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University of Washington

Abstract

Lossy Compression of Scientific Data via Wavelets and

Vector Quantization

by Jill R. Goldschneider

Chairperson of Supervisory Committee: Professor Eve A. Riskin

Department of Electrical Engineering

The high volume of scientific data to be collected from Earth Observing System
instruments will require large transmission bandwidth and storage capabilities for
archiving. Lossy compression techniques can be used to compress the data, although
by definition the original data cannot be recovered. The compression techniques used
must ensure that the compressed data have both high visual fidelity and that calcu-
lations using the compressed data yield accurate results. In this dissertation, lossy
compression algorithms based on the wavelet transform and vector quantization are
developed. Optimal bit-allocation algorithms based on pruned tree-structured vec-
tor quantization techniques are developed for the discrete wavelet transform and for
the more general discrete wavelet packet transform. These algorithms systematically
find all quantizers on the lower convex hull of the rate-distortion curve, while for the
wavelet packet transform, simultaneously selecting the best basis. The effects of such
compression on USC database images is examined for benchmarking purposes, and
the benefits of compressing ocean science acoustic sonar data used for the scientific

analyses of target detection and temperature analysis are studied.
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Chapter 1

INTRODUCTION

The first Earth Observing System (EOS) platform is scheduled to be deployed in
the late 1990’s. It is expected to generate hundreds of gigabytes of data each day.
To be useful, these enormous amounts of data must be well managed. Transmission
and storage of these data would be greatly eased if the data could be effectively
compressed.

Two forms of data compression are possible. The first is lossless, noiseless, or re-
versible compression. Its advantage is that the original information can be completely
recovered from the compressed data. Lossless compression is usually limited to com-
pression ratios of 4:1 or less, and even these ratios are achievable only on sources
that have considerable structure. For images and scientific data, lossless compression
ratios are usually much lower, frequently 2:1 or less. Codes designed for noiseless com-
pression may even cause data expansion. The common Ziv-Lempel file compression
tool used in the Unix compress utility occasionally fails in this manner.

The second type of data compression is lossy, noisy, or irreversible compression.
Lossy compression has the advantage that it typically provides much higher compres-
sion ratios than lossless compression. It has the disadvantage that it introduces error
into the data so that the original data cannot be perfectly recovered. Because of their
high compression ratios, only lossy compression techniques are considered here.

There are two general approaches to lossy data compression. The first approach

is quantization of the raw data, which is shown in Figure 1.1(a). First, the raw
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Figure 1.1: (a) Direct compression of raw data where X is the input data, @ is the
quantizer (or encoder), 7 is the index stream, Q™! is the decoder, and X is the lossy
reproduction of the input data. (b) Transform compression where X is the input data,
T is the transform, Q; are the quantizers (or encoders), %; are the index streams, QJ-“1

are the decoders, T~! is the inverse transform, and X is the lossy reproduction of the
input data.

data are encoded, or quantized, using a codebook; then the codebook indices are
transmitted or stored; finally, the data are reconstructed by decoding the indices
using a look-up table. The second approach is transform compression which is shown
in Figure 1.1(b). First the data are transformed to some other space; then the
coefficients of the transformed data are encoded, or quantized; next, the codebook
indices are transmitted and stored; the coefficients are reconstructed by decoding the
indices by table look-up; finally, the original data are reconstructed by transforming
the reconstructed coefficients back to the original data space.

In this dissertation, I develop and implement lossy compression algorithms for

transform compression based on vector quantization compression techniques and the



wavelet transform. These algorithms are optimized so that the compression error can
be reduced to the lowest possible level for any rate. I then test these algorithms on
earth science data and evaluate the effects of compression by comparing the analyses
of raw and compressed data. Since EOS data are not presently available, other data
must be used as models of EOS data. For the first set of experiments, I compress
scanned photographic still images (from the USC database) as may be found in
any image database. For the second set of experiments, I compress acoustic sonar
data from the University of Washington’s Benthic Acoustic Measurement System
which consist of sea-bed scattering measurements taken in shallow water. These
data are provided by Professor Darrell Jackson and others, and are used, among
other applications, to detect mine-like objects and to conduct ocean temperature
studies [35,57,58,92].

It is difficult to say if any level of lossy compression can be determined to be
acceptable since the compressed data may be used for various applications. With this
in mind, my experiments involving lossy compression of earth science data have two
goals. The first is to allow quick and easy previewing of the data (e. g. so that acoustic
sonar data can transmitted over a low-bandwidth modem). The second is to study
the preservation of scientific data analyses (i. e. ocean temperature measurements
and mine detection from acoustic sonar data) as a function of compression.

The remainder of this dissertation is structured as follows. In Chapter 2, I re-
view vector quantization compression techniques. In Chapter 3, I review the discrete
orthonormal wavelet and wavelet packet transform. In Chapter 4, I review wavelet-
based data compression and present three hybrid wavelet/VQ transform compression
algorithms that use the generalized Breiman, Friedman, Olshen, and Stone (GBFOS)
algorithm [17] and recursive optimal pruning algorithm (ROPA) [61] to do bit allo-
cation for wavelets and wavelet packets. In Chapter 5, I discuss the results of these
wavelet/VQ algorithms applied to the standard USC image data set. In Chapter 6,

I examine the compression of acoustic sonar data using mine detection and temper-



ature studies. Conclusions and avenues of future work are presented in Chapter 7.
In addition, an embedded form of multilevel halftoning, with color palette ordering
algorithms, is presented in Appendix A as an alternative coding method for color

images.



Chapter 2

VECTOR QUANTIZATION

Vector quantization (VQ) is a lossy compression technique that has been used
extensively in speech and image compression. An extension of scalar quantization,
VQ exploits the memory or correlation that exists between neighboring samples of
a signal by quantizing them together rather than individually. Vector quantization
is lossy because the encoder performs a many-to-one mapping. Discussions of vector
quantization can be found in (1,42, 45].

In this chapter, I review various compression measures in Section 2.1. I next
discuss two basic forms of vector quantization, full search VQ and tree-structured
VQ, in Sections 2.2 and 2.3, respectively. The Generalized Lloyd Algorithm which
is commonly used to create these VQ’s is discussed in Section 2.4. Finally, pruned
tree-structured VQ and two pruning algorithms: the generalized Breiman, Friedman,
Olshen, and Stone (GBFOS) algorithm [17] for classification and regression trees, and

the recursive optimal pruning algorithm (ROPA) [61], are discussed in Section 2.5.

2.1 Compression Measures

Given N possible data symbols S,, n =0,...,N — 1, the rate R needed to uniquely
represent the data with a fixed number of bits is defined as R = [log, N|. The
first order entropy, which is the lower bound on the number of bits required to
uniquely represent the data when each symbol is coded independently, is defined
as _Z::ol P(S,) log, P(S,). If blocks of data are coded, lower entropies can be

achieved.



The compression ratio (CR) is defined as the number of bits required to represent
the original data divided by the number of bits required to represent the compressed
data. Assuming that all coding of the data will be followed by a lossless compression
algorithm such as Huffman coding or LZW, the common Unix compress utility, first
order entropy, rather than rate, is used to compute the compression ratios in this

work.

2.2 Full Search Vector Quantization

All forms of vector quantization use codebooks for encoding and decoding. A code-
book is a collection of codewords or possible reproduction vectors. In full search VQ,
as shown in Figure 2.1, the encoder computes the distortion between an input vector
X (group of data samples) and all codewords Y;,2 =0,...,N —1 in an unstructured
codebook Y. The binary index of the codeword i that has the least distortion with
respect to the input vector is transmitted (or stored). The decoder performs a simple
table lookup with the transmitted (or stored) index ¢ and outputs the reproduction
vector Y;. Note that X # Y; because this is a many-to-one mapping.

The rate R of a full search VQ codebook with vector dimension d is defined to be
R = "’ﬁdﬂ bits per vector element. Using this definition, the size of the codebook can
be rewritten as N = 2F4. The size of the codebook, and hence the size of the search,
grows exponentially with rate and vector dimension. The storage requirements of
the codebook are low as only the N codewords need to be stored. The full search,
while computationally complex, guarantees that the best possible representation of
the input vector will be selected. Several fast full-search methods which significantly
reduce the search time by ordering the codebook (requiring a larger storage structure)
to restrict searches to a small portion of the search space, have been developed for

full search VQ, [48,59,77].
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Figure 2.1: Full search vector quantization.

2.3 Tree Structured Vector Quantization

Tree-structured VQ (TSVQ) [21] is a low-complexity alternative to standard full
search VQ. As shown in Figure 2.2, the codebook is structured as a binary (or M-
ary) tree where the leaves of the tree are codewords Y;, and the intermediate nodes
of the tree are averaged versions of the codewords of their children. Beginning from
the root node of the codebook, the encoder computes the distortion between an input
vector X and a node’s children and selects the child node that produced the lowest
distortion with respect to the input vector. This process is repeated until a leaf node
(codeword) is reached. The binary index 7 of the leaf node codeword (i. e. the path
map from the root to the leaf node) is then transmitted (or stored). The decoder
performs a simple table lookup with the transmitted (or stored) index ¢ and outputs
the reproduction vector Y;. Note that X # Y;, and that Y; is not necessarily the
best possible representation of the input vector that would be found among all of the

codewords if a full search were done.



Encoder Decoder

Figure 2.2: Tree structured vector quantization.

The rate R of a balanced binary tree structured VQ codebook with vector di-
mension d and N leaf codewords is defined to be R = b_e%ﬁ bits per vector element.
Since the encoder performs a sequence of binary (or larger) searches instead of the
one large search done in full search VQ, encoding complexity increases linearly with
rate and vector dimension rather than increasing exponentially. TSVQ codebooks
require twice the storage space of full search VQ with the same number of codewords
since the N — 1 intermediary codewords must also be stored. In general the output
of a TSVQ will suffer more degradation than the output of a full search VQ with the
“same number of codewords. This is due to the constraint on the search. However,
an unbalanced TSVQ with the same rate as a full search VQ may have many more

codewords, and may outperform a full search VQ in terms of distortion as well as



speed. Hence, the trade-off of greatly reduced search and design complexity for some

possible increase in distortion usually makes TSVQ attractive.

2.4 Vector Quantizer Design: The Generalized Lloyd Algorithm

As shown previously in Figures 2.1 and 2.2, a quantizer § maps a dimension d
Euclidean source vector X € R? onto a finite set of reproduction vectors Y = {Y;},
i=0,...,N —1, where Y is called a codebook and the Y; € R?® are codewords of
the codebook. Associated with each codeword Y; is a cell, or region, R; which is a
partition of R?. The cells are mutually exclusive, and the union of the cells must

cover the entire space RY, that is
RNR; =0, i#j, and [JR =R

Quantization works by assigning to any random vector X, the associated cell’s code-

word Y; given that X is an element of cell R;
Q(X)={Y:: X € R;}.

The mapping @ : R — Y is many-to-one and is thus irreversible.

Quantizer performance is typically evaluated by a distance metric or distortion
measure d(z,y) where z and y are vectors in R%. The average distortion D due
to quantization is evaluated as the expected distortion per source vector where the
source X is treated as a random variable,

N-1
D = E[d(X,Q(X))] = Bd(X, V)] = ¥ RE[(X, X)IX € R].

i=0
where P; is the probability that the source vector X is in R;.

Typical metrics used for d(z,y) are the Lp norms

d(z,y) = |z - yI"]*,
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and the squared error which is the square of the L, norm (i. e. the square of the
Euclidean distance),

d(z,y) =z — y%,

leading to the mean square error (MSE) distortion measure.
MSE = E[d(X,Q(X))] = E [IX - QX))

The MSE is often used due to its numerical tractability. Although it is not always
perceptually meaningful, low MSE’s (on compressed images) usually correspond to
high quality, and high MSE’s usually correspond to poor quality. Thus, in this work,
I evaluate compression quality with the MSE.

Other commonly used measures are the signal-to-noise ratio (SNR) and the peak

signal-to-noise ratio (PSNR)

E[X?] A?

SNR =10 lOgm W‘, PSNR =10 logm m

where A is the maximum value of X. PSNR is typically used to evaluate image
quality. Since each pixel in an 8-bit image relates to color or grayscale intensity,
the energy of different images can vary greatly even though each image is just as
visually important. For example, a light gray image can be just as visually important
as a dark gray image, but the power of these two images varies greatly due to the
arbitrary numerical assignments given to pixels. For this work I use the PSNR. to
evaluate compression of photographic images, and the SNR. to evaluate compression
of scientific data.

The definitions of the previously mentioned distortion measures depend on well
defined source characteristics. Unfortunately, good models for multidimensional data
and image data are not common, so training data or empirical data are commonly
used to approximate the probability distribution function of the source data. Training

data are often a sequence of vectors or samples X = {X;} gathered from the data
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source. The average distortion is still defined as

N-1
D =E[d(X,Y)] =) PE[d(X,Y;)|X € R).

i=0
but X now refers to the training data, R; refers to partitions of the training data
that are subsets of the previously defined cell subspaces, rather than to the entire
subspace itself, and P; is redefined as the probability that a training vector X is in
partition R; representing the probability that the codeword Y; is used for encoding.
In the remainder of this chapter I use X and R; to refer to the training data and the
partitions of the training data into each cell, respectively, although the descriptions
are still valid if X is a random source variable and the R; are subspaces of R?.

In general, one is concerned with optimal quantizers whose performance minimizes
the average distortion D = E[d(X,Y)]. There are two conditions that must be met
for a codebook to be (locally) optimal. These conditions are defined on the cells,
and if they are met, the cells are called Voronot regions. The first condition is the
nearest neighbor (NN) condition which states that every value in a given Voronoi
region R; is “closer” or nearer to the codeword Y; of the Voronoi region than to any

other codeword with respect to a given distortion measure, that is
R, ={X :d(X,Y;) <d(X,Y;) for j=0,...,N—1}.

In the case of a tie, the vector X can be arbitrarily assigned to the Voronoi region
with the lesser index to maintain mutual exclusivity of the partitions. The second
condition for optimality is the centroid condition which states that the codeword
must minimize the average distortion of the entire Voronoi region with respect to a

given distortion measure, that is
Y; = Centroid(R;) = arg néié‘l Eld(X,y)|X € Ry
VER;

When the MSE distortion measure is used, the centroid corresponds to the “average”

value or the geometric center of the Voronoi region. These two conditions imply that
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the encoder is optimized for the given decoder by the nearest neighbor condition, and
that the decoder is optimized for the given encoder by the centroid condition.

A generalization of a least squares quantization method for scalar data [70] to
multidimensional data in 1980 was the first vector quantization design technique
introduced in the literature, and is known as the generalized Lloyd algorithm (GLA)
[69]. The GLA is a descent algorithm that finds codebooks with progressively lower
average distortions by using iterations of the nearest neighbor and centroid conditions.
The algorithm is initialized with an arbitrary set of initial codewords Y'[0] = {Y¥;},7 =
0,...,N -1, training data X, and initial distortion D[0] = E[d(X, Y[0])].

One iteration of the GLA, where n refers to the current iteration, works as follows.
Given a codebook Y[n] = {Y;} the first step is to find the optimal partition of the

training data using the nearest neighbor condition:
R ={X:d(X,Y) <d(X,Y;) for j=0,...,N—-1}.

Then, using the centroid condition, the optimal reproduction vectors Y; for the given
partitions R; are found. These reproduction vectors constitute the (n+1)% codebook
Yin+1]

Y; = Centroid(R;) = arg;reli’g E[d(X,y)|X € Ry].

The distortion due to codebook Y[n + 1] is evaluated as
D[n+1] = E[d(X,Y[n +1])].

The GLA is a descent algorithm that will converge to a local minimum. However,
while convergence is guaranteed, the number of iterations it takes to converge can be
quite large. Typically the algorithm is halted when the relative change in distortion

incurred between two iterations becomes arbitrarily small as defined by e,

D[n] — D[n +1]
Din] . ©

and the final codebook is determined to be Y = Y[n + 1].
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To design a full search VQ with an arbitrary number of codewords, one may start
with any initial codebook Y[0] with the desired rate and apply the GLA to it until
it converges to a locally optimal codebook Y. Obviously, different initial codebooks
will converge to different locally optimal codebooks. The choice of initial codebooks
is important and is discussed in [42].

One common method of creating a full-search codebook is the Linde-Buzo-Gray
(LBG) splitting algorithm [69]. In this method an initial codebook of rate 0 containing
1 codeword, Y? = {Y;}, is used where the optimal codeword is the centroid of the
training data. Note that the superscript on the codebook Y* now refers to the rate
1 of the codebook. An initial codebook of size 2 (rate 1) is created by “splitting”
the codeword which may be done by adding a vector € of arbitrarily small, random
values, e. g. Y[0] = {Y,, Yo + ¢} = {V5,Y:}. The GLA is applied to Y*[0] to create
codebook Y. For each LBG iteration, the codebook size is increased by splitting the
codewords of the previous codebook Y™ to create a larger initial codebook Y™*1[0],
and the GLA is applied to the larger codebook to achieve the optimized codebook
Y™+l The iterations continue until the desired rate is achieved. An artificial set
of two-dimensional grayscale image training data with 262144 samples was created
using the Gaussian distribution. This training sequence is used in this chapter to
demonstrate the differences between different forms of VQ where each VQ is designed
to have an average rate of 8.0 bits per vector. The Voronoi regions for a two-dimension
VQ created by the LBG algorithm with 256 codewords are shown in Figure 2.5(a).
Note that the Voronoi regions are convex and tend to have a honeycomb-like pattern.
The average distortion of this full search VQ is 11.75.

The GLA is a flexible algorithm that can be used to create many different VQ
schemes. The creation of an M-ary TSVQ T is illustrated in Figure 2.3. Each node
t; € T has an associated codeword Y; and training data partition R;. The nodes
of the M-ary tree T are labeled such that each interior node ¢; has children nodes

tMitls - - - EMiss, and the root node is ¢y. The tree is initialized by creating a root
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node t, which is assigned the entire training sequence Ry, Figure 2.3(a). The root
node’s codeword Y; is the centroid of the training sequence, and it represents the
rate 0 TSVQ. The tree is grown, or opened, by creating M child nodes t;,...,tum
descending from the root node. Using the GLA, M codewords, Y}, ..., Yy, from the
root node’s training data Ry are found and assigned to each of the root’s M chil-
dren as the child node’s codeword, Figure 2.3(b). The training data Ry stored at the
root node is then partitioned among the M children using the nearest neighbor rule
and the node’s assigned codeword so that each child node contains a non-overlapping
subset, R;,i = 1..., M, of the training data’s space, Figure 2.3(c). Thus, assuming
that both the nearest neighbor and centroid condition are satisfied, the codeword
Y; at each node ¢; is the centroid of the portion of training data R; stored at that
node. In addition, each codeword has as associated encoding rate R(Y;) = P;depth(t;)
and distortion D(Y;) = P,E[d(X,Y;)|X € R;], where R(Y;) is a tree functional value
that increases monotonically with node depth, D(Y;) is a tree functional value that
decreases monotonically with node depth, and the P; = "% Py are the prob-
abilities that any node is visited during the tree search. This growth procedure is
recursively applied to each leaf node of the TSVQ until the desired rate is achieved.
A fixed-rate, or balanced, TSVQ is created by growing the leaf nodes with the
shortest path length from the root node. The Voronoi regions for a two-dimension
balanced TSVQ with 256 codewords for the Gaussian distributed data is shown in
Figure 2.5(b). The tree-structure constrains the search to a series of hyper-plane
tests, so the balanced TSVQ, when compared to a full search VQ with the same rate,
suffers more degradation. The average distortion of this balanced TSVQ is 12.97.
Fixed-rate trees are an inflexible approach to VQ since they do not permit easy
adaptation to source statistics. Instead, an unbalanced tree produced by a greedy
growing approach is preferred (81]. In this method, illustrated in Figure 2.4, each leaf
node is opened, but its descendents are not immediately considered to be a part of the

tree. Instead, the changes in rate and distortion that would arise if the descendents
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of the current leaf node were used, rather than the current leaf node, are calculated,
and the current leaf node which will maximize the decrease in distortion for its given
increase in rate is grown.

Given that each leaf node t; has an associated codeword Y;, each codeword has
encoding rate R(Y;) = P,depth(¢;) and distortion D(Y;) = P,E[d(X,Y;)|X € R:]. The
average rate and distortion of the TSVQ T are calculated as

R=) R(Y) and D=} D(¥),
t;eT teT
where T refers to the leaf nodes of tree T. The change in distortion if the codeword
Y; of leaf node ¢; is not used is calculated as AD(Y;) = D(Y;) — Eﬁl D(Yumisj), and
the change in rate is AR(Y;) = R(Y;) — Z;’il R(Ypi+j) = —P;. The leaf node that

has the maximum value —ﬁggg = A’;{m, maximizing the decrease in distortion for

the given increase in rate, for all leaf nodes is grown. The greedy growing of leaf

nodes continues recursively until the desired rate is achieved.

2.5 Pruned Tree Structured Vector Quantization

The full search and tree-structured vector quantizers described in Sections 2.2 and 2.3
implement a fixed rate code. That is, an equal number of bits is used to reproduce
each input vector. A variable rate code usually results in much better performance
by devoting more bits to regions of the data that are active or difficult to code, such
as the edges, and fewer bits to less active regions, such as a solid background.

A variable rate code can be implemented in a TSVQ simply by using an un-
balanced tree, for example the greedy growing technique [81] described above. An
even better approach to designing an unbalanced trees is described in [23,61]. In
this approach a (balanced or unbalanced) TSVQ with a rate higher than the desired
rate is designed. This high rate tree is then pruned (usually based on rate-distortion

trade-offs) to yield an unbalanced TSVQ with the desired rate. The resulting coder
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is called a pruned TSVQ (PTSVQ).

PTSVQ typically outperforms both fixed rate TSVQ and full search VQ over
most rates of interest [23,82]. The Voronoi regions for a two-dimension PTSVQ
with an average rate of 8 bits per vector pruned from an unbalanced TSVQ using
GBFOS, described next, with a rate of 14.4 bits per vector, designed for the Gaussian
distributed data, is shown in Figure 2.5(c). The PTSVQ Voronoi regions are adapted
to the more active regions of the data while the Voronoi regions of the balanced
TSVQ are not so sensitive to the distribution of the data. PTSVQ may also have
many more codewords than a fixed-rate codebook. This PTSVQ has 622 codewords
while the fixed rate codebooks have only 256. The average distortion of this PTSVQ
is 11.28 which is less than the average distortion of the full search VQ even though
the full search VQ satisfies both the nearest neighbor and centroid conditions and is

thus considered to be locally optimal.

2.5.1 The GBFOS Pruning Algorithm

Perhaps the most commonly used tree pruning algorithm is the generalized Breiman,
Friedman, Olshen, and Stone (GBFOS) algorithm [17] for classification and regression
trees which was first used for TSVQ’s in [23]. The GBFOS algorithm finds in a given
codebook T all the nested subtrees S sharing the same root node as T that lie on
the lower convex hull of the rate-distortion curve. These subtrees give the optimal
rate-distortion performance (i. e. the lowest distortion for a given rate) for any
subtree of the given codebook. The PTSVQ codebooks are not universally optimal
since there may be other codebooks that give a better rate-distortion performance.
Hence the choice of the initial codebook T constrains the performance of the PTSVQ.
Should optimal codebooks be scarce, time-sharing between a high rate and a low rate
codebook can be done to yield the desired rate. By using a high-rate codebook
and a low-rate codebook to encode data over different portions of time, time-sharing

yields a codebook on the convex hull of the rate-distortion curve. An example of the
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codebooks that can be found using GBFOS is shown in Figure 2.6 where *’s represent
all possible pruned subtrees; Sy, ..., S3 represent the GBFOS optimal codebooks; and
S is a codebook created by time-sharing S; and Ss.

One iteration of TSVQ design by pruning is illustrated in Figure 2.7. It is done by
calculating, for all internal nodes, the changes in rate and distortion that would arise
if the descendents of the internal nodes were removed, and the internal node used
instead. The internal node that will minimize the increase in distortion for its given
decrease in rate, if used instead of its descendents, is pruned. Pruning continues by
removing one branch of the tree at a time until the desired rate is reached.

The original TSVQ T is an M-ary tree with nodes ¢; labeled such that each interior
node ¢; has children nodes tasit1,.-.,tai+M, and the root node is t;. Each node
has an associated codeword Y; and training data partition R;, where the encoding
rate and distortion of the codewords Y; are calculated as R(Y;) = Pdepth(¢;) and
D(Y;) = PE[d(X,Y;)|X € R;]. Hence, the average rate and distortion of the TSVQ

T can be written as

R=) R(Y) and D=3} DY),
t.eT tieT
where T refers to the leaf nodes of tree 7.

When a branch headed by node ¢; is pruned, all nodes of the branch are discarded,
and the node ¢; is turned into a leaf node. Its codeword Y; is used to encode data
rather than the leaf node codewords of the branch just pruned. To find the optimal
subtrees, the branch that yields the minimum decrease in distortion for the increase in
rate is selected. Each node ¢; € T can be considered to be the root of a branch whose
leaf nodes contain a partition, or subset, of the codewords of the entire TSVQ T.
This subset is called quantizer @, as it represents the TSVQ that would be created

if only training data R; were used to create a TSVQ. The average rate and distortion
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of the subset TSVQ’s Q; are calculated as

R(Q)=)_ R(Y) and D(@Q)= ) DY),
ti€Q; t:€Q;
where Q; refers to the leaf nodes of branch Q;. If for all leaf nodes ¢;, Q; contains only

the leaf node codeword {Y;}, this relationship can be recursively written for internal

nodes t; as

M M
R(Q:) =D _R(@Quss;) and D(Q) =3 D(Quirs)

j=1

Using this idea of subset quantizers @);, the change in distortion that would result
if the branch @; headed by node ¢; is pruned is easily calculated as AD(Y;) = D(Y;) —
D(Q;), and the change in rate is AR(Y;) = R(Y;) — R(Q:).- The internal node that has
the minimum value A = —-2—2((%, for all internal nodes, is pruned. The resulting tree
is the optimal subtree S located on the lower convex hull of the rate distortion curve.
The ) value represents the negative value of the slope on the rate-distortion curve
from the current tree to the subtree that results if node ¢; is pruned. Since AD(Y;)
is always positive and AR(Y;) is always negative, A = —ﬁ—gé% is always positive.
This is a result of the monotonicity of the tree functional values D(Y;) and R(Y;) as
a function of node depth. Pruning of internal nodes continues recursively until the
desired rate is achieved by considering the newly found subtree S to be the current
tree T, T « S.

A pictorial example of GBFOS pruning is shown in Figure 2.8. The highest rate,
or initial, tree T is represented as the * in the lower right hand corner, and the rate 0
subtree comprised of {Yp} is the  in the upper left hand corner of the rate-distortion
plane. For each iteration of GBFOS, the space to be examined is limited to the
rectangular region between the rate 0 codebook and the current subtree, Figure 2.8(a),
since rate is monotonically increasing and distortion is monotonically decreasing with

tree depth. One iteration of GBFOS involves calculating the slope from the current
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subtree to all subtrees S that could be created by pruning only one internal node, and
then selecting the subtree with the minimum slope as it lies on the lower convex hull,
Figure 2.8(b). For the next iteration of GBFOS, a reduced area of the space, bounded
by the rate 0 codebook and the current pruned subtree, is examined, Figure 2.8(c).
The end results are the subtrees that lie on the lower convex hull of the rate-distortion
curve, Figure 2.8(d).

Again, pruning is done by removing the branch which contributes the least in-
crease in distortion for its given decrease in rate until the desired rate is achieved.
Each time a TSVQ T is pruned to subtree S, and pruning needs to be done again,
T is assigned the subtree S, T +— S, and the slope A = minger (—-ﬁ%‘%) must be
reevaluated for every node. It is computationally costly and inefficient to evaluate
the slope from the current tree T' to every possible subtree each time the TSVQ is
pruned. Instead, a fast and efficient computational solution that exploits the struc-
ture and properties of the TSVQ is used. Ideally, the rate-distortion characteristics
of the optimal quantizer could be obtained from one merged quantizer which char-
acterizes the entire tree. Towards this end, the following TSVQ data structure with
the simplification of considering branch quantizers @; is used. This will make the
characteristics of the optimal PTSVQ subtrees of the entire TSVQ accessible from
the root node of the tree, while maintaining each pruned subtree as the entire tree
structure itself.

The complete data structure for GBFOS is as follows. Given that each node
t; of the TSVQ has an associated codeword Y; and training data partition R, the
encoding rate R(Y;) = P,depth(t;) and distortion D(Y;) = P.E[d(X,Y;)|X € Ry of
each codeword Y; is stored at node ¢;. Furthermore, as each node should represent
a quantizer @); composed by the branch of the TSVQ that it heads, the following
information is also stored at each node. The rate and distortion due to encoding
training data R; with the branch quantizer Q); headed by node ¢; are stored as R(Q;)
and D(Q;). For leaf nodes R(Q;) = R(Y;) and D(Q;) = D(Y;), and for internal nodes
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R(Q;) = Z;; R(Qumi+;) and D(Q;) = Zﬁl D(Qui+;)- This permits each internal
node to have direct access to the rate-distortion characteristics of its entire branch
from its children without requiring the specific details of the structure of that branch.
Note that R(Q,) and D(Q,) are the rate and distortion of the current optimal GBFOS
subtree stored at the root node. Finally, the slope A(Y;) that would arise if the TSVQ
were pruned at node ¢; is saved as A(Y;) = —%%%—%‘)1, and the minimum slope of
the branch quantizer Q; is stored as A(@;) = min(A(Y;), AM(@nsi+1), - - - s AM@urisnr))-
For leaf nodes, both slope values are infinity. Note that A\(Q) represents the slope
from the current GBFOS optimal subtree to the next GBFOS optimal subtree, and
that it also provides a search path from the root node to the minimum slope node.
GBFOS is initialized by finding the slopes that would result if each node were
pruned. Then, until the desired rate is achieved, the lowest slope node is pruned, and
the rate, distortion, and slope values of the subset quantizers of the ancestor nodes
are recomputed. Only the ancestor nodes of the lowest slope node need to be updated
since pruning affects only those nodes whose subset quantizers contain the leaf node
codewords just removed from the tree. In this manner, each slope is examined only
once, and for each iteration, only the portion of the TSVQ containing the pruned node
is examined. Furthermore, the overall reported rate and distortion of the PTSVQ’s
are monotonically decreasing and increasing, respectively, with increasing A, and all
of the quantizers on the vertices of the lower convex hull of the rate-distortion curve
are identified starting from the highest rate to the lowest rate quantizer. By pruning
the entire tree to its root node, the optimal rate-distortion characteristics for all bit
rates are found. This permits the use of a precise description of the quantizer by its
rate-distortion characteristics for use in the design of more complex encoding schemes.
Initialization is outlined in Table 2.1. Its purpose is to compute the slopes that
would result from pruning the tree at any one node, including the root node. By com-
puting A(Q;) as min(A(Y;), A(@nri+1), - - -» M(@umi+m)) for all nodes, a path through

the TSVQ from the root node to the minimum slope node is created. When initial-
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Table 2.1: GBFOS pruning initialization.

Step 1. For each leaf node ¢;:
A(Y;) + oo,
A(Qt) < 09,
R(Q:) + R(Y3),
D(Q:) « D(Y3).
Step 2. For each interior node ¢;,
(a) Find the rate and distortion of the branch:
R(Q:) « X2, R(@urivs),
D(@:) «+ ZA; D(@wi+;),
(b) Find the minimum slope:
MY;) + —p=ped,
MQ:) + min(A(Y:), M@nrie1)s - - -, MQtivear))-

izing leaf nodes t; where @Q; is the leaf codeword {Y;}, it is assumed that the slopes,
MQ;) and A(Y;), are infinite to avoid an attempt to prune a leaf node. The rate and
distortion of the branch descending from node ¢; are stored as R(Q;) and D(Q;).

The main GBFOS algorithm is described in Table 2.2. Pruning continues until
the entire tree has been pruned, A(Q,) = oo, or the desired rate, Riarge, has been
reached. First, the node ¢; that yields the minimum slope quantizer when pruned is
found by following the path indicated by the minimum value stored at the root node,
A(Qo)- Once this node t; is found, it is pruned, and its minimum slope value is set to
infinity so that the node will not be revisited. The ancestor nodes are updated in a
manner similar to the initialization procedure, except that the initialization procedure
is performed on all nodes whereas updating needs to be performed only on the pruned
node and its ancestors. The average rate and distortion of each current subtree are
stored as R(Q) and D(Qp). The subtree structure is found by examining the slope
values A(Y;) where A(Y;) = oo indicates that the node is a leaf node.

The encoding and decoding complexities for PTSVQ are the same as for TSVQ.
However, the design complexity of PTSVQ is greater since a large TSVQ must first
be created and then pruned. Let N be the total number of nodes in the original
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Step 1.
Step 2.

Step 3.

Step 4.

If A(Qo) = oo, quit. The TSVQ has been pruned to its root node.

Find the least slope node.
Assign t; «+ ty and Apin — AM(Qo)-
While A(Y;) # Amin:
Find tmiviJ =1..., M, such that ’\(QMi+j) = Amin-
Assign t; tMi-{-j-
Prune node ¢; and update its ancestors:
(a) Prune the quantizer at node t;.
AY;) + oo,
A(Q1.) « o0,
R(Q:) « R(Y)),
D(Q:) «+ D(Y3).
(b) Update the ancestors of node ¢;.
While t; # tq, assign t; + parent(t;):
(i) Find the rate and distortion of the branch:
R(Qz «— ZJ 1R(QM1+])

D(Q;) «+ 2_1:1 D(Qui+s)-
(ii) Find the minimum slope:

_Dyi)— DSQ:)
AY3) « —mw)=r©)

A(Q:) + min(A(Y), /\(QM1+1) MQwumivm))-

The rate and distortion of the current subtree are R(Qo) and D(Qo).

If R(Qo) > Riarget 80 to Step 1.
Otherwise, quit.
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TSVQ T. The nodes of the tree must first be initialized with complexity N. Then
the algorithm will find in the worst case N optimal codebooks. For each optimal
codebook found, the tree will be searched for the node with the smallest A and the
node’s ancestors have to be updated with complexity log N. So the complexity of
the GBFOS algorithm is Nlog N. However, the time it takes to prune a TSVQ is
insignificant compared to the time it takes to design a TSVQ.

2.5.2 The Recursive Optimal Pruning Algorithm

Although GBFOS pruning produces PTSVQ'’s that are optimal in the sense that the
codebooks lie on the lower convex hull of the rate-distortion curve, GBFOS pruning
cannot always achieve the desired rate since optimal points may be scarce. Time-
sharing between a high rate and a low rate codebook can be done to yield the de-
sired rate. Although this yields a codebook that is on the lower convex hull of the
rate-distortion curve, it has the drawback of introducing non-stationary distortion
throughout the data. The assignment of the different codebooks to different parts of
the data may not be an easy task in this case, and may result in poor performance
in sensitive regions of the data. It also interferes with the distribution of codeword
indices which can affect lossless coding of VQ indices. The recursive optimal prun-
ing algorithm (ROPA) [61] was introduced to overcome these drawbacks. For ROPA
pruning, the tree is pruned by removing only unit branches, where a unit branch
is a node with only M children. All of the optimal GBFOS subtrees are identified,
and all of the suboptimal subtrees which are found minimize the area between the
rate-distortion curve and the convex hull of the rate-distortion curve. This algorithm
guarantees many more codebooks over the range of bit rates.

The ROPA algorithm works by first finding the minimum-slope GBFOS node in
the tree T. The branch to be pruned at this node may be very large, and there may
be a number of suboptimal codebooks within it. Instead of pruning the tree T at

this GBFOS point, ROPA takes the branch that is to be pruned and processes it
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while ignoring the rest of the tree. ROPA searches the branch to find the minimum
slope node in the branch: this minimum slope node is not a GBFOS optimal node,
that is, GBFOS optimal nodes are identified by ROPA only when it examines the
entire tree. ROPA will next process the branch headed by the suboptimal minimum
slope node. The process continues branch by branch until 2 minimum-slope node is
reached that is a unit branch. The unit branch is pruned, and the distortion, rate,
and minimum slope of the subset quantizers @); of the ancestors of the pruned node
are recalculated. When a branch is completely pruned, the algorithm continues on the
larger branch (or tree) from which the completely-pruned branch was first identified.
This algorithm preserves all of the GBFOS optimal points by always identifying the
minimum GBFOS point first and then pruning the branch M leaf nodes at a time
until the GBFOS point is reached. In this fashion the entire tree is recursively pruned
M leaf nodes at a time yielding a very dense set of pruned subtrees lying close to the
convex hull, providing an alternative to time-sharing between two GBFOS trees.

A pictorial example of ROPA pruning is shown in Figure 2.9. After each pruning
iteration of the GBFOS algorithm, Figure 2.8(c), a number of pruned codebooks are
discarded as possible solutions since they are suboptimal. Some of these suboptimal
codebooks lie in the triangular shaded regions bounded by the optimal PTSVQ’s,
Figure 2.9(a), while others lie outside of this region. ROPA bit allocation works
by recursively pruning the tree in these shaded regions, identifying the suboptimal
PTSVQ’s which lie closest to the optimal rate-distortion curve, Figure 2.9(b).

ROPA uses the same data structures and initialization procedure of GBFOS prun-
ing, Table 2.1. The main ROPA algorithm is described in Table 2.3. Pruning con-
tinues until the entire tree has been pruned, A\(Qo) = oo, or the desired rate, Riarge:,
has been reached. First, the node ¢; with the minimum slope quantizer is found by
following the path indicated by the minimum value A(Qp). Once this node ¢; is found,
ROPA is used to prune the branch it heads M leaf nodes at a time, starting from

the highest rate subtree to the subtree formed by pruning node ¢;. The subroutine
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min_ropa_node(t;), described in Table 2.4, is used to find the highest rate ROPA
node t; by recursively searching for the least slope node in each branch. For each
node ¢; that is pruned, its minimum slope value is set to infinity so that the node
will not be revisited. The ancestor nodes are updated in a manner similar to the
initialization procedure, except that the initialization procedure is performed on all
interior nodes whereas updating needs to be performed only on the pruned node and
its ancestors. The average rate and distortion of the current subtree are stored as
R(Qo) and D(Qo)-

A subtlety of the algorithm arises when there are two or more nodes with the
same minimum slope. When this happens in the GBFOS algorithm, the solution is
to prune all of the nodes at once since the rates of the “intermediate” codebooks
can be achieved by time-sharing. Since ROPA was created to avoid time-sharing,
each pruned branch must be examined. However, the order of examination does not
matter since pruning one branch of the codebook does not affect the other branches,
and the area under the ROPA rate-distortion curve will still be minimal with respect
to the GBFOS. Therefore, the solutions found by ROPA are not unique. For every
n identical minimum slopes, there will be n! possible solutions. The complexity of

ROPA is the same as GBFOS, N log N, for N nodes in the original TSVQ T'.

2.6 Implementation

Due to the inherent advantages of PTSVQ), its adaptability to source characteristics,
its ability to outperform other basic forms of VQ, as well as the natural ease of
allocating more bits to active regions of the source data, and fewer bits to less active
regions of the data, PTSVQ is used throughout the remainder of this work. I have
implemented in C the generalized Lloyd algorithm (GLA) [69] for designing full search
VQ and balanced and unbalanced TSVQ codebooks. I have also implemented GBFOS
pruning and ROPA pruning for the TSVQ codebooks. All of this code is available
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Table 2.3: ROPA pruning.

Step 1. If A(Qo) = 00, quit. The TSVQ has been pruned to its root node.
Step 2. Find the least slope GBFOS node. Assign t; < £y and Apin — A(Qo)-
While A(Y;) # Amin:
Find tMi+j,j =1,...,M, such that /\(QMi+j) = Amin.
Assign t; tM,'+j.
Step 3. Perform ROPA pruning on the branch headed by the GBFOS node #;:
If /\(Q,) < 00!
(a) Find the node with the highest rate ROPA subtree:
t; « min_ropa_node(t;) (see Table 2.4).
(b) Prune node ¢;:
A(Y;) = oo,
R(Q;) « R(Yj),
D(Q;) « D(Y;).
(c) Update the ancestors of node ¢;.
While t; # to, assign t; ¢ parent(t;):
(i) Find the rate and distortion of the branch:
R(Q;) « N, R(Quj+m),
D(Q;) & Yozt D(Qbtjsm)-
(ii) Find the minimum slope:
MY;) « -4,
M@Q;) < min(A(Y;), M(@uj+1), - - - M@mj4m))-
(d) The rate and distortion of the current subtree are R(Qp) and D(Qo).
If R(Qo) > Riarget g0 to Step 3.
Step 4. The rate and distortion of the current subtree are R(Qy) and D(Q)-
If R(Qo) > Riarger 80 to Step 1.
Otherwise, quit.
Table 2.4: ROPA pruning subroutine min_ropa_node(t;).
Step 1. Find the minimum slope of the children nodes.
Amin & Min(A(@prit1), - -+, M(Qumitnr))-
If Anin = 00, all of node ¢;’s descendents are leaf nodes, return node ¢;.
Step 2. Find the minimum slope node.

While AX(Y;) # Amin:
Find tpfiym,m = 1,..., M such that /\(QMi+m) = Amin-
Assign t; < tMitm-

Return min_ropa_node(t;).
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through the Data Compression Lab WWW homepage
http://isdl.ee.washington.edu/COMPRESSION/homepage.html,

or by anonymous ftp to isdl.ee.washington.edu in /pub/VQ/code. The code has
been well tested and is being used by many others and in Dr. Riskin’s class EE587:

Vector Quantization and Data Compression.
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Figure 2.3: TSVQ construction. (a) A root node ¢, is created and assigned the
complete training set with its centroid as a codeword. (b) M child nodes t;,...,ty
are assigned to the root node, and the GLA is used to created M codewords from the
training data which are assigned to the child nodes. (c) The root node’s training data
is partitioned among the children nodes using the nearest neighbor condition. The
end result is that each node’s codeword is the centroid of its portion of training data.
This process is repeated recursively on leaf nodes until a TSVQ with the desired rate
is created.
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Figure 2.4: TSVQ design by greedy growing. The change in distortion versus the
change in rate is calculated for each leaf node (¢;,%s, and t) as if that leaf were
actually grown. The leaf node that has the maximum decrease in distortion for its
given increase in rate if opened is grown. The greedy growing of leaf nodes continues
until the desired rate is achieved.
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(a) Full search VQ. D = 11.75. (b) Fixed-rate tree-structured VQ. D = 12.97.

(c) Pruned TSVQ. D = 11.28.

Figure 2.5: Voronoi regions for (a) full search VQ, (b) fixed-rate tree-structured VQ,
and (c) pruned TSVQ trained on Gaussian distributed data. Each codebook has an
average rate of 8.0 bits per vector.
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Distortion
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Figure 2.6: GBFOS codebooks. Each * is a possible pruned subtree. Sy, S;, S, and
S3 are GBFOS optimal PTSVQ’s lying on the lower convex hull of the rate-distortion
curve. S is a codebook created by time-sharing two GBFOS codebooks.
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Figure 2.7: TSVQ design by GBFOS pruning where a high-rate TSVQ is pruned one
branch at a time until the desired rate is achieved. In each pruning iteration, the
change in distortion versus the change in rate is calculated for each internal node
(to, t1, and ;) as if that node were actually pruned. The internal node that has the
minimum increase in distortion for its given decrease in rate if used is pruned.
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Figure 2.8: GBFOS pruning. Each * represents a possible pruned subtree where the
* in the upper left hand corner is the codebook comprised of only the root node and
the * in the lower right hand corner is the original TSVQ. (a) At each iteration of
the GBFOS algorithm, the space to be examined is limited to the shaded rectangular
region between the rate 0 codebook and the current TSVQ since the rate increases
monotonically and the distortion decreases monotonically with increasing tree depth.
(b) For one iteration of GBFOS, the * in the lower right hand corner of the shaded
region is the current subtree, and the other x’s are possible pruned subtrees. The next
optimal subtree has the least slope to the current subtree as indicated by the solid
line. (c) For the next iteration of GBFOS, a reduced area of the space is examined
which is limited to the shaded region between the rate 0 codebook and the current
subtree found by the previous GBFOS iteration. (d) After pruning the tree to the
root node, all optimal subtrees are identified, and are shown above as linked by the

solid line.
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Figure 2.9: ROPA pruning. (a) After each iteration of the GBFOS algorithm, Fig-
ure 2.8, a number of pruned codebooks are discarded as possible solutions since they
are suboptimal. Some of these suboptimal codebooks lie in the triangular shaded
regions bounded by the optimal PTSVQ’s, while others lie outside of this region. (b)
ROPA works by recursively pruning the tree in these shaded regions, identifying the
suboptimal PTSVQ’s which lie closest to the optimal rate-distortion curve.



Chapter 3

WAVELETS

Traditional Fourier analysis decomposes a signal into a sum of orthogonal trigono-
metric functions, giving a frequency representation of the signal. However, Fourier
analysis eliminates all temporal or spatial information. The frequency characteristics
of a signal change over time or space. It is often desirable in image compression to
capture the local frequency behavior of images, especially since a great portion of sig-
nal energy in the frequency domain is consumed by discontinuities. A time-frequency
or space-frequency representation of a signal can be used to capture local frequency
behavior of signals and images.

The wavelet transform is an important new tool for time-frequency analysis. Using
wavelets, one can build simple orthonormal bases of L?(R?) which give good localiza-
tion in both space and frequency. Wavelets provide a powerful framework for multires-
olution analysis and image coding. The wavelet transform decomposes an image into
localized orthogonal components which contain different low and high frequency in-
formation or scale and translation information. This decomposition provides a useful
framework for image compression. The localization property is especially important
for handling image features such as abrupt changes due to boundaries or edges.

Wavelet transform theory encompasses the continuous wavelet transform and the
discrete wavelet transform. The continuous wavelet transform deals with continuous-
time signals which are represented by a wavelet transform that is continuous in both
scale and translation. The discrete wavelet transform deals with continuous-time
and discrete-time signals which are represented by a wavelet transform that is dis-

crete in both scale and translation. The discrete wavelet transform can be further
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divided into wavelet frames and orthonormal wavelets. Wavelet frame theory gives an
over-complete or redundant transform. Orthonormal wavelet theory (also called mul-
tiresolution analysis theory) gives an orthonormal, non-redundant transform. There
are now a number of texts and tutorials available on wavelets [20,31,72,90,91]. For the

rest of this chapter, I will concentrate on the discrete orthonormal wavelet transform.

3.1 Discrete Orthonormal Wavelets - One Dimension

The discrete orthonormal wavelet transform (DWT) is defined as a series of coef-
ficients DWT{m, n] resulting from the projection of a signal f(z) € L%(R!) onto a

family of orthonormal basis functions ¥y, ,(z) called wavelets

DWT[m,n] = (f(z), ¥mn(z)), m,n€ Z.

The inverse discrete wavelet transform simply reconstructs f as

f@) = Y (f(@)Yma(@)bmal®) = Y DWT(m, nlthmna(x)-

m,neZ mmnezZ

The wavelet functions ¥, »(z) have a number of interesting properties. The first
is that they are all dilated and translated versions of a single function ¥(z) called the

mother wavelet
Ynn(z) = 27™2H(27 ™z — n).

The variable m controls the dilation or scale of the wavelet. The variable n controls the
translation or time shift of the wavelet. As the scale m increases, the ¥, n(z) become
wider and shorter, and the translation step increases. As the scale m decreases, the
¥ma(z) become thinner and taller, and the translation step decreases. The mother
wavelet is defined to have an area of zero. It tends to look squiggly and bumpy
like a high-pass filter. As an example, the Haar mother wavelet has been plotted in

Figure 3.1(a).
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The ¥, n(z) themselves are orthonormal

0 m#jorn#k

m=jand n =k,

("ﬁm,n (z), VYik (z)) =

and form an orthonormal basis for L2(R!), span(¢¥ma(z)) = L%(R!). It is convenient
to group the wavelets by scale m. These {¢)mn(z);n € Z} form an orthonormal
basis for a space W, = span({¥mn(z);n € Z}) often called a detail space, where
Umez Wm = L*(R'), and W, N W, = 0, m # n. Thus the wavelet coefficients
are also grouped by scale. These groups are often called subbands. The wavelet
coefficients for each scale m can be computed as the projection of f(z) onto W,,.
Direct as this projection may seem, there is an easier way to compute the wavelet
coefficients by using the idea of multiresolution analysis.

The idea behind multiresolution analysis theory is that a signal can be represented
by a series of successive approximations and added detail. A signal f(z) can be broken
down into a number of coarse approximations at various resolutions. The difference
between two successive approximations is called the detail. Given the lowest resolu-
tion (or most coarse) approximation of f(z) and the differences between the successive
approximations, multiresolution theory ensures that f(z) can be reconstructed.

Having briefly discussed multiresolution analysis, I next review the scaling func-
tions ¢, »(z) which, like wavelets, have a number of interesting properties. The first
is that they are all dilated and translated versions of a single function ¢(z) called the
father wavelet

Sma () =27™2$(27™z — n),

where the variables m and n affect ¢p,,(z) similarly as the ¥m, ,(z) are affected.
The father wavelet is defined to have an area of one. It tends to look smooth like a
low-pass filter, as in Figure 3.1(b).

The ¢mn(z) are also grouped by scale m. These {@ma(z);n € Z} form an or-

thonormal basis for a space Vi, = span({¢mn(z);n € Z}), often called the approxi-
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Figure 3.1: The Haar wavelet and scaling functions (a) the mother wavelet 19 (b)
the father wavelet ¢q .

mation space, where V,, C L?(R!). The ¢y, (z) do not form an orthogonal basis for
L%(R!) as do wavelets, but the |J,,c; Vim = L*(R') and (,,cz Vm = {0}

An interesting property of the V,, is that they form a multiresolution ladder of
subspaces

"'CVm+1CVmCV_1C"‘

where f(z) € Vg, if and only if f(2™z) € V. The multiresolution ladder property
says that each approximation space V, contains the coarser approximation spaces
(V;,j > m) within it as shown in Figure 3.2(a). By projecting the signal f(z) onto V,,
a coarse approximation f™(z) = P,f(z) is formed where P, : f(z) — f™(z). The
resolution of the approximation is controlled by the scale parameter m. The resolution
is said to decrease or become coarser as m increases. The resolution is said to increase
or become finer or more detailed as m decreases. An example of the projection of a
Doppler signal onto the Haar scaling functions is shown in Figure 3.3(a).

The fine and coarse spaces V,, and V|, are related by

Vm = Vm+1 @ Wm+l
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where @ is the direct sum operator and W,,,,, is the difference space formed by the
wavelets at scale m + 1 as shown in Figure 3.2(b). The previous equation is recursive

and can be rewritten as

Vm = Vm+2 & Wm+2 ® Wm+1
Vm = Vm+3 S Wm+3 @ Wm+2 & Wm+1

M
Vm = VM@ @ Wk, M >m.

k=m+1
A fine resolution approximation space V, is the direct sum of a coarse approximation

space V}r and all of the difference spaces between Wys and W1, (see Figure 3.2(c)).

(b)

Figure 3.2: Multiresolution spaces (a) multiresolution ladder (b) relationship between
approximation space and detail space (c) recursive relationship between approxima-
tion space and detail spaces.

Each set of wavelet coefficients at scale m, DWT[m,n], is the projection of the
signal f onto a space W,,. As seen by multiresolution analysis, the space W,, repre-
sents the difference of two approximations of f, DWT[m,n] = Pn_1f(z) — Pnf(z),
for m € Z. Hence for a given scale m, DWT[m,n| represents the detail between two
successive levels of approximation of the signal. In general, f(z) is decomposed as

@) = Puf@ + 3 (e f(@) - Pef(@)).

k=M
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The signal f(z) is a low resolution approximation Py f(z) plus a sum of differences.
In Figure 3.3(b), 512 samples of a Doppler signal have been decomposed into a low
resolution approximation (S9) and differences (D1,...,D9) using the Haar wavelet

and scaling functions.
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Figure 3.3: Multiresolution decomposition of a Doppler signal (512 samples) using
the Haar wavelet and scaling functions (a) coarse approximations where Sm € V,,
(b) differences where Dm € Wy,.

The previous discussion is valid for any f(z) € L?(R'), and a countably infinite set
of coefficients is generated. To use wavelet theory for digital signals such as sampled
speech or images, it is assumed that the signal samples f[n],n =0,..., N —1 (where
N = 2L for convenience) represent the coefficients of finest approximation f%(z) of
the continuous-time signal f(z) available, that is that

N-1 N-1
fo(z) = Pof(z) = D_(f(z), bonbon =Y f[nldon

n=0 n=0
where V; = span(¢o . (z)) represents the finest approximation space. In this case f(z)
can be decomposed as

M
f'(z) = Pof(z) = Puf(@)+ Y (Pn-1f(z) = Pnf(z)), 0<M<IL,

m=1
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where M indicates the number of levels of decomposition. More specifically,

oL-M_
flz) = Z (f(z), dmn(z))dMn(z) +

n=0

M [ol-m_1

Z ( Z (f(x)a¢m—1,n(x))¢m—l,n(3) -

m=1 n=0
Z— (f(z),¢m,n(z))¢m,n(z)) , 0<M<IL,
n=0

or
2t-M -1 M 2L-m_]
f@) = D Mrldualz)+> . Y, DWTm,nlgma(z), 0<M<L.
n=0 m=1 n=0

Since Pma(z) = 2-™2¢(27™(z — 2™n)) and Ppm_1.4(z) = 2-m-D/2p(2-(m=1 (g —~
2™-1n)), each ¢y, , has a translation step that is twice as large as the translation step
of the next finest basis function @,,_;,. This means that for a signal f[n] with N
samples, where N is a power of two, each set of coefficients produced by (f(z), dmn)
has half as many coeflicients as that produced by (f(z), #m-1,n). The total number
of coefficients is N/2+ N/4+4...+1+1 = N. Each projection has to be calculated
once and then differences can be taken. This implies that if the wavelet has finite
support, the transform can be done with order N computations, [72]. Additionally,
by fixing M, the decomposition can be fixed at any number of levels of decomposition
from 1 to log,(NN). The discrete wavelet transform of the Doppler function used in
the multiresolution examples is shown in Figure 3.4. Note the resemblance of this to
the multiresolution decomposition in Figure 3.3(b); each DWT coefficient is just the
magnitude of each wavelet in the multiresolution decomposition. Fast and efficient
implementations of the DWT in order N, [72], are available, making the DWT a useful
transform for data compression. I use commercially available packages (Section 3.6)
whose implementation details can be found in the user documentation.

Now that the detail and approximation spaces have been defined, the ¢, and
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Figure 3.4: The discrete wavelet transform of a Doppler signal (512 samples) using
the Haar wavelet and scaling functions.

the ¥m n can be examined in more detail. It is a fact that

¢m,n eVm CV ~1
wm,n eWm CV—I-

Every function that can exist in V;,_; must be a linear combination of the ¢n_;n

since Vi, = span(¢m-1,,). Thus

$(z) = D h.V2¢(2z —n)

D 9.V26(2z ~ n).

¥(z)

These are known as the two-scale equations. The coefficients h, and g, are used
to identify each wavelet family. They are related to the filter coefficients used in
subband filtering which consists of a process of high and low pass filtering followed
by downsampling. This subband filtering process is applied recursively to the most
recently low-pass filtered portion of the signal. Thus the coarse or approximation
space of the DWT corresponds to a low-pass filtered version of the signal, while the
detail space of the DWT corresponds to the high-pass filtered version (that is the
high frequency components) of the signal.
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3.2 Discrete Orthonormal Wavelets in One Dimension after Quantiza-

tion: Rate, Distortion, and Entropy

When doing lossy transform compression, it can be shown that the average rate, av-
erage distortion, and entropy of a compressed signal is the same as the average rate,
average distortion, and average entropy of the quantized coefficients of the trans-
formed signal, respectively. For example, if the nine detail subbands and one coarse
subband of Figure 3.4 are encoded independently, then the rate, entropy, and distor-
tion of the signal after the inverse discrete wavelet transform are the average rate,
average entropy, and average distortion of the subbands themselves. This will be
convenient in performing optimal bit allocation to all subbands simultaneously.

Let f(z) be the original one-dimensional signal and f(z) be the quantized signal.
If the mean-square error is used as the distortion measure, then Parseval’s relation
applies, and the distortion D between the original signal and the quantized signal can
be expressed as the mean-square error distortion between the transformed original

signal DWT[m, n] and the transformed quantized signal D/W\T[m, nJ.

D = E[(f(z) - f(=))*
ol-M_ M 2L-m_j
= E[( Z fM[n]¢M,n(z)+z Z DWT[m, n|¢ma(z) -

n=0 m=1 n=0

2l—-M_ M 2L-i_1 2
3 Mkldua(z) -y Y DWTY, k]¢,k(z) }

k=0 j=1 k=0
2:. -M_3 M 2L-m_y
= 2L > (M) - fM[n])2+ = =Y Y (DWT[m,n] - DWT[m, n))?,

n=0 m=1 n=0
since (Ymn(z), Yik(Z)) = dm-jn-k and (Brrn(T), Ymn(z)) =0if M > m.
If D, is defined to be the MSE distortion of the detail subbands m =1,..., M,
and D§3*7#¢ is defined to be the MSE distortion of the coarse approximation subband,

then the overall distortion is equal to the average mean-square error over all of the
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subbands:
1 2L-m_1 o
Dn = 3 > (DWT[m,n] - DWT[m,n))?,
2""-“0 1
DiE = s > (Pl = W)’
n=0
D = — Dcoarse mz—l'ﬁ Dpn.

The entropy of the compressed signal can also be found as a function of the entropy
of the subbands. The entropy H of the entire compressed signal is defined as
- _PilogP;
i€l
where the signal is encoded with symbols 2 € I, and each symbol is used with prob-
ability P; and ), P; = 1. By defining p;,, as the probability of symbol 7 in subband

m, the entropy of each subband, H,,, can be expressed as

Hp=— Ei Pim logpim, where Ei Dim = L.

I now rewrite the overall entropy H by grouping together the symbols used by the
coarse approximation subband H§?*"*¢ and the detail subbands H,,. I assume that

each symbol 7 is found in only one subband m and so P; = P; s

M
Z P; lOgP - Z Pcoarse lochoarse Z ZPi,m lOgPi,m,

i€l m=1 1

where

ZPcoarse_*_ZZRm_l

m=1 1

The probability P; = P, , is related to the probability p; , of a symbol 7 in subband
m by
Pi,m = PmDim,
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where p,, is the probability of the subband and p‘h‘}“"‘-i-z,ﬂ,'f:l Pm = 1. By substituting
this relationship into the overall entropy equation it is found that the entropy of the
signal is equal to the “average” encoding entropy over all of the subbands plus the

entropy of the subbands themselves.

M
H = - Z pwarsep::oﬁ'se log(pc&araep:oarse _ Z Z PmPDim log(pmpi,m)
m=1l i

= pooarse z coarse(log pioar*e + log PL2e*e] — Z Pm Zp:,m [log pi,m + 10g Prm]

m=1

- coarse Z coarse lOg pcoarse - Z Pm Zp;,m IOg Pim

m=1

coarse 1 og pcoarse Z pcoarsc Z Dm log Drm Z Dim

m=1

= pc&arse HAc;arse + Z Pm H, - coarse lOg pcoarae _ Z Drm lo & Drm.

m=1

The last two terms represent the entropy of the subbands, i. e. the cost of en-
coding the information of which subband each coefficient belongs to. However, the
assignment of subbands is not really random, but is known. Therefore, it is not
necessary to include these terms in the entropy calculations. Thus

M
H = pc&arse HAc;arse + Z Drm H

m=1

For one-dimensional wavelets, p,, = 2%, and the entropy is

1 A
H = opHi™ +3  ooHn
m=1
Similarly, the average rate R of the quantized output is equal to the average rate
over all of the subbands

R= S Rcoarse + Z 2m

m=1

where R, is the rate of each detail subband and R§y*™*¢ is the rate of the coarse

subband.
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3.3 Discrete Orthonormal Wavelets - Two Dimensions

The DWT for multidimensional signals f(z;, 2, -, zq4) € L>(R?) can be extended to
two or more dimensions by using tensor products of one-dimensional multiresolution
analyses. For the two-dimension case f(z,y) € L?(R?), the coarse approximation
space V,, is defined as the tensor product of two 1-dimensional approximation spaces,

Vi =V ® Vi = span({®m,i(z,y);i,j € Z}), where
P1iii (2, Y) = Om,i(T)Pm,j(y) € Vin ® Vin

is the father wavelet, m is the scale, and ¢ € Z and j € Z are the translations in
z and y. The same properties for one-dimension approximation spaces V;, also hold
for two-dimension approximation spaces Vin: Upez Vin = LA (R?); ez Vm = {0};

and the V,; form a multiresolution ladder of subspaces
CVm1 CV C Vi C -
where f(z,y) € V,, if and only if f(2™z, 2™y) € V,.
The wavelet functions can be found by expanding the tensor product
Vol = Vaa®Vaa=Va @ Wa) @ (Vi @ Wn)
= (Va® V)@ [(Wn® Vi) ® (Vi @ Wi) @ (Wi @ Wiy)]
= V& W,
From this, it can be seen that the detail space W,,, has three wavelets:
Ui g(2,Y) = Omi(@)¥mi(y) € Vi ® W,
022 0) = Uni(2)0mi(y) € W ® Vi,
‘I’fn;i,j(x, Y) = Umi(T)¥mj(y) € Wi ® Wh,

where U!, U2 and U3 respectively represent the horizontal, vertical, and diagonal

components of the two-dimensional signal at scale m. Thus the detail space

W = {Wnin=1,2,3} =span({¥7,;;;i,j € Z,n=1,2,3})
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where W, n = 1,2,3 refer to the horizontal, vertical, and diagonal detail spaces
respectively. Again, the properties for one-dimension detail spaces Wy, also hold for
two-dimension detail spaces W,,. The W, are orthonormal and form an orthonormal
basis for L?(R?):
wknwe =0, k#mn,
Wk n Wm = 01 k # m7
Prcz Wm = L*(R?).
The arrangement of coefficients is shown in Figure 3.5(a). An example of the

two-dimension discrete wavelet transform is shown in Figure 3.5(b) where the MR

image of “Eve’s brain” is decomposed to three levels using the S8 wavelet.

w, w,
1 3
w w
2 2
2
wl
1 3
w) 3
wl
v, [wy] T2
(a) The arrangement of the coeffi- (b) The two-dimension DWT of the
cients of the two-dimension DWT. MR image “Eve’s brain” using the
S8 wavelet with three levels of de-
composition.

Figure 3.5: The discrete wavelet transform in two dimensions: (a) the arrangement of
the coefficients of a three level decomposition, and (b) the MR image “Eve’s brain”
image decomposed to three levels.
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3.4 Discrete Orthonormal Wavelets in Two Dimensions after Quanti-

zation: Rate, Distortion, and Entropy

As shown before, the average rate and average distortion of a transform compressed
signal can be derived as the average rate and average distortion of the quantized
coefficients of the transformed signal. This will be convenient in performing optimal
bit allocation to all subbands simultaneously.

Assume that the two-dimensional signal to be decomposed, f[i,j] is an N x N
signal where N = 2L, Then L is the maximum number of decomposition levels that
can be computed. Let M be the highest level of decomposition performed on the signal
where 1 < M < L. Define the mean square error distortion of the detail subbands to
be Dy, 5, where 1 < m < M refers to scale and n = 1, 2, 3 refers to the three wavelet
functions. The mean square error distortion of the coarse approximation subband
is defined to be D3f§*®. The overall distortion is equal to the average mean-square
error over all of the subbands

D = 7 ““"‘+2222m ma

m=1 n=1

Entropy is similarly derived as in Section 3.2 where the entropy is the average
encoding entropy over all subbands:

H = pchc;agse coarae+zzpmn

m=1 n=1

where pp,n is the probability of a subband at scale m and orientation n. For the

two-dimensional case, p,, = —5—-, and the entropy is

H = _2WHcoarse+ZZ22m g

m=1 n=1

Similarly, the average rate R of the quantized output is equal to the average rate

over all of the subbands
M 3

1
R= 22M coarse + Z Z 22mR4n

m=1 n=1
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where R377°¢ and Ry, 5 are the rates of the coarse and detail subbands respectively.

3.5 Wavelet Packets

Orthogonal wavelet packets are a direct extension of the filtering ideas of the DWT.
For wavelet packets, each wavelet subband is further decomposed into smooth and
detail spaces which correspond to different orthogonal frequency bands of the signal.
In Figure 3.6(a), the subbands of the DWT with increasing levels of decomposition
are shown in a tree structure which indicates the decomposition process. Wavelet
packet decomposition with orthogonal subbands is shown in Figure 3.6(b), also in
a tree structure to indicate the decomposition process. This structure is known as
an isotropic wavelet packet tree (WPT) [97]. For wavelet packets, all subbands are
further decomposed to smooth and detail subbands. Since each space is the direct
sum of its subspaces, the original space can be represented by any subtree of the
wavelet packet tree. For example, the DWT is one possible subtree of the WPT. Fast
and efficient implementations of the wavelet packet transform can be done in order
N log N, which is equivalent to the time required by the fast Fourier transform. The
use a predetermined subtree of the WPT, such as the DWT, will reduce computation
time. The main advantage of wavelet packets is better signal representation by using
wavelet packet frequency subbands which are adapted to the frequency characteristics
of the signal. The search for the best representation of the signal by any subtree of
the WPT is called best basis selection [24].

Unfortunately, the clear physical meaning of multiresolution analysis is lost when
wavelet packets are used. However, wavelet packets can be exploited to better rep-
resent signals which do not have lowpass frequency characteristics. Quantization of
wavelet packets is done in the same manner as the DWT since the wavelet packet
decomposition is a linear, orthonormal transform. The rate and distortion of the

original signal can be expressed as weighted sums of the rate and distortion of the
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subspaces used to decompose the original signal. The entropy can be expressed as
weighted sums of the entropy of the encoded subbands where each subband has its

own quantizer.

| Original Data | [ Original Data
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(a) DWT. (b) Wavelet packets.

Figure 3.6: (a) The discrete wavelet decomposition shown for a one-dimensional signal
decomposed to three levels. (b) The wavelet packet decomposition shown for a one-
dimensional signal decomposed to three levels. S and D refer to smooth and detail
subbands. Note that the DWT is one possible subtree of the WPT.

3.6 Implementation

I have used both the S+WAVELETS toolkit developed by the Statistical Sciences
Division, of MathSoft, Inc. and the WaveLab .600 package by Buckheit et al. at
Stanford University. I have been an alpha and beta test site for the S+ WAVELETS
package.



Chapter 4

WAVELETS AND QUANTIZATION

In this chapter, I first describe current wavelet compression techniques in Sec-
tions 4.1. Next, in Section 4.2, I review several current bit allocation techniques for
wavelet compression. I then introduce PTSVQ for wavelet-transform compression

with bit allocation via GBFOS and ROPA in Sections 4.2.1 and 4.2.2, and PTSVQ

for wavelet packet compression in Section 4.2.3.

4.1 Wavelet Compression

The discrete wavelet transform combined with scalar quantization (SQ) and VQ has
led to numerous schemes for compression [2,4,8,9,12-15,24,26,32,33, 36,40,73, 79, 80,
86,88,96). Using a multiresolution framework, the wavelet transform organizes the
coefficients to enable effective SQ and VQ encoding. The temporal/scale tessellation
of the wavelet transform avoids block artifacts common with schemes using only
temporal tessellation (e. g., JPEG and pure VQ coding schemes).

Wavelet encoding involves taking the discrete-time wavelet transform of the data
and quantizing the wavelet subbands. The design of the quantizers is based on sta-
tistical analyses of the wavelet coefficients for sample data and requires careful study.
In particular, there are two issues in particular that must be addressed. The first is
bit allocation, i. e. the assignment of the rate for each of the wavelet subbands, and
the second is the size of the vectors for each wavelet scale.

Bit allocation is the process of assigning a given number of bits to a set of different

sources (e. g. wavelet subbands) to minimize the overall distortion of a coder. For



uniform scalar quantization, the bit allocation scheme chooses the size of the quantizer
step, or bin, for each source. For VQ, the bit allocation scheme controls the vector
dimension and the number of codewords for each source. A good bit allocation
method usually results in much better performance by devoting more bits to regions
of the data that are active or difficult to code and fewer bits to less active regions.
After quantization the quantizer indices are usually entropy encoded.

The vector dimensions of each VQ may vary so that the codebook for each subband
may have different numbers of vectors in it. The choice of vector dimension is usually
made on an ad hoc basis, and is affected by the amount of training data available
and the complexity of the vector quantizer. Theoretically, compression performance
improves as the block size, or dimension, increases, but the trade-off of using a higher
dimension is increased coding complexity. The goal is to design the coder that offers
the highest quality while still providing real-time decoding and reasonable encoding
complexity in software. In [29], vector dimension and bit allocation is determined by
using the approximate bound on minimum distortion for high rate VQ for a given
dimension. This bound is used to develop an algorithm for joint optimization of vector
dimension and bit allocation using marginal analysis. In [11,14], vector dimension
is related to design and encoding complexity. Bit allocation is done by using a non-
linear bit allocation algorithm that tries to minimize distortion with constraints on
both rate and complexity. As I will be attempting low rate compression, I will use
ad hoc dimension assignments that will be influenced by the compression application,

and when possible, I will examine the effects of different vector dimensions.

4.1.1 Wavelet Scalar Quantization

In one of the biggest success stories of wavelets to date, the FBI has adopted a
wavelet /scalar quantization (WSQ) standard for fingerprint image compression [13,
28] which uses an adaptive bit allocation scheme. Each subband has a different

quantization step which is determined by the energy of the subband. The bin size is
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a function of the image and must be stored with the quantized coefficients. In [15],
the authors intend to improve the FBI's WSQ compression algorithm by using an
optimal bit allocation technique to choose subband bin sizes.

The embedded zero-tree wavelet algorithm (EZW) of Shapiro is an iterative WSQ
algorithm that uses a fixed threshold at each iteration to determine which coefficients
across subbands in spatially corresponding position are to be quantized and encoded.
The threshold is set to be the bin size of the uniform scalar quantizer which is used
to quantize the coefficients. The threshold and quantization step are refined by one-
half at each iteration and the algorithm results in an embedded code. The iterations
repeat until all of the available bits are allocated. The quantization step used at
each iteration applies to all of the subbands, unlike the previous methods which use
different bin sizes for each subband. So only the original quantization step needs
to be stored as overhead. This algorithm does not require any training. The EZW
algorithm has recently received a great deal of attention, and the development of
EZW-like algorithms is an active research area, see for example, [68,85].

In [33], bit allocation based on wavelet coefficient magnitude is proposed, that
is, only the N largest coefficients are preserved. Side information includes the po-
sitions and bit size of each preserved coefficient. An explanation of how bin width
choice in wavelet scalar quantization is related to the error incurred in wavelet scalar

quantization compression is also presented.

4.1.2 Wavelets and Vector Quantization

A comprehensive description of current wavelet VQ (WVQ) techniques can be found
in [26]. I now briefly summarize several important WVQ papers.

In [2], full search vector quantization is performed on each wavelet subband creat-
ing a multiresolution codebook by using a mean-square error distortion measure. Bit
allocation uses a total weighted mean-square error measure to improve the subjective

image quality and is done by a noise shaping procedure which is a function of the
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image and requires overhead to store. In [14] a multiresolution WVQ codebook is
used which does bit allocation subject to constraints on rate and encoding complexity
while minimizing distortion. In [11], full search VQ is also used in a WVQ scheme.
A non-linear optimization scheme is used which involves modeling of rate, distortion,
and complexity of the encoder to design the VQ's for each subband. This was meant
to help select vector dimension size for each VQ.

In [87], fixed-rate full search VQ, lattice VQ and entropy-constrained VQ (ECVQ)
are used to encode wavelet coefficients. The best results are found with lattice VQ
and entropy-constrained VQ. The authors recommend using variable rate coding
to improve performance. In addition it is also shown that to achieve optimal bit
allocation across subbands, the slopes of the rate-distortion curves of each subband
must be the same. Entropy-constrained VQ has also been used in [86] to produce
a multiresolution codebook. Optimal bit allocation cannot be performed due to the
nature of the distortion of the ECVQ encoder, but DPCM is used on the lowest
resolution subbands, and Riskin’s algorithm [82] is used to allocate bits to the rest of
the subbands which use the multiresolution codebook.

The embedded zero-tree wavelet algorithm has been extended to work with VQ
in [27,30,60]. For example the EZW is used with variable-rate TSVQ’s in [27, 60].
In [27], at each iteration of the algorithm, spatially corresponding vectors across
subbands are examined based on a threshold and encoded. Since uniform scalar
quantization is not being used, there is no direct link between the threshold and
the quantizer bin size as in the EZW algorithm. Instead a variable threshold is
used that is determined by rate-distortion trade-offs. The iterations repeat until
all of the available bits are allocated. This algorithm requires training and storage
for the TSVQ’s unlike the EZW algorithm which requires storing only the initial
quantization step size. In [60] the authors present a similar method, except that they
use mean-removed unit-variance normalized data. Unfortunately they do not explain

how thresholding is done to determine significance of coefficients. In [30], the EZW is
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extended to use regular-lattice VQ codebooks that consider vector orientation during
the encoding phase.

Although the primary concern in [50] is progressive image transmission, the work
described can be considered a WVQ image compression method. In this method,
an increasing number of bits is arbitrarily allocated to an image at increasing res-
olutions. The coarse approximation is allocated a certain number of bits, then the
coarse approximation with the next finer detail bands is allocated a larger number
of bits, and so on. A PTSVQ is used in each detail subband. Bit allocation is done
incrementally until the assigned rate is achieved. Bit allocation to each subband can
only increase, so bit allocation for the entire image is not optimal since the ad hoc

method of assigning rate to the image as resolution increases is not optimal.

4.1.8 Wavelets and Quantization for Video Compression

There have been numerous attempts to code image sequences with a wavelet ap-
proach, including [34, 43,66, 67,100], and research in this area has been rapidly in-
creasing the last several years. In [66] a three-dimensional wavelet transform is done
on eight consecutive frames (each frame is decomposed by a two-dimensional wavelet
transform and then a one-dimensional wavelet transform is done over the time di-
mension). The goal is to preserve spatial and temporal edges during compression.
The compression algorithm tries to predict which wavelet coefficients contribute to
edges. The algorithm preserves those coefficients that likely contribute to edges and
discards those that do not. Four bits are used for the preserved coefficient and one
bit is used to indicate a discarded coefficient. Clearly, bit allocation is not optimal.
The prediction is first performed in the spatial domain, and then performed in the
time domain. In [43], this idea has been extended to predict which coefficients might
contribute to an edge by performing prediction simultaneously in space and time.
In [100], several video compression schemes using the two-dimensional wavelet

transform and motion compensation are compared. The first approach takes the
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wavelet transform of each frame and then uses multiresolution motion compensa-
tion. For multidimensional motion compensation, motion vectors are found in the
lowest resolution subband (or alternatively the lowest pyramid level) and either all
other subbands use scaled versions of these motion vectors, or the motion vectors
are used to predict all of the other subbands’ motion vectors. The residual images
are quantized and entropy encoded. The second approach is to perform interframe
motion compensation and perform the wavelet transform on the residual image. The
wavelet coefficients are quantized and entropy encoded. The system with the best
results first did a wavelet transform, then did multiresolution motion compensation,
and lastly encoded the coefficients with classified VQ. However motion compensation

with wavelet decomposition of residual images encoded by VQ was not examined.

4.1.4 Wavelet Packet Compression

Several recent papers have addressed adaptive wavelet coding where the cost of en-
coding a signal that has undergone an orthogonal wavelet packet decomposition is
minimized by choosing the best subtree of the wavelet packet tree (WPT). Perhaps
the most important are [24] and [47,79] which also address bit allocation. In [24],
wavelet packet best basis assignment is examined using various cost measures includ-
ing entropy-based constraints. It is proved that the best basis can be found using
an iterative algorithm from the bottom of the WPT to the top where the costs of
encoding the smaller subspaces and the cost of encoding the larger subspace com-
prised of the smaller subspaces are compared. The larger subspace is split into the
smaller subspaces if the total cost of encoding the smaller subspaces is less than the
cost of encoding the larger subspace. Otherwise, the larger, merged, subspace is used
to encode the signal.

The methods in [47,79] address joint bit allocation and best basis selection. They
are known as the single-tree and double-tree methods. In the single-tree method [79),

quantizers are designed for every wavelet packet subband, and the rate-distortion
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characteristics of each quantizer are computed. This method uses Lagrangian solution
techniques, and it is shown that a bit assignment is optimal when all quantizers have
the same slope on their local rate-distortion curves. The single-tree method works
by first finding the best bit assignments at each node of the WPT for a given slope.
Next, it finds the best wavelet packet assignment given this information. This process
is iteratively repeated using different slope values until the bit budget is reached. It
is shown that the cost function is convex so that it is possible to get convergence of
the algorithm.

The double-tree method, [47], involves joint bit allocation and best basis assign-
ment for signal segmentation in time. It works by finding the best single-tree assign-
ment for the entire signal. The signal is then broken into different segments, and the
best single-tree bit allocations for each of these time segments are found. Then these
segments are segmented, and the best basis assignments are found, and so on. Once
all of the possible segmentations and best quantization assignments for each segment
are computed, the best overall bit assignment among all possible time-segmentations
is found. This method was also developed for nonstationary signals. A good overview
of the evolution of adaptive wavelet techniques and their applications can be found

in [80].

4.2 Compression using Wavelets and PTSVQ

Studies have found that wavelet coeflicients of images tend to have distributions which
are highly peaked around zero [2]. Following (2,9,75] among others, I use VQ to code
these coefficients. The main difference is that [ use PTSVQ [23,81] as described earlier
because it offers higher quality and has lower encoding complexity. It has also been
found that PTSVQ works particularly well when the data have a distribution that
is highly peaked [81]. Simulations of PTSVQ applied to prediction residuals, which

are highly peaked around zero, in [81] gave excellent compression results, in part
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due to suitability of PTSVQ to data with highly nonuniform distributions. Hence
PTSVQ should offer excellent compression results when applied to wavelet data. As
an example, Figure 4.1(a) shows an MR image of “Eve’s brain” compressed with
full search VQ and Figure 4.1(b) shows the same image compressed with PTSVQ.
Both images have the same bit rate, but the PTSVQ image is of much higher image
quality (even in the halftoned versions shown here) and measures a gain in SNR
of 3.78 dB. In addition, PTSVQ gives smart bit allocation automatically because
it devotes more bits to high distortion events, such as edges, and saves bits in lower
distortion regions of the image, such as the background. Therefore my multiresolution
codebook will consist of a PTSVQ codebook for each subband. I will use the following
bit allocation algorithms to simultaneously and conveniently allocate bits among the

wavelet subbands.

(a) The MR image compressed to (b) The MR image compressed to
1.5 bpp using full search VQ. 1.5 bpp using PTSVQ.

Figure 4.1: The MR image “Eve’s brain” compressed to 1.5 bits per pixel using (a)
full search vector quantization and (b) pruned tree-structured vector quantization
with an improvement is SNR of 3.78 dB.
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4.2.1 Bit Allocation Using GBFOS for Wavelets and PTSVQ

For each subband, I create a very high-rate tree-structured VQ. I then treat each
of these subband TSVQ codebooks as a source needing bit allocation. I simply use
GBFOS pruning, described in Section 2.5.1, on all of the wavelet subbands together
to do the bit allocation, as suggested in [23]. This will ensure that all subbands
are given equal consideration while doing bit allocation for the entire set of data,
Figure 4.2. This approach was also used by Oehler and Gray to simultaneously
assign bits to a mean-shape-gain VQ with good results [76]. Using GBFOS as a form
of bit allocation works well with TSVQ’s since it is an extension of pruning a single
tree. As done in pruning, bit allocation will be done by assigning high rate TSVQ’s to
the sources. The TSVQ’s will then be pruned among the subbands until the desired
rate is achieved. Alternatively, the TSVQ’s can be pruned before bit allocation and
a list of the optimal pruned subtrees and their performance characteristics can be
made. Bit allocation is done by removing the quantizer with the least slope on the
rate-distortion curve until the desired rate is achieved.
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Figure 4.2: Discrete wavelet transform bit allocation for a one-dimensional signal
decomposed to three levels. Each frequency subband of the wavelet packet tree has an
associated TSVQ. Bit allocation proceeds by finding each GBFOS optimal quantizer
as the slope of the rate-distortion function increases. S and D refer to smooth and
detail subbands.
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The problem is to allocate bits among the subbands such that the distortion D
is minimized subject to the number of bits, or rate R, available where D and R
are defined in Chapter 3.4. This can be done by finding the A which minimizes the
Lagrangian functional (shown here for the 2-dimension DWT)

I0.) = D5 + 33 D+ g™ 4 33" el

m=1 n=1 m=l1 n=1

By differentiating J(D, R) with respect to the rate allocated to each subband R; ;
where (1 =1,2,---,M;5=1,2,3) and (i = M;j = 0), and by setting the results to

zero,
M 3
@%MMﬂw%ﬁg%%]
- [ E e ]
the value of A which minimizes the Lagrangian functional is found to be A = —gz::: .

Note that A is the same for all subbands at scale m with orientation n, including the
coarse approximation subband, and that the subband quantizers are assumed to be
normalized by vector dimension as well as fraction of the signal space. Optimal bit
allocation is achieved when the optimal quantizers of each subband have the same
slope on the lower convex hull of the rate-distortion curve. This is known as the
Pareto-optimality condition in economics [87]. Thus it is possible to use the rate-
distortion information of each subband directly without further processing or scaling
of the rate and distortion values of the quantizers of each subband by 2-2™. The
TSVQ’s of the subbands can be pruned by just removing the node with the least
value of A among all of the subbands until the desired rate is reached.

The GBFOS bit allocation algorithm is given in Table 4.1 where it is assumed that

there are M wavelet subbands, and that each subband i has an associated TSVQ
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Q@;. Each Q; has an associated rate R(Q;), distortion D(Q;), and minimum slope
AMQ;). The multiresolution codebook @ has an overall rate of R(Q) = Zfil R(Q;),
and distortion of D(Q) = M, D(Q;). Bit allocation continues until there are no
quantizers to be pruned, Apin = 00, or the desired rate, Riarget, has been reached.
It works by identifying the minimum slope quantizer, pruning it, and calculating the
new rate and distortion.

The pruning of TSVQ’s yields a set of optimally pruned TSVQ'’s for each of the
subbands whose joint performance lies on the lower convex hull of the rate-distortion
curve of the multiresolution codebook, i. e. the multiresolution codebooks have the
lowest distortion for their average bit rate. For example, if one subband quantizer
Q; is pruned to @j, and its slope is A(Q;) = _D(@;)-D(@;) then the multiresolution

N R(Q;)-R(Q;)’
codebook @ is pruned to Q with the same slope A\(Q) = A(Q;):

e
R@Q) = |D_R@)| - R(@)+R@)
- -
D@ = |3 D@)|-D(Q))+D@;),
D(@) - D(Q) D@,) - D(Q)
/\ = - — = - = = A il
@ R(Q) - R(Q) R(Qj) - R(Qj) (@)

Hence the previous slope of the multiresolution codebook is given by the slope of the
codebook just pruned, and the next slope of a multiresolution codebook is given by
the slope of the next codebook to be pruned. Therefore, if the subband quantizers are
on the lower convex hull of their rate-distortion curves, and pruning is always done
by choosing the smallest slope quantizer, the multiresolution codebooks will also lie
on the lower convex hull of their rate-distortion curve.

A pictorial example of GBFOS bit allocation is shown in Figure 4.3. At each
iteration of the GBFOS algorithm, the space to be examined is limited to the rect-
angular region between the rate 0 codebook and the entire multiresolution codebook,

Figure 4.3(a). One iteration of GBFOS bit allocation involves finding the least slope
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Table 4.1: GBFOS bit allocation.
Step 0. Assign R+ 3 R(Q:) and D « ¥, D(Qy).

Step 1. Find among all subband codebooks the quantizer with the least slope,
Qi = argming; j=1,..m A(Q;)-
If A(@Q;) = oo, quit. All of the TSVQ’s have been pruned to their
respective root nodes.
Step 2. Prune the minimum slope codebook @; to the next GBFOS optimal
codebook @; and update the TSVQ.
Assign R + R — R(Q:) + R(Q),
D« D~ D(Q)+D(Qy),
Qi + Qi.
Step 3. If R > Riarget, g0 to Step 1.
Otherwise, quit.

from the current multiresolution codebook to all other possible pruned codebooks,
Figure 4.3(b). This represents the GBFOS pruning of one subband quantizer. For the
next iteration of the GBFOS algorithm a reduced area of the space will be examined,
Figure 4.3(c). The end results are the multiresolution codebooks that lie on the lower

convex hull of the rate-distortion curve, Figure 4.3(d).

4.2.2 Bit Allocation Using ROPA for Wavelets and PTSVQ

GBFOS bit allocation cannot always achieve the desired rate since optimal points
may be scarce. As a result, there may not be many quantizers for the bit allocation
algorithm to choose from. Time-sharing between a high rate and a low rate mul-
tiresolution codebook can be done to yield the desired rate. Although time-sharing
yields a codebook that is on the convex hull of the rate-distortion curve, again, it
has the drawback of introducing nonstationary distortion throughout the compressed
data and interferes with the distribution of codeword indices. ROPA [61], described
in Section 2.5.2, was introduced to overcome these drawbacks. In ROPA pruning,

the tree is pruned by removing only M leaf nodes at a time. All of the optimal GB-
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FOS subtrees are identified, and all of the other subtrees which are found minimize
the area between the rate-distortion curve and the convex hull of the rate-distortion
curve. This algorithm guarantees many more codebooks over the range of bit rates.

The problem of low-rate bit allocation among wavelet subbands is addressed by
extending ROPA to simultaneously and conveniently allocate bits among the wavelet
subbands. The algorithm is applied to the TSVQ’s used to code wavelet subbands.
In doing bit allocation with ROPA, not only are all of the GBFOS quantizers found,
but every non-GBFOS quantizer which is found minimizes the area between the rate-
distortion curve and the convex hull of the rate-distortion curve [61]. This algorithm
guarantees many more good multiresolution codebooks over the range of desired
bit rates. Comparing this method to GBFOS bit allocation, ROPA produces many
additional bit allocations that lie close to the rate-distortion curve.

ROPA bit allocation for finding the highest rate to the lowest rate quantizers (until
the desired rate is achieved) works as follows. High-rate TSVQ’s are designed for each
subband. The subband TSVQ Q; with the least slope Ay;n = A(Q;) is found, and its
best GBFOS node identified. The branch headed by this GBFOS node is recursively
examined until the ROPA node with the least A value in it is found, see Section 2.5.2
for ROPA details. This ROPA node is pruned and the TSVQ is updated. If the
newly pruned TSVQ combined with the other subband quantizers yields the target
rate, Riarget, pruning stops. Otherwise the GBFOS pruned branch is reexamined. If
the GBFOS branch is completely pruned (in which case the minimum slope value
of the tree exceeds the minimum slope value first found, Apin(@:) > Amin, the next
GBFOS node among all TSVQ’s is found, and the process repeats. The complete
ROPA bit allocation algorithm is given in Table 4.2.

For the multiresolution codebook, all but one of the source quantizers chosen is
on its local convex hull of the rate-distortion curve. When ROPA prunes the mul-
tiresolution codebook, it traverses the rate-distortion curve from one GBFOS point

to another GBFOS point via non-optimal ROPA points, for only one source at a
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Table 4.2: ROPA bit allocation.
Step 0. Assign R+ M R(Q;) and D « ¥, D(Q:).

Step 1. Find among all subbands codebooks the quantizer with the least
GBFOS slope Q; = argming; j=1,...m A(@j)-
ASSign ’\min <~ /\min (Qt)
If Apin = 00, quit. All of the TSVQ’s have been pruned to their
respective root nodes.
Step 2. If /\min(Qi) S /\min:
Prune the minimum slope TSVQ Q; using ROPA to get the highest
rate ROPA codebook @,-. R
Assign R < R — R(Q;) + R(Qi),
D « D - D(Qs) + D(Qx),
Qi +— Q.
If R > Riarget, g0 to Step 2.
Step 3. If R > Riarget, g0 to Step 1.
Otherwise, quit.

time. The algorithm does not switch to another source until the next GBFOS point
is reached. Thus bit allocation by ROPA will contain the set of optimal GBFOS bit
allocations. As described before, the additional multiresolution codebooks found by
ROPA will lie close to the rate-distortion curve since only one of the source code-
books at a time is ever suboptimal. Every suboptimal multiresolution codebook
will minimize the area between the rate-distortion curve and the convex hull of the
rate-distortion curve.

Bit allocation with ROPA has the same subtlety as ROPA for pruning when there
are multiple minimum slopes. In this case, each pruned subset must be examined.
However, the order of examination does not matter since pruning one section of a
codebook does not affect the pruning of another codebook and the area under the
rate-distortion curve will still be minimal with respect to the convex hull. Therefore,
the bit allocation solutions found by ROPA are not unique. For every n identical

minimum slopes, there will be n! possible solutions.
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A pictorial example of ROPA bit allocation is shown in Figure 4.4. After each
pruning iteration of the GBFOS algorithm, Figure 4.3(c), a number of multiresolu-
tion codebooks are discarded as possible solutions for bit allocation since they are
suboptimal. Some of these suboptimal codebooks lie in the square shaded regions
bounded by the optimal codebooks, Figure 4.4(a), while others lie outside of this
region. ROPA bit allocation works by recursively pruning the trees in these shaded
regions, identifying the suboptimal codebooks which lie closest to the optimal rate-

distortion curve.

4.2.8 Optimal Bit Allocation for Wavelet Packets and PTSVQ

Thus far, bit allocation methods for the discrete wavelet transform and PTSVQ
have been presented. Because wavelet packets offer a much richer set of spaces for
signal decomposition and the possibility of better data representation leads to the
possibility of better data compression, I next examine bit allocation for the wavelet
packet transform. For instance, the DWT is just one possible basis, or equivalently
one possible subtree, of a WPT. It may be that a different subtree can offer a better
representation in the rate-distortion sense. The number of possible subtrees of any
WPT is given recursively where, for a d-dimensional WPT of depth D, the number of
possible subtrees is S(D) = [S(D — 1)]* + 1 and S(0) = 1. Thus a two-dimensional
WPT of depth three (as will be used in Chapter 5) has 83522 possible subtrees.
The optimal bit allocation problem is much more complicated since it is necessary
to choose the best basis representation among all subtrees of the WPT for the data
while also assigning the best bit allocation.

In this section, I present a bit allocation algorithm using a pruning approach for
wavelet packets which will systematically find all best basis WPT/PTSVQ encoders
that lie on the lower convex hull of the rate-distortion curve without having to evaluate
every possible subtree of the WPT. I do this by assigning high-rate TSVQ’s to each
wavelet packet subband of the wavelet packet tree, Figure 4.5. I then prune the
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TSVQ with the least slope and identify the best basis WPT subtree using several
recursive properties of the WPT and its structure to simplify the best basis search.
This procedure is repeated until the desired rate is achieved. Note that the WPT
is not being pruned in this algorithm: only the TSVQ'’s assigned to each node of
the WPT are pruned. Each time a TSVQ is pruned, the subtree of the WPT that
represents the best basis is identified by examining only the subband node whose
TSVQ was just pruned, and that node’s ancestors in the WPT. The WPT subtrees
are not nested as a function of rate since the WPT is not being pruned.

My approach is similar to the single-tree method {79}, described in Section 4.1.4,
which was the first algorithm proposed to address the problem of joint bit allocation
and best basis selection, especially as the Lagrangian minimization technique is used
for both algorithms. The main difference is that my scheme will systematically find
all vertices on the lower convex hull of the rate-distortion curve. The single-tree
method performs a search for a given rate by heuristically selecting a slope and
finding the WPT quantizer assignments whose joint vertex lies on the lower convex
hull intersecting the slope. The search continues until a WPT codebook with a
reasonably close rate is found. It is possible that the single-tree method may not
find the WPT codebook closest to the desired rate due to the heuristic search. Bit
allocation by pruning ensures that the WPT codebook closest to the desired rate will
be found. Furthermore, it also ensures that all WPT codebooks on the lower convex
hull of the rate-distortion curve are identified starting from the highest rate possible to
the rate 0 codebook. By having the optimal rate-distortion characteristics for all bit
rates, a precise description of the WPT codebook by its rate-distortion characteristics
alone can be used in the design of more complex encoding schemes.

Optimal bit allocation and best basis assignment can be done simultaneously
while pruning TSVQ'’s since the wavelet packet decomposition is an orthonormal
transform, and each wavelet packet space is the direct sum of the subspaces created

by the decomposition. For a d-dimensional wavelet packet transform, the AM-ary
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wavelet packet tree T is structured so that interior nodes t; have children nodes ¢ai4;,
j=1,...,M, where M = 29, and the root node is ¢;. The WPT can be quantized
by a WPT codebook @ which represents a hybrid WPT/PTSVQ scheme where each
wavelet packet at node ¢; has an assigned PTSVQ Q;. The WPT codebook @ is
characterized by rate R(Q) and distortion D(Q), which, as shown previously, are the
sum of the rate and distortion of the quantized subbands (which are assumed to be
normalized by vector dimension as well as the fraction of the signal space) of a given
wavelet packet decomposition. Since the original signal space can be represented with
perfect reconstruction by the leaves of any subtree S of the wavelet packet tree T,

the rate and distortion of the WPT codebook @ can be written as:

R@Q=)_R(Q:) and D@Q) =) D(Q)
t;€§ t;e$
where S refers to the leaf nodes of subtree S.

Using the Lagrangian minimization technique, the quantization cost is written as

the average distortion plus a penalty for the rate of the quantizer:

J(Q) =J(D(Q), RQ)) =D _D(Q:) + A _ R(Qy).

t;e$ t;e$
The problem is to minimize the cost J(Q) for a given subtree, and to find the subtree

S°P* which minimizes the cost for all subtrees.

§%* = argmin J(Q) = arg min [Z D(@)+X2), R(Qi)} :

;€5 t:€S
Optimal bit allocation for WPT’s necessarily determines the best basis since the
optimal bit allocation is found by examining all possible basis representations. Again,
there are two problems here: one is to find the best bit allocation knowing the basis;
the other is to find the best basis for all bit allocations.
Assuming that the basis is known, I first address the bit allocation problem. By

differentiating J(D(Q), R(Q)) with respect to the rate allocated to each subband
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quantizer ¢; and setting the results to zero,

0J(D(Q),RQ) _ < [0D(Q) . ,0R@)] _
RQ) - [3R(Qj) +'\3R(Qj)] =0

te$
the Lagrangian functional for any subtree S C T is minimized when A = —%%—%)1.

As seen previously, A is the same for all subbands regardless of scale or orientation.
Again, optimal bit allocation is achieved when the quantizers of each subband have the
same slope on the lower convex hull of their local rate-distortion curve. By enforcing
the condition that all quantizers of the WPT have the same slope, the subtree that
yields the minimum cost may be found.

I next discuss the search for the best basis subtree S°P* knowing that the bit
allocation problem is solved if the vertex of all subband quantizers on their local
rate-distortion curves intersect a common slope A. Again, bit allocation is done by
assigning high-rate TSVQ’s (or other VQ’s with known rate-distortion characteristics)
to each wavelet packet subband and pruning the TSVQ with the least slope until the
desired rate is achieved. Assuming that each subband quantizer lies on a vertex
of the lower convex hull of its rate-distortion curve, each quantizer can intersect a
slope which lies in the interval of the two slopes which form the vertex. Therefore, by
always pruning the TSVQ with the least slope: that least slope value will intersect all
subband quantizers; the slope that will be pruned next will also intersect all subband
quantizers; and any slope value in between will intersect all subband quantizers too.
The endpoints of the interval of slope values that intersect all subband quantizers
will become an important test case to determine when there will be a switch between
best bases. This will be discussed later in more detail.

As discussed previously, to find the best basis subtree each time a subband quan-
tizer is pruned, the cost function J(D(Q), R(Q)) must be reevaluated for every pos-
sible subtree of the WPT for the given slope A. This is computationally costly and
inefficient. Instead, I seek a fast and efficient computational solution that exploits

the structure and properties of the wavelet packet decomposition. Ideally, the rate-
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distortion characteristics of the optimal WPT quantizer with the best basis determi-
nation and bit allocation could be obtained from one hybrid, or best basis quantizer
which characterizes the entire WPT tree. Towards this end, I use two simplifications
which will make the optimal characteristics of the entire WPT/PTSVQ tree available
from only the root node of the WPT, while preserving the best basis decisions in the
WPT structure itself.

To facilitate the following discussion and algorithm development, I now introduce
the complete data structure for an M-ary WPT T. Each node ¢; of the WPT has an
associated TSVQ quantizer Q); which consists of a number of nested GBFOS optimal
PTSVQ’s ordered from highest to lowest rate by associated rate R(Q;), distortion
D(@;), and slope A(Q;). Furthermore, as each node will ultimately represent a best
basis quantizer QPB for the branch of the WPT that it heads, the following infor-
mation is also stored: the next minimum slope of the best basis quantizer A\(Q2B)
(creating a path from the root to the minimum slope quantizer), the best basis deci-
sion B; (where B; = 0 if it is better to use the current node, or B; = 1 if it is better
to use the children nodes), and the rate and distortion associated with the best basis
decision, R(QB®B) and D(QPB), (permitting each parent node to have direct access to
the optimal rate-distortion characteristics of all of its descendents from its children
only, without requiring the specific details of which basis was selected). Again, the
nodes of the WPT are labeled such that each interior node #; has children nodes
tmivjpJ = 1,..., M, and the root node is top. The parent nodes of ¢; are referred to
as parent(t;).

The first simplification for creating a single best basis quantizer uses two properties
of WPT’s (orthonormality and direct sum of spaces) to replace the quantizers of the
children of any internal node t; of the WPT by a composite quantizer Q;°™". The
second simplification replaces the internal node’s quantizer @; with a merged best
basis quantizer Q3B (created from Q; and the composite quantizer Q""") which

represents the best basis quantizer for node ;. The use of these simplifications is
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shown in Figure 4.6 where leaf node quantizers are grouped into composite quantizers,
and composite quantizers are merged with their parent node’s quantizer. This process
continues until there is only one node left, that is the root node #, with merged
quantizer @EB. This node contains the optimal rate-distortion curve, and hence bit
allocations, for the entire WPT for ali rates. To create these merged and composite
WPT quantizers, it is necessary that the quantizers used for each subband lie on the
lower convex hull of their local rate-distortion curve. This implies that the composite
and merged quantizers Q;°™" and QPP must also lie on the lower convex hull of their
local rate-distortion curves.

If the component nodes’ rate-distortion curves are convex and pruning is done by
choosing the smallest slope quantizer, then the rate-distortion curve of the composite
node is convex. Let Q{°"" be a composite quantizer created from M merged quan-
tizers QafryjoJ = 1,..., M. Q"™ is characterized by rate R(Q;"™") and distortion

D(Q5"™):

R(Q{™) = ZR(QM,+, D(Q{°™) = ZD( ei)s

Jj=1

where R(Q3f,;) and D(QRf,;) are the rate and distortion of the M component

quantizers. If one quantizer Q5E, . is pruned to Q5F,,., and the slope is

/\( RIB — D( Mt+m D(QM1+m)
™ R(Q%R,.) — R(QEE,.)

then Q™ is pruned to QP°™® with slope A(QP™) = A(QBE,.):

R(@®™) = R(Q¥™)-R(QEE,.)+R(QEE,..)

D(@™) = D(Q™)~ D(Q3Fm) + D(Qifim)
com D (Q\gomp) -D (Q(_:omp)
/\ C p — - Al 1
@ = TRGE —R@™)
D(QM1+m) D(QMH-m /\( ?{B )
R(QMt+m) R(QMt+m) e
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Hence the previous slope of a composite quantizer is given by the slope of the quantizer
just pruned, and the next slope of a composite quantizer is given by the slope of the
next quantizer to be pruned. Therefore, if the component quantizers are on the lower
convex hull of their rate-distortion curves, and pruning is always done by choosing
the smallest slope quantizer, then the composite node’s quantizers will also lie the
lower convex hull of their rate-distortion curve.

I next examine the creation of a merged quantizer Q5B using an interior WPT
node t; with associated quantizer @); with rate R(Q;), distortion D(Q;), and slope
A(Q;) known, and composite quantizer Q°™® with rate R(Q{"™") = Y1, R(Q5E,,),

distortion D(Q;"™") = J.A_f_l D(Q3R+;), and slope

Q™) = min(MQ3P41) - - -» MQbfren))

known as well. Assuming that the quantizers Q; and Q;°™" are located on the lower
convex hull of their rate-distortion curves, Figure 4.7(a), and that pruning is done
by choosing the least-slope quantizer, the following merging procedure will create a
“merged” rate-distortion curve where all quantizers QPP lie on the lower convex hull,
Figure 4.7(b).

Again, both quantizers, Q; and Q{"™, are located on vertices of their respective
rate-distortion curves and are the results of pruning using the least slope. Assuming
that QPP is also located on a vertex on the lower convex hull, Ap;y is the minimum
slope previously pruned (zero if evaluating the highest rate subband quantizers), and
AQPB) = min(\(Q;), M(Q;°™P)) is the next minimum slope to be pruned. That is,
Amin is the maximum slope of the slopes that are to the right of the current vertices,
and A(QPBB) is the minimum slope of the slopes that are to the left of the vertices,
Figure 4.8. It follows that both Q; and Q;°™ intersect the line created by the cost
function for a slope A € [Amin, A(QFB)]. Following [24,79), the quantizer that incurs
the least cost is the quantizer that should be used for encoding where the costs are

computed as Jx(Q:) = D(Q:)+AR(Qs) and JA(Q§"™) = i1, D(Q3f;)+AR(QRE4)
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for any A € [Amin, A(QEB)].

It is possible that both quantizers lie on the lower convex hull of the merged rate-
distortion curve, and that a single cost test may not identify both quantizers when
they are associated with a different basis. To test for this, it is sufficient to use the
two endpoints of the slope interval to evaluate costs. By first using A = Apn, the
higher-rate quantizer is tested. By next using A = A(QBB), the lower-rate quantizer
is tested. This order ensures that higher rate quantizers are identified first. By
evaluating the costs twice, all vertices on the lower convex hull are detected.

The different cases that arise when merging are illustrated in Figures 4.9 and 4.10.
An example of the need for two cost evaluations is shown in Figure 4.9(c) where two
nodes are first being merged (i. e. during initialization). In this example, both Q; and
Q:°™™ lie on the lower convex hull of the merged rate-distortion curve. Bit allocation
should begin with the assignment of the lowest distortion quantizer, Q;°"°. If only
the next minimum slope A(Q2B) were used to measure costs, Q""" would not be
identified as being located on the lower convex hull, which is incorrect. If only the
previous minimum slope (which is zero when initializing) were used to measure costs,
Q:°™" would be identified. However, quantizer Q; will be pruned before Q:°™ since it
has the next minimum slope. Since @); is not identified as being located on the lower
convex hull when using only the previous minimum slope, Q; would never be identified
as being on the lower convex hull! Therefore, merging with only one slope to measure
costs would misidentify one of the two quantizers on the lower convex hull. This
situation can arise any time when switching from the current rate-distortion curve
to the other, i. e. when switching from one best basis to another, see, for example,
Figure 4.10(c).

Since two cost measurements can identify all quantizers that lie on the lower
convex hull, I compute both costs each time a VQ is pruned. If both quantizers lie on
the lower convex hull, I compute the slope of the “missing link,” A = -Zﬁ—g‘z:::%7

between the two quantizers, and use it as the next local minimum slope for pruning



73

A(QBB) « X. No actual pruning will be done since ) is less than A(QS°™) and A(Q;),
but there will be a switch between curves (i. e. best bases). If the smallest slope
quantizer is always pruned, and two cost measurements are used where the missing
link slope is computed when necessary, the rate, distortion, and next slope of the
quantizers of the merged node will be identified, and all quantizers will lie on the
lower convex hull of the merged node’s rate-distortion curve. This is desirable since
the merged node may then be used as a component in a composite node.

The previous method is not the only way to identify all optimal quantizers. An
alternative approach is to compute the missing link slope A every time a quantizer
is pruned where A = oo if the lower cost quantizer located on slope A, has a
higher rate than the higher cost quantizer and A = ggg:mp;:g((g:)) if the lower cost
quantizer has a lower rate than the higher cost quantizer. Then, if A € [Amin, A(QEB)],
both quantizers lie on the lower convex hull. If there is to be a switch from one
rate-distortion curve to the other, A should be used as the next minimum slope
for pruning, A\(QBB) « X. The slope computation requires two subtractions and one
division, while the second cost computation requires one additional multiplication and
addition. Since curve switching is relatively infrequent, I use the two-cost method. If
the input to the WPT bit allocation program is a list of rate-distortion characteristics,
the two-cost method may also be more computationally stable since a division is not
required for the test case.

The WPT bit allocation algorithm that I introduce does not require that the pre-
vious simplifications be carried out in the manner just described creating a single
node as shown in Figure 4.6 as this would require more work than is necessary. The
physical merging of nodes is avoided by using the given WPT data structure permit-
ting each WPT node to retain only the current optimal rate-distortion characteristics
of the merged, or best basis quantizer that it represents. This information is directly
available to each parent node so that its composite quantizer can be easily formed.

The WPT structure field B; is used to specify whether the current or composite
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node’s quantizer should be used, indicating the optimal best basis structure. This
decision is made once the costs for merging an interior node with its composite node
have been computed. The best basis decision is made so that the lowest cost quantizer
is used. Once an interior node has been modified, it is necessary to update the rate,
distortion, and best basis decisions of its ancestor nodes’ merged quantizer using the
same decision criteria since any interior node is itself part of a composite or merged
quantizer for all of its ancestors. Other nodes throughout the tree do not need to be
reevaluated since their status stays the same as their next minimum slopes are larger
than the previous minimum slope. The initialization and updating of internal nodes
are illustrated in Figures 4.9 and 4.10.

My algorithm first initializes a WPT for the highest-rate quantizers Q);, deciding
which merged quantizers QB lie on the lower convex hull of the rate-distortion curve.
Then, until the desired rate is achieved, the lowest slope quantizer is pruned, and the
rate-distortion values of only the composite and merged nodes containing the pruned
node are recomputed while simultaneously selecting the optimal quantizer for the
given slope. In this manner, each slope is examined only once, and only the portion
of the WPT containing the pruned quantizer is examined. Furthermore, since this
pruning method always finds the lower convex hull of the rate-distortion curve, the
overall reported rate of the WPT is monotonically decreasing with increasing A, and
the overall rate-distortion curve contains all quantizers on the vertices of the lower
convex hull.

Initialization is outlined in Table 4.3. A path through the WPT from the root node
to the node with the minimum slope quantizer is created by computing A\(Q2B) as
min(A(Q:), MQ5B.1), - - -» MQEE, »r)) for all nodes. When initializing internal nodes,
it is assumed that the previous minimum slope of the rate-distortion curve, Apin, is
zero. The next minimum slope value for each internal node of the WPT is A(QEBB).
If it is found for A, that the cost of encoding with the node’s quantizer @; is the

same as the cost of encoding with the composite quantizer Q;°"", then the lower
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rate quantizer is selected. Otherwise, the lower cost quantizer is chosen for encoding.
Using the next minimum slope value, A(QBB), a test is done to determine if there will
be a switch between rate-distortion curves, in which case the missing X is computed
and stored as A(QPB). The best basis decision B; reflects the selection of the lowest
cost quantizer. The rate and distortion of the lowest cost (optimal) quantizer are
stored in the given node as R(QPB) and D(QBB).

The main WPT bit allocation algorithm is described in Table 4.4, and its two sub-
routine calls are described in Tables 4.5 and 4.6. Bit allocation and best basis assign-
ment continue until the desired rate, Riarget, has been reached. The min_slope_node
subroutine, outlined in Table 4.5, finds the WPT node ¢; with the minimum slope
quantizer by following the path indicated by the minimum value Apin = A(QFB). This
subroutine must check for the possibility that a missing link X is stored as A(QBB)
in which case A(QPP) is less than A(Q;) and MQ3f,;),7 =1,..., M. Once the min-
imum slope node t; is found, its quantizer Q); is pruned if it is determined that the
slope is not a missing link slope. Then it is determined whether or not it is better
to encode using the given node’s new pruned quantizer, or if it is better to encode
using the nodes’ children’s composite quantizer. The ancestor nodes are updated
using this new information since each merged or composite quantizer containing the
pruned quantizer can be considered to have been pruned. The best basis assignment
is determined by the best basis decisions B;. The subtree structure is indicated the
B; values where a node is a subtree leaf node if B; = 0 and all ancestors of the node
have values of 1.

The update subroutine, described in Table 4.6, is very similar to the second step
of the initialization procedure, except that the initialization procedure is performed on
all interior nodes whereas updating needs to be performed only on the minimum slope
node and its ancestors. When updating internal nodes, the previous minimum slope
of the rate-distortion curve is Apmin = A(QEB). The next minimum slope value for each

internal node t; of the WPT is A(QPB). If it is found that the cost of encoding with
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Step 1. For each leaf node #;:
’\(QtBB) A ’\(Qt),
B,' «— 0,
R(Q'LBB) « R(Qt)a
D(Q?PP) + D(@s).
Step 2. For each interior node ¢;,
(a) Find the previous and next minimum slopes:
/\min «— 0:
A(QPR)  min(A(Q:), AQEE,1), -, MQ@ER0)).
(b) “Merge” the current node with its children’s “composite”:
Define R(Q;"™) + ;2 R(Q3R4;),
D(Q"™) « Z;il D (Q?Eﬂ') )
H(QF™) « D(@P™) + AR@QC™),
Qi) + D(Q:) + AR(Q:)-
If Jy,,.. (Q™") = J),...(Q:), use the lower rate node:
If R(Q:°™) < R(Q;), B; + 1.
Otherwise, B; « 0.
If Jy,.. Q™) < Ji,...(Q;), use the composite, B; < 1.

If Jyqeey) (@ ") > Jxqee)(Q:), prepare to switch curves:

BB D(Qi)—D(Q$°™)
; — .
A@) « —mgy—rRiem
If Jy,.,. (Q°™P) > Jy ... (Q:), use node ¢;, B; « 0.

If Jyoee) (@5 ™) < Jxqee)(Q:), prepare to switch curves:

i)=D(Q:°™P
MN@P®)  — Rigy=rigtoms;-
(c) Update the rate and distortion of the “merged” node:
If B; =1, use the composite node,
R(QPP) + R(Q°™) and D(QP®) «+ D(Q;°™).
If B; =0, use the current node ¢;,
R(QPP) « R(Q:) and D(QP?) + D(Q:).
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Table 4.4: Wavelet packet bit allocation.

Step 1. If A(Q8B) = oo, quit. All of the TSVQ’s have been pruned to their
respective root node.

Step 2. Find the node with the lowest slope Anin-
Amin — A(QEP) and t; +— min_slope_node(t;) (see Table 4.5).

Step 3. If Anin = A(Q:), prune the quantizer @Q; associated with node ¢;. Oth-
erwise there will be a switch from one curve to another, and pruning
isn’t necessary.

Step 4. Update node ¢; and its ancestors, update(t;, Apir) (see Table 4.6).
Step 5. The optimal WPT codebook has rate R(QEP) and distortion D(QEB),

and the corresponding best basis has been found. If R(QEB) > Riarge:
go to Step 1.

Table 4.5: Wavelet packet bit allocation subroutine min_slope_node(t,).

Step 1. Find the node with the lowest slope A of a WPT with root £.
t; « to and A — /\(QEB)

Step 2. If A(Q:) = Amin, this is the node whose TSVQ should be pruned.
Return node ¢;.

Step 3. Find tp; such that A(Qai+;) = Amin-
(a) If such a child does not exist, the slope links two different rate-
distortion curves. Return node ;.
(b) Otherwise, t; + tai4+;. Go to Step 2.

the given node’s quantizer (J)_,, (Q:)) is the same as the cost of encoding with the
node’s composite children’s quantizer (J_, (Q;°"")), then the lower rate quantizer is
selected. Otherwise, the lower cost quantizer is selected. A check is done to determine
if there will be a switch between rate-distortion curves, in which case the missing A
is computed and stored as A(QPB). The best basis decision B; reflects the selection
of the lowest cost quantizer. The rate and distortion of the lowest cost (optimal)
quantizer are stored in the given node as R(QP®) and D(QPB) allowing each parent
node to have direct access to the optimal rate-distortion characteristics of the best

basis decomposition without requiring the specific details of which basis was selected.
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Step 1. Update node ¢; and its ancestors using A, as the previous slope for

all updated nodes.
If ¢; is an interior node, go to Step 2.
If ¢; is a leaf node:
’\(QzBB) « A(Qt)’ Bi «— 01
R(QPB) + R(Q:), D(QP®) « D(Q:).
If ¢; = tg, return.
If t; # to, t; « parent(t;), go to Step 2.
Step 2. If ¢; is an interior node:
(a) Find the next minimum slope:
A(QPP) « min(A(Q:), M@Rfivn)s - - - » MQ@RPr))-
(b) “Merge” the current node with its children’s “composite”:
Define R(Q{™) « Y27, R(Q5R,,),
D(QF™) « ¥,2, D(Q3R.4)),
Q™)  D(QF™) + AR(Q;*™),
IA(Qi) « D(Qi) + AR(Q:).
If Jy,..(Q""") = J»,...(Q:), use the lower rate node.
If R(Q:_:omp) < R(Q,), B; « 1.
Otherwise, B; «+ 0.
If Jy,... (Q™P) < I (Qi), use the composite, B; + 1.
If J,\(Q?B)(Q?mp)( ;)JA((Q?B)S)QO’ prepare to switch curves:
D(Q:)-D(Q°™
MQP®)  —Fgo—mgem)-
If Jy,...(Q™P) > Jy,,.(Q:), use node t;, B; + 0.
If JA(Q?B) (ngmig(:)‘]'g%ﬁ%g?i)’ prepare to switch curves:
MQPP) &+ —Fay-mee™)-
(c) Update the rate and distortion of the “merged” node:
If B; = 1, use the composite node,
R(QBB) « R(Q{°™) and D(QBB) « D(Q:*™P).
If B; = 0, use the current node ¢;,
R(Q?P?) + R(Q:) and D(QPP) « D(Q:)-
(d) Update the ancestors of node ¢;.
If t; = to, return.
If t; # to, t; + parent(t;), go to Step 2.
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4.2.4 Implementation

I have implemented in C bit allocation code for wavelets using GBFOS and ROPA.
I have also implemented in C bit allocation code for wavelet packets and PTSVQ.
The implementation of all algorithms is such that it can be used in a more general
setting for other types of VQ since the inputs to each file are a list of precalculated

rate-distortion characteristics for each quantizer.
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Distortion
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Rate Rate
(a) (b)

Distortion
Distortion

Figure 4.3: (a) At each iteration of the GBFOS algorithm, the space to be examined
is limited to the shaded rectangular region between the rate 0 codebook and the
entire multiresolution codebook. Each * represents a possible pruned subtree where
the * in the upper left hand corner is the root node and the * in the lower right hand
corner is the large multiresolution codebook. (b) This demonstrates one iteration
of the GBFOS bit allocation. The % in the lower right hand corner of the shaded
region is the current multiresolution codebook and the other *'s are possible pruned
multiresolution codebooks. The next optimal multiresolution codebooks has the least
slope as indicated by the solid line. (c) At the next iteration of the GBFOS algo-
rithm a reduced area of the space must be examined which is limited to the shaded
rectangular region between the root node and the optimal multiresolution codebook
of the previous GBFOS iteration. (d) The end results of GBFOS bit allocation where
the optimal multiresolution codebooks are linked by the solid line.
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Distortion
Distortion

Rate
(b)

Figure 4.4: (a) After each pruning iteration of the GBFOS algorithm, Figure 4.3,
a number of multiresolution codebooks are discarded as possible solutions for bit
allocation since they are suboptimal. Some of these suboptimal codebooks lie in the
square shaded regions bounded by the optimal codebooks, while others lie outside
of this region. (b) ROPA works by recursively pruning the codebook tree in these
shaded regions, identifying the suboptimal codebooks which lie closest to the optimal

rate-distortion curve.
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Figure 4.5: Wavelet packet bit allocation for a one-dimensional signal decomposed
to two levels of wavelet packets. Each frequency subband of the wavelet packet tree
represented by node ¢; has an associated TSVQ ;. Bit allocation proceeds by finding
each GBFOS optimal quantizer as the slope of the rate-distortion function increases
and determining from that node up to the root node whether or not it is better to use
the larger frequency subband or to use linear combinations of the smaller subbands.
S and D refer to smooth and detail subbands.
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(c) Merged best basis nodes.
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(e) Merged best basis node.

Figure 4.6: WPT bit allocation simplifications. (a) A WPT with root #,. (b) Com-
posite quantizers created from leaf node quantizers. (c) Best basis quantizers created
by merging composite quantizers and the parent quantizer. (d) Composite quantizer
created from leaf node quantizers. (e) A best basis quantizer created by merging

the composite quantizer and the root node quantizer. Q5B contains the optimal bit
allocations for the entire WPT.
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(a) (b)

Figure 4.7: (a) The rate-distortion curves available to WPT node ¢; before merging.
(b) The rate-distortion curve of the node after merging the quantizers Q; of node t;
with the quantizers of the composite node Q:°"".

1 l(QlBB) = next slope to be pruned

A previous pruned slope

- -
e, m—m—.

current vertex
Q /
current vertex
Qcomp

Figure 4.8: The previous and next slopes examined for WPT bit allocation where
Amin iS the previous slope, or the maximum slope of the slopes that are to the right
of the current vertices, and A(QPB) is the next slope, or minimum slope of the slopes
that are to the left of the vertices.
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min(J =D +AR)

Xmissing link

(c)

Figure 4.9: Node merging for WPT bit allocation during initialization. A star in-
dicates that the quantizer lies on the lower convex hull of the rate-distortion curve.
During initialization, the previous minimum slope Ay, is zero, and the next minimum
slope of the current branch is A(QPP). (a) If one quantizer has lower encoding costs
for both Amin and A(QPB), then it should be used: e. g. both encoding costs of Q;"""
are less than those of Q;, the composite node should be used. (b) If the encoding
costs are the same for Apn, the lower rate quantizer should used: e. g. Q""" has a
lower rate, the composite node should be used. (c) If one quantizer has a lower cost
for Anin while the other has a lower cost for)(Q?B), the higher rate quantizer should
be used, and the slope of the missing link A should be calculated and stored so that
the higher rate quantizer will be used next as it also lies on the lower convex hull:
e. g. Q"™ has a higher rate, the composite node should be used.
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Figure 4.10: Node merging for the main WPT bit allocation algorithm. A star
indicates that the quantizer lies on the lower convex hull of the rate-distortion curve.
Before pruning, the minimum slope of the WPT is Aj,in. After pruning, the minimum
slope of the current branch is A(QBB). (a) If one quantizer has lower encoding costs
for both Amin, and A(QPB), then it should be used: e. g. both encoding costs of Q{°™P
are less than those of @;, the composite node should be used. (b) If the encoding
costs are the same for An,, the lower rate quantizer should used: e. g. Q:°"" has
a lower rate, the composite node should be used. (c) If one quantizer has a lower
cost for Amin while the other has a lower cost for A(QBB), the higher rate quantizer
should be used, and the slope of the missing link A should be calculated and stored
so that the higher rate quantizer will be used next as it also lies on the lower convex
hull: e. g. Q""" has a higher rate, the composite node should be used. (d) If Amin
is a missing link slope A, then Ap;y, is less than the next slope of the @; and Q7°"".
Neither quantizer should be pruned, but the WPT should be updated using Anin and
A(QPPB) resulting in situation (b).



Chapter 5

COMPRESSION OF USC IMAGES

In this chapter I apply the wavelet/VQ compression schemes of Section 4.2 to
grayscale images from the USC database for benchmarking purposes. Wavelet/VQ
compression is applied to ocean science data in Chapter 6. The coding of color images
for joint progressive transmission and low bit-depth display and printing is addressed
in Appendix A.

For these experiments, five images (crowd, couple, man, womanl, and woman2)
are used to train the PTSVQ’s, and the test image is the standard “Lenna.” I have
used the S+WAVELETS package from the Statistical Science Division of MathSoft
Inc., as well as the WaveLab .600 library for Matlab made available by lain Johnstone
et al. at Stanford University, with my VQ code to implement the DWT/PTSVQ and
WPT/PTSVQ encoders. Bit allocation for the DWT is done using the optimal bit
allocation algorithms based on GBFOS and ROPA, Sections 4.2.1 and 4.2.2. Results
for this are presented in Section 5.1. Bit allocation for the WPT is done using
the optimal algorithm introduced in Section 4.2.3. Results for this are presented in

Section 5.2. Conclusions are presented in Section 5.3.

5.1 Wavelet Bit Allocation Results for the USC Images

To illustrate the differences between subbands, the distributions of coefficients of the
‘training data decomposed by the DWT to three levels using the S8 wavelet are shown
in Figure 5.1. The fine resolution detail coefficients have very peaked distributions,

especially the diagonal components, and the variance of the distribution tends to
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increase as the detail spaces become coarser. The coarse approximation coefficients
have a much different distribution, more closely resembling the histogram of an image.
This is in agreement with studies which have found that wavelet coefficients of images
tend to have distributions that are highly peaked around zero [2].

The binary TSVQ’s created from the high resolution data exhibit atypical behav-
ior. To illustrate this, greedy tree growing, GBFOS pruning, and ROPA pruning for
two subbands (the third-level coarse-approximation subband V4 and the first-level
diagonal-content detail subband W?3) using a vector dimension of 4, are shown in
Figure 5.2.

First, the TSVQ’s are created using the greedy growing technique described in
Section 2.4. Generally, when a greedy-grown TSVQ is created, the first split of the tree
reduces the distortion the most for the given increase in rate as compared to the rest
of the tree, and the second split is the second best, and so on. The expected results
for greedy tree growing are found for the coarse approximation data, Figure 5.2(a),
where the rate 1 (bits per vector) codebook represents a significant drop in distortion.
In the case of the high-resolution detail data, Figure 5.2(b), it is seen that the first
split (i. e. the 1 bit per vector codebook) is not very good. The best tree growth in
this case occurs for low-probability high-distortion data, and the worst tree growth
occurs for high-probability low-distortion data. The greedy growing algorithm for
the high resolution data concentrates on growing large branches that have very low-
probability data, rather than short, compact trees with high probability data. This
behavior is unexpected for TSVQ, and indicates that the greedy growing algorithm
for TSVQ’s is not operating well for the given data. It may be that the distribution
of the data is not well suited for binary splitting, but that ternary, or higher-order
M-ary, TSVQ'’s may be able to better adapt themselves to the data.

Secondly, the greedy-grown TSVQ’s are pruned using GBFOS and the same train-
ing data. GBFOS for the typical greedy-grown TSVQ of the coarse approxima-

tion data yields many quantizers on the lower convex hull, Figure 5.2(c), indicating
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that the greedy-growing algorithm is well suited to the data. GBFOS for the high-
resolution detail data does not find many quantizers on the lower convex hull of the
rate-distortion curve, especially at very low bit rates, Figure 5.2(d). The net result
is that very few optimal quantizers are created, also indicating that the trees are not
being grown well. This is a problem when allocating a small number of bits (less than
1 bpp) to the image as this requires low bit-rate quantizers for all of the subbands.

Thirdly, the greedy-grown TSVQ’s are pruned using ROPA. ROPA for both the
typical greedy-grown TSVQ of the coarse approximation data and the high-resolution
detail data yields a large number of low bit rate quantizers, Figures 5.2(e) and 5.2(f).
Hence bit allocation with ROPA will provide a large number of multiresolution code-
books at all bit rates.

For example, the number of codebooks found for DWT/PTSVQ encoding us-
ing bit allocation via GBFOS is shown in Table 5.1, and the number of additional
codebooks found using bit allocation via ROPA is shown in Table 5.2. When small
vector dimensions are used, ROPA finds relatively few additional suboptimal code-
books. When large vector dimensions are used, ROPA finds many more additional
suboptimal codebooks. This indicates that as the vector dimension increases, the
greedy-grown TSVQ’s no not work as well in that the trees do not have many GB-
FOS subtrees, and that growing is inefficient as large branches are grown that do not
optimally minimize rate-distortion performance.

I now evaluate the rate-distortion performance of DWT/PTSVQ compression us-
ing optimal bit allocation. Performance results as a function of different levels of
decomposition for the training data are shown in Figure 5.3 where it is seen that for
a fixed PTSVQ vector dimension, it is desirable to have more levels of decomposition
of the signal. However, the gain decreases so rapidly that it may not be necessary
to do more than two or three levels of decomposition. To study the performance
as a function of vector dimension, five different three-level DWT/PTSVQ codecs are

created using different vector dimensions for the PTSVQ’s where each DWT/PTSVQ
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Table 5.1: Codebook densities for DWT/PTSVQ bit allocation via GBFOS where
there are three levels of DWT decomposition and R is the rate in bpp.

Dimension [0 < R<0.25[025<R<05]05<R<075|075<R<1
1 69 60 112 28
2 901 1668 677 418
4 4548 1904 1892 4545
8 3112 2237 1690 2555
16 1446 1239 1280 1697

Table 5.2: Additional codebooks found by ROPA for DWT/PTSVQ bit allocation
where there are three levels of DWT decomposition and R is the rate in bpp.

Dimension | 0 < R<0.25[(025<R<05|05<R<0.75|075<R<1
1 29 17 15 0
2 462 549 261 183
4 5166 2445 2197 4014
8 10447 8389 7338 467
16 11670 31092 154 20314
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encoder has the same vector dimension for all PTSVQ’s. Results are shown in Fig-
ure 5.4(a) where it is seen that it is better to use larger vector dimensions, as is
predicted by rate-distortion theory.

The DWT/PTSVQ codecs created above are next used to encode the test im-
age “Lenna.” The rate-distortion performance results of the test data are shown in
Figure 5.4(b). Except for scalar quantization, the rate-distortion curves tend to rise
sharply at very low bit rates and then suddenly flatten, showing no improvement at
higher bit rates. The higher the dimension, the earlier this flattening occurs. This
flattening has to do with the unsuitability of the PTSVQ’s at higher bit rates. Since I
use only five training images, and do not use overlapping training vectors, I have very
little training data for the small subbands. This means that as the bit rate increases,
the TSVQ’s become overtrained, or overadapted, to the training data. The expected
improvements for encoding performance when using higher dimensions are seen only
at very low bit rates where the curve has not begun to taper off. Two examples of
the compressed image with a first-order entropy of 0.248 bpp (a compression ratio
of 32.26:1 and PSNR of 31.62 dB) and a first-order entropy of 0.128 bpp (a com-
pression ratio of 62.46:1 and PSNR of 28.37 dB) using scalar quantization are shown
in Figure 5.5. For comparison purposes, the EZW encoding scheme with arithmetic
encoding [88] yields an image having a PSNR of 30.23 dB when the compression ratio
is 64:1, and a PSNR of 33.17 dB when the compression ratio is 32:1.

5.2 Wavelet Packet Bit Allocation Results for the USC Images

The rate-distortion performance for training data of WPT/PTSVQ optimal bit allo-
cation as a function of WPT depth is shown in Figure 5.6 where it is seen that PSNR
results improve with increased tree depth. This is expected as a deeper tree permits
more adaptability in signal representation and compression. However, the improve-

ments decrease as the tree depth increases which was also is seen for DWT/PTSVQ
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bit allocation. To study the performance as a function of PTSVQ vector dimension,
five different three-level WPT/PTSVQ encoders are created using different vector
dimensions for the PTSVQ’s where each WPT/PTSVQ encoder has the same vector
dimension for all PTSVQ’s. Results are shown in Figure 5.7 where it is seen again
that it is better to use larger vector dimensions. Note that some of the curves shown
start increasing rapidly at higher bit rates. This is a reflection of overtraining of
the PTSVQ’s due to the finite amount of training data. All of the curves exhibit
this behavior although it is not shown in these graphs. In addition, the number of
codebooks found for WPT/PTSVQ encoding using optimal bit aliocation is shown in
Table 5.3 where is it seen that WPT/PTSVQ bit allocation generally produces more
codebooks that DWT/PTSVQ bit allocation using GBFOS, as expected.

The WPT/PTSVQ codecs created above are next used to encode the test image
“Lenna.” The rate-distortion performance results as a function of WPT depth are
shown in Figure 5.8. When scalar quantization is used, the results are exactly as
expected, the best gain is achieved when using more levels of decomposition. However,
this is true only at very low bit rates when using larger vector dimensions. The rate-
distortion curves tend to taper off very rapidly as the bit rate increases indicating
mismatch between the source and the encoder. The rate-distortion performance as a
function of PTSVQ vector dimension is shown in Figure 5.9. When the depth of the
tree is 0 (i. e. no levels of wavelet decomposition), the results are exactly as expected:
the best gain is achieved when using larger vector dimensions. However, as the WPT
depth increases, this it true only at very low bit rates. The rate-distortion curves
tend to taper off very rapidly as the tree-depth and vector dimension increase, again
indicating mismatch between the source and encoder.

A comparison of DWT/PTSVQ and WPT/PTSVQ optimal bit allocation for
three levels of decomposition as a function of vector dimension is shown in Fig-
ure 5.10(a) for various vector dimensions. WPT/PTSVQ outperforms DWT/PTSVQ

for all vector dimensions tried. This is expected since the DWT is a subset of the
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Table 5.3: Codebook densities for WPT/PTSVQ bit allocation using GBFOS where
there are three levels of WPT decomposition and R is the rate in bpp.

Dimension ([0 < R<0.25[025<R<05|05<R<075|07<R<1
1 66 162 292 405
2 1122 2574 4047 5855
4 4130 7919 11589 16201
8 3472 6409 9685 13318
16 1958 3838 6825 8363

WPT, and so WPT/PTSVQ should always do at least as well as the WPT/PTSVQ.
Using the same codecs for the test image “Lenna,” a comparison of DWT/PTSVQ
and WPT/PTSVQ encoding schemes using three levels of decomposition is shown
in Figure 5.10(b) as a function of vector dimension. Unexpectedly, the results for
DWT/PTSVQ and WPT/PTSVQ are very close, and WPT/PTSVQ slightly outper-
forms DWT/PTSVQ at low bit rates. I believe this results from the WPT/PTSVQ
scheme being overadapted to the training data at higher levels of decomposition, and
less able to deal with test data. The WPT/PTSVQ bit allocation scheme almost
always chooses to use the highest levels of decomposition. An example of the ac-
tual numerical bit allocations made for WPT of depth three using PTSVQ’s with
dimensions of four at 0.5 bpp is shown in Figure 5.11.

Three examples of the compressed image with a first-order entropy of 0.0755 bpp
(a compression ratio of 105.97:1 and PSNR of 25.90 dB), a first-order entropy of
0.1253 bpp (a compression ratio of 63.84:1 and PSNR of 28.34 dB), and a first-order
entropy of 0.2522 bpp (a compression ratio of 31.73:1 and PSNR of 31.76 dB) using
scalar quantization are shown in Figure 5.12. For comparison purposes, the EZW
encoding scheme with arithmetic encoding yields a PSNR of 27.54 dB when the
compression ratio is 128:1, a PSNR of 30.23 dB when the compression ratio is 64:1,
and a PSNR of 33.17 dB when the compression ratio is 32:1.
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5.3 Conclusions

In this chapter I have presented results for bit allocation for DWT/PTSVQ using GB-
FOS and ROPA pruning methods as well as optimal bit allocation for WPT/PTSVQ
based on the GBFOS pruning approach. As expected, ROPA found many more
codebooks than GBFOS. For the same bit rates, WPT bit allocation generally found
more codebooks too. It was shown that the greedy grown binary trees were not well
suited to the detail subbands. If the greedy grown trees were initially better than
those created here, ROPA bit allocation would probably not be needed. It would be
worthwhile to investigate ternary TSVQ, or other types of VQ, to find an approach
that is more suited to highly peaked data in terms of the density of codebooks found
on the lower convex hull of the rate-distortion curve.

The results for the training data showed that WPT/PTSVQ outperformed
DWT/PTSVQ, which is expected since the DWT is a subset of the WPT, and the
WPT approach is inherently adaptive. It was also seen that results improved as the
vector dimension and decomposition level increased. Rate-distortion theory predicts
that it is better to code with larger dimensions, and more levels of decomposition
permit better energy compaction and adaptation to the source by enabling more
flexibility for bit allocation by the creation of multiple subband sources.

Unfortunately, the results for test data behaved as expected only at very low
bit rates. I believe that this has to do with the DWT and the WPT, especially,
overadapting themselves to the limited amount of training data, or equivalently, that
the test image differs significantly from the training data. For example, the “crowd”
image, which is a scene containing a number of people, is not similar to “Lenna,”
which can charitably be considered a portrait. Also, it was seen that as vector
dimension increased, the performance was better only at low bit rates. Again, I
believe that this has to do with overtraining since the high dimension curves flattened

out rapidly for the test data.



95

A comparison of my results to the EZW shows that my method lags the EZW
by about 1.5 dB at most bit rates. It should be noted that my results are for the
first-order entropy of the index stream, whereas the EZW results are computed using
arithmetic coding of indices. It is possible that my results may be comparable to
the EZW if I were also to use an arithmetic encoder. This is especially true since
at very low bit rates, the improvement in SNR is greatly accelerated as the bit rate
increases, and any shift of the rate-distortion curve to the left (as would result with

better lossless coding) can improve reported SNR results by several dB.
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Figure 5.1: The distribution of wavelet coefficients found among the S8 wavelet trans-
formation of the five training images where (a) is the horizontal component of the first
level decomposition, (b) is the vertical component of the first level decomposition, (c)
is the diagonal component of the first level decomposition, and (d) is the horizontal
component of the second level decomposition.
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Figure 5.1: (Continued). The distribution of wavelet coefficients found among the S8
wavelet transformation of the five training images where (e) is the vertical component
of the second level decomposition, (f) is the diagonal component of the second level
decomposition, (g) is the horizontal component of the third level decomposition, and
(h) is the vertical component of the third level decomposition.
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Figure 5.1: (Continued). The distribution of wavelet coefficients found among the S8
wavelet transformation of the five training images where (i) is the diagonal component
of the third level decomposition, and (j) is the coarsest resolution image of the third
level decomposition.
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Figure 5.2: Growing and pruning results for TSVQ’s from different subband sources
of the training data. (a) Greedy growing, (c) GBFOS pruning, and (e) ROPA pruning
for the TSVQ of the (low frequency) coarsest resolution subband of the third-level
decomposition V4 using a vector dimension of 4. (b) Greedy growing, (d) GBFOS
pruning, and (f) ROPA pruning for the TSVQ of the (high frequency) fine resolution
detail subband of the first-level decomposition W? using a vector dimension of 4.
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Figure 5.3: DWT/PTSVQ bit allocation results as a function of DWT depth for the
training data. PSNR versus rate for the training data using different DWT depths
ranging from 0 to 3. The same vector dimension is used for all subband PTSVQ's:

(a) 1 (scalar quantization), (b) 2, (c) 4, (d) 8, and (e) 16 coefficients per vector.
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Figure 5.4: DWT/PTSVQ bit allocation and test results as a function of PTSVQ
vector dimension using a three-level DWT decomposition. (a) PSNR versus rate
for the training data where the PTSVQ vector dimensions are 1, 2, 4, 8, and 16
coefficients per vector and all PTSVQ’s have the same vector dimension. (b) PSNR
versus entropy for the test image “Lenna” where the vector dimensions are 1, 2, 4, 8,
and 16 coefficients per vector and all PTSVQ’s have the same vector dimension.

(a) 0.1281 bpp, 28.37 dB. (b) 0.2480 bpp, 31.62 dB.

Figure 5.5: DWT/PTSVQ compression on the test image “Lenna.” (a) Scalar quanti-
zation with a first-order entropy of (a) 0.1281 bpp (a compression ratio of 62.46:1) and
a PSNR of 28.37 dB, and with a first-order entropy of (b) 0.2480 bpp (a compression
ratio of 32.26:1) and a PSNR of 31.62 dB.
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Figure 5.6: PSNR versus rate for WPT/PTSVQ bit allocation as a function of WPT
depth ranging from 0 to 3 for the training data. The same vector dimension is used
for all subband PTSVQ's: (a) 1 (scalar quantization), (b) 2, (c) 4, (d) 8, and (e) 16
coefficients per vector.
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Figure 5.7: WPT/PTSVQ bit allocation results as a function of vector dimensicn.
PSNR versus rate for training data using (a) depth-0, (b) depth-1, (c) depth-2, and
(d) depth-3 WPT’s with varying PTSVQ vector dimensions of 1, 2, 4, 8, and 16 coef-
ficients per vector where all PTSVQ’s in the WPT have the same vector dimension.
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Figure 5.8: WPT/PTSVQ test image results as a function of WPT depth. PSNR
versus entropy for the test image “Lenna” using different WPT depths ranging from
0 to 3. The same vector dimension is used for all subband PTSVQ’s: (a) 1 (scalar
quantization), (b) 2, (c) 4, (d) 8, and (e) 16 coefficients per vector.
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Figure 5.9: WPT/PTSVQ test image results as a function of vector dimension. PSNR
versus entropy for the test image “Lenna” encoded using (a) depth-0, (b) depth-1,
(c) depth-2, and (d) depth-3 WPT’s with varying vector dimensions of 1, 2, 4, 8§,
and 16 coefficients per vector where all PTSVQ’s in the WPT have the same vector
dimension.
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Figure 5.10: A comparison of DWT/PTSVQ and WPT/PTSVQ bit allocation using
three levels of decomposition. (a) PSNR. versus rate for training data. Note that
WPT/PTSVQ outperforms DWT/PTSVQ for the same vector dimensions (1, 2, 4,
8, 16 from the bottom of the graph to the top) as expected since the DWT is a
subset of the WPT. (b) PSNR versus entropy for the test image “Lenna.” Note that
WPT/PTSVQ outperform DWT/PTSVQ only at low bit rates.
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Figure 5.11: (a) For each subband decomposition, the resulting subbands are arranged
so that the upper left-hand corner contains the horizontal detail, the upper right-hand
corner contains the diagonal detail, the lower right-hand corner contains the vertical
detail, and the lower left-hand corner contains the coarse approximation. (b) The
numerical bit allocations (rate, bits per vector) made for a WPT of depth three and
a vector dimension of four at a design rate of 0.5 bpp.
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(a) 0.0755 bpp, 25.90 dB. (b) 0.1253 bpp, 28.24 dB.

(c) 0.2522 bpp, 31.76 dB.

Figure 5.12: WPT/PTSVQ compression on the test image “Lenna.” Scalar quantiza-
tion with a first-order entropy of (a) 0.0755 bpp (a compression ratio of 105.97:1) and
a PSNR of 25.90 dB, with a first-order entropy of (b) 0.1253 bpp (a compression ratio
of 63.84:1) and a PSNR of 28.34 dB, and with a first-order entropy of (c) 0.2522 bpp
(a compression ratio of 31.73:1) and a PSNR or 31.76 dB.



Chapter 6

COMPRESSION OF ACOUSTIC DATA

Fast retrieval, previewing, and browsing of large volumes of data in remotely lo-
cated underwater sensors is an important problem that must be addressed as the
amount of data to be stored and transmitted grows rapidly. One example is of re-
motely collected data from underwater monitors such as the University of Washing-
ton’s Benthic Acoustic Measurement System. This is an autonomous sonar platform
placed on the ocean floor which can operate for several months. Data are transmitted
by an RS232 cable temporarily connected by a diver to a nearby ship [35]. Other
examples are remotely operated vehicles such as the Massachusetts Institute of Tech-
nology’s Odyssey II which uses a two-way acoustic modem and can operate, under
certain conditions, for up to 40 hours [10].

The data collected by remote sensors are typically very large in quantity. Un-
fortunately, underwater transmission channels usually have very limited bandwidths,
especially acoustic modems which typically operate at very low baud rates. Sending a
10 MByte file of data over the most recently engineered acoustic modems [89], which
operate at best at 40 kbaud, would take 35 minutes. Quick look, previewing, and
browsing capabilities as well as easy access to the data are vital operations needed to
evaluate the relevancy and the quality of the data, both for scientific and operational
purposes. Sending all of the data, although optimal, is clearly not practical. However,
the large reduction in time needed to transmit data is an important potential gain
that warrants a serious study of the feasibility of lossy compression of underwater
acoustic data.

In this chapter, I use high frequency (300 kHz) acoustic scattering data from the
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Benthic Acoustic Measurement System (BAMS) to study the effects of lossy com-
pression. BAMS, which takes sea-bed scattering measurements in shallow water, was
built for the Sediment TRansport Events on Shelves and Slopes (STRESS) project
to monitor sediment movement caused by storms. The research goals of BAMS have
expanded to cover a broad range of scientific research and applications including ben-
thic ecology studies, ocean floor activity monitoring, detection and classification of
mine-like objects, ocean temperature studies, and modeling of the physics of acoustic
scattering, [35,57,58,92].

Using six scans of the BAMS data, all containing mine-like objects, I examine the
results of several compression schemes including PTSVQ and wavelets/PTSVQ and
evaluate the effects of compression on the output of two scientific applications. The
use of complex wavelets, wavelet packets, and other wavelets filters was examined
in [19] and showed no improvement, in terms of energy compaction, over the DWT.
Hence only wavelets/PTSVQ are used in this chapter. The first scientific application
is previewing and target detection computed from the power of the pressure field
backscatter measurements. The second application is ocean floor temperature mea-
surements computed from changes in the correlation of the pressure field over time.
The three goals for these experiments are: to allow quick and easy previewing of the
data (so the data could be transmitted over an acoustic modem); to preserve data
analysis as accurately as possible; and to preserve targets for accurate detection at
high compression ratios.

In Section 6.1 descriptions of BAMS and the experimental data are presented.
Properties of the data are discussed in Section 6.2. Descriptions of the two scientific
analyses are in Section 6.3. The proposed compression experiments and their evalu-
ation are presented in Section 6.4. Experimental results are presented in Section 6.5.

Conclusions are presented in Section 6.6.
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6.1 The Benthic Acoustic Measurement System and Data

The Benthic Acoustic Measurement System [58] is an autonomous sonar platform
that is mounted on the ocean floor. It has two sonars: the first operates at 40 kHz,
and the second, newer, sonar operates at 300 kHz. BAMS has on-board storage
capacity of approximately 120 MByte for the 40 kHz sonar, and 2000 MByte for the
300 kHz sonar. Data are retrieved by a temporary connection of an RS232 cable from
a nearby ship by a diver.

For my experiments the output of the 300 kHz sonar which scans a circular section
of radius 50 to 75 meters is used. It is comprised of 360 transmissions, or pings,
separated by a 1° rotation of the transmitter and receiver. The complex baseband
sonar signal is the result of a large amount of digital signal processing (including
filtering and decimation) done to the output of a 12-bit A/D converter operating at
a frequency below the Nyquist frequency.

The BAMS data used here are part of the U. S. Office of Naval Research’s ORCAS
experiment that was conducted off of Orcas Island, Washington over a two month
period to monitor benthic activity and detect mine-like objects [58]. Six scans are
used for these experiments, each containing mine-like objects. They were taken over
a 48 hour period (July 29 to July 31, 1995) with spacings of 5 to 12 hours between
each set of measurements.

Of the data examined, each ping contains 2401 complex numbers. When the data
are analyzed, the first 240 complex values of each ping are discarded since they result
from either sampling done before the transmitter is turned on or because the echo is
at first too loud when the transmitter is first turned on. The next 1359 values are
used in the analyses and represent the first 50 meters of the circular section; however,
the first 119 values of these are ignored since there has not yet been enough time
for the echo to return from the ocean floor. Any remaining data samples beyond

this point (i. e. the last 25 meters) are not considered since noise from the ocean
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surface interferes too much with the signal for there to be any data of good quality.
Following the convention of using data with a sample size that is a power of two, the
first 240+ 112 values are skipped and the next 2048 values of each ping are considered
for this work.

Each scan, stored in an ascii file, is about 23.44 MByte in size but compresses
losslessly to about 6.5 MByte using the Unix compress utility. The ascii file format
is as follows. First there is a two line header to indicate the scan number. Then
there are 360 sets of complex data, one for each ping, with the following information:
eight lines of header information including ping number, date, time, Xdcr position,
and Inclinometer, followed by 2401 lines of complex data from two slightly offset
channels, Channel 0 and 1, which comprise the receiver. Next there are 5 lines
of information from a third channel, Channel 2, which is the transmitter monitor,
followed by 91 lines of complex data for Channel 2. Finally there are three blank
lines, leading to a total of 2508 lines per ping. Of all of the data, only the data
from Channel 0 are used although either channel or a linear combination of the two
channels (which is used to adjust the directionality of the vertical angle) could be
used. The data from Channel 2 are used for matched filtering which denoises the ping
data and improves the resolution of the data by 20, that is for every current data
sample, there would be 20 reconstructed data samples along the ping. The matched

filtering code had not yet been written at the time of these experiments.

6.2 Properties of the BAMS Data

As stated previously, six scans are used for these experiments, each containing mine-
like objects. Each scan contains 360 pings of 2048 complex samples, given in complex
Cartesian coordinates (X,Y’), from Channel 0. The first four scans (1, 2, 3, and 4)
are used as training data to create the VQ’s by sampling every fourth ping where the

ith ping of the training data is the ith ping of scan j where j = ¢ mod 4 + 1, and
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Table 6.1: Acoustic data range, and rate and entropy calculations.

Training Data | Scan 5 | Scan 6
Minimum Value (Real) 97.70 ~78.50 | -94.40
Minimum Value (Imaginary) -77.19 -76.47 | -96.03
Maximum Value (Real) 77.06 86.03 | 118.24
Maximum Value (Imaginary) 90.10 87.93 | 103.99
Rate per Complex Number 30 30 30
Entropy per Complex Number 17.36 17.77 | 17.27

i=1,...,360. The remaining two scans (5 and 6) are reserved for testing. Both test

sets contain five targets: two spheres, two cylinders, and a “reference target,” which
are shown in Figure 6.1.

The range of the data and the associated rate and first order entropy are shown
in Table 6.1. The values of the training and test data range from —97.70 to +118.24.

Since all values are accurate to the second decimal place, approximately
[log,(21594)] = [14.4] = 15.0

bits are required for each value, or 30.0 bits are required to represent each complex
number. The first order entropies for scans 5 and 6 are 17.77 and 17.27 bits per
complex number respectively. Thus compression ratios (CR’s) of approximately 1.62:1
and 1.67:1 respectively could be achieved by a simple lossless compression algorithm.

The real and imaginary components of the data are considered to be independent
and identically distributed zero-mean Gaussian data. When working in the polar
domain, the magnitude and phase components are assumed to be statistically in-
dependent where the magnitude is Rayleigh distributed and the phase is uniformly
distributed [56]. The mean values and standard deviations of the data (in complex
form (X,Y) and as power and phase (P, ¢)) are shown in Table 6.2. For further
illustration purposes, two pings of scan 5 are examined in detail: ping 42, shown in

Figure 6.2, does not contain a target; while ping 84, shown in Figure 6.3, contains a
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Table 6.2: Mean and standard deviation of the acoustic data.

Mean Std. Dev. Mean Std. Dev.

(X,Y) (X,Y) (P, 9) (P, ¢)
Training Data | (-0.001, -0.005) | (3.27, 3.28) | (-6.037, 0.087) | (17.58, 1.81)
Scan 5 ( 0.015,-0.007) | (3.44, 3.43) | (-4.401, 0.067) | (16.32, 1.82)
Scan 6 (-0.017, -0.008) | (3.38, 3.37) | (-6.498, 0.089) | (18.18, 1.81)
Ping 42 (-0.140, 0.152) | (2.87,3.24) | (-5.051, 0.111) | (17.43, 1.82)
Ping 84 (0.246, 0.147) | (7.15,7.47) | (-3.296, -0.012) | (17.02, 1.83)

portion of the reference target. Note that the mean and standard deviation of ping 84
differ significantly from those of the entire scan since it contains a target. In general,
pings containing portions of targets will differ statistically from the majority of pings
which do not contain targets. This in turn will cause more difficulty in the coding
or compressing of pings containing targets due to statistical mismatch between the

data and the codebooks.

6.3 Scientific Objectives of the BAMS Data

The first scientific application examined is target detection [58]. Targets are detected
by visual inspection of backscatter plots which are computed from the power of the
pressure field. The power of the complex data X +:Y is computed in polar coordinates
as magnitude M = X2+ Y2 and power P = 20log,, M. The scattering plots are
computed over all 360 pings. Each ping is independently processed and divided into
40 non-overlapping regions (pixels) which cover a radial distance of one meter by an
arc length of 1°. The output image has 360 x 40 pixels, and the annular region of the
scattering plot ranges from 10 to 50 meters from the transmitter/receiver.
Specifically, let R = 1,...,360 be the range of pings, and let N =1,...,2048 be
the range of samples. The complex samples are defined to be X (r,n) +iY (r,n),r €

R,n € N, and the range (in meters) of the bins, or processed pixels, is defined as
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B =1,...,50. The function I' : N — B maps each time sample n to a spatial bin b
based on the distance of the sample to the base of the sonar. This distance, rigor, is
computed as

Tftoor = V/ Taonar — Nionar
where T4onqr is the distance from the sonar to the ocean floor, and Asoner is the height

of the sonar (5.16 m). The distance from the sonar to the ocean floor is calculated as

c r (n—l))

Tsonar = ) <t0 = tirz — 'é‘ + f
samp

where c is the speed of sound (1490.2 m/s), t, is the time of the first sample (0.002 s},

tirz is the time of transmission (0 s), 7 is the pulse length (0.002 s), n is the sample
number, and fsump is the sampling rate (20 kHz).

The backscatter pressure strengths are computed as:

"”il X?(r,n) + Y%(r,n)

A; (o1 — 1) + A2) — A3(b) + A4(b) — 45

P(T,b) = 1010g10(

n=n,
forr € R and b € B where n; is the sample in bin b closest to the sonar, (ny+, — 1)
is the number of samples in bin b, A; and A; are constants used for calibration, A3(b)
is an adjustment based on the angle of the sensor to the center of pixel b, A4(b) is an
adjustment based on the radius to the center of pixel b, and As is a constant which
makes adjustments for instrument and ocean conditions.

The second scientific application examined is that of ocean floor temperature mea-
surements [57] which are computed from the magnitude of correlation measurements
which are in turn computed after the phase of two temporally adjacent scans is per-
turbed. The basic idea is that the speed of sound changes as the ocean temperature
changes, and that this results in a change in detected phase. The phase perturbation
which yields the largest magnitude of the correlation coefficient, p, is considered to
be the actual phase change. From this phase change, the sound speed change and

temperature change are computed. The sound speed changes, correlation magnitude
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values, and temperature changes each make an image of the ocean floor. The phase
¢ of the complex data X + 1Y, is computed in polar coordinates where ¢ = arctan %
The correlation computations depend on both the magnitude and phase of the com-
plex data, and the correlation magnitude coefficients are normalized by the power
of the two scans so that 0 < p < 1. The correlation coefficients and sound speed
changes are computed over all 360 pings of two temporally adjacent scans. Each ping
is divided into 50 non-overlapping regions, or pixels, where each pixel covers a radial
distance of 1 meter by an arc length of 1°. The output image has 360 x 50 pixels,
and the range of the image is 0 to 50 meters from the transmitter/receiver.

Given the speed of sound, ¢, in m/s, and two temporally adjacent scans (X;, Y;),
1 = 1,2, the temperature algorithm works by finding the sound speed change Ac
(which is expressed as phase perturbations £(Ac,n)) that maximizes the magnitude

of the correlation coefficient p:
Ac(r,b) = arg max p(r,b, Ac)

for r € R and b € B. The magnitude of the correlation coefficient p is computed as

(X1, Y1) (X2, ¥2)* [l )
[1(X 1 Yi)llr.m) 1 (X2, Y2) llrm)

(ﬂbi—l X1 (r, n) Xs(r, n) + Yy (r, n)Ya(r, n))

n=np

p(r, b, Ac)

2

("E e +vzen) (8 Ko+ 776m)

n=ng n=n;
1/2

np41—1 2
( > Xl(r,n)f’g(r,n)—f{g(r,n)Yl(r,n)>

n=ny

(nbfl X2(r,n) + Y2(r, n)) ("“i_l R2(r,m) + 72(r, n)>

n=n; n=ny

where  X,(r,n) = Xa(r,n) cose(Ac,n) — Ya(r,n) sine(Ac, n)

and  Yy(r,n) = X,(r,n)sine(Ac, n) + Ya(r, n) cose(Ac, n).
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The phase change £(Ac, n) in a given pixel b is related to sound speed by

2n f ég

f samp C

e(Ac,n) =(n+1—mny)*

?

where f = 300 kHz, fiamp = 20 kHz, and ¢ = 1490.2 m/s. Note that the phase
difference for each time sample n increases linearly with time, but nonlinearly with
distance, from the near edge of its pixel. For the first pass of the algorithm, Ac ranges
from -2 to 2 in steps of 0.1, which corresponds to a range of sound speed changes of
+3 m/s [53]. For the second pass of the algorithm, the value of Ac is locally refined
to be precise to the hundredth place. Ocean temperature is related to sound speed by
the sound speed equation [25,71] which can be approximated by the following nine

term equation:

c = 1448.96 + 4.591T — 5.304 x 107272 + 2.374 x 10~*73
+1.340(S — 35) + 1.630 x 1072D +1.675 x 10~"D?
—1.025 x 1072T(S — 35) — 7.139 x 10~ 3T D3,

where T is the temperature (° Celsius), S is the salinity (parts per thousand), and D
is the depth (m). A plot of this nine-term sound speed equation is shown in Figure 6.4
where the depth is 20 meters and the salinity is 30.5 parts per thousand, reflecting
the local conditions found for the ORCAS experiments. The area of interest is for
temperatures of approximately 11.5° Celsius.

Note that for quick look viewing purposes, it would be very convenient if the
scattering, correlation, and sound speed data could be computed and sent since they
are so much smaller (each image is no larger than 18 kByte) than the original data
size. However, previewing and browsing applications should also include the ability
to “zoom” into areas of interest. Compression of the entire scan will enable the user

to zoom into areas of interest.
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6.4 Evaluation of the Effects of Acoustic Data Compression

Since I propose to apply lossy compression techniques to acoustic data, it must be
ensured that these techniques produce compressed data with high visual quality and
more importantly, give accurate results when analyzed. Similar work has been done
in [51] where side scan sonar images are compressed using wavelet packets and a
compression method following [33], where only the N largest coefficients (which are
scalar quantized) and their positions are preserved. They report recognizable images
with compression ratios of up to 108:1. Visual inspection and PSNR are used to
measure image quality. In [62], sonar images are compressed using a one-dimensional
discrete cosine transform (DCT) performed on small blocks of the data followed by
filtering and vector quantization of the coefficients. The impact of compression is
evaluated by examining the deflection index of synthetic data. A block-DCT trans-
form has also been adopted in [95] for compression of sonar images from autonomous
underwater vehicles to be sent over an acoustic modem. The authors report that
line detection is not negatively affected for compression ratios of up to 110:1. A
foreground /background approach to sonar image coding is taken in [84] where the
foreground image is coded at a high bit rate using a block DCT-like scheme, and the
background image is coded by retaining only its local statistics. Compression qual-
ity evaluation is done by visual examination of a test image, and quantitatively by
the cross ambiguity measure which is the squared magnitude of the cross correlation
between the original and compressed data. The authors report that their images are
well preserved for compression ratios of up to 25:1. Unfortunately, it is difficult to
extend the conclusions of previous work to my experiments as several papers report
only the compression algorithm built into the hardware, e. g. [95], or the reported
attempts to evaluate the effects of compression are done on such different data that
the results do not generalize.

For my experiments I use the MSE as the distortion measure to be minimized in
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the design of the vector quantizers and during bit allocation due to its tractability.
I evaluate signal noise using the SNR since the data come from a known, stationary
source. Since the data are to be computationally analyzed, SNR measurements are
unfortunately not a good means to determine acceptability of compression since it is
not known how the data will be used in the future. The use of metrics fails in that the
uses or applications for which the data will be used are not considered. I am interested
in evaluating the compression of acoustic data by evaluating the results of scientific
analysis using lossily compressed data. For these compression experiments, I will use
MSE and SNR calculations, visual inspection of scattering plots, and measurements of
the distortion introduced into sound speed measurements to evaluate the compressed
data.

Specifically, I will determine which scattering plots for scan 5 show no visible
changes due to compression, as well as those in which the five targets can be identified
although the plots are severely degraded due to high compression. This evaluation will
be done by visual examination using the 8 bit color palette used by Jackson et al. [54],
as well as a grayscale palette to view the targets. Image processing techniques, such
as histogram equalization, are not used to enhance the backscatter plots, although
one would expect that the application of adaptive image processing procedures to the
scatter plots would aid target detection, and that the compression ratios reported
would improve with the application of these image processing techniques.

Change in the correlation and sound speed plots will be evaluated by comparing
the mean absolute difference in value to tolerances defined by [55]. For the correla-
tion measurements, less change will be permissible where high correlation values are
expected, and more change will be allowed where low correlation values are expected.
Following these guidelines, the original correlation plot is divided into six regions
(A through F) based on each correlation value p. The tolerances allowed for mean
absolute difference in each region are shown in Table 6.3 where there are two sets

of tolerances, one for viewing the data, and one that would permit further scientific
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Table 6.3: Error tolerances for the mean absolute difference in correlation computa-
tions.

Region | Correlation values Viewing Scientific
Tolerance Tolerance

A 095<p<1 £0.01 £0.005
B 0.90 < p<0.95 +0.02 +0.01
C 0.80 < p<0.90 +0.03 +0.015
D 0.60 < p <0.80 +0.05 +0.025
E 0.40 < p < 0.60 +0.1 +0.05
F 0<p<040 +0.2 +0.1

use (i. e. temperature calculations). For the sound speed measurements, a tolerance
level of 0.2 m/s will be considered acceptable as this corresponds to the errors found

in the original application of the temperature algorithm [56].

6.4.1 FExperiment 1: Compression of Complezx Acoustic Data

For the first set of experiments I compress the raw, complex acoustic data using
three methods. The first approach, simple averaging, is a “blind” approach to data
compression. I assume that the data are oversampled, so that I can average N
consecutive samples to reduce the size of the scan by N. I do this to show that data
compression must be approached in an intelligent manner.

As stated previously, it is desired that the MSE be minimized during quantization.
Since the real and imaginary parts of the data are statistically independent, the

MMSE quantizer requires the minimization of:
E[(X,Y) - (X,¥))] = E[(X - X)’] + E[(Y - ¥)].

The MSE is minimized when the codeword is chosen to be the centroid of each Voronoi
region, i. e. (X,Y) = (E[X], E[Y]). The data can be quantized as real vectors using
the VQ algorithms described in Chapters 2 and 4. Thus the second approach is to
apply PTSVQ directly to the complex data where the vector dimension is two, and
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each vector (X,Y) represents a complex number X +iY.

The third approach is to apply PTSVQ to the complex data after transformation
with the DWT. The real and imaginary components of each ping of the data are
independently decomposed by the DWT to seven subbands using the orthonormal
basis “S8.” Again, the components are independent and may be processed sepa-
rately. The use of complex wavelets, wavelet packets, and other wavelets filters was
examined in [19] and showed no improvement, in terms of energy compaction, over
this decomposition. Hence only wavelets/PTSVQ are used for the BAMS data. Seven
two-dimensional PTSVQ’s, one for each subband, are used to encode the data where
each vector represents the corresponding wavelet coefficients from the real and imag-
inary components of the transformed ping. Each PTSVQ used is created from the
process of pruning the larger TSVQ’s during bit allocation by GBFOS, as described
in Section 4.2.1. The overall compression method to encode one scan consists of
transforming the scan’s 360 complex pings by the DWT to seven subbands each. The
seven PTSVQ'’s are then applied to each of the seven subbands of each of the 360

pings.

6.4.2 Ezperiment 2: Compression of Polar Acoustic Data

For the second set of experiments I consider the scientific analysis performed with the
data in this approach to data compression. Since the first analysis is the creation of a
scattering plot which is obtained from the power of the pressure field, and the second
analysis is the creation of correlation and sound speed plots which are obtained from
correlating the phase components of two scans, I convert the data from the complex

Cartesian domain to the polar domain, magnitude and phase

(M, ¢) = (VX2+Y?, arctan F}:") = M exp(ig),

and power and phase

(P,®) = 20log,o(M exp(i¢)) = 20log;q M + i$20log,y(exp)
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= (20 logyo M, $20log,, (exp)).

By converting the data to its magnitude, power and phase components, compres-
sion can be optimized to preserve the power and phase of the data which should lead
to more accurate scattering plots and perhaps temperature measurements. To see
how the compression of the magnitude and power components affects the scattering
plots, I have compressed just the magnitude component M and the power component
P using PTSVQ and wavelets/PTSVQ. Experimentally, I found that backscatter re-
sults are poorer when compressing the magnitude M of the data. Since the scattering
plots are computed from the power of the data, it is not surprising that it is better
to compress the power of the data. Therefore, I present results for the compression
of the data in the polar domain with the power and phase components, (P, ®), since
compression using this data representation promises high compression ratios.

Again, it is desired that the MSE be minimized during quantization. When work-
ing in the polar domain and the magnitude and phase parts of the data are statistically
independent, it turns out that the MMSE quantizer requires biased conditional mean

estimators to minimize
E(((M,¢) - (M,$))*] = E[M?| + E[M?] - 2E]cos(¢ — )| E[MM],

where the choice of the magnitude M is dependent on the choice of phase ¢. An
MMSE polar coordinate quantizer with a biased estimator for scalar quantization
is presented in [94]. However, as I am quantizing (P, ®), it happens that one must
minimize
E[(P,®) - (P, )] = E[(P - P)*| + E[(® - 9)°).

The MSE is minimized when the codeword is chosen to be the centroid of each Voronoi
region: (P, ®) = (E[P], E[®]). Thus, the data can be quantized as real vectors using,
without modification, the VQ algorithms described in Chapter 2. For the remainder
of this chapter, I refer to (P, ®) as the polar domain.
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I examine two methods to compress the data in the polar domain. The first ap-
proach is to apply PTSVQ directly to the data where the vector dimension is two, and
each vector (P, ®) represents the power and phase of the complex number X + Y.
The second approach is to apply PTSVQ to the power and phase data after transfor-
mation with the DWT. The power and phase components of each ping of the data
are independently decomposed by the DWT to seven subbands using the orthonor-
mal basis “S8.” Seven two-dimensional PTSVQ)’s, one for each subband, are vsed to
encode the data where each vector represents the corresponding wavelet coefficients
from the power and phase components of the transformed ping. Each PTSVQ used
is created from the process of pruning larger TSVQ’s during bit allocation by GB-
FOS. The overall compression method to encode one scan consists of transforming
the scan’s 360 pings of power and phase data by the DWT to seven subbands each.
The seven PTSVQ’s are then applied to each of the seven subbands of each of the
360 pings.

6.5 Results and Discussion

6.5.1 Effects of Compression on the Raw Data

I first examine the effects of compression in complex Cartesian coordinates over
the entire scan. SNR versus entropy results for simple averaging, PTSVQ, and
wavelets/PTSVQ for scan 5 is shown in Figure 6.5(a). Wavelets/PTSVQ clearly
gives the best results for compression at low bit rates. The SNR tapers off at 5 bits,
and is approximately 8 dB less than that of pure PTSVQ at high bit rates. This is
due to the smaller set of training data available to design each TSVQ. It does not
necessarily mean that the data compressed at higher rates using wavelets/PTSVQ
are worse than the data compressed at the same rates using PTSVQ only. What
is important is the rapid rise in SNR at very low bit rates. The simple averaging

method shows very poor results overall as it degrades quite rapidly.
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I next examine the effects of compression in the polar domain (P, ®). SNR versus
entropy in the polar domain is shown in Figure 6.5(b) for wavelets/PTSVQ and
PTSVQ. While results for PTSVQ show a rapid and steady rise in SNR for all rates,
wavelets/PTSVQ shows an improvement in SNR over PTSVQ below 9 bits. The same
SNR plots, when computed in the complex Cartesian domain, Figure 6.5(c), show
severe degradation in SNR below 4 bits per complex value for wavelets/PTSVQ and
6 bits for PTSVQ, and seen in this light does not outperform the previous methods

examined at low bit rates except for the simple averaging approach.

6.5.2 Effects of Compression on an Individual Ping

I next examine the effects of compression on individual pings of data, specifically
pings 42 and 84. While it is expected that the mean of the compressed data will
differ insignificantly from the mean of the original data, it is also expected that the
standard deviation of the compressed data will be less than that of the original data.
In general, the more a signal varies statistically from the training data signal, the
more difficult it is to code; this should be reflected in the coding results for ping 84
since it contains a target. I will first examine the change in standard deviation due
to compression. Then, I will discuss the effects of each compression experiment on
the real, imaginary, power, and phase components of the ping plus the target present
in ping 84.

The errors of the standard deviation versus entropy for pings 42 and 84 are shown
in Figures 6.6 and 6.7, respectively. As expected, the simple averaging method per-
forms the worst of all the methods; the standard deviation has a very large error
(above 10 percent) for all entropies below 10 bits. For ping 42, the standard devia-
tion has low mean errors (within 10 percent) for both PTSVQ and wavelets/PTSVQ
in the complex Cartesian domain for entropies above 1.5 bits. In the polar domain,
results are similar to the results in the complex Cartesian domain except that the

curves do not drop as fast. Low errors (below 10 percent) are found for entropies
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above 2.0 bits for wavelets/PTSVQ and above 3.0 bits for PTSVQ. When ping 84
is coded, PTSVQ in both coordinate domains behaves similarly as when ping 42 is
coded. The main difference is found when wavelets/PTSVQ is used to code ping 84 in
the complex Cartesian domain, where the average error never drops below 9 percent
although the error drops to that value by 2.0 bits. In the polar domain, the error is
less than 10 percent by 2.0 bits, and it eventually settles to 1.5 percent at 8.0 bits.
These larger error values are indicative of the difficulty in coding a ping with a target
in it.

I next describe the effects of compression on ping 84 as the compression ratio
increases. The quick decay seen in the standard deviation made by simple averaging
is seen by a rapid decrease in magnitude throughout the entire data set and is already
evident in Figure 6.8 which results from averaging 4 data samples at a time. In
addition, one can see that noise is introduced into the reference target, as identified
by the power spectrum in Figure 6.8(b), which will affect target detection. Due to the
averaging, the high frequency components of the data are lost throughout the entire
ping. Averaging of the data will directly affect the quality of the scattering and
temperature measurements because there is less variation in the compressed data as
well. There will also be more difficulty in target detection due to the loss of resolution.

In general, PTSVQ in the complex Cartesian domain tends to preserve data with
large magnitudes and to set data with small magnitudes to a limited number of
values. As the bit rate decreases, fewer bits are used for the high probability, low
magnitude data which results in very poor coding of the last 1300 values of the data.
This causes a complete loss of the power data and of the phase data which will cause
high, incorrect, correlation values to be found in the outer half of the data, while
forcing low power spectrum values in the outer half of the data. This progression
of decay can be seen in Figures 6.9 and 6.10 in which the data are compressed to
6.48 bits and 3.56 bits per complex number respectively. As the bit rate decreases,

the limited number of low magnitude codewords affects the phase and magnitude
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components first, Figure 6.9(b). By 3.56 bits, PTSVQ is unable to preserve any of
the small magnitude data, Figure 6.10(b).

Two versions of ping 84 compressed by wavelets/PTSVQ in the complex Carte-
sian domain at 4.39 and 2.25 bits per complex number are shown in Figure 6.11 and
Figure 6.12 respectively. Wavelets/PTSVQ does an excellent job compressing the
data that have a high magnitude combined with a strong frequency component, Fig-
ure 6.11(a). As the bit rate decreases, fewer bits are used to code the low magnitude
wavelet coefficients, while relatively more bits are used to code the high magnitude
wavelet coefficients. Since there is more space/frequency activity in the first half of
the data (Figures 6.3(b) and 6.3(c)), coding by wavelets/PTSVQ results in better
preservation of the target and the data surrounding it. Note that when the second
half of the signal is completely lost, there is much more degradation around the target
when using only PTSVQ (Figure 6.10(b)) than when using wavelets/PTSVQ (Fig-
ure 6.12(b)). The poor coding of the last half of the ping causes a complete loss of
power and phase data which will cause incorrect correlation values to be found in
the outer half of the data, while incorrect, low values of the power spectrum will be
found in the outer half of the data. The target cannot be easily distinguished from
noise below 0.1 bits per complex number.

Two versions of ping 84 coded at 7.82 and 6.82 bits per complex number by
PTSVQ in the polar domain are shown in Figures 6.13 and 6.14. PTSVQ in the
polar domain does not yield good compression of ping 84. The power of the target
starts to attenuates rapidly below 8 bits per complex number, while the background
signal tends to be better preserved. The target cannot be easily distinguished from
noise below 6.82 bits per complex number.

Ping 84 coded at 2.67 and 0.69 bits per complex number by wavelets/PTSVQ
in the polar domain is shown in Figures 6.15 and 6.16. Wavelets/PTSVQ does an
excellent job encoding the data, although it reduces the power of the target in the

encoded ping 84 by approximately two, at even the highest rates. This reduction
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of power is not a problem for ping 42 which does not contain a target. As the bit
rate decreases, the signal gradually degrades. The magnitude of the reference target
begins to degrade below 5.0 bits, but the background degrades as well. The reference
target can be seen in ping 84 at 0.1 bits and above. The signal is very poorly coded
below 0.1 bits where the signal content includes only very low frequency components.
As the rate increases from zero the signal looks much more like the original signal,
and the improvement is graceful, without any notably abrupt jumps in quality. The
quality of the coded signal at low bit rates can be seen in Figure 6.16(b) at 0.69 bits
where the lowpass features of the signal are retained. The ping at rate 2.67 is shown in
Figure 6.15(b) where the signal includes high frequency components. As the bit rate
decreases, the gradual degradation of the signal will lead to a gradual degradation of

the scattering plots and correlation plots as the high frequency details are lost.

6.5.8 Effects of Compression on the Backscatter Plots

I now examine the effects of the different compression schemes on the backscatter
plots. The original backscatter plot for scan 5 is shown in Figure 6.17. Evaluation of
visual preservation is done using a very high-contrast 8 bit color palette, so expected
compression ratios for visual preservation are low. To avoid dramatic color changes
when backscatter values change due to compression, a grayscale palette is used to
view targets.

The best visual preservation of the backscatter plots of scan 5 is done by
wavelets/PTSVQ in the polar domain, Table 6.4. It creates scattering plots which
are visually unchanged at 3.08 bits per complex number which corresponds to a com-
pression ratio of 5.77:1 and a drop of 24.43 dB in SNR. As the bit rate decreases,
image degradation can be seen throughout the entire plot, and at high compression
ratios (below 0.6 bits) striped rings appear. Note that all of the targets are visible at
compression ratios below and including 126.07:1 (0.14 bits), Figure 6.18. The targets

tend to diminish and disappear (especially the reference target and cylinder B) as
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Table 6.4: Results of compression on scattering plots of acoustic scan 5.

Scattering Plots Visually Drop in SNR Targets
Lossless CR (dB) Detectable CR

Exp. 1: Simple Averaging 0 0 12.29

Exp. 1: PTSVQ 2.74 3.86 37.49

Exp. 1: Wavelets/PTSVQ 2.97 0.81 130.03

Exp. 2: PTSVQ 2.61 34.11 3.03

Exp. 2: Wavelets/PTSVQ 5.77 24.33 126.07

the compression ratio increases above 126:1.

Surprisingly, since compression in the polar domain is expected to produce supe-
rior results, compression by PTSVQ in the polar domain produces the worst backscat-
ter plots for target detection. Although the scattering plots are visually unchanged
at 6.82 bits per complex number which corresponds to a compression ratio of 2.61:1
and a drop of 34.11 dB in SNR, as the bit rate decreases, image degradation, which
can be seen throughout the entire plot, progresses very rapidly. There is a distinct
decrease of signal in the innermost parts of the plot, and a distinct increase of signal
in the outermost parts of the plot. However, the targets are still visible at 5.86 bits
per complex number, as seen in Figure 6.19, which gives a compression ratio of 3.03:1.
The entire image is completely degraded at a compression ratio of 4.53:1 (3.93 bits);
no targets can be made out at this or lower bit rates.

When compressing in the complex Cartesian domain, wavelets/PTSVQ produces
the best results. It creates scattering plots which are visually unchanged at 5.98 bits
per complex number which corresponds to a compression ratio of 2.97:1 and a drop
in SNR of 0.81 dB. Degradation begins in the outer edges of the plot, and spreads
to the center. The outer third of the image is completely degraded at 2.25 bits; the
central third is degraded at 0.87 bits; and the inner third of the image has degraded at

0.14 bits per complex number, Figure 6.20, which is a compression ratio of 130.03:1.
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Note that all of the targets are clearly visible at 0.14 bits and above. Below 0.14 bits,
the targets, while still visible, become very dim and small, especially unburied sphere
B. In addition, all of the background detail is gone.

As expected, the overall worst results arise by simple averaging in the complex
Cartesian domain which creates scattering plots with notable visual degradation even
when averaging only two samples together to produce a compression ratio of 1.83:1
(9.69 bits). Degradation of the scattering plots continues rapidly as the compression
ratio increases and distortion is seen throughout the entire image. The image looks
entirely degraded at a compression ratio of 10.81:1 (1.64 bits, size 14 sample average)
although the targets are still visible at this and higher compression ratios, such as
Figure 6.21 which has a compression ratio of 12.29:1 resulting from averaging 16 values
at a time.

Compression by PTSVQ in the complex Cartesian domain creates scattering plots
which are visually unchanged at 6.48 bits per complex number, a compression ratio of
2.74:1, which corresponds to a 3.86 dB drop in SNR. As the bit rate decreases, image
degradation begins in the outer edges of the plot and spreads to the center. The
outer one-third of the image is completely degraded at 3.5 bits; the central one-third
is degraded at 2.1 bits; and the inner one-third of the image has degraded at 0.47 bits
per complex number, Figure 6.22, a compression ratio of 37.49:1. It should be noted
that all of the targets are visible at all compression ratios below and including 37.49:1.

This is the highest compression ratio possible for a dimension of two.

6.5.4 Effects of Compression on the Correlation and Sound Speed Measurements

I next describe the experiments designed to measure the effects of compression on
the second scientific application, sound speed measurements. Ideally, the best sound
speed measurements using the 300 kHz sonar are found when the scans are sampled
7 or 8 minutes apart in time so that small phase changes can be accurately detected.

Unfortunately, the 300 kHz sonar on BAMS is unable to take a scan with an interval



129

of less than 35 minutes. Furthermore, the scans taken during the ORCAS experiment
have time lapses of at least 3 hours, and my two test scans (5 and 6) are separated
by 11 hours and 36 minutes. Patrick Ahearn, a Master’s student in Oceanography,
is currently developing an accurate temperature algorithm for the 300 kHz data. An
accelerated BAMS (XBAMS) system has been developed which is able to complete
a scan in 6 minutes providing good high frequency data that will create useful cor-
relation and sound speed plots. However, I did not have access to XBAMS data at
the time that this experiment was done. Initial experiments with the BAMS test
data give poor results, and the data and method are at this time considered suspect
and perhaps of little value. Therefore, to conduct my experiments, it is necessary to
create a synthetic data set that approximates a scan that would contain valid sound
speed, and hence, temperature information.

I have tried to create a reasonable synthetic data scan using several methods.
The first set of synthetic images I created was made by linear combinations of scans 5
and 6: Ascan 5 + (1—A\) scan 6 where 0 < A < 1. The second set of synthetic images I
created was made by adding noise to scan 5 in various ways such as adding zero-mean
Gaussian noise to scan 5 with different variances from 0.3 to 20, or by thresholding
scan 5 and then adding Gaussian noise, and finally by adding Gaussian noise to scan 5
with variances that were determined by the local variance of the data as measured by
distance from the sonar platform. Unfortunately, neither of these methods produced
a good synthetic image. In the first case, the scans are so far distant in time, that it is
not possible to make a linear combination that approximates a scan that is 7 minutes
from either of the scans. In the second case, the addition of Gaussian noise does
not take into account the physical sound speed response one expects as the ocean
temperature changes. In fact, it is not clear what a good synthetic scan should look
like.

Therefore, I finally created a synthetic scan using the sound speed model itself.

By assigning different sound speed changes across the ocean floor, I determined the
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phase changes necessary to induce those particular changes, and added those phase
changes to scan 5. Finally I added a small amount of zero-mean Gaussian noise to
the synthetic scan to make it more realistic. The synthetic scan was created assuming
there was a uniform sweep of sound speed change of +3 m/s over the entire 162 meter
diameter, although only the inner 100 meters are examined. Thus the amount of
sound speed change in the pings will range from no change to changes of up to 3 m/s
across a ping. Noise was added to the magnitude and phase of the synthetic data
as follows: zero-mean Gaussian noise with a variance of ten percent of the variance
of the magnitude as a function of distance from the sonar (where this function was
smoothed to avoid undue influence of the targets) was added to the magnitude of
the synthetic signal, and zero-mean Gaussian noise with a variance of five percent
of the variance of the phase was added to the phase of the synthetic signal. The
noise was added in the above manner since the variance of the magnitude is, when
ignoring targets, a decreasing function with respect to increasing distance from the
sonar, while the variance of the phase of the signal does not vary with respect to
the distance from the sonar. The resulting correlation and sound speed plots, with
the added noise, are shown in Figures 6.23(a) and 6.23(b). Using scan 5 and this
synthetic scan, I will be able to measure the effects of compression on the sound
speed measurements.

I next report the effects of compression on the correlation and sound speed mea-
surements using scan 5 and the synthetic scan to create correlation and sound speed
plots. The mean absolute differences in the correlation plots computed from com-
pressed versions of scan 5 and the synthetic scan, for regions A, B, and C, are shown in
Figure 6.24. Acceptable tolerances are specified in Table 6.3. Results are summarized
in Table 6.5.

Overall, the results are disappointing as the compression ratios are all very low
and pretty much the same for the different compression methods. The best results

for the correlation measurements are found in the complex Cartesian domain with
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Table 6.5: Acoustic correlation measurement results due to compression.

Correlation Coefficient Largest CR Largest CR
(Viewing Tolerance) | (Scientific Tolerance)

Exp. 1: Simple Averaging 0 0

Exp. 1: PTSVQ 2.11 1.93

Exp. 1: Wavelets/PTSVQ 3.31 2.04

Exp. 2: PTSVQ 2.02 1.63

Exp. 2: Wavelets/PTSVQ 2.06 1.76

wavelets/PTSVQ which preserves the correlation plots within the viewing tolerances
at compression ratios of 3.31:1 and below, and within the scientific tolerances at com-
pression ratios of 2.04:1 and below. Excluding simple averaging which cannot preserve
the data within the desired tolerances, the worst results arise when compressing with
PTSVQ in the polar domain. The data are not preserved for compression ratios of
1.63:1 and higher, so that the correlation results remain within the specified toler-
ances. PTSVQ is able to give some compression with better results when applied to
the data in the complex Cartesian domain, where it is able to preserve the correlation
plots with good accuracy at compression ratios of 2.11:1 and 1.93:1 and below for
viewing and scientific tolerances, respectively. Wavelets/PTSVQ applied in the polar
domain (P, §) can preserve the correlation plots with good accuracy at compression
ratios of 2.06:1 and 1.76:1 and below. These results do indicate, as seen previously,
that wavelets/PTSVQ outperforms PTSVQ regardless of the data domain.

When visually examining the sound speed plots, it is seen, for the simple aver-
aging case, that rings and spots are introduced at all compression ratios, even when
averaging only 2 samples at a time. The plots rapidly degrade throughout the entire
image as the step size increases. However, the uniform sound speed trend can be seen
to 1.89 bits per complex value. For the other compression methods in the complex

Cartesian domain, it is found that for both PTSVQ and wavelets/PTSVQ, the sound
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Table 6.6: Acoustic sound speed measurement results due to compression.

Sound Speed Largest CR Drop in SNR
(Tolerance = 0.2) (dB)
Exp. 1: Simple Averaging 1.83 0
Exp. 1: PTSVQ 3.87 9.05
Exp. 1: Wavelets/PTSVQ 4.81 3.58
Exp. 2: PTSVQ 3.07 37.31
Exp. 2: Wavelets/PTSVQ 3.38 18.04

speed plots degrade from the outer edges to the center, preserving the inner third so
that the uniformly changing sound speed trend can be seen to 1.02 bits for PTSVQ
and 0.68 bits for wavelets/PTSVQ. For the experiments in the polar domain, it is
seen that for both PTSVQ and wavelets/PTSVQ, the sound speed plots degrade
throughout the entire image. For PTSVQ, the uniformly changing sound speed trend
can be seen for 3.38 bits per complex value and higher, while for wavelets/PTSVQ,
the trend can be seen to 1.26 bits per complex value.

The mean absolute differences in the sound speed plots computed from compressed
versions of scan 5 and the synthetic scan, as well as the associated drop in SNR, are
shown in Figure 6.25. An acceptable tolerance was defined in Section 6.4 to be 0.2 to
correspond with errors found in the original temperature application. Compression
results, summarized in Table 6.6, are more promising for these sound speed measure-
ments. Compression by wavelets/PTSVQ in the complex Cartesian domain shows
that a compression ratio of 4.81:1 yields acceptable results. As expected, simple av-
eraging yields the worst results, while wavelets/PTSVQ outperforms PTSVQ in both

of the data domains.
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6.6 Conclusions and Future Work

In this chapter, the benefit of compression on acoustic data used for target detection
and ocean floor temperature studies was examined. The compression schemes ex-
amined were simple averaging, PTSVQ, and wavelets/PTSVQ in both the complex
Cartesian and polar domains. Experimental results showed that wavelets/PTSVQ
consistently outperforms PTSVQ in terms of SNR, backscatter plot quality, corre-
lation and sound speed measurements. The improvement in performance is clearly
worth the added complexity of using adaptive transform coding to compress the sig-
nal. Experimental results also show that it is not viable to use the simple approach
of averaging for compression.

The decision of the domain in which compression should be done is a function
of the application, as compression results vary from application to application. For
example, for the scatter plots, compression of only the power of the signal, without
phase preservation, leads to better target preservation since phase information has
no value for backscatter calculations. Better compression results also arise when
examining backscatter plots since these calculations are more robust as they represent
an average value for each bin. This is evident from experiments which show that
compression of over 100:1 of both phase and magnitude components of the data
yields data that can be used for target detection. Thus, when examining only this
application, one can expect to be able to get higher compression ratios with a better
tailored compression algorithm. This is ideal for quick look and browse applications.
However applications such as correlation and sound speed measurements are sensitive
to the smallest changes in data. One can expect to be able to use lossy compression
on the data with acceptable accuracy for compression ratios of perhaps no more than
4:1.

I conclude that the use of only one approach for the compression of acoustic data

will not provide reasonable results when a variety of different scientific analyses are
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to be applied to the data. Rather, compression should be tailored to the application
or analysis for which the data will be used whether it be for previewing and browsing
purposes, or for scientific analysis. I also conclude that, although SNR versus entropy
measurements are a popular and easy way of measuring the success of compression
experiments, they are not good predictors of compression performance for scientific
data. Other measures are needed to predict the viability of different compression
schemes.

Future work could involve the development of a hybrid measure that can be opti-
mized to produce compressed data that can be used for several applications at once.

For example a two application measure could take the form
D =Dy+ ADp

where A would control the weight given to application A and application B. This
measure could be used during the VQ and bit allocation procedures to produce com-
pressed data that would be useful for the chosen applications. A more detailed study
of the data involving the higher resolutions available with matched filtering, and
the use of XBAMS data with a temperature measurement analysis suitable for this
data would provide more insight to a hybrid-measure compression approach. Un-
fortunately, at the time of these experiments, the new XBAMS data had yet to be
examined, and an accurate temperature algorithm for the 300 kHz data was still

under development.
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Figure 6.1: The five targets present in the acoustic test scans.
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Figure 6.2: Scan 5, ping 42, (a) the real and imaginary components, (b) the DWT of

the real component, and (c) the DWT of the imaginary component.
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Figure 6.2: (Continued). Scan 5, ping 42, (d) the magnitude, power and phase
components, (e) the DWT of the magnitude component, (f) the DWT of the power
component, and (g) the DWT of the phase component.
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Figure 6.3: Scan 5, ping 84 (which contains a portion of the reference target) (a) the
real and imaginary components, (b) the DWT of the real component, and (c) the

DWT of the imaginary component.
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Figure 6.3: (Continued). Scan 5, ping 84 (which contains a portion of the reference
target) (d) the magnitude, power and phase components, (¢) the DWT of the mag-
nitude component, (f) the DWT of the power component, and (g) the DWT of the
phase component.
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Figure 6.4: Sound speed as a function of temperature at a depth of 20 meters and
salinity of 30.5 parts per thousand. The area of interest is for temperatures of ap-
proximately 11.5° Celsius.
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(a) Experiment 1, scan 5 (X,Y).
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(b) Experiment 2, scan 5 (P, ®). (c) Experiment 2, scan 5 (X,Y).

Figure 6.5: SNR versus entropy for acoustic scan 5. Experiment 1 is conducted in
the complex Cartesian domain (X,Y’), and Experiment 2 is conducted in the polar
domain (P, ®). (a) Experiment 1. (b) Experiment 2, computed in the polar domain,
(P, ®). (c) Experiment 2, computed in the complex Cartesian domain (X,Y’) and
compared to simple averaging.
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(a) Experiment 1, ping 42 of scan 5. (b) Experiment 2, ping 42 of scan 5.

Figure 6.6: The average decrease in standard deviation versus entropy for ping 42 of
scan 5: (a) Experiment 1 and (b) Experiment 2.

Entropy
(a) Experiment 1, ping 84 of scan 5. (b) Experiment 2, ping 84 of scan 5.

Figure 6.7: The average decrease in standard deviation versus entropy for ping 84 of
scan 5 which contains a portion of the reference target. (a) Experiment 1 and (b)
Experiment 2.
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Figure 6.8: Experiment 1: The compressed version of scan 5, ping 84 at 2.62 bits
yielded by averaging 4 samples together: (a) the real and imaginary components, and
(b) the magnitude, power, and phase components.
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Figure 6.9: Experiment 1: The compressed version of scan 5, ping 84 at 6.48 bits using
PTSVQ in the complex Cartesian domain: (a) the real and imaginary components,
and (b) the magnitude, power, and phase components.
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Figure 6.10: Experiment 1: The compressed version of scan 5, ping 84 at 3.56 bits
using PTSVQ in the complex Cartesian domain: (a) the real and imaginary compo-
nents, and (b) the magnitude, power, and phase components.
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Figure 6.11: Experiment 1: The compressed version of scan 5, ping 84 at 4.39 bits
using wavelets/PTSVQ in the complex Cartesian domain: (a) the real and imaginary
components, and (b) the magnitude, power, and phase components.
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Figure 6.12: Experiment 1: The compressed version of scan 5, ping 84 at 2.25 bits
using wavelets/PTSVQ in the complex Cartesian domain: (2) the real and imaginary
components, and (b) the magnitude, power, and phase components.
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Figure 6.13: Experiment 2: The compressed version of scan 5, ping 84 at 7.82 bits
using PTSVQ in the polar domain: (a) the real and imaginary components, and (b)
the magnitude, power, and phase components.
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Figure 6.14: Experiment 2: The compressed version of scan 5, ping 84 at 6.82 bits
using PTSVQ in the polar domain: (a) the real and imaginary components, and (b)
the magnitude, power, and phase components.
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Figure 6.15: Experiment 2: The compressed version of scan 5, ping 84 at 2.67 bits
using wavelets/PTSVQ in the polar domain: (a) the real and imaginary components,
and (b) the magnitude, power, and phase components.
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Figure 6.16: Experiment 2: The compressed version of scan 5, ping 84 at 0.69 bits
using wavelets/PTSVQ in the polar domain: (a) the real and imaginary components,
and (b) the magnitude, power, and phase components.
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Figure 6.17: The original scattering plot of scan 5 computed from the power of the
pressure field.

Figure 6.18: Experiment 2: The scattering plot for scan 5 created by using
wavelets/PTSVQ in the polar domain (P, ®). The entropy is 0.1410 bits per complex
number, and the compression ratio is 126.07:1.
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Figure 6.19: Experiment 2: The scattering plot for scan 5 created by using PTSVQ
in the polar domain (P, ®). The entropy is 5.86 bits per complex number, and the
compression ratio is 3.03:1.

Figure 6.20: Experiment 1: The scattering plot for scan 5 created by using
wavelets/PTSVQ in the complex Cartesian domain. The entropy is 0.14 bits per
complex number, and the compression ratio is 130.03:1.
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Figure 6.21: Experiment 1: The scattering plot for scan 5 created by averaging
16 samples at a time. The entropy is 1.4465 bits per complex number, and the
compression ratio is 12.29:1

Figure 6.22: Experiment 1: The scattering plot for scan 5 created by using PTSVQ
in the complex Cartesian domain. The entropy is 0.4741 bits per complex number,
and the compression ratio is 37.49:1.
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(a) Correlation plot.

{(b) Sound speed plot.

Figure 6.23: The original (a) correlation plot and (b) sound speed plots computed
from scan 5 and the synthetic data.
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Figure 6.24: The mean absolute difference in correlation for scan 5 and the synthetic
scan, regions A, B, and C. (a) simple averaging in (X,Y), (b) PTSVQ in (X,Y),
(c) wavelets/PTSVQ in (X,Y), (d) PTSVQ in (P, ®), and (e) wavelets/PTSVQ in
(P, ®).
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(a) Experiment 1. (b) Experiment 2.

Figure 6.25: The mean absolute difference in sound speed measurements for scan 5
and the synthetic scan for (a) Experiment 1 and (b) Experiment 2.



Chapter 7

CONCLUSIONS AND SUGGESTIONS FOR FUTURE
WORK

In this dissertation the feasibility of lossy compression of image and earth sci-
ence data was studied. Lossy compression was done by coding wavelet transform
coefficients using vector quantization. Three optimal bit allocation methods for the
wavelet transform were developed for this purpose, including one adaptive technique
permitting joint bit allocation and signal space representation. These compression
algorithms were applied to USC database images and underwater acoustic sonar data,
and the results of compression were evaluated.

To develop these compression algorithms, standard lossy data compression tech-
niques including full search vector quantization, the generalized Lloyd algorithm, a
greedy growing algorithm for tree structured vector quantization, two tree pruning
algorithms (the generalized Breiman Friedman Olshen and Stone algorithm and the
recursive optimal pruning algorithm), as well as an overview of data quality mea-
sures were presented in Chapter 2. In Chapter 3, the discrete wavelet transform and
wavelet packet transform for one- and two-dimensional signals were reviewed, and
the relationships between distortion, rate, and entropy in the original and wavelet
domains were derived to demonstrate compression and bit allocation feasibility in
the wavelet domain.

In Chapter 4, current wavelet and quantization compression schemes were re-
viewed, and three bit allocation algorithms for wavelet subbands using a pruned

tree-structured vector quantization approach were developed. The first two methods
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use the GBFOS and ROPA tree pruning approaches to allocate bits among wavelet
subbands of a predetermined basis as given by the discrete wavelet transform. The
third approach (for wavelet packets) uses the GBFOS pruning approach to allocate
bits among wavelet packet subbands while simultaneously determining the best basis
decomposition.

In Chapter 5, wavelets/PTSVQ compression using the three different bit allo-
cation techniques was used to compress several images from the USC database. It
was found that the ROPA bit allocation approach found many more codebooks than
the GBFOS bit allocation approach for the DWT, and that for the same bit rates,
WPT bit allocation generally found more codebooks too. When comparing the two
techniques, WPT/PTSVQ outperformed DWT/PTSVQ for training data which was
expected since the DWT is a subset of the WPT, and the WPT approach is adap-
tive. As predicted by rate-distortion theory, PSNR results improved with increasing
vector dimension and increasing level of wavelet decomposition as this, for the WPT,
permitted better adaptation to the source. Unfortunately, the results for test data
behaved as expected only at very low bit rates. Since the rate-distortion curves flat-
tened out rapidly for the test data, I believe that DWT/PTSVQ and WPT/PTSVQ,
especially, overadapted themselves to the limited amount of training data available.

In Chapter 6 the benefits of compression of acoustic data were examined. Two ap-
plications, target detection (a highly robust calculation) and ocean floor temperature
studies (derived from sensitive correlation and sound speed measurements), were used
to evaluate data compression quality. DWT/PTSVQ, PTSVQ, and an averaging com-
pression algorithm were applied to several acoustic sonar scans in both the complex
Cartesian and polar domains. Experimental results showed that wavelets/PTSVQ
consistently outperformed PTSVQ and simple averaging (which was found to be un-
viable) in terms of SNR, backscatter plot quality, correlation and sound speed mea-
surements. The improvement in performance is clearly worth the added complexity

of using adaptive transform coding to compress the signal.
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It was also found that the decision of the domain in which compression should
be done is a function of the application, as compression results vary from application
to application. When examining the target viewing application, it was found that
high compression ratios can be sustained. This is ideal for quick look and browse
applications. However the ocean temperature studies, which depend on measurements
such as correlation and sound speed measurements, are sensitive to the smallest
changes in data. For this case one can expect to be able to use lossy compression on
the data with acceptable accuracy for compression ratios of perhaps no more than
4:1. I conclude that the use of only one approach for the compression of acoustic data
will not provide reasonable results when a variety of different scientific analyses are
to be applied to the data. Rather, compression should be tailored to the application
or analysis for which the data will be used whether it be for previewing and browsing
purposes, or for scientific analysis.

In addition to studying the problems of lossy compression of scientific data and
optimal bit allocation for wavelets, an algorithm for the coding of color images that
permits joint progressive transmission and low bit-depth display and printing is pre-
sented in Appendix A. This algorithm permits the embedding of the output of binary
Floyd and Steinberg error diffusion into the output of grayscale and color error diffu-
sion; the embedding of grayscale halftones into higher bit-depth grayscale and color
halftones; and the embedding of color halftones into higher bit-depth color halftones.
Preprocessing algorithms are also presented to organize color palettes for effective use
of the color space when embedding halftones into color halftones.

Possible directions for future work for wavelet/VQ encoding and the compression

of scientific data include:

¢ Different wavelet transforms such as biorthogonal wavelets which promise better
data coding, but make bit allocation more complicated due to loss of orthonor-

mality.
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e A ROPA-like approach to WPT bit allocation to find the WPT codebooks close

to the lower convex hull of the rate distortion curve.

e Coefficient modeling in each subband as in [2] to help overcome the dependence

on training data.

e Other forms of VQ, such as predictive PTSVQ as used in [81], lattice VQ,
universal VQ, or even ternary PTSVQ for the wavelet subbands to try to better
encode the subbands with highly peaked distributions.

e Joint selection of vector dimension and bit allocation as in [29] to help balance

the complexity of encoding and training with the quality of encoded data.

e The establishment of a freely available source of images to create a standard
set of test and training images where the images are selected for certain char-
acteristics, and their means of creation known. This will aid benchmarking
comparisons which are difficult for the “Lenna” image since a number of differ-
ent versions of this image at different resolutions created from color scanning
and grayscale conversion or grayscale scanning are used throughout the imaging

community.

e Development of other measures to predict the viability of different compression
schemes such as hybrid distortion measures, or non-MSE based distortion mea-
sures. SNR measurements are a popular and easy way of measuring the success
of compression experiments, but they are not necessarily good predictors of

compression performance for scientific data.

e The evaluation of compression of other earth science data and applications.



BIBLIOGRAPHY

[1] H. Abut, editor. Vector Quantization. IEEE Press, Piscataway, NJ, May 1990.

(2] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies. Image coding using
wavelet transformation. IEEFE Transactions on Image Processing, 1(2):205-220,
1992.

[3] David Applegate and Bill Cook. Solving large-scale matching problems. Tech-
nical report, DIMACS, Rutgers Univ. Piscataway, NJ, 1991.

[4] N. Baaziz and C. Labit. Laplacian pyramid versus wavelet decomposition for
image sequence coding. In ICASSP-90, volume 4, pages 1965-1968. IEEE Signal
Processing Society, April 1990.

[5] R. Balasubramanian and J. Allebach. A new approach to palette selection for
color images. Journal of Imaging Technology, 17(6):284-290, December 1991.

[6] R. Balasubramanian, C. A. Bouman, and J. P. Allebach. Sequential scalar
quantization of color images. Journal of Electronic Imaging, 3(1):45-59, Jan-
uary 1994.

[7] R. Balasubramanian, C. A. Bouman, and J. P. Allebach. Sequential scalar
quantization of vectors: an analysis. IEEE Transactions on Image Processing,
4(9):1282-1295, September 1995.

(8] M. R. Banham and B. J. Sullivan. A wavelet transform image coding technique
with a quadtree structure. In JCASSP-92, volume 4, pages 653-656. IEEE
Signal Processing Society, March 1992.

[9] M. Barlaud, P. Solé, M. Antonini, and P. Mathieu. A pyramidal scheme for
lattice vector quantization of wavelet transform coefficients applied to image
coding. In ICASSP-92, volume 4, pages 401-404. IEEE Signal Processing So-
ciety, March 1992.

[10] J. G. Bellingham, C. A. Goudey, T. R. Consi, J. W. Bales, D. K. Atwood,
J. J. Leonard, and C. Chyrssostomidis. A second generation survey AUV. In
Proceedings of the 1994 Symposium on Autonomous Underwater Vehicle Tech-
nology, pages 148 — 155. IEEE, July 1994.



1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

159

Jonathan N. Bradley and Christopher M. Brislawn. Image compression by
vector quantization of multiresolution decompositions. Technical report, Los
Alamos National Laboratory, Los Alamos, New Mexico, 87545, 1991.

Jonathan N. Bradley and Christopher M. Brislawn. Applications of wavelet-
based compression to multidimensional earth science data. In Proceedings of the
1998 Data Compression Conference, pages 224-233. IEEE Computer Society
Press, April 1993.

Jonathan N. Bradley and Christopher M. Brislawn. Proposed first-generation
VQ bit allocation procedure. In Proc. Symp. Criminal Justice Info. Services
Tech., September 1993.

Jonathan N. Bradley and Christopher M. Brislawn. Wavelet transform-vector
quantization compression of supercomputer ocean models. In 1998 Space and
Earth Science Data Compression Workshop, pages 13-24. NASA, April 1993.

Jonathan N. Bradley, Christopher M. Brislawn, and Tom Hopper. The FBI
wavelet /scale quantization standard for gray-scale fingerprint image compres-
sion. In SPIE Proceedings, Visual Info. Process. II, volume 1961, Orlando, FL,
April 1993.

G. W. Braudaway. A procedure for optimum choice of a small number of colors
from a large color palette for color imaging. In FElectronic Imaging '87: Inter-
national Electronic Imaging Ezposition and Conference, pages 71-75, February
1987.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
Regression Trees. The Wadsworth Statistics/Probability Series. Wadsworth,
Belmont, California, 1984.

M. Broja, K. Michalowski, and Olof Bryngdahl. Error diffusion concept for
multi-level quantization. Optics Communications, 79(5):280-284, November
1990.

A. G. Bruce, D. B. Percival, and J. R. Goldschneider. Algorithms for wavelet
compression of acoustic signals. Naval Air Warfare Center Aircraft Division,
Phase I Final Report N00421-95-C-1148, Data Analysis Products Division,
MathSoft, Inc., 1700 Westlake Ave. N., Suite 500, Seattle, WA 98109, 1996.

Andrew Bruce and Hong-Ye Gao. S+WAVELETS User’s Manual, Version 1.0.
StatSci, a division of MathSoft, Inc., 1700 Westlake Ave. N, Seattle, WA 98109,

1994.



160

[21] A. Buzo, A. H. Gray Jr., R. M. Gray, and J. D. Markel. Speech coding based
upon vector quantization. IEEE Transactions on Acoustics Speech and Signal
Processing, 28:562-574, October 1980.

[22] E. Cammarota and G. Poggi. Address vector quantization with topology-
preserving codebook ordering. In Proc. 18th GRETSI Symposium, pages 853—
856, September 1991.

[23] P. A. Chou, T. Lookabaugh, and R. M. Gray. Optimal pruning with appli-
cations to tree-structured source coding and modeling. IEEE Transactions on
Information Theory, 35(2):299-315, March 1989.

[24] R. Coifman and V. Wickerhauser. Entropy-based algorithms for best basis
selection. IEEE Transactions on Information Theory, 38(2):713-718, 1992.

[25] A. B. Coppens. Simple equations for the speed of sound in neptunian waters.
Journal of the Acoustical Society of America, 69(3):862-863, March 1981.

[26] P. C. Cosman, R. M. Gray, and M. Vetterli. Vector quantization of image
subbands: a survey. IEEE Transactions on Image Processing, 5(2):202-225,
February 1996.

[27] P. C. Cosman, S. M. Perlmutter, and K. O. Perlmutter. Tree-structured vector
quantization with significance map for wavelet image coding. In Proceedings
Data Compression Conference, pages 33-41, April 1995.

(28] Criminal Justice Information Services. WSQ gray-scale fingerprint image com-
pression specification. Technical report, Federal Bureau of Investigation, Febru-
ary 1993.

[29] V. Cuperman. Joint bit allocation and dimensions optimization for vector trans-
form quantization. IEEE Transactions on Information Theory, 39:302-305,
January 1993.

[30] E. A. B. da Silva, D. G. Sampson, and M. Ghanbari. Image coding using suc-
cessive approximation wavelet vector quantization. In Proceedings of ICASSP,
volume 4, pages 2201-2204, May 1995.

[31] I. Daubechies. Ten lectures on wavelets. Society for industrial and applied
mathematics, Philadelphia, PA, 1992.



161

[32] Philippe Desarte, Benoit Macq, and Dirk T. M. Slock. Signal-adapted mul-
tiresolution transform for image coding. IEEE Transactions on Information
Theory, 38(2):897-904, 1992.

[33] Ronald A. DeVore, Bjorn Jawerth, and Bradley J. Lucier. Image compression
through wavelet transform coding. IEEE Transactions on Information Theory,
38(2):719-746, 1992.

[34] F. Dufaux, I. Moccagatta, B. Rouchouze, T. Ebrahimi, and M. Kunt. Motion-
compensated generic coding of video based on a multiresolution data structure.
Optical Engineering, 32(7):1559-1569, 1993.

[35] J. G. Dworski and D. R. Jackson. Spatial and temporal variation of acous-
tic backscatter in the STRESS experiment. Continental Shelf Research,
14(10/11):1221-1237, 1994.

[36] B. R. Epstein, R. Hingorani, J. M. Shapiro, and M. Czigler. Multispectral KLT-
Wavelet data compression for Landsat thematic mapper images. In Proceedings
of the 1992 Data Compression Conference, pages 200-208, May 1992.

[37] W. H. Equitz. A new vector quantization clustering algorithm. IEEE Trans-
actions on Acoustics Speech and Signal Processing, 37(10):1568-1575, October
1989.

[38] N. Farvardin. A study of vector quantization for noisy channels. IEEE Trans-
actions on Information Theory, 36(4):799-809, July 1990.

[39] R. Floyd and L. Steinberg. An adaptive algorithm for spatial gray scale. SID
Int. Sym. Digest of Tech. Papers, pages 36-37, 1975.

[40] Jacques Froment and Stéphane Mallat. Second generation compact image cod-
ing with wavelets. In Charles K. Chui, editor, Wavelets: A tutorial in theory
and applications, pages 655—-678. Academic Press, Inc., San Diego, CA, 1992.

[41] R. S. Gentile, I. Walowit, and J. P. Allebach. Quantization and multilevel
halftoning of color images for near-original image quality. Journal of the Optical
Society of America, 7(6):1019-1026, June 1990.

[42] A. Gersho and R. M. Gray. Vector Quantization and Signal Compression.
Kluwer Academic Publishers, Boston, MA, 1992.



162

[43] K. H. Goh, J. J. Soraghan, and T. S. Durrani. New 3D wavelet transform
coding algorithm for image sequences. Electronics Letters, 29(4):401-402, 1993.

[44] J. R. Goldschneider, E. A. Riskin, and P. W. Wong. Embedded multilevel error
diffusion. In Proceedings of SID 1995, volume XXVI, pages 829-832, May 1995.

[45] R. M. Gray. Vector quantization. IEEE ASSP Magazine, 1:4-29, April 1984.

[46] P. Heckbert. Color image quantization for frame buffer display. Computer
Graphics, 16(3):297-307, July 1982.

[47] C. Herley, J. Kovacevi¢, K. Ramchandran, and M. Vetterli. Arbitrary orthogo-
nal tilings of the time-frequency plane. IEEE Transactions on Signal Processing,
41(12):3341-3359, December 1993.

(48] C.-M. Huang, Q. Bi, S. Stiles, and R. W. Harris. Fast full search equivalent
encoding algorithms for image compression using vector quantization. [FEE
Transactions on Image Processing, 1(3):413-416, July 1992.

[49] R. W. G. Hunt. The Reproduction of Colour in Photography, Printing & Tele-
vision. Tolworth, Fountain Press, England, 4 edition, 1987.

[50] W.-J. Hwang and H. Derin. Multi-resolution multi-rate progressive image trans-
mission. In Twenty-Seventh Asilomar Conference on Signals Systems and Com-
puters, volume 1. IEEE Computer Society Press, November 1993.

[51] J. Impagliazzo, W. Greene, and Q. Huynh. Wavelet image compression algo-
rithm for side scan sonar and teleradiology. In Wavelet Applications II, vol-
ume 1, pages 162-172. SPIE, April 1995.

[52] V. S. Iverson and E. A. Riskin. A fast method for combining palettes of color
quantized images. In Proceedings of ICASSP, volume 5, pages 317-320. IEEE
Acoustics Speech and Signal Processing Society, April 1993.

[53] D. R. Jackson. Unpublished Fortran Programs, 1995.

[54] D. R. Jackson. Unpublished Matlab Programs, 1995.

[55] D. R. Jackson. Private Communication, August 1996.

[56] D. R. Jackson. Private Communication, August 1997.



163

[57] D. R. Jackson and J. G. Dworski. An acoustic backscatter thermometer for
remotely mapping seafloor water temperature. Journal of Geophysical Research,
97(C1):761-767, January 1992.

[58] D. R. Jackson and K. L. Williams. High-frequency sea-bed scattering measure-
ments in shallow water. In Proceedings of the Third European Conference on
Underwater Acoustics. FORTH/IACM, June 1996.

[59] M. H. Johnson, R. Ladner, and E. A. Riskin. Fast nearest neighbor search for
ECVQ and other modified distortion measures. In Proceedings of ICIP, volume
III, pages 423-426, 1996.

[60] I. Katsavounidis and C.-C. J. Kuo. Image compression with embedded wavelet
coding via vector quantization. In Proceedings of the SPIFE, volume 2569, pages
333-344. SPIE, July 1995.

[61] S.-Z. Kiang, R. L. Baker, G. J. Sullivan, and C.-Y. Chiu. Recursive optimal
pruning with applications to tree-structured vector quantizers. IEEE Transac-
tions on Image Processing, 1(2):162-169, April 1992.

[62] D. H. Kil and F. B. Shin. Reduced dimension image compression for remotely
distributed underwater signal processing. In Oceans 95, volume 2, pages 1883-
1888. IEEE, October 1995.

[63] B. W. Kolpatzik and C. A. Bouman. Optimized error diffusion for image display.
Journal of Electronic Imaging, 1(3):277-292, July 1992.

[64] B. W. Kolpatzik and C. A. Bouman. Optimized universal color palette design
for error diffusion. Journal of Electronic Imaging, 4(2):131-143, April 1995.

[65] E. L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt,
Rinehart and Winston, New York, 1976.

[66] A.S. Lewis and G. Knowles. Video compression using 3D wavelet transforms.
Electronics Letters, 26(6):396-398, 1990.

[67) A. S. Lewis and G. Knowles. A 64 kb/s video coder using the 2-D wavelet
transform. In Proceedings of the Data Compression Conference, Snowbird, UT,
1991.

[68] J. Li, P. Y. Cheng, and C.-C. J. Kuo. On the improvements of embedded
zerotree wavelet (EZW) coding. In Proceedings of the SPIE, volume 2501,
pages 1490-1501. SPIE, May 1995.



164

[69] Y. Linde, A. Buzo, and R. M. Gray. An algorithm for vector quantizer design.
IEEE Transactions on Communications, 28:84-95, January 1980.

[70] S. P. Lloyd. Least squares quantization in PCM. IEEE Transactions on In-
formation Theory, 28(2):129-136, March 1982. Previously an unpublished Bell
Laboratories Technical Note (1957).

[71] K. V. Mackenzie. Nine-term equation for sound speed in the oceans. Journal
of the Acoustical Society of America, 70(3):807-812, September 1981.

[72] Stéphane Mallat. A theory for multiresolution signal decomposition: the
wavelet representation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 11(7):674—693, 1989.

[73] Stéphane Mallat and Wen Liang Hwang. Singularity detection and processing
with wavelets. IEEFE Transactions on Information Theory, 38(2):617-643, 1992.

[74] K. V. Mardia, J. T. Kent, and J. M. Bibby. Multivariate Analysis. Academic
Press, 1979.

[75] Nader Moayeri, Ingrid Daubechies, Qing Song, and Hong Shen Wang. Wavelet
transform coding using trellis coded vector quantization. In JCASSP-92, vol-
ume 4, pages 405-408. IEEE Signal Processing Society, March 1992.

[76] K. L. Oehler and R. M. Gray. Combining image compression and classification
using vector quantization. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 17(5):461-473, May 1995.

[77] M. Orchard. A fast nearest-neighbor search algorithm. In Proceedings of
ICASSP, pages 2297-2300. IEEE Acoustics Speech and Signal Processing So-
ciety, 1991.

[78] M. T. Orchard and C. A. Bouman. Color quantization of images. IEEE Trans-
actions on Signal Processing, 39(12):2677-2690, December 1991.

[79] K. Ramchandran and M. Vetterli. Best wavelet packet bases in a rate-distortion
sense. JEEE Transactions on Image Processing, 2(2):160-175, 1993.

[80] K. Ramchandran, M. Vetterli, and C. Herley. Wavelets, subband coding, and
best bases. Proceedings of the IEEE, 84(4):541-560, April 1996.



[81] E. A. Riskin. Variable rate vector quantization of images. PhD thesis, Stanford
University, Stanford, CA, May 1990.

[82] E. A. Riskin. Optimum bit allocation via the generalized BFOS algorithm.
IEEE Transactions on Information Theory, 37(2):400-402, March 1991.

[83] E. A. Riskin, R. Ladner, R.-Y. Wang, and L. E. Atlas. Index assignment for
progressive transmission of full search vector quantization. JEEE Transactions
on Image Processing, 3(3):307-312, May 1994.

[84] J. A. Saghri and A. G. Tescher. Sonar feature-based bandwidth compression.
Journal of Visual Communication and Image Representation, 4(2):130-148,
June 1993.

[85] A. Said. and W. A. Pearlman. A new, fast, and efficient image codec based
on set partitioning in hierarchical trees. IEEE Transactions on Clircuits and
Systems for Video Technology, 6(3):243-50, June 1996.

[86] Masoud Sajadieh and Anastasios N. Venetsanopoulos. Wavelet vector quantiza-
tion of images. In ICASSP-92, volume 4, pages 471-474. IEEE Signal Processing
Society, March 1992.

[87] T. Senoo and B. Girod. Vector quantization for entropy coding of image sub-
bands. IEEE Transactions on Image Processing, 1(4):526-533, October 1992.

[88] J. M. Shapiro. Embedded image coding using zerotrees of wavelet coefficients.
IEEE Transactions on Signal Processing, 41(12):3445-3462, December 1993.

[89] M. Stojanovic. Recent advances in high-speed underwater acoustic communi-
cations. IEEE Journal of Oceanic Engineering, 21(2):125-136, April 1996.

[90] Gilbert Strang. Wavelets and dilation equations: A brief introduction. SIAM
Review, 31(4):614-627, 1989.

[91] Gilbert Strang. Wavelet transforms versus Fourier transforms. Bulletin of the
American Mathematical Society, 28(2):288-305, 1993.

[92] D. Tang, G. Jin, D. R. Jackson, and K. L. Williams. Analyses of high-frequency
bottom and subbottom backscattering for two distinct shallow water environ-
ments. Journal of the Acoustical Society of America, 96(5):2930-2936, Novem-
ber 1994.



166

(93] R. Ulichney. Digital Halftoning. MIT Press, Cambridge, MA, 1987.

[94] S. D. Voran and L. L. Scharf. Polar coordinate quantizers that minimize mean-
squared error. IEEE Transactions on Signal Processing, 42(6):1559-1563, June
1994.

[95] X. Wen, W. Yuling, and Z. Weiqing. Sonar image processing system for an
autonomous underwater vehicle AUV. In Oceans ’95, volume 3, pages 1883—
1886. IEEE, October 1995.

[96] Mladen V. Wickerhauser. Acoustic signal compression with wavelet packets. In
Charles K. Chui, editor, Wavelets: a tutorial in theory and applications, pages
679-700. Academic Press, San Diego, CA, 1992.

[97] Mladen V. Wickerhauser. Adapted Wavelet Analysis - from theory to software.
A. K. Peters, Ltd, 1994.

[98] P. W. Wong. Adaptive error diffusion and its application in multiresolution
rendering. IEEFE Transactions on Image Processing, 5(7):1184~1196, July 1996.

[99] K. Zeger and A. Gersho. Pseudo-gray coding. IEEE Transactions on Commu-
nications, 38(12):2147-2158, December 1990.

[100] Ya-Qin Zhang and Sohail Zafar. Motion-compensated wavelet transform coding
for color video compression. IEEE Transactions on Circuits and Systems for
Video Technology, 2(3), September 1992.



Appendix A

EMBEDDED MULTILEVEL ERROR DIFFUSION

Multilevel halftoning [93] or multitoning is a process used to render an image on a
device with a limited number of tones to produce an image with the illusion of more
tones. Multilevel error diffusion is similar to the common binary Floyd and Steinberg
error diffusion algorithm [39], but more than two output levels or colors are available
for display. The additional output levels or colors can be used to greatly improve
image quality.

The block diagram for Floyd and Steinberg’s binary error diffusion algorithm [39]
is shown in Figure A.1, where X is the input image, Y is the output halftoned image,
Q( ) is a binary scalar quantizer, and H is the error filter. To achieve multilevel
error diffusion for a grayscale image, the binary scalar quantizer @Q( ) in Floyd and
Steinberg’s algorithm is simply replaced with a multiple-bin scalar quantizer as sug-
gested by Ulichney [93]. For color images, a color palette, or vector quantizer of three

dimensions (red, green, blue), replaces the binary scalar quantizer [16,46,64, 78].

x —=O1= Q0 Y

- +

Y,

Figure A.1: Block diagram of the binary error diffusion algorithm where Q() is the
binary scalar quantizer and H is the error propagation mask.
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Vector quantization (VQ) [1,42,45] is a lossy compression technique that has
been used extensively for image compression. VQ design techniques have also been
extensively used for color palette design and color image display [5, 16,41,46,52,78].
For my embedded multilevel error diffusion algorithm, I use uniform scalar quantizers
when working with grayscale images and full-search vector quantizers when working
with color images. The full-search VQ’s are designed using the generalized Lloyd
algorithm [69] although it is also possible to use sequential scalar quantization [6,7].

Multilevel error diffusion has been widely used (16,18, 41, 46, 78, 93] to either
enhance displayed images by the use of more output values or to reduce the contouring
effects that occur due to limited palette size. In [18], binary error diffusion is extended
to three-level grayscale error diffusion. The authors note a marked improvement in
image quality, but they warn that the choice of quantization levels can greatly affect
image quality. In [46] the display of 24-bit color images using a limited color palette
size is discussed. Methods for generating full-search color palettes and methods for
quick full searches are introduced. Furthermore, it is shown that excellent image
quality with color palettes of very small size (as few as four colors) is obtained when
error diffusion is used. In [16] small color palettes for displaying color images are
generated with the generalized Lloyd algorithm [69]. A modified version of multilevel
error diffusion is used to reduce contouring introduced by the small palette size. In [78]
tree-structured color palettes are developed for color image display. A modification of
multilevel error diffusion that is adjusted to work with the parameters of their tree-
structured palette is used to reduce contouring effects. In [41] the effects of multilevel
error diffusion and halftoning on color image quality when using a restricted color-
palette size are examined. As expected, the results confirm that multilevel error
diffusion greatly enhances color-image quality for restricted color-palette sizes.

While multilevel error diffusion yields excellent visual results, an image must be
independently processed for each different number of output levels required. It would

be nice to have the multilevel error diffused image be embedded: the error diffused
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image with IV output levels should also “contain” the error diffused images for smaller
numbers of output levels including the Floyd and Steinberg binary error diffused
image. One benefit of embedding is that a Floyd and Steinberg error diffused image
can be obtained for printing or display on a binary device by simply masking one bit
off of the multilevel image or indices. A second benefit is progressive transmission
capabilities: first one bit plane of the image, the Floyd and Steinberg error diffused
image, can be sent to the user; later, more bit planes can be sent to the user if desired,
leading to an improved image.

One possible application for embedded multilevel error diffusion is that of an
image database or browsing system, such as the World Wide Web, in which images
stored in a lossy, error diffused format are accessed by users with different display
devices. In this example a user with an 8-bit color monitor can receive the image
indices (progressively perhaps) and color palette to display an 8-bit color image; a
user with a monochrome screen can receive one bit of the 8-bit color-image indices to
display a binary error diffused version of the image; and a user with a 16-level LCD
can receive four bits of the 8-bit color-image indices to display a 16-level grayscale
image. Furthermore, each of these three users could then send the received image to
a binary or multilevel, monochrome or color printer, as appropriate, to receive a high
quality hardcopy output.

Note that there is a closely related approach in embedding multiple halftones
where a halftone “contains” halftones with the same number of output levels but of
different sizes [98]. For example, a bilevel halftone of size NV x N can be designed
that contains a smaller sized bilevel halftone of size aN x alN, where a is a rational
number less than 1. In this case, it is required that the two halftones of sizes aN xaN
and N x N be related by simple down-sampling (i. e. one can obtain the small
halftone by down-sampling the large one), and that both the large and small sized
halftones be of high quality. It is evident that halftones embedded in size can also

be progressively transmitted. This approach can be combined with the multilevel
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embedding approach in this appendix for a general multilevel/multisize embedded
halftoning algorithm which could be used for devices with different resolutions such
as a 1200 x 1000 CRT or a 600 x 800 LCD.

In this appendix I present an algorithm to embed binary error diffused images
into grayscale or color error diffused images; to embed grayscale error diffused images
into grayscale or color error diffused images; and to embed color error diffused images
into color error diffused images. Due to constraints on the palettes introduced by
embedding, image quality in the higher bit-depth image may be reduced. To coun-
teract the reduction in image quality, the embedding algorithm requires the use of
ordered scalar and vector quantizers. While scalar quantizers have a natural ordering,
vector quantizers as used for color quantization do not. In this appendix I present
algorithms for color palette organization to be used as a preprocessing step to the
embedded multilevel error diffusion algorithm.

This appendix is organized as follows. In Section A.1, embedded multilevel error
diffusion is described. In Section A.2, palette organization for embedded multilevel
error diffusion is described. Results are presented in Section A.3, and conclusions are

presented in Section A.4.

A.1 Embedded Multilevel Error Diffusion

There are many approaches to embedding error diffused images into higher-level im-
ages. For example, an N-level multilevel error diffused image containing an M-level
error diffused image can be produced by independently generating an M-level and an
(N-M)-level error diffused image and appending these two images together so that
the image is “embedded.” By this method the embedded halftoning property has
been achieved. However, the assignment of the N available colors to the amalga-
mated index is not clear or obvious. Such an image would have poor color and image

quality. For example, if M = %, two M-level halftones would be generated, and the
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same two halftones would be appended to make the N-level halftone. This halftone
would have only M unique indices, and thus only M colors. At best it would look
just like the M-level image. Clearly, this naive approach cannot make good use of
the larger color space.

My embedded error diffusion algorithm embeds an M-level error diffused image
into an N-level error diffused image where M < N by a two stage algorithm. In the
first stage, the M-level error diffused image is produced by using an M-bin scalar
or vector quantizer. In the second stage M quantizers, each with % output levels,
are used to produce the N-level error diffused image where the output of the first
stage determines which of the M quantizers to use. The block diagram is shown in
Figure A.2, where @}() is the M-bin scalar or vector quantizer used in the first stage,
and Q2(), Q3(), . .., Q3%,() are the —A’%-bin scalar or vector quantizers used in the second

stage.

+

Q,0

Figure A.2: Block diagram of the embedded multilevel error diffusion algorithm where
Q!() is an M-bin scalar quantizer, and Q3(), Q3(), - . ., Q% () are £-bin scalar or vector
quantizers designed to embed an M-level halftone into an N-level halftone.
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To create the second stage quantizers, it is assumed that an ordered N-bin quan-
tizer Q2() with binary indices {0,1,...,N — 1} and associated codewords {g3, ¢7,
.+ @%_1} has been designed for normal N-level error diffusion. Different disjoint
subsets of these indices are used to form the M -A’%-bin second-stage quantizers
@Q%(), Q2(), ..., Q%(). The partitioned sets are such that all codewords in the same
set share the common bits that satisfy the embedding requirement from the output
of the first stage.

The constraint of subdividing the N-word palette into M different palettes will
affect the quality of the output. Both the relative size of M to N as well as the
assignment of colors to the subsets are affective factors. If 0 < log, M < '—"5§—N-, the
M-level image is said to be small relative to the N-level image. If l"—ggiv- < log, M <
log, N, the M-level image is said to be large relative to the N-level image. Palette
organization and its effects on embedding for both cases will be discussed.

I next discuss in detail a special case of embedded multilevel error diffusion, em-
bedded binary error diffusion [44], which was used to embed a binary error diffused
image into a grayscale error diffused image. This is done for the purpose of motivating
my approach to the ordering of color palettes.

Given a binary error diffused image, embedding can be done in any bit of the
grayscale error diffused output depending on the division of quantizer @Q?()’s indices
and codewords among quantizers Q3() and Q3(). For example, the ordered binary
and scalar quantizers used for 8-level embedded binary error diffusion are shown in
Figure A.3(a) where the dots refer to quantizer outputs. The binary error diffused
image is embedded into the most and least significant bit of the output since these
bits are the most convenient. If the quantizer Q?() uses the codewords of Q?() with
even indices {0,2,...,N — 2} and the quantizer Q3() uses the codewords of Q?()
with odd indices {1,3,..., N — 1}, as shown in Figure A.3(b), then the binary error
diffused image is embedded in the least significant bit (LSB) of the grayscale output
and can be obtained from the grayscale image simply by masking off the LSB of each
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pixel value. If the quantizer Q?() uses the codewords of @?() with the first § indices
{0,1,..., % 1} and the quantizer Q3() uses the codewords of Q*() with the second
¥ indices {4,% +1,...,N — 1}, as shown in Figure A.3(c), then the binary error
diffused image is embedded in the most significant bit (MSB) and can be obtained
from the grayscale image by thresholding. Note that after quantizer Q? is partitioned
into two sets, the bin boundaries of the new quantizers Q% and Q3 are not the same

as the bin boundaries of Q2.

Qlo Q0 Qo Qi e?o Q%0
& 0 000 000 000
001 001 001
010 o010 010
o o1l o011
T 100 100 100
101 101 10t
110 110 110
v 1 111 m 111
(a) (b) (c)

Figure A.3: (a) Scalar quantizers Q'() and Q?() used for grayscale embedded binary
error diffusion where Q?() and Q%() are the partitions of @?() for embedding in the
(b) LSB and the (c) MSB. The dots refer to quantizer outputs.

A.2 Color Palette Organization

As stated previously, embedding requires the creation of smaller ordered quantizers
from subsets of a larger ordered quantizer. While scalar quantizers have a natural
ordering, vector quantizers as used for color quantization do not. Imposing an or-
dering, or organization, on a vector quantizer requires careful consideration. Binary

index assignment for vector quantizers has been considered (22,38, 83, 99] for joint
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source/channel coding, progressive transmission, and in lossless compression of VQ
indices. I adapt some of these binary index assignment techniques to order the color
palettes.

Using two observations of the scalar quantizer example of Figure A.3 to motivate
the ordering of color palettes. First, to embed in the LSB, the quantizer is divided
into subsets that sparsely cover the entire grayscale space. The gray level of the
embedded image is not correlated to the gray level of the output image. Secondly, to
embed in the MSB, the scalar quantizer is divided into contiguous subsets that divide
the grayscale space into separate, non-overlapping parts. In this case, the gray level
of the embedded image influences the gray level of the output image; that is, a dark
(or light) pixel in the embedded image results in a dark (or light) pixel in the higher
bit-depth image.

Using these insights I develop two preprocessing techniques to order color palettes
for LSB-like and MSB-like embedding. The first technique divides a color palette
into subsets which sparsely cover the entire color space for LSB-like embedding. This
will allow a search of a reduced set of the entire color space to find the best color
representation for each output pixel. The second method, for MSB-like embedding,
jointly orders both the M- and N-word palettes by dividing the N-word palette into
subsets which divide the color space into separate, non-overlapping parts. The M-
word palette is ordered so that each of its indices is a prefix to the subset of codewords
in the N-word palette that occupies the same color space. This will permit the
refinement of the color information of the smaller bit-depth halftone when creating
the larger bit-depth color halftone.

Both of my techniques use Minimum Cost Perfect Matching (MCPM) (3, 65]
from optimization theory, although other techniques, such as Principal Component
Partitioning [74, 83|, can be used in an analogous way. Given a graph of nodes
V1, V2, . .., Vi with associated costs C; ; = Cj; between nodes V; and V; where 7 # j,

the MCPM algorithm creates a perfect matching by minimizing the overall cost, where
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COST = Zf;/f Cij, of %’— pairs of nodes {V;,V;}, where the % pairings are disjoint
and together comprise the entire set of nodes. The complexity of MCPM is approxi-
mately cubic with respect to the number of nodes. Good implementations exist which
are efficient for the preprocessing of palettes especially since the number of nodes is
very small. For a given quantizer @), it is assumed that the codewords g¢; are the
nodes of the graph, and that the costs between nodes are calculated as the increase
in distortion due to merging one codeword with another, C;; = -v:,;,'—:-f-llqi - g;lI* [37).
Note that the costs are weighted squared errors in the given color space and that
the weights W; are the number of training vectors that map into region 7, and that
W;; = W; + W;. Training data are required to compute the weights, and hence the
costs. Ideally, the training data that are used to create the palette should also be

used to order the palette.

A.2.1 Color Palette Organization for LSB Embedding

To embed in the LSB’s, the N-word color palette is divided into subsets where each
subset sparsely covers the color space. I begin by finding the minimum cost perfect
matching for the N-word palette. I create two subsets with -’2‘—' codewords by breaking
up the -’;—' MCPM pairs into two sets. The colors in each MCPM pair can be arbitrarily
assigned to either set. Following the scalar quantizer example I use the following
convention: the node from each pair that is closest to the origin is assigned to one set
and the node that is furthest from the origin is assigned to the second set. MCPM is
recursively applied to the equally-sized sets of codewords until M sets are found.
The Voronoi diagram of two dimensions (green and red) of the three-dimensional
256-word color palette of Section A.3 is shown in Figure A.4. The origin is in the upper
left-hand corner. The two subset palettes with 128 colors that are produced after one
iteration of the ordering algorithm for LSB embedding are shown in Figure A.5. Note
that the two palettes have reproduction values throughout the entire input space and

that, as expected, the Voronoi regions are larger than those for the original palette
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since there are fewer reproduction vectors. It should be noted that the codewords of
these new Voronoi regions are generally not centroids. They are centroids, however,

with respect to the dense Voronoi regions of Figure A.4.

0-= Red > 255

255<—— Green —> 0

Figure A.4: The Voronoi regions of two dimensions (green and red) of the three-
dimensional 256-word color palette of Section A.3. The origin is the upper left-hand
corner.

A.2.2 Color Palette Organization for MSB Embedding

To embed in the MSB’s, both color palettes are jointly ordered so that the index of
each codeword in the M-word palette is the prefix of codewords with like colors in
the N-word color palette. Assuming that there are two palettes of size N = 2¥ and
M = 2K-J the N-word palette is split into M subsets of size &% = 2/ codewords where
each subset covers a separate, non-overlapping region of the color space. To do this, I
begin by finding the minimum cost perfect matching of the N-word palette. I create
one set with %’- codewords by merging the MCPM pairs [37,83]. MCPM is applied to
the reduced-size set of codewords found at each iteration until the resulting reduced-
size set has M members, where each member represents 27 colors. At this time, the

codewords of the N-word palette are indexed to indicate each perfect matching by
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(b)

Figure A.5: The Voronoi regions of the two resulting subset palettes used for embed-
ding in the LSB. The origin is the upper left-hand corner.

prefix. The last step of the algorithm is to assign indices to the M-word palette so
that each color’s index is a prefix to like colors in the N-word palette. MCPM is used
to find a perfect matching between the M-word palette and the M-word set of the
merged N-word palette. This matching correlates the colors of the two palettes, and
final index assignments are made from this. Note that if there are no color palettes
for the first embedding stages, color palettes can be created by using the merged
palettes.

The two subset palettes of Figure A.4 with 128 colors that are produced after seven
iterations of the ordering algorithm for MSB embedding are shown in Figure A.6.
Note that the two palettes have reproduction values in entirely different parts of the
input space and that in the dense regions, except for the edges, the Voronoi regions

are the same as those for the original palette.
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Figure A.6: The Voronoi regions of the two resulting subset palettes used for embed-
ding in the MSB. The origin is the upper left-hand corner.

A.3 Results

A three-dimensional full-search color palette (red, green, blue) with 256 codewords
was created using the generalized Lloyd algorithm [69]. The training images used are
the airplane, baboon, sailboat, splash, and Tiffany 24-bit color images. Using the
same training data, the color palette was ordered for both LSB and MSB embedding.
The two ordered palettes are shown in Figure A.7 where each half, quarter, eighth,
and so on, portion of the palette is a subset used as an embedding quantizer. Note
that the subsets of the LSB ordered palette, Figure A.7(a), have a variety of colors
while the subsets of the MSB ordered palette, Figure A.7(b), have a restricted range
of colors. Grayscale and binary images are obtained by using the Y color component
of the YIQ color space of the image [49]. Uniform scalar quantizers are used for
grayscale and binary error diffusion. The error diffusion mask used is that of [39],
although using optimized filters for certain input devices would likely yield better
results [63,64]. Results shown are for the 24-bit color Lenna image. The 8-bit color

error diffused Lenna image is shown in Figure A.8.
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(b)

Figure A.7: The 8-bit color palette as ordered for (a) LSB embedding and (b) MSB
embedding where each half, quarter, eighth, and so on, portion of the palette is a
subset used as an embedding quantizer. Note that the subsets of the LSB ordered
palette have a variety of colors while the subsets of the MSB ordered palette have a
restricted range of colors.

A.83.1 Results of embedding in the LSB'’s

The results of embedding with an LSB ordered palette are shown in Figure A.9(a)
where binary as well as 2-, 3-, ..., and 7-bit color images are embedded into the LSB's
of an 8-bit color halftone. In general, I find that as the bit depth of the embedded
image decreases, visual results improve. In fact, the 8-bit color error diffused image
with the embedded binary halftone shows no visual difference when compared to the
8-bit color error diffused image. As the bit depth of the embedded image increases,
the output image quality degrades by the introduction of inappropriate colors which
are outside the natural color space. Similar results arise when working with grayscale
images where it is seen that stippling or thumbprint patterns intensify and become
more prevalent as the relative bit depth increases.

The differences in image quality can be explained by recalling that the embedding
quantizers are created from subsets of the N-word palette each of which have color
representations throughout the entire color space. The good visual quality that is

found when M is small relative to N is due to embedding quantizers that densely cover
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Figure A.8: The 8-bit color error diffused Lenna image. The palette of 256 colors was
generated using the generalized Lloyd algorithm with 5 training images.

the entire color space making it possible to find good color representations for any
given input pixel. In effect, this permits the color distribution of the original image
to influence the choice of the N output colors while minimizing the influence of the
distribution of the colors of the embedded halftone on this choice. The poor quality
that results when M is large relative to NV results from the embedding quantizers
having very few color representations across the entire color space. Thus a given
input color pixel may not find a good color representation among any of the M

embedding quantizers.

A.8.2 Results of embedding in the MSB’s

The results of embedding with an MSB ordered palette are shown in Figure A.9(b)
where binary as well as a 2-, 3-, ..., and 7-bit color images (the same used in the
LSB case) are embedded into the MSB’s of an 8-bit color halftone. In general, I
find that as the bit depth of the embedded image increases, visual quality improves.

In fact, the 8-bit color error diffused image with the embedded 7-bit color halftone
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(b)

Figure A.9: The 8-bit color error diffused images containing (from left to right) a
binary halftone, a 2-bit, a 3-bit, ..., and a 7-bit color halftone when (a) embedding in
the LSB’s using the LSB palette arrangement and when (b) embedding in the MSB's
using the MSB palette arrangement.

shows little visual difference from the original 8-bit error diffused image. As the bit
depth of the embedded image decreases, visual quality degrades by the introduction
of “thumbprint” artifacts and unnatural color use. Similar results arise when working
with grayscale images where it is seen that thumbprint artifacts intensify and become
more prevalent as the relative bit depth decreases. It should be noted that for the color
images, the degradation is not continuous as is the case for embedding in the LSB’s,
but that as M goes to 2 the artifacts are present to a lesser extent. Enlarged portions
of the 8-bit color halftone, Figure A.8, and the leftmost images of Figure A.9 are
shown in Figure A.10 to illustrate the difference between embedding a binary image
in the LSB and MSB using both the LSB and MSB palette orderings respectively [44].
Note in particular the introduction of yellow colors on the side of Lenna’s face and

lips as well as bluish specks in the hair and lips when embedding in the MSB’s,
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Figure A.10(c). Again it is seen that embedding a binary image in the LSB causes

little or no visible difference in quality.

(a) (b) (c)

Figure A.10: Artifacts seen in enlarged portions of: (a) the 8-bit color error diffused
image; (b) the 8-bit color error diffused image embedded with a binary image in the
LSB’s using the LSB palette arrangement (the leftmost image from Figure A.9(a)):
and (c) the 8-bit color error diffused image embedded with a binary image in the
MSB'’s using the MSB palette arrangement (the leftmost image from Figure A.9(b)).

The differences in image quality can be explained by recalling that the embedding
quantizers are created by dividing the color space into M separate color regions
linked to the M colors of the smaller palette where the output pixel of the first
stage of embedding selects which of the M embedding quantizers to use. When M
is small relative to N, the color space is crudely divided into a few quantizers with
a large number of output levels in one section of the color space. As there is little
color information in the embedded halftone, an input pixel cannot always find a good
color representation since the pixel color may not be in the same color space as the
embedding quantizer. However when M is very small, such as 2 or 4, there may be
so many color representatives in each embedding quantizer that it is possible for a
reasonable color match to be found most, but not all, of the time. The good results

that arise when M is large relative to NV, are due to the M embedding quantizers
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representing a very small portion of the color space, and there being much color
information in the embedded image. Each pixel color of the embedded image directs
the choice of output image colors to a similar color. In effect, this permits the color
distribution of the smaller bit-depth halftoned image to influence the choice of the N
output colors while minimizing the influence of the color distribution of the original
image. Thus, if the embedded image looks good, the color halftone containing it will

look good as well since it is a refined version of the embedded image.

A.8.8 Limitations to Color Palette Use

Note that for the scalar quantizer example, embedding can be done in both the
MSB'’s and LSB’s when using the same ordered scalar quantizer. This implies that
a color palette, when ordered for either MSB or LSB embedding for all embedding
possibilities (e. g. an 8-bit palette ordered for embedding any of 1-, 2-, ..., or 7-bit
images), could be used to do both MSB and LSB embedding too. If the palette were
designed for LSB embedding, it would be necessary to correlate the colors of the
smaller palettes to the MSB subsets of the larger LSB ordered palette, and this could
be done by using the centroid of each larger subset. Alternatively, LSB embedding can
be done directly off of the MSB ordered palette. In practice however, it is not possible
to use an LSB ordered palette to do embedding in the MSB since the recursive creation
of quantizers that span the color space destroys any groupings of similar colors which
are originally found by MCPM. It is possible to use an MSB ordered palette to do
embedding in the LSB, since the similar color groupings easily break down into LSB
subsets that have colors throughout the entire color space. In fact, since MCPM
is used as the first step of both palette ordering techniques, the LSB subsets for
embedding a binary image are identical for either ordering technique. However, in
this case, the color image quality degrades much more rapidly as M increases than
when embedding in the LSB’s using a palette ordered for LSB embedding. Since

color palettes have no natural ordering, the results vary for each ordering imposed.
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The best results are achieved by using palettes which are ordered for the desired
embedding scheme.

A.3.4 Limitations to Embedded Error Diffusion

I next discuss limits to the amount of embedding that can be done in a single im-
age. To embed as many halftones as possible, an N-level “fully-embedded” error
diffused image [44] could be produced, which contains the %—, %’--, ..., and 2-level
fully-embedded error diffused images, where N = 2K so that if one bit is removed
from the N-level output image, the %—level fully-embedded error diffused image is
preserved. To generate this image, K = log,(/N) stages of embedding must be done
where the embedding quantizers at each stage have only two output levels. Color
image generation by a series of thresholding operations makes little sense. However,
fully-embedded grayscale images can be created, and these can be embedded into
a color halftone. For example, a 16-level fully-embedded grayscale image could be
embedded into the LSB’s of an 8-bit color image. This would be useful for progres-
sive transmission as well as for a browsing system where different types of color and
grayscale monitors (2-, 4-, 16- or 256-level displays) would be used to view the image.

When making fully-embedded grayscale images, the best results are obtained when
embedding only in the MSB’s. This produces an image that retains some of the
thumbprint artifacts of binary error diffusion but is of good visual quality, improving
with each successive level of embedding. This can be viewed as a refinement of the bi-
nary image as the bit-depth increases. The thumbprint artifacts are retained because
the multilevel image is always dark (light) where the binary image is black (white).
The worst results are obtained when full embedding is done in the LSB’s, which
produces a grainy image that gets worse with each successive level of embedding.
Other combinations of LSB/MSB embedding at different stages of the algorithm pro-
duce images that vary in quality between the MSB’s-only embedded image and the
LSB’s-only embedded image.
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A.4 Conclusions

I have presented an algorithm for embedding the output of binary Floyd and Steinberg
error diffusion into the output of grayscale and color error diffusion; for embedding
grayscale halftones into higher bit-depth grayscale and color halftones; and for em-
bedding color halftones into higher bit-depth color halftones. I have also presented
preprocessing algorithms to organize color palettes for effective use of the color space
when embedding halftones into color halftones. I have shown that embedding rel-
atively small halftones works best for grayscale and color images when the N-word
palette is ordered for LSB embedding, and that embedding relatively large halftones
works best when the N-word palette is ordered for MSB embedding.

To embed an M-level halftone into an N-level halftone with good visual results, I
draw the following conclusions. If M is small relative to N, the N-level palette should
be ordered in an LSB-like arrangement where palette subsets have colors throughout
the entire color space. The M-level image has little color or grayscale information
which can be used, so it can easily be hidden in the N-level halftone. If M is large
relative to N, and the smaller bit-depth image is a grayscale image while the larger
bit-depth image is color, then the M-level grayscale halftone has a relatively large
amount of grayscale information which cannot be easily integrated into the color
halftone, and there is no clear solution. However, if both halftones are to be color (or
grayscale) images, then the palette should be ordered in an MSB-like arrangement
where subsets divide the color space into separate, non-overlapping parts. The M-
level halftone has color information which can be used to create an N-level image

that is a refined version of the M-level image.
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