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Abstract

Electromagnetic Wave Propagation and Scattering
in Dense, Discrete Random Media

with Application to Remote Sensing of Snow
by Lisa M. Zurk

Chairperson of Supervisory Committee: Professor Leung Tsang

Electrical Engineering Department

This dissertation investigates wave propagation and scattering in dense, discr_ete ran-
dom media using Monte Carlo simulations and analvtic dense media theorv. The
Monte Carlo simulations use an exact numerical formulation based on the Foldy-Lax
multiple scattering equations that allow computation of the incoherent field arising
from scattering and absorption in systems of up to 5000 spheres with 40% fractional
volume. The extinction coefficient obtained by simulation is compared to that ob-
tained under classical methods and with dense media theory such as quasi-crystalline
approximation (QCA) and quasi-crystalline approximation with coherent potential
(QCA-CP). For dense media, the independent scattering approximation overestimates
the amount of scattering while scattering calculated under QCA-CP agrees well with
both simulation and carefully controlled experiment. At high fractional volumes the
simulations predict.a slightly larger extinction than QCA-CP. Monte Carlo simu-
lations also predict the presence of absorption enhancement where the absorption
coefficient exceeds that predicted under the independent absorption assumption.

The application of remote sensing of snow utilizes dense media radiative transfer




(DMRT) theory to predict the redistribution of radiant energy. Monte Carlo simu-
lations provide a means to accurately determine the quantities necessary for DMRT,
namely the extinction coefficient, absorption coefficient, phase matrix and effective
permittivity. The phase matrix thus obtained differs from the classical assumption by
containing non-zero off-diagonal elements while the effective permittivity agrees well
with mixing formulae. A second order iterative solution to DMRT produces bi-static
scattering levels that are comparable to those seen in actual snow data.

The effect of the scatterer placement on the electromagnetic wave is investigated
by modeling the adhesive character of the particles that causes them to clump together
with a sticky-particle pair distribution function. The adhesive character may provide
2 more.accurate depiction of particles that exist in clusters (for example snow grains).
The effect of the sticky-particles on the electromagnetic wave is calculated analytically
using QCA and numerically with Monte Carlo simulations with both predicting much
stronger scattering due to the larger particles. Snow sections prepared stereologically
are analyzed to determine a family of pair distribution functions that can be used to

calculate the scattering from a log-normal distribution of particle sizes.
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Chapter 1

INTRODUCTION

This dissertafion investigates the correlated scattering in densely packed, dis-
crete random scatterers using Monte Carlo simulations and analytic dense media
theory. Simulation results are compared with those obtained under classic methods
and with dense media theory such as quasi-crystalline approximation (QCA) and
quasi-crystalline approximation with coherent potential (QCA-CP). For the applica-
tion of active microwave remote sensing of snow covered regions, the Monte Carlo
results are used to determine the scattering coefficient, absorption coefficient, effective
permittivity and phase matrix for use in the dense media radiative transfer equations.

To investigate the effect of the scatterer placement on the electromagnetic wave
a sticky-particle pair distribution function is introduced which includes the adhesive
character of the particles that causes them to clump together. This adhesive char-

-acter may provide a more accurate depiction of particles that exist in clusters (for
example snow grains). The effect of the sticky-particles on the electromagnetic wave
is ‘ca,lculated analytically using QCA and numerically with Monte Carlo simulations.
To generate a more realistic description of snow, snow sections prepared for stere-
ological analysis are used to determine a family of pair distribution functions that
contribute to the scattering.

This chapter contains a brief review of the pertinent formulations in dense media
theory followed by a description of snow as a random media. The last section of the

chapter provides an overview of the remaining sections of the thesis.




1.1 Electromagnetic Wave scattering in Dense, Discrete Media

In general, a random medium can be described as either a collection of scatters
distributed within a background medium, or as a continuous random medium with
a large dielectric variation. The latter case is called the “random-medium” model
where the material has dielectric properties that vary smoothly and randomly in
space. Scattering of the electromagnetic wave is due to the randomly fluctuating
part of the permittivity, and the spatial variability is described statistically. Strong
fluctuation theory is an example of a random media model which has been applied
to remote sensing problems [73, 74, 77).

This research will utilize the “discrete scattering” model where the randomly lo-
cated dielectric variations are treated as discrete scatterers and the geometric organi-
zation of the particles is introduced into the model. A dense discrete random medium
is one in which the randomly distributed scatterers occupy a significant portion of
" the volume (more than a few percent by volume). Dry snow is an example of a dense
media in which the fractional volume of the scatterers (ice grains) is between 10%
and 40%. The discrete scatterer model has been used to compute scattering from a
half-space of scatterers [80] and to determine thermal emission from snow [29)].

To calculate scattering from an ensemble of particles the classic assumption is
that of independent scattering, which states that the extinction rate is ngo., where
ng is the number of particles per unit volume and o, is the extinction cross section
of an individual particle [38]. An important feature of a discrete random medium .
with densely packed scatterers is that the correlation of the particles’ positions af-
fects the scattering physics and invalidates the independent scattering assumption.
This has been shown both experimentally {39, 44, 47] and theoretically [89, 92]. Like-
wise, Foldy’s approximation [31], which has been successful in propagation problems
through tenuous medium, is not applicable. This is because the dense scatterer pack-

ing gives rise to correlated scattering between the particles and dense medium theory




that includes these effects must be used for accurate results.

Calculations made with the dense media quasi-crystalline approximation (QCA)
and quasi-crystalline approximation with coherent potential (QCA-CP) [81] take into
account the interaction of the electromagnetic waves between correlated particles.
The formulation uses bivariate particle statistics, or a pair distribution function, to
provide a rigorous mathematical description of particle placement. (Some details
of QCA and QCA-CP are given in section 1.1.2.) The pair distribution function
expresses the non-penetrable nature of the particles and the constraints on their
position in a densely packed system. The Percus Yevick approximation [60] has been
used extensively in the past for both single and multi-size systems [22] to model
non-penetrable particle systems. Careful experiments [39] and numerical simulations
[85],[50] show that QCA and QCA-CP gives good agreement in dense media where
the independent scattering approximation no longer holds true. There are other
formulations of multiple scattering such as the Effective Medium Approximation [66]

which was developed for the description of electronic states in amorphous metals.

1.1.1 Monte Carlo Simulations

Extensive work on scattering from a single object prompted investigation into the
more complicated consideration of random distributions of scatterers. Early work
by Foldy [31] introduced the concept of “configurational” averaging for random scat-
terers and Lax [49] generalized the idea using a quantum mechanical formulation.
The formﬂation of multiple scattering equations for random scatterers was further
advanced by work of Waterman [96, 30, 97] and Twersky [87, 88], among others. The
resultant multiple scattering equations express the scattered field from an arbitrary
number of particles in terms of the incident excitation by applying the extended
boundary condition technique with T-matrix formalism. For spherical scatterers, it
is convenient to represent the fields with spherical vector waves as basis functions [55]

which can be manipulated through the aid of spherical wave transformations.




The multiple scattering equations express Maxwell’s equations in a numerically
exact form appropriate for computation. Monte Carlo simulations can utilize this for-
mulation to calculate the extinction coefficients of a system of randomly distributed
densely packed spheres. The formulation is numerically exact and contains no ap-
proximations, but can be computationally expensive - especially for large numbers
of spheres. Chew et. al. has solved these equations for a few hundred spheres using
a recursive aggregate T-matrix algorithm method (RATMA) [95]-{12]. Tsang et. al.
used an iterative formulation to compute extinction rates for fractional volumes up
to 25% [85). In this dissertation we present results calculated from systems of up to
5000 spheres and fractional volumes up to 40% for both clustered and non-clustered
geometries. In addition, we use the results of the simulations to determine additional
characteristics of the random media such as the absorption coefficient, phase matrix
and effective permittivity. Chapter 3 presents the multiple scattering equations and

details of the Monte Carlo simulations.

1.1.2 QCA and QCA-CP

Throughout this thesis scattering calculations based on QCA and QCA-CP are pre-
sented. This section contains a brief overview of the pertinent equations.

The QCA expression for the average Green’s function can be put into the form [81]:

=-1 = -1
G) = {Go' (7) — nTs(p,7)] (L1
where G='o is the dyadic Green’s operator of the background medium with propa-

gation constant k = w, /i€, and

0, =T, +no f drih(F - 75)T;GoC (1.2)

with the operator ﬁ as the single particle transition operator associated with

particle [, h(7) = g(F) — 1 is the correlation function, (g(7) is the pair distribution




function), and ng is the density of the particles. The effective propagation constant

can be calculated by solving the equation :

et B ) - nBmp)] =0 (1.3

When particle concentrations are large, the coherent wave will propagate with an
effective wavenumber K, and the scattering potential will result from the difference
in wavenumber from K to k. In the coherent potential (CP) approach, the idea is to
introduce a Green’s operator with wavenumber K instead of using the dyadic Green’s
operator of the background medium. In the CP formulation, the mean Green’s oper-

ator can be expressed as [81]

E(G) = G, = Go + noGo / FE,-E( ) (1.4)

where E() denotes the expectation operator, and with the coherent operator 6‘1-

and the modified transition operator i given in operator form by
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(1.5)
4 o= TU,+U,G.% (1.6)

In (1.5), h(7; — 7;) once again denotes the correlation function. The dispersion

relation for QCA-CP is -

(5) - noCy(B,)| = 0 (1.7)

=-1

det |G,

Computation of the effective propagation constant using QCA-CP requires solu-

tion of (1.7), which involves solving (1.5) for 6’,,(?,75) and (1.6) for }. In the low
frequency approximation, the solution for 1is [81],[23]
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Solving (1.5) and (1.7) gives a nonlinear equation for the effective propagation

constant :
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Using the expression for ;f\m given in 1.10, an expression for ¢ can be computed,
in which only the leading term of the real part and the leading term of the imaginary

part need to be retained. This gives a nonlinear dispersion relationship of

K=k +nyc L (1.13)

which can be solved iteratively.

Transport theory, also called radiative transfer (RT) theory, describes the transfer
of radiant energy through a medium containing particles [§]. In transport theory it
is assumed that there is no correlation between the field and that the addition of
intensities is valid. For dense media the particle densities introduce correlated scat-
tering that must be taken into account. The radiative transfer equations for dense

media can be derived from analytic wave theory [86], [83] and are called radiative



wave equations to distinguish them from the classical case. The derivations are based
on QCA-CP for the first moment of the field and a modified ladder approximation on
the second moment of the field. The reason for choosing QCA-CP over QCA is that
the former is energetically consistent with the modified ladder approximation, and
the integrated optical relation is satisfied. The radiative wave equations resemble the
classical transfer equations in form, but the albedo and extinction rates incorporate
the effects of dense media. In [82] the low frequency solution to QCA-CP is used to
calculate the extinction coefficient of spherical particles (fractional volume of 30%)
and compute passive microwave signatures. The dense media radiative wave equa-
tions predict a much smaller albedo, and thus larger brightness temperature than the

-conventional transfer theory.

1.2 Application to Remote Sensing of Snow Covered Regions

Remote sensing is a valuable tool in obtaining information on snow covered regions.
Knowledge of the depth, nature and water content of snow is important for applica-
tions of hydrology, snow mechanics, and global climate monitoring. This information
is difficult to obtain by direct measurement since travel and transport of instruments
to many regions of interest is laborious and costly. The use of satellite data provides
measurements from many otherwise inaccessible areas, and' gives repeated coverage
over time. In addition. microwave sensors are not affected by cloud covers and can
penetrate snow packs to recover information on the internal snow properties.

To utilize the information provided by microwave remote sensing, the electromag-
netic properties of snow needs to be well understood requiring an understanding of
the dielectric properties of snow and a model of the ice and air that comprise the
snow. The following section provides a brief overview of some of the physical and
electrdmagnetic properties of snow necessary for the consideration of snow as a dense

media.




1.2.1 The Snow Medium Model

In this dissertation, only dry snow, or snow in which the liquid water content is
negligible, is considered. This simplifies the description of snow to that of ice grains

in an air background. Snow is a non-tenuous random medium since the relative

" dielectric constant of ice differs significantly from that of free space. At the microwave

frequencies, the real part of the permittivity of ice is about 3.2, and the imaginary
part ranges between 10~ and 0.05 depending on temperature and frequency. -

The appropriate electromagnetic model for snow depends on the relationship be-
tween the wavelength A and the size of the ice grains that form the snow. For low
frequencies, when the ice grains are very small relative to A and scattering can be
ignored, the snow can be regarded as a mixture whose macroscopic dielectric constant
€ = €' +1€” can be computed through use of mixing formulae. These formulae define ¢
in terms of the permittivity of the ice particles and that of the air, and the fractional
volumes (or densities) occupied by each.

Many mixing formulas have been devised, including the theory for spheres by
Maxwell-Garnet [54], the extension to ellipsoids proposed by Bohren and Battan (7],
and the equation of Polder and van Santen [62]. The applicability of these formulae
to snow is examined in detail by Matzler [53] who finds the accuracy of the theories
depends on the nature of the snow (i.e.,. new snow, depth hoar, refrozen crusts, etc.)
and oﬁ the ability to determine the parameters of the mixing formulae such as shape
factors.

For higher frequencies, scattering from the ice grains plays an important role in the
microwave characteristics of snow, and the mixing formulae may not be applicable.
In this regime, the microstructure of the snow must be considered. According to [13],
the grain size for snow crystals varies between 0.2 mm. (very fine) and 5 mm. (very
coarse), with the average grain on the order of a millimeter. For the microwave regime,

this can correspond to scatterers whose sizes range from a fraction of a wavelength




$55GHz = 53GHz

Figure 1.1: Ilustration of snow grain size vs. microwave wavelength

to comparable to A, as illustrated in figure 1.1.

Snow that has metamorphosed has very different characteristics than fresh or
“new” snow. The ice crystals lose their original dendritic structure and facies, and
become more rounded in shape. Deposited snow increases in density as the grains
grow and form “necks” with neighboring particles. Much research has been done to
understand the Sintering process ([43, 37, 46, 33, 16]). The result of these destructive
processes is the presence of clusters or aggregations of ice grains than can have a

pronounced effect on the nature of the electromagnetic scattering.

1.3 Overview of this dissertation

Following the short introduction given in this chapter, Chapter 2 describes the sticky
particle pair distribution function which can be used to model clustered spheres.
A closed form solution is derived and used in QCA and QCA-CP to calculate the
extinction from systems of clustered particles. The higher levels of scattering from
sticky particles are used to explain experimental results of light scattering from silica

particles. The chapter concludes with a comparison of scattering from sticky particles
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and scattering from a size distribution of spheres.

In chapter 3 we calculate the scattering from sticky and non-sticky spheres us-
ing Monte Carlo simulations in which the spherical scatterers are deposited with
an adhesive potential that results in clustering. The simulations use a numerically
exact formulation of the multiple scattering equations that is solved exactly for a
large number of spheres and up to 40% by volume. The convergence of the iterative
solution gives physical insight into the importance of the higher orders of multiple
scattering and results from higher fractional volumes are compared with QCA-CP. In
addition to the scattering coefficient, the absorption coefficient is calculated from the
incoherent electromagnetic field. As the fractional volume of the scatterers increases,
the phenomenon of absorption enhancement occurs where the absorption coefficient
is greater than that predicted by the classical assumption of independent absorption.

Chapter 4 continues to utilize Monte Carlo simulations to calculate the properties
of the dense media. In addition to the extinction coefficient, the phase matrix and
the effective permittivity are derived from the electromagnetic field within the test
volume. These quantities are needed for the solution of the radiative transfer (RT)
equation which is used to describe the transfer of radiant energy from a half-sphere of
spherical scatterers. The RT equation can be applied to microwave remote sensing of
snow covered terrain and the results compared with data. The level of the co-polarized
and de-polarized bistatic scattering predicted by the RT equation depends strongly on
the assumptions used to derive the scattering properties. The second order iterative
solution of the RT equation with quantities obtained from Monte Carlo simulation
can explain the level of microwave backscatter observed experimentally.

The last chapter of this dissertation is concerned with the stereological analysis
of snow cross sections with the objective of recovering the pair distribution function.
A log-normal distribution describes the ice grain diameters and the parameters of
the distribution are obtained from section data. The sections are used to obtain an

area pair distribution function (2-D) which allows for retrieval of the total volume
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pair distribution function from inversion of an integral equaﬁon. The recovered pair .
distribution function can be decomposed into a family of functions related to particle
radii by a least squares model fit. This process is controlled by a set of physically
meaningful set of rules which govern the function selection. The scattering is calcu-
lated from the family of pair functions and from a hole correction approximation for

the larger sizes.




Chapter 2

STICKY PARTICLES

In this chapter we consider scattering from systems of densely distributed, non-
tenuous spheres that exhibit surface adhesion. These particles are not randomly
organized but have a tendency to form clusters and bonds with each other. This seems
appropriate for geophysical media such as snow where the ice grains form bridges as
metamorphosism occurs. The clustering potential is modeled using the Percus-Yevick
pair distribution formulation with spheres displaying surface adhesion. The adhesive
force is parameterized in a variable T which governs the degree of clustering. The
pair distribution function has a closed form analytical solution and is used in the
quasi-crystalline approximation (QCA) and the quasi-crystalline approximation with
coherent potential (QCA-CP) to derive a low frequency solution to the dense media
scattering problem.

Scattering calculations using QCA-CP with sticky hard spheres are compared
with experimental results in section 2.3. The experiment involved light scattering
from colloidal silica particles suspended in a solvent background. The comparison
with theory shows that the experimental data can be explained by assuming the silica
particles have some adhesion, but cannot be explained without this assumption. In
essence, the clustering of the particles effectively produces larger particle sizes and
increases scattering in the low frequency regime. The sticky particle pair function
has been used by other researchers to explain x-ray scattering from aggregated gold
colloids [21].

We investigate the concept of an equivalent particle size for the clusters in sec-

tion 2.4. In this section, we show attempts to reproduce the scattering nature of the
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sticky particles by larger non-sticky particles and distributions of non-sticky particle
sizes. The result of these attempts is the inability to match the scattering behavior of
the very sticky particles. The particle clusters are irregular in geometry and cannot
not be matched by larger non-sticky spheres. In view of this conclusion it seems es-
sential to consider the organization and clustering of adhesive particles in scattering

calculations.

2.1 Pair Distribution Function of the Sticky Sphere in the PY Approx-

imation

We shall consider a system consisting of non-penetrable, spherical particles of diam-
eter d with a non-zero surface adhesive force, i.e. sticky hard spheres (SHS). In this
model, the interaction between two particles is of very short range, with the nature of
surface adhesion, and it is strong enough to bind the two particles when they contact

each other. The SHS model is characterized by an interparticle potential, u(r), given

by.[4] :

00 forf<r<s
u(r) = 11121((%"—sl fors<r<d (2.1)
0 forr>d

provided that a limit is taken in which the range of interaction becomes infinitesimal

and, simultaneously, its well depth infinite, in such a way that

d
i —gle ) = — 9
ll_:g(d s)e o7 < 00 (2.2)

with d and 7 being held fixed. The parameter 7 in (1) is dimensionless, and its inverse

is a measure of the attraction or stickiness between particles. The case of 7! =00

corresponds to infinite stickiness and 77! =0 corresponds to non-sticky particles.
The pair distribution function g(r) measures the probability of finding a particle

at a point r given a particle at r=0. The total correlation function h(r) between a
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pair of particles is defined as
(r) = o(r) -1 23)
The direct correlation function ¢(r) between a pair of particles, which is short-ranged,

is related to h(r) by means of the Ornstein-Zernike relation [5],[6],[35):
h(r) = olr) +n [ & oo”) (7 — 7)) (2.4)

where n is the number of particles per unit volume. Equation (2.4) indicates that the
total influence of a particle on another particle in the presence of remaining particles
can be decomposed into a sum of the direct effect and the indirect effect through
other particles. .

Under the Percus-Yevick (PY) approximation [35],[60], when the potential u(r)

vanishes, so does ¢(r), thus :

e(r)=0 forr>d (2.5)

Also, since the particles are non-penetrable, the pair distribution function g(r)
is zero when r < s. Hence, h(r) = =1 as r < s (see equation 2.3). The behavior of
function h(r) is more complicated in the region s <r <d. It can be seen from (1) that

h(r) will have a delta-function singularity when s — d. In this limit, we have

h(r)=-1+ %5(1‘ -d) forlO<r<d (2.6)

where t is a dimensionless parameter to be determined later. The parameter ¢ tends

to zero in the limit 77!

=0. The PY approximation of the pair distribution function
g(r) for the sticky spherical particles as described by (2.1) can be solved analytically
using the factorization method of Baxter [5],[6].

The Ornstein—Zernike relationship (2.4) can be Fourier transformed to obtain a

convenient algebraic equation:

1-nC(p) = {1 + nf{(p)}_1 (2.

o]
-~7
~—
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where H(p) and C(p) are the three dimensional Fourier transform of h(F) and ¢(7),
i.e.,
i@ = / dF 67" h(F) (2.8)
6@) = j dF €77 ¢(F) (2.9)
Because of the spherical particle assumption, the transform only depends on p= B

According to the Wiener-Hopf technique due to Baxter {5],[6], the left-hand side of

(7) can be factorized into the form
1-nC(p) = Q(p)Q(-p) (2.10)
where Q(p) is defined by
O(p) =1 -2mn /O * dr e Q(r) (2.11)

and Q)(r) is a real function, Q(r) =0 for r >d. Explicit relations between Q(r) and
¢(r) and h(r) can be obtained by substituting (2.8)-(2.9) and (2.11) into (2.7) and
(2.10), and taking the inverse Fourier transforms [5],[6]. It is found that

.
re(r) = -Q'(r) + 27rn/r dz Q(z)Q(z —r) (2.12)

for 0<r<d, and
th(r) = —=Q'(r) + 2mn /Od dz (r — z)h(|r — 2])Q(z) (2.13)

for >0, where Q'(r) is the derivative of Q(r). For sticky particles, equations (2.6)

and (2.13), in the range 0 <r <d, give rise to a closed-form expression for Q(r):

2

Q(r)=A>+Br+D (2.14)
where
_l+2f—p
A=y (2.15)
p= 3 tmd (2.16)

21— J)?




16

d? td?
D=-As—Bd+ o (2.17)
T
f= Es-nd?' (2.18)
p=tf(1-f) (2.19)

The direct correlation function ¢(r) can be evaluated from (2.12) by using (2.14).
For a given volume fraction f and stickiness parameter T, the parameter ¢ is

determined by the quadratic equation [4],[3]

o f 1+f/2 _
12t (r+ 1 _f)t+ =" 0 (2.20)
When 7 is greater than a value
2—v2
Te=—r— (2.21)

there are two real solutions for ¢ throughout the permissible fractional volume range
0 < f < 1. Below this value there exists an intermediate range of volume fractions
within which there are no real solutions for t. Moreover, a further condition to

determine the solution of ¢ is that ((0) must be positive, or [41,03]
p<ltof (2.29)

The procedure for calculating the pair function is as follows. Given the particle
diameter d, particle concentration f, and particle stickiness 7, the parameter ¢ is first
determined from (20)-(22). By using the parameter ¢ and equations (14)-(19), Q(r)
for 0 <7 <d can be computed. Then the Fourier transform Q(p) is calculated by
using (11), and C(p) is evaluated by using (10). Next, H(p) is computed by solving
equation (7). Then h(r) is obtained by taking an inverse Fourier transform of H(p)
according to (8). Finally, the pair distribution function g(r) can be calculated from
(3).

In Fig. 2.1, the pair distribution functions are shown for systems with sticky
particles of identical size, 7=0.2 and 7=0.5, and compared with the non-sticky case

for f=0.3. The major features for the pair distribution functions of sticky particles
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Figure 2.1: Percus Yevick Pair distribution function for sticky spheres with 7 = 0.2

and 7 = 0.5, and for non-sticky spheres and f=0.3.
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Figure 2.2: Percus Yevick Pair distribution function for sticky spheres with f = 0.2

and f = 0.4 and stickiness T = 0.2.
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are the occurrence of discontinuities at the particle separation equals one and two
diameters. The discontinuity at r=d is because the particles can not penetrate each
other. The height of the peak at r=d grows rapidly with the increasing of particle
stickiness while the width of this peak reduces, which shows a stronger connectedness
between particles as particles getting more sticky, and other particles are more likely
to be excluded from the region d< r< 2d. Therefore, in a dense medium with sticky
particles; the sticky particles tend to aggregate together. The discontinuity at r=2d
arises from the fact that for r > 2d, the integrand in the integral of (2.13) does not
include the contribution of the delta function of (2.6), while for r < 2d, the delta
function is included. Ph)lfsically, when the separation between two particles is larger
than twice the diameter, the probability of these two particles bound or connect to
a third particle drops to zero. In Fig. 2.2, the pair distribution functions are plotted
for f=0.2 and f=0.4, with stickiness + =0.2. For higher concentration of sticky
particles, the pair distribution function displays more fluctuations just as the case of

non-sticky particles.

2.2 QCA-CP Calculations with Sticky Particle Pair Function

A dense medium is comprised of an appreciable fraction of scatterers. It has been
shown that the assumption that particles scatter independently is invalid for dense
media. The quasicrystalline a,pproximation‘with coherent potential (QCA-CP) takes
into account the coherent scattering between particles. In this section, the dispersion
relationship for QCA-CP is giiren, and the solution with the sticky particle pair
function described in section 2.1 is illustrated.

The dispersion relationship for (QCA-CP) is [76],[81] :

det |G, (B) - noCo(7,B)| =0 (2.23)
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Y
where the coherent operator C; and the modified transition operator ¢ are given

>

in operator form by

C; = ti+no [drt;Goh(m —75)Cn (2.24)
4= U,+0,G3; (2.25)

with ng the number density of the particles, G. the coherent Green’s operator,
and ﬁj the scattering potential operator associated with the jth scatterer. In (2.24),
h(7; —7;) denotes the correlation function and is given by (2.3) for the Percus Yevick
approximation.

Computation of the effective propagation constant using QCA-CP requires solu-
tion of (2.23), which involves solving (2.24) for ap(ﬁ,jo') and (2.25) for ? In the low

frequency approximation, the solution for tis [81],[23]

2o(B, ) =tm vI (2.26)

where v is the particle volume and

A

tm

3K 9 [1 + i%l{%ﬁ z?] (2.27)
K2
3K+ (R — )

with k; is the wavenumber of the jth scatterer, a is the particle radius, and K is

= (2.28)

the effective wavenumber of the random media.

Solving (2.24) and (2.23) gives a nonlinear equation for the effective propagation

constant :

= _

Ci(pp) = €I (2.29)
A Al 2,

U0 b +f P [é’ﬁ* St [“arlgr) -] (230)

o>
il
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where f is the fractional volume of the scatterers and g(r) is the pair distribution

function.
A
Using the expression for t,, given in (2.28), an expression for ¢ can be computed,

in which only the leading term of the real part and the leading term of the imaginary

part need to be retained. This gives a nonlinear dispersion relationship of

K*=F +ngc (2.31)

which can be solved iteratively.
The dispersion relationship depends on ¢ which depends on the integral of [g(r) —

1]. This can be expressed as

[ drla®) - 1= Ep=0) (2.32)

with H as given in equation 2.8. Using the relationship between C(p) and H(p)
given in (2.7), equations (2.14)-(2.19) can be used with (2.12) and (2.9) to give an

expression for the integrand when the particles have surface adhesion.

. 2.3 Comparison with Results from Turbidity Studies

The concept of sticky particles has been explored by Penders and Vrij [58] in a
interpretation of turbidity studies on colloidal silica particles. In these experiments,
results from light scattering off of high concentrations of silica particles is explained
with the sticky particle pair function described in section 2.1. Jansen et. al. [41]
perforrhed the experiment using three samples of stearylsilica particles with different
.polydispersive radii. Penders and Vrij compared the measured turbidity (attenuation

of a light beam by scattering when passing through a sample) to results obtained by

calculation.
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2.3.1 Description of the Turbidity Study

Details of the experimental procedure are given in [41]. The synthesis entailed mea-
surement of turbidity from three different silica particles at varying volume:concen-
trations. Penders and Vrij [58] interpreted the turbidity data using theory based on
the adhesive hard spheres model outlined in section 2.1. Turbidity (r,) is defined by

the Lambert-Beer relation :

7o = 1" n(lo/I) (2.33)

where I is the incident intensity, I; is the transmitted intensity, and { is the light
path in the samples. For a monodispersive case where the reduction of transmitted
intensity is caused solely by scattering the following conservation law relates turbidity

and scattering :

- /0 " R(K)sin(6)d0 (2.34)

where

K = (47n/Xo) sin(6/2) (2.35)

and R(K) is the Rayleigh ratio for unpolarized light, K is the scattering wave
vector, § is the scattering angle, n is the refractive index of the sample, and ) is
the free space wavelength. From the Rayleigh-Gans-Debye (RGD) theory of light

scattering for unpolarized light :

R(K) = K*e¢MP(K)S(K)(1 + cos(6)?) (2.36)

where
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K* = 2r*n®(dn/dc)? /N \& (2.37)

and N, is Avogadro’s number, ¢ is the weight concentration, and M is the molar
mass of the particles. The form factor P(K) accounts for the interference of light
scattered from different parts within one particle. For not too large particles (radius

< 50nm for visible light) the form factor can be expressed as :

P(K)=1-K’R}[3 (2.38)

where R, is the optical radius of the particles.
The structure factor S(L') accounts for the interference of light scattered from

different particles. It is given by :

sin(Kr) ,

S(K)=1 -|-47rp/0m[g(r) —-1] T dr (2.39)

where p is the number density, r is the distance between two sphere centers, and
9(r) is the radial distribution function defined by equation (2.3). Thus the structure
factor includes the interaction between colloidal stearylsilica particles in the form of
a hard-sphere potential with surface adhesion.

Equation 2.39 can be expanded in terms of K, and terms linear to particle con-
centration retained. Substituting this result into equation 2.34 and carrying out the

integration gives :

= HeM [1-§(&R¥)2] (2.40)
3 Mo

x{1—¢[8—§—§(4—%)(%1)2]} (2.41)
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Penders and Vrij approximated this equation to obtain an equation useful for a
first measure of T (stickiness) in their analysis. This equation for 7, was used to fit

turBidity data from experiment :

r, = HeM [1 - g(”—’;-fi)z] (2.42)
X exp {-—q& [8 - ;2_- - %(4 - 3%_) 7—%({)2]} (2.43)

- From the-above equation, it follows that the slope of In(7,/c) vs ¢ gives the
stickiness parameter 7. Using this value and the assumption that the particles were
polydispersive hard spheres with mutual attraction, particle radii matching measured
values were obtained. In contrast, if the stearylsilica systems were modeled without

interparticle attractions, unrealistic radii for the particles resulted.

2.3.2 - QCA-CP with the Adhesive Particles applied to the Turbidity Study

The three stearylsilica particle dispersions used by Jansen et. al. in his turbidity
study were modeled using the QCA-CP multiple scattering theory with adhesive
hard spheres (see Section 2.2). The parameters are given in Table 2.1, where the
values for 7 are those for best agreement with QCA-CP. The He-Ne laser had a free
space wavelength Ag of 632 nm, and the fractional volume of the silica scatterers was
varied from 0-40 %.

Figure 2.3 shows the turbidity as a function of fractional volume for the three
particle species, with the stickiness given by the values of 7 in table 2.1. As ex-
pected, the scattering increases as the particle radius increases. It reaches a maxi-
mum around 15 % fractional volume. This agrees qualitatively with the simulations
of Penders and Vrij, although for the larger size particles they predict greater scat-
tering as a function of 7 than that obtained using QCA-CP. This might be due to
their use of the Rayleigh-Gans-Debye (RGD) approximation. Under the RGD (also
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Figure 2.3: Turbidity vs. Fractional Volume calculated with parameters in Table
using QCA-CP-SHS
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Table 2.1: Parameter Values
QCA-CP-SHS Calculation Parameters

Particles SE2 SJ9 SJ4

n| 1437 1.433 1.425

| 2065 2053 2.031

Radius (nm) 372 30.9 184
ka| 0711| 0.563| 0.386

T 1.0 0.9 L5

Solvent toluene | toluene | benzene
ns | 149| 1.49| 1.494
es| 2220 2220 2.320 |-

called the Born approximation) the internal field is approximated by the incident
" field. The validity of the approximation depends on the diameter of the scatterer,
incident wavelength, and the dielectric constant of the material. However, if there
is a tendency of the particles to form large, connected and complex chains, it is not
clear if this approximation will hold.

Penders and Vrij estimated the stickiness for the SE2 particle to be 7 = 2.5. The
amount of turbidity seen from sticky particles such as these is more than would be
seen from the same particles with no intermolecular attraction. Figure 2.4 illustrates
this point. It shows six turbidity curves calculated using QCA;CP for non-sticky hard
spheres (QCA-CP-HS) over a range of radius from 20 nm. to 45 nm. Also shown is
the curve using a sticky sphere model (QCA-CP-SHS) for a particle of radius of 37 nm
and 7 = 2.5. It can be seen that the sticky sphere model predicts larger attenuation
for all fractional volumes than the non-sticky model. In fact, the amount of turbidity
is closer to a non-sticky particle of 40 nm. at the lower concentrations, and one of

radius 42 nm. at the higher.
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Figure 2.4: QCA-CP curves of Turbidity vs. Fractional Volume for non-sticky SE2
particles of radii 20, 30, 37.2, 40, 42, and 45 nm.(bottom to top curves), and a sticky

SE2 particle of radius 37.2 nm.(shown by arrow)
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Figure 2.5: QCA-CP curves of Turbidity vs. Fractional Volume for non-sticky SE2
particles of radii between 37.2 and 65 nm., and sticky SE2 particles of radius 37.2

om. with 7=0.2and 7 =04




A value of T = 2.5 does not represent a very sticky particle. Decreasing the value
of 7 (which increases stickiness), increases the amount of scattering. Simplistically,
this can be viewed as increasing the particle size (i.e., a cluster of particles is larger
than a single particle), which gives greater scattering - as was seen in figure 2.3. In
figure 2.5 curves for ﬁon-sticky (QCA-CP-HS) particles with radii between 37.2 nm.
and 65 nm. are shown along with curves (QCA-CP-SHS) for an adhesive 37 nm.
particle with 7 = 0.4 and 7 = 0.2. The turbidity for these strongly attractive particles
are noticeably much larger. In addition, fhe fractional volume at which the turbidity
curve peaks has shifted to about 20 % for the less sticky case (7 = 0.4), and to 25 %
for the more sticky case (T = 0.2). For example, note that the maximum turbidity
value -of 5em™! occurs at 15% fractional volume for the non-sticky particle with a
radius of 60 nm. In contrast, a very sticky (r = 0.2) particle with only a third of
the volume (radius of 37.2 nm.) has a comparable turbidity of 5.3cm™! attained at
25% fractional volume. The shift in the peak location is indicative of scattering by
the effectively larger particle formed by the clustering, which has moved into the Mie

scattering regime (see for example, [23]).

2.4 [Equivalent Size Distributions

As observed in the last section, the shift to the Mie scattering is indicative of a larger
particle size. In this section we investigate the possibility of producing the scattering
curve of clusters of sticky particles by appropriate concentrations of particles of larger
sizes that are not sticky. From figure 2.5 it is apparent that simply using one species
of a larger particle is not sufficient, and that particles of more than one size are
necessary. .

To investigate this premise, curves of attenuation (2Imag(K)) vs. fractional vol-
ume were generated for a sticky particle of radius 37.2 nm. with adhesion coefficients

of 7 = 0.2 (very sticky) and 7 = 0.4 (moderately sticky). These curves were compared
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with the attenuation rate for a gamma distribution of particle sizes. The attenuation
for the multi-species cases was calculated using QCA-CP-SHS. For an aggregation
of particles of L different sizes but the same permittivity, the dispersion relationship

(2.31) can be written [23]:

L
K* = B+ ) n /c\,j
sj=l1
3K L 2K
=k D 1 b {I-H'%D [a:; 3/}+zlas,87r Ms; stm(p=0)]}
$;= 8j=
A
D =1- Z fu (2.44)
s5=1 )

in which the different species are denoted by s; = 1,2, .., L. The radius, number
denéfty, and fractional volume of the s;th species is as;, ns;, and f;; respectively.
Also, H,;,, is related to the Fourier transform of the correlation function between two

spheres of species s;,s; :

- ]’?Is,'s (_ﬁ)
Honl®) = G Pnams )
;Ises,‘ = (ns,"ns,-)1/2/‘{?6:?’?’13;8,'(?) (245)

A gamma distribution has a the form [57]:

f(z) = Az’e U () (2.46)

where A is such that

/ ” Adbede =1 (2.47)
0
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Figure 2.6: a) Gamma distribution with b=30 and c¢=0.6 b) Attenuation from : the
gamma distribution (dashed), sticky 7 = 0.2 particles with radius 37.2 nm. (solid),

and sticky 7 = 0.4 particles with radius 37.2 nm (dot-dash)
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where b and c are positive. Using the gamma distribution to determine the range
of particle radius’ and the fractional volume of each size particle, (2.44) can be used
to calculate the attenuation. Several such cases were examined.

Figure 2.6.a shows the size distribution for b = 30 and ¢ = 0.6, which is centered
around 56 nm. (with volume approximately twice that of the 37.2 nm. particle).
The attenuation from this distribution is shown in 2.6.b as a dashed line. The solid
line in the figure is for a2 37.2 nm. particle with 7 = 0.2, and the dot-dashed line
is for 7 = 0.4. As in the previous case, the position of the maximum do not agree
between the sticky and non-sticky cases, even though the value of the attenuation
at the maximum are comparable. One possible explanation is that the clusters of
particles can form a very small number of extremely large particles. These would
serve to skew the scattering statistics disproportionately.

To test this, bi-modal distributions were generated by adding two separate gamma
distributions centered around different particle sizes. The first distribution centered
around 37.2 nm. contained the majority of the particles, while the second distribution
around 70 nm. had a much smaller number. The resulting disposition is shown in
figure 2.7.a when 1% of the particles are larger, and in figure 2.8.2 when 5% are. The
amount of attenuation is very sensitive to these larger particles. In figure 2.7.b the
dashed line representing the multi-size aggregation is very close to that of the dot-
dashed line denoting the moderately sticky particles. The greatest lack of agreement
is in the lower fractional volumes where the non-stickv particle curve attains its
maximum earlier than the sticky. Ir figure 2.8.b the attenuation has risen greatly as
a result of an additional 4% of the particles of a larger size. The lack of agreement -
between the multi-size aggregate and the very sticky particle is much more evident
than it was for the moderately sticky case. In fact, there is agreement only in a very
limited range of fractional volumes (25-30%).

Various distributions of particles over a range of sizes have been attempted in

order to match the behavior demonstrated by the sticky particles. It appears to be
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Figure 2.7: a) Bi-modal gamma distribution with 99% b=15, ¢=0.5 and 1% b=40,
¢=0.6 b) Attenuation from : the gamma distribution (dashed), sticky 7 = 0.2 particles
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dash)
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Figure 2.8: a) Bi-modal gamma distribution with 95% b=15, c=0.5 and 5% b=A40,
¢=0.6 b) Attenuation from : the gamma distribution (dashed), sticky 7 = 0.2 particles

with radius 37.2 nm. (solid), and sticky 7 = 0.4 particles with radius 37.2 nm (dot-

dash)
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increasing difficult to attain agreement as the particles become stickier. A reason
for this can be found in consideration of the cluster shape. As the particles bind,
they form complex geometrical shapes that are not spherical in nature, even though
the constituent particles are spheres. Thus, it is difficult to simulate the scattering
behavior of these clusters with equivalent spheres. If a medium is composed of spher-
ical entities that have a predefined tendency to cluster, the use of a pair function to

describe this geometry is necessary to attain the correct scattering physics.

2.5 Conclusion

In this chapter we have shown that it is possible to describe adhesive particles sta-
tistically with the Percus-Yevick sticky particle pair distribution function. It is also
possible to use this pair function in dense media scattering theory when the medium
in consideration contains particles with a tendency to cluster. The experimental data
we considered from one such medium could only be explained by considering this
stickiness.

The effect on the scattering behavior when the particles bond has been investi-
gated. The primary effect is the increased attennation due to the large cluster size.
which show characteristics of scattering from a larger particle. However, when we at-
tempted to reproduce the scattering using only non-sticky particles, we were unable
to do so. We offer the explanation that the cluster geometry is so irregular, that it
can not be approximated by equivalent spheres. If this is true, it implies that the in-
clusion of the clustering potential is necessary to accurately determine the scattering
nature of bonded particle systems.

Further investigation into the nature of the particle clusters is necessary to fully
understand their effect on scattering physics. Also, if the clustered particle model
is to be used to model a geophysical medium - such as snow - there needs to be a

method to test the applicability of the pair function and to determine the stickiness




parameter 7.
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Chapter 3

MONTE CARLO SIMULATIONS FOR STICKY AND
NON-STICKY SPHERES

Because of the advent of modern computers and efficient computational meth-
ods, Monte Carlo simulations by direct solution of Maxwell’s equations are receiving
necessary attention. In Monte Carlo simulations, aggregations of densely distributed
spheres are randomly placed within N, tesf volumes in a manner corresponding to
a specified pair distribution function g(r). The scattered fields are calculated using
a numerically exact formulation of Maxwell’s scattering equations and averaged over
the N, realizations. The numerical procedure is based on the multiple scattering
equations of Foldy-Lax and using vector spherical waves as a basis [85]-[50]. The
results include coherent wave interaction among the spheres and the averaged field
can be decomposed into a coherent and incoherent part, where the extinction rate
arises from the incoherent scattered field. The extinction rates calculated for frac-
tional volumes up to 25% [85] are in excellent agreement with QCA-CP and carefully
controlled laboratory experiments of dense media [52] but differ significantly from
those obtained under the independent scattering assumption.

The number of spheres N that can be considered in these Monte Carlo simula-
tions depends only on the available computer memory. For the iterative formulation
there is an O(N?) memory dependence. Thus the Monte Carlo simulations provide
a method of exact calculation of wave properties for large numbers of spheres. In
this dissertation we present results calculated from systems of up to 5000 spheres and

fractional volumes up to 40%, for both clustered and non-clustered geometries.
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An exact formulation of Maxwell’s equations in multiple scattering form has been
solved iteratively by Tsang et al. [85] and used in Monte Carlo simulations to com-
pute extinction rates for fractional volumes up to 25%. This formulation is a rigorous,
numerically exact treatment of multiple scattering of electromagnetic waves in a sys-
tem of densely packed spheres, and it agrees with results from carefully controlled
laboratory experiments of dense media [52].

In the previous chapter we presented analytically derived scattering results that
indicated the microstructure of a system of densely packed particles strongly effects
the strength and nature of the scattering. In this chapter we calculate the scattering
and absorption coefficients using Monte Carlo simulations in which the particles up to
40% fractional volume are modeled both with and without a surface adhesion. The
extinction rates agree well with analytic dense medium theory. Results also show
that the system absorption is different from that predicted using an independent
absorption assumption due to local fields experienced by the particles. Scattering is
increased when the spheres are deposited with surface adhesion that causes them to

cluster and to form effectively larger particles.

3.1 Sticky-Particle Placement

To perform Monte Carlo simulations of systems of clustered particles described by the
SHS pair distribution function g(r), deposition of the particles must be influenced by
the attractive square-well potential. Algorithms for shuffling until the spheres achieve
a distribution given by g(r) appear in Seaton and Glandt [67] and Kranendonk and
Frenkel [45]. However, because the amount of shuffling required to achieve random
placement of the particles while still satisfying the SHS model is very high, we have
adapted the algorithms so that the particles can be directly deposited into the test

volume with the SHS potential. The deposition algorithm can be stated as follows :
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1. Calculate an effective subvolume for each particle energy state (PES) for the
particle to be deposited;

2. Determine a position for the particle that satisfies the PES;
3. Accept or reject the position based on particle overlap;
4. Register the new bond configuration of the system.

In molecular systems, the PES of a particle corresponds to its coordination number
(or number of bonds with other particles). In three-dimensional systems, the highest
PES attainable is 12, which corresponds to the closest packing of neighbors. Following
Seaton and Glandt [67], we have allowed moves up to PES 3, which has been shown
to be a good approximation. The calculation of subvolumes for the PESs involves
integrating over the sites available for each PES, neglecting overlap. For example. the
subvolume associated with zero bonds (PES 0) is just the test volume. To calculate
the subvolume available for one bond, we begin by considering each sphere already
deposited in the test volume. Since a single bond can occur by placing the test
~ particle anywhere along the surface of these spheres, the available subvolume is found
by integrating over the surface of the spheres. Likewise, the subvolume for two bonds
(PES 2) is found by integrating along the circle that lies a distance d from two other
sphere centers. The calculation of the subvolumes involves registering the new particle
configuration in the test volume after each deposition. The normalized subvolumes

for the three PESs can be expressed as [67, 45]:

Ve = v (3.1)
4rd® '

1 _ —_—
Vi = N | (3.2)

&
Vo= 277;77'6;,,7‘,-]'<2d, (3.3)

W
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where V' is the test volume, N is the number of particles, r;; is the distance

between the ith and jth particle, and r;, is the radius of the circle such that

rep = d (1 - (%)2) " (34)

The calculation of PESs requires ongeing maintenance of a catalog of the system
configuration so that the numbef of deposited particles N, and the number of particle
pairs able to bond with a third (the summation in 3.3), is known. This catalog
also contains information on the positions available in each PES. Once a PES is
calculated, a position in which that PES is achieved is randomly chosen from the
available sites, and the check for particle overlap is done. As expected, the number
of particle collisions increases as more particles are deposited in the test volume.
For higher fractional volumes (i.e., > 35%) deposition becomes impractical, and a
shuffling algorithm is necessary instead.

The pair distribution function g(r) from systems of N = 2000 particles, and av-
eraged over 30 realizations is shown in Fig. 3.1. Fractional volumes of f, = 0.1 and
fo = 0.2, with a stickiness of 7 = 0.2, are shown. The vertical axis represents the
normalized probability, and the horizontal axis is the particle separation normalized
to the particle diameter. Also shown in the figure as a solid line is the Percus-Yevick
SHS calculated as in [25], which agrees with the simulation results (agreement im-
proves as N and number of realizations N, increase). For separations r/d < 1.0, g(r)
is zero, since there is zero probability that impenetrable particles can be separated by
a distance of less than their diameter. Notice the discontinuity at r/d = 2.0, which
corresponds to the inequality in equation 3.3. Physically, this represents the geo-
metrical effect that two particles separated by a distance greater than their diameter
cannot both bond with a third particle. The presence of this discontinuity is unique
to the SHS pair distribution function and is representative of the clustering of the

system.
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Figure 3.1: The pair distribution function calculated from Monte Carlo simulations
and Percus-Yevick SHS with 7 = 0.2. Top plot is with f, = 0.1 and bottom plot is

with f, = .2. The x-axis is 7/(2a) and the y-axis is normalized probability.
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Figure 3.2: Three-dimensional computer generated view of aggregation of spheres

with f, = 0.35 and 7 = 0.2.
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A computer genergted view of a subvolume of sticky-particles with 7 = 0.2 and
fo = 0.35 is shown in Fig. 3.2. Among the more striking features of the clusters are
their irregular and chainlike structures. In citekn:sticl, we demonstrated the inability
to model the scattering behavior of these clusters with spheres of a single effective
size. A description of the clusters resulting from SHS deposit can be obtained by
considering the fractal nature of the resulting particle groups. For a given cluster of
particles we can define the radius of gyration R, [94] as

1 X
Rg = -]V Z T?’ (3.5)
¢ =1

where N, is the number of particles in a cluster and r; is the distance -of the sth
cluster particle from the center of mass. Then there exists a logarithmic relationship

between R, and N, or

Ne = c(R,/a)"1, (3.6)

where ¢ is a constant and Dy is the fractal or Hausdorff dimension [51] of the sys-
tem. The fractal nature of the sticky-particle clusters provides another quantitati.ve
method in which to characterize the random media. Investigations have been made
on scattering from a single fractal cluster [10, 69], and have shown that there is an
increase in the scattering and absorption cross section due to the high local fields. In
this chapter we investigate whether or not this local enhancement alters the overall
scattering properties when a large number of randomly placed sticky-particle clusters

are considered.

3.1.1 Placement for Higher Fractional Volumes

For fractional volumes over 35%, it is impossible to create an aggregation of spheres

with the deposition method. This is because the loss of freedom due to the higher
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sphere packing increases the chances of sphere collision during deposit. For high
fractional volumes, it is necessary to instead deposit the spheres in a uniform lattice
into the test volume, and then shuffle them in some fashion until a random ensemble
results. |

For the non-sticky spheres, shuffling occurs over N, passes in which an attempt
is made to move each sphere from its initial location to a new random location. For

each sphere o, the new location r/, is determined from its initial location r, by

Ty = Ta+6: (3.7)
Ya = Yatéy (3.8)
d = zt+d, (39)

where d;, d,, and &, are random numbers with a magnitude between zero and some
chosen e. If the position at r/ results in sphere overlap, the sphere is left in its initial
position and movement is attempted with the next sphere. The randomness of the
final configuration depends on the number of éhufﬂing passes N, and on the movement
distance €. If € is too large, new positions will frequently collide with other spheres
and few successful moves will result. On the other hand, a very small € will cause
such small shifts in the sphere position that the final position will not be substantially
different from the original. The optimal value of ¢ depends on the sphere packing
and can be determined by trial and error. We have found that the pair distribution
function of an insufficiently shuffled organization of spheres is indistinguishable from
an adequately shuffled organization, and thus is not an ideal indicator of randomness.
Instead, the univariate particle statistics (i.e., the probability of finding a particle in
a given location) can be used. For a truly random organization, the particle position
should be uniformly distributed. _

Once a random organization has been achieved, subsequent realizations are con-

structed by shuffling with N, = 200 and ¢ = 0.1A, where A is the original lattice
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Figure 3.3: The pair distribution function calculated froiu Monte Carlo simulations
with a shuffling algorithm for a fractional volume of 40%. The y-axis is normalized
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spacing. Figure 3.3 shows the pair distribution function for 3500 spheres and a frac-
tional volume of 40%, averaged over 15 realizations. The form of g(r) in Fig. 3.3

agrees well with the Percus-Yevick hard sphere pair distribution function.

3.2 Solution of Multiple Scattering Equations

To calculate the extinction and absorption coefficients of a system of densely packed
spheres, we iteratively solve Maxwell’s equations that are cast in multiple scattering
form. The formulation is numerically exact and contains no approximations. For
each realization of N spheres, the positions are generated randomly in the manner
described in section 3.1. We then solve the multiple scattering equations exactly.
Maxwell’s equations cast into the Foldy-Lax multiple scattering equations can be

expressed in matrix notation as [81]

N =
@@= Y T akrars)a® + exp(ik; - 7o)T Tine, (3.10)
B=1
B#a

where :

o 3°@ is the vector of coefficients for spherical wave harmonics of the multiple

scattered field for particle o
® T, is the coeficient of the incident wave
e k is the wavenumber of the background media
o k; is the wavenumber of the incident wave

e N is the number of spheres in the containing volume
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o G(k7aTg) is the vector spherical wave transformation matrix

o T is the T matrix for scatterer o which depends on the permittivity and radius

of o, as well as the background permittivity

e T, and 73 are the centers of particles & and 3, respectively.

Equation 3.10 can be interpreted physically as follows. The final scattered field
coeﬁicients for a particle & depend on the excitation experienced by that particle.
This excitation is due to both the original incident field @;,. as well as the radiated
field from surrounding particles @(®). The scattered field from other particles can
be translated from those particles to particle & using Huygen’s equivalency principle
through usé of the vector spherical wave transformation matrix F(k¥75). Finally,
the response of o to the excitation it experiences is specified by its T-matrix T.

For plane wave excitation of a single sphere, Mie theory and the T-matrix method
yield the same results. However in a dense collection. of spheres the field experienced
(called the exciting field) by any particle is due to both the incident field and the
scattered field from neighboring particles. When this exact exciting field - which is
in general not a plane wave - is known in the near, intermediate, and far field it is
necessary to use the T-matrix method. This allows for decomposition of the exciting
field into vector spherical waves. The T-matrix then specifies the scatterer’s response
to any type of excitation. The correspondence between the T-matrix and the Mie

coefficients can be seen by examining the T-matrix for a spherical scatterer :

=(11) =

— T 0

T = ﬁ ?22) (3. 1 1 )
T,S,:},L'nl ‘s'mm’nn’TéM) (3 12)
T,Sf:),llnl = Jmm’nn’ TTEN) (3 13)

TM) Jn(ksa) [kajn(ka)]'—jn(ka)[ksajn(k,,a)]'
" Jn(ksa) [kahn(ka)]' — hy(ka) [ksajn(ksa)]'
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o0 _ [k2a%ja (ksa) [kaga(ka)]] (K202 (ka) [ksan(ko0)] |
" [F202ju(ksa) [kahn(ka)]'| — [K2a2hy(ka) [ksajn(ksa)] |

Thus T™) and T{M) are equivalent to the Mie coefficients b, and a, [91], respec-

(3.15)

tively for a plane wave excitation.

The final scattered field E, from N spheres at an observation point = is

)= 2 [0 Wb, 0,9) + N p(fr, 8, ) (3.16)

where M., and N, are outgoing vector spherical wave functions.

Equation 3.10 can be derived directly from Maxwell’s equations for the case of
discrete scatterers in a homogeneous background. Unlike continuous random media,
discrete scatterers have well-defined boundaries. Since the space occupied by the
random scatterers and the space occupied by the background are distinguishable, with
each region having its own permittivity, the fields in each region can be expressed
in a complete spherical wave expansion and equated at the scatterer boundaries. A
derivation utilizing dyadic Green’s functions is given by Peterson and Strém [61]. For
an N particle system occupying volumes V;, V5, . . Vy where the jth particle has the

wavenumber k; = , /i€;, the N particle dyadic Green’s function can be written as :

— _ N —
G, ™) = Go(F,7) + Y. /V &7 Go(F, ')k — KA)G(F, ) (3.17)
— i

where -ﬁo is the free space Green’s function and the above equation is valid for
all 7 and 7. To put the scattering equation in more compact form, Dirac’s operator

notation will be used. Equation 3.17 in coordinate operator notation is

= N==
—G_z 0+ 102UjG (318)
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where ﬁj = UjT =U(F - Fjﬁ and

0 “for Fnot in V; .

UF-7)= ’ (3.19)
k}—k* forFin V;

Equation 3.18 expresses the N-particle Green’s function in terms of the potential

operator ﬁj. Using the transition operator f,- = (7 - ﬁjﬁo)—lﬁj for particle j,

eq. 3.18 can be written as

= —1 — N —3——1
-G—_-,' =Gy + Gy Z TGy ] (320)
i=1,l#5
G=Go+Go ) T;G; (3.21)
=1

which gives the N-particle Green’s function in terms of the -Tj operator and the
jth particle Green’s function 51'. Equation 3.10 is the result when the dyadic Green’s
function in the background and within the particles are expanded in vector spherical
wave functions, which constitute a complete basis.

An alternate method is to write the operator equation of (3.20) and (3.21) in
momentum representation for random distributions of scatterers. This has been dis-
cussed in citekn:tsangl. In the Appendix A of that pa;per, it is shown that for discrete
scatterers in a homogeneous background the momentum representation of the oper-

ator equations of (3.20) and (3.21) is equivalent to the T-matrix approach.

3.2.1 Absorption Calculation

The internal electric field E;,; in each sphere can likewise be represented as

Eim(r)=)_ [csnMn)Rg—M_mn(kr, 0,9) + ¢ RGN (kr, 6, qb)] (3.22)

mn
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- ‘where RgM ,, and RgN ,,, are the regular vector spherical wave functions. (Reg-
ular vector spherical wave functions are labeled with the prefix Rg to denote replace-
ment in the wave function of the spherical Hankel function &, by the spherical Bessel
function j, [81].) The relationship between the scattered field coefficients a2, and
the internal field coefficients cny, is given by [81]

o=t

t=(-RgQ ) 'a". (3.23)

The matrix Rgat can be determined by equating the tangential fields at the

particle’s surface and is diagonal for spheres

=t Rg? ﬁ
RQ = | _ = (3.24)

5 RU

with
RyPrnmins = —ikk, JOD, — k202 (3.25)
RUppmry = —ikk, JO2 g2 g0 (3.26)
Jr(nl:r)n'n' = az‘smm"snn’jn(ksa)[ka%gcﬂ (3.27)
S -ﬂ. ks !

Jgr?nn' = "az‘smm"gnn'jn(ka)[k—alkiai)]— (3.28)

where j, is the spherical Bessel function and k, is the wavenumber in the scatter-

ers. Substituting the expression for Rg@d into (3.23) gives

= {ika (jn(ka)ksajn(ksa)] — ju(ksa)[kaja(ka)])} " ¢ (3.29)

N ={ (: In(ka)[ksajn(ksa)) — ksjn(ksa)[kajn(ka ]')} a¥ (3.30)
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where the prime indicates differentiation with respect to the Bessel function argu-
ment. The internal field in (3.22), together with (3.29) and (3.30), can then be used

to calculate the system absorption cross section given by

N
oon=Y / ko | B2 (') PV, (3.31)
B=1 v

where the integration is over the sphere volume V and ¢” is the imaginary part
of the relative permittivity for the spheres. Due to orthogonality of the spherical
wave fﬁnctions, the expression for o, involves no coupling between the electric and
magnetic dipole contributions (i.e., with coefficients ¢, and &, for » = 1), and
contributions from these two fields can be considered separately. The absorption rate
K, for a volume V is given by &, = a.n/V.

The absorption under the independent assumption can be expressed in terms of

the Mie absorption cross section o, where o, = 0, — o, and

o = i—:i(Zn+l){Re(an+bn)} (3.32)
7 = X Cn e llnl + P, (3.3)

where o; and o, are the Mie total and scattering cross sections, respectively, and
an and b, are the Mie field coefficients. The absorption coefficient for N spheres in a
volume V is given by k, = No,/V.

In dense media, the scattered field from a particle is a result of both the inci-
dent field and the fields from surrounding particles, as expressed in (3.10). The Mie
absorption cross section in (3.10) assunies that the absorption is due to the incident
plane wave. Thus at higher fractional volumes, where the close sphere packing greatly
influences the local exciting field that a given particle experiences, the internal field

can be quite different from that predicted by independent Mie calculation.
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3.2.2  Scattering Calculation

In the Monte Carlo simulations, aggregations of spheres are randomly i)laced within
N test volumes in a manner corresponding to either a sticky or a non-sticky pair
distribution function g(r). The scattered fields are calculated using (3.10) and (3.16)
and averaged over N, realizations. The scattering and absorption of radiant energy
from the incident wave represents transfer of energy from the coherent beam into
incohereﬁt power due to the presence of the scatterers. To separate the coherent and
incoherent components, the scattered field is averaged to give the coherent scattered

field. The coherent scattered field < E, > is calculated by

N,
<E,>==—3%F, (3.34)

where ¢ is the realization index with o = 1,2,..N, realizations. E: is the final
scattered field from the elemental volume of many scatterers and includes their co-
herent near and intermediate range interactions. The incoherent field is the difference
between the total field and the coherent field ?: = -E-:—- < E, >. Calculation of the

scattering coefficient , from the incoherent scattered field €, can be expressed as

_ L 2
me= [0 db, sin6,) /0 d¢, ZIEI (3.35)

" o=1

3.2.3 Choice of Statistical Sample

The Monte Carlo volume must satisfy three criteria. One, the test volume must be
small enough such that V « (212')3’ then the attenuation of the original incident wave
traveling through the volume is negligible. The volume is not, however, infinitesi-
mally small, but is large in comparison to the wavelength (V > X3) so that, two, the
phase of the wave varies appreciably across the volume to create random phase situ-

ations. Lastly, the number of enclosed spheres in the volume must be large enough
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to represent a random sampling of scatterers (N >> 1). When the scattered fields
are calculated within such a volume, the randomness of the wave’s phase and of the
particle’s position destroys some of the phase coherence in the system and serves to

speed the convergence of the iteration.

3.2.4 Computational Consideration

Unlike continuous random media, discrete scatterers have well-defined boundaries.
Since the space occupied by the random scatterers and the space occupied by the
background are distinguishable, with each region having its own permittivity, the
fields in each region can be expressed in a complete vector spherical wave expansion
and equated at fhe scatterer boundaries using Maxwell’s equations. For the case of
discrete scatterers in a homogeneous background, Maxwell’s equations can be cast
into the Foldy-Lax multiple scattering equations in matrix notation as [81] and the
solution to (3.10) can be obtained through iteration. The result for the (v + 1)

iteration is

=,

N . =a
@) = S T 5krarg)a @) + exp(ifi - 7o) T Gine (3.36)
B=1
B#a

where the superscript v denotes the vth-iterated solution, and the initial solution is
just the incident field coefficients. To obtain the final solution for *(*)(*+1), the system
of equations in (3.36) is iterated until the maximum change in the field coefficients
from one iteration to the next is less than 5%, at which point the solution is considered
to have converged.

As stated in Section 3.2.3, the random sphere distribution increases the speed
of convergence. This effect was observed in our initial attempts to solve (3.36) for a

system with random, non-sticky scatterers occupying 40% by volume. As described in
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Figure 3.4: The number of iterations vs. realizations for 3500 spheres that are 40% by
volume with ka = 0.2, The initial realization has some periodicity which is destroyed

by shuffling in later realizations, and thus randomness increases from left to right.
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Section 3.1.1, a system this dense requires initial periodic particle placement and then
sufficient shuffling, so that the resulting positions are random. In Fig. 3.4 we show the
number of iterations necessary for convergence of (3.36) when inadequate shuffling
causes some remaining periodicity in the sphere placement. Figure 3.4 shows the
number of realizations along the horizontal axis (where each realization results from
shuffling the previous one, and thus randomness increases from left to right). The
effect of even a slight amount of periodicity is an increase in the number of iterations
nnecessary for convergence, because of the destruction of the system’s random nature.
Thus the first few realizations in this attempt required over 50 iterations, compared
with ~ 30 when the periodicity was decreased by additional shuffles. For f, = 40%
and ka = 0.2, a truly random -configuration required 23 iterations for the results to
converge.

The number of iterations necessary for convergence depends on the fractional
volume of the spheres, the dielectric contrast, and the sphere radius. In this chapter
we present results for spheres with permittivity ¢, = 3.2¢; and with size parameter
ksa = 0.2. Thus the number of iterations depends on the fractional volume and
particle position. For the lower density case of f, = 15%, approximately 7 iterations
were necessary for the solution to converge in contrast to the 23 iterations for f, =
40%. This makes sense physically as it indicates that multiple scattering effects
become more important for highly dense systéms. When the sphere size is small,
the T-matrix becomes small and the number of iterations decreases. For the case of
ka = 0.1, the number of iterations needed for convergence remains fixed at six for all
fractional volumes.

The dimension of @*(*) is determined by the number of spherical harmonics that are
conside;red. For sparse systems with small scatterers, it is sufficient to consider only
the electric dipole term. Once the particles become more closely packed, the near-field
effects become important and higher order multipoles need to be considered. In this

chapter, we calculate the field due to both the electric and the magnetic dipole. In this
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formulation, 7*(*) is a 6x1 column vector, and F(kFa75) is a 6x6 translation matrix.
Thus the matrix in equation (3.10) has rank 6N (e.g., 18,000 for a volume containing
3000 spheres). Because this exceeds the available memory capacity, we calculate each
matrix element and the spherical translation matrix as they are needed and discard
them after each use. The computation time for a single iteration is thus O((MN)?),
where M is the number of spherical harmonics considered, which is M = 6 in the
dipole case. As stated above, the number of iterations needed for even the most dense
aggregation is small compared to N, and the overall computational time is O((MN)?)
for the iterative solution. Of course, Monte Carlo simulations require averaging over

N, realizations.

3.3 Results

In this section we present results from the Monte Carlo simulations of aggregations
of spheres. We consider sticky and non-sticky-particles and particles with a non-zero
loss tangent. All Monte Carlo calculations include both the electric and magnetic

dipole contributions unless specified otherwise.

3.3.1 Sticky and Non-Sticky Particles

We performed Monte Carlo simulations of non-sticky, lossless particles with a size
factor of ka = 0.2 and ka = 0.1, permittivity of €, = 3.2¢p, and random organiza-
tion for fractional volumes of 15%, 26%, 35%, and 40%. At 40% fractional volume,
the sphere packing made sequential deposition impossible and we used the shuffle
algorithm outlined in Section 3.1.1. Tables 3.1 and 3.2 give the simulation param-
eters and computed extinction rates, which are also shown graphically along with
extinction rates calculated using the independent scattering assumption, QCA, and
QCA-CP in Fig. 3.5 and 3.6. The figure shows the overestimation of the extinction

rates when the independent scattering assumption is made. The curves for QCA and
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Figure 3.5: Extinction rate as a function of fractional volume; calculations based on

independent assumption, QCA, QCA-CP, and Monte Carlo simulations for ka = 0.2.
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Figure 3.6: Extinction rate as a function of fractional volume; calculations based on

independent assumption, QCA, QCA-CP, and Monte Carlo simulations for ka = 0.1.




Table 3.1: Numerical Results for lossless spheres with ka = 0.2 and €, = 3.2¢,

Normalized Extinction Rate Fractional Volume
kefk (x 107%) 15% 125% (35% | 40 %
Independent 428 1715 {100 |11.45
QCA 1.38 | 1.08 | 0.69 |0.52
QCA-CP 1.80 | 1.60 | 1.12 |0.88
Monte Carlo 1.61 | 148 |1.60 |1.67
# Spheres, N 3000 | 3000 | 3000 | 3500
, # Tterations, Ny |7 |9 115 |23
# Realizations, N, 15 15 15 20

Table 3.2: Numerical Results for lossless spheres with ka = 0.1 and €, = 3.2¢

Normalized Extinction Rate Fractional Volume
Kelk (x 107%) 15% [ 25% (35% |40 %
Independent 5.37 1 8.95 |12.53 | 14.32
QCA 1.72 1135 [0.86 | 0.65
QCA-CP 2.25 12.00 | 1.40 |1.10
Monte Carlo 1.90 | 1.50 [1.35 |1.63
# Spheres, N 3000 | 3000 | 3000 | 3500
# Iterations, N} 6 6 6 6

# Realizations, N, 15 15 15 20
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QCA-CP increase as a function of fractional volume to a maximum of approximately
15%, then begin again to decrease, with QCA underpredicting the scattering. The
fractional volume at which maximal attenuation occurs depends on the size param-
eter of the particles. The Monte Carlo results (shown as asterisks) agree fairly well
with those obtained using QCA-CP, until the higher fractional volumes are reached,
at which point the Monte Carlo simulations predict greater attenuation than does
QCA-CP. Initially we thought that this difference could be due to the effect of the
magnetic dipole, which is included in the Monte Carlo sca.tteﬁng calculations but is
not present in the QCA-CP solution. However, Monte Carlo simulations containing
only the electric dipole produced attenuations that were only slightly lower than those
from simulations with both the electric and magnetic dipoles. It seems that -as the
sphere packing becomes closer in the higher fractional volumes, the near fields gener-
ated by neighboring particles produce effects on the spheres that are not included in
the low frequency approximations used in QCA-CP. The validity of the low-frequency
approzimation thus appears to be dependent 'o'n the density of the scatterers.

This can be seen by comparing the results in Fig. 3.5 which are for a ka = 0.2
with those in Fig. 3.6 which are for particles with ka = 0.1. At 35% fractional volume
there is a difference between the attenuation predicted by QCA-CP and by the Monte
Carlo simulations for the case of ka = 0.2, but not for ka = 0.1. At 40% fractional
volume results from particles of both sizes show a difference between the Monte Carlo
simulations and QCA-CP, but it is less pronounced for the smaller spheres. As the
density of the system is increased, the particle size must be decreased to satisfy the
low-frequency solution to QCA-CP.

In Fig. 3.7, the Moﬁte Carlo results are shown for spheres with ke = 0.2 and
€s = 3.2¢g for sphere;s bpth with and without an adhesive potential. The spheres with
an adhesive potential were deposited as discussed in Section 3.1 with a “stickiness”
of 7 = 0.2, and a pair distribution function g(r) as shown in Fig. 3.1. In Fig. 3.7

it can be clearly seen that the sticky-particles (asterisk) show a greater extinction
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Figure 3.7: Extinction rate as a function of fractional volume for non-sticky spheres
and sticky spheres with 7 = 0.2 and 7 = 1.0 and ka = 0.2; calculations based on

independent assumption, QCA-CP and Monte Carlo simulations.
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rate than do the non-sticky particles (open circles). Since the only difference between
the two simulations is the pair distribution function, we can draw the important
conclusion that the particle placement is a crucial factor in estimating the extinction
properties. This is intuitive when the placement is influenced by a clustering nature,
and the particles clump to effectively form “larger particles”. As one would expect,
these “larger particles” exhibit a greater amount of attenuation because of their
size. However, as we showed in [25], modeling the irregular clusters as large spheres
produces incorrect results. Again, intuitively, one would expect different scattering
characteristics from a chain-like structure with a high axial ratio than from a sphere of
comparable size. In particular, the local polarization of the clusters will differ greatly.
Even though the orientation of the clusters of spheres is random, the behavior of the
wave does respond to the irregularities of these structures.

In chapter 1 we presented extinction rates for sticky spheres calculated with QCA
and QCA-CP. Also shown in Fig. 3.7 with the results from Monte Carlo simulations
are results calculated using QCA-CP. Both calculation methods yield extinction rates
that are greater than those calculated from non-sticky spheres. However, the QCA-

CP results are higher for a given 7 than for the Monte Carlo.

3.3.2 Lossy Particles

As discussed in Section 3.2.1, the absorption rate of densely packed spheres can differ
from that given by the independent assumption. This effect of “enhanced absorption”
is shown in Fig. 3.8. The figure shows the absorption, scattering, and extinction
coefficients of N = 2000 spheres with a permittivity of ¢, = (3.2 + i0.01)¢, and a
size factor of ka = 0.2 as a function of fractional volume. The absorption rates were
calculated from Monte Carlo simulations of randomly deposited spheres (plus signs),
and from the independent Mie absorption assumption for a system of N spheres
(dotted line). The absorption rate when the internal field is calculated explicitly in the

Monte Carlo simulations is higher than predicted from the independent assumption
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Figure 3.8: Normalized absorption, scattering and extinction from Monte Carlo sim-
ulations and independent Mie assumption for spheres with €, = (3.2 + 40.01)¢, and
ka = 0.2. Monte Carlo results shown as (+) for absorption, (*) for scattering, and

(o) for extinction. Independent absorption shown as dotted line, scattering as solid,

and extinction as dash-dot.
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(about 25% greater at 30% fractional volume).
The calculated absorption rate for the higher fractional volumes is also greater

than that predicted using the Maxwell-Garnet mixing formula (MG) [54]

Kok = €gppfr[€Ls e (3.37)
1+2fy
1-fy
€ —¢

= €+ 2¢

eejf = eleff +ifle’ff =€

y (3.38)

. This discrepancy may seem surprising since MG takes into account the influence
of nearby particles. However, MG uses a low-frequency approximation and does not
vary as a function of frequency. We found that as the fractional volume increases, we
needed to decrease ka to produce absorption rates that agree with MG. For example,
at 20% fractional volume MG predicts an absorptidn coefficient of &, /k = 0.7 x 1073,
For a ka = 0.2, Monte Carlo simulations give an absorption rate of k,/k = 0.8 x 10~3.
If ka is decreased to ka = 0.02 (i.e., lower frequency), our calculated values agree with
MG. These results suggest that, for densely packed particles, the threshold for low-
frequency approximations depends on fractional volume.

Monte Carlo simulations were also run for spheres with a stickiness of 7 = 0.2 and
€ = (3.2 +10.01)¢,. The resulting absorption rates showed the effect of absorption
enhancement, but did not differ significantly from the non-sticky case. This indicates
that the absorption is not affected by clustering or sphere placement.

The absorption rates in Fig. 3.8 were calculated from the electric dipole only.
We also calculated the absorption resulting from the magnetic field contribution and
found that it was several orders of magnitude smaller than that appearing due to
the electric dipole. In Fig. 3.9 the absorption rates due to the electric and magnetic
dipoles are shown as a function of ka. The contribution of the magnetic dipole
increases more rapidly as a function of ke than does the contribution of the electric

dipole, but its magnitude is still negligible in comparison with the small ka considered
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(notice different scales). However, the rapid growth of this term indicates that the

effect of the magnetic field increases in higher-frequency regimes.

3.4 Conclusions

In this chapter we have presented scattering and absorption coefficients from Monte
Carlo simulations of densely packed dielectric, absorbing spheres. The spheres were
deposited into a test volume in a random fashion, both with and without surface ad-
hesion. Scattering and absorption were calculated using a numerically exact iterative
formulation of Maxwell’s multiple scattering equations, in which the contributions of
the electric and magnetic dipoles were considered.

Results of these simulations show a clear dependence on the initial placement of
the spheres. When interparticle adhesive forces cause clustering of the spheres, the
scattering increases because of the effectively larger particle the clusters represent.
This is in agreement with previous research on single fractal aggregations, which also |
found an increase in scattering. Both QCA-CP and the Monte Carlo simulations
predict this increase in scattering for sticky spheres relative to the non-sticky case,
but the magnitude of the increase is overestimated by QCA-CP. The increase is
less pronounced at higher fractional volumes since the declining freedom of sphere
placement curtails the clustering behavior.

For non-sticky-particles, the scattering predicted by QCA and QCA-CP agrees
well with the results of the Monte Carlo simulations. At higher fractional volumes,
QCA and QCA-CP predict slightly lower extinction rates than the Monte Carlo
simulations, perhaps due the low-frequency approximations used in the solution for
QCA and QCA-CP. The validity of the low-frequency approximation depends on ka
and on the fractional volume. For a given ka, there is a threshold fractional volume
above which the low-frequency assumption no longer holds. The value of the threshold

decreases as ka increases.
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For both sticky and non-sticky spheres, the absorption coeficient for an ensemble
of absorbing spheres was larger than that predicted by assuming independent absorp-
tion. This is due to a modulation of each sphere’s local exciting field as a result of the
neighboring particles. In essence, the high local fields aid the ability of each sphere
to absorb incident energy. The validity of the independent absorption assumption
again depends on ke and the fractional volume, as observed for the validity of the
low-frequency approximations used in QCA-CP. Results from a low-frequency ap-
proximation begin to disagree with the Monte Carlo results when fractional volumes
greater than a threshold value are considered. The value of the threshold decreases

with increasing ka.




Chapter 4

SCATTERING PROPERTIES FROM MONTE CARLO
SIMULATIONS WITH APPLICATION TO REMOTE
SENSING OF SNOW

In this Chapter, we employ Monte Carlo simulations to calculate the phase matrix,
effective permittivity, and scattering coefficient for a random medium consisting of
densely packed spheres up to 5000 in number. These quantities are then used in
radiative transfer theory to calculate the bistatic scattering properties of the dense
media.

Conventionally, analytic theory has been applied for the second moment of the
field leading to the Bethe-Salpeter equation. A correlated ladder approximation has
been applied to Bethe-Salpeter equation to calculate intensities. It has been shown
that QCA-CP together with the correlated ladder approximation obeys energy conser-
vation. The two approximations together also lead to dense media radiative transfer
equation (DMRT). In the long wavelength limit, the phase matrix of the dense media
radiative transfer equation is of the form of the Rayleigh phase matrix but with dif-
ferent extinction coefficients and albedos from conventional radiative transfer theory
of independent scattering.

Numerical results indicate that the co-polarized part of the phase matrix is in
good agreement with that DMRT under QCA-CP and the correlated ladder approx-
imation. However, the Monte Carlo simulations show that the depolarization can be
substantially larger than conventional theory. The strong depolarized return is due to

coherent wave interaction among the spheres leading to electrical dipole moments of
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spheres that are not parallel to the incident electric field. The level of depolarization
is still substantially lower than that of the co-polarized component. Thus it has lit-
tle effect in energy conservation that QCA-CP and correlated ladder approximation
obey.

In section 4.4.4 we apply the numerical results to microwave remote sensing of
snow covered regions [34],[48]. The scattering coefficient and the phase matrix de-
rived from the Monte Carlo simulations are used in a second order radiative transfer

.model [71] to determine the amount of scattering from a snow layer overlying a ho-
mogeneous half space of soil. These results are compared to those obtained using
DMRT and the independent scattering assumption. Thé characteristics of a snow
layer can also change due to metamorphic forces [14] and affect the microwave re-
sponse. We also show that the sticky particle model introduced in previous chapters
can be used in a radiative transfer model to match simultaneouslir the co-polarized
and depolarized microwave scatter return of snow.

Another attribute of a discrete random medium is its effective permittivity. In this
chapter we compare the respbnse of the coherent wave within the Monte Carlo volume
to that of a homogeneous volume to determine the effective permittivity. We directly
obtain the real part of the permittivity by tracking the amplitude and phase of the
average internal electric dipole as the coherent wave travels through the medium. The

results of the effective permittivity are in good agreement with Clausius-Mossoti.

4.1 Radiative Transfer Equation

The transport of radiant energy through a space of randomly distributed spherical
particles as shown in Fig. 4.1 can be expressed by the vector radiative transfer (RT)

equation for the specific intensity T:

cos(H)EiEGd’j—’z) = —k1(0,,2) + /Oh dqb’/owdﬂ'sin(ﬂ')f(ﬂ,qﬁ, o,¢") - 1(0,6,:)(4.1)
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Figure 4.1: Geometry of the radiative transfer problem for a planar layer of spherical
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where &, is the extinction coefficient with k. = &5 + &, &; and &, are the scat-
tering and absorption coeflicients, respectively, and ?(9, $,6',¢') is the phase matrix
describing redistribution of scattered energy from direction 0, ¢ into direction ¢, ¢'.
Application of boundary conditions at the planar interfaces z = 0,z = —d requires
knowledge of the effective permittivity €.z in region 1. Thus solution of equation 4.1
requires specification of ., ?—(0, $,0,4'), and es and will be influenced by the
method with which they are obtained.

The second order iterative solution for active remote sensing of a layer of spheri-
cal scatterers overlying a homogeneous half space has been presented in the past [71]
with results obtained using the classical assumption of independent scattering. The
radiative transfer (RT) solution for the geoinet:y shown in Fig. 4.1 can be obtained it-
eratively from the integral form of the RT equations. The expression for the upwelling

intensity in region 1 is :

7(0, ¢, 2) =
e=e=<VF(9) - R (6) - Tou(6o) - Tos(m — o, o)e™"e*) 4 erez¢e?) e )
z , x/2 — -
X f 4ol secld) / 48 sin 6’ / 2ndg [P(6,6.0,4) 10,4, 7)
—d 0 0

+$(0, b7—0.8) T(r-0,4, z')] 4 ¢~ Fezsecf) sec(8)F(6) - ﬁm(o)e—zKedsec(a)

0 , /2 = -
x [ dre=Kee seclt) / 40’ sin ¢/ / 2ds [P(x—0,6,0',¢)-1(¢', ¢, )
~d 0 0
\ +P(r~0,6,m-0,4)-I(r~0,4,7)]
- = == = Q T ]
+e-Rez sec(8) Sec(O)F(e) . R”(o) . Rm(a)e—ﬂ(edsecw)/ dz'el‘ ez’ sec(f)
-d .

/ " i sind / ordg’ rﬁ(o, 6,0,4)-10,¢,2) +P(0,6,7 - 0,¢) - T(x -8, ¢, z')] (4.2)
0 0

" where _7-(0),?12, Tm (6o) and ﬁm are coupling matrices that depend on the Fresnel
reflection coeflicients at the material boundaries. A similar integral equation exists
“for the downwelling intensity I(m — 0, ¢, z); details can be found in [71]. The first

order solution to eq. 4.2 is obtained by substituting in the zeroth order solution for




72

the upwelling and downwelling intensities, and solving the integral equation. The
first order backscattering coefficients for a wave incident in the direction y;, ¢o; are

then given in terms of the first order solution 7(1)(0, ¢,2) by :

T1o(81) - T (615> ™ + o, 2 = 0)

aé?(ﬂoi) = 4 cos(f;) T

(4.3)

where 6;; is the refracted incidence angle in region 1 (see Fig. 4.1) and Iy,; is the
intensity of the incident wave. The second order solution 7(2)(0, @, z) is obtained by
substituting the first order solution into eq. 4.1. The second order backscattering cross
section 0(? is given by eq. 4.3 with 7{1)(01;,11' + ¢oi, 2 = 0) replaced by 7{2)(01,',# +
doi, z = 0).

To calculate the radiative transfer parameters, we consider an elemental volume
which contains many particles as shown in Fig. 4.1. The derivation of the transfer
equation is based on radiative energy in and out of the volume element. Note that
there is not just one particle in the elemental volume but rather, there are many
particles.

In the following sections we discuss three different methods of calculating the

extinction coefficients and the phase matrix. The methods are 1) classical scattering

assumption, 2) DMRT, and 3) Monte Carlo simulation.

4.1.1 Classical Radiative Transfer

The classical assumption for scattering in a collection of randomly distributed spher-
ical scatterers is that of independent scattering. Under this assumption, the particles
in the elemental volume scatter and absorb independently. Thus if there are N par- -

ticles in the elemental volume, the extinction cross section of all the particles is

oY = No.,, (4.4)
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where o, is the extinction cross section of one particle. The extinction coefficient
is defined as the extinction cross section per unit volume. Thus if V is the volume of

the elemental volume, then

Kind = Ko‘e = N0, (4.5)

€ Vv
' where ng is the number of particles per unit volume.
Similarly, for a single particle the distribution of scattered energy is given by the
Stokes matrix @. Under the independent scattering assumption the phase matrix is
the average of the Stokes matrix over the distribution of particles, and for identical

particles

P(9,6,6',¢) = 13 (0,6,8,4). (4.6)

For small scatterers this reduces to the Rayleigh phase matrix [81].

4.1.2 DMRT

The assumption of independent scattering ignores correlated wave interaction when
the scatterers are densely packed. For dense random media the effective wavenumber
K can be calculated using the quasi-crystalline approximation with coherent potential

(QCA-CP) [81]. In the low frequency limit the dispersion relation is :

K* = K+ fy(k&—K)/7 % (4.7)
{1 + igh’aa(kf — k%) /v [1 + 4mng /000 dr r¥[g(r) — 1]]}
7 = L4 (2-F)1 - £)/BK?) (48)

where k, is the wavenumber of the scatterers, k is the wavenumber of the back-

ground, a is the radius of the spheres, f, is the fractional volume of the scatterers,
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and g(r) is the pair-distribution function. The albedo & = «,/k. can be derived from

the second moment as

1 g
2K" 3

@

[kf — k*ng (1 + 4mng [) " dr r*[g(r) - 1]) (4.9)

where K" is the imaginary part of the effective wavenumber and &, = 2K”. As
noted previously, DMRT follows from QCA-CP and the correlated ladder approxi-
mation. In the long wavelength limit the phase matrix of the dense media radiative
transfer equation is of the form of the Rayleigh phase matrix but with the scattering

coefficient calculated by the above rela.ionships.

4.1.3 Simulation

As an alternative to either the classical model or DMRT, Monte Carlo simulations
can be used to directly determine the extinction coefficient, the phase matrix, and
the effective permittivity. These are calculated by using a large number of scatterers
in the elemental volume and taking into account their coherent wave interactions to
determine the collective scattering and interaction of the N particles in the elemental
volume. Of course N has to be a large number and convergence with respect to
N has to be tested. For éxample, the extinction coefficient can be calculated by
‘considering the transfer of energy within this volume from the coherent wave into the
incoherent wave. The elemental volume must satisfy three criteria. First, the volume
must be small enough that the attenuation of energy in the incident wave as it travels
through cube is small compared to the incident energy. Secondly, the volume must
_be large enough relative to the wavelength so that the phase of the wave varies across
the volume and creates random phase situations. Finally, the number of scatterers
enclosed within the volume must be large enough to represent a random sampling of

scatterers.
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Calculation of the radiative transfer parameters form Monte Carlo simulation dif-
fers from the previous approaches in that the N-particle collective behavior is consid-
ered [99]. The extinction coefficient from this volume is derived from the N-particle
cross section per unit volume. The phase matrix is obtained from the N-particle
bistatic cross section per unit volume. The effective permittivity is determined from
calculation of the coherent scattered field. The phase and amplitude from the ele-
mental volume is compared with a homogeneous vblume to ascertaining the effective
permittivity. The details of these calculations is described in the following two sec-

tions.

4.2 Monte Carlo Simulations

The wave propagation and scattering through the a large number of scatterers is
computed using an exact formulation based on Maxwell’s equations. The advantage
of this method is that exact values for the extinction coefficient and phase matrix
can be obtained and then compared with those obtained from dense media theory. In
chapter 3 the formulation for the Monte Carlo simulations and the calculation of the
extinction coefficient was described. In this section we discuss how the phase matrix

can be computed from the scattered incoherent fields.

4.2.1 Calculation of the Phase Matrix

An N-particle collective scattering amplitude F,z can be defined for a volume element
where N is a large number. The subscripts @ = 1,2 and 8 = 1,2 designate the
polarization of the incident and scattered waves, respectively, such that o, 8 =1
describes a wave polarized pérpendicular to the plane of incidence and o, =2 isa
wave polarized parallel to the plane of incidence. To determine an expression for F,s

we can use the definition of the incoherent electric field £, = E,— < E, > to write
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ikr

Eop = - [Fag— < Fop >] . (4.10)
= Jap

where F,p is the scattering amplitude of the total scattered electric field E,.
Multiplying by a complex conjugate and taking the ensemble average then gives

1
< Eouplp >= 5 < FopFarg > (4.11)

where for o = o/ and § = '

< |Fapl? >=< |Fap|® > =| < Fap > | (4.12)

In the Monte Carlo simulations the incident wave travels in the 3 direction and
is polarized in the § direction (Fig. 4.2). Thus F;; and F; can be determined by
considering the two components of the scattered field that travels in the zz plane or
with ¢, = 0. Likewise, F3; and F;, represent scattering from an incident wave with
parallel polarization and can be determined by consideration of the scattered wave

traveling in the yz plane with ¢, = /2. For example,

<WFul> = Beh 16,6 =0,0,)p

. (4.13)
<(FuFp)> = T E(ds =0,6,)E0 (4 = 7/2,6,).

where E4s(¢s = 0,0,)7 is the horizontal component of the incoherent scattered
field of the oth realization evaluated at ¢, = 0 and for 0 < 6, < 2r. The phase

matrix in the plane of incidence can be written as :
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Figure 4.2: Monte Carlo Test Volume shown with incident electric field traveling in
the l;:,- = £ direction and polarized in the ; = § direction. The cubic test volume has
a side of length s and volume v = s3. The scattered fields are in the direction 8, and

¢s where O is the angle between I::i and I::s.
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Ppoi =
] < l.7:11|2 > < U:]zlz >
<|Faul®> < |Fal®>
Fal Fal (4.14)
< 236(.7'-11.7?2‘1) > < 2R€(.?12.7’?2) >
| <2Im(FuF3) > <2Im(FaF3) >
< Re(fuffz) > < —Im(fuffz) >
< Re(lefgz) > < —Im(.7-'21.7’2‘2) > (415)

< Re(FuFs+ FiaFy) > < —Im(FuFy, — FiaFy) >
<Im(FuF3+ FeF3) > < Re(FuFy, — FraFyy) > ]

where F,p depends on the angle between the incident and scattered wave ©.

The full electromagnetic phase matrix over all input and output angles can be
obtained by transformation of ﬁ,o; through rotation angles ¢, and ¢;. The rotation
angles are determined by the direction of the vertically polarized wave vector with
respect to the normal 7 to the plane of incidence. In terms of the incident and

scattered angles they are :

>
>

sin¢1 = (z‘:,-xﬁ)- ;. = (z‘;;x(l%,-xl@/sin@)-l?:,- = ’a," 3 (4 16)
sing, = (b, xn) -k, = (133 x (k; x I}s)/sinO) ky = B,k .
The phase matrix P is then gi\;en by
P(6,4,8,¢) = L(~4s) Ppui L(n) (4.17)

where I is a the rotation matrix given by [38]
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cos’¢ sin’¢ lsin2p 0
= sin¢ cos’p —Lsin24 0
Lg)=] . 2 (4.18)
—sin2¢ sin2¢ cos2 O

0 0 0 1

4.2.2  Configuration for Monte Carlo Simulations for Spherical Scatterers

The configuration for the Monte Carlo simulations is shown in Fig. 4.2. The behavior
of the incoherent wave in the Monte Carlo simulations is considered on a per unit
volume basis using an elemental volume of Fig. 4.2 and is independent of the shape
of the volume. In each realization, NV spheres with permittivity €, and radius a are
randomly deposited {100] into the elemental box of volume V' = s3 or sphere with
V=448

Quantities that are appropriate for use in the solution of the radiative transfer
(RT) equation represent statistical averages with respect to the scatterer placement.
They are obtained from Monte Carlo simulations by averaging over realizations where
each realization consists of a different sphere distribution within the test volume V.
The statistics of the sphere locations can be depicted with the bivariate probabil-
ity measure called the pair distribution function. For random deposition of non-
overlapping spheres the pair distribution function corresponds to the Percus-Yevick
pair distribution function. An alternate deposition method for sticky hard spheres
(SHS) [25, 100] utilizes a parameter 7 which governs the potential of spheres to cluster
together. Smaller values of 7 result in more clustering or "sticking” of the spheres,
and can cause a pronounced increase in scattering.

For all of the simulation results presented in this paper a single orientation of
the incident wave was used and is shown in Fig. 4.2. The relationship between the

incident field vectors and the angles 6; and ¢; is
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A

k; = &sin0; cos ¢; + §sin f;sin ¢; + 3 cos §; ' (4.19)
U; = & cosb; cos ¢; + §jsin b; sin ¢; — 5sin 6; (4.20)
h; = —zsin; + i cos . (4.21)

The incident wave in Fig. 4.2 is an electric field traveling in the k; = 3 direction
and polarized in the 9; = § direction, with 8; =0 and ¢; = /2. The scattered field

has components as given above with ; replaced by 6,, and ¢; by 4,.

4.3 Coherent Wave Calculations

In the following sections we present calculations based on the behavior of the coherent
wave within the Monte Carlo volume. These calculations are used to determine 1)
the behavior of internal dipole moments within the scatterers and 2) the real part of

the effective permittivity for the random medium.

4.3.1 Dipole Orientation

The electric dipole for the jth sphere as calculated in Monte Carlo simulations can

be written as:

Pt = [ (6 =~ 0)E(F)V (4.22)

where Einy(T) is given by equation 3.22 in terms of the vector spherical wave
functions. The wave functions can be converted to Cartesian coordinates and the
integration performed analytically.

Under the QCA approximation the dipole moment can be written :

—QCA Jugeay KoFa
L’ = ——F—Fpett e 4.23
int 1 __ fvy ( )

with
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€s— €o
€s +2€0'

y= (4.24)

where vg is the volume of the sphere and K, is the real part of the effective
wavenumber whose calculation will be discussed later.

The incident electric field will cause alignment of the internal dipoles, and this
alignment will oscillate with the incident frequency. However, there will also be slight
misalignment in each particles’ dipole due to the effect of the scattered fields from
nearby particles (see figure 4.3). To isolate random deviations of the dipole moment
the phase dependency of the coherent wave needs to be removed. This will be referred
to as “de-phasing” and can be achieved by multiplication of 7., in equation 4:22 for
sphere j by the phase factor e~ Kr¥i,

The coherent addition of the dipole moments will be utilized in section 4.4.2 and is
defined as follows. Define the reference point 7, as the center of the Monte Carlo test
volume (for this calculation we enhance spherical symmetry by using a test volume
which is spherical in shape). We can then define the coherent dipole sum 7, (o) as
the addition of the “de-phased” dipoles of spheres within a distance q; of the reference

point :

1 X P
psum al Z Z pint e—tKr.rJ (425)

where N is the number of spheres j that satisfy |F; — 7| < ;. The coherent sum

can be written B,,,, (1) = pz(r)& + py(1)g + p(c)2.
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Dipole Moments due to Incident Field
and Scattered Fields

il

Incident field

.
Y

Figure 4.3: Cartoon showing the internal dipole orientation due to incident excitation

and scattered fields of surrounding particles
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4.3.2  Effective Permittivity

The idea of an effective permittivity for a random medium is that if the random
medium were replaced by a homogeneous medium that responds to electromagnetic
excitation in a identical fashion as the original random medium, the permittivity
of the homogeneous medium is said to be the effective permittivity of the random
medium. This concept has been explored and utilized extensively in the past.

In the Monte Carlo simulations the coherent wave reéponds to the size, shape and
effective permittivity of the test volume. To determine the effective permittivity of
the collection of spherical scatterers, the scattered coherent field can be compared
with the field scattered from a homogeneous volume of the same size and shape as
the Monte Carlo test volume. The permittivity of this homogeneous volume when
the scattered fields are the same is the effective permittivity of the random medium.

The test volume used in the Monte Carlo simulations for the effective permittivity
calculations is a sphere with diameter s. The Mie scattering cross section from a
sphere with the same diameter and with a permittivity €sy is denoted as o5 arie. The
permittivity at which the Mie cross section is equal to that produced by the coherent
scattering from the Monte Carlo spherical test volume is then - by definition - the
effective permittivity of the random media. This quantity can be determined by

varying e.ss in the calculation of o, aic until the following equality is satisfied :

™ ' 2r R? Nr =012
= ; = 9
oo e /0 d8, sin(6;) fo do, Nr;::l\}m (4.26)

where E, is the total scattered field. The effective permittivity of the Mie sphere
contains an imaginary component that accounts for the loss of energy due to scattering
within the medium. The imaginary part of the effective permittivity can be calculated

from its relationship to the extinction coefficient under the assumption that €, <«

/ .
eeff .
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Ke = 2k0Im {,/eeff}
{ I ‘"ff} €etf
= 2ksIm € 1412 ~ kg—2L
1 6;.ff \/Eleff
: Keyf€ess

where €, and €, are the real and imaginary parts of the effective dielectric

constant, respectively.

4.4 Reslults

In this section we present results from Monte Carlo simulations. Section 4.4.1 dis-
cusses the nature of the phase matrix obtained from simulation and section 4.4.2
gives some physical understanding of the source of the observed depolarization. Sec-
tion 4.4.3 presents the effective permittivity of the random media and comparisons
with Clausius-Mossoti and QCA-CP. Section 4.4.4 presents the backscatter from a
layer of snow and comparisons of results of independent scattering, DMRT, and Monte

Carlo simulations.

4.4.1 Phase Matriz from Monte Carlo Simulations

The phase matrix was calculated as given in section 4.2.1 for spheres with ka = 0.2,
permittivity e, = 3.2¢o, and fractional volume of 35%. Values for the scattering
coefficients can be found in table 4.1. The independent scattering assumption grossly
overestimates the scattering at this fractional volume. QCA-CP predicts scattering
rates that are 30% lower than those calculated with Monte Carlo simulations. This

discrepancy could be due to the low frequency solution to QCA-CP.
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Table 4.1: Scattering Coefficient for spheres with a = 0.56 mm. af 35% fractional

volume and €, = 3.2¢y

ks (x1073 1/cm.)
Independent | QCA | QCA-CP Monte Carlo
7=020|7=0.05|7=001
3.36 | 0.23 0.38 | 0.54 0.87 1.17 9.38

The elements of upper corner of the phase matrix (ie., |Fui|% [Faif?, [Fizl?
| F22|?) are shown in figures 4.4 and 4.5 as functions of ©. In the figures the solid line
corresponds to non-sticky particles and the dash-dot line is for particles deposited
in the test volume with a adhesive potential of 7 = 0.05. The open circles are the
Rayleigh phase matrix elements where the scattering coefficient is computed with
the independent scattering assumption. Depolarization from spheroids with an axial
ratio of ¢/a = 1.70 are shown as plus signs in figure 4.5.

Several characteristics of the Monte Carlo phase matrix can be immediately no-
ticed. The copolarized intensities (|F11|?> and |F2,|?) have the same angular depen-
dency as the Rayleigh matrix but the overall intensity is lower due to the more realistic
scattering coefficient. As discussed in [100], the sticky particles have scattering lev-
els that are much greater than the non-sticky particles due to the effectively larger
particle size. For spherical particles the off diagonal terms (|F;2|? and |F2;]?) of the
Rayleigh matrix are zero. Monte Carlo simulations of both sticky and non-sticky
particles give non-zero depolarized intensities that are approximately two orders of
magnitude lower than the copolarized intensities. The level of depolarization calcu-
lated in the Monte Carlo simulations for the non-sticky spheres is comparable to the

depolarization resulting from spheroids with axial ratios of 1.70.
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Figures 4.6 and 4.7 are plots of the depolarization to copolarization ratios( fg 021/ fo o11

and [g 012/ fo 022) as a function of permittivity and fractional volume, respectively.
The ratio is larger for parallel polarization due to the lack of copolarized energy as

© approaches 7/2.

4.4.2 New De-polarization vs. Classical

For a single sphere in the presence of plane wave excitation, the dipole moment
within the sphere is exactly aligned with the incident polarization and the scattered
field in the scattering plane will not undergo any depolarization. Since in classical
radiative transfer theory the phase matrix depends only on single particle scattering
quantities, the phase matrix contains zero depolarization components in the plane of
incidence. The reason for this thinking was the belief that the effect of any small
misalignment of a sphere’s internal dipole (relative to the incident field) due to the
presence of scattered fields from surrounding spheres will cancel. This cancelation
is due to the random, isotropic nature of the relative locations of the spheres which
causes a randomness in the perturbation of the dipole orientation. For the case of
large enough number of spheres the net depolarization was thought to be zero.

A central assumptidn of this idea is that the wave will continue to add the dipole
moments coherently over a large enough distance for this cancelation to occur. If
the distance required is large in comparison to the electromagnetic wavelength, the
wave will decorrelate and the dipole moments separated by wavelengths apart will
not be added coherently. In other words, there is an intrinsic length scale over which
coherent addition of dipole radiation is achieved by the electromagnetic wave. If there
are enough random, isotropically positioned spheres within this length scale there will
be no depolarization. If however only a few hundred spheres are encountered before
the wave decorrelates then the cross-dipole moment will not be zero. If we define the
length scale for the correlated addition of dipoles as A¢ss, then the number of spheres

contained within a volume AJ;, must be large for the cross-dipole to go to zero.




87

-4
x 10
6 [] 1 1 ] [] ]
44 O 0 0 0 0 0 0 06 0 0 0 0 0 0 0 0 O &
&
£
2r J
0;/ 1 ] ] [ ]
0 05 1 15 2 25 3
-6
x 10
8 I 1 1 ] 1 I
'/'—N\_§.
L o '/ §'~~\ i
6 , S .
-/ ‘\-
& v \
~4r /
N e
< P
Qbe 7
v—o—eo—lo—o—p—-1e—o—0—'6—o—o-to——0-+o—o—0o-—0
0 05 1 1.5 2 25 3
theta

Figure 4.4: Elements of the phase matrix for an incident wave polarized perpendicular
to the plane of incidence as a function of ©@. Results for spheres with ¢; = 3.2¢,
35% fractional volume and ¢ = 0.6 mm. at 16 GHz. Monte Carlo results shown
for non-sticky spheres (solid line) and sticky spheres with 7 = 0.05 (dash-dot. line).

Independent scattering shown as open circles.
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Figure 4.5: Elements of the phase matrix for an incident wave polarizéd parallel to the
plane of incidence as a function of Ob; parameter values the same as the previous figure.
Monte Carlo results shown for non-sticky spheres (solid line) and sticky spheres with
7 = 0.05 (dash-dot line). Independent scattering shown as open circles and spheroids

with ¢/a = 1.70 shown as plus signs.
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Figure 4.6: Depolarization level ay; /oy, (asterisk) and 03/0; (plus) as a function of

the spheres’ relative permittivity €, /€o.
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Figure 4.7: Depolarization level o /03 (asterisk) and o12/09; (plus) as a function of
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Average de-polarization vs. radius
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Figure 4.8: Magnitude of the x (dot-dash line) and z (dashed line) components of the
internal dipole normalized to |p,| and computed as specified in equation 4.25. Results
shown for 20% fractional volume with 2500 spheres for €, = 3.2¢o (top) and ¢, = 2.2¢,
(bottom). The x axis is the radius a;/)g of the spherical volume over which the sum

is computed.




In attempt to quantify the concept of a length scale for the electromagnetic wave,
we used equation 4.25 to calculate explicitly the orientation of the internal electric
dipole for 2500 spheres with fractional volume of 20%, and permittivities of 3.2 ¢
and 2.2 . The magnitude of p, a.nd - relative to [Poum| (i.e., those components
misaligned with the incident y polarization) for €, = 3.2¢; is shown in a log scale as
a function of a;/Aq in the top of figure 4.8. The figure shows that the level of the
depolarization decreases as more and more spheres are introduced into the sum in
equation 4.25. The resultant net depolarization from the Monte Carlo simulations of
-17 db in the phase matrix implies that the electromagnetic wave only adds coherently
within the spherical region of diameter d; = 2 % ; = 0.27)o. For a permittivity of
2.2 €o (shown in the bottom of figure 4.8) the depolarization drops more quickly due
to the d° .inished influence of the scattered fields relative to the incident excitation.
The depolarization from the simulations corresponds to coherent addition within a
distance of d; = 0.36)g. The effective wavelengths for ¢, = 3.2¢p and €, = 2.2¢, are
Aess = 0.88X0 and ey = 0.92), respectively, where the effective media calculation
is described in the next section. These distances indicate that the electromagnetic
wave adds the dipoles coherently over roughly a quarter of an effective wavelength.
Any existing depolarization within ~ iz\e ¢ will be added coherently and incoherently
outside that distance. This concept has important relevance to the distance scale over

which coherent averaging is to be performed.
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4.4.8 Effective Media Calculations

‘As outlined in section 4.3.2, the coherent scattering from the Monte Carlo volume
can be used to calculate the effective permittivity of a collection of particles within
the volume. This calculation was tested by comparing the coherent field scatteriné
pattern as a function of angle from cubes of lengths s = 1.27, s = 1.39, and s =
1.50 containing 3000, 4000 and 5000 spheres of permittivity ¢ = 3.2¢, respectively,
at 20% fractional volume. Since the size of the Monte Carlo volume varied, the
coherent scattering pattern did as well. Scattering from the three cubes was then
calculated with the Born approximation and an effective permittivity with the real
part ranging between e.sf = 1.1 and ¢.;y = 1.35. For all three sized cubes, at an
effective permittivity of e.;y = 1.27 the magnitude of the forward scattering peak
and the fine structure of the sidelobes agreed well with that obtained from the Monte
Carlo simulations. For higher fractional volumes a spherical test volume was used
for the Monte Carlo simulations and the coherent scattering was calculated exactly
from the Mie scattering. Figure 4.9 shows the real part of the effective permittivity
as a function of fractional volume. Also shown is the permittivity calculated from
the Clausius-Mossoti mixing formula and the quasi-crystalline approximation with
coherent potential (QCA-CP). It is interesting to note that the Monte Carlo results
agree quite well with those obtained from the mixing formula but are slightly below
the values predicted by QCA-CP. In recent work [100] we showed that the extinction
rates calculated from Monte Carlo simulations agreed with those produced from QCA-

CP, but were higher than those produced from QCA.
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Figure 4.9: Real part of the effective permittivity e.;y vs. fractional volume calcu-
lated from Monte Carlo simualations (shown as asterisk) and compared with Clausius

Mossotti (dashed line) and QCA-CP (dotted line).
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Figure 4.10: Re(p,) vs. z/Xo where p, is the averaged over constant z planes. Monte
Carlo results (asterisk) shown for 20% fractional volume with 5000 spheres with
€s = 3.2¢p in a cubic test volume. Also shown is cos(K,z) for K, = koV/1.27 (dotted
line) and K, = ko (dashed line).
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An alternate method of obtaining the real part of the effective permittivity is to
plot Re{p,} as a function of z. The coherent plane wave travels in the z direction
through the Monte Carlo cubic volume with a phase determined by e~*%+%. This
excites a dipole moment polarized in the y direction whose amplitude traces out
a cosine curve with a wavelength of Aef; = Ao/, /Er7. The asterisk in figure 4.10
represent the average of Re{p,} computed along planes orthogonal to the z direction
(i.e., x-y planes) for spheres at 35% fractional volume and with ¢ = 3.2¢5. The dipole
oscillation as predicted by the QCA approximation in equation 4.23 is shown as a
dotted line for €5y = 1.27 and as a dashed line for free space propagation with
€efs = 1.00. The internal dipoles in the Monte Carlo simulation follow closely those
predicted by the effective permittivity calculation. There are slight discrepancies
close to the ends of the volume (at z = 0 and z = 1.5 planes) since these planes

are not completely embedded in the effective medium.

{.4.4 Active Remote Sensing from a Layer of Snow

The radiative transfer (RT) model can be applied to determine the effect of volume
scattering within a layer of discrete spherical scatterers overlying a homogeneous
half-space. The results depend on the method in which the scattering coefficient, the
phase matrix, and effective permittivity are determined. In this section we present
the results from the classical model, DMRT model, and Monte Carlo model. All three
models are applied to the geometry shown in fig 4.1 where the bottom layer has a
permittivity of e2 = (6.0 4+ ¢0.6)eo, a typical value for soil. Region 1 is composed of
scatterers with €; = 3.2¢p in a background of air €; = 5. The scatterers occupy 35%

by volume and have a radius of 0.6 mm. at 16 GHz.
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Figure 4.11: Backscattering as a function of snow depth for 16 GHz at §; = 19.31°
from a layer of snow with @ = 0.6 mm., ¢, = 3.2¢o and 35% fractional volume. The
dashed line is o,, and solid line is &;,. The four plots show results of the radiative
transfer theory for the classical model (top left), DMRT model (top right), Monte
Carlo simulations (bottom row) and sticky particles with 7 = 0.01 (bottom right).
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Figure 4.11 shows the backscattering cross section as a function of snow thickness
d for an incident angle of 19.31° as calculated with the three models. In the figure,
the copolarized backscatter o, is shown.as a dashed line and the depolarized o7,
backscatter as a solid line. Results from the classical model (top left) have very high
copolarized and depolarized levels due to the overestimation of the scattering coeffi-
cient from the independent scattering assumption. For the depolarized backscatter,
the first order RT solution is zero when the Rayleigh phase matrix is used.. The
second order solution is non-zero with |o\?| ~ x2d?. Thus in top left and right plots
the copolarized backscatter is a first order effect and the depolarization is second
order. For scatterers at 35% by volume, DMRT predif:ts a more reasonable estimate
of the scattering coefficient and gives a copolarized level that is 10 dB. down and a
depolarized level that is 13 dB. down relative to the classical model.

The backscattering cross sections from the Monte Carlo model are shown in the
bottom two plots. For the non-sticky case (lower left) the extinction coefficient caicu-
lated from the Monte Carlo simulations is not significantly larger than K2™%T and the
level of the copolarized return is comparable to that from the DMRT model. However,
the depolarized backscatter is much greater, particularly at small snow depths such
as 10 cm. where it is ﬁlore than double that predicted by DMRT. This is because the
phase matrix from the Monte Carlo simulations has non-zero off-diagonal terms and
thus the depolarization has non-zero first order as well as second order contributions.
The first order contribution is linearly dependent on ¢ and will therefore be greatest

in comparison to the second order when the snow depths are small.
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In bottom right plot the backscattering cross sections from the Monte Carlo model
are shown when the particles were deposited with a sticking potential of 7 = 0.01.
This scenario could represent snow that has been on the ground long enough for
metamorphic forces to cause the grains to become rounded, cluster together, and
bond. The effects of this clumping are to increase the effective particle size and thus
increase the scattering coefficient to a value approximately three times as large as that
predicted under the independent scattering assumption for non-sticky particles [100].
Both the copolarized and depolarized hackscattering from a layer of clustered snow
grains are higher than that calculated under the classical model for non-sticky par-
ticles. For these very sticky particles the level of the depolarized backscatter is due
mainly to the second order contributions.

The bistatic cross sections computed using the Monte Carlo model shows even
greater increases in depolarization relative to conventional theory. Figure 4.12 shows
the bistatic scattering at 8, = 59° for spheres with 7 = 0.2 and the same parameters
as the previous plots. The first order copolarized return is shown as a dotted line,
the first order depolarization is shown as a dashed line, and the second order depo-
larization is shown as a dash-dot line. The first order depolarization, which would
be zero under conventional theory, is 7 dB. higher than the second order at shallow
snow depths, and reaches -22 db at depths of 90 cm.

The increased extinction predicted from sticky particles can be used to explain
the higher levels seen in backscattering data. Results from Monte Carlo simulations
of sticky particles are compared with active microwave measurements made on De-
cember 16, 1979 at a test site in Colorado [72]. Figure 4.13 shows the backscattering
at 17 GHz for a 47.5 cm. layer of snow with grain radius of ¢ = 0.56 mm. and frac-
tional volume of 20% as a function of incidence angle. The copolarized backscatter
(shown as a dotted line) and the depolarized backscatter (shown as a solid line) were

computed using the extinction coefliecient and phase matrix for spheres with 7 = 0.1.
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Backscattering Cross Section
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Figure 4.12: Bistatic cross sections for the same parameters as in the previous plot
except 0, = 59° and 7 = 0.20. The first order coplarized return is shown as a dotted
line, the first order depolarization is shown as a dashed line, and the second order

depolarization is shown as a dash-dot line.
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Figure 4.13: Backscattering cross section for 17 GHz compared with data for a 47.5
cm. deep snow cover with grain radius @ = 0.56 mm and fractional volume fv = 0.2.
Data shown as circles (co-pol) and asertisks (de-pol); RT model with sticky spheres-

7 = 0.1 shown as a dotted line (co-pol) and solid line (de-pol).
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4.5 Discussion and Conclusions

The Monte Carlo simulations provide a valuable tool for testing our understanding
of electromagnetic wave propagation through dense media. The simulations take into
account correlated scattering and coherent wave interaction. The coherent and inco-
herent fields distributions can be used to calculate the extinction coefficient, phase
matrix, and effective permittivity of the discrete random medium. These quantities
are necessary for solution of the radiative transfer equation. The extinction coef-
ﬁcienf from Monte Carlo simulations is significantly lower than that predicted by
independent scattering, but is comparable with QCA-CP.

The co-polarized elements of the phase matrix from the Monte Carlo simulations
agrees with that obtained from DMRT. However, the off-diagonal elements are non-
zero but are two orders of magnitude smaller than the copolarized energy. The
presence of this depolarization is due to the random organization of the spheres
which can give rise to perturbations in the internal dipole alignment. For very low
frequencies, the random, isotropic arrangement of spheres causes cancellation of these
deviations. For higher frequencies, since the wave will only add the dipole moments
coherently over scales on the order of % of a wavelength, the depolarization in the
scattered field will remain.

Application of a radiative transfer model can yield different results depending on
thé assumptions used in calculation of the extinction coeficient, phase matrix, and
effective permittivity. The independent scattering assumption gives overly high levels
of backscatter due to overestimation of scattering. DMRT gives more realistic scat-
tering coefficients, but neglects the first order depolarization effect. First order depo-

larization arises from coherent near field interaction among the spheres that creates
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non-alignment of dipole moments. Using the phase matrix and scattering coefficient
obtained from Monte Carlo simulations can produce co-polarized backscattering that
is compafable to QCA-CP but also much higher levels of depolaﬁzed backscatter due
to non-zero contributions from both first and second order effects. This combination
results in a different snow depth and frequency dependence than indicated by conven-
tional theory. Large increases in both copolarized and depolarized backscatter can
be achieved by including the clustered nature of metamorphosed snow with a sticky
particle model.

The effective permittivity of snow can be derived from the resulfs of Monte Carlo
simulations. The imaginary part of the effective wavenumber is related to the extinc-
tion .coefficient for the incoherent wave and the real part corresponds to the phase
progression of the coherent wave. The phase information is available both in the
coherent scattering from the Monte Carlo volume as well as the oscillation of the
internal dipole within the scatterers. The effective permittivity obtained from simu-
lation yields an imaginary part that is in agreement with that predicted by QCA-CP.
The real part of the permittivity agrees with that obtained from mixing formulas such

as Clausius-Mossoti formula but is slightly lower than that predicted from QCA-CP.




Chapter 5

PAIR FUNCTION RETRIEVAL FROM PLANAR SNOW
SECTIONS

Electromagnetic wave scattering in dense media, such as snow, depends on the
3-D pair distribution function of particle positions. In snow, 2-D stereological data
can be obtained by analyzing planar sections. In this chapter we calculate the volume
3-D pair distribution functions from the 2-D stereological data by solving Hanisch’s
integral equation. We first use Monte Carlo simulations for multi-size particles to
verify the procedure. Next we apply the procedure to available planar snow sections.
A log-normal distribution of particle sizes is assumed for the ice grains in snow. To
derive multi-size pair functions, a least squares fit is used to recover pair functions
for particles with sufficient number density and the hole correction approximation
is assumed for the larger particles. A family of 3-D pair distribution functions are
derived which give scattering rates comparable to those calculated under the Percus-

Yevick approximation of pair distribution functions of multiple sizes.

5.1 Introduction

Snow is a dense medium because the ice grain that comprise snow are densely packed.
The classical approach for random discréte scatterers is the independent scattering
approximation which states that the collective scattering of the system is equal to the
scattering from each individual particle multiplied by the number of particles in the
system. For dense systems (particles occupy more than a few percent by volume) this

approximation is not valid because the correlation of the particles’ positions affects
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the scattering physics. This has been shown experimentally [39, 44] and theoretically.
To account for the correlation between particles, analytiﬁ dense media theory such as
the quasicrystalline approximation (QCA) and quasicrystalline approximation with
coherent potential (QCA-CP) [81] has been assumed for the first moment of the field.
The extinction coefficients are in good agreement with controlled laboratory experi-
ments [52, 98, 99]. Both QCA and QCA-CP rely on a bi-variate statistic called the
pair distribution function to describe the particle positions. The Percus-Yevick [60]
(PY) pair distribution function from molecular physics has been used extensively
to model impenetrable spheres. For the application of scattering from snow it is
desirable to derive the pair distribution functions directly from snow samples.

In addition to analytic theory such as QCA-CP, Monte Carlo simulations have
been used to calculate the extinction coefficient, phase matrix, and absorption co-
efficient of a volume of up to 5000 spheres [85] - [102] and these quantities used in
radiative transfer theory to calculate bistatic scattering properties. The extinction
rates derived from the simulations in which spheres are randomly deposited are in
excellent agreement with QCA-CP with PY. Snow is a naturally occurring geophysi-
cal dense medium in which metamorphic processes can yield clusters or aggregations
of ice grains. The ice crystals lose their original atmospheric form, reducing their
surface-area-to-volume ratio by forming larger, more rounded shapes. Deposited snow
increases in density as the grains grow and form “necks” with neighboring particles.
Much research has been done to understand the sintering process [43, 37, 16} and to

model scattering in clustered systems [25].
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In this chapter we quantitatively utilize snow data to devise a more realistic pair
function. Stereological methods provide a quantitative description of the snow orga-
nization and researchers in the snow community are experimenting with stereological
tools [90] to attempt to qﬁa.ntify the microstructure of snow. The relationship be-
tween the area pair distribution function and the volume pair distribution function
can be expressed in the form of Hanisch’s integral equation [34] which is presented in
section 5.2. It is possible to solve Hanisch’s integral equation to obtain a 3D volume
pair distribution function for 2D pair functions if the size distribution is known. We
follow Shi et. al. [70] and assume a log-normal size distribution. Measurements ob-
tained from 2-D subsections of snow allow us to invert the equation and recover the
total volume pair distribution function. To calculate scattering for multi-size spheres
the total volume pair distribution function is then decomposed into a family of func-
tions related to each of the sizes present. In section 5.3.1 we describe a non-linear
least squares fit combined with a set of physically meaningful rules that allows us to
accomplish this decomposition.

The recovery of the pair distributions functions is tested first in the controlled
computer environment of Monte Carlo simulations. Results obtained for the simula-

tions are described followed by the results from snow data in section 5.6.

5.2 Volume Pair Distribution Function from Section Data

Quantitative stereology attempts to characterize numerically the geometrical aspects
of those features of the microstructure which are of interest. A considerable number of
research efforts in the stereological community deal with the problem of determining
properties of particles from their 2-D or 1-D cross-sections. A detailed discussion of

stereological theory is given in Underwood [90].
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The volume pair distribution function, g,, is defined by Hanisch as

)= s g @)

where N,K,(r) can be interpreted as the mean number of particles in a sphere
with radius r centered at an arbitrary point and N, is the mean number of spheres
per unit volume. For a single particle size, g,(r) is the same as the pair distribution
function used in dense media theory to calculate scattering. Likewise, g4 is the area

pair distribution function measurable from section data,

1 dI\A( )

T dr

94(r) = 5— (5.2)

with N4 K 4(r) the mean number of particles in a circle with radius r and Ny is
the mean number of circles per unit area.

In the case where the particles are spherical in shape and their size distribution
is known an integral equation due to Hanisch can be developed froni probability
expressions which relates the pair distribution function to parameters that can be

obtained from a section of thickness 2t [34]:

gA(’I’) W/ f(ll t g,_, \/'r2 +u2)d | (53)

where E[£,] = ro is the mean radius of the ice grains and f(u,t) for a section with
thickness ¢ = 0 can be calculated from the cumulative distribution function R, for

the sphere radii as

fluyt=0) =2 /0 "1 = Bo(lv - ul/2)][1 = Ro((x +v)/2)] do. (5.4)




108

5.2.1 Calculation of ga

A measure of g4 can computed by counting the occurance of separation distances be-
tween the centers of the intersection circles. If the frequency estimate for a separation

ryri—0/2 <1 < r;+6/2 is defined as w(r;) then g, is given by

_ w(r;)
9 = T — = T)

(5.5)

where N, is the total number of circles appearing on the sections. The factor
m(r?,, — r?) appearing in the denominator accounts for the finite area in the circular
shell over which the counting is done.

The accuracy with which g4 can be estimated depends on the number and size
of the available sections, the density of those sections, and the number of frequency
bins considered. The first two of these factors is limited by the amount and nature
of the section data and might not be adjustable. However, the specification of the
sampling size is. As the size of the discrete separations & increases, the number of
pairs of circles that contribute to this bin also increase. This additional averaging
can give a smoother estimate of g4 as long as § is not so large that the underlying
ga is changing appreciably within range. If it is not, the smoother estimate of g, is
more desirable since inversion of (5.7) will propagate noise to the recovered g,.

The crucial region of g4 is close range. For a multi-size system of spheres, this
region is approximately between zero and two times the average particle size (the
exact extent will vary depending on the size distribution). As larger and larger
separation distances are considered, g4 will approach one, which signifies an absence

in correlation between circle centers.
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The actual volume pair distribution function g, is calculated from the Monte
Carlo data in a similar fashion as g4 but has a term in the denominator relating to

the volume of the spherical shell instead of the area.

5.2.2 Solution of Hanisch’s Equation

The integral in (5.3) can be inverted by employing point matching techniques [36].
To recover the volume pair distribution function over a linear spacing, first make a

change of variables z = /% + u? to obtain

T
ga(r) = f( -t 0)—2—29u($)d$- (5.6)
z?—r
Then assume that over some small interval z— £, z+ 2 the function g, (z) remains
sufficiently constant to obtain the matrix equation
1 rmax -
galr) = v Y. gl (5.7)
0 z=0,z2>r
where
u2
I(z,r) = j fluyt = 0)du (5.8)
ul

with integration limits

ul =

{ (:1:—57’”)2—1‘2 (z—%)2>7‘2
0

otherwise

u2

@+%V—ﬂ (5.10)

The integral I(z,r) in (5.7) can be computed analytically for some forms of Rwv.

For a single size sphere of radius 7o it simplifies to
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I(z,r) = (2rq — .5)(min(u2,2ro) — ul) (5.11)
(5.12)

It is also possible to compute I(z,r) for a size distribution made of a small number
of discrete sizes with known densities. For more complicated distributions it can be
evaluated numerically. |

The matrix equation (5.7) is upper triagonal, and for large values of r it is strongly
diagonal. The number of points necessary to get a good estimate of g,(r) is small

since the particle positions become independent (and g,(r) — 1) within a few particle

diameters.

5.2.3 Results from Simulation

Recovery of the pair distribution function g, was tested using a computer generated
system of N=3500 spheres of radius ro. The spheres were deposited using a Metropo-
lis technique into a test cube so that they occupied 30% by volume and their positions
were non-overlapping. The volume was cut by 17 section planes and g4(r) was calcu-
lated as described in section 5.2.1. The area pair distribution function g4(r) is shown
normalized to rg in the right-hand plot of figure 5.1. Note that g4(r) # 0 for r < 2ro.

For single size spheres the integral I(z,r) is given in (5.11) and (5.7) can be easily
inverted to give g,(r). The resulting volume pair distribution function normalized
to ro is shown as a solid line in the left-hand plot of figure 5.1. Also shown for
comparison is g, calculated from the simulation volume by a counting procedure
(dashed line) and gy calculated from the Percus-Yevick approximation (dotted line).

The agreement between the three is quite good.
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Figure 5.1: Left hand plot shows volume pair distribution function g, normalized
to rp recovered from computer simulation (solid line), calculated from Percus-Yevick
(dotted line) and calculated from Monte Carlo volume (dashed line). Right-hand
plot shows area pair distribution function g4 calculated from sections of computer

simulation.
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5.3 g, and g;;

The function g, is the volume pair distribution function for all the particlesin a system
and can be obtained from section data as discussed in section 5.2. Of interest in a
multi-size system the pair functions that describe the interé,ction between different
size spheres. In a system of particles with L different species denoted bys; =1,2,...L

and number density n,;, g,(r) can be represented as a sum

L nen,.
g(r) =Y. ;zo 2g:5(r) (5.13)

2]

where ng is the total particle density and g;;(r), i, = 1...L is the pair distribution
function for interaction between two particles of species s; and s;. Hanisch’s integral
equation allows recovery of g, but does not provide information on the contributing
9ii(r). From (5.13) we see that the contribution to g, (r) from a given g;;(r) is weighted
. by the number densities of species s; and s;. Thus species that occur in small numbers

will have little effect on the function g,(r) and will be difficult to recover.
Under the Percus-Yevick approximation a closed form solution for g;;(r) exists
which allows calculation of g,(r) from when the sizes and numbers densities of each

species is specified.

5.3.1 Nonlinear Model Fit to get g;; from g,

The pair distribution function g,(r) can also be modeled as

L
g(r) =" Xi(r) (5.14)

k=1
where Xi(r),...XL(r) are basis functions. The maximum likelihood estimate of

the model parameters is obtained by minimizing the chi-square quantity
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= g‘f gu(rs) = Z?:l Xi(r:)]*

Oy

(5.15)

i=1

where r; = i§ with ¢ = 1,2,... N; and o; is the measurement error at that point.

For snow section data we do not know the measurement error for g, (this is equivalent

to knowing error in estimating the unknown g4) and (5.15) can thus serve only as a
relative measure of fit.

Ideally, the L functions in (5.14) would correspond to the L individual pair func-

tions g;; in (5.13). Then the least squares fit for the unknown parameters of X would

give a functional form for the g;;. Characteristics of non-overlapping particles are :

o At values of r less than the sum of the two particles’ radii the particles cannot

overlap and the pair function is zero.

¢ In densely packed systems, two particles that are close together (r ~ r; 4+ ;)
have strong correlation resulting in a peak in their pair distribution function at

that point.
o Densely packed systems have oscillatory pair functions.

e As r becomes large the particles’ position becomes uncorrelated and the pair

function approaches one.

From the above considerations a reasonable model can be chosen for g;;(r) of the

form similar to that proposed by Verlet and Weis [93]

Xi(r) = h(r — i) —A;Iiexp(—-uk(r —rk)) cos(pr(r —rg)) + 1 (5.16)

where the double index ¢, j has been collapsed into a single index k with
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TE=Ti+7; (5.17)

and h(r) is the step function given by

1 otherwise

h(r):{ 0r<0 (5.18)

Equation (5.16) contains two adjustable parameters A; and p;, which represent
the amplitude of the spike in the pair function as it “comes on”, and the strength of
the decay and oscillation, respectively.

Minimization of (5.15) with respect to Ay and g can be achieved through a
steepest descent method. Since the form of the basis functions is know, both the
first and second derivative w.r.t. the adjustable parameters are known, and the
minimization of x? can also utilize a Hessian matrix algorithm [63]. The Levenberg-
Marquardt method combines these two strategies and is the standard nonlinear least-
squares routine. The method entails choosing an initial guess for the fit parameters
and then iterating until an error threshold is reached. Since the intent of the fit is not
only to find a model fit for g, but to find one in which the basis functions represent

Gij, choosing the initial parameters is important.
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5.3.2 Snow Subsections

The 2-D subsections of snow were prepared by first saturating the pore void with filler,
then cutting, polishing and enhancing the contrast so that the snow grain profiles
can be automatically classified against the pore filler (formerly air) [59, 32, 27, 19].
Figure 5.2 shows a portion of a snow section from a site in Fairbanks, Alaska prepared
at the Cold Regions Research Engineering Laboratory (CRREL) in Hanover, New
Hampshire. The fractional volume of ice grains can be determined from the point
density and is approximately 22 % for this section.

In this chapter we are assuming a spherical shape for the ice grains. For grains
that are not perfect spheres, this approximation does not produce a large error if the
grains are randomly aligned. The position and diameter of the ice profiles on the
cross section indicate it is impossible to find a single representative sphere size for
the snow. The diameters of snow grains has been observed to follow a log-normal
distribution {17] which has been used to model snow sizes [70]. We will also assume a
log-normal distribution but the choice of an alternate size distribution would simply
alter the form of equation 5.4. The log-normal distribution for diameter d can be

written as [57]

(5.19)

1 1 {logd —log D, 2
d)= —-— S=—n
fd) dlog a,\/21 P [2 ( log g, )

where D, is the geometric mean and o, is the geometric standard deviation. These
can be expressed in terms of the first, second and third moments of the intersection

lengths, L, L2, and L3, respectively, as [70]
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Figure 5.2: Snow section from March 3, 1993.
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4

[jz

log Dy = (20)
Tr3

log? 0, = log (éL_f—z) . (5.21)

The geometric mean and standard deviation for the ice grain diameters in fig. 5.2

were calculated using (5.20) and (5.21) to be Dy = 0.552 mm and o, = 1.8.

5.8.3 Recovery of g,

To measure the area pair distribution function g4 the grain profiles appearing on the
sections were fit with equivalent sized circles. This process was applied to fig. 5.2 and
repeated for a second snow section from the same day. The two were averaged together
to give g4 as a function of distance in millimeters which is shown in figure 5.3b. The
integral in 5.11 was evaluated numerically for a log-normal cumulative distribution
R, to obtain the matrix in (5.7). The matrix inversion yielded the volume pair
distribution function g, shown as a solid line in fig. 5.3a. _

As also seen in tests with multi-size Monte Carlo data, g, bears a close resemblance
to ga. The difference between the two is most pronounced at short distances where
peaks and valleys appear and deepen in g,. Also shown in fig. 5.3a is g, calculated
under the Percus-Yevick (PY) approximation. The dotted line is for a PY calculation
where five sizes (25 pair functions) are considered in the sum in (5.13). This curve
agrees somewhat with g, recovered from the snow data, but fails to produce the
peaks for particles approximately 1.5 mm in diameter. The dashed line more closely
approximates a continuum of sizes by using 100 diameters (10000 pair functions) in
the PY calculation. As seen from the figure, the resultant volume pair distribution
function has the form of a hole correction approximation and does not agree well with
the data. This suggests that the snow is not a true continuum of sizes but can be

better modeled by careful choice of a small number of representative diameters.
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Figure 5.3: a) Recovered volume pair function g, for particles in fig. 5.2 (solid line),
gy calculated from PY with five sizes (dotted line) and g, calculated from PY with

100 sizes (dashed line). b) area pair function g4 from snow sections.
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5.4 Scattering from a Distribution of Spheres

Under the QCA approximation, the effective wavenumber K for particles of relative

permittivity €, can be written [22]

3kz L,

K2 ‘= k2 -+ —D—- L f’ly
=1

2k3y 3 L 30.3

<1+ Z-EF a, + Z_:l a,,,81r ns; Hyo(p = 0) (5.22)
where
€ —€
== 2

Y=o (5.23)
D=1-yf, (5.24)

and H,,(p = 0) is related to the Fourier transform of the correlation function

hij(r) = gij(r) — 1 by

Hyj(p) = (no;nsy)? / dr exp(ip - r)hi;(r) (5.25)
Hij(—p)

Hiyoi(p) = — 0 5.6

(#) (27 )3(ns;ns;)? (5.26)

The extinction of the coherent wave is due loss of energy to scattering and ab-
sorption with an extinction coefficient of &, = 2I m(K). In this chapter we consider
spheres with a real permittivity of € = 3.2¢; and the extinction is due solely to scat--
tering effects. The effective wavenumber under QCA-CP can also be written in terms

of H,y;5(p=0) as
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3x? L
K2=k2+TZfa‘y
=1
2K3y L
. {1 +iggo [af, + z:l afj&ranstsjs,(p = O)] } . (5.27)
8=

Under the Percus Yevick approximation, H"',-,- can be calculated and the inverse

Fourier transform yields g;;. The hole correction approximation gives

0 r<a,+tay
gii(r) = e (5.28)
1 r 2 as; +aSJ
and -
°° = 35f dm 3 5
[ drlau(r) - 11 = @ Hylp) = ~ (0w + )" (5:29)

For densely packed systems with a small number of distinct particle sizes it has
been shown that the hole correction approximation is not accurate because it neglects
the loss of freedom in particle position that the density imposes [22]. However the
contribution from the pair distribution function to scattering is weighed by the par-
ticles’ number density and size as can be relatively small for large particles with very

small number densities, as discussed in the following section.
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5.4.1 Independent Scattering and Correction Terms

For large particles with a low number densities the contribution to g, in (5.13) is small.
However, the scattering contribution for is not small because it is proportional to the
particle size. This can be understood by examination of equations (5.22) and (5.27).
The scattering strength is proportional to the imaginary part of these expressions,
or the part in the square brackets. The first term in the brackets is the independent
scattering contribution from species s;. Using the QCA-CP approximation, we can
define the independent extinction coefficient as the independent scattering from all

species:

8kSyPr L
Kind = 35 DZZC( . (5.30)

C(a-‘n) = Ngya gg (5'31)

where K, is the real part of the effective wave number. For large particles, the
factor of S in (5.31) results in a strong independent scattering contribution.

The second term contributing to scattering is a “correction” term due to inter-
action between species s; and s;. This term accounts for the correlated scattering
in a densely packed system and serves to decrease the independent scattering. The
magnitude of the correction term is governed by the structure factor H,,(0) and

multiplied by n;;a s . We can define the correction term for a given speaes s; with

all other species s; as

i=L
Ceorr(8s;) = D _mgngala j87r3H3,.,j(0) (5.32)

i=1

For the large, sparse particles the correction terms are small in comparison with
the independent scattering implying that knowledge of the exact form of the pair
functions for these sizes is not crucial. The total scattering is a combination of the

independent and correction terms and can be represented as a cumulative sum
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8kSy2r I=

P(asl) = Kind + 3K,~D2 ‘; Ccorr(asj) (533)

such that ['(a,,) = k.

5.4.2 Representative Particle Diameters

An important question is which particle sizes to choose to represent the ice grains.
To explore this question we compared a log-normal system with 200 sizes with one
with only seven representative diameters. For both the geometric mean diameter
was D, = 0.52 mm and the geometric standard deviation was 1.8. Figure 5.4 shows
the comparison between the 200 sizes (dashed lines) and the seven sizes (shown as
asterisks). Figure 5.4a shows the normalized density of the particles and Fig.5.4b
and 5.4c shows the cumulative extinction T as a function of particle diameter with a
PY pair distribution function at a frequency of 17 GHz. The plot in Fig.5.4b shows
r decréasing rapidly as the correction terms for particles on the order of 2 mm in
diameter are added. When all particles less than approximately 4 mm have been
accounted for. I' levels off 'indicating that the correction terms from the larger sizes
have little effect on the cumulative scattering. The shape of I for the seven sizes in
Fig.5.4c exhibits the same characteristics. The extinction coefficient calculated for
the seven sizes (I'(a,,) = . = 0.2394 m™?) is within 1% of that calculated with the
200 sizes.

The solid line in fig. 5.4d shows the independent scattering term {(a,,) for fig.5.4b
normalized to its maximum and plotted as a function of diameter. The strongest
contribution is from particles approximately 3 mm in diameter. Particles that are
larger than this have insignificant number densities and smaller particles don’t scatter

as strongly due to the factor of a® in (5.31). The dotted line is the slope of fig.5.4b
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Figure 5.4: Calculations plotted versus particle diameters based on system of log-
normally distributed spheres with Dy = 0.52 and cr; = 1.8. a) Normalized densities
for 200 sizes (dashed line) and discrete diameters 0.3,0.5,0.8,1.0,1.5,3.0 and 4.0 mm
(asterisks) b) Extinction T(a,,) for continuous sizes c) Extinction ['(a,,) for discrete

sizes d) Independent scattering (solid line) and derivative with respect to diameter

(dotted line) for plot in b.
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normali;ed to its maximum negative value. This curve is a measure of the relative
strength of the correction term (., and has a,. maximum at a sphere diameter of
approximately 1.5 mm. This indicates it is necessary to include the small- to mid-
range particles when the pair functions are calculated or the density effects will not
be taken into consideration. The effect of the more numerous particles is to restrict
the freedom of the system resulting in a reduction in scattering strength relative to
independent scattering.

The larger particles scatter strongly but the relative contribution from their cor-
rection terms is small. This implies that the scattering computation for the seven
sizes can be further simplified by using the hole correction approximation for the two
larger sizes (3.0 and 4.0 mm). This approximation cannot be applied to the small
and middle size particles since the density effects included in those pair functions are
important. The extinction coefficient calculated in this manner is k., = 0.2437 m™!

which is within 8% of the value obtained using PY for 200 sizes.

5.5 Results with Monte Carlo Data

Calculations of densely packed svstems of multi-species particles were tested with
computer generated realizations of spheres. The spheres had three discrete sizes
(L=3) whose relative number densities were specified by a log-normal distribution.
The spheres were deposited using a. Metropolis technique [24] with 30 shuffles for
each of the 30 realizations so that their positions were non-overlapping and described
by the Pefcus—Yevick pair distribution function. The following sections will discuss
results from a Monte Carlo simulation for 30% fractional volume with geometric mean

diameter Dy = 0.5 mm and sizes r; = 0.25, r; = 1.5ry, and r3 = 2.5r; mm.




§.5.1 Pair Functions and Scattering Calculations

The largest size particle is on the tail of the log-normal distribution and occurs in
small numbers, accounting for only 2.05 % fractional volume. In the Monte Carlo
simulations, of the N = 3949 spheres only 29 of the larger size were present in each
realization. This means many more realizations are needed to get an accurate estimate
of gs3 than for the more plentiful smaller sizes. However, the relative contribution
of the larger size to the total pair function is small since there is a factor of MM,
in (5.13) and n3 < ny. The right panel of fig. 5.5 shows the total pair function g,
in (5.13) from the Monte Carlo data (dotted line) compared with that calculated
analytically from the Percus-Yevick formulation (solid line). As seen in the figure the
total pair function g, calculated analytically compares well with that calculated from
Monte Carlo simulations. The left panel of the same figure shows the individual g,
912 = g21, 13 = G31, 922,923 = G32 and gs3 from analytical calculation.

Figure 5.6 shows the pair functions for the three species with extinction values
at 17 GHz. For each of the three sizes the independent scattering term ¢ and the
cumulative extinction T is given in units of m™! to the left of that row. The total

normalized extinction coefficient for all three species is «, = 0.014 m~1.
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Figure 5.5: Pair functions calculated from Percus-Yevick (solid line) and Monte Carlo
simulations (dotted line) for sizes r; = 0.25, r, = 1.57, and r3 = 2.5r; mm. and

number densities n; = 2964, n, = 956, ny = 29.
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From the values in the figure, the following observations can be made :

o The smallest size is the most abundant in the system but has the lowest in-
dependent scattering contribution because of its size. Its importance is in the
correction terms (decrease in the freedom of position that it imposes on the

system).

e The middle size has adequate number density and sufficient size such that its

contribution as a scatterer and as a space occupant are both important.

o The largest size represents a strong scatterer but has a weak correction term due
to its low number density. Although it constitutes only 6.8 % of the scatterer
volume it accounts for over 50 % of the independent scattering contributions.
Note that gs; is strongly peaked indicating a lack of freedom in position. Even
though there is a small number of these large particles, they are packed in with

the other two more numerous species.

o Under the independent scattering assumptioﬁ ke = 0.013-+0.048+0.032 = 0.093
m~! which is 6.4 times larger than the extinction when the interaction between

the species (the correction terms) are considered.

The above observations indicate that each of the species in the system plays
an important but different role in determining the level of the scattering. More
specifically, the densely distributed small and medium sized spheres constrain the

system, while the large and medium spheres have strong independent scattering. -
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5.5.2 Pair Function Retrieval

For the Monte Carlo data, the volume pair distribution function g, is known since
the 3-D positions and sizes of all the particles are known from the simulation : g,
averaged over the 30 realizations is shown in fig. 5.7a. The value for I(z,r) can be
computed analytically where R, is a distribution of three discrete sizes with specified
number densities. The two together can be used in (5.3) to give the “actual” ga
which is shown in fig. 5.7b. The top row of fig. 5.7 shows that the the sharp features
of g, are still present in g4 but are considerably smoothed due to the 2-D sampling
of the Monte Carlo volume.

When the 3-D characteristics of a discrete particle system are not known g4
cannot be determined as above but needs to be measured from the 2-D section data
as outlined in equation (5.3). The Monte Carlo data provides an ideal opportunity
to test the accuracy of the measurement process against the “true” g4. The N, =30
realizations of N = 3949 spheres each were "cut” into N; = 20 equally spaced section
planes. Some of the particles - particularly the larger sizes - were cut more than on.ce
in different locations. An estimate of g4 was then obtained by averaging (5.5) over
the 30 realizations. For the result shown in fig. 5.7d a sampling spacing of § = 0.025
mm over the range of 0 to 2.50 mm was used. Comparison between fig. 5.7b and
fig. 5.7d indicates the estimate of ga is very good.

The retrieval of g, via (5.3) uses the size information in R, to recover the sharp
features and results in a function that looks similar to g4 but with more pronounced
elements. Figure 5.7a compares well with fig. 5.7c and the notch in the pair function
due to the discretization of the three sizes (at r=0.625 mm where the pair function
12 comes on) is quite conspicuous. Also noticeable is the increase of noise due to the

inversion.
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Figure 5.7: Recovered pair function for particles in fig. 5.5. The left hand plots show
the total volume pair distribution function g, and the right hand plots show the area
pair function g4. a) g, is computed from Monte Carlo data b) gA'is obtained by
solution of (5.3), c) g, is obtained by solution of (5.3), d) ga is computed from Monte
Carlo data.
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Table 5.1: Parameter values for investigation of sampling dependencies.

Figure | § (mm) | A (cm?) X2
(c&d) | 0.0125| 768.0 | 1.7582
0.0167 |  768.0 | 1.0556
0.0250 |  768.0 | 0.4572
(a&b) | 0.0333| 768.0 | 0.3158
0.0500 |  768.0 | 0.3591
(s&b) | 0.0333 12.8 | 0.5696
(e&f) | 0.0333 25.6 | 0.5575
0.0333 76.8 | 0.4591
0.0333 | 128.0 | 0.4319
0.0333 |  256.0 | 0.3577

Sampling Requirements

To quantify the accuracy of the recovered g, relative to the actual pair distribution

actual

function ¢2

a chi-square statistic for two binned data sets can be employed

- lEt-at)

FET) + 0u(r)

(5.34)

The value x?, can be used to determine the resultant error in terms of the measure-
ment parameters of g4. This allows a quantitative exploration of the error associated
with sampling size or with insufficient section data. Since it can be expected that
the results will vary depending on particle distribution and density, this one case will
provide only a general guide to the interplay between measurement parameters and
error statistics. Numerical results can be found in table 5.1 with figure 5.8 showing

the measured g4 and recovered g, for selected cases.
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The sampling size 0 determines the appearance of the measured g, as well as the
spacing of the matrix in (5.7). Larger values of é result in a very smooth g4 but at
the expense of not capturing the sharper features. We varied § from 0.0125 to 0.050
mm and found an error minimum at a spacing of 0.033 mm. This case is shown in
the top row of figure 5.8adb. Both g4 and g, are noticeably smoother than in fig. 5.7
and the noise has decreased. However, the finer details of g, are also lost. The height
of both of the peaks has been smoothed and the coarser discretization has shifted the
location of the valley slightly. The following two plots fig.5.8c&d show the opposite
extreme with § = 0.0125. In these plots details of g4 and g, are visible, but the noise
has increased considerably. Thus there appears to be a trade-off between minimizing
the noise and capturing finer details. In the general case when the actual .g, is not
known a reasonable value for the spacing can be determined through trial and error
by successively decreasing § and resultant noise in g4.

The extent of the section data is typically less controllable than the spacing, but
it plays a related role. The section planes in the Monte Carlo simulation are 128 mm?
in area and intersect approximately 190 spheres. In each realization the volume is cut
into 20 sections, but because some spheres are cut more than once these sections are
not independent. The total area of the sections in cm?® is A = 1.28 x N, x N, where
N, is the number of sections per realization. The results discussed thus far have been
averaged over 30 realizations with A = 768 cm®. Table 5.1 gives error estimates for

limited section data with areas ranging between 12.80 to 256 cm?.
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Figure 5.8: Examples of measured g4 and recovered g, for the values in table 5.1.
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For a single realization, the 20 sections total to only 25.60 cm? in area, but still
produce a reasonable recovery of g, as shown in figure 5.8e&f. The ramification of
fewer realizations is the inability to capture the peaks in g4 and a rise in the noise
level. This produces a a more noisy g, which is not as sharply peaked. Decreasing the
section area to A = 12.8 cm?® by cutting only 10 sections from the single realization
gives the plots in figure 5.8g&h. In these the lack of the dominant peak is highly
prominent. Note that for this case the chi-square error is only 0.5575 - only a third
of the computed error for fig.5.8c&d in which the features of g, are successfully
recovered. This illustrates the bias in the chi-square statistic. Because it is a least-
squares measure, it tends to assign lower error values to less noisy data. If the intent
of the recovery is to locate the peaks of g, with great accuracy then the chi-squared

statistics should be used in conjunction with the appearance of g4 and the recovered

Gv-

Model Fit for Monte Carlo Data

Figure 5.9 shows the result of the model fit for the recovered pair distribution function.
If the fit were perfect, the left panel would be identical to that in fig. 5.5. In fact,
the pair functions for the more numerous, smaller sizes compare favorably but the
fit is unable to determine the proper coefficients for the largest size, gs3. This is due
to the previously mentioned fact that the number densities for these larger sizes are
so low that g, does not contain sufficient information to recover them properly. The
comparison of the recovered g, (solid line) with the fit (dotted line) is shown in the

right-hand plot of the figure.
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Figure 5.9: Recovered pair functions for particles in fig. 5.5. Left panel shows the six
basis functions with adjusted parameters. Right panel shows the total pair function

computed Percus Yevick (solid line) and the modeled g,(dotted line) as in (5.14).
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5.6 Scattering Calculations Based on Snow Section Data

The above analysis indicates that it is possible to retrieve g, if a sufficient amount
of section-data is available. Furthermore, some of the individual pair functions can
be modeled from a non-linear least squares fit of g,. In this section we consider the

procedure when applied to snow sections.

5.6.1 Model Fii for g,

Based on the analysis of secticn 5.4.1 we choose five mid-range particle sizes for the
fit. The recovered pair functions can then be used to determine the scattering for
these five particles and the hole correction can be used to calculate the extinction for
the two larger sizes.

The results of the fit procedure are strongly dependent on the initial guess. Since
the objective is to find functions X} which are indicative of the physically meaningful

pair functions g;; we guided the fit in the following manner :

1. Choose the amplitude of g;; so that it accounts for the value of the pair function
at their péak, i.e., Ai; = (g,(r = ri + 7;)/(ninj) — L)*(ri+r;). Choose the decay
factor p;; so that it is inversely proportional to the number density of the ith

and jth species.

2. Allow the fit to determine the ideal values for A;; and ;. Accept or reject the

resultant values based the following criteria:

o Reject any negative values.

e Accept amplitudes that are very large (i.e., A;; > 100) only if r; = r; is

the smallest radii considered.
o Reject if the large, sparse sizes have slow decays.

¢ Accept the small to medium sizes if they have slow decays.
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3. Hold the accepted values constant and fit the remaining (rejected) values by

returning to step 1. Stop when none of the values are rejected.

Since the solution to (5.13) is non-unique, these “rules” are necessary to restrict
the parameter space of the fit process. In particular, they force the pair functions
for the small, more densely distributed spheres have longer correlation lengths while
the larger, sparsely distributed spheres are strongly peaked with rapid decay and
oscilla.tién. This behavior is seen in the Percus-Yevick pair distribution functions and
indicates that the positions of the larger particles are most strongly constrained due
to their size. The decay parameter p;; determined from Percus-Yevick for a three size
system is shown as a function of r; + r; in figure 5.10.

The family of functions recovered for the snow section are shown in fig. 5.11 and
fig. 5.12 for diameters 0.30,0.50,0.80,1.00,1.50 mm. The values obtained from the
model fit can be combined with a hole correction calculation of larger parﬁcles (at 3
and 4 mm) to yield a total extinction of k. = 0.2456 m™'. This is comparable to the

extinction x, = 0.2393 m™! derived under PY for 200 sizes.

5.7 Discussion and Conclusions

The 3-D pair distribution function can be related through Hanisch’s integral equation
to the 2-D probability of particle separation. This second quantity is easily obtained
stereologically and the inverse of the integral equation yields the volume pair distri-
bution function. This process has been tested with computer simulation and applied

to snow sections.
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Figure 5.10: Decay parameter y;; determined from Percus-Yevick for a three size

system and shown as a function of r; +r;.
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Figure 5.11: Non-linear model fit for snow section in fig. 5.2 and five diameters
0.30,0.50,0.80,1.00,1.50 mm. Each pair function Xi(r) = gi;(r) is described by the

parametric form in (5.16).
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The snow is modeled as a collection of spherical ice grains with a log-normal
distribution of diameters. The parameters of the distribution are determined from
stereological measurements. The recovered volume pair distribution function can be
represented as a weighted sum of size specific pair distribution functions whose fonﬁs
are determined through a least squares fit. Only those sizes in the distribution which
have sufficient number density can be retrieved. To restrict the domain of the fit a
set of physically meaningful rules is devised to guide the initial guess.

In multi-species systems different sized spheres have distinct roles in the collective
scattering. The independent scattering contribution from each size particle is heavily
.weighted by its size. The correction terms account for the interaction of each species
with the others and include the pair distribution function. Larger spheres which occur
in small numbers have a major independent scattering contribution but relatively
small correction terms. For small- to mid-range particles the opposite is true : the
independent scattering is moderate but the correction terms are large due to the
higher number densities.

In the snow. data the grain sizes are approximated by seven discrete sizes where
scattering from the largest two is calculated under the hole correction approximation.
The five remaining sizes yield fifteen unique pair functions which are retrieved by the
non-linear least squares fit. The resulting pair functions yield scattering rates that -

are comparable to those calculated under the Percus Yevick approximation.




Chapter 6

CONCLUSIONS AND RECOMMENDATIONS

This dissertation investigates the correlated scattéring in densely packed, discrete
random scatterers using Monte Carlo simﬁlatidns and analytic dense media theory.
The Monte Carlo simulations provide a tool with which to evaluate results obtained
under classic methods and with dense media theory such as quasi-crystalline approx-
imation (QCA) and quasi-crystalline approximation with coherent potential (QCA-
CP). In addition, the Monte Carlo simulations are used to determine the scattering
coefficient, absorption coefficient, effective permittivity and phase matrix for use in
the dense media radiative transfer equations for application to active microwave re-
mote sensing of snow covered regions.

To investigate the effect of the scatterer placement on the electromagnetic wave
a sticky-particle pair distribution function is introduced which includes the adhesive
character of the particles that causes them to clump together. This adhesive char-
acter may provide a more accurate depiction of particles that exist in clusters (for
example snow grains). The effect of the sticky-particles on the electromagnetic wave
is calcul:.;mted analytically using QCA and numerically with Monte Carlo simulations.
To generate a more realistic description of snow, snow sections prepared for stere-
ological analysis are used to determine a family of pair distribution functions that

contribute to the scattering.
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6.1 Summary of Research

6.1.1 Sticky Hard Sphere Pair Distribution Function

We have shown that it is possible to describe adhesive particles statistically with the
Percus-Yevick sticky particle pair distribution function. It is also possible to use this
pair function in dense media scattering theory when the media in consideration has
particles with a tendency to cluster. The experimental data we considered from one
such media could only be explained by considering this stickiness.

The effect on the scattering behavior when the particles bond has been investi-
gated. The primary effect is the increased attenuation due to the large cluster size,
which show characteristics of scattering from a larger particle. However, when we
attempted to reproduce the scattering using only non-sticky particles, we were un-
able to do so. This implies the stickiness of the particles needs to be taken into

consideration to obtain accurate results.

6.1.2 Monte Carlo Simulations

The Monte Carlo simulations provide a valuable tool for testing our understanding
of electromagnetic wave propagation through dense media. The simulations take
into account correlated scattering and coherent wave interaction. The coherent and
incoherent fields distributions can be used to calculate the extinction and absorption
coefficient of densely packed discrete, dielectric, absorbing spheres. The spheres are
deposited into a test volume in a random fashion, both with and without surface
adhesion. Scattering and absorption are calculated using a numerically exact iterative
formulation of Maxwell’s multiple scattering equations, in which the contributions of

the electric and magnetic dipoles were considered.
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The scattering predicted by QCA and QCA-CP agrees well with the results of
the Monte Carlo simulations. In contrast, the independent scattering assumption
overestimates the amount of scattering when the scatterers occupy any more than a
few percent by volume. At higher fractional volumes (i.e., j 35 %), QCA and QCA-
CP predict slightly lower extinction rates than the Monte Carlo simulations, perhaps
due the low-frequency approximations used in the solution for QCA and QCA-CP.
The validity of the low-frequency approximation depends on ka aﬁd on the fractional
volume. For a given ka, there is a threshold fractional volume above which the low-
frequency assumption no longer holds. The value of the threshold decreases as ka
increases.

The absorption -coefficient for an ensemble of absorbing spheres ‘was larger than
that predicted by assuming independent absorption. While this may not be surpris-
ing for the case of clustered particles, it is also true when non-clustered, randomly
positioned spheres are considered. The absorption enhancement is due to a modula-
tion of each sphere’s local exciting field as a result of the neighboring particles. In
essence, the high local fields aid the ability of each sphere to absorb incident energy.
The validity of the independent absorption assumption again depends on ka and the
fractional volume, as observed for the validity of the low-frequency approximations
used in QCA-CP. Results from a low-frequency approximation begin to disagree with
the Monte Carlo results when fractional volumes greater than a threshold value are

considered. The value of the threshold decreases with increasing ka.
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Results of the Monte Carlo simulations show a clear dependence on the initial
placement of the spheres. When interparticle adhesive forces cause clustering of the
spheres, the scattering increases dramatically because of the effectively larger particle
the clusters represent. This is in agreement with previous research on single fractal
aggregations, which also found an increase in scattering. Both QCA-CP and the
Monte Carlo simulations predict this increase in scattering for sticky spheres relative
to the non-sticky case, but the magnitude of the increase is overestimated by QCA-
CP. The increase is less pronounced at higher fractional volumes since the declining

freedom of sphere placement curtails the clustering behavior.

6.1.3 Radiative Transfer Equation Applied to Remote Sensing of Snow

The Monte Carlo simulations can be used to calculate the extinction coefficient, phase
matrix, and effective permittivity of the discrete random medium. These quanti-
ties are necessary for solution of the radiative transfer equation. The co-polarized
elements of the phase matrix from the Monte Carlo simulations agrees with that
obtained from DMRT. However, the off-diagonal elements are non-zero but are two
orders of magnitude smaller than the copolarized energy. The presence of this de-
polarization is due to the random organization of the spheres which can give rise to
perturbations in the internal dipole alignment. For very low frequencies, the random,
isotropic arrangement of spheres causes cancelation of these deviations. For higher
frequencies, since the wave will only add the dipole moments coherently over scales
on the order of § of a wavelength, the depolarization in the scattered field will remain.

Application of a radiative transfer model can yield different results depending on
the assumptions used in calculation of the extinction coefficient, phase matrix, and
effective permittivity. The independent scattering assumption gives overly high levels
of backscatter due to overestimation of scattering. DMRT gives more realistic scat-
tering coefficients, but neglects the first order depolarization effect. First order depo-

larization arises from coherent near field interaction among the spheres that creates
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non-alignment of dipole moments. Using the phase matrix and scattering coefficient
obtained from Monte Carlo simulations can produce co-polarized backscattering that
is comparable to QCA-CP but also much higher levels of depolarized backscatter due
to non-zero contributions from both first and second order effects. This combination
results in a different snow depth and frequency dependence than indicated by conven-
tional theory. Large increases in both copolarized and depolarized backscatter can
be achieved by including the clustered nature of metamorphosed snow with a sticky
particle model.

The effective permittivity of snow can be derived from the results of Monte Carlo
simulations. The imaginary part of the effective wavenumber is related to the extinc-
tion coefficient for the incoherent wave and the real part corresponds to the phase
progression of the coherent wave. The phase information is available both in the
coherent scattering from the Monte Carlo volume as well as the oscillation of the
internal dipole within the scatterers. The effective permittivity obtained from simu-
lation yields an imaginary part that is in agreement with that predicted by QCA-CP.
The real part of the permittivity agrees with that obtained from mixing formulas such

as Clausius-Mossoti formula but is slightly lower than that predicted from QCA-CP.

6.1.4 Pair Function Retrieval from Planar Snow Sections

The 3-D pair distribution function can be related through Hanisch’s integral equation
to the 2-D probability of particle separation. This second quantity is easily obtained
stereologically and the inverse of the integral equation yields the volume pair distri-
bution function. This process has been tested with computer simulation and applied

to snow sections.




147

The snow is modeled as a collection of spherical ice grains with a log-normal
distribution of diameters. The parameters of the distribution are determined from
stereological measurements. The recovered volume pair distribution function can be
represented as a weighted sum of size specific pair distribution functions whose forms
are determined through a least squares fit. Only those sizes in the distribution which
have sufficient number density can be retrieved. To restrict the domain of the fit a
set of physically meaningful rules is devised to guide the initial guess.

In multi-species systems different sized spheres have distinct roles in the collective
scattering. The independent scattering contribution from each size particle is heavily
weighted by its size. The correction terms account for the interaction of each species
with the others.and include the pair distribution function. Larger spheres which occur
in small numbers have a major independent scattering contribution but relatively
small correction terms. For small- to mid-range particles the opposite is true : the
independent scattering is moderate but the correction terms are large due to the
higher number densities.

In the snow data the grain sizes are approximated by seven discrete sizes where
scattering from the largest two is calculated under the hole correction approximation.
The five remaining sizes yield fifteen unique pair functions which are retrieved by the
non-linear least squares fit. The resulting pair functions yield scattering rates that

are comparable to those calculated under the Percus Yevick approximation.

6.2 Recommendations for Future Research

To accurately understand electromagnetic propagation and scattering in dense, dis-

- crete random media there needs to be, first, an accurate model of the random medium

as well as, second, a rigorous method to compute the scattering.
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The first consideration involves accurate modeling of a particle positions within
the dense medium. When an aggregation of particles is formed under an external force
(for example metamorphic processes involved in the sintering of snow) complicated

microstructures can result. One way to produce these microstructures for the purpose

«of modeling the random medium is to understand the process sufficiently well so that

the formation of the particle systems can be simulated, i.e., “grow” the snow. An
alternate approach is to utilize observable quantities of the random medium - such as
stereological data - to infer the structural details needed in an accurate model. The
second major component is the ability to account for the wave interactions within
the random media. In dense media, the correlation of the particles’ positions results
in correlated scattering. Analytical theory such as QCA and QCA-CP take this into
consideration through use of a pair distribution function but rely on use of reasonable
approximations to obtain a closed form solution. The validity of dense media theory
can be tested by the numerically exact formulation in the Monte Carlo simulations
which explicitly accounts for all orders of multiple scattering. In this dissertation,
computation of the extinction coefficient, absorption coefficient, phase matrix, and
effective permittivity has been validated for the small particle case. Extension of this
procedure to higher frequencies is desirable for many applications and would require

future research to meet the challenges of the increased computational demands.

6.2.1 Specific Recommendations

Further investigation into the nature of the ice grain clusters that occur in snow is
necessary to accurately evaluate their effect on the scattering physics. This disserta-
tion research indicates that the microstructure of a particle system strongly effects
the scattering. However, specific knowledge of this microstructure for snow is not yet
available. The sticky hard sphere (SHS) pair distribution function is an attempt to
address this problem. To use SHS to model geophysical media - such as snow - there

needs to be a method to detefmine the stickiness parameter 7 for the model.
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In many types of random media three-dimensional information on the particle
microstructure is unavailable. However, often it is possible to obtain two dimensional
information stereologically and Hanisch’s integral equation can then be used to re-
cover a volume pair distribution function. When the particles are multi-sized this
total pair function is a sum of the interactions between individual sizes weighted by
their number density. The decomposition of the 3-D pair function into size specific
pair functions needed for scattering computation poses a many-to-one problem. This
dissertation restricts the inversion space by utilizing a set of rules to guide the least
squares fit. However, these rules are postulated based on the observed behavior of
particle systems (such as Percus-Yevick) and may not be widely applicable. More re-
search needs to-occur to determine a more rigorous method of restraining the solution
space. One possibility is to obtain additional information from the random medium
itself through sampling tech;liques.

The Monte Carlo simulations can be applied to higher frequencies if more spherical
harmonics are retained in the series expansion. The inclusion of higher harmonics
increases the memory and computational requirements for the simulations which can
be accommodated be developing more advanced numerical methods. The ability
to compute scattering at the higher frequencies can be used to determine radiative
transfer quantities for passive microwave systems.

The research in this dissertation has concentrated on the application of remote
sensing of snow. However, it could also be applied to determine properties of com-

posite materials or in the application of non-destructive evaluation.
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