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Abstract

Automatic Target Recognition Using Location Uncertainty
by Gang Liu

Chair of Supervisory Committee:

Professor Robert M. Haralick
Department of Electrical Engineering

In this dissertation, we present a framework for using location uncertainty information
in computer vision applications. This framework is applied to the military automatic
target detection and recognition application. We take a model-based approach to
accumulating weak but consistent target evidence. Reliable target detection and
recognition is achieved by making use of the location uncertainty information not
being utilized by existing algorithms. The development of the location uncertainty
measure consists of three major pieces: the relative importance of boundary points
as determined by the geometric relationship between the location uncertainty of the
centroid and boundary points, the relationship between the signal-to-noise ratio and
the location uncertainty at the boundary points, and the optimal estimation of the
image gradient at the boundary points. With sound mathematical models, the study
of these sub-problems yield meaningful results useful not only in this framework, but
in many other general problems as well.

The results of our experiments with real and simulated image data show that
the centroid location uncertainty feature computed by the proposed framework is

very effective in target detection and recognition. As a powerful addition to existing



automatic target recognition algorithm modules, it has been successfully combined
with the traditional matched filter to give further improved target detection and
recognition performance.

Performance evaluation is always an important part in any new algorithm devel-
opment. For characterizing the detection and recognition performance of computer
vision algorithms, a new methodology is developed to overcome some problems with
existing methods. An optimal matching problem is formulated to describe the situa-
tion. It is then transformed into an unconstrained assignment problem which enjoys
an efficient solution technique: the Hungarian algorithm. This results in a one-to-one
correspondence between ground-truth and declared entities and yields more precise

performance measures.
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Chapter 1

INTRODUCTION

1.1 Computer vision research

One of the major objectives of the engineering disciplines is to find new ways of doing
things more efficiently. All forms of automation have been among the direct driving
forces behind the advancement of human productivity. The digital computer has
played a crucial role in the implementation of these automation systems. In order to
function well, these systems need sensor subsystems to gather relevant information
about the processes which are being automated.

For many automation systems, the overall performance depends vitally on the
performance of the sensor subsystems. A few examples of such systems would be
various medical image analysis systems, industrial production assembly and inspection
systems, satellite image analysis systems in remote sensing, and automatic target
detection and recognition systems in the defense industry. These systems all share one
common feature, which is that their sensor subsystems all try to extract information
from some input data captured by some kind of camera. Such data is very similar to
the image formed on the retina of the human eye when that human is looking at some
scene. The desired function of the sensor subsystems is to mimic the capability of
the human vision system, i.e., to understand the content of the scene as represented
by the input imagery, or to make certain measurements and/or judgments on it. For
this reason, such sensor subsystems are often referred to as computer vision or image

analysis/understanding systems.



Although it appears to be easy for the human vision system to do such an excel-
lent job in understanding a scene, it has been an extremely difficult task to develop
computer vision systems whose performance can approach that of the human vision
system. There are many reasons for this difficulty. Some are due more or less to
the deep understanding we lack of the human vision system. Answers to many basic
questions are still being actively sought. A few of these questions are: What are the
measurements to make on the imagery that are most relevant to its understanding?
How to utilize partial information to infer information that is not readily available
from the imagery? What is the proper way to iterate the processes of collecting local
evidence and inferring global configuration, and let them benefit from each other?
Besides the difficulties in finding the answers to such questions, the computing power
of today’s most advanced digital computer is still no match of that of the human
brain.

This dissertation presents a theory that attempts to answer some of the basic
questions found in computer vision research. Specifically, we propose the use of a
location uncertainty measure for model-based detection and recognition applications.
The location uncertainty measure carries a source of information that has not been
utilized by existing vision systems. Experiments confirmed the usefulness of such
information. The theory is presented in the context of military automatic target
recognition applications. However, the theory itself is general and can be applied to
other applications, such as the medical image analysis applications and the industrial

inspection applications.

1.2 The FLIR ATR application

Automatic target recognition (ATR) is a very important application of the computer
vision/image understanding research in the defense industry. It concerns the develop-

ment of automatic procedures that can detect and recognize targets of interest from



some sensory input without human intervention. Among others, the forward-looking
infrared (FLIR) is an important modality commonly used in ATR applications. Other
commonly used modalities include visible light (TV), laser radar (LADAR), and syn-
thetic aperture radar (SAR) [125, 11, 13]. Due to its low cost, passive work mode,
high angular resolution, day/night operation capability, and long atmospheric range
(10 ~ 15 km), FLIR is widely used in ATR. applications. It is often used for ground
vehicle and airborne target detection and recognition. Response of the 812 micron
FLIR sensor to these targets is generally distinct from the response of the sensor to
the natural background [76, 11].

Due to the nature of the ATR application, the sensory images are usually taken
in uncontrolled environments where the conditions of the image forming process may
vary greatly. Images may be taken of outdoor scenes with any variety of targets on
complicated terrain with significant amounts of clutter, under all kinds of weather
conditions, in all seasons and under various lighting conditions, with occlusion and
camouflage of the targets. This has made ATR a distinctive application where the
input image is characterized by extremely high variability in content and quality. For
the same reason, ATR has been one of the most difficult areas in computer vision
research.

With the advancement of the imaging technology, the FLIR sensor has evolved
from the first generation to the third generation. Earlier ATR algorithms through
the mid-1980’s consider the data from the first generation FLIR sensor, where lower
spatial resolution make targets appear as bright blobs in the image. Contrast-based
algorithms are used for detecting such blobs and segmenting them from the rest of
the image. Features on the geometric shape and on the gray scale values of these
segmented regions are extracted and used by statistical pattern recognition methods
for recognition of the targets. Aside from the low quality of the image, the lower
signal-to-noise ratio and reduced number of pixels on the target regions make the

FLIR ATR task extremely difficult. The proposed algorithms, many with ad hoc



(a) the original image (b) with target boundary outlined

Figure 1.1: Example of a second generation FLIR image of a ground vehicle.

selection of features on the segmented regions, did not yield acceptable performance
[125].

The second generation FLIR sensor renders much better images with higher res-
olution, higher signal-to-noise ratio, and better stability. Figure 1.1 shows such an
image from the DARPA URI data set. The better image quality, especially the in-
creased number of pixels on targets, reveals more structure of the target appearance
in the image, and allows the design of knowledge-based and model-based algorithms.
The situation is further improved by the dramatically improved computing power
which supports sophisticated algorithms.

It should be noted that it is mainly the change in the basic approach in the
algorithm design, instead of just the improvement in the image quality, that caused
enhanced performance [125]. Further improvement in algorithm performance should
not be expected to come mainly from further improved image quality. In fact, the
second generation FLIR sensor has approached the optical limits of sensor resolution,

and further improvement in the sensor quality by itself is not likely to greatly improve



the ATR performance [125]. Besides the use of multi-sensor data fusion, the theory
of which is yet to be developed, model-based approaches to the ATR problem are the

most promising in developing high performance systems.

1.2.1 Difficulties

Most difficulties in the FLIR ATR problem come from the extremely high variabil-
ity in the scene content and appearance. Because of this, targets of interest take on
very differeni; appearance in different situations. Their inconsistent appearance makes
charactering targets in the imagery very difficult. The problem is made more compli-
cated by the presence of clutter that resemble targets, and by the low signal-to-noise
ratio of the imagery. This is beyond the capacity of traditional 3D object recognition
based approaches, which depend heavily on fairly good low-level feature extraction
results.

The ability of low-level feature extraction algorithms is restricted by their limited
information input from the local image neighborhood. High-level information can be
very useful in exceeding this limitation. This is typically done in the model-based
approaches. Either the target models are directly used in the low-level information
extraction modules, or hard decisions about the information content in the imagery
are avoided on low-level measurements until they are combined, via the use of target
models, into medium- or high-level evidence. In doing this, weak but consistent
evidence in low quality imagery can be reliably recovered.

In this dissertation, we take the model-based approach to the FLIR ATR problem.
We make improvement both in the low-level feature extraction process and in the

accumulation of low-level evidence.

1.2.2 Target models for FLIR ATR

'To recognize targets of interest, features that are invariant to contrast, rotation, scale

and all kinds of imaging conditions have to be identified. Targets of interest are then



modeled by these features. A universal model good enough for the detection and
recognition task for all conditions, even for a single target, has proved impractical.
Conditions of specific applications have to be considered, and assumptions made, in
order for a model to be useful enough for the ATR application.

Different assumptions on the conditions lead to dramatically different models for
the target models. In some applications [79, 31, 49], the thermal conditions of the
target and the surrounding area change so much from scene to scene that virtually
no assumption can be reliably made on the appearance of the structure inside the
target boundary. In this case, only the 2D geometric shape of the target silhouette
can be used for target detection and recognition. The underlying assumption is that
there are some differences in some properties between the areas inside and outside the
boundary of the target silhouette. These differences give the rise to the possibility of
using the target silhouette for detection and recognition.

This dissertation is also concerned with this type of most adverse application
conditions where only few assumptions on the image forming process can be reliably
made. Only reliabie information obtained with the help of these reliable assumptions,
although small in amount, is used. Other sources of information are ignored due
to their unreliability. The silhouettes of the targets in the 2D images are used to
model the targets, which are used in the accumulation of weak but consistent contrast
evidence along the target boundary.

In some other applications where the appearance of the targets from scene to
scene is fairly consistent, features of the regions inside the target area may be used in
the region-based models. One way this can be accomplished is to use mathematical
transforms, e.g., the wavelet transform [158], to detect feature points. These feature
points form the invariant features to model the targets. Here more assumptions are
made than in the modeling using only the boundary. When the assumptions are
satisfied by the application, knowing that they are true gives ATR algorithms some

highly desired capabilities such as handling targets with different aspects and scales.



However, when a significant portion of the assumptions do not hold true, algorithms
based on the model will fail miserably.

3D CAD models for targets in the ATR application have also been used [31,
147]. Simulation of the image forming process, in conjunction with computer graphics
technique, can be used to predict the presence of features and help in their detection.
These models are used in the most benign situations where the image forming process
is more predictable.

Since the usefulness of multi-sensor data fusion has been demonstrated in ATR
applications, efforts have been made at modeling targets using their signatures from
more than one sensor [2, 31, 147]. With proper architecture, the information gained
from one modality can be used to help infer information from other modalities. Active

research is being undertaken to gain a deeper understanding of this topic.

1.3 Overview of previous work

As in many other areas of the computer vision / image understanding research, there
is a very large number of published works in the ATR applications area. For new
ATR algorithm development, the works can be roughly divided into two categories,
i.e., the traditional approach and the newer model-based approach. In this section, we
give a brief review of these approaches and related issues. A more detailed literature

review is given in Chapter 2.

1.3.1 Traditional approach

The traditional algorithms for the ATR problem can largely be summarized by a
four-stage procedure consisting of detection, segmentation, feature extraction, and
classification. The detection stage delineates certain areas of the input image to
constitute the regions of interest (ROI), which potentially contain some targets. Sig-

nificant contrast is assumed to exist between targets and their immediate background



regions. Algorithms for finding high contrast such as the double-window operator are
carried out to find blob-like regions comparable to the targets of interest [11, 138, 120].
These detected areas are then segmented into target regions and background regions.
Simple thresholding, spoke filter [31], edge-based, region growing [81], and relaxation-
based algorithms [42, 12] have been used for this task. The segmented target regions
are then treated in the feature extraction stage and are represented by the extracted
feature vectors. The extracted features mainly describe the 2D geometric shape of the
segmented region, which include the moment invariants [64, 35], the Fourier descrip-
tor [118] of the boundary, and some other methods describing the shape [47, 152, 139].
Some kind of classifier is finally used to determine the class of the feature vectors and
give the final recognition result.

The traditional approach is actually very ambitious in trying to build an almost
universal ATR system. It places very few restrictions on the application and does not
need to know much about the target geometry until the late stage of classification. The
difference between targets of interest is only reflected by the different representative
feature vectors in the high dimensional feature space. The entire procedure is almost
universal for many different kinds of targets.

It would be great if this approach would work well. However, due to the poor
quality of the input imagery, the earlier stages of detection and segmentation often fail
to produce a satisfactory result. Failures come in the form of misdetections and false
alarms, often because only parts of the targets get segmented, or because background
clutter gets segmented as part of the targets. These incorrectly segmented regions

will in most cases cause errors in the final detection and recognition performance.

1.5.2 Model-based approach

Aware of these pitfalls, researchers have come to realize that the great complexity
in the scene content and the extremely high level of variability in the image forming

process require a more application-specific approach to the ATR problem. This ap-



proach needs to give a more detailed characterization of the target, background, and
clutter. In other words, modeling of the target, background, and clutter has become
the most fundamental issue to address. Having appropriate models in the early stages
of processing can be of significant help in the information recovery process.

However, it has proved to be a difficult task to find a systematic and effective way
for building precise mathematical models for the target, background, and clutter.
Since almost all targets of interest are man-made objects, their modeling is relatively
easier. The 3D geometry and the properties of the material are among the most
important known factors affecting their appearance in the imagery. Hence, they
are most commonly used in target modeling. Depending on the different levels of
stability of target appearance in different applications, models of different complexity
have been proposed [79, 158, 147, 155]. The use of these models in ATR systems
has resulted in improved target detection and recognition performance, albeit at the
cost of more computation and sometimes certain restrictions on the application, e.g.,
limited number of known target classes [155].

Correlation-based techniques are among the first model-based techniques. These
algorithms assume that some features, which are invariant to scale, target pose, light-
ing, and certain other conditions, of the target can be reliably extracted from the
2D appearance. These features, most often the coefficients from some mathematical
transform of the pixel intensity values [154, 106, 158, 40, 9], are used to model the
targets. This approach to modeling the target is one of the first proposed for ATR,
and is still being used in many algorithms and applications, such as the Gabor grid
model used in [158], where the Gabor wavelet transform is used to extract feature
points to model the target.

The requirement on the invariance in target appearance can be loosened in certain
situations where it is possible to predict target appearance with relative reliability.
These situations are more or less characterized by simple scene content and benign

imaging conditions. Complex models using the 3D CAD model of the target and the
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heat emission and reflection properties of the material have been used [147]. At the
other end of the spectrum, where the 2D appearance of the target within its boundary
is highly unpredictable, the aspect of the targets are assumed to be known, and the
silhouette of the target is used as the model [79, 32, 49].

1.3.8 Input image and clutter characterization

Characterizing the input image for its information content and complexity is of fun-
damental importance in ATR research [125, 11, 26]. The busyness [157], the average
variance [140], the probability of an edge (POE) metric [135, 20], texture [143], frac-
tal processes and Markov random fields [135], transform based features [132], and
information-theoretic measures have been proposed to characterize the overall infor-
mation content as well as the clutter level of the input image. The insight they
provide into this issue has been limited. To our best knowledge, there has been no
significant reports of their successful use in guiding the design of ATR algorithms.
Even after more than a decade of research, the term clutter still lacks a precise def-
inition. The vague expression of “non-target objects looking like targets of interest”
is commonly used and reluctantly accepted in the literature. Due to the dependence
of the “definition” of clutter on the targets, it is believed that a meaningful definition
and measurement of clutter is an application-specific issue and is closely related to

the modeling of the targets of interest [140, 26, 135].

1.8.4 Neural networks in ATR

As in all other fields of signal processing and pattern recognition applications, neural
networks have received a significant amount of attention in ATR algorithm develop-
ment. Promising results have been reported in the literature. Roth [134] and Rogers
[131] give surveys of the research efforts in this area. This is still a very active area
of research. A few examples of recent publications in this area are Ernisse et al [39],

Rong and Bhanu [132], and Gader et al [44].
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One of the most important advantages of the neural networks is that very powerful
classifiers can be built from some universal, simple structures. Through a carefully
designed training process, neural networks can be made to learn very complicated data
that is difficult to model using traditional approaches. However, the disadvantage of
the neural networks is also associated with the training process. Due to the lack of
deep understanding, the design of a successful training procedure is more or less an
art that requires very much experience as well as trial-and-error.

In almost all of the efforts, neural networks are mainly used as non-linear classi-
fiers, or as tools for non-parametric modeling of data. For this reason, at an abstract
level neural networks in ATR algorithms can largely be considered as a way of imple-

mentation, rather than an entirely different approach to the problem.

1.3.5 Multi-sensor data fusion in ATR

Multi-sensor data fusion [2, 109, 11, 147, 31] is about getting the sensory inputs from
independent sensors for the same scene and letting them complement each other in
the information recovery process. The commonly used sensory modalities for fusion
in the ATR applications include FLIR, TV, LADAR, SAR, and MMW radar. In
addition to the data from imaging sensors, various kinds of auxiliary information,
such as the time of the day, weather conditions, and geographical location, are also
subject to fusion.

Currently, the theory of multi-sensor data fusion is still very much under-developed.
Its usefulness in improving ATR algorithm performance mainly comes from the intu-
ition that “it should work better” and from the observed performance improvement
of implemented systems on test data. Further study into this area is needed before
a theory is established which can indicate how to optimally perform the fusion, and

can predict the amount of performance improvement due to the use of fusion.
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1.8.6 Performance characterization in ATR

Performance characterization of ATR algorithms addresses the issues of predicting the
performance of the algorithms on specified data, and also of comparing the perfor-
mance of different algorithms. There are mainly two approaches to computer vision
algorithm performance characterization: the theoretical approach and the empirical
approach.

In the theoretical approach, Haralick [55, 56] suggests studying the effect of imper-
fection and perturbation of the ideal input on the output of the algorithm. Analytical
error propagation [160, 57] through the computer vision algorithm modules is the
main tool used in this approach. Although a number of standard algorithm modules
have been studied [123, 122], the performance evaluation of a general computer vision
algorithm sequence in real imagery is still not practical.

In the empirical approach, judgments are made on the quality of the algorithm
output. Objective and quantitative judgments are preferred over subjective and qual-
itative judgments whenever possible. The objective performance measures are mostly
obtained by comparing the algorithm output with the ground-truth or reference in-
formation for the data on which the algorithm is applied. This approach brings up
the need for large data sets replete with ground-truth. However, such data sets are
often extremely expensive to prepare. As a compromise, simulated data sets are often

used in studies.

1.4 Motivations for this study

From earlier discussion of FLIR ATR application, we see that the extremely high
complexity of the scene content and the image forming process result in highly variable
target appearance in very iow quality imagery. Various research results [79, 49, 50, 32,
31, 30] suggest that the most reliable visual cue for the targets in this kind of imagery

is the existence of some contrast between the inside and outside of the silhouettes of
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the targets. This is reliable because of the difference in the materials, hence physical
properties, between the targets and the natural background. Although the actual
appearance of these materials in the FLIR imagery may vary greatly in different
imaging conditions, noticeable difference should exist between them.

In this situation, a robust FLIR ATR algorithm should try to infer target existence
by accumulating the evidence of contrast along the target boundary. This introduces
three immediate problems to be solved. The first problem is that targets are 3D
objects and will have many distinctly different 2D silhouettes due to its relative pose
to che imaging sensor. Practically, although the number of silhouettes of interest is
finite, the amount of computation for processing all silhouettes can be very heavy
even for one target. Some decision tree type algorithm [79] can be used to reduce the
amount of computation by considering only a subset of silhouettes at each level. The
computational load then seems to be acceptable to the US military research labs [79].

There are two other problems in designing boundary contrast based FLIR ATR
algorithms. How will the contrast along the boundary be combined into a single evi-
dence measure for the target’s existence, and how will the contrast at each boundary
point be estimated and represented to facilitate the evidence accumulation? To an-
swer these two questions, we study the polygon centroid location uncertainty, image
intensity gradient estimation, and edgel location uncertainty.

An important issue in computer vision algorithm development is how to charac-
terize algorithm performance [34, 54, 53, 122, 22, 110, 161, 136, 76, 73, 144]. We use
quantitative objective measures that result from comparing algorithm output with
the ground-truth. Data sets with ground-truth are needed in this process. Further-
more, to investigate the algorithm behavior for different levels of scene complexity
and image quality, multiple sets of such data with ground-truth are required. The
cost is prohibitive in creating such data sets from real imagery. As a result, the use
of simulated or synthetic data is necessary (162, 31, 117, 111, 27, 159, 82]. We also

create simulated scenes in our experiments.
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In computing the performance measures, some correspondence between the ground-
truth and the targets declared by the algorithm need to be established. The estab-
lishment of such correspondence is not a trivial problem. We introduce a general

methodology to solve this problem.

1.4.1 Motiwation for studying polygon centroid location uncertainty

Intuitively, some form of weighted average seems to be appropriate for the combination
of boundary contrast into a single target evidence measure. The higher the contrast
along the boundary, the more likely the target is present. The reason for a weighted
average as opposed to a simple average, such as the arithmetic or geometric average,
is that generally not all boundary points are equally informative for the existence of
the target. Also, when only a subset of the boundary points is used to represent the
target, different subsets of the same number of boundary points carry different amount
of evidence for discriminating this target from other types of targets and from the
background clutter. This is because the contribution of the boundary points to the
detection of the target significantly depend on each other. The relative importance of
a particular boundary point should be decided by the 2D shape of the entire target
boundary.

We need to find a way of assigning relative importance for target boundary points
that both “makes sense” and is mathematically sound. In doing this, we need a
geometric relationship that relates some overall property of the entire target boundary
to the some property at individual locations along the target boundary. The only
geometric properties that a point on the target boundary possesses are its location
and the uncertainty of that location due to some perturbation. Two kinds of closely
related and highly useful relationships exist between the overall target boundary and
the individual points on that boundary: one for the boundary locations and the other
for the uncertainty of the boundary locations. Both the boundary locations and the

uncertainty in the boundary locations will be of direct use to us.
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It is an accepted principle in signal and image processing that prominent features
for any detection problem should both have high signal-to-noise ratio (SNR) and be
well localized in its domain. This is also true for the target boundary points. The
boundary points of high-contrast targets in the FLIR imagery can be localized with
high precision, while high uncertainty of the boundary point location estimates results
from low-contrast points which weaken the evidence of the target’s presence.

When the locations of the computed boundary points can be determined with an
associated uncertainty, a good measure of the overall uncertainty of a hypothesized
target is the location uncertainty of the centroid of the target. When the majority of
boundary points have high location uncertainty due to their low contrast, the centroid
uncertainty is also high, indicating low evidence for the target’s presence. On the
other hand, when the contrast at many boundary points increases significantly, the
decrease in the location uncertainty at these places would normally cause the location
uncertainty of the centroid to decrease noticeably, showing stronger evidence for the
target’s presence. Therefore, using the uncertainty of the centroid is a good way of
combining the boundary information into a single evidence measure of the target’s
presence.

We use polygons to model target shapes, where the polygon vertices are specified
by the target boundary points. The centroid location is a function of the vertex
locations. In Chapter 3, we derive the formulae for computing the centroid location

uncertainty measure as a function of the vertex location uncertainty.

1.4.2 Motivation for studying gradient estimation and edgel location

The location uncertainty of the boundary points can be used to compute the centroid
uncertainty as the evidence measure of the target’s presence. However, the location
uncertainty of the boundary points cannot be measured directly, but is closely related
to the contrast and noise level. The local contrast is the difference in the intensity

value between the inside and outside of the target across a local segment of the



16

target boundary. In order to use boundary point location uncertainty, the relationship
between the signal-to-noise ratio (SNR) — defined as the ratio of contrast divided by
the standard deviation of the noise — and boundary point location uncertainty needs
to be worked out.

The quality of the contrast estimation has a very significant effect on the overall
ATR algorithm performance. Since contrast and gradient estimates are very closely
related and since there have been extensive studies on gradient estimation in the lit-
erature, we will make use of some of their results to compute high-quality contrast
estimates. This is made possible by using a step edge pattern to model the intensity
change across the local segment of the target. By any chosen gradient estimation
scheme, there is a one-to-one relationship between the contrast and the image gradi-
ent.

We need a gradient operator that has low bias and high output SNR. There
are numerous gradient operators, e.g., the Sobel and Prewitt operators [60, 67], the
integrated directional derivative operator [163, 60], and the derivative of Gaussian
operator [19]. The performance of these operators differs quite noticeably under
different situations. There have been many studies [96, 163, 98, 28, 45] that try to
characterize the performance of such operators. These studies include both analytical
efforts and empirical comparisons of operators. However, they fail to give a precise
explanation of why some operators perform better than others.

In Chapter 4, we describe a general framework for studying a broad class of gra-
dient operators. A decisive factor in the quality of gradient estimation is identified,
which offers a precise explanation of why certain gradient operators perform better
than others. Based on this result, the tuning parameters for gradient operators can
be optimally chosen. As an example, the optimal integration domain size is found
for the integrated directional derivative operator. The resulting operator is used for
gradient and contrast estimation in this dissertation.

To relate the SNR with the location uncertainty of the boundary points, we fol-



low the widely accepted practice of defining the edgel location as the zero-crossing of
the second directional derivative in the direction of the gradient. Unlike in the edge
detection applications, where only the negatively sloped zero-crossings are of interest,
the sign of the slope is considered unimportant for contrast evidence accumulation
via the location uncertainty. What is important are the intrinsic errors, due to the
noise in the image, in the zero-crossing location estimate and in the gradient orien-
tation estimate. These errors contribute to the uncertainty of the edgel location. In

Chapter 5 we derive precisely how this uncertainty is influenced by the SNR.

1.4.3 Motivation for studying the constrained matching problem

In performance characterization of ATR algorithms, the numbers of detected targets,
correctly recognized targets, misdetected targets and false alarm declarations need to
be computed by comparing the algorithm output against the ground-truth. There
is not yet a widely accepted way of doing this comparison. An accurate, consistent,
and intuitive way of doing it is needed to give accurate and consistent performance
characterization that closely follows the intuition.

In Chapter 6 we introduce a constrained matching problem to model the process of
establishing correspondence between ground-truth and declared targets. The solution
to the problem provides a natural maximal one-to-one correspondence. This enables

a very reasonable and consistent performance evaluation of ATR algorithms.

1.5 Summary of major contributions

This dissertation contains original work in image gradient estimation, uncertainty in
edgel location, model-based FLIR ATR. algorithm, and correspondence problem in
detection and recognition algorithm performance evaluation.

In particular, this dissertation contains

e the development of a general methodology for characterizing the performance
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of gradient operators. This methodology provides a precise explanation of why
some operators are superior than others. As an application of the methodol-
ogy, the optimal integration domain size of the integrated directional derivative

operator is analytically derived;

e the introduction of a polygon centroid uncertainty measure for combining target
boundary contrast evidence in FLIR ATR. The relationship between edgel SNR
and location uncertainty is obtained. Formulae are derived for computing the
centroid location uncertainty from the boundary point location uncertainty.
Experiments have been conducted in verifying the effectiveness of this feature for
target detection and recognition, and in combining this feature with traditional

features to further improve algorithm performance;

e the development of a centroid uncertainty based FLIR ATR algorithm with
significantly improved detection and recognition performance over competing
algorithms. For the test data set with medium target contrast and appear-
ance deviation (average contrast 1.8, target appearance composition with 50%
texture), the performance at the optimal operating point is: detection rate
67% with 5 false alarms per frame. (The optimal operating point is chosen by
the minimum cost criterion, in which the cost of a misdetection is twice the
cost of a false alarm. Therefore, in general, the optimal operating points of
different algorithms are at different detection and false alarm levels. See Sec-
tion 8.1.3 for details on the criterion.) The performance of the best competing
algorithm is: detection rate 54% with 3.3 false alarms per frame. The centroid
uncertainty is then successfully combined with the traditional matched filter
technique which results in further improved performance: detection rate 81%

with 4.2 false alarms per frame;

e the introduction of the constrained matching problem to model the correspon-
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dence process in FLIR ATR algorithm performance evaluation. By transforming
the problem into an assignment problem, the efficient Hungarian algorithm is
used to find a maximal one-to-one correspondence between ground-truth and
declared targets. Performance characterization based on this procedure is pre-
cise, consistent and follows the intuition. This model is readily applicable to

many other detection and recognition applications; and

e the procedure for generating simulated FLIR scenes with controlled target con-
trast, dynamic range, and amount of deviation in the target appearance. This
produces test data sets with ground-truth with extremely low cost, and hence
allows easy study of algorithm behavior in response to the change in those fac-

tors.

1.6 Organization of the dissertation

This dissertation is organized as follows. A literature review on ATR and the related
issues is given in Chapter 2. Chapter 3 presents the development of the polygon
vertex-to-centroid covariance propagation for combining target boundary contrast.
Chapter 4 studies the gradient estimation problem and explains why some operators
are better than others and how gradient operators can be optimized. Chapter 5 es-
tablishes the relationship between edgel SNR and location uncertainty. Chapter 6
discusses the correspondence problem in detection and recognition algorithm perfor-
mance evaluation. A constrained matching problem is introduced, transformed, and
finally solved using the Hungarian algorithm. Chapter 7 describes a procedure for
generating simulated FLIR scenes with controlled difficulty levels for target detection
and recognition. The experiments are described in Chapter 8 where competing algo-
rithms are briefly described along with the observed performance of the algorithms
on test data sets of different difficulty levels. The dissertation concludes in Chapter 9

wherein possible future research directions are identified in order to further improve
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the algorithm performance.

The materials in Chapters 3 and 5 were published in [92]. Earlier versions of these
materials also appeared in [90] and [88]. The materials in Chapter 6 was published in
[91]. The materials in Chapter 4 is in preparation for publication. The aerial image
ground-truth database used in one set of the experiments (Section 8.5) was announced

to be freely available to the public in [94].
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Chapter 2

LITERATURE REVIEW

Driven by the need for developing military applications, research for computer
aided or automatic target recognition has been active for more than three decades. A
casual literature search will reveal hundreds or even thousands of publications related
to this topic. For computer aided manual target recognition, researchers study the
target detection and recognition performance by human operators looking at images
shown on the display of the sensor system. Among others, interesting and important
topics are the modeling of the human performance and what can be done to the sensor
system to improve that performance [5, 148, 20, 101, 102, 104].

More research publications are concerned with automatic target recognition (ATR)
systems than the computer aided manual systems, although only the latter are prac-
tical for battlefield deployment at the present time. Many approaches and techniques
are developed for detecting and recognizing targets in sensory images, such as visi-
ble light, infrared (IR), synthetic aperture radar (SAR), and laser radar (LADAR).
Existing algorithms can be roughly divided into two general categories: traditional
algorithms and model-based algorithms. The traditional algorithms use the bottom-
up structure for collecting information leading to target detection and recognition.
Information of specific potential target classes is not heavily used in the early stages
of target detection and feature extraction. The model-based approaches try to make
use of that information right in the early stages of processing. With the cost of more
computation, and often times restrictions on the application, medel-based approaches
in general can offer much more reliable detection and feature extraction, which in turn

helps improve recognition performance as well.



In the following sections, we briefly review some representative work in both cat-
egories. These are followed by a brief discussion of the artificial neural network
techniques employed by ATR algorithms. Although performance evaluation acts as
a supporting role in computer vision research, it is an immature and active area of

research itself. We also review some of the research efforts on that topic.

2.1 Traditional algorithms

The traditional FLIR ATR algorithms assume that targets in the scene appear as blob-
like regions with roughly homogeneous gray scale values on a roughly homogeneous
contrasting background, either significantly brighter or darker {11, 138, 120]. For
detection, the main effort is made to segment out these target regions from the rest of
the scene. Since the contrast between target and background is not always very high,
and grayscale values inside the target area are often not uniform, reliable segmentation
of target regions is an extremely difficult task. The situation is made worse by the
clutter in the images.

The segmented regions are used for target recognition. Techniques for recogniz-
ing geometric shapes are applied on the segmented regions. In some situations, the
grayscale values in the segmented regions are also used. The main challenge here is
to handle regions that are not well segmented.

Bhanu and Holben [12] try to obtain good segmentation. They propose to com-
bine pixel intensity and edge strength in defining the inconsistency and ambiguity of
edge pixel classification in the segmentation process. The so-called gradient relaxation
procedure is used to minimize the inconsistency and ambiguity. In the experiment,
the procedure is applied on 7500 FLIR images to segment out ship targets. Through
a qualitative evaluation of the result, the authors claim the procedure to be very ef-
fective. However, it appears that, in order for the procedure to work well, appropriate

setting of initial probability values and the compatibility function is critical.
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In applying thresholding for image segmentation, Pham et al [119] use grayscale
morphological operations to enhance the target appearance in the images. One-
dimensional structuring elements of the target length and height are applied on the
images for horizontal and vertical opening and closing operations. The processed
images are properly combined and thresholded to give segmentation results. A generic
rectangular shaped target is then used in template matching to perform the final
detection. No recognition operation is involved. In the experiment on 147 images
with a total of 630 targets, the algorithm performs slightly better than a double-
window pixel classifier based segmenter.

Ernisse et al [39] enhance the first-generation FLIR imagery by the hit/miss fil-
ter. Objects of interest are identified by combining the results of a global and a
local thresholding procedure applied to the enhanced image. Another set of objects
are identified by thresholding the difference of Gaussian (DOG) filtered image. Pa-
rameters of the two procedures including the thresholds are determined by a genetic
algorithm. Regions of interest are identified by comparing the two sets of objects.
Their geometric measurements are used to form the feature vector to be used by a
multi-layer perceptron (MLP) neural network for target recognition.

Kitrosser [76] evaluated a region-growing based algorithm for its detection and
recognition performance. According to him, good performance of the algorithm de-
pends heavily on the art of tuning the algorithm parameters. Markham [99] gives
a comparison of three classes of segmentation algorithms. Haralick and Shapiro [59]
give a survey on classical segmentation techniques. Haddon and Boyce [48] study the
problem of classifying segmented regions. The edge co-occurrence matrix is used for
preliminary characterization of texture. The Hermite functions are used to decompose
the co-occurrence matrix, and the important coefficients from the decomposition are
used to form the feature vector. The MLP neural network was observed to perform
well in the experiment with 98 grass regions and 55 tree regions from real IR video.

Wang, Der and Nasrabadi [156] consider the recognition of segmented target image
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chips only. Two classifiers, namely the learning-vector quantization (LVQ) and mod-
ular neural network (MNN), operate on the features extracted for the image chips. A
cascade architecture for classifier combination is proposed for good performance and
relative higher efficiency. In the experiment, the fairly large-sized real image data
sets SIG and ROI are used. 80% of the data is used for training and 20% is used
for testing. The proposed cascade architecture performs only marginally less than
the best performer, the stacked generalization, which is an MLP neural network that
takes the outputs of the two classifier modules and gives the final classification result.

There are many other works that try to accomplish good segmentation and recog-
nition, e.g., the references [81, 41, 152, 139]. Due to the poor quality of the input
imagery, the earlier stages of detection and segmentation often fail to produce a sat-
isfactory result. As a result, there is a strong need for significant improvement in

general ATR. performance.

2.2 Model-based algorithms

In the model-based approach, it is believed that having appropriate models in the
early stages of processing can be of significant help in the information recovery pro-
cess. The use of such models, however, can sometimes pose certain restrictions on
the application since the assumptions of the models have to be satisfied. Neverthe-
less, the use of the models can often result in great improvement in the algorithm’s
ability to work with the low-quality imagery encountered in ATR applications. As
a result, more and more research is conducted with the model-based approach. The
best performance achieved by model-based algorithms is significantly superior to that
achieved by traditional algorithms [125].

Herstein et al [63] describe a practical system developed by the Defense Systems
and Electronics Group of Texas Instruments. The system considers detection and

recognition of critical mobile targets, e.g., mobile missile launchers. For the ROI de-
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tection, knowledge of approximate target size and grayscale statistics is assumed and
used in a correlation-based grayscale corner detector. Diagonal corners are paired and
corner pairs are merged for target hypothesis if they are properly located spatially.
Segmentation of the target silhouette is by over- segmentation followed by pairwise re-
gion merging, which combines some edge and contrast scores. Four groups of features
are computed for the extracted ROI: the silhouette region, the high-contrast regions
(most likely for the engine and the exhaust system), the size and inclination angle
of the missile if present, and the number, size and positions of the wheels. Three-
dimensional target models are projected to the imaging plane with the aspect angle
estimated from the height-to-width ratio of the segmented silhouette. The intensity
values are computed from the Bartlett model [8]. The differences in the four groups
of feature values between the image and the projected target are computed, whose
probabilistic distributions are obtained from training data.

With assumptions on some statistical independence and some chosen forms for the
prior probabilities, the posteriori probability for the target is obtained. It is used for
target identification. To improve the reliability of the computation, temporal fusion
is used to combine the results from a sequence of multiple images.

Although vehicle models are used in detection and recognition, the basic features
upon which the system is built are still segmentation based, a process that is not
model-based. As a consequence, the system performs well for high contrast imagery
when segmentation quality is high, and poorly in low contrast situations. The use of
models should go further into earlier feature extraction steps.

Friedland and Rosenfeld [42] use simulated annealing to optimize a cost function
that is a linear combination of low and high level confidence of the shapes of interest.
The low level component is model-free and tries to improve contour smoothness and
edge sharpness. The high level computes the similarity of the contour to shapes of
interest. The optimization procedure puts more emphasis on the low level component

in the earlier stage and shifts over to the high level component when the confidence
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in a match increases. This methodology seems to offer a good compromise between
the computational load, which is often high for model-based approaches, and target
detection and recognition performance.

Der [31, 32] uses the target silhouette to gather weak but consistent evidence of
the contrast across the target boundary. A probe is used for estimating local contrast
along four major orientations. (Eight probe values are computed to allow directed
contrast along the four orientations.) The histograms of the probe values are obtained
locally from the image, and are used to approximate the distribution of the probe
values computed in the background region. These are used in an independent model
for computing the background likelihood from the probe values computed along the
hypothetical target boundary. The target likelihood is computed from an assumed
uniform distribution for the probe values. The likelihood ratio test is used for target
detection and recognition.

In order to improve the noise resistance, Der argues that the probe values need
to be thresholded at appropriate levels. The binomial model is used to compute the
false alarm probability associated with the chosen threshold. The final threshold is
chosen to minimize the false alarm probability. Target detection and recognition are
based on the estimate of the achieved minimum false alarm probability.

Correlation based algorithms assume that some invariant features can be reliably
extracted from the 2D appearance of the targets of interest. Fazlollahi and Javidi
[40] study the abstract problem. They assume known target shape and intensity
structure, but with unknown contrast. This is used together with background and
noise models to set up a hypothesis testing problem. The solution to the problem is
a generalized likelihood ratio test. In this classical approach, the issues that yet need
to be addressed are the validity and estimation of background and noise models.

Zhou and Gutschow [162] perform feature extraction using the Gabor functions.
The resulting feature vector is correlated with that for the target template. Non-

maxima suppression is used for ROI identification. The overall ATR performance is
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claimed to be not very sensitive to the threshold setting due to the use of the non-
maxima suppression. Two MLP neural networks are applied to the feature vector
of Gabor coefficients for false alarm rejection and target recognition. Uenochara and
Kanade [154] use the K-L decomposition for invariant feature extraction. The result
is used for template construction. Ben-Arie and Rao [9] use nonorthogonal expansion
for template matching. Wu and Bhanu [158] use the Gabor grid to represent targets.
Feature points are extracted using the Gabor wavelet transform.

There are many favorable reports of correlation based algorithms. However, when
confronted with large variation in the target appearance, the invariance features re-
quired by these algorithms cannot be extracted robustly or do not exist anymore.
This causes significant performance degradation.

In the event of high quality imagery, complex 3D target models and the heat flow
properties of the material are utilized for predicting the targets’ appearance in the
images. Stevens and Beveridge [147] combine bore-sight color, range and IR images
in a target-pose optimization procedure. Target detection is accomplished using the
color image only via some color look-up table. Target recognition and pose estimation
are accomplished at the same time and use all three images. Specifically, the IR image
is used only in regard of the target boundary.

Another example of using the predicted target signature in target recognition is
the system described by Herstein et al [63], which has been discussed earlier in this
section.

At the other end of the image quality spectrum, the 2D appearance of the target
is assumed to be highly unpredictable. Various research results [79, 49, 50, 32, 31, 30|
suggest that the most reliable visual cue for the targets in this kind of imagery is the
existence of relatively high contrast between the inside and outside of the boundary
of a target. This contrast is in general higher than the contrast to be expected in the
background. This is reliable because of the difference in the materials, hence physical

properties, between the targets and the natural background. Although the actual ap-
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pearance of these materials in the FLIR imagery may vary greatly in different imaging
conditions, noticeable difference should exist between them within each image. To
make use of this, the aspect of and approximate distance to the targets are assumed
to be known. (This may pose serious restrictions on the applications. However, for
the most severe imaging conditions being considered, this assumption helps greatly in
the collection of weak evidence.) Targets are modeled by their silhouettes [79, 32, 49].
This modeling takes the view point that only reliable information obtained by means
of reliable assumptions, although small in amount, should be used. Other sources of

information are ignored due to their unreliability.

2.3 Neural networks in ATR.

As in all other fields of signal processing and pattern recognition applications, neural
networks receive a significant amount of attention in ATR algorithm development.
It is particularly popular among the military research community. Mostly, neural
networks are used as classifiers either for target detection or for target recognition.

Hamilton and Kipp [49] feed eleven features into an MLP network to perform
preliminary target detection. Ernisse et al [39] and Franques and Kerr [41] use MLP
networks for target recognition. Gader et al use the shared weight networks for vehicle
detection, where the convolutional mask is obtained through training, as opposed to
the pre-specified mask in traditional correlation methods. de Ridder et al [29] also use
shared weight networks for vehicle detection. Instead of trying to train the network
to detect the vehicle (tank) as a whole, the network is trained to detect the wheels.
The radial basis functions arrangement in the network does not seem to offer much
improvement in the performance.

Rong and Bhanu [132] use a Kohonen self-organizing map to learn the feature
distribution from training samples for feature grouping. Li et al [84] report favorable

recognition performance of a six-layer convolutional neural network in comparison
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with a number of other ATR algorithms on a same large-sized test data set. Roth [134]
and Rogers [131] give surveys of the research efforts in neural nets in ATR. A more
recent survey by Amoozegar [3] reviews neural-network-based tracking algorithms
since 1986. Neural networks in ATR is still a very active area of research [39, 132, 44,
162, 111, 48, 156, 23, 29, 151].

Popular as it is, the neural networks can mainly be regarded as non-linear classi-
fiers or as tools for non-parametric modeling of data. For this reason, on the abstract
level, neural networks in ATR can largely be considered as a way of implementation,

rather than an entirely different approach to the problem.

2.4 Multi-sensor data fusion in ATR

Multi-sensor data fusion [2, 109, 11, 147, 31] combines the sensory inputs from in-
dependent sensors for the same scene and lets them complement each other in the
information recovery process. The commonly used sensory modalities for fusion in
ATR applications include FLIR, TV, LADAR, SAR, and MMW radar. Nandhakumar
and Aggarwal [108] consider thermal physical properties of materials under direct sun
light. The information in thermal and visual images is combined for material identifi-
cation, which can then be used in target recognition. Specifically, the visual image is
used to estimate the reflectivity and relative orientation of the surface of the object.
The surface temperature is estimated from the thermal image. These estimates are
used together in estimating the heat fluxes. A feature based on the heat fluxes is
computed to characterize materials with different thermal properties.

Stevens et al [147] present results on applying a 3D object recognition algorithm
with pose estimation on the Fort Carson data set [10] of bore-sight imagery from three
sensor modalities: range, thermal and color. Target detection is done using only the
color imagery. Data from all three modalities are used in target pose estimation.

Specifically, the thermal data is used only with respect to the boundary of the target



30

silhouette.

Der [31] combined FLIR and LADAR imagery to improve ATR performance. A
first-order Markov model is used for the list of so-called probe values in the two coreg-
istered sensor images. The model parameters are estimated from training data. These
are used in computing the joint likelihood ratio, which is used for target detection
and recognition. The number of false alarms is reduced from about 1 per frame to
about 0.2 per frame for the detection probability of 0.9.

In what Schutte [141] claims the fusion of IR imagery with range data, no dense
range image is available. Instead, only the rough distance to the target is available
at coarse temporal intervals. The rough distance is simply used for choosing the
appropriate scale for target detection and tracking.

Dutkiewicz et al [36] describe the plan and some details of using satellite or air-
borne sensors for ship detection and recognition. They consider visible light, infrared,
and radar (SAR) sensors and propose three levels of fusion: pixel level, symbolic level,
and decision level. For image coregistration, geometric shapes of prominent ground
entities (e.g., lake, coastal line) are used, which requires SAR image segmentation.
Different channels of the hyper-spectral optical imagery in the visible-light spectrum
are also found useful in identifying different aspects of ship targets.

In general, not only the data from imaging sensors are used in data fusion, various
kinds of auxiliary information, such as the time of the day, weather conditions, and
geographical location, are also subject to fusion.

Currently, the theory of multi-sensor data fusion is still well under-developed.
Further study into this area is needed before a theory is established. The theory
needs to indicate how to optimally perform the fusion, and to predict the amount of

performance improvement due to the use of fusion.
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2.5 Performance characterization in ATR

Haralick [55, 56] suggests an approach that studies how the imperfection and per-
turbation in the ideal input will affect the output of the algorithm. Analytical error
propagation [160, 57] through computer vision algorithm modules is the main tool
used in this approach. The main pieces of the procedure include the specification of
the ideal input and ideal output, as well as the appropriate perturbation models for
the input and output. Linear approximation of the perturbation is most often used.
Although a number of standard algorithm modules have been studied [123, 122], the
performance evaluation of a general computer vision algorithm sequence in general
real applications is still not practical. One of the important reasons for this is the
difficulty in finding the systematic and practical way of mathematically specifying the
ideal input, which leads us back to the issue of modeling targets, background, and
clutter in real images. Without a quantitative characterization of the input imagery,
it is meaningless to talk about quantitative prediction of the algorithm performance.
The other major difficulty with this approach is the non-linearity of the algorithm
sequences and the statistical dependence between the input data. These make the
analytical study of the algorithm behavior very difficult. Due to these reasons, this
approach has not yet been widely used in ATR research.

Currently, most researchers report the performance of algorithms using the ex-
perimental result on some test data set [147, 84, 23, 76, 155, 119, 27], in terms of
some performance measures such as the detection rate, false alarm rate, and correct
classification rate, or some variations of these. Although the notion of these objective
and quantitative measures are widely used, their exact definitions and the ways their
values are computed, have not been standardized. To make things worse, the precise
definitions of these terms being used in the reported experimental results are often
not given. This makes it impossible to have a clear judgment of performance of the

reported algorithm relative to other algorithms. In Chapter 6, we describe a general



32

methodology for the definition and computation of the performance measures. Per-
formance measures based on this correspondence are accurate and consistent. We
hope it will be adopted by the research community as a standard methodology for
comparing algorithm performance.

Right now, the amount of real data with ground-truth is still quite limited. De-
terred by the difficulty and often prohibitive cost in preparing ground-truth for large-
sized real image data sets, researchers often make use of simulated imagery for eval-
uating ATR algorithm performance. For example, the terrain board imagery is used
by McManamey [103}, Der [31], and Peli et al [116]. Zhou and Gutschow [162] also
use the terrain board imagery, where 80% of the data is used in training and 20% is
used in testing. Nolan and William [111] use the Georgia Tech thermal model for sim-
ulating the target signature, while Lanterman et al [82] study the target orientation
estimation using the target signature generated by the PRISM software. Cyganski
et al [27] use images generated by planting target signature chips into real clutter
scenes. Boriotti and Fereydoun [14] and Mohd [105] also use simulated images in

their experiments.
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Chapter 3

POLYGON CENTROID LOCATION UNCERTAINTY

3.1 Introduction

In using boundary contrast for target detection and recognition in the FLIR imagery,
we combine the contrast evidence along the target boundary into a single saliency
measure for the target’s presence. Intuitively, some form of weighted average seems to
be appropriate for the combination of boundary contrast into a single target saliency
measure. The higher contrast along the boundary, the more likely the target is present. -
The reason for a weighted average instead of a simple average, such as the arithmetic
or geometric average, is that generally not all boundary points are equally informative
for the existence of the target. Also, when only a subset of the boundary points is
used to represent the target, different subsets of the same number of boundary points
carry different amount of evidence for discriminating this target from other types of
targets and from the background clutter. For example, a good polygon approximation
algorithm can use a small number of points to fairly well represent the boundary of
compact a 2D shape, while randomly picked points will not do as well. The shape
may be badly represented if the chosen points are clustered at unimportant places on
the boundary, or along collinear or parallel lines. This is because the contribution of
the boundary points to the detection of the target significantly depend on each other.
The relative importance of a particular boundary point should be decided by the 2D
shape of the entire target boundary. A mathematically sound way of modeling the
relative importance of the boundary points needs to be worked out.

In studying the relationship between a polygon’s centroid location and those of its
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vertices, we realize that the relative contribution of the vertices to the location uncer-
tainty of the centroid, which is considered as a measure of the geometric stability of
the polygon, can be used to model the relative importance of the vertices. Since the
location uncertainty of the target boundary points is closely related to the contrast
across the target silhouette (see Chapter 5), the relative importance of the polygon
vertices derived from the polygon centroid uncertainty model can be used, indirectly
via the relationship between the boundary contrast and boundary point location un-
certainty, as appropriate weights in combining the contrast at the boundary points
into a single saliency measure for the target’s presence. The centroid uncertainty is
an inverted saliency measure for the target’s presence — the more salient a target is,
the smaller centroid uncertainty it has.

In this chapter, we present the model for polygon centroid uncertainty and work
out and validate the formulae for computing the centroid uncertainty from target
shapes and the location uncertainty of the target boundary points. The distribution of
the resulting normalized centroid uncertainty is studied in a Monte Carlo experiment.
For the normalized centroid uncertainty to be used as a feature for target detection, its
detection performance can be predicted by a Monte Carlo method with a correlated

contrast model for the target boundary.

3.2 Geometric relationship between a polygon’s vertices and its cen-

troid

Let the silhouette of the target of interest be represented by a simple polygon !.
A simple polygon in the 2D plane is represented by an ordered list of its vertices.
The vertices of an N-side polygon are denoted by Pi,..., Py. Either clockwise or
counter-clockwise ordering can be used. It does not affect the final result.

Let O denote the origin of the coordinate system, and let the coordinates of the N

LA simple polygon is one whose sides do not cross each other. Within this dissertation, we are
only interested in simple polygons.
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vertices be (z1,11),---, (zn,yn)- Let x = (z1,...,z5)F and y = (y1, ..., ynx)T be the
vectors of the z and y coordinates of the vertices. Once x and y are given, the centroid
of the polygon is fully determined and is denoted by Q(x,y) = (Qz(x,¥), Qy(x,¥))*.

In finding the centroid of the polygon, we use triangles. A general case is illus-
trated in Figure 3.2. Consider connecting each vertex with the origin using straight
line segments. These /V line segments and the IV sides of the polygon form N triangles
{AOP,P;,,i =1,..., N} where the notation of Py,; = P; is used. The centroid and

the signed area of triangle AOP;P;,, are (””’;"“, y"*’é"'“), and ZHHLZZH  regpec-

tively. The centroid of the polygon is computed as the weighted sum of the centroids
of the triangles, each weighted by its signed area, divided by the sum of the signed

areas of the triangles. Hence, the centroid of the polygon is found to be

K, K,
Qz(x,y) = 35 Qy(x,y) = -3—5% (3.1)
where

N

K: = D (T¥is1 — Tin1y:) (@i + Tig1) (3.2)
t=1
N

Ky, = > (i1 — Tiw19:) (Ui + Yis1) (3.3)
i=1
N

S = > (TYirr — Tep1:) (3.4)

i=1
Here we use the convention that zy.; = z; and yx;1 = v This computation is
valid regardless of whether the polygon is convex or not, or whether the centroid
falls within the boundary of the polygon or not, or whether the vertices are ordered

clockwise or anti-clockwise.

3.3 Location uncertainty on the vertices

As will become clear in Chapter 5, the SNR at the target boundary is closely related to

the location uncertainty of the boundary points. This location uncertainty is modeled
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Figure 3.1: Illustration of the computation of polygon centroid.

here as a zero-mean additive perturbation on the polygon vertices. When the vertex
P; is affected by this perturbation, its perturbed location P, = (2:,%:)7 is given by

P,=P:+ AP, or
T; _ T; N Az; . (3.5)
Ui Yi Ay;
Here the superscript 7" denotes the matrix transpose.
Let this perturbation AP; = (Az;, Ay;)T on P; be called the input perturbation.
We assume that AP; and AP; are independent for ¢ # j, but Az; and Ay; may be

correlated forz=1,..., N.
Let Ax = (Azy,...,Azy)T, and Ay = (Ayy,. .., Ayn)T. Because the perturba-
tions Az; and Ay; are zero-mean, we have E(Ax) = E(Ay) = 0. Since AP; and AP;

are independent for i # j,

Cov(Ax,Ax) = Diag(o7,,024,---,02y) (3.6)
Cov(Ay,Ay) = Diag(c?,,025,---105n) (3.7)
Cov(Ax,Ay) = Cov(Ay, Ax)

= Diag(aiyyl, oﬁy,z, ceesy af:y’N) (3.8)
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are diagonal matrices. The diagonal elements of these matrices are specified by the

noise model and will be given by the edgel location characterization discussed in

Chapter 5.

3.4 Uncertainty on the centroid location

Being a deterministic function of {P;}, the centroid @ is affected by the perturbation
on {P;}. Let the centroid perturbation be denoted by

AQ =Q(x+Ax,y + Ay) - Q(x,y) (3.9)
or, in terms of its elements,

AQ: = Q:(x+ Ax,y+ Ay) — Qz(x,y) (3-10)
AQy = Qyx+Ax,y+ Ay) — Qy(x,y) (3.11)

Within this chapter, this perturbation is called the output perturbation. The
quantity of interest is Cov(AQ), namely the covariance of the output perturbation.
This is a full measure for the target centroid location uncertainty, the trace of which

is to be used as an inverted saliency measure for the target’s presence.

3.4.1 Finding the covariance of the output perturbation

We have just defined the measure for the centroid location uncertainty. In order to
compute its value, we need to express Cov(AQ) in terms of the locations of the
unperturbed vertices and the covariance of the input perturbation, which are given
and computable entities, respectively.

Let us first study AQ,. Let Q.(x + Ax,y + Ay) be approximated by the linear

terms in the Taylor series expansion.

Q:(x +Ax,y + Ay) = Q.(x,y) + AT - Ax + BT - Ay (3.12)
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where A = a—Q%(fﬂ and B = % are NV x 1 real vectors, which can be computed

using Equations (3.21) and (3.22). Then

AQ, =~ AT -Ax+BT.Ay (3.13)
E(AQ;) ~ 0 (3.14)
Var(AQ.) = AT Cov(Ax,Ax)A + 24T Cov(Ax,Ay)B
+ BT Cov(Ay, Ay)B (3.15)
Similarly, we obtain

E(AQ,) =~ 0 (3.16)

Var(AQ,) =~ CT Cov(Ax,Ax)C + 2CT Cov(Ax, Ay)D
+ DT Cov(Ay, Ay)D (3.17)

Cov(AQ:,AQ,) = AT Cov(Ax,Ax)C + AT Cov(Ax,Ay)D
+ BT Cov(Ay, Ax)C + BT Cov(Ay,Ay)D (3.18)

where C = a—Q‘"a—(,’:’—yl and D = %%(yx'—” are N x 1 real vector, which can be computed
using Equations (3.23) and (3.24). With these values computed, we obtain approxi-

mately

E(AQ) = 0 (3.19)

( Var(AQ,) Cov(AQ., AQ,) ) (3.20)

Cov(AQ,AQ) =
Cov(AQy, AQ,) Var(AQ,)

where all terms have been obtained in terms of the locations of the unperturbed
vertices and the covariance of the input perturbation. The 2 x 2 covariance matrix
Cov(AQ, AQ) is a full characterization of the location uncertainty of the centroid. It
describes how the centroid’s likely position is spread out in the 2D domain. A proper
scalar measure of the uncertainty is the trace of the matrix Var(AQ,) + Var(AQ,),

i.e., the sum of the two diagonal elements.
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In the ATR algorithm, the locations of the unperturbed vertices are given by the
locations of the target silhouette boundary points relative to the target’s centroid.
The covariance of the input perturbation is determined by the SNR estimated at the
boundary points and the characterization of boundary location uncertainty as given
in Chapter 5. The trace of the output covariance matrix is inversely related to the
saliency of the target’s presence. A strong target appearance will result in a small

trace of the centroid covariance.

3.4.2 FEzpressions for the partial derivatives

We now give the exact expressions for the partial derivatives involved in the equations
given above.

When the locations of the polygon’s vertices are perturbed, K, K,, and S in
Equation (3.1) are all perturbed. Let the perturbed quantities be K, If'y, and §,
respectively. Let AK ., AK,, and AS be the difference between the perturbed values

and the ideal values, respectively.

N
Y (EiGiv1 — TirG:)

S =
i=1
N
= D [(z: + Az:) (¥ir1 + AYir1) — (Ti1r + Azir) (v + Ays)]
=1
AS = §-8
N
= Y @Ay + i AZ:) — (T Ay + YiATi4)]
i=1
A N
K: = Y (&1 — Zinr:) (& + £i1)
i=1

2

= Y [(zi + Az:) (Yip1 + Ayir1) — (Tipr + Azir1) (y: + Ay)]

i=1

'(.’Ei + A.’L‘i + Tip1 + A:L‘H.l)
AK, = K,-K,
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N
Z{(-’L'iyi-i-l — Tin1Yi) (Azi + Azigy)

i=1

+ (zi + it 1) [(ZiAYir1 + Vi1 AT:) — (Tig1 Ay + ¥ DTi1)]}

N

Z(-’Ei?]i+1 — Zi10:) (Gi + Jiz1)

i=1

N

D (@i + Az:) (i1 + Ayirr) — (Tir1 + Azi)(y: + Ays)]
i=1

(yi + Ay + Yir1 + AYiza)

K,—- K,

N

Y {(ziyiz1 — Tiv1y:) (Ays + Ayiyr)
i=1

+ (y: + yi+1)[($iAyi+1 + YinAz;) — (T Ay + yiA:BiH)]}

Using the convention that zo = zn, yo = yn, We obtain

as
8:c,-
oS
Oy:
0K,
6z,-
0K,
Oy:
oK,
8:z:i
oK,
Oy:

fori=1,2,...

= Yit1 — Yi—1

= —($i+1 - xi—l)

= [2z:yir1 + Tip1 (Yo — ¥0)] — 2Zayi1 + Tic1 (Vie1 — 33)]
= —(z; + Tip1)Tiz1 + (Tic1 + Ti)Ti

= (¥ + Y1) Vi1 — Wi-1 + Y)Y

= —[2zin1¥i + yir1 (@1 — z0)] + 2z Y + v (zio1 — 7))

,N.

Now the expressions

0Qa(x,y) _ 35S~ Kegpy 1 (0K, K, 85 (3.21)
oz, - 352 " 38 Oz, S Oz, .
0Q:(x,y) oS —Kagy 1 [0K: K. 0S (3.22)
v 352 " 35 |Byn S Ova '
0Qy (%, ) wS-Kgw 1 [0K, K, 8S (3.23)
axn 352 o 3S 6$n S ax‘n .
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a
0u(xy) _ HS-K i _1 [oK, K, 65 (3.24)
OYn 352 3S | Oyn S  Oyn ’

only involve the known locations of the unperturbed vertices, and hence are readily

computable.

3.5 Centroid uncertainty validation experiment

We have just derived the formulae for computing the polygon centroid uncertainty
from the unperturbed vertex locations and the covariance of the perturbations on the
vertices. In the derivation, linear approximations were involved. In order to verify
the validity of the derivation results, we conduct controlled experiments and compare
empirically observed results with the theoretical predictions given by the formulae.
Given the vertices of a polygon as well as the perturbation on each vertex, the
covariance matrix of the centroid location is computed according to the formulae
obtained in Section 3.4.1. On the other hand, we may carry out simulations that
actually generate the specified perturbations on the polygon vertices. The centroid
of the perturbed polygon is computed easily. By repeating this many times, we can
obtain the sample covariance matrix of the centroid. If the derived formulae for the
centroid uncertainty are correct, the observed sample covariance matrix should agree
with the matrix given by the formulae. Then we consider the result represented by

the formulae as valid.

3.5.1 Polygon and perturbation used in the experiments

In the validation experiment we use a quadrilateral as the polygon. The coordinates
of its vertices and the perturbation on the vertices are given in Table 3.1. In this
experiment, we use 1D perturbations on the vertices, i.e., each vertex is perturbed
along a certain direction. This gives linearly correlated Az; and Ay; with correlation

coefficient 1. Specifically, two of the perturbations were close to being perpendicular
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Table 3.1: Specification of the polygon and perturbation used in the validation ex-
periment.

vertex | coordinates | direction (angle in degree) | variance
1 (—10, —10) 135 32
2 (20, -5) 60 2.42
3 (10,12) 75 2.12
4 (—15,5) 0 2.72

to the tangent direction of the smoothed polygon contour and two of the perturbations
were close to the tangent direction of the smoothed polygon contour.

Figure 3.2(a) shows the test polygon. The origin O(0, 0) is the meeting point of the
four dotted lines connect the origin with the vertices. These along with the edges of the
polygon form the triangles for finding the centroid of the polygon. The unperturbed
centroid @(1.735, 0.409) is marked by the cross. The direction and standard deviation
of the 1D perturbation on each vertex is shown by the direction and length of the line

segment attached to the vertex.

3.5.2 FEzperiment procedure

The public domain software package RANDLIB.C [18] is used for generating multi-
variate normal (MVN) random variables to be the perturbation added to the location
of the vertices. The mean value for the perturbation is zero, and the variances are as
specified in Table 3.1

Each random sample generated is used to perturb the vertex locations. The loca-
tion of the perturbed polygon’s centroid Q is calculated using Equation (3.1). This
process is repeated 3,000 times. A sample scatter-gram of the perturbed centroid lo-

cation is shown in Figure 3.2(b). The sample mean and sample covariance matrix of
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(a) test polygon {b) sample scatter-gram of centroid

Figure 3.2: Polygon, perturbation on vertices, and sample centroid locations in the
validation experiment. In (a), O is the origin; @ is the unperturbed centroid; the
direction and length of the line segments at each vertex show the direction and the
standard deviation of the perturbation affecting that vertex.

the scatter-gram are computed. The agreement of these sample parameters with the
analytical prediction given by Equations (3.19) and (3.20) is tested by applying a sta-
tistical test [72, 4] that compares the sample mean and covariance with the predicted
ones.

In this test, a statistic is calculated that shows the significance of the difference
between the sample parameters and the predicted parameters. One set of predicted
parameters and one set of sample parameters are used to produce one single scalar
value of the test statistic ¢t. In this problem, ¢t should follow the x2 distribution,

namely the chi-squared distribution with 5 degrees of freedom.

3.5.8 Validation results

We repeat the whole procedure (perturbation generation — centroid calculation —

sample parameter estimation — test statistic calculation) for 2,000 times and obtain
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2,000 values of the test statistic . The Kolmogorov-Smirnov (KS) test [121] is used
to examine if the sample distribution is close enough to the x2 distribution. The KS
test gives a p-value between zero and one indicating the significance of the agreement.
Good agreement should have moderately large p-values, and very small (less than
0.01 or 0.05) p-values indicate bad agreement.

This is done four times using different seeds for the random number generator. The
p-values from the KS test are 0.5596, 0.2008, 0.0725, and 0.2779. The fairly large p-
values show strong support for the agreement between the theoretical prediction of the
behavior of the centroid’s location and the actual observed behavior. Some histograms
of the test statistic and the underlying x2 probability density function (pdf) are
plotted in Figure 3.3 to assist the reader in qualitatively judging the agreement.

3.6 Detection performance prediction

The computation of centroid covariance matrix developed and validated in the earlier
parts of this chapter is to be used for the target saliency measure in target detection
and recognition applications. As will be discussed in the following chapters, the
contrast evidence along the hypothetical target boundary is measured by contrast and
signal-to-noise ratio (SNR) estimation through the use of a gradient operator. This
evidence is converted into the location uncertainty of the boundary point location.
The formula derived in this chapter is then used to combine the boundary point
location uncertainty into the centroid location uncertainty.

When the boundary points have higher contrast and SNR, their location uncer-
tainty is smaller. (See Chapter 5 for the development of the relationship between
location uncertainty and SNR.) This usually results in smaller centroid location un-
certainty. Therefore, a small value of the centroid location uncertainty is an indication
of the presence of the hypothetical target. A threshold can be applied to the com-

puted uncertainty value. When the value is smaller than the threshold, we declare



45

— roe

(2) seed 0x33fcbd64, p-value 0.5596

—=| C==] |

2 -3 "-J\|UM 2
(c) seed 0x33fcc6f7, p-value 0.0725 (d) seed 0x33fcdf82, p-value 0.2779

Figure 3.3: Sample and theoretical pdf of the test statistic ¢ from the test on centroid
uncertainty. Solid curves show the sample pdf, and the dotted curves show the pdf
of x%. The p-values are the results from the KS tests. Different seeds for the random
number generator are used in obtaining the sample pdf’s.
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the presence of the target. Otherwise, no target is declared when the value is larger
than the threshold.

As just mentioned, apart from the geometric shape of the target, the essential
factor that determines the value of the centroid location uncertainty is the SNR
along the target boundary. It is desirable to have a quantitative characterization
of the centroid uncertainty when a quantitative characterization of the boundary
SNR is given. Specifically, we consider characterizing the centroid uncertainty when
the statistical distribution of the boundary SNR is given. A closed-form analytical
expression for the distribution of the centroid uncertainty is difficult. This is due to
the non-linear relationship between the boundary point location uncertainty and the
SNR, and due to the linear combination of the boundary point location uncertainty in
computing the centroid uncertainty. Instead, we consider obtaining the distribution of
the centroid uncertainty using the Monte Carlo methods by resampling from the SNR
distribution and gather samples of the computed centroid uncertainty values. The
misdetection and false alarm performance from thresholding the centroid uncertainty
value can then be predicted for the given SNR distribution. In this section, only one

target is studied as an example.

3.6.1 Monte Carlo ezperiment with independently sampled boundary SNR

Figure 3.4 shows the sample distributions of the SNR for the target boundary and
the background in image chips generated by the procedure described in Chapter 7.
In obtaining the distribution of the centroid uncertainty value for the target, ran-
dom samples of the SNR are obtained independently from the target boundary SNR
distribution. These sampled values are used to compute the boundary location co-
variance matrices by the method and data described in Chapter 5. The boundary
point location covariance matrices are then used to compute the centroid location
covariance matrix for the target being studied. The normalized trace of the centroid

location covariance matrix, which is normalized by the trace of the matrix for zero
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Figure 3.4: Sample distribution of local SNR for target boundary and background in
simulated FLIR image chips.

contrast across the target boundary, is used as the measure of centroid uncertainty.
This is repeated many times, which results in a Monte Carlo distribution of the cen-
troid uncertainty for the target with the given boundary SNR. distribution. A similar
procedure for the background SNR. distribution yields the Monte Carlo distribution
of the centroid uncertainty for the background. These Monte Carlo distributions are
shown in Figure 3.5(a).

In order to assess the validity of the Monte Carlo distributions, we compare them to
actual distributions of the centroid uncertainty which are obtained by applying entire
algorithm sequence (SNR estimation, conversion to boundary location covariance,
centroid uncertainty computation) on the image chips. The difference here from the
Monte Carlo experiments is that the SNR values are estimated locally in the image
and not randomly sampled from the SNR distributions in Figure 3.4. This experiment

is referred to as the non-Monte Carlo experiment. The observed centroid uncertainty
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Figure 3.5: Distributions of the centroid uncertainty from Monte Carlo experiment
with independent sampling and from values directly computed from image chips.

distributions in this experiment are shown in Figure 3.5(b). It is seen clearly that
the real distributions are much more spread out than the ones obtained in the Monte
Carlo experiment. Investigation reveals that the independent resampling of the SNR
values is inappropriate. Figure 3.6 shows the correlation between the SNR values at
adjacent locations along the target boundary. It is clear that for both real target
boundary locations and background locations, the SNR values at adjacent locations
are highly correlated. The mean and median of the correlation coefficient are both

very close to 0.9 for both true target boundary and background.

3.6.2 Monte Carlo experiment with correlated boundary SNR

Recognizing the high correlation between the SNR values at adjacent locations in
the FLIR imagery, the Monte Carlo experiment is conducted again with correlation

introduced in resampling the SNR values. The correlation coefficient is assumed to
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Figure 3.6: Correlation coefficient for SNR values at adjacent locations along the
boundary of a particular target.

be a exponentially decaying function of the distance between pixel locations

c = exp Y%,

where dy is the constant controlling the rate of decay. As suggested by the sample
correlation shown in Figure 3.6, the correlation coefficient c is set to 0.9 for adjacent
pixels (d = 1), which leads to dg = —1/log0.9 = 9.49. The correlated SNR samples
are drawn by the following procedure. The public domain software package RAN-
DLIB.C [18] is used for generating multivariate normal random vectors with unit
variance and the correlation just specified. Each element in the random vector is
transformed independently to a value between 0 and 1 by the cumulative distribution
function. This value multiplied by the number of total SNR value samples in pool of
SNR samples from which the sample distributions in Figure 3.4 are obtained. The
result is used as an index into the sorted list of the SNR values in that pool. The

value retrieved from the list by that index replaces the value of the original normal
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Figure 3.7: Distributions of the centroid uncertainty from Monte Carlo experiment
with correlated SNR sampling and from values directly computed from image chips.

random variable. This way, the correlation between the elements of the random vec-
tor is retained, while the distribution of each element is changed from the standard
normal distribution to the distribution shown in Figure 3.4.

After the introduction of correlation in the resampling of boundary SNR. values,
the distribution of the centroid uncertainty from the Monte Carlo experiment becomes
very close to that from computed directly from the image chips. These are shown in

Figure 3.7.

3.6.8 Error rates and confidence intervals

When the distributions of the centroid uncertainty value for the target and back-
ground overlap each other as shown in Figure 3.7, target detection by thresholding

the centroid uncertainty value will inevitably produce misclassification errors, i.e.,
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misdetections and/or false alarms. A misdetection occurs when the centroid uncer-
tainty computed for a target class instance (an image chip containing a target in the
non-Monte Carlo experiment, and resampling from the target boundary SNR distri-
bution in the Monte Carlo experiment) is larger than the threshold. A false alarm
occurs when the centroid uncertainty computed for a non-target class (an image chip
for the background in the non-Monte Carlo experiment, and resampling from the
background SNR distribution in the Monte Carlo experiment) is smaller than the
threshold. The misdetection rate is the ratio of misdetections in the total number
of measurements made for the target class. The false alarm rate is the ratio of false
alarms in the total number of measurements for the non-target class.

The curves in Figure 3.7 represent experimental results for 1000 target class in-
stances and 1000 non-target class instances in the non-Monte Carlo experiment, and
for 1,000,000 target class and non-target class instances in the Monte Carlo experi-
ment. The threshold for the centroid uncertainty is determined by the minimum error
criteria on the non-Monte Carlo experiment. This is the threshold associated with
the smallest sum of misdetections and false alarms. Among all such threshold values,
we choose one that gives approximately (in this case exactly) the same numbers of
misdetections and false alarms. This threshold value is 7 = 0.534. The number of
mis-classifications are 42 misdetections and 42 false alarms for the non-Monte Carlo
experiment. Applying this same threshold value on the data from the Monte Carlo
experiment, we find 41,349 misdetections and 53,762 false alarms. Therefore, the
misdetection and false alarm rates for the non-Monte Carlo experiment are 0.042
and 0.042, respectively, and for the Monte Carlo experiment are 0.041 and 0.054,
respectively.

One way of assessing the goodness of the prediction of the error rates, i.e., to judge
the closeness of the error rates from the Monte Carlo experiment to those from the
non-Monte Carlo experiment, is to find the confidence intervals [21] of the true error

rates based on the data from the non-Monte Carlo experiment. The following is a
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Bayesian formulation for the computation of the confidence intervals [53].

Let n be the total number of measurements made in the experiment (for computing
either the misdetection rate or the false alarm rate, but not both). Let k& be the
number of errors observed. Let the true error rate be denoted by p. Assuming
the measurements made in the experiments are independent, k£ follows the Binomial

distribution B(n,p) with the probability mass function (pmf) [21]

f(k|n,p) = ( : ) p*(1 —p)" k.

In the experiments, the total number of measurements n is a fixed constant and is not
treated as a random variable. By the Bayes rule, the a posteriori probability density

for the true error rate p is

f(klp)f(p)
Jo £(klp)f (p)dp’

We take the uniform prior probability f(p) = 1 for no prior judgment of the likelihood

f(plk) =

of the true error rate. The denominator of the right-hand side of the above equation

is computed as

/Olf(klp)f(p)dp = /01 ( : ) p*(1 —p)*Fdp

1 1 1 k —k
= 1—p)""d
n+1/o Beta(k+1,n—k+1)p( P) p
. 1 .
T on+1

The last equation is due to the integrand being the pdf of the beta distribution [21]

and
Ck+1)I(n—k+1) _ki(n—k)!
'(n+2) o (n+ 1)t~

Beta(k+1,n—k+1)=

Therefore,

Folk) = (n+ DF IR ) = By~ 2™
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i.e., the a posteriori distribution of p given k is the beta distribution with parameters
k+landn—-k+1.

For an interval (p;, p2) C [0, 1], the a posteriori probability that the true error rate
belongs to this interval, which is also called the confidence of the interval, is then

:2 F@lk)Ydp = Ly(k+Lin—k+1) — L, (k+1,n — k +1), (3.25)
1
where I;(z,w) is the incomplete beta ratio function [1, 21].

Here, the information about the true error rates is carried by the data in the
non-Monte Carlo experiment. We want to use that information to find the coverage
probability of an interval centered on the predicted error rates from the Monte Carlo
experiment. Let p denote the predicted error rate from the Monte Carlo experiment.

Let 6 be some small positive constant. The coverage probability for the interval
(B —9,p+4),
around the predicted error rate is
Lis(k+1,n—k+1)—L_sk+1,n—k+1),

where n = 1000 is the number of total samples in the non-Monte Carlo experiment,
and k = 42 is the number of errors. (In general k is different for misdetections and
false alarms. It just happens to be the same in this particular experiment.)

For the misdetection performance, p = 0.041. Choosing § = 0.02, we find the
coverage probability for the interval (0.021,0.061) to be 0.995. Considering the high
coverage probability and the relative small size of the interval, the predicted misde-
tection rate is fairly close to the true error rate, the exact value of which is unknown.

For the false alarm performance, p = 0.054. Also taking § = 0.02, we find the
coverage probability for the interval (0.034, 0.074) to be 0.926. Increasing the interval
size by letting 6 = 0.025, the coverage probability for the interval (0.029,0.079) is

increased to 0.992. This shows that the predicted false alarm rate is also close to the
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unknown true false alarm rate, although the quality of the prediction is not as good

as that for the misdetection performance.
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Chapter 4

OPTIMAL ESTIMATION OF IMAGE GRADIENT

The problem of optimal estimation of image gradient is conceived as searching
for the gradient operator that optimizes a properly defined performance measure.
We base our discussion on a unified framework for characterizing the performance
of a broad class of linear gradient estimators, which includes most popular gradient
operators. This framework provides the analytic expressions for the bias and variance
of the gradient direction estimate. The values computed from these expressions for
various gradient operators agree very closely with previously published results which
are all based on empirical simulations. Based on this framework, we also explicitly
identify a direct relationship between the gradient magnitude estimation performance
and the variance of the direction estimate.

We use the mean-squared error (MSE) of the gradient direction estimate to mea-
sure gradient operator performance. The MSE is computed from analytic expressions
for the bias and variance. It is desirable for gradient operators to have small MSE
for all possible situations, including edge orientation, location displacement, and dif-
ferent signal-to-noise ratio (SNR) levels. For a given SNR, the worst-case estimation
error for the gradient direction is the maximum value of the MSE over all possible
edge orientations and displacement. The optimal gradient operator design problem
is formulated as a minimax optimization problem that minimizes the worst-case er-
ror by searching over the tuning parameters of the gradient operator. We solve this
problem numerically for the neighborhood sizes of 3 x 3 and 5 x 5. The performance
of the resulting operator compares favorably with the optimally chosen members of

three popular classes of gradient operators, namely the Sobel class, the integrated
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directional derivative class, and the derivative of Gaussian class. The integrated di-
rectional derivative operators has the highest robustness in that its tuning parameter
stays almost unchanged throughout a wide range of image signal-to-noise ratio, while
the parameters of other classes of operators vary more with the image signal-to-noise
ratio.

In the major parts of this chapter, the step edge model is used as the image
intensity function of interest. However, the framework and general methodology in-
troduced here is not in any way restricted to this edge model. The methodology is
readily applicable to other image intensity patterns, e.g., the ramp edges. For any
image intensity pattern of interest and any neighborhood size of interest, the perfor-
mance of any given gradient operator can be characterized by directly applying the
formulas introduced in this chapter. The same type of minimax problem can be set up
and solved to find the optimal operator in that situation. As an example, the image
intensity pattern of a class of smoothed edges is studied in the experiment. The opti-
mal gradient operator from the solution of the minimax problem is again observed to
out-perform the other three classes of operators. Furthermore, the derivative of Gaus-
sian operator also adjusts well to the smoothing. The integrated directional derivative
operator again shows the highest robustness in its tuning parameter in response to

the amount of image smoothing.

4.1 Introduction

Like all other machine vision systems, ATR systems start their operations by the
gathering of low level evidence and information from a sensory image. Generally,
the operations for this purpose are referred to as feature extraction, and they often
appear as earlier / lower-level modules in computer vision systems. Change detection
is a very important and major issue in feature extraction. In the FLIR ATR problem

that we consider in this dissertation, we must estimate the contrast evidence along the
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target boundary. In an ideal image, a target appears as a compact region of constant
intensity value on a uniform background of a different constant intensity value. The
contrast between the target and background is the difference in the intensity values
of the target and background. When moving from the inside of the target to the
background or vice versa, the pixel intensity values along the path will show the
pattern of a step edge. Therefore, the local contrast is defined to be the difference in
the intensity values of the two sides of the step edge. In real applications, the intensity
values of the target and the background are not constant. Contrast estimation in this
situation requires some model fitting, which is studied extensively in the gradient
estimation problem.

For a chosen model of the intensity change at the target boundary, which is the
ideal sharp step edge model in this study, the gradient magnitude corresponds to the
contrast via a one-to-one mapping. Due to the sampling, quantization, and noise
in the digital images, gradient estimation for digital images is not a well defined
problem. This fact along with the importance of change detection in early vision
has resulted in a large number of studies on this issue reported in the literature
[100, 51, 107, 19, 163, 124, 96, 28, 65, 45, 25, 149, 17, 150, 38, 133, 33, 145, 146, 98, 93].
One approach to handling the ill-posedness of the gradient estimation problem is via
model fitting. We also take this approach in this dissertation. Local contrast and

signal-to-noise ratio are estimated from the estimated gradient and noise variance.

4.1.1 A note on the dG operator

Currently, the most widely used image gradient estimator is the derivative of Gaussian
(dG) operator used in Canny’s edge operator [19]. In his widely-cited work, Canny
studies the filter design problem in the 1-D case. He formulates an optimization
problem in which the objective function is the output signal-to-noise ratio divided by
the standard deviation of the location error. A penalty for multiple response from a

single edge is introduced as a constraint. Canny uses numerical techniques to solve
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the constrained optimization problem and obtains a filter that is very close to the
first derivative of a Gaussian.

The particular form of the objective function and the constraint does not seem to
bear more validity than an earlier not-so-successful attempt with an objective function
that takes the simple product form of three terms for the output SNR, location
error and multiple response. Also, from the numerous studies which establish the
importance of the dG function in human vision and its optimality from many signal
processing considerations, it is not without ground for our suspicion that the success
in Canny’s formulation of the gradient operator design problem does not actually lie
in the correctness of the formulation itself. Rather, it might well have resulted from
the fact that the problem happens to adopt the dG as its solution, and the dG is a
good operator for reasons other than (or more than) what is conveyed by Canny’s
optimality criterion.

The 1-D formulation as used by Canny does not take into consideration the prob-
lem of gradient orientation estimation during the search for the optimal operator.
Here we consider the problem in the 2-D setting. We determined that the gradient
magnitude estimation performance and the orientation estimation performance are
closely related via the operator output SNR, denoted by « in this dissertation. &2 is
the non-centrality parameter for the magnitude distribution and « is the concentration
parameter for the orientation distribution. We choose to measure the performance of
a gradient operator by its worst-case mean squared error (MSE) in the orientation
estimate. The optimal gradient operator design problem is then formulated as a min-
imax optimization problem. The cost function is the worst-case MSE over all possible

edge orientations and displacement.

4-1.2 Other related works

The most closely related works on gradient operator performance characterization in

the literature are those of Lyvers and Mitchell [96], and Zuniga and Haralick [163].
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Lyvers and Mitchell conduct empirical experiments for a wide collection of gradient
operators. The image intensity pattern studied is the square-aperture quantized sharp
step edge of varying orientation and displacement. Experiments were conducted to
observe the variance of the direction estimate for high SNR levels of 10dB, 20dB, 30dB
and 40dB. The bias of the estimate is studied separately on the noise-free data. The
conclusion from the experiment is that, for a good compromise between computational
cost and overall estimation quality, the integrated directional derivative operator and
the moment-based operator are approximately the best operators.

In addition to the empirical data, Lyvers and Mitchell also provide an analytic
characterization of the magnitude and orientation estimates by giving the probability
density functions (pdf) of their distributions. The pdf for the orientation estimate is

o) = 2O 0) o [ieod O8] 1 L (%ﬁ;i}lﬁ

2 2

where ¢ is the noise-free estimate of the gradient orientation. We notify the readers
of the Lyvers and Mitchell paper [96] that there are small but very significant deriva-
tion/typographical errors in the Equations (41) and (42) of their paper. The correct
pdf is given by the equation above. Some characterizations of this pdf are given later
in this chapter.

Zuniga and Haralick [163] introduced the integrated directional derivative gradient
operator (IDDGO). This operator is based on the bi-variate cubic polynomial repre-
sentation of the image intensity data. Gradient estimation is improved by integrating
(averaging) the directional derivative over a small domain around the center of the
neighborhood. This averaging operation is very effective in suppressing the effect of
noise on the gradient orientation estimate. (As will become clear in this chapter, the
gradient magnitude estimate is also improved at the same time.) Zuniga and Haralick
carried out empirical experiments similar to those conducted by Lyvers and Mitchell

[96] to compare the IDDGO with the Sobel operator, the Prewitt operator, and the
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standard non-integrating cubic facet gradient operator. The tuning parameter for
the IDDGQO, i.e., the size of the integration domain, is also determined by empirical
experiments.

In both of the works just mentioned, the authors just compare the performance
measures of different operators. No effort is explicitly made to the search for the
optimal operator that would achieve the upper bound of the performance according
to their measures.

Iannino and Shapiro [65] consider this aspect of the problem, but only study the
Sobel operators in the noise-free case. They propose the iterated Sobel operators
in which the tuning parameters K3 and K in the 3 x 3 and 5 x 5 Sobel operators
are iteratively determined, with the gradient orientation € determined in the same

iterative process. For the 3 x 3 case, the rule is

—

NEER

2 0<60<Ltan~

2.25 tan? §—1.25 tan §—1.25+-.25/ tan —11
25/ tan 6—1.5+1.25tan 0 tan™ 3 <0 <

K3 = (4.2)

The process is initiated with K3 = 2. The conditions for the convergence of the
iterated operator are also given.

Elder and Zucker [38] use the dG operator for gradient estimation. They address
the issue of scale selection (adaptively determining the value for the smoothing fac-
tor). The concept of minimum reliable scale is introduced. The smoothing factor has
to be large enough for the magnitude of the first and second derivatives to be signif-
icant relative to the noise. The sub-pixel edge location is decided as the negatively
sloped zero-crossing in the second derivative in the direction of the gradient, yet the
estimation of gradient direction is not extensively discussed. The extension of that
work to account for the gradient direction estimation is identified as a future research
direction.

In this chapter we formulate a general minimax optimization problem for gradient
operator design. The gradient direction estimation plays a central role in this formu-

lation. By the characterization on the relationship between the quality of gradient
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magnitude and direction estimation, the quality of the magnitude estimate will also

be good when the orientation estimation performance is optimized.

4.1.8 Organization of the chapter

We start our discussion by considering the performance characterization of gradient
operators, i.e., to answer the question: what are the desirable properties that an
optimal gradient operator should possess? The question is answered in Section 4.2
within a general framework for the performance characterization of gradient operators.
The resulting analytic expressions for the bias and variance of the gradient orientation
estimate is used in Section 4.3 to formulate the optimal gradient operator design
problem as a minimax optimization problem. Three classes of gradient operators
are studied using this formulation in Sections 4.4, 4.5 and 4.6. Their performance
is compared with the optimal operator obtained as the numerical solution to the
minimax problem in Section 4.7. The effect of image blurring on the gradient operator

performance is studied in Section 4.9.

4.2 Gradient operator performance characterization

The most popular gradient estimators are linear, shift-invariant operators that can
finally reduce to a single mask or kernel. Convolving (or correlating) this mask with
the image data gives the element of the gradient along the, say, row axis. The trans-
pose of this mask is used for the column axis. This broad class of operators includes
the most commonly used ones such as the the dG filter used in Canny’s edge operator
[19], the integrated directional derivative operator [163, 60], and the Sobel, Prewitt,
Roberts operators [60]. Although different kernels are used by the different opera-
tors, the kernels share the same features: the elements sum to zero, and the mask is
orthogonal to its transpose. Here we characterize this class of operators in terms of

its output signal-to-noise ratio on the gradient magnitude estimate, and the accuracy
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and precision and on the gradient direction estimate.

4.2.1 Notation

Let the observed image intensity values in the neighborhood being considered be
denoted by J. It is a noisy observation of the underlying noise-free image intensity
function Jy:

J=Jr+n (4.3)

where 7 is the additive zero-mean white Gaussian noise with variance o2, i.e., 7 ~
n(0,02I¥*N) where IV*¥ is the identity matrix, and N is the number of pixels in
the neighborhood.

Let the row and column derivative masks be denoted by h, and h., respectively.
In the two-dimensional representation as convolution masks, they are the transpose
of each other. The entries in A, and h. are constants that are independent of J; and
1. We assume that the sum of entries in A, is zero, and A, is orthogonal to A, i.e., the
sum of the products of their corresponding elements is zero. This is true for virtually
all linear, shift-invariant gradient estimators.

Let the values in J, J¢, 1, h, and A, all be organized into column vectors following
the same rule, say, the row-major order. Now h, and h. are no longer transpose of
each other, but the values in one is just a permutation of those in the other. Also,

the zero-sum and orthogonality conditions still holds.

<hH1> = <h,1>=0 (4.4)
<hrhe> = 0 (4.5)

where 1 is an N x 1 vector with all ones, and < .,. > stands for taking the inner
product of two vectors. The sum of squared values in the row or column mask is
denoted by A2.

A =< hp by >=< ke, he > (4.6)
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The noise-free and noisy estimates of the row and column derivatives are

pr = <h;,Jr>
o = < hegJr>
D, = <h.,J>
Dy, = <h.,J>

4.2.2 Basic characterization

Given any row kernel h,, the column kernel h. is uniquely determined. A, and A,
and hence A\? as determined by Equation 4.6, are fully determined constants.

p1 and po depend only on the underlying noise-free image intensity Jy and the
chosen gradient operator mask 4., and are therefore not dependent on the observation

noise.
D, and Ds,, which are noisy estimates of 1; and us based on the noisy observation
J, are normal random variables. Since h, and h. are orthogonal to each other, D,

and D, are independent normal random variables.

Dl ~ Tl(,u]_, /\202)7 D2 ~ n(#Z, /\202)

4.2.8 Gradient estimator

The gradient estimate is given by the magnitude and orientation estimates

6 = atan2(D1,D2)

where atan2(D;, D,) computes the inverse tangent function for %;- with the result in
the full angular range of (—m, 7] so that D; = G'sinf, Dy = G cos#.
From the characterization on D; and D,, we know G? = D? + D3 is related to

the non-central chi-squared distribution with 2 degrees of freedom and non-centrality
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Let the non-centrality parameter be denoted by «2. It reflects the relative amount of
signal and noise energy in the gradient operator output. We define as the signal-to-

noise ratio of the gradient operator output

uf + 13
© =\ et (+8)

The bigger « is, the better quality the estimate of the gradient magnitude is of.
As will become clear later, a bigger « also gives better precision measure for the
gradient orientation estimate. Therefore, the quality of the magnitude estimate and

the precision of the orientation estimate improve simultaneously when k is increased.

Gradient magnitude and input SNR estimation

From the properties of the non-central chi-squared distribution, the mean value of G2
is (k+2)A2%02. In real applications, the true noise variance ¢2 is not known and needs
to be estimated from image data. By the cubic facet model [60, 163], the estimate is

given by
PR
T N-10’

where € is the sum of the squared fitting error of the cubic facet fit to the image

(4.9)

neighborhood data and NN is the number of pixels used in the fit. (N = 25 for the
5 x 5 neighborhood.) The reason for this noise variance estimator is that, under the
assumed noise model, €2 /o2 follows the chi-squared distribution with N — 10 degrees
of freedom. Therefore, the mean value of €2 is (V — 10)o2.

Under the assumed noise and gradient estimation models, the estimates D; and D,
are independent normal random variables. Furthermore, they are also independent
of the noise variance estimate 62. Then the estimate

. D? D2
,‘;2: 1 2

e (4.10)
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is related to the non-central F distribution [68]. This is because (D? + D32)/(\%0?)
follows the non-central chi-squared distribution with 2 degrees of freedom and non-

centrality parameter (u? + p3)/(A%0?); (N — 10)62/0? = €2/0? follows the (central)
chi-squared distribution with N — 10 degrees of freedom. Therefore,
22
i
Fy 0. (8)
B4 s the

—_—~
2
A2

vt for
—2

v1(v2

N — 10 are the degrees of freedom, and £ =

where v; = 2 and v,
non-centrality parameter. The mean value of the Fy, ,,(£) distribution is

Ug > 2 [68]

In real applications, the non-centrality parameter £ is not known. By equating
with the mean value of Fj, ,,(£), we obtain an estimate for it. In the 5 x 5

k2
2
neighborhood, this is
-~ 13 2
= 2z2_9
¢= 15~
for 1222 > 2, and € = 0 otherwise. Using the relationship £ = £ ;*:;2 , the new estimate
(4.11)

1 ~
for the squared gradient magnitude is then
42 27,2 £1242 13 5 2.2
G" = (i +pp) = EX%6° = (A% —2)A%6%,

where %2 is estimated by Equation (4.10).

The input SNR, denoted by €, is defined to be the ratio of the true contrast of
the sharp step edge over the standard deviation of the input additive noise. The
edge contrast is defined to be the difference in the intensity values between the two

sides of the sharp step edge. Borrowing the definition of g (a computable constant

(4.12)

determined by the gradient operator kernel) in Equation (4.16) and the relationship

Df+D§ 5
252 )

between k and k in Equation (4.17), we have
Be-2_1 i3
Ko 15

A G2
Qin = A| = =
" k3252 K3

Notice that the estimate is 0 for 2&2% < 2
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comparison of two estimators for the input SNR
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Figure 4.1: Comparison of two estimators for the input SNR. The biased estimate
Q, of Equation (4.13) is shown by the dashed curve which over-estimates the input
SNR. The adjusted estimate €, of Equation (4.12) is shown in the solid curve. It is
a based on the properties of the non-central F' distribution, and is a more accurate
estimate.

If G? were simply estimated by D? + D2 = A25242, the resulting estimate of the

input SNR would be

A262R2 R 1 [D? + D2

NG ke ml X6 (4.13)

which is an over-estimate. For the IDDGO (see Section 4.5) in the 5 x 5 neighbor-
hood, kg = 1.95. The two estimates given by the above two formulas are plotted in
Figure 4.1.

Gradient orientation estimation

The distribution of the orientation estimate

# = atan2(D,, D,)
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where Dy ~ n(ui, A%02) and Dy ~ n(us, A20?) can be derived as follows [96).
The joint distribution for D; and D, is

1 (di — p1)? + (da — p2)?
*P (_ 2\202 ’

fD1,D2 (d17 d2) = 27TA20'2 €

By the transformation

D, =Gsinf, D, = Gcosé,

the joint distribution for gradient magnitude G and orientation 6 is obtained. The
marginal distribution for € is obtained by integrating out the gradient magnitude from
the joint distribution. The result is the pdf

2 2 —
o) = ot { L, o0 —0) [EEE BN

o 2)202

27 V27Ao
_ [34_ %erf (\/u%+u%cos(0—eo)” }

2 V2o

where 6y = atan2(u,, p2) is the true gradient orientation. Using

ud 43
k= A2p2 7

the pdf for the orientation estimate is

_ _=2f 1  kcos(8 —6) k2 cos?(6 — 6p)
fo(0l60,6) = ez {2w+ s exp[ 5

[t} e

This is a special case of the offset normal distribution [97], with equal variance and
no correlation, i.e., in the notation of [97], o1 = 02 = 0 and p = 0.

It has been pointed out [97, 123, 122] that a conditional distribution of the ori-
entation estimate is the von Mises distribution M (6o, %2) [97]. This condition is
D? + D2 = p? + p2, which is in general not satisfied for low SNR, and approximately
satisfied for very high SNR. Although the gradient magnitude estimation is closely

coupled with the orientation estimation, our study here mainly concerns the marginal
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distribution of the orientation estimate, not that conditional distribution. Therefore,
the special case of the offset normal distribution in Equation (4.14), which is referred
to as the orientation distribution in this dissertation, is the appropriate model for the
orientation estimate. We are not further concerned with the von Mises distribution.

6o is the mean value of fg(6|6o, ), and « is the concentration parameter, a term
borrowed from the von Mises distribution. If we shift the domain of the distribution
to be symmetric about 6, the distribution is unimodal and is symmetrical about the
mode, which is at ;. The anti-mode is at 8 = 8y + 7. The distribution reduces to
the uniform distribution »(0, 27) for k = 0. When & becomes larger, the pdf becomes
taller and thinner around 6,. See Figure 4.2(a) for some sample plots of this pdf.

It is obvious that the mean of the distribution does not depend on the concentra-
tion parameter x. Although not obvious from the expression of the pdf, it is observed
that x strongly affects the concentration of the distribution. As a general rule, the
bigger & is, the smaller the spread of the distribution is. The analytic expression for
the standard deviation is difficult to obtain. However, for any given x, the value of
the variance defined as

Go+m ™
fi_ Fo(6180,)(6 = 80)%d8 = [ fo(6l0, s)6%d0 (4.15)
can be evaluated numerically. The values of the variance for a range of & of interest
are pre-computed and tabulated. A plot of the variance as a function of « is shown
in Figure 4.2(b). The plot shows clearly that, for k greater than 3, the variance of

the orientation distribution can be closely approximated by 1/x2.

4.2.4 Performance characterization for gradient direction estimators

For a given underlying noise-free image intensity function of interest, the mean val-
ues gy and pp for Dy and D; are fully determined by any gradient operator being
considered. The values are, in general, different for different operators. For any given

operator, the bias of the orientation estimate is defined to be the difference between
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6o = atan2(y, uo) and the orientation of the true gradient of the intensity function.
The standard deviation of the estimate characterizes the behavior of the operator
in the presence of observation noise. The bias and standard deviation are the two
components of the estimation error in the mean-squared sense. We will show that the
standard deviation is inversely related to the concentration parameter k = / ﬁ,{%’—?

Let the normalized output signal-to-noise ratio be denoted by x¢ and defined by

2 2
Ko = ﬁ/‘ﬂ;#, (4.16)

where 11 o and pp o are the values obtained by applying the row and column derivative
kernels on the image data of the unit-contrast noise-free step edge (see below). This
is a quantity fully determined by the chosen kernel and the noise-free image intensity
values, and not affected by the noise level. It is a critical measure for the gradient
operator performance. Under the general input SNR. 2, which is the ratio of the step

edge contrast over the noise standard deviation, we have
K = Ko (4.17)

There are four major components in characterizing the performance of gradient
direction estimators, namely, the operator as specified by its mask, the underlying
noise-free image intensity function, the level of the observation noise, and the perfor-
mance measures. From the first three, we compute A2, u; and s, and subsequently
6o and xg. The final performance measures with respect to a certain noise level o2,
based on the mean and standard deviation of the orientation distribution with the
parameters fy and k£ = k{2, can be easily computed numerically. Thus we character-
ize the gradient direction operator in terms of accuracy and precision with respect to
the specified image intensity function and observation noise level. By the discussions
leading to Equation (4.8), we know that the performance of the gradient magnitude
estimate is monotonic with «, hence is directly related to the precision of the direction

estimate. Therefore we do not carry out a separate characterization for it.
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Figure 4.3: Illustration of the square-aperture sampling. The continuous step edge
passes through the center pixel of the neighborhood. The orientation of the edge is
and the displacement from the center of the center pixel is d. The darker and brighter
sides of the edge have intensity values I; and I, respectively.

In this work, we focus our attention on the image intensity data from the square-
aperture sampling of the straight step edge. This intensity data was used in a number
of studies in gradient estimation and edge detection [96, 163, 65]. This is well illus-
trated in Figure 4.3 which mimics the illustration in [96].

A step edge in any orientation # passes through the center pixel of the neighbor-
hood. It does not have to pass through the center of that pixel. The perpendicular

distance from the center to the edge is the displacement d of the edge. The displace-

0.5 0.5

ment d takes the value in the range [—_22;, 2]

When the step edge passes through a pixel and divides it into two parts having
areas A; and A; with A; + A, = 1 (the unit being the area of a pixel), the intensity
value for this pixel is I = I A, + I, A, where I, and I, are the intensities on each side
of the step edge. Pixels lying entirely on one side of the step edge have the intensity
value for that side of the edge. (The contrast of the edge is therefore |I; — I5|.) We

only use the unit-contrast edge, i.e., intensity values I, = —0.5 and I, = 0.5 for the
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two sides of the edge. Various signal to noise ratio is achieved by varying the noise
variance. Here is an example of the noise-free unit-contrast step edge of 0° gradient

orientation in the 5 x 5 neighborhood.

-0.5 —05 0 0.5 05
-0.5 —05 0 05 05

-0.5 —05 0 05 05 (4.18)
—0.5 —05 0 05 05

—0.5 —05 0 05 05

4.3 Optimal gradient operator design

In the previous analysis of gradient operator performance, we discussed the gradient
orientation estimation error in two separate parts, i.e., the estimate bias and the
random deviation. However, these two parts are not separately identifiable in real
applications where the true gradient orientation is unknown. Therefore, the root-
mean-square (RMS) error for the gradient orientation estimate is a more appropriate
measure for the gradient operator performance in real applications. In the following,
we formulate the optimal gradient operator design problem as a minimax problem
where the worse-case RMS error needs to be minimized.

Let the row derivative mask of the gradient operator be denoted by A, which is
obtained by arranging the elements in the mask in the row-major order into a column
vector. Let the unit-contrast step edge with gradient orientation 6y and displacement
do be denoted by e(fo, do). e1(bo, do) is a column vector with the elements of e(6p, dy)
in the row-major order, and e; (6o, do) has them in the column-major order. Applying
the row mask and column mask on e(fy,dg) gives the two elements of the gradient

estimate
Hi (h, 90, do) =< h, e1 (90, do) > /.L2(h, 90, do) =< h, €s (90, do) > (419)

where < .,. > stands for taking the inner product. Let the variance of the additive
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white Gaussian noise be denoted by o2. The input SNR defined as the ratio of the
edge contrast over the noise standard deviation is Q = i The gradient orientation

estimate given by the operator h is
H(h, 90, do) = atan2(u1(h, 00, do), /,Lz(h, 90, do)) (4.20)

and the variance of the estimate is controlled by the concentration parameter

h,6y,dy)% + h, 8y, dp)?

(R, b, do) = \/ #a(h, b o)+ gl Bus o) (4.21)
p(h, 6o, do)? + pa(h, 6o, do)?

Q2 4.22

\/ < h,h> ( )

= Ko(h,60,do)S2 (4.23)

where xq(h,80,dy) = \/ “‘("'9°'d°f,:‘ii‘;(h’9°’d°)2 is referred to as the SNR gain of the
operator & for the step edge with orientation 8y and displacement d,.
‘The worst-case mean-squared error (MSE) in the gradient orientation estimate is

e(h) = max

—6,)? " 2 £t k(h, 0 t}
goe[o’zﬂ{doe[_g(lﬁmoo)]{(g(h’go,do) 00+ [ £t (b, o, o)

(4.24)
where D(6,) specifies the range of the possible edge displacement, and

f(&x) = fo(t:0, )

is the pdf of the orientation distribution (Equation (4.14)) with mean value of zero.

Note that the angular range of [0, %] is enough for the range of 6, in Equa-
tion (4.24). This is due to the symmetry in the gradient orientation estimation.
For this range, D(6y) = gcos& — 6y) = 0.5(cos by + sin ), which allows the step

discontinuity to pass anywhere through the center pixel of the neighborhood.

4.3.1 Optimal gradient operator design — problem statement

For a given input signal-to-noise ratio §2, determine the real-valued elements of A to

minimize e(h) in Equation (4.24).
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4.3.2 Issues in solving the optimal gradient operator design problem

Trying to analytically solve the problem just stated is extremely difficult, if not im-
possible, by ordinary analytic methods of solving optimization problems. We consider
solving the problem using numerical techniques.

The dimensionality of the variable in numerical optimization is a very important
issue. For moderate neighborhood sizes, the number of elements in A is large. For
example, for the 5 x 5 neighborhood, there are 25 numbers in h. However, we know
they do not have to be independent variables in the optimization process. From
practical experience, we know the row derivative mask of the gradient operators should
be symmetric about the center column, and anti-symmetric about the center row. For
the 5 x 5 neighborhood, the mask has the structure
( —ap —a2 —az3 —az —a \
—a4 —as —ag —as —aq

0o 0 0 0 0 (4.25)

ay as ag as a4

\ ay as as az al }
Therefore, we can reduce the number of free variables to 6. If we want three digits
of fixed-point precision for the variables, they can take values in the set of integer
numbers -1000 through 1000. The exhaustive brute force search of the parameter
space needs more than 10'® computations of e(h). Therefore, such computation is
not feasible on current computers. Instead, some numerical search algorithm has to
be used. In order to reduce the chance of being trapped in local minima, the initial
masks should use good operators such as the IDDGO, extended Sobel, and dG. Also,
multiple runs should be attempted with different initial masks.

Another way of reducing the search space is to impose some more structure on
the mask, letting it to take some parametric form with a smaller number of free
parameters to be determined. Examples for this are the IDDGO, dG, and Sobel-

class operators, each of which has only one free parameter, namely the integration
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domain size L for the IDDGO, the smoothing factor s for the dG operator, K3 and
K5 for the 3 x 3 and 5 x 5 Sobel operator. Exhaustive search over their possible
ranges yields the best operators within their respective family of operators. Since
most readers are more familiar with the simpler Sobel-class gradient operators, we
discuss them first in Section 4.4. Some general observations made there also applies to
the discussions on the IDDGO and dG operators, which are presented in Sections 4.5

and 4.6, respectively.

4.4 Optimizing the Sobel-class gradient operator

The row derivative masks of the 3 x 3 and 5 x 5 Sobel-class gradient operators have

the form [65]

-1 —-K; -1
o 0 0 (4.26)
1 K3 1

and
[ —05 —08 -1 —08 —05)

-04 -1 -Ks -1 —04
0 0 0 0 0 (4.27)
0.4 1 Ks 1 04

\ 05 08 1 08 05)

In the following, we decide the optimal values for K3 and K5. As expected, these
values change with the input SNR.

Notice that the general form of the optimal gradient operator in the 3 x 3 neigh-
borhood has the form

0 0 0 (4.28)
ai a2 ap
Since a positive multiplicative constant does not matter in the gradient orientation

estimation, this form is equivalent to the 3 x 3 Sobel-class operator with a; = 1 and
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az/a; = Kj. Therefore, by any optimality criterion, the optimal member of the 3 x 3
Sobel-class operators is exactly the optimal 3 x 3 gradient operator.

In our experiment, to achieve the numerical precision of two to three digits, we
choose a; = 100 and vary a, in the range of integer numbers from -1000 to 1000.
The optimal value is that which gives the smallest value for the cost function given
in Equation (4.24). For each input SNR value of interest, the optimal values for
K3 in the Sobel-class operators are obtained and shown in Figure 4.4(a). Shown in
the same figure are the curves for the SNR gain xy and the absolute value of the
corresponding bias component of the error for the resulting optimal operator. As can
be seen clearly, with the increase of input SNR, the optimal operator reacts with a
decreasing . This is the reasonable behavior — when the SNR is high, less capability
in noise suppression is needed and more emphasis should be put on reducing the bias.
The achieved minimax RMS orientation estimation error is shown as the dashed curve
in Figure 4.4(b).

There are, however, several interesting behaviors in the plots that deserve some
more discussion. First, we observe that, for a low SNR range of less than 3, the optimal
value for K3 remains a constant value of about 1.0. This is a desirable robustness
property of a gradient operator with respect to the input SNR, because it eliminates
the need for automatic parameter selection, which is important but often difficult.
However, this robustness is weakened for higher input SNR values, as the optimal K3
starts to change with the SNR. This pattern of behavior is also observed for the 5 x 5
Sobel-class operator and the 5 x 5 dG-class operator.

Secondly, we observe that the optimally chosen member of the Sobel-class operator
has zero bias component in the minimized cost function (the minimax error) for
the input SNR less than 3. For higher SNR values, the optimal operator no long
keeps a zero bias component. However, it achieves a larger value for the SNR gain
kg, therefore, having more power in noise reduction. The reason for such sudden

presence of a bias component is related to the change in the relative importance of
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the two terms in the cost function, i.e., the bias term and the random deviation term
in Equation (4.24). Remember that the random deviation term is a monotonically
decreasing function of ko2? where Q is the input SNR. At a given low SNR value,
the random deviation term dominates the cost function, and it is very sensitive to
any change in x,. The edge pattern for the 45° orientation and v/2/2 translation (see
last section) has the smallest ko among all orientations and translations considered.
This is because that the effective signal energy in the 3 x 3 neighborhood for this
edge pattern is the smallest. This smallest xq yields the largest value for the random
deviation term in the cost function. For edge patterns with other orientations and
translations, although the bias term might be non-zero, the increase in %, is enough to
reduce the random deviation term by a magnitude that is more than the magnitude
of the bias term. Therefore, the worst-case error occurs at 45° which has zero bias.

As the input SNR increases, for any given edge pattern, the magnitude of the
random deviation term reduces quickly, while the bias term remains constant. There-
fore, the bias term quickly gains importance. When the bias term is greater than
the difference in the random deviation term due to two different &, values from two
different edge patterns, the total error for the 45° edge pattern will become smaller
than that for some other edge pattern which has a non-zero bias term. At this time,
the worst-case error occurs for an edge pattern with a non-zero bias and a larger
Kg, causing the sudden presence of bias and the associated sudden increase in xq in
Figure 4.4. Notice that this behavior is common to all other gradient operator classes
studied in this chapter. The same explanation applies to those operators, too.

The behavior of the optimal member of the 5 x 5 Sobel-class operators are shown
in Figure 4.5. Notice also the behavior of a constant K5 for SNR less than 3, and
the absence and presence of a bias component in the minimax error for SNR. ranges
less than and greater than 4.1, respectively. From this, we conclude that it is just a
coincidence for the optimal 3 x 3 Sobel-class operator to have the same input SNR. of

3 for the two behaviors discussed above.
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Figure 4.6: Illustration of the IDDGO. The integration of the directional derivative
is done within the dashed line denoted rectangular area.

4.5 Optimizing the IDDGO

4.8.1 The integrated directional derivative gradient operator

The IDDGO was introduced by Zuniga and Haralick [163] to improve the gradient ori-
entation estimation quality of the facet model based operator. The idea is illustrated
in Figure 4.6. When estimating the gradient vector from the least-squares fit by a bi-
variate cubic polynomial to the observed intensity function, the average (integration)
of the directional derivative over a rectangular neighborhood is used. For a direction
@ of interest, the boundaries of this rectangular neighborhood are parallel and normal
to 6. The directional derivative of the estimated intensity function along direction 6
is averaged (integrated) over the neighborhood of size 2W x 2L. The direction along
which this average is maximized is the estimate for the gradient direction, and is
denoted by Gyax-

In most computer vision applications involving gradient estimation, square neigh-

borhoods are used. Here we are only interested in square neighborhoods and square
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integration domain (L = W) for the IDDGO.
The integral of the directional derivative in direction @ is given by [163]

F, 1 i 6 in 6 in 6 8)dpdw 4.29
g—E/_L/_Lfg(pcos +wsiné, —psin § + wcosf)dp (4.29)

where fy(-) is the first directional derivative of the image intensity function f(-) in
the direction 8. L specifies the size of the integration domain.

The gradient estimate is [163]
G = FoyxUonax (4.30)

where ug,, . is the unit vector in the direction along which the integration of the
directional derivative achieves its maximum value Fy,, ,, -

The solution is found to be

Ovax = tan~'— (4.31)
Foyax = V D% + D% (4.32)

where

D, = L*K;+ %Lng + K, (4.33)
Dy, = L2K10 + éLng + K3 (434)
The {K;|i = 2,3,7,8,9,10} coefficients are from the cubic facet model parameters

(163, 60]. In this model, the underlying intensity function is assumed be a bivariate

cubic polynomial
f(r,¢) = K1+ Kor+ Kzc+ Kyr* + Ksre+ Kec? + Kqr3 + Kgric+ Korc® + Kyoc® (4.35)

The coefficients (K’s) can be estimated by a least-square-error surface fit through the
discrete orthogonal polynomials (DOP) [60]. For any given neighborhood size and

true gradient direction 6%, the values of the coefficients can be computed exactly.



Alternatively, the row derivative kernel can be obtained from the kernels for the
cubic facet model parameters. For the 5 x 5 neighborhood, the row derivative kernel
is
[ _11I2+31 -5I2—5 —3L2—17 —5I[?—5 —11L%+31 )
1202 — 44 15L% — 62 16L2% — 68 15L2 — 62 1202 - 44
on 0 0 0 0 0
—12L2+44 —15L%+62 —16L>+68 —1502+62 —12L%+44
\ 11L2-31  5L%+5 3L2 +17 5L2+5  11L2-31 )

The column derivative kernel is just the transpose. The sum of squared entries is

1

2 __
A= 2520

(37L* — 262L% + 527) (4.36)

The determinant of the right-hand side of the above equation as a quadratic function

of L? is less than 0. Therefore, A? is always positive for all values of L.

4.9.2 Mean and variance of the IDDGO direction estimate

When noise is present in the observed intensity function, the facet model coefficients
are random variables. The gradient direction estimate as given in Equation (4.31) is
a function of the coefficients, and hence is also a random variable. We are interested
in the mean-squared error of its deviation from the true direction value.

When the noise can be modeled as additive white Gaussian, the facet model
coefficients are multivariate normal random variables. The mean values depend on
the true underlying intensity function, and the covariance matrix can be estimated.
In particular, {K5, K7, Ko} and {Kj, Kyo, K3} are two correlation groups, and there

is no correlation between the two groups. The two groups have the same covariance

matrix.
2 2 2 2 2 2
Tks OKa,Kr  TKa,Ks ks OK3,K10 9K3,Ks
OK7.K2 9Kz Tk, Ko Ok Ks Ok TkioKs (4.37)

2 2 2 2 2 2
OKko,K2 Y9Ko,K7 Ok Oks,Ks 9Ks,Kio OKs
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For the 5 x 5 neighborhood, the values are

0.2091 —0.0472 —0.0143
—0.0472  0.0139 0 |o? (4.38)
—0.0143 0 0.0071

where o2 is the variance of the additive noise, and can be estimated from the residual
fitting error (See Section 4.2). As two groups of multivariate normal random vari-
ables, {K>, K7, Ko} and {Kj, K, K10} are independent since they are uncorrelated.
Therefore D; and D, as given in Equation (4.33) and (4.34) are independent normal
random variables.

The mean values of D; and D, depend on the underlying noise-free intensity func-
tion and the neighborhood size over which the cubic facet parameters are calculated.
D, and D, have the same variance \20?, where A? is a constant depending only on the
neighborhood size and L. As a matter of fact, \? is the sum of the squared elements
in the equivalent kernel for computing D; or D-.

1 2 2
No?=(ok + §or§(9 + gaﬁ{h Kg) L* + (20@2, K+ goﬁ(z, Kg) L? +o%, (4.39)

For the 5 x 5 neighborhood, A? = 0.0147L* — 0.1039L? + 0.2091 — the same result
as Equation (4.36) obtained by using the IDDGO row derivative kernel at the end of
Section 4.5.1. For large neighborhood sizes, finding the analytic expression, such as
the one in Equation (4.36), of the IDDGO row derivative kernel in terms of L can be
rather tedious. On the other hand, the covariance matrix of the facet parameters can
easily be computed numerically. Therefore, it is preferable to use the Equation (4.39)

for computing A2.

4.5.3 Finding the optimal integration domain size

Now that the expressions for all terms involved in Equation (4.24) are determined for

the IDDGO, the optimal gradient operator design problem constrained in the IDDGO
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class operators reduces to searching for the best value of L which yields the smallest
value for Equation (4.24).

For the neighborhood size of 5 x 5, the optimal value for L and the corresponding
SNR gain xo are plotted versus the input SNR level in Figure 4.7(a). We observe
a nice property of the IDDGO in that over a large range of input SNR levels, the
optimal integration domain size L only changes very slightly. This property provides
the robustness of the operator since in real applications the input SNR cannot be
estimated unreliably. The achieved minimax RMS error at the examined input SNR

levels with its bias and standard deviation components is shown in Figure 4.7(b).

4.6 Optimizing the dG gradient operator

In his edge detector, Canny [19] uses what has become known as the dG operator
for gradient estimation. This operator is the tensor product of a smoothing Gaussian
along one direction with the derivative of that Gaussian along the perpendicular

direction. The row-derivative kernel is expressed as

T _r2:c?
he = e =E (4.40)

where s > 0 is the standard deviation of the smoothing Gaussian. The bigger s is,
the greater the smoothing effect is.

In the 1-D formulation, the derivative of Gaussian enjoys many good properties.
It approximates very closely to the numerically obtained optimal digital filter that
maximizes Canny’s edge criterion function. It is the exact solution to the alternative
edge location criterion function proposed by Tagare et al [149]. However, there has
not been extensive study as to the choice of the smoothing factor s of the smoothing
Gaussian relative to the filter size. From the plot of the optimal digital filter in [19],
the filter size seems to be big enough to hold most of the mass of the Gaussian. In
practice, standard implementations of the Canny’s edge detector make their local

neighborhood cover four to six times the standard deviation of the center part of the
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Gaussian. (In the continuous case, six times the standard deviation at the center part
covers over 99.7% of the mass.)
The kernel for the dG operator is easily obtained by sampling the continuous filter

in Equation (4.40). For the 5 x 5 neighborhood, this is

(—211.8 —2u5 —2ut —2¢° —2u8\

—u® —u? —u —u? b
1
4.41
5 0 0 0 0 0 (4.41)
u® u? u u? u®

1
where u = e~ 2:Z. The sum of the squared elements is

A2 (8u'® + 10u™® + 4u® + 2u* + u?) (4.42)

= 4n2st
For each given input SNR, the optimal value for s is found which minimizes the
worst-case RMS error of Equation (4.24).

For the neighborhood size of 5 x 5, the optimal smoothing factor s and the corre-
sponding SNR gain ko are plotted versus the input SNR level in Figure 4.8(a). The
achieved minimax RMS error at the examined input SNR levels with its bias and
standard deviation components is shown in Figure 4.8(b). The computation of the
optimal value for s in neighborhood sizes other than 5 x5 can be carried out in exactly

the same fashion as is done here.

4.7 Discussions

4.7.1 Comparison of optimally tuned operators

We have applied the theory for deriving the optimal gradient operator on three classes
of 5 x 5 operators, namely Sobel-class, IDDGO-class, and dG-class. The numerical
search procedure outlined in Section 4.3.2 for the full 6-parameter 5 x 5 gradient op-

erator is also carried out. The resulting operator is referred to as the fourth class. It
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is supposed to be the optimal gradient operator for the given input SNR. The coef-
ficients in the row-derivative kernel and the resulting gradient orientation estimation
performance are shown in Figure 4.9. Now for each input SNR in the range of 0 to
10 with the interval of 0.1, we have four operators, each being the optimal member
of its class tuned to the specified SNR.

The achieved RMS error plots for these operators are compared in Figure 4.10.
For the purpose of comparison, the curves are also shown for two commonly used
operators, namely, the dG operator with fixed s = 1.0 and the Sobel operator with
fixed K5 = 2. It can be seen from Figure 4.10(a) that the optimal operators from the
four classes are fairly close in their performance, which is quite noticeably better than
the dG with fixed s = 1.0 and Sobel with fixed K5 = 2. To allow the study of the
detailed differences between the operator classes, two plots of their relative values are
shown in Figures 4.10(b) and 4.10(c). In Figure 4.10(b), the achieved minimax RMS
error of the fourth class is subtracted from the errors for all classes, and the remaining
part of the error is plotted. The unit is the angular degree. In Figure 4.10(c), this
remaining part is represented as a percentage of the value that is subtracted, i.e., the
achieved minimax RMS error of the fourth class operator.

From these plots, we observe that the fourth class operator is indeed the best
performing operator through out the input SNR range of 0 to 10. None of the three
other classes can achieve the same low level of error. For these three classes, we
observe that, for high input SNR. values greater than 4.5, the IDDGO class is the best
and its performance is very close to that of the fourth class. For SNR less than 4.5,
the dG class is the best among the three. The Sobel class is never the best among
the three.

The dG operator with fixed s = 1 and Sobel with fixed K5 = 2 both compare very
unfavorably with the tuned operators from the four classes for the low SNR range.
These tuning parameter values are appropriate only for some very high input SNR

levels.
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4.7.2 Comparison of fited members of operator classes

The optimal operators we obtained in the experiments just described are tuned to
the given input SNR levels. However, in real applications the true SNR is not known.
Although it can be estimated, the estimated value is expected to be quite noisy.
Iterative procedures can be attempted to improve the estimation quality. One related
example is the adaptive bias correction technique for the orientation estimation. This
type of technique is quite likely to fail for low SNR situations [96].

For robustness of the operation, ideally we wish to use a single value for the
tuning parameter in the gradient operator that would work reasonably well for all
SNR levels. Alternatively, we can break the entire range of SNR levels of interest into
a very small number of intervals and identify a value for the tuning parameter for each
of the intervals. The more intervals we break the entire SNR range into, the better
performance we can have for the operator to work in its designated interval. The
down side is that it is more likely that the estimated SNR level is out of the interval
which contains the true SNR level. This would result in the use of the operator tuned
for the wrong SNR and hence the degradation in performance. We need to strike
a balance between the operator performance within its designated SNR interval and
the probability that the correct SNR interval is identified by the estimated SNR.

We observe that the achieved minimax RMS errors of the gradient operators as
functions of the input SNR roughly take the shape of an exponentially decreasing
function. The “knee” of the curve is a good point to break the curve into a fast
decreasing part and a slowly decreasing part. We identify the knee to be the point
with the maximum curvature [60, Section 11.5.7]. The curvature of the smoothed
minimax RMS error curves is shown in Figure 4.10(d). We see the knee occurs at
around input SNR of 1.9 to 2. Therefore, we roughly break the entire input SNR
range of 0 to 10 into two pieces, namely the low SNR range of 0 to 2 and the high
SNR range of 2 to 10. We identify two operators from each class for operating on the
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Figure 4.11: Row derivative kernels for the 5 x 5 Sobel operator
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Figure 4.12: Row derivative kernel for the 5 x 5 IDDGO with L = 1.841 for both low
and high SNR ranges

two SNR ranges. The operator tuned to SNR=1 is used for the low SNR ranges and
the operator tuned to SNR=6 is used for the high SNR range. The row derivative
kernels for these operators are shown in Figures 4.11, 4.12, 4.13 and 4.14. Notice
that, for the IDDGO, since the single value of L = 1.841 is optimal for the entire
SNR range of 0 to 10, there is only one kernel.

From the dG and the fourth class kernels in Figures 4.13 and 4.14, we see that
for the lower SNR range, the mass of the operators concentrates less to the center
column. This increases the averaging effect of the kernel and results in better noise

suppression. For the higher SNR range, less noise suppression capability is needed,
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Figure 4.14: Row derivative kernels for the optimal 5 x 5 operator obtained by nu-
merical search (the fourth class operator).
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and the mass concentrates more to the center column.

The performance of these operators is shown in Figures 4.15 and 4.15 for the
low and high SNR range, respectively. The performance of these operators are again
very close to each other, with generally the same pattern as observed in Figure 4.10.
One particular observation is that, when the input SNR is greater than 8.5, the
fixed IDDGO actually out-performs the optimal 5 x 5 operator obtained by numerical
search. This is simply because that operator is only tuned to the input SNR of 5. The
generalization capability of the optimal operator to cover other input SNR values is
not as good as that of the IDDGO. If the input SNR is expected to be at this high
value range, the optimal operator tuned for, say, SNR=10 can be used to achieve

better performance. The row derivative kernel for this operator is

[ .0.6595 -1.5865 -1.8473 -1.5865 -0.6505
-0.3736  -0.8892 -1 -0.8892 -0.3736
0 0 0 0 0
0.3736  0.8892 1 0.8892 0.3736
\ 06595 1.5865 1.8473 1.5865 0.6595 /

The performance of all operators studied here depends heavily on the value of the
tuning parameters. We make a special note on the dG operator which is used in the
popular Canny’s edge detector. In most common implementations of the operator,
the value 0.6 to 1 is use for the smoothing factor s when the neighborhood size of
9 x 5 is used. As is observed in the plots, its performance compares very unfavorably
with the values chosen here, i.e., s = 1.85 for the low SNR range and s = 1.41 for the
high SNR. range.

4.8 Validation experiment for the MSE computation

In the previous experiments that search for optimal tuning parameters of gradient

operators, the mean-squared error (MSE) in the criterion function (Equation (4.24))
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is computed through numerical evaluation of the analytical expression, which is based
on the distribution model Equation (4.14) for the orientation estimate. Although the
derivations that lead to Equation (4.14) are rigorous, we still wish to experimentally
validate the results from these computations by comparing them with those obtained
from Monte Carlo simulations. This is conducted by repeating the gradient operator
optimimization experiment with a new module for computing the MSE. In this new
module, noisy observations of image neighborhood intensity values are simulated by
adding white Gaussian noise to the noise-free edge patterns. A large number of such
noisy observations are generated, on which the gradient operator is applied. The
gradient orientation estimates made by the operator are used to compute the MSE,
which is just the average of the squared difference between the estimate and the true
orientation.

In this Monte Carlo simulation, variation in the observed values due to limited
sample size is inevitable. A balance point needs to be determined between the sam-
pling variation and the amount of computation involved. For a chosen sample size, the
expected sampling variation can be estimated. The values observed in the previous
experiments with numerical evaluation of the distribution model should fall within
the range of the expected sampling variation.

In our experiment, we decided on a sample size of 10000. This means that, for each
combination of the value of the gradient operator tuning parameter, the sampled value
of the true gradient orientation, and the sampled value of the true edge translation,
10000 noisy observations are simulated and used to compute the MSE. This requires
a large amount of computation. For example, with 46 steps to cover the [0°, 45°]
orientation range and 21 steps to cover the entire range of edgel translation, the
search for the optimal 5 x 5 Sobel operator takes more than four hours to run on
a 500MHz Pentium III CPU, whereas it takes less than a second for the numerical
evaluation method without the Monte Carlo simulations.

Due to the large amount of computation involved, the validation experiment is
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only carried out for the 5 x 5 Sobel operator at ten sparsely sampled SNR. values:
1,2,...,10.

Figure 4.17(a) compares the optimal values for the tuning parameter K5 in the
5 x 5 Sobel operator obtained in the simulation based and in the numerical evaluation
based optimization experiments. Figure 4.17(b) compares the achieved minimax RMS
error. Figure 4.17(c) is the bar-plot for studying the significance of the difference in
the achieved MSE between the two methods. At each input SNR value, the center
of the vertical bar is located at the MSE from the Monte Carlo simulations. The
full length of the bar is six times the estimated standard deviation of the MSE due
to sampling variation. As can be seen from the bar-plot, the difference between the

Monte Carlo simulations and numerical evaluation is within the sample variation.

4.9 Experiment on the smoothed edge

Although the formulation developed in this chapter is general and applicable to any
image intensity function of interest, the previous discussions mainly concern the sharp
step edge in the examples and experiments. The reason for doing that is to use
the simplest example to illustrate the main idea of the formulation. Now that we
have completed the study of the performance of the various gradient operators on
the simplest sharp step edge, we are ready to study the more realistic case of the
smoothed edge.

Due to the effects of imaging sensor optics, shading and atmospheric scattering,
sharp intensity changes often appear as smoothed or blurred intensity transition in
the image. This blurred intensity transition can be modeled by a sigmoid function

[38]
z<-—r

o=

I(z)=4{ :-Ll(arccosZ—2,/1-%) —r<z<r (4.43)
1
5 T>r

where the blur parameter r controls the spatial extent ([—7, 7]) over which the intensity
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some sigmoid functions used for smoothed edge profiles
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Figure 4.18: Plots of sigmoid function with different blur parameters.

changes smoothly from the saturated minimum value to the saturated maximum
value. Some examples of this sigmoid function with particular values for r are shown
in Figure 4.18.

To understand the impact of the blur on the gradient estimation performance, we
conduct a set of experiment similar to that conducted in Section 4.7.1. The difference
here is that the SNR level is held at constant and the blur parameter is varied.
For each value of the blur parameter, the noise-free intensity values of the blurred
trapsition are first determined, to which independent noise values are then added.
There is no further smoothing after adding the noise. The four classes of gradient
operators, i.e., the Sobel-class, the IDDGO-class, the dG-class, and the fourth class
(see Section 4.3.2), are individually tuned to their optimal performance (smallest
worst-case RMS orientation estimation error) on the blurred image.

The experiment is conducted at the SNR. level of 5. The blur parameter r is varied
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over the range [1,5]. The achieved minimax RMS errors in the gradient orientation
estimate are used as the measures of operator performance. Also, the values for the
optimal tuning parameters of the operators are recorded to show the sensitivity of the
operators to the change in the amount of blur in the image. These values are plotted
against the blur parameter r in Figure 4.19.

From the plots, we observe that the optimal 5 x 5 operator from the numerical
search procedure can again be made to adapt well to the image blur and yield the
best performance. The next best performance comes from the dG operator, which
performs noticeably better than the Sobel and IDDGO operators. The IDDGO oper-
ator performs better than the Sobel operator for up to medium (r around 2) amount
of blur, and performs not as good for larger amount of blur. This experiment result
suggests that the IDDGO operator does not adjust very well to significant amount of
image blur of this type.

Similar to the situation in the experiment with varying SNR, the IDDGO operator
is again most insensitive to the amount of change in the image, in this case the amount
of blur. This is a preferable property since in real applications the amount of blur is
often unknown and difficult to estimate. The insensitivity of the IDDGO operator to
the amount of blur renders the robustness to unexpected situations.

When there is very significant amount of blur (r = 5), the noise-free image inten-
sity profile becomes very flat, as shown in Figure 4.20(a). The optimal 5 x 5 operator
converges to the Prewitt operator [163, 60], whose row derivative mask is shown in
Figure 4.20(b). The explanation is that, as the amount of blur increases, the effec-
tive SNR in the observed local image neighborhood decreases. To compensate for
the decreased SNR, the optimal operator changes towards the matched filter, which

maximizes the output SNR.
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Figure 4.20: Intensity values of very significantly blurred edge and the Prewitt gra-
dient operator mask. (a) Intensity values of a blurred edge with the blur parameter
r = 5 and true gradient orientation of 0°; (b) The column mask of the Prewitt oper-

ator.

4.10 Conclusion

In this chapter, we address the optimal gradient operator design problem. The discus-
sion is based on a general framework for characterizing the performance of gradient
direction estimation. The quality of gradient magnitude estimation is discovered to
be linked directly to the precision of the direction estimate. This framework can be
used for a wide class of linear, shift-invariant gradient operators to study their per-
formance. Analytical expressions for the bias, standard deviation and mean-squared
error for the gradient direction estimate are obtained. The operator characterization
results using these expressions agree very closely with the empirical simulation based
studies reported in the literature. Full characterization of any gradient operator un-
der any conditions of interest can now be carried out in this framework without the
need to conduct empirical simulations, which intrinsically involves uncertainty from
the use of random samples.

We formulate a minimax optimization problem for the design of gradient operators.
The worst-case mean-squared error in the gradient direction estimate is minimized
in the search for the optimal operator. The problem is solved numerically for neigh-

borhood sizes 3 x 3 and 5 x 5. Optimal operators for larger neighborhood sizes, for
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any SNR level of interest and for any other edge types can be obtained by following
the same procedure. As an example, the smoothed edge image modeled by a sigmoid
function is also used in the experiment. For the 5 x 5 neighborhood, three classes
of popular gradient operators are optimized. As expected, we observe that image
blur causes gradient estimation performance to degrade significantly for all operator

classes.
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Chapter 5

EDGEL LOCATION UNCERTAINTY
CHARACTERIZATION

—

5.1 Introduction and background

In our FLIR ATR application, boundary contrast is the primary visual cue for target
detection and recognition. In Chapter 3 we describe how a weighted average type of
scheme can be used for accumulation of the contrast evidence. This scheme makes
use of the fact that high contrast boundary points can also be well localized spatially.
In this chapter, we quantitatively study the relationship between boundary point
contrast and location uncertainty. The study is carried out in the edge detection
framework. The result of the derivation is used in the numerical evaluation of the

boundary point location uncertainty as a function of the contrast.

5.1.1 Location estimation

Local neighborhood gradient based edge operators, e.g., [51, 19], search the maximum
in the derivative of the image intensity surface along the direction of the gradient, or,
equivalently, the zero-crossing in the second directional derivative in that direction.
Although it has been argued that the gradient orientation estimate is usually quite
noisy [96, 163], the analysis of the localization error of edge detectors has yet remained
a one-dimensional formulation. The image intensity profile along the cutting plane in
the direction of the gradient estimate has been studied and the radial localization error
along that direction has been examined [19, 149, 17, 150]. The error in the orientation

of the cutting plane has not been incorporated in the error analysis of edge localization
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until recently. Marimont and Rubner [98] were the first to combine orientation and
radial localization distributions to compute the edge location probability for edge
pixel detection.

To distinguish single edge pixels from edge features which usually consist of mul-
tiple edge pixels, we use the term edgel to refer to edge elements which are just single
edge pixels. The orientation of the edgel is the gradient orientation, and the location
of the edgel is the zero-crossing in the second directional derivative.

In this chapter, we incorporate the gradient orientation estimation error into the
study of the edgel location estimation. The edgel localization error is then a two-
dimensional vector as opposed to the scalar used in previous analyses [19, 149, 17, 150].
This results in a more accurate characterization of the relationship between contrast

and location uncertainty.

5.1.2 Background

We now restate some technical details concerning edgel measurements in gradient
based methods. The underlying assumption is that the noise can be modeled as

zero-mean white additive Gaussian.

e By the discussions in Section 4.2, the distribution of the orientation estimate 8

has the pdf [96]

2 1  kcos(d—8 2 c0s2(6 — 0
fo(8l0s, ) = exp (_%) {g_*_rcoS\(/% o) exp (fc cosé 0))

ein(=rm)) o

where 0y is the true underlying gradient orientation and « is the gradient opera-
tor output SNR. This distribution is symmetric about 6y. The output SNR « is
also the concentration parameter, which controls how much the distribution is
concentrated around 6,. The bigger & is, the more concentrated the distribution

is.
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For any given gradient operator, x is given by
K= KQQ (5.2)

where Q2 is the input SNR defined as ratio of the true step edge contrast over the
standard deviation of the noise. In practice, Q2 is estimated by Equation (4.12).

Ko is a constant determined by the gradient operator itself

2 2
+
Ko = ‘/“1’_0/\5_5‘_2_’9 (5.3)

where A? is the sum of squared elements of the gradient operator kernel; ;g
and pao are the two components of the gradient computed by the operator on
the noise-free unit-contrast step edge. See Section 4.2 for details on kg and 2.
In the 5 x 5 neighborhood with a true gradient orientation of 0°, k¢ is 1.28 for
the standard cubic facet model estimate and 1.95 for the integrated directional

derivative gradient operator (IDDGO) [163, 60, 96].

The estimated radial edgel location ¥, taken along a line in the gradient di-
rection, is determined in each neighborhood for the center pixel in that neigh-
borhood. It is determined to be the location of the zero-crossing of the second
directional derivative in the direction of the gradient. The derivatives are com-

puted by the IDDGO which is based on the cubic facet model [51, 60].

In the edge detection application, only the negatively sloped zero-crossing is
of interest. Positively sloped ones do not correspond to authentic edges and
are called “phantom” edges [25] which most often result from stair-case like
image intensity patterns. The impact of the sign of the slope is discussed in

Section 5.5.

When the image is noisy, even along the true gradient orientation, the estimated
radial edgel location % is different from the true edgel location. The localization

error from reasonable detectors has a distribution that is symmetric about 0.
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e Using the cubic facet model, ¥ is determined to be the inflection point of the

cubic polynomial along the direction of the gradient orientation.
= —— (5.4)

where ¢; and &3 are the estimated coefficients for the second and third order

term of the cubic polynomial. Due to the observation noise,
é2 ~ n(cQo, k30?) é3 ~ n(c3Q0, K50%)

where ¢ and cj are the true value of the cubic polynomial coefficients; x, and
k3 are constants from the cubic facet model; and o2 is the variance of the

observation noise.

Using the cubic facet model, o2 is estimated by €2/(N — 10) where € is the
sum of the squared facet fitting error, and NV is the number of pixels used in the
fit. (In the 5 x 5 neighborhood, N = 25.) Q is estimated by Equation (4.12).
Other constants involved in the distribution of é, and é; for the unit-contrast
step edge in the 5 x 5 neighborhood with the true gradient orientation of 0° are

¢t =0,¢ = —%, ko = 0.1196, k3 = 0.1179 (5.5)
Under the assumed additive white Gaussian noise model and using the discrete
orthogonal polynomial (DOP) [60] for estimating the facet parameters, é and

¢3 are independent of each other.

It is easily seen that
= ——="2Z (5.6)

where Z is distributed as
(5.7)



110

The term mnormal quotient is used to refer to the family of distributions for
the ratio of two independent normal random variables with unit variance. The

probability density function (pdf) for this family has the form [113]

11 1 (p1 — zp2)?
fz(z | p1,pe) = 7rz2+lexP( ) 241

(zp1 + ﬂ2)2) Zpy + Mo zZpy + po
exp | i | + VT —Y———erf | ————
{ ( 2(z2 +1) V2(22 +1) v2(22 +1)
For the sharp step edge, ¢; =0 and pp = %’;—Q

1

fz(z |0, u2) = me_

{”e‘ mﬁ(m» &9

It is clear that in this situation the distribution is symmetric about 0.

<p R,

For gradient estimation, we were tempted to use the fourth class gradient oper-
ator described in Chapter 4, i.e., the operator obtained from numerically optimizing
the worst-case error criterion function over the full parameter space. However, this
operator as developed there is not appropriate for the situation here. The reasons are
as follows. The entire formulation of Chapter 4 is based on the consideration of devel-
oping the best operator for a specific and known SNR level. In the ATR application,
the true SNR is not known. A good method for SNR estimation is required before
the operator can be effectively applied. This method has not yet been developed, and
is a topic of future research. On the other hand, the IDDGO has a natural method
for noise variance estimation from the local neighborhood, which is necessary in es-
timating the SNR. Also, the optimal value for the tuning parameter of the IDDGO
remains constant over a very wide range of SNR. levels, which makes it very robust
to changing SNR levels. In addition, there are a number of studies in the literature
[163, 96, 123] that report the superior performance of the IDDGO. Therefore, the

IDDGO is used for gradient estimation in this dissertation unless otherwise stated.
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step
discontinuity

Figure 5.1: Step edge detection scenario.

5.2 Edgel location estimation

The edgel location estimation scenario is illustrated in Figure 5.1. The polar coordi-
nate system is used. The true and unobserved underlying gradient orientation is 8g.
The step edge discontinuity occurs at a radial distance of vo from the origin along the
direction 65. The true input SNR is Q. The chosen gradient operator gives the esti-
mate for these as 4,9 and €, respectively. The estimate of the two-dimensional edgel
location is (¢ sin 6, cos é) in the row-column coordinate system. These estimates are
random variables. Their statistical properties characterize the relationship between
the edgel location uncertainty and the step edge SNR. This relationship is to be
used along with the polygon centroid uncertainty model to combine target boundary

contrast into a single target saliency measure.
5.2.1 Distribution of 2-D location estimate
Using the definition of conditional probability density, we have
£(8,9 | 8o,v0) = f(2 | 60, v0,8) (6 | 60, 0) (5.9)

Using the IDDGO for gradient estimation and the zero-crossing of the second direc-

tional derivative along the direction of the gradient for edgel location, the two terms
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on the right-hand side of the equation can be approximated by the pdf’s fz(-) and

fo(-), respectively. Specifically,

- _ -2 )1 K cos(d — 6y) <2eos?@-0g) (1 1 % cos(f — )
f(@]6h,v5) = € {27r+ Nors e 2 [ erf( i ,

2 2
f(@ | 60,v0,8) =~ f(4]80,v0)

3K3 . 3K
= fz(—=20| 0, ) =
Ko Ko
2 ul
= Tl—-e"'ﬁzz' 1 + 62_(;22-!-_1)__@_2___ erf _,le— . _3f§.’
m(22 + 1) J2(22 + 1) J2(z2 + 1) Ko
where
3 *
z=~ﬂi}’ K::KOQa ﬂz‘—‘&;‘
Ko K3
Q is estimated by {0 of Equation (4.12). xo, ¢}, k2 and k3 are constants from the
IDDGO. For the 5 x 5 neighborhood, ko = 1.9460, ¢ = —5, k2 = 0.1196, and
R3 = 0.1179.

The probability density function of the estimate for the edgel position in the 2-D
Cartesian space can be obtained from the above joint density function via standard

random variable transformation [21]. Notice that the Jacobian for this transformation

is 1/v/z% + 4% and causes a singularity at the origin.

5.2.2 Study of approzimation error

Since ¥ and § are both computed from the cubic facet parameters estimated from the
noisy image intensity values, 7 is not independent of 6. Specifically, not only does the
random variable ¥ depend on 6, the parameters Lo, K2 and kg its pdf f(3 | 6y, vo) are
also functions of 4, instead of the constants given earlier. Therefore, the approxima-

tion of

~

(9 | 6o,v0,8) = f(5 | Go,v0)
that we make in computing f (é, ¥ | Go, vo) is likely to cause error. The error is expected
to be most observable for low SNR levels, when § becomes very noisy and has large

deviation from 6.
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The approximation error in this situation is studied in a simple Monte Carlo
experiment. © and @ are computed from simulated noisy intensity values with a low
SNR of 0.5. The distribution of the observed orientation estimate § is shown in
Figure 5.2(a). Due to the low SNR, 6 is very noisy and the distribution is spread all
over the full angular range.

We examine the distribution of the 1-D radial location estimate 9 conditioned on
the orientation estimate § being in four angular intervals: [—m/4, /4), [7/4,37/4),
[37/4,5m/4), [—3m/4, —mw/4). These distributions are shown in Figure 5.2(b). As can
be seen clearly, the conditional distribution of ¥ for 8 being in different ranges are
very similar to each other, albeit noticeable difference exist. Specifically, the spread
of ¥ is larger, and the mode is lower, when 6 is away from the true orientation fy = 0.
The mode for § being in the first interval is about 15% taller than that for the third
interval. The sample standard deviation of % conditioned on being in the intervals
are 0.7904, 0.8496, 0.8709, and 0.8457, respectively. Comparing these with the value
of 0.7162 predicted by our formula for the case § = 6, = 0, we expect that at this
SNR level the real location distribution will be more spread out than dictated by our
formula with approximations.

Although there are noticeable differences, the pdf curves are still very close to
each other for many practical purposes. At high SNR levels, the orientation estimate
6 is distributed in a very small range around 6y. The error from the approximation
becomes hardly noticeable. From these observations, we conclude that, with the
approximation error being well tolerable, this approximation gives a much simpler
theoretical characterization of the 2-D edgel location distribution. Therefore, it is

adopted for this dissertation study.

5.2.8 Preliminary characterization of 2-D location distribution

The probability density function for the 2-D Cartesian location estimate from the

IDDGO based estimator is shown in Figure 5.3. (The pdf approaches infinity at the
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Figure 5.2: Illustration of the approximation error in assuming the independence of %
from 4. Data collected from Monte Carlo experiments at SNR=0.5. (a) wide spread
of the orientation estimate 6 over the entire angular range; (b) distribution of the 1-D
radial location estimate 7 is different for different ranges of 4.
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origin due to the singularity caused by the Jacobian in the transformation from the
polar coordinate system to the Cartesian coordinate system. The plot at the origin
shows the ratio of the probability divided by the area of a small circular neighborhood
around the origin.) The underlying image data is a straight unit-contrast step edge
in the 5 x 5 neighborhood, with 8y = 0°, v = 0, and with an input SNR of 1.

It can be seen from Figure 5.3 that the distribution of the edgel location estimate
is symmetric about the origin, which is the true edgel location. The distribution is
not rotationally symmetric and is more concentrated along the true orientation of
the gradient. As the SNR increases, the concentration is increased and the entire
distribution shrinks toward the origin. For low SNR, as is the case shown in the
figures, the variation in the orientation estimate is very large.

We note that the level contour of the pdf of the 2-D edgel location as shown
in Figure 5.3 has two very significant concavities in the direction perpendicular to
the gradient orientation. This is due to the fact that the orientation estimate is
more concentrated around the true orientation. This behavior should be common
to all reasonable edgel operators whose errors in orientation and 1-D radial location
estimate are symmetric about the true values.

Since the 2-D Cartesian location distribution is center-symmetric about the true
edge location, the Cartesian coordinates computed from 6 and © are unbiased esti-
mates. Analytical derivation of the covariance matrix of this distribution is difficult,
but the numerical values can be computed easily from the spatial spread of the pdf.
The trace of this covariance matrix is a good measure of the edgel localization per-
formance. When the SNR increases, the spread of the pdf shrinks and results in
better edge localization performance. When there is no underlying edge structure,
i.e., when the SNR reduces to 0, then there is no preference of any orientation for the
non-existent edgel. In this case, the 1-D radial location estimate follows the Cauchy
distribution. The pdf of the 2-D Cartesian edgel location estimate is then rotationally

symmetric. Although theoretically the Cauchy distribution does not have finite mo-
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Figure 5.3: The pdf of the joint distribution of orientation and 1-D radial location,
and probability of the 2-D Cartesian location. Estimated by the IDDGO. Underlying
image data is the unit-contrast step edge in the 5 x 5 neighborhood, with 0° gradient

orientation and = 1.
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Figure 5.4: The pdf of the joint distribution of orientation and 1-D radial location,
and probability of the 2-D Cartesian location as estimated by the IDDGO. Underlying
image data is unit variance white Gaussian noise (2 = 0).
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ments, we are only interested in the truncated version of it. Then it has all moments.

The pdf for the 2-D location estimate in this case is shown in Figure 5.4.

5.3 Tabulating edgel location uncertainty

At a given input SNR, the pdf of the edgel location is used in the numerical eval-
uation of the edgel location covariance matrix. The edgel location uncertainty can
be characterized by the trace or the larger of the two eigenvalues of the covariance
matrix. These as functions of the input SNR are shown in Figure 5.5(a).

It is interesting to notice that, in the very low SNR range, as the input SNR. grows,
the larger eigenvalue does not monotonically decrease as one might have expected.
Rather, it increases first! However, there is an explanation to this behavior. The most
basic reason is that the variance of the orientation estimate responds to the increase
in the input SNR earlier than the variance of the radial location estimate.

Consider the situation illustrated in Figure 5.5(b). When a point moves from P,
to P> with its radial distance from the origin held constant, i.e., |OP;| = |OP,|, the
projection on the z-axis increases with the move. At the same time the projection
on the y-axis decreases. This behavior has a central role in the explanation for the
“bump” in the curve for the variance along the z-axis.

As shown in Figure 5.5(c), when the input SNR intially starts to grow, the variance
of the radial edgel location remains largely unchanged. This roughly corresponds to a
constant radial distance from the origin. At this time, the variance of the orientation
estimate starts to decrease quickly, i.e., the orientation estimate starts to concentrate
toward the true gradient orientation which is along the z-axis. This roughly cor-
responds to a reduction in the angle from XOP, to XOP,. Therefore, there is an
increase in the projection along the z-axis and a decrease in the projection along the
y-axis. Since the variance along an axis is a weighted average of the square of the

length of the projection, this results in an increase in the variance along the z-axis,



119

and a decrease in the variance along the y-axis.

As input SNR further increases, the variance of the radial location also starts to
decrease quickly. This roughly corresponds a decrease in the length of O P, which in
turn causes the projection on the z-axis to decrease. This is when the variance along
the z-axis starts to decrease. In the entire process, the projection along the y-axis
decreases monotonically, which results in a monotonically decreasing variance along
the y-axis.

This explanation is made more concrete by quantitatively considering the following
simplified situation. Consider a uniform distribution in the shaded area of a circular

disk shown in Figure 5.6(a). The area of the shaded area is
L, 2
Sl (2m — 40) = (v — 20)p

with the unit of @ being the radian. The variance along the z-axis is

9 2 ___g t 2
o= [* P (rCoSt” it + / o (reosty at

z L o (7 —20)p2 26) p? o (m—20)p?
=0 rp r3cos?t
= 2 —————drdt
—z4+9Jo (m—20)p? "
2 pt 59 1+ cos2t

= —_ —dt
(m — 29)p2 4 J-z4o 2

- -
= 4(71'—29)(7— 20 + sin 26)

2 .
P sin 26
= 1 (1+7r—20)

This as a function of p and 6 is plotted in Figure 5.6(b). For a fixed p, V2 increases as 6

increases. However, V2 is more affected by the change in p and decreases quickly as p
decreases. In the 2-D edgel location uncertainty case, as shown in Figure 5.5(c), when
the SNR initially increases, the orientation estimate immediately starts to concentrate
toward the true orientation, which roughly corresponds to a increase in the 6 here.
The variance of the radial location estimate stays at the same level, which roughly

corresponds to a fixed p here. Hence the variance along the z-axis starts to grow.
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Figure 5.5: Uncertainty of the edgel location estimate. Orientation estimated by the
5 x 5 IDDGO. (a) 2-D edgel location uncertainty as functions of input SNR; solid —
trace of location covariance matrix, dashed — variance along the z-axis, dotted — vari-
ance along the y-axis; (b) illustration for explaining the “bump” in the variance along
the z-axis; (c) standard deviations of orientation (solid curve) and radial location
(dashed curve) estimates as functions of input SNR.
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Figure 5.6: Simplified situation that explains the increase in edgel location uncertainty
along the true gradient orientation. (a) Consider the variance V2 along the z-axis of
a uniform distribution over the shaded region. (b) V2 as a function of p and 4.

When the SNR further increases, the variance of the radial location estimate starts to
decrease quickly, roughly corresponding to a decreasing p. This causes V2 to decrease.

The correlation between the = and y elements of the edgel location is zero for the
0° step edge. For each SNR value of interest, we numerically compute the covariance
matrix and tabulate the variance in the z and y directions.

Notice that, since the Cauchy distribution does not have finite moments, the co-
variance matrix for the 2-D location does not exist for = 0. Practically, although
the distribution is long tailed, we are mostly interested in its behavior in a finite
neighborhood around the origin. The distribution truncated in this finite neighbor-
hood is used for the covariance matrix evaluation. In our experiments, the circular
neighborhood of radius 3 * %;'521 = 8.8721 is used, which corresponds to the 1-D radial

location being within the range [—3, 3].

The tabulated covariance matrices are used for computing the quantities Cov(Ax, Ax),
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Cov(Ay, Ay) and Cov(Ax, Ay) in Equations (3.15), (3.17) and (3.18). The orien-
tation § and SNR at each boundary point are first estimated by the IDDGO. The
SNR is used to index into the table made here and retrieve the two diagonal elements
of the covariance matrix for that SNR level. This diagonal matrix is then pre- and
post-multiplied by the rotation matrix for the orientation #. The resulting matrix is
the covariance matrix for the boundary point in question, and is used subsequently

in the computation of the target centroid uncertainty.

5.4 Validation experiment and correlated noise

In the previous parts of this chapter, we theoretically derived the distribution of the
edgel location estimate which is subject to error due to the noise in the observed
image. The development studies the location estimate of the sharp step edge and
assumes the additive white Gaussian noise. The result of the development is the
relationship between the edgel location covariance matrix and the input SNR. In this
section, we describe the experiments for verifying the validity of that relationship,
and for examining the accuracy of that relationship when the white noise assumption

1s violated.

5.4.1 Validation ezperiment for the white noise

We first want to verify the relationship between the edgel location covariance and
the input SNR when all assumptions for the development are satisfied. This is done
by conducting simulation experiments and comparing the observed edgel location
covariance with the values given by the relationship that appears in the previous
section.

The experiment is conducted for the sharp step edge with the 0° orientation in
the 5 x 5 neighborhood. Noisy observations are simulated by adding white Gaussian

noise, the variance of which is varied to give different input SNR levels in different
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scanergram of 10,000 sample edgel jocations at SNRat

Figure 5.7: Empirically observed scatter of edgel location estimate.

runs. For each noisy observation, the IDDGO based edgel location estimator is used
to obtain a noisy estimate of the edgel location. For each input SNR level, a large
number (10,000,000) of noisy estimates of the 2-D edgel location are obtained. The
estimates are constrained to be within the circular neighborhood of radius 3 around
the center of the 5 x 5 neighborhood. Figure 5.7 shows an example of the scatter-
gram of the noisy estimates for SNR=1. We notice the similarity between the spatial
distribution of the estimated edgel locations and the theoretically derived probability
shown in Figure 5.3. The sample covariance matrix of the estimates are computed.
These are repeated for a number of input SNR levels. The result is the empirically
observed relationship between the edgel location covariance and the input SNR. Since
the sample size (10,000,000) in the experiment is very large, the sample variation in
the observed location covariance matrix is fairly small, typically less than 1%.

Due to the fact that the edgel location distribution is very different from the bi-
variate normal distribution, the statistical tests [72] specially designed for comparing
multi-variate normal distributions cannot be used to access the closeness of the em-

pirically observed covariance to the predicted. Therefore, we subjectively compare
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Figure 5.8: Comparison of empirical and predicted edgel location uncertainty.

the empirical relationship with the predicted by the plots of the trace (the sum of the
two diagonal elements) of the covariance matrix.

The plots are shown in Figure 5.8. It is clear from the plots that the theoreti-
cally predicted relationship between the location uncertainty and the input SNR is
very close to the empirically observed curve. However, there is noticeable difference
between the two. Specifically, for SNR less than 2, the theoretically predicted value
is an under-estimate of the true edgel location uncertainty, with maximum deviation
of about 6% of the empirically observed value. This maximum deviation occurs at
SNR=0.5. For SNR between 2 and 6, the predicted value is an over-estimate, with
maximum deviation of about 4% of the empirical value, occurring at SNR=3. The
difference between the curves comes from the approximation error that is discussed in
Section 5.2.2. That approximation essentially assumes the independence of the 1-D

radial location estimate © from the orientation estimate §. Since at higher SNR 6
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concentrates more and more around the true orientation fgy, the approximation error
becomes less and less noticeable. (We observe some very small differences between
the empirical and predicted values at very high SNR levels. These are due to the
quantization error in the computation of the theoretical values. It is not caused by
any approximation or error in the modeling.)

In order to reduce the approximation error at the low SNR range, more careful
analysis is needed in the computation of f (é,ﬁlﬁo,vo), which needs to deal with the
dependence of ¥ on §. This is a difficult task. Also, we consider that level of accuracy
is not very necessary in our FLIR ATR algorithm framework. Here the relationship
between the location uncertainty and the input SNR is simply used for converting the
local estimate of the input SNR into a form suitable for use in the weighted boundary
contrast combination. Therefore, it is mainly the curve’s general trend that is of more
importance. The small amount of prediction error does not seem to cause much harm

in the performance of the entire FLIR ATR algorithm as observed in our experiments.

5.4.2 Effect of the correlated noise

Although the independent noise model is assumed in the theoretical development in
the earlier parts of this chapter, violation of this assumption has the potential to
cause very significant error in the theoretical prediction. Here we give the experiment
results that studies the impact of the correlation in the noise on the relationship
between the edgel location uncertainty and the input SNR.

The experiment is conducted similar to that in the previous section. However,
correlated noise instead of white noise is used in simulating the noisy observation.
We assume the correlation between the noise values at different pixel locations decays
exponentially. The rate of decay is controlled by the parameter dy. If two pixels
are of distance d apart, the correlation coefficient between the noise values at these
two pixel locations is ¢ = e™%%. A number of values are chosen for dy so that the

correlation between adjacent pixels, which is computed as ¢ = e~1/%_ takes the values
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Figure 5.9: Impact of noise correlation on the relationship between the edgel location
uncertainty and the input SNR.

0.1,0.2,...,0.9.

For each value of the correlation coefficient ¢, the sample covariance matrices for
the estimated edgel location are obtained for a series of input SNR levels. We plot for
each c a curve showing the empirical relationship between the observed edgel location
uncertainty and the input SNR. These plots are shown in Figure 5.9.

From these plots, we see that for various levels of correlation, the curves more
or less share the similar general trend. For the correlation coefficient up to about
0.5, the general effect of the correlation in the noise is to increase the edgel location
uncertainty. For stronger correlation, the edgel location uncertainty is increased for
the lower SNR levels, and decreased for the higher SNR levels. The cross-over point
moves toward lower SNR values as the correlation becomes stronger. Through out
the range of the correlation, the slope of the curves in general becomes more steep as

the correlation becomes stronger. For very strong correlation (¢ > 0.6), the location
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uncertainty stays lower than that with the uncorrelated case after the curves cross
each other at some moderate SNR levels (around 1 to 3).

From this experiment, we see that correlation in the noise does in general have a
quite noticeable influence on the relationship between the edgel location uncertainty
and the input SNR. This influence can be significant for applications where the accu-
racy of the location uncertainty prediction is required. The understanding of effect of
noise correlation is in general a very difficult task. It is also the case here. This will
be a topic of the future research. Before further understanding is achieved, we can
use the empirical curves in Figure 5.9 to roughly predict the resulting edgel location
uncertainty from some properly estimated correlation coefficient. Also, due to the
particular way in which the location uncertainty and SNR relationship is used in our
FLIR ATR. algorithm and due to the similar general trend shared by the curves, we
suspect noise correlation up to 0.3 may not cause very significant degradation of the

performance of the entire FLIR ATR algorithm.

5.5 Effect of slope and displacement of the zero-crossing

5.5.1 The requirement of negatively sloped zero-crossing

We have identified the edgel location to be the zero-crossing of the second directional
derivative in the direction of the gradient. In the edge detection application, it has
been pointed out that the authentic step edge structures have negatively sloped zero-
crossings [60, 25]. Due to image noise, the observed slope might become positive even
if the underlying noise-free image intensity function does represent an authentic step
edge structure. '

In this section, we show that this requirement on the zero-crossing being negatively
sloped can cause problems when the input SNR is low. Furthermore, for the purpose
of target boundary contrast combination, this requirement is not necessary and edgel

location uncertainty formulation need not concern the slope of the zero-crossing.
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In the cubic facet model, the sign of the slope at the zero-crossing of the second
derivative is determined by the sign of é; in Equation 5.4. As already mentioned,
for the authentic step edge structure, é; is distributed as n(c;Qo, k202). Let X be
random variable distributed as n(0,1). Then &; can be written as k30X + c3Q0. The

probability that the slope is positive can be computed as

P(é3 >0) = P(k30X +c3Q0 > 0)
= P(X >-3Q)
K3

In the 5 x 5 neighborhood, ¢ = —0.0833 and k3 = 0.1179, and the probability is

computed as
P(é3 > 0) = P(X > 0.7068%2) = $(—0.70682)

where ®(-) is the cumulative distribution function (cdf) of the standard normal dis-
tribution. This probability is plotted in Figure 5.10. From the plot, we see that for
the low SNR range, there is very significant probability that the observation noise can
make the zero-crossing of an authentic step edge into positively sloped. If require-
ment for the negative slope is enforced in collecting the target boundary contrast
evidence, a significant portion of the evidence will be rejected due to the wrong sign
of the slope. Since the imagery in the FLIR ATR application is typically of low SNR,
the enforcement of the negative slope requirement is problematic. In this situation,
hard decisions performed on the pixel level are intrinsically unreliable and should be
avoided altogether. Therefore, in the ATR application, we do not perform target
boundary point detection. Instead, we use the centroid uncertainty model to combine
evidence along the hypothesized target boundary. Not enforcing the negative slope
requirement increases the noise robustness and reduces misdetection probability in
the evidence collection at true target locations. This, however, may tend to increase
the probability of false alarm at non-target locations.

On the other hand, the motivation for the negative slope in the edge detection

application is to avoid detecting certain high-contrast details in the image which do
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Figure 5.10: Probability for observing positively sloped zero-crossing for the authentic
step edge.

not possess the correct intensity pattern. However, this is not as important in the
FLIR ATR application. In this application, the existence and location of high contrast
parts are far more important than their intensity patterns. High-contrast image
neighborhoods with positively sloped zero-crossings also serve well as the evidence
for target boundary contrast. Since the location uncertainty is the same for both
positively and negatively sloped zero-crossings, the amount of evidence for the target
boundary contrast is also the same. Therefore, the sign of the slope is not important

in the edgel location uncertainty model.

5.6.2 Increased location uncertainty for the shifted edgel location

The development and computations in the previous parts of this chapter assumes the

true 1-D radial location of the edgel is at the center of the neighborhood. Will the
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location uncertainty be affected if the edgel is moved away from the center? This
question is answered by the following experiment.
In the 5-point 1-D neighborhood, the noise-free unit-contrast sharp step edge is

represented by

7 3 — Tz
——r — )3 + —( — = = =6 i )
2(1: Zo) +12(a: Zp) 5% + 1L -i-(l2 4):1:—{- 3

where zg is the true location of the edge. Now ¢} is zo/4 instead of 0. The noisy
estimate of the 1-D radial location of the edgel is

ke 01196 _

where Z is distributed as

n(%ﬂ, 1) n(agtms® 1) | n(2.0903z,Q, 1)
n(%Q, 1) nl-mmme®l)  n(-0.7068z0Q,1)

The variance of 9 as a function of zg for Q = 1 is shown in Figure 5.11. It is clear
that as z; moves away from 0, the variance of the 1-D radial edgel location estimate
increases monotonically. In the 2-D case, when the edgel moves away from the center
of the neighborhood, the variance of the orientation estimate also increases. Therefore,
the 2-D edgel location uncertainty increases as the true location moves away from the

center of the neighborhood.

5.6 Summary

We studied the estimation error in the gradient direction and the zero-crossing of
the second directional derivative. Their joint distribution is used to characterize the
behavior of the edgel location estimate in the 2-D Cartesian space. An approximation
in the joint distribution allows simple analytical expressions to be written for the
probability density function. The error from the approximation is well tolerable for

our application. The covariance matrix of the distribution describes the uncertainty
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Figure 5.11: Edgel location uncertainty increases as the true edgel location moves
away from the center of the neighborhood.
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in the edgel location estimate and is strongly affected by the input signal-to-noise
ratio. The covariance matrices for a range of input SNR of interest are obtained
via the numerical evaluation. They are tabulated for convenient use in the centroid
uncertainty based FLIR ATR algorithm for computing the boundary point location
uncertainty.

The validity of theoretically computed location uncertainty is verified in the ex-
periment, where good agreement is observed between the empirically observed and
theoretically computed values. The effect of noise correlation is found to increase
location uncertainty at all SNR levels when the correlation is not very strong. Strong
correlation is observed to increase location uncertainty at low SNR levels and decrease
it at high SNR levels.

Different from the edge detection application, the sign of the slope of the zero-
crossing in the second directional derivative in the gradient direction need not be
negative for the purpose of contrast evidence accumulation in the FLIR ATR. The
displacement of edgel from the center of the neighborhood is found to increase the
location uncertainty.

The main purpose of this chapter is to find the relationship between the edgel
contrast and location uncertainty. However, the resulting characterization on the
edgel location uncertainty is quite useful in other basic topics in computer vision as
well. Not only are accuracy and precision of edge location important in themselves
in measurement oriented applications [6, 115], the edge localization plays important
roles in computer vision algorithms such as the Hough transform [7, 46, 83, 74] and
the edge linking process.

The derivations in this chapter closely parallel the line of reasoning of Marimont
and Rubner [98]. We became aware of their work only after we finished our derivation
and experiments. Also, our work is different from [98] in that we do not use the
resulting edgel location uncertainty in low level edge pixel detection. As has been

stated, this is highly prone to error due to the noisy nature of local neighborhood
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operations. Instead, we explicitly compute the edgel location uncertainty as indexed
by the signal-to-noise ratio (SNR). The location uncertainty along the target boundary
is combined in the polygon centroid uncertainty model, hence we avoid making hard
decisions at the pixel level. The edgel location distribution plays more of the role of
the medium for conveying the contrast into another form which is more appropriate
for evidence accumulation.

In applying the result in edge detection, we believe the edge detection problem
should not be formulated as a classification problem on the pixel level. Instead, a
Bayesian formulation should be used which optimally combines the information from
higher level edge structure and local image measurements, including contrast, edgel
orientation and location as well as their expected uncertainty. This is a direction of

future research.
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Chapter 6

CONSTRAINED MATCHING PROBLEM IN
PERFORMANCE EVALUATION

6.1 Introduction

Performance evaluation in computer vision is an important and active research area
[54, 57, 122, 15, 24, 62, 16, 142, 75]. Both theoretical and empirical approaches
are being taken by different research groups. In empirical performance evaluation
[15, 24, 62, 16, 142, 75], one major approach is to get ground-truth for some test image
data and compute objective performance measures by comparing the algorithm output
with the ground-truth. This appear to be the only accepted approach for practical
ATR system performance evaluation.

In characterizing ATR algorithm performance [32, 147, 76, 12, 27, 119, 102, 117,
14, 36, 29], it is customary to determine the detection rate, false alarm rate, as well
as the recognition rate for the correctly detected targets. These values need to be
determined by properly comparing the algorithm output against the ground-truth.
Often there are multiple ground-truth target instances in a single test image, and an
ATR algorithm may also produce multiple target declarations on that image. The
declared targets may or may not be close enough to ground-truth targets, and the ones
close enough may or may not have the right identification of the target type. Also,
algorithms may claim more than one target around a single ground-truth target, and
may also claim targets around clustered ground-truth targets where it is not obvious
which ground-truth target(s) should be associated with the declarations.

Faced with this complicated situation, we need to develop a concrete and con-
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sistent technique that unambiguously and reasonably classifies ground-truth targets
into detected and misdetected targets, and classifies ATR algorithm target declara-
tions into correct declarations and false alarms. Also, for the detected ground-truth
targets, it discriminates those that are correctly recognized and those that are not.
In this chapter, we use the optimal matching problem to model the situation. A
simpler scenario is first considered which is the performance evaluation of edge detec-
tion. The main development of how an optimal matching problem is set up, trans-
formed into an optimal assignment problem, and solved by the efficient Hungarian
algorithm is carried out in a discussion of the edge detection performance evaluation.
This enables a simpler and clearer description of the essence of the problem. After
this is accomplished, the procedure for ATR performance evaluation is described and
an example is presented. The performance evaluation result using this procedure is

seen to be precise, consistent and conceptually appealing.

6.2 Performance evaluation problems in edge detection

In assessing the performance of edge detectors [19, 51, 107, 146, 62, 75|, we care
about the detection rate, false alarm rate and the average localization error for the
correctly detected edge pixels. A performance assessment technique needs to classify
the edge pixels in the ground-truth into two distinct classes, namely detected and
misdetected edge pixels, and to classify the edge pixels in the declared edge map
into two distinct classes, namely correct declarations and false alarms. To tolerate
a certain amount of localization error, ground-truth edge pixels and declared edge
pixels do not have to be at exactly the same pixel location for them to be declared
as detected ground-truth edge pixels and correct declarations, respectively. However,
each detected ground-truth edge pixel needs to be associated with at least one of
the correct declarations, and vice versa. Because of the relaxed requirement on the

localization, the classification and association between ground-truth edgel pixels and
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O true declared

Figure 6.1: An example where distance transform based method fail to give accurate
performance measures.

declared edge pixels are not trivial problems. Different ways of doing these leads to
different performance measures.

A distance transform based technique [62, 16] has been customarily used for this
purpose. A distance map is first obtained where each pixel location is assigned a
value which is the distance from this pixel location to the closest ground-truth edge
pixel. A threshold on this distance is chosen. The correct declarations are all those
edge pixels in the declared edge map which have a distance value not larger than the
threshold. The detected ground-truth pixels are those which have declared edge pixels
within their neighborhoods. The size of the neighborhood is also determined by the
threshold on the distance. The problem with this technique is that it allows multiple-
to-one and one-to-multiple correspondence between ground-truth and declared edge
pixels. Consider the example shown in Figure 6.1, where ground-truth edge pixels are
marked by circles, and declared edge pixels are marked by solid squares. According
to distance transform based method, all ground-truth pixels are detected and there
is no false alarm declarations.

Intuitively, one would want to have an exact one-to-one correspondence between
detected ground-truth edge pixels and correct declarations. If this is established, the

numbers of detected and misdetected ground-truth edge pixels and the numbers of
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correct declarations and false alarms will be more informative of the edge detection
performance. According to this consideration, for the example in Figure 6.1, only two
ground-truth pixels, the one in the middle on the left half and the one on the right
are regarded as being detected, and the other two on the left half are regarded as
being misdetected. Similarly, only two of the declared pixels, the one on the left half
and one of the three on the right (which one does not matter in this example), are
regarded as correct declarations. The rest two on the right half are regarded as false
alarm declarations. Therefore, the more appropriate performance evaluation method
should declare two misdetections and two false alarms.

Here we propose to establish the desired one-to-one correspondence by solving a
combinatorial optimal matching problem. This problem is transformed into an un-
constrained optimal assignment problem, which can be efficiently solved by the Hun-
garian algorithm [130, 77]. The solution yields a maximal one-to-one correspondence
between ground-truth edge pixels and declared edge pixels. Performance measures
based on this correspondence follow the intuition and are more informative of the
edge detection performance.

In our experiment, we choose to use a synthetic image to show the difference be-
tween two evaluation techniques. Although the use of synthetic imagery in comparing
the performance of edge detectors (using a chosen evaluation technique) is question-
able [62], it is appropriate in comparing particular performance evaluation techniques.
This is because it allows a clear and unambiguous judgment of edge detection quality
by human observers with minimal inter- and intra-observer variations. This judgment
acts as a gold standard to which the output of different performance evaluation tech-
niques should be compared. The best performance evaluation technique is the one

whose output is closest to that judgment.



138

6.2.1 A note on the relevance of performance characterization for edge detection

modules

The following development of the edge detector performance evaluation procedure
not only serves as an example for how to establish a one-to-one correspondence in the
general performance evaluation framework, it is also very important in its own right.
This is due to the wide presence of edge detection modules in various computer vision
systems, and to the numerous edge detection techniques proposed in the literature.

Since edge detection is usually at earlier stages of computer vision algorithms and
is almost never the final goal of any practical system, there is legitimate concern about
its performance characterization without the context of a particular vision system.
We agree that, due to the many different ways in which edge detection output is used
by subsequent vision algorithm modules, the impact of edge detection quality on the
entire vision system performance will vary among different vision systems. However,
we still insist on the need for a general framework for precise characterization of edge
detection quality by a set of quality measures general enough to be used in as many
different applications as possible, yet still carrying enough specific information to be
useful. For most applications, we believe that the detection rate, false alarm rate,
and average location error constitute a good set of measures for this purpose.

The theory for the computation of such measures can either be applied directly
or used as the guideline for developing more specific performance characterization
schemes for particular applications. To this end, we propose the use of a one-to-
one correspondence and develop a procedure for establishing it. The set of quality
measures computed from the theory is essential in studying the sensitivity of the
performance of the entire vision system to the edge detection module. Therefore,
besides their being relevant to the particular vision system under consideration, the
preciseness of the measures is highly desirable. The preciseness here refers to the

sensitivity of the values of the measures to changes in the edge detector output. As
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will be pointed out in the following experiments, the performance measures computed
from the methodology proposed here is much more precise than the distance-transform
based technique being customarily used. Although this level of preciseness might be
so high that it is not even necessary for certain computer vision systems, due to the
relative insensitivity of the vision system performance to the edge detection module
quality, it is comforting to know that a very high precision, the cost of which is very

much tolerable, has been achieved.

6.3 Unconstrained optimal assignment problem

In the assignment problem, one is concerned with establishing a full one-to-one cor-
respondence between two discrete sets K and L, both of which have IV elements. An
assignment is a one-to-one mapping a: K — L.

Let the cost for associating £ € K with [ € L be g(k,l). The total cost of an

assignment a is

> a(k, a(k)) (6.1)

kEK
The optimal assignment is a mapping a : K — L which yields the smallest cost. The

assignment problem is to find such an optimal assignment. If there is some constraint
between the k’s and the I’s, a constraint which prohibits certain pairings, then the
problem becomes the constrained optimal assignment problem. Otherwise, it is the
unconstrained problem.

If g(k,!) is finite for all k € K and [ € L, the optimal solution to the unconstrained
problem always exists, but might not be unique. However, from the optimization point
of view, all optimal solutions are equivalent.

For an integral or rational valued cost function g(-, -), the optimal assignment can
be found by the Hungarian algorithm [130, 77]. This is a numerical search algorithm
that guarantees to arrive at one optimal solution. The computational complexity is

O(N3) [77).
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In the context of edge detection performance evaluation, K is the set of ground-
truth edge pixels, and L is the set of declared edge pixels. The cost g(k,l) is a
meaningful measure of the distance between a ground-truth edge pixel £ and a de-
clared edge pixel [. Different forms of the distance measure can be used, which are
usually reasonably variations of certain distance measures, e.g., the L; norm (city-
block distance), L, norm (Euclidean distance), and Lo, norm. In our experiments,
the squared Euclidean distance is used.

Most likely, the numbers of ground-truth edge pixels and declared edge pixels are
not equal. This does not cause a problem. Conceptually, we can think of adding
“ghost” pixels to the set which has smaller number of elements. The distance from
any ghost pixel to all pixels in the other set is assigned a finite but very large value.
This way, the ghost pixels will not compete with any of the original pixels in the
assignment. In the end, all ghost pixels will also be assigned to pixels in the other
set. All those pixels that are the counterparts of the ghost pixels are considered
unmatched, and therefore are either misdetected ground-truth edge pixels (if the
ghost pixels are added to the declared edge pixel set) or false alarms in the declared

edge map (if the ghost pixels are added to the ground-truth edge pixel set.)

6.4 The Hungarian algorithm

The unconstrained optimal assignment problem is essentially determined by the cost
function ¢(-,-). Exhaustive search for the optimal assignment would require O(N?)
computations of the total cost in (6.1). Fortunately, this need not be done.

Let the cost function be represented in a matrix form. Adding a constant to any
row of the matrix does not change the the optimal assignment. (Although the total
cost of the resulting optimal assignment gets changed, it is an optimal assignment,
not its associated total cost, that is of interest to us.) Similarly, adding a constant

to any column of the matrix does not change the solution, either. The Hungarian
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algorithm (80, 130, 77] works by adding suitable constants to some properly chosen
rows and columns of the matrix, and finding the maximum number of independent
zeros 1n all equivalent forms of the cost matrix. Due to the Konig-Egerviry Theorem
[78, 37, 130}, this is equivalent to finding the smallest number of lines (rows and
columns) to cover all zeros.

In this research, we take a black-box approach to the Hungarian algorithm. It
is simply used as an efficient tool to solve the assignment problem. In performance
evaluation, it is sufficient to know the existence of such a solution and to have available
its software implementation. The details of the algorithm are not of major interest to
this research and, therefore, are omitted here. Interested readers can find the details
of the algorithm in [80, 130, 77] and the references therein.

In the situation where every element in K is allowed to be paired with every
element in L, the optimal solution always exists. If all entries in the cost matrix
are integral or rational numbers, the Hungarian algorithm is guaranteed to arrive at
one optimal solution with finite iterations. The Knuth implementation [77] of the
algorithm handles the integral cost matrix. The number of elements in K and L need
not be equal. The computational complexity is O(m?n) where m is the smaller of the

cardinalities |K| and [L], and n is the larger.

6.5 Constrained case — optimal matching problem

In edge detection performance evaluation, we know that corresponding ground-truth
edge pixels and declared edge pixels cannot be spatially very far apart. It makes
sense to set up a threshold for the maximum tolerable localization error, i.e., the
maximum tolerable distance between a ground-truth edge pixel and a declared edge
pixel that are to be paired together. The threshold on the distance between them can

be conveniently set by the neighborhood size used in the edge detection. We want to
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put a constraint on the solution of the optimal assignment problem:
glk,a(k)) <T VEeK (6.2)

where 7 denotes the maximum tolerable distance. The constrained optimal assign-
ment problem is then to find a mapping a : K’ — L which minimizes the cost in (6.1)
and satisfies the constraint in (6.2).

Now the finiteness of g(k,!) does not guarantee the existence of a solution to
the constrained problem. However, in order to determine misdetections and false
alarms in performance evaluation, we have to find some reasonable association, maybe
compromised in some way, between the k’s and the [’s.

The constrained optimal assignment problem in its original form is not an appro-
priate model for our problem at hand. Our problemn, however, can be well modeled
by an optimal matching problem.

The matching problem is similar to the assignment problem in that it tries to
establish a one-to-one pairing between elements in K and L. Here the sizes of K and
L need not be equal. There is a compatibility relationship H C K x L. Any k € K
and [ € L for which (k,!) ¢ H are not allowed to be paired together. Only a subset
of K needs to be paired up with distinct elements in L. The matching problem is to
determine a match with the largest number of pairs.

Naturally, for our problem at hand, the compatibility relationship is
H={(kl)e KxL|qkl <1}

For any particular match m : K — L, let K (m) be a subset of K containing all the

members for which the constraint is satisfied.
Ks(m) ={k € K | q(k,m(k)) < . (6.3)
The rank of a match m is defined as the cardinality (number of elements) of K,(m).

r(m) = |K,(m)|. (6.4)
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In edge detection evaluation, we are only interested in the largest ranking matches,
which are called the mazimal matches. Let M be the set of all possible matches be-
tween K and L subject to the compatibility relationship H. Then the set of maximal

matches can be formally written as
M = {m | r(m) = maxr(n)}. (6.5)
The cost for such a maximal match m is defined as
Y. a(k,m(k)) (6.6)
k€K ,(m)
The optimal matching problem is to minimize this cost over all maximal matches in
the set M, of Equation (6.5).

In the edge detection evaluation application, the solution to the optimal matching
problem gives the largest possible number of associated pairs between ground-truth
and declared edge pixels. Among all the different ways for making such a match, it
picks the one with the smallest localization error. In a sense, it is trying to give the
most positive interpretation of the declared edge map. This is the right attitude, since

all computer vision algorithms using the edge map need to try their best to make the

most positive use of it.

6.5.1 Solving the optimal matching problem

We now apply the idea of “ghost pair” to transform the optimal matching problem
back to the unconstrained optimal assignment problem, solve the optimal assignment
problem using the Hungarian algorithm, and apply some simple post-processing to
enforce the constraint and obtain the solution to the optimal matching problem.

Let d denote a finite and very large value. For example,

d=Nxrt (6.7)
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We selectively modify the cost by

d if g(k, 1) >
q(k,1) = . (6.8)
g(k,l) otherwise

This modified cost function is used to form an unconstrained optimal assignment
problem. FEach pair of elements whose cost gets changed to d is called a “ghost
pair.” Since d is such a large value, this particular pair does not compete for each
other against other elements in the assignment process. Notice that, normally each
ground-truth and declared edge pixel is involved in many ghost pairs since there
almost always exist edge pixels in the other class that are faraway from it. However,
detected ground-truth edge pixels and correctly declared edge pixels are also involved
in some pairs that are not ghost pairs. In the association process, it is these non-ghost
pairs that are of interest to us. However, the provision for the ghost pairs is needed
to change the hard constraint on the compatibility relationship into penalty terms in
the total cost. This is necessary for the Hungarian algorithm to be used to find the
solution.

The optimal solution to this new unconstrained problem exists due to the finite-
ness of the cost function. It can be found by the Hungarian algorithm. In the
resulting solution, we examine again the cost between the assigned pairs, to enforce
the compatibility relationship. The pairs whose cost are not larger than 7 are good
associations. They give correspondence between the involved detected ground-truth
edge pixels and correct declarations. The cost of each of the rest of the pairs is larger
than 7, and these must all be ghost pairs.

Remember that the original distances between the two elements in a ghost pair is
larger than the threshold. In edge detection performance evaluation, we do not allow
pixels that are farther apart than the threshold to be associated with each other.
The two elements in a resulting ghost pair are then determined to be a misdetected

ground-truth edge pixel and a false alarm in the declared edge map.
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6.6 Association procedure

It is now clear that the association of ground-truth edge pixels with the declared
edge pixels can be obtained with the procedure described below. The result of the
association also determines the misdetected ground-truth edge pixels and the false
alarms in the declared edge map.

Note that although the original formulation of the optimal assignment problem
assumes the numbers of elements in K and L are equal, the Hungarian algorithm
can be implemented to handle unequal cases as well [77]. Therefore, we do not need
to make them the same size by adding ghost elements. Let Nx and Ny denote the
number of elements in K and L, respectively.

The following is an outline of the edge detection result classification and associa-

tion procedure.
1. Resolving the simple cases:

e The ground-truth edge pixels which have declared edge pixels right at
the same locations are automatically determined as detected ground-truth
edge pixels. They are associated with those declared edge pixels at the
same locations, hence they have no localization error. The declared edge
pixels that these ground-truth pixels are associated with are automatically

determined as correct declarations.

e The ground-truth edge pixels which do not have any declared edge pixels
within a distance of the chosen threshold 7 are automatically determined

as misdetected ground-truth edge pixels.

e Similarly, the declared edge pixels which do not have any ground-truth
edge pixels within a distance of the chosen threshold 7 are automatically

determined as false alarms.
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The rest of the procedure only deals with the ground-truth and declared edge

pixels that are left undetermined.

. Let K be the set of ground-truth edge pixel locations, L be the set of declared
edge pixel locations. Create an Ng x Ny matrix Q of distance values between

each pair in K x L.
. Selectively modify @ by applying the rule in (6.8), with Nk as N in (6.7).
. Apply the Hungarian algorithm on the modified Q.

. Examine the resulting assignment. (Implementation issue: remember to recom-
pute the distance for the assigned pairs if the content of the distance matrix Q

is modified by the particular implementation of the Hungarian algorithm.)

e For each assigned pair

— if the value in the distance map @ is not larger than 7, this is a valid
association. The involved ground-truth and declared edge pixels are
paired up and to be counted as a detected ground-truth pixel and a
correct declaration;

— otherwise, this is a ghost pair. If this pair is denoted by (k,!), k is
counted as a misdetected ground-truth edge pixel, and [ is counted as

a false alarm.

e The left-over elements in K (if Nx > N.) or L (if Nx < N.) that are not
paired up are all misdetected ground-truth edge pixels (if Ny > N;) or

false alarms (if Ng < N.).
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6.7 Experiment

We use the synthetic test image used in [62] to compare the proposed method with a
distance transform based method. This test image is 64 x 64, and has a brighter disk
of constant gray value against a darker constant background. White Gaussian noise
is added to obtain a noisy version of the image with SNR=4. Figure 6.2(a) shows the
ground-truth edge map obtained by following the boundary (using 8-connectivity) of
the disk on the noise-free image. There are a total of 132 ground-truth edge pixels and
3964 background pixels. Notice that this ground-truth is different from that used in
[62], where a three-label (true-positive, don’t-care, and false-positive) ground-truth
is used. Here we want to give sharper performance measures and do not specify
the “don’t-care” region in the ground-truth. Our methodology, however, can easily
accomodate the provision for the “don’t-care” zone in situations where it is desired.
This is done by re-examining the false alarms and omitting the ones falling in that
zone.

We apply the implementation of Canny’s edge detector used in [62] to the noisy
image with different tuning parameters. The tuning parameters of (1.05,0.77,0.88)
given in [62] produces the edge map shown in Figure 6.2(b). Another two sets of pa-
rameters are chosen to give more obvious misdetections and false alarms, respectively.
These are also shown in Figure 6.2.

The proposed optimal matching based method and the distance transform based
method are used to compare the declared edge maps with the ground-truth edge
map. The distance transform based method used in [62] has a circular search radius
of three pixels for edge (true-positive) pixels. Our implementation of this method
used in the experiment reported here uses a square search region of 5 x 5 pixels with
the origin at the center. The Euclidean distance squared is used to form the distance
matrix of the assignment based method. The threshold 7 in inequality (6.2) is set

to 8, corresponding to a circular search radius of 2v/2. The performance measures of
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Table 6.1: Performance measures for the declared edge maps by two performance
evaluation methods.

edge map optimal matching distance transform
# MD | # FA | RMS loc error | # MD | # FA | RMS loc error
1 0 42 0.5 0 0 1.0
2 9 28 1.39 0 0 1.27
3 0 74 1.0 0 28 1.0

number of misdetections (#MD), number of false alarms (#FA), and the root-mean-
squared (RMS) localization error for the detected ground-truth edge pixels from these
two methods are given in Table 6.1.

It should be noted that the purpose of the experiment here is to demonstrate the
appropriateness of using the optimal matching model for counting misdetections and
false alarms and calculating localization error for correct detections. It is not our
purpose here to carry out a full empirical evaluation of any edge detector. No effort
is made to tune the detecfor to its best performance according to the performance
measures.

When examining the data in Table 6.1, the emphasis should be on comparing the
same performance measures given by the two different methods.

In visually comparing edge map 1 with the ground-truth, we see no misdetection.
However, the thickness of the edge is not even, with some parts being 8-connected and
some parts being densely 4-connected. According to our 8-connected thin ground-
truth edge map, these thicker parts of the declared edge (where edge pixels have
more than two 8-neighbors) contains false alarms. The proposed method precisely
picks out these declared pixels as false alarms, which are shown in Figure 6.3(a). The
distance transform based method leniently accepts all declared edge pixels as being

appropriate. If, however, this level of detail is not of interest, a “don’t care” zone can
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(a) ground-truth (b) edge map 1

(c) edge map 2 (d) edge map 3

Figure 6.2: Edge maps on which the performance measures are calculated.



(2) false alarms in map 1

(b) misdetections in map 2
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(c) false alarms in map 2

Figure 6.3: Misdetection and false alarm edge pixels in the edge maps.

(d) false alarms in map 3
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be specified in the ground-truth. The false alarms declared by the assignment based
method falling into that zone will then be tolerated and not counted as false alarms.
If that were done, both methods would claim no false alarm.

The difference between the two methods is clearer on their evaluation results on
edge maps 2 and 3. In edge map 2, we clearly see gaps in the declared edge map which
we certainly want to call misdetections. At the same time, we also see some false
alarms on the thicker parts of the declared edges. Both of these are reflected in the
evaluation result by the optimal matching based method. The identified misdetection
and false alarm pixels are shown in Figure 6.3(b) and 6.3(c), respectively. The distance
transform based method is overly lenient again and declares no misdetection nor false
alarm.

In edge map 3, the optimal matching based method treats not only the stray edge
pixels as false alarms, but also some on the thicker parts of the edges around ground-
truth edges. These pixels are shown in Figure 6.3(d). The distance transform based
method treats only those stray edge pixels as false alarms, and tolerates all declared
edge pixels around ground-truth edge pixels.

In general, we observe the tendency of the distance transform based method to
be overly reluctant to declare false alarms around ground-truth edge locations, and
overly reluctant to declare misdetections around any declared edge pixels. It gives
inappropriately high performance measures. The optimal matching based method is
more precise, and gives performance measures conforming to the intuition and the

subjective evaluation.

6.8 ATR performance evaluation

The methodology just described is useful in many applications where a maximal one-
to-one correspondence is to be established between two sets, where a distance-like

dissimilarity/penalty measure can be made between the elements in the two sets,
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and the pairing process is constrained by some threshold on the dissimilarity/penalty
measure. We choose to base our discussion first on the edge detection application not
only due to the importance of edge detection as a major feature extraction module
in many computer vision algorithms, but also due to the relative simplicity of its
performance evaluation so that the main idea of the proposed methodology can be
described more clearly without confusion from other unrelated application-specific
issues.

Now that the methodology has been described clearly, we use it to develop a
procedure for ATR performance evaluation. In characterizing ATR algorithm perfor-
mance, not only do we need to determine the detection rate and false alarm rate, we
also need to compute the recognition rate for the correctly detected targets. In this
situation, a two-stage assignment based procedure needs to be used. This procedure
first identifies targets that are both correctly detected and correctly recognized. It
then identifies targets that are correctly detected but incorrectly recognized. In the
first stage, the distance matrix is constructed so that only targets of the same class
ID can potentially form pairs. The targets paired up by this stage are those both
correctly detected and correctly recognized. The left-overs go through the second
stage. In this stage, the target class ID does not play any role in the construction
of the distance matrix. The pairs formed in this stage involve only targets that are
correctly detected but incorrectly recognized.

The number of correctly detected targets is the total number of pairs produced
by both stages. Among these pairs, those produced by the first stage are the ones
for the targets also correctly recognized. The left-overs from the second stage are the
misdetected and false alarm targets. All the pairs and left-overs provide the precise
information required in constructing the confusion matrix to show the recognition
performance of the system. This is the procedure used in the experiments in Chapter 8
for evaluating ATR algorithm performance.

An example is provided here. Figure 6.4(a) shows one of the test images used
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in this study. There are ten target instances in this image, with their silhouettes
overlaid and an instance number given by which they are referenced. These targets
are referred to as ¢;,...,%9. The class identification of these targets are given in the
first “class” column in Table 6.2. The column and row positions of the centroids of
these targets are given in the first “centroid” column.

One algorithm output is shown in Figure 6.4(b) with the silhouettes of the thirteen
declared targets overlaid on the image. Also shown in the image are the instance num-
bers for these declared targets. These declared targets are referred to as dy,...,ds.
The classes and locations of these declared targets are given in the second “class” and
“centroid” columns in Table 6.2.

The squared Euclidean distance is used in constructing the distance matrix. In
tolerating the location error, a threshold on the squared distance of 7 = 625 pixel? is
used, corresponding to a circular search region of radius 25 pixels.

In the first stage of the procedure, only targets of the same class (same class ID,
not instance number) can be paired up. For any pair of ground-truth and declared
targets whose class ID numbers are different, a distance value of 626, which is greater
than the threshold 7 = 625, is assigned, regardless of the actual distance between the
centroids of these targets. The actual distance is used only for pairs of targets whose
class ID numbers are the same. The resulting distance matrix is shown in Table 6.3.
Subjecting this matrix to the procedure in Section 6.6, we find eight pairs — eight out
of the ten ground-truth targets are both correctly detected and correctly recognized.
These are shown in Table 6.4.

The targets left unpaired are t7, tg on the ground-truth side and ds, dg, d7, d10, d11
on the declaration side. Any valid pairings between them which satisfies the distance
constraint identify correctly detected but incorrectly recognized targets. The distance
matrix for the second stage of the procedure contains only the actual distances, as
shown in Table 6.5. Without actually running the Hungarian algorithm, we can see

the solution that only (¢7,d;;) is a valid pair with their distance smaller than the
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threshold.
Now the full characterization of the algorithm output in Figure 6.4(b) can be

summarized as follows.

e Of the ten ground-truth target instances

— nine are correctly detected, eight of which are also correctly recognized;

— (redundant) one was misdetected; one was correctly detected but incor-

rectly recognized;

e Of the thirteen declared target instances

— nine are correct declarations, eight of which are also have the correct class
ID;
~ (redundant) four are false alarms which do not correspond to any ground-

truth target; one correct declaration has a wrong target class ID declared.

6.9 Summary

We have presented a methodology for most reasonably associating the ground-truth
entities with the entities declared by algorithms for a broad class of detection and
recognition applications. The central idea is to identify the association problem
as an optimal matching problem, which is transformed into an unconstrained opti-
mal assignment problem which has an efficient solution by the Hungarian algorithm.
The resulting association establishes a one-to-one correspondence between detected
ground-truth entities and the correct declarations in the algorithm output. The de-
termination of misdetected ground-truth pixels and false alarms in the declaration as
well as the computation of the localization error for the detected ground-truth entities
are made according to the established correspondence. We showed examples where

the appropriateness of this technique is verified.
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(b) declared targets

Figure 6.4: Ground-truth and declared targets subject to the two-stage matching
procedure to determine the detected, recognized and false alarm targets.
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Table 6.2: Targets in the example on using the proposed method for ATR performance

evaluation.

ground-truth declared

reference | class | centroid (| reference | class | centroid
ty 21 | (268,60) dy 21 | (269,59)
to 1 (391,74) do 1 (392,74)
t3 18 | (253,114) ds 18 | (255,113)
ts 26 | (72,243) dy 24 | (211,205)
ts 24 | (209,205) ds 19 | (284,177)
ts 31 | (370,191) dg 25 | (414,154)
t7 29 | (268,259) dr 15 | (327,203)
ts 23 | (429,287) ds 31 | (371,191)
tg 27 | (149,367) dg 26 | (73,243)
tio 9 | (236,351) dio 3 | (111,281)
dn 4 | (256,251)

di2 9 |(237,351)

das 23 | (431,286)
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Table 6.3: Distance matrix used in the first matching procedure for determining
correctly detected and correctly recognized targets. Threshold to be used is 625.
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Table 6.4: Targets that are both correctly detected and correctly recognized.

gr ound-truth t to i3 ts [ ts t10 ts
declared d 1 d2 d3 d4 dg dg d 12 d1 3
ID 21| 1 |18|24131}26| 9 | 23

Table 6.5: Distance matrix used in the second matching procedure for determining
correctly detected and but incorrectly recognized targets. Threshold to be used is

625.

‘ ds ds dy dio di1
t7 | 6980 32341 6617 25133 208
tg | 54325 115594 58580 8840 24905
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Although the development of the technique is carried out in an edge detector eval-
uation scenario, this methodology is readily applicable to performance evaluation of
other applications where the classification as well as the localization performance are
of interest, such as vehicle detection in aerial images, automatic target recognition,
and counting certain cells in the medical imaging application. A two-stage associa-
tion procedure based on the proposed methodology has been outlined for the ATR
application. The same procedure can be applied with marginal or no modifications
for other detection and recognition applications, such as evaluating the performance

of biomedical cell counting algorithms.
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Chapter 7

SIMULATED FLIR SCENE GENERATION

7.1 Introduction

Real data in the FLIR ATR application is characterized by great variability in the
target appearance due to the thermal activity and meteorological conditions. The
natural background also adds greatly to the complexity of the scene. The most
difficult challenge presented to ATR algorithms is to handle such great variability
and complexity in the uncontrolled outdoor scenes.

To aid the development of algorithms, some effort has been made to provide real
FLIR data to the research community, e.g., [L0] and several other data sets accessible
through the web-page of the Center for Imaging Science (http://www.cis. jhu.edu)
at the Johns Hopkins University. However, due to the practical difficulties involved in
gathering and supplying the data, the target types and conditions, imaging conditions
and scene complexity are very limited. Only in rare cases is there precise ground-
truth information about the targets in the scene. The situation is made worse by the
restriction on the accessibility of the data due to the military classification of the data
sets. For example, Li et al [84] report empirical performance evaluation results of a
number of FLIR ATR algorithms on a single fairly large sized data set with more than
17,000 target image chips. It is highly desirable to run the algorithm developed here
on that data set and compare the resulting performance with those reported in [84].
However, the effort made to gain access to that data set for use in this dissertation
research was in vain.

Large data sets with ground-truth is essential in assessing the performance of
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computer vision algorithms. Due to the difficulty in obtaining such data sets, synthetic
or simulated images are often used in studies [162, 31, 117, 111, 27, 159, 82]. We
also take this alternative and generate simulated FLIR scenes by planting random
target appearances into real FLIR scenes. It has the advantage of having extremely
low cost and readily available ground-truth information from the scene generation
process. In what follows, we describe the procedure by which simulated FLIR scenes

are generated.

7.2 Scene background

The FLIR scene generation procedure operates by choosing a background scene from
a number of alternative real FLIR scenes and planting into that scene a random
number of targets with varied appearances at randomly picked locations. The “land
images” in the NAWC Chinalake Presentation data set (referred to as the Chinalake
data set) contains seventeen real FLIR scenes. These images contains outdoor scenes.
The sizes of the images are around 512 x 400. The twelve images in this data set that

are used in the scene generation are shown in Figure 7.1.

7.3 Insertion of targets

From a library of given targets, the procedure randomly picks ten to fifteen targets,
simulates their intensity values, and selects locations in the background scene to place
them so that their bounding boxes do not overlap.

The best commercial software for infrared target signature (appearance) simula-
tion is the PRISM (Physically Reasonable Infrared Signature Model) running on the
SGI workstations. The license for using this software is issued by the ThermoAna-
lytics, Inc. (http://www.thermoanalytics.com) under the authorization of the US
Army TACOM (Tank-automotive & Armaments Command). This software, however,

is not available for this dissertation research. In our experiments, the target signature
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Figure 7.1: Images in the Chinalake data set used as background scenes in the FLIR
scene generation.
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is simulated through a procedure that uses real target image chips with corruption of
some additive texture. The added texture is generated from the statistics of the real
target image chip. We do not claim this procedure to be the best resource for tar-
get signature simulation. However, when better target signature simulation methods

become available, this part can be easily replaced.

7.4 Target signature simulation

The MURI FLIR data set contains thirty-six images from second-generation FLIR
sensors. Bach of the images contains one instance of a ground vehicle target. The
image chips for these targets are hand-segmented from the images, nine of which are
shown in Figure 7.2. These nine are used for generating the simulated target signature
to be placed into the background scenes. Some measurements on the 2-D geometric
shape are computed to give some characterization for these targets. These are the
length /height ratio, the ratio of the perimeter squared over the area, the ratio of
the standard deviation over the mean of the radii (the distances from the boundary
points to the centroid), and the ratio of the target centroid uncertainty over that of
the circular disk of the same area and contrast. These values are given in Table 7.1.

Due to the high variability of the thermal history of the targets and the imaging
conditions, the target signature can undergo very large changes from scene to scene.
However, we still do not expect the signature of the same target in different scenes
to be totally unrelated to each other. Therefore, we generate the simulated target
signature with certain levels of deviation from the MURI FLIR target chips. In doing
this, we introduce additive texture to the real target chips.

Let the real target image chip be denoted by zo. Let a texture image chip of the
same size and shape be denoted by z;. Let A be a constant between 0 and 1 to control

the level of deviation. The simulated target signature is obtained as

y=Azo+ (1L —A)z; (7.1)
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Table 7.1: Geometric shape measurements made for the MURI target chips. The
measurements are the target length/height ratio, the ratio of the perimeter squared
over the area, the ratio of the standard deviation over the mean of the radii (the
distances from the boundary points to the centroid), and the ratio of the target
centroid uncertainty over that of the circular disk of the same area and contrast.

target | len/height | perim?/area | std(R)/mean(R) | cen ratio
1 1.6809 16.0468 0.2508 1.7222
2 1.7500 17.9195 0.2664 1.8184
3 2.6316 23.4842 0.3995 2.4612
4 1.4737 15.6646 0.2979 1.9377
5 1.5818 19.3976 0.2999 2.0731
6 1.5000 14.5795 0.2537 1.7955
7 1.0455 18.4090 0.1903 1.7068
8 1.1579 12.5409 0.1779 1.5071
9 2.0851 22.2816 0.3657 2.3412
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Figure 7.2: Some of the hand-segmented target image chips from the MURI FLIR
data set.

The synthesis of z; uses the power spectrum method of texture synthesis, so that
the spatial correlation of the pixel intensity in z; is approximately the same as that
in zy. This is done as follows. The auto-correlation matrix of the pixel intensity value
is estimated from the real target chip zy using a square neighborhood whose size is
pre-determined. On the mean-subtracted version of zg, the correlation in the intensity

values at two pixel locations with relative displacement of (Ar, Ac) is estimated as

a?(Ar, Ac) = L S°  I(r,e)I(r + Ar,c+ Ac) (7.2)

#A (r.c,Ar,Ac)€A

where I(-,-) is the image intensity function for the mean-subtracted zo, #A is the
number of elements in the set A = {(r,¢, Ar, Ac)|(r,¢c) € T, (r + Ar,c+ Ac) € T},
and T specifies the geometric shape of the target.

In practice, due to the asymmetric shape of the targets, the estimated correla-

tion matrix is not symmetric. We arbitrarily make it symmetric by averaging the
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corresponding elements on either sides of the center row, center column, and the two
diagonals. The discrete Fourier transform (DFT) [112] is applied to the resulting
symmetric correlation matrix. This gives us the power spectrum of the target pixel
intensity random field. Any instance of negative elements in the power spectrum is
reset to zero. Then the inverse DF'T is taken on the square root of the power spectrum
to give us a digital filter. This filter is used as the target texture generator. When
this filter is applied to a white noise image, the auto-correlation of the output image
is roughly the same as that of the original real target image chip zo. Cutting a piece
of the output image gives us z; in Equation (7.1).

Figure 7.3 shows some examples of target signatures synthesized using the above
procedure with different neighborhood sizes for correlation estimation. Figure 7.4
shows some examples of simulated target signature by combining the real target chip
with the texture synthesized using the 11 x 11 auto-correlation matrix. The left
column shows real target chips without any additive texture () = 1); the remaining
three columns show the cases with increasing amounts of additive target texture, with

A=0.7,0.5,0.3.

7.5 Target contrast and dynamic range

We just described a way for simulating target signature which allows some reasonable
and controlled deviation from the real target signature. The process of placing the
simulated target signature into the background scenes requires some proper scaling
and shifting of the simulated target chip intensity values. This is necessary for the
resulting simulated scene to be more similar to real scenes.

We first gather some statistics on the contrast and dynamic range of real targets
from the MURI FLIR data set. For each target instance and its immediate back-
ground area in the images, we first compute the mean and standard deviation of pixel

intensity values. These are denoted by u; and o, for the target, and u, and o, for the
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Figure 7.3: Synthesized texture for target signature simulation. Shown here are
textures synthesized from two real target image chips. For both (a) and (b), the
top-left corner shows the real target chip. The remaining eight images, from top to
bottom and left to right, show texture patterns synthesized from correlation windows
of sizes 3 x 3,5 x5, 7x7,9x%x09,11 x 11, 13 x 13, 15 x 15, and 25 x 25.
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Figure 7.4: Simulated target signature with corruption of additive texture. Left col-
umn show original real target chip without additive texture (A = 1.0). The remaining
three columns, from left to right, show the cases with increasing amount of additive
texture, with 1 — A = 0.3,0.5,0.7.
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Table 7.2: Relative contrast and dynamic range of the targets in the MURI FLIR
data set.

min | max | median | mean | stddev
c | -0.66 | 5.62 1.76 1.90 1.44
lc] | 0.02 | 5.62 1.76 1.95 1.37
d { 0.83 | 438 | 2.02 210 | 0.70

background. The relative contrast of the target is defined as

He — Uy
= ——— 7_
¢ Tp ( 3)

The relative dynamic range is defined as

O¢

d= (7.4)

Ob
These are taken as constants which characterize the contrast and dynamic range of
the target. On the MURI FLIR data set, values for ¢ and d for the targets are
summarized in Table 7.2.
When placing a simulated target chip into the background scene, the mean and
standard deviation of the immediate local background are computed and denoted as
ty and o;. The intensity values of the simulated target chip are then shifted and

rescaled so that its mean and standard deviation are
e = Coy + g (7.5)

and
o, = do}, (7.6)

respectively.
After the rescaling and shifting of the intensity values of the simulated target chip
are done, the updated target chip is placed into the background scene by replacing
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the intensity values at the pixel locations it covers. To smooth the transition of pixel
intensity values from the target to the background and vice versa, local smoothing is
applied to the intensity values of the target pixels adjacent to the background, and
the background pixels adjacent to the target.

In our experiment, an 11 x 11 neighborhood is used for texture synthesis, A values
of 0.7,0.5, 0.3 are used in separate experiments to observe algorithm performance on
low, medium and high level of target signature deviation. Low, medium and high
levels of target relative contrast and dynamic range are also used in the experiment.
These levels are set by the values (0.4, 1.3), (1.8,2.0), (3.2,2.7) for (c,d), which are
obtained by subtracting the standard deviations from the medians, the medians, and
adding the standard deviations to the medians, respectively. As a result, there are nine
different combinations target signature deviation and relative contrast and dynamic
range. For each combination, a set of 100 test images are generated by the procedure
described above. The 100 images in each set contains around 1250 target instances.
The performance of all competing algorithms are observed on each test image set.

Figure 7.5 shows an example of the simulated scene from using the medium target
signature deviation (A = 0.5) and medium relative contrast and dynamic range (c =
1.8, d = 2.0). In this scene, 11 targets are planted into the 12th image in the Chinalake
data set (the 8th image in Figure 7.1). Because of the low contrast in the scene, some
targets are quite hard to see even to the human eyes. To make it easier for the reader

to study the image, we also provide an image with the target silhouettes outlined.



(a) Simulated scene.

(b) With silhouettes overlaid.

Figure 7.5: Example of simulated FLIR scene.

170
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Chapter 8

FLIR ATR EXPERIMENTS

This chapter describes the experiment conducted to evaluation the performance
of the centroid uncertainty based FLIR ATR algorithm, and to investigate the com-
bination of the centroid uncertainty with other target detection and recognition tech-
niques.

We start by giving some implementation details of the algorithm that are not
covered by previous chapters, which mainly deal with the theory behind the centroid
uncertainty based target saliency measure. Specifically, in addition to an outline of the
algorithm sequence, we briefly discuss the normalization of the centroid uncertainty
measure, a generic thresholding procedure and ROC operating point selection.

A few competing algorithms are then briefly described. The performance of these
algorithms is compared with the centroid uncertainty based algorithm on the same
set of test data. In particular, we describe the use of a linear classifier framework
for combining the centroid uncertainty based algorithm with the traditional matched
filter algorithm to further improve FLIR ATR performance.

For the test data, it is unfortunate for us not to be able to gain access to some
large data set of real images suitable for this study due to the military classification
on the data. The performance of the algorithms is evaluated on simulated data sets
created from real FLIR scenes. The target image chips inserted into those scenes
are obtained from real target image chips and texture patterns generated from statis-
tics gathered from real target image chips. The generation of these simulated FLIR
scenes has already been described in Chapter 7. The observed performance of the

tested algorithms on data sets generated with various levels of target detection and
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recognition difficulty is reported in Section 8.3.

To compensate for the weakness of using simulated data in the experiment, we
also apply the centroid uncertainty based algorithm on the real imagery for the aerial
image vehicle detection application. Since the algorithm is a general methodology
for target detection applications, it also works well in that application domain. The

details of the experiment is described in Section 8.5.

8.1 Centroid uncertainty based FLIR ATR algorithm

Remember that our targeted application is where the only reliable target signature
in the FLIR scene is the existence of some contrast across the target boundary. The
motivation of an algorithm making use of this fact is to compute target significance
value by a proper weighted average of the contrast along the target boundary.

The algorithm we are proposing follows this line of reasoning, but takes a detour.
Instead of computing a direct weighted average of the contrast estimated for the
target boundary locations, we convert the contrast estimates along the boundary
locations into the edgel location covariance matrices for these locations. The geometric
instability of the target, as measured by the trace of the location covariance matrix of
the centroid, is computed via the polygon vertex-to-centroid covariance propagation.
Therefore, when the contrast at the boundary locations becomes higher, the traces
of covariance matrices of the boundary point locations become smaller and so does
the trace of the centroid covariance matrix. Stronger evidence for the existence of the
target of interest at the location being studied is indicated by a smaller trace of the
centroid covariance matrix.

The significance of this algorithm over ad hoc procedures for combining the bound-
ary contrast into a single target presence measure lies in the fact that there are sound
mathematical relationships between the contrast estimates made on the boundary

locations and the final target presence measure which is the propagated centroid lo-
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cation uncertainty. The final target presence measure (or, more precisely, absence
measure, since smaller values of this measure show stronger evidence of target pres-
ence) can be thought of conceptually as being inversely related to some weighted
average of the boundary contrast. The conceptual weights are determined by the
entire shape of the target boundary via a rigorous covariance propagation procedure,
hence is much preferred over ad hoc procedures, such as computing simple arithmetic

or geometric means for the boundary point contrast.

8.1.1 Normalized centroid trace as target presence measure

Without repeating the details in contrast estimation (Chapter 4), edgel location co-
variance estimation (Chapter 5), and polygon vertex-to-centroid covariance propaga-
tion (Chapter 3), the proposed FLIR ATR algorithm works as follows. The IDDGO
(we used 5 x 5 in our experiments) is first applied to the input FLIR image. The
gradient orientation, the edgel contrast along that orientation, and the variance of
the noise variance are computed for all pixels. Then for each target silhouette of
interest, we compute its presence measure at each pixel location in the image where
the centroid of target silhouette can be placed.

In computing the presence measure for a target at a single location, we first com-
pute the contrast across the target boundary for each point on the target silhouette.
This is done by projecting the edgel contrast estimate onto the orientation perpendic-
ular to the local segment of the digitized target silhouette. (In deciding the orientation
of the local segment of the target silhouette, we fit a straight line segment to the 5-
point target boundary segment centered at the pixel in question.) The contrast across
the target boundary is used to index into a pre-computed table (see Section 5.3) of
edgel location covariance matrix for the 0° step edge. These covariance matrices are
first rotated according to the orientation perpendicular to the local segment of the
target silhouette, and then substituted into the polygon vertex-to-centroid covariance

propagation formula to find the centroid covariance matrix.
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Figure 8.1: The centroid uncertainty needs to be normalized to reduce improperly
biased preference toward certain target shapes over others.

The trace, i.e., sum of the two diagonal elements, of this final matrix is a measure
of the target location uncertainty. Due to the difference in the shapes, the value for
the trace can be very different for different targets, even if the contrast along their
boundaries is exactly the same. This is illustrated by the targets and their trace values
shown in Figure 8.1. In order to reduce the improperly biased preference toward
certain target shapes over others, the trace value is normalized. The normalizing
constant for a target is the trace of the centroid covariance matrix computed for the
same target shape with zero-contrast across the boundary for all boundary points. It
is the centroid uncertainty expected for the target silhouette placed in a pure noise
background. The normalization is necessary for bringing the centroid uncertainty for
different targets into the same range on the scale. This normalized trace value is the

final measure for the target and location in question.
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8.1.2 Thresholding procedure

A target ID-location pair is used to represent a target candidate if the normalized
trace value computed for the said target and location is smaller than the specified
threshold. A list of target candidates are obtained. This list is further examined and
some of the candidates are dropped from the list when candidates overlap each other
too much. In doing this, we first sort the list of candidates in the ascending order of
the normalized centroid trace. The first in the sorted list is declared to be the first
detected target and taken away from the list. This target occupies the rectangular
area in the image that is the target’s bounding box. Any target candidate whose
centroid falls in this area is dropped from the candidate list. After this is done,
the first in the remaining list is declared as the second detected target. Then the
procedure repeats itself until the list becomes empty.

The effect of this thresholding procedure is that, for a target with strong appear-
ance, there will be only one target declared instead of multiple declarations of the
same target at several locations around the true target location. Also, the correct
target declarations often has a quite small centroid uncertainty value. It can often
suppress the declaration of some false alarms due to the accidental contribution of

parts of the target to the evidence of existence of some non-existent targets.

8.1.8 Operating point selection

Virtually all ATR algorithms, including the ones involved in this study, have tuning
parameters. Varying these parameters will usually give varied trade-offs between
detection and false alarm rates. In characterizing the performance of ATR algorithms,
it is customary to use the ROC curve which gives the false alarm versus detection rates
over a range of interest. However, in practical applications, an operating point on the
curve needs to be chosen which reflects a particular compromise between detection

and false alarm rates.
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In this experiment, we use an arbitrarily chosen linear cost function for operating

point selection.
C =Npyp+kNpy (81)

where & is a specified constant to balance the cost of a misdetection and that of a
false alarm. Njrp and Ng4 are the numbers of misdetected targets and false alarm
target declarations, respectively. It is a common practice in the ATR application to
assign the cost of multiple number of false alarms to be the same of the cost of one
misdetection. One reason is that a misdetected enemy target can potentially cause
very serious damage. Another reason is that ATR systems often consist of cascaded
subsystems. Subsequent processing by using other/fused information can possibly
reduce the number of false alarms, but misdetected targets in early stages are very
difficult to recover. Following this practice, in the experiments conducted here, k is
arbitrarily set to be 0.5, which equates the cost of two false alarms to that of one

misdetection.

8.2 Competing algorithms

This section gives a brief description of some FLIR ATR. algorithms whose perfor-
mance will be observed in the experiments and compared to that of the centroid
covariance based algorithm.

Different target presence evidence measures are computed by these algorithms.
However, similar post-processing procedures for thresholding the target presence ev-
idence measures that is described in Section 8.1.2 is used to process the list of target
candidates to produce the final target declarations. Obviously, the thresholds used

for different algorithms are different.



177

8.2.1 The Maryland algorithm

Der and Chellappa [31, 32] of the Center for Automation Research at the University
of Maryland proposed a model-based FLIR ATR algorithm for exactly the same
application scenarios considered in this dissertation. Targets are modeled by their
2D silhouettes. The image local contrast is measured by “probes” which are the
differences in the intensity values of pairs of pixels at certain orientations and variable
distances. Sample distributions of the probes for the background hypothesis are
estimated locally in the image. The uniform distribution is assumed for the foreground
hypothesis. A generalized likelihood ratio test is set up using those distribution
models.

To increase the robustness of the algorithm, the probe values need to be thresh-
olded at proper levels and the target evidence is reduced to the number of probes along
the boundary that exceed the threshold. Instead of an arbitrarily chosen threshold,
an adaptive procedure is used to identify the threshold yielding the smallest possible
false alarm rate, which is computed using a binomial model. At each possible target
location, this smallest achievable false alarm rate is computed for all targets and the
target with the smallest false alarm rate wins the competition. Further, if its rate
is below the threshold for the tolerable false alarm rate, it is declared to be a target

candidate.

8.2.2  The likelthood ratio algorithm

A variant of the Maryland algorithm was proposed [87] where no threshold on the
probe value is applied. The probe values are used directly in a generalized likelihood
ratio test for target detection and recognition. On the URI data set, this algorithm
performed slightly better than the Maryland algorithm [87].
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8.2.8 A variant of the centroid covariance algorithm

In the early stage of this dissertation research, a development that is based on the
covariance propagation in 1-D template matching is used to estimate the location
uncertainty of the target boundary points [90, 88, 89]. The cubic spline model is used
for estimating the 1-D signal derivative in the covariance propagation computations.
The resulting location uncertainty of the boundary points follows a 1-D perturba-
tion model. The centroid covariance matrix is computed using the same formula as

appeared in Chapter 3.

8.2.4 Maiched filter for FLIR ATR

The matched filter and its variations such as the synthetic discriminant function
(SDF) filters and the minimum average correlation energy (MACE) filters are popular
classical methods for signal detection applications. Here we describe a matched filter
based algorithm for detecting targets in the FLIR scenes. The performance of this
algorithm is to be regarded as being representative of classical detection algorithms.
Also, since the information used by this algorithm complements that used by the
centroid uncertainty based algorithm, these two algorithms are combined in a linear

classifier framework to further improve FLIR ATR performance.

Target and background instances

The theory behind matched filters is the likelihood ratio test with the assumption that
the data vectors for both target and non-target classes have the multivariate normal
distribution with the same covariance and different mean vectors. In the simplest
form, the covariance matrix is assumed to be the identity matrix and the difference
between the mean vectors is used to form the filter.

In the general case, we have NV target classes and one general non-target class.

A target instance is represented by a vector of the gray-scale values in a rectangular
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area with the centroid of the target located at the center of that area. Recall that
in this application, we assume that the shape, scale and orientation of the target are
known. Let y,-..,4n~ and pg denote the mean vectors of the IV target classes and
background class, respectively. Let the common covariance matrix be denoted by 3.
Let d denote the number of pixels in the rectangular area containing the target. The
mean vectors are d X 1 vectors. ¥ is a d x d symmetric, positive-definite matrix.

The p’s and ¥ are estimated from training data. Following the same procedure as
used in generating the FLIR scenes, we obtain instances of target appearances. The
instances for the background class are simply obtained by cropping image chips from
the background image at randomly selected locations. The cropped chips are of the
same size as the rectangular area for the targets. We obtain M instances for each
target class and NM instances for the background class. In other words, we obtain
data vectors z1,1,---,T1,M; T2,11---,T2,Ms -3 TN,1y---s TNM; To,l;-- -, TO,NM-

Because we are not interested in the constant bias of the gray-scale values, the
mean value of each individual vector is subtracted from all its elements. The mean-
subtracted vector is subsequently normalized to have unit energy.

The population parameters are estimated as

1 NM
oo = Wm:l rom
1 M

Hn = Hglxn’m (n:]_’,”’N)

I |

b= g (35 5 7em 3 7o)

> 1 _ ., M ) .,

- 2NM —1 (; mZ— (xn,m ﬂ) (xn,m - .u) + fg:-:l(xo,m - ,U') (.’IIO’m — /1,) )

where the prime stands for matrix transposition.
We find a matched filter for each of the target classes which best discriminates

the instances of that class from the background class.

n = 23_1(,”1'1 - #0) (82)



180

In practice, d is large (around 10000 in our experiments) due to the relative large
sizes of the target image chips. Thus, there is a practical difficulty in computing L.
We simplify the issue by ignoring the off-diagonal elements of X, essentially setting
them to 0.

In making the decision of whether a particular data vector z represents any target
class, we compute the discriminant values for all target classes and identify the class
giving the largest value.

= argrilizg.fc |w!,z| (8.3)

This largest discriminant value, |w}z|, is compared to a chosen threshold value 7 to
decide whether to claim an instance of the target class 7 or to claim the background
class. The threshold value 7 is varied in the experiment to give the ROC curve.

Since we follow the classical assumptions of the matched filter theory, i.e., data vec-
tors of all classes follow the multivariate normal distribution with the same covariance
matrix and different mean vectors, this test procedure corresponds to a generalized
likelihood ratio test.

In our experiments, we have N = 9 targets and M = 50 instances for each of
them. These instances are synthetically generated using the FLIR image generation
procedure described in Chapter 7. Figure 8.2 shows the image chips for target #1 and
background mean vectors, the overall standard deviation and the resulting matched

filter for the first target.

8.2.5 Combining centroid covariance and matched filter for FLIR ATR

The centroid covariance based algorithm picks up only information for target presence
along the boundary of the targets. The matched filter uses mainly the information
extracted from the area inside and outside of the target boundary. The information
being used by these two methods is rather independent of each other. Although the

motivating consideration of the application discourages assumptions to be made on
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the inside area of the targets, our experiment results show that matched filters can
still pick up some independent information contributing to more reliable detection
of targets. Therefore, it is our intention in this section to explore possible ATR
performance improvement due to the use of the information from both the centroid
covariance based and matched filter based algorithms.

From the characterization of the target saliency measures of the two algorithms, we
know that a strong target instance tends to have a small value for the normalized cen-
troid trace and a large value for the matched filter output. These two measurements
are combined in a linear classifier framework. Let f; denote the matched filter output
value and f. denote the normalized centroid trace. These form the two-dimensional

input feature vector for a linear classifier, which declares a target if
vefe + Utft >T (84)

where v, and v, are classifier constants with v2 + v2 = 1. The value for the threshold
7 determines the compromise between the numbers of misdetections (MD) and false
alarms (FA) that are associated with the classifier output. The cost associated with

these errors is computed as
(#MD) +0.5(#FA) (8.5)

Refer to Section 8.1.3 for some discussions on this cost function.

Our purpose is to find proper values for the triple (v, w:, 7) which yields the
minimum cost. A popular linear classifier is the Fisher linear classifier, where v,
and v; are determined from the mean vectors and covariance matrix of the training
samples. In many applications, this classifier performs very well. We also compute
its performance in our experiment.

Following the FLIR scene generation procedure, we obtain 450 target image chips
(50 for each of the nine targets in Figure 7.2) and 450 background image chips. The

centroid and matched filter features are computed for the center location of the image



183

Table 8.1: Linear classifier performance in combining centroid uncertainty and

matched filter for FLIR ATR.

Ve Vg T #MD | #FA | cost

MF-only 0 1 376 19 29 | 33.5
centroid-only | —1 0 —0.57 13 7 16.5
Fisher —1]1.62x10*| —0.53 9 6 12
best linear | —1 [ 3.49 x 10~* | —0.50 6 10 11

chips. These feature values are shown in the scatter-gram in Figure 8.3. We study

the performance of linear classifier in four cases:

1. v, = 0, corresponding to using only the matched filter; and

2. v, = 0, corresponding to using only centroid uncertainty; and

3. v; and v, given by the Fisher linear classifier; and

4. v? +v2 =1, but otherwise unconstrained.

In all four cases, the threshold 7 is varied to give the ROC. The best operating point
on the ROC is identified which gives the smallest cost by Equation (8.5). The ROC

curves are shown in Figure 8.4. The best performing classifier parameters and the

associated errors and cost are given in Table 8.1. The parameters of the best linear

classifier, except for the threshold 7 which is varied to give the ROC curve, are used

for combining the centroid and matched filter algorithms in all experiments of this

chapter.

From these performance data, we confirm that the centroid uncertainty is a better

feature for FLIR ATR than the matched filter. These two features do complement

each other and can be combined to improve performance. The Fisher linear classifier
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scatter-gram for the centroid uncertainty and matched filter output
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Figure 8.3: Feature vector distribution in combining the centroid uncertainty and
matched filter for FLIR ATR. Horizontal axis for normalized centroid uncertainty;
vertical axis for matched filter output; circles mark the target-class vectors; crosses
mark the background-class vectors.
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ROC for the linear classifiers
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does a rather good job in combining them. The performance is further improved by
the best linear classifier.

These performance data are obtained on the training data set consisting of target
and background image chips. The performance of the best linear classifier on the

testing data set of full-size FLIR images is reported in later sections.

8.3 Results and discussions

All algorithms tested in this experiment have only one tuning parameter, which is the
final threshold for target declaration. Besides this parameter, there is no parameter
to tune for any of the algorithms. (The combination coefficients for the combined
algorithm, the one combining the centroid uncertainty and matched filter, are given
in Table 8.1, and are held constant throughout the experiments.) The final threshold
is varied in the experiments to give different levels of detection performance and hence
does not need to a predetermined value. Therefore, no training data is needed.

As described earlier, nine sets of simulated FLIR images with 100 images per
set are generated. These nine sets of images are characterized by three levels (low,
medium and high) of target signature deviation and three levels (low, medium and
high) of target relative contrast and dynamic range. (See Chapter 7 for details.)
Each set contains a total of around 1,250 target instances. The performance of each
algorithm on each test set is observed individually. The performance of different
algorithms is compared on the same test sets. The effects of target signature deviation
and relative contrast and dynamic range on the performance of individual algorithms
are studied by comparing the performance of the same algorithm on the nine test
sets.

Each algorithm described in Section 8.2 with the same thresholding procedure
described in Section 8.1.2 is applied independently to the test data sets. The per-

formance evaluation procedure described at the end of Chapter 6 is carried out to
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Table 8.2: Best performance of the algorithm combining the centroid uncertainty and
matched filter (comb-cen-mf) on the simulated FLIR test sets.

low dev med dev high dev

low contrast and range 880 1055.5 1139.5
med contrast and range | 427.5 440 507.5
high contrast and range 258 242.5 295

compare the output with the ground-truth and the performance measures are ob-
tained. The thresholds of the algorithms are varied to give the algorithm detection
performance in terms of the receiver operating characteristic (ROC) curve. There is
one such curve for each algorithm on each test set.

Following the method outlined in Section 8.1.3 for the operating point selection,
the optimal (least-cost) operating point is identified. The achieved minimum cost are
shown in Tables 8.2 through 8.7.

To show the algorithm detection performance over the entire operating range, we
also show the ROC curves for the algorithms on the test set with the medium level tar-
get signature deviation and medium level relative contrast and dynamic range. These
curves are shown in Figure 8.5. The recognition performance and the localization
performance for this test set are shown in Figures 8.6 and 8.7, respectively. In these
plots, the centroid uncertainty based algorithm is denoted by “cencovdiratr,” the
Maryland algorithm described in Section 8.2.1 is denoted by “matcher,” the matched
filter algorithm is denoted by “tmatr,” the combined algorithm, which combinines
the centroid uncertainty and matched filter, is denoted by “comb-cen-mf,” the algo-
rithms described in Sections 8.2.2 and 8.2.3 are denoted by “mlratr” and “polyspatr,”

respectively.
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Table 8.3: Best performance of centroid uncertainty based algorithm (cencovdiratr)

on the simulated FLIR. test sets.

low dev med dev high dev

low contrast and range
med contrast and range

high contrast and range

978 1111.5 1139.5
661 410 539
330.5 354 328

Table 8.4: Best performance of matched filter (tmatr) on the simulated FLIR test

sets.

low dev med dev high dev

low contrast and range
med contrast and range

high contrast and range

1169.5 1260 1254.5
709 736.5 928
566.5 594 689.5

Table 8.5: Best performance of the Maryland algorithm (matcher) on the simulated

FLIR test sets.

low dev med dev high dev

low contrast and range
med contrast and range

high contrast and range

1097.5 1177 1225
859.5 815.5 830
516 481 444.5
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Table 8.6: Best performance of the maximum likelihood ratio algorithm (mlratr) on

the simulated FLIR test sets.

low dev med dev high dev

low contrast and range
med contrast and range

high contrast and range

1114 1161 1186.5
831 831 890.5
563 582.5 589

Table 8.7: Best performance of the centroid uncertainty algorithm with 1-D cubic
spline model for boundary uncertainty estimation (polyspatr) on the simulated FLIR

test sets.

low dev med dev high dev

low contrast and range
med contrast and range

high contrast and range

1225 1253 1239.5
1166.5 1109 1145.5
967 973 903.5

Table 8.8: Sensitivity of algorithm performance to image quality. o and B are the
coefficients of the row and column indices in the planar fit to the performance data

(minimum cost).

a B
combined algorithm —380 62.8
centroid uncertainty —369.4 6.17
matched filter —-305.7 71.2
Maryland algorithm —-343.0 44
likelihood ratio algorithm —287.8 26.3
variant of the centroid algorithm | —145.7 —11.7
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Figure 8.5: Detection performance (ROC curves) of the ATR algorithms.
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Figure 8.6: Recognition performance of the ATR algorithms.
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8.3.1 Discussions

e From the performance data in Tables 8.2 through 8.7 and in Figures 8.5 and
8.6, we see that the centroid algorithm uniformly out-performs the competing
algorithms in terms of detection and recognition performance over the entire
operating range, except the algorithm which combines the centroid uncertainty
with the matched filter. The combined algorithm successfully combines the
information extracted by the two algorithms and results in a very significantly

improved performance in both detection and recognition.

For the test data set for medium contrast and medium level of target appearance
deviation, at the optimal operating point, the centroid algorithm has a detection
rate 67% with 5 false alarms per frame. The best competing algorithm has
detection rate 54% with 3.3 false alarms per frame. The algorithm combining
centroid uncertainty and matched filter has detection rate 81% with 4.2 false

alarms per frame.

The reason for not giving the detection performance data of these algorithms
at the same false alarm level is that we adopt the minimum cost criterion for
measuring the algorithm performance, instead of the constant false alarm rate
(CFAR) criterion. The performance data reported above are associated with
the optimal (least-cost) operating point on the respective ROC curves. In com-
puting the cost of errors, the cost of two false alarms is equal to the cost of one

misdetection. (See Section 8.1.3 for details.)

e The best localization performance for the correctly recognized targets is achieved
by the matched filter. The next best is the centroid uncertainty algorithm. The
localization performance of the combined algorithm is worse than both compo-

nent algorithms. However, it is still better than other competing algorithms.

e The sensitivity of the tested algorithms with respect to the image quality is
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studied by least-squares fitting of planes to the given performance data. Let r
and c denote the row and column indices of the table, and let the indices take the
value from {—1, 0, 1} for the left, center and right column, or the top, center and
bottom row, respectively. The slope of the fitted plane along the row and column
axes are denoted by o and S, respectively. Their values show the sensitivity of
the algorithm performance with respect to the the target contrast and dynamic
range relative to the background, and to the amount of deviation in the target
appearance. These values are listed in Table 8.8. It is interesting to observe
that the best performing algorithm, which is the algorithm combining centroid
uncertainty and matched filter, is the most sensitive to the target contrast and
dynamic range. This is due to the sensitivity of both the centroid uncertainty

and the matched filter.

The combined algorithm is also highly sensitive to the deviation to target ap-
pearance, only second to the matched filter which is expected to be very sensi-
tive. This shows the influence of the matched filter in the performance of the

combined algorithm.

The confusion matrices for the centroid and the Maryland algorithms are given
in Tables 8.9 and 8.10. These matrices reflect the recognition performance of
the algorithms on the test data set with medium contrast and medium target
signature deviation, and at the algorithms’ respective optimal operating points
(67% detection with 5 false alarms per frame for the centroid algorithm, and
49% detection with 3.6 false alarms per frame for the Maryland algorithm).
From these confusion matrices, we see that the centroid algorithm has much
better recognition performance by making a very small number of recognition
errors other than misdetection and false alarms. In comparison, the Maryland
algorithm makes significantly more recognition errors. The overall correct recog-

nition rates for all true targets are 65% for the centroid algorithm and 39% for
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Table 8.9: Recognition performance (confusion matrix) for the centroid uncertainty
algorithm at its optimal operating point on the ROC curve. ¢,...,tg9 are the true
target ID’s. dy,...,dy are the declared target ID’s. The column headed by MD is
for the numbers of misdetected target instances. The row headed by FA is for the
numbers of false alarm instances.

MD d do d3 dy ds ds d; dg do
FA 91 24 148 67 51 59 9 27 22
tp | 79 65 1 2 2 0 2 0 2 0
t ([ 39 0 100 2 0 0 0 o0 O 0
t3 | 66 1 0 8 0 0 1 0 O 1
ty | 50 2 1 0 8 0 2 1 0 0
ts | 37 0 O 0 0O 8 0 0 0 1
ts | 92 0 O 0 1 0 71 1 O 1
tz | 14 1 0 0 1 0 0 105 O 0
ts | 51 0 O 0 0 0 0 0 98 O
to | 22 0 O 0 0 0 O 0 o0 108

the Maryland algorithm.

8.4 Experiments on uncooled FLIR image sequence data

To have a broader view of the performance of the ATR algorithms, another set of
experiments were conduct on some image data from a newly developed FLIR sensor.
This new sensor was developed at Texas Instruments. It is an uncooled FLIR device
that has very low cost. It is known to produce imagery with much lower quality than
most second generation FLIR sensors currently in use.

The video sequence t6131oopl from the Raytheon Company ! contains 340 frames

!Courtesy of Dr. Mary Cassabaum and Dr. Harry Schmitt
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Table 8.10: Recognition performance (confusion matrix) for the Maryland algorithm
at its optimal operating point on the ROC curve. ¢;,...,ts are the true target ID’s.
dy,...,dg are the declared target ID’s. The column headed by MD is for the numbers
of misdetected target instances. The row headed by FA is for the numbers of false
alarm instances.

MD di dy; di3 diy ds ds¢ dy dg dy
FA 23 45 24 54 46 18 87 15 49
&b 100 23 1 1 10 2 3 10 O 3
t | 86 0 37 4 0 4 1 3 2 4
t3 100 0 9 18 2 5 1 8 3 5
t4 | 5 0 0 0 78 0 2 5 6 O
ts | 79 0 2 0 0 39 1 5 4 0
t¢ [ 883 1 1 0 7 0 28 4 1 1
tz {13 0 0 0 O O O 108 0 O
ts {62 1 0 0 0 1 O 0 8 0
t9 |61 1 1 0 0 0 1 3 0 63
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FLIR images. The sequence shows a moving tank target imaged by a moving camera.
The original images are of size 256 x 256, and the pixel intensity value is quantized
into 16 bits. These images are slightly modified by first cropping to 256 x 236 in
size and then using the trimmed linear compression to convert the intensity values
to 8 bits. In many of the images, the tank target is present and not significantly
occluded. In others, the tank target is either present but with some parts occluded
by the terrain, or not present in the image at all. Out of the 340 frames, there are
244 frames where the target is either not occluded, or not significantly occluded.

This video sequence is more appropriate for testing the tracking module, as op-
posed to the acquisition module considered in this dissertation study, of an ATR
system. Since the target appearance does not change very significantly from scene to
scene, except for some noticeable change in its pose, the matched filter algorithm is
very effective in detecting the target. Other boundary-based ATR algorithms consid-
ered in our study for target acquisition are based on the assumption that the target
signature is too unreliable to be used. This assumption simply does not hold in this
tracking application. The price being paid here is the loss of significant information
from the target signature, which results in significantly lower target detection perfor-
mance as compared to the matched filter. However, even in this case, the algorithm
that combines the matched filter with the boundary based centroid uncertainty (to
be referred to as the “combined algorithm™) still shows some significant performance
improvement over the simple matched filter algorithm.

In the following, we describe some more details of the experiment of applying
the ATR algorithms to both the image sequence and the data sets created from
this image sequence by the FLIR scene simulation procedure (Chapter 7). In this
set of experiments, we are primarily concerned with target detection. Target pose

estimation is not of interest.
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(a) downhill (b) level (c) uphill

Figure 8.8: Target instances for three different poses used in modeling the target in
the Raytheon data experiment.

8.4.1 Target representation

Since the target undergoes significant changes in its pose over the entire sequence,
three instances are chosen for representing its three typical poses: downhill, level and
uphill. These are chosen from the frames 1, 11 and 135, respectively. The sub-images
containing the target in these frames are shown in Figure 8.8, with the boundary
silhouette of the target overlaid.

For each of the target poses, the matched filter algorithm uses the center part of
the sub-image (without the overlaid boundary silhouette) of size 61 columns by 21
rows for representing the target with that pose. The boundary-based algorithms all
use the boundary silhouette, without the part for the protruding gun barrel, for rep-
resenting the target with that pose. The reason for not including the gun barrel part
is two-fold. First, the three selected poses only constitute a very rough approximation
for all poses of the the target in the entire sequence. The position of the long pro-
truding gun barrel is very sensitive to the actual pose of the target. When the actual
target pose is different from all three selected poses, the gun barrel is significantly
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away from that with the three poses. This adds significantly to the modeling error by
the three poses. On the other hand, the body part of the silhouette is less sensitive
to the pose. Secondly, the boundary based algorithms all assume more or less inde-
pendent measurements along the target silhouette. The gun barrel of the target in
this sequence is only one to two pixels wide. Boundary points on the opposite sides
of the gun barrel are just right next to each other, or even are the same points. This
adversely worsens the violation of the independence assumption of the algorithm, and
hence should be avoided. For these reasons, to reduce the modeling error, the gun
barrel is not included in the target silhouettes used for modeling the target in the

boundary based algorithms.

8.4.2 ATR performance on the image sequence

The ATR algorithms examined in the experiments of last section were applied inde-
pendently to the 340 frames in the image sequence. Each of the algorithms only has
one tuning parameter, which is the threshold on the final target saliency measure.
For each threshold value used, the algorithm output is compared by the Hungarian
algorithm based performance evaluation procedure (Chapter 6, [91, 92]) against the
ground-truth gathered manually about the target in the image. The table of the
Euclidean distances squared between the ground-truth and declared targets is used
in the procedure. The threshold on the table entries for determining detection is set
to 100 pixel squared, corresponding to searching a circular area of radius 10 pixels
around the centroid of each ground-truth target for a declared target.

Numbers of misdetection and false alarms are determined for each image indepen-
dently, and added together for all frames to give the detection performance over the
entire sequence. Different values for the threshold is used to give different levels of
trade-off between detection and false alarm performance as reflected by the receiver
operating characteristics (ROC) curve. The statistical significance of the differences

between important ROC curves is assessed by the Z-test for the equality of two pro-
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portions [70].

Figure 8.9 shows the image of the first frame of the sequence with the true target
boundary overlaid. Also shown is the detection result on this image by the combined
algorithm at a threshold level giving the detection rate of 0.62 and the false alarm
rate of 0.93 false alarms per frame.

Figure 8.10 shows the ROC curves of the algorithm on the sequence. The low
performance of all the algorithms is due to the low contrast of the target in the
sequence: the median values of the relative contrast and dynamic range (see Chapter 7
for their definitions) are as low as 0.56 and 1.09, respectively. (As a comparison, the
medians for the MURI FLIR data set are 1.76 and 2.02.)

The Z-test is conducted to examine whether difference in the detection rate be-
tween the algorithms is statistically significant. This is conducted at the false alarm
level of approximately 1.07 false alarms per frame. At this false alarm level, the de-
tection rates are: 0.58 for the combined algorithm; 0.4 for matched filter alone; 0.13
for centroid uncertainty alone; 0.096 for the Maryland algorithm. Table 8.11 shows
the results for the tests for some important pairs. From these results, we see that
the improvement in detection rate by the combined algorithm over the matched filter
algorithm is very significant. The improvement for the matched filter algorithm over
the centroid algorithm is also very significant. There is not much significance in the
amount of improvement in detection performance by the centroid algorithm over the

Maryland algorithm as measured by this experiment.

8.4.3 ATR performance on image data simulated from the sequence

'To conduct experiment with the image data appropriate for testing algorithms for
the acquisition module, we generated simulated FLIR. scenes from the t613loopl
sequence using the procedure described in Chapter 7. Relative contrast and dynamic
range of the inserted target instances are set to those estimated from the target

image chips in the sequence. The amount of texture added to the target signature
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(a) true target

(b) detection result by combined algorithm

Figure 8.9: First frame in the t613loop1 sequence and detection result by the com-
bined algorithm. This result is from a threshold giving a detection rate of 0.62 and
false alarm rate of 0.93 false alarms per frame over the entire sequence.
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Figure 8.10: Detection performance of the ATR algorithms on the t613loop1l se-
quence (340 frames and 244 total target instances).

Table 8.11: Results from Z-test for assessing the statistical significance of the differ-

ence in the the detection rates.

algorithm pair Z-value p-value
comb-cen-mf and mf 398 |349x10°°
mf and centroid alg 6.73 < 10710
centroid and Maryland 1.22 0.11
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is varied in different runs. There is no zooming or rotation of the target signature
in the experiments described here. In each selected scene, simulated target chips are
inserted in the scene so that each scene has 12 to 15 target instances. 100 scenes are
generated for each run. There are around 1300 target instances in each set of such
100 scenes.

Figure 8.11 shows one example of the simulated image with the true target bound-
aries overlaid. This example is from the data set generated with the texture amount
of 0.1. Although it might look unrealistic to have so many targets in a single scene,
each individual insertion of the simulated target signature seems to fit well in the
scene. The reason for having so many target instances in a scene is two-fold. First,
in our ATR research, the emphasis is on detecting individual targets. The spatial
relationship between target instances, except for overlapping, is not concerned by the
algorithms being considered. Therefore, having many target instances in a scene does
not bias the relative performance of the algorithms being tested, provided that the
same data set is used for all algorithms. Secondly, in order for the detection per-
formance measured on such a data set to carry statistical significance, we need to
have some moderately large number of target instances in the data set. Having many
target instances in one scene can reduce the number of images required in such a data
set. This in turn reduces the time required in conducting the experiment.

Also shown in Figure 8.11 is the detection result by the combined algorithm on
this image at the false alarm rate of 0.94 false alarm per frame.

Figure 8.12 shows the ROC curves of the algorithms on the simulated data set
from adding 10% of texture to the target signature. Comparing with Figure 8.10, we
see that there is a very significant drop in detection performance of the matched filter
algorithm. This is due to amount of texture added to the target signature, which
causes significant differences in the appearance between the templates used by the
matched filter algorithm and the target instances inserted in the images. The Z-

test is conducted to assess the significance in the difference in detection performance



204

(a) true targets

(b) detection result by combined algorithm

Figure 8.11: Example of simulated scene and detection result by the combined algo-
rithm. This example is from the simulated data set with the texture amount of 0.1
added to the target signature. The detection result is from a threshold giving 0.94
false alarm per frame on the data set.
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between the centroid algorithm and the Maryland algorithm. At the false alarm rate
of approximately 1.1 false alarms per frame, the detection rates are 0.22 and 0.17 for
the centroid algorithm and Maryland algorithm, respectively. The total number of
target instances is 1332. The Z-test gives Z = 3.26 with the p-value of 0.0006. Hence
there is strong evidence that the detection performance of the centroid algorithm is
significantly better than the Maryland algorithm. From this calculation, we can also
easily conclude that the combined algorithm has very significant better performance
than all other algorithms.

The ROC curves of the algorithms on some other test data sets generated with
more amounts of texture added to the target signature are shown in Figure 8.13
(for texture amount of 30%) and 8.14 (for texture amount of 50%). It can be seen
clearly that, with increasing amounts of deviation in the signature of the target, the
performance of the matched filter algorithm degrades more and more. On the other
hand, the boundary based algorithms which were designed to be robust to this kind
of deviation are much less affected by this change. The combined algorithm remains
by far the best performing algorithm. The centroid algorithm remains the second

best algorithm.

8.5 Experiments on vehicle detection in aerial imagery

To test the generality of the centroid uncertainty based algorithm for automatic tar-
get detection and recognition problems, we also conduct experiments to observe its
performance in the vehicle detection application {86, 114, 85]. In this application,
vehicles of a specified size and orientation are to be detected from vertical view aerial
images. In our experiments, vehicles of length 13 & 5 pixels, width 5 4 2 pixels, and
orientation 7 =+ 0.1 radians are designated as target vehicles. A perfect vehicle de-
tection algorithm should detect all such vehicles and nothing else from the any given

image. Figure 8.15 shows an example image in this application. A proposed system



206

detection performance on the ray-10p data set
0.5 T T T T

1

—— cencovdiratr
-6~ Maryland alg

0.45H -+ - likelihood ratio alg UEPTUREE A
-©- polyspatr | e
--x- matched filter UTTE* haa

0.4H - ©- comb-cen-mf -
o

0.35} .

e
(%)

detection rate (x100 percent)
o
o
o B

o
s
(&)}

e
-—h

0.05
<

0 05 1 15 2 2.5 3
false alarm rate (# per frame)

Figure 8.12: Detection performance of the ATR algorithms on data simulated from
the scenes in the t613loopl sequence. 100 scenes simulated with a total of 1332
target instances. Target signature contains 10% of texture. Target relative contrast
and dynamic range set to the values estimated from real target image chips from the
t6131loopl sequence.
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detection performance on the ray-30p data set
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Figure 8.13: Detection performance of the ATR. algorithms on data simulated from
the scenes in the t613loopl sequence with 30% texture. Target relative contrast
and dynamic range set to the values estimated from real target image chips from the

sequence.
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detection performance on the ray-50p data set
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(a) original image (b) with ground-truth vehicle boundary

Figure 8.15: Example aerial image for vehicle detection.

[114] for this application suffers greatly from the complex background of natural and
man-made objects in the imagery. The relative small size of the vehicles (around 50
to 150 pixels in area) also adds to the difficulty. The result is that the false alarm
rate for the system output is unacceptably high. The current research effort is mainly
on reducing the number of false alarms.

Parameswaran et al [114] propose a system that consists of algorithm modules
for edge detection, generalized Hough transform (GHT) [7, 83, 137, 153] and post-
processing. The problem with this system lies in its bottom-up nature. The local
nature of edge detection makes the resulting edge map very unreliable on the aerial
imagery due to the complex scene content. The quality of the detected edge map can-
not meet the high requirements by the subsequent GHT operation. As a consequence,
the GHT produces large numbers of false alarms [46]. The observed performance of
the system on our real test data is not good: the detection rate is less than 20% at
the false alarm rate of 50 false alarms per million-pixel image area.

The system performance is significantly improved in [86] where a classical pattern

recognition approach is taken. Using the VVFH data set [94, 95, 85], which is a mod-
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erately large set of aerial images with manually obtained ground-truth, eight features
are extracted for the vehicle detection purpose. Six of the features are the average
intensity and gradient magnitude values for the pixels inside, along the boundary
of, and in the outside around the vehicles. Two more features are the averages of
the projected values of the gradient magnitude and direction unit vector for pixel
locations along the vehicle boundary [86]. These eight raw features are used to con-
struct a Bayesian table-look-up classifier to be referred to as the 8-feature LUT clas-
sifier. In this classifier, the eight raw are decorrelated and reduced to three by the
principle component analysis (PCA) [43] where the first three PCA coefficients are
retained as useful features. A three-dimensional look-up table is constructed to be a
non-parametric representation of the probability distribution of the resulting feature
vectors. (All data points, referred to by "total” in Table 8.12, are used in constructing
this 8-feature classifier. For the 9-feature classifier to be described below, only those
covered by Part I are used in training.) Specifically, a look-up table of fixed size is
constructed where the numbers of quantization levels along the three axes are propor-
tional to the entropy along the axes. The quantization boundaries on the three axes
are determined independently by the equal probability quantization (EPQ) [58] on
the data projections on the three axes. The vehicle and background class conditional
probabilities are estimated by smoothing and normalizing the counts of data samples
in the quantization bins. The vehicle class prior probability is specified as 0.01. The
economic gain matrix is varied to give vehicle detection performance over a range of
false alarm levels. A Bayesian classifier using these data judges whether a test feature
vector represents a target vehicle or not.

The performance of two FLIR ATR algorithms, namely the Maryland algorithm
and the centroid uncertainty based algorithm, on the VVFH data set are obtained
using exactly the same performance evaluation procedure as used in [86]. The per-
formance evaluation procedure is based on the ground-truth information of 25,124

target vehicles in 375 images. These images cover a total of about 200 million pixels.
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Table 8.12: Some statistics for the VVFH data set. Size is the total number of pixels
in millions; # T.V. stands for the number of target vehicles whose dimension and
orientation meet specifications. Part I consists of fhn75, fhn78, fhn711, fhn715.
Part II consists of £hn713, fhn717, fhn719.

size | sub-images | # T.V.
fhn75 | 23.8 30 1464
fhn78 | 32.8 84 1745
fhn711 [ 23.0 24 2875
fhn713 | 28.5 31 3638
fhn715 | 45.0 60 5641
fhn717 | 22.2 55 5438
fhn719 | 24.1 51 4323
total | 199.4 335 25124
Part I | 124.6 198 11725
Part IT | 74.8 137 13399
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Figure 8.16: ROC curves for the vehicle detection application.

The dimension of a pixel in the image corresponds to the length of 0.31 meters on
the ground. The ROC curves of the two algorithms, along with those for the GHT
based algorithm and the 8-feature LUT classifier, are shown in Figure 8.16.

From the ROC curves in Figure 8.16, we observe that the centroid uncertainty
based algorithm performs relatively well, and the Maryland FLIR ATR algorithm
does not fit well into this application. In particular, the performance of the centroid
uncertainty based algorithm is about the same as the 8-feature LUT classifier at the

first iteration. This is fairly good performance considering the fact that there is no
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training of any kind done for this algorithm on the data set, while the 8-feature LUT
classifier totally relies on the probability distributions estimated from the data.
Since the Bayesian LUT classifier is a very general framework, the centroid uncer-
tainty can as well be used as an extra feature to be used in the classifier and improve
vehicle detection performance. This is done, and the resulting algorithm is referred
to as the 9-feature LUT classifier. This classifier is constructed in exactly the same
manner as in the 8-feature case. The only difference is in the dimensionality of the
raw input data vectors. As can be seen from the ROC curves in Figure 8.16, the
performance of the 9-feature LUT classifier is further improved over that of the 8-
feature LUT classifier. The significance of the improvement is confirmed by the Z-test
results: at the false alarm level of 30.5 per million pixel, the p-value is 3.28 x 10~7;

at the false alarm level of 2 per million pixel, the p-value is 4.83 x 10~20,
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Chapter 9

CONCLUSION

9.1 Brief summary

In this dissertation, we presented a theory on the use of location uncertainty infor-
mation in detection and recognition problems of computer vision applications. In
particular, we applied the theory to the problem of automatic target detection and
recognition. To accommodate the great amount of change in the target appearance
and scene content, a boundary model is used for the target, and the target centroid
location uncertainty measure is computed that is related to a weighted combination
of boundary contrast. In computing the centroid uncertainty measure, relative impor-
tance of target boundary points are determined geometrically by their contribution
to the centroid location uncertainty. Targets with strong visual appearance are char-
acterized by small centroid location uncertainty.

The theory of the location uncertainty information consists of three major pieces.
These are the propagation of location uncertainty from boundary points to the cen-
troid, the representation of contrast at boundary points by geometric location uncer-
tainty, and the optimal estimation of image gradient. These new contributions are all
based on sound mathematical formulations. In the location uncertainty propagatior,
a polygon model is used for the target silhouette and the linearization of the pertur-
bation is used for estimating the centroid location covariance matrix. The boundary
point location uncertainty estimation is carried out in the edgel detection framework,
and the relationship between the signal-to-noise ratio and the location uncertainty

is computed and tabulated. A minimax optimization problem is formulated for de-



215

signing the optimal gradient operator used in signal-to-noise ratio estimation. The
criteria function to be minimized is the worst-case mean-squared error in the gradient
orientation estimate. Meaningful results from these studies are useful not only in the
ATR application, but in other computer vision applications as well. For example, the
obtained optimal gradient operator can be used to improve various edge detection
or optical flow estimation modules, which often appear as earlier stage modules in
computer vision algorithms. The edgel location uncertainty model can be used to
improve the precision of Hough transform or be used directly in model-based curve
detection. The centroid location uncertainty can be used directly in the biological
cell counting module of medical imaging systems.

The normalized centroid uncertainty as a feature for target detection and recog-
nition proved to be very effective in the experiments with synthetic and real imagery.
The ATR. algorithm using this feature performs significantly better than competing
algorithms in all three aspects of the ATR algorithm performance, i.e., detection
rate, recognition rate, and localization accuracy. The centroid uncertainty feature is
intended to be a powerful addition to existing ATR. algorithm modules. The prelim-
inary study of its combination with the traditional matched filter shows significantly
further improved target detection and recognition performance.

In characterizing the detection and recognition performance of computer vision
algorithms, a new methodology is developed to overcome some problems with exist-
ing methods. The center pieces of the new development are the formulation of the
situation by an optimal matching problem, and transforming the problem into an
unconstrained assignment problem. The Hungarian algorithm is used to solve the
resulting problem efficiently. Based on the established one-to-one correspondence be-
tween ground-truth and declared entities, the computed performance measures are
more precise indications of the algorithm performance. Due to the similar nature of
the function performed by detection and recognition algorithms, the general method-

ology developed here is readily applicable to the evaluation of a wide range of algo-
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rithms for detection and recognition applications, such as algorithms for human and
face detection, biological cell detection and recognition, and vehicle detection and

recognition.

9.2 Short-comings and future work

General targets are three-dimensional objects and can have infinite numbers of two-
dimensional silhouettes depending on range and pose relative to the imaging sensor.
The modeling of targets by the silhouette requires prior knowledge of the target pose.
Otherwise, a large number of silhouettes corresponding to all poses and ranges of
interest need to be examined. This restricts the use of the algorithm in real applica-
tions. The remedy for this problem could possibly be found in combining the work
with the model-based active contour formulations such as Friedland and Rosenfeld
[42].

The interpretation of the centroid uncertainty feature as a weighted combination of
boundary contrast is quite conservative. The use of localization information in general
signal detection applications may well deserve its own focus of study. Currently,
understanding in this area is still limited. Localization is customarily considered as
being secondary to detection, and studied in a framework following the detection
stage. We have demonstrated that the localization measurement can be very useful
right in the detection stage. Deeper understanding of this topic can possibly lead to
brand new interpretations of the centroid feature, taken entirely from the localization
point of view.

In our experiments, a general linear classifier has already succeeded in combining
boundary based and intensity based features to give significantly improved target
detection performance. We believe that further improvement will result from better
combination of the features, which requires more detailed specification of targets in

terms of both geometric and photometric properties.
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The fourth class gradient operator obtained in Chapter 4 by numerically opti-
mizing the worst-case error criterion function over the full parameter space is a very
attractive candidate for applications involving gradient or contrast estimation. How-
ever, in order for it to be useful in real applications, an effective method needs to be
developed to estimate the local image signal-to-noise ratio in a way that is compatible
with this gradient operator.

The bi-variate polynomial fitting based image gradient estimation approach is very
appealing in that it provides a natural means for estimating the local signal-to-noise
ratio in the imagery. It is popular to use a fixed third-order polynomial for the fitting.
A more natural consideration is to let the order of the fit adapt to the local image
neighborhood. In the appendix, we briefly describe our initial efforts in using the
minimum description length principle to adaptively choose the fitting order. Some
detailed issues related to the precision of the data need to be carefully studied before
the image signal-to-noise ratio can be more accurately and robustly estimated.

Since the centroid uncertainty model ranks the relative importance of boundary
points from a global view of the entire boundary, it is a very promising foundation
for developing a good polygon approximation algorithm that can overcome problems
associated with local operations of many existing algorithms. The minimal description
length principle should also be a very useful resource in this development.

The results on the optimal gradient operator design and the relationship between
edge signal-to-noise ratio with the location uncertainty can be readily applied to curve

detectors such as the Hough transform and the model-based curve segment detectors.
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Appendix A

FACET MODEL ORDER DETERMINATION BY MDL
PRINCIPLE

The facet model [61, 52, 51, 60] uses bivariate polynomials to model the image
intensity surface. It is a very important tool in low-level vision. It has been customary
to use the cubic facet model, i.e., bivariate polynomials of up to the third order, in
small neighborhoods such as 5 x 5 and 7 x 7. The particular choice of the highest
order of 3 is roughly a rule-of-thumb.

The minimum description length (MDL) principle {126, 127, 128, 129] is a well
established principle for data modeling. Here we summarize some issues in applying
this principle in facet parameter estimation to adaptively determine the optimal order

of polynomial fit for the local neighborhood.

A.1 The MDL principle

According to the MDL principle, the description of a particular observed data vector
z using a particular model with the parameter vector # is broken into two parts: the

model part and the deviation part. The total coding length is expressed as
L(z,0) = L(0) + L(zx|6) (A.1)

where L(f) is the number of bits required to describe the model and L(z|8) is that
for describing the deviation of the data vector from the described model. There is
an intrinsic trade-off between the model complexity and the complexity of the data

given the model. The objective is to reach a compromise with the smallest sum.
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A.1.1 Encoding the data using a model

For computing L(z|6), it is very popular to use Shannon’s theory which states that
the expected shortest coding length is

L(z|6) = ~log, p(¥),

where y = z — £(f) is the difference vector between z and the estimated values %
given by the chosen model 6. p(-) is the probability of y. Notice that this statement
assumes that y has a discrete distribution. In many applications, continuous models
are involved and have to be quantized in order to use this result.

It has been pointed out that Shannon’s formula is asymptotic for large samples.

An alternative formula is given by Rissanen [129] for small sample sizes

L(z]0) = —logp(z|f(z)) + glog % + log/r v [11(8)]|d8 + o(1), (A.2)

where k is the number of real-valued parameters in §(z), n is the number of elements in
the sample z, T is the region of allowable 6 values, and I(6) is the Fisher information

matriz,
_ 0 log p(z|0)
I1(0) = E"{—ae,-ae,- .

We have not yet closely studied the use of this formula. In the rest of this document,
in discussing L(z|0), we restrict our attention to Shannon’s formula.

Elements in y are commonly assumed to have the iid normal distribution. In
quantizing it into a discrete distribution, we use a quantization interval § which is
a very important parameter in applying the MDL principle. It significantly affects
the relative portion of L(f) and L(z|d) in the final minimized L(z,8). § is usually
specified by considerations for specific applications. We then have

- 1 (o (28) o (254)). w

=1

where N is the dimension of the data vector, o is the standard deviation of the

distribution for y, ®(-) is the cumulative distribution function (cdf) of the standard
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normal distribution. o needs to be estimated from the data, usually by using the
residual fitting error.

Let K denote the number of facet parameters in 6, and let £ denote the total
residual fitting error (computed as the sum of the squared difference between z and
the fitted values Z specified by the K facet parameters.) The noise standard deviation

o is estimated as

£

&=/ —2—

N-K’
Substituting into p(y), we have

(A.4)
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L(z]6) = ~log, p(y) = — >_ log, (‘I’ ( y;_

=1 N-K
A.1.2 FEncoding the model parameters

To transmit the model parameters § with finite coding length, 6 has to have finite
precision. In most applications, many elements in € are real-valued, hence need to
be quantized, too. Let K denote the number of elements in 8, and ¢, denote the
quantization interval for the k-th element. Rissanen [126, 127] derived how ¢ should
be chosen to give the smallest total coding length, which results in the so-called
universal prior for the integers. For large sample size IV, real-valued parameters are
quantized to VN quantization levels. Here, N is not very large for small image
neighborhoods, e.g., N = 25 in the 5 x 5 neighborhood. Therefore, we take an
alternative approach and use a particular coding scheme for the facet parameters.

When the facet parameters 8 are quantized, the corresponding facet polynomial
will have error due to this quantization. We choose the value for € to be such that
the maximum error due to the quantization in the value of the facet polynomial does
not exceed ¢, the quantization interval for the observation.

)
(k) |

-2 (A.5)
max; ; [b;;

€k

where bg-‘) is the value of the (7, j) element of the k-th 2-D DOP facet basis [60].
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Let the 2-D DOP facet parameters be denoted by the vector a.. If we base our de-
scription of the data on the first K facet parameters, the code length for the parameter
part is computed as

X o loxl
L(6) =2K + > _ logy — (A.6)
k

k=1

where log)(z) is defined for z > 1 to be log,(2.865064) + log,(z) + log,(log,(z)) + - ..

up to all positive terms [127, 71]. The term 2K appears as a result of using one bit
for the sign and one bit for the zero/non-zero flag for each .

The encoding of K itself makes use of the particular nature of the facet model. For

the facet model orders of 0 through 4, the values for K are 1, 3, 6, 10, 15, respectively.

We use a constant length of 3 bits to encode the facet model order, which is the same

for all possible orders. Hence this term is dropped from the code length expression.

A.2 Facet model order determination

In this discussion, we restrict our interest to facet model orders 0 through 4. The
method developed, however, is applicable to any order up to the highest possible.

For a given data vector, we first apply the DOP analysis and obtain the DOP coef-
ficients . For a particular model order d € {0, 1, 2, 3,4}, the first K (=1, 3, 6, 10, 15)
parameters are encoded with a code length specified by Equation A.6. The residual
fitting error £ from using this model order is computed and plugged in Equation A.4.
The total code length is the sum of the two parts. This total code length is com-
puted for every d value of interest. The d value yielding the smallest code length
is the optimal model order as specified the MDL principle. The signal component
of the observation is specified by the first K (corresponding to this chosen d) DOP
coefficients. The remaining DOP coefficients correspond to the noise component.

In the procedure just described, the relationship between d and K is based on the
assumption that all facet parameters up to.the specified order are of interest. However,

this assumption might not be necessary for special applications where only a subset
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of the facet parameters up to the specified order are of interest. In that situation, a
different relationship between d and K needs to be specified. Corresponding values
for K will be smaller than the ones given here. This is one possible direction for
improving the current procedure. In our experiments, we observe the reluctance of
the procedure to choose high model orders, possibly due to the increasingly larger

increment in the number of model parameters when the model order is increased.

A.3 Experiment

In our FLIR ATR application, the SNR at each pixel location needs to be computed.
Classic cubic facet analysis tends to let too much noise energy leak into the signal
subspace and also over estimate noise variance at the places of high contrast. The
result is that the SNR at high contrast places are often erroneously estimated to be
very small, and that at noisy background locations are often erroneously estimated
to be quite large. By using the MDL principle to adaptively choose the order of facet
fit, we should be able to obtain more accurate SNR estimate.

Figure A.1(a) shows one simulated FLIR scene used in our FLIR ATR algorithm
development. The gradient magnitude, noise standard deviation and the SNR esti-
mates based on the cubic facet model are shown in Figures A.1(b),A.1(c) and A.1(d),
respectively. The SNR estimate is proportional to the ratio of the gradient magni-
tude and noise standard deviation estimates. In these plots, larger values are shown
in darker tones.

From these images we observe that, although the gradient magnitude estimate
is quite high along the target boundaries, the SNR. estimate is low due to the over
estimate of noise at those places. On the other hand, in the background regions, the
cubic model accounted for quite significant portions of the noise and clutter, resulting
in under estimate of the noise and over estimate of the signal. This causes many high

SNR. estimates in the background regions. This example shows the inadequacy of



(c) noise stddev

Figure A.1: Test image and estimates made by the cubic facet model.
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using a fixed facet model order for the entire image.

The situation can be improved significantly by applying the MDL-based adaptive
model order determination idea described earlier. Figure A.2 shows the gradient mag-
nitude, noise standard deviation and SNR. estimates from using that idea with the
observation quantization interval of § = 30. The zero-th order has been adaptively
chosen for much of the background regions, fixing the previous problem of over esti-
mating the signal and under estimating the noise in those regions. For most of the
target boundaries, the first and second orders are chosen. This still has the problem
of under estimating the signal and over estimating the noise, the latter being evident
in the image of the noise standard deviation estimates. However, the noise estimate
is more homogeneous over the entire image, which is intuitively correct. The com-
bined effect of the adaptive order determination scheme in the target boundary and
background regions gives a very significantly improved SNR estimate.

We note that the model order determined by the MDL-based procedure relies
heavily on the value used for the quantization interval 4, which is the only tuning
parameter in the procedure. This parameter allows the procedure to be tuned for
different application scenarios according to the particular signal-to-noise ratio of the
input. There has not been much in-depth study of the automatic selection of this
parameter in the MDL setting. It is usually determined on training data by trial-
and-error, which is how we chose the value 30 in our experiment. Further investigation

is warranted to develop a systematic method for determining 6.
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(c) noise standard deviation (d) SNR

Figure A.2: The model order adaptively determined by the MDL-based procedure
and the estimates made by the facet model with that order. For the model order,
zero-th order is shown in white and non-zero orders are shown in black.
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