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University of Washington

Abstract

Release-Recapture Models for Migrating Juvenile and Adult Salmon in the
Columbia and Snake Rivers using PIT-Tag and Radiotelemetry Data

Rebecca A. Buchanan

Chair of the Supervisory Committee:
Professor John R. Skalski
School of Aquatic and Fisheries Sciences

Release-recapture models for two types of tagging data from migrating salmonids in the
Columbia and Snake rivers are presented. The first model uses both juvenile and adult
PIT-tag data to analyze the seaward and spawning migrations through the hydrosystem.
This branching model accommodates transported smolts, known removals, and multiple
adult age classes. Juvenile inriver survival, adult return rates, adult inriver survival, and
transportation effects can be estimated from this model, as well as smolt-to-adult return
rates (SARs) and the adult age composition. An example of summer Chinook salmon
(Oncorhynchus tshawytscha) released in the Snake River upstream of Lower Granite Dam in
1999 is analyzed. The relative system-wide transportation effect measure was ﬁsys =1.232
(§E = 0.036), while the SAR to Lower Granite Dam was estimated to be SAR = 0.0193
(§E = 0.001). Overall upriver adult survival for the release group was estimated at Sy =
0.8175 (SE = 0.022).

The second model analyzes radiotelemetry data from adult salmon to estimate perceived
system survival and unaccountable loss during the upriver adult migration. Detections are
available at the base and top of dams, and in tributary mouths. A sequence of models is
presented, ranging from simple to complex, incorporating memory effects of tributary visits
and fallback events. Models are compared using a data set of spring/summer Chinook
salmon radio-tagged as adults at Bonneville Dam in 1996. Because these adults came from

multiple spawning sites, the estimate of perceived survival from Bonneville to Lower Granite



Dam was low, at §3ys = 0.10 (§E‘ = 0.01). Unaccountable loss, fip = 0.28 (SE = 0.02),
was considered the more appropriate performance measure for the adult migration in the
case of non-known source fish.

A secondary purpose of this dissertation was to compare the analysis of adult data
from radiotelemetry and PIT tags. The models in Chapter 3 indicate that for estimating
large—scalé quantities such as system survival and unaccountable loss, PIT tags may offer
comparable information to radio tags. If the projected PIT-tag detection systems in trib-
utary mouths become available and reliable, PIT tags may reasonably replace the more

expensive radio tags in estimating large-scale quantities reflecting the adult migration.
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Chapter 1
INTRODUCTION

1.1 Release-Recapture Studies

Recapture studies of marked animals have been used many times to estimate demographic
parameters of animal populations in the past century; for examples, see Jackson (1939),
Darroch (1958), Darroch (1959), Cormack (1964), Jolly (1965), Seber (1965), Burnham
et al. (1987), Pollock et al. (1990), and Lebreton, Burnham, Clobert and Anderson (1992).
A basic study design is release-recapture, also called capture-recapture. Release-recapture
Studies use live recaptures of individually marked animals, which are usually re-released
upon capture. There are at least 2 sampling periods and often more; sampling periods
are very short relative to the study duration, and may be considered discrete in time.
Unmarked individuals may be captured, marked, and released at sampling periods after the
initial release.

The classic statistical models used to analyze recapture data are the “Cormack-Jolly-
Seber” (CJS) or “Jolly-Seber” (JS) models, developed by Cormack (1964), Jolly (1965),
and Seber (1965). The CJS and JS models were developed for open populations, with -
the CJS model incorporating emigration (or death), and the JS model incorporating either
immigration (or birth), emigration (or death), or both. Survival and capture or detection
probabilities may be time-dependent, but are assumed equal among individuals at any given
sampling time. With these and other assumptions, the models’ likelihoods are multinomial,
and may be expressed as the product of conditional likelihoods representing data on cap-
tures of marked and unmarked animals, releases of newly marked and previously marked
animals, and losses on capture. Estimators are typically derived via maximum likelihood,

and variances and covariances via the information matrix and Taylor series (i.e., the delta



method). The JS model allows for newly marked individuals to be released after the initial
release, and thus reflects the initial capture and marking process and provides estimates of
abundance as well as survival. The CJS model, on the other hand, uses data only from
marked animals, and so provides estimates of survival but not abundance.

Since its appearance in the 1960s, researchers have modified the Jolly-Seber model to
suit their own studies. For example, Robson (1969), Pollock (1975), Otis et al. (1978),
Burnham et al. (1987), Pradel, Clobert and Lebreton (1990), Lebreton et al. (1992), Le-
bretén and Pradel (2002), and Pledger and Schwarz (2002) extend JS models to allow for
capture and survival probabilities that vary with cohort or capture history. Pollock (1981),
Brownie and Robson (1983), Stokes (1984), Clobert et al. (1994), Schwarz and Arnason
(2000) allow for age-dependent or breeder-dependent survival and capture probabilities.
Otis et al. (1978) developed a unified approach for closed populations, including goodness-
of-fit tests and tests among competing models; Burnham et al. (1987) and Pollock et al.
(1990) developed an analogous approach for open populations, allowing for comparison be-
tween different treatment groups with goodness-of-fit tests and hypothesis tests. Numerous
authors have modified the Jolly-Seber model to analyze tag-recovery data from exploited
populatiéns, in which tags (and animals) are recaptured only upon harvest of the animal
and return of the tag from the hunter or fisherman; for examples, see Arnason (1972), Ar-
nason (1973), Seber (1982), Brownie et al. (1985), Schwarz (1993), Schwarz, Schweigert
and Arnason (1993), and Pledger and Schwarz (2002). Several authors have designed mod-
els'to combine tag-recovery data with capture-recapture/resighting data; see Mardekian
and McDonald (1981), Brownie and Pollock (1985), Burnham (1993), and Joe and Pollock
(2002) for examples. The assumption of homogeneous capture probabilities is important in
estimation of population size and recruitment, although less for estimation of survival rates
(Carothers, 1973; Cormack, 1989; Lebreton et al.,, 1992; Kendall, Pollock and Brownie,
1995). The assumption of homogeneous capture probabilities is often not met in natural
populations, however. A “robust design” using ad hoc estimators based in part on the Jolly-
Seber design and model was developed by Pollock (1982) in an effort to offset the effects
of heterogeneous. capture probabilities. Kendall et al. (1995) proposed a likelihood-based

approach to estimating parameters under the “robust design;” Kendall and Nichols (1995),



‘Kendall, Nichols and Hines (1997), and Schwarz and Stobo (1997) extended this approach
to estimate temporary migration.

While the original goal of recapture studies and the Jolly-Seber model was estimation
of population size, focus has since shifted to estimation of survival, and to some extent
migration rates and recruitment rates to the breeding population. ‘Model selection is also
a key issue (Burnham et al., 1987; Lebreton et al., 1992). Several authors have developed
models for migratory populations, focusing on either survival rates, migration rates, or both.
For example, Pradel et al. (1997) address estimating survival of a resident population in the
presence of transients, developing both a capture-recapture model and an ad hoc method
of dealing with transients. Schwarz et al. (1993) estimate overall survival of a migratory
population using tag-recovery data. Most authors, however, address estimating movement
rates. Movement may be in and out of a single study population, as in Jackson (1939),
Cameron and Williamson (1977), Zeng and Brown (1987), Nichols and Pollock (1990), and
Pollock et al. (1990). Alternatively, movement may be among geographic strata or regions
within a study population. If sampling and releases are always done in the same strata,
then migration rates among the strata can be estimated, based on several assumptions. A
key assumption is that survival is constant across strata (for examples, see Darroch, 1961;
Manly and Chatterjee, 1993; Schwarz et al., 1993). Some authors. have gone farther, and
assumed survival to be constant across time as well (Chapman and Junge, 1956; Manly
and Chatterjee, 1993). Without this assumption, only “transition” rates can be estimated,
combining survival with migration. In addition to constant survival probabilities, some
authors assume constant or known tag-recovery or capture probabilities (e.g., Manly and
Chatterjee, 1993; Schwarz et al., 1993; Anganuzzi, Hilborn and Skalski, 1994).

Estimating movement rates with tag-recovery requires some degree of fidelity. of the

vanimals to sampling or recovery sites. Also, after an animal has migrated once during
a sampling period, it is assumed not to migrate again. Schwarz, Burnham and Arnason
(1988), Hilborn (1990), and Schwarz et al. (1993) all assume some degree of fidelity to
sampling or recovery sites. In addition, all models using both tag-recovery and capture-
recapture data assume no temporary migration out of the study area. However, Schwarz

and Stobo (1997) extended the “robust design” developed by Pollock (1982), Kendall et al.



(1995), Kendall and Nichols (1995), and Kendall et al. (1997) to estimate population size,
return rate to the breeding ground, survival, and recruitment in a population that returns
to the breeding ground year after year but with temporary emigrants out of the study area.
The resulting estimates of abundance include these temporary emigrants, and estimates of
recruitment, survival, and movement rates apply to the entire population, including the
temporary emigrants.

Another common assumption is that transition rates (survival and migration) depend
only on the animal’s current location (stratum), and are independent of past migrations.
This is the assumption of Markovian transitions, and is used in the models of Arnason
(1973), Schwarz et al. (1993), and Schwarz and Stobo (1997). Schwarz et al. (1993) make
this assumption in their tag-recovery model, assuming that migration and survival rates are
independent of the path taken between two strata; this introduces problems with estimation
and identifiability of transition parameters due to convolution of the parameters and low
tag-recovery rates. Hestbeck, Nichols and Malecki (1991) tested the Markovian assumption
for migrating Canada geese using goodness-of-fit tests in a capture-recapture model, finding
that transition probabilities depending on both the current and previous year’s locations
fit data better than true Markovian transition probabilities. Brownie et al. (1993) gave
an alternative approach to that of Hestbeck et al. (1991), also allowing for movement that
is either a first-order Markov process or dependent on locations in the previous sampling
period.

Several authors have developed methods of incorporating age structure into analyses of
capture-recapture data, primarily to estimate age-specific breeding probabilities or recruit-
ment to the breeding population. Early work by Barrat, Barré and Mougin (1976) and
Lebreton (1978) used recapture data and external estimates of survival to define ratio esti-
mates of age-specific breeding probabilities. Lebreton et al. (1990) introduced a statistical
model (“transversal” model) to estimate age-specific breeding probabilities from cohort-level
recapture or resighting data collected through time, but without information on individual
fates. For individual-level recapture data, Clobert et al. (1994) proposed a “longitudinal”
model in the CJS framework that follows individuals through time. Developed originally

for a single-state system, Lebreton and Pradel (2002) generalized it to a multistate model.



Clobert et al. (1994) connect capture prbbabilities to age-specific breeding probabilities in
a population in which non-breeders have zero probability of capture. Schwarz and Arnason
(2000) address the same problem, using a “super-population” model from Schwarz and Ar-
nason (1996) and treating first-time breeders as births to the breeding population. Pradel
(1996) and Pradel et al. (1997) develop a reverse capture history method that considers
first-time breeders as (reverse) “deaths” from the breeding population and past breeders as
“survivors.” The reverse capture history method is conditional on those animals that survive
to the age at which all an’imals breed, whereas the methods of Clobert et al. (1994) and
Schwarz and Arnason (2000) include survival parameters for all ages. Two key assumptions
of Clobert et al. (1994) and Schwarz and Arnason (2000) are (1) survival rates of breeders
and non-breeders are equal after the youngest breeding age, and (2) survival and capture

rates among breeders are equal, regardless of age.

1.2 Motivation of the Problem

Six Evolutionarily Significant Units (ESUs) of anadromous salmonids from the upper Co-
lumbia River Basin and the lower Snake River Basin are listed as endangered or threat-
ened under the Endangered Species Act, including spring/summer Chinook salmon (On-
corhynchus tshawytscha), fall Chinook salmon (0. tshawytscha), Steelhead (O. mykiss),
and Sockeye salmon (O. nerka). Chinook salmon and Steelhead from the Middle Columbia
River are also listed as threatened. Only wild populations are listed, but hatchery fish
are studied as well, due to concern over the sustainability of hatchery populations and the
relative ease of studying hatchery fish. The majority of Snake River populations spawn up-
stream of Lower Granite Dam, the farthest upriver of the four federally owned hydroelectric
dams on the lower Snake River. Juveniles migrate downriver as weeks- or months-old fry
(fall Chinook salmon) or as years-old smolts (spring/summer Chinook salmon, Steelhead),
spend a variable amount of time rearing in the Columbia River estuary and then growing
in the P‘aciﬁc Ocean, and then mature and migrate back upriver to spawn in their natal
tributaries. The age at maturity varies both among and within species and populations.
Thus, the smolts in a given migration year contribute to several years of spawning adults.

Migrating salmonids from the lower Snake River must pass eight large hydroelectric



dams on the Snake and Columbia rivers; populations from the Mid-Columbia pass up to
nine hydroelectric projects (Figure 1.1). Federally-owned dams are Bonneville (BON), The
Dalles (TDA), John Day (JD), McNary (MCN), and Priest Rapids (PR) on the Columbia
River, and Ice Harbor (IH), Lower Monumental (LMO), Little Goose (LGO), and Lower
Granite (LGR) on the Snake River. Due to the listing of the populations under the ESA,
managers of the federally owned hydroelectric projects on the lower Columbia and Snake
rivers are required to operate these dams in such a manner that does not further deplete
or harm the existing salmon populations. Researchers must monitor migrating salmonids
during their migration, identifying reaches or dams where survival or passage rates are
low, measuring the effect on survival of treatments such as juvenile transportation, and
analyzing the effect of adult fallback over dams on subsequent survival. Additionally, rates
of unaccountable loss of migrating adults are of concern, where unaccountable loss refers to
adults that are not reported to have returned to hatcheries or spawning grounds, or to have
been harvested in fisheries. Unaccountable loss may be due to mortality in the mainstem,
illegal or unreported fishing, spawning in the mainstem, unknown turnoff to tributaries, or
fallback over dams not followed by reascension.

All but one of the federally-owned dams (The Dalles) have juvenile bypass systems
(JBS) that divert smolts away from the turbines and past the dam, returning bypassed
smolts to the river below the dam. Smolts not bypassed in this way pass the dam via
either the spillway or the turbines. Three of the Snake River dams (Lower Granite, river
km [RKM] 695; Little Goose, RKM 635; and Lower Monumental, RKM 589) and one
Columbia River dam (McNary, RKM 470) collect fish for the smolt transportation program.
This program is run by the United States Army Corps of Engineers (USACE) together
with NOAA Fisheries (National Oceanic and Atmospheric Administration, National Marine
Fisheries Service). Bypassed smolts are collected at these dams ;md transported downriver
by barge or truck to be returned to the river below Bonneville Dam, located on the Columbia
at RKM 234.- Transportation allows smolts to reach the Columbia River estuary earlier and
without the stress and mortality risk of passing eight large dams on their downstream
migration, although there are stresses involved in transportation itself (Williams, 1989).

Additionally, some bypassed and collected fish are diverted to the sampling room at the
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Figure 1.1: Columbia and Snake river basins, with hydroelectric dams passed by
migrating salmonids. Federally-owned dams are Bonneville, The Dalles, John Day,
McNary, and Priest Rapids on the Columbia River, and Ice Harbor, Lower Monu-
mental, Little Goose, and Lower Granite on the Snake River.

dams; these fish may or may not be returned to the migrating population. Returning adults
pass dams via fish ladders; some fish ladders have sampling rooms from which sampled
adults may or may not be returned to the river.

In order to gauge the effects of management actions on migrating populations, taggihg
studies have been performed on migrating juveniles and adults. Since the early 1990s, Pas-
sive Integrated Transponder (PIT) tags (Prentice, Flagg and McCutcheon, 1990a; Prentice
et al., 1990b) have been used to assess the survival of juvenile salmon migrating through

the dam systems. Both hatchery and wild fish are PIT-tagged, but only a sample of the



migrating population is tagged. PIT tags are small electronic tags, 10 mm long and 2.1 mm
in diameter, coded with individual codes that are kautomatically detected when a tagged
fish swims past a detector, thereby allowing recognition of individual tags (fish) without
further handling after tagging and release. PIT-tagged Snake River juveniles are detected
in the JBS at LGR, LGO, and LMO on the Snake River, and at MCN, JD, and BON on
the Columbia River. Previously, tagged juveniles from the upper Columbia River were also
detected at Rocky Reach (RR). PIT tags are beginning to be used to assess adult survival
through the hydrosystem, with detectors in adult ladders at BON, MCN, PR, Rock Island
(RI), and Wells (W) on the Columbia River, and at IH and LGR on the Snake River. Detec-
tion data are collected and maintained in a database by the Pacific States Marine Fisheries
" Commission (PSMFC 1), and are readily available to researchers.

Release-recapture work done on salmon in freshwater is extensive, with objectives rang-
ing from estimating survival rates of migrating juveniles (smolts) past hydroelectric projects
(e.g., Burnham et al., 1987; Lowther and Skalski, 1998; Skalski et al., 1998) to estimating
stream residence time of spawning adults (Lady, 1996; Lady and Skalski, 1998; Manske
and Schwarz, 2000), and estimating escapement or run size (Schwarz and Dempson, 1994).
Burnham et al. (1987) proposed a method of designing and analyzing release-recapture
studies to assess treatment effects on survival of migrating salmon, in particular through
dams. They based their method on CJS models, and provided goodness-of-fit tests and
hypothesis tests to compare two or more treatment groups.

Many release-recapture studies have used PIT-tag data to assess survival of migrating ju-
venile salmon between and through hydroelectric projects (e.g., see Prentice et al., 1990a,b;
Iwamoto et al., 1994; Muir et al., 1995, 2001a,b; Lowther and Skalski, 1998; Skalski et al.,
1998), as well as their overall river survival (Skalski, 1998; Williams, Smith and Muir, 2001).
Smith et al. (1994) developed a method of relating juvenile survival to individual and envi-
ronmental covariates via tag detections. PIT tags have also been used to assess the effect on

survival of transporting migrating juvenile salmon by barge or truck past up to eight dams

!Pacific States Marine Fisheries Commission, PIT Tag Operations Center, 45 SE 82nd Drive, Suite 100,
- Gladstone, OR 97207.



(Sandford and Smith, 2002). The effect of transportation on adult return rates is commonly
estimated by the Transport In-river Ratio (TIR) or equivalently Transport Benefit Ratio
(TBR), the ratio of the smolt-to-adult return rate (SAR; Raymond 1988) of transported
fish to that of non-transported fish (Ebel, 1980; Sandford and Smith, 2002) using the rela-
tive recovery method (Ricker, 1975). Without using detections of individually-identifiable
adults, TBR and ocean survival are typically estimated by pooling tag recoveries of adults
across age classes as in Sandford and Smith (2002), ignoring any effects of maturing and
returning in different years.

Without using detections of PIT-tagged adults, studies of juvenile in-river survival have
usually right-censored the records of those smolts that were transported, and have needed
to extrapolate to estimate survival rates through the river reach ending at Bonneville Dam
(e.g., Williams et al., 2001). The resulting estimators of juvenile survival may be inefficient
or biased due to lack of adult data. Additionally, estimators of ocean survival and TBR
based on relative recovery rates have unknown statistical properties (e.g., bias and uncer-
tainty). The adult PIT-tag data now available allow for model-based estimation of juvenile
survival through the lower reaches, as well as an opportunity to directly incorporate and es-
timate ocean survival and transportation effects in a release-recapture model. This in turns
provides estimators with known statistical properties, i.e., maximum likelihood estimators.

Radiotelemetry tags have been used to monitor migrating adult salmonids since the
late 1960s. Since the late 1990s, radio tags have been used on a large-scale basis to
study the upriver migration of adult salmonids by researchers at NOAA Fisheries and
the University of Idaho; the data and a further description of the study are available at
http:/ /rtagweb.nwfsc.noaa.gov/home/index.cfm. Migrating adults are collected at Bon-
neville Dam, fitted with radio transmitters, and released just downstream of Bonneville.
Antenna arrays have been placed at all eight dams in the lower Columbia and Snake rivers,
and single arrays are in the mouths of most tributaries. The resulting detection data include
detections from these fixed-site receivers, as well as detections from mobile tracking and tag-
recoveries from hatcheries and fisheries. Preliminary analysis of these data by researchers
at the University of Idaho focuses on small-scale movements at the dams and rates of mi-

gration, fallback, and unaccountable loss; fallback and unaccountable loss rates are based
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on ratios of observed counts at different locations (Bjornn et al., 2000; Keefer et al., 2002;
Reischel and Bjornn, 2003; Boggs et al., 2004). Due to the high cost of radiotelemetry tags
and the difficulty of analyzing the raw data, the federal government has plans to discontinue
use of radiotelemetry tags in studying adult migration and survival, relying on the cheaper
PIT tags. It is not known what information about adult migration and survival will be lost
by relying on PIT tags instead of radio tags.

As with the relative recovery estimators from PIT-tag data, the estimators used with
the radio-tag data have unknown statistical properties. It is not always clear what a par-
ticular measure estimates or how to measure the uncertainty associated with any particular
resulting estimate. Without these two pieces of information, managers are unable to use
these data to make informed policy decisions With regard to either dam operations or future
tagging operations. Additionally, it is not clear what can be learned from different types
of data, and whether one type is inherently more informative than another (e.g., radio tags
versus PIT tags). |

A modeling approach to analyzing PIT-tag and radio-tag data addresses each of these
problems. A migration model that incorporates these data will provide estimators with
known statistical properties with respect to bias and uncertainty (i.e., standard error). Ad-
ditionally, the model parameters may be used as building blocks of precisely defined mea-
sures of treatment effects (e.g., juvenile transportation), which then have easily calculated
expected values and standard errors. Also, the modeling approach provides a framework
with which to analyze the benefits of one data type over another. '

Release-recapture models used to analyze PIT-tag data are described above. These
models (e.g., Burnham et al., 1987; Skalski, 1998; Skalski et al., 1998) are well-understood
and are commonly used, but are appropriate only for juveniles and do not incorporate
transportation. Thus, a new model must be developed to incorporate both juvenile and
adult PIT-tag data as well as informatioﬁ about transported smolts.

Radiotelemetry data have been used in a variety of contexts in the wildlife field, including
estimation of space use and migration corridors (e.g., Flamm et al., 2005), population size
(e.g., Boulanger et al., 2004), and survival (e.g., Pollock et al., 1995). One approach to

analyzing radiotelemetry data uses the nonparametric Kaplan-Meier survival model (Kaplan



11

and Meier, 1958) to estimate the survival function (e.g., Pollock, Winterstein and Conroy,
1989). Several researchers have develqped release-recapture models using radiotelemetry
data as recaptures. For example, Skalski et al. (2001) developed a model for analyzing
radio-tag data from migrating juvenile salmonids. Pollock et al. (1995) used radiotelemetry
data in a release-recapture model to estimate survival through time. Pollock, Jiang and
Hightower (2004) combined Kaplan-Meier and Jolly-Seber approaches to modeling survival
through time with radiotelemetry data. Cowen and Schwarz (2005) used a release-recapture
model with radiotelemetry data to estimate survival of salmonid smolts (i.e., juveniles) in
the presence of tag loss.

While the models in Pollock et al. (1995), Skalski et al. (2001), Pollock et al. (2004),
and Cowen and Schwarz (2005) allow for detection rates < 100%, some models assume
100% detection rates and thus avoid the problem of non-detected but extant individuals
(e.g., White, 1983; Bunck and Pollock, 1993; Powell et al., 2000). The assumption of 100%
detection is inappropriate here due to'receiver or antenna outages at the fixed receivers,
unwired passage routes at the dams (e.g., navigation locks), and imperfect mobile tracking
and tag-recovery efforts (not all tagged fish are accounted fbr), implying that most models
using radio-telemetry data are inappropriate for these data. The Pollock et al. (1995)
and Pollock et al. (2004) models estimate detection rates, but focus on modeling survival
through time, which is similar but not identical to modeling survival and movement through
space (see below). The Skalski et al. (2001), Skalski et al. (2002), and Cowen and Schwarz
(2005) models all allow for < 100% detection rates as well, but they are designed for
juvenile salmon. Unlike juveniles, whose migration path is mostly linear, adult salmon
engage in multi-directional migrations, falling back over dams, swimming downriver to
explore tributaries, and visiting tributaries downstream of the mouth of their natal stream.
Because of the non-linear nature of the adult migration and the detailed data from the adult
migration available from radiotelemetry data, using a juvenile model to analyze the adult
migration is tantamount to ignoring the extra information the radiotelemetry data may yield
relative to PIT-tag data. Thus, the available statistical models designed for radiotelemetry
da;ﬁa are inappropriate for this application.

It is apparent that new statistical models must be developed to appropriately analyze
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both the combined juvenile and adult PIT-tag data and the adult radiotelemetry data.
Because the focus of the analysis here is on migrations (juvenile and adult), the models
appropriate for these data are essentially movement models, in which the main proceéses
are movement through space and survival through space and time. Although movement
models exist (see Section 1.1), existing movement models are inappropriate for these data.
Most movement models track migrations‘ over time, with repeated movements between sites
(e.g., breeding grounds) on an annual or generational basis, and with detections only at the
breeding grounds. Examples are the models in Schwarz et al. (1988), Schwarz et al. (1993),
Brownie et al. (1993), Kendall et al. (1995), Kendall and Nichols (1995), and Kendall et al.
(1997). Individuals are assumed to have some degree of site fidelity. The salmon migration
data come from detections taken during the migration, rather than simply from the origin
(e.g., rearing sites or hatcheries) and end (e.g., ocean) of the migration. Survival during the
migration itself, rather than between migration years, is of interest here.

Although the existing movement models are inappropriate, to some degree the available
models that model survival through time (see Section 1.1) may be adapted for survival and
movement through space. One difference between these models and those developed here
is that rather than sampling individuals at one or several breeding sites during discrete
sampling periods over many years, here sampling occurs constantly through time and at
many different passage points in the juvenile and adult migration route. In most céses,
migrating individuals must pass each of the sampling points, conditional on survival to that
point, but they need not be detected. The main difference between survival through time
and survival through space is that time is linear, whereas fish movement through space may
be multidirectional. Adult migrants in particular have been observed to fall back over dams,
either accidentally or because they have overshot the mouth of their spawning tributary.
For similar reasons, adults may swim downriver between dams. Additionally, adults may
enter tributaries downstream of their natal streams, either to explore or wait out the warm
temperatures of the mainstem in the cooler waters of the tributary. Such tributary “visits”
may last from an hour to several days. These tributary visits are detectable, but are
optional for fish directed upstream of the tributary. ‘Thus, while the adult migration is

directed and linear on a large spatial scale, it is potentially multidirectional on a smaller
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scale, and the time-based release-recapture models must be suitably adapted to the space-
based adult radiotelemetry data. The juvenile migration is much more linear on a small
spatial scale than the adult migration, and so the available release-recapture models require

fewer adaptations for the juvenile migration.
1.3 Scope of Work

Two types of release-recapture model are developed and presented in this dissertation. The
first type is a life-cycle model that models the juvenile and adult migrations and ocean stage
of Pacific salmonids using PIT-tag data from both migrations (Chapter 2). The second type
models the upstream migration of adult sdlmonids using radiotelemetry data (Chapter 3).
Both types of model estimate large-scale survival and/or movement (“transition”) rates
along the migration routes. Each model is developed for a flexible number of detection sites
for general applicability. The models are designed for open populations that experience
death and emigration (i.e., turn-off to tributaries), but not birth and immigration. Because
all marked individuals are released at approximately the same time (as juveniles for PIT-
tagged animals and as adults for radio-tagged animals), a single-release, multiple-recapture
multinomial likelihood model is developed for eéch data type, as in Skalski et al. (1998).
In order to explore the different types of information available from radio tags and
PIT tags, a sequence of models is developed using different types of radiotelemetry data,
ranging from simple to relatively complex. The simplest model is analogous to a linear
PIT-tag model (i.e., the adult portion of the PIT-tag model presented here), while the
most complex uses fallback, tributary, and censoring information from the radio-tag data.
The models are compared via two “performance measures:” perceived system survival and

unaccountable loss rate, described below.

1.8.1 PIT-Tag Life-Cycle Model

There are several objectives in developing a PIT-tag life-cycle release-recapture model. One
objective is to use all of the available detection data to efficiently estimate inriver survival of

juveniles and adults. A second objective is to attain model-based estimates of ocean survival
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and smolt-to-adult return rates. A third objective is to use the combination of PIT-tag de-.
tections and transportation information to derive model-based estimators of transportation
effects with clearly understood statistical properties (i.e., bias and precision) and interpre-
tations. Finally, estimators for a \;ariety of other performance measures will be developed,
including adult age composition.

The PIT-tag model developed in Chapter 2 is suitable for salmonid species that migrate
directly to the ocean as juveniles, and directly back to the spawning grounds as adults.
Appropriate speciés are s'pring and summer Chinook salmon (Oncorhynchus tshawytscha),
Sockeye salmon (O. nerka), and summer Steelhead (O. mykiss). Because return breeders are
not considered in this model, only the first spawning migration of Steelhead is appropriate
for this model. The PIT-tag model includes three main parts of the salmonid life cycle:
(1) juvenile migration and detection, (2) ocean stage, including survival and maturation
but no detection, and (3) adult migration and detection. The underlying model for the
juvenile stage has already been developed and used to study survival of smolts as they
pass through hydroelectric projects on their outmigration by Skalski et al. (1998); juvenile
transportation and possible censoring due to known removals of tagged individuals at the
dams must be incorporated into the model for the juvenile stage. The ocean stage can
provide limited information about ocean survival and maturation, but can help identify
issues in combining juvenile and adult data. The adult migration stage is similar to the
juvenile migration stage, but includes age-structure stemming from the variable maturation
rates among individuals from a single brood year. The multi-directional nature of the adult
migration is currently poorly represented by PIT-tag data, and only the large-scale linear
nature of the adult migration is modeled here. The inclusion of age-structure in the model
must necessarily resemble efforts by Clobert et al. (1994), Pradel (1996), Pradel et al.
(1997), and Schwarz and Arnason (2000). Each of these models a population in which
animals are marked as young, released, and (mostly) non-detectable until they return to
the breeding (spawning) grounds as breeders (spawners), which may occur for the first
time at several ages. Unlike the populations considered by the researchers above, PIT-
tagged juveniles (i.e., smolts) are detected on their outmigration, and PIT-tagged adults are

detected on their inmigration, rather than at the ocean and spawning grounds themselves.
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More importantly, there are no return breeders; individuals mature, spawn once, and die.
This means that the usual assumption of a common survival rate after the age of the
youngest breeder is inappropriate, because breeders (migrating adults) and non-breeders
(non-mature ocean-stage individuals) experience very different environments (river versus
ocean). Also inappropriate is the assumption of common capture and survival probabilities
among breeders regardless of age; although breeders (migrating aduits) are all in rivers
rather than the ocean, individuals maturing and migrating in different years experience
different in-river conditions. Thus, the PIT-tag model will resemble existing age-structured
models in some, but not all, wayé.

In the past, the records of transported juveniles have been censored from PIT-tag models,
precluding model-based estimation of transportation effects. Recently, Sandford and Smith
(2002) used a combination of model-based, parametric estimators and non-parametric esti-
mators from PIT-tag data to compare the smolt-to-adult return rate (SAR) of transported
smolts to the SAR of non-transported smolts. The model used in Sandford and Smith (2002)
was restricted to juvenile PIT-tag data, and pooled the adult data across adult return years.
The PIT-tag model presented in Chapter 2 incorporates transportation as a process in the
modeling of the capture histories, thus allowing for a variety of estimators of transportation
effects that are wholly model-based. Various transportation effect measures are presented
in Chapter 2, along with measures of adult return rates, the adult age distribution, and

adult inriver survival using combined juvenile and adult PIT-tag data.

1.3.2 Adult Radio-Tag Model

The main objective in developing a release-recapture model to analyze adult radiotelemetry
data is to estimate the unaccountable loss rate, which was identified by NOAA Fisheries
(2000a, 2004) as an important performance measure of the adult migration. The probability
of surviving and remaining in the migrating population to Lower Granite Dam or Priest
Rapids Dam (i.e., “perceived system survival”) is another potentially useful performance
measure. A secondary objective in developing a radio-tag model is to compare what can

be learned from radio tags about the unaccountable loss rate and perceived system survival
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to what can be learned from PIT tags about these quantities. With this objective in
mind, a sequence of models is developed in Chapter 3, ranging from simple PIT-tag models
to complex radiotelemetry models, each designed to estimate both system survival and
unaccountable loss rates. Each model can be fit to radiotelemetry data that has been
suitably simplified for the model; the simpler “PIT-tag models” can also be fit to adult PIT-
tag data. In Chapter 3, each model is fit to radiotelemetry data from 1996 Chinook salmon
that have been prepared (i.e., simplified) for the model, and estimates of system survival and
unaccountable loss rate are compared among the models. On this basis, recommendations
are made about the use of either radiotelemetry or PIT-tag data to estimate large-scale
performance measures such as system survival and unaccountable loss rates. Additionally,
a model is selected from the sequence of models and recommended for use in analyzing
existing radiotelemetry data to estimate system survival and unaccountable loss rates.

The models developed in Chapter 3 are suitable for aﬁy salmonid species that migrates
upstream in a single season. Thus, suitable species are spring, summer, and fall Chinook
salmon (O. tshawytscha) and Sockeye salmon (O. nerka). Summer Steelhead (O. mykiss)
that do not overwinter within the study region on their way to spawning grounds . are
also suitable. The assumption of homogeneous transition and capture probabilities is not
appropriate for Steelhead that do overwinter during their migration, however, and so these
models are inappropriate for such groups.

The more complex models developed in Chapter 3 (i.e., the “radio-tag models”) use
radiotelemetry data as recapture data with more flexible detection sites and individual fates
than the simpler models in Chapter 3 (i.e., the PIT-tag models). Tributary turn-offs and
visits are observable from radiotelemetry data, as are fallbacks that are followed by either
tributary turn-offs or dam reascension. The radio-tag models incorporate both fallback and
tributary detections. In general, only single detection sites are available in the tributaries,
s0 it is impossible to estimate detection rates at these tributary sites, which are optional for
fish destined to spawn upriver of these tributaries. Thus, it is assumed that the detection
rate is 100% at all tributary sites. Additionally, all tributary sites between two dams are
treated as single tributary sites for simplicity.

Due to imperfect detection at the dams, modeling downstream movement during fall-
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back in a large-scale survival/movement model involves potential endless cycling between
fallback and reascension, and is mathematically intractable. Thus, information about fall-
back is used in the radio-tag models, but fallback itself is not modeled. Also, the rate of
fallback at a particular dam (i.e., the probability of falling back at that dam, conditional on
ascending the dam) is not estimated by this radio-tag model. On the other hand, potential
effects (“memory”) of either fallback or tributary visits on subsequent survival/movement
parameters are incorporated, as in Hestbeck et al. (1991) and Brownie et al. (1993).

If the radio-tag models are used with known-source fish, then it is possible to estimate
straying rates to tributaries downstream of the natal tributary. This is similar to estimating
migration rates among strata in a study region, as in Nichols et al. (1993), Schwarz (1993),
Schwarz et al. (1993), Joe and Pollock (2002), and Lebreton and Pradel (2002), with the
difference that fish in the radio-tagged population are constrained to migrate in one of two
directions from any point in the river: upriver to the next dam or natal spawning stream,
or out of the river to a tributary downstream of the natal spawning streaml (i.e., straying;
downstream travel is not modeled here). Likewise, fish that have entered a tributary may
either remain in the tributary, or return to the river to continue migrating upriver. Alter-
natively, straying may be viewed as emigrating from the study area, if the study area is
considered to be the river itself. In this case, fish who enter a tributary and then return
to the river are “temporary emigrants,” as in the models of Kendall et al. (1997) and
Schwarz and Stobo (1997), while fish who enter a tributary and do not return to the river
are “permanent emigrants.” Unlike the models of Kendall et al. (1997) and Schwarz and
Stobo (1997), here it is possible to identify emigrants (strayers) as they leave the study
area, because detection arrays are in tributary mouths. Additionally, whereas “temporary
emigrants” in the traditional sense may be absent from the study area for several sampling
periods, temporary strayers must return to the river at the same point from which they left
it, and so cannot skip any sampling point in the river (i.e., dams). Without known-source
fish, actual straying cannot be distinguished from legitimate turn-offs to spawning tribu-
taries. In this case, the radio-tag models can nevertheless estimate rates of tributary entry
and exit (i.e., “temporary emigration”), and the possible effect of these tributary visits on

subsequent survival.
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In addition to fixed-site dam and tributary detections, the radiotelemetry database in-
cludes tag-recoveries from fisheries and hatcheries, and mobile-tracking data. The mobile-
tracking data are useful for studying space use, but are inappropriate for release-recapture
models. Incorporating the tag-recovery (i.e., tag return) data from the hatcheries and fish-
eries into the model requires independent estimates of the tag-recovery and tag-reporting
rates. While these data could be included in the models under the assumption of 100%
recovery and reporting, it is known that the recovery and reporting rates are far less than
100%. Hatcheries often take only the early returnees to the hatcheries, so late-returning
tagged fish are not examined for tags; fishermen may be reluctant to return tags at all, or
may wait until the end of the season before returning tags, thus confounding information
on location and date of the tag-recovery. Without estimates of tag-recovery and reporting
rates, these data are not included in the radio-tag models presented here. |

Two summary or performance measures are developed for each radio-tag model: per-
ceived survival to the top of the final dam (i.e., “system survival”), and the unaccountable
loss rate from the release site. Perceived survival may be considerably smaller than actual
biological survival if fnany tagged individuals permanently leave the mainstem of the river
for tributaries downstream of the final dam. The unaccountable loss rate, however, takes
into account exits to tributaries and represents the probability of an unknown fate, including
mortality (natural, dam-related, or harvest), fallback that is not followed by dam reascen-
sion or tributary turn-off, and spawning in the mainstem. Reducing the unaccountable loss
rate is an important goal in salmon recovery in the Columbia Basin, and identifying sites
of unaccountable loss and estimating its magnitude is the objective of the radiotelemetry

modeling.
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Chapter 2
JUVENILE-ADULT PIT-TAG MODEL

2.1 Introduction

2.1.1 Model Overview

The primary purpose of the release-recapture model developed here is to estimate survival
of migrating salmonids on their migrations between their spawning grounds and the ocean.
Secondarily, we may estimate quantities related to ocean survival, maturity, and the effect
of transportation on return rates. The model uses PIT-tag detections from the dams to
estimate these quantities. While PIT-tag data are available for both hatchery and wild fish,
most records are of hatchery fish, because they are more numerous and easier to tag. The
model may be used on either hatchery or wild fish; ideally, hatchery and wild data sets
should not be combined due to differences in physiology and migratory behavior. Smith
et al. (1998) found that juvenile survival of hatchery and wild fish differs primarily in the
first reach after initial release, so it may be possible to combine hatchery and wild fish in
a single data set if the focus of the study is primarily juvenile in-river survival. However,
Raymond (1988) and Bradford (1995) found different ocean survival rates between hatchery
and wild salmon (specifically Chinook salmon), and Mclsaac (1995) suggests an accelerated
maturation schedule for hatchery fish relative to wild; if transportation effect or adult return
rates are the focus, then hatchery and wild fish should not be combined in a single data set.
Most PIT-tag studies on the Snake River choose the initial release to be at or above LGR.
The model developed here allows for any site in the Columbia/ Snake River hydrosystem to
be the initial detection site. While the examples used here assume the tagged fish are from
the lower Snake River and use LGR as the initial juvenile detection site, the model may
also be used for upper Columbia River fish, with RR or PR as the initial detection site.
Not all smolts pass a given dam via the bypass systems; some pass via the spillway or

turbines, and these fish have no opportunity of being detected at the dam. It is assumed
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that all tagged fish entering the JBS are detected. Adults are detected in adult fish ladders
at certain dams. Due to logistical and technical issues, adult detection is not 100% at these
dams, although it has improved in recent years. The model includes the detection process,
which for tagged juveniles may be understood as the bypass procesé.

For tagged juveniles, only those bypassed (detected) may be removed for study (sampled
or censored) or transported. The model allows for both processes at all juvenile detection
sites (dams), and for censoring at all adult sites. While many sampled individuals are
returned to the migration, we have no information on which fish are returned, and thus
the detection histories of sampled fish are right-censored. Although the rate of censoring is
typically low, and censoring itself may be considered a nuisance parameter, we must account
for it in order to get unbiased estimates of return rates and survival between dams. Ignoring
it leads to negatively biased reach survival estimates, and may also bias estimates of return
rates if sampled individuals return at different rates than non-sampled individuals.

The model includes multiple transportation sites, thus allowing the user to tailor the
model to fit the specifics of the transportation program as actually experienced by the fish
under study, and providing flexibility in quantifying the survival effect of transportation. In
general, all fish bypassed at transport dams are collected for transport, limiting the number
of fish bypassed at multiple dams. There are exceptions, however. Transportation at MCN
is limited to summer months in order to transport fall Chinook salmon. Also, some bypassed
PIT-tagged fish are not transported, but upon detection in the bypass system are diverted
by a slide gate back to the river. This practice is primarily for study purposes. Because
transportation practices are different for tagged and untagged fish, careful consideration of
the model’s transportation results is necessary to apply them to the untagged population.

Until they reach the ocean, the tagged fish in a given release group all travel along the
same route and generally at the same time, with the exception that some travel downstream
by barge or truck while others migrate in-river. Once in the ocean, they disperse, although
some research suggests particular migration patterns in the marine environment (e.g., see
Cleaver, 1969; Netboy, 1980; Miller, Williams and Sims, 1983; Hartt and Dell, 1986, and
Sandercock, 1991). Without permanent marine PIT tag detectors, we cannot make use

of any particular migrations within the ocean. Individuals in a release group disperse
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temporally in the ocean, as well as spatially, in that they mature at different rates and return
as adults to spawn in different years. For example, some return after only one summer in the
ocean, while most return after one, two, three, or more winters at sea, depending on their
species, stock, and gender. All the anadromous salmonids spawning in the mid-Columbia or
Snake River Basins have some degree of variation in age at maturity. Although individuals
maturing in different years migrate as adults in the same regions spatially, they may be
assumed to migrate in different river conditions due to temporal changes in flow, spill, and
water temperature, and in different physiological states due to the effects of remaining at sea
a different length of time. Thus, the model treats mature individuals returning at different
ages separately, even though they come from the same release group.

In this chapter, a release-recapture model of reach survival and adult return is developed,
incorporating both juvenile and adult PIT-tag detections and accounts for censoring (known
removals at dams) and transportation. The age of returning adults is also incorporated.
Section 2.1.2 identifies and discusses the mode! assumptions. The underlying model is de-
veloped via a simple example in Section 2.2, with all major biological processes incorporated
as needed. The underlying model is converted to an estimable model in Section 2.3; it is
generalized with respect to both juvenile and adult detection sites, censoring and transport-
ing sites, and the number of adult age classes. Section 2.4 defines and discusses interesting
biological quantities derived from the model. Section 2.5 discusses remaining conceptual
issues related to the model. Section 2.6 compares the modeling approach taken here to
current practices. Finally, Section 2.7 demonstrates use of the model in its entirety with a

complete example.

2.1.2 Model Assumptions

The assumptions underlying the model are the typical assumptions of single-release, mulfiple
recapture models, and are listed below. For more information on mark-recapture models
and their assumptions, see Cormack (1964) or Burnham et al. (1987).

(A1) All smolts returned to the river at a given detection site have a common probability

of subsequent survival, detection, censoring, and transportation, regardless of detection at
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the earlier site.

(A2) All smolts diverted for transportation at a given site have a common probability
of subsequent survival, detection, and (adult) censoring. |

(A3) All adults at a given detection site have a common probability of upstream survival,
detection, and censoring, regardless of detection at the downstream site.

(A4) The fate of each tagged individual is independent of the fate of all other tagged
individuals.

(A5) Interrogation for PIT tags occurs over a negligible distance relative to the lengths
of the river reaches between sampling events.

(A6) Individuals selected for PIT-tagging are representative of the population of inter-
est. ,

(A7) Tagging and release have no effect on subsequent survival, detection, censoring,
or transportation rates.

(A8) All tags are correctly identified, and the treatment codes at dams (censored,
transported) are correctly assigned.

(A9) There is no tag loss after release.

Assumption (A1) implies no effect of juvenile detection on survival. Because juvenile
detection occurs only in the juvenile bypass systems, this implies no mortality effect of the
bypass system. Some literature (e.g. Muir et al., 2001b and Sandford and Smith, 2002)
documents route-specific differences on juvenile survival of dam passage and adult return
rates. On the other hand, Muir et al. (2001a) found no significant effect of upstream
detection (bypass) on downstream survival and detection for migrating yearling Chinook
salmon and Steelhead from 1993 through 1998. Assumption (A1) also implies mixing of non-
bypassed smolts and smolts that are bypassed and returned to the river, immediately upon
entering the tailrace of a dam. Smith et al. (1998) found violations of this mixing implication
during periods of high spill, when detected (bypassed) fish arrived at downstream dams later
than non-detected fish. However, there was no significant effect on downstream survival and
detection. Because migration parameters vary with species, run type or race, and migration
year, assumptions (Al), (A2), and (A3) imply that we should avoid combining release groups

over these factors. However, some pooling of release groups may be necessary to achieve
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necessary sample sizes. Pooling within species and races but across daily or weekly release
groups within a migration season should be acceptable, because reach survival estimates for
juveniles show little temporal variation within a season (Skalski, 1998; Skalski et al., 1998;
Muir et al., 2001a).

Assumption (A4) is reasonable due to the large numbers of individuals migrating. Vio-
lations of the assumption may negatively bias standard errors, but should not affect point
estimates. Assumption (A5) allows us to attribute estimated mortality to the river reaches
being studied, rather than to the detection process. Because detection occurs only in dam
bypass systems (juvenile or adult), which are passed relatively quickly compared to the time
spent migrating, this assumption is reasonable. In addition, Skalski et al. (1998) found that
pre-detection bypass mortality has no effect on point estimates or standard error estimates
for survival parameters, and Muir et al. (2001a) found no significant post-detection bypass
mortality for hatchery yearling Chinook salmon and hatchery Steelhead. The model de-
veloped here accounts for known removals from the bypass systems through the censoring
parameters. Assumption (A6) requires that individuals not be chosen for tagging based on
size or condition. We must also beware drawing conclusions for wild fish if only hatchery
fish are tagged. Assumptions (A4) and (A7) together are necessary to apply results from
the tagged population to the untaggéd population migrating at the same time. One ob-
vious violation of this assumption is that of the bypassed smolts at transport dams, only
some of the tagged smolts are transported while all of the untagged smolts are transported.
This violation means that we need to carefully adjust the estimates of transportation effect

derived from tagged individuals in order to apply them to untagged individuals.

2,2 Underlying Model

In order to develop a usable, meaningful model to estimate survival, the effect of transporta-
tion, and adult return rates, first consider a study design with two juvenile detection sites,
two adult detection sites, and two age classes of returning adults. Assume that the younger
age class (age-1 adults) is composed of fish that returned to freshwater after a single winter
(“year”) in the ocean, and that the older age class (age-2 adults) is composed of fish that

returned after two winters in the ocean. Further, assume that the first juvenile detection
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site and the second adult detection site are both LGR, and the second juvenile detection
site and first adult site are both BON. It is not necessary that the juvenile sites be the same
as the adult sites, but it simplifies the diagrams in Figures 2.1 and 2.2.

Figures 2.1 and 2.2 show a schematic for this study design, with migration paths indi-
cated by directed lines. Figure 2.1 shows the migfation paths for the non-transported fish,
and Figure 2.2 adds migration of transported individuals. Branch points along the migra-
tion path indicate “choices” made by individuals who have survived to those points. Each
path segment has a survival probability, and each detection site has a detection probability.
Survival on a particular path segmenﬁ is related to length of the segment, environmental
conditions along the segment, and condition of the fish; these relationships are not explored
here. Detection at a particular site depends on the status of the detectors, river conditions,
and the route taken by the fish past the detection site (usually a dam); only the effect of the
route taken is considered here.. For juveniles, detection is equivalent to passing the dam via
the juvenile bypass system. It is obvious that these parameters will vary for different fish,
both because of their condition and because they pass points at different times. However,
we make the assumption that all fish have the same parameters over the same migration
path segment and at the same detection sites in a given year. If survival and detection are
more constant within years than between years, then this is a reasonable assumption.

Juvenile survival between LGR and BON is re;ﬁresented by the parameter S;. Because
detection takes place in the juvenile bypass systems, we can think of Sy as survival from the
middle of the JBS at LGR to the middle of the JBS at BON. Ideally, we would like to consider
S as survival from the tailrace of LGR to the tailrace of BON. This is appropriate if there
is no bypass mortality at BON. Any pre-detection bypass mortality at BON is represented
in Sy, consistent with the tailrace-to-tailrace interpretation. Any post-detection bypass
mortality at BON is represented in survival after BON, inconsistent with the tailrace-to-
tailrace interpretation. However, Muir et al. (2001a) found insignificant post-detection
bypass mortality, so the tailrace-to-tailrace interpretation is acceptable.

The first decision point in Figure 2.2 is transportation from LGR, for fish that are
detected but not censored there. Note that the “decision” that a particular (tagged) fish

be transported is generally made by researchers or dam operators, not by the fish. Fish
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who are transported from LGR are assumed to have separate survival along the remaining
juvenile migration and throughout the ocean distribution, relative to non-transported fish;
their adult survival depends only on the year in which they return to spawn. The second
decision point is at the end of the first ocean year, at which point fish who have survived
that long must “decide” whether to mature and return to spawn, or to stay in the ocean
another year. We may consider a third decision point to be at the end of the second ocean
year, but in this study design, we assume that all fish surviving and still in the ocean at
the end of the second year return then. Detection and mortality “decisions” are not shown
in Figures 2.1 and 2.2. In this model, we assume that once a fish has decided to return to
freshwater to spawn, there are no decisions to make during the adult migration. This is a
simplification of the actual adult migration, because adults must “decide” whether or not
to fallback over dams they have passed, enter tributaries, and remain in tributaries they
enter. However, if we are following known-source fish from above LGR, then it is unlikely,
though not impossible, that they will spawn in tributaries below LGR.

Some path segments in Figures 2.1 and 2.2 have more than one survival parameter.
For example, the path from the second juvenile site (BON) to end of the first year in the
ocean has two survival probabilities: o; denotes survival from BON to the Columbia River
estuary, and o) denotes survival from point of entry into the estuary to the end of the first
year in the ocean, at which time individuals must decide whether to mature and return
to spawn, or to remain in the ocean another year. The path from the maturation-decision
point at the end of the first year, through the second year in the ocean, and on to the first
adult site (BON) also has two survival parameters: o9 is survival from the end of the first
ocean year to the end of the second oceah year (for fish who choose not to mature after one
year), and ¢4 is survival from the end of the second ocean year (spatially, still in the ocean)
to BON. Similarly, o 41 is survival from the end of the first ocean year to BON. Notice that
the o; and o4; parameters may be viewed as representing survival over a spatial region,
while the o; parameters are more easily thought of as being over time, with each of them
representing survival through a particular ocean year. This distinction is not perfect. The
© starting point of a mature adult’s return migration depends on its ocean distribution, which

in turn depends to some extent on species. Even within species, however, there is variation
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in ocean distribution. Thus, the adult survival parameter o4; does not relate to a well-
defined spatial expanse. However, we will see that we cannot distinguish between, say, o
and o1 or o9 and o 42, so the distinction between spatial and temporal survival parameters
and the issue of whether these are well-defined are not crucial.

There are many parameters in Figures 2.1 and 2.2. They are listed and defined in
Table 2.1. Not all parameters are separately estimable, but considering survival and mat-
uration separately allows us to develop composite parameters that are both estimable and
biologically useful. This is done in the next section. Note that jacks (i.e., males who return
to freshwater after one summer in the ocean) can be accommodated by redefining o1, o9,
mi, and ms, appropriately. Also note that maturation as well as ocean survival may be
affected by transportation; we will see below that this assumption affects the interpretation

of the transportation benefit ratio (TBR), but does not affect the estimate of TBR.

Table 2.1: Parameters for study design with two juvenile detection sites, two adult
detection sites, two adult age classes, censoring at all but last adult site, and trans-
portation from first juvenile site. Parameters are conditional probabilities. JBS =
Juvenile Bypass System.

Parameter Definition

S1 Survival from release point to LGR JBS;
Ss Survival from LGR to BON JBS for in-river fish;
Sor Survival from LGR to BON JBS for transport fish;
oy Survival from BON to ocean entry for in-river fish;
OJr Survival from BON to ocean entry for transport fish;
o1 Survival from ocean entry through 1st winter in ocean for
in-river fish;
o9 Survival from end of 1st winter through end of 2nd winter in
ocean for in-river fish;
Olp Survival from ocean entry through 1st winter in ocean for
transport fish;
Oar Survival from end of 1st winter through end of 2nd winter in
ocean for transport fish;
my - Mature after 1st winter in ocean, given survival;
mo Mature after 2nd winter in ocean, given present and alive
at end of 2nd winter; assumed = 1 here;
mir Mature after 1st winter in ocean for transported fish, given

survival;




27

Table 2.1 continued

Parameter Definition

MaT Mature after 2nd winter in ocean for transported fish, given
present and alive at end of 2nd winter; assumed = 1 here;
TAl Survival from ocean distribution to BON adult fish ladder, given
return after 1st winter in ocean (i.e. in year 1) for in-river fish;
O A2 Survival from ocean distribution to BON adult fish ladder, given
return in year 2, for in-river fish;
TAlr Survival from ocean distribution to BON adult fish ladder, given
return in year 1, for transport fish;
CA2p Survival from ocean distribution to BON adult fish ladder, given
return in year 2, for transport fish;
Sa Survival from BON to LGR for adult that matured in year 1;
S4o Survival from BON to LGR for adult that matured in year 2;
s Detection at Juvenile site 4, given survival to site ¢ and in-river;
i=1,2; g, =1—pg;
Dij Detection at Adult site ¢ in year j, given survival to site ¢;
i=3,47=12 g =1 py; '
c; Censored at Juvenile site 7, given detection at that site, i =1, 2;
c3j Censored at BON for adult returning in year j, given detection
there, j =1, 2;
t Transportation from LGR, given detection and no censoring there

as a juvenile.

2.3 FEstimable Model

2.8.1 Parameterization

The model shown in the schematics in Figures 2.1 and 2.2 is overparameterized and cannot
be estimated. In particular, we cannbt distingunish between survival parameters along a
single branch in Figures 2.1 and 2.2 if there is no detection separating the two survival
segments. For example, we cannot distinguish between ¢; and o in Figure 2.1 or between
oy and oi7 in Figure 2.2. We must combine such non-distinguishable parameters into

a single, estimable parameter. One way to combine the ocean parameters is to group all
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Figure 2.1: Schematic of underlying model for study design with two juvenile detec-
tion sites (LGR and BON), two adult detection sites (BON and LGR), and two adult
age classes. Double vertical bars indicate a dam. Directed lines indicate migration
paths. Survival, detection, and maturation processes are shown here with their para-
meters (S;, 05; pi; and my, respectively). The first ocean year and up-river migration
of age-1 adults are in solid bold; the second ocean year and up-river migration of
age-2 adults are in dashed bold. Initial release is upriver of LGR.
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Figure 2.2: Schematic of underlying model for study design with two juvenile detec-
tion sites (LGR and BON), two adult detection sites (BON and LGR), two adult age
classes, censoring at all but last adult site, and transportation from first juvenile site.
We assume here that transportation does not affect adult in-river survival past BON.
Censoring, transportation, and survival and maturation of transported fish are shown
here with their parameters (c;, t;; Sir, oir; and my7, respectively). The first ocean
year and up-river migration of age-1 adults for in-river (non-transported) individuals
are in solid bold; the juvenile migration, first ocean year, and up-river migration to
BON of age-1 adults for transported individuals are in dash-dot. The second ocean
year and up-river migration of age-2 adults for in-river individuals are in dashed bold;
the second ocean year and up-river migration to BON of age-2 adults for transported
individuals are in dash-dot-dot. Initial release is above LGR.
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parameters between decision points as follows (for non-transported fish):

¢1 =0,501;
@2 =m10o41; (2.1)

93 = (1 — my) oamao 2.

Note that for the two-age class model, we assume mg = 1. The parameter ¢; can be
interpreted as the probability of surviving from the second juvenile detection site (BON)
through the end of the first ocean year, or through the first winter in the ocean. The
parameter ¢ is the probability of maturing at the end of the first ocean year and surviving
to the first adult detection site (BON), given survival through the end of the first ocean
year. The parameter ¢3 is the probability of remaining in the ocean at the end of the first
year (not maturing), surviving through the second ocean year, maturing then, and surviving
to the first adult detection site, given survival through the first ocean year. If we allowed
for three adult ages, we would define two new underlying o parameters for age-3 fish (o3
and 034), assume my < 1 and the age-3 maturation parameter ms = 1, redefine ¢3, and

define two new ¢ parameters:

¢1 =0701;

¢2 =m10a41;

¢3 = (1 —m) og; (2.2)
B4 =M20 42;

¢5 = (1 — myp) o3M30 43.

If the model is to be used with jacks, then ¢ is the probability of surviving from BON until
the jacks mature and begin their return migration, and the interpretation of the remaining ¢
parameters changes similarly. Analogous parameters can be defined for transported smolts;
for example, ¢sr = (1 — myr) Cormero A2, for the two-age class model. This parameter-

ization is useful for developing the model, but because there is no detection between the
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last juvenile site and the first adult site, we cannot separately estimate the ¢ parameters.
Instead, we must define estimable ocean survival and maturation parameters using the ¢
parameters.

The necessary and intuitive parameterization of ocean survival and maturation for the

two-age model is the following combination of the ¢; parameters:

S31 = 192 = 070110415

Ssp = 19304 = 0 701(1 — my)Tamao 42

For the three-age model, we would have:

S31 = ¢1¢2 = 0j01M1041;
S32 = d1¢304 = 701 (1 — m1)Tamao az; (2.3)

Sz = ¢1¢305 = 0701(1 — m1)oa(1 — my)o3mgoas.

The parameter S3; is the probability that a fish returns after one year in the ocean; S3o
is the probability that a fish returns after two years in the ocean; Ss3 is the probability
that a fish returns after three years in the ocean. Note that Ss;, S32, and Ss3 all involve
both maturation and survival, so they give a “maturation and return” schedule, rather than
an actual “maturation” schedule; this is discussed further in Section 2.4.3. Parameters for
transported smolts are defined analogously: Ssi1 = ¢17¢er = oyro1rmiTo 1T, €te.

Even using the combined ocean survival/maturation parameters Ss; and Ss;7, where
J represents the adult age class, the survival parameters for transported smolts cannot
be separately estimated; survival of transported smolts must be reparameterized. In the
example, smolts detected at LGR are released from that site in one of two groups: transport
(treatment) and in-river (control). “In-river fish” are returned to the river at LGR, while
“transport fish” are transported downstream by barge or truck. In general, ﬁsh returned to
the river at a particular dam may be transported from a lower dam, because transportation
is possible from several sites. This means that fish labeled “in-river” at LGR may be labeled

“transport” at LMO or MCN. Thus, “in-river” is a site-specific, rather than river-wide, label.
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For this example, however, the single transport site (LGR) means that “in-river fish” are
never transported.

It is common to use the “Transport Benefit Ratio” (TBR) or “Transport In-river Ratio”,
to represent the effect of the transportation treatment on return rates relative to the in-
river treatment: generally, the ratio of the return probabilities of transported smolts to
in-river sﬁlolts is the TBR. We can use this approach to define the survival parameters
for transported fish such that if § is a survival parameter for in-river fish and 87 is the
corresponding survival parameter for transport fish, then 87 = Ri46, where Rip is the
reach-specific TBR for fish transported from the first juvenile detection site (LGR). For
example, survival between LGR and BON for in-river fish is Sy, so survival over this reach

for fish transported from LGR is
Sor = Ris,52.

Maturation parameters for transported fish are defined similarly. In general, define m;r =
Rim;m; to be the probability of a transport fish maturing after j years in the ocean,
given survival through j years; in this example, j is either 1 or 2. Likewise, define the
probability of a transport fish not maturing after j years, given survival that far, to be

1 ~myr = (1 = m;) Ry(1—m,). Notice that 1 —m;r =1~ m;Rip;, yielding

In order to allo§v transportation to affect maturation, we must treat the probability of
maturing and the probability of not maturing separately, but a single maturation TBR
parameter is sufficient for each age class.

We cannot estimate each reach-specific parameter Rig separately, but can estimate an
overall TBR for fish transported from LGR for each return age class: Rj; is the product of

the reach-specific survival and maturation Rjp parameters along the appropriate migration
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path segments:

Rll - .R152R10JR10'1R1m1 RlaAl = RngR1531§
Riz = Ris;R1o, R1oy Ri(1—my) Rios Rimy Rio s = Risy Riss,-

The TBR parameter Ry; is the ratio of the age-j return probability for LGR transport fish to
the return probability that fish would experience if the river had no transportation system.
This parameter Ri; ignores any possible downriver transportation of LGR’s in-river fish.
Note that the TBR Ry; is specific both to the site of transportation (LGR or site 1) and to
the adult age class (j). Age-specific TBRs may be combined to give an overall site-specific
TBR or a system-wide TBR,; this will be demonstrated in Section 2.4.1 below.

For all release-recapture models with a single detection effort at each sampling occasion,
it is impossible to distinguish between mortality in the final reach or time period and non-
detection at the final detection site. In this case, we cannot separately estimate S;; and
p4j, but we can estimate their product, the year-j “last reach” parameter A\; = Sy;pa;.

In summary, we have estimable parameters for the following processes: juvenile in-river
survival, adult return to BON (including ocean survival and maturation), adult in-river
survival through the penultimate reach, detection at all but the final adult site, censoring,
transportation, the effect of transportation on return rates, and joint survival to and detec-

“tion at the final adult site. All adult parameters are specific to the year or (ocean) age of

adult return. These parameters are listed in Table 2.2.

Table 2.2: Estimable parameters for the study design with two juvenile detection
sites, two adult detection sites, two adult age classes, censoring at all but last adult
site, and transportation from first juvenile site. JBS = Juvenile Bypass System, TBR
= Transport Benefit Ratio.

Parameter Definition

St Survival from release point to LGR JBS;
S Survival from LGR to BON JBS;
i Detection at Juvenile site 4, given survival to site ¢ and in-river;

i=1,2,¢=1—-p;
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Table 2.2 continued

Parameter

Definition

Xi

X1T

X3j

Survival from BON as a juvenile to BON as adult and

returning after j years (winter) in ocean, j = 1, 2;

Detection as an adult at BON in year j, given survival there;
J=1,2;g35 =1 —paj;

Conditional probability of surviving from BON to LGR for adult
fish returning after j years at sea; = Sy;ps;; j =1, 2;

Censored at Juvenile site 7, given detection at that site, 7 = 1, 2;
Censored at BON for adult returning in year j, given detection
there, j = 1,2;

Transportation from LGR, given detection and no censoring there
as a juvenile;

Joint TBR for survival from LGR to adult fish ladder at BON
and maturation after j years in ocean, j = 1,2;

Probability of a non-transported, non-censored juvenile not being
detected after site ¢, conditional upon reaching site ¢; i = 1,2;
Probability of a juvenile transported at site 1 not being detected
again;

Probability of an age-j adult not being detected after site 3,
conditional upon reaching site 3 and not being censored there,
j=1,2.

The parameter x; (Table 2.2) represents the probability of not being detected again,
conditional upon reaching site i, for juvenile fish who were neither censored nor transported
at site ¢. Likewise, the parameters x17 and x3; represent the probabilities of not being
detected again for juveniles transported at site 1 and for age-j adults that reach site 3
but are not censored there, respectively. A fish that reaches a dam may have no further

detections either because it dies before reaching later detection sites or because it evades

detection at those sites. The x parameters can be defined recursively:

x1 =1—= 82+ So(1 — p2)xe;

x2 = 1— (8314 S32) + {S31(1 — p31)x31 + S32(1 — paz)x32};
x1r = 1 — 82 (Ss1R11 + SsaRi2) + S2 {S31R11(1 — p31)xa1 + Sa2R12(1 — ps2)xs2};

x31 =1-Ag;
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and

x32 = 1— Ag.

2.3.2 Capture Histories and Likelihood

Data for release-recapture studies are often expressed as counts of different detection or
capture histories. A detection history for a fish in this study design is a sequence of letters
and numerals indicating when and where the fish is detected after release, and whether it
was censored at any site or transported from LGR. Each capture history has four entries,
representing the two juvenile sites and two adult sites. There are several possible records
at each site, so the conventional binary indicator 0/1 for detection/no detection must be
expanded to allow for censoring, transportation, and year of adult return. The codes used in
the capture histories are given in Table 2.3. A typical capture history is “100B,” indicating
that the fish was detected at LGR as a juvenile and returned to the river, not detected at
BON as either juvenile or adult, and detected at LGR as an adult after two years in the
ocean. Another capture history is “30a0,” indicating that the individual was detected as
a juvenile at LGR and transported downstream from there, returned to freshwater after 1
year at sea,. and was detected at BON as an adult and censored there. A third example
of a capture history is “1200,” indicating that the individual was detected as a juvenile at
LGR and returned to the river, and then detected as a juvenile at BON and censored there.
Capture histories such as “11AB” are not allowed, because a fish that matures after 1 year
at sea is assumed to complete its migration within the same year. Likewise, capture histories
such as “12AA” are not allowed because any fish that is censored cannot be detected later.

Table 2.4 shows the capture histories together with their probabilities.

Table 2.3: Codes used in Capture Histories

Code Interpretation
0 Individual not detected at site (juvenile or adult site);
Individual detected at site and returned to river (juvenile site);
Individual detected at site and censored (juvenile site};
Individual detected at site and transported from site (juvenile site);

wW N




Table 2.3 continued

Code Interpretation

A Individual detected at site as ocean age-1 adult, and returned
to river (adult site);

B Individual detected at site as ocean age-2 adult, and returned
to river (adult site);

a Individual detected at site as ocean age-1 adult, and censored
(adult site);

b Individual detected at site as ocean age-2 adult, and censored

(adult site).

Table 2.4: Capture histories and their probabilities for the study design with 2 juve-
nile detection sites, 2 adult detection sites, censoring at all but last adult site, and
transportation from first juvenile site.

Capture
History Probability
0000 X0

000A.  S14152q2531¢31A1

000B 5191529253232 A2

00A0 51q152g2531p31 (1 — c31) (1 — Ap)
00BO  S191522532p32(1 — C32§ (1= X2)
00AA  514152¢2531p31(1 = ¢c31) A1
00BB  S51¢15292532p32(1 — €32) Ao

0020 51915292531 p31¢31

00b0 S1q15292532p32¢32

0100  S1q1Sop2(1 — c2)x2

010A  S1q152p2(1 — c2)Sa1g31 M

010B S1q152p2(1 — c2) Sa2g32 A2

01A0 S1q182p2(1 — 0235311731 gl - 0313 21 - >\1§
01BO S51q182p2(1 ~ ¢2) S32p32(1 — c32) (1 — A2

01AA  S1q182p2(1l — c2)S31p31 gl ~e31) A1
S3op3a(1 — caz) A2
01a0 S1q152p2(1 — ¢2) S31p31c31

(
01BB Slqlsgpg gl -~ C2
(

01b0 S1q182p2(1 — 02)53227320321

0200 S1q152p2¢2

1000 Slplgl — 1) (1= t1)xa

100A Sip1 (1 — q% 1 —t1)52¢2531q31 A1

100B  Sip1(1—c1)(1 —t1)S202532g32 )2

10A0  Sipi(1—c1)(1 = #1)S2g2S51p31 (1 — ¢31) (1 = \1)
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Table 2.4 continued

Capture
History Probability
10B0 Slpl 1- 01§ El — t1)82¢2532p32 (1 — ¢32) (1 — A2)
10AA 51171 1—c1)(1=11)82q2531p31(1 — c31) M1
10BB  Sip1(l —c1)(1 —t1)S2g2532p32(1 — c32) A2
10a0 S1p1 El -a) El - t1;S2Q2531P31631
10b0 S1p1(1 — c1) (1 — t1) S2qaSs2p32cas
1100 S1p1(1—c1) (1 —t1)Sapa(1 — c2)x2
110A 51]3121 —c1)(1 - t1§5’2p2 (1 —c2) 831931 M1
110B S1p1(1 — e1) (1 — 1) S2p2(1 — c2) S32q32 2
11A0 Slplgl —c1) (1 —t1)S2p2(1 — c2) S31p31 (1 — €31) (1 — A1)
11B0 Sipi(l—¢a El - t1;52P2 1 —¢2)S32p32 21 —e32) (1 — A2)
11AA S1p1gl —c1)(1 = t1)Sop2(1 — c2)Sa1p31 (1 — e31) M1
11BB Sip1(l ~c1) 21 - t1§52p2(1 - 62;5322732(1 — C32) A2
11a0 S1p1(1 = c1)(1 = t1)Sap2(1 — c2) Sa1psican
11b0 S1p; él - 613 El — 1) S2p2 (1 — c2) Ssapszcan
1200 S1p1(1 —c1)(1 — t1)Sapacy
2000 51p101
3000 Sip1(1 — ClgtlxlT
300A S1p1(1 — ¢1)t182 8531 R11931 M1
300B S1p1(1 — ¢1)t152532 R12g32 A2
30A0 S1p1(1 — Clgt152531311p31 (1—c31)(1 = M)
30B0  Sipi(l— c1)t152552Riopsa (1 — c32) (1 — Az)
30AA  Sipi(1- Clgt152531311p3151 —¢c31) A1
30BB  Sipi(1— c1)t152832Rispaa (1 — caz) A
30a0 S1p1(1 — ¢1)t152531 R11psical
30b0 S1p1(1 — c1)t152 832 R1apsacss

The counts for each capture history are multinomial, so the likelihood has a simple

structure:

Lo []mo, (2.4)
w

where n,, is the number of records with capture history w and m,, is the probability of having

capture history w. The product in Equation (2.4) is more usefully expressed by grouping

like factors from the cell probabilities. A dot, -, indicates summation over all possible codes.

For example, n.100 = o100 + 1100 is the number of capture histories with a 1 at the second

juvenile site and a 0 at both of the adult sites, and n.g.4 = ngooa + nooas + 11004 + 1044 +
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N3004 + N3044 18 the number of capture histories with no detection at the second juvenile
site and detection at the second adult site after one year at sea. Using the parameters from

Table 2.2, the likelihood for this example is

ng... —~MNo0o00

L o S{V—noooop{\f—no--. (1 _ p1) cfllzooo
y (1 _ CI)m..r-Fnso-.t?l_bsou (1 _ t1>m'“5’é\/—n-ooopé\’—n-o~
o (1 _ pz)n.ov-—nso-.—n.ooo-%‘ne,ooocgao0 (1 B 02>n.1‘,SgluA‘_'_nqu_'_n“ao
X pgi‘A'M"“O (1 - p31)n“0Ac§i'“° (1 - 031)”%SQQ“B"'“""OB*”“"O

n.0B n.B.
n.g.+n.. n. n.. n..

Nn304. +N300A4 +130a0 PN30B.+N3008 +13060
X Ry7 Ri3

n..A0 n..Bo

> XgooooX?1oooxg11o?+no1oox7lt%ooo (1 —_ )\1> ) (l - )\2) . (2-5)

The exponents in the likelihood comprise a sufficient statistic, which contains the min-
imal sufficient statistic. Not every exponent is included in the minimal sufficient statistic
due to linear dependence among the exponents. Each exponent can be expressed in terms
of summary statistics, listed in Table 2.5. For example, the exponent on Sy is N —nqgoo, the
number of fish detected at any site after the initial release. The exponent on S is N —n.qaq,
the number of fish detected at any site after the first juvenile site. Analogous parameters
for the juvenile sites have analogous exponents; the same is true of adult sites and their
parameters. For example, every exponent of a survival parameter is the number of fish
detected somewhere after the previous site, while every exponent of a detection parameter
is the number of fish detected at that site. There are many ways of classifying the summary
statistics, but a logical classification is given in Table 2.5. These statistics are naturally
defined using the “m-array” from Burnham et al. (1987), modified for multiple adult age

classes.
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Table 2.5: Summary statistics for study design with two juvenile detection sites, two
adult detection sites, two adult age classes, censoring at all but last adult site, and
transportation from first juvenile site.

Statistic Formula Definition
a1 N —ng... Number detected at site 1
Qs N —ng. Number detected at site 2
as1 A+ Mg Number of year-1 adults detected at site 3
Q32 n.5. + N.p0 Number of year-2 adults detected at site 3
G41 T A Number of year-1 adults detected at site 4
a42 n..B Number of year-2 adults detected at site 4
bg N — noooo Number of fish from initial release detected
at any of the sites
by Nn1... — 11000 Number detected at site 1, re-released to
the river, and detected again at a later site
by - 7.1.. — 1.100 Number detected at site 2, re-released to
‘ the river, and detected again at a later site
bir 730.. — 73000 Number detected and transported from site
1 and detected again at a later (adult) site
bo1 ngoA. + NoooA + Tooeo  Number first detected as a year-1 adult
boa ngoB. + NoooB + Nooso  Number first detected as a year-2 adult
bi1 N104: + N1004 + N10e0 Number detected and re-released to the river
at site 1, and next detected as a year-1 adult
bio n108. + N10oB + N1oso  Number detected and re-released to the river
at site 1, and next detected as a year-2 adult
b1 N1A. +N.104 + 10 Number detected and re-released to the river
at site 2, and next detected as a year-1 adult
boo n.18. + n.10B + n1po  Number detected and re-released to the river
' at site 2, and next detected as a year-2 adult
ba1 T AA Number detected and re-released to the river
at site 3, and next detected as a year-1 adult
b3 N..BB Number detected and re-released to the river
at site 3, and next detected as a year-2 adult
b Nn304. + N3004 + N30e0 Number transported from site 1 and detected
again as a year-1 adult
bioT N308. + N300B + Naopa Number transported from- site 1 and detected
again as a year-2 adult
dy 72000 Number censored at site 1
do N.200 Number censored at site 2
ds1 7.0 Number of year-1 adults censored at site 3
dso .50 Number of year-2 adults censored at site 3
hy 730.. Number transported from site 1
g0 bo Number detected after initial release
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Table 2.5 continued

Statistic Formula Definition
g1 go+ b1+ bir —aq Number detected after site 1
921 bot + b11 + ba1 + b1 Number of year-1 adults detected after site 2
g22 boa + b12 + bag + bior  Number of year-2 adults detected after site 2
gs1 g21 + bz1 — azy Number of year-1 adults detected after site 3
g32 goo + b3s — ago Number of year-2 adults detected after site 3

Burnham et al. (1987) use the m-array to organize release-recapture data from fish
survival studies in the same type of system as ours, i.e. migration past dams. Their
monograph specifically compares treatment groups, but the m-array approach can be used
for single release groups, as well. Rather than listing out the complete capture histories, the
m-array is a summary of data that still enables us to fit the likelihood in Equation (2.4).
The m-array is an array whose rows correspond to site-specific releases (or re-releases) and
whose columns correspond to site-specific recaptures or detections. Rows may be subdivided
to represent different treatment groups. For example, transport sites have two rows: one for
the in-river release group and one for the transport group. Figure 2.3 shows the structure of
the m-array for the study design in our example, with all adult age classes collapsed to one.
The first entry in each row is the size of the release group from the site in the corresponding
column. Other row entries indicate the number of that release that were next seen at the
site corresponding to their column. These entries are of the form my, (mikr), indicating
the number released to the river (transported) from site i that were next seen at site k.
This m notation gives the structure its name. Thus, the initial release and its subsequent
detections are in the first row of the m-array in Figure 2.3, where N is the initial release
size, mo1 is the number seen at the first juvenile site, mog is the number not seen at site 1
but seen at site 2, mos is the number not seen as juveniles but seen at the first adult site,
etc. The row total of detections mgr (k = 1,2,3, or 4) is the number of the initial release
that were detected at any site. No smolts are transported from the initial release, so that
release has only one row. Juvenile sites with transportation have two releases, or two rows:
the first is the fish released to the river, and the second is the transported fish. Column

totals of detections (m;, or mu,r values for column ¢) are the numbers detected at each
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site. Any particular fish may appear in more than one row, but within a row, it appears in
at most one column after the release, For example, consider a fish with detection history
“3011,” where 1 in an adult column indicates detection regardless of age class. Figure 2.4
shows the contributions of this fish to the m-array; releases including the fish are circled,
and detections of the fish are shaded.

Multiple adult age classes requires subdividing columns corresponding to adult sites.
Figure 2.5 shows this for the two-age class example. Not all boxes in an adult release row
are possible; for example, age-1 fish released from site 3 may be found in the age-1 column
of site 4, but not in the age-2 column of that site. The age-structured m-array is similar to
the multiple-strata m-array in Brownie et al. (1993).

Other than the m;; and myer statistics, the statistics in the m-arrays in Figures 2.3,
2.4, and 2.5 are the summary statistics listed in Table 2.5: the m-array and the summary
statistics give the same information. There are several types of summary statistics. The
statistic a; is the number of fish detected at site ¢; the subscript 7 includes age class infor-
mation for adult sites. The o statistics correspond to column totals in the m-array. All b
statistics indicate the number of fish detected at some site, re-released either to the river
or to a transportation barge or truck, and detected again later; some involve transporta-
tion and/or age classes. In general, b statistics correspond to rows or parts of rows in the
m-array. The statistic b; is the number of fish detected at site i, re-released to the river
(i.e., not transported or censored), and detected at least once at a later site; 4 = 0 indicates
the initial release, so bg is the number of fish detected at least once in the study. Similarly,
bir is the number of fish transported from site ¢ that are detected at a later (adult) site.
The statistic b;; is the number of fish detected at site 4, re-released to the river, and next
detected as an age-j adult. The statist‘ic bijr is the analogous number for fish transported
from site 7. The d and h statistics refer to the number of fish censored and transported,
respectively, at a particular site. These statistics modify the number detected at a site (a)
to give the in-river (non-transported) release size from that site. Finally, the g statistics give
the number of fish detected at least once after a particular site, regardless of the number
actually seen at the site; these statistics are defined recursively using the a and b statistics,

and correspond to blocks or parts of blocks in the m-array. Figures 2.3 and 2.5 show the



42

Tuvenile Sites Adult Sites

Site  Release  Sitel  Site2  Site3  Sited ri‘;g‘:i:: 4
Initial N g g, Mg mg, by
Site 1 ag-d;-hy my, my, m, b,
Site 1-Tr hy mysr m byr
Site 2 ay-d, Mgy 1My, b,
Site 3 85-d; May b

Number detected a a, a, ‘ a,

Number censored d d, d; dy

Figure 2.3: The m-array for the study design with two juvenile detection sites (sites
1 and 2), two adult detection sites (sites 3 and 4), censoring possible at all but the
final adult site, and transportation possible from the first juvenile site. Age class of
adults is ignored. The first column identifies the release site for the row. Transport
sites have two release rows: row 1 is the non-transported group, and row 2 is the
transport group (labeled “-Tr”). The initial release has size N and is made at site 0.
The number m;; is the number of individuals released to the river at site ¢ that are
next detected at site k; mir is the number of individuals transported from juvenile
site ¢ that are next detected at adult site £. The statistic d; is the number censored at
site 7, and h; is the number transported from site i. Row totals (b;, b;r) and column
totals (a;) are of the m;, and m,r statistics.



Juvenile Sites Adult Sites

Site Release Site 1 Site 2 Site 3 Site 4

Initial

Site 1

Site 1-Tr

Site 2

Site 3

Figure 2.4: Contribution of capture history 3011 to m-array in Figure 2.3. Releases
containing individuals with capture history 3011 are circled. Recaptures of 3011
individuals are shaded.
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Juvenile Sites Adult Sites (age class)

(agesi:tleass) Release Site 1 Site 2 : Site 3 2 ” e 4 > r:j:gﬁs: d
Initial N ) gy My 3 Mg 35 Mg 4 Mg 45 by
Site 1 a-d;-h myy m 5) my 3, m) 41 m1,42. by
Site 1-Tr h, : Myt My Mar Mygr by
Site 2 ay-dy 1ty 51 1My 33 my 41 ) 42 b,
Site3(1)  ay-dy 31,41 by
Site 3(2)  ayy—dyy 32,42 b3
Number detected a ay ay) ayy ay) Ay

Number censored 4 ‘ d, day day dyy dys

Figure 2.5: The m-array for the study design with two juvenile detection sites (sites
1 and 2), two adult detection sites (sites 3 and 4), two adult age classes (1 and 2),
censoring possible at all but the final adult site, and transportation possible from the
first juvenile site. The first column identifies the release site for the row. Transport
sites have two release rows: row 1 is the non-transported group, and row 2 is the
transport group (labeled “-Tr”). The initial release has size N and is made at site
0. The statistic m;; is the number of individuals released to the river at juvenile
site 7 that are next detected at juvenile site k; m; ;7 is the number of individuals
transported from juvenile site ¢ that are next detected at adult site k£ as an age-j
individual; m; k; (mijk;) is the number of individuals released to the river at juvenile
site ¢ (adult site 4 in year j) that are next detected as age-j individuals at adult site
k. The statistics d; and d;; are the numbers censored at juvenile site ¢ and adult site
i in year j, respectively; h; is the number transported from site ¢. Row totals (b;, b;7,
bi;) and column totals (a;, as;) are of the myx, m; x; and my k7 statistics.
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relationship between the m-array and the a, b, d, and h statistics; Figure 2.6 shows the
relationship between the m-array and the g statistics.

The likelihood can be re-expressed in terms of the summary statistics:

bo al a1—d1 al—‘dl"hl
L x S?Optlll (1 - p1> dl (1 - C]) thl (1 - tl)
391 a2 (1 _ p2>91“a1—b1T da (1 _ 62)a2_ 5921 a31
g21—a31 a1 —ds1
X (1 - P31> o5 (1 - Csl) S35 Py’
g22—a32 a3z —da2
X (1 - pgg) Cg%z (1 - 032) /\“1]31 )\%32

buiir pbier , N—bo, a1—di—h1—by  az—da—by h1—biT
X Rii TRy X X X2 X1r

N (1 B /\1)&31—d31—b31 (1 B )\2>a32—d32—b32. (2.6)

The set of summary statistics in Table 2.5 contains the minimal sufficient statistics, as
well as some extraneous statistics. We see from Equation (2:6) and Table 2.5 that we do
not need the separate b;; and b;s statistics for ¢ = 0,1, and 2; rather, we need their sums
bo1 + bi1 + ba1 and boo + b1 + bag, together with b3; and bzz. Also, the g statistics can
be written in terms of the a and b statistics. This leaves us with 17 sufficient statistics,

comprising the minimal sufficient statistic and given in Table 2.6,

Table 2.6: Minimal sufficient statistics for study design with two juvenile detection
sites, two adult detection sites, two adult age classes, censoring at all but last adult
site, and transportation from first juvenile site.

Statistic Formula Definition

a1 N —ng... Number detected at site 1

as N —no. Number detected at site 2

as1 A+ Mg Number of year-1 adults detected at site 3

ass 7.8, + N.po Number of year-2 adults detected at site 3

bo N — ngooo Number of fish from initial release detected
at any of the sites

b1 ... = 11000 Number detected at site 1, re-released to
the river, and detected again at a later site

b 7.1.. — 12.100 Number detected at site 2, re-released to
: the river, and detected again at a later site
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Table 2.6 continued

Statistic Formula Definition
Zf:o bi1 N.4 + N4+ n.e  Number of in-river fish detected as adults
‘ in year 1
b3t T AA Number detected and re-released to the river
at site 3, and next detected as a year-1 adult
b3o n..BB Number detected and re-released to the river
at site 3, and next detected as a year-2 adult
biiT N304 + Nn3004 + N30e0 Number transported from site 1 and detected
again as a year-1 adult
bior n3oB. + N3ooB + Nage  Number transported from site 1 and detected
again as a year-2 adult
dy 72000 Number censored at site 1
do 7.900 Number censored at site 2
da1 N.q0 Number of year-1 adults censored at site 3
B .50 Number of year-2 adults censored at site 3
hy n30.. Number transported from site. 1

2.8.8 Generalization

It is straightforward to generalize the parameters, statistics, and likelihood of the specific
example above to develop a general model for any number of juvenile detection sites, adult
detection sites, censoring and transporting sites, and adult age classes. Let there be v
juvenile detection sites, with censoring and transportation possible at each juvenile site;
note that the final juvenile site may not be BON, so transportation is possible from that
site. Also, let there be u adult detection sites and w adult age classes, with censoring

possible at all but the final adult site. The estimable parameters are given in Table 2.7.
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Site

(age class)

Release

Juvenile Sites Adult Sites (age class)
Site 3 Site 4
(1 a 2)

Sitel Site 2

Initial
Site 1
Site 1-Tr
Site 2
Site 3 (1)

Site 3 (2)

N
a;-dy-hy

h1

%\ \\
-

M3y 42

/%%%

f,/

Figure 2.6: Relationship between m-array and g statistics. The m-array shown here is
for a study design with two juvenile detection sites (sites 1 and 2), two adult detection
sites (sites 3 and 4), two adult age classes (1 and 2), censoring possible at all but the
- final adult site, and transportation possible from the first juvenile site. The statistics
go and go; are indicated as examples. Recaptures contributing to go are shaded from
lower left to upper right. Recaptures contributing to ge; are shaded from upper left
to lower right. Recaptures contributing to both gy and go1 are cross-hatched.
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The “last detection” parameters x; and x;; are defined as follows:
1= S+ Sit1qi+1Xi41 fori=0,...,v—1;
1= 37001 Sortj + 2jm Sut1,jQut1,5Xo+1,  for @ =

w w
Xir =1 = Sjt1:+ Sy Z Svs1,5Rij + Sig1-++ Sy Z Sv+1,jRijqu1,Xv+1,;  fori=1,...,v
i=1 j=1

L= Siy15 + Sit1,5Gi+1,5Xi+1,; fori=v+1,...,v+u—2;.

1-2 fori=v+u-1;

where

Gg=1-p;, fori=1,...,vu;

¢Gj=1-—piy, fori=v4+1,...,v+u-1;j=1,...,w.

Table 2.7: Estimable parameters for generalized model.

Parameter Definition

S Probability of survival from release point to first detection site;
Ss Conditional probability of survival from detection site ¢ — 1
to detection site i, ¢ = 2,...,v for in-river fish;
Sv+1,5 Conditional joint probability of surviving from site v to site v + 1
and returning to site v 4+ 1 after j years in the ocean; j =1,...,w;
Si; Conditional probability of surviving from site i — 1 to site ¢

for adult fish that matured after j years in the ocean;
i=v+4+2,...,v4+u—-1,7=1,...,w;

s Conditional probability of detection at detection site 7, given
survival to site ¢ inriver; i = 1,...,v; ¢ =1 — p;;

Dij Conditional probability of detection at site i in year j, given
survival tosite i; i =v+1,...,v4+u—-1Lj=1,...,w; ¢ = 1 ~ pi;;

Aj Conditional probability of surviving from site v +u — 1 to site v+ u
for adult fish returning after j years in the ocean; j =1,...,w;

c Conditional probability of being censored at site 1, given detection
at that site, it =1,...,v; o

Cij - Conditional probability of being censored at site i for adult

returning after j years in the ocean, given detection at site 4,
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Table 2.7 continued

Parameter Definition
i=v+1,...,v+u—-1;7=1,...,w;

t; Conditional probability of bemg transported from site 7, given
detection at that site, and no censoring, i =1,...,v;

Ry; Transport-Benefit-Ratio (TBR) for fish transported from site ¢ and
detected as an adult after j years in the ocean; j =1,...,w;

Xi Probability of a non-transported, non-censored juvenile not being
detected after site ¢, conditional upon reaching site 4; i =1,...,v;

XiT Probability of a juvenile transported at site ¢ not being detected
after site i; 1 = 1,...,v;

Xij Probability of an age-7 adult not being detected after site ¢,

conditional upon reaching site ¢ and not being censored there;
i=v+1,...,04+u—-1;5=1,...,w

Summary statistics and minimal sufficient statistics are given in Tables 2.8 and 2.9, respec-

tively. The g; and g;; statistics can be expressed in terms of the other summary statistics

as follows:
bo for i = 0;
9i = (2.7)
g—1+b+br—a fori=1,...,v—-1;
D oheobhi + Lhar by fori=vii=1,...,w;
9ij = , (2.8)

gi—1,; + by — aij forz’=v+1,..‘.,v+u—1.j=1,...,w

The generalized likelihood is given in Equation (2.9). Although censoring and transportation
are allowed at all suitable sites, the number of minimal sufficient statistics and the number
of estimable parameters depend on the number of sites for which there actually is censoring
or transportation. The model is full rank, with an equal number of parameters and minimal
sufficient statistics: 2v 4+ ve + vy + (2u — D)w + >_7_; Lirwir + Z”f;‘_l_ll Iicw;c, where v, is
the number of Juyemle detection sites with censoring; v; is the number of juvenile sites with
transportation (0 < ¢; < 1), Iz is an indicator function that is 1 if and only if site ¢ is a
transportation site; w;r is the number of age classes of adults returning from the transport

group from site ¢; I;, is an indication function that is 1 if and only if site ¢ has censoring (of
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adults); and w; is the number of age classes that are censored at site i. Because the number
of parameters equals the number of minimal sufficient statistics, the maximum likelihood
estimators can be found either analytically or numerically. If two or more parameters are
constrained to be equal, the maximum likelihood estimators must be found numerically.

The generalized likelihood is

v .
N—b Gim1,a;, Gi-1—0— gy bkT d; ai—d; 4hi
L« xp OH{SiZ pilqil 1T 2=t ciz(l_ci)i gl
i=1
w " w
a;—di—h; ij T a;—di—h;—b; . hi—b; Gutu—1,j
X(l‘tz) 1 1 I(HRi_;'J >Xim 4 1 1X1‘7’L" T HAJ” U J
J=1 =1

w v+u~1
i—1,4 Gi5 Gi—1,j—Qij dij dys  Qii—dig—bi;
X H [ H {Sf; lyjpz;Jqf; 1,j awci;J (1 _ Cij)a” di; XZ‘;J ig —big }jl (29)

Throughout this work, interpret as 1 any product of the form [];_,_; 6;, whose lower index

limit is greater than its upper index limit.

Table 2.8: Summary statistics for generalized model.

Statistic Definition

a; Number detected at site ¢, 1 =1,...,v;

aij Number of (ocean) age j adults detected at site 1;
t=v+1,...,v+u; j=1,...,w;

b; Number detected at site i, re-released
to the river, and detected again at a later site; 1 =0,...,v;

bt Number detected and transported from site 7 and
detected again at a later (adult) site; i =1,...,v;

bij Number detected and re-released to the river at site 7,
and detected again at a later site for the first time in year
(or ocean age) j;1=0,...,v4+u—-1;7=1,...,w;

bi;T Number transported from site i and detected at an adult
site for the first time in year j; i=1,...,v;j=1,...,w;

d; Number censored at site 4; i =1,...,v :

dij Number of ocean-age j fish censored at site i;
t=v4+1l,...,v4+u—-1;,7=1,...,w;

h; Number transported from site i; i =1,...,v;

gi Number detected after site 4; 7 =10,...,v—1;

Gij Number detected after site ¢ in year (or ocean age) j;

t=v,...,v+u—1;73="1,...,w.
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Table 2.9: Minimal sufficient statistics for generalized model.

Statistic Definition

a; Number detected at site 4,1 =1,...,v
aij Number of (ocean) age j adults detected at site ¢,
t=v+1,...,v+u—-1j=1,...,w
b; Number detected at site 7, re-released
to the river, and detected again at a later site; 1 =0,...,v
v obi;  Number detected as adults in year j; j=1,...,w—1
by Number detected and re-released to the river at site 1,
and detected again at a later site for the first time in year
(or ocean age) j;i=v+1,...,v+u—1;j=1,...,w
bi;T Number transported from site i and next detected at an
adult site in year j;i=1,...,v;7=1,...,w
d; Number censored at site 4; ¢ =1,...,v
ds; Number of ocean-age j fish censored at site 1;
i=v+1,...,v+u—-1Lj5j=1,...,w
h; Number transported from site ;¢ =1,...,v

For the full model, it is possible to use the method of moments to find the maximum
likelihood estimators (MLEs), or to find initial values or seeds for parameters maximized
numerically in a reduced model. Formulas for the MLEs for the generalized model are in
Table 2.10. For data sets whose summary statistics have large values, it may be necessary
to rewrite the‘MLE formulas to avoid multiplying very large numbers. Also, note that the
MLEs for survival can be written in terms of the MLEs for detection. For example, if S

and p; are the MLEs for S; and p; (i = 2,...,v), respectively, then

< b { (b~ iy ) (e — di = he) + aibi}
bk — v ak) (-1 — dio1 — hio1)

bi—1a;

Bi( ?;10 be — Sbh ak)(ai—1 — di—1 — h¢—1)d
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Table 2.10: Maximum likelihood estimators (MLEs) for parameters in general study
design with v juvenile detection sites, u adult detection sites, w adult ages, censoring
at all but the last site, and transportation from all juvenile sites. The “S3” notation
indicates the MLE of Sj.

Parameter MLE Appropriate Sites
bi_1~a; ) ay~di~hy)+asb; .
S, ( la)(cj\,bid hi) +aib i1

bi-1 ( i;lobk“Ziﬂak)(ai~di—h¢)+aibi

S; =i : : 1=2 v
' bi (22;10 bk—E;;ﬁ ak) (ai—-l—di—l—hi-—l) ' ’
a;b; _
Di — . t=1 v
' (Zk:lo b= k=1 ak) (ai—di—hi)+aibi e
C; di/ai i=1,...,’U
t; hi/(a’i_di) i=1,..-,’U
biyr (av—do—h V=50 a
Rij ng( v — 0y v) (Az:k_o k Zk_l k) i = 1, U
hiby (Hz=i+1 Sk) (EZ:O bkj)
bi—1 4t by (gi—l,j—az‘,j) (am‘,j—dz‘,j)+ai,jbi,j ,
SU'HJ bi ;01 i—1 i—1 i=v+1l
1,94—1,5 (a¢_1—di_1‘—h¢_1)(zk=0 be—3 11 ak)
1 (gim15-ai;) (agj—di; ) +aizbig ,
Sij bl'llu(gz 1,5 LJ)(lJ 13) 15014 ’L=U+2,...,'U+'U,—1
1 gi—1,5\ai—1,j—di-1,5
Dij ay;b1; i=v+1,...,v4+u~1
(91—1,1' —aij) (aij“dij)+aijbij
Cij dij/aij i=v+1,...,04+u—1
A _ burucny i=v+u
J av+u—1,j"‘d1)+u—ljj

2.4 Quantities of Interest

The model presented here is useful for estimating survival over specific reaches. It also pro-
vides model-based methods of estimating certain derived quantities, such as transportation
effect, adult return rates, and return age distribution. These quantities describe the life
history of the stock being studied, and aid in management. Although the model must take

into account censoring rates at dams as nuisance parameters, it is unnecessary to adjust for
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these in defining derived quantities, unless the sampling program is of special interest. In
general, interest is in the effect of the river and the hydrosystem on the fish; sampling is
a temporary process that is not inherent to either the river or the hydrosystem, and can
be ignored. In this section, I discuss model-based definitions of transportation effect, ocean
survival or adult return rates, and the age distribution of returning adults. Estimators of
these quantities can be found by replacing each parameter with its maximum likelihood
estimator, and approximate standard errors can be found with the delta method (Seber,
1982, pp. 7-9).

One issue that arises in developing the performance measures listed above is in applying
them to untagged fish. Researchers are typically interested in learning about the untagged
population. One of the main assumptions of this model and all tagging studies is that tagged
and untagged individuals act the same. Under this assumption, it is possible to apply to
the untagged population the results of the tagging study, which are inherently for tagged
individuals. Tagging smolts with PIT tags has been shown to have no significant effect
on survival, assuming proper handling during tagging and release (Prentice et al., 1987,
1990a; Prentice, 1990; also see Skalski et al., 1998). Under the assumption of equal mixing,
untagged smolts enter dam bypass systems and sampling rooms at the same rates as tagged
smolts of a similar size. However, the transportation system works differently for tagged
and untagged smolts, and the two groups are transported at different rates. Whereas tagged
smolts in the bypass system are collected for transport at the rate t; (typically < 1 for study
purposes), generally all untagged smolts in the bypass system are collected for transport.
This difference between transportation practices for tagged and untagged smolts prevents
direct application of TBR and other transportation-related measures developed for tagged
smolts to untagged smolts. Nevertheless, as long as it can be assumed that the basic model
parameters other than ¢; apply to untagged as well as tagged smolts, then it is possible
to derive perforxﬁance measures for the untagged population. In particular, the site- and
age-specific model TBR parameters R;; must be valid for both tagged and untagged smolts.

Let tg-] represent the conditional transportation rate for untagged smolts at site 4, i.e.,
the probability of transportation for an untagged smolt, given it has entered the bypass

4

;» 80 it must be obtained

system of dam i. Tagging data cannot be used to estimate ¢
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from independent information sources. Typically, with transportation operations running
continuously throughout the migration season, all untagged bypassed smolts are transported
at transport sites, so tiU is either 1 (i is a transport site) or 0 (¢ is not a transport site).
Alternatively, transportation operations may be active only on alternate days, allowing
some bypassed fish to be intentionally returned to the river at transport dams to provide
alternative survival options. In such cases, the conditional transportation rate for untagged
smolts, tiU , may be fixed to 0.5 at transport dams, or to another value depending on actual
operations. In general, researchers must use records of dam and transportation operations
to determine the appropriate value of tﬁj ; it cannot be estimated from tagging data.
Several of the performance measures for tagged smolts (defined below) depend on detec-
tion probabilities p;. Untagged smolts are not detected. However, detection rates of tagged
smolts within the bypass systems are typically assumed to be 100%, meaning that detection
for tagged smolts is equivalent to entering the bypass system. Because tagged and untagged
smolts use the bypass systems at the same rate, p; may be considered to be the probability
of a smolt (tagged or untagged) passing dam i via the bypass system, and 1 — p; = ¢; as
the probability of a smolt passing via turbines or spillway. Using this interpretation of p;
and g;, performance measures for untagged fish are derived from corresponding measures for
tagged fish by replacing the conditional transportation rate parameters, t;, for tagged fish
with the analogous parameters, tU, for untagged fish. Some measures (i.e., R;; and R;) do
not depend on ¢;, and so are valid for both tagged and untagged fish. The remaining mea-
sures are developed first for tagged fish and then for untagged fish. The direct inference of
the “untagged” measures is to fish in the release group, had they been treated as untagged.
Further inference to other fish is subjective, and is left to the individual researcher.
Measures of transportation effects are presented below, followed by measures of adult
return rates, estimates of return age distributions, and estimates of inriver adult survival

rates.
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2.4.1 Transportation Effects

Transporting migrating smolts past dams is one of the primary strategies used to mitigate
the negative effect of dams on smolt survival and adult return rates. Managers need to
know if the transportation system actually improves adult return rates, and if so, by how
much. Two reasonable management questions are (1) Is it worth transporting smolts from
a particular dam? and (2) Is it worth transporting smolts from any dam? Generally, the
main interest is in comparing adult return rates of fish with transportation to those without
it.

Several issues arise in defining measures of transportation effects. The first issue is
whether to treat a transport dam in isolation from the rest of the transportation system
or in the context of that system. The Columbia River Basin includes multiple transport
dams, so a fish that is not transported at one site (¢) may be transported at a downriver site
(k > 14). If transportation from the downriver site (k) affects adult returns, then the effect of
transportation at site 7 is confounded with the effect of transportation at site k, unless site i
is viewed as if it were the only transport site in the hydrosystem. This “isolated” viewpoint
is useful for assessing the effect of transportation from site ¢ relative to no transportation
system whatsoever. The “contextual” viewpoint, on the other hand, treats transport site 1
in the context of the entire transportation system, including possible transportation from
downriver dams. This viewpoint is useful for dam managers who must decide whether or not
to transport smolts who are in their bypass system. In general, the isolated and contextual
viewpoints are the same for the final transport site, but differ for upriver sites. Both isolated
and contextual site-specific measures of transportation effects are presented below,

The second issue in defining measures of transportation effects is whether to measure
effects of transportation at individual sites, or to measure the overall effects of the entire
transportation system. The site-specific viewpoint is useful for dam managers, and is used
in the measures in Ward et al. (1997) and Sandford and Smith (2002). However, that
viewpoint largely ignores the importance of the proportion of smolts that are transported
at the various transport dams. It might be suspected that the overall efficacy of the entire

transportation system depends on the proportion of smolts entering the transportation
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system and the relative effect when it occurs. Therefore, a system-wide expression of TBR
is needed to convey the overall effects of transportation on smolt-to-adult returns.

In summary, six alternative measures of transportation effects are presented: (1) Isolated
Site- and Age-specific TBR for Tagged and Untagged Fish (R;;), (2) Isolated Site-specific
TBR for Tagged and Untagged Fish (R;), (3) Contextual Site-specific TBR for Tagged Fish
(RCy), (4) Contextual Site-épeciﬁc TBR. for Untagged Fish (RCY), (5) System-wide TBR
for Tagged Fish (Rsys), and (6) System-wide TBR for Untagged Fish (Rgﬁ). Additionally,

‘an alternative system-wide estimator (Reona) is presented for consideration.

2.4.1.1 Isolated Site- and Age-specific TBR for Tagged and Untagged Fish (R;;)

Transportation effects are incorporated into the model via the age- and site-specific TBR
parameters, R;;. The parameter R;; is a relative measure of the effect of transportation
from site i on rates of returns to the first adult site (site v + 1) for age-j adults. This
parameter allows us to express the probability of a fish, transported at site 4, returning to
freshwater as an age-j adult in terms of the inriver survival parameters S;+1,...,S, and the

ocean return probabilities Sy41 ;:

Pr{Adult return in year j | Transported from site ¢] = ( ﬁ Sk) Sv+1,Rij- (2.10)
. k=i+1

In general, there are multiple transport sites in the Snake and Columbia rivers, with trans-
portation possible at LGR, LGO and LMO on the Snake River, and at MCN on the
Columbia River. Each fish is transported from at most one dam, and fish that are not
transported from an upriver dam may be transportéd at a downriver dam. The model
parameter R;;, however, reflects the effect of transportation from only a single dam (7)),
ignoring the rest of the transportation system. Because R;; compares the age-j return rates
of site-i transport fish to the age-j return rates that would be experienced if there were
no downstream transportation sites, R;; isolates the effects of site-i transportation in the
hydrosystem, and measures site-i transportation effects unconfounded by any actual down-
stream transportation. Thus, R;; is an “isolated age- and site-specific TBR” parameter.

The model assumptions imply that R;; applies to both tagged and untagged individuals.
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The maximum likelihood estimate (MLE) of R;;, ﬁij, is found by fitting the likelihood
in Equation (2.9) to data, or from the formulas in Table 2.10. An asymptotically consistent
estimate of the variance of ﬁij comes directly from the variance-covariance matrix estimated

in the numerical maximum likelihood routine.

2.4.1.2 Isolated Site-specific TBR for Tagged and Untagged Fish (R;)

The TBR parameter R;; is specific to age-j adults. The age-specific TBRs for site ¢ may
be combined to give an isolated, site-specific TBR, regardless of age at return. Call this
isolated, site-specific value R;. Define the event “Return(7,j)” as “return from site 7 to site

v+ 1 in age class j.” Then, R; is defined as follows:

Pr [Return from site 7 | E]

R; =
"~ Pr|[Return from site i | No transportation possible]

B o1 Pr[Return(i, j) | T3]
Z;'U=1 Pr[Return(i,j) | No transportation possible]
S 80200 Su,i By
Sz’+1 v 'Sv E;U=1 Sv+1,j
g1 SRy
21 Surly

(2.11)

This measure of transportation effects accounts only for the effects of site-i transportation
on adult return rates, ignoring the effects of any downstream transportation; thus, R; is
an isolated measure of transportation effects. The measure R; is a weighted average of
the age-specific R;;, with weights equal to the year-specific ocean return probabilities. The
model assumes that transportation does not affect adult inriver survival upstream of the
first adult site (typically Bonneville Dam). Because R; does not depend on the conditional
transportation rate at site i, it applies to both tagged and untagged individuals.

The TBR R; is a function of the model parameters Sy111,...,Sv+1,w, and Ri, ..., Ruw.

The MLE of R;, R;, is found by replacing the parameters used in Equation (2.11) with their
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MLEs, i.e.:

A~ S, R;
R, = _z_:____l_’i'f_llj_i (2.12)

Zg 1Sv+1»2

Using the delta method (Seber 1982, pp. 7-9) of estimating variances, together with the
estimated variance-covariance matrix from the numerical likelihood maximization routine,

the asymptotic variance estimator of ﬁ,‘ is expressible as

= OR;
Var Z Zzl <5Sv+1 WJ ‘ > <8Sv+1 w

5) COU(Sv-H g Sv—i—l,m)
j=1m -

+f22 28 | )Gy )
j=1m=1 BRU ORim 18 e
H;Z:l(asvm 1) (37 ) 5 o) (2.13)

where E is the MLE of the vector of model parameters used in calculating ﬁi, and where

the partial derivatives are:

BRi _ Rij - R; .
OSu+1; D=1 Svtlm’

- _ 2.14
ORi; 3 =1 Sviim (214)

This gives the estimated variance of R; as

w w
TR TR Ui

Var(R;) 3

where

Uim = (Rij — B)(Rim — B)Co0(8ys1,5, Sor1m) + Sus1,S0s1,mCov(Rij, Rim)
+ 2(Eij - ﬁi)§v+1,m50\v(§v+1»j> ﬁim)-
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Recall that the covariance a random variable, X, with itself is simply its variance:
Cov(X,X) =Var(X).

2.4.1.8 Contextual Site-specific TBR for Tagged Fish (RC;)

The measures R;; and R; are isolated TBRs, viewing site ¢ as if it were the only trans-
portation site in the hydrosystem. They are useful for assessing the effect of transportation
from site i relative to no transportation whatsoever. However, because the transportation
system generally includes transportation from multiple sites, fish that are not transported
from site ¢ may be transported from a downriver site. A measure of site ¢’s transportation
effects that takes into account downstream transport sites may be useful for dam managers
who need to know if they should transport a fish entrained in their bypass system. Let RC;

be such a contextual site-specific TBR for site ¢, where

RO, — Pr[Adult return | Transported from site ]
' Pr[Adult return | Pass site 4 inriver]

The measure RC; is the ratio of the adult return rate (to site v + 1) of site-i transport
fish (treatment group) to that of fish who survive to site i, but who are not transported
there (control group). Fish in the control group for RC; may be transported downriver,
or they may migrate wholly inriver. Before deriving an expression for RC;, let us define
some notation. The event T; is “transported from site 4,” and the event “not T;” is “pass
site ¢ inriver,” both conditional on surviving to site ¢. Fish who pass a site inriver pass
either via the turbines or spillway (so are undetected), or are bypassed (detected) but not
transported. Recall that detection is equivalent to being bypassed. Then the numerator of '

RC; can be expressed using the isolated TBR, R;:

Pr[Adult return | Transported from site i) = » Pr[Return(s, j) | T3

M

1l
e

J

= JI*SkRi)_ Svs1s: (2.15)

k=i+1 j=1
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The denominator of RCj; is

P [Return(Z, 7) | not T;]

||Mg

w
= Z (Pr Tysi, Return(z, 7) | not T;] + Pr[Never transp., Return(i, j) | not T])
7=1
w v k-1
= Z ( [SkDktkSk1 -+ + SuSu1,j Rij H Sizi] + Sit12ig1 - SvaSv+1,j)
j=1 k=i+1 l=i+1
w k-1
=> (Sz+1 SvSv+1,J[ Z (pxtxRr; [] )+ 21+ D
j=1 k=i+1 l=i+1

where 2z = 1 — pyty is the probability of passing site k without being transported at that
site, conditional upon reaching it. Interpret as 1 any product whose upper limit is greater

than its lower limit. For example, []i_, +12=1. Then RC; is

Sit1-SuR; 23";1 SU‘H,J'

Rci = w v k-1 v
> it [S'H-l e SvSv+l,j{ Zk=i+1 (prtiRi; [TiZ1 1) + (TTimita zl)}}
Rz Sv+1,3
Zk 144 (pkthk Z =1 Sv+1,§ Hz =i+1 ) (Hf=i+1 21) Z}Ll Su+1,j

= v fl—l v ' (2'16)
Dbt (PreteRe TT S 2) + [Tiiir &

The TBR measure RC; is the isolated site-specific TBR for site ¢, R;, divided by the overall
effect of the downriver transportation system on return rates from site i (c.f. Rsys below).

Replacing the numerator of Equation (2.16) and the Ry in the denominator of Equa-
tion (2.16) with Equation (2.11), it is apparent that RC; is a function of the parameters -
Svr1i (G = 1,..,w), Ry, (K =4,...,u; J = 1,...,w), pp (k =1+ 1,...,v), and &
(k=1i+1,...,v). Because RC; depends on the conditional transportation rates tg, it is
valid only for tagged individuals. The estimated variance, based on the delta method, is a
sum of the covariances of the MLEs of these parameters. From Equation (2.9), it is apparent

that # is independent of the other MLEs, i.e., C’ov(a, @) = 0 for any other parameter a.
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Thus, the estimator of the variance of }/Z(\Ji is
>( ORC;
aSv-Hm
ORC;
[} aRym
ORC;
8/ \ Opy
“. /ORC;| \?~ ~
Bt E) Var(ty)
=, [ ORC; ARC;
—1 8Sv+l,j E aka
” ( ORC; ><8RCZ
1 ] 8py g
ORC;
8/ \ Opy 18

aSv-f—l,J'
where E is the MLE of the vector of model parameters used in calculating Ra. The

Var RC =

w
>
j=1m=1
v v w 8RC
3 (G
k=i y=1 j=1m=l J
LA (aRc
AN/

d (aRc

851, 12 )COU(SW’SW,m)

+

) COU(RkJ y ym)

+
M

9) Cov(Pk, py)

Eo
i
t
<
1
+

+
Iy

k=i

A
<

)COU(Sv+1 WJo ka)

_l_
™o
gk

W
3

_I_
Do
WE

)COU(SU+1,j$py)

+

1 y=t

[
< |l

Ms

+2

" [ ORC;
ORy;

5GP 2,), (2.17)
=i j=1 y=i+

necessary partial derivatives are

ORC; - RC; i i1 "
08ur15  Ridmer Sviim LW
ORC;  RGCiSy41 PP

8Rij R Zw— v+1, m

 —RC?pitis [T55h (1 — mity) $Sus1 s
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Oty RCWR; ’ k=i+1,...,0; (2.18)

where, fori=1,...,vand j=1,...,w
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v g1
v =Rij = Ri=RC; > {pots(Res — Bs) T] (1-piti)}.
s=i+1 I=i+1

Thus, the estimated variance of E@- is
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It = = j= =1 =1 =1
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Ty, = L
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2.4.1.4 Contextual Site-specific TBR for Untagged Fish (RCiU)

The TBR measure RC; depends on the conditional transportation rates ¢y, and so is valid
only for tagged individuals. The analogous measure for fish in the release group, had they

been treated as untagged, is RCY, found by replacing the ¢ parameters in Equation (2.16)
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with the conditional transportation rates for untagged fish, tg:

R;

RC{ = v U =1 U U U
2 k=it (pktk Re 151 % ) T2 Ay

: (2.19)

where le =1- pltlU is the probability of an untagged fish passing site ¢ without being
transported there, conditional upon reaching site ¢. The variance of EE’ZU is of the same
form as the variance of }/25’1‘,‘ but with t{ replacing ¢; in Equation (2.17) and in the partial
derivatives in Equation (2.18). If the researcher has an estimate of Var(gj), then that
quantity may be used in estimating ﬁ«(ﬁéf’ ); otherwise, the terms involving Var(ﬂj) will

be zero.

2.4.1.5 System-wide TBR for Tagged Fish (Rsys)

The TBR measures R; and RC; represent the contributions of individual dams to the over-
all effect of the transportation system on adult return rates. We also need to estimate the
overall, or system-wide, transportation effect. A system-wide transportation effect can be
approached in two ways. One way is to compare the conditional return rate of transported
smolts to the conditional return rate of non-transported smolts, as done on a site-specific
level for RC;. The cbnditions in this approach describe the two treatment groups, “trans-
ported” and “non-transported.” The second approach is to compare the return rate of smolts
under the transportation system to the return rate of smolts without the transportation sys-
tem. The two approaches are different in two ways. First, the former approach compares
only transported smolts to in-river smolts, all of whom migrate in the presence of the trans-
portation system, but only some of whom are transported. The latter approach compares
the return rate of all smolts, transported or not, under one system (transportation possible)
to that under another system (no transportation possible). Secondly, the former approach
compares conditional return rates, in which the conditions define the treatment group; the
latter approach uses non-conditional return rates. This may seem a minor difference, but
using conditional return rates is problematic for a system-wide TBR, as discussed below.

For now, consider the latter, unconditional approach. Define R,y to be the system-wide
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TBR:

Pr [Return | Transportation system]

Pr[Return | No transportation system|

Note that the conditions in Equation (2.20) define the river system and probability distrib-
ution used, rather than the groups of fish in different treatment groups. There is only one
juvenile migration path smolts can follow if they are to return as adults in a system without
transportation: they must survive in-river from the release point to the final juvenile site,
and return from that site to the first adult site. This means that the probability of returning
in the denominator is simply S -+« Sy D" Sy41,5. Smolts who migrate in a system with trans-
portafion, on the other hand, .have multiple migration routes, depending on the number of
transportation sites. They may migrate wholly in-river, or they may be transported from

any one of the transport sites. Similar to the denominator of RC;, we have

Pr [Return | Transportation system]

v w

i~1 w v
( H Sk ) Sipits( H Sk) Z Sv+1,5Rij + (Z Sus1,5) ( H Sizs)
Pl i=1 i=1

k=i+1 Jj=1

v
i=1

v

v w i1 v
=(]5)> Sv+1,j{ S (I w)petirs + ] zi}-
‘ i=1  j=1 =1 k=1 i=1

Combining this probability of adult return under the transportation system with the prob-

ability of adult return without the transportation system gives

v v

i—1
Reys = Z {( H zk)pitiRz‘} + H z;. (2.21)
k=1

i=1 i=1

The TBR measure Ry, is simply the weighted average of the individual isolated site-specific
TBRs (R;), with weights equal to the probabilities of the different migration paths (using
R; =1 for the non-transportation path).

The measure Ry, is a function of the parameters Sy11; (j=1,...,w), Ry (i=1,...,v;

j=1,...,w),p (i=1,...,v),and t; (1 =1,...,v). The variance of ﬁsys can be estimated .
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where E is the MLE of the vector of model parameters used in calculating ﬁsys. The

necessary partial derivatives are

ORgys  2os=l {Psts(st - RIS (1 - pztz)}

- , T =1,...,w;
5‘51,4.1,]‘ %_1 S’u+1,m 7
aRsys pztzsv+1,] Hl 1 1 — pltl) 1 =1 v
3R, Yt Seetm o
8Rsys — t R (RC - 1) (1 Psts ) =1 v;
Opi RC& 7 o
angs ( ) ( pS ) y
= = 1 e .
ati RC s ? 3 s U

2.4.1.6 System-wide TBR for Untagged Fish (Rijys)

The system-wide TBR R,ys is applicable only to tagged individuals, because it depends on

the conditional transportation rates ¢;. An analogous measure for the fish in the release
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group, had they been treated as untagged, is RszS:

v

i1
Ry, =>" {( I1 Z/g)pit?Ri} +
k=1

i=1

2Y. (2.23)

v
=1

1

The variance of ﬁgjys is estimated by Equation (2.22), but with tzU replacing t;.

2.4.1.7 Conditional System-wide TBR for Tagged Fish (Reond)

The measure Ryys is an unconditional system-wide TBR value, where the transport group
includes non-transported fish. The site-specific TBR values are all based on conditional
definitions, in which the transport group is only those fish transported. Consider developing
a conditional system-wide TBR that parallels the site-specific values, as suggested above.

Ideaily, the conditional definition of a system-wide TBR takes the general form

Pr[Return | Transported somewhere]

R =
cond Pr[Return | Never transported]

The main difficulty with this approach is defining the treatment groups. Simply making
them “transported” and “never transported” is inappropriate, because the “transported”
group is known to have survived in-river to at least the first transport site, while fish in
the “never transported” group may not be transported because they died before reaching
a transport site. We may condition on reaching the first transport site, but this simply
moves ’the difficulty downstream: fish transported from site 2 are known to have survived
that far, while fish not transported from site 2 may have died before reaching that site.
Following this reasoning leads to conditioning on survival to the final transport site, for
both transport and non-transport fish. Let site ¢t be the final transport site, with ¢ < v.

Using this approach, the conditional definition of a system-wide TBR is

Pr [Return | Transported somewhere, survive to site t]

R =
cond Pr[Return | Not transported, survive to site ¢|

B ., Pr [T}, return]/ S, Pr[T;, survive to site ¢]
Pr{Not transp., return]/Pr[Not transp., survive to site t]
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The probability of survival in the barge is typically assumed to be approximately 1 (0.98;
USACE, 1993). Under this assumption, Reong is approximately

St {S—;pz'tiRi(l—[LiH Sk) D51 St g J Skzk}/ Sie (Sz‘piti Ty Skzk)
(TTk=1 Sk)([Thmt 2) 2521 Sot1,/ (TThmr Skaw)
z_—.1 (pitiRz’ ;;_:11 zk)
S {pz‘ti( it 2k)/ (Tlhmig Sk)}

Reond ~

~
~

(2.24)

If there is only a single transport site (t), then Rcond = R;. Otherwise, R.onq is a combination
of the site-specific TBR values and juvenile reach survival rates through the final transport
site. The factor 1/([T}_; +1Sk) represents the effect of transportation from site 7 on survival
past the last transport site, and is based on the assumption that survival in the barge is
approximately 100%, at least in the early stages past the remaining transport sites. Without
this factor, Reonq is the same as the combined-site TBR reported in ‘Sandford and Smith
(2002), but allowing for multiple juvenile detections at transport sites. Including the factor
1/ (Hfmi +15k) is unsatisfactory, because it requires an assumption about barge survival
that cannot be adequately tested or estimated. Also, it prevents R.onq from being a simple
weighted average of the site-specific R; values, which is appealing mathematically. However,
omitting the factor 1/ (ch___i +1Sk) is equivalent to making another assumption, namely that
barge survival between each transport site and the final transport site is the same as in-
river survival between these points, or that in-river survival is approximately 100%. This
assumption is unwarranted. Due to the dependence of R.,ng on potentially faulty and
untestable assumptions, it is recommended that the more defensible R, s be used rather

than R.onq as a system-wide measure of the effectiveness of the transportation system.

2.4.1.8 Scenarios

Several measures of transportation effect have been defined, varying on assumptions about
the viewpoint taken (isolated or contextual) and whether or not the fish are tagged, and on
the level of specificity desired (site or system-wide). To better understand the differences

-among these various quantities, consider the two scenarios shown in Figure 2.7. For both
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scenarios, the expressions for the alternative TBRs are presented and compared.

Site 1 T T

Site 2 T

Site 3

(@) (b)

Figure 2.7: Scenarios for TBR examples. Each scenario shows the river with three
dams (detection sites), with the arrow indicating direction of flow. Transportation
(T) is possible either at (a) dam 1 only or (b) both dam 1 and dam 2.

2.4.1.8.1 Scenario A Consider the study design shown in Figure 2.7(a). Only juvenile
detection sites are shown, because the configuration of adult sites does not affect TBR as
long as there are enough adult sites to estimate adult return rates to BON (i.e., at least
two). In Figure 2.7(a), there are three juvenile detection sités, with transportation possible
only at the first site. Site 4 (not shown) is the first adult site. With a single transportation
site, there are five alternative measures of transportation effect: Ry, RCy, RCiU y Rsys, and
joys. Note that 21 and 2{ are both < 1 while 2o = 23 = 2§ = 2{ = 1. Consider the

site-specific TBRs first. The R;; values are estimated directly from the model. The other
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site-specific values are:

2 j=1 S4By R R
R = =5—; RCy = — = Ry; RCY = —— =Ry.
! Z;u___l S4j ! 2223 ! ! zgzg !

With only a single transportation site, the river downstream from that site appears the
same whether or not transportation practices at other dams are considered; thus, R; =

RC; = RCY. The system-wide TBR values are:
Rsyszl_p1t1<1—R1)§ ng:l—pltgj(l—Rl).

If Ry > 1 (transportation from site 1 increases adult return rates), then both Ry, and Rg/ys
are > 1 as expected, with joys > Rgys if t{f >t If Ry < 1 (transportation from site 1°

decreases adult return rates) and tgj > t1, then joys < Rgys.

2.4.1.8.2 Scenario B Figure 2.7(b) shows a second scenario, again with three juvenile
detection sites and with transportation possible at the first two sites but not at the third.
In this case, it should be expected that the site—speciﬁé TBRs for site 2 will be equal,
regardless of tagging or the viewpoint used, because there is no transportation downstream
of site 2. On the other hand, it should be expected that the site-specific TBRs for site 1
will be unequal, due to transportation at site 2. The parameters 21, z», z?, and zg are each

< 1, and 23 = 2§ = 1. The site-specific TBRs for tagged and untagged fish are:

R1 _ Z;U=1 S4jR1]' ' RQ _ }U=1 S4jR2j'
D=5y =154
R, Ry Ry
'zt pataRy 1- pat2(1 — Ry) T % :
R, R, Ry
ROV = = ; RCY = —% = Ry;
L zgzg + thng 1-—- pgtg(l — Rz) 2 z§’ 2

As expected, the isolated and contextual TBRs are the same for both tagged and untagged
smolts for site 2, but differ for site 1. In general, the site-specific TBRs (i.e., R;, RC;,
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and RCiU ) will be equal for the final transport site, but not for ﬁpriver transport sites. If
transportation from site 2 increases adult return rates (i.e., Ry > 1), then RC7 < R; and
RCY < Ry, because return rates of site 1 control fish are augmented by transportation from
site 2. Also, if Ry > 1 and tif > ty1, then RC; > RC%’ because a larger proportion of the
untagged controls than the tagged controls from site 1 are transported at site 2.

The system-wide TBR values for tagged and untagged smolts are:

Ryys =pitiRy + (1 — prt1) {1 = pata(1 — Ra) };

joys = pitY Ri + (1 — p1t? ) {1 — patd (1 = Ro)}.

With more transport sites, the system-wide TBR values become more convoluted. Which
of Reys and joys is larger depends on the values of the isolated site-specific TBRs (R;) and

on the transportation fractions for tagged and untagged smolts (p;t; and pitfj , respectively).

2.4.1.9 Which TBR to Use

Several alternative Transport Benefit Ratios have been presented as measures of trans-
portation effect. They vary in level of specificity (age and site, site alone, or system-wide),
viewpoint taken (isolated or contextual with respect to the remainder of the transportation
system), and tagging status of the applicable population (tagged or untagged). Under what
circumstances is one more appropriate than the others?

First, note that managers and scientists are primarily interested in the effect of trans-
portation on the larger untagged population, rather than the smaller tagged population.
Second, note that the control groups for the isolated TBRs (R;; and R;) and the system-
wide TBRs (Rsys and ngs) represent migration through the hydrosystem with dams but
without transportation. Third, the age- and site-specific TBR values R;; are useful pri-
marily for model parameterization and for defining the site-specific and system-wide TBRs;
unless the focus is the interaction between transportation and age of return, we should
consider only either the site-specific values R; or RCY, or the system-wide value Rg@s.

Managers of specific dams are interested primarily in the effect of their dam operations

on survival and return rates, and thus should use the site-specific TBR values. If they are
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interested only in the effect of transportation operations at their own dam on adult return
rates, then they should use R;, which separates the effects of transportation at dam ¢ from
the effect of transportation at downstream dams. On the other hand, dam managers may
want to know whether it is better to transport fish that are in their bypass system, or better
to return them to the river. The contextual TBR measure RCY can help them answer that
question, because it takes into account actual transportation operations at downstream
dams.

Hatchery managers and tribal leaders are interested in the return rates of their fish,
and so are interested in survival throughout the entire hydrosystem rather than past any
one dam. Similarly, they are interested in the overall effect of the transportation system
on return rates; rather than the effect of transportation from one site. Thus, hatchery
managers and tribes should use joys, rather than site-specific values.

NOAA Fisheries, state fish and wildlife agencies, and conservation scientists are also
interested in the overall effect of the transportation system, so should use joys. As a
measure of the efficacy of transportation throughout the hydrosystem, and as a function of
both conditional bypass (detection) and transportation rates (p; and t;, respectively), the
measure ng s may be used to optimally allocate transportation effort across dams. Fisheries
managers may also be interested in the effect of transportation from a single site, either
alone (R;) or in the context of the entire transportation program (RCY).

It is important that all parties involved understand the different types of TBR available,
and know which value is being used in any given situation. In general, R;, RCI-U , and ng s are
unequal, so miscommunication and misunderstandings may arise without clearly identifying
the type of TBR being used. Whatever measure of transportation effect is considered should
be analyzed in terms of a modeling context as presented here. This practice clarifies what
is being estimated by the various TBR values, and may help avoid unnecessary confusion

and miscommunication.
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2.4.2 Adult Return Rates
2.4.2.1 Ocean Return Rate for Non-transported Fish (Ont)

The age-specific parameter S,4 ; represents the probability of returning to the first adult
site after j years (or winters) in the ocean, conditional on reaching the final juvenile site
without having been transported. Because the permanent detection site for both juveniles
and adults closest to the ocean is Bonneville Dam, 234 kilometers from the mouth of the
Columbia River, Sy41,; necessarily includes some inriver survival, as well as ocean survival
and maturation rates. Ocean survival cannot be estimated unless we make precise assump-
tions about maturation rates and inriver survival. Although we cannot separate ocean
survival from inriver survival and maturation rates, we can estimate the ocean return rate
from the last juvenile site to the first adult site, regardless of age at return, by summing the

age-specific ocean return rates. Let Onp be the ocean return rate for non-transported fish:
w

ONT =Y _ Spt1;- (2.25)
i=1

The measure Oy is valid for both tagged and untagged fish because it does not depend on
the conditional transportation rates. The MLE of Oy, denoted Onr, is found by replacing

the model parameters in Equation (2.25) with their maximum likelihood estimates, i.e.:

= Z§v+1d- (2.26)

j=1
The variance of 5NT is estimated by
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2.4.2.2 Site-specific Ocean Return Rate for Transported Fish (Or;)

The ocean return rate Oy is valid only for non-transported fish, because ocean survival is
assumed to be affected by transportation. For fish transported from site ¢, the probability

of returning from the transport site to the first adult site is Og:
Or, = Pr(Return to v + 1 | Transported at 1)
w
=81 S Z Sy+1,5Rij

' w
= Sit1 - So st+1,j- (2.28)
=1 ‘

The measure Or;, is valid for both tagged and untagged fish because it does not depend on
the conditional transportation rates. The MLE of Or,, denoted 67;, is

w
Or, = 8iy1---8,R Z o1, (2.29)

The variance estimator for Or; is

Var OTl Z Z (%?S%

A> (8OT1| )Cov(Sk,S )
8/ \ oS
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where E is the MLE of the parameters used in Equation (2.28). The necessary partial

derivatives are:

00T, Or, o ‘
8Sy—‘sy’ y—Z+l,---,U,
007, o .
8Spi1; = Siy1- SuRy, J=1,.. ., w
o0, '
BRZ = Si+1 " SuSu+14, i=1...,w. (2.30)

The age- and site-specific parameters R;; reflect transportation effects on inriver sur-
vival below the transportation site as well as on ocean survival, so we cannot estimate the
probability of transport fish returning from site v + 1 to site v unless we make assumptions
about TBRs and inriver survival. For example, survival of transported smolts in the barge
is often assumed to be 0.98 (USACE, 1993). This assumption allows us to express the
effect of transportation on ocean return rates as Ri,ocean]. = R;;Sit1--5,/0.98, and the
ocean return rate of site-7 transport fish as (Si+1 e Sv/0.98) ;‘;1 Sv+1,;Ri;. 1t should be
noted that the barge survival value of 0.98 is an estimate from past studies, which may
be inappropriate for any particular transport group and whose standard error is unknown;
thus, the most defensible ocean return rate for transport fish is that from the transport site

(Or,), rather than from the final juvenile site.

2.4.2.8 Site-specific Smolt-to-Adult Return Rate for Tagged Fish (SAR k)

Researchers are typically interested in return rates from the release site or transport site to
spawning grounds or back to the release site. Without independent estimates of detection
‘rates at those sites, we cannot estimate adult return rates there. However, it is often
assumed that adult detection at the final detection site (typically LGR) is 100%, implying
that we can estimate return rates to that site (i.e., site v + u), which may be downriver
of the release site. If detection at the final site is not assumed to be 100%, then we may
estimate return rates only to the penultimate site (i.e., site v+ u — 1). On the other hand,

it may be of interest to estimate the return rate to the first adult site. Each of these
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return rates may be considered a smolt-to-adult return rate (SAR). Here, SAR is labeled
with a subscript, K, denoting the site to which return rates are estimated, typically either
K=v+uor K=v+u~—1. Define SARg) to be the probability of returning to site K

(K=v+1,...,u+u) as an adult, conditional only on the initial release:

SARx Hs Z { H {g(pitiRMEzO +£{1zz}]. (2.31)

i=1 j=1 "i=v+1

The measure SAR k) depends on the conditional transportation rates, and so is valid only

for tagged individuals. The MLE of SAR g is:

v w K v i—1 v
SAR H zz{ I1 SU{ (@aﬁijﬂa)JrHaH. (2.32)

=1 j=1 *i=v+1 i=1 =1 i=1

The variance of STR( k) is estimated by
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i=1 k=1 j=1

where E is the MLE of the vector of model parameters used in calculating 574\3(1{)- The

partial derivatives are (for 1 = 1,...,v unless otherwise specifed, and for j = 1,...,w):

0SAR(x) SAR)

aSi - Si !
88y Sij { (Prte R H 21) + H zk},

k=1 =1 k=1

fori=v+1,...,K;

% <Hsk>< H Sk,>p1t sz,

k=v+1

BSAR oo W o1 v
L) H Z H Sky{ 15 H z = Z pstsst H Zl) - H zl};
k=1 J=1 k=v+1 s=i+1 =1 =1
GSAR 5=l v
-2 HS’CZ H Sk]{ mHzl Z (pstsRs; HZz) —Hzl}. (2.34)
k= =1 k=v+1 g=i+1 =1 =1

2.4.2.4 Site-specific Smolt-to-Adult Return Rate for Untagged Fish (SAR(K))

The smolt-to-adult return rate to site K for untagged fish, SAR( K)? is estimated by replac-

ing the parameters t; in Equation(2.31) with the corresponding values tZU. The variance
.

estimator of SARk is simply Equation (2.33) with tV replacing t;, allowing for a non-zero

@-(?{f) input by the user.
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2.4.8 Return Age Distributions

Recall from the underlying model that the probability of returning as an adult in age class
7 is a product of inriver and ocean survival and maturation proclivities:

j—1

Svt+1,j = 0JO1M;0Af H (1 = my)oksr.
k=1

Maturation is confounded with ocean survival and the inriver survival contained in o; and
044, so the maturation rates m; are not separately estimable. Instead, we can estimate
two sets of probabilities: the return age distribution, and the conditional maturation and
return probabilities. First consider the return age distribution. The entry for age j»i‘s the

probability of returning after j years in the ocean, conditional on returning as an adult:

w
Sv+1,5/ Z Sv+1,k for inriver fish, and
k=1
w
(Sv+1,5Rs5)/( Z Sy+1Rik) for site-i transport fish.
k=1

The terms in each distribution add to 1.

2.4.8.1 Return Age Distribution for Tagged Fish (A;)

It is possible to combine the inriver fish with the transport groups to derive a return age
distribution for all fish in the study, regardless of migration route. The entries in this overall
distribution are the same as those for inriver fish, weighted by the age-specific probabilities
of the different migration routes. The weights are similar to those used in Ry, the effect
of the transportation system on ocean return rates (Equation (2.21)). The age-j entry for

this overall return age distribution is:
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Svt1,5 {ZP___ (pitiRij Hi__l zy) + 1T, Zz’}
Y obe1 Sut1k [Z (p,t R, y——l zy) + 1Ty zz]

Sy+1,5 {ZLI (pitiRij ;;;11 zy) + [Tiz1 Zi}
Zk 1Su+1,k Rsys ‘

A=

(2.35)
The variance estimator for ,Zj, derived using the delta method, is
— 2 e OA; DA;
Var(A;) =
( J) ZZ <6Sv+1m‘ )<65v+1n
YL~ [ B4 0A4; ~
+ 323 (52l,) (Bl ) GovBin, B
m=1 n=1 6Rim [ 8Rm
v

. <8A )<6A
== \Ope 12/ \ Opy 18

)COU(SU+1 ms Sv+1,n)

) CO’U(pk,py)

)COU(Sv+1 ms Rm)

0A;
1m E 5p

where E is'the MLE of the vector of model parameters used to calculate Ej. The necessary

)OOU(SU+1 m»pk)

)COU Rimaﬁk), (236)

partial derivatives are (i =1,...,v;j =1,...,w):
04; _ A _ A; ORgys B A
8Sv+17j S'u+1,j Rsys 8Sv+1,j Z%:l Sv+1,m
s—1
Sy+1,5 ORs;
+ * ts 1—pt ,
Zw Sv+1 m Rsys ; {ps BSU+1,j y]._=J;( Dy y)}

0A; 1 1 ORgys )

:_A'< + ) n=1,...,w;n # J;
5SU+1>” ? Z#:l Sv+1,m Rsys 8Sv+1,n ! ! # Ji
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DA; Spr1; 1 =
= 2 1—-A)pt, 1—p,t,);
6Rij :Un=1 Sv+1,m Rsys ( j)pl ¢ yI_—E[l( py y)
aAJ —AJ angs ,
= , , m=1,...,w;m ;
8Rim Rsys 8Rim ?é 7
aAJ' _ ‘“Aj ORsys Svt1,j ti 2;11(1 - pyty)ry‘ .
Op; Rsys Op; Z%:l Sv—i-l,m Rsys i
and
0A; —A; ORgys Sv41,5 i 2;11(1 - pyty)
= = Yij (2.37)
6ti Rsys ati m=1 Sv+1,m Rsys
where
v s—1 v
Yij=Rij = D {Pstsst ITa —‘pyty)} - II @ -nyty).
s=i+1 y=i+1 y=i+1

2.4.83.2 Return Age Distribution for Untagged Fish (Agj)

The overall return age distribution in Equation (2.35) is valid only for tagged fish; for
untagged fish, the conditional transportation rates for tagged fish (¢;) are replaced with the
analogous rates for untagged fish (t/) to give Aéj. As usual, the variance of A\y is estimated
by Equation (2.36) but with tZU replacing ¢;, and allowing for (but not requiring) a non-zero

W(ﬁu) input by the user.

2.4.3.8 Conditional Adult Return Rate for Tagged Fish (1;)

.Now consider the conditional maturation and return probabilities. The age-j conditional
maturation and return probability is the probability of returning after j years in the ocean,
conditional on surviving to the final juvenile site and not returning earlier. For inriver
fish, the final juvenile site is site v, and the age-j conditional maturation and return prob-
ability is Syt1,5/(1 — Zi;ll Su+1,c), the ratio of the age-j ocean return probability to the
probability of not returning earlier. Notice that the denominator includes the possibility of

dying in the ocean before year j, so that this quantity involves ocean survival parameters
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01,...,0; as well as the maturation parameters m;. For fish transported from site ¢, the
“last” juvenile site is site ¢, and the conditional age-j maturation and return probability
is {(H}é:iH S}c)Sv+1,jRi]‘}/{1 — ([Ti=s+1 Sk) ch;ll Sv_|_1,kRik}. Note that the conditional
age-specific maturation and return probabilities for any treatment group (inriver or trans-
ported from site ¢) do not sum to 1. .

The conditional maturation and return probabilities for all fish, regardless of migration
method (transportation or inriver) is more complicated, because the “last” juvenile site
varies with migration group. However, we can express the probability of returning to the
first adult site in year j, conditional both on surviving to the “last” juvenile site and on not

returning before year j, by:

( ;.;15,-)5”“,]-{ L (itsRi; TIL 2) + 1T }

where

= (ﬁ&zi) (’1 - Ji Sv+1,k>

+;{1i[ S zy Sipit; 1_lH Sl;Sv+lkRzk)}

=141

Ocean return probabilities in Equation (2.38) are weighted by the probabilities of the dif-
ferent migration paths and by the TBR parameters R;;. The estimated variance of 1

is

== % <3M

Oy
112/ \8S,

'é) 50\’1)(3\@', §y)

T
Oy >< B >AA 5
+ - . |Cov(S. y Sut1,m
kglm;(asvw 581 12 (S is Sevtm)
vov J
O, O, B
B ( — §)<8Rymg Gov(Ris Bym)
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23 (3

O

5>®(§la v+l,k)

> ( Op;
8Sv+1,lc

O | \Fo (5. B
) (aRyk‘ IE) COU(SM Ryk)

Jj v j
O Ou;j -

i Z Z Z <8Sv+1 & ’E) <6R1m COU(SvH,k, Rim)

k=1 i=1 m=1 :

Jj w

' Ou; Ou;

i 2kz=:1 ; (5Sv+1 k' ) (8])1 2 Cov(8usvp i)

v o J v

O Opy -

’ 2;;3,:1 <8Rik E) (8py‘ Oov( ’k’py)’ (2.39)

where E is the MLE of the vector of model parameters used in calculating fi;. The necessary

partial derivatives are given below (Equation (2.40)). Interpret as 0 any sum whose upper

limit is smaller than its lower limit. For example, ZSn:l Sv+1,m = 0.
O _ 1 (T ;
2 - &5 { Tl sSuetn}.
m=1 y=1
Ouj _ 1
OSut+1;  Svtiy
; 10
6“'7 = ’ujuk k s k=1, 1]_1’
OSu+1k  63Su+1k
Opj  Mi(1— 1) Sus1,5pits 1,212 i=1 v
8Rij A 'Rsys Z%—-l Sv-{-l,m 7 ’ Y
29 t 1z
6/.1,] _ /J“J ’U+1k‘p’b Z]._.[ =] y kzl, ,‘] 1’

8R¢k A Rsys Zm— v+1, m
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i—1

Ou; _ __ #itillyr 2y {Suv1ms - i} i=1,...,0

apz’ Aszys Z%=1 Sv+1,m v H;=i+1 Sy , ’ o
i—1

Ouy M5 Di ;/=1 2y HjQij

Oy _ S ,j%ij — Tt
Ot AjRsys 2oma1 5v+1,m{ T Mymign S0

where
v 81 v
Yij = Rij - Z (pstsst H zy) - H 2y
s=i+1 y=i+1 y=i+1
v j—1
o =1-— H Sy Zsu+1,kRik
y=1+1 k=1
v s—1 ] j—1
—_ Z { < H Syzy> Sspsts <1 - H sz Sv+l,lcRsk)) }
g=i+41 y=1+1 y=8+41 k=1

2.4.8.4 Conditional Adult Return Rate for Untagged Fish (,ug/

The age-j conditional maturation and return probability, 4;, in Equation (2.38) is for tagged
fish; it can be modified for untagged fish by replacing the ¢; parameters with the appropriate
values of t{ to find ,ug-]. The variance estimator of ﬁgj is simply Equation (2.39), but with

tV replacing t; and allowing for a non-zero \7(17’(??) input by the user.

2.4.4 Inriver Adult Survival

Yearly inriver adult survival from the first adult site (i.e., site v + 1) to the penultimate
adult site (i.e., site v + u — 1) can be estimated directly from the model parameters. If
detection at the final adult site (i.e., site v + u) is known, so that Sy, ; is separable from
Duv+u,j, then we can estimate yearly adult survival from site v+ 1 to site v+ u. It may be of
interest to measure the overall inriver survival, S4, of adults from a particular brood year

or outmigration, with all adult age classes combined.

2.4.4.1 Inriver Adult Survival for Tagged Fish (S4)

Overall adult inriver survival from a particular juvenile release group is the weighted sum

of year-specific adult inriver survival probabilities, with weights equal to the entries of the
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return age distribution, Ai,..., Ay. With detection estimated separately at the final adult

site (or assumed to be 100%), we have:

S = Pr{Survive from v + 1 to v + u | Reach v 4 1]

w v+u

A T Sese (2.41)

j=1 k--'u+2

If detection is not known at the final adult detection site, then Equation (2.41) may be
modified to give the overall adult survival through site v + u — 1. The estimated variance

of §A is:

TaGy=3 3 iz(a—s—é ) (3o, ) Gov(By Sum)

i= v+1k v+1 1 m= ‘
+ZZZZ (g )(;;;A l >C’ov(Rz],ka)
i=1 k=1 j=1 m=
+;;<8SA E) (aSA >5¢5) (B, i)
v
+Z(%§j a) Var(f)

0Sa =~ & =
) <8ka ‘g) COU(S’U? ka)

23 333 (5,

t=v+1 k=1 j=1 m=1
vty v w
+2 <— “>< >COU(SzJapk)
i‘;f-l};; 05318/ \ Ope
8s 0841 \ A 55
+2ZZZ(3RA )(aA )Cov(Rij,pw, (2.42)
i=1 k=1 j= ij 18 Pk

where 0 is the MLE of the vector of model parameters used to calculate Sa. The necessary

partial derivatives for Equation (2.42) are (i = 1,...,v unless otherwise specified):
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054  AjSui2j Sutuy

8Sys15 Sv+1,5
3 Z Aksv+2 ke Sutuk {1 i S {psts(Rs; — Rs) TIZ1 Zl}] ,
m 1Sv+1,m : Rsys ,

0S4 _ AjSuiaj Svtuy

= , fori=v+2,...,0+u;
05Si; Sij

0S4 _ Svrigpiti [IyZi 2
8R1] Rsys Zm=1 Sv-{—l,m
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(SM,J» c Supug = D AkSusa sm,k);

k=1
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—_— S, .S =
opi = Op; ”+2’J vthg
0S4 «—
ot Z at; S”“” vt (2.43)

2.4.4.2  Inriver Adult Survival for Untagged Fish (SY)

The inriver adult survival measure S4 is valid only for tagged fish; to find the comparable
measure for untagged fish (SY), replace 4; in Equation (2.41) with Agj. The variance of
§% is estimated by Equation (2.42), but with ¢; replaced by tzU and allowing for a non-zero

@(2}/) input by the user.
2.5 Conceptual Issues

There are several conceptual issues relating to this model that have not been discussed. One
deals with fixed parameters that need not be estimated. A second issue is identifying the
detection sites to include in analysis. A third issue is that of collapsing across age classes;

when is it appropriate and what are the ramifications? These issues are discussed here.

2.5.1 Fizing Parameters

Equation (2.9) is a generalized likelihood that accommodates any number of juvenile and

adult detection sites, with censoring and transportation possible at all juvenile sites and
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censoring possible at all but the final adult site. For a particular study design or data set,
however, it is likely that some detection sites will have neither censoring nor transportation.
Additionally, some transportation sites may have no transported smolts returning to BON
as adults. In these cases, it is necessary for the user to modify Equation (2.9) by removing
the appropriate processes from the model.

For example, there is currently no sampling program at BON, so both the censoring pa-
rameter and the censoring statistic at BON are zero: cgony = 0 and dpony = 0. Similarly,
there is no transportation from BON, so tgoy = hpon = 0. The likelihood in Equa-
tion (2.9) is valid with these zero-valued parameters under the interpfetation that 00 = 1.
For practical purposes, however, all factors involving the parameters cgony and tgoy and
any other zero-valued parameters should be removed from the likelihood. First, they are
extraneous nuisance parameters whose values are already known. Second, any software
program used to maximize the likelihood in Equation (2.9) will not interpret 0° as 1, and
will be unable to fit the model. Also, with no transportation at BON, the TBR parameters
for BON, Rpon,;, are undefined, and factors involving these parameters should be removed
from the likelihood. Thus, it is necessary for the user to modify Equation (2.9) to suit the
state of the censoring and transportation operations at the time of data collection. The
summary statistics identify zero-valued nuisance parameters to be removed; however, these
statistics are not included in the minimal sufficient statistics.

It may be that no transported smolts from a particular transportation site return as
adults, or that they return in some adult age classes but not in others. For example, consider
the case in which no smolts transported at MCN return as adults. This may be due to the
small size of the transport group rather than to any negative effect of transportation at
MCN. The user must fix the pertinent age- and site-specific TBR values Ryson,; in order to
fit the model; equivalently, any factors involving the Ryscn,; parameters must be removed
from the likelihood in Equation (2.9). If the user has independent estimates of some or
all of the Ryscn,; parameters, the appropriate parameters may be fixed to these estimates,
along with the appropriate standard errors. Without independent estimates and insufficient
power to detect a positive Ryon,; value, Ryon,; should be fixed fo 1 for use in calculating

derived quantities, implying the null hypothesis of no transportation effect. Note that in
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this case, Ryconv,; are not estimated to be 1, but are rather assumed to be 1 in the absence
of sufficient information indicating otherwise.

A related problem is that of transport sites with 100% transportation of detected smolts,
i.e., sites with ¢; = 1. This practice was used in the early and mid-1990s, and is problematic
because it leads to an overparameterized model, even with the ¢; parameters fixed. In
general, changing t; to 1 from some value between 0 and 1 removes one estimable parameter
(t;, now fixed to 1), and two minimal sufficient statistics: b;, because no detected fish are
released to the river at site 4, and h;, because now h; = a; — d;. With ¢; < 1 for all juvenile
detection sites, the model is full rank, so fixing ¢; to 1 for any site i makes the model
overparameterized. Thus, transportation rates should not be 100% at any transport site.
If any sites have 100% transportation, methods such as those developed in Sandford and

Smith (2002) should be used to estimate transportation effects.

2.5.2 Identifying Detection Sites

This model is sufficiently flexible to analyze data sets with any number of juvenile and adult
detection sites. However, it requires at least one juvenﬂe site and at least two adult sites.
Including only a single juvenile site gives little information about the juvenile migration and
the effect of any transportation, however, and it is recommended that more sites be used.
The second adult site is required to estimate return rates, unless we have independent
estimates of detection at the first adult detection site for every year of adult detections.
More adult detection sites tell us more about the adult migration. Because adult data
comes from several years, there may be adult detection data from a dam for some years
but not for others. In this case, the appropriate p;; parameters should be fixed to 0. In
general, the more detection sites we include (with high detection rates), the more detailed
our data, and the more unbiased and precise our parameter estimates. The model allows
for censoring and transportation, but does not require them if they do not occur; however,
they and the appropriate detection sites should be included if they do occur. The number of
age classes used does not affect the validity of the model, and should be determined based

on the biology of the fish and the observed returns; this is discussed in the next subsection.
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Ideally, the last juvenile site and first adult site should be as close to the ocean as possible
to get as much information about ocean survival as possible. This means that these sites
should both be BON. Even in this case, what may be termed “ocean survival” includes

maturation and survival through significant inriver reaches; see Section 2.4.2.

2.5.83 Collapsing age classes

With no defined upper limit to return age, the oldest age class may potentially include
returns over several ages. Additionally, it may be necessary or desirable to combine the
jack age class with the youngest adult age class. Current practice is to ignore adult age
when estimating return parameters, TBR, and up-river adult parameters. What are the
ramifications of this?

If adult age may be legitimately ignored, then we must be able to express the proba-
bility of any age-independent adult capture history as the sum of the pfobabilities of the
corresponding age-dependent capture histories. For example, with three adult ages and two
adult detection sites, the probability of being detected at both sites for non-transported
- fish, conditional on survival past the last juvenile site (v), is Z?___l Sv+1,jDv+1,jA; using age-
dependent parameters, and is Sy4+1p,+1) using age-independent parameters. If adult age

classes may be legitimately pooled, then:

Sv41Pv+1A = Spg1,1Pv+1,1A1 + Su1,2004+1,2A2 + Sy41,3Pv+1,3 3. (2.44)

Solutions to Equation (2.44) require that at least two of the three types of parameters Sy41 j,
Pu+1,5, and A; be constant across age classes. Otherwise, the resulting survival and detection
parameters in the collapsed (age-independent) model are functions of all adult parameters
from the uncollapsed (age-dependent) model. For example, one solution to Equation (2.44)

is:



88

Sps1 = Sp41,1 + Svt+1,2 + Svt+1,3

Sy+1,1Pv+1,1 + Sv+1200+1,2 + Su+13Pv+13
3
Sv+1,1 + Sv+12 + Su+1,3

Pyy1 =

(2.45)

3= Sy+1,1Pv+1,1A1 + Sy41,2Pv+1,2A2 + Sy+1,3Pu+1,3A3
Sy+1,1Pv+1,1 + Sv+12Pv+1,2 + Sv+1,3Pv+1,3

The parameter S,41 is the ocean return probability for non-transported fish, and p,+1 and
A are weighted sums of the p,4+1,; and A\; parameters, respectively. Alternatively, p,+1 and

A may be defined as:

Su+1,1Pv+1,1A1 + Sy+1,2D0+1,2A2 + Su41,3Pu+1,3A3
SU+171>\1 + Sv.|_1,2)\2 + SU+1,3)\3 ’

Sv1,1A1 + Spr1,2A2 + Sp1,373
Sv+1,1 + Sv+1,2 + Sut1,3

Py+1 =

A=

(2.46)

In either case, S, is biologically meaningful, but p,+1 and A are not, because they both
involve parameters other than their age-specific counterparts. Detection and the last reach
parameter () are typically nuisance parameters, so if the focus is on return probabilities,
then collapsing age classes is reasonable. However, it is obvious that there are two consistent
solutions to Equation (2.44), and in fact, there are more. For instance, p,41 may be defined
8s Py+1,1 + Po+1,2 + Du+1,3, and Sy41 and A as weighted sums of S,11,; and Aj, respectively.
With more adult detection sites, the parameters in the collapsed-age model will be yet more
convoluted, including biologically interesting adult reach survival parameters.

The above discussion ignores transportation. If there is transportation from site 1, then

collapsing the three adult age classes would give:

Su+1Ripus1A = Syr1,1R11P0+1,1 01 + Sut12R12Put1,222 + Suv1,3R13Pu 11,303, (2.47)

in addition to Equation (2.44). Following the inriver case above, a possible solution to

Equation (2.47) is:
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Sv+1 = Svs1,1 + Sv+1,.2 + Sv+1,3;

Sp+1,1R11 + Sut12R12 + Sup13R13

R, =
! Sv+1,0 + Svq12 + Sut1,3
Post = Sv+1,1R11pv+11 + Su+1,2R1900+1,2 + Sy+1,3R13Pv413 (2.48)
vt Sv+1,1R11 + Sor12R12 + Sut13R13 ’
5= Su+1,1R110u41,1 A1 + Suq12R12Pu4+1,2A2 + Su41,3R13P0 41,323

Su+1,1R110v+1,1 + Su1,2R12Pv+1,2 + Sug1,3R130041,3

The parameter S,,1 is the ocean return probability for non-transported fish, R; is the
isolated site-specific TBR. derived in Section 2.4.1.2, and p,+1 and A are weighted sums of
the py+1,; and Aj, respectively. Note that the solution in Equation (2.48) is not consistent
with the solutions from the non-transport case above (Equations (2.45) and (2.46)), because
Dy+1 and A both depeﬁd on the R;; parameters here. To make the transport and non-
transport cases consistent, the TBR, detection, and A parameters in Equation (2.48) must

be redefined:

Sv+1 = Sv+1,1 + Sp+1.2 + Sut1,3;

Ry = Sy+1,1R11Pu+1,1A1 + Sy11,2R12Py+1,2A2 + Sv+1,3R13Pu+1,3A3
Sv+1,1P0+1,1A1 + Sp+12Pv+1,202 + Su41,300+1,373 ’

Sy+1,1Pv+1,1 + Sv41,2Pv+1,2 + Su41,3Pv+1,3
831+ Syt+12 + Sut1,3 ’

Pv+1 =

(2.49)

3 = Sv+11Pu+1,1A1 F Sua1.0Pv41,282 F Sus18Pu41,808
Su41,1Pv+1,1 T Sv41,2Pv+1,2 + Sv+1,3Pv+1,3
This solution to Equation (2.47) is consistent with the solution to Equation (2.44), but it is
inconsistent with the derivation of the site-specific TBR, R, from Section 2.4.1.2. In fact,
any solution to Equation (2.47) that does not involve the R;; parameters in the definitions
of Sy+1, Pu+1, and A will be inconsistent with the derivation of R; in Section 2.4.1.2,
unless the adult parameters are constant over age class (i.e., over years). With only two
adult detection sites, S,+1 and R; are the only biologically interesting adult parameters;

however, with more adult detection sites, parameters in the collapsed-age model will be more
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convoluted, including biologically useful adult upriver survival parameters. Thus, if there
is transportation in the model, collapsing the age classes is invalid, unless the age-specific
adult parameters are constant over years.

Adult detection data should not be pooled across return years unless adult parameters
are constant across years. However, it may be necessary to combine some age classes due
to low adult return rates or detection rates. In such cases, it should be acknowledged that
the resulting survival, detection, and TBR parameters have no biological interpretation
unless at most one of them varies across age classes. This is especially important if adult
upriver survival is a focus on the investigation, though less important if adult return rates
to freshwater or TBR is the focus, because neither depends on upriver adult parameters.

The common practice of estimating smolt-to-adult return rates (SARs) by the ratio of
fish recovered at the release site to those released, regardless of return year, gives a valid
return rate estimate despite collapsing adult age classes, as long as detection at the final site
is accounted for. It is not the pooling of returns over adult age classes that'is problematic

in this case, but rather the estimation of detection and potential overlooking of censoring.
2.6 Comparison with Current Practices

2.6.1 Juvenile Survival

PIT-tagging of juvenile migrating salmonids is standard practice in the Snake and Columbia
Rivers. Until the early 1990s, detection of PIT-tagged smolts in juvenile bypass systems was
possible only at LGR, LGO, LMO, and MCN for Snake River salmon, and at Rocky Reach
and MCN for upper Columbia River salmon; since then, detection of juveniles is also possi-
ble at JD and BON. Researchers currently use Cormack-Jolly-Seber (CJS; Cormack, 1964,
Seber, 1965, and Jolly, 1965) methods with juvenile detection data to estimate reach sur-
vival of ju{reniles as thbey migrate through the hydrosystem; for examples, see Iwamoto et al.
(1994), Muir et al. (1995), Muir et al. (1996), Muir et al. (2001a), Skalski et al. (1998),
and Smith et al. (1998). Before detections at JD and BON were possible, survival could be
estimated only to LMO using CJS methods; with detections at JD and BON, survival can

be estimated to MCN and JD. In the absence of lower reach detection data, researchers ex-
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trapolated survival on a per-project or per-km basis to estimate survival through the lower
reaches. Extrapolations on a per-km basis are typically, but not always, closer to empirical
estimates based on CJS methods than are per-project-based extrapolations (NOAA Fish-
eries, 2000c), but both methods ignore additional mortality risks in lower reaches due to
slower moving water, increased densities of predators, and different configuration of juvenile
bypass outlets (Bouwes et al., 1999).

PIT-tag detection of adults has recently become available at several dams along the
lower Columbia and Snake rivers (BON, MCN, IH, and LGR), as well as at Priest Rapids,
Rock Island, and Wells on the upper Columbia. The approach described in this chapter
incorporates adult detections into the CJS methods previously used, and provides empir- -
ical model-based estimation of juvenile survival to BON, rather than extrapolation-based
estimates. Current practice is to estimate reach survival estimates for daily release groups.
Daily release groups may not provide enough adult detections to use CJS methods to esti-
mate daily survival through the JD-BON reach, but release groups may be pooled suitably
to provide sufficient return data. A drawback of using adult data to estimate juvenile

survival is the need to wait several years for adult detections.

2.6.2 Adult Return Rates

The current practice of estimating adult return rates is to estimate the smolt-to-adult
return rate, or SAR. The parameter SAR is the ratio of the number of adult returns to
the number of juveniles released, typically counting both at LGR for Snake River fish
(NOAA Fisheries, 2000c). The measure SAR is estimated using counts of juveniles and
adults, with adjustments for detection rates when possible. Adults are typically pooled
over return years. Because estimates of SAR are not model-based, bootstrapping is used
to find variance estimates (Sandford and Smith, 2002). Often, different SAR estimates are
computed for fish with different juvenile detection histories; for example, only those fish
undetected at any transport site may be included, to mimic the passage history of uhtagged
fish (Sandford and Smith, 2002).

The approach taken in this chapter is model-based, and very flexible. Return rates may
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be derived from BON to BON, or from LGR to LGR, as demonstrated in Section 2.4.2.
Thus, it is possible to derive model-based estimates of SAR to and from any site desired and
for any detection history. The exception is that because we cannot separate survival and
detection at the final adult site, we cannot estimate survival or return rates to that site. On
the other hand, we have model-based estimates of precision, and estimators (MLEs) with
well-known properties. The model parameter return rates are year-specific, but may be
combined to give the overall return rate for fish from a given outmigration year, as shown

in Section 2.4.2.

2.6.3 Transportation Effect

Transportation effect is typically estimated by two groups: dam operators, interested pri-
marily in the effects of operations at their own dam, and organizations such as hatcheries,
tribes, and NOAA Fisheries, interested in the overall effect of the entire hydrosystem on
survival and return rates. There are multiple ways to define or quantify a transportation ef-
fect, but all essentially compare the SAR of transported fish to the SAR of non-transported
(control) fish. Historically, batch marks such as coded wire tags, freeze brands, or fin clips
have been used, with both treatment (transport) and control (inriver) groups released at
a transport dam. The effect of transportation from a particular dam on adult returns was
“estimated using Ricker’s relative recovery rate method (Ricker, 1975; Burnham et al., 1987),
producing a quantity variably referred to as the transport-control ratio T/C or T:C, trans-
port benefit ratio TBR, and transport-inriver ratio T/I. This value is simply the ratio of

relative recoveries:

nr /Ny
nc/Ng’

(2.50)

where Nt (N¢) is the number of transport (control) fish released at a dam and np (n¢)
is the number of subsequent recoveries, adjusted for detection efficiency. In some cases,
it was acknowledged that T/I as defined in (2.50) needed to be adjusted due to possible
downstream transportation of control fish, but possible adjustments were not suggested

until Ward et al. (1997). The general assumption was that any downstream transportation



93

would increase adult returns of control fish, so the unadjusted T/I value from (2.50) is a
minimal value. Ward et al. (1997) suggested dividing T/I by the fraction of the control
fish reaching the transport release site that reached it wholly inriver, in order to account
for downstream transportation of control fish. -

Because individuals in the control (inriver) group may be transported downstream, the
quantity in Expression (2.50) is similar to the site-specific TBR RC; developed in Sec-
tion 2.4.1.3. However, RC; ignores censoring of control fish, whereas individuals in N¢ and
nc may be sampled (censored) downstream, and either removed permanently or allowed
to continue migrating. If all sampled fish continue migrating and then return as adults at
the same rate as those not sampled, thén RC; is the first-order Taylor Series approximation
of the expected value of the ratio in Expression (2.50). However, if sampling affects adult
return rates, then Expression (2.50) is a biased estimator of RC;. We can include censoring
in RC;, but we cannot account for the effect of censoring on return rates. Censoring is a
nuisance parameter, and we would like to ignore it. Unfortunately, Expression (2.50) incor-
porates censoring’s effects of return rates. On the other hand, the model presented in this
chapter accounts for censoring in fitting the data, and so both R; and RC; give valid TBRs
in which censoring is appropriately ignored. Further, Expression (2.50) is estimated from
tagged fish, and so is valid for untagged fish only if transportation operations are the same
for both tagged and untagged fish. Thus, Expression (2.50) may be applied to untagged
fish if it is estimated from batch-marked fish, but not if it is estimated from PIT-tagged
fish. On the other hand, the measure RCiU is a valid TBR for fish in the release group,
if treated as untagged, in the presence of downstream censoring and transportation. The
measures R; and RC}J are preferable to Expression (2.50), given enough adult detections to
make them estimable. Dam operators should use R, if they are interested only in the effect
of transportation from their dam, regardless of transportation at other dams; if they choose
to view the effect of their transportation program in the context of the entire hydrosystem,
they should use RCiU .

With the advent of PIT tags, individual capture histories at juvenile dams became avail-
able, and it became possible to identify the control fish from a particular transportation

study that were transported from a downstream site. In addition, PIT tags allow trans-
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portation to be assessed without deliberate paired treatment-control releases at each of the
transport dams. Instead, transport and control (inriver) fish may be identified from the
capture histories, and then SARs from each group may be compared‘ (Sandford and Smith,
2002). Sandford and Smith (2002) use only the capture histories of tagged fish that mimic
valid passage histories of untagged fish, namely those with at most one detection at any of
the transport dams, including the dam at which they are transported (if any).

One issue raised by using PIT tags to estimate a transportation effect is how to estimate
the size of the release groups, Ny and Ng. The capture hisltories tell us the size of the
transport group from a particular dam, but without using a deliberate paired release at each
dam, we do not know the size of the control group at the dam. This is because the control
group includes those fish not detected (bypassed) at the dam, because they are inriver fish
by definition; we cannot identify all these fish from the capture histories. The number Ng
must be estimated. Sandford and Smith (2002) provide a method of estimating the size of
the control group for each dam using estimates of detection (bypass) rates. They effectively
condition on survival to the final transport site by using “LGR equivalents” in estimating
the size of the release groups (transport as well as control). The “LGR equivalent” for a
particular releasé group (transport or inriver at dam ¢) is the number of study fish that
were alive at LGR (the first transport site on the Snake River) that were “destined” for
that particular release group, had they survived to dam . Because survival between LGR
and any downriver transport site 7 is assumed to be the same for those fish destined to be
transported at ¢ as for those destined to pass ¢ inriver, the resulting site-specific estimator in
Sandford and Smith (2002) estimates R;, developed in Secfion 2.4.1.2. Sandford and Smith
(2002)’s estimator is designed for daily release groups, uses adult data pooled across return
years, and is not model-based, thus requiring the bootstrap to estimate standard errors.

The current practice of quantifying a system-wide transportation effect is to compare the
SAR of transported smolts to the SAR of non-transported smolts for a given outmigration
year, species, and run type; often only part of the outmigration season is considered, because
SAR values tend to vary seasonally. However, most literature (e.g., Ward et al., 1997,
Sandford and Smith, 2002) describes how to define and measure dam-specific 7'/I values,

rather than system-wide values. Nevertheless, often a single value is reported that combines
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several or all dams, and it is not clear how that value is found. For example, Sandford and
Smith (2002) use LGR equivalents to combine transport groups from different dams, but
do not explain how. Their multiple-site estimator appears to estimate a quantity similar
t0 Reond, Without adjustment by the survival rates between the transport site and the final
transport site (see Section 2.4.1.7).

Another commonly used measure of transportation effect is D, or differential delayed
mortality. The measure D is the ratio of post-BON survival for the transport group relative

to the control (inriver) group, and is related to 7'/I:

SARr _ SponT
SAR;  Ssoni

T/I = x D, (2.51).

where SAR, is the smolt-to-adult return rate for fish in treatment group x (either transport
[z =T or inriver [z = I]), and Spon,; is survival from the point of transportation (typically
LGR) to the release point below BON for fish in treatment group . The value D < 1 implies
lowered survival of transported smolts after release from BON compared to inriver smolts, or
delayed mortality for transported smolts. Typically, D < 1, possibly due to delayed onset
of disease relative to passage through the hydrosystem, lack of previous culling of weak
individuals, or disease due to the stress of transportation (NOAA Fisheries, 2000c). It is
traditionally assumed that survival of transported smolts during transportation (Spon,r)
is approximately 1 (0.98; USACE, 1993). Thus, if differential delayed mortality (D) is
greater than the survival of non-transported smolts through the hydrosystem, then T'/I > 1;
otherwise, T/I < 1. |
There have been disagreements over how to estimate both T/I and D (e.g., Bouwes
et al., 1999), most of which were alluded to above: Should the capture histories used mimic
those of untagged fish? How should the size of the control group be estimated? How should
multiple sites be combined without inappropriately including survival between the sites?
A further issue is that the transport group used does not always include transported fish
from all transport sites. For example, it may include only sites LGR and LGO, ignoring
transports from LMO and MCN (Bouwes et al., 1999). Estimates of D are based on the

assumption that barge survival is 0.98, regardless of transportation site, migration year,
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species, or run. Even if 0.98 is a valid assumption, estimates of D depend on the method
of estimating survival to BON for non-transport fish; often, this has been extrapolation on
a per-km or per-project basis.

Part of the confusion in estimating a transportation effect stems from poorly explained
or poorly conceived definitions of 7'/I, which in turn arise from the tradition of using the
relative recovery method and having to estimate release numbers Ny ahd Ng. In the past,
with only batch marks or juvenile detections of PIT tags available, it was necessary to use the
relative recovery method or some modification of it, such as that proposed by Sandford and
Smith (2002). With improved detection of adults at several dams, however, it is no longer
necessary to rely on Ricker’s relative recovery method and the necessary modifications;
instead, a model-based approach is available to estimate transportation effect, as developed
in this chapter. Extrapolation is no longer required to estimate survival to BON for inriver
fish; instead, survival to BON can be estimated directly, along with standard errors of
model parameters. While the common method of quantifying transportation effects ignores
the year or age claés of adult refurn, the method devised here is age-class specific, and
provides ways of combining age-specific TBR values to find a value specific to a given
transport site. The model also demonstrates that pooling across adult age classes is generally
invalid. Variances of model-based, derived TBR values may be approximated using the delta
method (Seber, 1982, pp. 7-9). This model assumes that transportation affects only juvenile
outmigration and ocean survival, as well as maturation rates and sufvival back to BON as
an adult, rather than affecting up-river adult survival and straying rates; thus, unlike 7'/1,
the TBR values consider return rates only to BON rather than to the transport site or
to LGR. However, the model may easily be expanded to estimate transportation effects
on return rates to LGR, as long as there is adult detection above LGR or an independent
estimate of adult detection rates at LGR.

Without a model-based approach, it is necessary to estimate the sizes of groups with
different capture histories, including those with no detections, in order to estimate the SAR
values necessary for T/I and D estimation. Estimators become complicated and difficult
to understand, and focus is diverted from definitions of desirable quantities. The model-

based approach both allows and requires us to focus on definitions of quantities to estimate.
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Once a precise, reasonable, and estimable definition is formed, it can be expressed using
model parameters, even if it involves undetected or untagged individuals. The model-based
approach suggests avoiding a conditional definition of system-wide TBR such as Rcond or
T/I, and instead suggests using a comparison of unconditional return rates with and without
transportation. The model-based approach also makes this comparison possible.

Model parameters may be used to express and estimate D, assuming barge survival is

known. From Equation (2.51) and replacing T'/I with a model-based TBR, we have .

_ TBR x Spon,1

b 0.98

Using a site-specific TBR such as R; or RCY gives a site-specific D. Expressing a system-
wide D is more difficult, due to the difficulties with expressing a conditional system-wide
TBR value. Using Ryys or ngs is inappropriate, because the treatment fish in those quan-
tities include inriver fish whose survival to BON is not 0.98. Nevertheless, an expression
for delayed differential mortality due to the transportation system could be derived using
the model parameters and the assumption that all barge survival is 0.98, or some other

accepted value.

2.6.4 Adult Survival

The usual method of estimating survival of adults during the upriver migration is to com-
pare counts of adults at upper dams with counts at lower dams. Counts are adjusted for
known removals, including removals at dams, known catches in downriver fisheries, and
known turn-offs to tributaries and spawning grounds. It is unlikely that all fish caught
in every fishery or reaching every spawning ground are reported, so the number of known
removals is problematic. Also, fallbacks positively bias counts at downstream dams, and
negatively bias estimates of adult reach survival. In the last decade, some studies have
used radio telemetry to better identify removals and fallbacks; e.g., see Bjornn, Keefer and
Stuehrenburg (1999), NOAA Fisheries (2000b), and Keefer et al, (2002). These studies also
use dam counts to estimate survival, assuming 100% detection of radio-tagged fish at the

dams. In addition to adjusting for known removals, the radio telemetry studies also adjust
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for fallback. Estimating the precision of survival estimates is still a problem. In addition,
study fish are tagged with radio tags as they pass BON as adults. Typically, the hatcheries
or natal tributaries of these fish are unknown (see Ross and Domingue, 2004, however).
Tracking non-known-source fish prevents researchers from distinguishing among mortality,
straying, and turn-offs to natal trbiutaries, and so only perceived survival between dams
can be estimated.

The approach taken here is model-based using adult PIT-tag data. Adults return to
the Columbia River hydrosystem with PIT tags they received as juveniles. To some ex-
tent, these tagged adults are known-source fish: although their spawning grounds may be
unknown, the hatchery or trap at which they were tagged as juveniles is known. Also, if
the juveniles were tagged and released at a dam (e.g., LGR), they are known to have orig-
inated upstream of that dam. Thus, apparent mortality estimated by the model includes
straying and harvestihg, but does not include loss due to valid exit to tributaries and spawn-
ing grounds below LGR. Because survival is based on individual-specific detection histories
rather than counts of batch-marked (or unmarked) individuals, fallback does not directly
bias the survival estimates as in the count-based method. On the other hand, this model
is not designed to address fallback specifically; fish that fallback over a dam and do not
reascend will negatively bias survival in the reach above the dam. The model depends on

efficient PIT-tag detection in the adult ladders, and is not feasible without it.

2.7 1999 Summer Chinook Salmon Example

In this section, I present an example of using the life-cycle PIT-tag model to estimate reach
survival probabilities, transportation effect measures, and other performaﬁce measures. The
data presented here were downloaded in May, 2004 from PTAGIS, the PIT-tag database
maintained by PSMFC. These data represent all PIT-tag detection records for N = 51,318
summer Chinook salmon from the McCall and Pahsimeroi hatcheries, released as smolts in
the Snake River or its tributaries upstream of Lower Granite Dam (LGR) in 1999. These
fish were released in multiple release groups in multiple locations, but are treated in this
model as being in a single release group. Thus, the survival parameter to the first detection

site, Lower Granite Dam, is not biologically meaningful for any given release group, but
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rather is a weighted average of the survival rates experienced by each release group. Other
parameters are biologically meaningful for all fish, with the caveat that we are ignoring
within-year temporal variations in survival, detection, censoring, and transportation rates.

Figure 2.8 shows a schematic of the detection sites for this data éet. There were six
juvenile detection sites (1=LGR, 2=LGO, 3=LMO, 4=MCN, 5=JD, and 6=BON) and two
adult detection sites (7=BON and 8=LGR). Transportation was possible at LGR, LGO,
LMO, and MCN. Ouly five summer Chinook salmon were transported from MCN in 1999.
Returning adults were detected at BON and LGR in 1999 (‘fjacks”), 2000, 2001, and 2002,
There were very few jacks, so adult detections in 1999 and 2000 were combined to form age
class 1, with adults in 2001 and 2002 forming age classes 2 and 3, respectively. The modified
m-array for these data is given in Table 2.11. Of the 51,318 tagged smolts released, 26,274
were detected during the juvenile migration at one or more of the six juvenile detection
sites, and 1,007 adults were detected during the spawning migration at either BON or LGR
dams. Of those detected as juveniles, 10,538 were transported, 14,526 were returned to the
river after each detection, and the remaining 1,210 were censored due to sampling at the
dams. Of the detected adults, 472 had been transported as juveniles, and 535 had not been
transported (Table 2.11.) No adult censoring occurred.

No fish transported from LMO returned in the first age class, i.e., in years 1999 or 2000.
The MLE of the age-1 TBR parameter for LMO (Rs;) is therefore 0, but because of the
small size of the transport group at LMO, and the low ocean return rate for age class 1,
R3; would need to be > 1.5 in order for the expected number of adult returns from that
group to be > 1 in the age class 1. Because we did not have sufficient power to detect an
age-1 transportation effect from LMO, we fixed Rs1 at 1'in order to fit the model. This is
consistent with the null hypothesis of no effect of transportation at LMO on age-1 return
rates.

Only five summer Chinook salmon were transported from MCN in 1999. It was impos-
sible to detect a transportation effect from so small a transport group, so these fish were
treated as if censored at MCN in order to fit the model. In calculating the TBR measures
and other performance measures, R4; was fixed to 1 (i.e., no effect of transportation at

MCN) for j = 1,2, 3, although no derived TBR measures are reported for MCN. The con-
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ditional transportation rate at MCN for untagged fish, ¢t{, was fixed to 0 for calculating
performance measures. The conditional transportation rates for the other transport sites

were fixed to 1: tllj = tg = t3U =1.

Juvenile Adult

ﬂ processes processes
LGR p, ¢t p (4 ages)
LGO p. ¢t
LMO p, et
MCN p. ¢t
D p, ¢
BON p p (4 ages)

Figure 2.8: Schematic for 1999 summer Chinook salmon data set. A schematic of
the hydrosystem with six dams (LGR, LGO, LMO, MCN, JD, and BON) is shown,
with the arrow indicating direction of flow. The processes available at each dam as
a juvenile site and as an adult site are indicated: p = detection, ¢ = censoring, t
= transportation. Adult sites with detection indicate the number of age classes for
which detection occurs.

Maximum likelihood estimates were found using the formulas in Table 2.10, and used
as seeds in a numerical estimation routine used to estimate standard errors. The resulting
MLEs and standard errors are given in Table 2.12. In general, standard errors on survival
estimates increased going downriver: §E(§1) = 0.008, @(3’\4) = 0.012, and ﬁ(gg) =

0.054. This is logical because there is less information about the immediate fate of fish
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passing downriver sites than of those passing upriver sites. Also, with so few smolts returning
as adults, it is primarily the downriver juvenile sites that provide information about upriver
smolt survival, implying that improved adult detection cannot replace downriver juvenile
detection requirements when estimating juvenile survival.

Table 2.13 lists the estimated TBR measures for this release of summer Chinook salmon
in 1999. Values of estimated TBR measures ranged from Rs; = 0.768 (E’E = 0.412) to
]’%\33 = 3.003 (@ = 1.993). Site-specific values of the isolated TBR measures R; were
highest at LGR (B = 2.015, SE = 0.152), intermediate at LGO (R, = 1.396, SE = 0.112)
and lowest at LMO (Rs = 1.098, SE = 0.403) (Table 2.13). It makes sense that isolated
TBR values were higher for upriver sites if transportation was beneficial, because smolts
transported from upriver sites avoided passage through more dams than smolts transported
from downriver sites. Thus, R; reflects the relative location of site 4 in the hydrosystem, as
well as the effectiveness of the transportation operations at site 4. The difference between
the isolated and contextual site-specific TBR values was greatest at LGR, with an isolated
value of B; = 2.105 and a contextual value of RCy = 1.857 (SE = 0.134) (Table 2.13). The
contextual TBR value at LGR was smaller than the isolated value there due to substantial
smolt transportation downriver at LGO (2 = 0.4413, SE = 0.0045) with a TBR > 1 (i.e.
R, = 1.396, SE = 0.112). The isolated and contextual TBR values at LGO were nearly
identical because downriver transportation was inconsequential (fg = 0.0271, SE = 0.0020)
with a TBR of approximately 1 (i.e. Rz = 1.098, SE = 0.403) at LMO (Tables 2.12, 2.13).
The contextual TBR values for tagged and untagged fish, RC; and RC’iU , were slightly
different for both LGR and LGO. For both LGR and LGO, E@U < 1/%51 because a larger
proportion of the untagged control fish benefited from downriver transportation than of the
tagged control fish. The difference between the tagged and untagged values was greater
at LGR than for LGO.because transportation at LGO appeared more beneficial (for LGR
control fish) than transportation at LMO (for LGO control fish).
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Table 2.12: Maximum likelihood estimates for summer Chinook salmon released in
the Snake River upstream of LGR in 1999. The first or only subscript is the index
of the detection site: 1=LGR (juvenile), 2=LGO, 3=LMO, 4=MCN, 5=JD, 6=BON
(juvenile), 7=BON (adult), 8=LGR (adult). Where present, the second subscript

indicates the adult age class: 1 = 1999 and 2000 adul

ts; 2 = 2001 adults; 3 = 2002

adults.
Category Parameter Estimate S.E.
Juvenile Survival Rate S 0.6506 0.0076
S 0.9123 0.0135
Ss3 0.9403 0.0125
Sy 0.9093 0.0197
Ss 1.1069 0.053%
Ss 0.6162 0.0536
Juvenile Detection Rate 01 0.2190 0.0033
Do 0.4832 0.0043
D3 0.3646 0.0052
D4 0.2969 0.0065
05 0.1200 0.0059
Do 0.2430 0.0185
Conditional Juvenile Censoring Rate ¢ 0.0558 0.0027
: Co 0.0169 0.0012
3 0.0510 0.0027
4 0.0368 0.0027
cs 0.0294 0.0036
Conditional Transportation Rate t 0.7253 0.0054
ty 0.4413 0.0045
t3 0.0271 0.0020
t4 0.0011 0.0005
Age-Specific Joint Ocean Survival and Maturation S71 0.0067 0.0011
So 0.0410 0.0038
S73 0.0075 0.0012
Adult Detection Rate o7 0.1382 0.0312
D72 0.3056 0.0173
P 0.2456 0.0404
Final Reach A1 0.8947 0.0704
A2 0.8158 0.0238
A3 0.7567 0.0706
Age- and Site-Specific TBR R 1.9079 0.4131
Ri2 2.1083 0.1816
Ri3 1.6000 0.3709
Ry 1.3663 0.3115
Roo 1.3971 0.1306
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Table 2.12 continued

Category Parameter Estimate S.E. I
Age- and Site-Specific TBR Ras 1.4187 0.3229
R32 0.7678 0.4125
Ras 3.0031 1.9928

For this release of tagged summer Chinook salmon smolts, the system-wide TBR was
estimated to be ﬁsys = 1.232.(§E = 0.036) with an asymptotic 95% confidence interval of
(1.164, 1.303). Thus, the transportation system, as operated during the juvenile migration
of summer Chinook salmon in 1999, was estimated to increase the smolt-to-adult return
rate by 23% for tagged fish. Had the release group been treated as untagged smolts, the
transportation system was estimatec_i tov have increased the smolt-to-adult return rate by
39% (ﬁgjys = 1.386, SE = 0.088; Table 2.13). The difference in system-wide TBR. values
between tagged and untagged smolts was caused by the assumption that all untagged smolts
entering the bypass systems were transported (i.e., tzU =1fori=1,2,3)

Table 2.14 gives estimates of other performance measures for summer Chinook salmon
released in 1999 upriver of Lower Granite Dam. The estimated ocean return rate for
non-transported fish was Oyr = 0.0552 (§E = 0.005), while the estimated ocean re-
turn rates for transported fish ranged from 5T3 = 0.0376 (§E = 0.014) to Op, = 0.0592
(§E = 0.004). The probability of returning from the release site to BON as an adult was
SAR(,41) = 0.0236 (SE = 0.001) for tagged fish and SARY (1) = 0.0265 (SE = 0.002)
for untagged fish. The probability of returning from the release site to LGR as an adult,
assuming 100% adult detection at LGR, was S’?ﬁ%(vﬂt) = 0.0193 (§E = 0.001) for tagged
fish and 574725)%) = 0.0216 (§E’ = 0.001) for untagged fish. Return probabilifies were
higher for untagged fish due to the assumption that all untagged smolts entering bypass
systems were transported, together with the estimated benefit of transportation. The re-
turn age distribution was (Aj, Ay, A3) = (0.1192,0.7509,0.1299) with standard errors SE =
(0.013,0.017,0.014) for tagged fish, and (A, AY, AY) = (0.1172,0.7282,0.1546) with stan-
dard errors SE = (0.014,0.029,0.029) for untagged fish. The conditional return distribution
was ([1, 2, A3) = (0.0064,0.0404,0.0073) with standard errors SE = (0.001,0.002,0.001).

This result implies that the probability of returning as an age-1 adult, conditional on having
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survived to the “last” juvenile site (whose definition depends on the treatment group of the
fish), was estimated to be {13 = 0.0064 (0.64%) for this release of 1999 summer Chinook
salmon. The estimated probability of returning as an age-2 adult, given having survived to
the “last” juvenile site and not having returned as an age-1 adult, was fs = 0.0404 (4.04%)
for tagged fish, and the estimated probability of returning as an age-3 adult, given survival to
the “last” juvenile site and not returning as an age-1 or age-2 adult, was iz = 0.0073 (0.73%)
for tagged fish. The estimated conditional return distribution for untagged fish was similar
at (¥, 4Y,7Y) = (0.0058,0.0361,0.0080) with standard errors SE = (0.001,0.002,0.002).
Overall adult upriver survival from BON to LGR, assuming 100% adult detection at LGR,
was S4 = 0.8175 (§E = 0.022) for tagged fish and §£{ = 0.8159 (§E = 0.022) for untagged
fish.

Table 2.13: Transport effect values for summer Chinook salmon released in the Snake
River upstream of LGR in 1999. Where present, the second subscript indicates the
adult age class: 1 = 1999 and 2000 adults; 2 = 2001 adults; 3 = 2002 adults. Numbers
in parentheses are standard errors for the estimate in the above row. * = parameter
is fixed, not estimated, so no standard error is found.

Transport Effect Measures
Site R R Ris R; RC; RCZ-U Rgys ng
LGR 1.908 2.108 1.600  2.015 1.857 1.665 - -
(0413) (0.182) (0.371) (0.152) (0.134) (0.200)  — -
LGO 1.366 1.397 1.419 1.396 1.395 1.348 - -
(0.312) (0.131) (0.323) (0.112) (0.113) (0.215) - -
LMO 1 0.768 3.003 1.098 1.098 1.098 - -
* (0.412) (1.993) (0.403) (0.403) (0.403) - -
System - - - - - - 1.232 1.386
- - - - - - (0.036) (0.088)
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Table 2.14: Estimated performance measures for summer Chinook salmon released
in the Snake River upstream of LGR in 1999.

Performance Measure Estimate Standard Error

Ocean Return Rate
Non-transported ONT 0.0552 0.005
Site-1 transport On, 0.0592 0.004
Site-2 transport Or, 0.0450 0.003
Site-3 transport Ory 0.0376 0.014
Site-v + 1 Smolt-to-Adult Return Rate
Tagged SARg11y  0.0236 0.001
Untagged SAR(UH) 0.0265 0.002
: Site-v + u Smolt-to-Adult Return Rate
Tagged SARg4u)  0.0193 0.001
Untagged SAR(v+u) 0.0216 0.001
Age Distribution, Tagged Fish

Aq 0.1192 0.013

Ay 0.7509 0.017

Aj 0.1299 0.014

Age Distribution, Untagged Fish

AY 0.1172 0.014

AY 0.7282 0.029

AY 0.1546 0.029

Conditional Return Probability, Tagged Fish

H1 0.0064 0.001

o 0.0404 0.002

U3 0.0073 0.001

Conditional Return Probability, Untagged Fish

N 0.0058 0.001

uy 0.0361 0.002

uy 0.0080 0.002

Upriver Adult survival

Tagged S4 0.8175 0.022
Untagged sY 0.8159 0.022

2.8 Summary

Current practices of estimating juvenile survival, adult return rates, adult survival, and
transportation effects treats each part of the life history and migration separately. Adult
information is not used in estimating juvenile survival, and aspects of salmon life history

(e.g. distribution of age at maturity) are ignored in calculating transportation effects and
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adult return rates. This is partly due to the relative paucity of PIT-tag detection data from
migrating adults in the past. With new and improved adult PIT-tag detection sites, we
can now model the life history of migrating salmon from their release point above LGR to
their return to LGR, and derive estimates of multiple quantities of interest at once. The
life-cycle release-recapture model presentéd in this chapter does just that, providing both
maximum likelihood estimates and standard errors of model parameters.

Several different measures of transportation effects are defined in this chapter, as well as
other performance measures such as smolt-to-adult ratios (SARs) and ocean return rates.
Expressing performance measures as funétions of the model parameters focuses attention on
the definitions of the measures to be estimated. It also provides easily computed maximum
likelihood estimates of the measures, as well as asymptotic variance estimates based upon
the theory of maximum likelihood.

Maximum likelihood estimators from multinomial distributions, and in particular from
release-recapture data, have well-understood properties. Previous PIT-tag studies have
shown only limited violations of model assumptions for juvenile migrations, and minimal
effect on estimators in the case of assumption violations (e.g., see Skalski et al., 1998; Smith
et al., 1998; Muir et al., 2001a). Rather than depending on ad hoc estimators based on only
part of the available data and requiring bootstrap methods to estimate standard errors, we

can use model-based estimators and standard errors from available PIT-tag data.
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Chapter 3
ADULT RADIO-TAG MODEL

3.1 Introduction

Since 1996, the University of Idaho and NOAA Fisheries (National Oceanic and Atmospheric
Administration, National Marine Fisheries Service) have collected extensive radiotelemetry
data from migrating adult salmonids in the Columbia and Snake rivers. These data provide
both large-scale and small-scale information about salmon movement and survival between
and at dams. The 2000 and 2004 biological opinions on the Columbia River Power System
(NOAA Fisheries, 2000a, 2004 [on remand]) name measuring and minimizing unaccountable
loss as a research objective, yet until now, no formal modeling work has been done to
estimate unaccountable loss and large-scale (“system”) survival rates from these data. The
main objective of this chapter is to develop a release-recapture model that can be used to
analyze adult radiotelemetry data to estimate both unaccountable loss and system survival
rates.

Radiotelemetry data are expensive to collect, and there is a possibility that current
radiotelemetry studies will be replaced with less expensive PIT-tag studies. However, it is
unknown if radiotelemetry data provide substantially more information about large-scale
survival and unaccountable loss rates than PIT-tag data. One way to address this question
is to compare estimates of system survival and unaccountable loss rates resulting from two
types of models: one developed for radiotelemetry data, and one developed for PIT-tag data.
A secondary objective of this chapter is to compare the large-scale information available from
PIT-tag data to that available from radio-tag data. A sequence of models will be developed,
ranging from simple PIT-tag models (Models 0 and 1) to complex radiotelemetry models
(e.g., Models 5b and 6), each of which is designed to estimate dam-to-dam survival, system
survival, and unaccountable loss. Each model will be fit to a single radiotelemetry data set

that has been simplified to the level used by the model. For example, data for the PIT-tag
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models will include only dam detections, while the radio-tag models will incorporate more
types of data (e.g., tributary detections). Thus, comparisons between the models will reflect
both differences in the models and differences in the types of data used.

The models developed in this chapter vary in the types of data used and assurﬁptions
made, with the more complex models using more types of data and potentially able to
answer more questions. Based on comparisons between the models, a single model will be
recommended for use in future analyses of the currently available large-scale radiotelemetry
data, and a recommendation will be made on the future use of either radio tags or PIT tags
to estimate unaccountable loss rates and system survival.

Radiotelemetry data provide a wealth of information about the migration of adult
salmon, With the tailrace and base of each federally owned dam heavily wired with antenna
arrays, detailed accounts of salmon movements approaching and during dam passage are
available. The very detailed information is useful for analyzing problems with dam passage,
but it is unnecessary for this chapter’s goal of estimating system survival and unaccount-
able loss rates, or for answering large-scale questions such as (1) what is the probability of
surviving from one dam to the next, and (2) what is the effect of fallback or tributary visits
on subsequent survival? With the small-scale movements at the dams removed from the
data, only the relatively large-scale movements between dams and tributaries are left.

Figures 3.1 and 3.2 show several possible migration paths observable from radioteleme-
try data, The paths in Figure 3.1 are simple and mostly linear. Figure 3.2 shows paths that
are considerably more complex, with multiple tributary visits in multiple tributaries and
several fallback events. It is obvious from Figures 3.1 and 3.2 that at any point, a fish makes
a decision to go either upstream or downstream, or to enter a tributary, if available. The
migration decisions may be assumed to occur only at the base and top of dams and at the
tributary mouths, i.e., at the detection points. Migration decisions of surviving individuals
can be reduced to binary choices: ascend the dam or not, fall back or not, go directly to
the next dam or go to a tributary, remain in the tributary permanently or return to the
river, go upstream or downstream. With binary migration decisions, an attempt may be
made at parameterizing a release-recapture model. However, the possibility of fallback or

downstream travel in general, as well as upstream travel, at each detection point raises
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the theoretical possibility of endless cycling. A release-recapture model including unlimited
. dam ascension and fallback would allow for the endless sequence of ascension, fallback, reas-
cension, fallback, reascension, fallback, etc. This is both mathematically intractable and
unrealistic. As Figure 3.2(b) demonstrates, however, some individuals travel in temporary
cycles of fallback and reascension. Allowing for even temporary cycling with a limited num-
ber of fallback or “turnaround” events explicitly modeled is also mafhematically intractable,
involving as many auxiliary likelihoods as observed variations in migratory behavior. This
is because at each decision or detection point, the complete preceding detection history
dictates which decisions are viable. Thus, explicitly modeling multidirectional migratory
behavior is not practical if the focus is on large-scale survival and movement.

The alternative to modeling multidirectional movement is to reduce the migration to
linear or nearly linear paths, removing downstream travel and keeping upstream travel,
both dam-to-dam and dam-to-tributary travel. By focusing on the final detection for each
individual, it is possible to estimate unaccountable loss. If the effect of tributary visits on
upstream travel is of interest, tributary-to-dam travel may be included. If the effect on
upstream travel of fallback (or downstream travel in general) is of interest, information on
fallback may be incorporated into the model without attempting to mode! the downstream
travel itself.

In a sense, modeling only upstream travel requires reducing the data to its essence:
where did the fish start, where was its last (“terminal”) detection, where was it detected
between its release and its terminal detection. All fish in the current studies were tagged and
released as adults just downstream of Bonneville Dam. If known-source fish are used, then it
is possible to identify straying as a terminal detection in a non-natal tributary. In particular,
a fish is labeled a stray if it was last detected in a tributary but known to have originated
further upstream. Without known-source fish, it is not possible to identify straying, but
it is nevertheless possible to estimate transition (survival and movement) probabilities, as
well as unaccountable loss.

In this chapter, a sequence of release-recapture models is developed to estimate large-
scale survival and unaccountable loss during the adult upriver migration from radiotelemetry

data from tagged adult salmon. Survival is estimated between neighboring dams and from
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Figure 3.1: Two possible migration paths from radiotelemetry data requiring no
simplification. The release point is marked R; double horizontal bars indicate the
base and top of a dam. Dots indicate detection. The first path (a) shows directed
upstream passage with no fallback and no tributary visits. The second path (b) shows
upstream passage with one tributary visit between BON and TDA, and no fallback.

dams to tributaries, as well as from the initial release to the final dam. The release-recapture
models developed here vary in the types of detections included (dam or tributary) and in
the assumptions made about the effects of tributary use and fallback on subsequent sur-
vival. One model uses tag-recapture data from the adult trap at Lower Granite Dam. Two
performance measures, perceived survival to the top of the final dam and the unaccountable
loss rate, are defined and estimated for a sample data set for each model. A secondary goal
of this chapter is to compare the information available from the radiotelemetry data to that

available from PIT-tag data. With this goal in mind, the simpler models are applied to
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Figure 3.2: Two possible migration paths from radiotelemetry data requiring simplifi-
cation. The first path (a) exhibits two fallback events and multiple visits to tributary
sites downstream of BON and between BON and TDA, ending between BON and
TDA. The second path (b) shows temporary cycling between fallback and reascension
over BON.
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radio-tag data that has been simplified to mimic PIT-tag data.

In Section 3.2, the sample data set used in this chapter is described, along with the types
of radiotelemetry data available and the basic data-processing steps. Section 3.3 describes
the basic statistical methods and assumptions used in this chapter. Sections 3.4 through
3.10 present the sequence of models, and Section 3.11 compares the models and provides

general comments and recommendations.
3.2 Data

3.2.1 Ezample Data Set: 1996 Chinook Salmon

The data for which the models in this chapter are designed were collected and processed
jointly by the University of Idaho, Idaho Cooperative Fish and Wildlife Research Unit,
and NOAAkFisheries, with funding provided by the U.S. Army Corps of Engineers. More
information on the data is available at the Adult Anadromous Fish Radiotelemetry Project
at http://rtagweb.nwisc.noaa.gov/home/index.cfm; the data can be downloaded from the
same site.

The first year for which significant system-wide radiotelemetry data from adult salmon
were available is 1996. The data from spring and summer Chinook salmon (Oncorhynchus
tshawytscha) released in that year are presented for all models in this chapter. A total
of 846 adult spring and summer Chinook salmon were collected at Bonneville Dam and
outfitted with radio tags from early April through late June of 1996. The tagged Chinook
were released at Skamania Landing (RKM 225.7) and Dodson Landing (RKM 225.6) on the
Columbia River, just downstream of Bonneville (RKM 234). The following dams had radio
receiver arrays: BON, TDA, JD, MCN, and PR on the Columbia River; and IH, LMO,
and LGR on the Snake River. Tagged fish from this release group were detected at BON
(base and top), TDA (top only), JD (top only), MCN (base and top), PR (base and top),
IH (base and top), and LGR (base and top). Detections at LMO were available at neither
the base nor the top of the dam, but were available at the tailrace to the dam. Tailrace
detections were treated as base-of-dam detections for LMO. The models developed here

are designed for use with data containing either Snake River detections or Mid-Columbia
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detections (e.g., PR), but not both. Focus was on the Snake River detections; detections
at PR were treated as tributary detections. Dams were numbered sequentially as follows:
1=BON, 2=TDA, 3=JD, 4=MCN, 5=IH, 6=LMO, and 7=LGR. Model 0 uses only top-of-
dam detections, so LMO is not included in Model 0 data; LGR used the numeric label 7 for
Model 0, nevertheless.

Detections were available from multiple tributaries of the Columbia and Snake rivers.
All tributaries between two neighboring dams were treated as a single tributary, with the
Mid-Columbia River viewed as a large tributary between dams 4 (MCN) and 5 (IH) Had
focus been directed at fish heading to spawning sites off the Columbia upriver of MCN,
then the Snake River detections would be incorporated as tributary detections instead.
Detections occurred at the tributary sites listed in Table 3.1. Although several detection
sites labeled as “tributaries” are not actually tributaries, they fit the purposes of tributary
detections within the models, e.g., detection at these sites implies passage of the previous

dam.

Table 3.1: Names, model detection site labels, and locations (RKM) of tributary
receiver arrays from the 1996 Chinook salmon data set. River kilometer (RKM)
values represent the number of kilometers between the detection site and the mouth
of the Columbia River. All tributaries are of the Columbia River unless otherwise
noted. Sites followed by an asterisk (*) had no detections.

Site Name Detection Site RKM

Cowlitz River To 112.0

Kalama River* ’ To 118.4

Lewis River* T 141.4

Willamette River Ty 168.8

Washougal River* Th 1944

Sandy River ‘ Ty 194.9

Tanner Creek Ty 232.0

Wind River T\ 248.6, 249.2

Little White River T 260.1, 260.7, 261.3
White Salmon River Ty 270.3, 270.8, 271.0
Hood River Ty 272.6

Klickitat River T 290.3

Deschutes River T 327.1, 328.9




Table 3.1 continued

Site Name Detection Site RKM
Sherar’s Falls' Ty 396.3

John Day River T3 ~350.8
Umatilla River* T3 469.8

Walla Walla River Ty 512.6
Yakima River Ty 545.9
Charbonneau Park? Ts 538.9, 539.4
Clearwater River3 T 753.5

Snake River? Ty 758.9
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Table 3.2 presents the number of unique tagged fish detected at each detection site,

regardless of fallback or final detection site. Because the various models developed in this

chapter each use different types of data, and some detections associated with fallback are

not used in these models, the actual detections used for each model differ somewhat from

the summary shown here. Model-specific data summaries are presented with each model in

this chapter.

Table 3.2: Detection sites and the number of unique tagged fish detected at those
sites in the 1996 spring/summer Chinook salmon radio-tag data set, regardless of

fallback or final detection site.

Site Name Detection Site No. of fish detected

Initial release
Tributaries downstream of BON
Base of BON

: Top of BON
Tributaries between BON and TDA
Base of TDA
Top of TDA

N 846
To 11
Dip 779
Dir 700

71 303
Dop 0
Dor 426

!Sherar’s Falls is approximately 70 km up the Deschutes River from the Columbia River.

2These detections are not at a tributary, but are at Charbonneau Park and across the river from Char-
bonneau Park, just upstream from Ice Harbor Dam on the Snake River. They are treated as tributary
detections (1) because they indicate passage of and travel upriver from Ice Harbor, and (2) because the
park may act as a resting area for salmon in much the same way as a tributary might.

3The Clearwater River is a tributary of the Snake River, upriver of Lower Granite Dam.,

4These detections were in the Snake River upstream of Lower Granite Dam. They are treated as tributary

detections at site 7%.
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Table 3.1 continued’

Site Name Detection Site No. of fish detected
Tributaries between TDA and JD T 78
Base of JD : Dsp 0
Top of JD Dsr 355
Tributaries between JD and MCN T3 47
Base of MCN Dyp 287
Top of MCN Dyt 284
Tributaries between MCN and IH Ty 150
Base of IH Dsp 118
Top of TH Dy 101
Tributaries between IH and LMO Ts 43
Base of LMO?® Dep 76
TOp of LMO DGT 0
Tributaries between LMO- and LGR Ts 0
Base of LGR Dryp ' 104
Top of LGR Do 87
Tributaries upstream of LGR Ty 73

3.2.2 Data Collection and Procéssmg

Adult migrating salmon (no jacks) are collected and designated for radio-tagging at the adult
trapping facility at Bonneville Dam (BON) as they pass the dam. A radio transmitter (i.e.,
“tag”) is inserted into each fish’s stomach, with the radio antenna coming out of the fish’s
mouth. The fish is released downstream of BON after holding to ensure that the transmitter
is not regurgitated. Each transmitter has a unique identification number. Fixed-site radio
receiver arrays are plabed at several dams on the Columbia and Snake rivers, with extensive
arrays situated at the tailrace and base of the dam, and with smaller arrays at the top of
the adult fish ladders. Single fixed-site arrays are placed in the mouths of major tributaries
to the Columbia and Snake rivers. Each transmitter emits with a radio signal on a unique
frequency and code combination. As the tagged fish passes a receiver array, the array’s
antenna reads the signal and the date, time, frequency, tag code, and signal strength are

recorded.

5These detections were in the tailrace of LMO, not actually at the base of the dam.
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In addition to the fixed-site receivers, mobile tracking of radio tags by plane, boat, and
truck is dpne. These data are inappropriate for felease—recapture modeling, and are not
used here. Also, tag-recovery data are available from hatcheries, fisheries, and spawning
grounds. Because of unknown recovery and reporting rates, these data are not used in the
models developed here. Only data from the fixed-site receivers are used.

Records are downloaded from each fixed-site receiver, with all detected frequencies noted.,
Some readings are noise, and must be removed from the data. Data technicians clean the
data by filtering out the noise and determining from the strength of the signals which repre-
sent valid readings. Fish do not pass dams, tributaries, and radio receivers instantaneously,
so the data typically contain multiple readings of a given tag as the fish passes a particular
receiver. Data technicians must condense these multiple readings to find a representative
record of the fish’s migration path. Generally, records for a given tag (or fish) at a receiver
are characterized by the first and last records there. An attempt is made to distinguish
between repeated visits to a receiver location and repeated readings during a single visit.
Typically, consecutive readings separated by several hours (e.g., 6 hours) are identified as
representing separate visits. Each data record deemed valid is given a code indicating the
location of the receiver and thus of the detection. The codes indicate the dam or tributary
where the receiver was located, which part of the dam the detection came from, and whether
the fish had been detected there before.

The cleaned data contain information on the tag identification number, location and type
of the detection (first or last), and date and time of the detection. An example of the cleaned
data from a single Chinook salmon tagged and released in 1996 is given in Appendix A.
The cleaned data must.be converted to detection histories for each fish. Only some of the
available records are used in the detection histories, namely the “first approach” (A1) and
“last top” (LT) records at each dam, and the first (F) and last (L) detections from fixed-site
receivers at each tributary. The Al codes represent detections at the bases of dams, while

LT codes represent detections at the tops of dams®. If a fish falls back over a dam it has

51n 1996, neither Al nor LT detections were available for Lower Monumental (LMO); F records from the
tailrace of LMQO were used in place of Al records for LMO for analysis of the 1996 data set,
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already passed and attempts to reascend the dam, its records may include a second “first
approach” and/or “last top” record. Each record is assigned a detection site name based
on its detection code, using the following protocol:

(1) The dams are numbered sequentially going upriver, from Bonneville (BON, dam 1)
to the dam farthest upriver (dam K). Either the mid-Columbia dams (e.g., Priest Rapids)
or the Snake River dams (e.g., Lower Granite) may be included, but not both. The river or
river portion that is excluded may be treated as a tributary.

(2) At dam k, base-of-dam detections (Al codes, or F codes for LMO) are labeled Dyp,
top-of—dam detections (LT codes) are labeled Dy, and all detections in tributaries” between
dams k and k + 1 are labeled Tj.

(3) Tributary detections downstream of the release point (at BON) are labeled Tp, and
tributary detections upstream of dam K are labeled Tx.

(4) Repéated records at a given tributary site Tk, with no intervening records at other
sites, are condensed to a single record.

Thus, each detection site has a two-part label, With the first part indicating whether
it is a dam (“D”) or a tributary (“T"), and the second part indicating the number of the
dam (1 through K) or tributary (0-K) and, if a dam, whether the detection site is at the
base (“B”) or the top (“I™) of the fish ladder. For example, the detection site at the base
of dam 1 is labeled D;yg, the site at the tdp of dam 3 is labeled Dsr, and the site in the
tributary between dams 4 and 5 is labeled T4. In order, the possible detection sites are T,
Dis, Dir, Tv, Das, Dor, Ts, ..., D11, Tx-1, DB, Dkr, Tk. Finally, the detection
sites assigned to each record of a particular fish are listed in chronological order, giving a

detection history for the fish. The detection history for the sample data in Appendix A is

R Dip D17 Ty Dot Dyt D1g Dir D3t Dig Dyt T1 Dor 1o D1g Dor D3t Dip Dar Dsp

Dsr Dsg Dst Ts Des. (3.1)

7All tributaries between neighboring dams are labeled identically here, and the models developed treat
them as a single tributary. The model and data may be modified to distinguish among the different
tributaries, if desired.



119

The detection histories resulting from the above steps are simplified from the available
data, but must be simplified still further in order to analyze them in this chapter. Details
of this secondary simplification process depend on the model with which the data will be
used, but some aspects of the simplification process are common to all models.

With the small-scale movements at the dams removed from the data, only the relatively
large-scale movements between dams and tributaries are left. Reconsider the sample migra-
tion paths shown in Figures 3.1 and 3.2. The path in Figure 3.1(a) shows the fish moving
straight upriver in a linear fashion. The path in Figure 3.1(b) is slightly more complex,
with a temporary visit to a tributary between BON and TDA. The more complex paths
in Figure 3.2 include multiple tributary visits and fallback events. Because only travel di-
rected upstream (including toward tributaries) will be modeled in this chapter, the detection
records must be converted to linear (or nearly linear) records, omitting detections during
downstream travel or fallback. Thus, the path in Figure 3.2(a) becomes that in Figure 3.3.

Reducing the data to upstream-directed travel is straightforward for individuals who did
not exhibit fallback or “turn-around” behavior, because their migratipn paths are already
nearly linear. There are some issues to consider in simplifying the paths of fallback or
turn-around fish, however, as exemplified by the migration paths shown in Figures 3.4(a)
and 3.5(a). First, consider Figure 3.4(a). Here, the fish ascended the first dam (BON) with
detections at both its base and top, then ascended TDA with only a top detection, fell back
over TDA, and ended in a tributary between BON and TDA. If the fish were known to have
originated above TDA, it would be labeled a stray. This fish swam farther upriver than it
needed to, if its goal were the tributary of its final detection. Should the detection history
include the information that the fish reached TDA from BON in estimating BON-TDA
survival? On one hand, the fish did survive from BON to TDA. On the other hand, it did
not remain above TDA, so may not be considered a “success” as far as getting past TDA
is concerned®. By focusing on upstream travel and terminal detections, the fact that the

fish swam to TDA from BON is inherently ignored, because the fish did not remain above

8This is contrary to the protocol used in Bjornn et al. (2000), in which dam passage is considered
successful for any fish that reached the top of the dam, regardless of future fallback or final destination.



120

TDA

>
-
—\‘
-
-~
~

JI S RS

/
i
!
I
!
!
BON ::
|
A
|
[

e
—~

Figure 3.3: Simplification of migration path in Figure 3.2(a), i.e., removal of non-
terminal tributary detections and reduction to the post-fallback path. The dotted
paths indicate the portion of the detection history removed due to the fallback or
removal of the tributary visit; the heavy portion of the path replaces the dotted
portion.
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Figure 3.4: A migration path showing fallback over dam TDA followed by exit to a
tributary between BON and TDA (a). Ignoring the portion of the path retraced by
the fallback yields the reduced migration path in (b). The dotted path indicates the
portion of the detection history removed due to the fallback; the heavy portion of the
path replaces the dotted portion.

TDA. The simplified path is shown in Figure 3.4(b).

Next, consider Figure 3.5(a). This fish passed BON with detections at the base and top,
ascended TDA with detection at the top, fell back over both TDA and BON, reascended
both with detections only at the base and top of BON, then ascended JD, with it terminal
detection at the top of JD. Note that the fish swam upriver from below BON to above
TDA twice. Which of these paths should be used, the pre-fallback path or the post-faliback
path? In this case, they aré nearly identical, except that the fish was not detected at TDA
the second time it ascended TDA. Whether the pre-fallback path (Figure 3.5(b)) or the
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post-fallback path (Figure 3.5(c)) is used affects estimation of detection at TDA and para-
meterization of a model that allows for differential survival of fallback fish. The pre-fallback
path used in Figure 3.5(b) contributes information on survival of non-fallback fish between
BON and TDA, while the post-fallback path in Figure 3.5(c) contributes information on
survival of fallback fish between BON and TDA. As with the path in Figure 3.4(a), it may
be argued that although the fish reached TDA via the pre-fallback path, it did not suc-
cessfully remain above TDA until the post-fallback path; therefore, the pre-fallback path
is somewhat misleading. In particular, if the fish had not reascended TDA, then its final
detection would be below TDA and its foray above TDA would have been ignored (e.g.,
Figure 3.4); therefore, its pre-fallback path should be ignored, and the simplified path in
Figure 3.5(c) should be used.

Using only one of the two paths past TDA in Figure 3.5(a) provides different information
on the detection rate at the top of TDA: the fish was detected on the pre-fallback path,
but not on the post-fallback path. Using pre-fallback paths, however, may positively bias
detection probabilities, because a fish must be detected at the top of a dam (or higher)
before being identified as having fallen back over that dam. Thus, detection affects perceived
fallback rates, and pre-fallback paths will tend to include more top-of-dam detections than
post-fallback paths. On the other hand, there is no reason to assume that fallback affects
conditional detection rates, so using post-fallback paths (e.g., Figure 3.5(c)) should not bias
estimates of detection rate. In general, post-fallback paths are used in this chapter.

The secondary data simplification process involves two steps:

(1) Remove non-terminal tributary detections, or tributary “visits,” from the detection
histories (Figure 3.6). This is optional, and may be omitted if the effects of tributary visits
on subsequent transition probabilities is of interest (i.e., Models 3b, 5b, 5c, and 6).

(2) Ignore downstream travel by using post-fallback paths; for examples, see Figures 3.5,
3.7, and 3.8. If the effect of fallback on subsequent transition probabilities is of interest,
detection histories may retain information on where the post-fallback paths began (e.g.,
Models 4, 5a, 5b, 5¢, and 6).

Fallback is identified from a capture history by repeated detections at a dam site, or

by detection at a downriver site following detection at an upriver site. Because repeated
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Figure 3.5: A migration path including fallback over dams TDA and BON (a), with
the reduced migration path using (b) the pre-fallback path and (c) the post-fallback
path. The dotted paths indicate the portion of the detection history removed due to
the fallback or removal of the tributary visit; the heavy portion of the path replaces
the dotted portion.
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Dam 3
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Dam 1

Figure 3.6: A non-simplified migration path with both a tributary visit and fallback,
and the simplified migration path with the tributary visit removed and the path
reduced to the post-fallback path. The dotted paths indicate the portion of the
detection history removed due to the fallback or removal of the tributary visit; the
heavy portion of the path replaces the dotted portion.

detections during a single visit are initially removed from the data, repeated detections at
a site (e.g., ..., Dyr D7 ...) indicate fallback at that site. If fallback information is used
in the model, the code “FB” should be inserted in place of the string of detections removed
indicating the first fallback event.

The sample detection history in Equation (3.1) (from the data in Appendix A) reduces
to the following simplified detection history if both tributary detections and fallback are
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Figure 3.7: A non-simplified migration path with multiple fallback events, and the
simplified migration path reduced to the post-fallback path. The dotted paths in-
dicate the portion of the detection history removed due to the fallback; the heavy
portion of the path replaces the dotted portion.

included:
R FB Dy1g Dot D3t Dyp Dyt Dsp Dst Ts Dep. (3.2)

The order in which steps (1) and (2) are taken may affect the outcome. Removing
tributary visits before determining the post-fallback paths may remove the information
.necessary to identify fallback. Consider Figure 3.9 as an example. Figure 3.9(a) shows the
migration path of a fish that ascended both dams 1 and 2 with detections at both dams,

then fell back over dam 2, visited the tributary 77, reascended dam 2 without detection,
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Figure 3.8: A non-simplified migration path with both multiple tributary visits and
multiple fallback events, and the simplified migration path with the tributary visits
removed and the path reduced to the post-fallback path. The dotted paths indicate
the portion of the detection history removed due to the fallback or removal of tributary
visits; the heavy portion of the path replaces the dotted portion.

and ended at tributary T5. Removing the non-terminal tributary detection (i.e.v, T1) before
reducing the detection history to the post-fallback path results in the simplified migration
path shown in Figure 3.9(b). Figure 3.9(b) shows the pre-fallback path to the top of dam
2, because without the non-terminal tributary detection at 77, it is not apparent that any
fallback occurred. Figure 3.9(c), on the other hand, shows the simplified migration path
that results if the detection history is reduced to the post-fallback path before removing
the non-terminal tributary detection. The difference between Figures 3.9(b) and 3.9(c) is

in detection at dam 2, and in parameterizing the simplified detection history’s probability
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for a model that incorporates fallback information,

Which of the above two steps to do first depends on the goal of the data analysis.
In general, reducing each detection history to its post-fallback path before removing non-
terminal tributary detections is preferable if the goal is to understand a particular data
set (as it typically is), because it produces a more accurate picture of the fish’s migration
path. One of the goals of this chapter, however, is to compare the information gleaned
from radio-telemetry data to that learned from less detailed data, such as PIT-tag data.
If the PIT-tag data available from dam detections were augmented with tag-recovery data
from spawning sites or hatcheries, then superficially the data would resemble radio-tag
data in which non-terminal tributary detections were removed before detection histories
were reduced to post-fallback paths. For this reason, the data used in this chapter were
simplified by first removing the non-terminal tributary detections, and then reducing to
post-fallback paths. For practical purposes, however, the discrepancies between the two
simplification methods exemplified by Figure 3.9 occurred rarely in the data set considered
in this chapter. This iséue affects only the data used with Models 0, 1, 2, and 4, because

the other models use all tributary detections.
3.3 Statistical Methods

3.8.1 OQwverview

The models developed in this chapter are release-recapture models using radiotelemetry
data as detections. The data for a tagged individual is a detection history (equivalently,
capture history), recording the sites where the individual was detected, in the order of
detection; see Section 3.2 for more information on data format and procedures. The models
developed here are modifications of the basic Cormack-Jolly-Seber (CJS) model (Cormack,
1964, Jolly, 1965, Seber, 1965), in that single detections at each site are used, estimation of
survival is the main focus, and the expected number of fish with a given detection history
is parameterized with biological parameters such as survival and detection rates. It should
be noted, however, that while the CJS model estimates survival in time, the goal here is

to estimate survival primarily in space, and only secondarily in time. The basic estimable
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Figure 3.9: A migration path (a) with fallback followed by a tributary visit, reascen-
sion, and exit to a tributary. Removing the tributary visit (b) before reducing the
path to the post-fallback path also removes evidence of fallback. Reducing to the
post-fallback path (c) first also removes the tributary visit and detection at dam 2.
The dotted paths indicate the portion of the detection history removed due to the

(b)

fallback or removal of the tributary visit.

()
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parameter in the models developed here is more accurately the joint probability of surviving
and moving from site ¢ to site j, or the probability of “transition” from site ¢ to site j (¢y;),
rather than simply survival. This is because in most models, there is a choice of direction
upon leaving certain sites: moving directly toward the next dam, or moving toward the next
tributary. This choice of direction replaces the strictly linear aspect of travel through time
in the CJS model with a more complex aspect of travel through space.

The models developed in this chapter use multinomial likelihoods, with three basic types
of parameters: (1) transition probabilities (i.e., joint survival and directed movement; ¢;;),
(2) detection rates (p;); and (3) ‘fallback parameters (f;). Fallback is not included in every
model. The fallback parameter f; requires explanation. The movement modeled in this
chapter is directed strictly upstream, either to the next dam or to a tributary between the
current site and the next dam. No downstream movement is explicitly modeled, and fallback
is not explicitly modeled. However, fallback information is incorporated in some models via
a fallback parameter, f;. The parameter f; is not the probability the falling back at site i,
but rather the probability of becoming a fallback fish between site ¢ and the next detection
site (upstream), conditional on reaching site ¢ originally. “Becoming a fallback fish” means
that the fish swims upstream from site ¢ to at least the next detection site; falls back at
some point upstream of site ¢ (i.e., swims downstream past previously passed sites, at least
as far as the dam upstream of site ¢); turns around again to swim upstream; and is detected
at a site in the reach following site ¢. Figure 3.10 shows several examples of fallback paths
that would be parameterized with fi, with site 7 indicated. The parameter f; does not give
the fallback rate at site 7, and should not be interpreted as such. Instead, it allows fish to
move from the pre-fallback state to the post-fallback state, which then allows for estimation
of an effect of fallback on future transition probabilities.

A sequence of models is presented in this chapter, ranging from simple to complex, and
varying over the following characteristics: the number of detections per dam, the type of
tributary detections used, the presence of memory effect of tributary visits, and the usé
of memory effect of fallback: Additionally, the last model uses data from the sampling

room (adult trap) at Lower Granite Dam. For each model, the notation and parameters are

. defined, sufficient statistics are described, and the likelihood is presented. Two performance
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Figure 3.10: Three migration paths parameterized with the fallback parameter f;: (a)
repeated detections at the dam immediately upriver of site i; (b) detection at the dam
immediately upriver of site i, following a detection farther upriver; and (c¢) a detection
at the tributary site immediately upriver of site ¢, following several detections farther
upriver. The dotted paths indicate the portion of the detection history removed due
to the fallback, and the heavy portions of the path replace the dotted portions.
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measures are also defined, described below. Each model is fit to the 1996 Chinook salmon
data set. Several of the models have many parameters, not all of which are required for any
particular data set. Thus, for each model, the likelihood is tailored to the 1996 Chinock data
set. Maximum likelihood estimates of the model parameters and of the two performance

measures are presented.

8.8.2 Performance Measures

The first performance measure defined for these models is perceived survival from the release
point to the top of the final dam (dam K), or perceived system survival, denoted Ssys.
As usual, this parameter is actually a transition probability rather than strictly survival.
Additionally, if the release group included fish that were directed to tributaries downstream
of dam K, then these fish should have legitimately left the river before reaching dam XK. The
parameter Sy s treats these fish and any others that fail to reach dam K as mortality; thus,
the survival described by Ssy, is survival within the population of tagged fish migrating in
the river, rather than actual biological survival.

Because of the possibility of either legitimate turn-offs or straying to downstream tribu-
taries, a more useful performance measure is the probability of unaccountable loss from the
release point, ug. Fish that reach dam K or that permanently leave the river at a tributary
downstream of dam K are considered accounted for, while fish that “disappear” in the river
are considered unaccounted for. The “unaccountable loss” category includes fish that ex-
perienced mortality before reaching the tributary leading to their spawning grounds. Such
mortality may be due to natural causes such as disease or predation, to harvest, or to com-
plications of dam passage and/or fallback. Unaccountable loss also includes the probability
of mainstem spawning, and the probability of fallback that is not followed by a detection.
Such fallback is not detected and is not modeled in the models in this chapter, and as such is
included in unaccountable loss. Radio tags returned by fisherman may be used to calculate
unaccountable loss only if the harvest rate and tag-return rate are known. Without these
pieces of information, the probability of harvest is included in unaccountable loss.

Both perceived system survival and uraccountable loss are defined recursively for each
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model. The recursive parameters facilitate generalization of the definitions of these two
performance measures. They also allow these performance measures to be defined and
estimated for any starting point in the model, not just for the release point. For example, it
is possible to define the probability of unaccountable loss for fish that reached a particular
dam. However, only perceived survival and unaccountable loss from the initial release point
are explicitly considered in this model.

In general, system survival (Ssy,) is defined in terms of the recursively defined parame-
ters, Nr, Dy, and nr, for detection sites k = 1,..., K — 1. The parameter ng is the joint
probability of moving from the release site to the top of the first dam (site D17), and then
surviving through the rest of the system from site Dyp. The parameter np,, (or nr,) is
the joint probability of moving from the top of dam k (or tributary T}, respectively) to the
top of dam k + 1, and then surviving through the rest of vthe system from site Dgiq 71, for
k=1,...,K — 1. The more complex models include np,, and n7, parameters defined for
different cases relative to tributary and fallback status. For all models, system survival, or

survival from the release to the top of dam Dyr, is defined as:

Ssys = NR;» (3-3)

where the definition of ng varies with the model. The simpler models also have closed-form
formulas for Sgys.
Unaccountable loss (i.e., the probability of unaccountable loss) is defined in terms of the

recursively defined parameters u;, where

1 — p; = Pr[Reach site Dgp (the last dam site) or permanently exit the

river at a tributary | Reach site 1]. (3.4)

Unaccountable loss from site ¢ is p;; unaccountable loss from the initial release is ug.
Formulas for ur depend on the model. Closed-form definitions of ug are presented for the
simpler models. The more complex models include up,, and pr, parameters defined for

different cases relative to tributary and fallback status.
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Approximate variance formulas for §3ys and fig are found via the Delta Method (Seber,
1982, pp. 7-9). Formulas for Ssys and ppr are presented for each model; approximate
variance formulas and the partial derivatives necessary fof the Delta Method are presented
in Appendix B. For all formulas, maximum likelihood estimators are found by replacing

each model parameter with its maximum likelihood estimate.

3.8.3 Model Assumptions

The assumptions underlying the models presented in this chapter can be grouped into three
categories: those common to all models (C), those common to the models with tributary
detections (T), and those common to.models recognizing fallback (F). The assumptions in
these groups are listed and discussed below. Additional assumptions specific to individual
models are presented with the models.

The assumptions common to all the models developed here are the typical assumptions
of single-release, multiple-recapture models, and are listed below.

(AC.1) All tagged fish present at a given detection site have a common probability of
future transition and detection, regardless of detection at the earlier site.

(AC.2) All tagged fish present and directed upriver at a given detection site at a dam
have a common probability of detection at that site, regardless of previous detection.

(AC.3) The fate of each tagged individual is independent of the fate of all other tagged
individuals.

(AC.4) Detection of radio signals from radiotelemetry tags occurs over a negligible
distance at each detection site. _

(AC.5) Individuals selected for radio-tagging are representative of the population of
interest.

(AC.6) Tagging and release has no effect on subsequent survival, movement, fallback,
or detection rates.

(AC.7) There is no tag loss after release.

(AC.8) The raw radio signal data are collected and processed correctly according to

procedures developed by Ul and NOAA Fisheries.
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(AC.9) The data processed according to the procedures of Ul and NOAA Fisheries are
.then processed and simplified correctly for the desired model.

Assumption (AC.1) implies that detection at a particular site has no effect on subsequent
survival, movement, and detection probabilities. In other words, the act of being detected
neither helps nor hurts tagged individuals. This assumption is required by the multinomial
model, and is reasonable in that remote sensing rather than direct handling of the fish is

-used in detection, and that dam passage generally implies passing the area covered by the
receivers. Nevertheless, tagged fish that pass a dam via the navigation locks are unlikely to
be detected at the dam, and may experience differential survival rates during dam passage.
Bjornn et al. (2000) report that fewer than 1% of tagged Chinook salmon passed BON via
the navigation lock in 1996. If this value is typical of all dams, then navigation lock passage
should not be a concern.

Assumption (AC.1) also implies that the release group is homogeneous with respect to
transition (survival and movement) rates. This assumption may be violated if the release
group contains individuals directed toward spawning sites located in different regions of
the Columbia River Basin. Fish that are headed for the Cowlitz River in South Central
Washington are likely to have a different probability of entering that tributary than fish
headed for the Yakima River or the Snake River. Violations of Assumption (AC.1) will
result in point estimates that are averages of the true values for unique groups in the release
group, and in negatively biased variance estimates. One approach to handling this problem
is that used in Models 3b, 4, 5a, 5b, 5¢ and 6, in which individuals detected in a tributary or
known to have fallen back may experience a memory effect of the tributary visit or fallback
on subsequent transition rates. If tributary visits or fallback are more likely near the mouth
of the natal tributary®, then the memory effects partially account for heterogeneity induced
by spawning location. However, the effects of tributary visits and fallback occur after rather
than before the fish has visited the tributary or fallen back, and so the memory effects cannot

fully account for the different transition rates likely in mixed-stock release groups. Without

®Bjornn et al. (2000) found that the final distribution of fish that fell back over one or more dams was
similar to that of fish that did not fall back.
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knowing which individuals are headed toward which tributary, it is impossible to fully
account for stock-induced heterogeneity, as it is impossible to accurately assign individuals
to different migration groups before observing their migration tendencies. This problem can
be avoided by using only known-source fish, preferably from a single source (hatchery or
spawning location). With multiple yet known sources, the model may be applied separately
to the different groups.

Assumption (AC.2) indicates that all fish are assumed to have a common detection
probability at each detection site located at dams, regardless of spawning location or past
" detections. This implies that receivers are equally effective at all ladders at a given dam,
and that all fish that pass a dam have the same probability of passing via the fish ladders
rather than via the navigation locks. Note that detection rates do not depend on previous
fallback or tributary visits, but that detection does require fish to be directed upriver. This
is because fish are generally not detected at either the top or base of a dam as they fall back
over it,

Assumptions (AC.1) and (AC.2) also imply either that all individuals that pass a site pass
it during a short period of time, when they may be expected to experience similar river and
dam conditions, or that transition and detection rates are unaffected by temporal changes
in these conditions. Violations of these assumptions can be limited by using known-source
fish from similar stocks, all released at the same time. Assumption (AC.3) is reasonable due
to the size of the release group. Assumptions (AC.1), (AC.2), and (AC.3) together imply a
multinomial error structure for the model. |

Assumption (AC.4) means that the estimated transition rates apply to travel between
detection sites, rather than travel at detection éites. This assumption is likely violated
because radio receivers pick up signals over a range of distances, rather than just at the
receiver. This type of violation is limited by the processing of the raw data, however,
in which technicians determine the validity of each detection based on the signal strength.
Thus, detections included in the processed data are likely to be those from fish that actually
passed the receiver, rather than those that came near and then turned away without passing.
Because transition probabilities refer primarily to space rather than to time, the fact that

some fish linger at detection sites should not be problematic.
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Assumptions (AC.5) implies that model results may be applied to the population of
interest. This assumption is less likely to be violated if single-stock or known-source fish are
used in the release. Assumptions (AC.6) through (AC.9) imply that the data are reliable.

Models that include tributary detections use several common assumptions, listed below.

(AT.1) All fish present at a given dam (detection) site have a common probability of
entering any of the tributaries between that dam site and the next dam, regardless of the
tributary in question and of detection at the current and previous sites.

(AT.2) All fish present at any tributary between a given two dams have a common
probability of returning to the river and surviving to the next dam upriver, regardless of
the tributary in question and of past detections.

(AT.3) The detection rate in each tributary is 100%, regardless of past detections.

(AT.4) All fish that return to the mainstem of the river from any tributary continue
migrating upriver, regardless of past detections.

- Assumptions (AT.1) and (AT.2) allow all tributaries between two dams to be treated
as a single tributary, considerably simplifying both the data and the model. Violations of
these assumptions caused by stock-induced heterogeneity may be limited by using known-
source fish. With a mixed-stock, non-known-source release group, the memory effects used
in Models 3b, 4, 5a, 5b, 5¢, and 6 may reduce lack of fit.

Assumption (AT.3) is necessary because there is generally only a single antenna array
in each tributary mouth, which prohibits estimation of tributary detection rates from the
tagging data. Without estimates of tributary detection rates, it is impossible to usefully
incorporate tributary memory effects or to make probability statements about transitions
between dams. With multiple antenna arrays, this assumption may be relaxed. Most
tributary receivers were in operation at least 90% of the possible operation hours. Only the
receiver in the Walla Walla River had significant outageé; the Walla Walla River receiver was
in operation 54.6% of the time (Bjornn et al., 2000). Assumption (AT.4) allows the model
to focus only on upstream-directed travel. Because the data simplification process removes
all detected downstream-directed travel, this assumption is reasonable for the simplified
data.

It should be noted that Assumptions (AT.1) and (AT.3) are necessary for all tributary
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models, while Assumptions (AT.2) and (AT.4) are necessary only for those models that
recognize tributary detections followed by dam detections (i.e., Models 3a, 3b, 5a, 5b, 5c,
and 6).

The models that include fallback information each use the following assumptions:

(AF.1) All fish present at a given detection site that have not previously fallen back
have the same probability of future fallback, regardless of detection at that site.

(AF.2) Each fish experiences at most one fallback event during its migration in the
river.

(AF.3) All fallback events are detected in which the fallback fish reascends at least one
dam. |

(AF.4) All fish that reascend dams after falling back are detected at the first dam they
reascend. If this assumption is violated, then the wrong site is identified as the origin of
the fallback transition.

Assumption (AF.1) is similar in nature to Assumptions (AC.1) and (AT.1), and viola-
tions of it may be handled in the same way as violations of these assumptions. Assumption
(AF.2) allows use of only the first fallback event, which simplifies the data and model consid-
erably. This assumption is likely to be violated, because some fish fall back multiple times
as they explore the tributaries. However, fallback rates are generally low, and it seems rea-
sonable that the first fallback has the largest effect on subsequent transition probabilities.
If effects of additional fallback events are less than the effect of the initial event, then effects
of violations of Assumption (AF.2) will be minimized. |

Assumptions (AF.3) and (AF.4) imply that the fallback data are reliable and exhaus-
tive, and give meaning to the fallback parameters (f;). If Assumption (AF.3) is violated,
then the fallback parameters f; will be negatively biased, and the transition parameters in-
volving fallback or its delayed effects may be biased. Assumption (AF.4) allows for proper
identification of the sites from which each fallback transition originated, i.e., for proper pa-
rameterization with the f; parameter. Violations of Assumption (AF.4) will lead to biased
estimates of f; and transition parameters involving fallback. High detection rates at dams

will limit violations of both Assumptions (AF.3) and (AF .4).
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3.4 Model 0: Single Dam Detections

The simplest release-recapture model for the adult upstream migration acknowledges no
tributary entry or detections, uses only single detections at the dams, and ignores the
possibility of fallback. This model uses either PIT-tag detections, which are taken from
the interiors of the fish ladders at dams, or radio-tag detections that have been reduced
to the level of PIT-tag detections, i.e., single detections at the adult fish ladders. The
model presented here (Model 0) is effectively what the more complex models presented in
the remainder of the chapter would be if they were reduced to PIT-tag models. For any
radio-tag data set, Model 0 can be used to determine if information is lost by using PIT-tag
data rather than radio-tag data (as the radio-tag data are used in later models). Model 0
uses simplified radio-tag data, and is designed for detections at K dams. Model 0 models

only upstream travel, and ignores fallback.

8.4.1 Data Description

The basic method of data simplification necessary for all models in this chapter is described
in Section 3.2. Extra simplification is necessary for Model 0, because it uses neither trib-
utary detections nor multiple detections at a single dam. All tributary detections must
be omitted. The simplified data as‘they appear after performing fhe steps in Section 3.2
contain both base-of-dam detections (Dypg) and top-of-dam detections (Dgr). Detections
at the tops of the fish ladders indicate successful dam passage, and seem most analogous
to PIT-tag detections, which are in the interiors of the fish ladders. Thus, after removing
all tributary detections, all base-of-dam detections should be removed, as Weli. The data
for each individual are expressed as a detection history, the simplified sequence of observed
detection sites for that individual, beginning with the release (R). With only top-of-dam
detections and no tributary detections, valid detection histories for Model 0 are those such
as R Dip Dop Dyp. This detection history indicates that the fish was released and then
seen at the tops of dams 1, 2, and 4, in that order. Although an individual with this detec-
tion history may have explored tributaries either upstream or downstream of dam 4, there

is no indication of this here. Likewise, a fish with this detection history may have fallen
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back over these dams multiple times, but only the individual’s final ascents of dams 1, 2,
and 4 are indicated. If dams 1 through 4 are the four dams on the lower Columbia River,
then this detection history is consistent with migration both to the upper Columbia River
upstream of McNary, and to the Snake River, as well as with death upstream of McNary.
It is also possible that a fish with this detection history fell back over one or more of these
dams, ending downstream of dam 4 (McNary), but without being detected during or after
fallback.

Because this model is meant to be a PIT-tag model, the tributary detections should be
removed before the data are reduced to the post-fallback paths. This is because PIT-tag

data do not include tributary detections, but may indicate fallback.

3.4.2 Notation

Let K represent the number of dams modeled. The main process modeled in the release-
recapture models in this chapter is the transition from one detection site to the next. Tran-
sitions combine both survival and movement, which cannot be separately estimated. In
general in this chapter, the index ¢ indicates a detection site from which a transition may
be made. The probability of surviving and moving from site ¢ to the next site, ¢ + 1, is the

transition parameter ¢;;41:
¢ii+1 = Pr[Survive and move from site ¢ to site ¢ + 1 | Reach site 1],

where ¢ = R, D11, Dar, ..., Dg-1,7. The transition parameter ¢; ;.1 includes both survival
and mbvement from the top of one dam to the top of the next. Thus, the natural river
reach arising out of Model 0 includes a dam and the pool of the next dam downstream.
Because Model 0 does not use tributary detections and ignores fallback behavior or other
downstream travel, the parameter ¢;;y1 represents the probability of getting from site ¢
to site i + 1, regardless of intervening behavior. The transition from site ¢ to site ¢ + 1
may include a fallback event, or entry into and return from a tributary. In general, we can
interpret ¢; ;11 as the probability of remaining in the migrating population in the mainstem

of the river from site ¢ to site ¢ + 1. The complement of ¢; ;41 includes both exit to a
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tributary and fallback with no subsequent detection as well as both natural and fishing
mortality.

Conditional detection and non-detection parameters at site ¢ are p; and ¢; = 1 — p;,
respectively, each conditional on reaching site 7. Let A = ¢p,_, . DxrPkT be the “final
reach” parameter, the joint conditional probability of the transition from site Dg_1 1 to
site Dt and detection at Dy, conditional on reaching Dg_1,7. The transition parameter
®py_1 r.Dxr and the detection parameter pxr cannot be separately estimated.

There are several possible fates for fish in a release group. Each individual in the release
group may arrive at the final detection site {Dgr), exit to a tributary below site Dgr,
fall back and evade subsequent detection, spawn in the mainstem, or die during migration
via either harvest or natural mortality. The latter 4 possibilities are indistinguishable, and
appear collectively in detection histories with final detections downstream of site Dgr.
Any detection site may be the site of last detection for a fish. The probability of not being

detected after site 4, conditional on reaching that site, is x;:

xi = Pr[Not detected after site i | Reach site i]

1 — @441 + biir1Gi+1Xi+1 for i = R,Di7,...,Dg—21; (3.5)

1-X for i = Dy _17.

The probability of any detection history can be expressed in terms of the ¢; ;1 parame-
ters together with the y; parameters. For example, the probability of the detection history
R D11 Dor Dyr is

Pr[R D11 Dar Dyr] = @R D11 PD11rPDir,DorPDar P Dar,Dar ADsr PDar DarPDar X Dar -

The parameters estimated by Model 0 are listed in Table 3.3.

Table 3.3: Parameters used in Model 0, the Simple Dam Detections model.

Parameter Definition
Biit1 Probability of surviving and moving from site ¢ to site ¢ + 1, given
reaching site ¢, for i = R, D1p,...,Dx_o1;
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Table 3.3 continued

Parameter Definition

s Probability of being detected at site 7, given reaching site 1,
for i = Dir,...,Dx_1,1;

g Probability of avoiding detection at site 4, given reaching
reaching site 4, for ¢ = Dyp,...,Dg_17; =1 — ps;

A Joint probability of surviving and moving from site Dg_1 7 to Dgr
and being detected at site Dy, given reaching site Dx_1 1;

X Probability of not being detected after site ¢, given reaching site 7,

fori=R,Di7,...,Drg_17T.

3.4.8 Likelihood

The likelihood for Model 0 can be expressed in terms of simple summary statistics (Ta-
ble 3.4). The necessary summary statistics are the number of fish detected at each site (a;)
and the number of these detected fish that are detected again upstream (b;). Also useful,
and defined in terms of the a; and b; statistics, are the numbers of fish detected after each
site, whether or not they were detected at the site (g;). The g; statistics can be expressed

in terms of the a; and b; statistics as follows:

9r = br;
9D,y = 9r +bpr —ap,y;

9Dy = 9Dy_rr T ODer — AD—kT fork=2,...,K—1.

The summary statistics are listed in Table 3.4, and the minimal sufficient statistics are
listed in Table 3.5. The full model for K dams has 2K — 1 parameters and 2K — 1 minimal
" sufficient statistics, so the maximum likelihood estimates may be found either by numerically
maximizing the likelihood or by equating the minimal sufficient statistics to their expected

values.
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Table 3.4: Summary statistics for Model 0, the Single Dam Detection model. The
number of dams is K.

Statistic Definition

a; Number of fish detected at site ¢, i = Dip, ..., Dgr;

b; Number of fish detected at site 7 that were later detected
upstream, ¢ = R, Di7,...,Dg_1,1;

gi Number of fish detected after site 7, i = R, D1r,...,Dg_1 7.

Table 3.5: Minimal sufficient statistics for Model 0, the Single Dam Detection model.
The number of dams is K.

Statistic Definition
aDyr Number of fish detected at site Dgp, k=1,..., K — 1;
br Number of fish detected after the initial release;

bprT Number of fish detected at site Dy and again upstream,
k=1,...,K—1.

The likelihood for Model 0 can be expressed as

N —9R apyp 9R=ADyp D\ ~bDip
Lo x d)R D17PDir 9D Dir

9Dp_1,1 a‘DkT 9D, 1,7~ aDp by ap
kT
X H {¢Dk 1,17 DxrPDyr 9Dyr XDyr A ’ (36)

where N is the release size. Equation (3.6) may be tailored to a particular data set by
specifying K, removing any extraneous parameters, and renaming parameters according to
observed detections, if necessary. This is done for the 1996 Chinook salmon data set in

Section 3.4.5.

3.4.4 Performance Measures

The perceived probability of surviving from the release to the top of dam K, or perceived

system survival, is Ssys, defined as follows:

Ssys =MR,
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where

NR = ®R,Dyr"Di7;

NDer = ¢DkTka+1,T77Dk+1,T? k=1,...,K -1, (3.7)

and where ¢py_, 7 Dxr = A under the assumption of 100% detection at site Dgr. Under

that assumption, survival from the release point to site Dy is

K-1
Ssys - ¢R,D1T{ H ¢DkT»Dk+1,T}' (38)

k=1

The variance estimator of §sys is defined in Appendix B.
The only fates of tagged fish recognized in Model 0 are reaching site D or disappearing
(“loss”) before reaching Dgr. Thus, unaccountable loss (ug) is simply the complement of

pérceived survival to Dgr (i.e., ur =1 —ng). Formally,
pr=1-9¢pr D (1~ D:r),

where

1- KDy = ¢DkTka+1,T(1 - 'U’ch+1,T)? k=1,...,K -1
l-pup,r =1, k=K.

Thus,
bR =1-1R. (3.9)
The variance estimator of [ip is defined in Appendix B.

3.4.5 1996 Chinook Data Set

The observed summary statistics for Model 0 from the 1996 data set are given in Table 3.6.
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Table 3.6: Observed summary statistics for Model 0 (Single Dam Detections Model)
from 1996 Chinook data set. The release size is N. Descriptions of summary statistics
are listed in Table 3.4.

Statistic Value Statistic Value Statistic Value

N 846 bp 754 ggr 754
apir 700 bDlT : 419 apiT 473
apar 421  bpor 312  gpor 364
ap3T 352 bD3T 279 gap3T 201
apaT 282 bD4T 99 gapaT 108
apsr 101 bpsr 79 gpsT 86
aper 0 bper 0 gper 86
aprr 87 bprr 0 '

Table 3.6 shows that no fish were detected at dam 6, LMO. Thus, even if it were possible
to separately estimate the transition and detection parameters at the final reach (¢ pyy Dyp
and pp,,), it would be impossible to separately estimate the final two transitions para-
meters, @psr Der a0d @per,Drp. Instead, it is necessary to combine these two transition
par‘ameters to form a new parameter, ¢p,;, D,y = ODsr,DerPDer,Drr- Lhis is the final
transition parameter, so it forms one factor of the estimable “final reach” reach parameter
A = @Dgr,DyrPDyp. In summary, the estimable parameters for the 1996 Chinook data set are
the transition parameters ¢r,p,r, ®Dyr,Dars PDor,Dars PDar,Dars PDyr,Dsrs the detection pa-
rameters pp,r, PDyrs PDsrs PDars PDsrs a,nd.’che “final reach” parameter A = ¢pyy,DrpPDr-

The likelihood for Model 0, tailored to the 1996 Chinook data set, is

N—gr .9r apip 9R—ODyp  @Dip—bDip 9DiT ADyr 9D17~0Dyr _ ADar —bDyp
L XR R,DirPDir D11 XDyr ¢D1TaD2TpD2T 9Dyr Dar
% ¢gD2T pa’DST quzT =apyr  aDyp—bDyr ¢9D3T D41 quST_a‘D4T apyr=bpyr
Dor,D3p ¥ Dyr 1Dgr Dsr D31, Dyr¥Dar 1Dyr Dyr

9Dyr apgp 9Dyr —ADgr  4Dsr —dDsr yap
X ¢D4T,D5TpD5T 9Dgr XDgrp AP, (3.10)
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3.4.6 Results

Program USER!? was used to fit Model 0 to the data via maximum likelihood. Maximum
likelihood estimates of the parameters from Model 0 are listed in Table 3.7. The log-
likelihood was -1903.4948, with an AIC of 3828.990. The perceived system survival rate
(from the release to the top of the last dam [LGR]) is estimated at §sys = 0.1028 (SE =
0.0104), and the unaccountable loss rate from the release is estimated at fip = 0.8972
(EE = 0.0104). Because the release group is composed of fish from different stocks and
because Model 0 does not use tributary detections, it is reasonable that perceived system

survival is low.

Table 3.7: Maximum likelihood estimates of parameters from Model 0, the Single
Dam Detections model.

Category  Parameter Estimate S.E.

Transition  ¢pp,r 0.9341 0.0130
®D,r,Dor 0.6216  0.0196
®Dyr,Dar 0.7479  0.0216
®Dar,Dar 0.8452  0.0284
®Dyr,Dsr 0.3582  0.0292

Detection DD 0.8858 0.0146
PDyr 0.8571  0.0183
PDsr 0.9555 ~ 0.0121
PDyr 0.9083  0.0276
PDsr 0.9080  0.0310

Final Reach A 0.7822  0.0411

3.5 Model 1: No Tributary Detections

Radiotelemetry data differ from PIT-tag data in that distinct detections are possible from
multiple sites at the same dam. In particular, both base-of-dam (Dyp for dam k) and top-
of-dam (D7) detections are available. Modeling data with two dam detections instead of
one allows for estimation of the conditional probability of ascending the dam, given having

reached the base of the dam. Furthermore, using two detections at the final dam (K') allows

Ohttp://www.cbr.washington.edu/paramEst/USER/
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separate estimates of both survival to the base of that dam and detection at that dam.
Model 1 uses both base-of-dam and top-of-dam detections at the dams, but like Model 0,

does not use tributary detections or acknowledge travel to tributaries or downstream travel.

3.5.1 Data Description

The extra simplification necessary for Model 1 after the basic steps outlined in Section 3.2
is to omit all tributary detections. As with Model 0, detection histories for Model 1 are
sequences of observed detection sites, in order and starting with the release (R). Unlike
Model 0 detection histories, Model 1 detection histories may include base-of-dam detections.
For example, R D1g D11 Dot is a valid detection history for Model 1, indicating a fish that
was detected at both the base and the top of the fish ladder at dam 1 and at the top of
the ladder at dam 2. An individual with this detection history was not detected after the
detection at the top of dam 2. Because the data simplification method uses detections from
post-fallback paths, it is possible that an individual with this detection history ascended
dams upriver of dam 2, but fell back over them all, with the detections shown occurring on
the ascent after the fallback. Fallback after the Do detection that is not followed by a dam
detection is possible, but not represented. It is also possible that a fish with this detection
history explored tributaries, but such behavior is not represented here.

Because this model is meant to be similar to a PIT-tag model, the tributary detections
should be removed before the data are reduced to the post-fallback paths. This is because
PIT-tag data do not include tributary detections, but may indicate fallback.

3.5.2 Notation

The same types of notation and parameters are used in all models. The number of dams in
the general model is K and 1 indicates a site from which a transition is made. The transition

parameter ¢;;4+1 is the joint probability of surviving and moving from site 4 to site ¢ + 1:

®i4i4+1 = Pr{Survive and move from site ¢ to site ¢ + 1 | Reach site ],
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where ¢ = R, D1, D17, D2, ..., Dgp. Model 1 uses two types of transition parameters:
D1 r.Dxs a0 @pD5,Dkr. The former, ép,_, r,D,5, Tepresents survival and movement
from the top of one dam to the base of the next, while the latter, ¢p, 5 D,y represents the
probability of ascending dam k, given having reached the base of the dam. As in Model
0, the movement characterized by the parameter ¢p,_, ,p,5 may include fallback events
or tributary entry and exit. The complement of ¢p,_, 1 b, includes non-detected fallback
and exit to a tributary as well as natural and fishing mortality.

The data simplification process requires that base-of-dam and top-of-dam detection sites
remain paired in determining post-fallback paths. Thus, it appears that any simplified
detection history with both Dyp and Dyr implies that the fish did not fall back between
these two detections. However, tributary detections are removed from the detection histories
before reducing the detection histories to their post-fallback paths for Model 1. Thus, it is
possible that a simplified detection history with detections at both Dxg and Dyr is ignoring
tributary entry between these two detections. For example, it is possible that a fish with
detection history beginning R Dhyg D17 ... reached site D;g and was detected there, then
turned around to investigate tributaries below dam 1, returned to site D1B without being
detected there, and ascended dam 1, and was finally detected at site D17. This means that
the transition parameter ¢p,; p, represents the overall probability of getting to the top of
dam k, conditional only on reaching the base of dam k; it may include travel to tributaries
between reaching site Dxp and ascending to site Dgrp.

Conditional detection and non-detection parameters at site ¢ are p; and ¢; = 1 — p;,
respectively, each conditional on reaching site i. Because of the base-of-dam detection at the
final dam (K), A has a different definition in Model 1 than in Model 0: A = ¢p, 5, DrrPKT IS
the joint conditional probability of the transition from site Dy p to site D7 and detection
at Dy, conditional on reaching Dgp. If it is assumed that the detection rate at the top of
dam K is 100%, then X is the probability of ascending dam K, conditional upon reaching
its base. On the other hand, if it is assumed that all fish that reach the base of dam K go
on to ascend it, then A is simply the detection rate at the top of that dam. In any case,
using both detection sites at dam K allows for estimation of the transition probability from

the top of the previous dam (K — 1) to the base of the final dam. The transition to dam K
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is estimable here, but is not estimatble in Model 0 or from PIT-tag data in general.

The possible fates of tagged fish in Model 1 are the same as those in Model 0, except
that Model 1 includes extra detection sites. None of these detection sites is optional for fish
who continue migrating, so the form of the “last detection” param‘eters, Xi, is the same here

as for Model 0. In general, the probability of not being detected after site ¢, conditional on

reaching that site, is x;:

Xi

Detection history probabilities can be expressed using the ¢; ;.1 parameters together with

the x; parameters. For example, the probability of the detection history R Dig Dir Dar

is

Pr|Not detected after site i | Reach site i]

1 — ¢iit1 + biit1Gi+1Xiq1 for i =R, Dip,...,Dg_1,1;

= (3.11)

1-—X forz'=DK3.

Pr{R Dip Dir Dar] = ¢R,DuapD13¢D1B,D1TpD1T¢D1T,D25quB¢D25,D2TpD2TXD2T'

The parameters estimated by Model 1 are listed in Table 3.8.

Table 3.8: Parameters used in Model 1, the No Tributary Detections model.

Parameter Definition
Gii+1 Probability of surviving and moving from site 7 to site 1 + 1,

given reaching site 4, for i = R, D1p, D17, ..., Dx—-11}

Di Probability of being detected at site ¢, given having reached site ¢, for
i = D1p,D17,...,DKB;

4 Probability of avoiding detection at site 4, given
having reached site i, for i = Dig, Dir,...,DxB; = 1 — p;;

A Joint probability of surviving and moving from site Dg g
to Dyt and being detected at site Dy, given reaching site Dgp

X Probability of not being detected after site i, given having reached

site ¢, for i = R, D15, D17,...,Dkp.
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8.5.8 Likelihood

The likelihood for Model 1 can be expressed using the summary statistics listed in Table 3.9.
The necessary summary statistics are of the same form as those needed in Model 0: q; is
the number of fish detected at site 7, b; is the number of fish detected at site ¢ that are later
detected upstream, and g; is the number of fish detected after site ¢. The g; statistics can

be expressed in terms of the other statistics as follows:

gr = bR;
dD.g = 9R + bD]s —ap,g»
9Dys = 9Dp_1.r T bDyp — ADyp fork=2,...,K;

ngT:ngB+kaT~aDk;T fork=1,...,K——1.

There are 4K — 1 minimal sufficient statistics (Table 3.10) in the full model, with an equal

number of parameters.

Table 3.9; Summary statistics for Model 1, the No Tributary model. The number of
dams is K.

Statistic Definition

a; Number of fish detected at site ¢, ¢ = D1g,..., DgT;

b; Number of fish detected at site ¢ that were later detected
upstream, i = R, Dh1g,...,Dkp;

g “Number of fish detected after site 4, ¢ = R, Di,...,Dks5.

Table 3.10: Minimal sufficient statistics for Model 1, the No Tributary model. The
number of dams is K.

Statistic Definition

a; Number of fish detected at site ¢, i = Dyg,...,DkB;
br Number of fish detected after the initial release;
b Number of fish detected at site ¢ and later upstream,

i=Dyp,...,Dkp.
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The likelihood for Model 1 is:

N—gr .9r App JR=ADip AD;5~bDip
L o XR R,D15PD:p 9Dip Dis

K-1
9Dy p 9Dy 0Dy 9Dk —%Dkr *Dpi1,b 9Dk ~%Dky1,B
X H {¢DkB»DkT¢DkT»Dk+1,BpDkT 9Dyr lec+1,B qu-H,B
k=1

aDyy1, 50Dkt apr—bpr
X XDk+1,B XDy )\aDKT’ <3‘12)

where N is the release size. Equation (3.12) may be tailored to a particular data set by
specifying K, removing any extraneous parameters, and renaming parameters according to

observed detections, if necessary. This is done for the 1996 Chinook salmon data set in
Section 3.5.5.
3.5.4 Performance Measures

The perceived probability of surviving from the release to the top of dam K, or perceived

system survival, is Ssys, defined as follows:

Ssys = "R,
where
NR = @R,D159D15,D1rMDi7}
NMDkr = ¢DkT:DIc+1,B¢Dk+1,Bka+1,T77Dk+1,T7 k=1,...,K-1; (3.13)
NDgr =1,

and where ¢p, 5 Dxr = A under the assumption of 100% detection at site Dgr. Under that

assumption, perceived system survival is:
K-1
Ssys = OR,D1 H {¢Dk3,DkT¢DkT,Dk+1,B }¢DKBaDKT (3.14)

k=1

The variance estimator of §sy3 is defined in Appendix B.
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As with Model 0, the only fates recognized in Model 1 are reaching site Dgrp or dis-
* appearing before reaching that point. Thus, unaccountable loss (ug) is the complement of

survival to Dgr: pg = 1 — ng. Formally,
pr=1- ¢R;DIB¢DIB>D1T(1 - MDIT)’

where

l—ppyr = ¢D1cT,D1c+1,B¢Dk+1,B,Dk+1,T(1 - MDk+1,T)’ k=1,...,K -1

1= pper =1, » k=K.
Thus,
pR =1-nr. (3.15)
The variance estimator of Zig is defined in Appendix B.

3.5.5 1996 Chinook Data Set

The observed summary statistics for Model 1 from the 1996 data set are given in Table 3.11.

Table 3.11: Observed summary statistics for Model 1 (No Tributary Model) from
1996 Chinook data set. The release size is V. Descriptions of summary statistics are
listed in Table 3.9.

Statistic Value Statistic Value Statistic Value Statistic Value

N 846 bR 820

apiB 776 bpis 706 apir 694 bpir 417
ap2B 0 bpam 0 apor 421 bpor 313
aps3B 0 bpsB 0 apsr 351 bpsr 291
ap4B 281 bpap 265 apgr 279  bpar 113
apsB 115 bpss 107 apsr 101 bpsr 96
apeB 73 bpes 67 aper 0 bpsr 0

ap7B 102 bprp 85 aprr 87 bprr 0
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There were no detections at the base of dams 2 (TDA) or 3 (JD), nor at the top of dam
6 (LMO). As with Model 0, it is necessary to combine certain transition parameters to
form estimable transition parameters according to the observed detections: ép,, p,, =
®D17,D25PD25,Dars PDar,Dar = PDyr,DepPDyp,Dars 1A $Dgg,Drp = @Dep,Der @ Der,Drp- Lhe
remaining transition parameters indicated in Table 3.8 with K = 7 are estimable.

The likelihood for Model 1, tailored to the 1996 Chinook data set, is as follows:

N-gr 49R ap,p gR—ADig _&D;5—bDip ,9Dip apyr 901 —0Dip D17 —0Dir
L x XR ¢R>D13pD1B 9Dy Dis ¢D1B,D1TpD1T 9Dyp XDy

% ¢9D1T paDzT qulT_aD2T apyr—bDyp ¢9P2T paD3T quzT ~@Dgp _ AD3p—bD3p
Dir1,Dor#Dor 2Dar Dar Dyr,D3r¥Dar 4Dsr Dar
9Dy AD4p 9D3r~0Dsp . ADsp~0D4p ID4p ADyr 9D4g=0Dyr  AD4p—bDyr

X ¢D3T:D4BpD4B e XDyp ¢D4B,D4TpD4T 9Dy XDy (3'16)
9Dy ADgg 9D4p—ADgp . ODsp~PDsp 9Dsp aDgp 9Dgp=@Dgp  ADsr —bDg

X ¢D4T»DSBstB 9Dsp Dsp d)DsB,DsrstT 9Dy XDsr
9Dg aDgp 9Dsr ~4Dgp 2Dgp ~PDgp 9D D75 9Dgp—%D75  @Dyg~YDrg yap

7T
X ¢D5T,Deng63 9Dgp Dsgp ¢DGB,D7B Drp 9D7p Dqp A ’

3.5.6 Results

Program USER!! was used to fit Model 1 to the data via maximum likelihood. Maximum
likelihood estimates of the parameters from Model 1 are listed in Table 3.12. The log-
likelihood was -2457.4142, with an AIC of 4956.828. The perceived system survival rate
is estimated at §Sys = 0.1028 (§E = 0.0104), and the unaccountable loss rate from the
release is estimated at iz = 0.8972 (ﬁ = 0.0104). These estimates are identical to the
estimates of Sy, and up attained from Model 0, a result that was expected because the
only difference between Models 0 and 1 is the additional type of dam detections used in
Model 1; neither Model 0 nor Model 1 uses fallback information or tributary detections,
which might be expected to affect estimates of perceived system survival and unaccountable
loss. Model 0 is identical to the adult portion of the PIT-tag model developed in Chapter 2;
it is apparent that using extra detections at dams is unnecessary for estimating large-scale

survival and unaccountable loss. The benefit of Model 1 over Model 0 is that Model 1

Uhttp://www.cbr.washington.edu/paramEst/USER/
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provides an estimate of the transition rate to the base of the final dam, as well as estimates

of dam ascension rates, ¢p, 5 Dy, Which may be of interest.

Table 3.12: - Maximum likelihood estimates of parameters from Model 1, the No
Tributary Detections model.

Category = Parameter Estimate S.E.

Transition  ¢r D5 0.9744 0.0060
éD,5,Dir 0.9549.  0.0127

. ®Dyp,Dor 0.6237  0.0197

®Dyp,Dar 0.7493  0.0215

®Dar, Dy 0.8330  0.0202

®Dyg,Dar 0.9910  0.0216

®Dyr,Dss 0.4070  0.0295

®Ds5,Dst 0.9363 0.0241

®Dsr.Des 0.9791 0.0257

®Deg,Drs 0.9213  0.0324

Detection PDig 0.9413 0.0086
PDir 0.8816  0.0149

PDar 0.8575  0.0183

DDy 0.9541 0.0120

PDy5 0.9170  0.0162

PDyr 0.9187  0.0246

PDsg 0.9304  0.0237

PDsr 0.8727  0.0318

PDeg 0.6442  0.0469

PDrg 0.9770  0.0161

Final Reach A ©.0.8333  0.0369

3.6 Model 2: Terminal Tributary Model

This model incorporates tributary detections, but only as terminal detections. It does not

recognize tributary “visits,”

in which a fish enters a tributary and then returns to the river
(i.e., maintstem) within a few hours or a few days. Model 2 attempts to estimate survival
between dams while accounting for exits from the river to tributaries for the purposes
of spawning. Such exits to tributaries may be. instances of either homing or straying,
depending on the source of the fish (generally unknown). With only single arrays in each

tributary, we cannot separate the probability of entering a tributary from the detection
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rate there. Therefore, it is assumed that detection rates in all tributéries are 100%. This
model recognizes only linear migration behavior, i.e., only upstream travel; no fallback or
downstream travel is taken into account by Model 2.

If the terminal tributary detections occurred at or near the spawning grounds, rather
than at the tributary mouths, then Model 2 would be appropriate for PIT-tag data in
which there are two detections at each dam (base-of-dam and top-of-dam) and in which
tags are retrieved or otherwise detected at the spawning grounds at an assumed rate of
100%. The radiotelemetry data include tributary detections only at the tributary mouths,
so this interpretation of Model 2 is not perfectly applicable here. Nonetheless, Model 2 is
worthwhile as a possible PIT-tag model and as an intermediate radio-tag model between
the No Tributary model (Model 1) and the full tributary models (Models 3a, 3b, 5a, 5b, 5c¢,
and 6).

3.6.1 Data Descm’}ntz’on

Section 3.2 describes the basic method of simplifying the data for all models. The extra
simplification necessary for this model is to omit all tributary detections that are not termi-
nal detections. The data for each individual are expressed as a detection history, a sequence
of observed detection sites, starting with the release (R). Observed sites, as determined via
the data simplification process, are listed in order in the detection histories. Because Model
2 recognizes only terminal detections at tributaries, tributaries are possible only as the final
site in a detection history. For example, R Dig D1y Dor T is a valid detection history,
but R Ty D1g D11 Dor T is not.

3.6.2 Notation

Let K represent the number of dams. Tributaries either downstream of the first dam or
upstream of the last dam are potential detection sites. The possible detection sites are
To,D1p, D17, T1, D2, Dar, Ts, ..., Dx—1,7, Tk -1, Dk B, Dxr, Tk .

As with Models 0 and 1, the index ¢ indicates a detection site from which a transition

is made. In Model 2 and all later models, the index j indicates a transition site to which



155

a transition is made. The probability of moving from site i to site 7 is represented by the

transition parameter ¢;;:

¢i; = Pr[Survive and move from site ¢ to site j | Reached site i], (3.17)

where i = R, D1p,Dy7,D2B,...,DgT, and where

Dig or Ty for i = R;

DkT forz'=DkB,k:=1,...,K;
j= (3.18)

Dyi1B fori=Dypr,k=1,..., K —1;

Ty fori = Dyp,k=1,...,K.

\

The definition of ¢;; together with the valid combinations of 4 and j indicate that Model 2
allows only upstream movement and terminal tributary detections. No transition beginning
at a tributary is allowed. The parameter of the form ¢p, 5 D, represents the probability
of successfully ascending dam & (k = 1,..., K), conditional on having reached the base of
the dam (site Dyp). As with Model 1, ¢p, 5 p, includes the possibility of reaching and
being detected at site Dyp, visiting a tributary Ty_1, returning to site Dyp without being
detected there, and then finally ascending dam %k and being detected at the top. However,
because fallback paths are removed in such a way that detections at sites Dxp and Dip
from the same passage of dam k are kept together, it can be assumed that ¢p, ; D, does
not include the probability of fallback and subsequent reascension of dam k. The parameter
¢ Dyp, T, Tepresents the probability of moving from the top of dam k (site Dyr) to a tributary
between dams k and k+1,fork =1,..., K—1. A detection history from a fish that ascended
dams higher than dam k, fell back over those dams, and finally left the river at tributary
T}, would be parameterized with ¢p,, 7, in Model 2 because fallback is not recognized in
this model. The parameter ¢p,,,n, ., 5 represents the probability of moving from the top
of dam k to the base of dam &k + 1 for k = 1,..., K — 1, possibly with either fallback or
tributary visits between the two dams. Thus, the transitions modeled in Model 2 are not

restricted to direct transitions, but may include either fallback or tributary entry and exit.
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Let p; represent the probability of being detected at site i, conditional on reaching that
site, and let ¢; = 1 — p; be the probability of not being detected at site ¢, conditional
on reaching that site. It is assumed that the detection rate in the tributaries is 100%,
meaning py, = 1 for k = 0,..., K. With a tributary detection site upstream of the final
dam site, Dgr, it is possible to separately estimate the transition parameter ¢p, . p,, and
the detection parameter pp,.

There are several final tag fates possible in Model 2. A fish may be defected for the last
time at the release point, at the base or top of any dam, or at any tributary. Unlike Models
0 and 1, it is assumed here that all fish exiting the river to a tributary are detected. This
means that fish detected for the last time at a dam site or at the release are assumed not to
have entered a tributary; on the other hand, they may have fallen back with no subsequent
detections, have been taken in a fishery, or have died in the river. Thus, Model 2 is a
first step toward accounting for the “unaccountable loss” from simpler models. Because
only terminal tributary detections are used in Model 2, it is assumed that fish detected
at a tributary have no later detections. The parameter x; is the probability of not being

detected after site ¢, conditional on reaching that site:
xi = Pr [not detected after site i | reach site 1.

More specifically,

xr=1—=9rm — ®R,D:15(1 — 4Dz XD15);

XDig = 1 — @Dy s, Dr (1 = ADkr XDir ) k=1,...,K;

XDyr = 1 = éDyr,13, — ¢DkT7Dk+1,B(1 ~ @Dg11,8XDs1,8) k=1,...,K—-1;

XDgr = 1 = @Dgr Tk (3.19)
XT, =1, k=0,...,K.

The parameters used in Model 2 are given in Table 3.13.
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Table 3.13: Parameters used in Model 2, the Terminal Tributary model.

Parameter Definition
Pij . Probability of surviving and moving from site 7 to site j, given
having reached site ¢, for i = R, D1g, D11, D2g,...,Dgr and j
defined as in Equation (3.18);

Ds Probability of being detected at site 4, given having reached site 1,
for ¢ = D1, D171, D2B, ..., DkT;

g Probability of avoiding detection at site ¢, given having reached
site ¢, for ¢ = Dhg, D17, Dop,...,Drgr; =1 — 043

Xi Probability of not being detected after site 7, given having reached

site 4, for i € Ag;.

The ¢;; and x; parameters can be used to express the probabilities of the possible detec-
tion histories. For example, the probability of observing the detection history R D1g Dir Th

is
Pr(R Dig D17 Th] = ®R,D,5PD, 5P D1 5,017 PD17 P D17, T -

The probability of observing the detection history R Doy D3 Dyp is

Pr[R Dir Doy} = ®R,D;59D,5PD15,D17PD1r D17, Do 4D25 PDap, DorPDor X Doy -
The remaining detection histories can be expressed similarly.

3.6.8 Likelihood

With 3K +1 possible detection sites, K of which are restricted to final (terminal) detections,
the number of possible detection histories increases quickly with K. Thus, the likelihood
is most easily expressed using summary statistics, similar to those used in Models 0 and 1.
The necessary summary statistics (Table 3.14) are a;, the number of fish detected at site 1,
b;, the number of fish detected at site ¢ and detected later upstream, and g;, the number

of fish detected upstream of site ¢. The g; statistics can be expressed in terms of the other
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statistics as follows:

gr = bg;

g1y = gR — ATy,

aT, :‘ngT_'aTk fork‘:2,...,K—1;
9Dyp =ng_1+bD}cB — QDyp fork‘=l,...,K;
9DkT = 9Dyp + bDpr — ADyr fork=1,...,K.

Model 2 has 5K + 1 minimal sufficient statistics (Table 3.15) and an equal number of

parameters.

Table 3.14: Summary statistics for Model 2, the Terminal Tributary model. The
number of dams is K. ‘

Statistic - Definition

a; Number of fish detected at site 4, ¢ = Ty, D15, ..., Dxr, Tk;
br Number of fish detected after the initial release;
b; Number of fish detected at site ¢ that were later detected
upstream, ¢ = D1, D11, DoB, ..., DB, DkT;
g Number of fish detected after site 1, i = R, Ty, D1ig,...,Tx-1,DxB, DxT.

Table 3.15: Minimal sufficient statistics for Model 2, the Terminal Tributary modei.
The number of dams is K.

Statistic Definition

a; Number of fish detected at site 4, i = Ty, D1g, D11, T4, ..., DB, D]
br Number of fish detected after the initial release;
b; Number of fish detected at site i and later upstream,

i=Dig,Dir,...,Dx_1,7,DkB, DxT.
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The likelihood for Model 2 is

K-1 :

N—gr 10Ty 9T H 9Dy p aTy 9T}, apyp 9Tk 17 %Dkp

L XR ¢R,T0¢R,D13 ¢DkBkaT¢DkTka¢DkT1Dk+1,BpDkB 9Dys
k=1

Dpp 9Tk 17 %Dkp

x p Pkt (9PkB Pk, ADkB ~bpyg A ~bDyr | 9DKE ¢“TK
Ppyr 9Dir Dy Dyr | Dx,Dxr®PDrr TxPDry 9Dk5
@Dgr 9Dy~ 9Dgr. ODkp—0Dkp ADgr—bDgr
X PDyr 9Dkr XDkg Dyt ’ (3‘20)

where N is the release size. Equation (3.20) may be tailored to a particular data set by
specifying K, removing any extraneous parameters, and redefining parameters according to
observed detections, if necessary. This is done for the 1996 Chinook salmon data set in the

next section.

3.6.4 Performance Measures

The perceived probability of surviving from the release to the top of dam K, or perceived

system survival, is Ssys, defined as follows:

Ssys = TR,

where

MR = OR,D,5PD15,D17ID:11}
NDygr = ¢DkT7Dk+1,B¢Dk+l,Bka+1,Tnch+1,T’ k=1,...,K -1, (3.21)

NDgr = 1.

The difference between Models 1 and 2 is that Model 2 incorpor'ates terminal tributary
detections while Model 1 ignores all tributary detections. Thus, for both Models 1 and
2, all fish that reach the top of the final dam (dam K) must have avoided all tributaries
downstream of dam K, and so Models 1 and 2 use the same formula for ng and Sy,
(Equation (3.21)). Because detections at tributary Tk are used in Model 2, however, it

is no longer necessary to assume 100% detection at site Dy for Model 2. The variance
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estimator of §sys is defined in Appendix B.

The possible fates of tagged fish recognized in Model 2 are reaching the top of dam K
(site Dgr), permanently exiting the mainstem of the river to a tributary, or disappearing
before doing either of these actions. Model 2 assumes that no fish return from any tributary.
Thus, any fish that survived to site Dy must have avoided all tributaries, while fish that
did not survive to site Dy may have entered a tributary and remained there. This means
that for Model 2 (and for all subsequent models), unaccountable loss is not the complement

of survival to Dgr: pr # 1 — ng. For Model 2, up is defined as follows:

HR =1~ ¢rTe — OR,D159D,5,D:r (1 = kDy7), (3.22)
where
1 = Upyr = ODyp,Ti + ¢DkT:Dk+1,B¢Dk+1,B»Dk+1,T(]‘ - “Dk+1,T)a k=1,...,K - 1;
1l —up,, =1, k=K.

The variance estimator of lip is defined in Appendix B. It should be noted that if the
assumption of 100% detection at the tributary antenna arrays is faulty, then the transitions

@Dy 7.7 are negatively biased, and so up is positively biased.

3.6.5 1996 Chinook Data Set
The observed summary statistics for Model 2 from the 1996 Chinook data set are given in

Table 3.16.

Table 3.16: Observed summary statistics for Model 2 (Terminal Tributary Model).
The release size is N. Descriptions of summary statistics are listed in Table 3.14.

Statistic Value Statistic Value

N 846 bg 825
aTo 7

apiB 772 bpis 741
apir 692 bDlT 621

ari 254
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Table 3.16 continued

Statistic Value Statistic Value

ap2B 0 bp2m 0
apaT 401 b D2T 368
arTs 72

ap3B 0 bpar 0
apsr 343 bpar 321
aTs 37

ap4B 274 bpan 266
apar 273 bpar 253
aT4 150

apsB 112 bpsp 107
apsT 101 bpsr 96
ars 1

apéB 72 bpes 67
aper 0 bper 0
aTe 0

ap7B 102 bprm 87
aprr 87 bprr 71
ary 73

There were no detections at sites Dop, D3g, Dgr, or Tg. As with Model 1, it is necessary
to redefine the transition parameters associated with these detection sites. In general, the

estimable detection parameters are those described in Table 3.13 for K = 7, with the
following substitutions for parameters ¢p, . D,5) @Dy5.Ders PDyr.Dags PDsg.Dsry PDes,Der

®Der,Te» ?md ®Der,Dr5'

@D17,Dyr = PDy7,D25PDy5,Dori
®Dyp,Dsp = PDyr,DapPDsp,Dars
¢D6ByTﬁ = ¢DGB»D6T¢D6T>T6 = 0;

PDgp,Drr = ®Dg,Der $Der, D15 -
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The likelihood for Model 2, tailored to the 1996 Chinook data set, is

N-gg 10Tq 9T 4D g 9To”aD13 ap,g=bpyg 901 p apir 901 =aDyr 4D17=0Dip
L x PrT,® ¢
XR RTo®PR.D1sPD1p 9D:1p Dy Dig,D17PDir D11 Dyr
« ¢ ¢ aDZT 9T ~@Dyr | ADyy ™~ bD2T¢“Tz ¢9Tz aDST 9Ty ~aDyr  AD3p—bDap
Dir, Ty P D17, DarPDyr 9Dor Dot Dyr T3P Dar,DsrPDar 9Dy D7
« ¢aT3 ¢9T3 “D4B 9T3~AD4p 8Dy ~0Dyp ¢9D4B Dy q9D4B apyr 9D4p=bDyr
Dar, T3P Dar,DspPDap 9D4p Dyp Dyp,Dyr¥Dyr D47 Dyr
¢“T4 ¢9T4 “Dss 9Ty —%Dgp “DsB_stB¢9D53 aDqugD5B apgr . @Dgp ~bDgp
Dyr,To®PDyr,DspPDsp 9Dsp Dsgp Dsg,Dsr#' DsT 1Dsr Dsr
¢“T5 ¢ aDqugTs ~@Dgp aDGB_bDGB¢gDSB ADyg 9Dgp—0Dyg  @D7p~bD7pg
Dsr,TsPDsr,DesPDess 9D65 Dep D¢p,D75¥Drp 1D7p Drp
9D7g a‘D7T 9D75=Dyp 0D7p —bDyp 0Ty
X ¢D7BaD7T D71 4Dgr Drr ¢D7T7T7' (3.23)

3.6.6 Results

Program USER'? was used to fit Model 2 to the data via maximum likelihood. Maximum
likelihood estimates of the parameters from Model 2 are listed in Table 3.17. The log-
likelihood was -2926.7083, with an AIC of 5911.417. The perceived system survival rate
is estimated at §5ys = 0.0863 (§E = 0.0097), and the unaccountable loss rate from the
release is estimated at fig = 0.2784 (§E = 0.0154). Because of the detection site in the
tributary above dam 7, it is not necessary to assume 100% detection at the top of dam 7.
The estimated detection rate at site D7y is approximately 100%, however (pp,, = 0.9726,
SE = 0.0191), so the assumption of perfect detection used in Models 0 and 1 is reasonable.

The perceived system survival rate estimated from Model 2 is slightly smaller than
the estimates from Models 0 and 1: §sy5 = 0.0863 (§E = 0.0097) for Model 2 versus
§Sys = (0.1098 (EE = 0.0104) for Models 0 and 1. The difference between Model 2 and
Model 1 is that Model 2 uses terminal tributary detections, whereas Model 1 ignores all
tributéury information. The tributary information used by Model 2 may produce larger
dam-to-dam transition rates if the terminal tributary detections imply dam passage that
is otherwise undetected. Examination of the estimates of ¢p,, b, and ép,.,py s for

Models 2 and 1 shows some increased transition estimates for Model 2. However, because

YZhttp:/ /www.cbr.washington.edu/paramEst /USER/
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tributary detections were removed from the unsimplified data before fallback paths were
removed for Model 1 (and 0), it is also possible that the tributary data used in Model 2
implied some fallback events that were not observed during the data simplification process |
for Models 0 and 1. In such a case, the transition rate between the dams on either side
of such a tributary detection would be lower for Model 2, because only the post-fallback
migration paths are used. Comparison of Tables 3.12 and 3.17 shows that some dam-to-
dam transition rate estimates are smaller for Model 2 than for Model 1; these decreases are
sufficient to offset the increases in other transitions, and so the perceived system survival
estimate is smaller for Model 2 than for Model 1 (and 0). The difference between Models
2 and 0 or 1 is not large, however. In general, it is impossible to predict which factor will
be more significant, upstream tributary detections implying dam passage, or downstream
tributary detections implying fallback, and so it is impossible to predict how using terminal
tributary detections will affect estimates of perceived system survival. Nevertheless, it seems
reasonable to expect little difference between the system survival estimates of Models 1 and
2.

The estimate of the unaccountable loss rate was much lower for Model 2 than for Models
0 and 1: g = 0.2784 (§E = 0.0154) for Model 2 versus figp = 0.8972 (§E = 0.0104) for
Models 0 and 1. This is reasonable if the data include many records with final detections
in tributaries. Model 2 views these fish as “accounted for,” whereas Models 0 and 1 view
them as losses between dams. Table 3.16 shows that 501 fish, or 59% of the release group,
were last detected in tributaries downstream of LGR, so the very large decrease in [ig from
Models 0 and 1 to Model 2 was to be expected. With a mixed-stock release group such as
that considered here, it is apparent that Model 2, with its use of tributary detections, adds
considerable information on unaccountable loss relative to Models 0 and 1. Currently, radio
tags provide tributary information, but PIT tags do not. If tributary detection of PIT tags
becomes available in the future, then Model 2 may be used with PIT-tag data. Until then,
radio tags appear more useful than PIT tags in estimating unaccountable loss rates, but

only slightly more useful in estimating (perceived) system survival.
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Table 3.17: Maximum likelihood estimates of parameters from Model 2, the Terminal
Tributary model.

Category  Parameter Estimate S.E.

Transition  ¢gr 7, 0.0083  0.0031
®R,D:1p 0.9692  0.0062
®D15,Di7 0.9731  0.0075
®Dyr,T1 0.3184  0.0166
@Dy, Dor 0.5859  0.0180
®Dyr Ty 0.1540  0.0167
®Dyr,Dar 0.7657  0.0202
®Dyr T 0.1034  0.0161
®Dyr,Dup 0.8345  0.0199
®Dap,Dar 0.9753  0.0103
ODur Ty 0.5149  0.0294
®Dyr,Dsz 0.4132  0.0290
®Dsp,Dsr 0.9614  0.0199
D Dgr T 0.0086  0.0086
®Dsr,Des 0.9657  0.0263
®Deg.Drs 0.9336  0.0301
®Dyg.Dor 0.8573 0.0354

Detection  pp, 0.9416  0.0084
DD 0.8673  0.0127
PDyr 0.8578  0.0169
PDyr 0.9582  0.0109
PDss 0.9172  0.0162
PDar 0.9370  0.0148
PDs3p 0.9304  0.0237
PDsr 0.8727  0.0318
PDeg 0.6442  0.0469
DDy 0.9775  0.0157
PDor 0.9726  0.0191

Final Reach A 0.8161  0.0415

3.7 Model 3: Tributary Model

Model 3 allows for tributary detections that are not terminal detections, as well as the
terminal tributary detections allowed in Model 2. A non-terminal tributary detection occurs
when a tagged fish enters a tributary, is detected by the antenna array, and within minutes
or hours returns from the tributary to the mainstem to continue its migration. This type

of behavior (i.e., a tributary visit) may provide the fish with a temperature refugium in hot



165

temperatures or a resting place on its migration. Figure 3.1(b) shows an example of visiting
behavior. It should be noted that the placement of the antenna array in the tributary
mouth affects the definition of a visit for a particular tributary. Fish that near the antennas
but are not detected are not classified as having entered the tributary. Model 3 assumes
100% detection in the tributaries, and does not incorporate fallback or other downstream
travel. Fish that exhibit visiting behavior are assumed to resume migrating upstream upon
returning from the tributary to the river,

It is conceivable that individuals that enter a tributary temporarily in one reach ex-
perience differential survival and tributary entry rates in following reaches. For example,
a fish that rested in a tributary may have a higher probability of surviving the following
reach than a fish that did not use the lower tributary. On the other hand, fish in tributaries
may be at higher risk of injury from fisheries than mainstem fish, and so may have lower
survival rates after returning to the mainstem. Alternatively, one reason a fish might enter
a tributary and then return to the river is to explore the tributary to determine whether
it leads to the fish’s spawning grounds. Thus, a fish that enters a tributary in one reach
and then returns to the river may be in the exploration mode, and be more likely to enter
a tributary in the following reach than a fish that did not explore the tributaries in the
lower reach. These possibilities suggest non-independent behavior from reach to reach, or
a “memory” effect of tributary behavior from previous reaches.

Two models are presented in this section, both allowing for tributary visiting behavior
(i.e., non-terminal tributary detections). Model 3a assumes that tributary behavior in one
reach does not affect parameters in later reaches, i.e., that reaches are independent with
respect to tributary behavior. Model 3a is thus a “memory-free” model. Model 3b allows
tributary visits in a given reach to affect survival and tributary entry and exit rates in the
following reach, i.e., Model 3b allows for non-independent reaches, and is thus a “memory”
model.  Model 3a is nested in Model 3b, and the two models may be compared via a
likelihood ratio test. Both Models 3a and 3b use the same data, so the data are described

for both before detailed descriptions of the two models.
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8.7.1 Data Description

The routine used to simplify the data for all models is described in Section 3.2. No extra
simplification is necessary for Models 3a and 3b. Detection histories for Models 3a and 3b
are sequences of observed detection sites, starting with the release (R). Unlike detection
histories for Model 2, those for Models 3a and 3b may include tributary sites before the

final detection.

3.7.2 Model 3a: Memory-Free Tributary Model

Model 3a assumes no effect of entering and then exiting a tributary in reach k on survival,
detection, or tributary parameters in upstream reaches or in ascending dam k + 1, for

k=1,... K.

3.7.2.1 Notation

The same basic notation used in previous models is used here. The number of dams is K.
The index 7 indicates (re-)release sites, i.e., sites from which transitions may be made. The
index j indicates recapture sites, i.e., sites to which transitions may be made. The transition
parameter ¢;; represents the probability of moving from site 4 to site j. It is assumed
that the detection rate in the tributaries is 100%. Thus, for ¢ = Dir and j = Dit1,8
(k=1,...,K — 1), the parameter ¢;; is the probability of surviving and moving from the
top of dam & to the base of dam &+ 1 without entering any tributary between the two dams.
This contrasts with the interpretation of ¢p,; p,,; 5 in Models 1 and 2, where ¢p, 1 Di.1 5
is the probability of surviving and reaching the base of dam & + 1, given having reached
the top of dam k, regardless of any intervening tributary behavior. The release index ¢ may
be any site downstream of the final site (i.e., i = R, Ty, D1, D17,T1, DaB,...,Dkr). The

recapture index j is restricted, based on the release index:
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4
DiporTy fori=R,

DkT fori=DkB,k:1,...,K;
=S Disrp fori=Dyrk=1,.. K1 (3.24)
Ty fori=Dyr,k=1,...,K;

\Dk+1,B fori=T1,k=0,..., K- 1.

As with previous models, let p; and g; = 1 — p; represent the probabilities of being
detected and of not being detected, respectively, at site ¢, conditional on reaching site 1,
with pr, =1for k=0,..., K.

The possible fates of tagged fish recognized by Model 3a include permanent exit to a
~ tributary, fallback with no subsequent detection, and both natural and fishing mortality.
Because of the assumption of the 100% tributary detection, if a fish is last seen at a dam,
it is assumed that the fish remained in the river, either dying there or falling back with
no subsequent detection; only fish with final detections at tributaries are assumed to have
successfully entered a tributary. Because fish that enter a tributary may later return to
the river to continue migrating, however, it is necessary to parameterize the probability of
evading detection after entering a tributary using the model parameters. The probability

of not being detected after site ¢, given having reached that site, is x;:

XR=1-¢rT, — OR,D:;5(1 — qD;5XD15);
XDps = 1 — D45, Der (1 — 4Dk X Dir ) k=1,...,K;
XDyr = 1 = ®Dyr Ty = Dir D15 (1 = 4D4r1 5XDiin5),  kE=1,...,K =1,  (3.25)
XDxr =1 — ®Dyr i

X7 =1~ &7y, Dy 11,8(1 — Dy 11,5XDrs1,5)s k=0,....,K -1

The parameters used in Model 3a are given in Table 3.18.
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Table 3.18: Parameters used in Model 3a, the Memory-Free Tributary model.

Parameter Definition
®ij Probability of surviving and moving from site 7 to site j, given
having reached site ¢, for ¢ = R, Ty, D15, ..., Dkt and j defined as
in Equation (3.24);

D5 Probability of being detected at site ¢, given having reached site ¢,
for i = DlB;-DlTaDQB) cae aDKT;

g Probability of avoiding detection at site i, given having reached
site ia for i = DlBaDlT,DZBa O >DKT; =1 = Pis

Xi Probability of not being detected after site i, given having reached

site 1, for i = R, Ty, D1p,...,Dgr.

Using the ¢;; and x; parameters, the detection history R To D1p Dy T1 has probability

PT[R To DIB DlT Tl] =

@R, T 9To,D15PD1BPD, 5, D17 P D17 PD17, D25 4D28PDop, Doy Dar P Dor T2 X Ty -

3.7.2.2 Likelihood

With 3K + 1 detection sites, each of which may be visited by any fish heading for spawning
grounds upstream of site Tk, there are 235 +1 possible detection histories. The likelihood
is most easily expressed using summary statistics as in Models 0, 1, and 2. The necessary
summary statistics (Table 3.19) are a;, the number of fish detected at site 7; b;, the number
of fish detected at site i and detected later upstream; and g;, the number of fish detected
upstream of site 7. The g; statistics can be expressed in terms of the other statistics as

follows:

9r = bR;

91, = 9gr + b1y — amy;

9T, = 9Dy + b1, — a7, fork=1,...,K —1;
9Dyp = 9Ty_y +bDys — ADyp fork=1,...,K;

, 9Dwr = 9Dkg + bDpr — @Dy fork=1,...,K.
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The difference between the summary statistics for Model 2 and those for Model 3a is that
b; may be non-zero for tributary sites in Model 3a. The subset of the statistics comprising .
the minimal sufficient statistic is given in Table 3.20. Either ar, or bp,., must be included
in the minimal sufficient statistic, but due to the relations ar, = gpyr and gpgr = gDgp +

bDyr — @Dy, it is not necessary to include both a7, and bpg,.

Table 3.19: Summary statistics for Model 3a, the Memory-Free Tributary model.
The number of dams is K.

Statistic Definition

a; Number of fish detected at site ¢, i = R, Tp, DhB, ..., D7, Tk;
br Number of fish detected after the initial release;
b, Number of fish detected both at site ¢ and later upstream,
for i = Tp, D18,..., DkB, Dkr;
Gi Number of fish detected upstream from site ¢, ¢ = R, Ty, D15,..., Dk

Table 3.20: Minimal sufficient statistics for Model 3a, the Memory—F‘reé Tributary
model. Either ar, or bp,., is necessary, but not both. The number of dams is K.

Statistic Definition ‘
a; Number of fish detected at site ¢, ¢ = Ty, D1g, D171, . .., DKT}

br Number of fish detected after the initial release;
b; Number of fish detected at site ¢ and later upstream,

for i = T0>DlBa P 7DKT'

The likelihood for Model 3a can be expressed in terms of the summary statistics as

follows:
N—-bg 0T bR‘—aTo
Lxxgr "OrT%R D5

K
H ¢ka—1 ¢9DkB ¢°‘Tk ¢9DkT_“Tlc apyp 9T ~%Dkp @Dpr
Tk—1,DkB " Dk Dir ¥ Dy T DkTach-H,BpDkB 9Dy Ppyr
k=1

w ?PkB T ADkT @Dy g =bDyp @Dy —bDpr 0Tk 1 7bT 4 (3 26)
9Dkr Dyp Dy T ) ’
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where K is the number of dams and N is the size of the initial release. Equation (3.26) may
be tailored to a particular data set by specifying K, removing any extraneous parameters,
and renaming parameters according to observed detections, if necessary. This is done for
the 1996 Chinook salmon data set in the next section.

The number of minimal sufficient statistics, 6 K +1, is equal to the number of parameters
for Model 3a. Equal numbers of minimal sufficient statistics and parameters implies that
the maximum likelihood estimates of the parameters are the method of moment estimates
using the minimal sufficient statistics. Formulas for the maximum likelihood estimators for

Model 3a are given in Table 3.21.

Table 3.21: Maximum likelihood estimators (MLEs) of parameters for Model 3a, the
Memory-Free Tributary model. The number of dams is K.

Parameter MLE Appropriate Sites
PR ary/N
(br—ary)gp, zap
¢R,D15 N!JQTObDlﬁg 12

bp,pap, 9D
®Dis Dir —hB kT kT k=1,...,.K

D p9DKg Dy

bDIcT (ngT ~=aTy, )aka gD
+1,89D11.8 _
®Dir,Dic+1,5 x k=1,...,K—1
' D1 9D 9T "Dy11,B
bp,rar
ODyr 9Ty _
PDyr,Ti TN k=1,... K
bryap 9p
k%D +1,89Dk11,8 _ _
Ty, Dis1.5 a7, 97, b0y 5 k=0,....,. K~-1
i bi/g; i = any dam site

3.7.2.8 Performance Measures

The perceived probability of surviving from the release to the top of dam K, or perceived

system survival, is S,ys, defined as follows:

Ssys =NR,
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where
MR = ¢R,T0¢T0,D13 + ¢R,D13)¢D13,D1T77D1T; (327)
NMDpr = (¢DkTka¢Tk>Dk+l,B + ¢DkT;Dk+1,B)¢Dk+1,B)Dk+1>TnDk+1,T’ k=1,...,K-1;
NDgr = L.
This gives

Ssys = (¢R,T0¢T0,D13 + ¢R1DIB)

K-1
X H {¢DkB:DIcT(¢DkT»Tk¢Tk,Dk+1,B + ¢DkT>Dk+1,B)}¢DKBvDKT' - (3.28)

k=1
The variance estimator of §3y3 is defined in Appendix B.

Model 3 allows for fish to return from tributaries to the mainstem of the river. The
estimator of unaccountable loss must account for tributary return probabilities, because
any fish that enters a tributary and then returns to the river with no further detections
should be included in the unaccountable loss category, rather than the category of fish that
permanently left the river at the tributary. It is not possible to separately estimate return
to the river from the tributary and survival from the tributary to the next dam. However,
under the assumption that once a fish has returned from a tributary to the river, survival
from the tributary to the next dam is approximately 100%, the parameter ¢r, p,., 5 is
approximately the probability of returning to the river from tributary Ty, conditional on
reaching that site. As with Model 2; if the assumption of 100% detection at the tributary
antenna arrays is faulty, then the transitions ¢p, +17T, and ¢£}c+1,T»Tk are negatively biased,
and so pp is positively biased.

For Model 3a, the probability of unaccountable loss from the release point is ug, defined

as follows:

pr=1-0r1,(1 — p1,) — OR,D, 59Dy 5,017 (1 — pDy1)s (3.29)
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where

l—pn =1—- 01,045+ ¢Tk:Dk+1,B¢)Dk+1,B,Dk+1,T(l - /J‘Dk+1,T)’ k=0,....,K~-1;
1= ppyr = ¢DkTaTk(1 - NTk) + ¢DkT,Dk+1,B¢Dk+1,B,Dk+1,T(1 - NDk+1,T), k=1,...,K -1,

1~ pper =1, k=K.

The variance estimator of fig is defined in Appendix B.

8.7.2.4 1996 Chinook Data Set

The summary statistics for Model 3a observed in the 1996 Chinook salmon data set data

are given in Table 3.19.

Table 3.22: Observed summary statistics for Model 3a (Memory-Free Tributary
Model). The release size is N. Descriptions of summary statistics are listed in Ta-
ble 3.19.

Statistic Value Statistic Value

N 846 bp 825
aTo 11 brg 4
apiB 772 bpiB 741
apir 692 bpiT 621
arTi 294 bT1 40
ap2B 0 bp2B 0
apor 401 bpor 368
ar? 75 bro 3
apsB 0 bp3s 0
apsr 343 bpar 321
ars 45  brs 8
QD4AB 272 bpap 264
apar 273  bpar 253
aT4 150  bpy 0
apsB 112 bpss 107
apsT 101 bpsT 96
ars 42 by 41
apeB 71 bpes 66
apeT. 0 bper 0

arTg 0 bT6 0
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Table 3.22 continued

Statistic Value Statistic Value

ap7B 102 bprs 87
aprr 87 bprr 71
ar7 73

Table 3.22 shows that no fish were detected at sites Dyp, D3g, Der, or Ts. The transition

parameters ¢D1T,D23? ¢T1,D237 ¢D23,D2T, ¢D2T,D331 ¢T2,D33’ ¢DSB:D3T7 ¢DGB,D6T? ¢D6T:T6>

®Der,Drg> a0d @75 D,z cannot be estimated; instead, the following combined parameters can

be estimated:

$Dy7,Dar = PDi7,DagPDap,Dars
@Ty,Dyr = ®T1,Dy5PDop. Do

$Dor,Dsr = PDyr,DspPDss,Dars
@T3,Dar = @T3,D35P D3, Dy

¢DGB Drg = ®Deg,Der ¢D6T1D7B .

Table 3.22 alsd shows no subsequent detections of fish detected at site 74, which includes
all detections in the Columbia River upriver of McNary Dam, or in tributaries between
McNary and Ice Harbor dams. It is necessary to fix ¢y p,; to 0, giving x7, = 1. The
remaining transition parameters indicated in Table 3.18 are estimable with K = 7.

The likelihood for Model 3a, tailored to the 1996 data set, is:

—bp 0Ty ,bR—AT, aTo br, b1y apyp 9To—9Dyg  4D1p~bD1p 9D Dy
L XR ¢R T0¢R Dip XTy cz5To,D1151pD1B D Dip ¢DIB:D1T Dir
« P18 7401 app—bpyr ¢“T1 ¢9D1T —aTn aT1 —bry ¢bT1 “DzT qul ~@Dyr ADyp—bDyp
9D 7 Dir Dir,Ty9Dip,Dar Xy T, DorPDor 9Dyr Dar
x ¢“T2 ¢9D2T““T2 aT, —bry ¢sz aDgp 9T, ~Dgp  AD3p ~bDsr ¢C‘T3 ¢9D3T"‘1T3
Dyr T2 PDyr,Dar XTy T,D37PDyr D7 D3t D37, 737 D3r,Dsp
« T3 —bry ¢bTa apsp 9T3~ADsp  ADsp~bD,up ¢9D4B AD4r 9Dgp—@Dyr  4D47 —OD4r
X1y T3,D45PDyp 9D4p Dyp D45, DarPDyr 9D4r Dyr
« ¢“T4 ¢9D4T a1y “DsB 97,—aDsp AD5p ~bDsp ¢9D53 Apyr 9Dsp—4Dsr  2Dsr ~bDsr
Dar,T3®Dar,Dsp PDsp 9Dsp Dsp Dsg,DstPDst 9Dsr Dsr
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% ¢aT5 ¢9D5T aTy aTs st¢st G'DeB 9T5—ADgp aDeB"bD63¢9DeB paDm
Dsr,T5PDgr, Do X Ts,D68PDsp 9Dsn Dep D¢p,D7g¥ Drp
9Dgp —ADyg  AD75=bDyp 9D ADpp 9Dgp—@Dgp  ADpp ~dD;p 0Ty

X 4pyg Drp ¢D7B:D7T Ppyr 9Dqr XDrr ¢D7T,T7' (3'3())

3.7.2.5 Results

Program USER!® was used to fit Model 3a to the data via maximum likelihood. Maxi-
mum likelihood estimates of the parameters from Model 3a are listed in Table 3.23. The
log-likelihood was -3219.6910, with an AIC of 6507.382. The estimate of ¢ry psy is high
($T57DSB = 1.0020, SE = 0.0272); this is reasonable, because the site T5 is actually Char-
bonneau Park, a river-side park located on the Snake River just upriver of Ice Harbor Dam,
rather than a real tributary. It makes sense that most or all fish detected at T5 continued
upriver.

The perceived system survival rate is estimated at §Sys = 0.1057 (§E = 0.0106), and
the unaccountable loss rate from the release is estimated at fig = 0.2803 (SE = 0.0156).
Both these estimates are higher for Model 3a than for Model 2. This is due to the non-
terminal tributary detections used by Model 3a. More fish are perceived entering tributaries
by Model 3a than by Model 2 (i.e., aDkTyT/c is higher for Model 3a than for Model 2), and
these fish may return to the river to continue migrating in Model 3a (i.e., ¢, Dpy 5 > 0 -
for Model 3a). This means that while all fish entering a tributary in Model 2 are accounted
for (i.e., up, = 0 for Model 2), a proportion of fish entering tributaries in Model 3a are not
accounted (i.e., ug, > 0 for Model 3a), resulting in a higher estimate of 11z for Model 3a than
for Model 2. The perceived system survival is higher for Model 3a than for Model 2 because
although 5 Dir, bk .15 is smaller for Model 3a than for Model 2, the “reach survival” estimate
for Model 3a (ngT,Tk;b\Tk‘DkH‘B + ngTka-H,B) is often slightly larger than the comparable
estimate for Model 2 ($ Dir\Diat, ). In general, the unaccountable loss and perceived system
survival estimates from Model 3a should be more accurate than the estimates from Model
2. If there had been few non-terminal tributary detections in the Model 3a data, however,

then the difference between Models 3a and 2 would be minimal.

Bhttp://www.cbr.washington.edu/paramEst/USER/
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Table 3.23: Maximum likelihood estimates of parafneters from Model 3a, the

Memory-Free Tributary model.

Category Parameter Estimate S.E.
Transition ¢gr 1, 0.0130 0.0039
®R,D1 5 0.9644  0.0066
Ty, D15 0.3645  0.1453
®Dyp,Dir 0.9731  0.0075
®Dyp, T 0.3685  0.0172
®Dyp,Dar 0.5352  0.0181
¢Ty,Dor 0.1377  0.0202
P Dor T 0.1604  0.0170
®Dyr,Dsr 0.7593  0.0203
Ty, Dar 0.0401 0.0227
®Dsp T 0.1257  0.0175
®Dyr,Das 0.8123  0.0209
®Ty,Da5 0.1782  0.0571
®Dyg.Dar 0.9751 0.0104
PDar, Ty 0.5149  0.0294
®Dyr,Dsz - 0.4132  0.0290
®Ds5,Dsr 0.9614  0.0199
®Dsr.Ts 0.3629  0.0448
®Dsr,Des 0.6031  0.0478
OTs,Des 1.0020  0.0272
®Dep.Drs 0.9327  0.0306
®Dyg,Drr 0.8573  0.0354
O Do T 0.8161  0.0415
Detection  pp,; 0.9416 0.0084
PDir 0.8673  0.0127
PDyr 0.8578  0.0169
PDsr 0.9582  0.0109
PDus 0.9103  0.0168
PDer 0.9370  0.0148
PDsg 0.9304  0.0237
PDsr 0.8727  0.0318
PDeg 0.6346  0.0472
PDrs 0.9775  0.0157
DDy 0.9726  0.0191
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3.7.3 Model 8b: Memory Tributary Model

Model 3b allows entering and then exiting a tributary in a given reach to affect survival
and tributary parameters in the following reach, i.e., there is a possible “memory effect”
of tributary visits. Detection rates in tributaries are assumed to be 100%, as in Model
3a, and detection rates at dams are assumed to be unaffected by tributary behavior. The
memory effects of tributary visits are assumed to last only through the following reach. For
this purpose, define the reach immediately following tributary & (i.e., the tributary between
dams k and k + 1) to extend from the base of dam k + 1 to the base of dam k + 2 for
k=0,...,K -2, or from the base of dam K through tributary K for ¥ = K — 1. The
stretch of river between tributary k and the base of dam & + 1 is not included in the reach
following T} here because only individuals who visited tributary k are parameterized with
the transition parameter between tributary k and dam & + 1 (i.e., é7,,p,,, 5), SO there is

no need to adjust this parameter for these fish.

3.7.3.1 Notation

The transition parameters ¢;; for Model 3b are the same as those for Model 3a for in-

dividuals who did not enter the tributary in the reach immediately preceding site i. An

T

alternative transition parameter, ;5 1s defined for individuals who entered and then exited

(i.e., “visited” or “dipped-in”) the tributary in the reach immediately preceding site 1:

qbiTj = Pr[Survive and move from site 7 to site j | Entered and exited tributary  (3.31)

in the reach immediately preceding site ],

where ¢ = Dyg, D17, Ty, ...,Dgp, Dgr, and where
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;

DkT forz'=DkB,k=1,...,K;
Dyiipor Ty fori=Dyr,k=1,...,K—1;
7= ‘ (3.32)
T for ¢ = Dy,
DyiiB fori=Ty,k=1,...,K — 1.
\

The possible tag fates are the same here as for Model 3a, but here fish who entered a
tributary in the preceding reach must be distinguished from those who did not. Define yx;
to be the probability of not being detected after site i, having reached site ¢. The parameter
X? is the analogous probability for fish that entered the tributary in the reach directly below
site 4. If the fish entered the tributary in reach k — 1, then either x], ., Xb, ., or X7, is

used, as appropriate.

XrR=1-0rT, — ®RD15(1 — 9D,5XD15);
XDyp :1"¢DkB,DkT(1—quTXDkT)a k=1... K;
XDer =1 = @Dyr 1y — ¢DkTka:+1,B(1 - QDk+1,BXDk+1,B)’ k=1,.,K-1

XDgpr =1— ¢DK’I‘>TK;

XTy = 1—¢Tk,Dk+1,B(1_qu+1,BX’1.l;k+1,B)> k:O,,K— 15 (333)
qu;w = 1“¢g1¢B>DkT(1-quTX£kT)? k=1,...,K;

T T T
XDkT =1- ¢DkTka - ¢DkT,Dk+1’B(1 - Qch+1,BXDk:+1,B)7 k= 13 cee >K - 1)

T — T .
XDgr = 1- ¢DKT7TK’

T T
Xt =1 = 9% Drss (L = @Dis1 5 XDesr 5)s k=1,...,K -1

The parameters used in Model 3b are given in Table 3.24.
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Table 3.24: Parameters used in Model 3b, the Memory Tributary model. The number
of dams is K.

Parameter Definition
bij Probability of surviving and moving from site 7 to site 7, given

having reached site ¢ without entering the tributary in the reach
immediately preceding site ¢ (if any), for i = R, To, D1, ..., Dgr and
j defined as in Equation (3.32);

qb;f'; Probability of surviving and moving from site 4 to site j, given
having reached site ¢ and having entered the tributary in the reach
immediately preceding site 4, for i = D15,..., Dgr and j defined as in
Equation (3.32);

i Probability of being detected at site ¢, given having reached site 1, for
i = D1, D11, D2, ..., Dkr;

Q Probability of avoiding detection at site 4, given having reached
site i, for i = D1g, D17, D2, ..., Dxr; =1~ pj;

Xi Probability of not being detected after site 4, given having reached
site ¢ without entering the tributary in the reach immediately preceding
site ¢ (if any), for ¢ = R, Ty, D1, ..., Dgr;

x7 Probability of not being detected after site i, given having reached
site 1 and having entered the tributary in the reach immediately
preceding site ¢, for i = Dyg,..., Dgr.

The parameters in Table 3.24 can be used to express the probabilities of the detection

histories. For example, the detection history R Ty D1p Dir To Dsr Dyp has probability

Pr[R Ty D1g Dir Ta Dar Dyr)
— T T
= ¢R,To ¢T0»DprDlB ¢D15,D1TpD1T ¢D1T,D23 dDyp ¢D237D2TQD2T¢D2T,T2 ¢T2,D33 4D3p

T T
X ¢D33,D3TPD3T¢D3T,D4BPD4B XDyp- (3.34)
As a comparison, the probability of the detection history R Di1g D7 Ty Dar Dyp is

Pr(R Dip Dir Ty D3r Dyr]
= OR,D,5PD159D15,D17PD11PD17,D259D25 P Dy 5,020 dD 27 @ Dor T2 9T, D5 9Ds 5

T T
X 9Dy p,DarPDsr P Dyr, Dy PDanXDas- (3.35)
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The only difference between these two detection histories is that the first detection history
includes site Tp, and the second detection history does not. Thus, the probability in Equa-
tion (3.34) uses the transition parameters qbgl 5.D;p and qbgm D,p» Whereas the probability
in Equation (3.35) uses transition parameters ¢p, ; p,, and ¢p,,.p,5. Both Equation (3.34)
and Equation (3.35) use the final detection parameter Xxp,, instead of X1T74B’ because the

tributary site T3 is not included in the detection history.

3.7.3.2 Likelihood

The likelihood for Model 3b is most usefully expressed in terms of summary statistics similar
to those used in Model 3a. Like Model 3a, necessary summary statistics are the number |
detected at a given site (i.e., a;), the number detected at a site and later at an upstream site
(i.e., b;), and the number detected upstream of a given site (i.e., g;). For Model 3b, these
statistics must be characterized by whether or not the fish was detected at the preceding
tributary. The g; and giT statistics can be expressed in terms of the other statistics as

follows:

gr = bR;
97, = 9r + b1y — a1y

9D1g = 9T — br, + bDlB ~ AD1ps

97 = 9Dy + b1 — a7y, fork=1,..., K —1;
9T, = by + 0T, — o, fork=1,...,K — 1;
9Dyp = 9Ty T 9%;_1 —br,_, — b%c_l +bp,z — aDyg fork=2,...,K;
9bys =0Ty + 05, _, + Dy — D,z fork=1,...,K;
9Dir =‘9Dk3 + Dy — ADyr fork=1,...,K;
g;‘ng =935k3+b£”—a£m fork=1,...,K.

The summary statistics for Model 3b are listed in Table 3,25, and the minimal sufficient
statistics are listed in Table 3.26. There are 10K — 1 minimal sufficient statistics, and an

equal number of parameters. The formulas in Table 3.21 can be used to find initial values
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for a numerical routine to maximize the likelihood, with the same initial value used for both

¢ij and ¢£

Table 3.25: Summary statistics for Model 3b, the Memory Tributary model. The
number of dams is K. ’

Statistic Definition

a; Number of fish detected at site 7 that were not detected at the
tributary preceding site ¢ (if any), ¢ = Ty, D1B, ..., Dxr, Tk;

a;f Number of fish detected at both site ¢ and the tributary preceding
site ¢, ¢ = D1g, D11, Th, ..., Drr, Tk

br Number of fish detected after the initial release;

b; Number of fish detected at both site ¢ and later upstream, but not
at the tributary preceding site ¢ (if any), ¢ = Ty, D1, ..., Dkr;

b Number of fish detected at the tributary preceding site 4, at
site 7, and later upstream, ¢ = Dyg, Dyp,T4,..., Dg7;

gi Number of fish detected upstream of site i but not at the tributary
preceding site 4 (if any), ¢ = R, Ty, D15, ..., DkT;

g Number of fish detected upstream of site 4 and at the tributary

preceding site 1, i1D1g, D17, 11, ..., Dgr.

Table 3.26: Minimal sufficient statistics for Model 3b, the Memory Tributary model.
The number of dams is K.

Statistic Definition

aT, Number of fish detected at site Tp;

ar, Number of fish detected at site T}, that were not detected at the
preceding tributary, k=1,..., K — 1;

a%c Number of fish detected at site Ty that were also detected at the
preceding tributary, k =1,..., K — 1;

br Number of fish detected after the initial release;

br, Number of fish detected at site Ty and later upstream;

br, Number of fish detected at site Ty and later upstream, but not at the
tributary preceding site Ty, k=1,..., K — 1;

b%c Number of fish detected at the tributary preceding site Tk, at site T},

and later upstream of Ty, k =1,..., K — 1;

ap,z —bp,z Number of fish detected at site Dyp that were detected neither at the
tributary preceding site Dyp nor at any site upstream of Dypg,
k=1,...,K;
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Table 3.26 continued

Statistic = Definition
ap.r — bp,r Number of fish detected at site Dy that were detected neither at the
tributary preceding site Dy nor at any site upstream of Dyp,

k=1,...,K;
agk _— vL Dip  Number of fish detected both at site Dp and at the tributary preceding
site Dy, but not at any site upstream of Dyg, k=1,..., K}

ok Dir — kaT Number of fish detected both at site Dy and at the tributary preceding
site Dg7, but not at any site upstream of Dyp, k= 1,...,K;

.GDyg agw Total number of fish detected at site D, k=1,...,K;

apy + a%w Total number of fish detected at site Dgp, k=1,..., K.

The likelihood for Model 3b can be expressed as follows:
N—bg a7 ary b ary —br,
L XR S r PR VT Dis XTy

9Drp gT Ty, T ol
X H {d)DkB,DkT ¢DkB!DkT) Pra ¢DkT;Tk(¢DkTka) T

x apyg+ab, o apyp+ab, . 9T 1 T9%,_ ~epyp b, o b, p+eb, p—ap,r—al, .
Ppyp Dyr Dyp Dyr

apgp~boyp, T \ob =45 _ apgr—boyr, T \af  -bf
X XDys (XDIcB) k8 PkBX " (XDkT) kT DkT

9Dy ATy, 95, -~ T b,
X H {¢Dk;T>Dk+1,B (¢DkT7Dk+1 B) kT k(ka ch+1 B(¢Tk»Dk+1,B) k
ar, —br, , 7 oL —bL
X Xgre TR (k) DO (3.36)

where K is the number of dams, IV is the size of the initial release, g%o = 0, and other
summary statistics are as deﬁned in Table 3.25. Equation (3.36) may be tailored to a
particular data set by specifying K, removing any extraneous parameters, and renaming
parameters according to observed detections, if necessary. This is done for the 1996 Chinook

salmon data set in the next section.
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8.7.3.8 Performance Measures

The perceived probability of surviving from the release to the top of dam K, or perceived

system survival, is Ssys, defined as follows:
Ssys = NR,
where

T T R
NR = ORI,PTo,D189D15,D10MDyp + PR,D15PD15,Dir D17}

- T T
MDyr = ¢DkTka¢Tk>ch+1,B ¢Dk+1,B,Dk+1,T77Dk+1,T

+ ¢DkT:ch+1,B ¢Dk+1,B1Dk+1,T77Dk+1,T’ k=1,...

NMDxr = 13

T _ T T T T
MDyr = ¢DkT5Tk¢Tk:Dk+1,B¢Dk+1,Bka+1,T77Dk+1,T

T
+ ODyr,Des1,5PDess, 5, Dks1,7MDks1 19 k=1,...

T
T]DKT =1,

The variance estimator of §sys is defined in Appendix B.

As in Model 3a, unaccountable loss in Model 3b must account for tributary return

probabilities and use the assumption that once a fish has returned from a tributary to the

river, survival from the tributary to the next dam is approximately 100%. For Model 3b,

the probability of unaccountable loss from the release point is pg, defined as follows:

pr=1-— ¢R,To(1 - NTo) - ¢R;D13¢D137D1T(1 - /"Dyr)’

where
— T T .
1- Ty = 1- ¢Tk:Dk+1,B + ¢Tk»Dk+1,B¢Dk+1,B,Dk+1yT(1 - 'uch+1,T)’ k= O, s
T _1_ T T T T
1~ KT, = 1 ¢Tk»Dk+1,B + ¢Tlcka+1,-B¢Dk+1,Blec+1,T(1 'U'Dk-H,T)’ k=1,.

1~ Uppr = $Dpr, 1 (1 — pim,) + ¢DkT’Dk+1,B¢Dk+l,B»Dk+1,T<1 - IJ‘DIc-{-l,T)’ k

(3.38)
aK_la
LK —1:
LK -1,
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1—pup,r =1, = K,

T T T T .
1= pp,, = ¢DkT7Tk(1 - 'U“Tk) + ¢DkTka+1,B¢Dk+1,B:Dk+1,T(1 - NDk+1,T)v k=1,...,K -1
l_ungZ]‘? ‘ k‘:K_

The variance estimator of fir is defined in Appendix B.

8.7.8.4 . 1996 Chinook Data Set

The summary statistics for Model 3b, observed from the 1996 Chinook salmon data set, are

presented in Table 3.27.

Table 3.27: Observed summary statistics for Model 3b (Memory Tributary Model).
The release size is N. Descriptions of summary statistics are listed in Table 3.25

Statistic Value Statistic Value Statistic Value Statistic Value

N 846 br 825
aro 11 bro 4

apiB 768 af;p 4 bpi 737 bhig 4
apir 688 al,p 4 bpir 618 bhr 3
ari 292 ok, 2. b 40 bl 0
apar 370 ablyr 31 bpar 338 b, 30
ar? 66 al, 9 bro 1 bk, 2
apsr 340 alar 3 bpsr 318 bhsr 3
ars 44 ak, 1 bps 7 bi, 1
apaB 266 ab,p 6 bpas 258 bL,p 6
apar 267 abyr 6 bpar 248 bl 5
ar4 149 a% 1 bpy 0 b%l 0
apsB 112 alyp 0 bpss 107 bhep 0
apsT 101 ol 0 bpsr 96 blher 0
ars 42 akg 0 brs 41 bi, 0
ap6B 40 alep 31 bpes 37 bhes 29
aprB 102 of,p 0 bprs 87 bhp 0
aprr 87 a;157T 0 bprr 71 b5 0
ary 73 apq 0 ‘

There were no detections at sites Dog, D3g, Dgr, or T (Table 3.27). Transition parameters
involving these sites cannot be separately estimated, and detection rates at these sites

are not meaningful. Instead, it is possible to estimate certain products of the transition
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parameters involving these sites, as done in Model 3a. As in Model 3a, the parameters
®Dy7,Dor = ODi7,D28PDos,Dars PTy,Dars $PDor,Dars OTy,Ders 80d $Dgs, D, are used in the
likelihood. Unlike Model 3a, Model 3b requires the following parameters for transitions

following detections at tributaries:

T _ AT .
¢D1T,D2T - ¢D1T7D28¢D23’D2T’
T o AT .
¢D2T,D3T - ¢D2T,D33 ¢DSB,D3T’
T T T .
¢T2,D3T = ¢T2 ,D3p ¢D35,DsT’

T T T
®D6B,D7B = PDes,Der PDer,Drs-

The parameter d’%,DzT = q&%yDZqugZB,DZT is not needed for this data set (Table 3.27).
Certain other parameters from the general model are not needed for the 1996 data set
due to the observed summary statistics (Table 3.27). With no detections at site Tg, the
parameters qbgw, Dop 8nd ¢£7T,T7 are neither used in the model nor estimable. Also, because
there are no subsequent detections of fish detected at site Ty, the parameters ¢£53, Dsp
‘Z%sT,Ts’ ¢755 r.Dep 20d d)%s’ Dep Must be removed. Additionally, it is necessary to fix both
¢1y Dsp and ¢¥4,D55 to 0, which also fixes xr, and X% to 1. The summary statistic a% >0
but bgl = 0 (Table 3.27), meaning that parameter ¢§1, Doy Must be fixed to 0 and removed
from the likelihood. Table 3.27 also shows that a};l 5= bTD1 5 a%s — b%, and a};w - b%w
are all 0, meaning that the parameters ¢71;15’D1T, ¢%3,D4B’ and ¢E4B,D4T must all be fixed
b0 1, giving X5, = apirXBp XF, = 10usxb, g a0 X5, = G b, Also, aB,, - b5,
is 0. Because every fish detected at site D3y (who had previously entered tr'ibutary 'y
was also detected upstream of site Dsr, it makes sense to fix to 1 the sum of the transition
probabilities from Djsr: ¢g3T,Ts + ¢>£ST’ Dip = 1, yielding qngT’Ts =1- ¢1T)3T, Dyp and
X};w = ¢%3T,D4BQD4BXD4B' Thus, it is not necessary to include both ¢7133T,D4B and ¢§,3T,T3
in the likelihood. The parameters x5, ., Xb,,» and xp,, may all be expressed as products
of other parameters, and have zero exponents, so they may be removed from the likelihood

for Model 3b when fitting it to the 1996 Chinook data set.
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The Model 3b likelihood tailored to the 1996 Chinook salmon data is as follows:

T T
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3.7.8.5 Results

" Program USER! was used to find fit Model 3b to the data via maximum likelihood. Max-
imum likelihood estimates of the parameters from Model 3b are listed in Table 3.28. The
log-likelihood was -3209.1992, with an AIC of 6504.398. As with Model 3a, the estimate of
$7%.Dep is high (@150, = 1.0036, SE = 0.0312).

The perceived system survival rate is estimated at §sys = 0.1057 (§E‘ = 0.0106), and the
unaccountable loss rate from the release is estimated at fig = 0.2800 (§E = 0.0156). These

are the same values seen from Model 3a. The only difference between Models 3a and 3b is

Yhttp: //www.cbr.washington.edu/paramEst/USER/
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that Model 3b allows for a temporary memory effects of tributary visits, while Model 3a
does not. Examination of Table 3.28 shows that although 5%’3’ and 3{; may be considerably
different for individual detection sites ¢ and j (i.e.g, $D1T,D2T = 0.5371, SE = 0.0182 versus
%IT»DTF = 0.2527, SE = 0.2190), the standard errors on the aT estimates are large, and

ij
there is no consistent pattern in which of aij and 33; is larger. A likelihood ratio test
comparing Models 3a and 3b indicates no significant overall memory effect of tributary
visits (x3 = 20.9836, P = 0.0127), so it is reasonable that S,ys and [ig are the same for
Models 3a and 3b. It is conceivable that with a known-source or single-source release group,
or in a different study year, tributary visits may have a more significant effect than detected
here. For this data set, however, the extra structure in Model 3b is unnecessary, and Model

3a should be preferred.

Table 3.28: Maximum likelihood estimates of parameters from Model 3b, the Memory
Tributary model. The estimate of ¢7133T,T3 comes from q?ga Ty =1 %37"‘, D4B-

Category ' Parameter Estimate S.E.

Transition  dgr, 0.0130  0.0039
®R,D1 5 0.9645  0.0066
®To, D15 0.3643  0.1452
®Dyp,Dir 0.9728  0.0075
®Dyr Ty 0.3679  0.0172
b1, 0.4990  0.2498
®Dyp,Dor 0.5371 0.0182
O D17 Dy 0.2527  0.2190
ATy, Doy 0.1376  0.0202
@Dy Ts 0.1545  0.0175
Pbor T 0.2241  0.0658
®Dop,Dar 0.7603  0.0213
D Dor Dar 0.7489  0.0693
Ty, Dar 0.0152  0.0150
O, Dar 02222  0.1385
®Dar.Ts 0.1240  0.0175
Do Ty 0.3333  0.2721
®Dsr,Dip 0.8136  0.0210
O Dar Dup 0.6667  0.2721
T3, Dap 0.1592  0.0552
®D,p,Dar 0.9742  0.0107

ODy Ty 0.5260  0.0298
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Table 3.28 continued

Category Parameter Estimate S.E.

Transition ¢p, 7, 0.1249  0.1165
®Dyr,Dss 0.4037  0.0293
O Dz Dss 0.7519  0.1536
®Dsp,Dsr 0.9614  0.0199
®Dyr.Ts 0.3629  0.0448
®Dsr,Des 0.6025  0.0480
®Ts, Do 1.0036  0.0312
®Dgp,Dri 0.9353  0.0378
ODes.Drs 0.9283  0.0506
®Dy5,Dor 0.8573  0.0354
@Dy Ty 0.8161  0.0415

Detection  pp, 0.9415  0.0084
PDir 0.8675  0.0127
PDyr 0.8578  0.0169
PDyr 0.9582  0.0109
PDys 0.9103  0.0168
PDyr 0.9373  0.0147
PDss 0.9304  0.0237
PDsr 0.8727  0.0318
PDgs 0.6346  0.0472
PDrg 0.9775  0.0157
PDyp 0.9726  0.0191

3.8 Model 4: Fallback Model with Terminal Tributary Detections

This model and Models 5a, bb, 5c, and 6 attempt to account for the effects of fallback on
perceived survival. For the purposes of these models, “fallback” includes any travel directed
downriver between two detection sites, as well as actual falling back over dams. Fish are
classified as either fallback (equivalently, post-fallback) or non-fallback (equivalently, pre-
fallback) fish. Once a fish has fallen back over a dam or otherwise swum downstream and
has been detected again after the fallback, it is classified as a fallback (post-fallback) fish.
Before the fallback occurs, the fish is a non-fallback (pre-fallback) fish, as are fish with no
detected fallback. No attempt is made to model survival and movement during fallback;
only pre-fallback and post-fallback transitions are modeled. Model 4 incorporates fallback

into the terminal-tributary model (Model 2), while Models 5a, 5b, 5¢, and 6 incorporate
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fallback into the tributary models (Models 3a and 3b).

3.8.1 Data Descm’ptz’bn

The steps to simplify the data for Model 4 are those used for Model 2 (Terminal Tributary
Model), but with an added fallback code, F'B, placed between the last pre-fallback detection
aﬁd the first post-fallback detection. The FB code represents not only the actual fallback
and associated downriver travel, but also the upriver travel that was retraced during the
fallback and that is removed from the detection history in the basic data simplification
process described in Section 3.2; see Figures 3.3, 3.4, 3.5, 3.7, and 3.8 for examples of paths
with fallback events removed. Thus, an F'B code immediately preceding a detection at site
1 implies that the fish ended its (first) fallback at site <. This means that it must be obvious
from the non-simplified data that the fish was either upriver of site i prior to the current
detection at site 7 or had previously passed site i. The non-simplified data indicate this
either via detections upriver frpm site 1 that occurred chronologically before the current
detection, .or by imputation, say from repeated top-of-dam detections. For example, a
detection history R Dijr Dir Dir implies that the fish ascended dam 1 (BON) at least
three times, so it must have fallen back over the dam at least twice. This detection history
is simplified to R F B D7 for Model 4. Note that for Model 2, this detection history would
be reduced to R Dy7.

A fish may turn around and swim downriver from any point along its migration. All
downriver travel is referred to as “fallback” here, not just descending over previously passed
dams. Although a fish may turn around at any point, the. placement of the fallback codes
in the detection histories is restricted. In general, the F.B code may come after any type
of detection site except for the uppermost dam and the tributaries (only terminal tributary
detections are considered here); before any type of detection site except for the release;
and not between the base-of-dam and top-of-dam detections for the same dam. Using the
detection site notation, the F B code may appear after the sites R, Dyp (k=1,..., K —1),
and Dgr (k=1,...,K—1), and before the sites Ty, (k =0,...,K—1), Dy (k=1,...,K),
and Dir (k = 1,...,K), and not between the pair of detections Dyp and Dyr (k =
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1,...,K —1). The reason for this restriction is that in order for a fallback to have been
observed from the radiotelemetry data between detections at sites Dxp and Dygr, the fish
must have first passed the base of dam k going upriver and been detected there, then passed
the top of dam k& without being detected there, continued to upriver detection sites and been
detected, turned around at some point above dam k, swum downriver past dam k, turned
around again, and reascended dam k, this time without being detected at the base of dam
k but with a detection at the top of dam k. Figure 3.11(a) shows an example of this type
of path. Because only the post-fallback paths are used, the first ascent of dam k£ and the
corresponding base-of-dam detection are removed from the simplified detection history as
part of the pre-fallback path. Instead, the post-fallback ascent of dam k, with its missing
detection at the base, is used in the reduced detection history. On the other hand, a fish
with the migration path shown in Figure 3.11(b) reached the base of dam & and was detected
there, then turned around and swam downriver, was detected downriver, and then turned
around again and swam back upriver past dam k, with a detection at the top of dam k.
This fish fell back between detections at the base of dam & and the top of dam k; however,
because only post-fallback paths are used, the detection at the base of dam & is not used in
the simplified migration path, and the fallback event is seen to occur before reaching dam
k -1 on the pbst-fallback path. Thus, any reduced detection history with a base-of-dam
detection (Dgp) followed by a top-of-dam detection for the same dam (Dgr) comes from
a non-simplified detection history with no evidence of a fallback event between these two
detections.

The second restriction on the placement of the code FB in the detection histories is
that there must be at most a single F'B code in each detection history. A fish that has
been classified as a fallback fish keeps that classification throughout its detection history for

Model 4, so no additional F'B code is needed, even if the fish has multiple fallback events.

3.8.2 Notation

Model 4 is parameterized using transition parameters and detection parameters, following

the pattern of the previous models. As usual, the index ¢ indicates a site from which a
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Figure 3.11: Two migration paths with fallback between detection at the base of dam
k and detection at the top of dam k. In the first path (a), fallback occurs upstream of
dam k. In the second path (b), fallback occurs downstream of dam k. In both cases,
the reduced (i.e., simplified) migration path will include the detection at the top of
dam k, but not the detection at the base of that dam.
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transition is made, the index j indicates a site to which a transition is made, and K is the
number of dams. The transition parameters are ¢;; and qbf; , representing the probability
of the transition (survival and movement) from site ¢ to site j for fish who are and are not

fallback fish, respectively:

bij = Pr [Survive and move from site 7 to site j | Reach site 4, non-fallback fish];

f; = Pr[Survive and move from site i to site j | Reach site ¢, fallback fish], (3.40)

where ¢ = R, D15, D7, Ds25B, ..., Dgr, Dgr, and where

(

Digor Ty fori=R;

Dyr fori =Dy, k=1,...,K;
Jj= _ (3.41)
ch+1,B foriszT,kzl,...,K——l;

T  fori=Dipk=1,...,K.

\

As usual, p; represents the probability of being detected at site ¢, conditional on reaching
that site, and ¢; = 1 — p; is the probability of not being detected at site ¢, conditional on
reaching that site. It is assumed that the detection rate in the tributaries is 100%, i.e.,
pr, = 1 for k =0,..., K. Detection parameters are the same for fallback and non-fallback
fish.

This model incorporates the fallback (or equivalently, “post-fallback”) state as an ab-
sorbing state (“fallback fish” or “post-fallback fish”), with entry into that state possible
between most pairs of detection sites (but see the restrictions described above). Before
making the transition to the next detection site, a non-fallback fish at site ¢ becomes a
fallback fish via a Bernoulli trial with probability f;. The parameter f; is the probability
of swimming upstream from site 4, then turning around and swimfning downstream, and
finally being detected again upstream of site ¢, typically after turning around (so swimming
upstream) again. A fish that falls back over a dam or swims downstream but is undetected

after fallback is not observed to have fallen back, and so is not denoted a fallback fish. A
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fish may be undetected after fallback if it does not turn around to swim upstream again,
or if it does swim upstream again but evades detection. It is assumed that no non-detected
fallback fish enter tributaries after fallback, because detection in the tributaries is assumed
to be 100%.

Realistically, a fish becomes a fallback fish in the middle of the transition from site i to
the next detection site (j) in the simplified detection history. Because the transition from
site 4 to site 7 is different and possibly riskier for fish who become fallback fish (i.e., enter
the post-fallback state) between these two sites than for fish who move directly from site i to
site j, the event “becoming a fallback fish” is viewed as occurring before the transition from
1 to j. The exception to this is if ¢ is a base-of-dam site, in which case it is assumed that the
fish becomes a fallback fish after passing the corresponding top-of-dam site, whether or not
it is detected there. For i = Dyp for some k, the event “becoming a fallback fish” occurs
in the middle of the transition to the next observed detection, which necessarily occurs
upstream of site Dyr; otherwise, the choice of entering the post-fallback state occurs before
the transition between detection sites.

All fish are released as pre-fallback fish. This means that in order for a detection history
to be parameterized with the transition parameter ¢§, p, 5 the fish must have become a fall-

“back fish between the release and reaching detection site D1p. Thus, any detection history
including the transition parameter ¢§, p,p Must also include the fallback parameter fr as
a factor. This is not the case for later transition parameters for fallback fish. For example,
both a detection history showing that the fish became a post-fallback fish immediately after
release (e.g., R FB Dig D1 Dsp) and a detection history showing that the fish became
a post-fallback fish only after passing the tbp of the first dam (e.g., R D1g Div FB Dsyp)
arevparameterized with the transition parameter ¢£1 r.D,p 38 factors, but only the second
detection history’s probability includes the fallback parameter fp,, as a factor. It is pos-
sible to separately estimate the parameters fpir and ¢£1T, Do because some, but not all,
detection history probabilities that include ¢§1 . Dyp 40 DOt also include fp,,. On the other
hand, because all detection history probabilities that include gbﬁ, D, 28 .a factor also include
the factor fg, it is not possible to separately estimate these two parameters. Instead, only

their product may be estimated. Similarly, it is not possible to separately estimate the
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parameters d)ﬁ)To, ®R,Dip» OF R T, The estimable transition parameters corresponding to

transitions originating at the release point are:

®r1, = (1 = fR)ORT,;
(I)R,Dus = (1 - fR)¢R,D13§
k1, = fRORT

F _ F
®r D15 = fROR.D, 5

The above discussion on entering the post-fallback state holds for actual transitions
between sites, regardless of detection at the sites. However, because detection histories
include only sites where the fish was detected, determining from the detection history where
the fish entered the post-fallback state is more complicated. A detection history for Model
4 includes the F'B code only if the detections indicate that the fish swam downriver at
some point during sampling. This is indicated by repeated detections at a site, or by
downriver detections chronologically following upriver detections. Such a detection history
is simplified by removing the portion of the fish’s migration path that was retraced by the
fallback, and replacing this retraced portion with a shorter path that connects the last pre-
fallback detection site to the lowest of the downriver sites where the fish was detected after
fallback (e.g., see Figure 3.10 and 3.7). This “shorter path” that replaces the fallback path
originates at the last detection site that occurs before the removed fallback path begins,
whether or not the fish was detected at that site. This site will always be either the initial
release site or a dam site, because only terminal tributary detections are included in Model
4. Because the base-of-dam and top-of-dam detection sites at a dam typically appear in
pairs, the fallback replacement path (i.e., the heavy paths in Figures 3.10 and 3.7) will
always begin at a top-of-dam site rather than at a base-of-dam site if (1) it begins at a
dam (rather than the release site), and (2) detections are possible at the top of the dam.
(In some cases, there may be no detection possible at the top of a dam, as for LMO in
the 1996 Chinook data set analyzed in this chapter.) The location of the beginning of the

short fallback replacement path in a detection history of a fallback fish is significant because
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it indicafes how to parameterize the probability of the detection history. In particular, it
indicates at what site the fish becomes a fallback fish. As an example, consider a detection
history that begins R FB Dsp.... A fish with this detection history was not detected
between thé initial release and the top of the second dam, although the F'B code indicates
that the fish was detected either multiple times at Do or at a site upriver of Dyr before
being detected at Dor again; Figure 3.12 shows these two possibilities, with the fallback
path indicated by the dotted line and the fallback replacement path indicated by the curved
heavy line. Although the fish was not detected at the first dam, it is apparent that the fish
passed the first dam and that the fallback replacement path must begin at the top of the
first dam. In other words, although the fish was not detected at D17, it must have entered
the fallback state upon leaving that site. This means that the probability of this detection
history begins:

PT‘[R FB Dor.. ] = ®p,D,54D;5 ¢DleD1TqD1TfD1T¢§1T,D2'BQDZB ¢£23,D2TpD2T ceen
(3.42)

Because entering the post-fallback state is dependent on both fish movement and fish detec-
tion, it can occur only immediately before the detection site that follows the F'B code in the
detection history (with the restrictions on the placement of the F'B code described above).
Consider again the detection history beginning R FB Dyp .... If a fish with this detection
history had entered the post-fallback state downriver from site Dir, i.e., immediately after
release, then this would be apparent in the detection history by a Dip or Dir detection
coming immediately after the F'B code. Without such a detection, there is no reason to
suppose that the fish ended its fallback as far downriver as the first dam. As it is, there is
reason to suppose that the fish ended its fallback no farther upriver than Dyp. 1t is possible
that the fish actually fell back as far downriver as Dip or Dyp, but the detection history
gives no indication of this event, and the parameterization in Equation (3.42) is the only
defensible parameterization. Based on the example parameterization above, a general rule
for parameterizing detection histories with F'B codes is to keep the fish in the pre-fallback

state until it passes the top-of-dam site immediately before the detection site that follows
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the F'B code in the detection history, regardless of whether or not the fish was detected at

that top-of-dam site.

JD
TDA
BON 4
'R o R
(a) (b)

Figure 3.12: Two possible migration paths that simplify to the detection history
beginning R FB Dy .... Either (a) there were multiple detections at site D2T,
or (b) there were detections upstream of Dop that occurred chronologically before
the detection at Dyr. The dotted paths indicate the portion of the detection history
removed due to the fallback or removal of the tributary visit; the heavy portion of
the path replaces the dotted portion.

Define the parameters x; and x! as follows:

xi = Pr[Not detected after site 7 | Reach 7 as a non-fallback fish};

xI' = Pr[Not detected after site i | Reach i as a fallback fish].
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The x;.p parameters for fallback fish are analogous to the y; parameters in Model 2, but
those for non-fallback fish must account for the possibility of becoming a fallback fish in the

following reach. The XzF parameters are expressed as:

XDes = 1= 0Dy 5.0er (1 = @D XDor): k=1,... K;

XDir =1 = ®Dyr Ty = ODir Dyars (L~ Wugi6XDyyrs)y k=1 K =1

XDir =1 = 0Dyep, 1y (3.43)
X5 =1, k=0,... K.

The x; parameters can be expressed as follows:

xp=1- cI)R,To - (I)g,To - (I)R,Dua(l - qDlBXDlB>_

F F i
©R7DIB {1 ~dD1p (1 - ¢D13,D1TpD1T)} !
XDy =1 — ®Dyp,Dpr + ¢DkB»DkTquTX,DkT’ ‘ k=1,...,K;

XDy =1— (1- kaT) {¢DkT7Tk + ¢Dch,Dk+1,B(1 - qu+1,BXDk+1,B)} (3.44)
- fD;cT ¢ng,Tk

F ‘ F - .
- ka:T¢DIcT7Dk+1,B {1 - QD)H.LB(l - ¢Dk+1’B,Dk+1yTpDk+1,T)} ) k= 13 s >K -1

XDrr =1 = ODyr, T

XT)cyzla ‘ k:=0,,K

The parameters used in Model 4 are listed in Table 3.29.

Table 3.29: Parameters used in Model 4, the Fallback Terminal Tributary Model.
The number of dams is K.

Parameter Definition

®r Probability of surviving and moving from the release point directly
to site Ty without becoming a fallback fish;
®r D5 Probability of surviving and moving from the release point directly

to site D1p without becoming a fallback fish;
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Parameter Definition
@ﬁ’To Probability of surviving, becoming a fallback fish, and then moving
from the release point directly to site Tp;
<I>§’ Dip Probability of surviving, becoming a fallback fish, and then moving
from the release point directly to site Dip;
Gij Probability of surviving and moving from site ¢ directly to site j,
given reaching site ¢ and a non-fallback fish; ‘
¢S{; Probability of surviving and moving from site i directly to site 7,
given reaching site ¢ and a fallback fish;
D;j Probability of being detected at site 7, given presence at site J;
qj Probability of avoiding detection at site j, given presence at
site j; = 1 —py;
fi Probability of becoming a fallback fish between site ¢ and the next
detection site, given having reached site ¢ as a non-fallback fish;
Xi Probability of not being detected after site 4, given having reached
site ¢ as a non-fallback fish;
Xf Probability of not being detected after site 4, given having reached

site ¢ as a fallback fish.

The parameters in Table 3.29 can be used to express the probabilities of all possible

detection histories. For example, the probabilities of two detection histories are:

F F F F
PrlR FB D\g Dir Dor Th| = @R D, 5PD159D, 5,017 PD179 D11, Dy 590259 D25, Doy

PT[R Dyp Dyp FB D3T] = (I)R»DprDlB¢DleD1TqDlT¢D1T1DzBpD2B¢D2B)D2TqD2T

x pD2T¢£2T,T2; (345)

F F F
X fD2T¢D2T,D33QDSB 9 D3, D37 PDsr XDy + (3.46)

The fallback effect in both Equations (3.45) and (3.46) continues throughout the detection

history. In Equation (3.45), the fish enters the post-fallback state during the transition from

release to the base of the first dam, so the combination fallback-transition parameter @11;, Dis

" is used. In Equation (3.46), the site from which the fish enters the post-fallback state (Dar)

is not observed but must be deduced from the site following the F B code (Dsr).
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3.8.3 Likelihood

The likelihood for Model 4 is most easily expressed in terms of summary statistics, defined
in Table 3.30. In addition to the number of fallback and non-fallback fish detected at each
site (af and a;, respectively) and the number of both of these also detected upstream in
the same fallback state (b]" and b;, respectively), it is also necessary to know the number
of fish making the transition from non-fallback to fallback status after each detection (h;)
and the number of fish making that transition in each reach (¢x). Define “fallback reach k”
to be the river reach including sites Ty_1, Dip, and Dyp. Then the summary statistic ¢
is the number of fish entering the post-fallback state in fallback reach k. It is also useful
to know the number of fish detected after each site, in both the fallback and non-fallback
states (gf and g;, respectively). The statistic g; is the number of fish detected after site ¢
that were not fallback fish at site i. Because fish cannot enter the fallback state between
sites Dip and Dyr for any dam k (i.e., between the base and the top of a given dam), for
i = Dgp or Dyr, g; is the number of fish detected after site ¢ that were not fallback fish by
the time they reached site Dyp. Because Model 4 assumes that the tributary sites are not
visited by fish migrating on upriver, and because fish cannot become fallback fish between
a tributary site and the following dam, then gr, is the number of fish detected after site T
that were not fallback fish by the time they reached site Dy, 5. On the other hand, g{:k is
the number of fish detected upriver of site T} that had fallen back by the time they passed
site Ty. In other words, these fish were first detected as fallback fish before reaching site

Di+1,8- The g; and gf statistics can be expressed in terms of the other statistics as follows:

gr =br + hg;

gk = 0;

9T = 9R — 0T, — t1;

9Ty = t1 — afy;

9T, = 9Dpr — 0T}, — tk+1, k=1,...,.K -1,

gglc:ggk'r_a;k‘i"tk-l-la k=1,..., K —1;
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9Dks = 9Tx—y + 0Dy + ADyp — ADs) k=1,...,K;
9bys = 9F,_, + 5,5 — abyp k=1,...,K;
9Dy = 9Dxs + bDyr + ADyr — ADyr k=1,...,K,
gng=gng+bng_a£kT7 k=1,..., K.

The summary statistics are summarized in Table 3.30.

Table 3.30: Summary statistics for Model 4, the Fallback Terminal Tributary model.
The number of dams is K.

Statistic Definition

a; Number of non-fallback fish that were detected at site 1,
i = R7T07DIB;D1T7T17 oo Ty

af’ Number of fallback fish that were detected at site 1,
i =Ty, D18, D17, 11, ..., Tk;

b; Number of fish detected at site 1 as non-fallback fish and detected
upstream as non-fallback fish, i = R, D15, D17, Das, ..., DxT;

bF Number of fish detected at site i as fallback fish and detected upstream (as
fallback fish), ¢ = D15, D11, Dap, ..., DkT;

h; Number of fish detected at site ¢ as non-fallback fish and next detected
upstream as fallback fish, ¢ = R, D15, D17, D2, ..., DKx-1,1;

tx Number of fish detected as fallback fish first at site Ty_1, Dip, or Dgr,
k=1,..., K,

Gi Number of fish detected after site ¢ that were not fallback fish at site 1,
i = R)T():D].B)DIT’TI,' . 7DKT;

giF Number of fish detected after site ¢ that were fallback fish at site 4,

t =Ty, D1g, D17, T1,...,Dkr.

The minimal sufficient statistics are functions of the statistics listed in Table 3.30, and are
listed in Table 3.31. For the full model with K dams, there are 9K + 1 minimal sufficient

statistics, and an equal number of parameters.
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Table 3.31: Minimal sufficient statistics for Model 4, the Fallback Termmal Tributary
model. The number of dams is K-

Statistic Definition
ar, Number of fish detected at site T}, as non- fallback fish,
k=0,..., K -1
a%c Number of fish detected at site Ty as fallback fish,
k=0,...,K ~1;
br+ hgr Number of fish detected after the initial release;
tk Number of fish first detected as fallback fish at site Ty—1, Dy,
ot Der, k=1,...,K;
ap,p —bp,gy —hp,z Number of non-fallback fish detected for last time at site Dyp,
k=1,...,K;
apyr — bpyr — hpyr  Number of non-fallback fish detected for last time at site Dy,
k=1,...,K;
ag s bE Dis lljumlber of Iiaillback fish detected for last time at site Dyp,
CLDk . - bk Dir gumlber of Iiallback fish detected for last time at site Dyr,

Number of fish detected at site Dyg, k=1,..., K;
Number of fish detected at site Dy, k=1,..., K.

aDIcB + a’DkB
ADyr + a’Dkfr

The likelihood for Model 4 can be expressed as follows:

a N-—
L x ‘I’RTOTO‘I’Rpls(‘I’RTO)aTO(@RDIB)gT"X TR

9Tj_ F 9Ty 49DkB F 95 . o7y F af,
X H {¢Dk_1,T,DkB(¢Dk—-1,T)DkB) * 1¢DkB,DkT(¢DkBsDkT) DkB¢DkT,Tk(¢DkTuTk) T

F
% Dp b, p 9T 1 V9T, ~ODrp 0Dy, 0Dy +aD, Dip+9D,, —0Dkr —0D,
Dis Dys Drr Dyr

ap,p—boyg—hDip , F
XXDkB (XD;CB)

x H {fﬁfs;

FE _BF —~b -h F  _F
Dy kaBX‘Z)';/cTT Dir DkT(ngT)aDkT kaT}

D) IPkT —test } (3.47)

where K is the number of dams and N is the size of the release group. Equation (3.47) may
be tailored to a particular data set by specifying K, removing any extraneous parameters,
and renaming parameters according to observed detections, if necessary. This is done for

the 1996 Chinook salmon data set in the next section.
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Maximum likelihood estimates from Model 3a may be modified to provide initial values
for a numerical optimization routine used to fit Equation (3.47). For example, the maximum
likelihood estimate of ¢;; from Model 3a may be used as the initial value for both ¢;; and
qbf; in Model 4. Fallback parameters f; are likely to be low, so small initial values should be
chosen for these parameters (say, 0.01); the optimization routine is unlikely to be sensitive
to initial values of the f; parameters. The transition parameters ®p ,, ®r.p, 5, (Dg,To’ and
@ﬁ’ D, Must sum to < 1. These parameters include the factors fr or (1 = fr) and so have
no counterparts in Model 3a. However, because Model 4 has an equal number of parameters
and minimal sufficient statistics, the maximum likelihood estimates of ®r 1, and ‘I)ﬁ,To are

easily derived from the minimal sufficient statistics:
& _ HF _ F
@RaTO - aTO/N7 q)R,To - a’To/N' (348)

Thus, Equation (3.48) provides initial values for ®x 7, and @ﬁyTO, and 1 — (:IS RT, + EI;g,TO)
may be split equally over the initial values for &5 p,, and @ﬁy D, Likewise, initial values
for transition parameters from site Dy must be such that neitl'ler XDy NOT xgw is negative.
The estimates for the 1996 Chinook salmon data set presented below were not sensitive to
initial values,

8.8.4 Performance Measures

The perceived probability of surviving from the release to the top of dam K, or perceived

system survival, is Ssys, defined as follows:
Ssys = MR,
where

— F F F
NR = ®R,D,5PD15,D17MID1r + <I)R,D13¢D13,D1T77D1T’
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NDr = (1 = fD)cT)¢DkT,Dk+1,B¢Dk+1,B,Dk+1,T77Dk+1,T

+ kaT¢]1;kT7Dk+1,B¢Il;k+1,Bka+1,Tngk+l,T’ k=1,...,K-1
NMDgr = 1; (3.49)
nng = d)ng,cha}-l,B¢gk+1,BaDk+1,Tn£k+1,T’ k=1,...,K-1
ngKT = 1.

The variance estimator of §3y3 is defined in Appendix B.

In Model 4, the estimator for unaccountable loss excludes (i.e., accounts for) fallback
that is followed by detection, (i.e., detection histories containing the code FB), because
detection occurs only when fish are either passing a dam going upstream or entering or
exiting a tributary. Thus, fallback followed by detection implies that the fish has turned
around from its fallback and is once again headed upstream (or to a tributary). The f;
parameters represent the probability of entering the post-fallback state, so their use implies
that the fish was last detected going upstream or to a tributary. Fish that fall back and do
not subsequently turn around and swim back upstream are not detected during or after their
fallback, so they should fall into the unaccountable loss category. All estimable transition
parameters in Model 4 apply only to transitions directed upstream or to a tributary, so by
default, the unaccountable loss estimator for Model 4 (and Models 5a, 5b, and 6) includes
fish who fall back or otherwise swim downriver and do not subsequently reascend any dam
or exit to a tributary. It is possible that some fish fall back or swim downriver and then
turn around to swim upriver again, but evade detection at all subsequent dams. If this is
the case, then the f; parameters will be negatively biased. Because ur depends on both the
factors f; and (1 — f;), it is not obvious whether ug will be positively or negatively biased.
If fallback does not affect subsequent survival, then pgr will be unaffected if f; is biased. As
with Models 2, 3a, and 3b, if the assumption of 100% detection at the tributary antenna
arrays is faulty, then the transitions ¢p,, 1, and qbngYT,Tk will be negatively biased, and

so ugr will be positively biased.
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The probability of unaccountable loss for Model 4 is ug, defined as follows:

pr=1-Pp1, - q)g,To - ®R1D13¢DIB,D1T(1 — UD;r)

~ ®F 0,595,500 (1 = KDy (3.50)

where

1= pupyr = (1 = fDpr)9Der i + kaT¢$kT,Tk

+(1- kaT)¢DkTaDk+1,B¢Dk+1,BsDk+1,T(1 - NDk+1,T) :

+ kaT¢§kTka+1,B¢§k+1,Bka+1,T(1 - Mgkﬂ,T)’ k=1,...,K-1
1 - ppyr =1, , k=K,
1- “ng = q%wka + ¢ng7Dk+1,B¢gk+1,B:Dk+1,T(1 - “gkﬂ,r)’ k=1 K-L
1-ph, =1, k=K.

The variance estimator of [ig is defined in Appendix B.

3.8.5 1996 Chinook Data Set

The summary statistics for Model 4, observed from the full 1996 Chinook salmon data set,
are presented in Table 3.32. Table 3.32 shows that no fish were detected at sites Dog, D3p,
Der, or Tg. With no detections at these sites, the transition parameters corresponding to
these sites cannot be estimated. Instead, those transition parameters are replaced with the

following:

¢D1T7D2T = ¢D1T»D23¢D23:D2T;

F 4 F F .
¢D1TYD2T - ¢D1T»D23¢D257D2T’
®Dor,Dyr = @Dyp, D5 PDyp,Dar'

F _.F F .
¢D2T>D3T - ¢D2T7DSB¢DBB»D3T’
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®Dgp,Drg = ® D5, Der ®Der, D75}

F _ . F F
¢D63,D7B - ¢D6BvD6T¢D6TvD7B'

Only a single fish (fallback) was detected at site Ts; the transition parameter ®Dyp,Ts MUSE

be fixed to 0. Also, no fish were first detected as fallback fish after site Dgp, s0 fp,p must

be fixed to 0. Other parameters as described in Table 3.29 (K = 7) may be estimated.
The likelihood for Model 4, tailored to the 1996 Chinook salmon data set, is

F r F
N—gr 40Ty 5970 F ok & F 9% ap g+, 97697, ~2D15 %D g
Lxxg *0p5®rb,s(Prm) (2 )7To

R,Dip pDu; Dig
F
ap;g—bpig~hDip  F Nab —bh  9Dip F g5 _ aDirTaD .,
X XD1p (XDIB) 1B IB¢D18:D1T(¢D181D1T) ‘BPDir

Fo_ _r
9015 +9D, 5 ~01T aDlTXaDlT_bDlT_hD1T< g

)ang—bng f2 (1-f )ngT_t2
9D;r Dyr Dyr Dir

iT

a7y F a; g1y a g; ADgyp +aS2T 91y +97El =GQDyp “agn,
X ¢D1T,T1 (¢D1T,T1) 1 ¢D1T7D2T (¢D1T,D2T) lpDZT Dar

apyp=bDyp ~hDyp ¢ F of, . —bb i3 9D, —t3 402 F of
X XD2T (XDZT) T T fD2T (1 - szT) 2T ¢D2T1T2 (¢D2T,T2) 2

F Fo_ _4F

% ¢9T2 (¢F )g% ADyr +apyr 9Ty 97, ~4D3r ~%Dyr | AD3p —bpgr~hpyr

Dor, Dy \7¥ Dar,Dar Dsr 9Dsr Dar

Fo\aE_—b5. —ty ,OT F F .97 F 9F,
X (XD3T) Dar “Dar fD43T(1 - fDaT)gDST 4¢D33T»T3 (¢D3T,T3)GT—3¢D;T’D4B (¢D3T,D4B) s

P Fo_ _F
% ap,p+ep,, 9T3H97,~0Dsp ~%D,p D45 ~bDyp ~hpyp ( F )a£43 ~bp,p ¢9D4B
Ppg 9D,p Dyp XDsp D4p,Dar
F a +af 9D +gE _—ap —af a -b ~h . £ _pE
F 9p Dyr Dyr 4B Dyp AT Dyr Dyr Dyr Dyt F ap D
X (¢D4B,D4T) 4BpD4T qD4T Dar ( D4T) 4T 4T

F
t —tg 0T, F af, 97 F gk  aDspTap
X 34T(1 - fD4T)9D4T 5¢D44T,T4(¢D4T,T4) s ¢D:T,D5B (¢D4T7DBB) T4stB °F

F F
974 +97, D53 =Dy  @Dsp—bDsp~hDsp ( F af, —b5 . 9Dsp F 95
Dsp Dsg (XDss) 5B 58 ¢D53,D5T (¢D53,Dsr) 58
aDsT +a£5T gDSB+g£53_aD5T_a£5T aD5T —bD5T ——hDST ( F )agsT_bEST ft6
X stT Degr XD5T XDST Dy
(1 _ f )gDST —tg (¢F )0,!}5 ¢9T5 (¢F )971':5 %Dgp +a’£63 9T +g§5 —ADgp _af)eB
X Dsr Ds1,T5 Dsr,Dep \¥ Ds7,D6B Ppss D¢p
apgp—bDgs—hDep [\ F af, ~bh 44 _ 9pgp—t7 49P6B F 95
X XDGB <XDGB) 68 85 fD63(1 fDGB) 6B ¢D637D7B (¢D63,D7E) 6B

F Fo_ _.F
aD7B+aD7B gDGB+gDGB aD7B a’D7B aD7B "bD7B_hD7B ( F )a573—b£73 ¢9D7B
Drp Drp XDy XDrg Dy, Drr
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F F F
F a a —a —~a - - E E
95,5, 27 D7 D78 9D, g ~OD7r " 4Dy Dy ~bDyr hD?T(XF )3Drr ™ —b

F D
X (¢D73 Drr ) Ppyyp Dyr Drrp Dot T

F
¢D7T,T7(¢S7T,T7)GT7' (3.51)

Because the data are sparse for dams 5 (IH), 6 (LMO), and 7 (LGR), it may be worth-
while to fit Model 4 to a reduced data set that includes only dams 1 (BON), 2 (TDA), 3
(JD), and 4 (MCN) (i.e., K = 4), along with the tributaries in the reaches immediately
above and below these dams. Such a model is reasonable if the focus is on salmon returning
to mid-Columbia spawning sites rather than to Snake Ri\}er sites. Table 3.33 shows the
observed summary statistics from the reduced 1996 data set including only the first 4 dams
and their tributaries. Most statistics in Table 3.33 are the same as those in Table 3.32,

with changes only in b;, b, and h; for upriver detection sites. As in the full model, it is

7 )
necessary to use parameters ¢p,r Dyr, qbﬁm Dop 9Dyr,Dar» and ¢52T’ Dsp due to the lack of

detections at sites Dyp and Dsp.

The likelihood for Model 4 for the reduced data 1996 set is

F

9R §%To 9To T ok aDlB+aD13 9To+9T0 D1~ g
Lo xg 205 5%, (Phn)" O(QRDUB) °Pp, 5 9D, 5

ap;g=bpig—hp1g, F e _-bf 9D g F g5

X XDlB (XD]_B) 18 1B ¢D13,D1T(¢DIB>D1T) !

F F
_ —-a — —
901590, 54017 8D 1 aD;p ‘bDlT thT( g

aglf_bngft2 (1 = fpyp)9Pir~ t2
Dyr Dir Dyr Dir

i7)

F F F
F F a a —ap,—a
af. ¢9T1 F )ng Dyp 0D, 9Ty +97 ~CDyp —%D,

F
¢D1T T (¢D1T»T1) Dir,Dar (¢D1T»D2T Do Dyr

apy,r—bp,—hp F yoE —bE 4 —t3 ,OT F af,
X Xng*T 2T 2T (XDzT) Dor D2Tf1732 (1 — sz )gDZT 3¢ 22T,Tz (¢D2TYT2) Ty

P
97, F gT aD3T+aD3T 97, +9T2 ADgp %Dy 4Dar—bDgr—hDgp
X ¢D2T,D3T(¢D2TvD3T) *PDgr 9Dsr XDgrp

-bE ‘ —t4 ,OT F E_ 9T F )
(X ST )aDST Par fDST ( - fDST )gDST ta ¢D33T1T3 (¢D3T7T3 )G‘T—S ¢D33TxD4B (¢D3T1D4B )9T3

F
a F
D4B+aD4B 973 +9f, —ap, 5~ 9p,g5 . D5 —bD,5—hD,p (Xg )aD“3 bD4B¢9D4B

X Ppug 9D4p Dyp 4B Dyp,Dyr
Fo gb, . 9Dgr +ag4T 9D4p +9g43 —aDyr ’"agw' aDyp—YD4p —hDyp , F ab _—bE
X (¢D4B,D4T) 4Bp‘D4T Dyr D4T (XD4T) 4T 4T

F
X ¢aDq:14TyT4 (¢E4T:T4 )aT4 : (352)
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3.8.6 Results

Program USER!® was used to fit Model 4 to the data via maximum likelihood. Maximum
likelihood estimates from the full data set (K = 7 dams) are listed in Table 3.34. The
log-likelihood was -3452.7375, with an AIC of 7007.475. The perceived system survival rate
is estimated at §3y3 = 0.1075 (§E = 0.0108), and the unaccountable loss rate from the
release is estimated at [ig = 0.2743 (§E = 0.0155).

Model 4 is a modification of Model 2; it uses terminal tributary detections as in Model
2, but also accounts for fallback. In general, if the overall effect of fallback is to lower
subsequent transition rates (i.e., ¢£. < ¢i;), and if fallback events are common (i.e., f; are
not small), then the perceived survival rate estimated from Model 4 should be less than
that estimated by Model 2, while the opposite should be true for the unaccountable loss
rate. However, if fallback events are uncommon and if Q’;ij for Model 4 is larger than aij for
Model 2, then the estimated perceived survival rate may be greater, and the unaccountable
loss rate smaller, for Model 4 than for Model 2, even if (ZS < aij for Model 4. For the 1996
data set, although 7, is small (< 0.05) for all sites), neither $¢j nor 5{; is consistently greater
than the other for all sites ¢ and 7, and it is hard to predict how the estimates of perceived
system survival and unaccountable loss rates will compare between Models 2 and 4. In fact,
the estimate of perceived system survival is larger, and the estimate of unaccountable loss
is smaller, for Model 4 than for Model 2. The benefit of Model 4 over Model 2 is more

accurate estimates in the case of common fallback events.

Table 3.34: Maximum likelihood estimates of parameters from Model 4, the Fallback
Terminal Tributary model, with K = 7 dams.

Category Parameter Estimate S.E.

Transition ®g T, 0.0035 0.0020
L 1 0.0047  0.0024
®r,pis 0.8495  0.0124
L b, 0.1205  0.0113
®Dy5,Dyr 0.9731  0.0079
o5 - Dir 0.9734  0.0213

Bhttp://www.cbr.washington.edu/paramEst/USER/
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Table 3.34 continued

Category Parameter Estimate S.E.

Transition ¢D1T,T1 0.3187 0.0183
ODir Ty 0.3166  0.0409
®Dy7,Dar 0.5940  0.0200
¢ Pz Dar 0.5709  0.0452
¢D2T,T2 0.1473  0.0182
¢ B T 0.1831  0.0415
®Dyr,Dar 0.7648  0.0226
O Do Dsr 0.7735  0.0462
$Dsr,Ts 0.0960  0.0176
O Per T 0.1302  0.0384
ODsr,Dus 0.8406  0.0223
ODsr Dus 0.8126  0.0464
®Dyp,Dar 0.9858  0.0093
ODup Dar 0.9355  0.0339
PDyr, T 0.5862  0.0327
O ur T 0.2549  0.0552
®Dyr,Dss 0.3469  0.0316
OB Dss 0.6548  0.0610
¢D53,D5T 0.9531  0.0269
¢>DsB,DsT 0.9774  0.0261
P Dy Ty 0.0240  0.0235
$Dsr,Den 0.9602  0.0332
OPr Dos 0.9877  0.0446
®Deg.Drs 0.9584  0.0304
GPep.Drs 0.8909  0.0614
®Dyg,Drp 0.8995  0.0379
G5 Do 0.7777  0.0706
$Dyr Ty 0.8155  0.0502
OB T 0.8173  0.0737

Detection  pp, 5 0.9407  0.0085
PDyr 0.8665  0.0127
PDyy 0.8518  0.0175
PDyr 09571  0.0112
PDss 09171  0.0162
PDyr 0.9369  0.0148
PDss 0.9302  0.0238
PDyr 0.8725  0.0318
PDss 0.6413  0.0472
PDrs 0.9775  0.0157

PDyr 0.9726 0.0191
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Table 3.34 continued

Category Parameter Estimate S.E.

Fallback /D,y 0.0534  0.0098
Dy 0.0330  0.0094
FDur 0.0331  0.0109
FDur 0.0190  0.0095
Dz 0.0201  0.0201

Maximum likelihood parameter estimates from the reduced data set (K = 4 dams [BON,
TDA, JD, MCN]) are listed in Table 3.35. The log-likelihood was -3050.9398, with an AIC of
6163.880. The perceived system survival rate is estimated at §3ys = (0.3412 (@ = 0.0170),
and the unaccountable loss rate from the release is estimated at ip = 0.2199 (3’-1\? = 0.0151).
This estimate of perceived system survival is larger than the analogous estimate when all 7
dams are considered because here, the “system” is considerably smaller, including only the
first 4 dams: §sys,MCN = (.3412 (§E = 0.0170) versus :S‘\sys,LGR = 0.1075 (@ = 0.0108).
Likewise, the estimate of the unaccountable loss rate is smaller for the 4-dam system than for
the 7-dam system: figp = 0.2199 (§E = 0.0151) for the 4-dam system, versus [ir = 0.2743
(§E = 0.0155) for the 7-dam system. If the 4 dams chosen for the 4-dam analysis had been
distributed throughout the larger system, with LGR among the 4 dams chosen, then the
estimate of system survival and unaccountable loss rates should have been comparable for

the smaller and larger systems.

Table 3.35: Maximum likelihood estimates of parameters from Model 4, the Fallback
Terminal Tributary model, with K = 4 dams.

Category Parameter Estimate S.E.

Transition ®gm, 0.0035 0.0020
' % 1 0.0047  0.0024
®Rr,Dip 0.8495 0.0124
L b, 0.1205  0.0113 °

PD;5,Dir 0.9731  0.0079

Dy s.Dir 09734  0.0213

®Dyr, Ty 0.3187 0.0183

OBy 0.3166  0.0400

$Dir,Daor 0.5940  0.02000

5. Dor 0.5709 ~ 0.0452
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Table 3.35 continued

Category Parameter Estimate S.E.

Transition ¢p,. 1, 0.1473 0.0182
¢ o 0.1831  0.0415
®Dyr Dyr 0.7648  0.0226
¢ Dyr Dar 0.7740  0.0463
$Dyr Ty 0.0961  0.0176
OBy Ty 0.1299  0.0384
$Dsr,Das 0.8423  0.0223
G Psr Dis 0.8033  0.0483
®Dap,Dar 0.9826  0.0151
B es.Dar 0.8699  0.0512
$Dyr Ty 0.5761  0.0332
P r T 0.2977  0.0629

Detection ~ pp, 4 0.9407 0.0085

. PDir 0.8665  0.0127
PDyr 0.8518  0.0175
PDyr 0.9569  0.0113
PDys 0.9178  0.0164
PDyr 0.9533  0.0172

Fallback  fp,; 0.0534  0.0098
fDar 0.0330  0.0094
fDsr 0.0336  0.0111

3.9 Model 5: Fallback and Tributary Model

Models 5a and 5b incorporate both fallback and tributary visits. As with Model 4, the
term “fallback” as used here includes any travel directed downriver between two detection
sites, as well as actual falling back over dams. Model 5a accommodates fallback data in
the same way as Model 4: fallback is assumed to have a permanent memory effect on
subsequent transitions. Like Model 3a, Model 5a assumes that tributary detections have no
effect on subsequent transition rates. Model 5b, on the other hand, accommodates tributary
detections in the same way as Model 3b: a tributary visit is assumed to affect transitions
in the reach following that tributary, but not later transitions. Model 5b accommodates
fallback data in a slightly different manner than Model 4; Model 5b assumes only temporary
fallback effects, and fallback effects may be extinguished by a tributary visit." Unlike Model 4,

Models 5a and 5b allow for both terminal and non-terminal tributary detections. Individuals
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are allowed to enter a tributary and then return to the river to continue migration (i.e.,
individuals may exhibit tributary visiting behavior). Unlike Models 3a and 3b, individuals
may also fall back over dams they have already ascended or otherwise swim downriver.
While travel during fallback is not explicitly modeled, the data note when a fish has fallen
back and reascended (or entered a tributary), and the fish is known as a “fallback fish”
thereafter. The model allows for individuals to become fallbaqk fish between tributary and
base-of-dam detection sites, and between top-of-dam and tributary detection sites. As in
Model 4, individuals may not move from the non-fallback state to the fallback state between
the base and top of a given dam. Like Model 3a, Model 5a allows for non-terminal tributary
detections, but assumes that tributary behavior in one reach does not affect parameters in
later reaches. Model 5b allows for tributary visits in orie reach to affect fallback, survival,
and tributary entry and exit rates in the following reach. Both Models 5a and 5b allow for
fallback to affect survival and tributary entry and exit rates in the following reach. Model
5a extends this fallback effect throﬁghout the remaining reaches, while Model 5b limits the
effect to the reach following the fallback event. Thus, Model 5a incorporates a “permanent”
memory effect in the same way as Model 4, while Model 5b incorporates a “temporary”
memory effect. Also, Model 5a includes a memory effect for faliback but not for tributary
visits, and Model 5b includes a memory effect for both fallback and tributary visits. Because
of the different types of fallback effect uses, Models 5a and 5b are not nested. However,
they use the same data format.

A model that includes the permanent memory effect of Model 4 and the temporary
tributary effect of Model 3b is a logical continuation of the sequence of models. This is

Model 5c¢.

3.9.1 Data Description

The data format used for Models 5a and 5b is the same as that used for Model 4, but
with non-terminal tributary detections included. The fallback code (FB) may appear im-
mediately after any other code in the detection histories, but not immediately before the

final detection site (Tx) and not between the base-of-dam and top-of-dam detections for
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the same dam (i.e., not between Dyp and Dyp, k =1,...,K). As with Model 4, this last
restriction arises from treating each dam'’s two detection sites as a pair when reducing the
data to the post-fallback paths. Any pre-fallback detection at a base-of-dam detection site
is ignored in favor of the post-fallback path past the dam.

Each of the detection histories considered in Sections 3.7 and 3.8 is also valid for Mod-
els Ba, 5b, aﬁd 5c. In addition, detection histories with both fallback and non-terminal
tributaries are valid for Models 5a, 5b, and 5(.:. One example is the detection history
R FB Ty D1 Dor To D37, implying that the fish visited tributary Ty but fell back be-
tween release and reachingATo, then ascended dams 1 and 2, visited tributary T3, ascended
dam 3, and was not detected above dam 3. A second example of a detection history is
R Dig Th FB Dyp T3. A fish with this detection history ascended dam 1 directly upon
release, visited tributary 77, continued to ascend dam 2 after falliﬁg back between T} and

dam 2, and finally entered tributary T3 and was not detected again,

5.9.2 Model 5a: Fallback and Memory-Free Tributary Model

Model 5a assumes no effect of tributary behavior in reach k£ on survival, detection, or

tributary parameters in reaches k+1,..., K or in‘ascending damk+1,fork=1,...,K—-1.

3.9.2.1 Notation

The same basic notation used in Model 4 may be used here. The index ¢ indicates a site
from which a transition is made, and the index j indicates a site to which a transition is
made. The transition parameters ¢;; and qu; represent the probability of the transition
(survival and movement) from site i to site j for fish who are and are not fallback fish,

respectively:

¢i; = Pr[Survive and move from site ¢ to site j | Reach site ¢, non-fallback fish];

¢£ = Pr[Survive and move from site ¢ to site j | Reach site ¢, fallback fish]; (3.53)
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where ¢ = R, Ty, D15, D17, 11, ..., Tk -1, DB, DT, and where

4
Digor Ty for i = R;

DkT fori=DkB,k='1,.A.,K;
J =14 Dri1B fori=Dypr,k=1,.... K —1; (3.54)
Ty fori=Dyr,k=1,..., K,

\Dk—i-l,B fori=T,k=0,...,K —1.

Detection at site i occurs with probability p;, conditional on reaching that site. The
parameter ¢; = 1 — p; is the probability of not being detected at site i, conditional on
reaching that site. Detection rates in the tributaries are assumed to be 100%, i.e., pr, =1
for k = 0,..., K. Detection parameters are the same regardless of previous fallback or
tributary visiting behavior. As with Model 4, let f; represent the probability of a non-
fallback fish becoming a fallback fish immediately after passing site 1. It is assumed that
fallback occurs before the transition to the next observed site in the (simplified) detection
history. The exception is for i = Dgp, a base-of-dam site, in which case it is assumed
that the fish becomes a fallback fish after passing the corresponding top-of-dam site (Dgr),
whether or not it is detected there.

The probability of not being detected after site i, given having reached that site as a
fallback fish, is x/:

Xbis =1 = 8D, 0.0ur + 8Dy p.Dir IDkr X Drps k=1,...,K;

ngT =1- ¢ng:Tk - ¢ng7Dk+1,B + ¢ng,ch+1,B'qu+1yBXglc+1,B’» k=1,...,K-1;

XDyr =1 = 0D r 1 | (3.55)
Xie =1 = 0%, Deern + O Dess 5 TDki1,5 XDiy1 50 k=0,...,K~1.

The probability of not being detected after site ¢, given having reached that site as a non-

fallback fish, is x;:
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Xr=1-®pn — ®hn, — @015 (1 — 4Dy5XD15)

F
- q)gme {1 —qp,p(1 - ¢DIB:D1TpD1T)} i
XDys =1 = @Dyp,Der + PDip,Dpr4Dkr XDy k=1,...,K;

XDir = 1= (1 = fDyr) {¢DkTyTlc + ¢DkT>D1¢+1,B(1 - qu+1,BXDk+1,B)}
- kaT(bng,Tk (3.56)

F F — .
- kaT¢DkT,Dk+113 {1 - QDIC-H,B(]' - ¢Dk+1yB,Dk+1yTpDk+l,T)} i k - 1’ v ’K - 1’
XDxr =1 = ®Dgr T

xT, =1—(1- ka)¢Tk»Dk+1,B(1 — ADks1,8XDis1,8)

F F
- ka¢Tk»Dk+l,B {1 - QDHI,B(l - ¢Dkz+1,B»Dk+l,TpDk+1,T)} ) k=0,...,K -1

The parameters used in Model 5a are listed in Table 3.36.

Table 3.36; Parameters used in Model 5a, the Fallback and Memory-Free Tributary
Model. The number of dams is K.

Parameter Definition

Or1, Probability of surviving and moving from the release point directly

» to site Tp without becoming a fallback fish; .

Pr g Probability of surviving and moving from the release point directly
to site D;p without becoming a fallback fish;

‘DQTO Probability of surviving, becoming a fallback fish, and then moving
from the release point directly to site Tp;

@gy Din Probability of surviving, becoming a fallback fish, and then moving
from the release point directly to site Dy p; _

o Probability of surviving and moving from site ¢ to site j, given

having reached site ¢ and a non-fallback fish, for

i =T, D15, D17, ..., Dgr and j is as described in Equation (3.54);
cbf; Probability of surviving and moving from site ¢ to site 7, given

having reached site i and a fallback fish, for ‘

it =T9,D18,D17,...,Dgr and j is as described in Equation (3.54);
i Probability of being detected at site 4, given having reached site 7,

for i = Dhg, D17, D23, ..., DT}
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Table 3.36 continued

Parameter Definition

G Probability of avoiding detection at site ¢, given having reached
site 1, for i = DlBaDlTaDZB> e aDKT; =1 — Dis
fi Probability of becoming a fallback fish upon leaving site ¢, given

having reached site i as a non-fallback fish, for
1= TOaDlT,TQ,D2Ta s aTK—l;

Xi Probability of not being detected after site i, given having reached
site ¢ as a non-fallback fish, for i = R, Ty, D15, ..., Dk}
xF Probability of not being detected after site 1, given having reached

site 7 as a fallback fish, for i = Ty, D15, D17, ..., Dgr.

The parameters in Table 3.36 can be used to express the probabilities of the possi-
ble detection histories. For example, the probability of observing the detection history

R FB Ty Dig Doy Ty Dsr is

F F F F F
PrlR FB Ty D1 Dor Tz Dyr] = <I)R,T0¢T0,D1BleB¢D13,D1TqD1T¢D1T,D25QD25¢D23,D2T

F F F F
X PDyp ¢D2T NP ¢T2,D3B dD;3p ¢D35 ,D37pPD3r XD3T : (357)

The probability of observing the detection history R Dig Ty F'B Dsp T3 is

PT[R Dyp Th FB Dgp T3] = q)R»DIBleBqﬁDIBleTqDlT(l - fD1T)¢D1T,T1 fT1¢§1,D23pD23

F F F F F
X 9Dy, Dyr9D2r PDor,D359D38 P Dyp, Dy 4Dsr P Dar T3 XTs
(3.58)

The remaining detection histories can be expressed similarly.

3.9.2.2 Likelihood

The summary statistics used in the likelihood are similar to those used for Model 4: the
number of non-fallback and fallback fish detected at each site (a; and af, resbectively); the
number of fish detected at a site as non-fallback fish that are next detected as either non-
fallback (b;) or fallback (h;) fish; and the number of fish detected at site ¢ as fallback fish

that are detected upstream (bf). For Model 5, the statistics b;, hi, and bf may be non-zero
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for tributary sites as well as dam sites. Because fish may enter the post-fallback state upon
leaving tributary sites as well as the release site and the top-of-dam sites, a modification
of the statistic ¢, from Model 4 is needed for Model 5a: define d; to be the number of fish
that are detected as fallback fish for the first time upon leaving site 4, where ¢ can be either
a tributary site (Ty) or a top-of-dam site (Dyr). The statistic dp, is the number of fish
detected at site Ty as non-fallback fish and next detected at either site Dyy1 p or Dgiq 7
as fallback fish. The statistic dp,, is the number of fish detected as fallback fish for the
first time at sites Ty, Dy+1,8, or Di41,7, without being detected as non-fallback fish at site
Tk. Also useful are the statistics g; and giF , representing the number of non-fallback and
fallback fish, respectively, detected upstream of site i. These statistics can be expressed in

terms of the other summary statistics as follows:

gr = br + hpg;
gk =0;
91 = 9RrR + bTo + hTo — a7y - dR;

F F F,
91, = bTo + dR — a5

QT;C=9D,cT+ka+ﬁTk—aTk—-deT, ‘k=1,...,K—1;
9¥k=9£—kT+deT+bﬂ—a¥k7 k=1,...,K-1;
9Dy = 9T,_y — A1y_;, +bDys + hDys — ADys) k=1,...,K;
gng = gTEk_l +d7,, +b§k3 - aﬁw, k=1,...,K;
9Dyr = 9Dyp + 0Dy + ADyr — A0y k=1,...,K;
Tber = b + bDr — Thur k=1,... K.

The summary statistics for Model 5a are listed in Table 3.37, and the minimal sufficient
statistics are listed in Table 3.38. The full model has 12K + 1 minimal sufficient statistics,

and an equal number of parameters.
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Table 3.37: Summary statistics for Model 5a, the Fallback and Memory-Free Tribu-
tary model. The number of dams is K.

Statistic Definition

a; Number of fish detected at site ¢ as non-fallback fish, for
i =T1o,D18,D11,..., D7, Tk;

af Number of fish detected as fallback fish at site i, for
i = To, D1, D11, ..., Dk, Tk; ‘

br Number of fish first detected after the initial release as non-fallback fish:

b; Number of fish detected at site ¢ as non-fallback fish and next detected
upstream as non-fallback fish, for i = Ty, D1g, D17, ..., Dgr;

bF Number of fish detected at site 7 as fallback fish and detected upstream (as
fallback fish), for ¢ = Ty, D15, D171y ..., DKT]

hr Number of fish first detected after the initial release as fallback fish;

h; Number of fish detected at site ¢ as non-fallback fish and next detected
upstream as fallback fish, for i = Ty, D1g, D17, ..., Tk _1;

dr Number of fish detected as fallback fish for the first time at site Ty, D1p,
or Dir, without being previously detected at site Ty as non-fallback fish;

dr, Number of fish detected at site T as non-fallback fish and next detected at
site Dgi1,B or Dyyqr as fallback fish, for k =0,..., K — 1; ‘

ADyr Number of fish detected as fallback fish for the first time at site Tk, Dy+1,5,
or Dyy1,7 and not previously detected as non-fallback fish at site Ty,
fork=1,...,K—-1;

gi Number of fish detected after site i that were not fallback fish at site i, for
i = R, Ty, D1, D1r, - - -, DKT; ’
gf Number of fish detected after site ¢ that were fallback fish at site 4, for

i =Ty, D1p,D17,...,Dgr.

Table 3.38: Minimal sufficient statistics for Model 5a, the Fallback and Memory-Free

Tributary model. The number of dams is K.
Statistic Definition
ar, Number of fish detected at site T as non-fallback fish, for
k=0,...,K -1,
aﬂ Number of fish detected at site T} as fallback fish, for
k=0,... K-1,
br+ hp Number of fish detected after the initial release;
dr Number of fish detected as fallback fish for the first time at site

Ty, D1ig, or D17, without being previously detected at site Tp
as non-fallback fish;
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Table 3.38 continued

Statistic Definition
dr, Number of fish detected at site Tj as non-fallback fish and next
detected at site D1, or Dyy1 1 as fallback fish, for
k=0,...,K -1,
dDyr Number of fish detected as fallback fish for the first time at site
Ty, Dgy1,8, or Diy1 1 and not previously detected as non-
fallback fish at site Ty, for k=1,..., K — 1;
br, + h1, Number of fish detected as non-fallback fish at site T} and
detected later upstream, for k =0,...,K — 1;
b%c Number of fish detected as fallback fish at site T} and detected
later upstream, for k=0,..., K — 1;
ap,s ~ bp,g — M,z Number of non-fallback fish detected for last time at site Dyp,
for k=1,...,K;
apyr — bpyr — hp,r  Number of non-fallback fish detected for last time at site Dy,
for k=1,...,K,
aDkB ka 5 Number of fallback fish detected for last time at site Dyp, for
k=1,...,K;
af Dir — b Der Number of fallback fish detected for last time at site Dyp, for

F
aDkB -+ ang
Dy -+ aDk'r‘

k=1,...,K;
Number of fish detected at site Dy, k =1,..., K; for
Number of fish detected at site Dy, k=1,..., K.

The likelihood for Model 5a can be expressed as follows:

N—gpr 5%
L x xp CI)R,TO

F o_pE d
x (k)8 g { (1

9Dy

gut

K~1
grR—dRr—ary ;= F £ xF dr—aF,
@R,DIB O(@RvTo)aTo (®R»D1B) T H [XTk

DkB Dy

ary, —ka —hTy,

k=0
ka-%-th—di B
F bT +di
- ka)¢Tkak+l.B} ( Tk,Dk+1,B) k
F a +af
aTy, F ary, o PRBT “Dyp

¢DkB>DkT) D5 ¢DkTaTk (¢DkaTlc) *PDip

- —aF F F F
9Ty 19T, ~@Dkp Dy g D +p,. 9Dy +ID, p %Dy 9D, 1

X 4Dyp

Dyr 9Dyr

app—boyg—hopg , £ Naf —b5  epgp—bour—hour P \aB —bF
XX (XDkB) Dyp DIcBXDkT (XDkT) Dpr " 9Dpr

Dyp

chT

I

Dy (1 — fpop)9P6T ™~ deT¢ng:T dpyr —am,

F 95, . +dp,p—aof
(¢DkTka+1,B) i - Tk}’

Dy7,Dy+1,8

(3.59)
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where K is the number of dams and N is the size of the release group. Equation (3.59) may
be tailored to a particular data set by specifying K, removing any extraneous parameters,
and renaming parameters according to observed detections, if necessary. This is done for
the 1996 Chinook salmon data set in the next section.

Initial values for the optimization routine used to fit Equation (3.59) to data may be
found from the initial values used for Models 3a and 4. For parameters common to both
Models 5a and 4, the initial values from Model 4 may be used. For transition parameters
from tributaries (¢r,,p;..,  and ¢%c,Dk+1,B)’ the initial value for ¢7, p,.; 5 from Model 3a
may be used. Initial values for fallback parameters from tributaries (fr,) should be set to

low values (say, 0.01) or to the ratio dr, /ar, .

3.9.2.8 Performance Measures

The perceived probability of surviving from the release to the top of dam K, or perceived

system survival, is Ssys, defined as follows:

Ssys =R,
where
R = ‘I)R,TonTo + q’ﬁ,%ﬂﬂ + (I)R,Dua @Dy, D17 Dy + q)g,qubgw,Dn‘ngm’
with

NDgr = (1- kaT) <¢chT:Tk77TIc + ¢DkTaDk+1,B ¢Dk+1,BaDk+1,TnDk+1,T)

F F F F F — R
+ kaT <¢DkT7TkTITk + ¢DkTaDk+1,B¢Dk+l,B)Dk+1,TnDk+l,T>’ k=1,...,K-1
NDxr = 1;
F — A F F F F F — _
NDer = ¢DkT:TknTk + ¢DkT»Dk+1,B ¢Dk+1,BsDk+1,TnDk+1,T’ k=1,..,K-1

Mhwr = 1; (3.60)
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nT, = (1 - fT)c)¢Tk,Dk+1,B¢Dk+1>B)Dk+1,T77Dk+1,T

F F F _ 1.
+ ka¢Tk,Dk+1,B¢Dk+1,Bka+1,TnDk+l,T’ ‘ k=0,...,K—-1

VA F F . — —
N, = ¢Tk1Dk+1.B¢Dk+1,B:Dk+1,TnDk+1,T’ k=0,...,K -1

The variance estimator of §sys is defined in Appendix B.

Models 5a and 5b incorporate both fallback and tributary detections, including non-
terminal tributary detections. Non-fallback fish may or may not become.post-fallback fish
upon returning from a tributary, and this possibility must be accounted for in defining
unaccountable loss. If it is assumed that survival from each tributary to the next dam
upriver is 100% (as in Models 3a and 3b), then for Model 5a, the probability of a non-fallback
fish returning to the river from tributary Ty is (1 — fr,)é7, Dyry s + ka(bﬂ,DkH,B‘ The

comparable probability for fish that entered tributary T} as post-fallback fish is qbﬂ) Disrn®

The probability of unaccountable loss from the release is defined as follows for Model 5a:

pr=1-Ppr(1 - pr) — @R 7, (1 = ufy) — PR,D:15$D15,Dsr (1 — 1D1r)

®R,D15 8Dy 5,010 (1 = KDy )s (3.61)

where

l—pp =1-(1~- ka)¢Tk,Dk+1,B {1 - ¢Dk+1,B:Dk+1,T(1 - u‘Dk-H,T)}
F F F _ .
- ka¢Tk,Dk+1,B {1 - ¢Dk+1,B,Dk+1,T(1 - MDIC-H,T)} ) k=0,....,K -1
F _ F F F F _ .
1- HT, = 1- ¢TksDk+1,B + ¢TkaDk+1,B¢Dk+l,B>Dk+1,T(1 - /“‘Dk+1,r)’ k=0,....K-1

1= pDyr = (1= [D4r)0Dr 1 (1 = 1) + [y 8D 1 (1 — 45,
| +(1- fchT)¢DkT>Dk+l,B¢Dk+l,Bka+1,T(1 - lu’ch-H,T)
+ FDur Dz Diss 5PDrss 5. Drsr (L= Doy z)s k=1,...,K -1
1— ppe =1, k= K;

F — AF F F F F _ .
1- KDy = ¢DkT1Tk(1 - ’U'Tk) + ¢DkT,Dk+1,B¢Dk+1,Bka+1,T(1 - uDk+l,T)’ k=1,...,K-1;
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1—pp. =1, k=K.
The variance estimator of fig is defined in Appendix B.

3.9.2.4 1996 Chinook Data Set

The summary statistics for the full 1996 Chinook salmon data set (K = 7) are given in
Table 3.39. Table 3.39 shows that no fish were detected at sites Dy, Dsp, Dgr, or Tg.
With no detections at these sites, the transition parameters corresponding to these sites

cannot be estimated. Instead, those transition parameters are replaced with the following:

ODirDar =  ODirDap®DasDar  PPirDar = BPirDan®Pas.Dar
11, Do = OTy,D,59 D25, D1 ¢¥1,D2T = ¢¥1,D23¢523,D2T
®DyrDar = ODarDep®DapDsr  PyrDar = PDyp Dap®Pap.Dar
OTy,Dar = @14,D35 DDy, Dar ¢§2,D3T = ¢§27D3B ¢£33,D3T
®Des,Drg =  DesDer®DerDrs PPepDrs =  Pbos DerPPer.Drs-

The fallback parameter fp,, should be replaced with fp,;. Table 3.39 also shows that no
fish detected at sites T, 11, 1o, T4, Ts, or Dgr (equivalently, Dgg) as non-fallback fish were
detected as fallback fish at the next upstream dam sites (i.e., dy, = dp, = dp, = dp, =
dn, = dpgy = 0). The parameters fr, fry, fr,, frus fry, and fp,, must be fixed to 0. No
fish detected at Ty were detected again upstream (bp, + hy, = bﬂ = (), and no fish detected
as fallback fish at site Ty were detected again upstream (b% Y = ). Thus, the parameters
¢¥0,D15’ &7y, D5y and ¢¥4,D53 must be fixed to 0, giving x7, = xﬁ = x% = 1. Finally, all
non-fallback fish detected at site T5 were detected again upstream (ap, — bp, — hny = O),.
indicating that ¢y, p,s should be fixed to 1. This gives X715 = qpgpXDgp- Other transition

parameters as described in Table 3.36 may be estimated for K = 7.
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The likelihood for Model 5a, tailored to the 1996 Chinook Salmon data set, is

—dp— by — +af
N-—gn aTy gr dr aTy F ag F dR —a¥ ATy bTO hTO bTo +hTo D) p Dip
Loy ®r 1 Pr0p (@rz) ™ (®r,Dyp5) X1y OTo.D15 PDip

P F
9Ty +97,~2D1p~8D, 5 oD g~bD;p=hD, 5 (XF
D

af ~bE 9D F oF
Dip Din )P PGy B (D, pyp) D18

1B Dyg, D17

7 Fo_ .
X aDyp A 9D15+9D; 5 OD1T Dy p a’DlT—bDlT_thT( r
Pp,r Dyr Dyr ' D

—d ar F af  9pyp—dpip—or, ,  F 9B 4dp...—af
X (1 - fDlT)ngT Dir ¢D11T,Tl (¢D1T,T1) 71 ¢D1}TT:D2T T 1(¢D1T,D2T) bir T

F  _3F
)aDlT bDle Dyr
1T Dir

F J - —nk
bE  @Dyp+ap,, 97 +07 ~@Dyr 0D,

.apy b, —hT, E —bE by +hr
Xyt l(X%)aT1 Tt l(égx,DzT) Dor Dar

Ty Ty,Dar
apyr~bpyr—hp Fosaf  —bE  .dp —d ar, F ak
X Xpor 2T T (X Dyy) P2 P fp 2T (1 = fpyp )P TP @t o (Dyr 1) T2

Do ~dDyr =0T,
« ¢9 2T ar T9T2

F 95, +dpyp—af army—bry~hr, , F\af ~bE  bry+hr,
Dor,Dar (¢D2T:D3T) T Xy (xT,) 2 29

2 19,031

F Fo_ nF » Foog
F bE epgrtap.. 97,07, ~CDyp %Dy @Dy ~bpyp—hDyr, R o\ab  ~bE Dap
X (¢T2vD3T) *PDyr 9Dyr XDsr (XDsr) 8r mar fD3T

: —d ar. F afy  9Dap—dDgp—ar, F. 95  +dp,..—ak
X (1 = fpyp)9Par ~9Ds1 ¢ DasT,T3(¢D3T,T3) T T oot (@B D) Per TP O

by, ~h E _pF d - by +d
X Xrpd T (k) T T i (L = fry)dmy Dy } TS T TS (g, p, ) R

F F_ —oF
% D4 +8p, g 9T3 0Ty ~AD4p~ %D, g D, —bDsp~hD,p (XF )a§4a‘bg4s ¢9D43
Dyn Dyp Dyp Dyp Dyg,Dyr

F  apye+al gD, a49h _—ap,—ak  ap . —bp...—h F . _pF
F 9p 4T T Dy 4B YDyp 4T “Dyar , ADyp TOD4p “NDgr ¢ F 0D D
x (¢D481D4T) 4B pD4T Dyr Dyr (XD4T) 4T 4T

dp —d ary F ok 9Dy ~dDyp—aTy
X fpgal (1= fDyr)?P4r ™ P ¢y 0 1 (ODyp 1) 4B D Dy "

F Fo_ _,F
% (¢F )QS4T+dD4T“a§4 4Dsp+ap,p 9Ty +91,~0D5p ~ODgp aDgp~bDgp—hDsp
Dyr,Dsp Ppgp 9Dsg Dsg

F _F F a +af 9D +gF —ap —af
F \ah b5 9Dg F 9 Dgr 79Dy 387 9Dgp 57~ D5
X (XDE.B) 5B 75B ¢D53,D5T(¢DSB1D5T) S5 DDy 9Dsr

0Dy =bpem—~hp Foaf  —bE dp -d ar r af,
x XD:TT 5T 5T (XDsT) Dy " Dgp fDS;T (1 _ stT)gD5T D5T¢D55T,T5(¢D/5T:T5) T

F
bE . 8Dgp Dy

9Dsr ~@Dgr —0Ty
X ¢ DGB ) 5 pDGB

E B, +d —af , Fpiaf b F
Dsr,Den (¢D5T,DGB)QD5T DT ™01y (XT;,)QT"’ s (o,

F F
—a -~a — — I _hE I
9T5+97; ~@Dep ~%Dgp , @D ~0Dgp~hDgp ( gea )*Pes YD ¢?Pen )9De

(65
Dsp Dsgg Dggp,Dvp\¥Dep DB

F ro_ _akF
% D7 g +a’D7B 9Dg g +gDGB D7 aD7B ADwp —bD7B_hD7B ( F )QS7B —bg7B ¢9D7B
Drg Drg Drg XDy Dyg,Drr



225

F

F F F
F 9n aD7T+aD7T 9D +gD7B—aD7T—aD7T a«D7T“bD7T—'hD7T F af —bg
X (¢D7ByD7T) 78 pD7T QD7T XD?T (XD7T) Drr T
aT7 F aF
X ¢D7T,T7 (¢D7T,T7) . (3.62)

As with Model 4, Model 5a was fit to a reduced data set with only the first 4 dams
(i.e., BON, TDA, JD, and MCN), and the tributaries in the reaches immediately above and
below these dams. Using this restricted data set is reasonable if the focus is on salmon
returning to Mid-Columbia spawning sites rather than to Snake River sites. Table 3.40
shows the observed summary statistics from the reduced 1996 data set including only the
first 4 dams and their tribﬁtaries. Most statistics in Table 3.40 are the same as those in
Table 3.39, with changes only in b;, bf , and h; for upriver detection sites. As in the full
model, it is necessary to use parameters ¢p,; Dyr: ¢$1TuD2T s OTy,Dop>s ¢¥1,D2T7 ®Dor,Dars

¢£2T, DaT’d’Tg,DaT, and qbﬂ’ Dar due to the lack of detections at sites Dog and D3g. Also, it

is necessary to fix to 0 the parameters fr,, fr,, fr,, and qb{ﬁo’ Dig’
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The likelihood for Model ba for the reduced data 1996 set is
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3.9.2.5 Results

Program USER!® was used to fit Model 5a‘to the data via maximum likelihood. Maximum
likelihood estimates from the full data set (K = 7 dams) are listed in Table 3.41. The log-
likelihood was -3744.8799, with an AIC of 7611.780. The perceived system survival rate is
estimated at §sys =0.1073 (§E = 0.0108) and the unaccountable loss rate from the release
is estimated at fig = 0.2763 (SE = 0.0156).

Model 5a is a modification of Model 3a; both models use all tributary detections, but

Model 5a accounts for the effect of fallback on transition rates. The relationship between

¥ http://www.cbr.washington.edu/paramEst /USER/
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Models 5a and 3a is the same as that between Models 4 and 2. ‘As with Model 4, for Model
5a there is no consistency in which of qAﬁij or 55 is larger, although in general, ag > aij
for downriver sites while $¢j > af; for upriver sites for Model 5a. Just as the estimate of
perceived system survival is larger for Model 4 than for Model 2, so it is larger for Model
5a than for Model 3a (S,,; = 0.1073, SE = 0.0108 for Model 5a vérsus S5 = 0.1057,
SE = 0.0106 for Model 3a). Likewise, the estimate of the unaccountable loss rate is smaller
for Model 5a (ig = 0.2763, SE = 0.0156) than for Model 3a (fir = 0.2803, SE = 0.0156).

Model 5a is also a modification of Model 4; both models account for fallback, but Model
5a uses all tributary detections while Model 4 uses only terminal tributary detections.
The relationship between Models 5a and 4 is the same as that between Models 3a and 2.
However, whereas both §sys and Zig were larger for Model 3a than for Model 2, they are
approximately equal for Models 5 and 4, with §sys slightly smaller for Model 5a (§sys =
0.1075, SE = 0.0108 for Model 4), and [y slightly larger for Model 5a (figp = 0.2743,
SE = 0.0155 for Model 4). Tt is reasonable that the unaccountable loss estimate is larger
for the Model 5a than for Model 4, because fish that enter tributaries in Model 5a are not
necessarily accounted for, as they are in Model 4. In general, the extra tributary detections
in Model 5a are preferable to the terminal tributary detections in Model 4 because the
extra detections may provide more information on fallbagck events; however, the additional

information gleaned from the current data set is minimal.

Table 3.41: Maximum likelihood estimates of parameters from Model 5a, the Fallback
Memory-Free Tributary model, with K = 7 dams.

Category Parameter Estimate S.E.

Transition ®pg1, 0.0083 =~ 0.0031
% 1, 0.0047  0.0024
®r,D:5 0.8448  0.0126
L b, 0.1205 ~ 0.0113
@To,D:5 0.5728  0.1876
®D1p,Dir 0.9731  0.0079
F
®Dis,Dir 0.9734  0.0213
éDir Ty 0.3622  0.0189
¢Drm 0.3993  0.0435

@Dy r,Dar 0.5490 0.0201
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Table 3.41 continued

Category Parameter Estimate S.E.

Transition  ¢p . p,- 04877  0.0451
@1y, Dyr 0.1224  0.0213
Oh Dyr 0.2051  0.0552
®Dyr, T 0.1526  0.0185
O Dor T 0.1945  0.0424
@Dor,Dar 0.7596  0.0228
O or Dy 0.7618  0.0470
9T, Dar 0.0346  0.0240
ok D 0.0590  0.0573
®Dyr, T3 0.1067  0.0184
OPer Ty 0.1954  0.0453
®Dyr,Dyp 0.8301  0.0228
OB r Dan 0.7474  0.0511
@13, D45 . 0.0742  0.0510
O Dan 0.3354  0.1225
®Dy5,Dar 0.9856  0.0094
O 5. Der 0.9360  0.0336
®Dyr /Ty 0.5888  0.0328
G Dur T 02510  0.0544
PDyr,Dsp 0.3440  0.0317
®Dyr Des 0.6603  0.0603
$Ds 5, Dt 0.9525  0.0272
®Dys.Dsr 0.9779  0.0255
P Dy, Ts 0.3052  0.0545
GDer T 0.4582  0.0760
¢ Dy, Des 0.6473  0.0587
O Doz Don 0.5354  0.0805
OF Dos 0.9895  0.0559
®Dep,Drp 0.9636  0.0269
DDep.Drs 0.8948  0.0593
®D7p,Drr 0.8960  0.0389
G g Do 0.7901  0.0675
®Drr, Ty 0.8266  0.0498
. 0.7955  0.0743

Detection  pp,, 0.9407 0.0085
PDyr 0.8665  0.0127
PDar 0.8528  0.0174
PDyr 0.9571  0.0112
PDys 0.9102 - 0.0168

PDyr 0.9369 0.0148
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Table 3.41 continued

Category Parameter Estimate S.E.

Detection  pp,p 0.9302 0.0238
PDyr 0.8725  0.0318
PDes 0.6349  0.0471
PDyg 0.9775  0.0157
PDyp 0.9726  0.0191
Fallback  fp,r 0.0526  0.0096
fDar 0.0330  0.0094
fDar 0.0331  0.0109
fr, 0.1005  0.1052
fDur 0.0191  0.0095
fDsz 0.0336  0.0235

Maximum likelihood parameter estimates from the reduced data set (K = 4 dams) are
listed in Table 3.42. The log-likelihood was -3267.0957, with an AIC of 6612.191. The
perceived system survival rate is estimated at §sy3 = (.3408 (g‘-E = 0.0169), and the
unaccountable loss rate from the release is estimated at fig = 0.2211 (SE = 0.0151).

As for the 7-dam analysis, the estimate of perceived system survival is slightly smaller for
Model 5a than for Model 4 (S, = 0.3408, SE = 0.0169 for Model 5a versus S,y = 0.3412,
SE = 0.0170 for Model 4), an(i the estimate of unaccountable loss is slightly larger for
Model 5a than for Model 4 (fig = 0.2211, SE = 0.0151 for Model 5a versus fig = 0.2199,
SE = 0.0151 for Model 4). The differences are very small. As expected, system survival
is estimated to be larger for the smaller system (§sys,LGR = 0.1073, SE = 0.0108 for the

7-dam system), and the unaccountable loss rate is estimated to be smaller for the smaller

system (T = 0.2763, SE = 0.0156 for the 7-dam system).

Table 3.42: Maximum likelihood estimates of parameters from Model 5a, the Fallback
Memory-Free Tributary model, with K = 4 dams.

Category Parameter Estimate S.E.

Transition ®pgT, " 0.0083 0.0031
L 0.0047  0.0024
®RDp 0.8448 ~ 0.0126
oL b, 0.1205  0.0113

P1y,D15 0.5728 0.1875
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Table 3.42 continued

Category Parameter Estimate S.E.

Transition  @p, 5,07 0.9731  0.0079
OB, .01z 0.9734  0.0213
éDy7,1y 0.3622  0.0189
P m 0.3993  0.0435
®Dyp,Dar 0.5490  0.0201
OB Dor 0.4877  0.0451
@1y,Dyr 0.1224  0.0213
OF Dor 0.2051  0.0552
®Dyr, T 0.1526  0.0185
O Dyr T 0.1945  0.0424
®Dyr,Dar 0.7596  0.0228
O r Dar 0.7623  0.0470
@1y, Dgr 0.0346  0.0240
O, Dar 0.0590  0.0572
®Dyr,Ts 0.1067  0.0184
ODsr Ty 0.1949  0.0452
®Dyr,Dyp 0.8318  0.0229
®Dyr Dan 0.7382  0.0527
¢13,D45 0.0743  0.0511
 bFDun 0.3381  0.1237
$Dyp,Dar 0.9821  0.0152
O D5 Dar 0.8717  0.0508
Dy Ty 0.5787  0.0332
D m 0.2920  0.0620

Detection  pp, g 0.9407 0.0085
PDyr 0.8665  0.0127
PDyr 0.8528  0.0174
PDsr 0.9570  0.0113
PDys 0.9107  0.0170
PDyr 0.9533  0.0172

Fallback  fp,; 0.0526  0.0096
[Dar 0.0330  0.0094
fDar 0.0336  0.0111
fry 0.1001  0.1056

3.9.8 Model 5b: Short-term Fallback and Tributary Memory Model

Model 5b includés memory effects of both fallback and tributary entry and exit. It assumes

that entering and exiting a tributary may affect survival and tributary behavior only in
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the following reach. Because migrating individuals may enter a tributary to determine if
it leads to their spawning grounds, it may be that these individuals are more likely to fall
back in the reach upstream of the tributary, as well. Therefore, Model 5b allows for a
differential probability of fallback in the reach following a given tributary, for non-fallback
fish who entered the tributary. As with Model 3b, the reach immediately following tributary
k extends from the base of darﬁ k+1 to the base of dam k+2 (without including dam &+ 2)
for k=0,...,K —2, and from the base of dam K to tributary Tk for k = K — 1. Detection
rates at the dams are unaffected by tributary visits or fallback, and detection rates in the
tributaries are assumed to be 100%.

To simplify Model 5b, the memory effect of only one “anomalous” action (fallback or
tributary visit) acts at a time. In particular, the most recent anomalous action from the
previous reach affects survival and transition probabilities, with no added effect of earlier
anomalous actions. Thus, if a fish falls back between a top-of-dam site an‘d the subsequent
tributary, the tributary effect has precedent over the fallback effect because the fish expe-
rienced the tributary after falling back. If the fallback event occurs between the tributary
and the next base-of-dam site, then the fallback effect has precedent. If the fish has neither
fallen back nor entered the tributary in the previous reach, then neither effect applies.

Using effects of only the most recent anomalous event assumes that effects of fallback are
temporary, even in the event of bypassing tributaries, rather than permanent as in Models 4
and 5a. Temporary (single-period) memory effects have been used elsewhere, e.g. Cormack
(1989) and Brownie et al. (1993). With temporary fallback effects, if the fallback event
occurs during the transition from either the top of dam k (site Dyp) or the tributary between
dams k and k + 1 (site T) to the base of dam &k + 1 (site Dy41,8), then the memory effect
of fallback extends through the transitions ending at the base of dam k + 2 (site Dit2,B).
Any transition originating at or upstream of site Dy p has no memory effect of fallback.
Likewise, if the fallback event occurs during the transition between the initial release and
the base of the first dam, then the memory effect extends only through transitions to the
base of the second dam,; all transitions originating at the base of the second dam are free .
of the fallback effect. In general, fallback effects extend only through the following reach,

where the reach immediately following the top of dam k extends from tributary Ty to the
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base of dam k + 2 (without including dam &k + 2) for k =1,...,K — 2, and from tributary
K —1 to tributary Tk for £k = K — 1. The definition of “reach” following a top-of-dam site
for fallback effects is larger than the “reach” following a tributary for tributary effects. For
simplicity, a “fallback fish” is a fish that fell back in the preceding reach, without having
entered a tribﬁtary after falling back, while a “non-fallback fish” is a fish that either did not
fall back in the preceding reach, or possibly fell back in that reach but subsequently entered
a tributar_y after fallback. Unlike Models 4 and 5a, Model 5b does not treat the fallback
sfate as absorbing. v

The assumption of temporary fallback effects together with simplified data that include
only the first fallback event is tantamount to assuming that each fish falls back at most once
during their upstream migration. Models 4 and 5a assume that once a fish has fallen back,
it remains a “fallback fish,” with the implicit assumption that subsequent fallbacks have no
significant added impact on surbvival and transition probabilities. Model 5b allows fallback
fish to return to the pre-fallback state after a single reach or after entering and leaving a
tributary, and then does not allow them to fall back again. Thus, Model 5b assumes either
that no subsequent fallbacks occur, or that they have no effect relative to the original pre-
fallback state. The difference between the earlier models and Model 5b is that the earlier
models assume no effect of subsequent fallback on post-fallback transitions, while Model 5b
assumes no effect of subsequent fallback on pre-fallback transitions. While the assumption
of Models 4 and 5a is perhaps more tenable, the assumption of Model 5b is necessary to

make the model tractable.

3.9.8.1 Notation

The notation used for Model 5b is a mixture of that used for Models 3b and 4, the Memory
Tributary Model and the Fallback Model, respectively. Some notation is the same as that
used in Model 5a. The transition parameters ¢;; and qbf;- are defined as for Model 5a for

the cases where ¢ = R and ¢ = Tp. For other values of ¢, define the transition parameters
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bijy &L, 6%, and ¢LF as follows:

¢i; = Pr{Survive and move directly from site ¢ to site j | Neither fell back nor entered
the tributary in t‘he reach immediately preceding site 4|;

gbz;- = Pr[Survive and move directly from site ¢ to site j | Entered the tributary in the
reach immediately preceding site ¢ and did not fall back between that tributary
and site ;

¢>f; = Pr[Survive and move from site i to site j | Either fall back during transition from
site 7 to site j, or fell back in the reach immediately preceding site ¢ without

entering a tributary between fallback and site i];

f;T = Pr[Survive and move from site i to site j | Entered tributary in the reach
immediately preceding site 4, and fall back during the transition from site i to
site j;
where 1 = Dyg, D17,T1, ..., DgT, and where
{
Dyr for i = Dy, k=1,...,K;
, Dyy1p fori=Dgr,k=1,..., K -1
j= ﬁ (3.64)
Tk fOI‘Z'=DkT,k)=1,...,K;
Dk+1,B for i = Tk,k‘ = O,...,K - 1.

As usual, p; and ¢; represent the conditional detection and non-detection rates, respec-
tively, at site ¢, with g; = 1 — p;. The probability of becoming a fallback fish after site ¢ is
fi for fish who did not enter the tributary in the reach preceding site 4, and is f1 for fish
who did enter that tributary.

As described above, two types of temporary memory effect are used in Model 5b: the
fallback effect and the tributary effect. Only a single type of memory effect acts on any given

parameter, with the most recent effect taking precedent. While the parameter ¢5T appears
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to include both types of memory effect, it actually includes only the tributary effect; the
fallback notation F' in the superscript denotes that the transition from ¢ to j is a fallback
transition, and does not refer to a fallback memory effect. Thus, ¢5T is used only during the

transition that includes the fallback event, and always follows the parameter f7 in detection

F
i

history probabilities. The superscript F' in the parameter ¢;;, on the other hand, denotes
either that the transition from ¢ to j includes fallback (if qu; follows f;), or that the memory
effect of fallback applies. For simplicity, the same parameter is used in both cases.

For example, consider the simplified migration path in Figure 3.13(a). A fish following
this path moved from the release point to tributary Tj, returned to the river and swam
upstream past TDA and JD, fell back over both JD and TDA, and then reascended TDA
and JD. The corresponding (simplified) detection history is R Ty FB Dsg Dor Dsr .. ..
. The portion of the history’s probability that relates to the return to the river from 77,

fallback, and subsequent transitions is

F F F
ce le ¢T1,D23pD23 ¢D23,D2TpD2T ¢D2T,D35 dD3p d)DBB»DSTpDST s (3-65)

The transition between site 77 and Dyp is the fallback transition, requiring qb%, Do+ Lhe
transitions between Dop and Dsp are not fallback transitions, but they include the memory
effect of the fallback (but not of tributary T7). The fallback memory effect ends at D3p, and
transitions there and upstream no longer include the fallback notation. Because the fallback
occurs between leaving the tributary 7 and ascending dam Dy (TDA), there is no memory
effect of tributary visits on the transition from Dyp and Doyp: ¢£23Y Doy 18 used instead of
qb:gz 5.Dop- Had the migration path included tributary Tp but was otherwise identical (i.e.,
simplified detection history R To Ty FB Dap Dor Dar ...), then ff ¢}T?17:D23 would replace
fn ¢§17 p,p in Equation (3.65), but otherwise the same parameters would be used.

The path in Figufe 3.13(b) shows a case in which the fallback event occurs before the
tributary event. In this case, the fish fell back between sites Dip (BON) and 73, then
returned to the river, and continued migrating upstream past TDA and JD. The portion

of the simplified detection history shown in Figure 3.13(b) is R Dy FB Ty Doy Dsr .. ..
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JD

TDA

BON / BON

Figure 3.13: Two migration paths for consideration in developing Model 5b. In one
path (a), the fish falls back over dams JD and TDA after visiting tributary 77. In
the other path (b), the fish falls back over dam TDA before visiting tributary 73.
The dotted paths indicate the portion of the detection history removed due to the
fallback; the heavy portions replace the dotted portions.

The probability of the fallback and subsequent transitions is

F F T T .
v fD1T¢D1T,T1 ¢T1,D23qDZB ¢D23,D2TpD25 ¢D27,D33QDSB¢D337D3TPDST e (366)

The parameter ¢§1T,T1 represénts the fallback transition, and the parameter qbfT’l’ Dop D
cludes the fallback memory effect. The transitions originating at dam 2 (TDA) include
the tributary effect rather than the fallback effect, because the fish visited the tributary
more recently than it fell back. The tributary effect ends at the third dam (JD), and
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transitions originating at or upstream of JD have no memory effect. Had the fish visited
the tributary below BON (site Tp), then f5 ¢5T . 6f 5. qp,, would be used in place of
fD1r 95, 1 1y 9% D, 59D, in Equation (3.66). In that case, the fallback effect takes precedent
over the effect of visiting tributary Ty on the transition from 73 to Dap: d)ﬂ Das is used
instead of qb%’DzB. .

Several types of x; parameters are needed in Model 5b, each representing the probability
of not being detected after site ¢, conditional on reaching site ¢, and each for a particular
group of fish. For fish who never fell back, the parameters x; and x;rp are appropriate, where
x: is used for fish who did not enter the tributary in the reach immediately preceding site
i (if it exists), and x7 is used for fish who did enter that tributary. Because x; and x{
are used for fish who never fell back, they account for the possibility of falling back upon
leaving site ¢. The parameter xf is appropriate for fish who fell back in the previous reach
and did not enter a tributary between falling back and reaching site 4. Fish that fell back in
an earlier reach, or that entered a tributary since falling back, are assumed not to fall back
again, so a new type of x parameter is necessary for these fish: X{ is used for fish that fell
back but not within the previous reach and that did not enter the tributary in the previous
reach, while Xif T is used for fish that entered the tributary in the previous reach and also
fell back some time before entering that tributary. Expressions for the different types of x
parameters are given below. '

The probability of not being detected after site ¢, conditional upon reaching it without

having fallen back or entering the tributary in the preceding reach, is x;:

Xr=1-Ppn — PRy, — ®rD15 (1~ D5 XD:15)

F F .
- CI)R,D1B(leB + QD13¢D13,D1TPD1T):
XDig = 1_¢DkBka:T(1_quTXDkT)9 k=1,...,K;

XDyr =1 = (1 — fDur) {¢DkT:Tk + ODyr Drsr 5 (1 — qu+l,BXDk+1,B)}
- kaT¢ng,Tk (367)

F F _ .
- kaT¢DkT,Dk+1,B (pDk+1,B + QDk+1,B¢Dk+1,B,Dk+1yTpDk+l,T)’ k=1,...,K—-1;
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XDxr =1 = ODkrTki
XTy, = 1- (1 - ka)¢TkaDk+1,B(1 - QDk+1,BX£k+1,B)

F F _ .
- ka¢Tngk+1,B (pDkH,B + qu+1yB¢Dk+1,Bach+1,TpDk+1,T)’ k=0,....,K -1

The probability of not being detected after site i, given having reached that site after
entering the tributary in the reach immediately preceding site ¢ but without having fallen
back, is x7:

ngs = 1_¢EkB7DkT(1 _QDkTX%kT)’ k=1...,K

XEkT =1-(01- fgk:T) {¢ngka + ¢ngsDk+1,B(1 - qu+1,BXDk+1,B)} )

T FT
= IDir ¥Der 1 (3.68)
¥y
T FT F _ .
- kaT¢DkT7Dk+1,B(pDk+1,B + QDIH-I,B¢Dk+1yB,Dk+1yTlec+1,T)’ k=1,...,K -1,
T — T .
XDgr = 1- ¢DKT1TK’

T\ 4T
X%:k =1- (1 - ka)¢Tlc,D)c+1,B(1 - qu+1,Bng+1yB)

T FT F —
- ka¢TkaDk+1,B (pDk-Fl,B + q-Dk+1,B¢Dk+1yB,Dk+1’TpDk+1'T), k - 1, ce ,K -1,

The probability of not being detected after site i, conditional on reaching that site after
falling back in the previous reach and without entering a tributary in between falling back

and reaching site 1, is Xf :

XDes =1 = Dy5,00r (1 = ADur XDz k=1,... K

XDur =1 = 6purm, — d’ng,DkH,B(l - qu"‘I!BXka-H,B)’ k=1,..., K -1,

XDyr =1 = 8D r 1 (3.69)
X5, = 1= 85, Dy (1= DDes1 XDy, ) k=0,... K1

The parameters X{ and X{ T are appropriate for fish that fell back previously but no longer
experience the effects of fallback. The probability of not being detected after site i, condi-

tional on reaching that site after having fallen back but not within the previous reach, and
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without entering the tributary in the preceding reach, is X{ :
X5 =1~ 60,500 (1 = aDurXh,p): k=2,... K;
XkaT =1—= ¢Dyp,Tx — PDir, D15 (1 — QDk+1,BXfD,C+1,B)’ k=2,...,K—-1;
¢£KT =1- ¢DKT,TK; (370)
T
¢§-‘k = 1 - ¢Tk’Dk’+1)B(1 - qu+1'BX£k+l,B), k = 27 ey K bl 1.

The probability of not being detected after site ¢, conditional on reaching that site after

entering the preceding tributary and having fallen back before entering that tributary, is

T
X[
T T
XfchB = 1——¢%kBychT(l_—quTX£kT)’ k=1,...,K;
T T ‘
X{%T =1- ¢£kT7Tk - ¢D1cT,Dk+1,B(1 - QDHLBXkaHYB), k=1,...,K-1,
T
XéKT =1- ¢EKT,TK; (3.71)
T _ T fT _
Xry = 1= 1 Dysn s (1= aDes16Xbyss o) k=1,... K-1.

The parameters used in Model 5b are listed in Table 3.43.

Table 3.43: Parameters used in Model &b, the Fallback and Memory Tributary Model.
The number of dams is K.

Parameter Definition

Pr T, Probability of surviving and moving from the release point directly
to site Tp without becoming a fallback fish;

®r D5 Probability of surviving and moving from the release point directly
to site D; g without becoming a fallback fish;

(I)g,To Probability of surviving, becoming a fallback fish, and then moving
from the release point directly to site Tp;

@g, D15 Probability of surviving, becoming a fallback fish, and then moving
from the release point directly to site Dip;

®ij Probability of surviving and moving from site ¢ to site j as a

non-fallback fish, given reaching site ¢ without entering the tributary (if
any) in the reach immediately preceding site %, for
it =1T0,D1p,D17,T1,...,Dgr and j as in Equation (3.64);
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Table 3.43 continued

Parameter

Definition

T
i

F
?;;

oET
y2
q;
fi

£

Xi

Probability of surviving and moving from site i to site j as a
non-fallback fish, given reaching site ¢ after entering the tributary in the
reach immediately preceding site ¢, for ¢ = Dyg, D17, T1,...,Tx and j as
in Equation (3.64); ‘

Probability of surviving and moving from site ¢ to site j, given either
(a) having reached site ¢ after falling back in the previous reach but
without entering the tributary in that reach, or (b) having reached site 4
after both entering the preceding tributary and then falling back before
site 7, or (c¢) falling back during the transition from i to j, having not
entered the tributary in the previous reach, for

i =Ty, D1p,D17,T1,..., Dgr and j as in Equation (3.64);

Probability of surviving and moving from site ¢ to site j, conditional

on falling back during that transition and on having reached site ¢ after
entering the tributary in the reach immediately preceding site i, for

i = Dyr, Ty, Dor,...,Dgr and j as in Equation (3.64);

Probability of being detected at site j, given having reached site 1,

for i = D1p, D17, Dap; ..., Dxr;

Probability of avoiding detection at site 4, given having

reached site 4, for i = Dyg, D17, Do, ..., Dgr; =1 — py;

Probability of becoming a post-fallback fish between site ¢ and the

next detection site, given having reached site i as a non-fallback

fish without entering the tributary in the reach immediately preceding
site i, for i = Ty, Dy, Ty, Dar, ..., T _1;

Probability of becoming a post-fallback fish between site i and the

next detection site, given having reached site ¢ as a non-fallback fish
after entering the tributary in the reach immediately preceding site ¢,
for i = D17, T, Doy, I, . ., Tk -1;

Probability of not being detected after site 4, given having reached

site ¢ without having ever fallen back and without having entered the
tributary (if any)

in the reach immediately preceding site ¢, for 1 = Ty, D1, D17, ..., Dxr;
Probability of not being detected after site 4, given having reached

site ¢ without having ever fallen back, and after entering the tributary in
the reach

immediately preceding site 4, for ¢ = Dig, D1, T1,...,Dkr;
Probability of not being detected after site 4, given having reached

site 1 after falling back within the previous reach but without having
entered the tributary (if any) between falling back and reaching site i,
for i = Ty, D18, D17, ..., DKT;

Probability of not being detected after site i, given having reached

site 1 after falling back at least two reaches previously, and without
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" Table 3.43 continued

Parameter Definition
having entered the tributary in the reach immediately preceding site ¢,
for i = D2B»D2T,T2> ey DKT?
xf T Probability of not being detected after site 7, given having reached
site 7 after entering the tributary in the reach immediately preceding
site 4, and having fallen back prior to entering that tributary, for
i = Dyg, D17, T1,...,Dkr.

The parameters in Table 3.43 can be used to express the probabilities of the possi-
ble detection histories. For example, the probability of observing the detection history

R FB Ty Dig Dor T D7 is

F_F T T
Pr[R FB Ty Dip Dor Tz Dar] = ®p1,91,,0,5PD159D, 5,0179D:17 D11, Dy5 ID25 DD, Dar

T T
X PDyr®Dyr To 9Ty, D389Ds5 P D3 g, DarPDar XfDST ‘ (3.72)

The probability of observing the detection history R D1g T1 FB Dgg T3 is

PrlR D1p T\ FB Dyp T3] = (DRyDprDlB(bDlByDquDlT(]‘ - fDlT)¢D1TyT1 fT1¢£,DzapD23
F F
X ¢D23,D2T qD2T ¢D2T,DSB qD35 ¢D33,D3T quT

X G Dyr Ty X (3.73)

A slightly different detection history, R Ty D1g Ty FB Dspg T3, has probability

T T T
PT[R TO D]-B Tl FB DQB T3] = q)R,TO¢TO>DprDlB¢E1B,Dqu-DlT(1 - fDlT)¢D1T,T1fT1
T F F
X ¢T1,D23pD2B ¢D23,DQTQD2T¢D2T,D33 qD3B qzsDC’»ByD:”’T‘QDST

X @ Dyr T3 X, ; (3.74)

In the first detection history (Equation (3.72)), the fallback occurs before the visit to trib-
utary Tp, at which point the tributary effect overrides the fallback effect. The tributary
effect ends after reaching dam 2, and another tributary effect begins after the visit to site

T,. The final parameter Xg;T indicates that the tributary effect is current, and that the
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fish has already fallen back and is assumed not to fall back again. The second two detection
histories (Equations (3.73) and (3.74)) are very similar, with the only difference being that
that the latter one includes a visit to tributary Tp. In both of these detection histories, the
effect of visiting tributary T is not apparent in the parameterization due to the fallback
that occurs upon leaving site 7. Unlike Equation (3.73), Equation (3.74) includes the ef-

fect of visiting tributary Tp on the fallback parameters ( fng and f%l) and on the fallback

transition parameter(¢£.p, ).

3.9.3.2 Likelihood

The sufficient statistics used in Model 5b are essentially the same type as those used in
previous models: the number detected at a site (a), the number detected at a site and
again later as either fallback or non-fallback fish (h or b, respectively), and the number
that become fallback fish upon leaving a site (d). As in previous models, the number of
fish detected upstream of a particular site (g) is also used, and is expressed in terms of the
other statistics. With both fallback and tributary memory effects, these statistics must be
defined separately for several different groups of fish, each corresponding to a particular type
of memory effect, indicated by the superscript on the statistic. Using the number detected

at site ¢ as an example, the necessary categories are:

1. Fish that have not fallen back and did not visit the tributary in the previous reach

(ai);
2. Fish that have not fallen back and did visit the tributary in the previous reach (a7 );

3. Fish that fell back before the previous reach, and did not visit the tributary in the

previous reach (a{ )i

4. Fish that visited the tributary in the previous reach and fell back prior to visiting
that tributary (aifT);

5. Fish that fell back in the previous reach, and did not visit the tributary in that reach

between falling back and reaching site ¢ (af).
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Fish that never fall back, or do not fall back before reaching site i, are accounted for by

a; and al . Fish that fall back before site 7 are accounted for by azf ,alT

;°,and af’, depending

on where they fell back and whether they visited certain tributaries. If ¢ is a dam site,
then these three fallback categories are sufficient. If 7 is a tributary site, then the last

category, a;p , must be subdivided into subcategories, as follows; Figure 3.14 is provided for
F(5)

reference. Let a; ~’ represent the number of fish detected at site ¢ that became fallback

fish upon leaving site j (downstream of 1), and that did not visit the tributary immediately
FOT

downstream of site j. Let a; represent the comparable number of fish that did visit that

tributary. For example, a,?k(DkT) is the number of fish detected as fallback fish at site Tk

that became fallback fish upon leaving the top of the previous dam, and that did not visit
F(Dyr)T
T

is the number of fish detected as fallback fish at site T that visited tributary Tk.1 and

then became fallback fish upon leaving dam k. Both a%C(D’“T) and a%c(D'“T)T are necessary

the tributary Tx_; before falling back (see Figure 3.14 for reference). The statistic a

statistics. Another necessary statistic is the number of fish detected as fallback fish at site

T that fell back within the previous reach, but did not visit the previous tributary before

FNT
T

falling back, denoted a7, ", where

FNT _  F(Dkr) | F(Te-1)
ar, ~ = ap, +a

| + a;(Tk—l)T + aF(DIc—l,T)

F(Dg1,7)T
Ty k Tk T,

k 3

+a (3.75)

for k = 1,...,K — 1, Equation (3.75) indicates that the fish included in aﬂNT are those
‘that fell back at either dam site Dg_1 7 or tributary site Ty_; (regardless of having visited

tributary Tx-o), or at dam site Dgp without having visited tributary Ty—;. The same

categories of fallback fish are needed for the b statistics for i = Tj: bgk(D’“T), bqﬁ:k(DkT)T, and
bENT.
k

For the case where 7 is a dam site (i = Dgpg or 1 = Dgr), it is not necessary to subdivide
the category of fallback fish as done for i = Tj. For the cases where 7 is a dam site, define

a;-p to be the number of fish detected at site ¢ that fell back in the previous reach, regardless
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Trib k l Ty
Dam k ¢ Byr
Trib k-1 ® Ty
Dam k-1 ® D
Trib k-2 o T.
Dam k-2 ¢ Bkar

Figure 3.14: Dams k — 2, k—1, and k, and tributaries k£ — 2, £ — 1, and k, along with
detection sites Dy_o 1, Tk—2, Di—1,1, Tk—1, DiT, and T,

of having visited the tributary before the fallback site:

F(R) | F(Tv) s
o ap,, +tap, g for k=1, 516
Dip = .
F(De-v1) | FDrer,n)T | F(Tos) | F(Tien)T _
aDkBk LTl | aDksk vl a'DkBk v aDkBk 1 fork=2,..., K.

The definitions in Equation (3.76) are also valid if Dyp is replaced by Dyrp; the statistics

b5, and bf, . are defined analogously.

The statistics af, af” be , and be T account for fish detected at site ¢ that fell back before

IRt S

site ¢ and that are not accounted for by the statistics af and bf statistics described above.
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Finally, to simplify the presentation of the minimal sufficient statistics and the likelihood,
define the following statistics to be 0: afDlB, agw, a%,il, béw, b{)w, bé:l, b{,:OT, and b?oT . The
g statistics can be expressed in terms of the other summary statistics as follows:

gr =br+ hg;

To = 9r — dr — (a1, — b1, — hy);

97, = 9Dyr — ADyr — (am — b1y, — hmy.) fork=1,...,K—1;
9, = 0;
9T = 9bxr — dbyp — (a1, — OF, — hE) fork=1,...,K —1;
géc“k:O for k =0,1;
o}, = 9b,, — (e}, —bL) for k=2,... K —1;
9§f=0;
ol =gb — (f] —bf) fork=1,...,K -1
9%, = dr — (at, — bR);
gﬁ = ngT + dyp + dip —~ (a%fvT + agk(DkT)T)

+ (ENT + b PErT) fork=1,... K —1;
G, = 91, —I—gTO;
Gr, = g1, + g% + g4 + ofy;
Gr, = g1, + 9%, + ok, + o5 + of, fork=2,...,K ~ 1,

90,5 = 97y — by — b1y — (apy5 — Dy — ADyp);
9Ds = 9Ty + 98, — b1y + b)) = (OF,_, + BT, )
— (apyg — bDyy — hDyg) fork=2,...,K;
gng = b, + h, = dpy (aDua bDlB th)
95 = b + b, —dpe, + 05, +hE —dE

_(a‘gka_bgw thB) fork=2,...,K;
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gfpw =0
b, =oh  +ob  +ofl —dp._,,—db,_ bR

L T A A S

(akaB‘kaB) fork=2,...,K;

by =% — (ab, = bhy,);
ghe, = bR + bD(Dk T bt el @l Ty fork=2,...,K;
9p, 5 = dr +dr, — af, — (ab,, — b5 .);
ggw =dp,_;r + de_l rtdn_, + di_l - a%fi’“‘l’ﬂ

g'a;k(ik—l’T)T (agks - kas) fork=2,...,K;
GDis = 9Dis + 915 + b, + 951
GDys = 9Dkp + Obyn + Ohyp + Ihes + 9brs fork=2,...,K;
9Dkr = 9Dip — (@Dpr — bDpr — RDyr) fork=1,...,K;
ngT = ggka - (ang - bng thT) fork=1,...,K;
gh.. =0;
gékT = géw - (“{Dkr - bekT) fork=2,...,K;
gﬁ} = QIJ;::B - (afDTkT - bg,:T) fork=1,..., K;
ngT =gh.s — (a'DkT bh,r) fork=1,..., K.

The summary statistics used in Model 5b are listed in Table 3.44.

The minimal sufficient statistics corresponding to dam sites are the numbers of fish in
the various tributary and fallback categories that are seen for the last time at those sites
(a — b —h), and the number of fish that become fallback fish upon leaving those sites (d).
Generally, the minimal sufficient statistics for tributary sites are the number of fish detected
at those sites (a), the number detected there and again upstream (b, h), and the number that
fall back upon leaving those sites (d), each in the various tributary and fallback categories.
Minimal sufficient statistics for Model 5b are listed in Téble 3.45. For a study with K dams,

there are 29K — 14 minimal sufficient statistics in the full model, with 21K — 6 parameters.
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Thus, numerical methods must be used to fit the model via maximum likelihood.

Table 3.44: Summary statistics for Model 5b, the Fallback and Tributary model with
short-term memory. The number of dams is K.

Statistic Definition

a Number of fish detected at site ¢ that had not fallen back before site ¢ and
had not visited the tributary (if any) in the reach immediately preceding
site ¢, for i = Ty, D1g, D11, T4, .. ., Tk

al Number of fish detected at site 4 that had not fallen back before site ¢ and
had visited the tributary in the reach immediately preceding site 7, for
i =Dig, D17, T, ..., Tk;

a,{ For i = Dyg, Dir, or T, the number of fish detected at site ¢ that had
fallen back before reaching dam & — 1 and had not visited tributary Tj_1,
fork=2,...,K;

afT For ¢ = Dyg, Dyr, or Ty, the number of fish detected at site ¢ that had

visited site Ty_1 and had fallen back before reaching that site, for
k=1,...,K;

For ¢ = Dyg or D17, the number of fish detected at site ¢ that either had
fallen back upon leaving the initial release site (R) without subsequently
visiting site Tp, or else had fallen back upon leaving site Tp;

For ¢ = Dyp or Dyr with k= 2,..., K, the number of fish detected at site
t that either had fallen back upon leaving dam k — 1 without subsequently
visiting site Tx_1, or else had fallen back upon leaving site Tj_.1;

For i = Dyp or Dy, the number of fish detected at site ¢, for k = 1,...,K;
=a;+al +af +afT +af;

Number of fish detected at site Ty as fallback fish;

For &£ = 1, the number of fish detected at site T3y that either had fallen
back upon leaving dam 1 without having first visited site Tp, or else had

fallen back upon leaving either site R or site Tp;

For k = 2,..., K, the number of fish detected at site T} that either had
fallen back upon leaving dam k without having first visited site Tk. q, or
else had fallen back upon leaving either site T_; or dam k — 1;

Number of fish detected at site T} that had fallen back upon leaving dam
k without having first visited site T_;, for k =1,..., K;

Number of fish detected at site T that had fallen back upon leaving dam
k after visiting site Ty_;, for k=1, ..., K;

Number of fish detected both at site ¢ and upstream of site 1 without
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Table 3.44 continued

Statistic

Definition

BEB)

To

FNT
b,

bF(DkT)

T

yF(Der)T

Tk

having fallen back or having visited the tributary (if any) in the reach
immediately preceding site 4, for 1 = R, Ty, D15, D17, 11, ..., DKT]
Number of fish detected both at site ¢ and upstream of site 4 without
having fallen back but had visited the tributary in the reach immediately
preceding site ¢, for i = D15, Dy, 11, ..., DgT}

For ¢ = Dyp, Dir, or T, the number of fish detected at site ¢ and again
upstream that had fallen back before reaching dam &k — 1 and had not
visited site Tj..1, for k = 2,..., K for i = Dyg or Dyr, and
k=2,...,K—1fori="T;

For i = Dip, Dir, or Ty, the number of fish detected at site i and again
upstream of site ¢ that had visited site T_; and had fallen back before
reaching site Ty_1, for k=1,...,K for i = Dy or Dyr, and
k=1,...,K —1fori="Tg

For i = Dig or Dy, the number of fish detected at site ¢ and again
upstream that either had fallen back upon leaving site R without
subsequently visiting site Ty, or else had fallen back upon leaving site Tp;

For i = Dgp or Dyr with k =2, ..., K, the number of fish detected at site
¢ and again upstream that either had fallen back upon leaving dam & — 1
without subsequently visiting site T_1, or else had fallen back upon
leaving site Tx_1;

Number of fish detected as fallback fish at site Ty and detected again
upstream; ‘ ,

For k = 1, the number of fish detected at site T and again upstream that
either had fallen back upon leaving dam 1 without first visiting site Tg, or
else had fallen back upon leaving either site R or Tp;

For k=2,...,K — 1, thé number of fish detected at site T;, and again
upstream that either had fallen back upon leaving dam & without having
first visited site Tj_1, or else had fallen back upon leaving either site Tp_;
or dam &k — 1;

Number of fish detected at site Ty, and again upstream that had fallen back
upon leaving dam & without having first visited site T}, for
k=1,...,K-1;

Number of fish detected at site T), and again upstream that had fallen back
upon leaving dam k after visiting site Ty, for k=1,..., K — 1;

Number of fish detected at site ¢ that had neither fallen back before
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Table 3.44 continued

Statistic

Definition

deT

db, .
]
9

9;

T
gl

9

- reaching site ¢, nor visited the tributary in the reach immediately preceding

site 7, and that were next detected as fallback fish upstream of site i, for
i = R,To, D1r,Th, Doty ..., Tk

Number of fish detected at site ¢ that had not fallen back before reaching
site ¢ but had visited the tributary in the reach immediately preceding
site 4, and that were next detected as fallback fish upstream of site ¢, for
i = D1T>T1aD2T)-~ Tk

Number of fish first detected as fallback fish either at site Tp, or at dam 1
without having visited Tp first as non-fallback fish;

Number of fish detected at site T as non-fallback fish and subsequently
detected at dam k + 1 as fallback fish, that did not visit tributary Tj_1 (if
it exists), for k =0,1,..., K — 1;

Number of fish detected at site Ty as non-fallback fish and subsequently
detected at dam k + 1 as fallback fish, that did visit tributary T%_1, for
k=1,...,K—-1;

Number of fish detected as fallback fish for the first time at either site T}
or dam k + 1 that had visited neither T} nor Ty (if it exists) as
non-fallback fish, for k=1,...,K — 1;

Number of fish detected as fallback fish for the first time at either site T
or dam k + 1 that had visited site T;_; but not site T} as non-fallback fish,
fork=1,...,K - 1;

Number of fish detected after site ¢ that had neither fallen back before
reaching site ¢ nor had visited the tributary in the reach immediately
preceding site ¢ (if any), for ¢ = R, Ty, D1g, D17y ..., Dk}

Number of fish detected after site ¢ that had not fallen back before
reaching site ¢ and had visited the tributary in the reach immediately
preceding site 4, for i = D1g, D17, 11, ..., DgT;

For i = Dipg, Dir, or Tx, the number of fish detected after site ¢ that had
fallen back before reaching dam £ — 1 and had not been detected at

site Ty_1, fork=2,...,Kfori=Dygor Dyp,and k=2,..., K -1

for i = Ty; ‘

For i = Dyg, Dyr, or Tk, the number of fish detected after site ¢ that
visited site Ty, and had fallen back before reaching site Ty _1, for
k=1,...,Kfort=Dyggor Dygr,and k=1,...,K — 1 for i =Ty,

For i = Dyp or Dir, the number of fish detected after site i that either
had fallen back upon leaving the release site (R) without subsequently
visiting site Tp, or else had fallen back upon leaving site Tp;

For ¢ = Dypg or Dyp with k =2,..., K, the number of fish detected after
site 7 that either had fallen back upon leaving dam k.— 1 without
subsequently visiting site Ty_1, or else had fallen back upon leaving site
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Table 3.44 continued

Statistic Definition

Tye-1;

gf For ¢ = 71, the number of fish detected after site i that had fallen back
upon leaving either site R, site Ty, or dam 1, without visiting site Ty after
falling back;
For ¢ = T}, with k =2,..., K — 1, the number of fish detected after site ¢
that had fallen back upon leaving either dam k, tributary Ty, or
dam k — 1, without visiting tributary Ty_; after falling back;

G; Number of fish detected after site 4, for i = T (k=0,...,K —1) or

i=Dkg (k=1,...,K).

Table 3.45: Minimal sufficient statistics for Model 5b, the Fallback and Tributary
model with short-term memory. The number of dams is K.

Statistic Definition

ar, Number of fish detected at site T that had neither fallen back before
reaching site ¢ nor visited tributary Tj—; (if it exists), for
k=0,1,....,. K -1,

a%c Number of fish detected at site T3 that had not fallen back before
reaching site ¢ and had visited tributary T—1 k=1,..., K — 1;

a%c The number of fish detected at site Ty that had fallen back before
reaching dam k — 1 and had not visited tributary Ty—_1, for
k=2...,K—-1;

a{,:z The number of fish detected at site T}, that had visited tributary Ty
and had fallen back downstream of site Ty1, for k =1,..., K — 1;

a;(R) Number of fish detected at site Ty as fallback fish;

agzN T "For k =1, the number of fish detected at site T; that either had fallen
back upon leaving dam 1 without having first visited site Tp, or else
had fallen back upon leaving either site R or site Tp;
For k=2,...,K — 1, the number of fish detected at site T that either
had fallen back upon leaving dam k without having first visited site
Ti_1, or else had fallen back upon leaving either site Tj_1 or
dam k& — 1;

oF(Prr) Number of fish detected at site Ty that had fallen back upon leaving

Ty
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Table 3.45 continued

Statistic Definition :
dam k without having first visited site Ty, for k = 1,..., K — 1;

aikaT)T Number of fish detected at site Ty that had fallen back upon leaving
dam k after visiting site Ty_q1, for k=1,..., K — 1;

A; Number of fish detected at site 7, for ¢ = Dgpg or i = Dyr with
k=1,...,K;
=a¢+a'f+a{+a{T+a;-p;

br + hgr Number of fish detected after the initial release;

br, + hr, Number of fish detected both at site T) and again upstream that had
neither fallen back before reaching site T} nor visited site Tx_; (if it
exists), for k=0,1,..., K — 1;

b%c + h%:k Number of fish detected both at site T and again upstream that had
not fallen back before reaching site T and had visited site Tjx_1, for
k=1,..., K - 1;

b{,:k The number of fish detected at site 7} and again upstream that had
fallen back before reaching dam k& — 1 and had not visited site Ty_1,
fork=2,...,K—1;

b{,ikT The number of fish detected at site T and again upstream that had
visited site Tk_.; and had fallen back before reaching Tj_1, for
k=1,...,.K -1,

bgo(R) Number of fish detected as fallback fish at site Ty and detected again
upstream,;

bﬂN T For k = 1, the number of fish detected at site 77 and again upstream
that either had fallen back upon leaving dam 1 without first visiting
site T, or else had fallen back upon leaving either site R or Tp;
For k=2,..., K — 1, the number of fish detected at site T and again
upstream that either had fallen back upon leaving dam & without
having first visited site Tj..1, or else had fallen back upon leaving
either site Ty_; or dam k — 1;

ba(D’“T) Number of fish detected at site Ty and again upstream that had fallen

back upon leaving dam k without have first visited site Tj_,, for
k=1,...,K —1;

bgk(D’“T)T Number of fish detected at site T} and again upstream that had fallen
back upon leaving dam k after visiting site Tx_q, for k = 1,..., K — 1;

dr Number of fish first detected as fallback fish either at site Ty, or at

dam 1 without having visited Ty first as non-fallback fish;
Number of fish detected at site Ty as non-fallback fish and




252

Table 3.45 continued

Statistic

Definition

T
dr,

deT

subsequently detected at dam k + 1 as fallback fish, that did not visit
site Ty (if it exists), for k =0,1,..., K — 1;

Number of fish detected at site T} as non-fallback fish and
subsequently detected at dam &k + 1 as fallback fish, that did visit site
Tg1,fork=1,.... K - 1;

Number of fish detected as fallback fish for the first time at either site
Ty or dam k + 1 that had visited neither Ty nor Tk.q (if it exists) as
non-fallback fish, for k=1,...,K — 1;

Number of fish detected as fallback fish for the first time at either site
T or dam k + 1 that had visited site Tx_; but not site T} as
non-fallback fish, for k=1,..., K — 1;

Number of fish detected for the last time at site ¢ that had not fallen
back before reaching site i and had not visited the tributary in the

‘reach immediately below site i, for 4 = Dyg or Dy with k=1,..., K

Number of fish detected for the last time at site ¢ that had not fallen
back before reaching site ¢ and had visited the tributary in the reach
immediately below site 4, for i = Dyp or Dy with k= 1,..., K;

For ¢ = Dyp or Dyp, the number of fish detected for the last time at
site ¢ that had fallen back before reaching dam k& — 1 and had not
visited site Tp_q, for k =2,..., K;

For i = Dyg or Dir, the number of fish detected for the last time at
site i that had visited site T,_1 and had fallen back before reaching
site Ty—q, for k=1,..., K;

For i = Dy or Dyr, the number of fish detected for the last time at
site ¢ that either had fallen back upon leaving dam k — 1 without
subsequently visiting site Tk_1, or else had fallen back upon leaving site
Ty_q,fork=1,...,K.

The likelihood for Model 5b can be expressed as follows:

N—gr 40Ty &9To~bTo—hTo g F o7 F dr—arp
Lo xg " ®p 1 ®r s (®r1) ™ (PRD,5) 0

(R)_yF(R)
X (x§,) T T

F

K-1

<11

x

=0

>
—

ar, —br, —hT, dr by b —d
{XTkk k ka)ck(l — ka) Ty, 1T, Tk¢

f T
9prp+9p T o, _+af F 95
X H {¢DkB,DkaB (¢DkaDkT) kB "*Pk8 (¢DkBaDkT) PkB ¢DkT»TIc

F(R) F(R)

F dry+br )
0 (¢T07D13) 07T
ka +th ——di +b§k }

Tk, Di+1,8

f
aTIC +GT T aT +CLfT
* <¢chTka) R
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(¢F )aﬁNT Apyg GTy 1 ~ADyp Apyr Gppp—ADgp @Dxp—bDyp—hpyp
Dyr Ty, Ppyp 9Dip Dyt 1Dyt Dyp

T _ _ fT  _pfT F —b —-h
X (X%kB)aDkB YDy thB(XfDTI;B)aDkB ®Dis (ngB)GDkB kaBXaDkT Dir =Pkt

T 3T T fT fT —
X (ngT)aDkT ®Dpr~ thT(Xg;T)aDkT 5Dyr (XD )achT kaT}
T deT 9Dy —4D T dg T QD dD a;T
H DkT 1 - kaT) kT kT (fDIcT) kT(l - kaT) kT kT (¢DkT Tk)
k=1
ng+ng (ka+th+ka) gg: +g (b +h bfT)
X ¢DkT>Dk+1 B (¢DkT»Dk+1 B) b Tk
F 9B, p D —af T df, —ap DR df
X (¢DkT,Dk+1,B) Dip TPkT T (¢DkT:Dk+1 B) Prr Tk (ka) T
‘ T \b% +h% —dL 7 bF, +hT, —dF, +62T
x (11— ka) T e T (¢Tk,Dk+1 E) Tk T
F dgy, +bENT 4L PRTT  pp df, (1 \oF, ~tF ~hE, T \ofT b
x (¢Tkka+1,B) o™ T ( Tk>Dk+1,B) Tk (XTk) Te 7T Tk (Xf ) Tk
FNT_ F(DpT)T _ pNT __ F(Dp)T
X (xf, ) T Fory br,” ~bn, }
K K-1
af __bf af __bf af __bf
X H {(XkaB) Dkg ™ 'Dikp (XkaT) Dy " Dyt H (ngk) T " Tk, (3.77)
k=2 . k=2

where N is the size of the initial release and K is the number of dams. Equation (3.77) may

be tailored to a particular data set by specifying K, removing any extraneous parameters,

and renaming parameters according to observed detections, if necessary. This is done for

the 1996 Chinook salmon data set below.
The initial values used for Models 3b, 4, and 5a may be used for Model 5b. The values

from the previous models may need to be modified to ensure that all derived parameters

(e.g., xi, X7, and x[') are between 0 and 1.

3.9.8.8 Performance Measures

The perceived probability of surviving from the release to the top of dam K, or perceived

system survival, is Sgys, defined as follows:

Says = NR,
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where

— F F F F F
NR = CI)R,TOTITO + QR,T()TITO + QR,DlB ¢DIBVD1T77D1T + @R,D1B¢D13,D1TT7D1T7

with

NDgr = (1 — fDer) {¢DkT,TknTk + ¢chT,Dk+1,B¢ch+1,B»ch+1,T77DIc+1,T}
F I F F F _ .
+ fDur {¢DkT»TknTk + ¢DkT,Dk+1,B¢Dk+1,B,Dk+1,T77Dk+1,T} ’ k=1,...,K-1
Noxr = 1;

T _‘ T T T T
MDyr = (1- kaT) {¢DkT»TknTk + ¢DkT,Dk+1,B¢Dk+1,Bka+1,T77Dk+1.T}

+ fng {qbng,Tkn%c + ¢£ZT,D/¢+1,B¢gk+1,B,Dk+1,Tngk+1,T }-’ k=1 K-1
ngKT =1
néw = ¢DkT:Tknf{"k + ¢’DkT:Dk+1,B¢Dk+1,B,Dk+1,TT]£k+1,T’ k=2, K-1
n{)KT =1
nlf)iT = ¢jlskT,Tk77:{“kT + ¢ql;)cT,Dk+1,B¢Dk+1,B>Dk+1,T’r]£k+LT’ k=1,...,K-1
e =1 | s
nng = ¢ng,Tk777Ek + ¢§kT,Dk+1,B¢Dk+1,B»Dk+1,T77£k+1,T’ k=1...,K-1
Mhxr = 1

— T T
Nt = (1 - ka)¢Tk,Dk+1,B¢Dk+1’B,Dk+1YTnD;C+1,T

F F F — _ 1.
+ ka¢Tkak+1,B¢Dk+1,B>Dk+1,TnDk+1,T’ k=0,...,K-1

T T\ .T T T
T, = (1- lec)¢Tk>Dk+1,B¢Dk+1,Bka+1,TnDk+1,T

+ f%;c¢¥3:Dk+1,)3¢gk+1,BaDk+1,Tan)k+1,T’ k=1,....K-1
775% = ¢Tk,Dk+1,B¢5k+1’B,Dk+1yTngz,:+lyTa k=2,...,K -1
n’{{ = ¢%k>ch+1,B¢gk+1,Bka+1,Tnlf)’1;+1,T’ k=1,...,K-1
nTEk = ¢¥Ic,Dk+l,B¢gk+l,Bka+1,Tn{)’II;+1,T’ k=0,...,K—-1

The variance estimator of §sy5 is defined in Appendix B.
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The probability of unaccountable loss, upr, is defined for Model 5b as follows:

pr=1-Qrn (1 - ur,) - q)g,To(l - urﬂ)) — @R,D, 58D, 5,017 (1 — 1Dy7)

- (I)g’Dls(bgwme(l - ugyp)’ (3.79)

where

1- HT, = 1- (1 - ka)¢Tk»Dk+l,B {1 - ¢%k+1,B,Dk+1yT(1 - /J“’ZD—‘]C+1,T)}

F 4 F F _ .
- ka‘¢Tk;Dk+1,B {1 - ¢Dk+1,Bka+1,T(1 - /'LDk+1,T)} J k=0,....K-1;

T _ TN T T T
1- HT, = 1- (1 - ka)¢Tk7Dk+1,B {1 - ¢Dk+1,B»Dk+1,T(1 - ’uDk-H,T)}

- f£¢¥ng+1,B {1 - ¢gk+1,B,Dk+1,T(1 - Mng’T)} ' k= L. K-1
1=, = 1= 60Di15 + 9T D4s1,59Dpss . Dpsrr (1= My 1) k=2,... ,K—-1
1=y =1= 0% Dus s+ D1 6900180 r (U~ By ) E=10 K =1
1- MITFk =1- ¢%«Dk+1,5 + ¢§kak+1,B¢gk+1,B,Dk+l,T(1 - Mg;;H,T)" k=0,....K-1

1= upyr = (1= fDur)004r 7 (1 = 41) + FDir D1 (1 — HT,)

+ (1 = fDur )@ Dir Dis1,89Dk11,8.Dks1,0 (L = BDpsrz)

+ FDur8DrDess. 5 PPrssmDrssr (L = By o) k=1,...,K-1
1‘~,uDkT=1, k=K,
1= php = U= fb0)0Durm (U = i) + fhrDmr 1 (1 — 17,)

T T
+(1- kaT)¢DkT,Dk+1yB¢Dk+1,B»Dk+1,T(1 - lu‘ch+1,T)

+ fDur9Dir Des,89Dis1,8.Desr (L~ HDpsa p)s k=1, K-1,
l_ﬂngl’ k=K;
1~ “kaT = ODyr T, (1 = /‘g“k) + @Dyr.Disr,5PDisr p Dier,r (1 — /’L{DHLT)’ k=2,....K-1L
1= phy =1, k=K;
1- M{JT;T = ¢ng7Tk(1 - “5{) + d)’JD—‘kT»Dk-{-LB¢)Dk+1,B:Dk+1,T(1 - Mka-H,T)’ k=1,...,K-1

T
L—uhr, =1, k=K;
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1- Nng = d)ng,Tk(l - M%c) + ¢£kT,Dk+1,B¢Dk+1,B:Dk+1,T(1 - “{Dk+1,T)’ k=1,...,K-1

1—ph, =1, k=K.
The variance estimator of [ig is defined in Appendix B.

3.9.3.4 1996 Chinook Data Set

Model 5b is a complicated model with many parameters and minimal sufficient statistics.
While there are enough minimal sufficient statistics t6 estimate all parameters in the general
model, it is likely that many minimal sufficient statistics will be 0 and many parameters
will be inestimable for a particular data set. This is the case for the 1996 Chinook data set,
as is shown by the summary statistics for the full data set (K = 7) given in Table 3.46.

~ As usual, no fish were detected at sites Dag, D3p, Der, or T, so modifications must be
made to the parameters estimated by the likelihood. The parameters ¢;; and qbz;. are easily
modified in the case where either site ¢ or site j is never detected (see Equation (3.80)).
Because the memory effect of fallback is temporary, the modification of the ¢f; parameters is
not as simple. Consider d)gm Doy Lhe superscript F' indicates that either the fish fell back
during the transition from D7 to Dyp, or else that the fish fell back before site D7 and
the memory effect still applies during the transition from Dir to D3p. In the former case,
the combined transition between Dir and Dy should be ¢ng2T = ¢§1T,Dzs¢ng,DzT'
In the latter case, the combined transition between Dir and Dy should be qﬁgm Dyr =
¢§1 +.Dyp @Dap, Doy Decause the memory effect of the earlier fallback does not apply once the

fish reaches site Dyp. Similar considerations apply to d)ﬂ Doy’ ¢§2T Dap qbrﬁ Dag+ ¢§GB Dog

It is possible to express the likelihood in terms of transitions starting and ending at sites
Dyp and Dspg, even though there are no detections at these sites. However, such a model is
unstable, and results in highly uncertain parameter estimates. For the 1996 Chinook salmon
data set, it is necessary to fix d)ng’DkT = ¢£kB»DkT = ¢pyp,Der fOr k = 2,3 in order to

: VTS : F _ 4F
fit such a model. This restriction is tantamount to defining ¢p, ;. p,.. = @D,7.D,5PD25,Der

and ¢f p. = &% p, 0h . p,r» With comparable definitions for transitions to Dar (see
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Equation (3.81)). Thus, the combination parameters shown in Equations (3.80) and (3.81)
are used to fit Model 5b to the 1996 Chinook salmon data set. (Note: Examination of the
sufficient statistics (below) leads to removal from the likelihood of several of the transition
parameters involving these missing detection sites, either because they cannot be estimated
for this data set or because they are unnecessary. The parameters to be removed from
Equations (3.80) and (3.81) are 657 p, 9% por OTipyrr Pbor Dapr OFoDapr PrDaps
¢56 5,075 and QSEZB’ Drs Also, because no fish fell back upon leaving site Ty, the transition
parameter ¢§1, D,r Must equal ¢£’ D, qu& 5 DzT‘)

The approach taken above to dealing with the missing detection sites results in esti-
mating only the composite transition parameters (given in Equations (3.80) and (3.81)) for
those sites. Thus, the actual definitions of those composite transition parameters in terms
of the underlying inestimable parameters do not affect the results, although they may affect
the interpretation of the results. As for fitting the model, using the composite parameters
is equivalent to the simpler alternative of ignoring the missing detection sites, and simply
treating dams 2, 3, and 6 as if they each had only a single detection site, with characteristics
of both base-of-dam and top-of-dam sites. In particular, these single dam sites would act
as the upper limits of both fallback and tributary memory effects, and fish would be able
to fall back upon leaving these sites. This approach ignores any actual differences between
base-of-dam sites and top-of-dam sites. Given the complexity of the model, this simpler
approach seems preferable to trying to estimate transitions to sites for which we have no
detections, and is effectively the result of the more complex approach taken above.

The necessary composite transition parameters are:

@Dy, Dar = ®Dy1,DapPDop,Dor' @7y, Dyr = @T1,Dz5 ¢TI;25,D2T§
¢£1T1D2T = ¢£1T>DZB $ D25, Dot ¢?1 Dar = ¢g1,DzB ¢71;23,D2T;
¢D1T1D2T ¢D1T>D2B ¢D23VD2T; ¢T1»D2T = ¢T1,D25 ¢DZB)D2TF
$Dyr,Dar = ®Dyr,DspPDsp,Dars $T,Dsr = $T,D35 Dy, Dy (3.80)

T 4T R T T T R
¢D2T1D3T - ¢D2T:D33 $Dsp,Dar ¢T2»D3T = ¢T27DSB ¢Dss,D3T’
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. FT F R
¢D2T,D3T ¢D2T7DSB ¢DSB:D3T’ ¢T2,D3T - ¢T2,D33 ¢D33,D3T’
—_ . 4T .
®De5,Drg = ®Dep,Der PDor,Drg' ¢D63,D7B = ¢D63,D6T¢D6T,D7B’
and
F _ U F . F . F T .
¢D1TyD2T - ¢D1T,D23 ®D2p,Dar' ¢T1,D2T - ¢T1,D213¢D23,D2T’
F _ A F . F . F T .
¢D2TaD3T - ¢D2T,D35¢D3BaD3T’ ¢T2,D3T - ¢T2,D33 ¢D33 Dsr> (3‘81)
F _ . F .
¢DSBAD7B - ¢D651D6T¢D6T7D7B’ ¢DeB,D7B DGBYD6T¢D6T7D7B'

In addition to the missing detection sites, Table 3.46 indicates that no fish detected at
F(D4T)+b;4(D4T)T+

hr, + hT4 = 0), so all types of ¢r, p, pParameters must be ﬁxed to 0, and the corresponding

site Ty was detected again upstream (i.e., br, + b, , t b , T b +bFNT +b

X1, parameters fixed to 1. Also, all transition parameters ¢£- where i = Dspg, Dsr, or T
must be removed from the likelihood. On the other hand, all fish detected at site T were
detected again (a7, = by, = 22 and a:fr5 = bﬁ = 18), indicating that ¢y p,, should be fixed
to 1 and both x7, and Xé modified accordingly.

A number of parameters displaying tributary effects are unnecessary. With no detections

at site T, all parameters ¢, with 1 upstream of Ts, must be removed. Every fish that visited

45
site Ty and then was detected at site Dip was also detected at site Dip, indicating that
¢ng,D1T should be fixed to 1. Similarly, ¢%,D4B and ¢E4B»D4T should be fixed to 1. All
fish detected at D37 that had previously visited Tp were detected again upstream, also.
Because Dsr is a top-of-dam site with two possible subsequent detection sites (i.e., 73 and
Dyp), it is necessary to use the relation (Z%aT’TB + ¢£3T7D4B = 1, so that only one of these
transitions must be estimated. On the other hand, neither fish detected at site Ty that had
previously visited Ty was detected upstream of Ty, so qﬁh D,p Must be fixed to 0. For each
of these cases, the corresponding xiT and Xf T parameters must be modified accordingly.
The d; and dZT statistics in Table 3.46 indicate that many sites were not the origin of

fallback transitions. In particular, no fish fell back upon leaving any tributary other than

site T3, so the parameters fr,, fn, fr}l, [Ty, f%;, frys f%;, fry, and f%; must be fixed to
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0. The parameter (;Sf;. includes a fallback effect that may be either a memory effect or
representative of fallback during the transition from i to j, so it does not follow that all
¢f; parameters with ¢ = Ty (k # 3) must be removed. However, the parameters ¢ZT are
used only during the fallback transition, so these parameters must be removed from the
likelihood for ¢ = T}, and k # 3. No fish fell back at any site other than Dyr after visiting
the previous tributary, so the parameters fng (k #4) and f:,T«3 must be fixed to 0, and the
parameters ¢f;7 where i = Dip or i = T3 must be removed. Likewise, dp,; = 0, 50 fpgp
must be fixed to 0.

Not all transitions with fallback effects are needed. Because no fish that fell back between
the release site and Ty was detected again upriver (i.e., bgo(R) = 0), the transition parameter
¢¥01 D,p Must be fixed to 0. No fish detected at tributary T that had fallen back within
the previous reach (i.e., the fallback memory effect was still operable) was detected again
upstream (i.e., aﬂNT = 7 but b%NT = 0), so the parameter qSﬁ‘DST must be fixed to 0.
At some sites, all fallback fish detected there were detected again upstream, requiring the
following relations: ¢f, o +¢5 p. =1, 65 p. =1 and ¢h 5 +¢5 5. =1
Also, because no fish fell back from upstream of site Dy, there is no need for any qbf;
parameters where i = Dgpg or a site farther upstream.

Removing or fixing the values of the parameters listed above leaves 65 parameters to
estimate, with 79 non-zero minimal sufficient statistics. Several of these non-zero minimal
sufficient statistics are nevertheless very close to 0, and certain memory effects cannot be
estimated for this data set. In particular, only two fish were detected at Dy after visiting
T3 without having previously fallen back (i.e., agw = 2). One of these fell back during its
next transition (dIT)” = 1) and the other did not. With only a single fish experiencing both
fallback and tributary effects during the transition from Dyr, it is impossible to estimate
the parameter qﬁg:‘fT’ Dsg+ Thus, the tributary effect on fallback was ignored for Dyr, giving
fbir = fDyr and 65T = ¢h «r.Dsp- Additionally, very few fish that visited tributary
T3 went on to Dyt (ggw + gg:B = T7), so it is difficult to estimate a tributary effect
at Dyt in general. Thus, the tributary memory effect was ignored at site Dyp, giving

5 o, Ts = $Dyp,T; and qb%m Dsg = $Dar,Dsg s well as the relations expressed above. With

these simplifications, there are 61 parameters to estimate with 78 non-zero minimal sufficient
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statistics. The likelihood used to fit Model 5b to the full (K = 7) 1996 Chinook data set is

given in Equation (3.82), with zero-valued terms omitted, and with qbng,Tz =1~ ¢52T, Dag>

T —_1 AT F — 1 _ AF .
¢D3T7T3 =1 ¢D3T:D4B’ and d)DsT,Ts =1 ¢D5T7DGB'

F(R)
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X (Xéss )a{:'sa _bésB ¢‘;]DD55BB’;:7£’53 g?;T g:;B —Apgr ;DS;T ~bpgp (X{)n)aéw _bi)sT fgi;T

X (1= fog)oortoem 655 (0, 1) BT GEAnOn I (oo tdosr BT
y (Xﬁ )agsNT_'_agéDsT)#_bgévT_bgéDsT)T ( ﬂstB )b¥5NT+b$5$D5T)Tpg§gB qg:Z~AD63 aD[:;(;B‘—bDSB
bbb B oo s, g, P e

- A +oh . Ap.. Gp.,—A -b
ap,p=bDrp (. f ap by 9075 TIDgg ADyp GDrg—ADsp  @D7p—bDyp
X XDsg (XD7B ) 7B B ¢D7BYD7T Dyr 3D7r XDy

foo_f ar, +al
x (x5, ) TP T T (3.82)
The summary statistics for the reduced 1996 Chinook salmon data set (K = 4 [BON,
TDA, JD, MCN]) are given in Table 3.47. The restrictions and modifications made to
the parameters pertaining to the first 4 dams in the 7-dam model are used here, with the
exception that it is possible to distinguish between ¢7134T,T4 and ¢p,,, 7, in the 4-dam model.

This leaves 44 parameters and 55 minimal sufficient statistics.
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The 4-dam likelihood tailored to the 1996 Chinook data set is given in Equation (3.83):
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3.9.3.5 Results

Program USER!” was used to fit Model 5b to the data via maximum likelihood. Maximum
likelihood estimates from the full data set (K = 7 dams) are listed in Table 3.48. The
log-likelihood was -3743.8691, with an AIC of 7609.7382. The perceived system survival
rate is estimated at §sys = 0.1048 (§E = 0.0106), and the unaccountable loss rate from the
release is estimated at fig = 0.2770 (SE = 0.0155).

Model 5b is most closely related to Models 3b and 5a. Like Model 3b, Model 5b incorpo-
rates short-term memory effects of tributary visits. Like Model 5a, Model 5b incorporates
fallback effects, although Model 5b uses short-term fallback effects whereas Model 5a uses
long-term effects. If both tributary effects and fallback effects are significant, then the
estimates of perceived system survival and the unaccountable loss rate should be more
accurate, but possibly less precise, for Model 5b than for either Model 3b or Model 5a.
Comparison of the estimates among the three models shows that for the full, 7-dam analy-
sis, the estimate of gsys is smallest for Model 5b but equally precise among the three models
(8sys = 0.1048, SE = 0.0106 for Model 5b versus Sys = 0.1057, SE = 0.0106 for Model 3b
-and §sys = 0.1073, SE = 0.0108 for Model 5a), while the estimate of ig is intermediate for
Model 5b but equally precise for all three models ([ZR = 0.2770, SE = 0.0155 for Model 5b
versus g = 0.2800, SE = 0.0156 for Model 3b and Lr = 0.2763, SE = 0.0156 for Model
5a).

Table 3.48: Maximum likelihood estimates of parameters from Model 5b, the Short-
term Fallback and Tributary Memory model, with K = 7 dams. The estimates
F ; F —
OfT¢D2T,T27 ;‘bgsT»TS’ and ¢£5Tgs come f;om the relations ¢p, 1, + ¢52T,D3T = 1,

¢D3T,T3 + ¢D3TvD4B =1, and qstTyC”s + ¢D5T:DGB = 1, respectively.

Category Parameter Estimate S.E.

Transition g7, 0.0083 0.0031
L 1 0.0047  0.0024
®R,Dp 0.8448  0.0126
% ps 0.1205 - 0.0113
915,05 0.5726  0.1873

"http://www.cbr washington.edu/paramEst/USER/
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Table 3.48 continued

Category Parameter Estimate S.E.

Transition  ¢p, 5,07 0.9728  0.0080
Oy 5.Dir 0.9734  0.0213
PDy 7Ty 0.3614  0.0189
D 0.3996  0.0435
¢Dr T 0.4990  0.2500
®Dir,Dar 0.5509  0.0201
Oh1r Doy 0.4907  0.0454
DyrDar 02529  0.2192
@11, Dor 0.1224  0.0213
OF Dy 0.2046  0.0551
$Dor Ty 0.1467  0.0177
OPr T 0.2756  0.0889
O Dyr Ty 0.2240  0.0658
®Dyr,Dar 0.7631  0.0220
OPar Dar 0.7244  0.0889
Obyr Dy 0.7488  0.0693
@T2,Dar 0.0170  0.0167
AT, Dar 0.2222  0.1386
®Dar,Ts 0.1192  0.0177
P Per T 0.2072  0.0941
¢bpr 1 0.3333  0.2723
$Dsr.Dap 0.8214  0.0216
O har Dis 0.6801  0.1226
Do Dup 0.6667  0.2723
@T3,D4p 0.2812  0.1513
OF, Dan 0.0774  0.0561
®Dyp,Dar 0.9766  0.0102
ODup. Dur 0.8712  0.1489
®Dyr T 0.5394  0.0313
oy 0.0692  0.0703
$Dyr,Dsp 0.4141  0.0305
OP . Dss 04028  0.1755
®Dsp,Dsr 0.9601  0.0206
$Dsr T 0.3674  0.0465
Pher T 0.2917  0.1800
®Dsr Doz 0.6022  0.0498
O Doz Dop 0.7083  0.1800
O Deg 0.5091  0.3604
®Dep,Dr5 0.9376  0.0366
bb. 1 Dom 0.9540  0.0341
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Table 3.48 continued

Category Parameter Estimate S.E.

Transition ¢ép,5 Dsr 0.8573 0.0354
@Dy Ty 0.8161 0.0415
Detection pp, 5 0.9407 0.0085
DDy 0.8667  0.0127
PDyr 0.8526 0.0174
PDsp 0.9573  0.0112
PDys 0.9102 0.0168
DDy 0.9373 0.0147
PDsp 0.9302 0.0238
PDsr 0.8725 0.0318
PDes 0.6372 0.0469
PDrp 0.9775 0.0157
PDyr 0.9726  0.0191
Fallback fDir 0.0527  0.0097
IDor 0.0341 0.0097
fDar 0.0357  0.0125
I1s 0.7405 0.2408
IDur 0.0380  0.0230
[Dsr 0.0383 0.0268

Maximum likelihood parameter estimates from the reduced data set (K = 4 dams)
are listed in Table 3.49. The log-likelihood was -3265.9726, with an AIC of 6619.9451.
The perceived system survival rate is estimated at §3y3 = 0.3394 (§E = 0.0169), and the
unaccountable loss rate from the release is estimated at figp = 0.2212 (§E = 0.0150). Just as
in the 7-dam analysis, there is little difference between Models 5a and 5b in estimating Sy,
and pg in the 4-dam analysis. The estimate of perceived system survival is slightly smaller
for Model 5b (Ssys = 0.3394, SE = 0.0169 for Model 5b versus Ssys = 0.3408, SE = 0.0169
for Model 5a), while the estimates of the unaccountable loss rate are the same for the two
models (g = 0.2212, SE = 0.0150 for Model 5b versus ir = 02211, SE = 0.0151 for
Model 5a}.
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Table 3.49: Maximum likelihood estimates of parameters from Model 5b, the Short-
term Fallback and Tributary Memory model, with K = 4 dams. The estimates of

F T : w : ) :
Obyr 1, 80d ¢h,. 5 come from the relations ¢, 7, + @p,. p,, = 1 and éh, 1, +
¢g3T Dyp = 17 reSpectively. .

Category Parameter Estimate S.E.

Transition  ®p1, 0.0083  0.0031
oL 1, 0.0047  0.0024
Pr,Di5 0.8448  0.0126
L pis 0.1205  0.0113
OTo,D1 5 0.5726  0.1874
$Dy5,D1r 0.9728  0.0080
&5, 5 Dy 0.9734  0.0213
¢Dir Ty 0.3614  0.0189
o 0.3996  0.0435
&bt 04990  0.2497
®D;r,Dor 0.5509  0.0201
¢D 7 Dar 0.4907  0.0454
GD1r Doy 0.2529  0.2188
@11, Dor 0.1224  0.0213
O Dor 0.2046  0.0551
$Dar. T 0.1467  0.0177
ODor T 0.2756  0.0889
L r Ty 0.2240  0.0658
®Dor,Dar 0.7632  0.0220
PDar.Dar 0.7244  0.0889
PDyr Dar 0.7489  0.0693
&7, Dsr 0.0189  0.0186
O Dar 0.2223  0.1388
ODsr Ty 0.1191  0.0177
Oh Ty 0.2078  0.0942
Do T 0.3333  0.2722
®Dsr,Dyp 0.8204  0.0218
O Dup 0.6873  0.1206
O Dar Dan 0.6667  0.2722
®Ty,Dyp 0.2822  0.1519
O Dus 0.0782  0.0569
®Dyp.Der 0.9620  0.0167
O 5. Dir 0.7168  0.1858
®Dyr, Ty 0.5408  0.0308
¢7§4T,T4 0.1935  0.1741

O r.1s 0.1425  0.1310
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Table 3.49 continued

Category Parameter Estimate S.E.

Detection  pp, 5 0.9407  0.0085
PDur 0.8667  0.0127
DDy 0.8526  0.0174
PDsr 0.9571  0.0112
PD.s 0.9105  0.0171
PDap 0.9550  0.0166
Fallback  fp,; 0.0527  0.0097
Do 0.0341 0.0097
fDsr 0.0355  0.0123
fry 0.7407  0.2409

3.9.4 Model 5¢c: Long-term Fallback Memory and Short-term Tributary Memory Model

Unlike the Fallback model (Model 4) and the Fallback and Memory-Free Tributary model
(Model 5a), Model 5b uses short-term fallback effects, rather than long-term fallback effects.
The effects of fallback on survival and transitions are simplified in Model 5b to make the
model more tractable and easier to fit for the 1996 Chinook data set. It is possible, however,
to develop a model that includes both the long-term fallback effects of Models 4 and 5a,
and the short-term tributary effects of Model 3a. Such a model, Model 5¢, is described
briefly here. Due to large number of parameters, it is not possible to fit Model 5¢ to the
1996 Chinook data set, even for the reduced, 4-dam data set. ‘

As with Model 5b, Model 5¢ allows entering and exiting a tributary to affect survival,
transitions, and fallback parameters in the following reach. Also like Model 5b, Model 5c
assumes that tributary effects are dominated by fallback effects if the fallback event occurs
after a tributary entry and exit, and either that each fish falls back at most once or else
that only the first fallback event affects subsequent transitions. Unlike Model 5b, Model 5¢
assumes that any fallback effects are permanent, and that tributary effects never override
fallback effects. As usual, detection rates at the dams are unaffected by either tributary

visits or fallback, and detection rates in the tributaries are assumed to be 100%.
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3.9.4.1 Notation

Notation for Model 5¢ follows the pattern of Models 3b, 4, 5a, and 5b. One difference in
definition from Model 5b is that in Model 5c¢, “fallback fish” refers to any fish that has
previously fallen back, regardiess of where the fallback event occurred, and “non-fallback
fish” refers only to those fish that have not fallen back at all up to the current time.

The transition parameters ¢;; and d)f; are defined as for Models 5a and 5b for the cases
where i = R and i = Tp. For other values of ¢, define the transition parameters ¢;;, qbf;, qﬁz;,

and qﬁf;T as follows:

ij = Pr[Survive and move directly from site 4 to site j, as a non—failback fish that did
not enter the tributary in the reach immediately preceding site i,
;f’; = Pr[Survive and move directly from site i to site j as a non-fallback fish that
entered the tributary in the reach immediately preceding site 3],
qﬁf; = Pr[Survive and move directly from site ¢ to site j as a fallback fish that did not
enter the tributary in the reach immediately preceding site i];

¢5T = Pr[Survive and move directly from site 7 to site j as a fallback fish that entered

the tributary in the reach immediately preceding site i];

where i = Dyg, D17, T1,...,Dgr, and where

4
Dyr fori = Dip,k=1,...,K;

) Dk+1,B foriszT,k=l,...,K~1; }

J = (3.84)
Tk fori=Dyr,k=1,...,K;

Dipi1p fori=Tgk=0,..., K -1

The parameters p;, g;, fi;, and fiT are defined as for Model 5b.
Two types of memory effects are used in Model 5c: the permanent memory effect of

fallback, and the temporary memory effect of tributary entry and exit. It is assumed that
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fallback may affect upstream transition probabilities, regardless of the time or distance
between the fallback and the transition, as in Models 4 and 5a. On the other hand, it is
assumed that tributary entry and exit (i.e., a tributary visit) affects transition and fallback
probabilities only through the following reach, as in Models 3b ‘and 5b. Unlike Model 5b,
both fallback and tribu.tary memory effects may be present for the same transition. Thus,
a transition between sites ¢ and j, where j is described as in Equation (3.84), is represented
by either ¢, d)f;, oL, or ¢5T. Because the memory effect of tributary visits is assumed to
be short-term, it is not assumed to extend past a transition to the post-fallback state, even

if the post-fallback transition occurs in the reach following the tributary.

Consider again Figure 3.13(a), with simplified detection history
R Ty FB Dsg Dor D3 ...

The portion of the history’s probability relating to detections after T3 is

F F F F
v fT1 ¢T1,D25pD23 ¢D237D2TpD2T¢D2T,DngD3B ¢D33,D3TpD3T rees (3'85)

Equation (3.85) differs from Equation (3.65) (Model 5b) in that the fallback effect does
not end at dam 3 in Equation (3.85); parameter ¢§35,D3T is used instead of ¢p,, pypr. For
both models, however, any tributary effect is overridden by the fallback effect, because the
fallback occurs after the tributary entry.

The path shown in Figure 3.13(b), with simplified detection history
R Dy FBTh Dar Dar ...,
has probability

F F T FT F
T fD1T¢D1T:T1 ¢T1,D23QD23 ¢DZB:D2TpD2T¢D2T7D3BQD3B¢DSB:D3TPD3T T (3.86)

Unlike Equation (3.66) (Model 5b), Equation (3.86) uses transitions with both types of

memory effect: ¢SZB’ Do and d)ng’ Dsg include both fallback and tributary memory effects,
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because the tributary entry follows the fallback event. At dam 3, the tributary effect ends
but the fallback effect continues, with the parameter ¢£3 5.Dyp Used instead of @p,p,p,yr as
in Equation (3.66). Had the fish with the migration path shown in Figure 3.13(b) visited
tributary T before Dyp, then f%l ¢£1TT,T1 would replace fr, qﬁng’Tl in Equation (3.86), but
because the visit to tributary Ty occurred before the fallback, the parameter ¢fT’f’:DQB would
not replace the parameter ¢£’ D, 10 Equation (3.86).

Four types of x; parameters are needed in Model 5c, each representing the probability
of not being detecﬁed after site ¢, conditional on reaching site 7, and each for a particular
group of fish. The parameters x; and xf are appropriate for fish who did not enter the

tributary in the reach immediately preceding site 1, if it exists. The parameter Xf is also
appropriate for fish who entered the previous tributary but then fell back between entering
that tributary and being last detected at site i. Otherwise, fish that entered the tributary
immediately below site 7 receive either x7 (for non-fallback fish) or xf'7 (for fallback fish).
The probability of not being detected after site i, given having reached that site as a non-

fallback fish and not having entered the tributary preceding site 4, is x;:

XR=1-®r1, — PRz, — PRD15(1 ~ D15 XD15)

- Qg,Dls(pr +4p,p ¢513,D1TpD1T)5
Xbxs = 1 = ¢Dyp.Dkr (L — ADir XDir )5 k=1,... K,

XDir =1 = (1= fpir) {d’DkT,Tk + ¢DkTyDIc+1,B(1 - qu+1,BXch+1,B)}
F
- kaT¢DkTsTk

F F .
- kaquDkT»Dk-H,B (pDk-H,B + QDk+1,B¢Dk+1,B,Dk+1,TPDk+1,T), k= L., K~ L;
XDxgr = 1- ¢DKT,TK; (387)
‘ T
xt, =1—= (1= f1)07n,Dp,5(1 QDk+1,BXDk+1,B)

F F ! _
- ka¢TksDk+1,B(lec+1,B + QDk+1,B¢Dk+1,B,Dk+1,TpDk+1,T)a k=0,....,K -1

The probability of not being detected after site ¢, given having reached that site as a fallback
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fish and not having entered the tributary preceding site i, is xf :

XDes = 1 = b5 Der (1 = aDerXDyr)s k=1,..., K

XBer =1= 0Bt = 9Bur i s (1 = WD 5XBr 1) E=1.. K1

XDrr = 1= b ypic; (3.88)
XF, = 1= 08, Dyyrp (1= 4016 XDypn ) k=0,....K -1

The parameters x? and fo are appropriate for fish who entered and then exited the tribu-
tary in the reach preceding site 7. The parameter x? is the probability of not being detected
after site ¢, conditional on reaching site i, for fish who entered the tributary immediately

below site 7 and who are not fallback fish, where:

T T T .
XDpg ™ 1~¢DkB,DkT(1_quTXDkT)> k= 1»""K7
T T T T
XDy =1 - 1- fchT) {d)DkTka + ¢DkT»Dk+1,B(1 - qDlv+1,BXDIc+1,B)}
- fchT ¢DkT;Tk
F .
- kaT¢DkTka+l B(pDk+1 5T qD’H—LB¢Dk+1,Bka+1,TpDk+l,T)7 k=1,...,K-1,

XEKT =1- qbEKT,TK; . (389)

T T\ T T
X7, =1- 1- ka)¢Tkak+1,B(1 - QDk+1,BXDk+1,B)

T FT F —
- ka¢Tkak+1,B(pDk+l,B + qu+1)B¢D’C+1,Bka}+1,TpDk+l,T)’ k - 1, e ,K - 1.

The parameter xf T is the probability of not being detected after site i, conditional on

reaching site ¢, for fallback fish who entered the tributary immediately below site 4, where:

F F
XDZ-‘B - ¢DkBkaT( quTXDZ—‘T)’ k - 11 ey K,

FT FT F
XDyr = d)DkT T, ¢DkT:Dk+1,B(1 - QDkH,BXDkH,B)» k=1,...,K~1
ng;T =1- ¢DKT,TK’ (3.90)

. FT FT
X1, = ¢Tk,Dk+1 B(l - qu+1.BXDk+1,B)’ k=1,.,K-1
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The parameters used in Model 5c¢ are listed in Table 3.50.

Table 3.50: Parameters used in Model 5c¢, the Long-term Fallback Memory and
Short-term Tributary Memory Model. The number of dams is K.
Parameter Deflinition
®r 1o Probability of surviving and moving from the release point directly
to site Ty without becoming a fallback fish;
®r.Dis Probability of surviving and moving from the release point directly
to site Dyp without becoming a fallback fish;
<I>1};,T0 Probability of surviving, becoming a fallback fish, and then moving
from the release point directly to site Tp;
@g’ Dis Probability of surviving, becoming a fallback fish, and then moving
from the release point directly to site Dqp;
bij Probability of surviving and moving from site 7 to site j as a
non-fallback fish, given reaching site ¢ without entering the tributary (if
any) in the reach immediately preceding site , for
i =To,D1g, D17, T1, ..., Dgr and j as in Equation (3.84);
qbg; Probability of surviving and moving from site i to site j as a
non-fallback fish, given reaching site 4 after entering the tributary in the
reach immediately preceding site i, for ¢ = Dig, D17, T1,...,Tx and j as
in Equation (3.84);
gbfj Probability of surviving and moving from site ¢ to site 7 as a
fallback fish, given reaching site ¢ without entering the tributary in the
reach immediately preceding site ¢, for 1 = Ty, D1, D17, 11, ..., DK
and j as in Equation (3.84);
¢5T Probability of surviving and moving from site 7 to site j as a fallback
fish, given reaching site ¢ after entering the tributary in the reach
immediately preceding site ¢, for ¢ = Dyp, D17, T1,..., D7 and j as in
Equation (3.84);
D Probability of being detected at site j, given having reached site 7,
for ¢ = D1, D11, D2B, ..., DKT;
i Probability of avoiding detection at site 4, given having
reached site 4, for ¢ = D1g, D17, Dag,...,Dgr; =1 — py;
fi Probability of becoming a post-fallback fish between site ¢ and the
next detection site, given having reached site ¢ as a non-fallback
fish without entering the tributary in the reach immediately preceding
site 4, for ¢ = Ty, D17, T1, Dor, ..., Tk _1;
fr Probability of becoming a post-fallback fish between site ¢ and the

next detection site, given having reached site ¢ as a non-fallback fish
after entering the tributary in the reach immediately preceding site 7,
for i = D17, Ty, Do, Tt ..., T —1;
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Table 3.50 continued

Parameter Definition

Xi Probability of not being detected after site ¢, given having reached
site 7 as a non-fallback fish without having entered the tributary (if any)
in the reach immediately preceding site i, for i = Ty, D15, D17, ..., DKT}

x7 Probability of not being detected after site 7, given having reached
site 1 as a non-fallback fish after entering the tributary in the reach
immediately preceding site 1, for ¢ = Dyp, D17, 11, ..., DkT;

xF Probability of not being detected after site ¢, given having reached
site ¢ as a fallback fish without having entered the tributary (if any) in
the reach immediately preceding site ¢, for ¢ = Ty, D15, D11y .- ., D}

szF Probability of not being detected after site ¢, given having reached
site ¢ as a fallback fish after entering the tributary in the reach
immediately precedingsite i, for i = Dy, D17, T1,...,Dgr.

The parameters in Table 3.50 can be used to express the probabilities of the possible de-
tection histories. For example, consider the probabilities of the detection histories examined

in Model 5b:

Pr(R FB Ty D1g Dop Ty Dr] = @ 1,07 D, 5PD15% b 5.0, ID10P D . Dyp 4035
X D5, DyrPDor ODyr o 975, D35 IDs8 P gy Dar
X PDyr XD (3.91)
Pr[R Di1g T\ FB Dyp Ty T3] = ®Rr D,5PD:150D1 50179017 (1 = fDy1) 00171 fr
X OFy D5 PD25PDs 5 Doy dD2r P Dyr T, 97y, Des 4035

X ¢§ZB»D3TqD3T¢§ZT,T3X¥E; (3.92)
PrlRTo Dip Ty FB Dy Ty Ts] = ®rmyd oL (1= 5 ygT T
r[RTo Dip T 25 T2 T3 RT6PTo.D15PD, 59D, 5 0103010 (1 = fD.0)8D1r 11

FT F F F
X ¢T1 ,Dy5PD2p ¢D23 Do 4Dar ¢D2T,T2 ¢T2>D33 4D3p

FT FT FT
X @Dy, Dyr 9037 PDyr Ts XTs - (3.93)

The detection history in Equation (3.91) shows the fallback occurring on the way to site
Tp. Unlike Equation (3.72) (Model 5b), the fallback effect carries through the detection at
site Tp, and lasts throughout the detection history. The effect of visiting site Ty ends after
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reaching dam 2, and the effect of visiting site 7» occurs at dam 3. The detection histories
in Equations (3.92) and (3.93) are identical except for the visit to site Tp in the latter. In
both cases, the fallback occurs upon leaving site T3, so the effect of visiting T3 is overridden
by the fallback effect, which lasts throughout the detection histories. Equation (3.93) shows
the effect of visiting site Ty before falling back at T3, using the parameters fgl - f%l, and

¢§17:D25 instead of fp,,, fr,, and qb%’DZB, as in Equation (3.92).

3.9.4.2 Likelihood

The likelihood can be expressed as
Lo [[ngi™, (3.94)

where C H; is observed detection history ¢, P[C H;] is the probability of detection history 1,
and 7 ranges over all observed detection histories.

For the 1996 Chinook data set, it is impossible to get useful parameter estimates even for
the reduced, 4-dam data set. Thus, while Model 5¢ is a logical continuation of the sequence
of models presented in this chapter, it may demand more structure than exists in the data

set, and so be too complex to be useful as an analysis tool.

3.10 Model 6: Fallback and Memory Tributary Model with Trap Data

Models 0 through 5b and 5c use only records of type “Al1,” “LT,” “F) and “L” from
the radiotelemetry data (see Section 3.2.2). Other types of records are available, such
as “MBT” (mobile tracking), “RCP” (tag recovery), and “GRT” (recapture or recovery
at Lower Granite adult trap). Mobile tracking records are difficult to include in release-
recapture models due to variable sampling effort. The “RCP” records came from multiple
sites in the Columbia and Snake river watersheds, including hatcheries, traps, weirs, and
spawning sites. Their inclusion requires independent estimates of tag-reporting rates, which
are generally less than 100%. The “GRT” records are specific types of recapture or recovery
records, occurring at the adult trap off the fish ladder at Lower Granite Dam. There it is

reasonable to assume 100% detection. Fish that enter the adult trap at LGR are examined
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and may undergo some degree of handling. Most are released back into the ladder and
continue to ascend LGR. Some fish from particular hatcheries are not released back into
the river, but are trucked from the adult trap to the hatchery; others are released to the
river with their radio transmitters removed. It is possible to include the detections at the
adult trap in the models developed in this chapter by treating trap detections as detections
at LGR, and right-censoring either all the fish detected in the trap, or only those that were
not released back into the river with intact radio tags. Because fish in the trap have reached
LGR but have not completely ascended it yet, it is reasonable to use trap detections as base-
of-dam detections. The model developed here (Model 6) uses the trap detections in this
way: both “A1” and “GRT” codes become base-of-dam (Dgp) detections, and censoring is
possible after detection at Dgpg. Otherwise, Model 6 is identical to Model 5b (Short-term
Fallback and Tributary Memory Model). Although such trap detections occurred only at
LGR for the 1996 data set, it is conceivable that they may occur at other dams in the future.

Thus, Model 6 allows for censoring at all base-of-dam sites (Dgp, for k =1,...,K).

8.10.1 Data and Assumptions

Additional steps are needed to prepare radiotelemetry data for Model 6. As alluded to
above, any records indicating recapture at an adult trap at a dam should be included as
base-of-dam detections (Dgp). If any or all trap detections are to be censored, then the
detection histories should reflect this (i.e., ...Dgg C). Any trap detection that is not
censored is represented as Dgp, unless detection at Dyp occurred immediately before the
trap detection in the non-simplified detection history; a trap detection should not become
a repeated Dyp detection, which would imply fallback at dam k. After the trap detections
are converted to base-of-dam detections, any detection histories including censoring should
be right-censored, and finally the detection histories should be reduced to the post-fallback
paths, if necessary.

The 1996 data set included several questionable records at the Lower Granite adult trap,
as well as records indicating release back into the river or transf)ortation to a hatchery. All

non-questionable records at the LGR adult trap that indicated release back into the river
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were treated as base-of-dam detections (not following by censoring) at LGR. All questionable
records at the adult trap, including those indicéting transportation to a hatchery or release
after removal of the radio tag, were treated as base-of-dam detections followed by right-
censoring at LGR.

In addition to the assumptions described in Section 3.3.3, Model 6 assumes that all fish
that reach site Dip ascend the ladder at dam k at least as far as the trap, if a trap exists.
If there is no adult trap, then no assumption is made that fish that reach the base of dain k
ascend any part of the ladder. For existing traps, it is assumed that the detection rate in the
trap is 100%, i.e., that all radio-tagged fish that enter the trap are correctly identified. If the
former of these two assumptions is incorrect, then the estimated censoring rate at Dyp (i.e.,
ngB) will be biased. If the latter of these assumptions is incorrect, then the undetected
fish will either contribute to the unaccountable loss estimate (if they are removed from
the migrating population without detection), or else bias transition estimates upriver (if
they are returned to the river but have decreased survival due to handling). If only some
detection histories including trap detections are right-censored, then only the first of these
two possibilities will occur. In general, the estimated detection rate pp, , will be positively
biased for the actual detection rate at Dyp if fish enter the trap after evading detection at
the base of the ladder. If dam k has multiple fish ladders, then the estimated censoring
rate will be a weighted average of the trap entry and censoring rates at each ladder, some
of which may be zero.

If only certain trap detections lead to right-censoring of the detection histories, then it is
assumed that the correct detection histories are labeled for censoring, and that detection at
the trap does not affect subsequent survival, movement, and fallback behavior for those fish
released back into the river with intact radio tags. This assumption is reasonable if handling
at the trap is minimized. At the Lower Granite trap, fish may be weighed or photographed.
This degree of handling is less than that experienced by all fish in the radio-tagged releases
at the Bonneville adult trap, where the fish are originally collected for tagging. If it is
assumed that the handling and tagging at Bonneville is insufficient to prevent application
of estimates from tagged fish to run-of-river fish, then it may be reasonable to assume

that the lesser degree of handling at the Lower Granite trap is also insufficient to require
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censoring of all tagged fish that entered the trap. Whether or not this assumption is justified
is left to the researcher; by treating trap detections as base-of-dam detections, Model 6 can
accommodate both the policy of right-censoring all detection histories with trap detections,

and the policy of right-censoring only selected trap detection histories.

8.10.2 Notation

The notation used in Model 5b may be used in Model 6, with several modifications. First,

the transition parameters ¢p,z Dyr» ¢{)k 5. Dkr and ¢gw, D and the “last detection” pa-

rameters Xp, g, ngs’ ng 20 Xka 5 and foj;B must be redefined as follows:

For k =1,..., K unless otherwise specified:

@Dy p,Dir = Pr{Survive and move directly from site Dyp to site Dyr | Neither fell back
during the transition to site Dyp, nor visited site Tj..1, nor was censored
at Dypl;

¢£kB’DkT = Pr[Survive and move directly from site Dyp to site Dyp | Visited site Ty,
did not fall back between sites T, and Dip, and was not censored at
site Dgpl;

¢£kB,DkT = Pr[Survive and move directly from site Dyp to site DkT.| Fell back during the
transition to site Dyp without visiting site Ty_1 after fallback, and was
not censored at site Dgg|;

XD,z = Pr{Not detected again after reaching site Dyp | Neither visited site Ty_;, nor
fell back before reaching site Dgp, nor was censored at Dyp];

x%k s =Pr [Not detected again after reaching site Dyp | Visited site Ty—; but neither
fell back before reaching site Dgp nor Wasvcensored at Dypl;

X,ij 5 = Pr[Not detected again after reaching site Dyp | Fell back during the

transition to site Dyp and was not censored at Dgg];
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xf;w = Pr{Not detected again after reaching site Dyg | Fell back before the transition

to site Dxp, and neither visited site Tx_1 nor was censored at Dig],

fork=2,...,K;

foj;B = Pr[Not detected again after reaching site Dyp | Visited site Tj_; after falling

back, and was not censored at Dyp].

The mathematical definitions of xp,, ngB, ng 8 Xkas’ and XfDTkB are unchanged from

Equations (3.67), (3.68), (3.69), (3.70), and (3.71), respectively.
New parameters are necessary to handle censoring at the base-of-dam sites. Define ép, 5

as follows:
dp,5 = Pr{Censored at site Dip | Detected at site Dyp].

3.10.3 Likelihood

The summary statistics and minimal sufficient statistics used with Model 5b are also used
here, with no change in interpretation or definition. In addition to those statistics, the

following censoring statistics are needed for Model 6 (k =1,...,K):

¢pyz = Number censored at Dyp that neither fell back during the transition to Dy nor
visited Tr_1;
c%k 5 = Number censored at Dyp that visited site Ty and did not fall back during the

transition from Ty_1 to Dyp;

cgks = Number censored at Dy g that fell back during the transition to Dyp; (3.95)

c{)w = Number censored at Dip that fell back before the transition to Dypg, and did not.

visit Tp_1;

cg;B = Number censored at Dip that visited site Ty_; and fell back before reaching Tj_;.
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The statistics cp, g, cgk 5 cgk iy cf)kB, and cng are part of the minimal sufficient statistic

for Model 6. Also useful is their sum, Cp,:

f

_ T F T
' Cpyg =D + €Dy + Dy + CDpp T

Dyp’
The likelihood for Model 6 can be expressed as follows:

—gr #0270 970 ~bTo—hTo F “i( dR"ag(R)
Lo xp ROy T 2RDis (®Rm) ™ (2 Dpia) 0
F(R)_,F(R)

F(R)
Fa F dr,+b
X XTO) 7o o (¢T0,D13> o

K-1 f
aTy, —~br, —hT, Ld7 by, +hp, —dp, OTke ATy —dmy b,
8 {XTk ka (L = fo, )" ™0 ¢Tk7Dk+1,B

K ! iT s T ST
9Dkp+ID, g (T 95, . +9b F aty +ar, ar, +ar,
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where N is the size of the initial release and K is the number of dams. The only differences
between Equation (3.96) and Equation (3.77) are the additional censoring parameters, land
the exponents of the xp, , parameters are adjusted for censoring. As with Equation (3.77),
Equation (3.96) may be tailored to a particular data set by specifying K, removing any
extraneous parameters, and renaming parameters according to observed detections, if nec-
essary. This is done for the 1996 Chinook salmon data set in the next section.

The initial values used for Model 5b may be used for Model 6, with the following ratios

used as initial values for dp, ,, 53@3’ and 65@, respectively:

f T fT F
CDxp T CDyp Dyp T Dy CDip
: £ T fro o
a’DkB + aDkB aDkB + aDkB achB

The initial values from Model 5b may need to be modified to ensure that all derived para-

meters (e.g., Xi, XZT, and Xf) are between 0 and 1.

3.10.4 Performance Measures

The perceived probability of surviving from the release to the top of dam K, or perceived
system survival (Ssys), and the unaccountable loss rate (ug) are defined as for Model 5b;

see Section 3.9.3.3.

3.10.5 1996 Chinook Data Set

The summary statistics for the 1996 Chinook salmon data set for Model 6 are given in
Table 3.51. Most values are identical to those for Model 5b, although the a; and b; values
change for a few sites. The alterations of the model parameters necessary to fit Model 5b to
the 1996 data set are also necessary for Model 6. The censoring parameters dp,, must be
fixed to 0 for k =1,...,6. Also, all of the fish detected at site D7p that were not censored
there survived to reach D77 or T (i.e., ap,5; —bp,5 —Cpy5 = 0 and awa ~be75 - Cwa =0);
thus, ¢p,,D, must be fixed to 1, giving Xp,; = qD7r XDy and XfD-,B = gDy XfD7T- Finally,
all fish seen after site Dgp were seen at Drp (i.e., Gp,z — Ap,5 = 0), 50 pp,,; must be fixed

to 1.
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The likelihood for Model 6, tailored to the 1996 data set is as fqllows:
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3.10.6 Results

Program USER!® was used to fit Model 6 to the data via maximum likelihood. Maximum
likelihood estimates from the full data set (K = 7 dams) are listed in Table 3.52. The
log-likelihood was -3838.71‘99, with an AIC of 7797.4398. The perceived system survival
rate is estimated at §sys = 0.1349 (§E = 0.0119), and the unaccountable loss rate from
the release is estimated at iz = 0.2468 (§E = 0.0151). Model 6 incorporates censoring
of sampled individuals, in this case only at LGR and only if the sampled fish was not
returned to the adult fish ladder with an intact tag; otherwise, Model 6 is identical to
Model 5b. 1t is reasonable to expect that censoring of sampled fish would increase the
estimate of perceived survival and decrease the estimate of unaccountable loss, because
some fish that were previously viewed as mortalities are now accounted for via censoring.
This was observed for this data set: §sys = (,1349 (§E = 0.0119) for Model 6 versus
§sys = 0.1048 (SE = 0.0106) for Model 5b, and i = 0.2468 (§E = 0.0151) for Model 6
versus fig = 0.2770 (SE = 0.0155) for Model 5b. |

Table 3.52: Maximum likelihood estimates of parameters from Model 6, the Short-
term Fallback and Tributary Memory model with censoring, with K = 7 dams.
The estimates of ¢§2T!T2, $Dar.1y> a0d q&ngs come from the relations gbngz +

F — T T — F F . :
¢D2T,DST =1, ¢D3T,T3 + ¢D3T,D4B =1, and ¢D5T,T5 + ¢D5T>D6B = 1, respectively.

Category Parameter Estimate S.E.

Transition ®gT, 0.0083 0.0031
L1, 0.0047  0.0024
PR.D,y 0.8448  0.0126

8http://www.cbr.washington.edu/paramEst/USER/
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Table 3.52 continued

Category Parameter Estimate S.E,

Transition @ p . 0.1205  0.0113
Ty, D15 0.5726  0.1874
$D1p. D11 0.9758  0.0077
¢, 4 Dir 0.9737  0.0213
®Dyr, Ty 0.3604  0.0186
Gh Ty 0.3991  0.0435
b1y 04990  0.2504
®Dyr,Dar 0.5535  0.0201
$P17 Dar 0.4905  0.0454
¢ 7Dy 0.2526  0.2198
@1y, Dar 0.1224  0.0213
O Dar 0.2046  0.0551
®Dor Ty 0.1458  0.0176
Obor T 0.2739  0.0886
b1 0.2240  0.0659
®Dyr,Dar 0.7740  0.0216
PPy Dar 0.7261  0.0886
Dyp.Dap 0.7495  0.0695
@1y, Dar 0.0170  0.0168
AT, Dar 0.2222  0.1385
®Dyr, Ty 0.1170  0.0174
DD T 0.2069  0.0941
G Do T 0.3333  0.2719
®Dyr,Dup 0.8242  0.0214
Obr Dup 0.6812  0.1226
ODar Den 0.6667  0.2719
@3, D45 0.2813  0.1518
O Dan 0.0777  0.0567
®D,p,Dar 0.9778  0.0102
0P s Dir 0.8775  0.1533
@Dyr,Ty 0.5272  0.0309
D ir 0.0692  0.0692
®Dyr,Dss 0.4259 0.0303
D5 Dss 0.4059  0.1747
®Dsp,Dsr 0.9821  0.0166
P Dsr,Ts 0.3415  0.0441
Ohor 1 0.2837  0.1775
®Dsr Dz 0.6623  0.0473
Pher Des 0.7163  0.1775
O Den 0.5050  0.3567
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Table 3.52 continued

Category Parameter Estimate S.E,

Transition  @pgp,Drp 0.9651  0.0297
®Dop.Drs 0.9826  0.0251
$Dor,Tr 0.7991  0.0465

Detection  pp, 0.9409 0.0085
PDyr 0.8644  0.0128
PDyr 0.8476  0.0175
PDsr 0.9401  0.0130
PDus 0.8917  0.0181
PDyr 0.9170  0.0166
PDss 0.8856  0.0288
PDsr 0.8128  0.0360
PDss 0.5951  0.0460
PDyr 0.9635  0.0254

Fallback  fp,, 0.0528  0.0097
fDar 0.0343  0.0097
fDsr 0.0350  0.0123
fry 0.7405  0.2414
fDar 0.0368  0.0220
fDsr 0.0371  0.0261
Sp1s 0.3158  0.0435

3.11 Discussion

One of the objectives of this chapter was to develop a statistical model that can be used
with adult radiotelemetry data to estimate large-scale quantities such as perceived system
survival (i.e., probability of surviving and remaining in the migrating population through
the top of the final dam) and unaccountable loss. A sequence of release-recapture models
was developed, ranging from simple models using only dam detections to more complex ones
using both dam and tributary detections, fallback information, and censoring (i.e., adult
trap or sampling room) information. Each model was fit to radiotelemetry data from a
1996 release of spring and summer Chinook salmon, and used to estimate both perceived
system survival and the unaccountable loss rate; results from the models are summarized
in Table 3.53. |

Of these models, Model 6 seems the most appropriate for general use, incorporating

tributary detections, fallback information, and censoring information. However, the appro-
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priate model may depend on the data set and the release year. It is obvious from Table 3.53
that tributary detections should be used in estimating unaccountable loss rates. Censoring
also appears important in estimating both perceived system survival and unaccountable
loss rates. It is less obvious whether fallback data are necessary, or whether non-terminal
tributary detections are necessary as well as terminal tributary detections. Model 6 is gen-
eral enough that if can be reduced to a simpler model if it is decided that either or both
of fallback effects and tributary effects are unnecessary. If there is little or no censoring of
a particular release group, then it may be possible to use a relatively simple model such
as Model 3a, which includes all tributary detections, or Model 4, which includes terminal
tributary detections and adjusts for fallback effects.

The second objective of this chapter was to compare the use of PIT tags to the use
of radio tags for estimating system survival and unaccountable loss. In general, the main
benefit of radio tags over PIT tags in estimating these large-scale quantities appears to be
the tributary data available from radio tags; the adult trap (i.e., censoring) data available
from radio tags is a secondary benefit. Although all models developed here were fit to a
subset of radiotelemetry data, Model 0 is also appropriate for PIT-tag data, with single
detections at each dam. If PIT-tag data were available with two detections at each dam,
then Model 1 could also be used with PIT-tag data. It is obvious from Table 3.53 that
PIT-tag data and radio-tag data can produce comparable estimates of (perceived) system
survival if censoring is not accounted for. Including information on censoring (due to known
removals at adult traps) can increase the estimate of perceived survival, however; if trap
information were available for PIT-tags, then PIT tags would yield the same information
on perceived system survival as radio tags.

Table 3.53 shows a large decrease in estimates of unaccountable loss between Models
0 and 1 (PIT-tag models) and the remaining models (radio;tag models). The difference
between these models is the use of tributary data, which are currently unavailable for
PIT tags. Thus, radiotelemetry data currently offer considerably more information than
PIT-tag data on unaccountable loss rates. Among the radio-tag models, the estimate of
unaccountable loss is approximately [ir = 28%, except when censoring is accounted for,

when [ip is approximately 25%. This implies that if both known removal and tributary
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data were available from PIT-tags, then the cheaper PIT-tags would provide comparable
information on both unaccountable loss and perceived system survival as the more expensive

radio tags.

Table 3.53: Results from the radio-tag models for the 1996 Chinook salmon data
set. The parameter S’sys is the perceived system survival rate, i.e., the probability of
remaining in the migrating population in the river to the top of dam K (i.e.; LGR
for the 7-dam analyses and MCN for the 4-dam analyses). The parameter pg is the
unaccounted loss rate, i.e., the probability of not ending either at a tributary or at
the top of LGR. Results are not available for Model 5c.

No. Log- No.

Model Dams Likelihood Parameters Ssys SE bR SE
0 7 -1903.4948 11 0.1028 0.0104 0.8972 0.0104
1 7 -2457.4142 21 0.1028 0.0104 0.8972 0.0104
2 7 -2926.7083 29 0.0863 0.0097 0.2784 0.0154
3a 7 -3219.6910 34 0.1057 0.0106 0.2803 0.0156

3b1o 7 -3209.1992 43 0.1057 0.0106 0.2800 0.0156
4 7 -3452.7375 51 0.1075 0.0108 0.2743 0.0155
4 4 -3267.0957 31 0.3412 0.0170 0.2199 0.0151
5a 7 -3744.8799 61 0.1073 0.0108 0.2763 0.0156
5a 4 -3267.0957 37 0.3408 0.0169 0.2211 0.0151
5b 7 -3743.8691 61 0.1048 0.0106 0.2770 0.0155
5b 4 -3264.9726 44 0.3394 0.0169 0.2212 0.0150
6 7

-3838.7199 60 0.1349 0.0119 0.2468 0.0151

Below is a summary of the models developed in this chapter, followed by a discussion of
the results of these models in relation to other analyses of these data. Model limitations and

concerns about the data are discussed next, followed by a short conclusion to this chapter.

8.11.1 Summary of Models

In general, the models presented in this chapter are not nested because they each use
different types of data. For example, Model 0 uses only top-of-dam detections, while Model

1 uses both top-of-dam and base-of-dam detections, and Model 2 uses both those and

¥Models 3a and 3b are nested, and a likelihood ratio test comparing the two models for the 1996 data .
set fails to reject the null hypothesis that the two models are equivalent at the 95% level (x? = 20.9836,
df =9, P =10.0127). :
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terminal tributary detections. As another example, consider Models 2, 3a, and 3b. The
only tributary detections used by Model 2 are terminal detections, while Models 3a and
3b use both terminal and non-terminal tributary detections. Because the data for Model 2
were simplified by first removing all non-terminal tributary detections, Model 2 uses different
data than do Models 3a and 3b. Thus, Model 2 is not nested in Models 3a and 3b. The
only nested models are Models 3a and 3b, and Models 5a and 5¢. Models 3a and 3b use
the same data set, with the only difference the assumption in Model 3a that tributary visits
have no effect on subsequent transition probabilities. The same is true for Models 5a and
5c. Models Ba and 5b use the same data, but are not nested because of Model 5a’s use of
permanent fallback effects, and Model 5b’s use of short-term fallback effects and tributary
effects. Model 6 includes censoring, unlike any of the previous models; the model structure
but not the data used for Model 5b is nested in that for Model 6. Non-nested models may
be compared via goodness-of-fit statistics, or via the values of the performance measures.
It should be noted if different models use data that have been prepared in different ways,
however. Comparing performance measures from both different models and different data
sets is equivalent to comparing both the models and the data simplification processes, or
the types of data available; such comparisons do not compare the models alone.

Model 0 is the simplest model presented here, and is the model most like existing PIT-
tag models (e.g., the adult portion of the model presented in Chapter 2). It uses single
detections at each dam, and no tributary detections. The difference between it and a PIT-
tag model is that adult PIT-tag detections occur in the interior of adult fish ladders, while
the detections used in Model 0 occurred at the top of the adult fish ladders. If it is assumed
that fish that pass the PIT-tag detectors in the interior of the ladders continue to ascend
the dam, then Model 0 is identical to the typical PIT-tag model used to estimate adult
survival. | .

Model 1 adds detections at the base of dams to the detections used in Model 0; tributary
detections are not used. Model 1 is equivalent to a PIT-tag model that uses two detections,
one at or near the base of the adult ladder, and one at or near the top of the ladder.
Currently, PIT-tag detections occur in the interior of the ladder. The added benefit of Model

1 relative to Model 0 is that dam ascension rates and the transition rate from the penultimate
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dam (dam K —1) to the base of the final dam (dam K') can both be estimated. Models 0 and
1 are not nested due to the additional types of data used in Model 1. Despite the additional
data in Model 1, Models 0 and 1 produce identical values of the performance measures
Seys and pp (Table 3.53), indicating that the additional detection sites are unnecessary for
estimating these large-scale quantities.

The remaining models all use both base-of-dam detections and top-of-dam detections,
and vary only on how they use tributary detections, fallback information, and adult trap
data (i.e., censoring). Model 2 uses only terminal tributary detections; tributary detections
of fish that entered tributaries and then returned to the river are ignored. Model 2 and the
remaining models all assume 100% detection in the tributaries, so all fish passing through a
tributary mouth are detected there. Because Model 2 includes detections in the tributaries
above the final dam (dam K), it allows for estimation of the ascension of the final dam,
which is not possible in Model 1. Model 2 also estimates the rates at which fish permanently
exit the river for the tributaries below the final dam (parameters ¢p,, 7.). For the 1996
data set, estimated system survival is smaller for Model 2 than for Model 1 for the 1996
data set (8yys = 0.0863, SE = 0.0097 for Model 2, versus Sys = 0.1028, SE = 0.0104 for
Model 1), due to the turn-offs into the tributaries. However, the estimate for unaccountable
loss for Model 2 is considerably smaller than the unaccountable loss estimate for Model 1:
fir = 0.2784 (SE = 0.0154) for Model 2 versus fig = 0.8972 (SE = 0.0104) for Model 1.
This suggests that much of the unaccountable loss in Model 1 is due to fish turning off to
tributaries. Because the 1996 release was composed of non-known-source fish, it is likely
that most, if not all, of these turn—offs were fish heading toward their spawning grounds,
rather than instances of straying.

Model 3a is similar to Model 2, but incorporates non-terminal as well as terminal tribu-
tary detections. Model 3a allows fish to temporarily visit tributaries, and then return to the
river to continue migrating. Fish may visit tributaries downstream of their natal tributary
either to rest during their migration, or to explore the tributary in an effort to locate their
spawning grounds. For the 1996 data set, Model 3a estimates perceived system survival
to be somewhat higher than that estimated by Model 2 (S’sys = 0.1057, SE = 0.0106 for
Model 3a versus S’sys = 0.0863, SE = 0.0154 for Model 2), and very close to that estimated
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for Models 0 and 1 (S‘sys = (.1028, SE = 0.0104 for Models 0 and 1), because Model 3a
allows fish to return from the tributaries. However, the estimate of unaccountable loss for
Model 3a is similar to the estimate for Model 2: gz = 0.2803 (§E = 0.0156) for Model 3a
versus fig = 0.2784 (SE = 0.0154) for Model 2.

Model 3b differs from Model 3a in that it allows tributary visits to affect transition rates
through the next reach (i.e., up to two dams upstream of the tributary). A memory effect of
tributary visits is reasonable if fish use tributaries as resting places or as temperature refugia
during hot weather (Bjornn and Peery, 1992; Keefer et al., 2002). Such a memory effect may
be more prominent in hotter years, if fish use tributaries primarily as temperature refugia.
It is also possible thaf fish that enter a tributary in one reach to determine if it leads to their
spawning grounds, and then return to the river, may be more likely to enter tributaries in
the following reach. Model 3a is nested in Model 3b, and a likelihood ratio test comparing
the two models for the 1996 data set fails to reject the null hypothesis that the two models
are equivalent at the 95% level (x? = 20.9836, df = 9, P = 0.0127). Thus, the estimated
tributary memory effects are insignificant for this data set. Also for the 1996 data set, there
is no difference between estimates of system survival between the two models, and very little
difference in estimates of unaccountable loss between the two models (Table 3.53).

Model 4 is similar to Model 2 in that it uses only terminal tributary detections (i.e.,
no tributary visits are allowed), but Model 4 incorporates a memory effect of a fish’s first
fallback on subsequent transitions. Model 4 is useful if fallback affects subsequent survival.
Examination of the quf; and ¢;; parameter estimates in Table 3.34 shows that in some cases,
there is considerable difference between these two types of parameters, but that the type
of difference is inconsistent from site to site. In some cases, ggf; > aij, while in other
cases 55 < aij. It should be rememberéd that ¢£ represents both the memory effect of
previous fallback and the actual ’éransition during which the fallback occurs if 7 is a top-
of-dam site. Comparing estimates of only the post-fallback parameters qbgk 5, D1 T and
their non-fallback analogues ¢p,, p,,, v, there appears to be little effect of fallback until
the higher reaches, when the post-fallback transition parameter estimates tend to be lower
than the analogous non-fallback estimates. Relative to Model 2, the estimate of system

survival for the 1996 data set is higher for Model 4 (S’sys = (.1075, SE = 0.0108 for Model
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4 versus gsys = 0.0863, SE = 0.0154 for Model 2), and the estimate of unaccountable loss is
approximately the same for the two models (4g = 0.2743, SE = 0.0155 for Model 4 versus
fir = 0.2784, SE = 0.0154 for Model 2).

Model 5a incorporates the fallback effect of Model 4 and the tributary visits of Model
3a, without allowing tributary visits to affect subsequent transition parameters. Compar-
ing estimates of post-fallback transition parameters (i.e., 5&31 Dir for k = 1,...,7 and
&;ﬂ, Disr5 for k = 1,2,4, and 5) to estimates of the analogous non-fallback transition pa-
rameters shows that in the lower reaches, the post-fallback parameter estimates tend to be
greater than the non-fallback estimates, with the reverse true in the upper reaches. The
fallback parameters f;, representing the probability of becoming a post-fallback fish (for
the first time) and then continuing to migrate upstream, have very low estimates in general
(Table 3.41). The estimate of system survival for the 1996 data set is approximately the
same for Model 5a as for Models 3a and 4 (S’sys = 0.1073, SE = 0.0108 for Model 5a,
versus gsys = 0.1057, SE = 0.0106 for Model 3a and S’sys = 0.1075, SE = 0.0108 for Model
4). Estimates of unaccountable loss are approximately the same among the three models
(ig = 0.2763, SE = 0.0156 for Model 5a, versus fig = 0.2803 (SE = 0.0156) for Model 3a
and fip = 0.2743, SE = 0.0155 for Model 4).

Model 5b includes the tributary memory effects used in Model 3b, as well as fallback
effects. Unlike Models 4 and 5a, however, Model 5b uses short-term fallback effects that
extend only to the second dam after the transition during which the fallback occurred.
Additionally, both types of memory effects are simplified in that only one applies at a time,
with the effect of the most recent event dominating. The estimates of both perceived system
survival and unaccountable loss are similar for Models 5b and 3b for the 1996 data set (7
dams): Ssys = 0.1048 (SE = 0.0106) for Model 5b versus Sgys = 0.1057 (SE = 0.0106) for
Model 3b, and fig = 0.2770 (EE = 0.0155) for Model 5b versus fig = 0.2800 (SE = 0.0156)
for Model 3b. |

Because of the modification of the fallback effect used in Model 5b, Model 5a is not
nested in Model 5b. However, the likelihood structures are similar, and so AIC (Burnham
and Anderson, 2002) may be a reasonable tool with which to compare these models. For the

full 1996 data set (7 dams), the AIC values for Models 5a and 5b are similar, with Model 5b
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slightly favored (AIC = 7611.780 for Model 5a vs. AIC = 7609.738 for Model 5b). For the
reduced data set with only the first 4 dams included, however, the AIC values favor Model
5a: AIC = 6612.191 for Model 5a vs. AIC = 6619.945 for Model 5b. The difference in
model selection between the full data set and the reduced data set xhay be due to reduced
importance of tributary effects in the lower reaches; however, most tributary effects are
estimated in the lower reaches. Alternatively, it is possible that the actual duration of
fallback effects is neither as short as that assumed in Model 5b nor as long as that assumed
in Model 5a, but rather somewhere in between, so that Model 5a captures the fallback effects
among the lower reaches when data from only 4 dams are used, but not as well as Model 5b
when data from all 7 dams are used. Model 5b is considerably more complex than Model
5a, and in general, Model 5a requires fewer assumptions about particular parameters. The
estimate of system survival is slightly smaller for Model 5b than for Model 5a for the full
(i.e., 7-dam) 1996 data set (Ssys = 0.1048, SE = 0.0106 for Model 5b versus gsys = 0.1073,
SE = 0.0108 for Model 5a), while the estimate of unaccountable loss is very slightly larger
for Model 5b (fip = 0.2770, SE = 0.0155 for Model 5b versus Lr = 0.2763, SE = 0.0156
for Model 5a).

Model 5c¢ inchides the tributary memory effects of Model 3b and the long-term fallback
effects of Model 4, and allows both effects to occur at the same time. However, Model 5¢
is unstable, and cannot be fit to the 1996 data set. It may be possible to fit Model 5¢ to a
larger data set, but the number of parameters and degree of complexity in Model 5¢ suggest
that it is not a practical model to use in general.

Model 6 has the same structure as Model 5b, but allows for censoring after base-of-dam
detections to accommodate adult trap data. Only fish with questionable trap detections and
those not returned to the river after trap detection with intact radio tags were censored for
analysis of the 1996 data set. The estimate of perceived system survival rate (S’sys = (.1349,
SE = 0.0119) is larger than the estimates from the previous models (7 dams), while the
estimate of the unaccountable loss rate (ip = 0.2468, SE = 0.0151) is smaller than those
from Models 2-5b (7 dams). Because Model 6 accounts for the known removal of.tagged
fish from the migrating population, it is reasonable that unaccountable loss should decrease

and perceived survival increase, Depending on the number of known removals, accounting
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for removals via censoring may be an important part of a suitable model.

3.11.2 Model Results

Some estimates of transition parameters involving fallback from Model 5b are considerably
different from those in Model 5a. For example, for Model 5a, (Eﬁ)m , = 0.3354 (gE =
0.1225), while for Model 5b, aﬂ’mé = 0.0774 (§E = 0.0561). A similar pattern is seen
with estimates of ¢%. , _: the MLE from Model 5a is ¢f, 5 = 0.9895 (SE = 0.0559),
while the MLE from Model 5b is (EﬂHDGB = (.5091 (EE = 0.3604). The different estimates
arise from the different groups of fish (equivalently, detection histories) parameterized with
the fallback transition in the two models. Model 5a parameterizes all fish who have fallen
back before reaching site 73 with gb% Dag» @8 well as fish that fall back during the transition
from T3 to Dyp. Model 5b, on the other hand, parameterizes only those that fall back
during the T3-Dyp transition and those that have recently fallen back before reaching T3
with q%’ D, 1f the effect of fallback on subsequent transitions is both short-term rather
than long-term and detrimental rather than beneficial, then it makes sense that the estimate
from the long-term fallback-effect model (Model 5a) is larger than the estimate from the
short-term fallback-effect model (Model 5b).

Several parameters were fixed to either 0 or 1 in fitting some of the models. For example,
o1y, D55 Was fixed to 0 in Models 3a, 3b, 5a, 5b, and 6 because no fish detected at site Ty was
detected upstream of Ty. Site Ty included the Mid-Columbia River, upstream of McNary
Reservoir, with its tributaries and Priest Rapids Dam. It is reasonable that most fish
detected in these locations are directed to spawning areas, rather than exploring or using
them as resting areas. Thus, it makes biological sense that ¢, p,, is either zero or very
small. Another example is ¢1;,p, 5, which was fixed to 1 in Models 4, 5a, and 5b. Site T is
actually Charbonneau Park, upstream of Ice Harbor Dam on the Snake River. Charbonneau
Park is a river-side park, not a tributary, and it makes sense that all fish detected at T}
- continued upriver.

Other work done on these data (e.g., Bjornn et al., 2000; Reischel and Bjornn, 2003;

Boggs et al., 2004) have focused on migration rates, fallback rates at individual dams, and
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the final distribution of tagged individuals. Bjornn et al. (2000) found that approximately
14% of the tagged Chinook salmon (that retained their transmitters) passed Lower Granite
Dam; this number is similar to the estimated perceived system survival rate of approximately
§3y5 = 10% (§E = 0.01) estimated from the models in this chapter. Bjornn et al. (2000)
also found that approximately 76% of the release group survived to enter tributaries or pass
either LGR or Priest Rapids (PR). Survival either to tributaries or LGR is the complement of
the unaccountable loss performance measure, ugr. Estimates of g from Models 2 through 5b
are approximately fir = 0.28 (EE = 0.02), with survival to tributaries or LGR estimated at
approximately 0.72 (§E‘ = 0.02). The radiotelemetry data used in Bjornn et al. (2000) was
" augmented with tag recoveries from fisheries, hatcheries, weirs, traps, and spawning grounds,
so it is reasonable that their estimate of survival is somewhat higher than that found from
release-recapture data alone. For the same reason, the unaccountable loss measure defined
in this chapter is not directly comparable to the unaccountable loss rate reported in Bjornn
et al. (2000), which uses the extra tag-recovery data. It is worth noting, however, that the
estimated unaccountable loss rate from Model 6 (lig = 0.25, SE = 0.02) and the resulting
estimate of survival to tributaries or the top of LGR (0.75, SE = 0.02) are comparable to
that reported in Bjornn et al. (2000). This is expected because Model 6 accounts for fish
removed from the adult trap at LGR, who do not then reach the top of that dam.

The fallback rates reported in Bjornn et al. (2000) and in Boggs et al. (2004) are
not comparable to the fallback parameters estimated by the models in this chapter. The
fallback parameters f; represent the probability of becoming a post-fallback fish between
site ¢ and the next detection site; such a fish does not fall back at site ¢, but rather upstream
of site i. The fallback rates reported in Bjornn et al. (2000) and in Boggs et al. (2004)
represent the proportion of tagged fish that fell back at a particular dam. The models in this
chapter were not designed to estimate dam-specific fallback rates. On the other hand, the
models presented here are able to estimate an effect of fallback on subsequent survival and
movement (i.e., transition) probabilities via the qﬁf;. parameters. The ratio qbf‘; /$i; measures
the effect of previous fallback on the transition rate between sites i and j. For example, for
1 =Ty and j = Doy, Model 5a estimates a fallback effect of $f;/$m = 1.6749 (§E = 0.5369),
indicating that fish entering tributaries between BON and TDA that had previously fallen
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back were approximately 67% more likely to continue migrating upstream to TDA than fish

that had not previously fallen back. Models 5b and 6 give similar estimates.

3.11.8 Model Limitations

There are several limitations to the models presented in this chapter. First, only upstream
travel is modeled. Travel and survival during fallback and other retracing of previously
traveled paths is not explicitly modeled here, although the fallback transitions incorporated
in Models 4, 5a, 5b, and 6 implicitly include such travel. If the goal is to estimate survival to
an upstream site, however, it is not necessary to explicitly model travel directed away from
that site, as long as any subsequent effects of such travel are included. Modeling downriver
travel may be useful for pinpointing the locations in the river where unaccountable loss is
significant. However, it should not improve estimates of overall unaccountable loss (ug).
A related limitation of these models is that the probability of fallback is not estimated,
but rather the probability (f;) of swimming upriver from site ¢, falling back, and then
continuing to migrate upriver. The f; parameters should not be construed as fallback rates
or fallback percentages. First, fish parameterized with f; did not turn around to swim
downriver at site ¢, but rather at a point upriver from site i yet in the same reach as site i.
Second, any fish that fall back from site ¢ may or may not turn around again to swim on
upriver; those that do not swim back upriver after falling back are not detectable as fallback
fish from these data and would not be parameterized as such in any model, including those
presented here. This second point is a problem more with the data than with the modeling
approach; the model is only as good as the data, and without detection of fallback fish
during fallback or during downstream travel, the model cannot easily represent downstream
travel. However, it should be possible to estimate both fallback rates and survival during
fallback (conditional on subsequent detections during upriver travel) with a smaller-scale
model that focuses on only a single dam. That problem was not addressed by these models.
A third limitation is the assumption of 100% detection rates in the tributaries. This
assumption was necessary to distinguish transitions from dam k to dam k+1 from transitions

from dam k to tributary k£ and then on to dam k-1, and subsequently, to estimate tributary



298

memory effects. It is unlikely that such an extreme assumption is true for all tributaries,
all of the time. However, it is likely to be true or approximately true for some tributaries
at least most of the time. The effect of < 100% tributary detection rates on parameter
estimates would be negatively biased dam-tributary transition probabilities, and possibly
positively biased dam-dam transition probabilities. Perceived system survival (to thé final
dam, typically LGR) may be negatively biased if more fish are entering tributaries than
are detected. If these fish do not then return to the river, unaccountable loss would be
positively biased, because it would appear that these fish are “disappearing” (i.e., dying)
in the river rather than permanently remaining in the tributaries. Had multiple antenna
arrays been used in the tributaries, it would be possible to estimate detection rates there,
and this assumption could be dropped.

Another limiting assumption of these models is that fish fall back at most once during
their upstream migration. This is certainly a faulty assumption; the 1996 data set considered
here contained several fish that fell back more than once. This assumption was necessary
to keep the models relatively simple. It could be relaxed and subsequent fallbacks could
be modeled; however, with the existing level of complexity in the single-fallback models,
multiple-fallback models may be prohibitively complex. Additionally, it may be that the
first fallback has a larger effect on subsequent survival than later fallbacks, in which case
the assumption of at most one fallback per fish is reasonable.

Finally, the multinomial models considered here each assume that all tagged individuals
have common transition, fallback, and detection probabilities, with a possible differential
effect of previous tributary detections or fallback. The primary result of violations of this
assumption is variance estimates that are too small. Ideally, this problem would be avoided
by applying these models only to release groups of known-source fish. In the absence of this
option, it may be possible to correct for this assumption by modeling the variance struc-
ture and using estimating equations, or by adjusting standard errors by an overdispersion

coefficient.
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8.11.4 Data Issues

One benefit of radiotelemetry is the many types of data available: fixed-site receiver de-
tections from dams and tributaries, mobile tracking detections, and tag-recoveries from
hatcheries, fisheries, traps, and spawning grounds. Although these data are all useful in
determining the fate of individual fish, only some are suitable for release-recapture mod-
els. The mobile tracking data and tag-recovery data are not useful for modeling without
independent estimates of overall mobile tracking detection efficiencies and tag-recovery and
reporting rates, respectively. With additional assumptions about tag-detection rates, the
detections from the adult trap at LGR were used in Model 6. The other tag-recovery or
recapture detections could be used together with estimates of recovery rates from the vari-
ous recovery sites. Without these estimates, using these data in a model would require the
assumption of 100% recovery and reporting rates, which is certainly incorrect. Unlike any
missed detections at the tributary mouths, where the detection rates are also assumed to
be 100%, the missed tags at the hatcheries and traps are unlikely to occur at random. Also,
there is likely to be a higher percentage of tags missed at these sites than at the tributary
mouths because of sampling methods. Typically, hatcheries keep and examine for tags only
the early-arriving fish, so all late-arriving fish are undetected at the hatcheries, Because of
these issues, only the data from the fixed-site receivers are used in the models here, with
additional data from the adult trap at LGR used in Model 6.

Of the fixed-site dam detections, only those at the base (“A1”) and top (“LT”) of the
ladders are used, to limit the modeling of small-scale movements. A drawback of this policy
is that some fallback events may be missed by the data simplification protocol described
in Section 3.2. Usiflg only the “A1” and “LT” codes, the only fallback events detectable
are those followed by reascension or tributary entry, whereas the other tailrace receivers
may provide evidence of fallback as the fish swim downriver past the dams. The database
containing these data (http://rtagweb.nwfsc.noaa.gov/home/index.cfm) includes fallback
codes (“FB”) based on all dam detections, not limited to the “A1” and “LT” codes used
here. The “FB” codes in the database imply fallback over a particular dam. They do

not have the same meaning as the “FB” codes used in these models, which imply fallback
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and reascension between detection at the previous site and detection at the following site.
The reason. for not using the fallback codes from the database is that their use would
require modeling downstream travel during fallback, which was found to be mathematically
intractable in a large-scale survival model with imperfect dam detection rates. However, it
should be possible to develop a single-dam model using the tailrace detection sites and the

FB codes from the database to estimate fallback rates at a p\articular dam.

3.11.5 Conclusion

The large-scale collection of radiotelemetry data is costly and labor intensive; Both the radio
tags and the radio receivers are expensive, while the receiver data must be downloaded on-
site on a regular basis. Extensive pre-processing of the data is necessary before analysis can
begin. In addition, radio-tagging adults requires considerable handling and resultant stress
to the fish, and typically produces mixed-stock, unknown-source release groups. PIT tags
are considerably cheaper than radio tags, the data may be ddwnloaded automatically to the
PTAGIS database, and there is less pre-processing of the data necessary. Additionally, fish
may. be tagged as juveniles, producing release groups with known sources and, presumably,
no residual tagging stress by the time of fhe adult migration. Using P‘IT-tagged juveniles
requires considerably larger sample sizes (e.g., 51,318 for the PIT-tag data in Chapter 2
versus 846 for the radio-tag data in Chapter 3), but provides comparable precision on
estimates of adult syétem (or “inriver”) survival: the CV (coefficient of variation) of Sa
was 0.269 in Chapter 2, while the CV of :S’\gyg was 0.148 from Model 6 in this chapter.
Additionally, data from fish PIT-tagged as smolts provide information about the juvenile
migration, ocean survival, and transportation as well as the adult migration.

Both radio tags and PIT tags are detected at dams, although radio fags typically have
higher detection rates (i.e., 80%-100%) and provide more complete information about fall-
back and known removals (i.e., adult trap detections). More importantly, radio tags provide
detections in tributaries, while PIT tags currently do not. Adjusting for loss to tributaries
is important in reducing estimates of unaccountable loss. New PIT-tag technology is being

developed that will allow for tributary detection of PIT-tagged fish, and ideally, estimates
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of tributary detection rates. With this new technology, the tributary (radio-tag) models
presented in this chapter could be used with PIT-tag data, with the following modifica-
tions: (1) the double detections at the dams must be reduced to a single detection, and (2)
the assumption of 100% detection in the tributaries can be relaxed. If adult PIT-tag dam
detection rates were improved to mimic ratio-tag detection rates, and if the tributary PIT-
tag detector technology were successfully installed, then PIT tags may provide comparable
information to radio tags about large-scale upstream survival and unaccountable loss, but

at a lower cost and in a more systematic, less labor intensive manner.
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Chapter 4
CONCLUSION

4.1 Summary of Work and Ramifications

A considerable amount of money is spent on tagging studies of Columbia and Snake river
salmonids; in 2002, 100 million fish were tagged with coded wire tags, 10 million were
tagged with PIT tags, and 10,000 were tagged with radio tags. There are a variety of
methods available to analyze tagging and release-recapture data, including the relative
recovery methods of Ricker (1975), the treatment-effect models of Burnham et al. (1987),
and the juvenile survival models of Skalski et al. (1998). The models presented in this

dissertation contribute to the analysis tools available to researchers on the Columbia and

Snake rivers, providing new tools for use with new types of data.

4.1.1  Juvenile-Adult PIT-tag model

Until recently, PIT-tag detections were available only for juvenile salmonids. Inriver sur-
vival of juveniles (smolts) could be estimated, but only to John Day or The Dalles dams.
The records of transported smolts were censored at transportation, and neither ocean sur-
vival, nor adult inriver survival, nor transportation effects could be estimated from PIT-tag
data alone. Measuring transportation effects required paired releases, and estimating adult
inriver survival required capturing and tagging adults as they migrated upriver. The PIT-
tag model developed in Chapter 2 takes advantage of the newly available adult PIT-tag
detections, and jointly analyzes the juvenile, adult, and transportation data from any juve-
nile release group. This joint analysis provides model-based estimates of juvenile survival
to Bonneville Dam, ocean survival, and adult inriver survival, Each of these quantities is
important in measuring the recovery of endangered populations, and in determining the
life stages at which future recovery operations should be directed. With this new PIT-tag

model, these survival rates can be estimated from any PIT-tagged juvenile release group
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using currently available detection sites. It is no longer necessary to capture and tag mi-
grating adults in order to estimate adult inriver survival, and ocean survival can now be
easily separated from upstream adult survival.

Smolt transportation is a major mitigation strategy used on the Snake and Columbia
rivers. Precise, well-understood measures of the effects of transportation are an important
part of evaluating the success of management and recovery efforts on the river. In the past,
measuring the effects of smolt transportation on adult return rates has required paired ju-
venile releases, with one release group transported and the other left to migrate inriver,
The “inriver” fish may have been transported frofn a downriver site, so the transportation
effect historically measured by the relative recovery rates of the two groups was confounded
by the effect of transportation at downriver sites. Additionally, adjusting the relative re-
covery rates to apply to untagged fish is difficult. These difficulties, among others, have
resulted in miscommunication and disagreement among various river and fisheries manage-
ment groups on the effect of smolt transportation on adult return rates, and on whether
smolt transportation is a reasonable dam mitigation option.

The PIT-tag model developed here uses the combined adult data of transported and
non-tranéported fish and thus directly provides a measure of transportation effects. The
estimated model parameters are then used to define other measures of transportation effects,
each appropriate for management from a different perspective. The contextual site-specific
measure assesses the effect of transportation at a particular dam but in the context of the
rest of the transborta‘cion system; this is analogous to the traditional relative recovery ratio
used historically, and is useful for dam or transportation managers interested in whether or
not fish should be transported from their dam. The isolated site-specific measure assesses
the effect of transportation at a particular dam as if it were the only transportation site in
the river. Thus, this measure evaluates transportation at a site unconfounded by the rest
of the transportation system. The isolated measure is useful for managers of transportation
operations at a particular site. The system-wide transportation effect measure compares
the return rate of the entire release group under the existing transportation system to the
hypothetical return rate if there had been no transportation. Thus, the system-wide measure

evaluates the effect of the entire transportation system, ihcluding the proportion of fish
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transported, but without requiring smolts to migrate in a river in which no transportation
is available. All of these measures are available for either the tagged fish in the release
group, or for untagged fish of the same species and stock that migrate at the same time as '
the tagged fish. Thus, results may be extrapolated to the untagged migrating population.
Each of these different transportation effect measures may be estimated for any single PIT-
tagged juvenile release group for which both transportation and inriver migration strategies
are available; it is no longer necessary to use paired releases to evaluate the transportation
system for spring and summer Chinook salmon, Sockeye salmon, and Steelhead trout.

The transportation effect measures developed here are useful in their own right as quan-
tifications of transportation effects fromv a variety of management perspectives. Managers
may use the appropriate measure based on their needs. Both the various measures them-
selves and the fact that there are several different yet valid perspectives from which to
measure transportation effects helps to resolve some of the conflict in resource management
surrounding transportation.

In addition to the transportation effect measures, several other performance measures
from the PIT-tag model were presented, including the smolt-to-adult return rate (SAR),
adult age composition, inriver adult survival, and differential mortality (D), together with
their estimated precision. Each is available for either tagged or untagged fish. The smolt-
to-adult return rate and D are important for assessing recovery efforts, while SAR, adult
age composition, and inriver adult survival are useful for monitoring salmonid migrations.
Because these measures are defined using the model parameters, they are each estimable

for any PIT-tagged release group.

4.1.2  Adult Radio-tag model

The adult radio-tag models developed in Chapter 3 break new ground in the analysis of
radiotelemetry data from adult migrating salmon to estimate large-scale performance mea-
sures such as unaccountable loss and system survival. No formal, modeling approach had
previously been used to analyze these data. Just as juvenile inriver survival, ocean survival,

and transportation effects can be estimated for any PIT-tagged juvenile release group with
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the PIT-tag model developed here, so can system survival and unaccountable loss be es-
timated for any radio-tagged adult release group included in the Adult Anadromous Fish
Radiotelemetry Project at NOAA Fisheries and the University of Idaho.

System survival, or the probability of surviving and remaining in the migrating popu-

lation, is a useful performance measure if the release group is composed of a single stock,

cor of fish that are all directed to the same region of the river basin. Unaccountable loss
is an important performance measure named by the 2000 and 2004 biological opinions on
the Columbia River Power System (NOAA Fisheries, 2000a, 2004). Unaccountable loss is a
useful evaluation tool even for mixed-stock release groups, and can help identify regions of
high loss. The models developed here estimate both system survival and unaccountable loss
together with measures of uncertainty. Estimates of uncertainty can help river and fishery
managers interpret the reported values of system survival and unaccountable loss, yet are
unavailable from previous analysis methods for these data.

The radio-tag models developed here also provide a method of analyzing the effects of
fallback on subsequent survival rates. This can help managers focus attention and funds
appropriately, by identifying dams where fallback rates should be reduced.

The comparison of PIT tags and radio tags in Chapter 3 demonstrates that PIT tags and
radio tags provide nearly comparable estimates of system survival, with the main difference
due to the additional adult trap data at Lower Granite Dam available from the radio tags.
Additionally, because radio tags are detected at more sites and at higher rates than PIT
tags, the estimates from radio-tag data may be more precise than estimates from PIT-tag
data, Thus, if the treatment of PIT-tagged fish at the adult traps at Bonneville and Lower
Granite were apparent from the PTAGIS database, and if detection rates of PIT tags in the
adult fish ladders at dams were improved, then it would be unnecessary to spend additional
funds on collecting and processing the more expensive radiotelemetry data if the goal is to
estimate system survival.

The main disadvantage to using fish that were PIT-tagged as smolts to estimate adult
system survival is the large sample sizes necessary with PIT tags. For example, the PIT-tag
data used in Chapter 2 came from 51,318 fish tagged as smolts, while the radio-tag data
used in Chapter 3 came from only 846 fish tagged as adults. The larger sample size for the
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PIT-tag data was needed to offset low ocean survival rates. Despite adult returns spread
over multiple; years and low ocean return rates, the coefficient of variation (CV) of adult
system (i.e., inriver) suryival from the juvenile-adult PIT-tag data was comparable to that
from the adult radio-tag data: CV=0.269 from the PIT-tag data, versus CV=0.148 from
the radio-tag data. Also, the PIT-tag data provided estimates of juvenile inriver survival,
ocean survival, SAR, and transportation eéffects in addition to adult inriver survival. Thus,
depending on the research goals, PIT-tag detections from fish tagged as juveniles may
reasonably replace adult radio-tag studies to estimate adult system survival.

Although comparable information is provided by PIT tags and radio tags about adult
system survival, radiotelemetry data currently provide considerably more information than
PIT-tag data about unaccountable loss. This is primarily due to the detection of radio tags
in tributary mouths, which allows for identification of loss due to tributary exit. If proposed
PIT-tag tributary detectors are successfully developed and installed in tributary mouths,
then PIT tags and radio tags should provide comparable estimates of unaccountable loss.
Thus, it will be possible to reduce the costs of monitoring the adult migration by switch-
ing from large-scale radiotelemetry studies to large-scale PIT-tag studies. Radiotelemetry
may remain the preferred tool for studying small-scale salmon movements and passage pat-
terns at individual dams, but it will be unnecessary for studying large-scale issues such as

unaccountable loss and system survival.

4.2 Benefits of Modeling Approach

It is possible to analyze the data used here without statistical models, and non-model-
based analyses of both the PIT-tag data (e.g., Sandford and Smith, 2002) and the radio-tag
data (e.g., Bjornn et al., 2000) have been performed, necessitated by the types of data
and analysis tools available, respectively. The model-based approach presented in this
dissertation offers several advantages to these alternative approaches. First, parameter
estimation is performed via a statistically rigorous method (i.e., maximum likelihood) with
well-understood properties of the resulting estimators. Expected values of the estimators
may be easily computed, thus reducing the amount of uncertainty involved in management.

Also, the modeling approach provides researchers and decision-makers with easily computed
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measures of uncertainty on their analysis results (e.g., parameter estimates), which are
necessary for informed decisions with respect to both policy and future research.

A second benefit of the model-based approach is that hypotheses may be tested via
well-understood likelihood ratio tests. For example, the PIT-tag model may be used to
test for the effect of juvenile transportation or the age or year of adult return on adult
upriver survival rates. The radio-tag model may be used to test for the effect of fallback or
temporary tributary visits on adult upriver survival.

An important benefit of the modeling approach is that it offers a framework from which
to address research questions. In particular, it directs attention to the definitions of the
quantities to be estimated. In this way, it also helps identify what quantities are estimable.
Model parameters estimated directly from the data must be clearly defined in development
of the model, while derived parameters must be expressible in terms of the model para-
meters. Focusing on these parameter definitions can reveal ambiguities within the research
community, and in turn lead to useful discussions and result in more transparent definitions.
For example, the concept of an effect of juvenile transportation on adult returns appears
straightforward until an attempt is made to quantify such an effect. There have been several
different approaches taken within the research community (e.g., Ricker, 1975; Sandford and
Smith, 2002; differential mortality [D]), resulting in considerable disagreement over What‘
a true transportation effect is. The PIT-tag model developed here includes transportation
effect parameters which allow for at least 6 different measures of transportation effect to be
defined, varying in domain and applicability. Whether or not these measures are adopted
by the research community, the fact that so many different definitions are viable sheds light
on the various approaches within the community to defining transportation effect, and helps
identify what the real differences among the various measures are. Any measure of trans-
portation effect that is used should be expressible in terms of the basic model parameters.
In effect, the modeling approach provides the building blocks with which to construct clearly
. defined quantities to be used in decision-making. |

A related benefit of the model-based approach to scientific inquiry and management
decisions is that it helps identify the types and quality of informationbthat can be learned

from different types of data. As an example, the modeling exercise in Chapter 3 allows for
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comparison of PIT-tag and radio-tag data and the information each yields about the upriver
adult migration. For such a modeling exercise to be useful, the assumptions underlying the
various models involved and the types of data they use must be clearly specified. This
offers an opportunity to identify what more is needed to answer certain questions either
more fully or at all. For example, in order to use the tag-recovery information from the
radio-tag database, tag-reporting and tag-return rates must be known. Additionally, 100%
detection rates at the dams would allow for a system-wide fallback or movement model
based on the radiotelemetry data, which would in turn facilitate exploration of fallback
rates at the different dams.

Because of the advantages of model-based analyses described above, the models pre-
sented in this work provide valuable tools to the research community in both a practical
sense (e.g., parameter estimation) and an abstract sense (e.g., a definition-based orienta-

tion).
4.3 Contribution to the Release-Recapture Field

Generally, the models developed in this work may be considered primarily as migration
models. Unlike some other migration models that model overall migration rates to particular
sites over a number of generations (e.g., Schwarz et al., 1993), the models developed here
model animal movement and survival during migration, and bear a resemblance to the
multi-strata model of Brownie et al. (1993). The type of model developed here could be
used for any species that migrates along a corridor and whose survival during migration is
of interest; the general applicability of these models is not restricted to salmonids.

More specifically, the models in this work are single-release branching models, where the
branches may represent either temporary or permanent memory or treatment effects. The
PIT-tag model models migration paths that branch in space (e.g., transportation) and in
time (e.g., adults may return in any of several years after reaching the ocean). The radio-
tag models include migration paths that branch in space: adults headed upriver may enter
certain tributaries or avoid them, and they may fall back over dams or not.

Another way of viewing the models developed here are as movement-cum-survival mod-

els. They use the basic framework of release-recapture models ‘whose focus is survival



309

through time (e.g., Cormack, 1964; Jolly, 1965; Seber, 1965) and redirect the focus to sur-
vival through space. Thus, the usual time-based survival is now space-based. This is a
relatively simple exercise for migration paths that are effectively linear, such as that of
juvenile salmonids, and models of migrating juveniles already exist (e.g., Burnham et al.,
1987; Skalski et al., 1998). However, although time is linear, space is generally not lin-
ear, and modeling the migration of animals with non-linear migration paths, such as adult
salmonids, is not as straightforward as modeling the juvenile migration. Adult salmonids
fall back or otherwise swim downriver, either intentionally or by accident; they may or
may not visit certain optional detection sites (e.g., tributaries). These issues require de-
cisions made about the level of data to be used, and about the assumptions made about
the optional detection sites (e.g., detection rates in the tributaries are 100%), which may
or may not be appropriate. Thus, refocusing a linear, time-based survival model to a bi- or
multi-directional, space-based process raises certain issues that must be addressed.

As conservation efforts focus more on migration corridors, and as researchers explore
more questions about animal movement, the questions addressed by models such as those
developed here wﬂl become more important, e.g., where is survival the lowest along a
migration route, or what is the effect on survival of certain actions or treatments. As more
detailed data on animal movement become available from telemetry and remote sensing
techniques, the types of migration models developed in this work will become more prevalent,
and the issues encountered here (e.g., non-linearity of space, imperfect detection rates) will

need to be addressed further.
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Appendix A

RADIOTELEMETRY DATA FOR SAMPLE ADULT CHINOOK
SALMON

Table A.1: Radiotelemetry data from a sample Chinook salmon from 1996 release.
The data were downloaded from the Adult Anadromous Fish Radiotelemetry Project
website at http://rtagweb.nwisc.noaa.gov/home/index.cfm. The records shown are
from the fish with radio-tag ID 2054, species 1 (spring/summer Chinook salmon),
released at Dodson’s Landing (RKM 225.6) in study year 1996. The column “Corr”
indicates the movements or behaviors of the tagged fish summarized by the individual
record. Briefly, the code “TAG” indicates the initial tagging and release record.
Codes beginning with “A” indicate an approach to a receiver site. Those starting
with “E”, “I”, or “X” indicate records at the entrance, inside, and exit of a site or
dam, respectively. In particular, “A1” codes indicate the first approach to a dam. The
“LT” code indicates the last record at a top-of-ladder site. The codes “F1” and “L1”
indicate the first and last records at the Yagi antennas downstream from the tailrace
of the dam. The codes “F” and “L” indicate the first and last records fixed receiver
sites in either the tailrace of a dam or a tributary. The codes “MBT” and “RCP”
indicate mobile tracking and tag-recovery records, respectively. More information on
the Corr codes is available at http://rtagweb.nwfsc.noaa.gov/datades_sed/index.cfm.
Only the “TAG”, “A1”, “LT”, “F” (at tributaries), “L” (at tributaries), and “F” (at
LMO) are used with the models in this chapter. Records without dam information
are from fixed-site tributary receivers.

Detection Date
Corr Dam Site Antenna Recorded RKM Power
TAG DOD 8 12-May-1996 09:47:00 225.6
Fl BO 1BO 1 12-May-1996 12:50:54 232.3 132
L1 BO 2BO 1 12-May-1996 13:39:02 232.3 107
F - BO 3BO 1 12-May-1996 13:39:26° 235.1 136
L BO 3BO 1 12-May-1996 14:23:57 235.1 119
Al61 BO 6BO 1 12-May-1996 14:29:37 235.1 12
A64 BO 6BO 4 12-May-1996 14:30:37 235.1 220
A8l BO 8BO 1 12-May-1996 14:33:30 235.1 51
A83 BO 8BO 3 12-May-1996 14:33:36  235.1 22
A81 BO 8BO 1 12-May-1996 14:41:05 235.1 27
A83 BO 8BO 3 12-May-1996 14:43:19 235.1 17
A61 BO 6BO 1 12-May-1996 14:49:21 2351 134
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Table A.1 continued

Detection Date
Corr Dam Site Antenna Recorded RKM Power
A64 BO 6BO 4 12-May-1996 14:50:27 235.1 19
A6l BO 6BO 1 12-May-1996 14:52:21 235.1 38
A4l BO 4BO 1 12-May-1996 14:53:40 235.1 28
F BO 3BO 1 12-May-1996 15:00:14 235.1 146
L BO 3BO 1 12-May-1996 15:01:03 235.1 142
Adl BO 4BO 1 12-May-1996 15:05:38 235.1 23
A61 BO 6BO 1 12-May-1996 15:07:49 235.1 30
A64 BO 6BO 4 12-May-1996 15:08:49 235.1 231
A71 BO 7BO 1 12-May-1996 15:10:44 235.1 98
A81 BO 8BO 1 12-May-1996 15:11:01  235.1 19
A83 BO 8BO 3 12-May-1996 15:11:32 235.1 122
A4l BO 4BO 1 12-May-1996 15:25:34¢ 235.1 31
A5l BO 5BO 1 12-May-1996 15:29:34¢ 235.1 58
A6l BO 6BO 1 12-May-1996 15:30:27 235.1 36
A64 BO 6BO 4 12-May-1996 15:31:27 235.1 15
ATl BO 7BO 1 12-May-1996 15:33:45 235.1 50
A81 BO 8BO 1 12-May-1996 15:33:52 235.1 59
A83 BO 8BO 3 12-May-1996 15:34:10 ~ 235.1 79
A41 BO 4BO 1 12-May-1996 16:13:59 235.1 31
A61 BO 6BO 1 12-May-1996 16:16:15 235.1 59
A64 BO 6BO 4 12-May-1996 16:17:21 235.1 168
ATl BO 7BO 1 12-May-1996 16:19:29 235.1 116
A81 BO 8BO 1 12-May-1996 16:19:40 235.1 51
A83 BO 8BO 3 12-May-1996 16:19:52 235.1 60
AC1 BO CBO 1 12-May-1996 17:23:34 235.1 10
E1C1 BO CBO 1 12-May-1996 17:34:54 235.1 999
FP BO CBO 2 12-May-1996 17:34:55 235.1 212
IC3 BO CBO 3 12-May-1996 17:38:01 235.1 37
1C4 BO CBO 4 12-May-1996 17:38:19  235.1 99
101 BO OBO 1 12-May-1996 20:41:24 235.1 16
103 BO OBO 3 12-May-1996 20:43:32 235.1 101
FT BO PBO 1 13-May-1996 06:48:56 235.1 25
LT BO PBO 1 13-May-1996 06:51:34 235.1 8
F BO SBO 1 13-May-1996 06:51:38 235.3 163
L BO SBO 1 13-May-1996 07:02:11 235.3 162
F LWS 1 14-May-1996 07:23:16  260.7 115
L LWS 1 14-May-1996 07:23:17 260.7 999
F1 TD 2TD 1 14-May-1996 10:47:54 304.9 148
L1 TD 2TD 1 14-May-1996 10:53:34 304.9 202
FT TD 5TD 1 15-May-1996 15:59:58 308.1 16
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Detection Date v
Corr Dam Site Antenna Recorded RKM Power
LT TD 5TD 1 15-May-1996 16:00:47 308.1 24
FB TD 3TD 1 17-May-1996 08:15:24 308.1 999
FP TD 3TD 1 17-May-1996 08:15:25 308.1 9
LP TD 3TD 1 17-May-1996 08:50:12 308.1 4
141 TD 4TD 1 17-May-1996 09:14:58 308.1 21
142 TD 4TD 2 17-May-1996 09:35:22 308.1 112
FT TD 4TD 3 17-May-1996 09:36:47 308.1 27
LT TD 4TD 3 17-May-1996 09:38:18 308.1 41
EFB TD 4TD 3 17-May-1996 09:38:19 308.1 999
F TD 4TD 4 17-May-1996 09:38:42 308.1 16
L TD 4TD 4 17-May-1996 09:40:19 308.1 96
F1 JD 1JD 1 18-May-1996 01:04:32 345.0 160
L JD 1JD 1 18-May-1996 04:33:16 345.0 169
FB TD 2TD 1 18-May-1996 12:02:25 304.9 999
F TD 2TD 1 18-May-1996 12:02:26 304.9 135
L - TD 2TD 1 18-May-1996 12:12:51 304.9 165
FB BO 1BO 1 19-May-1996 01:28:11 232.3 999
F BO 1BO 1 19-May-1996 01:28:12 232.3 - 152
L BO 1BO 1 19-May-1996 01:37:08 232.3 129
F1 2ND BO 1BO 1 20-May-1996 13:12:59 232.3 115
L1 BO 1BO 1 20-May-1996 13:21:55 232.3 123
Al41 BO 4BO 1 20-May-1996 14:11:02 235.1 32
E141 BO 4BO 1 20-May-1996 14:11:19 235.1 999
142 BO 4BO 2 20-May-1996 14:11:20 235.1 68
143 BO 4BO 3 20-May-1996 14:11:38 235.1 58
142 " BO 4BO 2 20-May-1996 14:11:50 235.1 54
143 BO 4BO 3 20-May-1996 14:12:51 235.1 41
142 BO 4BO 2 20-May-1996 14:13:15 235.1 97
X41 BO 4BO 1 - 20-May-1996 14:14:40 235.1 46
A81 BO 8BO 1 20-May-1996 14:33:59 235.1 171
A74 BO 7BO 4 20-May-1996 14:34:06 235.1 39
F BO 3BO 1 20-May-1996 14:42:03 235.1 125
L BO 3BO 1 20-May-1996 14:42:04 235.1 999
A4l BO 4BO 1 20-May-1996 15:04:22 235.1 27
A6l BO 6BO 1 20-May-1996 15:05:55 235.1 26
A64 BO 6BO 4 20-May-1996 15:06:49 235.1 29
A8l BO 8BO 1 20-May-1996 15:08:33 235.1 17
F BO 3BO- 1 20-May-1996 15:12:45 235.1 131
L BO 3BO 1 20-May-1996 15:12:46  235.1 999
AB1 BO BBO 1 20-May-1996 16:01:13 235.1 32
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Detection Date
Corr Dam Site Antenna Recorded RKM Power
EB1 BO BBO 1 20-May-1996 16:02:43 235.1 255
FP BO BBO 3 20-May-1996 16:03:18 235.1 17
1B4 BO BBO 4 20-May-1996 16:04:18 235.1 54
IB3 BO BBO 3 20-May-1996 16:04:23 235.1 37
B4 BO BBO 4 20-May-1996 16:04:28 235.1 58
IB3 BO BBO 3 20-May-1996 16:07:53 235.1 17
XB1 BO. BBO 1 20-May-1996 16:08:13 235.1 7
UAB BO BBO 3 20-May-1996 16:51:21  235.1 999
UEB BO BBO 3 20-May-1996 16:51:22 235.1 999
IB3 BO BBO 3 20-May-1996 16:51:23 235.1 22
IB4 BO BBO 4 20-May-1996 16:52:38 235.1 35
1B3 BO BBO 3 20-May-1996 17:22:58 235.1 86
1B4 BO BBO 4 20-May-1996 17:24:08 235.1 70
XB1 BO BBO 1 20-May-1996 17:37.08 235.1 178
AB1 BO BBO 1 20-May-1996 17:39:568 235.1 25
EB1 BO BBO 1 20-May-1996 17:40:13 235.1 12
IB4 BO BBO 4 20-May-1996 17:41:08 235.1 24
IB3 BO BBO 3 20-May-1996 17:48:18 235.1 91
IB4 BO BBO 4 20-May-1996 17:48:33 235.1 37
IB3 BO BBO 3 20-May-1996 17:54:38 235.1 23
IB4 BO BBO 4 20-May-1996 17:54:58 235.1 193
192 BO 9BO 2 20-May-1996 18:13:16  235.1 25
193 BO 9BO 3 20-May-1996 18:26:46 235.1 28
FT BO ABO 1 20-May-1996 19:05:49 235.1 17
LT BO ABO 1 20-May-1996 19:08:14 235.1 7
EFB BO ABO 1 20-May-1996 19:08:15 235.1 999
F BO SBO 1 20-May-1996 19:20:09 235.3 129
L BO SBO 1 20-May-1996 20:17:34 235.3 163
F1 2ND TD 2TD 1 22-May-1996 02:42:19 304.9 117
L1 TD 2TD 1 22-May-1996 04:00:04 304.9 115
FP TD 3TD 1 23-May-1996 14:25:58 308.1 6
LP TD 3TD 1 23-May-1996 14:46:43 308.1 10
I41 TD 4TD 1 23-May-1996 15:05:54 308.1 85
142 TD 4TD 2 23-May-1996 15:15:56  308.1 31
UFT TD 4TD 3 23-May-1996 15:16:28 308.1 999
ULT TD 4TD 3 23-May-1996 15:16:29 308.1 999
EFB TD 4TD 3 23-May-1996 15:16:30 308.1 999
F JD 1JD 1 24-May-1996 07:55:53  345.0 999
L1 JD 1JD 1 24-May-1996 08:24:11 345.0 118
FP JD 3JD 1 24-May-1996 11:58:14 346.9 18
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Corr Dam Site Antenna Recorded RKM Power
132 JD 3JD 2 24-May-1996 12:01:52 346.9 29
131 JD 3JD 1 24-May-1996 12:05:07 346.9 24
132 JD - 3JD 2 24-May-1996 12:08:03 346.9 47
131 JD 3JD 1 24-May-1996 12:08:57 346.9 86
132 JD 3JD 2 24-May-1996 12:15:05 346.9 21
131 JD 3JD 1 24-May-1996 12:15:29  346.9 60
132 JD 3JD 2 24-May-1996 12:19:00 346.9 18
131 JD 3JD 1 24-May-1996 12:19:18 346.9 65
132 JD 3JD 2 24-May-1996 12:21:25 346.9 95
131 JD 3JD 1 24-May-1996 12:21:43 346.9 96
132 JD 3JD 2 24-May-1996 12:22:56 346.9 63
131 JD 3JD 1 24-May-1996 12:24:145 346.9 62
131 JD 3JD 1 24-May-1996 14:24:37 346.9 99
132 JD 3JD 2 24-May-1996 14:25:38 346.9 32
131 JD 3JD 1 24-May-1996 14:26:08 346.9 65
132 JD 3JD 2 24-May-1996 14:27:27 346.9 47
131 JD 3JD 1 24-May-1996 14:28:15 346.9 41
132 JD 3JD 2 24-May-1996 14:29:10 346.9 18
I31 JD 3JD 1 24-May-1996 14:29:34  346.9 20
132 JD 3JD 2 24-May-1996 14:30:53 346.9 50
131 JD 3JD 1 24-May-1996 14:31:17 346.9 48
132 JD 3JD 2 24-May-1996 14:53:04 346.9 88
131 JD 3JD 1 24-May-1996 14:53:28 346.9 95
132 JD 3JD 2 24-May-1996 14:57:17 346.9 22

- 131 JD 3JD 1 24-May-1996 14:57:23 3469 15
132 JD 3JD 2 24-May-1996 14:58:36  346.9 40
133 JD 3JD 3 24-May-1996 15:10:28 346.9 26
134 JD 3JD 4 24-May-1996 15:16:43 346.9 18
135 JD 3JD 5 24-May-1996 15:17:25 346.9 36
141 JD 4JD 1 24-May-1996 15:35:43 346.9 12
142 JD 4JD 2 24-May-1996 15:58:02 346.9 12
151 JD 5JD 1 24-May-1996 15:59:32 346.9 10
152 JD 5JD 2 24-May-1996°16:23:25 346.9 9
FT JD 6JD 1 24-May-1996 16:29:00 346.9 40
LT JD 6JD 1 24-May-1996 16:29:49 346.9 9
FB JD 2JD 1 24-May-1996 21:21:59 345.1 999
F JD 2JD 1 24-May-1996 21:22:00 345.1 162
L JD 1JD 1 24-May-1996 21:34:53 345.0 134
FB TD 1TD 1 25-May-1996 05:20:00 304.9 999
F TD 2TD 1 304.9 129

25-May-1996 05:23:05
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Detection Date

Corr Dam Site Antenna Recorded RKM Power
L TD 1TD 1 25-May-1996 05:38:48 304.9 133
F BO SBO 1 25-May-1996 18:07:26 2353 146
L BO SBO 1 25-May-1996 18:24:26 235.3 166
FB BO 1BO 1 25-May-1996 19:11:39  232.3 999
F BO 1BO 1 25-May-1996 19:11:40 232.3 160
L BO 1BO 1 25-May-1996 19:15:43 232.3 148
F1 3RD BO 1BO 1 29-May-1996 00:41:29 232.3 146
L1 BO 1BO 1 29-May-1996 02:29:27 232.3 125
F BO 3BO 1 29-May-1996 02:43:51 235.1 138
L BO 3BO 1 29-May-1996 02:51:57 235.1 119
AlT71 BO 7BO 1 29-May-1996 02:55:29 235.1 26
AT74 BO 7BO 4 29-May-1996 02:55:47 235.1 33
AR1 BO 8BO 1 29-May-1996 02:55:56  235.1 111
F BO 3BO 1 29-May-1996 02:57:36  235.1 148
L BO -3BO 1 29-May-1996 03:23:30 235.1 129
F BO 1BO 1 29-May-1996 03:26:03 232.3 121
L BO 1BO 1 29-May-1996 04:06:28 232.3 116
ALl BO LBO 1 20-May-1996 05:44:06 235.1 153
ElL1 BO LBO 1 29-May-1996 05:44:18 235.1 28
FP BO LBO 2 29-May-1996 05:44:24 235.1 54
IL4 BO LBO 4 29-May-1996 05:48:01 235.1 136
IM2 BO MBO 2 29-May-1996 05:49:33  235.1 255
IM1 BO MBO 1 29-May-1996 05:54:45 235.1 14
IM2 BO MBO 2 29-May-1996 05:59:03 235.1 28
IK2 BO KBO 2 29-May-1996 06:15:32 235.1 35
1J3 BO JBO 3 29-May-1996 06:15:47 235.1 85
1J2 BO JBO 2 20-May-1996 06:15:53 235.1 29
IH4 BO HBO 4 29-May-1996 06:15:59 235.1 42
IH3 BO HBO 3 29-May-1996 06:16:11  235.1 24
IH2 BO HBO 2 29-May-1996 06:16:17 235.1 45
IG5 BO GBO 5 29-May-1996 06:16:35 235.1 48
IG3 BO GBO 3 29-May-1996 06:16:50 235.1 59
1F4 BO FBO 4 29-May-1996 06:17:12 235.1 36
IF2 BO FBO 2 29-May-1996 06:17:24 235.1 41
IE5 BO EBO 5 29-May-1996 06:17:33 235.1 21
XE4 BO EBO 4 29-May-1996 06:17:45 235.1 24
AC1 BO CBO 1 29-May-1996 06:53:22 235.1 137
AB1 BO BBO 1 29-May-1996 13:46:02 235.1 45
EB1 BO BBO 1 29-May-1996 13:46:37 235.1 44
IB3 BO BBO 3 29-May-1996 13:47:22 235.1 18
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IB4 BO BBO 4 29-May-1996 13:48:02 235.1 94
IB3 BO BBO 3 29-May-1996 14:17:07 235.1 138
IB4 BO BBO 4 29-May-1996 14:17:17 2351 95
IB3 BO BBO 3 29-May-1996 14:44:57 235.1 39
XB1 BO BBO 1 29-May-1996 14:45:12 235.1 25
ALl BO LBO 1 30-May-1996 09:47:30 235.1 144
EL1 BO 1LBO 1 30-May-1996 09:47:54 235.1 44
IL2 BO LBO 2 30-May-1996 09:48:42 235.1 49
IM1 BO MBO 1 30-May-1996 09:55:47 235.1 30
M4 BO MBO 4 30-May-1996 09:59:53 235.1 50
IN1 BO NBO 1 30-May-1996 10:01:20 235.1 49
IN2 BO NBO 2 30-May-1996 10:02:09 235.1 49
IN3 BO NBO 3 30-May-1996 10:06:35 235.1 18
IN4 BO NBO 4 30-May-1996 10:07:30 235.1 14
102 BO OBO 2 30-May-1996 10:48:28 235.1 15
103 BO OBO 3 30-May-1996 10:56:13 235.1 65
FT BO PBO 1 30-May-1996 11:32:30 235.1 36
LT BO PBO 1 30-May-1996 11:34:26  235.1 8
EFB BO PBO 1 30-May-1996 11:34:27 235.1 999
F LWS 1 30-May-1996 21:33:44 260.7 138
L LWS 1 30-May-1996 21:36:11  260.7 112
F WHR 1 31-May-1996 01:47:34 270.8 120
L WHR 1 31-May-1996 02:06:59 270.8 140
F1 3RD TD 2TD 1 31-May-1996 16:40:37 304.9 163
L1 TD 1TD 1 31-May-1996 17:08:54 304.9 186
FT TD 5TD 1 31-May-1996 20:07:29 308.1 15
LT TD 5TD 1 31-May-1996 20:09:43 308.1 9
EFB TD 5TD 1 31-May-1996 20:09:44 308.1 999
F DES 1 1-Jun-1996 06:02:31 328.9 123
L DES 1 1-Jun-1996 06:50:59 328.9 151
F DES 1 1-Jun-1996 13:59:49 3289 163
L DES 1 1-Jun-1996 14:07:05 328.9 118
FB TD 2TD 1 1-Jun-1996 21:25:22 304.9 999
F TD 2TD 1 1-Jun-1996 21:25:23 3049 174
L TD 2TD 1 1-Jun-1996 21:29:26 304.9 169
FB BO 1BO 1 2-Jun-1996 14:23:41 232.3 999
F BO 1BO 1 2-Jun-1996 14:23:42 232.3 142
L BO 1BO 1 2-Jun-1996 14:32:36 232.3 136
F1 4TH BO 1BO 1 5-Jun-1996 18:39:19 232.3 128
L1 BO 1BO 1 5-Jun-1996 19:15:43 232.3 103
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Detection Date
Corr Dam Site Antenna Recorded RKM Power
AlL1 BO LBO 1 5-Jun-1996 20:34:21 235.1 79
El1L1 BO LBO 1 5-Jun-1996 20:35:08 235.1 999
FP BO LBO 2 5-Jun-1996 20:35:09 235.1 55
IM4 BO MBO 4 5-Jun-1996 20:45:34 235.1 255
IN1 BO NBO 1 5-Jun-1996 20:47:18 235.1 24
IN2 BO NBO 2 5-Jun-1996 20:48:48 235.1 29
LP BO NBO 3 5-Jun-1996 20:51:00 235.1 13
IN4 BO NBO 4 5-Jun-1996 20:59:28 235.1 10
102 BO OBO 2 5-Jun-1996 21:25:24 235.1 39
103 BO OBO 3 5-Jun-1996 21:34:58 235.1 23
UFT BO PBO 1 6-Jun-1996 02:36:08 235.1 999
ULT BO PBO 1 6-Jun-1996 02:36:09 235.1 999
EFB BO PBO 1 6-Jun-1996 02:36:10 235.1 999
F1 4TH TD 2TD 1 7-Jun-1996 08:47:52 304.9 122
L1 TD 2TD 1 7-Jun-1996 09:35:03 .304.9 112
FP TD 3TD 1 7-Jun-1996 12:49:13 3081 7
LP TD 3TD 1 7-Jun-1996 12:50:16 308.1 3
141 TD 4TD 1 7-Jun-1996 13:17:51 308.1 17
142 TD 4TD 2 7-Jun-1996 13:33:05 308.1 27
FT TD 4TD 3 7-Jun-1996 13:35:18 308.1 20
LT TD 4TD 3 7-Jun-1996 13:35:42 308.1 23
EFB TD 4TD 3 7-Jun-1996 13:35:43 308.1 999
F TD 4TD 4 7-Jun-1996 13:36:36 308.1 55
L TD 4TD 4 7-Jun-1996 13:36:37 308.1. 999
F1 2ND JD 2JD 1 8-Jun-1996 00:50:28 345.1 123
L1 JD 2JD 1 8-Jun-1996 01:28:57 345.1 141
FP JD 3JD 1 8-Jun-1996 02:44:52 346.9 40
132 JD 3JD 2 8-Jun-1996 02:47:31 346.9 37
I31 JD 3JD 1 8-Jun-1996 02:49:45 346.9 46
132 JD 3JD 2 8-Jun-1996 02:53:00 346.9 28
I31 JD 3JD 1 8-Jun-1996 02:53:24 346.9 57
132 JD 3JD 2 8-Jun-1996 02:56:15 346.9 16
I31 JD 3JD 1 8-Jun-1996 02:58:17 346.9 55
132 JD 3JD 2 8-Jun-1996 03:00:00 346.9 20
133 JD 3JD 3 8-Jun-1996 03:19:28 346.9 20
134 JD 3JD 4 8-Jun-1996 03:57:27 346.9 42
I35 JD 3JD 5 8-Jun-1996 03:59:05 3469 71
141 JD 4JD 1 8-Jun-1996 04:53:57 346.9 10
142 JD 4JD 2 8-Jun-1996 05:14:57 346.9 19
I51 JD 5JD 1 8-Jun-1996 05:17:59 346.9 18
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152 JD 5JD 2 8-Jun-1996 05:44:03 346.9 42
FT JD 6JD 1 8-Jun-1996 05:48:33 346.9 28
LT JD 6JD 1 8-Jun-1996 05:49:22 346.9 107
EFB JD 6JD 1 8-Jun-1996 05:49:23 346.9 999
F1 MN 1IMN 1 10-Jun-1996 02:43:23 467.3 119
L1 MN 2MN 1 10-Jun-1996 03:28:16 467.3 124
Ale4 MN 6MN 4 10-Jun-1996 04:40:27 469.8 17
ATl MN TMN 1 10-Jun-1996 04:41:59 469.8 25
ARl MN S8MN 1 10-Jun-1996 04:48:23 469.8 29
AC1 MN CMN 1 10-Jun-1996 05:56:55 469.8 118
E1C1 MN CMN 1 10-Jun-1996 05:57:20 469.8 10
FP MN CMN 3 10-Jun-1996 05:58:13 469.8 12
ID1 MN DMN 1 10-Jun-1996 06:14:56  469.8 60
ID2 MN DMN 2 10-Jun-1996 06:16:14 469.8 24
ID3 MN DMN 3 10-Jun-1996 06:18:20 469.8 24
ID2 MN DMN 2 10-Jun-1996 06:19:08 469.8 9
ID1 MN DMN 1 10-Jun-1996 06:19:51 469.8 41
ID2 MN - DMN 2 10-Jun-1996 06:21:09 469.8 35
1D3 MN DMN 3 10-Jun-1996 06:22:15 469.8 9
ID2 MN DMN 2 10-Jun-1996 06:23:16 469.8 61
ID1 MN DMN 1 10-Jun-1996 06:23:46  469.8 31
ID2 MN DMN 2 10-Jun-1996 06:25:46  469.8 36
1D3 MN DMN 3 10-Jun-1996 06:26:53  469.8 38
ID2 MN DMN 2 10-Jun-1996 06:27:41 469.8 49
ID1 MN DMN 1 10-Jun-1996 06:28:11 469.8 111
D2 MN DMN 2 10-Jun-1996 06:30:59  469.8 58
ID3 MN DMN 3 10-Jun-1996 06:31:59 469.8 30
ID2 MN DMN 2 10-Jun-1996 06:33:36 469.8 15
ID1 MN DMN 1 10-Jun-1996 06:34:12 469.8 52
ID2 MN DMN 2 10-Jun-1996 06:37:12 469.8 18
ID3 MN DMN 3 10-Jun-1996 06:38:06 469.8 18
ID3 MN DMN 3 10-Jun-1996 07:19:47 469.8 15
LP MN DMN 3 10-Jun-1996 07:22:29 = 469.8 17
FT MN FMN 1 10-Jun-1996 07:49:13 469.8 5
LT MN FMN 1 10-Jun-1996 07:59:41 469.8 16
F1 IH 1IH 1 11-Jun-1996 12:33:08 537.2 118
L1 IH 1TH 1 11-Jun-1996 14:34:29 537.2 118
Al181 IH 8IH 1 11-Jun-1996 16:14:43  537.7 93
F IH 1IH 1 11-Jun-1996 18:00:44 537.2 150
L IH 1TH 1 11-Jun-1996 18:16:15 537.2 183
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Corr Dam Site Antenna Recorded RKM Power
F IH 11H 1 11-Jun-1996 23:41:00 537.2 118
L IH 1IH 1 11-Jun-1996 23:41:01  537.2 999
A4l IH 4IH 1 12-Jun-1996 06:34:59  537.7 14
A43 IH 4TH 3 12-Jun-1996 06:35:41 537.7 73
Ab1 IH 5IH 1 12-Jun-1996 06:36:39  537.7 26
AB3 IH 5IH 3 12-Jun-1996 06:38:01  537.7 76
Ab1 IH 5IH 1 12-Jun-1996 06:42:15  5337.7 13
E151 IH 5IH 1 12-Jun-1996 06:43:29  537.7 81
152 IH 51H 2 12-Jun-1996 06:43:36 - 537.7 26
144 IH 4TH 4 12-Jun-1996 06:45:34  537.7 11
142 IH 4IH 2 12-Jun-1996 06:46:52  537.7 13
134 IH 3IH 4 12-Jun-1996 06:47:34  537.7 14
134 IH 3IH 4 12-Jun-1996 06:47:35 537.7 20
142 IH 4TH 2 12-Jun-1996 06:47:35  537.7 19
IT2 IH TIH 2 12-Jun-1996 06:48:55  537.7 12
134 IH 3IH 4 12-Jun-1996 06:49:35  537.7 22
142 IH 4TH 2 12-Jun-1996 06:50:10 537.7 26
134 IH 3IH 4 12-Jun-1996 06:50:12  537.7 19
142 IH 4IH 2 12-Jun-1996 06:50:17 537.7 116
144 IH 4TH 4 12-Jun-1996 06:50:41  537.7 25
142 IH 41H 2 12-Jun-1996 06:51:35  537.7 17
134 IH 3IH 4 12-Jun-1996 06:52:05 537.7 22
142 IH 4TH 2 12-Jun-1996 06:52:05  537.7 17
134 IH 3IH 4 12-Jun-1996 06:52:12  537.7 27
IT2 IH TIH 2 12-Jun-1996 06:53:18 337.7 26
FP IH TIH 3 12-Jun-1996 06:54:39  537.7 27
172 IH TIH 2 12-Jun-1996 06:55:09  537.7 37
IT3 IH TIH 3 12-Jun-1996 06:55:16  537.7 33
iT4 IH TIH 4 12-Jun-1996 06:57:49  537.7 39
IT5 IH TIH 5 12-Jun-1996 07:02:44 =~ 537.7 16
LP IH TIH 5 12-Jun-1996 07:29:38  537.7 10
FT IH 9TH 1 12-Jun-1996 08:25:55 537.7 31
LT IH 9IH 1 12-Jun-1996 08:31:02 537.7 100
F IH 9IH 2 12-Jun-1996 08:31:03  537.7 90
L 1H 9IH 2 12-Jun-1996 08:43:37 537.7 155
FB IH 1IH 1 12-Jun-1996 09:30:50 537.2 999
F1 2ND TH 1IH 1 12-Jun-1996 09:30:51  537.2 147
L IH 1IH 1 12-Jun-1996 09:36:41  537.2 120
F IH 1TH 1 13-Jun-1996 07:54:16  537.2 115
L1 IH 1IH 1 13-Jun-1996 08:08:52 537.2 194
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Al4l IH 4IH 1 13-Jun-1996 09:36:04  537.7 22
A43 IH 4IH 3 13-Jun-1996 09:36:22  537.7 46
A3l IH 3IH 1 13-Jun-1996 18:42:19  537.7 11
E131 IH 3IH 1 13-Jun-1996 18:42:49 537.7 25
132 IH 3IH 2 13-Jun-1996 18:42:35 537.7 21
FP IH TIH 1 13-Jun-1996 18:44:29  537.7 12
132 IH 3IH 2 13-Jun-1996 18:46:13 537.7 16
IT1 IH TIH 1 13-Jun-1996 18:48:49 5377 15
132 IH 3IH 2 13-Jun-1996 18:49:08 537.7 15
IT1 IH TIH 1 13-Jun-1996 18:51:22  537.7 33
132 IH 3IH 2 13-Jun-1996 18:52:08 537.7 23
X31 IH 3IH 1 13-Jun-1996 18:55:34 537.7 36
A33 IH 3IH 3 13-Jun-1996 18:55:47 537.7 75
A4l IH 4IH 1 13-Jun-1996 18:56:00 537.7 43
A43 IH 4IH 3 13-Jun-1996 18:56:42 537.7 136
A5l IH 5IH 1 13-Jun-1996 18:57:36  537.7 58
A53 IH 5IH 3 13-Jun-1996 18:58:22 - 537.7 51
A63 IH 61H 3 13-Jun-1996 18:58:58 537.7 21
ATl IH 7IH 1 13-Jun-1996 18:59:28  537.7 101
E71 IH TIH 1 13-Jun-1996 18:59:29  537.7 999
172 IH 7IH 2 13-Jun-1996 18:59:36  537.7 15
164 IH 6IH 4 13-Jun-1996 19:04:06 537.7 23
162 IH 61H 2 13-Jun-1996 19:05:13  537.7 15
154 IH 5IH 4 13-Jun-1996 19:06:23 - 537.7 65
152 IH 5IH 2 13-Jun-1996 19:07:17 537.7 34
144 IH 4IH 4 13-Jun-1996 19:08:16  537.7 15
142 IH 4IH 2 13-Jun-1996 19:09:23  537.7 64
134 IH 3IH 4 13-Jun-1996 19:09:38 537.7 11
142 IH 4TH 2 13-Jun-1996 19:09:41  537.7 &6
134 IH 3IH 4 13-Jun-1996 19:11:01 537.7 21
142 IH 4IH 2 13-Jun-1996 19:11:12  537.7 68
144 IH 4TH 4 13-Jun-1996 19:11:24 537.7 14
152 IH 5IH 2 13-Jun-1996 19:11:43 537.7 36
144 IH 4TH 4 13-Jun-1996 19:13:06 537.7 16
142 IH 4IH 2 13-Jun-1996 19:14:13  537.7 14
134 IH 3IH 4 13-Jun-1996 19:14:37  537.7 20
142 IH 4TH 2 13-Jun-1996 19:14:37  537.7 73
134 IH 31H 4 13-Jun-1996 19:14:43  537.7 27
142 IH 41H 2 13-Jun-1996 19:14:43  537.7 48
134 IH 3IH 4 13-Jun-1996 19:14:49 = 537.7 38




330

Table A.1 continued

Detection Date
Corr Dam Site Antenna Recorded RKM Power
142 IH 41H 2 . 13-Jun-1996 19:14:49 537.7 16
134 IH 3IH 4 13-Jun-1996 19:14:55 537.7 &4~
IT2 IH TIH 2 13-Jun-1996 19:15:42 537.7 14
IT3 1H TIH 3 13-Jun-1996 19:16:51  537.7 10
IT2 IH TIH 2 13-Jun-1996 19:18:12  537.7 97
IT3 IH TIH 3 13-Jun-1996 19:18:19  537.7 102
IT4 IH TIH 4 13-Jun-1996 19:19:35  337.7 31
IT5 IH TIH 5 13-Jun-1996 19:25:13  537.7 9
LP IH TIH 5 13-Jun-1996 19:28:38  537.7 17
FT IH 9IH 1 13-Jun-1996 20:36:45  537.7 31
LT IH 9IH 1 13-Jun-1996 20:41:07  337.7 50
EFB IH 9IH 1 13-Jun-1996 20:41:08  537.7 999
F IH 9IH 2 13-Jun-1996 20:41:14  537.7 75
L IH 9IH 2 13-Jun-1996 20:53:32  537.7 18
F IH 9IH 2 14-Jun-1996 02:09:45 537.7 15
L IH oIH 2 14-Jun-1996 03:34:05 537.7 15
F 2CH 1 14-Jun-1996 04:45:41  538.9 119
L 1CH 1 14-Jun-1996 05:19:06 539.4 130
F1 LM 1LM 1 14-Jun-1996 21:51:55 588.6 118
L LM 1LM 1 14-Jun-1996 22:14:04 588.6 116
F LM 1LM 1 15-Jun-1996 06:47:16  588.6 141
L LM 1LM 1 15-Jun-1996 06:56:16 588.6 140
F LM 1LM 1 15-Jun-1996 20:56:11 588.6 134
L LM 1LM 1 15-Jun-1996 21:13:22 588.6 147
F LM 1LM 1 16-Jun-1996 07:03:25 588.6 136
L1 LM 1LM 1 16-Jun-1996 07:24:25 588.6 122
WMBT TUC 8 21-Jun-1996 12:40:00 661.6 3310
WMBT-T TUC 8 23-Jun-1996 10:00:00 641.9 3330
WMBT TUC 8 26-Jun-1996 13:08:00 651.3 3334
WMBT TUC 8 28-Jun-1996 13:30:00 653.9 3338
WMBT TUC 8 1-Jul-1996 11:00:00 661.6 3320
WMBT TUC 8 5-Jul-1996 12:15:00 674.1 3325
WMBT TUC 8 8-Jul-1996 10:02:00 678.9 3327
WMBT TUC 8 11-Jul-1996 15:15:00  678.9 3407
WMBT TUC 8 15-Jul-1996 12:20:00 679.0 3406
WMBT TUC 8 22-Jul-1996 12:37:00 679.0 3401
WMBT TUC 8 25-Jul-1996 12:19:00 679.0 3398
WMBT TUC 8 29-Jul-1996 15:36:00  679.0 3397
WMBT TUC 8 5-Aug-1996 11:20:00 679.0 3377
WMBT TUC 8 19-Aug-1996 10:41:00 679.0 3380
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Detection Date

Corr Dam Site Antenna Recorded RKM Power
WMBT TUC 8 19-Aug-1996 12:13:00 679.0 3384
WMBT TUC 8 21-Aug-1996 12:15:00 679.0 3381
WMBT TUC 8 22-Aug-1996 08:57:00 679.0 3387
WMBT TUC 8 28-Aug-1996 14:30:00 685.5 3271
WMBT TUC 8 29-Aug-1996 15:30:.00 681.7 3295
WMBT TUC 8 3-Sep-1996 15:35:00 681.1 3280
WMBT TUC 8 4-Sep-1996 14:35:00 681.1 3283
WMBT TUC 8 5-Sep-1996 12:10:00 681.1 3286
WMBT TUC 8 9-Sep-1996 13:00:00 680.4 3289
WMBT TUC 8 10-Sep-1996 12:35:00 680.3 3292
WMBT TUC 8 11-Sep-1996 13:45:00 679.8 3277
WMBT TUC 8 12-Sep-1996 13:14:00 680.0 3274
WMBT TUC 8 13-Sep-1996 12:35:00 680.7 3258
WMBT-T TUC 8 16-Sep-1996 10:00:00 679.8 3260
RCP TUC 8 16-Sep-1996 23:59:00 679.8 320
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Appendix B
VARIANCE FORMULAS FOR Ssys AND Lr

B.1 Variance formulas for §3y3

The parameter Ssy, is the perceived system survival, or the probability of surviving and
remaining in the migrating population from the release to the top of the final dam. For all

models, S,ys is defined in terms of the recursive parameters 7;. In general,

Ssys =NR.
Variance estimators and partial derivatives will be given in terms of the 7; parameters.

B.1.1 Model 0

For Model 0, np is a function of the parameters ¢r p,, and ¢Dk'T,D)c+1,T fork=1,...,K-1.

The variance of fjr can be estimated by the following equation:

K-1 "
Z Cov ¢R DlT’qSDIcT»Dk-H T)+

k=1 ¢R D1 ¢Dsz>Dk:+l T

Var(Az) = nR{cv (Grpe) +2

K-1K-1 5 "
Cov( ¢DkT,Dk+1 T(Z)DjTaDj-H ) } (B.1)
, )

k=1 j=1 ¢DkT7Dk+1T¢D3T7 Dji1,7

where OV (¢r.p,r) = —é%’alﬁ is the coefficient of variation of ¢g p,,. Under the assump-

tion of 100% detection at site Dx71, @Der,Dir = A

B.1.2 Models 1 and 2

For Models 1 and 2, ng is a function of the parameters ¢r p, 5, ¢Dis.Dir (K =1,..., K),

and ¢p,r . Dee1p (B =1,...,K —1). The variance of )z can be estimated by the following
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equation:
K-1K-1 /7=
— o [==2 ~ COU((bD D ¢D D )
Var (i) = { O Br,.0) + c0:Di12ODyoDyr) |
k=1 j=1 ¢DkaDkT¢DgB» D7

K-1K-1 A —— ~
{ (¢DkT1Dk+1 B’¢D1T: J+1 B) n 2COU(¢D;CB,D;CT, ¢DjT:Dj+1,T) }+

k=1 j=1 ¢DkTlec+1 B¢DJT1 ]+1 B ¢)DkaDkT¢DjT,Dj+1,B
2 { Cov(@Rr, D55 @Dy, Dir) + oU($R,D1 5 PDyr,Di1,5) } } (B.2)
= = = = , .
k=1 ®R,D1 5P Dy g, Dir ®R,D;5 ¢DkT»Dk+1,B

where CV(¢rp,5) = SE(;—-—?;—)’—&E-) is the coefficient of variation of ¢gp,,. For Model 1,
1B

@Dy p, Dy = A under the assumption of 100% detection at site Dgr.

B.1.83 Model 3a

Define O3,y to be the set composed of the following parameters:

ODip,Dir k=2,...,K, ®Dyr Ti k=1,...,K -1,

¢DkT7Dk+1,B kz]‘""’K_l; ¢Tkak+l,B k=1,.--,K_1.

For Model 3a, g is a function of the parameters ¢r 1, $r,D,5, PD,5,D:7» 80d O1y, D, 5, and

the parameters in the set ©34(,.). The variance of 7jr can be estimated by the following:

2 P 2
Var( R) = (822};) Var(érr,) + <8¢Rng ) Var(¢r,p,5)

e \*o 2 onr \%— ~

+ (G VarGomnn) + (g or(enou)
877R 87713 ~ ~

+ YT (B)(5E)een

0€O34(ng) YE€P3a(ng)

877R > < 67’}R ) — o~ =
<8¢R»TO 00Rr D, 5 ov(éRTy, $R,D15)

e (6¢R,To > ( ) Cov(¢R Ty 6D,5,D11)

0¢013,DlT
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8 o Cov(bry, &
+2< TR >< IR >COU(¢R,T0,¢T07D15)

8¢R,To aqﬁRo,Dus'

ong O A
2 Z <5¢R,To>< o0 >Cm}(¢R’To’9)

96@3,1(,7

0 o — -~
( 18 >< 1R )CO’U(¢R7D1B’¢DIB7D1T)

OPR,D1 5 8¢D13:D1T

Onr >A A -
C )
<6¢R DlB ) (6¢T0,D13 OU(¢R,DIB ¢T0,D13)

S () ()R
ee®3 ‘o \OPRDiz

+2 C ,
<8¢D13,D1T 96T, ov(¢ D, p,Dyr ¢T07DIB)

Onr ong ~
- Z <8¢D13,D1T> ( o6 >COU(¢DIB:D1T’ 0)

0€83a(np)

+2 Y ( Oz ><5a”;>cov(¢7~0,pw,e) (B.3)

0é15,D
96@3&(”71{) ¢ 0,18

where the partial derivatives are evaluated at their MLEs. The necessary partial derivatives

are the following:

Onr
0br, 10
Onr
8¢TO,D13
Onr_ _
ObR,D\p
Or__ _ MR
8¢DIB»D1T ¢D1B,D1T ’

= @Ty,D189D15,D:17MD1 1
= ORTy®D15,D17MD1 1}

®D15,D17MD17;

for 6 € @3a(nR),

Onr _ MR OnDyr
89 ~ np,, 08
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where 97%’911 is defined below.

Define GSG(nDkT) to be the set composed of the following parameters:

¢DjB,DjT ]:k+27,K) ¢DjT,Tj J=k+17,K_la
¢DjT,Dj+1,B ]=k+1a7K_1, ¢Tj,Dj+1,B j=k+1,"'>K'_1'
For k =1,...,K — 1, the parameter np,, is a function of the parameters ¢p,,, . Dy.17s
®Dyr Txs PDyr,Dis1,5s a0d T, Dy 55 for k =1,..., K — 2, np,,. is also a function of the

parameters in the set 93‘1(’7Dkr)' The partial derivatives necessary for Equation (B.3) that

involve np,  are below:

fork=1,...,K -1

ONDyr _ TDyr
- 3
8¢Dk+1,Bka+1,T ¢Dk+1,Bqu+1,T

ONDyr

= @Ty,Dyr1,8 ¢Dk+1,B Dyt1,7MDgyr, 1)
8¢DkT7Tk ’

BnDkT

= @Dy 41,8 Dk1,7 1Dk 11,15
8¢DkTka+1B

ONDyr

= ODyr, T ¢Dk+1,B Diy1,7MDks1,17
0¢Tk Dk+1,B

fork=1,..., K—2and 8 € @sa(nDkT),

ONDyr _ NDur 877Dk+1,T

06 NMDgs1pr 00
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B.1.4 Model 3b

Define the set ©gy(,,) to be the following parameters:

®Dis,Dir k=2,...,K; GDrs,Der k=2,...,K;
ODer i k=1, ,K-1 b, k=1, ,K-1;
PDir Dis 1,5 k=1,..,K-1 SburDesis k=1, K-1
OTh,Dis1,5 k=1,... K-1 SDesrs k=1, ,K-1

For Model 3b, ng is a function of the parameters ¢rr,, ®r D5, PTo.D15) PDip.Dips
¢£1B,D1T’ and the parameters in the set ©3(,,). The variance of g can be estimated by

the following:

2
Var(fr) = )Var ORT,) + < Onr )Var(qu,DlB)

OPR, D5

8 BT]R 2/\. o~
+ <5¢T0,D13> Va’r‘(¢To,D1B) + <_———.—8¢DIB,D1T> Var(¢p;z,0:7)

g o on ONR\ =~ 7 =
5o ) Var@h,spi) + D D <5_9R) <;_¢>C°U(9’w)
D137D1T 0€O3p(np) ¥E€Osb(ng)

onr ) ( onr >
+2 & ,
<6¢R To OOR, D5 OU(QSR To ¢R Dip)
onr
4o 2R )( >C |
(6¢R To 001,015 OU(d)R To ¢T07D15)
A8 i
(8¢RT0 8¢D131D1T 0v(¢R’TO ¢DlBaD1T)
+2 - )< >C SrT, 5
<8¢RT0 ¢D13,D1T oV(SR Ty @D, p.Dy7)
( ) <6nR)Cov(¢R Toa A)
96@35( RTO

0¢
( 8nR )( Onr >COU($R,D15’$TO’D13)

O0R. Dy 007,015
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) (2

2 (w?ﬁl , > (wfllw ) Cov(dr0in:bis.01r)

o E () ()emnnnd

" 2<6¢Ti) (8¢§rpm>@@°’”w’ O015.01r)

e <6¢8Tm;) (aasgnRD ) Cov(1,.015: 0b15.:1)

" Qeeez%:(nm <8¢i:7,1;3> (8637: )COU(¢T°’D13’§)

" 2<8¢§EDIT> <6¢56ED1T>5‘;’($D‘B’D”’%”’D”)

2,2 (o) ()0 Gouond

0 E (o) ()

where the partial derivatives are evaluated at their MLEs. The partial derivatives necessary

for Equation (B.4) are:

Onr
8¢R,To

Onr
O0®R,D, 5

Onr

0¢T0,D13

Onr

8¢D137D1T

__Onr_
¢D1B JDip

= @75.0158D, 5. D1r Dy
= @D,5,D17MD17

= ¢R,To¢gIB,D1Tng1T;
= ®R,D15"D17;

T
¢R,Toa ¢T0,D1377D1T;
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Ong
o = @R,D1pPD1p, D17}

ong T
oL = ¢R,TO¢T0»DIB¢DlBsD1T;
D7

for 6 € Ozp(),

Or _ Onr 0N, " Onr_ 0N,y
86  onp,. 08 onp,y 66

8 T
where %u: and alg,ll are defined below. Define the set e3b(’7DkT) to be the following

parameters:
¢DijDjT j:k+2,.-.,K; ¢ng’DjT j:k+2,“',K;
01Ty j=k+1, K- Obypa, J=k+l. K-l
¢DjT,Dj+1,B J=k+1a'aK_1’ ¢’ng7Dj+1,B J:k+1>'aK"1>
¢Tj,Dj+1,B J=k+1,...,K-1;" ¢%‘7Dj+1,3 j=k+1,..., K -1

; : T
The parameter np,,. is a function of the parameters ¢p,,, » . Dyis 1 ®Diss 5,Dir1,r PDir T
®Dir . Disr,pr 04 @1, Dy p for k= 1,... K = 1; for k = 1,...,K — 2, np,, is also a
function of the parameters in the set @3b(’7DkT)' The partial derivatives involving np,, that

are necessary for Equation (B.4) are the following:

fork=1,...,K - 1:

OND,r

= ODyr,Dir1,8MDk41 .7
6¢Dk+1,B,Dk+1,T

Onp
kT — T .
86T = QDyr,Tu PTk, Dit 1,5 MDgsr, 7

Dy+1,8,Dk+1,T

ONp,r

5 = ¢Tlc»Dk+1,B¢£k+1 8 'Dit1 Tngk-H T
¢Dk,Tlec ' ' '
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677DkT

= ODyi1,5, k11,0 1Dk,
8¢DkTka+l,B

onp
kT _ ¢ T T .
3 — ODyr, Ty ¢Dk+1 8:Dr+1,7 D 1,77
6¢Tk»Dk+1,B , +1, ,
onp '
kT — ¢ .
- DkT:Dk+1,B¢Dk+1,B»Dk+1,T’
377Dk+1,7~‘
I oTe 65
oL = YD1 Tk YT, Dk41,89Dy 11 5, Div1,1°
MDgs1,r

fork=1,...,K—2and f ¢ @gb(nDkT),

T
OND,r — OND,r anDk+1,T i ONDyr anDk+1,T
96 Onpyisz 06 , angk+l,T 09

Gng
where —g;J is defined below.

The parameter an)kT is a function of the parameters ¢p, , z.Dii1 1 gz%k+1 8. Dke1 1

T T T —_ — T
PDier, T ¢DkT»Dk+1,B’ and ¢Tkka+1,B for k=1,.. ,K-1 Fork=1,.. K2 Dir
is also a function of the parameters in the set @3b("DkT)' The partial derivatives involving

ngw that are necessary for Equation (B.4) are the following:

fork=1,..., K- 1:

T
anDkT

— 4T .
= ¢DkT»Dk+l,BnDk+1yT’
8¢Dk+1,B,Dk+1,T

T
677D1cT

= ¢T ¢T T s
5¢T Dir Tk PTi Dit1, 8Dk, 10
Di+1,8:Dr+1,7

T
677Dk’1’
T
0¢Dk,T7Tk

Onbr

T
6¢DkT Dr+1,8

. d)T ¢T T .
= OT,Di41,58PDry1,8.Dkt1,0 1 Dis1, 7

= ¢Dk+1,B7Dk+1,T"70k+1,T;

Oy

=g 4L T
0¢T Dy, Tu®PDr+1,8,Dis1,7 M1Dks1,17
Tk, Dik+1,B
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T

_%I_ — ¢Cg D oD D .
= ; k+1,B:Diet1,70

8nDk+1.T kT Diy1,B +

T
MNDyr = T o7 oL .
onT — ¥YDy1 T ¥ Tk Di+1,8% Di+1,8: D+ 1,10
MDjes1,7

fork=1,...,K -2 and 6 € Ogyyp, ),

T T
6nDkT —_ anng anDkH-l,T angk'r a’r’Dk_‘_l‘T
oLz, oDy r 00 ‘9775k+1,7~ 80

Mpyyy 7

where ——gp - s defined above.

B.1.5 Model 4

Define the set ©y4(;,) to contain the following parameters:

. “ F : _ ,
P D Dir k=2,...,K; ¢DkBkaT k=2,...,K;

. F — .
¢DkT,Dk+1,B k=1,...,K -1 ¢DkT»Dk+1,B k=1,...,K-1
kaT kzl,.--,K—l.

For Model 4, ng is a function of the parameters in set O4ng), 8s well as ®g p,;, q)g,Dw’

®p, 5,0y and ¢£1 5.0,p- Lhe variance of fjp can be estimated by the following expression:

Var(fr) = (%‘) Var(®rp, ) + (ﬁ) Var(®% p,,)
DiB R,D1p

ong )2/\ ~ < O )2/\ "F

+|=— 1V + (2R

<8¢D13:D1T ar(¢DlB’D1T) aqﬁng’DlT ar(¢DlB:D1T)
Onr\ (OnR\ 7 4 &

96@4(”1{) 'd"e@‘l(nn)

2 Cov(® , P
+ <6¢R,D13 ) <6®§,D13 OU( R,Dip R,D1B)

onr ) ( onr > PN -
+2 Couv(® ,
<8¢R,D13 6¢D18»D1T ( R.Dip ¢DleD1T)
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9 0 Cov(3r,py5 &
i 2< R ) < FT]R )Cov(q)R,D]_Ba ¢513,D1T)

O0Pr D, 8¢D13 Dir
577R ) (877;;) ~
2 Z ( COU(‘I’R,Dlaﬁ)
06040y, 9PRD,5 00
877R > ( 67]13 > — ~p - v
+2 Cov(®P ,
<6¢R Dim 96D, 5,017 (®R,D.5+ D15,D17)
6771?, > ( 6nR ) ~ ~p ap
" 2( COU((I)R,D a¢D D )
B@E,DIB 3¢ng)D1T 1B 18,217
. 5 o )
7 Z (6<I>1;7R >< 50 )COU((I)RDw,e)
96@4(7712) R,D]B
677R ) ( 87’]3 > e~ ~p
+2 & ’
(&bpw,pw 865, o 0v(®D, 5,017 9D, 5, D1y
Onr onr ~
+2 Z < > ( )OOU(¢D15,D1T,9)
06@4(’712) a¢0119,D17* of
+2 Z ( ¢£77R ) (?;)Cov(cbDlB,DlT,@), (B.5)
6€@4(np) Dig.Dir

where the partial derivatives are evaluated at their MLEs. The partial derivatives necessary

for Equation (B.5) are:

Onr R .
6(I>R DIB = ¢>DIB:D1TTID1T; ——————Wg DlB i ¢DlB,D1TnD1T;
Onr R e g
= ®R.D,MD11 TR _eF  gE
00D, 5.Dy1 1871D17 6¢513,D1T D1g'1D11
for 8 64("71%)’
877R 877D1T 8771F71T

— F
96 ¢R1D13¢D131D1T—80—— + R’DlB¢DlB’D1T—86‘_’
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8 P
where @5—911 and —né—)ell are defined below. Define the set 64("Dkr) to contain the following
parameters:
¢Dj5,DjT j=k+2,,K’ ¢£jB,DjT .7=k:+25»K7
Dm0y IRl K-l ¢bop. . j=k+l K-
 fpyr j=k+1,...,K - 1.
The parameter 1p,, is a function of the models parameters ¢Dk+1,BaDk+1,T7 ¢Ilgk+1,3,Dk+1,T’
®Dyr Dis1.55 ¢ng,Dk+1‘B, and fp,, fork=1,...,K-1;fork=1,...,K -2, np,, isalso a

function of the parameters in the set 64("Dkq~)' The partial derivatives involving np,, that

are necessary for Equation (B.5) are the following:

fork=1,...,K -1

OND,r

= (1 = fDyr)®Dir,Ds1,8MDks1 15
8¢Dk+1,B:Dk+1,T i i

ONDyr

— F F .
8¢F - kaT¢DkTaDk+l,BnDk+l,T’
Dys1,8:Dk41,1

ONDyr

= (1= fDur)PDiss 5,Dkss 2MDksr 1}
8¢DkT)Dk+1yB kT k+1,B k+1,T k41,7

ONDyr

= o .
X DirPDiy1,8,Dic+1,7 MDks1,7?
Dyr,Di+1,8

onp

kT F F F .

dfper —®Dir Dict1,8PDrsr,8.Dis1,0MDpsr,r T ¢DkTlec+1,B ¢Dk+1,B:Dk+1,TnDk+1,T’
T

fork=1,...,K ~2and 6 € Oy(yp, ),

F
ONp,r - ONDer anDk-H,T 8nDkT anD‘CH’T
00 a77Dk+1,T 2 an£k+1,T 66
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where
onp
T — .
P) = (1 kaT)d)DkT’Dk-i-l,B¢Dk+1,B>Dk+1,T7 k=1,...,K -1,
MDis1,7
onp
kT F F — _ 1.
577F - kaT¢DkTka+1,B¢Dk+1,B»Dk+1.T’ k=1,...,K -1
Dyt .

e ‘
and —%gﬁz is defined below. Define the set @4(775 y to contain the following parameters:
kT

¢ng,DjT J=k+2,.. ,K; ¢ng,Dj+1,B J=k+1,...,K -1

The parameter ngw (k=1,...,K—1) is a function of the model parameters ¢§k+1,B»Dk+1,T
and ¢ng’Dk+lyB fork=1,...,K —1, and also of the parameters in the set 94(,75”) for k =

1,...,K — 2. The partial derivatives involving ngw that are necessary for Equation (B.5)

are the following:

fork=1,...,.K -1

Onp,r

— ¢F F R
8¢>F Dyr,Dit1,8MDys1, 1
Dyt1,8:Dr+1,7

F
Mpyr oF F ,
8¢F = PDi+11,5,Dk+1,7MDks1,1
Dyr,Dy+1,8
F
877DkT' __¢F ¢F .
577F — ¥ Dy71,DLk+41,8¥Dgt1,8,Di+1,17°?
Dit1,1
fork=1,...,K—1land 0 € @4(,7?)”),
F F F
bz _ _9MDiy anDkH,T

o6 _6ngk+lyT By
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B.1.6 Model 5a

Define O3y, to be the set composed of the following model parameters:

®Dy5,Der k=2,..., K Oy 5.Dar k=2,...,K;
ODyer T k=1,...,K-1; ¢hon. k=1, K-1
®Dyr,Dis1,8 k=1,...,K-1; Dz Dy 1.5 k=1,...,.K -1,
Ty Diet1,5 k=0,....,K -1, ¢£¢,Dk+1,3 k=0,...,K -1,
fDer k=1,.. K —1. fr. k=0, K-1

For Model 5a, ng is a function of the parameters ®g 7y, <I>§’T0, ®r Dips Cbng, ®D15.Dir>
and ¢ng7D1T’ and the parameters in set ©gq(y,). The variance of g can be estimated by

the following expression for Model 5a:

2 2

PN — b5, — o~

Var(fg) =< R > Var(®pm) + (8@?{ > Var(q)ﬁ’To)
RTy

9 . 8 2_ o
+ (i> Var(dr.p.s) + (——”R—) Var(3 p,,)

8(I)R’DXB a@ngs
Onr >2A " ( Onr )2/\ ~p
+ — | Var(¢p,p.0,7) + | = ) Var(o
<8¢D137D1T ( 1B XT) 8¢ngleT ( DIB1D1T)

LELE (e

0€Osa(ng) ¥E€Osa(ng)

2 Cov(®r,,d
+ <a‘I)R,To ) <8(I>§,To Ov( RTo R,To)

+2( 502 ) (52— ) Cov(B . i
2 (agl’lo ) <a<1>6£ o > Corlrimn 3010
() () e oo
“2(5ar) <a¢§nRD ) a
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onr Ong > 3
1,0
2 Y <8‘I>R,To>( =5 ) Cov(Pr T, 0)
9€Osa(ng)
g >( dnr >5\ 3E. 3
, ov(®r 7, PR.D15)
+2(6¢£,To Y (PR, 18
onr >( Onr )5\ 8 1,85 p,,)
+2(‘9(1)5,% aq)g,DlB ( R
Onr > < onr ) Cov(®E .. B
9 Cov(®r 7y, ®D15,Dir)
* (8®£,T0 aQSD1B»DIT ( e e
: ong ) ( Ong ) Oov(®E .. HF
P Cov(®R 1y, #D1 5,011
<8¢1F2,T0 8¢£13=D1T " o
Ongr Onr 8
L. .6
+2 Z <3@RT>< a0 Cov(®hr,.0)
96@5&(773) ’

5 e -
_|_2< ong >< ﬁR >COU(‘I)R,D1;3,(I)£,D1B)

BQR,DUB 8®R,D13
Onr )( Onr )5&;@ 6
R.Dig>®Dip.Dir)
+2<6<I>R,DIB Bommauns ) N e Do D
+2( 52 ) (52— ) Cov(B 0101 By, 010)
8¢'R,D13 8¢$15,D1T
onr onr )
) 0
) Z <8<I>RD15)<59 Cov( R.D;5:0)
9€@5a(n}q) ’
5 R ~
_|_2< Onr >< "R )COU(QQ,DIB»fﬁDlByDlT)
6<I>R Dip 0¢D,5,Dsr
onr )( e >AAF 3
+2< Cov(®r p, 5> 9Dy, Dir)
5‘1’RD15 3¢£15,D1T oo
ongr Ong 0
22 <a<1>§D ><89>COU(@RD”’9)
06854 (ng) LB
onr >( Ong )’\ S oF
5 Cov(ép,5,D17+ 9Dy 5. D7)
- <6¢D13,D1T 8¢513,D1T o o
Onr )(87712) 6
5 Cov(ép D7 0)
Py (am)w,on 90 o

0€Os4(n )
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+2 Z < P‘?UR ><6g:>COU(¢D15D1T,§), (B.6)

9€®5a(nR) 6(p-DlB»DlT

where the partial derivatives are evaluated at their MLEs. The partial derivatives necessary

for Equation (B.6) are the following:

Onr_ _ —_— ong _E
0%pr 0%k,
Onr _ . Onr L F P
a(I)R,DIB - ¢D137D1T,’7D1T’ aQE Dis - ¢D13,D1TnD1T’
and
- Onr onr,
Y q)R,T — + (I)R,D Dy
O¢D; 5,Dy1 ° 6¢DIB>D1T 187101z
__Ong onr, ok, F
=P + PRy = — + PR D D
a(ZSDua Dir ° 8¢D1£e Dyt ° 6¢D1B,D1T S
onr onr, onp g, nh
W = @R’ To 890 + (IDR DIB¢DleD1T aelT + (I)R 1o 690 + q)R D1B¢D13,D17 801T’

for any parameter 6 € Oz, ).

The partial derivatives involving nr,, 7771“:0, NDyp, and nng are defined below.

Define 65‘1(’7Dw) to be the set composed of the following parameters:

¢Tj,Dj+1,B j=k.. ., K-1 ¢§:juDj+l,B j=k,...,K-1;
fr, =k K-1
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Define O to be the set composed of the following parameters:
Sa(npr)

6D;0.D;7 F=k 42 K 5oy J=k+2. K
OD,. T, j=k+1,...,.K -1, ¢5,T,Tj j=k+1,... K -1;
¢D;rDi41e  J=k+1. K =1 OpieDprn  J=kFLl.  K—1
fDjr j=k+1,...,K -1

The parameter 7p,, is a function of the model parameters ¢p,., 5Dy 1 7 ¢§k+1 8. Disr

F F . :
PDer Tis PDyr,Tyr PDrr.Diy1, b ¢DkT7Dk+1,B’ fp.r and the parameters in the set @5a(nDkT)

fork=1,..., K-1 Fork=1,...,K -2, np,, is also a function of the parameters in the
set O . The partial derivatives involving np, .. that are necessary for Equation (B.6)
5a(npyr) kT

are the following:

fork=1,..., K - 1.

877DkT 677’1"
T = (1 - kaT){¢)DkT,TIc—————k——— + ¢DkTka+1 8Dk T};
0¢Dk+1,B,Dk+1,T 8¢Dk+1,B:Dk+1,T ' '

anDkT anf:’c
F F
3777“,C 0¢Dk+1,B,Dk+1,T

ONDyr _ ONDyr onr,
F - F :
6¢Dk+l,B:Dk+l,T 677Tk 6¢Dk+1,Bka+1,T

_.|_

F F R
+ fDir ¢DkT,Dk+1,B77Dk+1,T’

anDkT

P (1 ;

8¢DkT,Tk ( kaT )nTk
15}

5_'7]—:7‘&'2_ = kaTU'ﬂ;
¢DkT,T1c

OnDyr

8¢ Drr-Derr.o =(1- fDIcT)¢Dk+1,B>Dk+1,TnDk+1,T;

ONDyr

— F F .
9ot . fD’CT¢Dk+1,Blec+1,TnDk+1,T’
Dy Dr41,8
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ONDyr
) = _{¢DkT,Tk77Tk + ¢DkT>Dk+1,B¢Dk+1,Bka+1,TnDk+1,T}
kaT
F F F F F .
+ ¢DkT>TIchIc + ¢DkT7Dk+1,B¢Dk+1,B>Dk+1,T7)ch+1,T’
OnNDyr
377Tk = (1 - kaT)¢DkTka;
377DkT F
onk = kaT(kaT,Tk;
Ui
577DkT 3777"
— —=(1- kaT){CkaT Tv g + ®Dyr,Dics1,5PDs11,8,D }
) . Diey1,8PDrs1, 8. Drr1,r (0
877Dk:+1,T 5nDk+l,T
F
OND,r _ Onpyr 0N, Lf ¢F 877Tk + ¢F ¢F .
onk - onr, 8 F Dyr DkT>Tka F Dyr,Di+1,8¥ Dit1,8,Dgs1,1 [0
nDIc+1,T k nDk+1,T nch-H,T

fork=1,...,K-1andf ¢ @5(1(%“), and separately fork =1,...,K—2and 8 € @g“(nDkr)’

F
87’]ka — 677Dk'p 877Tk 877D1cT af’7Dk+1,T 5’7)DkT angk 577DkT 8nDk+1,T
56 oo, 00  Onp,.., 08 ook 00 ' onb, . 99

Define @5a(nng) to contain the following parameters:

$D;5,Dir j=k+2,... K ¢bpr,  J=k+1,..,K-1;
SprDyis  J=k+1. K—1 OrDns  J=k+l KL

For k = 1,...,K — 1, the parameter ngw is a function of the parameters qjgk.-kl,Blec-f-l,T’

‘ qﬁng,Tk, and ¢§kT’Dk+1 g For k=1,...,.K -2, nng is also a function of the parameters

in the set Og,(,r . The necessary partial derivatives involving nng are:
kT

fork=1,...,K -1

F
877D1c7*

- ¢F F .
5¢F = ®Dyr,Ds1,8MDrsr )
Di+t1,8,Di+1,7
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0D,z

= ¢b £
3¢F Di+1,8Dkt1,7 D1,
Dyr,Dit1,B

Fork=1,...,K—2and 0 ¢ @5a(nng),
F F F
anDkT _ ¢F anTk + ¢F ¢F anDkH,T
90 ~ DTk gg Dir.Di+1,8%De+1,8. Det1,7™ 59

Define @5a(nTk) to be the set composed of the following parameters:

$D,5.D;r j=k+2,..,K; ' 6b.p, F=k+2,...,K
OD0.T; j=k+1,...,K~1; ¢§jT,Tj j=k+1,...,K—1;
®D;0 D1 J=k+1,..,K—1; Sh s J=k+1,. K-
OT,.D;418 j=k+1,..  K—1 O Dyun  J=k+1.  K-1
o, j=k+1,... K—1; . fr, j=k+1,.. K-1
For k = 0,...,K — 1, the parameter 57, is a function of the parameters ¢p,., 5,041 7
d)gk-i-l,BkaH,T’ OT4 Disr.57 ¢%¢,Dk+1,a’ and fr,; for k =0,...,K — 2, n, is also a function

of the parameters in the set @g,a(m,k). The necessary partial derivatives involving nr, are:

fork=0,...,K — L

onn,

o = (1~ f1,)9T%.Dks1,8MDks1.15
6¢Dk+1,B,Dk+1,T i b

onr,

A
Py Te PTy,Di1,8Di 1,1
Dy1,8:Drs1,1

onm,

T =(1- ka)¢Dk+1 B:Dk+1,7M D17
8¢Tk,Dk+1,B ' ' Y

877Tk

= 1,90 Bz
doF. Tk ®PDyy1,8,Dk41,7MDpy1,7
T, Dr+1,8

Onm :

e F F F .

dfr. ~ Tk, Dis1,5PDis1,5.Dk41, 7D 1,7 + 9Ty, Dis1,8 YD1, 8, Dkrr,r MDpsr 1
k
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for kzo,_”,K—2and9€@5a(,7Tk),

F
onm, ONDyyy 1z F F Onp, T
agk = (1 = /0 )®Tk,Disr, 8 PDisr, 5. Dk 7 551 + ka¢Tk.Dk+1,B¢Dk+1,B,Dk+1,T 551 :

Define ©5,(,r | to be the set composed of the following parameters:
k

¢ng,DjT j=k+2,'~'aK; ¢£jT,Tj j=k+1a""K_1;

I T . F C .

¢DjTaDj+1,B j=k+1,. K-1; ¢ijDj+1,B j=k+1..  K-1
For k=0,...,K — 1, the parameter nﬂ is a function of the parameters ¢£k+l,Bka+1,T and
d’%c,Dkﬂ,B' Fork=0,...,K-2, nﬂ is also a function of the parameters in thg set @5‘1(7”&)‘

The necessary partial derivatives involving n;,lfk are:

fork=0,...,K -1

angk F F
oL = ¢Tk,Dk+1,BnDk+1.T’
Dys1,B,Disr,1

67775;

— ¢F F .
8¢F Di+1,8,Dic1,7 Dk s1,77
TsDr+1,8

fork=0,...,K—2and€€@5a(

7,)’

F F
o, _ oF oF D1,z
90 TysDit1,8% Dgsr,8:Drt1,1 96
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B.1.7 Models 5b and 6

Define Ogp(;,) to be the set composed of the following parameters:

® D5, Dr k=2,...,K; DPs.Dir k=2,...,K;
Dys,Dicr k=1,...,K; Sperte - k=1, ,K—1;
Sbr T k=1,...,K~-1 O, k=1, K-
SDrr T k=1, K-1; ODerDrsrs k=1, K1
owrDsrs k=L . K=1 . ¢hupe., k=L..,K-1
¢DkT,Dk+1B k=1,...,K -1 BTy, Dicsr 5 k=0,..., K -1,
¢F Dist 5 k=0,...,K-1 AT Diss 5 k=1,...,K —1;
T Dess s k=1,...,K—-1 fDir k=1,...,K -1,
fhr k=1,.. ,K-1; I k=0,...,K—1;
4 k=1,... K-1

For Model 5b, the parameter ng is a function of the parameters ®g 7, ‘I’g,ro’ ®rD s,
q)g,Dw’ ®Dyg.Dir> ¢ng,D1T’ and the parameters in the set Osp(,5). The variance of fjg can

be estimated by the following for Model 5b:

— i, 2__ . 2 o .
Var(ig) = < 5@7:; ) Var(®rr,) + ( R ) Var(®% 1)
340

onr )2,\ ~ ( Onr > — o p
+ 14 Var(®
<8¢R1D13 ar(¢RleB) 6¢R Dis ( RleB)
onr >2A ~ < g >2 .
+ | =—=—— ) Var —E Var
<6¢DIB,D1T (¢DIB»D1T) ad)DlB Dir (¢D137D1T)

2

Inr\ [ Onr Conb o
(%) (55 )526.9)
0EOsp(ng) YEOsb(nR)

R ( R >’ ~ 2 =
4o 2 9%\ Gou(® ,BF
<acI>R,TO> 03% 1, (@r70) PR 70)
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> 50\’0,(:I;R,Toa :I;R,Dls)

1o} i 3
( ;712 >COU(‘I)R,Toa ‘Dg;Dw)
aq)R,Dw

) C/O\U(éR)TQ s $D1B,D1T)

) CO’U((DR»TO’ ¢ng:D1T)

0€Os5p(n )
Onr onr ) &F
+2 Cov(®g 1, ®R,D, )
<6‘1)£T0 9®r,D,5 (®h *

> COU(QZ,TO ) d)DleDlT)

onr
a¢D1B,D1T

nr Ong X
5oL > ( 50 )C’ov((IJRTO,G)

ongr > < 8773 ) A oE
+9 Cov(®r D, 5, ®R.p,p)
<5‘I’R,Dw 8‘1)[1;1)13 ( 18 *R,D1B

ong ) ( Onr > A S oy
9 Cov(®R,pyp) ®D15,D11)
- <8‘I’R,D13 86D, 5,017 ( ’ o

) CO’U(Qg,Tw ¢§13,D1T)

ongr > < Ongr ) I AF
42 Cov(®R,Dy5 9Dy p.Dyr)
<8(I)R,D1B 6¢E1B,D1T ( ’ DIB'DlT

g Onr )
+2 > < )( 6 >COU(‘I>RD15a9)

0®r,D
8€Osp(n ) e

2 Cov(® , ,
" <8®R D18 8D, 5,011 (®r.p,5: 901 Dir)

ongr ) < Onr ) A B E HF
) Cov(®r,p, 5 PDy5,017)
<8¢’§ Dip 6¢£137D1T e e
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ong Ing ~
+2 Z (a a3 )(80 )CO’U(@RDlB,Q)

6]
0695(,(,,R) R,Dg

+ 2( Cov ,
8¢D1B,D1T afbng,D]T (¢DIB;D1T ¢DIB>D1T)

O Onr ~
i Z (6¢D131D1T> < 06 )COU(¢DleD1T’9)

96@51,

+2 ) < ki )(68‘9)0011(%13@”,5), (B.7)

0€Osb(np) ¢D13 Dir

where the partial derivatives are evaluated at their MLEs. The partial derivatives necessary

for Equation (B.7) are the following:

ong - Onr -
0%r T, o 0% 1, o
onr 577R F F
m’ = @Dy p,D177D; 1} 5"13 = ¢D13,01T77D1T;

. 1B RDIB

g onr onr,
7w = PR,D:5"D1; = = Ory——— + ‘I’RD MDyrs
6¢D13:D1T it a‘bng,DlT 06¢£15:D1T e

and, for 6 € Ogp(y),

onr onr, r Oy 9o __6?75__
B8 = 2R T ¥rm g T PRD1s9Ds Dir g™ + PhDiObis o g

& o, &
where -%gﬂ, g , —7%—’11 nd TU'- are defined below.



354

Define @5b(7)Tk) to be the set composed of the following parameters:

®D,;5,D;r J=k+2,..,K;
6D, 5.0, j=k+2,..,K;
ODyr, j=k+1. K-
ObyrDurs  J=k+1. . K-
ODirDyns  J=k+L K-
OT,.D,01.5 j=1+1,.. K1,
ijT i=k+1,...,K -1

$D,5.,D57
¢ng,Tj
¢$fT,Tj
¢:£jT,Dj+1, 5
¢£’»Dj+1‘s

Fr
¢T1»Dj+1‘3

T
7

j=k+2,...,K;
j=k+1,..., K -1,
j=k+1,...,K —1;
j=k+1,... K~1:
j=k+1,..., K =1,
j=k+1,..., K- 1;
j=k+1,...,K-1

Define @gb(m" y to be the set composed of the following parameters:
k

®Djr,Ty j=k+2,...,K-1 ®Djr,Djps  J=k+2,..  K-1

Ty, Djee J=k+2, K -1 fojr  J=k+2,.., K-1

fr j=k+2,...,K~1.
For £ = 0,..., K — 1, the parameter n7, is a function of the parameters ¢gk+1,B¢Dk+1,T’
¢’£k+1,B?Dk+1,T’v(’ka’Dk'*'lvB’ ¢%C,Dk+1,3’ and fr,. For k=0,...,K — 2, 5, is also a function
of the parameters in the set @51’("Tk); for k =0,...,K — 3, nr, is also a function of the

parameters in the set ®l5b(nTk)‘ The partial derivatives necessary for Equation (B.7) that

involve nr, are the following:

Fork=0,...,K -1

5’77T,c
a¢§k+1,B»Dk+1,T

onr,
a¢gk+1,B,Dk+1,T

_ F F .
= ka¢Tk,Dk+1,BnDk+1»T’

T .
= (1 - ka>¢Tk,Dk+1,BnDk+lyT5
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onr,

T T
—_ e (1 _ fT )¢D D 7% .
8¢T]¢,Dk+1,3 k k+1,B:Yk4+1,T k+1,7°

onr,

- f ¢F 77F .
8¢p Te¥Dyr1,8:Dk+1,7 1 Dit1,7?
T41Dit1,B

- O
kK _ T T F F F .
8fr, = ¢Tk=Dk+1,B ¢Dk+1,B,Dk+1,T77Dk+1,T + ¢Tk>Dk+l,B ¢Dk+1,B!D’C+1,T77Dk‘+1yT’

for k=0,..., K —2and 6 € Oy, ), and separately for k =0,...,K -3 and 6 € @{sb(

nTk).

T F
onr, - onn, 877ch+1,T onr, 877Dk+1,r
ol angkﬂm o9 8ngk+1,T o6

where

onr, T

S A (1 - ka)QSTMDk-{-I,B¢Dk+1,Bka+1,T;
MDes1r
a"7T/c F F

ank = ka¢Tk:Dk+l,B¢Dk+1,BaDk+1,T;
nDk-H,T

T F

. . . onp onp
and the partial derivatives —#L and —37*¢ are defined below.

Define @5b(ng y to be the set composed of the following parameters:
k N

60,505 F=k+2,.. K D501 Fj=k+2,.. K
$brr;  J=k+1...K-1  6p.p.., J=k+1l... K-
T -

¢ijDj+1,B ]—k+1,...,K—1.

Define @gb(np ) to be the set composed of the following parameters;
Ty

¢DJ'T,T]' J=k+2aaK—1a ¢DjT,Dj+1,B J:k+2avK—1a

o105 J=k+2,...,K-1

For Model 5b, the parameter nﬂ is a function of the two parameters ¢£k+1 5 and

Di+1,1

o, Disp 0k =0,..., K—1,and of the parameters in the set Ogy,r y for k =0,..., K -2,
) ) k
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/
5b(nf, )

derivatives involving nf:k are the following:

and of the parameters in the set © for k = 0,...,K — 3. The necessary partial

Fork=0,...,K -1

Bnﬂ

T
8¢Dk+1,3 Dr+1,1

F
onr,
F
8¢Tk Dr+1,8

fT

- ¢F fT . _ ¢T .
= OTy.Drs1,8"MDgry 1 = ®Di+1,8\Di+1,7 Dy sy 1)

fork=0,...,K~2and 6 €Oy ), and separately for k =0,..., K -3 and 6 € Ogy,r ,

Tk
JT
577ﬂ _ 77516 anDk+1,T
00 a6

T
nDk+1,T

T
8"Dk+1 T

where —p is defined below.

Define @5b(n§3 ) to be the set composed of the following parameters:
k

®D;5,Dyr i=k+2,.. K; ¢D,5.0;1 j=k+2,... K,
D, 5,D;1 j=k+2,...,K; $per  J=k+1.. K-1;
8D,7.1, j=k+1,...,K—-1; bt J=k+1 K-
R S N $brDis  J=k+1. K -1
OpirDirs  J=k+Ll K- 87 Dyurs  J=k+1 . K-
O pyern  J=k+L.. K- SFlp s J=k+l.. K-1
fbr j=k+1,... ,K-1; fl, d=k+1,. K-1
Define ggb(n%k) to be the set composed of the following parameters:

¢DjT,Tj j=k+2,...,K-1, ¢DjT,Dj+1:B J=k+2a,K~1,
¢Tj,Dj+1,B j=k+2,...,K-1 ijT j=k+2,...  K-1
f, j=k42. K1
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T : F T T
For Model 5b, the parameter 7, is a function of ¢Dk+1,B7Dk+1,T’ ¢Dk+1,B,Dk+1,T’ o7,

Di+1,87
¢Tk»Dk+1B’ and fTTk fork=1,...,K—-1. Fork=1,...,K -2, n%k is also a function
of the parameters in the set @517(77% ); fork=1,...,K -3, 77%c is also a function of the

k

parameters in the set @gb(nT ) The partial derivatives involving n%k that are necessary for
Tk

Equation (B.7) are the following:

Fork=1,...,K -1

T
T .
a¢ — JT TkaDk+anDk+1T’
Di+1,8,Dr+1,17

ang,

— (1 _ T \.T T _
8¢T - (1 ka)¢Tkka+1,BnDk+l,T’
Dyt1,8:Dk41,1

6’17?,:,c

_ T T T .
3¢T _ =(1- ka)¢Dk+1,Bka+1,TnDk+l,T’
Tk, Dk+1,8

T
anTk: f ¢F F .
¢ T PDys1,8,Dk41, 7Dy 1,7
Tx,Dr+1,8
g,
T _ F .
afT ¢Tlcka+1 B¢Dk+1 B Dk+1, TnDk—i—l s ¢Tk>Dk+1 B¢Dk+1,Bka+1'TnDk+1,T’
&

fork=1,...,K—-2and € @5b(777T“k)’ and separately for k =1,..., K —3and 6 € egb(nﬂ)’

T F
877%“ = an%c 91 k41T an%k anDk-H,T
a6 877}5“1',1“ 09 877£Ic+1,T 80 '

where

377%
T

677D k+1,T
Bna

MDgs1,r

- T T T .
=(1- ka)¢Tkak+1,B¢Dk+1,Bka+1,T’

= ka¢Tk Diy1, B¢Dk+‘1,Bka+1,T’
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T anF
Dry1,r and D11
o8

on
and where the partial derivatives 55— are defined below.

The parameter n{,ﬁk is a function of the two parameters ¢gk+l 5.Dpp1 7 80d @1 Dy, p fOr
k=2,...,K—1. The parameter n%c is also a function of the parameters in the set ®5b(n§: )
k

for k=2,...,K — 2, and in the set @ for k =2,...,K — 3. The partial derivatives

5b(nf, )
involving nTk that are necessary for Equatlon (B.7) are the following:

Fork=2,...,K -1

onp, o, onf,

3 b
8¢Tk,Dk+1,B ¢Tk7Dk+1,B

T ¢)T
Di+1,8:Dit1,17 Di+1,8,Dk+1,7

fork=2,..., K—2and 8¢ @5,)(,7; )» and separately fork=2,...,K—3andf e ®5b(np X
. k

f f fT
877Tk — nTk 877Dk+ 1,7

o9 68
MDis1,r
fT
where —3;{—1'1 is defined below.
The parameter n{;{ is a function of the parameters ¢£k+1,BaDk+1,T and ¢%¢:Dk+1,3 for

k=1,...,K — 1, as well as the parameters in the set 95?3(715) for k=1,...,K — 2 and
k

the parameters in the set @51;( £) for k =1,...,K — 3. The necessary partial derivatives

involving 77{% are the following:

Fork=1,...,. K -1

T T T T
o4 04! _ onfl ol

I

T
¢Dk+1 BaDk+1 T ¢Dk+1 8 D411 8¢Tk,Dk+1,B ¢Tkak+1 B
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fork=1,..., K—2and 6§ ¢ @5b(n§k)’ and separately for k=1,..., K—3and § € @gb(n’r’k)’

T T /T
877§1k _ anWk nDk-H,T
T !
08 Mhysr o0
Bn{)T
where —3#*% is defined below.

Define @5;,(770”) to be the set composed of the following parameters:

j=k+2,..., K,

¢DjB>DjT ¢DjT,Tj J=k+1,...,K -1

b =k+1,... K- b i=k+1,...,.K-1
¢DjTuTj J= + Yy ) ¢D_7‘T7Tj J= + Yooy y
Fr i=k+1,...,.K-1 i=k+1,...,K -1
¢D1T’TJ J=r+1. ’ QSDijDj-H,B J=k+1,..., )
B L i=k+1,...,K -1 z i=k+1,...,K—-1
¢DjT»Dj+1,B J=r+1.. J ¢DjT7Dj+1,E J=k+1... '
0birDjns  J=ktL K- Oy Dy J=ktl K-l
orT i =k+1 K-1 f =k+1 K-1
ijDj-}—l,B J= gy ) Dyt J= Yoy y
fE =k+1 K -1; 7L i =k+1 K-1
T; J Yoy ) D;r J yry

Define ©, to be the set composed of the following parameters:
5b(77DkT)

S50y J=k+L. K, 8D,pDyr  JERFL LK
¢Tj,Dj+1,B J=k ., K-1 ¢%,Dj+1,8 i=k..  K-1
ij j=k,...,K -1,

For Model 5b, the parameter np,,. is a function of ¢p, ., g Dgry 15 ¢£k+l,B>Dk+l,T’ ®Dyr Te»

¢£kT,Tk’ PDir,Dr+1,5° ¢SkT:Dk+l,B’ and fp,, for k = 1,...,K — 1. The parameter 7p,,

is also a function of the parameters in the set gy, ) for & = 1,..., K — 2, and of the
‘ kT

parameters in the set @:”b("DkT) for k=1,..., K —1. The partial derivatives involving np,,

that are necessary for Equation (B.7) are the following:
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Fork=1,...,K -1

ONDyr

= = (1 = fDyr)PDir,Dis1,5MDps11}
8¢Dk+1,Bka+l,T i b

67)Tk
F
5¢Dk+1,B7Dk+1,T

ONDyr

F F .
Era + kaT¢DkT7Dk+1,BnDk+1,T’
Di+1,8.Dit1,7

=(1- kaT)¢DkT>Tk

OND,r
77— — = (1 = fDpr)nm5
D6 Drp T, ( kT)n &
OND,.r F
—F—— = fDur7,;
ad)ng,Tk T
anDkT

=(1- kaT)¢Dk D np ;
+1,8:Dre1,1"MDp gy 1o
8¢DkTaDk+1,B N

577DkT _ f ¢F F .
5¢F = JDerPDys1,8,:Di+1,7 1 Dicr1, 13
Dir.Dg+1,8

onp
_5’ AL _[¢DkTkanTk + ¢DkT»ch+1,B¢Dk+l,Bach+1,Tnch+1,T]+
kaT ‘

It

F F F F F R
¢DkT T "7, + ¢chT Dr+1,B ¢Dk:+1,B Dis1,7MDigr, 1

fork=1,...,K-2and 6 € Osyy, ), and separately for k =1,..., K~land 6 € Oy, .,

F F
877DkT _ 577DkT 677Tk 8"7Dk;p 677Tk BTID,CT 677Dk+1,T n 877D;cT 877Dk+1,t

oo BnTk 06 87’)¥k o0 anch+1,T a0 angﬂm 2 ’

where

Onp,r

B, = (1 = fDur)PDsr Tis

ONDir F

—= = D DT
anjf:k kT kTt k
ONDyr

= (1= fpur)®Dir,D ®p D -
anDk+1’T kT kT Yk+1,B k+1,B:&k+1,T

anDkT

- F F
677F = kaT¢DkT,Dk+1,B¢Dk+1,B,Dk+1,T'
Dit1,1
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k. ‘
The partial derivatives %& and %’l are defined above, and ﬁ"r“-*l is defined below.

Define @517(775”) to be the set composed of the following parameters:

¢DjB,DjT ]=k+2’aK7 ¢DjT,Tj .7=k+1>>K_17
¢ng,Tj j:k+1""7K—1; ¢DjT,Dj+1yB j:k+1""7K_1;
$beDys  J=k+1l. K -1 O D J=k+1,. . K-1

0D J=k+1l.. K—-L

Define @ to be the set composed of the parameters d):,D-‘jBaDjT forj=k+1,...,K.

(nDkT)
For Model 5b, the parameter ng is a function of ¢p, | 5,Der1 7 ¢15kT»Tlc’ cbng’DkH 5

¢Tk Dip15° and the parameters in the set © fork=1,..., K-1, Fork=1,...,K-2,

5b(nDkT)
nDkT is also a function of the parameters in the set 955(775 ) The partial derivatives
kT

involving nng that are necessary for Equation (B.7) are the following:

fork=1,...,K -1

F
8nDkT
6¢Dk+1,8 Drs1r

- ¢F f .
D1, Dit1,8MDyir 1

F
8nDkT _ 71‘:
F — T
6¢DkT>Tk
F
8nDkT

— f .
8¢F - ¢Dk+1,B’Dk+1,TnDk+1YT’
Dir,Diya,8

onk
Dir — ¢ ¢T nfT .
¢¥ D Dy T ¥ Dit1,8. Di+1,7 Dy 1,1
kr+'k+1,B
fork=1,...,K—2andf ¢ @5b(nSkT)’ and separatelyfork=1,...,K—1land § € 9517( g, )’
f
377§W 877Tk 877Dk+1,:r

89 = d)DkTer 89 + ¢DkT1Dk+l B¢Dk+1 B:Dk+1 T 60 )
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b, k+1 T

where —z& is defined above and ———5—-—L— is defined below.

Define @5b(n£ ) to be the set composed of the following parameters:
kT

®D,5.D;1 j=k+2,...,K; ¢pp1, J=k+1.. K-1;
ST, j=k+1,.. K-l Spp1;  J=k+L. K-
¢>DJT,TJ Jj=k+1,...,K-1 ®p;pDje  J=k+1,.. K -1
$D;rDis  J=k+1. . K-1 SD;rDyrs  J=k+1 K -1,
¢D]T, Dyig J=k+1,.. K-l 1,058 J=k+1..  K-1
Oh s J=ktl. K- foe  G=k+1, . K1
fhe j=k+1,..., K -1 fr, J=k+1,...,K-1
Define @gb( 750 to be the set composed of the following pargmeters:

ODp Dy  J=kEL K 0D;pDr  J=k+L LK

O Dors  J =k K -1 i Dis S =k K-

% j=k,. .., K—1.

For Model 5b, the parameter ng is a function of ¢p, ., 5, Dys 1 ¢>£k+1 5. Dke1 1 ¢ng7Tk’
¢DkTaTk’ ¢DkTka+1 5 ¢DkT,ch+lB’ kaT’ and the parameters in the set @51)( ) for k =
,....K—-1. Fork=1,...,K -2, nDkT is also a function of the parameters in the set
@51’(’%1@7)' The partial derivatives involving ngk » necessary for Equation (B.7) are the

following:

Fork=1,...,K -1

Oy

2 = (1 = 5, )0Dyr. D1 5 Drs 17
O®Diss 5, Drsrr k1 /¥ Dy, Dit1,B"1Dk+1,
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877ng T an%k
=(1- kaT)¢DkT,Tk Y
Dy

5\¢F + kaT ¢DkT7Dk+1 BnDk-H T’
Dit1,8:Dk41,7

By Dk+1,1
Dy
—t T = (1~ f}, It
a¢)’11;kT:Tk Ko
T
R
]
8¢DkTaTk K
by

— T .
6¢T =(1- kaT)¢Dk+1,Bka+1,T77Dk+1,T’
D7 \Dit1,8

%w

- fT ‘¢F F .
5¢ DirPDiy1,5,Diy1, 7 MDp 1,77
Dy7r,Dyt1,8

ank

Dy _ T T T

afg - _¢DkT,Tk77Tk - ¢DkT:Dk+1,B¢Dk+1,B:Dk+1,TnDk+1,T
kT

FT F F .
+ ¢DkT,Tk77Tk + ¢DkT:ch+1,B¢Dk:+l,B:ch+1,T77Dk+1,T’

fork=1,...,K—2and@ ¢ @51,(77175 ) and separately for k = 1,; ,K—1land#@ € @517( X
kT chT

F
Onbyy _ Onbyy Ot  Obyy 0N, Onbyy OMDisir . OMbyy OMisss
% ~ onh, 00  onk 00 ' omp,.,, 00  omh. 08

where
T
DT T T
onL. =(1- kaT)¢DkTka;
7,
T
877DkT — f ¢FT .
onE. Dyr ¥ Dr Tk
T,
T
DT (1 43,065 0 -
5 - Dir)¥PDyr,Dit1,8 P Di+1,8,.Dk+1,71
MDyy1,T
T
OIDT__ (5 BT L oh -
Dyr ¥ Dy, Di+1,8Y De+1,B,:Dk+1,1°
nDIc-HT
onf  onk  onp
and where —ggk, —zk, —ALT ap %ﬁz are defined above.
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Define ©

sb(nt, ) to be the set composed of the following parameters:
Dy
(bDjB,DjT i=k+2,...,K; ¢DjT,Tj J=k+1,...,K-1;
Ob,T; j=k+1,.. K1 ODrDyue  J=k+1,.. K-1
T — ) T .
¢DjT,Dj+1’B _]_k+1"",K_1’ ¢Tj,Dj+1,B J_k+15"',K_1'
Define @’5 bl ) to be the set composed of the following parameters:
Dyr
¢EjByDjT J=k+1,... K ¢Tj‘Dj_+_1,B j=k,...,K-1.

The parameter 77{)” is a function of the parameters ép, ., . Dii1 1> PDir T @04 ODyr Dyt 5

and the parameters in theset ©  ,  fork=2,..., K -1 Fork=2,...,K -2, 77{-)
5b(nDkT) kT

is a function of the parameters in the set esb( )’ The partial derivatives involving n{)kT

f
"Dy
that are necessary for Equation (B.7) are the following:

fork=2,...,K—1:

677{)
— TkT f .
8¢Dk+1vaDk+1,T ¢DkT’Dk+1,BnDk+1)T’
anéw 77f )
ObDyr T, e’
anng

= ¢Dk D 77f )
+1,8,Dr+1,771Dy, ;
6¢DkT:Dk+1,B T

, and separately for k—2,...,K—land 8 € ©’ , |,
5b(nDkT)

for/c=2l,...,K—2 andee@sb(n{)

vr)

f f f
anDkT =¢ 8777% o & anDkH,T
90 Dy, T 90 Dyr,Dk+1,8%9Dk41,B,Dk+1,7 80

ont, .
where g is defined above.
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Define O, , ;v ) to be the set composed of the following parameters:

(nDkT

¢DjB,DjT j=k+2,..,K; ¢DjT,Tj Jj=k+1,...,K-1
d)’ll;jT,Tj j=k+17"')K_1; ¢DjT,Dj+1,B J=k+1’aK_1v
¢EjT:Dj+1,B j=k+1,...,K—1; ¢ijDj+1,B j=k+1,...,K—-1.

Define @’5 bniT ) to be the set composed of the following parameters:
Dpr

6bap;r  J=k+1l LK 0101 J=k K =1
f

The parameter 77D::T is a function of the parameters ¢p, ,; g Dy s qﬁg'kT T and ¢EkT,Dk+1 5

and of the parameters in the set (-);b(nfT ) fork=1,...,K—1. Fork=1,...,K -2, nﬁ:T
Dy
is a function of the parameters in the set @51)(77 iT - The partial derivatives involving nﬁzT
Dy
that are necessary for Equation (B.7) are:

fork=1,...,K - 1.

T
.__BEQJEI____ — ¢T f '
8¢Dk+1 8. Dki1 1 Dyr,Drt1,8MDsr, 1
T
Oy _ e
— =17
aQﬂD—‘k’I‘»Tk k
T
__%&7_‘.__ — d)D D né .
T k+1,B:&~k+1,T )
8¢DkT:Dk+1,B k+1,T
fork=1,...,K—2and 0 € @5b(n{)T ) and separately fork=1,...,K—1land§ ¢ @éb(n” y
kT o
T T ;
Mp,p = ¢L 5_771_“,2_ +¢% . . 6_77%_11
o0 Der Tk ™ 5p Dir:Di+1,8%Pr+1,8:P0+17 7 57

gl onf,
where 8§k and 5;’ LT are defined above.
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B.2 Variance formulas for [ip

The parameter pp is the unaccountable loss rate, i.e., the probability of not ending either in
a tributary or at the top of the final dam (K). For all models, ug is defined in terms of the

recursive parameters p;, which are in turn defined in terms of the basic model parameters.

B.2.1 Model 0

Because pur = 1 — ng for Model 0,
Var(fig) = Var(fr);
(see Equation (B.1).

B.2.2 Model 1

Because ug = 1 — ng for Model 1,
Var(ng) = Var(Ag);
see Equation (B.2).

B.2.3 Model 2

Define ©y(,, ) to be the set composed of the following parameters:

¢DkB)DkT k=‘25"‘7K; ' ¢DkTng k:]-,---,K—].;

®Dyr,Dis1,5 k=1,...,K -1
Define Oy, Dep) to be the set composed of the following parameters:

OD,5.D;r j=k+2,.. K 6pgr,  j=k+l. K-

ODDynn  J=kL. K-
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For Model 2, ug is a function of ¢g 1y, ®r,D,5, and ¢p, 50,7, and the parameters in the

set ©y(n,). The variance of [ir can be estimated by the following:

NP Bun >2A R (2 >2A X
Var = Var + Var + | =V
() = Var Bz + (G ) VarBaoue) + (e ) Var(Bous.our

2T (%) ()

96@2(#3) wee%ua)

Our \a~ ~ = 9 ot Bouo.s
— 2< KR >COU(¢R,T05 ¢R,D18) -2 <——&&—~>COU(¢R)TO’ ¢DIB’D1T)

0bR,D, 5 o

-2 Z ( )C’ov(d)RTO, )

96@2(#3)

Our ) ( Aur ) L )

+ 2 & N

<8¢R’DIB 9¢p,5,Di7 oV(¢R, D15 $D15,D17)
2 % (gorn) () Fo6n0i00

06620, 1) ®R.D\ 5 |

6;“/1? > <8,LLR> R

+ 2 G ; N

Geg_? <0¢D131D1T o6 Ov(d)DlB,DIT ) ( )

where the partial derivatives are all evaluated at the maximum likelihood estimates (MLEs).

The necessary partial derivatives are:

Our
8¢D1BYD1T

Our

noa =D, 5,011 (1 — Dy ) = —6r.p,5(1 — tDyp)

for 6 € ®2<HR),

% — ¢ ¢ 8:u“D1T
50 R,Dy\g®D15,Di1 50 '

where 59—%%11 is defined below. The parameter up,; is a function of ¢p, ., 5,0 1.70 PDxr Tk
and @¢p,p. Dy p for k=1,...,K —1, and also of the parameters in the set @2('U‘DkT) for k =
1,..., K — 2. The partial derivatives involving up,, that are necessary for Equation (B.8)

are the following:



368

fork=1,...,K - 1.

OUDr
ad)Dkﬂ,s,DkH,T kT "*‘1:3( H k+1,T)
_Q'I_'L.E_‘cl"__ = -1
8¢DszTk ’
oup
- = —¢Dk+1vB’Dk+1,T(1 - /"LDk+1‘T);

8¢DkT,Dk+1,B
fork=1,...,K—2and 8 ¢ GQ(ND’CT),

OUDy 4y 7
o9

auDkT

EY: = d)DkTka-{-l,B ¢Dk+1,Bka+1,T

B.2.4 Model 3a

Define ©3,(,,) to be the set composed of the following parameters:

k=2>aK’ ¢DkT,Tk k=1,...,K -1

LK =1

¢chB Dy

PDir Desr,5 k=1...,K-1 @Ty.,Diy1,m k=1,.

The parameter pg is a function of ¢r 1y, ®Rr,D: 5+ ¢D15,Dirs ¢To,D, 5, a0d the parameters in

the set ©34(,,,,). The variance of [ir can be estimated by the following:

2 2
Var(fir) =< Our ) @(53,T0)+< Our > Var(ér,p.5)

0ér T, 99R.01p
(=22 ) L[ Bmr Ny
<8¢DIB,D1T ar(¢DlB)D1T) 3¢T0,DIB ar(¢TO,DlB)

2 (@) ()

0€O3a(up) ¥€O3a(up) .

8 0 Cov(br.y, &
+2< R >< OHLR )Cov(¢R,To,¢R,D15)

Obr T, ) \OOR,D15

2 ol ,
- <6¢R,To 8¢D13,D1T O’U(¢R’T0 ¢DIB,D1T)
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Opr ) < Our ) o~ ~ -~
+ 2 o ,
<8¢R To 001,015 ov(dR1, ¢T0,D1B)

( Our )(6“R>Oov(¢m 0
eeew RTo

( > )
O0R D5
( > )
ObR,D, 5
96@3 a(kg) ¢RDIB

+2 C ,
<8¢D137D1T 8¢T0,D113 Ov(éDlB’DIT ¢TO’DIB)

+2 Z < Our )<6gHR>COU(¢DlB,D1T’§)

0¢p,5.D
QEGBa(uR) ¢ 18B,4T

6¢D131D1T

¢
( Our )@(aR,DIB;$D1B7DlT)

8 — —~ P
5 MR )Cov(be,DlB, ¢T,D15)
¢T0,D13

+2 Y < Our )(35‘0’*)0@(@0@13,5), (B.9)

01,0
0€Osa(uy) OTo.D15

where the partial derivatives are evaluated at their MLEs. The necessary partial derivatives

are as follows:

Our
0or T,

Oupr
Borpn —¢D; 5,017 (1 — tDy1);

Our__ _
6¢D151D1T
Our

041,015

= ¢TO:DIB[1 - ¢D15,D1T(1 - /"‘DIT)} -1

—(¢R,T0¢T0,Dua + ¢R:D15‘)(1 - .uDlT)'a
= @R[l — ®D,5,D17 (1 — Dy7));

for 6 € Oz4(up)s

Our Oup
57 (#RT®To,D15 + PR.D15)PD1 5, D1 aelT,
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where 6%%11 is defined below. Define 63(1(%”) to be the set composed of the following

parameters:
¢’Dj3,DjT J=k+2,.. K, ¢DjT,Tj J=k+1aaK_1a
¢D1T‘Dj+113 J:k+17,K_1, ¢Tj,Dj+1,B ]=k+1aaK_1
For k = 1,..., K — 1, the parameter up,, is a function of the parameters ¢p, ., z,Di\1 1
®Dyr,Ts» PDir Dysr pr @0d @7 Dy 5s for k=1,..., K — 2, up,, is also a function of the

parameters in the set ©34(, Dep)’ The partial derivatives necessary for Equation (B.9) that

involve pip,, are the following:

fork=1,...,K - 1.

a:u“DkT

= _(¢DkT1Tk¢Tk,Dk+1 S ¢DkT,Dk+1 B)(]‘ ~ UDir1 )i
8¢Dk+1,B:Dk+1,T ’ ' h

OUDyr

= 1 — 1 _ _ 1.
OPDyr, Tk ¢Tk’Dk+1'B[ ¢D’°+1’B’D‘C+1,T( /‘I‘Dk-H,T)] ;

OuD,r

= ~ODy.1,5,Drs1 (1= HDjyy )i
ODir,Disr,n ' ' '

a/.leT

ad)Tk‘?Dk-{-l,B = ¢DkT’Tk [1 - ¢Dk+1,B)Dk+1,T(1 - MDk+1,T)];

fork=1,...,K—~2and 8 ¢ @3‘1(“%7-)’

Oup Oup
kT _ k+1,T
—89"'T = (¢DkT7Tk¢Tkak+l,B + ¢DkT>Dk+1,B)¢Dk+1:Bka+l,T 50 .



371

B.2.5 Model 3b

Define ©3p(,y) to be the set composed of the following parameters:

®Dy.5,Dir k=2,...,K; ¢ng,DkT k=1,...,K;
$Dyr. T k=1,... K- ¢bpr, k=1, K-1
PDir,Dis1,5 k=1,...,K=1 @D Deuis k=1,...,K -1
T4\ Dis1,5 k=0,... K- SFps k=1, ,K-1

For Model 3b, the parameter pg is a function of ¢r 1y, ¢r,D, 5, ¢D, 5,017, and the parameters

in the set ©3p(,,). The variance of [ig can be estimated by the following expression:

2 2
Var(aR)=< Our > Tar(Prm,) + ( Our ) Tar(3rn.s)

OPR,T, O%R,D, 5
+ | ——V
(8¢D1B,D1T ar((bDleDlT)

LI T ()

0€O3p(up) Y€O3b(up)

dur \(_0 Cov(Gr, &
+2< HUR )( KR >C’ov(¢>R,To,¢R,D1B)

Obr,1, ) \OPR,D15
Ly (£ﬁ;};> ((% Iffw)c’a}(d?m, $D15.:1)
0 E (%)
r2(52 ), ¢jfpw)maﬁpw,%w,pw)
o 5 (3%
o E () (B s o0

96@35(#1{)
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where the partial derivatives are evaluated at their MLEs. The necessary partial derivatives

are defined as follows:

Our Opr

=—(1- . _Opr  _ - ;
Gy (1 - pm); CEY ¢D,5,017(1 — kD7)
Our
_Our __ _ - ;
B0D.n Do ¢R.D15(1 = LDir)

for 6 € @3(,(/_“{),

Our O, Oup
W = ¢R,To 690 + ¢R,D1B¢D1B,D1T71T)

where %ﬂ- and @B%E are defined below.

Define @3b(urk) to be the set composed of the following parameters:

¢ng»DjT j:k+1?"'5K; ¢Tj,Dj+1yB j:k7"'5K~1‘
Define @gb( ur) O be the set composed of the following parameters:
k ‘ .
6D, 5,0;r j=k+2,.. K Obpr,  J=htl. K1
T . , T .
¢DjT»Dj+1,B J-k—}_lﬂ"‘)K—l? ¢TjaDj+1,B ]—k‘l‘l,-..,K—l.

Define ©7, to be the set composed of the following parameters:

(1)

¢DjT>Tj j=k+2,...,K-1; ¢DjT>Dj+1,B j=k+2,...,K -1
For k=0,...,K ~ 1, ug, is a function of ¢1,p,,; 5+ ¢gk+1,Blec+1,T’ and the parameters in
the set @3b(ur,c)‘ For k =0,...,K — 2, ur, is also a function of the parameters in the set
eéb(/mc); fork=0,...,K—3, ur, is also a function of the parameters in the set ng(wk)' For

partial derivatives involving u7, that are necessary for Equation (B.10) are the following:
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fork=0,...,K — 1

BIU/T}Q

T .
¢ —¢Tk,Dk+1,B(1 - uDk«H,T)’
Diy1,8:Dk+1,17

BNT;C

- R = 1 — T 1 — T .
6¢Tk»Dk+1,B ¢Dk+1,Bka+l,T( /'LDk+1,T)‘

for k =0,...,K—1and § € @3;,(“%), for k =0,...,K—2and 6 € @’Sb(wk), or for

T
Our, _ o7 OWDesr
00 T:Dk41,89 D11, B, Dit1,T a8

k+l T

where ———5—'— is defined below.

Define ©,,, 7 | to be the set composed of the following parameters:
3b(NTk)

¢DjB,DjT J=k+2,...,K; ¢ngxDjT i=k+2,...,K;
D71, j=k+1,.. K-l ¢b,p. ., J=k+l.. K-1

¢ Dep  J=kFL. K-1

Define @/

3H(uE,) to be the set composed of the following parameters:

¢DjT,Tj J:k+2>7K‘—1’ ¢DjT,Dj+1,B ]=k+27)K—1>

¢ijDj+1,B j:k+2,---,K—1.

The parameter /.L%c is a function of ¢£k+1,Bka+l,T and qb%c for k=1,...,K - 1.

Dr+1,B
Fork=1,...,K — 2, u:ﬁc is also a function of the parameters in the set @3,3(“% » and for
k
k=1,...,K -3, u%c is also a function of the parameters in the set @;’:b(uT ) The partial
Tk

derivatives involving u%c that are necessary for Equation (B.10) are the following:
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fork=1,...,K - 1

ut,

— T T .
3¢T - —¢Tk>Dk+1,B(1 - ,’LDk+1,T)’
Dit1,8:Dr+1,1

6,u%:k

_ T T .
5¢T =1- ¢Dk+1,B>Dk+1,T(1 - 'uDk-H,T)’
Tk:DkH-l,B

fork=1,...,K—-2and 0 e QBb(M%C)’ and separately for k=1,..., K —3 and 6 € O},

(uh,)

T T
Our, _ oL 7 OlDyss r
a9 Tk Di+1,8%Y Dik+1,8)Dr+1,T 90 !

a7,
where —5+1L is defined below.

Define @3b(NDkT) to be the set composed of the following parameters:

¢DjB,DjT ]=k+2a,Ka ¢DjT,Tj ]=k+17>K"11

0D,r.1, j=k+1,..,K-1;  ¢pyp.s J=k+1.. K-1
7 M

SbrDis  J=k+1.. . K-1 0Ty D1s  J=k+1L. K—1.

The parameter pp,, is a function of ¢p, ., 5,Dxy1 7y PDir Te» PDer.Disr 5y 80d the parame-
ters in the set @3b(ur,c) fork=1,...,K~1 Fork=1,...,K -2, ip,, is also a function
of the parameters in the set @3,,(%“). The partial derivatives involving pp,, that are

necessary for Equation (B.10) are the following:

fork=1,..., K -1

OUDyr

: = ~@Dir,Dis1,5(1 = UDiy1 )3
OPDy1,5, D17 i i

OpD,r
8¢DkT7TIc
Oup,r
8¢DkTaDk+1,B

= ”(1 - :u’Tk);

= _¢Dk+1,B,Dk+1,T(1 - “Dk+1,T)?
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fork=1,...,K—1and 6 € Ogy and separately for k = 1,..., K ~2 and 6 € Ogy

KTy, ) ) KDy ) !

Oup Our OUDysy 7
aekT = QDT _(%)k + @Dy D+1,5PDes1,8. D11 (99+1 )
where %TJ& is defined above.

Define © to be the set composed of the following parameters:
3b( ‘

KDyp)
oy i=k+1,... K oT. ek K—1
D;g,Djr J= LA T;,Dj+1,B J =Ry, .

Define ggb(ﬂ ) to be the set composed of the following parameters:
Dr

¢DjB,DjT J=k+2,...,K; ¢DjT,Tj J=k+1,...  K-1
0D,r.17; j=k+1,... . K-1, ¢D;r Dy J=k+1,. K -1
¢£jT7Dj+l,B J=k+1,...,K-1; ¢15,0,0 J=k+1,...,K -1

(B.11)

The parameters ulT)kT is a function of ¢p,,, 5, Dgi1 1 Q%kak’ ¢ngka+1,B’ and the para-
meters in the set ®3b(ﬂgw) fork=1,...,K—-1 Fork=1,...,K -2, 'u':ng is also a
function of the parameters in the set @gb(;ﬂ X The partial derivatives involving ung that

Dyr
are necessary for Equation (B.10) are the following:

fork=1,..., K- 1:

ouf
— kT __d)T 1-up )
0¢Dk+1,B,Dk+1‘T DkTka+l.B( H k+1,T))
Oub,r

S = —(1 - pq);

ad)ng,Tk k

ouh

5—(;T——’—°I—— = _¢Dk+1,Bka+1,T(1 — uDk+1,T);

Dy71,Di+1,8
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fork=1,...,K~1landf ¢ @Sb(#g y» and separately for k= 1,..., K~2and 6 € CA
kT

3b(u%, )’

GMCE ‘ 8NT 6ND1¢+1T
60” = D1, Ty 69k + Dy, Dis1,5PDks1,5:Detrr a0

Oup;
where -5—& and —3FL are defined above.

B.2.6 Model 4

Define ©4(,,) to be the set composed of the following parameters:

® Dy, Der k=2,... K; ODs Der k=2,... K;
PDyr Tk k=1,...,K -1 D r T k=1,...,K -1,
Dyr.Disr, s k=1,...,K-1 O Dz Desr.n k=1,...,K -1,
fDwr k=1,..., K —1. \

The parameter ug is a function of the ®p 7, (I)Ilg,To’ ®rDig q)II;Dua’ ®D15,Dirs ¢5187D1T’
and the parameters in the set ©4,;). The variance of lir can be estimated by the following

expression for Model 4:

Var(fig) = Var(3rz) + Var(@5 1)

d 2 8 —
+ <___._lij_%_> Var(¢R,D1B) < HR > Var(@ﬁiDlB)

OPR, D5 (9Q>R D15
Oug >2A ~ ( Bun )2,\ .
+ | m=——— ) Var + | ——— | Var(s
<8¢D15,D1T (¢D13,D1T) a¢£1B,D1T ( Dls,Dm)

Our (Our ~
+ Z Z (60><8w)00v(9w)
0€O4(np) ¥EO4(up)

Our

+2 Cov(®r 1y, PR 73,) <6¢R,D15

>C/‘o\v(<§R,-To, :I;R,DlB)

~2\ 55— )CV (PR @ -2 z——— |Cov(®r 1),
(B(I)R o (®r1: ®R,D,5) 5oa Don (®R.T0, $D15.011)
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0 e~ ~ B3] ~
- 2(5—7:—#1%——)00@(@12,%, ¢§13,D1T) -2 Z ( ;9R>OOU(@R,TO,9)
¢DIB:D1T 0040 p)

2(8@}{7]_)13)COU(QR’TO,(I)R’DlB) YA E o COU(@R»TO7(I)R,D1B)

Our >A =P 2 ( Our >A ~p  ~p
—2 55— |Cou(®r,, Cov(®% 1.,
<8¢D151D1T ( RTy ¢D13>D1T) 6¢DIB7D1T ( R, Ty ¢DIB»D1T)

-2 Z < >COU<CI>RTO>§)

2 Cov(@pp,,, o
+ (8@R1D13> (GQQ,DIB O’U( R,D1B R,D]B)

+2 Cov(® ,
<6®R,D13 8¢D187D1T ( R.,Dyp d)DlB)DlT)

+2 Couv(® ,
(acI)R,Dls 8¢DIB,D1T ( R.D1p ¢D13,D1T)

0 s, ~
+2 Z ( KR )(;:)COU((I)RDIB,G)

0%
0€O4(up) R.D1p

8,“1?, ) ( 6,U,R ) —~ ~p -
+2 Cov(® ,
<8(I)R Dip 9D, D17 (®R,D:5: #D15.D17)

6/’”‘2 ) ( 6IU/R > =~ ~p ~p
* 2( Cov(®R b, 5» Dy, Di7)
8¢R DlB 6(15515 DIT 1B 18,011

Our OuRr ~
+2 Z < )( 50 >C’ov((I>RDlB,9) »

F
96@4( ¢R,D13

+ 2( Cov(ép,5,Dy7, @
6¢DIB’D1T 6¢§13,01T ( D&, Dir DleD1T>

| +2 Y < OpR )(_8;9R>COU(¢D15,D1T,§)

0
0€@4(up) $D1p,D17

. o o R
+2 > < 1R )(;f)Cov(%leTﬁ), (B.12)

96@4(“}:1) ¢DIB D7
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where the partial derivatives are evaluated at their MLEs. The partial derivatives necessary

for Equation (B.12) are the following:

Our

———e 3,&1{ F F
acI)R,Dla T ¢DIB’D1T(1 R MDlT); m = ¢D15,D1T(1 - /JDlT);
_8NR . Our F F

== ®r05(1 - bD1r); PR -9 1= 45 );
8¢D13,D1T 15 IT) 8¢$13’D1T RyDlB( D1T)

for 6 € Oyup)

Our Oup F_ F Oup
56 = @R D, 3PD15,Dir aem + (I)RzDIB¢DlB’D1T 591T’

8 F
where 222IZ and —“2AT gre defined below. Define B4 to be the sets composed of the
o8 o8 (/J'D;CT)

following parameters:

. F ,
¢DijDjT J:k+27)K, ¢DjB,DjT : ]=k+2a7K7
D713 j=k+1,.. K-1 Oy, F=k+1. K-
$D;r D J=k+1. K=1  ¢bop. . J=k+l. K-
for j=k+1,...,K~1.

The parameter up, is a function of the parameters ¢p, ., 5,Dpp1 7 qﬁng’B’DkH’T, ODyr Th»
F F — . —

PDyr To» PDirDis1 s ¢DkT,Dk+1,B’ and fp,pfork=1,...,K-1;fork=1,...,K=2, up,p

is also a function of the parameters in the set @4(%”). The partial derivatives involving

LD,y that are necessary for Equation (B.12) are the following:

fork=1,..., K - 1.

aMD;CT

__9HDer L '
8¢Dk+1,B,Dk+1yT ( kaT)QkaT,DHLB( p‘Dk-H,T)’

Oupyy

— F F .
8¢F } - _kaT¢DkTka+1,B(1 - /'I'Dk+1,T)’
Dyy1,8:Dir,r
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OUDyr

= —(1— ;
8¢DkT7Tk ( fchT)
OUDyr
=5 = —fDr;
8¢ng>Tk *
Oppyy

= —(1 - 1-— ;
‘8¢DleDk+1,B ( kaT)¢Dk+1,Bka+1,T( Nch+1,T)

Oup,r

— F ., F .
A = kaT¢Dk+1,B7Dk+1,T(1 “Dk+1,T)’
Dyr,Diy1,8

OUDyr F
3D = ¢DkT:Tk + ¢DkT,Dk+1.B¢Dk+1,B,Dk+1,T(1 - /J‘Dk-H,T) - ¢DkT,Tk
kT

F L F F .
- ¢DkT,Dk+1,B¢Dk+1,B:Dk+1,T(1 - ‘uD’H‘l,T)’
for k = 1,, . ,K —2and f ¢ 64(“‘DkT)’

F
8“DkT — 6/‘LDkT 8“Dk+1,T a/~LD;CT 8'U“Dk+1,T
90 Oupy,,r 00 8u§k+w o0

where
Oup
duD, kTT = (1~ kaT)¢DkT,Dk+1,B ®Dk11,8, D1,
+1
Oup F F
F = kaT¢DkT>Dk+1,B¢Dk+1,B)Dk+1,T’
8/’LDk+1t
ouf ) '
and —#+L is defined below. Define 94(u£ ) to be the set composed of the following
kT
parameters:
o5 i=k+2,... ,K; o5 =k+1,...,K-1
DijDjT Yy ) DjT»Tj J Yy ’

OB rpyns  J=k+1. K—1

; F : : F ' F —
The parameter UDer 15 & function of ¢Dk+1,B:Dk+1,T’ Dr10 a0d ¢DkT1Dk+1,B for £ =
1,....,.K—-1. Fork=1,...,K — 2, ,ung is also a function of the parameters in the set

@4(% y- The partial derivatives involving ,ung that are necessary for Equation (B.12) are
kT
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the following:

fork=1,..., K -1

F
O Dyr

— _AF _,F .
5¢F - ¢DkT,D1c+1,B(1 MDIH—I,T)’
Diy1,8:Dr+1,1

F
8'uDkT
F
a(z)chT,Tk

F
aMDkT

F
6¢DkT»Dk+1,B

— —1;

— F F .
- _¢Dk+1,B»Dk+1,T(1 - MDk—H,T)’
fork=1,...,K—2and 8 ¢ 94(%“),

F F
6uchT . ¢F ¢F oy
90  TDPkmDrt1,p7 Divr,mDevir ™ gg

B.2.7 Model 5a

Define ©5,(,,) to be the set composed of the following parameters:

PDis,Der k=2,...,K; Obs . Dir k=2,...,K;
®Dir,Te k=1,....K -1 ¢ng7Tk k=1,...,K —1;
ODerDrers k=1, K-1; Shr Do k=1...K-1
®Ty,Dis1.5 - k=0,...,K=1; OF Dist 5 k=0,....,K - 1;
Der k=1, K—1 fr. k=0, K—1

For Model 5a, the parameter pp is a function of ®g 1, gbgTo, ®r D5, (I)Ilg,st’ OD15.Dyps
¢£1 5,011 and the parameters in the set 54, ). The variance of [ip can be estimated by

the following expression for Model 5a:

Var(iip) = ( e ) Var(@p,) + ( SE ) Var(®h1,)
40 RvTO
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2
2__ Our Var(®F
+ 8/“LR ) Var(d)R,DlB) +( ya > VGT'((IDR,Dw)
O0%r,D, 5

2

2___ . Our ~ ~p

+ ﬂ“' Var(¢DlB,D1T)+ <3¢F ) Var(¢D13,D1T)
8¢D13:D1T Di1g.DiT

v Y Y (%) (%E)En

0€Osa(ug) ¥€Osa(up)

+2 BMR )( 6/4“:2 )C/O\’U(:I\)R,Toaag,To)
6®R,To 8(I)R T() .

Lo Our >< Our >C/0\U(‘/ISR,T0»(/ISRYDIB)
8(I)R,TO 8(I)R,DlB
o Our >< 6#3 >C/O\U((/I;R,Toaag,DlB)
8@R,To 8®R,D1B
9 B/J*R ) < aIJ'R )C/O\U((’I;R,Tm aDlB;DlT)
+ OPr T, 9Dy p,D17
n 2( 8/11R ) ( ?MR )@(aR,TQ7$£1B,DIT)
aq)R,To 6¢D1B,D1T
Opr <8“R>C’ov(@RT ,0)
+2 > <8<1>R,To) 06 0
Geesa(“a)
o Onn )( Our >@(EI\>QTO,E’R,D1B)
8(1)%17,0 OPR,D,5
Bun )( Our )@@gmﬁ,m)
e <5¢’§,To 025 b,
o _Our )( Our )@(ag%,%wm)
+ 8®§,To 8¢>D1B>D1T
+ 2( 0MR ) < FaﬂR )C/o\'()(&)g’To,ang,Dw)
8@5,7‘0 6¢D13,D1T
Our Opr oL ,g)
+2 Y (WX&') >C°U( RTo
66@5&(#5) R) o

P 8,UzR >< B#R )50\?)(6R,D13a(3§,D13)
8@RDIB 6@R,D13

N ) ( Our )m@R,DIBﬁDIB,DIT)
+ 0%PRr.p,p/ \OD,p.D1r
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o 4 Cou(d b
+2( UR >< F“R )Cov(‘PR,Dls’@bg;B,DlT)

(9<I>R,D15 8¢D15,D1T
a/*"R > <8;J,R> .
i Z < OOU(CI)R D5+ 9)
| 6€Osu(up) %R p,p /) \ 09
BMR )( 6MR >A ~p R
- 2< Cov(® , ’
8(I)£,D1B 6¢D13,D1T ( R,Dip ¢D;p DlT)
6UR >< B/J,R )A ~p .
+2< COU(QR,D ’¢D D )
8®§,D13 8¢EIB,D1T 1B 18,0117
14} o ~
+2 0y (8(13;‘% >< ;;)COU(@RDm’G)
0€8sa(up) R.Dip
8NR > < aNR ) A p
™2 Cov ’
(8¢D13,D1T 8¢513,D1T (d)DlB:DlT ¢DlByD1T)
BMR 5#12 N
+2 Z ( ) ( COU(¢D1B,D1T,9)
8€Osa(up) 0¢p,5.01r ) \ 00
0 9 ~
+2 Z <5¢FMR )< aﬂ;)C’ov(qﬁDlB D 9,
0€Osa(up) Dip,Dir

(B.13)

where the partial derivatives are evaluated at their MLEs. The partial derivatives necessary

for Equation (B.13) are the following:

Our
= —(]1 — .
8¢’R,To ( /J‘To)y
OLR P
—(1 — :
8¢Rn (1= v,
Opr
GQRVDIB = _¢D131D1T(1 - MDIT);
_Our
oL —¢5131D1T(1 - ngp)§
R,D1p
Opr Oun
— =9 "7 . P 1— )
6¢D13,D1T R,To 8¢DlByD1T R>DIB( ,uDlT),
Opr Oy, 5u¥
6¢F QRT08¢__—O "+®RT05&_————_ QRDIB(
Dig,Drr Dig,Dir Di1g,D1ir

F
/j’DlT);



383

for 6 € Osa(up)»

dur Ay Ouf, Opp Oub
50 =®p1, 390+(I)RT° 50 + @R D,5%D15,Di7 801T+¢RDIB¢DIB,D1T 391T’

where the partial derivatives involving ur,, uﬂ, WD, and “gw are defined below.

Define ®5a(uTk) to be the set composed of the following parameters:

®D;5,D;1 j=k+2,.. K, éb,5.D;7 i=k+2,... K,
OD,7.T; j=k+1,...,K—-1; ¢£J,T7Tk j=k+1,...,K-1;
¢D;r Dy J=k+1,..,K-1; ¢5jT,Dj+1,B j=k+1,...,K-1;
O1, D518  J=k+1,.. K-1 Oy J=k+1. K-
Dz j=k+1,... K1 frp, Jd=k+1,...  K-1

The parameter pi7, is a function of the parameters ¢p, ., 5,051 7 ¢gk+1,B»Dk+1,T’ Ty, Dks1.5
¢%caDk+1,B’ and fr, fork=0,..., K — 1 For k=0,...,K —2, ur, is also a function of the
parameters in the set @5a(uTk)' The partial derivatives involving p7, that are necessary for

Equation (B.13) are the following;:

fork=0,...,K - 1:

6/‘1‘7’)C

s = (1= f1)8n.04e1,6(1 = BDppr 1)
OPDy 11,5, Dk1,7 k7T SR+ B k+1,T

Our, F P
96 = _ka¢Tk»Dk+l,B(1 - /‘LDIH—I,T);
Dyi1,8,Dg+1,1

Oy,
m =(1- ka)[l - ¢Dk+1,Bka+1,T(1 - /J‘Dk+1,T)];

81“’ T

_ F F .
8¢F = fr.[l - ¢Dk+1,B,Dk+1,T(1 - /'LDk+1,T)}’
Tk, Dr+1,8
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Our
5fT: = _¢Tk,Dk+l,B[l - ¢Dk+1,B;Dk+1.T(1 - /‘LDHLT)]

F F F .
+ ¢Tk7ch+1,B[1 - ¢Dk+1,B:Dk+1,T(1 - u’Dk+1,T)]’

(B.14)
fork=0,..., K—2and 0 € @50(/@)’
F
O, — O, a'uDk-H,T ouT, a/‘DkH,T
oL Oup,,r 08 GMSHIYT 00
where
Opr,
%f‘: = Cl - ka)¢Tk,Dk+1,B¢Dk+1,B,Dk+1,T;
+1, :
Our, F F
F = fT‘C¢Tk:Dk+l,B¢Dk+1,Bka+1,T;
HDyir,r
8 ouk
and uDgg LT and Dgg LT are defined below.
Define @5(1(#5 ) to be the set composed of the following parameters:
k
$b,5.D;1 j=k+2,.. ,K-1 Sbra, J=k+1. K-
0Dy Dy J=R+L K-1 éfp. ., J=k+l. . K-L
For Model 5a, the parameter ui is a function of ¢gk+1,B,Dk+1,T and ¢%¢7Dk+1,8 for k =

0,...,K—1, and also of the parameters in the set @5,1(#; ) fork=0,...,K —2. The partial
k

derivatives involving uﬁ that are necessary for Equation (B.13) are the follbwing:

fork=0,..., K -1

6ui

— F _ ., F .
3¢F = _¢Tk7Dk+1,B(1 MDk-H,T)’
Dis1,8:Dpv1,1r



F
Our,
F
8¢Tk Di+1,8

F F .
=1~ ¢Dk+1,Bka+1,T(1 - 'U“Dk+1,T)’
fork=0,...,K —2and 96@5,1(“; )

)

F F
v, _ o o5 @Pﬁl’l
96 T%x\Dk+1,8% Di+1,8:Dg+1,T7 90 ’

F
by 14

where —gg > Is defined below.

Define @5Q(MDW) to be the set composed of the following parameters:

¢Tj,Dj+1,B ji=k...,K-1 ¢'£',Dj+1,5 j=k....K-1

ij j=k,...,K-1

Define ©; to be the set composed of the following parameters:
50’(:“‘DkT)

9D,5,051 j=k+2,.. . K 0D;5,0;r j=k+2.. K
OD,2.1; j=k+1,...,K-1, $hpr, J=k+1l,. . K-
¢Djr Dy J=k+1,..,K—-1 $DrDirs  J=k+1 LK1
Dz j=k+1,...,K-1
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For Model 5a, the parameter pup,, is a function of ¢p,,; g Disy 7 ¢£k+1,B:Dk+1,T’ ®Dyr Te»

F ' . _
¢£kT,Tk> ®Dyr,Dis1,5 ¢DkT,Dk+1,B’ fD,r, and the parameters in the set @5“(“Dw) for k =

1,...,K -1 Fork=1,...,K -2, up,r is also a function of the parameters in the set

/
5a‘(lu’DkT

are the following:

fork=1,..., K- 1;

T 6/J’Tk
k
8¢Dk+l,BaDk+1,T

OlDyr

=———— = (1 = fp,+){¢Dyr,
8¢Dk+l‘B’Dk+11T ( kT)[ kT

- (kaTyDIH-l,B(]' - /"Lch-H,T)];

) The partial derivatives involving up,, that are necessary for Equation (B.13)
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auk,

F
6¢Dk+1,B’Dk+1yT

OUDr
F
6¢ch+1,13 Dri1,r

Our,

=(1- kaT)qukT:Tk dok
Diy1,8,:Dks1,1

F
+ fDir @Dy Ty

F F .
- kaT¢DkT:Dk+1,B(1 - ’uDk-H,T)’

OLDyr
EDer (1 _ )
90 Der T ( fchT)(l /’LTk)?
OUDyr F
=5 = ~ [ (L = up);
8¢ng,Tk o *
OUDir

ommony L Du)9Des D s (L= HDs)

Opp,r

— F F .
EYY = _kaT¢Dk+1,B,Dk+1,T(1 - “Dk+1,T)’
Dyr,Drt1,B

Oup
af o= ¢Dyr, T (1 = /“‘Tk) + ¢Dsz¢Dk+1,B¢Dk+1,B,Dk+1,T(1 - MDk+1,T)
Dyr

F ' F F F F .
- ¢chTyTlc(1 - “Tk) - ¢DkT7Dk+1,B¢Dk+1,BaDk+1,T(1 - 'LLDk+1,T)’

for k=1,...,K~-1and 8 ¢ @5a(uDkT)> and separately for k = 1,...,K — 2 and 8 €

/
@5a(#DkT )

F
OUD.r _ Oup,r Our, . Oupr 6”& OuDyr OMDiysr n OUDer auDHlvT
o6 Our, 00 5#’& 06 Oupy,r O 6”£k+1,T %

where
OUDyr
DT (1 — .
a,UTk ( fDIcT ) ¢DkT Tk
OUDyr F
Ok = fDir PDyr 1)
HT,
Oup
kT .
P = (1 - fDIcT)¢chT»Dk+1,B¢Dk+1,Bka+1,T’
KDgi1,7
OLDyr F F
Ea = kaT¢DkT:Dk+1,B¢Dk+1,B:Dk+1,T'
KDy r

uk. ouf
The partial derivatives a—g%& and —g—g& are defined above, and —Dg’“g-’iﬁ is defined below.
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Define 05,

!
Define ®5a(u£w)

to be the set composed of the parameters qb%’D (j=k,....,.K-1).

F )
“DkT) j+1,B

to be set composed of the following parameters:

D, 5,051 j=k+2,..,K; $Dor, J=k+1. K-
$DDrs  J=k+L. . K—L

: ; F F
For Model 5a, the parameter “§k+1,T is a function of ¢Dk+1,B>Dk+1,T’ PDr Te ¢ngka+l,B’

and the parameters in the set @5‘1(“5”) fork=1,...,K-1, Fork=1,...,K -2, ,ung’T
is also a function of the parameters in the set @’E)a(up X The partial derivatives involving
Dyr

,ugw that are necessary for Equation (B.13) are the following:

fork=1,...,K -1

F
auDkT

_ _F _ . F .
8¢F - ¢DkTlec+1,B(1 “Dk+1,T)’
Dy+1,8,Dk+1,17

F
8/J‘chT
F
8¢DkT:Tk

Oub, .

F
6¢DkT1Dk+1,B

= —(1-uf,);
_ F F .
- ——¢Dk+1,B,Dk+1,T(1 - 'uDk-H,T)’

for k=1,..., K —1and 8 € @5‘1(“5 ), and separately fork=1,..., K —2and 8 €
kT
6/

5a(up, 1)’

F F F
8/J'DkT _ ¢F 8MTk + ¢F ¢F auDkﬂ,T
90 " Der T g Dir\Di+1,87 Di+1,8:Dk+1,77 g

) F
where %& is defined above.
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B.2.8 Models 5b and 6

Define Oy, ) to be the set composed of the following parameters:

@D, Der k=2,... K, ODp Der k=2,...,K;
Dy 5 Dir k=1,...,K; ®Dyr,Ti k=1,...,K—1;
Der T k=1,...,K-1 o5 o k=1, K-
O Py T k=1,...,K - 1; ®Dir Dis1,5 k=1,..., K —1;
PbrrDesrs k=1 K—1 SberDesrs k=1 K -1
SbirDrsrs k=L K- OTeDesrs k=0, K -1
T Disr k=0,....K-1 Dy k=1 K-
¢Tk,Dk+1B k=1,...,K -1 fDir k=1,...,K -1,
fhir k=1,...,K-1 fn,  k=0,...,K—1;
2, k=1,...,K—1

" For Model 5b, the parameter up is a function of @z 1, <I>§,TO, DR Digs (IDQDIB, ®Dyp,Dips
‘ ¢ll;13,D1T’ and the parameters in the set ©3p(,,). The variance of lig can be estimated by

the following expression for Model 5b:

For (D our \’o= 5 9 _
Var(fir) = ( a@i RT> Var(®r,) + ( aqfl R > Var(®5 1)
340 RT()
+ <‘—8‘@—)2‘75‘($ ) + (—6“3 )2@(&“ )
0%pr,p, 5 R.Dis 5<1>R Dip R,Di5
Sur )2/\ - < dur )2/\ p
+ =V %
<6¢D1B,D1T ar(¢D13,D1T) 6¢DIB oo ar(d)DlB,Dw)

PP

Our\ (Our 0
(%) (55)7=6.
9€Osb(ug) YEOsb(ug)

Our >( Our
8% 1,

+2
<6<I)R,T0

)o@, i)
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(gt (G ) OB 3
+ 2<a<1>RRTo (55523) Cou(®riy; B 01s)
* <5<I)RRT0 (%gi];m ) Cov(®r1 0015.017)
+2 (achRTo (%w’m)cm% 101 0b15.017)

96@517(“ )
Our ) FF &
ov(®r 1., PR,D5)
<8(I>RDIB ( R, Ty 1B
< < Iur >COU(@RT0’(I)RD13)
6®RT0 a R,Dip
Our ( Our )cm}(@ 3 )
R, Ty PDyp.Di7
+2 (8@%% 8¢DIB:D1T °
+2< ( > OU( R, Ty D13D1T
8¢£,To 8¢D15‘7D1T
Z 8uR )(a”R)Cov(%To,a)
96@51,(
( )( L )55)(‘51%,013,‘55915)
8¢RDIB 6®R,D13
) < 5NR )C’/o\v(&;R,DIB,&;Dua,DlT)
8¢D13»D1T
OuR >A = F )
2 ( COU(q)RyDlB’QSDlBaDlT
- <5@R Dls) 0D, 5 Dir
Our 5“”)0 $7,0,5.0)
+2 > (a(I’R,D13>< 55 |Cov(PRDis
96@5(,(“}2)
Or )( Our )C/O\U(EI\’QD aaDw;Drr)
+2<5‘1’§,D13 06D, 5,017 e

——— Py AF .
+2 ( aﬁR ) ( FauR >OOU(@§,D1B’ ¢DIB:D1T)
6(I)R,Dus 8¢DlB:D1T '
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Our Our\ == & ~
+2 Z < ><89 )Cov(@ﬁ,DIB,G)

6€8su( ) 8®£,D13

49 (a¢§1//:?D1'T> <8¢§:TD1T)C/‘E)(%mpm%w,plﬁ

1 2 () ()

o I () )an wn
€Osb(up) 15,217

where the partial derivatives are evaluated at their MLEs. The partial derivatives necessary

for Equation (B.15) are the following:

B(Z‘TTO = —(1 - pn);
82%};0 = —(1 - phy);

5(%2: = ~¢D,p,010(1 = 1Dy7);

a-;ﬁ—z—; = —p, 5,007 (1 = lDyp);

5}% =—®pp,s(1 = p,7);

wL ~ @5¢5L~ 8 (1 1)

and for 6 € Osp(,)s
%@5 = @R,TO%%TQ + q’ﬁ,Toag—f" + @R,DlsqﬁDls,Dnaua% + @g,Dwd’glg,Dma’g%v

where the partial derivatives involving pr,, ,ugo, KD, p, and ung are defined below.
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Define @5b(#Tk) to be the set composed of the following parameters:

¢D;5,D;1 i=k+2,... ,K; $5,5.D;7 j=k+2... K;
¢, 5,D;7 j=k+2,... ,K; ¢pr1; J=k+1,.. . K-
S,y j=k+1,... K1, ¢per,  J=k+1,.. K-
0brps J=k+1...K-1  ¢b. p... i=k+1,.. K-1
0D Dyp  J=E+L K1 0%, Dy J=kFTL K-
Dy J=k+1. K- i p s J=k+1.. K-1
fbyr j=k+1,....,K -1, o i=k+1,.. K-1

Define @gb( ur,) 1O be the set composed of the following parameters:
k

¢DjT,Tj ]=k+2a>K_17 ¢DjT,Dj+1,B . j=k+2,,K—l,
O1;,D,41,5 j=k+2,....,K-1; fo,r i=k+2,...,K—-1;
ij ]=k+2,,K—1

For Model 3b, the parameter ur, is a function of 65, . p..\ v 8D\ 5 pevir $TeDesrs
¢7Ek:Dk+1B’ and fr, for k =0,..., K —1. For k =0,...,K — 2, ur, is also a function
of the parameters in the set @5b(#Tk); for kK =0,...,K — 3, ur, is also a function of the

arameters in the set ©) . The partial derivatives involving ur, that are necessary for
p 5b( KT,

,“ka)
Equation (B.15) are the following:

fork=0,..., K -1:

alu'Tk

— F _,F .
Eyya = 1T D15 (1 = By )
Di+1,8:Dk+1,7

0
9% = = —(1 = f1.)¢7%, Dy, (1 = “BW'T);

Dit1,8,Dk+1,1
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O, T T
_om i )
6¢Tk,Dk+1,B ( f k) ¢Dk+1,BaDk+1,T( /'LDk-H,T)
O,
oF — = ka{l - ¢£k+1,B>Dk+1,T(1 - u£k+l,T)};
T\ Dit1,8 )
Our, T T F
3ka = —OT},Dys1,5 {1 - ¢Dk+1,E»Dk+1,T(1 - “Dk+1,T)} + ¢Tk>Dk+1,B
%

F F F .
- ¢Tkak+l,B¢Dk+1,Bka+1,T(1 - “Dk+1,T)’

fork=0,...,K—2and 8 ¢ ®5b(MTk)7 and separately for k =0,..., K -3 and 8 ¢ ®5b(uT )

Oury =(1-Ff L __BME. k1T F F augk+1,T
80 _( - Tk)¢Tk:Dk+1,B¢Dk+1yB,Dk+1’T 69 +ka¢Tk:Dk+1,B¢Dk+1,BsDk+1,TT’

where ot "“ T ﬁg*—ll are defined below.

For Model 5b, uTk is a function of ¢Dk+1 5. Desi 1 ¢Dk+1 5.Desir’ ¢Tk:Dk+1 . ¢Tk:DIc+1 o
and ka fork=1,...,K~1. Fork=1,...,K -2, NTk is also a function of the parameters
in the set @5b(/-LTk)’ and for k=1,..., K -3, u%:k is also a function of the parameters in the
set @51’(#7" ) The partial derivatives involving u%:k that are necessary for Equation (B.15)

are the following:

fork=0,...,K — 1

Ou,

_ F :
6¢F = ka¢Tk,Dk+1 B( /uDk,+1,T)’
Dy+1,8:Dr+1,17

Out, = (1 - fToT 1-,T .
¢jl; D - —( - ka)¢quDk+1,B( - uDk-i—l,B)’
k+1,B:k4+1,T

Gu%c

—_ T T T .
8oL o, =(1- ka){l - ¢Dk+1,B,Dk+1,T(1 - “Dkﬂ,r)}’
kiL/k41,B

Bu%:k

— £T F F .
dPET ka{l - ¢Dk+1‘B»DIc+1,T<1 - “Dk-u,T)}’
T\ Di+1,8
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ouf,

k 4T T T FT

afzx - _¢Tk,Dk+1,B{1 - ¢Dk+1,B:Dk+1,T(1 B NDk-H,T)} + 0T, Dyt p
k .

FT F F .
- ¢Tk;Dk+1,B¢Dk+1,B>Dk+1,T(1 - MDIC-H,T)’

fork=1,...,K—2and f € @5b(MT;C)’ and separately fork=1,...,K—3 and 8 € ng(“Tk)’

T T F
6'LLTk — (1 _ fT )¢T ¢T 6’LLDI€+1,T + fT ¢FT ¢F 8‘LLDk+lyT
a9 Ty /¥ Tk, Dk11,8¥ Dk+1,8:Dr+1,1 o0 Tk ¥ Tk, Di+1,8Y Digt1,8,Di+1,17 96 '

T F
ap’DkH T aMDng
00

where 50 and are defined below.

Define @5b(“5 ) to be the set composed of the following parameters:
k

$D;8,051 j=k+2,.. K 9D,5.D;r j=k+2,.. K
Sb,r.1; J=k+1,..K=13  ¢b.p.., J=k+1.. K-T

¢t Dy  J=k+1l. . K-L

Define @’Sb(up ) to be the set composed of the following parameters:
Ty, K

¢DjT,Tj J=k+2,...,K—-1; ¢DjT,Dj+1,B J=k+2,...,K-1

¢TJ‘,DJ'+1:B j:k‘{'z,.--,K““l.

For Model 5b, the parameter uf, is a function of ¢, p, . . and ¢f,

Disrm for k =

0,...,K—-1. Fork=0,...,K — 2, ,u%c is also a function of the parameters in the set

0 € Ogy(ur ), and for k= 0,..., K -3, /,L:,I”:]c is also a function of the parameters in the set
k .

g e %w ) The partial derivatives involving u%c that are necessary for Equation (B.15)
Tk

are the following:
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for k=0,...,K -1

ouf,

fT );
T bl
8¢Dk+1,3 Drt1,1

- _AF _

- ¢Tk»Dk+1,B(1 HDisrr
F

Our,

F T );
6¢Tk,Dk+1,B

—1_ AT _
=1 ¢Dk+1,BsDk+l,T(1 'uD;c_H,T

fork=0,...,K~2and f e @5b(“7€k)’ and separately for k =0,..., K — 3 and 0 € @gb(uﬂ)’

F [T
%t _ ur o OMDusir
90 TiDrs1,8% Dit1,8:Drt1,1 96 ’

Ouby  p
where —2#L is defined below.

The parameter u%c is a function of qﬁz_,;kﬂ 5. Dksrr and ¢7y Dyyy p for k=2,..., K 1.
Fork =2,...,K -2, /,L%c is also a function of the parameters in the set @51’(“&); for
k=2,...,K-3, “5% is also a function of the parameters in the set @’E)b(up ) The partial

Tk

derivatives involving uf that are necessary for Equation (B.15) are the following:
Ty

fork=2,...,K - 1

Bu{;
A Ti,Drs1,5 (1 — D ;
8¢Dk+1,B,Dk+1,T k+1,T
5%‘,
— tk —1- T 1— fT ;
6¢Tlka+1,B ¢ch+1,B7ch-*_1,T( uDk+1,T)
- = /
fork=2,...,K—2andd ¢ @E’b(“i)’ and separately for k =2,..., K —3and 6 € @E’b(“ﬁ),
f JT
Our, Oub,.,

_ T
90 ¢Tk’Dk+1yB¢Dk+l,Bka+1,T 50 )

T
a“DkH T

where —7== is defined below.

The parameter uf{ is a function of ¢£k+1,B,Dk+1,T and d%c, fork=1,...,K - 1.

Dy+1,8
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For k = L. LK -2, u is also a function of the parameters in the set Osp(uk )3 for
k=1,...,K -3, ,uT is also a function of the parameters in the set @ BH(uE, ) The partial

derivatives involving uTk that are necessary for Equation (B.15) are the following:

fork=1,...,K - L

outy
K, = _¢% D (1- ,ufDT )i
6¢£k+1,B»Dk+1,T B T
aufT
T T T .
—E;—;—— =1- ¢Dk+1,B,Dk+1,T(1 MD’C'H T)
% Dk+1,B

fork=1,...,K—2and 8 ¢ @E’b(“gk)’ and separately fork=1,...,K —3and 8 € @gb(“%)

fT T
au“Tk s oL auDk-i-l.T
90 ¢Tk»Dk+l,B Dy41,8:Dr+1,17 56 )

T

Oup .
where —A2T is defined below.

Define 951,(%”) to be the set composed of the following parameters:

(bngyDjT J=k+1,.. K, ¢Tj,Dj+1,B Jj=k. .., K-1
¢%,Dj+1’3 J=k,...,K-1 ij j=k. .. K-1
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Define glsb( i) to be the set composed of the following parémeters:

$D,5,D57 j=k+2,. K 6D;5,051 j=k+2,.. K
OD,7.T; j=k+1,..., K -1 ¢’§ﬂ,n j=k+1,... K -1
S e, j=k+1,... K-1, Sher, J=k+1,.. K-
00,7 Dyers  J=k+Ll K=1  6p.p.. J=k+l. K-
0D rbns J=k+l.o K-1 BT o j=k+l.. K-
O1,,05015 j=k+1,.. K- Sp s J=k+1. K-
f,r j=k+1,..., K -1, fhy F=k+1,.. K-1
It j=k1, K -1

For Model 5b, the parameter yp,, is a function of ¢p,,; 5 Diiy 1 ¢>gk+1 5.Desr? PDkr Tios

F F ;
Dy T DDk Disr,50 PDyr,Disr p? fDr, and the parameters in the set @51’(#0”) for k =

1,...,K -1 Fork=1,...,K — 2, up,, is also a function of the parameters in the set

!
@5b(NDkT
are the following:

fork=1,...,K -1

OUD,r

8¢Dk+1,Bka+1,T

OUDyr
F
8¢Dk+1,Brch+1,T

8:U’DkT

8¢DkT:Tk

OlDyr

F
8¢chTka

OUDyr

ad)DkT Di+1,8

=~(1- kaT)¢DkT,Dk+1,B(1 - N’Dk-H,T);

Aur, .
=(1- kaT)¢DkT:Tk58F"ﬂ—— - fch

D11, Dk+1,1
=—(1~ kaT)(l - /~LTk)§

= _fD;cT(l - Mﬂ)Q

=—(1- kaT)(z)DIH-l,BvDIc-}-l,T(l - iu‘DIc+1,T);

X The partial derivatives involving up,, that are necessary for Equation (B.15)

F F .
T¢DkT>DIc+1,B (1- 'U“Dk+1,T)’
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a/J’DkT

— F F .
5‘¢F - —kaT¢Dk+1,B,Dk+1,T(1 - 'uDk+1,T)’
Dyr,Dk+1,8

Oup
af L= ¢DkT»Tk(1 - /‘(‘Tk) + d)DkTyDlH—l,E¢Dk+1,B»Dk+1,T(1 - /J‘ch-H,T)
Dir

F . F F F F .
- ¢DkT:Tk(1 - “Tk) - ¢DkT:Dk+1,B¢Dk+1,BaDk+l,T(1 - 'U'Dk+1,T)’

fork=1,...,K-1landf € Oy, ), and separately fork =1,..., K—2and f € @gb(“Dw)’

‘ F
OuD,r — Oup,r Out, | LD,y 8'“% OUDyr OKDysr OLiDyyr 8MD’°+1’T
) our, 00 5uﬂ 06 alu‘DIH—l,T 00 8'“3&1,7‘ 08

where
OUDyr
——% = (1 = fDr)PDpr Te;
By, %1 /9D T
OUDyr F
OuE = kaTqSDkT»Tk;
-'U’Tk
Oup
kT __ .
) =(1- fchT)¢)DkT1Dk+l,b¢Dk+l,ByD}c-H,T7
MDgirr
OLDyr F F
7 = kaT¢DkT,Dk+1,E¢Dk+1,Bka+1,T'
KDys1 r

The partial derivatives involving u7, and MT‘; are defined above, and those involving ,ung T

are defined below.

Define O,z to be the set composed of the following parameters:
kT
. . F . s
¢£ijDjT J=k+17?Ki ¢Tj:Dj+1,B ]=k7-"aK—"1v
T . _ FT - .
¢Tj»Dj+1,B j"ka'~'7K"1’ ¢ijDj+1,B ]_kw-"K_L

f, j=k,.. K-1
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Define esb( W5, to be the set composed of the following parameters:
$D,5.D;r j=k+2,... K, 3D,5.D47 i=k+2,...K;
OD,T; j=k+1,..., K -1, ¢§J,T,Tj j=k+1,....,K -1,
¢51T,Tj j=k+1,...,K -1, ¢DJT,TJ j=k+1,...,K -1,
0D Dyure  J=k+L K=1 65 .p. . d=k+l. K-
OD;r.Dysr 5 j=k+1,...,K-1; d)DJT, Djivs j=k+1,..., K -1,
®Ty.0;.1.5 j=k+1,....,.K-1; for J=k+1,.. . K~1;
bz j=k+1,..., K-1; fr, Jj=k+1,..., K-1

For Model 5b, the parameter uf,, is a function of ¢p,,, p.Desirs Sy 5.Dkyrzs PPur T
¢£kT,Tk’ ¢DkT>Dk:+1,B’ ¢£ZTka+1,B’ fng, and the parameters in the set @5(,(“5”) for k =
1,..., K =1. Fork=1,...,K - 2, ;ﬂf,w is also a function of the parameters in the set
o5, . The partial derivatives involving lﬂl;w that are necessary for Equation (B.15)

(uDkT)
are the following:

fork=1,..., K~ 1

01D,y

T = ~(1 = D )Dyr Dipr6 (L = BDess )i
OPDy1 1,8, D17 REOTTRDTRALE S

8;1%0

T
8¢Dk+1,5 JDrs1,1

Ouh,
ST = (1 f5 )b,

F .
9L, - kaT¢DkT Diy1, a1 '“Dk+1,T)’
Dit1,8:De+1,1

dug
s = ~(~ fh) (1 - uhy);
¢chT,T/c
auDkT F
= —fper(1 — up);
6¢DkT7Tk 7 *
6'uDkT

T .
8<Z)T = "(1 - kaT)¢Dk+1,B,Dk+1,T(1 - uDlH—l,T)’
Dyr,Dis1,8
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Oub,

_ T F _F .
8¢FT - _kaT¢Dk+1,B»Dk+1,T(1 “Dk+1,'1“)’
Dyr,Dg+1,8
Ouh
kT __ AT T T
8f£ - ¢DkTyT1c(l - 'uTk) + ¢DkTka+1,B¢Dk+1,Bka+1,T(1 - NDk+1,T)
kT

FT F FT F F .
- ¢DkT:Tk(1 - “Tk) - ¢DkT:Dk+1,B¢Dk+l,B>Dk+1,T(1 - /"LDIH—I,T)’

— . /
fork=1,...,K—-landf ¢ @5,)(“5”), and separately fork=1,...,K—2and § ¢ @5b( T

F
Oy - Oubyr OVF, | Okbyy OBT,  OkDyy OMD. | WDy OMDiir
06 0;@%0 ol auﬂ of Obpy,,r 09 BN}BMLT 90

where
T
6uDkT_(1_fT )¢T .
ouL D1 /% Dy Ty
H,
T
Dy _ fD T
ot Dy ¥ D, T
M,
ouX
Der T T .
) =(1- fchT)¢DkT7Dk+1,B¢Dk+1yB»Dk+l.T’
HDpy1 1
T
WDy _ fDgET oF
aluF — J Dpr Y Dy, Di+1,8Y Dkt1,8,Dk+1,1°
D1t

The partial derivatives involving u%c, u%c, and up,,, r are defined above; those involving

“gwm are defined below.

Define ®5b(“gw) to be the set composed of the parameters ¢ng»DjT forj=k+1,...,K.
Define @/Eb(;ﬁ ) to be the set composed of the following parameters:
Dyr
¢DjB,DjT ]=k+2a3K7 ¢DjT,Tj ]:k+177K_1a
(bng,Tj J=k+1>vK—17 ¢DjT,Dj+1,3 ]:k+177K—17
¢EjT1Dj+1,B ]=k+1’aK"17 ¢Tj,Dj+1,B ]:k+1,,K—1,

¢gj,Dj+1yB j:k+17"'5K—'1‘
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For Model 5b, the parameter “Il;w is a function of ép,_ ; g Dii1 1 qﬁng,Tk, ¢ng,Dk+1,B’

F ; — —
¢Tk7Dk+1,B’ and the parameters in the set ®5b(#ng) fork=1,...,K-1. Fork=1,...,K-2,

'
, F
5b(u Dpr

involving s  that are necessary for Equation (B.15) are the following:
Dt

ung is also a function of the parameters in the set y The partial derivatives

fork=1,...,K -1

F
_M_z“¢gwpk+13(l~u£ )
8¢Dk+1,B,Dk+1,T ’ ' k+1,T

6'“ng F

o F = _(1 - /‘]‘T)c);

¢DkT>Tk

F
8'uDkT

— f .
6¢>F = _¢Dk+1,Bka+1,T(1 - MDk+1,T)’
Dy, Diy1,8

F
6“chT

— 4F _ 4T _ T .
3¢F - ¢DkT,Tk {1 ¢Dk+1,Bka+1,T(1 “D,H.LT)} '
Tk, Dk+1,8 ‘

fork=1,...,K—land§ e @5b<#5”), and separately fork =1,...,K—~2and 8 € @gb

(b, p)
0 oL o
K Dr — ¢F Ky, + ¢F oD D Dit1,r
90 Dy, Ty 50 Dir\Dic+1,8¥ Pk+1,B:Dkr1,1 90 ’

duf. 6“fD .
where —7k is defined above, and —£74L is defined below.

Define '@5b(“fD ) to be the set composed of the following parameters:
kT

¢ngyD.7'T j=k+1""’K; ¢TjaDj+1,B j=k,...,K~1.
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Define @; b to be the set composed of the following parameters:

(wh,p)
¢DjB,DjT ]:k+2,7K_1a ¢DjT,Tj j=k+1""7K—1;
¢ng,Tj ]=k+17'7K—1’ ¢DjT,Dj+1,B Jj=k+1,...,K-1;
¢qDﬂjT,Dj+1yB J=k+1>7K— 17 d)gj)Dj-H,B .]= k+1)7K_1

The parameter ,ukaT is a function of ¢p, ., 5,Dps1 7y PDerTk> PDpr,Disr, 5 @0d the para-

meters in the set @5b(uf ) fork=2,...,K—-1 Fork=2,...,K -2, uf is also a

D
Dy kT

“function of the parameters in the set @’5b Wl Y The partial derivatives involving ukaT that
Dy

are necessary for Equation (B.15) are the following:

fork=2,..., K- 1:

é‘ufD
kT /
A = ~9PDyr.D 1- ;
09Di41,5,Dk41,7 @Dur.Desia uDk-H,T)
8;1,!];

— kT (1 — f ;

0P Dr,Ty ( MT")

Oty

Y ~¢Dk+1 BDk+1 T(l - /J“fD );
8¢DkT,Dk+1,B ' o LT

- _ _ _ /
fork=2,,..,K—landf € @517(“{7“), and separately for k =2,...,K—2and f € @5b(ukaT)’
f
8“ka7‘ a'u”ifc‘ 8'LLD’V+1’T

9 = QDyr, Tk —BTk + ¢DkT1Dk+1,B¢Dk-f—1,E:Dk+1,T———59_’

ot
where %g& is defined above.

Define O, 7  to be the set composed of the following parameters:

(“DkT

¢ngaDjT j=k+17"'7K; ¢§j,Dj+1,B j:ki"'yK_l'
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Define @’5 b(ulT ) to be the set composed of the following parameters:
D)cT
¢DjB,DjT J:k+2a)Ka ¢DjT,Tj j:k+1a-~')K_1;
¢£3‘T,Tj J=k+1aaK_1a ¢DjT>Dj+1,B J=k+1aaK_17
¢jl;jT)Dj+1,B J=k+1”K'—1a ¢Tj,Dj+1,B j=k+1aaK—1
T

; ; T T
The parameter pup, . is a function of ¢p, ; g.Dxr1rs PDpr Ty ¢DkTach+1,B’ and the para-

meters in the set © fork=1,...,K-1 Fork=1,...,K -2, ufDq;T is also a

5b( kT)

function of the parameters in the set ©’ The partial derivatives involving ufDq;T that

5b(u kT).
are necessary for Equation (B.15) are the following:

fork=1,...,K -1

oud

Dy _ ¢T !
e = =D, 1 Dip1p (L — K )i
5¢Dk+1 B:Drsrr KT TkrLB Drsrr??

auchT _

~(1 - u]);
8¢DkT7Tk gy

8‘U’DkT

f )
8¢DkT>Dk+1 B

_¢Dk+1,B»Dk+1,T(1 ~ EDpr )

fork=1,...,K—landf € (")sb(ufT ),andseparatelyfork= 1,....,.K—-2and 8 ¢ @

)
Dpr 8b(u chT)

fT f
OkDp, _ .1 BMTk O¥Disr

99 - ¢DkT»Tk 90 + ¢Dk:Tng+1 T¢Dk+1 B:Des1,r 69 ’

oufT . eub
where 85’“ and 5; LT are defined above.
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