Oldembourg, 1923), pp. 189-191;
S. B. Jones, "A Unified Fleld Theory of Political Geography,” ADNals,
Association of American Oeographers, XLIV, 2 (195%), 111-123; J. R. Mackay,
"The Interactance Hypothesis and Boundaries in Canada," [he Canadian Oeog-
rspher, XX (1958), 1-8; A. losch, op. ecit., pp. 196-24,

211, Hagerstrand, "Migration and Area," » (Lund
Studies in Geography; University of Lund, Ser. B, 13, 1957), pp. 27-158.

224, and M. Sprout, "Envirommental Factors in the Study of Inter-
national Politics," Journal of Comflict Resolution, I, 4 (1957), 309-328.



02

be based on assumed or known information; it may be an L-pﬁ-oasion; or it
may be a wild guess. It is possible to postulate that each person main-
tains a mental image of the environment and that this mental image can be
brought to light by questioning. Interpretation of the results of such
questioning 1s subjeoct to serious debate, but such an experiment has been
performed. Forty students were requested to indicate distances (in miles)
from their location in Seattle to various citlies throughout the world.

Two a priori conjectures were entertained: (1) that the psychological dis-
tance function would be ooncave downward, and (2) that it would be asym-
metric. The results are shown in Figure 4.15. The sample design is in-
adequate to comment on the oonjectures, but similar experiments could de
devised for azimuthality or area. An alternate sample design might make
use of a number of maps of varying distortion, perhaps chosen from the
seriesr = Ia‘l. centered on the location of the experiment. By presenting
these maps to children and asking them to select the map whioh appears
most oorrect, it might be possible to ottain an estimate ol their conoep-
tion of world relations and an estimate of how this oconception changes
with age or education. An argument might then be made for the use of maps
which reverse the average psychological distortion (if such exists) to be
used in teaching geographic relationships. Mackay's investigation of the
visual interpretation of conformal and equal-area mips is somswhat compar=-
ahle, Harris and McDowell also have argued for the use ol deliberately

distorted maps in tnchi.ng.23

23, D, Harris and G. B. MoDowell, "Distorted Maps - A Teaching
Device,” Journal of Geography, LI/, 6 (September, 1955), 285-289. Every
map, of course, is a distortion in some ways.
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PSYCHOLOGICAL DISTANCE
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Distance Models in Geography

The introduction to this section mentions several geographlic con=-
oepts and models which, explicitly or Amplicitly, incorporate notions of
distance. This is intimately connected with the geographlic importance of
relative location. Some authors refer to the friotion of distance; others
to the attenuating effect of distanos; still others to distance as offer-
ing a resistance, the overocoming of which requires an expenditure of ef-
fort. Resources located at a distance may be of less value because of
their relative inaccessibility--one can then speak of a disoount rate over
space. Watson speaks of geography as a *Disoipline in Distance,” otc. 24

The models used or proposed generally refer to a diminution of ine
teraction with increasing spatial separation. Some researchers are not
oonvinoed of the validity of this argument, and even if valid, empirical
evidence is not oonclusive. There is no general agreemsnt as to the form
of the relation between distance and human activity, and even less agree-
ment concerning the constants in the equations. The most that can be said
is that the relations generally should be monotonic decreasing. The power

funoction z = lpb. b>0o>a, is frequently used. There are, of course, many

245, W. Watson, "Geography - A Discipline in Distance,” The Scot-
tish Geozrapbical Magasine, LXXI, 1 (1955), 1-12. An imaginative discus-
sion of the importance of distance in geography can also be found in

' apendi DOLT'S ‘ ica Generake (rirenze: Macri, 1951),
pp. 70-88; R. AjJo, “New Aspects of Qeographic and Social Patterns ol Net

Migration Rate,"” ﬂ;;:;&;g?_;g_gggggg (Lund Studies in Ueography: University
of lund, Ser. B, 13, 1957), p. 170, remarks:

As spatiel configuration geographic patterns necessarily involve
distance in some form or another. . . .Instead of =3are distanoe,
it ie, evidently, better to try an actlive, that is functional or,
say blologically working l1ive distanoe - granted that that too
must finally be expressed in terms of the common yardstick.
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other functions which are monotonic decreasing, some of which have been
proposed. Discussions of this topic are given by Higerstrand, Isard, and
others.25 If the simple power funotion is accepted, thers is still no
agreement, empirical or theoretical, as to the value of the exponent. ine~
pirical studies give a value ranging from «0.5 to =3.0, and suggest that
the value is a function of the technological level of aoc::.et'.,\r.z3 furthere-
more, it is not clear whether one value of the exponsnt should be valid
in all situations, or vhether distinot types of activity require the use
of different exponents, or even forms.

In spite oi the aforsmsntioned difficulties, there does appear to
be some agreement that utiles (time, oost, convenience) are a mors rele-
vant measure of distanoe than =miles or kilometers. In employing distance
models it can easily be assumed that distances from one point have been
80 measured, or, which is almost equivalent, that a mapping translormation
rs= £(p,\) to a cost or time surface has been performed. The power [funce
tion then becomes z = a[f(p,A)]°. By this device it may be possibie to
account for empirical deviations from the centrally symmetric, strictly
monotone decreasing form employed in the distance models.

A further transformation can be performed, however. It has been
shown (Chapter III) that curves having a negative slope couid be inter-

preted as an inversion. In the present context there is a more appropri-

25Hagerstrand, op. cit., part 4; Isard, Methods, lo¢, cit.:
M. Schneider, "Gravity Models and Trip Distribution Theory," Proceedings,
Reglonal Science Association, v (1957), 51le30.

205ee tables in Nigerstrand, loo, cit.: also, K. L. Heald, Dis-
cusaion of the Iowa (ravity Model Traffic Ddstribution Program, Iowa
State Highway Commission, mimeographed, Ames, 1950.
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ate interpretation of these functions. Thinking in teras of a centrally
symmstric agimuthal projection, the radius equation can be obtalned by
taking the decreasing funoction of distanoce as the radial scale distortion.
On centrally symmetric azimuthal projections this distortion is a function
of only one parameter and can be represented by a graph (cf., Fig. 3.10).
For certain of these azimuthal projections the radlal scale is a decreas-
ing function of the colatitude. The radius equation is obtained by inte-
gration. For the power function, one obtains (b # -1):

JarPap = e T 1 e,
This is sinmilar to concepts dsveloped when discussing tranaporf sur{aces,
and the square-root projection could have been obtained in this manner.
The procedure is available for any of tho forms proposed for the distance
models, though the integrals are not all elemsntary. To develop projec=
tions from each of these models would be little more than an exercise in
calculus and 1s not undertaken here.

The maps achieved by this procedure can be interpreted, in a wmanner
similar to the square-root projection, as showing a type of effective dis-
tance. Beyond illustration of concepts, the transformations also have the
effect of converting the curvilinear influence of distance to a linear
form, so that the nmaps may more readily be employed as nomographs. Ffor
example, the drawing power of a city, store, university, etc., at another
location--assuming the validity of the models--can be evaluated by direct
measurement of the map distance from the city or store. This ie¢ valid
only from the center of the map, of course. A scale with non-linsar grad-

uations would work equally well on an ordinary (large scale) map. Exten-
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sion from azimthal to other types of projections (equal-area, etc.) may
also be useful.

Naturally there are limitations to the amount of realism which can
be incorporated on the maps by modifications of standard projections.
Cost-distance relations may fluctuate over periods of time.2’ The maps,
in general, must be commodity specific. Account has not been taken of
the amount or importance of flow along routos.zs These, and other, shorte
comings of the material as presented notwithstanding, the transformations
appear to clarify, or seem useful in, several aspects of contemporary
geography.

The Ddstance concept
The ease with which metrogenic substitutions can be performed sug-

gests that an examination of the conocept of distance is in order. The exe
amples need not be repeated, but several other measures of distance have
been proposed by geographers. Ground-distances and spherical-distances

are not synonymous, for the earth is not a perfect sphere. The difflerences
are rather small, of course. The surface of the earth, if bridges and
tunnels are excepted, is topologically equivalent to a sphere, and, 1if
cartographers were considerably more adept, this oomplicated two-dimension-
al surface could be mapped on a plane preserving areas or angles. The

cartographic "problem of the third dimension® (relief representation) would

27Examplea are given by S. W. Boggs, "Mapping Some Effects of
Science on Human Relations," The Sc £ , LXI (July, 1945),
4550 and E. Fels, loc. cit. We can writer = [ .,',t), but this is an
oversimplification. )

2o, Lindberg, "An Economic-Geographical Study of the Localiza-
tion of the Swedish Paper Industry," Geggrafiska Annaler, XXXV (1953),
27-4C, attempts to include these factors.
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vanish. Distances are more complicated, for geodesics along the ground
are not unique, nor are they plane curves.

Social-distanoce, though difficult to define oparationally, has
been suggested by Watson and others. Isard suggests that distance might
be measured in amounts of fuel or energy expended, or in numbers of inter-
vening oppartunities, or in numbers of gear shifts, or stops encountered.
Isard's notion of transport inputs also allows substitution from monstary
unite to their equivalents in commodities (barrels of oil, tons of wheat,
steel), or to the factors of production (land, labor). The astromomer
scales distances in light years, etc. These substitutions cause little
difficulty, for one measure is as arbitrary as the other, oonvenience,
stabllity, and relevance heing ths primary oonsldsrations. Further ine
vestigation is required, however.

It is possible to define the distance from New York to other cities
in the world as the number of copies of the Bey York Timgs sold in each of
these citles during the course of a year. This measure of distance should
perhaps be weighted acoording to population; the reciprocal of sales also
seems more meaningful, for cities which receive no copies of the paper
can then be oconsidered as being infinitely distant, those receiving many
copies as being quite close. Is this a valid definition of distance?
Certainly distance, thusly defined, fluctuates from year to year, but
there are circumstances under which a change in distances measured in kil-
onaters also oould not be detected.? A diagram positioning all cities

at thelr oorrect newspaper-distance from New York could certainly be drawn

298. Reichenbach, £ , trans.
M. Reichenbach and J. Freund (New York: Dover, 1958), pp. 10-l4.
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and oould be called a map. But them how are distances to be defined
between cities except by reference to Mew York? Can any collection of
numbers similar to newspaper sales (s.g., telephone calls, other inter-
action) be taken as a measure of distance? Distance defined in this man-
ner does not appear to have the properties which one desires of distance.
The concept of distance is more subtle than is comsonly recognized.

The subject of map projections generally applies only to metric
spaces. We can review this subject only briefly without attempting to
eliminate all of the difficulties. A utrio space is any collection of
objects which satisfies the following postulates: X

1) To every pair of elements (3,b,0,...) of the set there

corresponds s unique real number D(a,b).

2) D(a,a) =0

3) D(a,b) > 0, if a ¥ b,

4) D(a,b) = D(b,s)

5) D(a,b) + D(b,¢) > D(a,c)

The number D(a,b) is called the distance from a to b. How well does geo-
graphic space satisfy these postulates? Equivalently, are the postulates
satiafied if we call D(a,b) the travel time or the transfer ocost from a to
b? Distances are not unique but our oonsideraticn of only minimum dis-
tances results in a unique real number. The second postulate does not
appear to be satisfied by newspaper-distance (guprg), nor when terminal
coats are included in oo-t-diltaﬁooa. Postulate four is more diffiocult;

time- or cost-distances are rarely symmstric. There is a distinot grain to

Xy, M. BHlumenthal, ADpiic 9
(Oxford: Clarendon, 1953).
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the environment. As a consequence, a map such as that prepared by Boggs
(Fig. 4.4) can only rarely be ocorrect. Isochrones froa a center, and
iscchrones to a center, are in general distinct. A simple case is the
time of travel uphill as opposed to travel downhill., Here travel takes
place in a force field (gravity or uniform acceleration) and perhaps the
asymmetry of cost-distances at a point can be eliminated by the introduc-
tion of mathematically similar fields. However, there are some cases iﬂ
which D(a,b) = D(b,a); parcel post rates within the United States, for ex-
ample. If distanoes between only a few locations are oonsidered, the fact
that distances are not symmetric causes less difficulty than if distances
between an infinite number of locations in a simply-connected region are
to be oonsidered. The difficulties here are not unlike those involved in
attempting to include economies of scale in the oost of transport.31

Spaces for which the triangular inequality (postulate five) does
not hold are known as semi-metric spaces. This postulate vpuld not appear
to be satisfied, for inversions have been allowed. These inversions, how-
ever, are with respect to sphcrical distance and occur, in part, because
the cumulative transport disutilities have been examined along azimuths,
and not along the actual routes by which the various positions have been
attained. To this extent the inversions are spurious. A position which
is two hours away cannot be closer than one which is only an hour away,

for this is an inconsistent use of the measure o distance. Similarly

i5.

th cost-distances; if D{(a.b) + D(b,¢) < D(a,c), we should choose a route

roe a2 to ¢ via b. Considerations similar tb these are examined in the

[

Nsee M. J. Beckmann, "A Continuous Model of Transportation,*®
Beonometrica, XX, 4 (October, 1952), 643-350.



ia

following ochapter. Nevertheless, it is certainly true that cumulative
transport charges are not always striotly monotonic increasing along any
minimum cost route (recent legialation seems directed toward forcing this
ocondition, however32),

The specific distancs funotion D(a,b) in a metric spaoce can take
many forms.)3 Terrestrial minimum time- or cost-distances are ususlly
upper-bounded, and examples of distance funotions have been implied (grs-
phically) in the preceding pages, though explicit metrics have not been
obtained. To do this for only ons cemmodity, oonsidering combinations of
several transport domains, would be quite difficult and goes beyond the
objectives of the present work.

The oonditions under which the geographically relevant space can ap-
propriately be oconsidered a metric space are diffiocult to determine. When
the assumption of a3 metric space seems too unrealistic, we should elther
attempt to asoertain which set of postulates are satisfied® or introduce
mati.ematioal conditions which can be used to account for deviations irom a
metric space. The latter course seems simpler, though neither is possible
here. In the chapter which follows, distances {rom only one point are con-

sidered and the quaestions regarding metric spaces are less important.

32g¢e Healy, QR. cit., p. 489.

33In Buclidean geometry the familiar form ds? = dx2 + dy2 obtains;
on a sphere ds? = de,oz + Rzai.nz,o dr2; more generally for locally Buclid-
ean continua ds? = gpdu‘du". etc. See any text on differential geometry.

Yas, for example, in E. M. Zaustinsky, M&&Mﬁm@s
Pistance (Memoir 34; Providence: American Mathematical Society, 1959), or
R. H. Elng, "Elementary Point Set Topology," American Mathematiocal Mopthly,
LXVII, 7, Part II (August, 1960), 42el,



CHAPTER V
NON-A ZIMUTHAL TRANSFORMATIONS

It has been demonstrated that maps can be prepared which are dis-
tance-preserving from ons point, whatever the metric, by examinatlion of
distances along an azimuth. Such transformations will be referred to as
polar isometric, in particular, agimuthal polar isometric. Although very
simple and useful, these transformations are in many respects unsatisfac-
tory. The azimuthal polar isometric transformations have been achlieved
at the occasional expense of one-to-oneness. The conoept of primary cone
cern, however, is distance--and not direction--so that azimuthality can '
readily be abandoned. It is desirable to exchange, %0 to speak, azimi-
thality for one-to-oneness. In addition, it does not seem entirely reason-
able to measure distances in, say, monetary units and yet measure azimuths
by reference to angles on the terrestrial sphere. Furthermore, it 1s not
sufficiently clear what is intended by the term azimuth for general sur-
faces of highly variable curvature.

This latter point can be clarifiad by reference to the space in
which the surface is embedded. We can assume that the embedding space is
Suclidean and introduce spherical ccordinates on the tangent plane to the
surface, taking the origin to be the point of tangency and the equator to
be the tangent plane. [he lines of oconstant azimuth on the surfaoce can
then be defined as the intersections of the coordinate planes (meridians)

with the surface in question. This is hardly a convenient family of one-



123

parametric curves to have intrcduced on a surface of complicated curvature,
vhatever the units of distance measurement. T[he use of geodesic polar co=-
ordinates (infra) seems more fruitful.

Polar isometric transformations also are much less restrictive than
general isometric transformations and are clearly not unique. Hence, it
is natural to inquire which of taese transformations might be most valuable
and what additional properties might also be preserved. To také a simple
case, one can begin with what is generally known as a conic projection:

r = £(p), @ = CA. Isolines drawn on any equidistant conic, I(p) =0, and
transformed graphically as before--along the lines A.-‘conntant-yield a

" polar isometric map. The entire projection is then of category B:

r = £(p,A), @ = CA. Similar results can be obtained if ¢ = £(N) ¢ CA, as
is obvious. More generally, it is possible to take as a basic map any of
Schjerning's equidistant projections,l r = p , 8 = £(p,2), and obtain the
dssirsd polar isometric transformation. As a further example, the accoa-
panylng figure (7ig. 5.1) illustrates a simple case in which superimposi-
tion can be avoided by a non-azimuthal polar isometric transiormation.

The map 1s one-to-one except at certain locations, where it is one-to-many
rather than many-to-one as superimposition requires. As a limiting case,
the entire surface can be mapped onto the bounded straight line, collapsing
all azimuths. This is a valid polar isometric transformation, but would

generally be rejected.

14, Schjerning, "Usber Mittabstandstreue Karten,* Abhandlungen
K. K. Geographischen Gesellscha't, V, & (1904). Also in K. ZBppritz and

A. Hludau, Leitfaden der Kartenentwurfglehre (Berlin: Teubner, 1912).
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A NON-AZIMUTHAL POLAR ISOMETRIC TRANSFORMATION

Original
0 = orgin

A, 8 = tromition ponty

Figure 5.1

Polar Geodesic Tranaformations

Geodesic tranafo;gationa of surfaces of variable curvature to a
plane are known to be impossible. A transformation which takes geodesics
from one point on a surface into geodesics (straight lines) from the cor-
responding point on a plane, however, is possible--at least in certain
instances. The subject of geodesics is a difficult one and a short review
is appropriate;z A common misconception is that geodesics are curves of
shortest distance. On a sphere the great circle connecting two points has

two arcs, only one of which is a path of least spherical distance. With

2S5ee works by Kreyszig, Morse, Struik, or Willmore, listed in the
Bibliography.
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suitable restrictions, however, curves of shortest distance can be shown
to ocoincide with geodesics; such restrictions are here assumed, and geo-
desics will be used aynonymously with curves of shortest distance. It is
also necessary to assume that geodesics exist. Further, geodesics in gen~
eral are not unique. On a sphere there are an infinite number of shortest'
routes from the north pole to the south pole. As a consequence, the azimu-
thal equidistant projectione-when it includes the antipodal pointe-is a
one-to-many transformation at that point. We will not always assume geo-
desics to be unique.

Geodesic polar coordinates are based on the following results.
Through an arbitrary point P of a surface S (of class > 3) there passes
exactly ons gecdesic in every direction. In a sufficiently small neighbor-
hood U of P this geodesic is the only geodezic from P which passes through
an arbitrary point Q of U. The geodesics from P and their orthogonal tra- -
Jectories are called geodesic polar ooordinates on S with center at P and
are allowable in U with P deleted. The orthogonal trajectories deiine geo=
desic circles, with radius given by the distance along the geodesic. Our
objective, and definition, cf a polar geodesic transformation is one which
maps the geodssics from P on 3 into geodesics {rom the image of P on a
plane. This transiuormation is clearly not unique. For a sphere the polar
geodesic coordinates are the same as spherical coordinates (poles deleted),
and any transformation which sends meridians into straight lines radiating
from a center is a polar geodesic transiormation. Preservation of order
relations and continuity are appropriately assumed here. All the azimu-
thal projections of a sphere are polar geodesic transformations, to which

have been added the requirement that the directions of the geodesics at P
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are to correspond to the directions through the image of P. From the
point of view of the intrinsic geometry of surfaces this is a more satis-
factory definition of an azimuthal projection.

The lack of uniquenoaa of polar geodesic transformations suggests
that further conditions may fruitfully be applied. When the angles at
which the geodesics intersect (gupra) are maintained, the transformation
can be referred to as polar azimuthal geodesic (not to be coniused with
the extrinsic definition of azimuthal). By analogy, when the angles are
all reduced in constant proportion, we can speak of polar oonic geodesic
transformations, etc. when the lengths of the geodesic rays also are pre=-
served, the transformation is polar isometric-geodesic, although polar
isometry does not imply a polar geodesic transformation, and vice versa.
Polar azimuthal-isomstric-geodesic is possible; recall the azimuthal equi-
distant of the sphere. The transformation presented in rigures l.l and
1.2 is of this type, though somewhat more complicated because the geodesics
are not unique. The two-point equidistant projection of a portlion ol the
sphere is polar isometric-geodesic from two polnts (a linear transformation
of the gnomonic). when the two points are opposite poles, this polar iso-
metric-zgeodssic transformation yields the straight line of length TR (see
Chapter 1I), no longer one-to-one and not polar azimuthal. conditions of
conformality or equal-area also might fruitfully be applied to polar geo-
desic transformations (jpira). For a sphere these are possible, even with
further conditions.

It seems unsatisfactory to restrict disowssion to neighborhoods of
P which are sufficiently small to ensure the uniqueness of the geodesic

rays, particularly when the actual situations encountered are such that
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this is a severe limitation. There seem to be three important cases:

(a) the gecdssic from P to Q is unique; (b) there are some finite number
(>1) of geodesics from P to Q; and (o) thers are infinitely many geo-
desics from P to Q. These situatione can be represented diagrammatically
(Fig. 5.2).

GEODESICS

/s
s
y =
P e -

;\»

™~

Figure 5.2

The third case illustrates the dirficulty. It will be impossible to iranse
form (polar geodesically) a situation of this type to a plane in a one=to-
one fashion. In choosing between a truncation o the domain, a many-to-
one, and a one-to-many polar geodesic transiormation the latter seems pre-
ferable (Fig. 5.3). Compare the antipodal point on an azimuthal equale
area or equidistant projection.

Though both polar isometri: and polar geodesic transformations are
achieved by the application of rather weak oonditions, such tranaformations
are useful. The foregoing considerations, informal as they are, help to
clarif{y many of the inadequacies of the azimuthal transformations presented
in the earlier chapters. The discussion can be coniinued wiih simpie grae

phic methods similar to those used in Chapters III and IV.
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POLAR GEODESIC TRANSFORMATIONS
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Figure 5.3

The Gradient Method
The gradient method provides a simple technique incorporating many

of the foregoing considerations. ror azimuthal projections the cumulative
distance functions were to be examined along the azimuths A = constant.
This results in ;rofiles which can be taken as graphic representations of
the radius equation of an agzimuthal projection ol category B. This is not
always appropriate, as should be clear from the foregoing discussion.
Consider the isolines shown in the accompanying illustration

(Fig. 5.4). All the imolines consist of simply-connected curves. All ex-
cept the innermost isolines, however, are looped with respect to the cen-
ter.J The domain is considered to be bounded by the outermost isoline.

A profile along an azimuth may intersect an isoline twice. The result, of

course, is an inversion, as is easily verified by drawing the profile.

3Not.-looped. for simply-connected isolines, is equivalent to the
term star-shaped as employed by Nehari, op. cit., p. 220.
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LOOPED ISOLINES

azimuth

arbitrary path

Figure 5.4

However, Af any arbitrary path from the origin to a particular position is
drawm through the family of isolines and if a cross section along this
path is compared with the profile along the azimuth, it is seen that the
lengths of the paths vary but that the height of the point (Q) is the same
in all cases (iig. 5.5a). In other words, if the isolines represent cumu-
lative time or cost values, either path could be chosen as the radius equd-
tion for a map, and each allows the point to be placed at its correct dis-
tance on a time- or cost-distance map (i.s., a polar isometric transforma-
tion). The map will no longer be azimuthal and corresponds, in general,
to a projection of category A. [his arbitrary procedure is permissible
because cumulative isolines, representing minimum travel times or costs,
have been employed.

Having many arbitrary paths from which to choose, it is natural to

pick a path along the gradient, for, of all possible paths, the area under
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CROSS SECTION ALONG DISTINCT PATHS
(based on Figure 5.4)

" g’ arbitrary path % | arbitrary path
23 g £
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'k Q 35 \\ Q
g o g o azimuth
v = imuth 2 .E

° azimu =

2 2 \grodienf

path length from P distance from P
(a) (b)
Figure 5.5

the cross section is least of all in the case of the gradient (Fig. 5.5b).
To create maps scaled in time- or cost-distances from (or to) the center,
the orthogonal trajectories to the family of isolines are used as the lines
along which cross sections are taken as transformation equations. It is
natural to map positions along these lines into positions along the rays
@ = constant, at their desired distance on the‘map plane, each ray corres-
ponding to one gradient. This avoids the invei'sion; in the symmetric case
(only) the gradients and azimuths coincide, but the isolines need not be
looped before the gradisni method can be used. If the isolines consist of
disjoint segments, the procedure is more difficult, though extensions of
the gradient method to these situations is possible; the previous illustra-
tion (fig. 5.1) can be redrawn using an asymmetric and non=linear distance
function, transformed along the gradients.

The gradient method clearly ylelds a polar isometric transformation.
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It also allows removal of superimpositions and inversions in certain ine
stances. The gradients, however, have a further significance, for they

in fact lie along the geodesics. The gradient method yields polar isomet-
rlcegeodesic transformations. The apparent simplicity of this method of
finding geodesics 1s somewhat illusionary, for, by assumption, the cuaula-
tive isolines were prepared by selecting the minimum disutility associated
with reaching particular locations from the center of the map. Onoe the
appropriate isolines (geodesic circles) have been determined the geodesics
can then also be ascertained.

There is one major difficulty, however, The gradients have been
taken as orthogonal trajectories to the cumulative isolines on a plane
dlagram. To do this, it is necessary that the cumulative isolines somehow
be mapped from a surface of variabls curvature onto the flat paper in a
manner which preserves the orthogonality of the gradients to the isolines
and yet also preserves lengths rroﬁ the center. It is not clear hovw (or
if) this can be done. Nevertheless, the difficulty can be circumvented.
To do this, the notion of a transport surface of variable curvature 1s
abandoned. Instead, it is useful to conceive of the two-dimensional sur-
face of the earth as being covered by a very thin sheet of material through
which transport takes place.“ We imagine this sheet to be of extremsly
variable permeabiiity. It is not distance which offers resistance to move-
ment but less permeable portions of our imaginary sheet. ihe disutilities
incurred when transport takes place can be interpreted as being the amount

of "work"™ required to transport items through this generally uncooperative

bThis 1s a world not unlike Abbott's :latland, but more ocomplicated.
E. A. Abbott, latland (New York: Dover, 1952).
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sheet. rortunately, all of the previous materials remain valid. In par-
ticular, the cocmments regarding the domain fit easily into this format,
for there are areas (aresal domains) of variable permeability, boundaries
which may be imﬁossible ol penetration, routes of greater permeability
which can be entered only at particular points, and so on. In fact, the
scheme permits an improvement with regard to airplane and submarine travel.
The troposphere, not unrealistically, can be considered a second sheet
overlaid on the first, but which can be penetrated {rom below only at se-
lect points. This second thin sheet is also taken to be of variable (on
the average greater) permeability, but is insulated from the first by an
impermeable boundary except at isolated transition points.

Iransport characteristics again can be taken as cumulative amounts
of expenditure required to penetrate particular lengths of the sheet(s).
Certain lengths may be of perfect permeability requiring no expenditures
(step functions); others may require a disproportionate effort for any
movement to occur (interruptions). It is still necessary to be commodity
specific, etc., but isolines measuring the cumulative disutility required
to reach particular locations {rom one point may be drawn on the transport
sheet. As this very thin sheet is in one-to-one contact with the surface
of the earth, the isolines can be considered to be drawn on this surflace
(taken to be a sphere). The gradients to the cumulative isolines are lines
of least resistance, or greatest permeability. Not bnly do all the previous
results hold, but simplifications appear. The content of the following is
still concerned with isolines on a sphere; the diagrams, however, are no
longer to be considered as being drawn on an azimuthal equidistant projec-

tion but rather on a stereographic projection. The orthogonal trajectories
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then still yield the gradients, as the stereographic is coniormal; the
lengths of gradients are distorted, but the metric is given by the 1solines
themselves. We can apply this immediately.

It has been known to economic geographers for many years that the
least-cost route from an island port to an inland lncation, when the ocean
rate differs from that on land, assuming both rates to be constant, satis-
fies the law of refraction.” This is a special problem of {inding geo-
desics through two areal domains with linear transport characteristics and
with a costless permeable boundary separating the domains (fig. 5.65). Ex-

GRADIENT AND ISOLINES

Figure 5.6

amination of the orthogonal trajectories to the cululative isclines yields

5The most complete review is in .. Ponsard, gp. ¢it., op. 172-175.
Also L3sch, gp, cit., pp. 184=185; W. Warntz, "Transportation, Social

Physics, and the Law of Refraction," The Professional Geographer, (NS),
IX, 4 (1%57), pp. 2-7; Palander, gp, c¢it., pp. 337-338.
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the least-cost route in the non-linear (differentiable) cases and combina-
tions of arbitrary domains, The gradient method can then be utilized to |
transform these routes into strsight lines on a polar-isometric-geodesic
map. When the gradients are not unique, or when the transport characteris-
tics are discontinuous, the difficulties are obvious--on the map of postal
zones (Fig. 4.5) the gradients do not yield the routes by which mail is

ever sent, but the actual routes are of little concern, etec.

Cenformal Transformptions

The gradient method immediately suggests further considerations of
conformal transformations. Translating isolines into concentric circles
and gradients into rays {rom the center obviously pressrves the orthogon-
ality of intersection of these curves. Thia 1s a necessary, but not suf-
ficlent, conditlon for a conformal map.

The subject of conformal maps, though much investigated and of im-
portance in many fields, is rather difficult. Only a few general oomments
on this topic are to be presented ners, withou’, going deeply into the de-
taﬂs.é The geographic relevance of conformal transformations has always
been somewhat obscure. Although conformal projections (the stereographic,
Lambert conformal conic, Mercstor, etc.) are recorded in the geographic-
cartographic literature, the major usars of such projections are not geog-
raphers, but ceodesists, meteorologists, coeanographers, navigators, etc.
The reason is that angles have not been particularly important to geogra-

phers. The concepts =ost frequently encountered in the geographic litera-

6See Nehari, gp. cit., or works by Betz, Bieberbach, Knopp, and
Thomas listed in the Biblliography.
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ture are distance and area. Angles and directions are less explicitly em-
phasized. This can be contrasted with meteorology where winds are assumed
to flow at right angles to isobars (neglecting Coriolis effects, etc.).
The intention is not to imply that angles are unimpoftant for geography,
but only that they have not been emphasized. The stereographic projection
has been employed here (gupra) because of a relation between geodesics and
isolines. Any further conformal transformation of the stereographlic pro-
jection will maintain this relation. It is also relatively easy to calcu-
late the area between given limits after a oonformal transformation. An-
other indication of a justifiable geographic use of oconformal transforma-
tions 1s in the potential models suggested hy Stewart, for here the ortho-
gonal trajectories to the equipotential lines are important.

We have seen that polar-geodesic-isometries are not unique. Can
conformality be added as a further condition? For a sphere this would re-
quire straight meridians of correct length and conformality. Such a map
is impossible when going from a sphere to a plane, as it implies a com-
piete absence of distortion. In the event that the cumulative transport
costs through the transport sheet on the sphere are strictly monotone in-
creasing, not oentrally symmetric, and are differentiable, however, the
scale distortion of the plane map will vary from point to point and it may
be possible to obtain a conformal map of the sphere which also yields

valid cost distance relations from some one point.7

7\ definitive statement in this respect cannot be given without an
analysis in depth of the differential equations involved (assuming differ=-
entiability, etc.). We have not undertaken the detailed analysis which
would be required. While reference to known map projections may suggest
the existence or impossibility of specific combinations of properties, it
is not a certain procedure for the general case. A proof of the existence
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Lambert's conformal conic projection of the sphere is polar-geo-
desic in addition to being conformal. It is alsc inown, from the Riemann
mapping theorem, that general bounded, simply-connected, two-dimensional
domains can be conformally mapped onto a circle. It is too much to expect
that this will automatically yield a polar-geodesic map. Nevertheless,
these geographic applications of oconformal transformations seem to warrant
further investigation.

ual-area Transf t

The von Thinen model is concerned with land use. In this situation
it is gppropriate to inquire as to “he amount of surface area devoted to
a particular type of land use. The question then becomes: 1s it possible
to transform geographic space in such a manner that equal cost intervals
from some point go into equal map distances and that equal surface areas
retan their proportionality of size on the map? ~or the sphere this is
a requirement that r = © and that the condition for equality ol area be
net.B The result is Werner's heart-shaped map, no longer azimuthal as was
to be expected {Fig. 5.7). The directions are distorted and the map ocon-
tains an interruption near the center. This causes no problem as distance
and area, but not direction, are the concep:s of primary concern. The

i1solines can be plotted on this map as belore. We could, in ract, have

{or impossibility) ol solutions, in general or under restricted conditions,
also often does not tell one how these solutions can be obtained.

8;- = Rp, 0 = ASine . The derivation is given by O. S. Adanms,
0

Qps cit.s pPPe 31-33. Devised in the fourteenth century, this projection
is out rarely employed. ‘urther details can be found in J. Keunigz, "The
History of Geographical Map Projections Until 1500," Imago Mundi, XII
(1955), pp. 1=24.
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WERNER'S EQUIDISTANT EQUAL-AREA PROJECTION

From K. Z8ppritz and A, Bludou, Leitfoden
dmr Kortenentwurfilehre, Berlin, Teubner, Tz

Figure 5.7

used Werner's projection rather than the azimuthal equidistant for the
drawing of 1solines all along. Transformation of distances along the
lines @ = constant will yield a polar isomstry. This transformation does
not yleld an equal-area polar isometry, iowever. To retain equality of
spherical area and cost-distances {rom one point, it appears necessary to
describelthe isolines in mathematical {orm and to apgly the additional
conditions for equality of arsa, unless, of course, graphic methods can
be devised. This corresponds to the difficulties encountered in the ex-
amination of conformal maps. “or certain simple geometric configurations,

mathematical deseription of the isolines can be achleved without excessive

effort (Tig. 5.%).
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Lanbert's azimuthal equal-area projection of the sphere is, of
course, polar-azimuthal-geodesic in addition to being equal-area. We can-
not, however, draw isolines on either this projection or on Werner's and
expect to find that the orthogonal trajectories to the isolines are the
gradients (except in very special ocases). Acoording to Tissot, there will
be only one set of orthogonal trajectories which remains orthogonal after
the equal-area transformation. Having (empirically) obtained the isolines,
-tho gradients can be drawn correctly as orthogonal trajectories on a con-
formal map (ef;g.. stereographic) or, of ocourse, on the sphere. In the for-
mer case the gradients can be transferred to the equale-area map in a man-
ner similar to the plotting of great circle routes on the Mercator projec-
tion from a gnomonic map. In the latter case the gradients would be
plotted as are otﬁor terrestrial positions. The gradient method can then
be used to obtain the polar-geodesic isometry; the resulting map will still
not be equal-area, however.

Kevertheless, we can conjecture that polar isometries maintaining
spherical surface area are possihle.9 The details will depend on the spe-
cific distance functions and the resulting maps may appear rather strange.
It i1s also obvious that proportionality of area cannot be maintalned when
step functions, resulting in collapsing of areas, are involved. The situ-
ations with inversions and superimpositions naturally are also more diffi-
cult.

Sphere or Plape
Studies which employ isolines are often restricted to areas far

Isee note 7, supra.
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saaller in extent than the entire sphere. In urban areas in particular
it may be apprwpriate to consider the domains (or transport sheet) as
existing on a plane rather than on a sphere. A simple case already treated
in the literature is that in which two transport systems exist, one a
routed structure radiating from a center, the second an areal structure
existing elsevhere.l0 Both systens are taken to have linear characteris-
tics, to have permeable boundaries, and to have no disutility upon cross-
ing the boundary. The routed structure is taken to have a lesser disutil-
ity with distance. In this instance it is not difficult to show that the
isolines depend solely on the ratioc of the coefficlients of the two charac-
teristics (Fig. 5.8). The implication is that this model ocorresponds tc
urban traffic situations, the routed structure to arterlal streets, and
the areal structure to the remainder of the urban area. An alternate for-
milation is to consider the network of streets as consisting of a grid-
iron pattem.n Whether these models are realistic is not really of con-
cern here. The graphic methods previously given for transformations re-
main valid. Wwhen distance from a center is the only concept of concern,
the transformations do not differ in any essential points {or a bounded
plane or a sphere with antipodal point deleted. If areas or angles are
a:30 to be congidered, the situation naturally changes. The differential

conditions for conformality and equality of area are slightly modified.

10Thi s simple case has been treated a great number of times:
Losch, gp, cit., note 25, p. 443; Mohring, et al., QP gt.. Appendix;
A. Vadnal, g Réseau Route Co e Cercle
{Bilbao: Congress Buropean D'Economsetrie, 19 Palander. it.,
gives other examples. Also compare Figure 3.12.

llwmgo. M.' p. 39; I-B'Oh. QEO Cito' P- !#"720
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LEAST-COST PATH AND ISOLINES

Figure 5.8

If the values for Iissot's indicatrix are to be used in evaluating the
distortion introduced by the transformation (or, equivalently, by the trans-
port media), the specific equations are different ror a sphere or plane.
Whether to consider the transrormation as being of a plane or sphere, of
course, depends on the accuracy requirements of the particular study. An
advantage in beginning with a pléne is that it is no longer necessary to
employ auxiliary projections such as the azimuthal equidistant, the stereo-
graphic, or that ol Werner. The properties which we might wish to retain
are similar whether we start with a plans Jr sphere.

As an aside, it 1s interesting to note that even if the earth were
a disk (as some ancients believed) and not sphers-lixe, the suggested trans-

formations still would be or value. The maps obtained here as transforma-
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tions also are reminisoent of maps produced in the middle ages. Other
equally unusual maps can be considered transformations, as in the chap-

ter which follows.



CHAPTER VI
GEQGRAPHIC AREA

The presceding chapters have attempted to relate distortions of dis-
tance on map projections to geographic concepts. It is now postulated
that distortions of area can be equally meaningful. A fundamental truism
of geography is that the incidence of phenomena differs f{roam place to plaoce
on the surface of the earth. It is, thereiore, understandable that ceteris
paribus assumptions in theoretical descriptions of relgtions among phenom-
ena which conflict seriously with this fundamental fact are somewhat repug-
nant to a geographer. Von Thfinen, for example, postulates a uniform dise
tribution of agricultural productivity; his economic postulates are no
less arbitrary, but they disturb the geographer somewhat less. Christaller's
central place theory belongs to a similar category, for the necessary sim-
plifying assumptions, e.g., a uniform distribution of purchasing power,
are unsatisfactory from a geographic point of view. In order to test the
theory empirically, one must find rather large regions in which the assump-
tions obtain to a fairly close appromation.l The theory, of course, can
be made more rsalistic by relaxing the assumptions, but this generally en-
talls an inorease in complexity. An alternate approach, hopefully simpler
but equivalent, is to remove the differences in geographic distribution by

a modification of the geomstry or of the geographic background. This has

lFor an example, see J. Brush, "The Hierarachy of Central Places in
Southwestern Wisconsin,® Ihe Geggraphical Review, LXIII, 3 (1953), 380-402,
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been attempted by other geographers (infra/, with scwe sucoess, but with-
out clear statement of the problem. The graphic methods employed in ear-
lier chapters are no ionger as satislactory, but the topic can be appivacned
by an examination of a number of cartograms. Attention is directed toward
those types of cartograas which appear amsnable to the metrical conoepts

of the theory of map projections, without here attempting a definition of

the rather vague term cartogran.

kxapoles of Cartograms

"The accompanying 1llustration, "A Hew Yorker's View ol the United
States,® contains several interesting notions (Fig. 6.1). The cartogram
reinforces the impression that there is a pasychological distortion of the
geographic envircument in the minds of many persons. It is also clear that
this distortion, jnter alla, is related to distance. Muthermore, the
areas of the states are not in correct proportion. Fflorida, for example,
appears inordinately large. Hence, distortion of area can be recognized,
though a complete separation of the concepts of distance and area is not
possible.

The second illustration is again a distorted view of the United States
(Fig. 6.2). The purpose of this cartogram is mors serious, however, The
area of the states and cities is shown in proportion to their retail sales,
rather than in proportion to the spherical surface area enclosed by their
boundaries., Harris' point is that the expendable income, not the number of
square miles, is a more proper measure of the importance of an area--at

least for the purposes of the location of economic activity.? Harris also

ol
4

2¢, D. Rarris, “The Market as a ractor in the Localization of
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A MARKET VIEW OF THE UNITED STATES

BOSTON

RETAIL SALES

1948
€ CHAUNCY D WARRIS 1993 One Biltion Doltars { l
From C.D. Horms, "The Market o o Factor in the Localization of indutry in the
United Stotes™, Annali, Auociotion of American Geogrophen, XLiV, 4, 1954,

Coutasy of 2. D, Harr,

Figure 6.2

presenis oartograns of the United States with map areas of the states in
proportion to: (a) the number of tractors on farms, and (b) the number of
persons engaged in manufacturing. Ralsz presents an alternate cartogran
with the area of states in proportion to their population.3 Hoover stresses
a point of view similar to that of Harris and presents a di{ferent cartogran
of the United States, again with map areas of the cities and states in pro-

portion to thelr popula.tion.u

Industry in the United States," Annals, Association of American Geographers,
XLIV, & (1954), 313=-348.

3B. Raisz, "The Rectangular Statistical Cartogram,” The Geographical
Beview, XKiv, 2 (1934), 232-295.

bg, M, Hoover, rhe Location of Econoamic Activity (New York: McGraw-
Hiil, 1948), p. 88.
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Weigert recognizes that the importance of the countries of the
world may be more directly proportional to their population than to their
surface area and presents a cartogram placing the nations in this perspec-
tive.5 Woytinsky and Woytinsky make extensive use of a similar cartogram
(rig. 6.3).6 Zimmernsn presents further onﬁ)luz cartograms of world
population and cutput of steel by ocountry.’

Whether the cartograms presented are considered maps, based on pro-
Jections, is a matter of definition and, as such, not really important.
Raisz stresses the point that his rectangular statistical cartograms are
not map projections. The background of latitude and longitude on Woytinsky's
1llustration of population (Fig. 6.3) suggests a map projsction but is ac-
tually spurious. However, as every msp oontains distortion, the diagrams
can be oonsidered maps based on some unknown projection. Certainly the def-
inition which oonsiders an orderly arrangement of positions on the surface
of the earth on a plane sheet as a map projection suffices. It also seems
adequate to demonstrate that diagrams similar to the foregoing cartogranms
can be obtained as map projections. But what is the nature of these pro-
Jections? The question is approached by a detalled examination of a simpler

problea poved and solved by Higerstrand.

Higertrand's Probles

Higerstrand has been conoerned with the study of the migration of

H. W. Welgert, et al., £ t (New York:
Applston-Csatury-Crofts, 1957), p. 296.

64. S. and B. S. Woytinsky, (New York:

u
Twentieth Century Fund, 1953), pp. lxix-lxxii, 42-43, and pagsim.

78, W. Zimmerman, World Resourges and Industrias (Rev. ed.; New York:
Harper, 1951), p. 97. '
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people over long periods of time. In discussing the cartographic problea,
he states:

The mapping of migration for so long a period, giving the exchange
of one singie commune with the whole ocountry in gougtable detail,

cannot be made by ordinary methods. All parts of the country have
through the {light of time been influenced by migration. However,
different areas have been of very different importance. With the
parishes bordsring the migrational centre, the exchange has nume

bered hundreds of individuals a decade. Al long distances only a
fow migrants or small groups are recorded. A map partly allowing

a single symbol to be visible at its margin, partly giving space to
the many symbols near its oentre, o%h for & large scale since we

-

Higerstrand's solution is deferred until some of the implications of the
problea are examined.

It is desired to count symbols on the map. This is 3 clear statement
of a common .:rtographic problem. The situation occurs frequently in the
mapping of populstion, whers high conoentrations appear in restricted areas
and lesser numbers of people are spread more thinly throughout the remainder
of the map area. Certainly every cartographer has at some time wished for
a distribution of phenomena which does not seem to require that all the
symbols overlap. A solution has besn the introduction of so-called three-
dimensional symbols.? An alternate solution is here suggested, based on
the theory of map projections. Also note the distinction between the com-
mon geographic use of an equal-area map to 1llustrate the distribution of
some phenomena and B‘gerltrand's emphasis on the reocovery ol infomation
recorded on the map.

In the problem as formulated by Higerstrand, the exchange of migrants

8pigerstrand, op. git., p. 7?3. BRuphasis is in the original.
9¢s., A. Robinson, Elgments, pp. 169-171.
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is known not to be distributed arbitrarily but is a function of distance
from a oenter--the commune being studied. This speclial situation can again
be bquatod with an agimuthal projection. More commonly, differences {roam
one arsa to anothsr vary much more drastically, as for exampie the distri-
bution of population throughout the world.

Careful reading of Higerstrand's comments suggests that the function-
al dependence is one of decreasing migratory exchange with increasing dis-
tance from the center. This can bs recognized as a loose formulation of a
distance model, as discussed in a previous chapter (IV). In partioular,
tha suspected function of distance can be postulated to be contimuous and
& fferentiable, strictly monotone decreasing, and independent of direction.
If thess postulates are acoepted, the functional dependence can be shown
as a continuous ocurve on a graph, in this instance, a curve of negative
slope. This curve can be considered a profile along an azimuth, and the
expected inaidence of migration could be shown on a map by isolines. 7This
suggests that varisnts of the solution to Higerstrand's problem can be ap-
plied to many isoline maps. Population density, for example, is often 1il-
lustrated by isolines drawn on maps and an approach to tho population car-
tograms is suggested. Thia interpretation of 1solines is explained in
greater detail below and is distinet from that given in Chapter IV.

Higerstrand's soiution is quoted as follows:

The problea is solved by the aid of 2 map-projection in which

distance from the centre shrinks proportionally to the logarithm
of the real distance. (lhe method was suggested to the author by
Prof. Edg. Kant. Maps of a similar kind are used for the treatise
"Paris ot 1'agglomeration Parisienne™ 1552). [he rule obviously
cannot be applied to the shortest distances. r[hus the area within

a circle of one kam radius has been reduced to a dot.
The distortion in relation to the conventional map is of oourse
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considerable.l9

HX GERSTRAND'S LOGARITHMIC MAP

Lngggpm kholm

N
r%

w'“\\No

N.America

brom T Magentrond, "Migration ond Are Migration m»';—&f\.
Lunt Sudtier in Geography, Series B, No IJ 1957

Figure 6.4

[here is no real clue as to how this solution was obtalned. A pro-
jection which yields the desired result seems to have been plucked out oi
thin air. Working backwards, however, the radial scale distorticn is saen

to be /0'1 and it can ve inflerred that the method used was identical to that

10idgerstrand, gp. @i, Pe 7.
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previously given for more general distance modsls as employed in geogra-
xzohy.11 The spaco-olninition st the origin is aﬁpropriate for it excludes
the commune being studisd (whish dces not belong to the domain of migra-
tion). But is Higerstrand's solution the most valid solution to the prob-
len as formulated? The concept of primary concern is not distance, but
area. This is implicit in the statement that it is desired to be able to
count symbols on the map. The suggestion 1s that the map show the areas
near the center at large scale and those at the periphery at small scale.
Such maps would be useful in any study of a nodal region. Higerstrand's
solution achieves this objsctive, as can be verified by calculation of the
areal distortion, at least for areas near the center of the map. But so
does the orthographic projection, the square-root projection (Fig. 3.10),
and many others. The azimuthal equidistant centered on the antipodal
point also ylelds the desired solution and has been used Ifor this purpose
by Michels.12 Kagami suggests another solution when [aced with an almost
identical problem.l3

Cartograms ag Prolectlons with Areal Distortion
lo clarifly the situation it is natural to require that the areal
distoriion be exactly the same as the expected or observed distribution.
Somewhat more precisely, 4igerstrand's problem can be generalized in the
following manner. In the domain under consideration there are locatlons

llgsee Chapter IV.
1244 chels, loc. cit.

13K, Kagani, "rhe Distribution Map by the Method ol Aeroview,"
The Geographical Review of Japan, XIVI, 10 (1353), 463-438.
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from which migration to the center originates. Considering the beginning
point of each migration to be an "event," each small region (or element of
area) will ocontain a certain number, or incidence, of events. Hence, with
each proper partition of the domain there is associated a number, and the
area oontained within the boundaries of corresponding partitions on the
map is to be proportional to this number. In the case of an equal-area
projection, the mumber associated with each partition is the spherical sur-
face area. The similarity to the cartograms previously presented is now
clearer. In each instanoe a set of non-negative numbers (people, tractors,
ota.) has been associated with a set of bou. 3d regions (cities, states,
nations). The objective is to display the rogiﬁna on a diagraz in such a
manner that the areas within the boﬁndarien of the regions on the diagram
are proportional to the ocorresponding number associated with the particular
region. Harris rsoognizes the similarity of the concepts, for his cartogram
%A Farm View of the United States" is acoompanied in the original article
by a histogram of the number of tractors by states.

There seem to be two methods of attacking the details of ths trans-
formations in question; one assumes differentlability; the other is an ana-
logue of the first but employs what might be called rule of thumb procedures.
Each method has advantages and disadvantages. The differentiable casss dis-
play the similarity to equal-area map projections somewhat better, whereas
the approximation methods are simpler to use with empiricslly obtained data.

The data are somewhat difficult to manipulate when the partitions
of area are large. It, therefore, is convenisnt to reduce the values to
density form and to think in terms of a continuous distribution which can

be represented by isolines. The details of this device are well known and
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can be omitted here.}* The map area between given limits is then to be
proportional to the volume under the density surf{ace between ocorresponding
limits. The density distribution is assuned to have been described by an
equation. For equal-area projections the density of spherical suriace area
is always unity, so that correct values are alsb obtained in this special
situation. The use of density values facilitates the further objective
that common boundaries between regions should also coincide on the final
map.

[he simplest demonstration of the procedures to be used is afforded
by azimuthal projections. The area, as a function of the rradiua. of a
circle on the Buclidean plane is given by the integral Jf I r dr ds, which
reduces to7r2, This is the map area. As a simple illustration of the
general method, we can take the special ouse of a distribution of phenomena
on a plane which is symmetric about the origin. i.e., the density is taken
to be a surface o revolution z = f(§), using polar coordimtea £,Y. The
volmu under this surface is given by the integral fj:f“(() a$ ar, or
zTrfSr(f) dS. This integral is to be oquated to the area of a circle of
radius r in the map plane, i.e., ré = 2 fSr(S) as.

For a centrally symmetric density on a sphere write z = £(p) for the
density and the appropriate integral is f f ;izf(/o) sinc dp d4, or
27 [R2£(p) sinp dp, which is again to be equated to the area of a circle
in the plans. The resulting equation is r2 = 2 f R2f(p) sinp dp. If this

14c, Brooks and N. Carruthers,
Meteorology (london: H. M. Stationery Offise, 1553), pp. 1
Schmid and B. A. MacCannell, "Basic Probleas, Techniques, and Theory of
Isopleth Mapping,” Jourpal, American Statistical Assoclistion, L (1955),
220-239.
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equation can be integrated, we can solve for r as a funotion of o, obtaine
ing the radius equation for the desired aszimuthal projection. The reader
with a cartographic background will recognize the above equation as that
yielding the Lambert equal-area azimuathal projection in thie special case
in which f(p) = 1.

It has been conjectured (gupra) that these results can be obtained
by choosing the areal distortion in such a manner that it exactly matches
the expscicd or xnown density distribution. If irue, this would yield a
relatively simple method of obtaining the desired transiormations. The
areal distortion of many map projections also is already known. [he proof,
for centrally symmetric densities and azimuthal projections of category D,
is as follows.

The areal distortion (S) for this class of projections 1s known
(from Tissot) to be S = m g;:. Setting 5 = ©(p) and using the method
of separation yields R2f{o) sinp de = r dr, whence beZr(p) sinp dp = %2,
which reduces to an eauation identical to that previously obtained. This
proves the conjecture for the special case of centrally symmetric density
distributions and azimuthal projeotions of category D. Lambert's equal-
area azimuthal projeotion is usually obtained in this manner, setting
S = 1 and taking the constant of integration to be 2RZ, The prooi Jor
more general distributions z = f£{§,>) can be obtained in a similar manner

as a transformation of a surface integral. The resulting partial diileren-

tial equation to be solved is: fgd,&)ﬂz cos ¢ = [J]. The difliiculty of
an explicit solution to this equation will depend on the speciliic form of
the function f(é,A) and the additional conditions applied. As is typical

of differential equations, in general there will be an inlinitude of par-
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ticular solutions, which suggests that additional conditions be applied.
These conditions, of course, should be suggested by the applications of
the projections (iafra).

As a conorete example, the distribution of population in an urban
area can be described as a density function £({,¥) on a plane. Horwood
has suggested one such distribution in which density decreases [rom the
center but also varies from one direction to the next.l> The specific
function taken by Horwood is such that density is highest along symm;tri-
cally spaced radial strests (n in number) and less in the interstitial
areas (compare rig. 3.12), which is not unrealistic and easily described
by trigonometric functions. The population would then be given by the
integral ..U(f("” d§ d¢s To transform this to the map plane set
ffr dr d@ = [[S$£(S,%)dlds, or [(r|Jdldbds= §§82(8,%) af dr, or
r|J|= €£(%S), where J = dr 49 _d8 dr .. ), solution, not naces-

df dr déd»
sarily the most appropriate but simple, stipulate that the transformation

is to be azimuthal, i.s., that @ = r. Then g% = 0 and 3% 21, Hence,

I me equation to be solved for r is then rg% = §£(3,¥) or

r drdlg €£(6,¢)dS, whence r2 = 2 f gr(J.r) df, and the remaining details
are matters of integration and root extraction. This example could be ex-
tended to the sphere but for an urban area there is no point in such ex-
tension.

The assumption of continuity of 2 distribution is often not war-

ranted.16 The data ars often in the form of discrete locations, as on a

15E. M. Horwood, "A Three-Dimensional Calculus Model of Urban Set-
tlement," Reglonal Science Association Symposium, Stockholm, August, 1950,

10This assumes a definition of continuity, which has not been given.
The separation of methods used here can be avoided by appropriate neighbor-
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population dot map, or grouped into areal units, such as census tracts,
or refer to areal units rather than infinitesimal locations, as land values
which refer to specific parcels of land. In these cases an analytic solu-
tiop is usually not feasible and rule of thumb approximations are useful.
Even in the case of oontinuous distributions, descriptive equations are
difficult to obtain and, at present, are not :dvad.lablo for geographical
data, though theoretically possible.l? Approximation methods, hence, are
very useful. They can also be used to demonstrate some of the different
types of particular solutions available and soms of the additional condi-
tions which may be applied.

The only known description of the actual method used in the prepar-
ation of the cartograms previoualy presented is that given by Raiaz;le
the methods used by others is presumably similar. The population of the
states is taken as given, and rectangles proportional to population are
drawn on a sheet of paper, adjusting adjacent rectangles until neighbor
relations and overall shape are approximately correct. This is illustrated
in the accompanying figure. Though the example is very simplé, thore are
still an infinite number o7 solutions, but some seem more appropriate than
others (see Fig. 5.5). Preservation of the internal topology is one cone

hood definitions of continuity, and the transiormations discussed in this
section can be considered contimuous. To establish the necessary defini-
tions and apparatus would be too much of s deviation for the primary pur-

pose. See N. Rashevsky, Mﬁ_@mgu (3rd ed., Vol, II;
New York: Dover, 1950), Chapter and pp. 17-19.

17Geodesists (notably Prey) and meteorologists (Haurwitz, Petterssen,
Bryson) have employed such descriptions, and geographically useful attempts
are now being made.

18g, Raisz, "Rectangular Statistical Cartograms of the World,"
Journgl of Geggraphy, XXXV (1935), 8-10.
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SAMPLE TRANSFORMATION

B
B w
A - ¢
cC ®
/] s

Figure 6.5

dition which might be applied; preservation of the shape or the external

boundary is another, etoc.

SAMPLE TRANSFORMATIONS

]

Figure 6.6
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If we think in terms of a map of a portion of the earth's surface,
an obvious difficulty is that the foregoing exampies do nct indicate
where positions within the original areal units are to be placed within
the corresponding partitions of the transformed image. Stated in another
way, if positions in the original are described by latitude and longitude,
vhere are the images of these 1ines in the transformed image? If the par-
titions represent states, the placement of citles is rather arbitrary, etc.
Hare the differentiable cases have a distinct advantage. If a coordinate
systenr is introduced in the original, and an assumption of unilorm density
within each partition (e.g., states) is made, these difficulties can be
avolded by estimating lines of equal increments of density on the origi-
nal. These lines then correspond to an equai-area grid system on a plane
(and the converse). A similar method can be employed when the original
data are given in the form of a3 dot map. However, il a partition has no
entries, the map area should vanish, a collapsing of space. The po?ula-
tion cartogram previously presented (Fig. %.3) actually consists ol sever-
al domains, for otherwise ocean areas would be eliminated (lines of lati-
tude and/or of longitude coincide), jJust as Greenland and Antartica do
not appear on the map. Although there is some density of population in
these areas, it 1s of such a negligible nature that the concept of density
has 1ittle mesaning.

The approximation methods are no less valid than the methods used
in the differentiable cases; they could be formalized further, but are
more akin to topological transformations than those associated with car-
tography. These transformations do not teach us anything which is not

obvious from examination of the differentiable cases, however. More in-
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_ teresting, and more difficult to evaluate, are the geographic uses of maps
obtained by the foregoing types of projections or transformations. These

applications shouid &i50 suggsst the additional oconditions to be applied

ticular solutions available,
Geozrsohic Applications

Cbviously, the maps obtained can be used as were the cartograms
previously presented, {or they were derived by consideratlion of such car-
tograms. These many applications need not be repeated. rurther, any dis-
tribution plotted on a map using such a transformation shows a ratio, just
as a dot map of population on an equalearea projection ylelds a visual im-
pression o population density. Incoms symbolized on a map preserving
population distribution shows per capita income, etc.

It i3 also clear that any grid system which partitions the area or
the plane map into units of equal size will yleld a partitioning of the
basic datakinto regions containing an equal number ol elements when mapped
back to the original domain. ‘Fhis might be useful, Ior example, in parti-
tioning states into electoral districts in such a manner thst sach dis-
trict contains an equal number of voters, etc. The specific equal-area
grids on a plane are in{inite in number so that this procedure is not
really of much assistance. Faual-area grids are also di:(icul: to de: ine
along irregular boundaries, and partitionings (electoral districts, etc.)
are usually required to satisfy numerous additional conditions (coincide
with city and county boundaries, etc.).

More interesting appliceticnz can perhaps be {ound in the theories

of von Thilnen and Christaller. It is in this context that Harris and
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Hoover attempted to use their cartograms. Von Thinen assumes a unifora
fertility of agricultural land, and Christaller a uniform distribution
of rural population or incoms, though both attempt to relax these unreal-
Astic assumptions somewhat. I we postulate that agricultural fertility
varies from place to place, i.e., that fertility can be described by a
relation F = £(p,2), and then apply a transtormation of the type described,
areas of low fertility will appear compressed on the map and areas of above
average fertility will appear enlarged. We then plot an even yield (e.g.,
in bushels) per unit of map area and, using the inverse transformation,
return to the original domain. The even distribution of yields now will
be quite uneven, and in fact corresponds to the distribution of fertility.
This becomss more interesting i° we add the condition that cost-distances
from a market place appear as map distances “rom the center of the map19
and that the intensity ol use (yieldc) decreases with cost-distance. That
is, on the map transformed so that all areas appear ol equal fertilivy,
yields are to be plotted as decreasing from the center ol the map, as in
the von Thinen model. The inverse transformation will then display a dis-
tribution of intensity of use which takes into account fertility and cost-
distance {rom the market place.20

Just as the von Thinen model can be applied to citles, the fore-

going discussion can be rephrased using "suitability-for-construction®

195ee note 7, chapter 7. Isolines o. distance :rom one point, iI
known, conld certainly be drawn on the map when an analytic solution is
possible.

20 The measurement of agricultural fertility is by no means easy.
Dunn (op, cii., pp. 57-53) doubts that such measurement can be achieved;
but the U. 5. Depariment o Agriculture publishes detailed maps contain-
ing a ranked classi’ication of rural land based on i's economic value,
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instead of fertility. Many urban areas are alresady built up and construce
tlon is no longer feasible; other areas are blighted and have but little
appeal; some locations have high prestige value; site and topographic fac-
tors vary, and so on. Undoubtedly, measursement of these values is diffi-
cult. 2 Nevertheless, the transformation and its inverse can te used as
before. Such a tranaformation takes into account only two factors and is,
hence, only of somewhat limited assistance in explaining the totality of
urban land uses. The currently available models of urban structure are
not outstandingly more successful, however .22

Christaller in his -..rk on location theory assumes a uniform distri-
bution of the underlying rural population and then obtains hexagonal ser-
vice areas and a hierarchy of cities regularly spaced throughout the land-
scape. We have shown how a distribution may be made to appear uniformly
distributed, and the pertinent question is whether Christaller's resulting
pattern will now be observed. This would not appear to be the case, for
several reasons. rThere is no guarantee that hexagons will be preserved
in the transformation, as would be required. It is also not clear how such
a condition might be added as a requirem;;t to choose'a particular trans-
formation from the infinite set. Christaller obtains hexagons from con-
sideration of circular service areas, and it is known that the stereogra-
phic projection sends circles into circles. The stereographic projection,

however, will ocertainly not result {rom the density preserving transrorma-

21Requ1renenta for different classes of land use differ and some
measure of intensity of use seems required. Land oosts (e.g., in dollars)
are blased, as they already reflect accessibllity and an estimate of
potential returns.,

2239e note 3, Chapter I.
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tion in the general case. Conformal projections preserve circles as
circles but only locally and would require satisfying both conditions
of oonformality and a specific areal distortion.2J For relatively small
service areas confornnl transformations may be suitable. Christaller is
also concerned with distances; his circuler service ar;aa are more akin
to geodesic circles using a subjectively~-valued time-cost distance, and
his spacing of cities stipulates some distance between cities. Yet dis-
tances are not preserved by the transformations; preservation of all dis-
tances is certainly not possible if densities also are to be preserved
on a plane map. We might, however, draw hexagons on a uniform density
map, and using the inverse transformation examine the resulting pattern
of ocurvilinear polygons on the original domain. Some such procedure is
implied by Isard's diagrams of hypothetical landscapes.ZY

We can conclude that the attempt to spnly Lhe transformations sug-
gested in this chapter to theories similar to those of von Thunen and -
Christaller is difficult and only partially successful, though promising
and capable oi improvement. The deficiencies are to a certain extent due
to the inadequacies of the theories themselves, for, at present, they are
not sufficlently general nor explicitly formulated.

As map projections, the transformations used in this chapter do
not oonform to the traditional geographic emphasis on the preservation

of spherical surface area. Maps prepared using these transiormations,

23Laborde's surface indicatrice may be of assistance in finding such
projections (Driencourt and Laborde, oo, cit., Vol. 4, p. 33, et seq.
Also, see note 7, lhapter V.,

2“'Iesard, Location and Space Econowmy, Chapter XI, rfigures 52, 53,

and 54.
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however, from many points of view are more realistic than the conven-

tional maps used by geographers.



CHAPTER VII

OVERVIEW AND SUMMARY

It is now necessary to take stook and to review briefly what has
been acoomplished. A basic notion is that the measuring rod of the geod-
eslst or surveyor is less relevant to social behavior in a spatial con-
text than 1s a scaling of distanoces in temporal or monetary units. Hence,
it i1s necessary to take into acocount not only the shape of the earth, but
ai30 the realities of transportation on this surface. Automobiles, trains,
alrplanss, and other media of transport can be considered to have the ef-
fect of modifying distances--measured in temporal or monetary units--in a
complicated manmner. Different distance relations, however, can be inter-
preted as different types of geometry. A geographically natural approach
is to attempt to map this geometry to a plane, in a manner similar to the
preparation of maps of the terrestrial sphere. The geometry with which
we must deal is rarely Buclidean, and it is, in general, not possible to
obtain completely isometric transformations. However, maps preserving
distance from one point are easily achieved, whatever the units of measure-
ment, and these have been discussed in some detail. The maps at first may
appear strange, but this is only because we have & strong blas towards
more traditlional diagrams of ouwr surroundings and ve tend to regard con-
ventional maps as belng realistic or correct.

The geographer'!s most distinctive tool has long been the map, and

the subject at hand has been approached from the point of view cf map pro-
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Jections. For the present purpose, however, the cartographic literature
on map projections, especially in English, is somewhat obsolete and defi-
cient in generality. It has here been modified slightly to correspond
somewhat more closely with the modern notion of transformations.l The
parametric classification employed in the second chapter cannot be con-
sidered more than an ad hog device which allows a very rapid overview, as
it depends too strongly on the particular types of coordinates employed;
the interest is ocertainly not in coordinates. This classification also
ignores the important notion of invariance of properties. Similarly, though
the transformations presented can be considered.to be distortions of dis-
tance or area, this misses the point, rfor what is really important is that
certain properties (time-distance, density, etc.) have been preserved.
The graphic methods employed for projections uili perhaps be uselful in
teaching. These methods are not used extensively in the cartographic lit-
erature, but are otherwise not uncommon. Their use is, ol course, not
necessary. he difliculties ol analytic solutions, which are very real
but have not been emphasized, also suggest the use of graphic techniques.
The requirement that time- or cost--distances be diagrammatically
represented on a plane sheet is a handicap, for it allows preservation of
distances {rom only select pointsf An attempt could have been made to rep-
resent transéort cost relations between all locations mathematically, alter
the manner o dirferentiai geometry. [his has not been attempted--though

a local metric and curvature might be deduced {rom the isolines, at least

lrhis could be considerably improved. Map projections might better
be treated by outlining the modern subject o. transormations, then con=-
sidering the special case in which the terrestrial sur{ace is the referent
object.
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in the differentiable cases--for it 1s a highly complex geometry. The
rather simple methods used here and the partial approach of considering
transport distances from only one point and neglecting long run (temporal)
changes in rates, however, have yielded geographically interesting results,
for there are many instances in which relations to (or from) only one cen~
tral location Enoed be considered. This can also be regarded as a prelimi-
nary to a more detailed study.

The actual transport structures and characteristiocs are quite com-
plicated, and are so for even more oomplicated reasons, which we have made
no attempt to discuss. Transrier costs represent only a portion of the
many factors in location theory, and they have perhaps been overemphasized.
Minimization of transport costs may oertainly present a case of sub-optimj-
gation. We have not attempted to explain traffic {lows, nor to optimize
the routing of shipments. Normative opinions and matters relating to desir-
able transportation policies also have been avoided.? Nevertheless, it
seens appropriate to consider substitution between all feasible transport
media, rather than to study one medium--say roads or railroads--in isola-
tion, and to consider the total trip, not only that portion using a par-
ticular mediunm.

The possible ocombinations of media and routes between two terres-
trial locations are usually infinlte in number, and the most obvious pro-
cadure is to allow only those combinations which minimize some disutility
or maximize some utility. The large majority of studies make such assump-

tions. This seems to lead immediately to methods o classical physiocs--

23ee E. .. Penrose, "The Place of Iransport in Economics and Poli-

tical Geography," Irangport and Communications Review, United Natlons,
7, 2 (June, 1552), 1-8.
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going back as far as FermatJ--which has certain advantages but also disad-
vantages. The advantage, of course, is that we can use resulits which have
accumulated over many years. ihe disadvantage is that oxtrems caution is
required to avoid the implicit introduction of postulates which belong to
physics and not to the subject at hand.“ It can be argued that competition,
social or economic, tends to require a minimization of costs, but this is
really a matter to be pnstulated and then tested empiricslly. I[hat travel
takes place along a cost-distancs geodesic assumes at least that all transe
port costs are known correctly, that geodesics have been round, that action
is taken in a~~ordance with the objective of ni;inizing costs, and that the
user cannot affect the level of transport costs. Any discussion ol this
subject can become quite invelved; we need only mention that oonsiderations
other than transport costs are oiten relevant, that perhaps geodesics are
estimated only up to certain marginal levels, or that costs are subjectively
evaluated.’ Such rationalizations often seem designed simply to thwart any

attempts at empirical evaluation. More reasonable postulates, perhaps

3Ca. 16571662, See J. Bernoulli, "On the Brachistochrone Problea,®
A So%[ce %ﬁ -m HMathematigs, “ol. II, ed. D. B. Smith (New York: Dover,
1959), pp. 55« Bernoulli's synchrone and Huygens' wave front corres-
pond to our isolines. rurther references are given in W. Warntz, "[rans-

atlantic rlights and Pressure Patterns,” [he Geographjcal Review, LI, 2
(April, 1961), 187-212.

’ﬂ"qr similar comments by economists, see . Beckmann, C. McGuire,
and C. Winsten, Studieg in the Economjcs of Irgnsportaticn (New Haven:
Yale University, 1759/,

5Compare Christaller's subjectively-/alued time-cost distanoces,

Zipf's principle of least effort (G. 7. Zpf, W—
ciple of Least B{iort; Cambridge: Addison-wesley, 154)), or the thesis of

cognitive behaviorism--and, for comments, A. Rapaport, "The Stochastic
and Teleological Rationales of Certain Distributions and the so-called
Principle of least Effort," Behavioral Science, I1I, 2 (April, 1957),
1"*?‘161-



148

stochastic, seenm requirad.

The foregoing considerations are necessary because the validity of
any application of the transformations suggested here is dependent on the
validity of the underlying hypotheses. This is true whether distance or
area are the concepts involved. The pair of equations, per se, interpreted
as “ransformations, are devoid of any particular connotations. On the
other hand, the application of transformations to geographic purposes has
hardly been exhausted. Imaginative reading of D'Arcy W. Thompson's
On _Growth and Ferm, for example, suggests many an approach to dynamic geo-
graphic phenomena.through ths use of transformations.6 Many extensions and
simplifications of the notion of a transformation have occurred during thu
previous 100 years. The majority of these materials have been ignored by
the geographic-cartographic literature. ror exampie, -he many conformal
transformations of a plane that are availabie can all be applied to obtain
conformal maps of the surrace of the earth by rirst using the stereographic
(or other conformal) projection. The validity of the geographic uses of
the transiormations will depend on the accuracy of the underlying hypotheses,
just as the validity ol a map depends, in part, on the terrestrial model em-
ployed, whether this is a sphere, an ellipsoid ol revolution, a tri-axial
ellipsoid, etc. Many concepts in location theory (and geography in general)
are today but loosely ‘ormulated; the concept of accessibility, for example.

fo map theories ‘rom a time-cost space to the suriace ol the earth is even

"D, #. [hompson, On Growth and rorm (New York: MacMillan, 1948),
especially Chapter XVII {*On the Theory o:i iransiormations"). e point
of view is that growth and evolution are but transf{ormations oi related
forms. Also, N. Rashevsky, locs ¢it. T he employment of isolines of any
type can be interpreted as the introduction of new coordinates on a sphere
(or plane) and may suggest a transiormation.
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more difficult under these circumstances. A major objective of this study

will have been accomplished if some of these problems have been brought
into sharper focus.
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